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Abstract 

This thesis examines the fabrication of heterogeneous polymer brush surfaces and the 

characterisation of the interfaces present within a polymer brush. A methodology was 

developed to enable modification of the bromide chain ends to form amine groups on polymer 

brushes prepared by a grafting-from technique. The chemistry was tested by proof of concept 

reactions carried out on silane films and on brush surfaces. The chain end modification and 

photocleavable functional groups were incorporated into methodologies developed for the 

formation of multiple polymer brush surfaces. Two routes were demonstrated, one using a 

photocleavable silane film and the second using the attachment of photocleavable functional 

groups to the amine modified brush chain ends. The formation of heterogeneous brush 

surfaces through selective deprotection and multiple polymer growth has shown the ability to 

control the surface chemistry with the potential for bespoke pattern formation by light 

directed lithography. 

Despite being able to conduct chemistry and lithography at the chain ends of polymer brushes, 

the depth profile of polymer brushes has been mainly considered through classical definitions. 

To investigate whether brush-liquid interfaces are well-defined, an AFM cantilever 

methodology was developed to measure the resonant behaviour using the thermal noise of 

the cantilever during a controlled approach-retract of the cantilever with a maximum applied 

force. Through sectioned analysis of the cantilever deflection, the depth profiling of fitting 

parameters for the observed resonances allowed identification of the interfaces present. By 

application of the Brownian fluctuation analysis during force spectroscopy on a variety of 

different polymer brush surfaces and a variety of environmental conditions, a range of 

behaviours was shown to exist for these different situations. The range of behaviours 

extended from an effectively solid interface at tip-brush contact to fluidic behaviour with no 

well defined interface found up to the maximum applied force.  
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Chapter 1: Introduction 

The miniaturisation of technology has been a consistent aim of the semiconductor device 

industry. This is becoming relevant to organic devices which cannot be fabricated in 

semiconductor materials. For organic functional devices, much can still be learnt from the 

highly complex native systems found in nature such as arrays of light harvesting membrane 

proteins1. The interplay of multiple proteins and gradient production leads to function 

generation greater than the sum of the parts. 

Polymers are ubiquitous in everyday life due to wide ranging properties that can be imbued on 

the various materials. For device fabrication, organisation on a solid surface is desired. 

Therefore, this led to polymer attachment to substrates, which are termed polymer brushes2, 3. 

By selection of monomers, reaction chemistry and lithography, the interfacial properties of a 

surface can be spatially defined2, 3.  

The surfaces defined by polymer brushes are intrinsically interesting, as the interfaces 

introduced are not well defined due to a lack of lateral structure within the material. The 

length scales involved are on the nanometre to micrometre scale, which are ideal for 

investigation by atomic force microscopy (AFM). AFM utilises a probe tip attached to a 

cantilever to map the topography and interaction with the surface. AFM has been widely used 

for material characterisation and property determination, especially of polymers and native 

biological structures. 

 1.1. Membrane Proteins 

Membrane proteins are a crucial part of the cellular apparatus which generates and utilises 

chemical gradients. Traditionally, studies of membrane proteins have been reliant on electron 

microscopy and x-ray crystallography for structural information, at situations far from their 

natural environment4. The invention and application of atomic force microscopy (AFM) has 

allowed topographical, nanomechanical and protein unfolding information to be extracted 

under near physiological conditions5. 

The structure-function relationship is a distinguishing feature of native membrane proteins, as 

well as arrays of membrane proteins. The light-driven proton pump, bacteriorhodopsin, that is 

found in Halobacterium salinarium, Halobacterium halobium and similar archaeabacteria 

provides an example6, 7. These archaeabacteria are extremophiles that live in water with high 

salt concentrations such as the Dead Sea and cannot survive at salt concentrations below 1 M 
6. From these archaea, a densely packed protein membrane called the purple membrane has 

been extracted which contains only bacteriorhodopsin in a highly organised hexagonal 

crystalline array with a protein trimer motif8. 

A bacteriorhodopsin protein contains seven polypeptide helices centred around a retinal 

molecule9. The retinal molecule undergoes a trans-cis photoisomerisation and with 

subsequent conformational relaxation steps leads to translocation of a proton from the inside 

of the cell (cytoplasmic) to the external (extracellular) environment. The creation of a proton 

gradient across the cell membrane can then be utilised by ATP synthase for storage of 

chemical energy in the form of ADP conversion to ATP. The photocycle states of 
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bacteriorhodopsin have been extensively mapped and the majority isolated through genetic 

manipulation9. 

Atomic force microscopy uses a sharp tipped cantilever that obeys Hooke’s law to follow the 

topography of a surface using a feedback loop to control the height of the cantilever relative to 

the surface and maintain a constant applied force. The response of the cantilever to the 

surface is measured by the deflection on a photodiode generated by reflecting a laser beam off 

the back face of the cantilever. The trimeric arrangement of bacteriorhodopsin (figure 1.1) in 

the purple membrane has been imaged using atomic force microscopy (AFM) in contact mode 

(CM)10. By screening the electrostatic interaction between the cantilever tip and the sample 

through electrolyte variation, smaller deformation forces may be employed and high 

resolution topographical images obtained10. Tapping mode (TM) AFM uses an oscillating 

cantilever driven at its resonant frequency, leading to reduced lateral forces, and has been 

able to obtain comparable images of bacteriorhodopsin membranes to contact mode11. From 

these topographical images, cytoplasmic and extracellular faces of the purple membrane can 

be identified. 

Force spectroscopy is when the cantilever tip approaches the sample and indents the surface 

until a set force is reached which gives a force-distance curve, from which quantities such as 

height, deformation, adhesion and elastic modulus can be measured. By collection of force 

curves over a designated area, a force-volume map can be built up. Using a force-volume 

technique, Medalsy and co-authors were able to image the bacteriorhodopsin trimer 

topographically with a force setpoint of 100 pN, enabling identification of membrane 

orientation12. Correlation-averaged images of the trimer for deformation, adhesion force and 

elastic modulus were also collected. By using higher force measurements, the purple 

membrane was shown to be stable up to loads of 1 nN and this robustness has been identified 

as a key reason why it was the first membrane to be imaged at protein resolution13. This 

feature has allowed purple membranes to be utilised as a biological substrate for reversible 

green fluorescent protein (GFP) attachment14, but also for the native membrane to have highly 

efficient functionality over wide range of salt concentrations15. It has been shown that the 

cytoplasmic and extracellular orientations have different stiffnesses by force spectroscopy at 

low salt concentrations, however this differentiation disappears at increased ionic strength16. 

Proteorhodopsin is an analogous light driven proton pump to bacteriorhodopsin and is found 

in highly common marine bacteria17. Both proteins share many properties. Due to the 

relatively recent discovery of proteorhodopsin, there are fewer studies for the proton pump in 

comparison to bacteriorhodopsin.  

AFM topographical images have shown that instead of a trimer, proteorhodopsin organised 

into radially symmetric hexamers within the membrane patches (figure 1.2)18, however 

differences may have been artificially incurred from purification and re-insertion into a lipid 

bilayer. Unfolding of secondary and tertiary structure of proteorhodopsin by AFM force pulling 

experiments had no significant variation from bacteriorhodopsin and suggests that the protein 

structures have strong similarity18. 

One of the main differences in protein function is that proteorhodopsin exhibits variable 

vectorial proton pumping, whereas bacteriorhodopsin pumps protons only in one direction, 
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cytoplasmic to extracellular19. This arises from an alteration in a single amino acid. 

Proteorhodopsin pumps in the same direction as bacteriorhodopsin for alkaline pH, however 

at pH < 7 extracellular to cytoplasmic proton flow occurs19. This is likely due to different 

excitation pathways being accessible.  

The second example is of core and antenna bacterial light harvesting complexes. In some 

purple bacteria, anoxygenic photosynthesis is carried out which relies upon the funnelling of 

excitation energy from absorbed photons into a reaction centre, where charge separation 

occurs. The antenna (LH2) and core (LH1) complexes are the photon absorption centres, with 

the reaction centre (RC) found inside the LH1 ring in a 1:1 ratio. The charge separation is 

utilised by the cytochrome bc1 complex to generate a proton gradient which can then be used 

by ATP synthase. There is variability in the specific details of the LH2 and LH1-RC complexes20; 

however in general LH2 and LH1 rings are composed of 9 and 16 polypeptide subunits 

respectively1, 21. Occasionally, such as in Rhodobacter Sphaeroides, one of LH1 subunits is 

replaced with a different protein to complete the ring, such as prulifloxacin (PufX) which aids 

dimerisation of LH1. 

 

 

Figure 1.1: Pictorial representation of the suggested organisation of bacteriorhodopsin from a 

native membrane. Circle and square identify bacteriorhodopsin trimer and unit cell 

respectively. Scale bar is 10 nm. Adapted from Medalsy and co-authors12. 
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Figure 1.2: Pictorial representation of suggested proteorhodopsin reconstituted membrane 

organisation. Circle identifies the proteorhodopsin hexamer. Scale bar is 5 nm. Image adapted 

from Klyszejko and co-authors18. 

 

Figure 1.3: Light harvesting complex organisation in a) Rhodospirilium photometricum (scale 

bar 10 nm) and b) Rhodobacter sphaeroides. Red rings, purple rings and yellow circles 

represent LH2, LH1 and reaction centre respectively. Left image adapted from Bahatyrova and 

co-authors22 and right image adapted from Scheuring and Sturgis23. 

Studies of native membranes are important to understand the supramolecular organisation of 

light harvesting proteins in relation to their function. AFM can probe the relevant length scales 

for this organisation in physiological conditions and has been used to investigate such systems.  

One arrangement identified in Rhodospirilium photometricum has disorder within the 

membrane (figure 1.3a). However it was found that the light intensity during growth caused 

changes in the arrangement of the light harvesting complexes23. At high intensity, LH1-RC and 

LH2 were intermingled with every LH2 no more than one protein away from a reaction centre 
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to aid fast excitation transfer. In contrast, at low intensity, LH1-RC rich areas similar to those 

formed at high intensity and LH1-RC poor areas where the majority of the complexes are LH2 

antenna were observed to form, presumably to increase the efficiency of photonic energy 

collection. This arrangement was simulated by a biophysical model and it was concluded that 

all natural LH2/LH1-RC ratios should have an energy density threshold below which 

rearrangement is beneficial to increase the light harvesting efficiency24. 

A more highly organised assembly was found in Rhodobacter sphaeroides (figure 1.3b). The 

LH1-RC contains a PufX protein which dimerises the LH1 and leads to the formation of short 

arrays of up to six complexes. These aggregates of LH1-RC are typically separated by ten to 

twenty LH2 antenna complexes22. The intervening regions were densely populated by LH2 

rings which formed an extended antenna array. The rest of this section is focussed on Rb 

sphaeroides investigations. 

Genetic mutations to the photosynthetic apparatus have allowed the organisation of these 

membranes to be compared with simpler membranes. LH1 without a reaction centre was 

found to be highly flexible and displayed many conformations20. On the other hand, 

membranes containing only LH2 displayed a corrugated appearance on flat substrates and 

suggested that rearrangement had occurred25. This implied that the membrane was possibly 

highly curved and hence explained why LH2 dominated regions were difficult to image by 

AFM22. 

The highly curved nature of LH2 domains was due to the intrinsic conical shape of the protein, 

whereas LH1-RC formed flat membrane patches. Hence, the LH1-RC in native membranes acts 

to reduce the membrane curvature in mixed light-harvesting complex regions26. Further work 

with mutant bacteria suggested that the kind of organisation, whether paracrystalline (LH2 

only) or fluid amorphous (mixed) domains, was strongly influenced by the fact that the larger 

LH1-RC complexes entropically favour larger scale arrays, and not the result of specific inter-

protein interactions26. Hence, the shape difference led to spontaneous generation of 

membrane curvature and domains of different fluidity. Many of the features mentioned above 

exist because of a requirement for functionality such as to facilitate diffusion processes 

involving quinone redox species. Therefore these differences can be important for the 

generation of functional devices.  

Interest in the properties and behaviour of biological energy conversion systems has meant 

that reproduction of LH2 and LH1-RC systems using isolated proteins has been attempted on 

solid substrates. The placement of proteins was demonstrated using either surface chemistry 

alterations27, 28, 29 or lipid vesicle-fusion deposition30, 31, 32 methodologies for native and hybrid 

bacterial protein combinations. The construction of biomimetic nanopatterns of LH2 

complexes allowed energy propagation over much larger distances than needed in native 

bacteria and allowed observation of an over-engineered native system27. The issue with 

reconstituted membranes as formed by vesicle fusion is the loss of protein orientation in 

comparison to the native membrane, hence for studies related to functionality, native 

membranes are preferred despite the associated curvature and related difficulties when 

imaging with AFM1. 



14 
 

Further complexity is displayed in plant photosynthetic membranes. The photosynthetic 

apparatus of green plant chloroplasts is contained in a thylakoid membrane which segregates 

an aqueous volume (called the lumen) within the chloroplast. Two regimes exist within this 

membrane: highly folded domains called grana stacks and thin plate, unfolded domains called 

stroma lamellae.  

Photosystem I (PSI) and photosystem II (PSII), found in the stroma lamellae and grana stacks 

respectively, both capture energy using internal pigments to absorb photons or by the use of 

additional peripheral antenna (such as light harvesting complex LHCII found in the grana 

stacks) to generate charge separation and a proton gradient which can be used by ATP 

synthase or in the production of the strong biological reducing agent NADPH33. The two 

photosystems run in series starting at PSII and ending with PSI, with a cytochrome b6f 

connecting the electron flow from the PSII stromal output to the ATP synthase or PSI lumenal 

input. 

Detergent isolated membranes were used in spectroscopic measurements which indicated 

that upon lipid dilution antenna size and connectivity increased until 70% of the initial density 

and then below this progressive functionality loss was observed, due to trapped excitations in 

isolated antenna34, 35. This indicated that there was potentially a reduction in lateral pressure 

during the initial dilution phase. 

The supramolecular organisation of PSII complexes has been probed by AFM21, 34, 36. Images of 

purified PSII supercomplexes, dimeric PSII with up to four LHCII antenna, and native grana 

membranes from spinach were collected in air using tapping mode AFM36. Features were 

assigned as clusters of PSII supercomplexes and grana stacks displayed several plateaus with 

height corresponding to one, two and four membranes. Identification of stromal and lumenal 

protrusions allows membrane orientation to be determined. An apparent random organisation 

was analysed and shown to display short range positional order and long range angular PSII 

organisation36. This may be related to membrane stacks reducing protein protrusion 

interactions and the induced horizontal displacement of PSII between neighbouring membrane 

layers (figure 1.4). 

 

 

Figure 1.4: Pictorial representation of undisplaced and displaced thylakoid grana membrane 

stacks. The correct arrangement was identified as the displaced membranes by interpretation 

of AFM height data. Image adapted from Kirchhoff and co-authors36. 



15 
 

 

Figure 1.5: Pictorial representation of a) PSII organisation in parallel regular packed rows and 

b) skewed rows in nanometre sized domains. The scale bars are 100nm. Image adapted from 

Sznee and co-authors37. 

High resolution images of air-dried spinach grana membranes were obtained using jumping 

mode AFM which reduces lateral shear forces for samples with relatively large height 

variations37 for which tapping mode is challenging. The densely packed membranes were 

observed to rearrange into more ordered structures upon cooling from room temperature to 

4°C. Four distinct protein lattice types were observed with parallel crystalline rows (figure 

1.5a), nanometre sized domains of straight rows and of skewed rows (figure 1.5b), and 

disordered regions. 

Similar to the differential behaviour of Rhodobacter sphaeroides membranes at varied light 

intensity during growth, reorganizational adaptation is required and can occur on short and 

longtime scales unlike in bacteria34. These are usually related to preferential excitation of one 

photosystem, safety mechanisms for reduction of radical induced damage by increased excited 

state quenching and efficiency improvement for changes in environmental conditions. 

AFM has not been widely utilised to study thylakoid membranes, however imaging under 

physiological liquid conditions may provide new insights into native organisation and dynamic 

rearrangements. Functional photocurrent systems based on plant complexes have had some 

interest, with the formation of a hybrid photoactive electrode using PSI to display proof of 

principle that biological systems can be incorporated into synthetic man-made systems38, 39. 

The three examples above illustrate some of the ways in which organisational variation has 

been utilised by nature to generate arrays of membrane proteins with higher functionality. The 

study of such structures may lead to new insights that are transferable to the design of 

synthetic organic devices. The way to study such delicate and nuanced systems is very 

important and requires significant experimental planning. 

 1.2. Polymer brushes 

The attachment of polymer chains to surfaces has generated significant research interest due 

to the wide variety of potential applications in nanotechnology and biomaterials40, 41. These 

include bioselective protein nanoarrays2, 42, nanofluidic devices2, 42, microreaction vessels42, 
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(electrochemical) biosensors2, 43, biomimetic material fabrication42, cell growth media42 and as 

a support for biological membranes44. 

Surface tethered polymer chains, known generically as polymer brushes, are bound to a 

surface through covalent bonds and there are two main methodologies for formation. Pre-

synthesised polymer with terminal end groups can be coupled to a surface (called “grafting 

to”) or surface bound initiators can be utilised to grow the polymer from the surface from a 

monomer solution (“grafting from”). The “grafting from” process has also been termed surface 

initiated polymerisation (SIP). 

For tethered polymer chains, several regimes exist which relate to the grafting density σ, the 

number of chains per unit area. The important quantity is actually the reduced grafting density 

Σ, which relates the surface grafting to the solution cross-sectional area of the equivalent 

polymer using the radius of gyration 𝑅𝑔  and provides a dimensionless number45. D is the 

distance between grafting points. 

Σ = 𝜎𝜋𝑅𝑔
2 =

𝜋𝑅𝑔
2

𝐷2
      (1) 

At low grafting densities (Σ < 1), the polymer chains take the high entropy random walk 

conformation and consequently forms approximate hemispheres on the surface, which are 

called mushrooms (figure 1.6a), or chains lying flat on a surface called pancakes. As the 

grafting density is increased, steric interactions between the chains increase such that to 

reduce these interactions the polymers stretch away from the surface and enter an 

entropically unfavourable conformation with chains approximately parallel to each other and 

ideally perpendicular to the surface. The polymer enters the so-called brush regime when the 

maximum stretch away from the surface has been achieved (figure 1.6b), typically at around Σ 

> 5. 

 

Figure 1.6: Pictorial representation of mushroom and brush regimes of polymer chains 

tethered to a surface. Images adapted from Lee et al46 and Tugulu et al47. 
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The “grafting to” strategy is limited to lower grafting densities, due to the difficulties 

assembling a well ordered polymer surface by adsorption of fully formed polymer molecules 

with their associated steric bulk2, 3. Hence, while “grafting to” can generate reproducible brush 

samples45 surface initiated polymerisation is much more commonly used.  

 

Figure 1.7: a) Chemical reaction scheme and b) pictorial representation of surface initiated 

atom transfer radical polymerisation. Adapted from Barbey et al3 and from Matyjaszweski and 

Xia48.  

Early work on brush formation utilised free radical photo-polymerisation from surface-bound 

azo initiators49, 50. The lack of control involved in free radical polymerisation prevented precise 

control of brush height, which led to extensive interest in living or nearly living 

polymerisations. A living polymerisation is where the polymer growth is continual until the 

monomer supply is exhausted. Living polymerisations are well controlled, produces polymers 

with low polydispersity and is compatible with the growth of co-polymers by pausing synthesis 

and restarting with a second monomer feedstock. The most common type of living 

polymerisation utilises a chain terminating in a free radical to which monomers are added. The 

polymer radical can be reversibly capped to yield an inert, “dormant” state, greatly reducing 

termination reactions during the synthesis.  
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Many living polymerisation techniques have been applied to polymer brush synthesis3, 51 which 

include ring opening polymerisation, living anionic/cationic polymerisation, nitroxide mediated 

polymerisation, atom transfer radical polymerisation and reversible addition-fragmentation 

chain transfer (RAFT) polymerisation.  

Ring opening and anionic/cationic polymerisation both suffer from limited monomer choice51. 

Polymerisation using a nitroxide cap lacks versatility due to high operating temperatures, 

potentially greater than 100 °C 3, 52. RAFT polymerisation utilises a chain transfer agent, usually 

a dithioester53, 54, dithiocarbamate55 or trithiocarbonate56, which mediates polymerisation 

either in solution with an immobilised free-radical initiator or at the surface with solution 

phase free radical initiator to provide surface attached polymer. The advantage of surface 

initiated RAFT is the large monomer range for which the technique is compatible, including 

acid monomers57. The disadvantage is usually the synthetic complexity and lack of commercial 

availability of the required chain transfer agent for a specific monomer. 

One of the more widely used techniques is surface initiated (SI) atom transfer radical 

polymerisation (ATRP) 51. The range of usable monomers is large (though issues are present for 

acidic and basic monomers by acting as a catalyst poison48), the mechanism is compatible with 

water as a solvent and the majority of reagents required are commercially available. One of 

the main drawbacks is the concern about the quantity of toxic catalyst used in ATRP where 

biomedical applications are the end-use. The monomer range is also reduced when compared 

to RAFT polymerisation. Due to the reduced synthetic cost, SI-ATRP was chosen as the focus 

for polymerisation at surfaces used herein. 

 1.2.1. Atom transfer radical polymerisation 

ATRP was initially developed for solution phase polymer synthesis and was later adapted to 

surface initiation48. The initiator contains a carbon-halogen group, usually containing C-Br or C-

Cl bonds. A low oxidation state halogenated transition metal centre with good complexation 

ligands is used as the catalyst, such as copper(I) bromide with 2,2’-bipyridyl ligands. Homolytic 

cleavage of the carbon-halogen leads to the generation of a radical chain end where vinyl 

monomers can be added, while the halogen radical is incorporated into the metal catalyst 

which increases in oxidation state and coordination number by one (figure 1.7). This process is 

highly reversible to reduce the proportion of radical chain ends that can interact with each 

other and lead to termination reactions.  

A large number of factors can affect the polymerisation by shifts in the equilibrium position 

and kinetics of the halogen transfer to and from the catalyst. These include the ligand, solvent 

system, strength of the carbon-halogen bond (Br or Cl), use of deactivators (such as initial 

addition of the oxidised catalyst form, e.g. Cu(II) bipyridyl halide) and various ratios between 

the monomer, active metal catalyst and deactivating metal centre. Control of polymer brush 

height from the growth rate utilising the ratio of Cu(I)Cl to Cu(II)Cl2 was demonstrated by 

Tomlinson and co-authors58. 
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 1.2.1.1. Initiators used for SI-ATRP 

Initiators for SI-ATRP are often formed as self-assembled monolayers (SAMs) or deposited 

films of α, ω-bifunctional molecular adsorbates, for example ω-Br terminated alkylthiols and 

alkylsilanes. Thiols (R-SH) have been widely used to form SAMs on gold59 and can also be used 

on palladium60, 61. Silane (R-Si(Cl)3 or R-Si(OR’)3) groups can form surface films on most metal 

oxides including chromium oxide62 and aluminium oxide63, however these are most commonly 

used on glass and silicon oxide. Examples of the pre-synthesis method include ω-

mercaptoundecyl bromoisobutyrate (figure 1.8a)64, 65  and equivalent disulfide66 for gold and 

11-(2-bromo-2-methyl)-propionyloxy)undecyl trichlorosilane (figure 1.8d)67, 68 for glass and 

silicon oxide surfaces.  

An equivalent mono-chloro silane was used to add an initiator to the titanium oxide surface 

layer of a titanium substrate69. A shorter alkyl chain mono-bromo silane was used on a mica 

surface to generate a brush surface, however the grafting density depletion was observed due 

to the reduced surface coverage of hydroxyl groups compared to optimised pure oxide 

surfaces70, 71. Attachment of hydrolysed bromoundecyl trichlorosilane to carboxylic acid 

functionalised surfaces via hydrogen bonding has been realised on a silane monolayer72 and an 

initial polymer brush layer73. 

The alternative used by several authors was to deposit a monolayer with a reactive head group 

and then add the initiator functionality by a surface reaction. The use of bromoisobutyryl 

bromide with a catalytic base has been used on mercaptoundecanol-gold74, 75 and (3-

aminopropyl)triethoxysilane-silicon oxide monolayers (figure 1.8e)76. A similar esterification 

reaction was used on mercaptoundecanol with chloroacetyl chloride (figure 1.8b) or by 

consecutive reactions of (3-aminopropyl)trimethoxysilane and chloroacetyl chloride (figure 

1.8c) to generate surface carbon-chloride initiators77.  

Some authors have performed direct coupling reactions of initiator functionalities to surface 

hydroxyls via an acyl bromide group. This led to the formation of initiator layers and brush 

growth on nano-sized cellulose patches78 and PHEMA hydrogels79. Kavitha and co-authors 

utilised a combination of carboxyl-coupled organic diamines and hydroxyl-reactivity to form 

surface-attached polymer chains on graphene oxide80. 

A third methodology that is not based on self-assembled monolayers has also been utilised 

and is based on polyelectrolytic macroinitiators, short polymer chains with multiple initiator 

moieties81. Examples include poly(vinylbenzylchloride) which allowed brushes to be grown 

from bulk polymer surfaces82 and modified poly(glycerol methacrylate) with sulfobenzoate and 

bromoisobutyrate groups to allow deposition on amine funtionationalised silicon oxide 

surfaces (figure 1.8f)83. 

Due to the fact that approximately only one in ten monolayer initiator molecules contribute to 

a polymer brush64, there should be no substantial difference between any of the methods 

suggested above. While surface reactions are more limited in efficiencies due to steric 

hindrance and diffusion limitations84, this should not severely impact post-SAM or film 

formation reactions relative to pre-synthesised initiators for grafting density comparisons. 
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Figure 1.8: Initiator molecules used for surface initiated ATRP: a) Mercaptoundecyl 

bromoisobutyrate64; b) b) Mercaptoundecyl chloroacetate77; c) Chloroacetyl 

amidopropyl(dimethoxy)silyl ether undecanethiol77; d) 11-(2-bromo-2-methyl)-

propionyloxy)undecyl trichlorosilane67, 68; e) Bromoisobutyryl amidopropy(trimethoxy)silane47; 

f) Anionic macroinitiator based on poyl(glycerol methacrylate)83. 

 

Figure 1.9: Double logarithmic plot of height against grafting density which identified the 

mushroom to brush transiton using a macroscopic gradient of initiator surface fraction85, 86. 

The grafting density of a polymer brush has been calculated using a set of assumptions, which 

include that in air polymer brushes collapse into a highly dense closely packed layer, the 

surface brush density is the same as bulk polymer density and that molecular weight for 

polymer brushes can be determined by indirect methods45. These indirect methods include 

atomic force spectroscopy87, 88, 89, cleaved polymer brushes90, 91, 92, and the use of sacrificial 
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initiators58, 93 or separate solution polymerisation to measure molecular weight by gel 

permeation chromatography (GPC). The equation for grafting density 𝜎 is shown below, where 

ℎ is the dry polymer height, 𝜌 is the density of bulk polymer, 𝑀𝑛 is the number average 

polymer molecular weight and 𝑁𝐴  is Avogadro’s number. 

𝜎 =  
ℎ𝜌𝑁𝐴

𝑀𝑛
     (2) 

However, in the literature, it is noticeable that not all research groups use a method to 

determine the grafting density despite its importance in determining brush properties. It is 

therefore suggested that this method may be flawed due to the difficulty of measuring 

molecular weight of a surface bound polymer with sufficient accuracy. Solution polymerisation 

is a significantly different situation with regards to diffusion and localised initiators that 

solution values determined and applied to surfaces should not be regarded as accurate. 

Though cleaved brush information can be regarded as more reliable, due to the small sample 

size as only nanograms of polymer will be present at surfaces, much larger errors than quoted 

are likely. 

By using a mixed composition of self-assembled monolayer molecules, it is possible to adjust 

the initiator fraction and hence vary the grafting density. Mixtures of inert and initiator 

molecules have been used in the formation of thiol monolayers64, 65, 94, 95 and in silane 

monolayers47, 85, 86, 96, 97. Alternative methods such as using reagent mixtures for surface 

reactions with a preformed monolayer96 and mixed monolayer of photopolymerisation 

initiator/diluent98 have also been carried out. While this methodology clearly has some 

influence on grafting density, the possibility of initiator/diluents phase separation within the 

monolayer and the highly non-linear relationship between solution and surface fractions47, 65 

means that any studies of this nature must be met with scepticism. 

Work of Wu et al85, 86 provided important information regarding brush behaviour, despite 

relying on a similar initiator/diluent methodology. A gradient of initiator silane was deposited 

across a macroscopic substrate and then backfilled with an inert silane. By polymerisation and 

using ellipsometric height information from across the substrate, it was shown that the 

mushroom regime polymer height was independent of grafting density, whereas upon 

stretching transition associated with brushes the height becomes dependent on the grafting 

density to a fractional power (figure 1.9), consistent with brush scaling theory. 

 1.2.2. Micron and nano-scale patterning of polymer brushes 

Patterning of biological molecules and soft matter at a variety of length scales is important in 

many areas, including the development of sensors and diagnostic devices and studies into the 

influence of spatial organisation on interfacial biological phenomena. Lithographic techniques 

are generally separated into selective removal and deposition (top-down) or self-assembled 

(bottom-up) pattern formation99. Due to the reliance on monolayers for “grafting from” 

surface initiated polymerisations, polymer brush patterns have been generally formed by top-

down techniques. These top-down techniques can be applied to form patterns of initiator 

molecules (pre-polymerisation) or to alter the polymer brush selectively post-polymerisation 

to generate topographic and/or chemical spatial variation. 
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 1.2.2.1. Pre-polymerisation patterning 

  Soft lithography 

Soft lithography is patterning through the utilisation of elastomeric stamps made from 

polymers such as poly(dimethylsiloxane) (PDMS). In microcontact printing (µCP) the stamp is 

coated with molecular ink, such as a thiol, and is then contacted onto a planar substrate. 

Patterning by microcontact printing of initiator thiols onto gold (figure 1.10)94, 100, 101 and of 

macroinitiators onto an aminated silicon oxide83 have been used to generate micron scale 

polymer brush patterns. Through a repeated initiator stamp-polymerisation protocol, multiple 

component brush patterns have been generated100. 

Capillary force lithography (CFL) is the application of thin polymer film to a substrate, which 

when contacted with a stamp and heated above the polymer’s glass transition temperature 

leads to dewetting from the surface and pattern formation (figure 1.11). This methodology has 

been applied to both “grafting from” a macroinitiator layer102 and “grafting to” an epoxy thin 

film103 to form polymer brush patterns. Telford and co-authors have shown that the use of the 

stamp was not required by dewetting a macroinitator film deposited on top of a polystyrene 

layer104. This method, however, did not produce a clean, periodic array of brush structures. 

Nanoimprint lithography (NIL) is the deposition of UV curable polymer which is pressure 

stamped and solidified by irradiation. This is typically followed by a reactive ion etch (RIE) to 

generate bare substrate and cured polymer pattern. The cured polymer can be easily removed 

after the reactive ion etch or later after polymerisation. It has been shown that the imprint 

lithography can be used before105 and after (figure 1.11b)106 initiator monolayer formation, as 

initiators can be deposited between the cured polymer and initiator moieties can survive the 

stamp and resist removal processes.  

While soft lithography allows large area patterns to be generated quickly, the patterns 

produced are limited by the stamp design. The elastomeric stamps are fabricated by a 

moulding process in a stamp master, where the master is typically produced by traditional 

semiconductor strategies. Also the use of elastomeric stamps and thin polymer resists could 

lead to surface contamination from the stamp polymer and incomplete removal of the 

patterned resist. This could be very important when patterning biological molecules with 

regards to non-specific adhesion and loss of protein structure. In addition, stamps are never 

perfectly produced; hence mechanical deformities and stamp imperfections lead to pattern 

defects. 

  Electron beam lithography 

There are two main ways of utilising electron beams for patterning. The first is the use of 

electron sensitive polymer resists, which are degraded by electron irradiation and then 

developed. High sensitivity polymer resists, such as diblock brushes, have been developed to 

allow sub-30 nanometre line widths to be generated107. Through such patterned resists, 

evaporation of metals such as gold46 and titanium108 can be used to allow substrate selective 

deposition of initiator monolayers. Alternatively, the resist pattern can be used to direct gas 

phase silanisation108, 109, 110.  
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Figure 1.10: Scheme for polymer brush patterning using microcontact printing on gold. Initially 

an inert thiol is deposited using a elastomeric stamp and then the pattern is backfilled with 

initiator thiol, which then can be used for surface initiated polymerisation. Adapted from Jones 

and Huck101. 

 

Figure 1.11: Patterning of a pre-deposited initiator film or monolayer using a) capillary force 

lithography102, 103, 104 and b) nanoimprint lithography105, 106 alongside a reactive ion etch. 

 

Figure 1.12: Patterning scheme using electron beam chemical lithography on a gold monolayer 

to generate an initiator for photo-polymerisation111, 112.  

b) 

a) 
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The alternative way to use electron beams in patterning is for selective chemical variation. 

Focussed electron beams have been used to selectively convert nitro groups into amines 

(figure 1.12), which allowed spatial formation of an asymmetric photoinitiator and consequent 

patterned brush formation111, 112. This method allowed initiator features of sizes from 10 nm to 

1000 nm to be generated. 

Electron beam lithography allows high spatial resolution to be achieved under clean, 

contaminant free conditions due to the small de Broglie wavelength of energetic electrons and 

the ultra-high vacuum conditions needed. However, the method can be highly serial in nature 

when using focussed electron beams leading to long fabrication times, and requires very high 

cost equipment and maintenance. 

  Scanning probe lithography 

Cantilever probes in atomic force microscopes have been used in a variety of ways for pattern 

formation including mechanical and electrochemical methods. Dip pen nanolithography uses a 

tip dipped in a molecular ink and uses the water meniscus formed between the tip and surface 

as a diffusion pathway for transfer of the ink onto a bare substrate. Thiols terminated in an 

initiator have been used with dip pen nanolithography to generate 90 nm diameter brush 

features94. One significant issue with dip pen lithography is that the ink can diffuse over larger 

distances than intended, due to the presence of bare substrate.  

A way to prevent diffusion problems is to pattern a monolayer covered substrate and use the 

AFM tip to mechanically remove molecules to generate regions of bare substrate. This can be 

done under liquid with a second molecule in solution (nanografting) or to create the voids 

before refilling with a second molecule (nanoshaving). Nanoshaving has been used with an 

octadecanethiol resist before immersion in a thiol initiator, which allowed brush lines of 300 to 

500 nm line widths to be formed113. 

 

Figure 1.13: Initiator monolayer patterning using dip-pen nanodisplacement lithography (DNL). 

Image adapted from Liu et al114 and Zhou et al115. 

A different method named dip pen nanodisplacement lithography is a combination of the dip 

pen methodology and nanoshaving, without the need to work under liquid114, 115. An inked tip 

is used to mechanically cleave a SAM resist and hence simultaneously deposits the ink 

molecule in the tip’s wake (figure 1.13). By using an initiator ink, brush features of 25 nm have 
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been fabricated114. By variation of the tip-sample force, grafting density was altered. Through 

combination of force variation with feature separation, conformational control allowed 

complex three-dimensional brush topographies to be generated115.  

  Photolithography 

There are many ways in which photons may be utilised for selective surface modification. The 

main photolithography methods are masking, interference lithography and scanning probe 

lithography. Masks allow the selective blocking of light and can utilise the significant amount of 

research generated by the semiconductor industry. Interference lithography (IL) uses mirror-

sample setups, such as a Lloyds’ mirror stage (figure 1.14a), to form an interference pattern 

across a substrate, leading to the generation of periodic patterns over large areas116, 117. While 

single exposure techniques, such as contact masking and interference lithography, are 

diffraction limited and have a lower limit to feature size determined by the Rayleigh criterion, 

smaller features and feature spacings have been generated in semiconductor device 

fabrication by control of the exposure conditions, type of resist and development process. 

These have included the use of shorter wavelength lasers, fluid immersion for surface 

exposure and multiple exposure-multiple etch schemes. 

One way to circumvent the diffraction limit is to use the near-field component of light. Using a 

sub-wavelength aperture formed at the tip of an optical fibre in conjunction with a shear force 

feedback system, a near field source can be created and brought close to the surface of the 

sample to allow the evanescent field to interact with monolayer molecules118, 119. This is called 

scanning near-field photolithography (SNP) (figure 1.14b) and has allowed features as small as 

9 nm to be formed in a self-assembled monolayer. 

 

Figure 1.14: Patterning techniques of a) interference lithography using a Lloyds’ mirror setup 

and b) scanning near-field photolithography setup are shown. Image a) was adapted from 

Adams and co-authors120 and image b) was adapted from Leggett119. 

Brush patterns have been generated by photopolymerisation alongside masking techniques121, 

122. The initiators used in surface initiated ATRP and photopolymerisation have been degraded 

by UV exposure using masking and interference lithography techniques123, 124. Using sufficiently 

low doses allowed grafting density variation, hence upon photopolymerisation nanometre 

length scale gradients were generated, which were much steeper than those generated 

macroscopically123.  
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Photocleavable protecting groups have been used to generate various chemical variations 

across a surface, such as thiol125 and amine126, 127 surfaces. Using groups such as 2-

nitrophenylpropyloxycarbonyl- (NPPOC)127 and PEG modified 2-nitrophenyethoxycarbonyl- 

(NPEOC)126 to protect amino-silanes, this allows surface initiator attachment after deprotection 

and would be a facile method to brush patterning. The difficulty with such photocleavable, 

photopolymerisation and photodegradation methods is that any spurious light can deprotect a 

molecule leading to mushroom formation over large areas of the surface during ATRP and the 

lack of a sharp cut-off around masked features could lead to grafting density variation. 

Monolayer patterns were also formed using photosensitive monolayer molecules, such as thiol 

photo-oxidation120, 128 and phosphonic acid photocatalytic degradation129, 130. These methods 

allow monolayer patterning by etching the surface to generate substrate variation (figure 1.15) 

or by simple backfill with an ATRP initiator. Similar backfill methods have been achieved with 

non-photosensitive monolayers such as silanes by using photothermal removal with high 

power visible laser light131. Due to a non-linear dose effect, this method allowed line widths of 

78 nm to 371 nm to be formed.  

 

Figure 1.15: Substrate variation generation based on photo-oxidation of a thiol resist and use 

of a gold etching step. Image adapted from Ducker and Leggett128 and Adams et al120. 

Polymeric photoresists have been used to form initiator patterns, which can cross-link 

(negative tone) or degrade (positive tone) upon exposure to UV light. A positive tone resist and 

oxygen plasma etch was used to generate bare substrate in a poly(ethylene glycol) (PEG) silane 

monolayer132. Backfill with an ATRP initiator silane allowed brush lines to be formed. 

  Colloidal lithography 

Colloidal lithography is a bottom-up self-assembly process, which uses the organisation of 

nanospheres as a template for pattern formation. The nanospheres can be used as an 

evaporation template, for example chromium primer and silicon oxide evaporation onto gold, 

to create substrate variation for monolayer deposition (figure 1.16)121, 133. This was used to 

create so-called nanoislands of polymer brushes. 
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Figure 1.16: Substrate variation generation based on self-assembled template of polystyrene 

colloids and use as an evaporation mask. Image adapted from Chen and co-authors133. 

Chen and co-authors have used colloidal lithography in a variety of ways to pattern thiol 

initiators, including using the colloids as masks, as ink transfer agents from an elastomeric 

stamp and conducting ATRP on deposited initiators with the colloids left in place133. 

Alternatively, on a preformed initiator monolayer, colloidal deposition and subsequent 

reactive ion etch also allowed spatial patterning of brushes134. The advantages of using 

colloidal lithography are that no special instrumentation is required and by using different 

diameter colloids, feature size can be varied. Brush patterns formed by colloidal lithography 

have been prepared down to sizes of 100 nm134.  

 1.2.2.2. Post-polymerisation patterning 

Post-polymerisation patterning is not as common as initiator based lithography, however it can 

prove to be a simpler and cleaner method as some methodologies of this type can be direct, 

one step techniques. Post-polymerisation reactions have been used with micro-contact 

printing and reagent based inks to generate chemical spatial variation135. Micro-channel 

patterning uses an elastomeric mold through which the solution used is passed. This has been 

utilised for reactive patterning of brushes135 and for multiple step ATRP to generate large scale 

plateau based structures136. Nanoimprint lithography was also applied to brush layers with a 

stamped UV cured resist allowing a reactive ion etch to generate the brush pattern106. 

Direct electron beam patterning of polymer brushes has been demonstrated for a variety of 

monomers (figure 1.17a)42, 137. Electron induced scission of the polymer backbone led to a 

continual thickness decrease with increasing dose until the substrate was reached. Brush 

patterns with a linewidth of 20 nm have been formed which demonstrates that high resolution 

patterning can be achieved without complex lithographic schemes42. 

Direct electrochemical patterning of brushes has been conducted by the application of a 

voltage to a AFM tip and the technique has been termed field induced nanolithography 

(FINL)138. By changing the bias polarity, localised surface oxidation or reduction can be 

achieved. Various polymer brushes have been patterned using either oxidation or reduction to 

create chemical and topographical spatial variation, without brush removal. Alternatively, 

using the force applied by an AFM tip, nanometre scale sculpting of polymer brushes has been 

carried out. Through variation in applied force, the amount of cleaved polymer may be 

controlled enabling formation of topographically defined structures (figure 1.17c)139. By 
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conducting this process under liquid, the removed polymer was dissolved preventing tip and 

sample contamination. These scanning probe methods are very useful for creation of 

complicated patterns; however the techniques are highly serial in nature and likely time 

consuming for preparation of large sample areas. 

Photolithography has been applied in post-polymerisation patterning in various ways. Using 

positive and negative photoresists alongside reactive ion etching82 or wet chemical reagents140 

enabled micron scale patterns of topographical and compositional variation, respectively, to 

be generated. The use of “grafting from” brushes via a thiol linkage allowed Zhou and co-

workers to photo-oxidise the linker and refunctionalise the surface with initiator to generate 

two component brush patterns141. Alternatively, the incorporation of photocleavable units in 

initiator silanes has enabled topographical variation following photocleavage in liquid with 

long exposure times142. Additionally, positively charged photocleavable units were attached 

after polymerisation to side chain units of carboxylic acids side groups, hence upon selective 

exposure to UV light regions of positively and negatively charged brush were present. This 

allowed spatially selective deposition of oppositely charged proteins143. 

 

 

Figure 1.17: Post-polymerisation brush patterning methodologies using a) electron beam 

scission of polymer backbone42, 137, b) UV induced brush photo-degradation144, and c) liquid 

mediated scanning probe brush nanosculpting139. 
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Figure 1.18: The impact of brush spatial confinement and loss of steric constraints for 

patterned brush systems131. 

Photodegradation of polymer brushes using UV light has been achieved in a similar way to 

electron induced scission of the polymer backbone but under ambient conditions (figure 

1.17b)144. Using appropriate laser energy and dose, topographical variation was generated and 

increased with dose. For poly(oligoethylene glycol methacrylate) brushes, low doses also 

generated chemical variation, likely due to the photodegradation of polyethylene glycol to 

aldehyde groups144. A similar mechanism has been observed for thiol and silane films of 

polyethylene glycol molecules145, 146. 

 1.2.3. Nanometre scale confinement of polymer brushes 

The focus of many lithographic techniques is pattern size reduction and the formation of 

nanoscale features which may lead to behavioural changes. When organic materials, such as 

polymer brushes, are confined on nanometre length scales, interfacial effects and entropy 

differences can lead to changes in the properties of these materials147. 

Polymer brushes form stretched chain conformations normal to the surface due to the steric 

interactions of neighbouring tethered polymer molecules. By forming patterns, these steric 

constraints are relaxed and lateral brush expansion with height reduction occurs due to 

increased entropic contribution to the conformational free energy that this change provides 

(figure 1.18). Patra and Linse conducted a simulation based investigation of this behaviour and 

found a common relationship for brush height148.  

ℎ(Δ, 𝑁, 𝜎) = 𝑁𝜎1 3⁄ ℎ̃(Δ
𝑁⁄ )     (3) 

This is where ℎ is brush height, N is degree of polymerisation, σ is grafting density, Δ is initiator 

footprint, and ℎ̃(𝑥) is a universal function. By plotting ℎ 𝑁𝜎1 3⁄⁄  against Δ/𝑁, all data points 

collapsed onto the same curve. Lee and co-authors confirmed this behaviour experimentally by 

substitution of bulk brush height for degree of polymerisation and surface initiator fraction for 

grafting density46. Qualitative105, 112, 114 and quantitative agreement109, 131 with these results has 

been shown in various publications. A scaling law consistent with the Patra and Linse 

formulation has been developed by Mathieu and co-authors131, shown below where ℎ𝑏𝑟𝑢𝑠ℎ  is 

the height of nanopatterned brush, ℎ𝑓𝑖𝑙𝑚 is the height of unpatterned brush and 𝑐 is the 

constant with a value of ~2.  
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ℎ𝑏𝑟𝑢𝑠ℎ

ℎ𝑓𝑖𝑙𝑚
=

Δ ℎ𝑓𝑖𝑙𝑚⁄

Δ ℎ𝑓𝑖𝑙𝑚⁄ + 𝑐
     (4) 

Jonas and co-authors used a generic free energy model with entropic components from brush 

stretching and energetic components from surface wetting of the brush chains due to lateral 

spreading109. Using free energy minimisation, good reproduction of brush profiles and of 

experimental data plotted in similar way to Lee et al46, at constant grafting density, was 

achieved. 

Nanoconfinement also impacts responsive brush systems, which displayed a larger swelling 

degree and a broader transition upon application of external stimulus110. The increased 

swelling is due to the higher initial entropy of collapsed chains which swell until the entropy 

decrease is no longer compensated by brush solvation. This suggests that nanoconfinement 

may enhance brush response transitions and not suppress. The broadened transition was 

attributed to the increased distribution width of chain end distances and hence the greater 

variety of stretched states leads to a greater range of behaviours. 

 1.2.4. Responsive polymer brushes 

By selection of specific monomers, conformation change of polymer brushes may be 

controlled by the application of external stimuli, such as temperature149, 150, solvent 

mixtures151, ionic strength152 and pH150, 153, 154. Dual responsive copolymer brushes have been 

synthesised, such as temperature and pH responsive materials150. Due to the functional nature 

of these brushes, various applications have been tested such as AFM cantilever actuation by 

ionic strength152 and nanopore switchable ion gating by pH153. Different types of light 

responsive brush devices have also been developed, however the complexity is significantly 

lower than that of native photosynthetic membranes as described earlier.  

One type is chemically irreversible light response, which usually uses a photo-deprotection 

reaction. Photoacid generators and photocaged functional groups have been utilised to 

generate light induced wetting response (figure 1.19a)155 and phototriggered pH response 

(figure 1.19b, c)156, 157.  

Alternatively, reversible photoresponsive systems have been created based on moieties found 

in nature, such as the development of synthetic light harvesting antenna158. Azobenzene 

groups undergo an isomerisation from the trans to cis form by UV irradiation and the reverse 

process can proceed with visible light exposure or thermal relaxation (figure 1.20a)159. 

Azobenzene units have been incorporated into thiol monolayers160, solution polymers161, 162 

and polymer brushes 159, 163. By post-polymerisation attachment of azobenzene groups to 

poly(methacrylic acid) brushes, topographical variation was generated using interference 

patterns. If the period was less than the radius of gyration of the polymer, then the patterns 

were reversible and removed by a solvent wash159. Whereas, at larger periods, the 

isomerisation induced stress led to covalent bond scission and degrafting of polymer chains159, 

163. 

Another reversible photoresponsive group is the closed ring spiropyran (SP), which ring opens 

upon photonic excitation with UV light to an open state called merocyanine (MC) (figure 
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1.20b). This reaction can be reversed with visible light. Spiropyran groups have been used in 

solution polymers 164, 165 and polymer brushes41 using monomers incorporating the moiety. 

Retinal is a Schiff base chromophore and is found in biological molecules, such as 

bacteriorhodopsin, for photoresponsive behaviour. Retinal has been incorporated into 

synthetic biomimetic polymer systems due to their ability to initiate light induced processes 

with high efficiencies (figure 1.20c)166.  

 

Figure 1.19: Irreversible, light sensitive chemical systems for photo-triggered pH and wetting 

response: a) photoacid tert-butyl deprotection155; b) photocleavage of protected 

poly(methacrylic acid)156; c) photocleavage of protected poly(aminoethyl methacrylate)157. 
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Figure 1.20: Chemical structures that undergo reversible photoisomerisation: a) azobenzene159, 

161, 163; b) spiropyran164; c) retinal166. 
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Figure 1.21: Biomimetic triblock polymer vesicle incorporating bacteriorhodopsin and ATP 

synthase demonstrated light responsive production of ATP from ADP. Image adapted from 

Choi and Montemagno167. 

 

Figure 1.22: A pH responsive polymer hydrogel with end grafted covalently incorporated 

bacteriorhodopsin has been shown to have photoactuation ability. Image adapted from Saaem 

and Tian168. 

Tri-block copolymer vesicles have been used to incorporate membrane proteins such as 

bacteriorhodopsin169 and ompF pore proteins170. A light induced proton gradient generated by 

bacteriorhodopsin across the synthetic membrane has been measured using fluorescent 

probes169. Further developments led to the incorporation of bacteriorhodopsin and ATP 

synthase into the polymer vesicles and were used to generate ATP under light incidence, which 

showed that the proteins retained their functionality (figure 1.21)167, 171. Bacteriorhopsin has 

been covalently coupled to poly(acrylic acid) in solution, deposited on a surface and patterned 

by an electron beam method168. The methodology required placing the protein within a 
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vacuum environment which may lead to some denaturation and the interwoven polymer 

chains likely had an almost random orientation of bacteriorhodopsin. This is a device that did 

not use the fact that bacteriorhodopsin is a vectorial membrane protein or that membrane 

proteins are most stable within a lipid bilayer, however highly efficient photoactuation of the 

polymer-protein hybrid structures was demonstrated (figure 1.22). 

 

 1.2.5. Protein attachment methodologies to polymer brushes 

There are a variety of protein amino acid side chains that can be targeted for attachment. One 

of the more used residues is lysine, which has a primary amine side group, and can be reacted 

with a range of functional groups such as activated esters, epoxides and aldehydes172, 173. The 

difficulty with lysine coupling is that it is commonly found in protein amino acid sequences and 

is unlikely to yield an orientated protein. Hence, more specific alterations have been 

developed, usually through mutations which include mono-cysteine (thiol containing amino 

acid) proteins and poly(histidine) (His) tag at sequence termini172, 173. By using site specific 

reactions with groups, surface patterning and protein orientation can be achieved. 

A divalent metal chelated nitrilotriacetic acid (NTA) is typically used to complex the His tag and 

has found wide application due to being a weak and non-covalent interaction which rarely 

leads to denaturation. The binding is reversible and can lead to protein dissociation; hence the 

development of high affinity groups with multiple chelation head groups which display a 

significantly increased stability and protein loading174, 175. Polymers containing nitrilotriacetic 

acid bearing monomers176 and NTA-functionalised thiol monolayers29, 177, 178 have been 

reported with attached proteins retaining their biological functionality29, 176. For polymer 

brushes, the most common alteration point is the side group due to the functional group 

accessibility and the high density of attachment that is possible. 

  Polymer side group modification 

Esterification reactions have been used to add functional groups for various applications, such 

as pH response179 , biosensor intermediates105, 175, 180, and photocleavable group patterning143. 

The two main ways to modify a hydroxyl functionalised polymer brush are the use of a 

anhydride to introduce a carboxylic acid moeity or a carbodiimide mediated reaction with a 

carboxylic acid containing reagent in dry organic solvent conditions under basic conditions 

(figure 1.23a)105, 143, 175, 179, 180. 

An alternative is the use of activated reagents, such as those containing N-hydroxy 

succinimidyl groups which can form activated esters and react with primary amines. Active 

ester monomers have been polymerised in solution181 and copolymerised at surfaces182, 

however these polymerisations can be difficult to optimise with monomer hydrolysis from any 

remnant water impurities present and hence has not been a widely taken up method. 

Disuccinimidyl carbonate has been used to chemically and biologically functionalise polymers 

containing hydroxy side groups such as PHEMA and POEGMA (figure 1.23c)134, 135, 183, 184. The 

reagent disuccinimidyl carbonate was shown in a comparative study to be the most efficient 

activation agent for streptavidin binding183. The use with aminobutyl nitrilotriacetic acid and 
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nickel ions with activated protein resistant brushes demonstrated that green fluorescent 

protein could be attached to brushes without denaturation (figure 1.24b)184. Protein 

functionality may not be retained in the case of larger proteins such as membrane proteins; 

however this methodology shows promise for future membrane protein surface assays.  

Succinimide esters have been used to activate carboxylic acid functionalised monolayers on 

gold using the popular combination of 1-ethyl-3,3-dimethyl carbodiimide (EDC) and N-

hydroxysuccinimide (NHS) to generate surfaces reactive to amines (figure 1.23b)28, 185, 186. The 

application to polymer brushes has been reported multiple times, for brushes of poly(acrylic 

acid)132, 187, 188, 189, 190, 191, poly(methacrylic acid)191, 192, poly(2-(methacryloyloxy)ethyl 

succinate)193, 194 and poly(oligoethylene glycol methacrylate)105, 175, 180. Direct protein 

attachment through activated ester-lysine reactions has been used for proteins without 

orientation requirements105, 132, 180, 188, 189, 190, for example, to be used in biosensor platforms. To 

induce orientation, activated ester-modified polymer brushes can be used to react with further 

reagents such as aminobutyl nitrilotriacetic acid to generate surfaces that can bind His-tagged 

proteins (figure 1.24a)175, 187, 193, 194. The EDC/NHS reaction can lead to different product 

formation depending on the polymer, as poly(acrylic acid) was shown to form the activated 

ester in comparison to poly(methacrylic acid) which formed an anhydride and hence reacted 

with amines at a 50% efficiency relative to poly(acrylic acid)191. One problem with activated 

ester usage is hydrolysis, which can be problematic as the reaction of EDC/NHS has been 

commonly undertaken in water and the protein deposition requires water solvation to prevent 

denaturation. Hence the efficiency of this type of coupling has been reasonably low and 

experiments in organic solvents have demonstrated that higher coupling efficiencies can be 

achieved by alternative reagents185. 

Aldehyde surfaces have shown the ability to directly bind proteins and intermediate reagents, 

such as nitrilotriacetic acid bearing amines145, through imine bond formation. Aldehyde protein 

absorption has been shown for the photodegradation product of oligo(ethylene glycol) on 

silane monolayers145, 195 and polymer brushes144. These results can be replicated on amine 

surfaces using a dialdehyde reagent, such as glutaraldehyde. Glutaraldehyde has a highly 

complicated aqueous chemistry and hence the critical reactive species are unknown196. While 

glutaraldehyde has displayed very high coupling efficiencies of proteins on monolayers185, 

there must be concern for use with membrane proteins where conformational rearrangement 

is undesirable due to the application of dialdehydes for protein crosslinking196.  

Copolymerised brushes containing glycidyl methacrylate monomer have been used in post-

polymerisation modification based on ring-opening reactions with the epoxy side groups197, 198, 

199. This has been demonstrated with amine (figure 1.25a) and dithiol (figure 1.25b) chemical 

reagents as well as the lysine amino acid of proteins. These surfaces have been demonstrated 

as useful biosensors for proteins and antibody arrays, however no demonstration of functional 

proteins on these surfaces has been found. 
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Figure 1.23: Esterification and amidation post-polymerisation brush modification examples: a) 

Carbodiimide mediated esterification of poly(hydroxyethyl methacrylate)143; b) EDC/NHS 

amidation reaction with poly(acrylic acid)191; c) Disuccinimidyl carbonate mediated amine 

coupling to poly(hydroxyethyl methacrylate)135.  
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Figure 1.24: Generation of brushes which display nitrilotriacetic acid functional groups capable 

of binding histidine tagged proteins after divalent metal chelation, using a) NHS/EDC187 and b) 

disuccinimidyl carbonate184 methodologies. 
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Figure 1.25: Brush side chain epoxy reactions with a) a primary amine197 and b) thiol 

modification for disulfide-thiol interchange198. 

 

Figure 1.26: Examples of brush side chain thiol-ene click reactions with a) allyl200 and b) thiol 201 

functionalised brushes.  
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Thiol based reactions are potentially important for generation of orientated proteins using 

mono-cysteine mutants. Thiol functionalised proteins can be generated chemically through the 

reaction of Traut’s reagent with lysine residues168, however this can induce non-specific 

orientation if multiple lysine residues are accessible. Thiol-ene click reactions of thiol with 

alkene moieties and disulfide reactions for protein attachment both have possible grafting 

routes to polymer brush side groups. Cysteine-maleimide coupling has been used on self-

assembled monolayers125, 146 and “grafted to” brush chain ends202, 203. Thiol-ene reactions have 

been demonstrated for surface initiated polymer brushes using deprotected photocaged thiol 

side group (figure 1.26b)201 and allylamine derivatised poly(pentafluorophenyl methacrylate) 

(figure 1.26a)200. Thiol exchange with activated disulfide in solution204 and disulfide formation 

reaction at a surface125 have been reported. This type of reaction was used to covalently 

orientate antibody fragments from modified polymer brushes by utilisation of a thiol-disulfide 

interchange with a cysteine residue198. Thiol based reactions have been shown to be useful for 

protein immobilisation; however efficiencies can be limited by the presence of cysteine-

cysteine disulphide bridges within the proteins and thiol oxidation in solution. 

 1.2.6. Applications 

The interfacial layer provided by a polymer brush has controllable lubrication properties. The 

osmotic pressure exerted by the brush can be varied by the polymer-solvent and polymer-

polymer interactions, which in turn tunes the coefficient of friction of the surface205, 206, 207, 208, 

209, 210. Poly(2-(methacryloyloxy)ethyl phosphorylcholine) (PMPC) brushes have been shown to 

display super-lubricant properties205, whereas switchable lubrication has been demonstrated 

in combinations of different polymers and different external conditions207, 210. 

The high fouling resistance of certain chemical functionalites has led to the application of 

brushes to reduce contamination by biological objects. The outer shell of a protein’s tertiary 

structures and the amino acid side chains contained therein can interact with surfaces and 

lead to adhesion to solid surfaces. Many different polymer brush chemistries have been 

investigated and developed for their non-fouling properties with respect to proteins211. The 

most commonly used protein resistant group is poly(ethylene glycol) (PEG) and oligo(ethylene 

glycol) (OEG) groups. These have been used widely to generate protein resistant self-

assembled monolayers of thiols59, 146 and silanes132, 134, 145. The ethoxy groups have a disordered 

amorphous hydration structure which entropically hinders protein fouling due to the low 

interaction energies of non-specific attachment59. Dense polymer brushes based on OEG 

functionalities, generically termed poly(oligoethylene glycol methacrylate) brushes (figure 

1.27a), have been produced by several groups on different substrates212. These include glass 67, 

76, 82, silicon oxide wafers67, 82, 213, gold65, 94 and halogenated polymers82.  

Hydroxy-functionalised methacrylate polymer brushes, such as poly(2-hydroxyethyl 

methacrylate) (HEMA) (figure 1.27b) and poly(hydroxypropyl methacrylate) (HPMA), have also 

displayed good antifouling abilities, likely due to the hydroxyl groups forming similarly 

disordered crystalline water to ethylene glycol units211, 214.  

A variety of other polymer brushes, such as poly(acrylamide) (figure 1.27d)215, poly(dihydroxy 

acrylamide) (figure 1.27c)140, poly(sulfobetaine methacrylate) (figure 1.27e)75, and poly(N-

vinylpyrrolidone) (figure 1.27f)77 have been used to generate biologically inert surfaces. An 
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amino acid derived polymer brush, poly(cysteine methacrylate), has displayed protein and 

cellular resistance under physiological conditions which provide a zwitterionic environment for 

the side chain154.  

 

Figure 1.27: Chemical structures of protein resistant polymer brushes: a) poly(oligoethylene 

glycol methacrylate)65, 67, 94, 212; b) poly(hydroxyethyl methacrylate)211, 214; c) 

poly((dihydroxypropyl)acrylamide)140; d) poly(acrylamide)215; e) poly(sulfobetaine 

methacrylate)75, 142, 214; f) poly(N-vinyl pyrrolidone)77; g) poly(carboxybetaine methacrylate)211; 

h) poly(carboxybetaine acrylamide)211, 214. 

Under flow conditions, protein binding and release from poly(methacrylic acid) and derivatised 

brushes were studied216. Only two brushes displayed anti-fouling properties. Poly(ethylene 

glycol) based brushes displayed low protein binding and a slightly higher rate of protein 

release, whereas a hydrophobic fluorinated brush showed high protein binding but also a 

greater release rate. Fluorinated surfaces can withstand attachment of specific proteins, such 

as proteins with an entirely hydrophilic outer sphere which can be attained through surfactant 

stabilisation. This behaviour was also observed for fluorinated thiol monolayers which resisted 

fouling by surfactant stabilised LH2 proteins28. 
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Additionally, the non-fouling nature of specific brushes has led to the usage of brushes in 

biosensors to reduce non-specific absorption of analytes within a sample volume54, 76, 212, 217, 218, 

219. Researchers have produced proof-of-concept surfaces for proteins via antibodies76, 212 and 

glucose via phenyl boronic acid54, 219. 

The formation of responsive brushes in nano-sized pores has allowed responsive gating of flow 

to be undertaken153, 220, 221. The use of the pH conformation change of poly(methacrylic acid)153 

and poly(4-vinyl pyridine)220, 221 led to a measurable reduction in voltage induced ion current 

and conductivity. 

Lipid bilayers can be formed on solid surfaces by a variety of methods222. When the supported 

lipid bilayer (SLB) is in direct contact with a hard surface, the motion of the lipid head group is 

hindered and the membrane flexibility is reduced223. More importantly, if membrane proteins 

are incorporated into the bilayer, the protruding regions of the protein that exist would be in 

direct contact with the substrate, leading to a loss of mobility, a further reduced 

dimensionality environment (compared to three available spatial dimensions in cells), and 

potential protein denaturation with associated loss of function223. 

The introduction of a polymer support between the substrate and the lipid bilayer has been 

suggested222. Layer-by-layer deposited polyelectrolyte acid-base224, spin coated poly(acrylic 

acid)225 and transmembrane inserted synthetic diblock copolymers226 have been used to 

provide the lipid-substrate separation. More recently, polymer brushes have been applied to 

this function. Masahaghi and van Oijen used a grafting-to method to generate short chain PEG 

brushes, onto which lipids were spin-coated and rehydrated to generate bilayers223. The vesicle 

fusion method is more useful for protein incorporation as the lipids can be kept in aqueous 

solution without being dried and denatured at any point. Vesicle fusion has been achieved on 

nitrilotriacetate-modified poly(methacrylic acid)227, unmodified poly(sulfobetaine 

methacrylate)44, and on cholesteryl-, alkene- and allyl-modified poly(ethylene glycol) 

brushes228, 229. 

 1.3. Mechanical and rheological characterisation of complex fluids and 

soft matter by atomic force microscopy and spectroscopy 

There are a significant number of challenges when attempting to characterise mechanical 

properties of polymers. There are additional challenges for polymer brush surfaces due to the 

vertical orientation of the chains and lack of lateral coordination from the absence of cross-

linking. The viscoelastic behaviour of polymers means that there is an elastic restoring force 

component in all surface interactions, as well as a time dependent fluid-like recovery of 

conformation. For brushes, the degree to which the surface can be described as viscoelastic is 

unknown and the pressure-dependent effect of penetration, leading to behaviour similar to 

complex fluids near a rigid interface, contributes to further complexity. Hence, a survey of AFM 

techniques that have been applied to polymers, complex fluids and polymer brushes for 

mechanical and rheological property determination has been carried out.  
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 1.3.1. Friction force microscopy 

In friction force microscopy (FFM), the cantilever is translated across a sample perpendicular 

to the long axis of lever. This leads to a constant torque being applied to the tip and twisting 

the lever such that change in the lateral deflection signal was measured on the photodiode. 

For a uniform surface, the lateral deflection is consistent for each scan direction. For the 

friction signal to be decoupled from any topographic features, half of the trace and subtracted 

retrace signals is required. The friction force is a complex non-exhaustive combination of tip 

chemistry, surface chemistry, environmental conditions, tip velocity, relevant tip-surface 

contact type and non-macroscopic stick-slip shear interaction. Calibration of lateral bending 

specifically for FFM is a detailed process and not covered here. 

FFM applied to mixed thiol monolayers has shown that the friction force is sensitive to the 

relative hydrophobicity of the surface, such that polar/polar tip-surface combination has a 

significantly greater shear interaction than the polar/non-polar equivalent230. For monolayer 

surfaces, the change in contact models for different solvents and hence adhesion on tip-

surface contact231 have been investigated. The solvent dependence of adhesion and frictional 

response allowed the estimation of equilibrium constants of solvation for the surfaces 

involved232. 

The sliding behaviour of a colloidal probe on polymer brushes under dry conditions was 

investigated by Landherr et al233 and Bhairamadgi et al234. In both cases, the coefficient of 

friction was lower for thicker brushes, likely due to reduction in ploughing type phenomena. 

Very low coefficients were measured for poly(dimethyl siloxane)233 and poly(trifluoroethyl 

methacrylate)234, which implied possibilities for brush applications as dry surface lubricants.  

Solvent immersed tip-brush friction experiments yield information about the state of solvation, 

due to the observed behaviour of high and low coefficients of friction for non-solvated 

collapsed brushes and solvated extended brushes respectively235, 236. The degree of solvation 

for a polymer alters the amount of cantilever penetration for a constant force and leads to 

changes in the brush-tip contact along with associated model that is required235. Brush tip-

brush surface interactions have an additional contribution from polymer interdigitation. 

Solvated brushes with high osmotic pressures have limited interactions and lead to highly 

lubricous sliding205 such as two opposing basic polyelectrolytic brushes208. The opposite result 

was achieved for solvated symmetric neutral brushes where it was proposed that miscible 

interdigitation led to significant friction, much greater than the solvated asymmetric case of 

immiscible polymers237. The asymmetric case of two different, miscible, solvated brushes 

entangle to provide a large increase in friction, compared to a collapsed brush-solvated brush 

combination207, 210. 

While FFM provides a large amount of detailed information about the shear interaction, the 

complexity of the system prevents brush specific properties, such as viscosity, from being 

extracted, as the coefficient of friction is a system dependent property for which the cantilever 

is always present as an entity.  
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 1.3.2. Force spectroscopy 

In force spectroscopy, the cantilever tip approaches a surface at a constant rate and indents 

the surface up to trigger force upon which the tip reverses direction, immediately or after a 

designated dwell time. The combined extend-retract sequence is known as a force curve 

(figure 1.28). Quantitative property extraction from these techniques can only be carried out 

with correct calibration to know the distance that the lever was deflected at the free end and 

the spring constant of cantilever. The deflection on the photodiode is related to the angle of 

reflection off the back face of the cantilever, which measures the deflection gradient of the 

lever238. The gradient measured is directly proportional to the deflection of the cantilever 

through a calibration factor when a static force is applied. Hence, the photodiode signal can be 

directly related to the cantilever deflection by constant known as the inverse optical lever 

sensitivity (invOLS). This can be easily measured by a force curve on a surface that is `infinitely 

hard`, such that the contribution to the deflection is assumed to be only from the cantilever.  

 

 

Figure 1.28: Generic deflection-displacement plot from force spectroscopy: 1. Tip approaches 

the surface; 2. Tip-sample interaction leads to snap-to contact; 3. Tip applies increased force to 

surface leading to larger cantilever deflections; 4. Once trigger force is reached, the cantilever 

moves away and separates from the surface when the cantilever experiences a retraction force 

greater than the surface adhesion; 5. Any adsorbed molecules (polymers, proteins) can be 

pulled away from the surface and stretched until the tip-molecule interaction is overcome and 

the molecule separates from the tip; 6. The cantilever retracts away from the surface 

unhindered. Image adapted from Bippes and Muller5. 
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A variety of methods have been applied for cantilever spring constant determination. 

Cleveland and co-authors used a method of measuring the resonant frequency of a free non-

interacting lever with the addition of known mass239. The addition of non-adhesive tungsten 

spheres allowed the method to be non-destructive. The methodology is based around the 

following equation, where 𝑓0 is the resonant frequency, 𝑘 is the spring constant and 𝑚∗ is the 

effective mass: 

𝑓0 =
𝜔0

2𝜋
=

1

2𝜋
(

𝑘

𝑚∗
)

1 2⁄

      (5) 

Sader and co-authors proposed a calibration procedure with the only requirements being 

knowledge of the cantilever dimensions, material density and unloaded resonant frequency240. 

Refinements to utilise a computed complex hydrodynamic function removed the need for 

knowledge of the material density and cantilever thickness, and instead has dependency on 

the quality factor of the resonance and the fluid (air) density that measurements are taken 

in241. A generic method was reported for geometric determination of the spring constant to 

widen the applicability from rectangular to cantilevers of any shape242.  

The third method reported here is the thermal noise protocol, which utilises the fact that all 

objects undergo Brownian motion and the energy is partitioned into (1 2⁄ )𝑘𝐵𝑇 per degree of 

freedom. Hutter and Bechhoefer utilised the power spectral density (PSD) of the free z-

direction deflection fluctuations for the cantilever and integrated over the fundamental 

resonance to give a value of the mean square cantilever deflection fluctuations243. 
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Due to the vibration modes of the cantilever not being confined to the fundamental mode, 

prefactors are required for the mode chosen for calibration and due to use of an optical 

detection system238. Cantilever geometry is important as the fractionation of energy between 

the resonant modes requires different prefactors for rectangular238 and triangular244 

cantilevers.  

Both the thermal noise and Sader protocols are significantly less invasive than the Cleveland 

added mass method; however the Sader method is significantly more reliant on theory and the 

related assumptions. For all spring constants, a correction factor to give an effective stiffness is 

required to account for cantilever tilt, which is present in the majority of microscopes, due to 

the non-normal application of force to the cantilever245. 

The above calibration was only for flexural motion of the cantilever. Torsional calibration is 

also required for force curves involving lateral excitation. Using a combination of Sader 

torsional method246, thermal noise of the lateral signal and cantilever dimensions, the torsional 

and lateral sensitivity were calculated247, 248. This protocol was validated with a standard lateral 

shape-independent calibration method248.  

The indentation of polymers with appropriate calibration has been used to calculate the 

stiffness and elastic modulus of polymer surfaces, which has become one of major applications 

for force spectroscopy. The application of classical elastic contact models has been the main 
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way to achieve property extraction. Contact models provide a relationship between tip 

geometry, indentation and applied force. Indentation analysis has been carried out on various 

bulk polymers, including polystyrene, poly(vinyl chloride) and polyurethanes249, 250. The ability 

to follow a polymer through the glass transition251 and strain hardening252 exemplifies the 

usefulness of the technique.  

Due to the complexity of soft materials, contact model validation for specific conditions is 

often required, such as the use of small indentation depths253 and the rate dependent sample 

response254. The limitations of classical contact models can often lead to large discrepancies 

between experimental and fitted data. Modifications and alternative models have been 

suggested in a large number of cases, such as arbitrary polynomial expansion of the Hertz 

model to account for thin films255, a modified Hertzian treatment of multi-layered samples 

with different elastic moduli256 and additional models for the application of force spectroscopy 

beyond the linear elasticity limit257.  

Initial studies of polymer brushes concentrated on the phenomenological behaviour observed 

through the steric bulk of polymer molecules beneath the approaching probe tip and the 

resistance generated for the cantilever approach towards the surface258. Later, there has been 

a large number of different models applied for elastic modulus extraction on polymer brushes, 

which includes the Hertz model121, 259, 260, 261, Sneddon’s model215, 262, the Oliver-Pharr model263, 

Xu and Pharr’s modified Hertz model264, the energy minimisation thermodynamic model265, 

and a compressible fluid model266. The choice of model can vary for adhesion, sample stiffness 

and sample-tip geometry combinations. It may even be possible that for responsive brush 

systems two different models should be applied, due to the possibility of chain stiffening and 

the onset of adhesion. 

The elastic moduli in thermoresponsive260, 265 and co-solvent261 dependent brush systems have 

shown distinct changes in modulus upon regime change. However, no single chain stiffness 

variation was detected in the retract curve for different temperatures and different solvents of 

a thermoresponsive brush267. The elastic modulus has been manipulated by 

nanoconfinement260, 265, grafting density variation261 and the use of cross-linking reagents215. 

The choice of tip size and shape for cantilever has an impact on the length scale being 

investigated, due to the pressure dependence on the tip radius. The use of smaller tip radii (ca. 

5-60 nm) enables the molecular scale features of the film to be studied, whereas the 

application of colloid probes yields properties averaged over larger length-scales266, 268. Use of 

colloidal probes on brushes has led the increased usage of the Hertzian spherical contact 

model for the determination of the elastic modulus259, 261. In the Hertz model, an indentation 

force 𝐹𝑖𝑛𝑑𝑒𝑛𝑡  is given by121, 259: 

𝐹𝑖𝑛𝑑𝑒𝑛𝑡 =
4𝐸

3(1 − 𝜈2)
𝑅1 2⁄ 𝛿3 2⁄      (7) 

𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 𝑑 =  −𝛿 = 𝑧 − 𝑢  (8) 

This is where 𝜈 is the Poisson ratio (assumed to be 0.5), 𝑅 is the tip radius and 𝐸 is the 

apparent Young’s modulus. The surface indentation 𝛿 is the offset corrected difference 
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between the cantilever deflection 𝑢 and piezo z-position 𝑧. Alternative contact models which 

take into account adhesive interactions, such as DMT and JKR, have been shown to increase 

the fitting accuracy of approach curves under some circumstances269. The DMT model takes 

into account long range interactions and subsequent adhesion from outside the contact area, 

which would be applicable to force spectroscopy in air due to water meniscus formation269. 

The approach curve has also been fitted to scaling theories related to polymer brushes, for 

grafting density extraction259, 260, 270, 271, 272. The Alexander-de Gennes relationship for forces 

between the brush covered substrate and spherical tip can be approximated by an exponential 

form270 or a polynomial259 based equation, both shown below.  
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In the equations above, the AFM tip radius is 𝑅, the tip-surface separation is 𝑑, the brush 

thickness is 𝐿, the absolute temperature is 𝑇, and the number of chains per unit area is 𝛤 

(equivalent to grafting density 𝜎). The exponential formulation is only valid270 for moderate 

grafting densities of 1x10-3 and 5x10-2 chains nm-2 and for 𝑑/𝐿 ratios of 0.2 to 0.9. For colloidal 

probe indentation experiments on living cells, the combination of a contact model with an 

additional surface brush term led to improved force curve fitting and hence the suggestion of 

an brush-like interface layer surrounding the cells273. 

While the value of characterising mechanical properties as a local elastic modulus is 

undeniable, the applicability of the contact model and its assumptions need to be vigorously 

verified274, and alternatives including numerical solutions may be required275. These 

assumptions are put into further question when applied to polymer brushes where lateral 

coordination is not present and penetration can be a dominant contribution. For colloidal 

probes, the burden of verification is lessened by the contact area being much greater than the 

radius of gyration for an individual attached polymer chain, and hence the dominance of 

compression. However, force spectroscopic elastic modulus values must be treated with care 

and relative surface stiffness values may be equally indicative of the surface behaviour being 

investigated. 

The retract segment of force spectra allows the quantification of adhesive interactions 

between specific probe-surface chemistries. By coating the probe with biological objects, such 

as short length peptides276, fibronectin276, 277, fibrinogen278, bovine serum albumin279, 280, 

concanavalin A281, and lysozyme280, the non-specfic adsorption of proteins may be 

investigated, with relevance to the non-fouling capability of numerous polymer brush surfaces. 

By using some amino acid side group functionalities (e.g. carboxyl, amine, alkyl) attached to 

the probe surface, Sakata and co-authors attempted to relate probe-surface adhesion to real 

protein adsorption data for different polymer brush chemistries, despite the highly complex 

issue of protein structure upon deposition282. The retraction of the cantilever can also probe 

single molecule stretching and unfolding events relevant to polymers87, 283 and proteins15, 284, 

285, 286. 
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Combination of force spectroscopy with a scanning stage led to the development of force-

volume spectroscopy for spatial mapping of surface properties, such as stiffness and 

adhesion287. Peak Force Quantitative Nanomechanical (PF-QNM) is an imaging mode similar to 

force volume measurements that allows the extraction of height and mechanical information 

about the sample but with significantly shorter acquisition times. The cantilever undergoes 

high frequency (1 or 2 kHz) force-distance ramps. From each force-distance curve, the 

mechanical properties can be calculated such as tip-surface adhesion and surface stiffness. 

Picas and co-authors used Peak Force QNM for the analysis of supported lipid bilayers on 

mica288, with similar studies being undertaken on amyloid fibril proteins289 and on synthetic 

polymers290. Elastic modulus measurements from the DMT contact model were extracted by 

PF-QNM and were shown to be consistent with indentation tests for a range of polymers291. 

The location of specific interactions between histidine-tagged proteins and complementary 

Ni(II) complexed nitrilotriacetate modified tip to generate a positional map for the protein of 

interest292. Similar imaging modes have been developed by the majority of commercial AFM 

manufacturers. The danger with such high speed collection of the force ramps are that 

different stiffness regimes of the sample and/or the cantilever are entered compared to 

traditional force curve approach rates.  

 1.3.3. Viscoelastic properties in force spectroscopy 

Traditionally, macroscopic viscoelasticity has been explained in terms of stress relaxation at a 

fixed position or creep at a fixed applied force. These have been analysed analytically by an 

elastic spring and viscous dashpot acting in series (Maxwell model) and parallel (Kelvin/Voigt 

model) respectively293. The combination of the two models to predict stress relaxation and 

creep, a second spring in series with the Kelvin/Voigt element is utilised to give the standard 

linear solid (SLS) model293. 

Simple nanoindentation tests have been carried out using variation in loading or indentation 

rate tests to compare the force-indentation variation on polymer films294 and brushes295. Force 

spectroscopy, however, has the capability to either force clamp or position clamp once the 

trigger force is reached. This has allowed creep experiments on bulk poly(n-butyl 

methacrylate)296, polystyrene brushes297, bacterial biofilms298 and stress relaxation tests on 

bulk polyurethane299, poly(dimethyl siloxane) film293, polyelectrolyte multilayers300, cells301, 302, 

303 to give characteristic relaxation times for these processes. It is also important that multiple 

loading/indentation rates be considered to get a full understanding of the sample 

behaviour304. Due to the complexity of the samples under study, it has been found that 

additional terms are often added to the SLS model293, 305, 306 which can lead to extracted 

quantities with reduced physical relevance. 

 1.3.4. Active micro-rheological studies 

The ability to follow rheological behaviour has been also investigated using active force 

application techniques, normally sinusoidal in nature. Frequency modulation (FM) AFM utilises 

a resonant frequency based feedback system to allow operation in the attractive, non-contact 

part of the surface potential. This has allowed home-built non-contact FM-AFMs to collect high 

resolution images, which include sub-molecular images of lipid head groups307, 308 and atomic 

resolution of mica309 in liquid. However, the frequency shift has also permitted the tip-sample 
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force to be calculated310 and further allowed the conservative (elastic) and dissipative 

(inelastic) interactions to be quantified in specific cases311. This type of force deconvolution 

would be useful for viscoelastic studies, as similarly seen in quartz crystal microbalance work 

on poly(oligoethylene glycol methacrylate) (POEGMA) brushes to give the frequency resolved 

elasticity and viscosity from frequency and dissipation shift measurements312. 

The majority of active rheological experiments are performed in contact, where the oscillatory 

force is then applied. This leads to a time-resolved amplitude A(t) and phase delay 𝜙(𝑡) 

between the applied and measured amplitude. From appropriate calibration and Fourier 

transform application, frequency space force 𝐹(𝑓) and phase 𝜙(𝑓) are found.  

The output from rheological experiments is a frequency dependent complex shear modulus 𝐺∗ 

which has a real 𝐺′ and imaginary 𝐺′′ components. The real component is called the storage 

modulus and the imaginary component is the loss modulus, which is related to the viscosity 𝜂 

of the sample. The ratio of the loss to storage modulus is termed the loss tangent. The value 𝜈 

in mechanical and rheological equations is the Poisson ratio, and the angular frequency 𝜔 is 

equivalent to 2𝜋𝑓. 

𝐺∗(𝜔) =  
𝐸∗(𝜔)

2(1 + 𝜈)
= 𝐺′(𝜔) + 𝑖𝐺′′(𝜔) = 𝐺′ + 𝑖𝜔𝜂(𝜔)     (11) 

tan(𝜙) =
𝐺′′(𝜔)

𝐺′(𝜔)
=

𝐸′′(𝜔)

𝐸′(𝜔)
     (12) 

Utilising the standard Hertz model and application of small oscillatory motion to the 

indentation allows a first order Taylor expansion to be used to find the approximate force-

indentation relation for the active forcing313, 314. Isolation of the oscillatory force term and 

conversion to frequency space demonstrates the potential to calculate a complex shear 

modulus315, 316, 317. 

𝐹𝑑𝑐 + 𝐹𝑜𝑠𝑐 =
4𝐸𝑅1 2⁄

3(1 − 𝜈2)
(𝛿0 + 𝛿𝑜𝑠𝑐)3 2⁄ ≈

4𝐸𝑅1 2⁄

3(1 − 𝜈2)
𝛿0

3 2⁄
(1 +

3

2

𝛿𝑜𝑠𝑐

𝛿0
 )   

𝑤ℎ𝑒𝑟𝑒 𝛿𝑜𝑠𝑐 ≪ 𝛿0      (13) 

𝐺∗(𝜔) =
1 − 𝜐

4𝑅1 2⁄ 𝛿0
1 2⁄ (

𝐹𝑜𝑠𝑐 (𝜔)

𝛿𝑜𝑠𝑐(𝜔)
)     (14) 

Overney and co-authors performed a similar analysis to grafted-to polystyrene brushes to 

generate a real viscosity and storage modulus318. Applications to polyacrylamide gels313, 

fibroblast cells313, 314 and cartilage cells319 have been undertaken. Additional research of this 

type also subtracts an extrapolated hydrodynamic force term to account for liquid immersion 

and hence fluid viscosity at the surface315. This analysis was applied to actin behaviour in 

muscle cells316 and stimulus response of white blood cells317. The difficulty with the analysis is 

to have sufficient frequency resolution and accuracy without the feedback loop perturbing the 

measured quantities, especially the indentation, and the unknown effect of the higher order 

terms.  
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Contact resonance is a similar actively forced technique, however the analysis utilises the 

presence of changes in the resonant frequency and the quality factor of a resonant peak 

between free and contact environments. By assumption of the wave modes present and 

assuming Hertzian contact, direct calculation of the loss tangent was achieved on bulk dry 

polymers320, 321. Contact resonance in liquid becomes complicated by fluid displacement of the 

cantilever and the additional damping of the cantilever resonance; hence further theoretical 

analysis is required to decouple fluid effects via the complex hydrodynamic function322, 323, 324. 

The downside to contact resonance is the mode shape assumption when in contact, as the 

identification of mode number and exact load at which the cantilever enters the clamped state 

may not be clear, especially for soft polymer samples. 

Maali and co-authors presented simplified expressions for the hydrodynamic function using 

the prescence of a viscous water layer around the cantilever325. Despite the passive nature of 

this result, it was applied to the fluid displacement by a current carrying cantilever in a 

magnetic field326. This was converted into a protocol for either density/viscosity calculation326, 

327, 328 or complex shear modulus calculation329, 330, 331 for complex fluids. These results also rely 

heavily on knowledge of the modal shape, however only the free, non-clamped situation is 

needed for fluid application. Whether viscosity has influence on resonant frequency from 

effective mass changes and hence cause modal wavenumber shifts is uncertain, and this may 

influence the validity of these results.  

The resonant excitation during the retract portion of a force curve has been applied to single 

molecule tip-surface contacts, such as poly(ethylene glycol) molecules332 and folded 

proteins333. By fitting the flexural amplitude and phase resonance with a simple harmonic 

oscillator model, information about the molecular elasticity and internal friction during the 

stretching and unfolding can be extracted. 

The majority of work in the area concerns the flexural vibrations of a cantilever; however there 

are benefits to working with torsional oscillations, such as higher Q resonant peaks, higher 

signal/noise ratio and increased force sensitivity334, 335, 336. This has allowed extraordinary 

resolution to be achieved for topographic visualisation of single polymer chains336. Torsional 

resonance (TR) mode is where a lateral bend in the cantilever has been excited leading to tip 

dither and application of lateral forces at the surface337. While the TR mode can be used for 

imaging applications, tip-sample interactions can be modelled and solved using the amplitude 

and phase. This can provide information about surface elasticity and viscosity338, 339, 340. 

The main disadvantage of the active techniques presented here is the enlarged region probed 

by the cantilever due to the excitation applied and potential fluid disturbances incurred. To 

probe depth related properties, only very small perturbations can be utilised. 

 1.3.5. Passive rheological studies 

Initial passive rheology studies involved particle tracking experiments, such as colloids 

embedded in a polymer. From the power spectral density 𝑑(〈𝑢2(𝜔)〉) 𝑑𝜔⁄  of the particle 

position 𝑢(𝑡), the imaginary part of the response function 𝜒′′ can be calculated using the 

fluctuation-dissipation theorem and real part found by application of the Kramers-Kronig 



50 
 

relation or suitable alternative341, 342. From the hydrodynamic force applied to a non-

interacting sphere343, the complex shear modulus can then be calculated344. 

𝜒∗ = 𝜒′ + 𝜒′′ = 𝑢(𝜔) 𝐹(𝜔)⁄      (15) 

𝑑(〈𝑢2(𝜔)〉)

𝑑𝜔
=  

4𝑘𝐵𝑇

𝜔
𝜒′′(𝜔)     (16) 

𝜒′(𝜔) =  −
1

𝜋
𝑃 ∫

𝜒′′(𝜔′)

𝜔′ − 𝜔

∞

−∞

𝑑𝜔′    (17) 

𝐺∗(𝜔) = −𝑖𝜔𝜂∗(𝜔) =
1

6𝜋𝑅𝜒∗(𝜔)
    (18) 

In the above equations, 𝐹(𝜔) is the random force applied by Brownian motion, 𝑃 is the 

principal value of the Kramers-Kronig relation, and the particle radius is 𝑅. The application to 

colloidal particle tracking in polymer solutions has been achieved by dynamic light 

scattering344, 345 and optical tweezers346, 347. Use for cell rheology by optical tweezers has been 

undertaken, however the validity of results are questionable as the time taken for data 

acquisition is significantly longer than active biological processes348. 

The thermal behaviour of an optically sensed cantilever has significantly more factors involved 

in the response function, due to the elastic restoring force, the displaced mass of fluid and the 

macroscopic beam attached to the interacting tip. Despite this, attempts at liquid and soft 

matter sensing have been undertaken. A simulation of a liquid immersed cantilever predicts 

significant dependence of resonant frequency on the viscosity of the fluid349, which has been 

experimentally observed350. The application of lever-sphere equivalence allowed Papi and co-

authors to validate determination of viscosity from resonant frequency data351.  

A more traditional approach is the thermal noise accessed through the power spectral density, 

as mentioned previously. The cantilever response function has been predicted using a simple 

point mass model, which combined inertial, frequency independent damping, elastic restoring 

and random Brownian forces on the point mass lever352, 353. By substitution of the time- 

frequency equivalence into the equation of motion via the use of a Fourier-like exponential 

dependence of 𝑒−𝑖𝜔𝑡 , transfer into frequency space was achieved. The resulting simple 

harmonic oscillator can be fitted to the power spectra density data by using the fluctuation-

dissipation theorem. The stiffness constant 𝑘 is related to the effective mass and resonant 

frequency by 𝑘 = 𝑚𝜔0
2. 

𝑚
𝑑2𝑢(𝑡)

𝑑𝑡2
+ 𝛾

𝑑𝑢(𝑡)

𝑑𝑡
+ 𝑘𝑢(𝑡) = 𝐹𝑟𝑎𝑛𝑑𝑜𝑚(𝑡)    (19) 

𝜒∗(𝜔) =
𝑢(𝜔)

𝐹𝑟𝑎𝑛𝑑𝑜𝑚(𝜔)
=

1

𝑘 − 𝑚𝜔2 − 𝑖𝛾𝜔
= (

1

𝑚
) (

1

𝜔0
2 − 𝜔2 − 𝑖𝜔0𝜔 𝑄⁄

)       (20) 

𝜒∗(𝜔) = (
1

𝑚
) (

𝜔0
2 − 𝑚𝜔2 + 𝑖𝜔0𝜔 𝑄⁄

(𝜔0
2 − 𝜔2)2 + (𝜔0𝜔 𝑄⁄ )2

)      (21) 
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𝑑(〈𝑢2(𝜔)〉)
𝑑𝜔

⁄ =  
4𝑘𝐵𝑇

𝜔
𝜒′′(𝜔) = (

4𝑘𝐵𝑇𝜔0

𝑄𝑚
) (

1

(𝜔0
2 − 𝜔2)2 + (𝜔0𝜔 𝑄⁄ )2

)      (22) 

While the simple harmonic oscillator form above can be used for low viscosity liquids where Q 

values are relatively large, the ability to fit data is compromised when the high degree of 

damping in viscous fluids leads to greatly depressed quality factors. Pirzer and Hugel have 

proposed the simplification of the oscillator model by use of the already required assumption 

that the fitting frequency range is in the proximity of a resonant region, which generates a 

Lorentzian line-shape (equations 23, 24)354. More complicated cases have also been studied 

using simple harmonic oscillator models, such as two cantilevers in close proximity coupled 

together by a fluid355. The authors additionally used auto- and cross-correlation functions to 

study the forces applied to both cantilevers. 

𝑑(〈𝑢2(𝜔)〉)
𝑑𝜔

⁄ = (
4𝑘𝐵𝑇𝜔0

𝑄𝑚
) (

1

(𝜔0 − 𝜔)2(𝜔0 + 𝜔)2 + (𝜔0𝜔 𝑄⁄ )2
)      (23) 

𝑑(〈𝑢2(𝜔)〉)
𝑑𝜔

⁄ = (
𝑘𝐵𝑇

𝜔0𝑄𝑚
) (

1

(𝜔0 − 𝜔)2 + (𝜔0 2𝑄⁄ )2
)      (24) 

The above equation with frequency independent effective mass is suitable at resonance and is 

particularly useful at low Q values354. Fitting improvements away from resonance have been 

achieved through the use of a frequency dependent effective mass356, 357, 358, 359. 

Sader undertook work to show that the power spectral density for multiple flexural modes is 

the sum of the simple harmonic oscillator contributions, scaled by the modal contribution at 

the laser beam position along the longest dimension of the cantilever342, 360. This result was 

verified by comparison to experimental data361, however later work realised the need for a 

frequency dependent damping coeffient 𝛾(𝜔) 362. Utilisation of undamped mode shapes with a 

relation between the damping coefficient and the hydrodynamic function Γ∗(𝜔) was used to 

generate a more accurate model for the cantilever frequency response. This was achieved for 

both flexural and torsional cantilever responses363, 364. The real and imaginary parts of the 

hydrodynamic function have calculable analytical functions that are only dependent on the 

Reynolds number of the fluid, 𝑅𝑒 =  𝜌𝜔𝑏2 4𝜂⁄  where 𝑏 is the beam width, 𝜌 and 𝜂 are the 

density and viscosity of the fluid, and 𝜔 is the frequency of interest361. 

Using the simple analytical formulation360, the density and viscosity for liquids of different 

alcohol365 and sugar366 concentrations have been calculated. Reasonable accuracy of these 

methods is possible as deviation from the frequency independent damping model tends to 

occur only away from the resonances, at low frequencies and between the resonances where 

the noise floor may be more of an issue342.  

The feasibility of thermal noise calculations has been investigated for flexural and shear 

oscillations to extract the elastic367 and shear stiffness368 respectively. However, not only local 

properties of solids can be found, the interfacial organisation of solvent has been observed for 

confined water on mica369 and the molecularly bulky (octamethyl)cyclotetrasiloxane (OMCTS) 

on graphite370 using force spectroscopy with high z-resolution segmented thermal noise 

spectra. These results are supported by similar magnetically activated shear oscillations371 for 
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water, small amplitude flexural oscillations372, 373 for OMCTS, and by simulations374. By 

collecting the force curve at very high data capture rates, the approach curve has been 

sectioned and Fourier transformed to provide a thermal noise spectrum within a small vertical 

z range to spatially resolve stiffness and damping changes.  

Soft matter can also be investigated by this technique. The depth resolved thermal noise 

approach was initially applied to polymer brushes using a stepped position approach352. 

Analysis by a simple harmonic oscillator for thermal motion allowed resonant frequency, 

damping coefficient and amplitude to be extracted352, 375, 376. This led to calculated quantities of 

elastic stiffness, mass damping and effective mass to be calculated375, 376. Similar to the Sader 

model change, the thermal noise spectra of approach curves strictly should have a time 

dependent damping coefficient, 𝛾(𝑡), which leads to a generalised Langevin equation377. As 

𝛾(𝑡 − 𝜏) is zero for times 𝑡 < 𝜏, because the cantilever damping cannot be dependent on prior 

events, such that only positive times are taken and hence the frequency resolved damping 

coefficient becomes complex377. By Fourier transformation of the equation of motion and use 

of Fourier transform convolution identities, the response function was found377. Application of 

the fluctuation-dissipation theorem and Kramers-Kronig relation allows isolation and 

frequency dependence to be calculated for all the quantities involved377, 378, 379. 

𝑚
𝑑2𝑢(𝑡)

𝑑𝑡2
+ ∫ 𝛾(𝑡 − 𝜏)

𝑑𝑢(𝜏)

𝑑𝜏
𝑑𝜏

𝑡

−∞

+ 𝑘𝑢(𝑡) = 𝐹𝑟𝑎𝑛𝑑𝑜𝑚(𝑡)     (25) 

𝜒∗(𝜔) =
𝑢(𝜔)

𝐹𝑟𝑎𝑛𝑑𝑜𝑚(𝜔)
=  

1

𝑘 − 𝑚𝜔2 − 𝑖𝜔(𝛾′(𝜔) + 𝑖𝛾′′(𝜔))
        (26) 

The thermal noise approach introduced above was applied to a variety of polymer and brush 

systems, including poly(methyl methacrylate) in toluene352, 375, 377, solvent responsive 

behaviour of polystyrene in methanol and toluene376, aqueous pH responsive behaviour of 

poly(methacrylic acid)378, salt response of methyl quaternised poly(4-vinyl pyridine)378, latex 

films380  and gelatin381. The severe restriction of this work is the limitation to the fundamental 

flexural resonance, which becomes overdamped quickly upon contact and may not be 

representative of the surface properties382. 

More recent work in the area used the fundamental torsional mode of a colloidal rectangular 

cantilever to probe the compression of a grafted-to poly(ethylene glycol) brush382. The analysis 

was comprised of only a simple harmonic oscillator fitting to provide resonant frequency and 

quality factor monitoring. This is due to the authors using an approach similar to the confined 

liquid papers covered earlier, where thermal noise was collected during a force curve 

acquisition. An increase in resonant frequency and simultaneous decrease in quality factor 

were observed for the increased loading of the tip-brush contact and hence brush 

compression.  

Spatially resolved thermal noise spectra have also been applied to retraction force curves for 

molecular stiffness and damping extraction using a simple harmonic oscillator model. Interest 

in conformational dependent biopolymer and biomolecular viscoelasticity has led to extensive 

use of this technique, which include the branched polysaccharide dextran383, 384, 385, cellulose385, 

myosin protein unfolding, cellular adhesive protein selectins386 and titin immunoglobin protein 
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unfolding387, 388. Kawakami and co-authors carried out thermal and magnetically forced 

oscillation experiments during force curve retraction on poly(ethylene glycol) molecules, which 

showed good similarity332. 
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 Chapter 2: Aims 

In the wider research community, one overarching goal is the understanding of biochemical 

processes within cellular membranes. To facilitate the investigation of these phenomena, the 

recreation of the cellular membrane environment on a two-dimensional substrate is desirable 

to allow a systematic and reductionist approach. The particular goal of this thesis was to 

support and design methodologies to aid the creation and understanding of two-dimensional 

membrane environments. 

Attempts have been made to recreate the membrane environment on solid surfaces27, 29, 30, 31, 

32. Unfortunately, many membrane proteins protrude above and below the lipid bilayer in 

which the proteins are contained222, 223, 389, leading to unfavourable interactions with the hard 

surface, potentially leading to denaturation and loss of function. To be able to study these 

environments, one strategy suggested is to generate physical separation between the proteins 

and the substrate using a soft matter support222, 223, 389.  

In the literature, the application of polymer brushes as a cushion for supported lipid layers and 

vesicle fusion onto the brush surfaces has been reported44, 227, 228, 229. The versatility of polymer 

brushes warranted further research for this purpose. To be able to construct a cellular 

environment on a surface, it is important to be able to position membrane proteins with the 

correct orientation and to control the spatial organisation of multiple biological components. 

In this thesis, the development of polymer brush chain end-functionationalisation is reported 

to aid orientational attachment of membrane proteins. Further, the application of brush end-

capping and end-functionalisation enable the spatially controlled formation of brush structures 

with two different polymers. The spatially defined topographical and chemical contrast 

generated will aid the fabrication of a biomimetic membrane environment and the 

organisation of the biological components. 

For fabrication of these biological constructs, it is important to have confidence in the ability of 

the polymer brushes to fulfil the role as a support and to optimise the ability of the brush to 

form the desired biological structures by vesicle fusion. Therefore, fundamental studies of the 

brush-water interface by AFM were undertaken to understand the structure and mechanical 

properties of the fluid immersed polymer brushes. 

The biological objects, such as proteins and lipid, would be present at the fluid-brush interface 

and therefore understanding this region is crucial to the development of the brush strategy. 

However the brush-liquid interface is poorly understood. Only a few techniques have been 

applied to depth profiling of polymer brushes such as x-ray photoelectron spectroscopy390, 

small angle neutron scattering391, friction force microscopy392 and atomic force microscopy 

thermal noise measurements352, 375, 376, 377, 378, 382.  

Therefore the research areas that were investigated in this thesis are: 

1 – The development of a procedure to attach biomolecules to polymer brushes without 

alteration to the polymer side-chain chemistry. 
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2 – The development of protocols to spatially separate different chemistries and contrasting 

response using multiple polymer brushes. 

3 – Develop a methodology to investigate the nature of the brush-solvent interface. 

4 – Investigate the contrasting interfaces of a responsive polymer brush utilising the designed 

methodology. 

Amine functional groups have been used widely for biomolecule-surface attachment172, 173, 

such as NHS/EDC28, 185, 186 and glutaraldehyde185, 196, 198 protocols. The development of amine-

terminated polymer brushes is presented in Chapter 4. A facile direct lithographic method was 

desired by question 2 for ease of patterning complex nanoscale structures. The success of 

photocleavable protecting group chemistry for use on self-assembled monolayers125, 126, 127, led 

to the decision to develop multiple component polymer brush structures by a similar 

methodology. This work is presented in Chapter 5.  

Atomic force spectroscopy was the instrumental technique decided upon for questions 3 and 

4, due to the ability for high temporal and spatial resolution. By utilising thermal noise 

fluctuation, low amplitude sensing of the cantilever environment has been achieved. Previous 

studies using flexural352, 375, 376, 377, 378 and torsional382 cantilever modes on polymer brushes 

were undertaken, however the improvement in technology allows a more detailed 

investigation of the brush properties as a function of depth into the polymer and into the 

nature of the interface. The thermal noise fluctuation method development and application to 

a responsive polymer brush are presented in Chapters 6 and 7 respectively.  

Chapter 3 introduces the details of the experimental methodology and characterisation 

techniques utilised in the later chapters. The thesis will be summarised and future directions 

discussed in chapter 8. 
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 Chapter 3: Experimental methods  

 3.1. Materials 

Titanium wire (99.9%), gold wire (99.99%) and tungsten boats were purchased from 

Testbourne (Basingstoke, UK). Silicon wafers (reclaimed, p-type, <100>) were purchased from 

Compart technology (Peterborough, UK) and glass coverslips (22 mm x 60 mm, thickness 1.5) 

were supplied by Menzel Gläser. Polystyrene micro particles (10 µm and 25 µm diameter), 

copper(I) bromide (≥98%), copper(II) bromide (99.999%), copper(I) chloride (≥99%), copper(II) 

chloride (99%), 2,2’-bipyridyl (≥99%), methacrylic acid (99%), 2-hydroxyethyl methacrylate 

(97%), poly(ethylene glycol) methyl ether methacrylate (Mn ~ 500), triethylamine (≥99%), α-

bromoisobutyryl bromide (98%), (3-aminopropyl)triethoxysilane (≥98%), sodium azide 

(≥99.5%), triphenylphosphine (99%), 2-(2-nitrophenyl)propyl (NPPOC) chloroformate (95%), 1-

octadecanethiol (98%), sodium chloride (≥99%), sodium hydroxide (≥98%), sodium acetate 

trihydrate (≥99%), tris(hydroxymethyl)aminomethane (≥99.9%), phosphate buffered saline 

and tetrahydrofuran (THF, HPLC grade) were supplied by Sigma-Aldrich (Poole, UK). Sulphuric 

acid (s.g. 1.83, >95%), hydrogen peroxide (30% v/v), ammonia solution (s.g. 0.88, 35%), ethanol 

(HPLC grade), toluene (HPLC grade), dichloromethane (HPLC grade) were supplied by Fisher 

(Loughborough, UK). 2-[methoxy(polyethoxy)propyl]-trichlorosilane was purchased from 

Fluorochem (Derbyshire, UK). Hydrochloric acid (32%) was supplied by VWR (Leicestershire, 

UK). Mercaptoundecyl bromoisobutyrate was purchased from Prochimia (Poland). (2-

nitrophenylpropyloxycarbonyl) aminopropyl-triethoxysilane was synthesised and kindly gifted 

by research group colleagues Omed Al-Jaf and Alexander Johnson. Magnetic sample pucks, 10 

mm mica discs, and electron microscopy copper masks of 1000 mesh and 2000 mesh were 

purchased from Agar Scientific (Stansted, UK). Norland optical adhesive 81 was ordered from 

Thorlabs (Ely, UK). N,N-dimethylformamide (DMF) was collected from an onsite Grubbs dry 

solvent system. Deionised water was purified by Elga PURELAB option to 15 MΩ cm. 

 3.2. Surface film formation 

Self-assembled monolayers have been used to define the chemistry of surfaces. The methods 

covered here are for thiol and silane films. Thiol films have a much more ordered surface and 

consistently form monolayers59, although there is evidence that they have limited stability with 

alternatives been sought393. For example, surface-bound polymer brushes are reported to be 

separated from the surface as a result of simple intrinsic chain stretching behaviour and the 

corresponding build up of osmotic pressure394, 395. This limited stability becomes a concern 

when multiple surface reactions in various solvents are being utilised, hence silane films have 

been used for the majority of work covered in this thesis.  

Polymer brushes attached to silane films have displayed intermediate stability, with a 

mechanical activation of initiator amide bond for reduction in the activation energy of 

hydrolysis being considered as a potential degradation route47. By growing a base polymer 

block of a hydrophobic monomer from the silane film before synthesis of the polymer brush of 

interest and fabricating a block co-polymer brush, the lifetime of the brush structure in 

aggressive media was significantly increased396. The added synthetic load was decided to be 

unnecessary in the work presented, but since the knowledge that brush stability can be 
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extended, future brush applications cannot be disregarded in terms of stability. The other 

disadvantage of silane films is the disordered interface and variable conformation presented397, 

398. Multilayer surfaces are typically observed, however a high degree of functionality is still 

presented at the interface399. A variety of organisational motifs are generated in silane 

deposition, which are highly dependent on the silane coupling functionality, leading to 

different tilt angles, thicknesses and surface hydroxyl dependencies397, 398.  

The initiator surface of choice was a (3-aminopropyl)triethoxysilane (APTES) film, activated by 

an acyl bromide initiator reaction. This is because the reagents are inexpensive, commercially 

available with little synthetic cost and accessible to the majority of research groups. The 

quality of an APTES film is dependent on a large variety of factors including water content, 

reagent concentration, and deposition time and temperature400, 401. However even though 

there is often a variety of orientations presented at the interface402, this should not impact 

sufficient initiator density for good quality brush growth. 

 3.2.1. Cleaning protocol for surfaces 

Glass slides and silicon wafers in glass tubes were cleaned thoroughly by immersion in piranha 

solution (30% hydrogen peroxide, 70% concentrated sulfuric acid) for circa. 30 min. Warning! If 

there are excess organic molecules or solvents in glassware, the addition of piranha can be 

explosive. Substrates and glass tubes underwent a rinse with deionised water seven times. The 

substrates underwent a further clean with a solution of 70% deionised water, 15% hydrogen 

peroxide and 15% ammonia solution. This was heated and was left to boil for 30 minutes. This 

was followed by seven repeated rinses in deionised water, after which the substrates were 

blown dry to remove excess water and placed in a drying oven overnight. 

 3.2.2. Gold-primer evaporation and thiol deposition 

Tungsten evaporation boats were used to hold titanium and gold wire pieces. The chamber 

was evacuated to 10-5 Pa before evaporation. The titanium was evaporated to a thickness of 3 

to 10 nm at a rate of ~0.05 nm s-1. 20 to 30 nm of gold was then deposited at a rate of 0.1 to 

0.2 nm s-1. The samples were immersed in a 1 mM solution of the appropriate thiol in ethanol 

and left for 24 to 72 hours to allow ordering of the monolayer. The two different thiols used 

were an etch resist 1-octadecanethiol and a commericially available initiator mercaptoundecyl 

bromoisobutyrate. 

 3.2.3. Amino-functionalisation silane deposition and subsequent surface 

initiation 

To form amino-silane films, substrates were immersed in a 0.2 M solution of (3-aminopropyl) 

triethoxysilane (APTES) in toluene for 30 min. The samples were sonicated during the first 5 

min of this period to ensure intimate mixing of the solvent and reagent. Subsequently, the 

surfaces were rinsed with toluene, ethanol/toluene (1:1), and then ethanol before being blown 

dry with nitrogen to remove any physisorbed silane. Samples were placed in a vacuum oven 

within foil wrapped glass tubes for 20 min at 120°C for limited reorganisation by ex-situ anneal 

processing. 
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Prior to carrying out atom-transfer radical polymerisation, APTES-treated substrates were 

immersed in a solution of 0.4 M triethylamine and 0.4 M α-bromoisobutyryl bromide (BIBB) in 

dichloromethane for 60 min to enable amide bond formation and generation of an initiator 

functionalised film. Samples were rinsed thoroughly with dichloromethane, then ethanol and 

dried with nitrogen before polymerisation. 

 3.2.4. Formation of 2-nitrophenyl silane deposited surfaces 

The (2-nitrophenylpropyloxycarbonyl)aminopropyl-triethoxysilane used was synthesised and 

kindly gifted by research group colleagues Omed Al-Jaf and Alexander Johnson. A 1 mM 

quantity of (2-nitrophenylpropyloxycarbonyl)aminopropyl-triethoxysilane (NPPOC-APTES) was 

introduced to a toluene solvent immersed surface and sealed for at least 48 hours to form a 

film coated substrate. The surfaces were rinsed with toluene, ethanol/toluene (1:1), and then 

ethanol and blown dry with nitrogen to remove physisorbed silane. Samples were placed in 

glass tubes, wrapped in foil, and then transferred to a vacuum oven for 20 min at 120°C for ex-

situ annealing. 

 3.3. Surface initiated atom transfer radical polymerisation of polymer 

brushes 

 3.3.1. Synthesis of weak polyelectrolyte polymer brushes  

ATRP polymerisations of acidic monomers are, in general, difficult because the monomers tend 

to act as catalyst poisons leading to a loss of control48. The carboxylic acid group on the 

monomer can coordinate to the metal catalyst, while protonation of any nitrogen-containing 

ligands hampers the formation of the correct catalytic complex. 

One means to avoid these problems is to use a protected monomer that can be converted to a 

carboxylic acid once the polymerisation is completed. Protected monomers such as tert-butyl 

methacrylate155, 403, tert-butyl acrylate93, 97 and 1-ethoxyethyl methacrylate87 have been used. 

The problem with such techniques is that the deprotection steps involved use of either 

prolonged heating or a strongly acidic solution for hydrolysis, which may lead to brush 

cleavage from the initiator moieties such as the ester and amide linkages93, 97, 403.  

An alternative approach is to conduct ATRP at a basic pH using sodium acrylate or 

methacrylate, for which greater control was displayed47. The use of water as a solven for SI-

ATRP polymerisation of sodium acrylate (figure 3.1a) in conjunction with a 2,2’-bipyridyl (bipy) 

catalyst ligand132, 404, 405 and sodium methacrylate (figure 3.1b) with a 2,2’-bipyridyl (bipy)47, 405, 

406 or hexamethyltriethylenetetramine (HMTETA) 192, 396 have been reported. Solvent mixtures 

such as water and alcohol have the ability to change the observed kinetics by reduction in 

chain termination or changing the equilibrium between the radical and inert polymer chain. 

Santonicola and co-authors observed that water/methanol led to an increase in brush height 

compared to water alone for fixed reaction times, however due to a fast polymerisation no 

kinetics were observed406. 

Jain and co-authors have polymerised 2-(methacryloxy)ethyl succinate (figure 3.1c) under 

acidic conditions and have displayed rapid kinetics, with much higher brush heights than for an 

identical methacrylic acid polymerisation193, 194. However, the polymerisation was not well 
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controlled and loss of the bromine chain end from termination reaction led to a premature 

plateau in the observed brush height kinetics. An alternative way to form the same brush is 

initially to grow poly(2-hydroxyethyl methacrylate), which displays highly controlled 

polymerisation in water only96, 136, 407 and water/methanol58, 83, 101, 408 solvent systems. The 

hydroxyl side groups can then be reacted with succinic anhydride in the presence of base to 

generate the pH responsive brush poly(2-(methacryloxy)ethyl succinate) (figure 3.2)179, 394, 395, 

with significant reduction in termination reactions and more linear polymerisation kinetics. 

 

Figure 3.1: Acidic monomers that can be polymerised by direct methods: a) acrylic acid132; b) 

methacrylic acid406; c) 2-(methacryloxy)ethyl succinate193, 194. 

 

Figure 3.2: Post-polymerisation reaction of succinic anhydride with a poly(2-hydroxyethyl 

methacrylate) brush to form the pH responsive poly(2-(methacryloxy)ethyl succinate)179. 

Instead of alternative monomers or routes, the pH responsive behaviour was provided by 

poly(methacrylic acid) due to the reported direct polymerisation and the increased radical 

stability on a tertiary carbon. The chosen method for poly(methacrylic acid) polymerisation 

was a high pH, aqueous mixture, similar to the reported methods47, 405, 406, however optimised 

to improve control and reduce the impact of termination reactions. 

The optimised protocol used a copper chloride catalyst system to shift the equilibrium towards 

the dormant state leading to a slower, more controlled polymerisation and pre-mixing step of 

the catalyst in solvent before monomer addition to reduce copper-monomer complexation. 
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The methacrylic acid monomer (10 mL) was adjusted to pH 9 with 20 mL 6 M NaOH (aq). In a 

second flask, 10 mL of water was added. Both flasks were simultaneously degassed for about 

30 minutes. Initiator coated substrates were loaded into carousel tubes, sealed, underwent 

three vacuum-nitrogen cycles, and kept under nitrogen. To the solvent only flask, 0.23 g 

copper(I) chloride, 0.13 g copper (II) chloride and 1.1 g 2,2’-bipyridyl was placed and mixed for 

15 minutes before monomer transfer into the flask via cannula. After being sufficiently mixed 

and degassed, approximately 1 to 2 mL of monomer-catalyst solution was added to the 

carousel tube to cover each substrate. Once polymerisation time had elapsed, the substrate 

was thoroughly sonicated in water, rinsed with water and ethanol, and blown dry with 

nitrogen. 

 3.3.2. Synthesis of protein-resistant brushes 

The two polymer brushes chosen were poly(oligoethylene glycol methyl ether methacrylate) 

(POEGMEMA) and poly(2-hydroxyethyl methacrylate) (PHEMA), due to the reproducible, well 

controlled nature of the polymerisation kinetics65, 101, 409. The protocol used has large degrees 

of similarity to the poly(methacrylic acid) method above, except that the monomer and solvent 

were degassed together before the specific catalyst combinations were added. The catalyst 

ratios followed were from published methods, which were by Ma and co-authors65 and Tugulu 

and co-authors410 for POEGMEMA and PHEMA respectively. 

For POEGMEMA brushes, 4 mL of degassed water and 16 mL of methanol were added to a 

round bottom flask with 20 mL of poly(ethylene glycol) methyl ether methacrylate monomer 

(PEGMEMA). The flask was degassed for 30 min, before 0.37 g copper(I) bromide and 0.81 g 

2,2’-bipyridyl were introduced. For PHEMA, 30 mL of HEMA monomer and 30 mL of high purity 

water were mixed and degassed together, before addition of 0.38 g copper(I) chloride, 0.25 g 

copper(II) bromide and 1.71 g of 2,2’-bipyridyl. The ratios presented were held constant, 

despite the total volume of polymerisation solution being varied. 

 3.4. Surface modification chemistry and photolithography 

The processes presented are equally applicable to silane films and polymer brushes, such that 

work has been presented for both types of surface in the following chapters to aid 

characterisation. 

 3.4.1. Azide substitution, reduction and hydrolysis 

The method followed was based on the solution polymer work of Coessens and co-authors411, 

though significant changes were required for surface application. Sodium azide was placed in a 

round bottomed flask before dry dimethylformamide, which was degassed with nitrogen for 

20 minutes, was added to give a 0.2 M solution. After mixing and further degas, the saturated 

solution was added to substrates in carousel tubes under nitrogen which were then heated at 

60°C for 18 hours. 

Triphenylphosphine was placed in a round bottomed flask before dry dimethylformamide, 

which was degassed for 20 minutes, was added to give a 0.2 M solution. After further degas, 

the solution was added to substrates in carousel tubes under nitrogen and heated at 60°C for 

18 hours. Substrates were rinsed with DMF, water and ethanol, blown dry with nitrogen and 
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returned to a carousel tube. Equal volumes of water and tetrahydrofuran were mixed well 

before addition to the carousel tubes under nitrogen, which were then heated at 40°C for 18 

hours. 

 3.4.2. Nitrophenyl functionalisation of amino-converted polymer brush chain 

ends 

A 1 mM solution of 2-(2-nitrophenyl)propyl chloroformate in degassed dry dimethylformamide 

was generated. Amine terminated POEGMEMA substrates were immersed fully in the solution 

and then the flask was re-sealed under nitrogen. The minimum reaction time used was 72 

hours at room temperature. 

 3.4.3. Patterning methods 

Micron-scale patterning was conducted by securely holding a sample substrate between a 

glass slide and a quartz window, with an electron microscopy grid held onto the sample to act 

as the mask. The intimate contact between the quartz window and substrate surface allowed 

effective contact mask lithography to be achieved by laser light sources. 

 3.4.3.1. Photolithography of 2-nitrophenylpropyloxycarbonyl (NPPOC) converted 

surfaces 

For NPPOC-APTES films, first patterning step was conducted with 244 nm laser light using an 

approximate dose of 2 J cm-2.  The laser light source, an argon ion Coherent Innova 300C FRED 

system, was used in a frequency doubled mode to generate an output wavelength of 244 nm. 

The motive for using the 244 nm wavelength was to have shorter exposure times to generate 

the patterned arrays of surface amines. The NPPOC derivatised surface was exposure through 

a mask and, in the exposed regions, the NPPOC group was removed leaving an amine 

functionalised surface. 

Surface damage to polymers from 244 nm laser light by photodegradation schemes have been 

reported144. Hence for the second deprotection step of NPPOC-APTES and of NPPOC-

derivatised polymer brushes, a longer wavelength was required as used by Alang Ahmad and 

co-authors127 due to the presence of polymer brushes on the sample surface. This lithography 

was conducted with 325 nm wavelength laser light (He-Cd, Kimmon IK3202R-D) with a dose of 

approximately 12 J cm-2 to achieve maximum conversion. 

 3.4.3.2. Photolithography of initiator functionalised silane surfaces 

Films formed by the adsorption of APTES onto substrates (e.g. freshly cleaned silicon wafers or 

glass slides) were derivatised by the reaction with α-bromoisobutyryl bromide. The 

brominated surface was patterned as described by Alang Ahmad and co-authors124 by 

exposure to UV light (244 nm) through a mask. In the exposed regions, the Br was removed 

from the surface by photolytic cleavage of the C-Br bond and such prevent polymerisation 

from these regions. A dose of approximately 6 J cm-2 was applied to the surface for sufficient 

bromine depletion before surface-initiated ATRP. 
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 3.5. Surface characterisation techniques 

 3.5.1. Static water contact angles 

Solid surfaces provide an interface for which water droplets can interact with the gas phase 

(air) and sample (figure 3.3). As the water and air do not change, hence only the interfacial 

energy or surface tension between the liquid and solid varies. The surface tension can be 

characterised by the contact angle of a liquid drop to the sample at the air-water-surface 

interface. This allows chemical functionalisation of surfaces to be quickly and easily 

determined. The alteration of polymer brushes with respect to protonation from pH 

variation405 and tert-butyl removal by acidic conditions from a phototriggered event155 have 

been followed by contact angle measurements. 

Static contact angle of deionised water drops were measured using a Ramé-Hart model 100-00 

contact angle goniometer. Any quoted values are a minimum of five averaged values per 

sample and over typically three samples. 

 

Figure 3.3: Pictorial representation of contact angle measurement and the importance of the 

triple interface. Interface free energies γ between solid, liquid and gas define the contact angle 

of a specific system. By using the same liquid (i.e. water) and in air, direct comparison between 

surface functionality can be achieved and differences observed. 

 3.5.2. Ellipsometry 

Ellipsometric measurement is the reflection of linearly polarised light from a sample surface 

and the change in polarisation with respect to amplitude and phase is observed. These 

quantities can be fitted with models that allow estimation of film thicknesses. Hence the 

technique has been frequently used for polymer brush thickness measurement of responsive 

systems97, 150, 406, polymer brush growth kinetics406, grafting density variation85, 86 and changes 

in brush thickness upon removal of photocleavable protecting groups142. 

Ellipsometry measurements were taken on an M-2000V ellipsometer (J.A. Woollam Co., Inc.) 

with a white light source (370.5 to 998.7 nm) at a 70° incidence angle. The measurements 

were fitted with a single layer Cauchy model with a silicon substrate (n = 3.875, k = 0.015) and 

a polymer brush of n = 1.5 and k = 0). Multiple measurements were taken for any given sample 

and the brush thickness quoted was an average of at least three repeat measurements. The 

lack of physical meaning for applied ellipsometric models means that the results are best used 

for relative changes, despite output measurements in thickness units. 

  



63 
 

 3.5.3. X-ray photoelectron spectroscopy (XPS) 

In x-ray photoelectron spectroscopy (XPS), a sample is irradiated with a beam of x-rays causing 

the ejection of core shell electrons, which are analysed according to their kinetic energies 

(figure 3.4)412. The calculation of binding energy 𝜙 is given by: 

ℎ𝜈 =  𝜙 +
1

2
𝑚𝑒v2   (27) 

This is where 𝜈 is x-ray frequency, ℎ is Planck’s constant, 𝑚𝑒 is the mass of an electron and v is 

the velocity of the electron. The binding energies of the electrons correspond to the atomic 

orbital from which the electrons were photoexcited and hence this allows elemental atom 

ratios to be determined for surface species. Some orbitals, such as the carbon 1s orbital, have 

a significant binding energy dependence on the chemical environment in which an atom is 

placed and leads to chemical specific information being able to be deduced from peak fitting. 

Monolayer modification120, initiator moieties47, 124 and polymer brush406 XPS spectra have been 

commonly reported in publications. 

X-ray photoelectron spectroscopy (XPS) was carried out with a Kratos Axis Ultra DLD x-ray 

photoelectron spectrometer. The instrument had a monochromatic Al Kα x-ray source with an 

ultra-high vacuum environment. Survey and wide scans had acquisition pass energies of 160 

eV and 20 eV respectively. The XPS data was analysed using Casa XPS software (UK). All binding 

energies were calibrated with respect to the C 1s saturated hydrocarbon peak at 285.0 eV. 

Data is presented as intensity in counts per second (cps) against binding energy in eV. XPS 

sample loading and data collection was carried out by Dr Claire Hurley and Mr Charles Smith. 

All XPS data analysis was undertaken by the author.  

 

Figure 3.4: Pictorial representation of the photoelectron generation required for XPS data 

collection.  
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Figure 3.5: Pictorial representation of surface fragmentation using ion beams to generate 

secondary ions for mass spectrometry. 

 3.5.4. Secondary ion mass spectrometry (SIMS) 

In secondary ion mass spectrometry, a sample is bombarded by a beam of energetic ions. The 

primary ions deposit their kinetic energy into the sample at a significant depth and the 

transmitted energy into the sample returns to the surface via a collision cascade. It is the 

collision cascade that causes particles to be emitted (sputtered) from the surface, of which 

only a small fraction are ionised. The ionised fragments and molecular ions are collected and 

analysed in a mass spectrum, which is generated by a time-of-flight instrument or similar 

(figure 3.5)413. SIMS has been applied to surfaces and polymer analysis414, and in particular to 

surface film analysis415, 416, 417, 418, 419, 420. 

Secondary mass ion spectrometry (SIMS) was conducted with an Iontof time of flight SIMS 

instrument, using a bismuth cluster (Bin) primary ion source incident at 50 keV and with a 500 

µm x 500 µm field of view. By random rastering of the beam over a sample, the spatial 

distribution of secondary ion intensity may be analysed allowing the positions of specific 

groups to be imaged. The random rastering process is important to reduce localised sample 

damage which would skew the mass ion distribution. TOF-SIMS sample loading and data 

collection was carried out by Dr Robert Ducker and Mr Charles Smith, with all data analysis 

carried out by the author. 

 3.5.5. Atomic force micrscopy 

Atomic force microscopy (AFM) has found application in imaging of many systems such as 

membrane proteins in lipid bilayers due to the ability to keep proteins in a native environment 

and image at physiological conditions5. An AFM uses sharp tips attached to a Hooke’s law 

compliant cantilever with either the sample or tip connected to an x-y stage and a z-dimension 

piezoelectric actuator. Using a diode laser, the reflection from the back of cantilever is 

detected by a photodiode and the deflection of the cantilever (Δx) measured (figure 3.6). As 

Hooke’s law is obeyed, the tip-surface interaction force F can be implied due to F = -kΔx 

(where k is the cantilever spring constant) and is used in a relevant feedback loop to ensure set 

imaging parameters are maintained.  
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There are a variety of modes available to users. Contact mode operates in the repulsive region 

of a Lennard Jones type potential and has a constant deflection feedback to maintain a fixed 

tip-sample force. The problem with contact mode tends to be lateral forces which deform and 

damage soft, delicate samples or misjudges heights of deformable surfaces. In tapping mode, 

an oscillatory motion is applied to the cantilever and the tip contacts the sample once per 

cycle, leading to a reduction in the lateral frictional force. The feedback used is termed 

amplitude modulation, which acts to maintain a fixed amplitude oscillation by tip-sample 

height variation.  

In frequency modulation (FM) mode the cantilever oscillates in the attractive region of the tip-

surface potential and operates as feedback mechanism through resonant frequency shifts. This 

mode prevents deformation of the sample due to the tip and surface never being in repulsive 

contact. Home-built FM AFMs have generated high resolution images, which include sub-

molecular images of lipid head groups307, 308 and atomic resolution of mica309 in liquid.  

The imaging of soft matter in liquid, such as proteins, requires careful control of tip-sample 

force otherwise deformation and anomalous height features are measured. This can be 

modulated by variation of environmental conditions such as electrolyte concentration10. 

However, further improvements have been generated by development of new AFM modes 

and interpretation of data already collected. The phase lag in dynamic modes is the phase 

difference between the driven electrical oscillation and the cantilever response. By using the 

phase to extract conserved elastic and dissipated inelastic interactions with samples, this 

allows the possibility of high spatial resolution and compositional contrast in native sample 

conditions421. The phase contrast is dominated by two contributions, the higher harmonic 

oscillation components and the energy dissipated from the cantilever interacting with sample 

surface422. Multifrequency AFM has been developed where two or more eigenmodes of a 

cantilever are excited in parallel and the coupling of these modes has allowed small tip-sample 

forces to be applied, ~35pN423, 424. Other imaging modes also hold promise for imaging at small 

applied force while generating large compositional contrast, which include torsional resonance 

and torsional tapping334, 335, 336. 

A Dimension 3100 atomic force microscope with Nanoscope IIIA controller (Veeco, Santa 

Barbara) and a Dimension Icon atomic force microscope with Nanoscope V controller (Bruker, 

UK) were used to collect contact and tapping mode scans of samples under ambient conditions 

in air. Contact and tapping mode in liquid imaging was conducted on a Dimension 3100 atomic 

force microscope with Nanoscope IIIA controller (Veeco, Santa Barbara) and a JPK Nanowizard 

3 Ultra atomic force microscope (JPK Instruments, Germany) with the appropriate fluid cells. 

The cantilevers used for tapping in air were Bruker silicon TESPA (nominal spring constant of 

42 N m-1). For application of contact and tapping mode in liquid, silicon nitride MLCT 

cantilevers E and F (nominal spring constants of 0.1 and 0.5 N m-1 respectively) and Olympus 

Biolever mini (nominal spring constant of 0.1 N m-1) were utilised.  

 3.5.6. Atomic force spectroscopy and associated imaging modes 

Force spectroscopy is where the cantilever tip approaches the surface, indents the sample to a 

fixed force and then retracts (figure 1.28). Information has been collected in approach curves, 

such as sample height, elastic modulus and sample deformation13, and in the retract curves, 
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such as adhesion forces and unfolding experiments285. Force spectroscopy has also been used 

to detect lipid bilayer breakthrough events425, 426 and unfolding signatures of proteins285. 

Mechanical properties have been collected for a wide range of biological samples427 and for 

bacteriorhodopsin, protein motifs have been resolved in a correlated average elastic modulus 

channel12. Elastic moduli have also been extracted for polymer brushes121, 259 and being used to 

show nanomechanical differences under different conditions for responsive systems260, 261, 265. 

Force spectroscopy requires the optical lever sensitivity and spring constant to be known, such 

that the measured vertical deflection can be converted from volts into a force measured in 

Newtons. The inverse optical lever sensitivity (invOLS) was measured by force-distance curve 

on a surface considered to be infinitely hard. For the experiments conducted, curves of 

representative approach rate and trigger force were collected on mica. The mica discs were 

secured on magnetic pucks using optical glue (Norland optical adhesive 81) and a UV lamp. 

Averaged invOLS are always used in analysis, though the number of individual measurements 

varied depending on the approach rate. The typical average was over 60 force-distance curves. 

The spring constant calibration was undertaken by thermal noise approach as first reported by 

Hutter and Bechhoefer243 and used the internal software functions. 

Some samples, such as polymer brushes, can be compressed instead of penetrated by increase 

in the contact area of the probe266, 268. The formation of colloidal probes was therefore 

desirable. UV curable adhesive was spread thinly on a glass slide, into which a cantilever tip is 

immersed through the use of the Asylum MFP-3D as a micromanipulator. Dry polystyrene 

colloids were scattered on a glass slide and the glue immersed cantilever tip approached a 

single, well separated colloid. Using the favourable hydrophobic interactions of the glue and 

polystyrene, the colloid adheres to the tip and was lifted off the glass slide after contact. The 

cantilever was then exposed to a UV light source for the glue to be cured and permanently 

attach the colloid to the tip. The methodology presented is only successful if the cantilever tip 

length is less than the polystyrene colloid diameter. 

  

Figure 3.6: Pictorial representation of atomic force microscope cantilever setup. 
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Force volume or force map imaging is the integration of force spectroscopy with an x-y scan 

region for a finite number of points. The approach rate was restrained to values, ≤ 1 µm s-1, 

that allow uncorrected force curves to be analysed for sample properties. This leads to the 

biggest drawback of force-volume imaging which is for high x-y resolution data that the order 

of magnitude for image collection time is hours. Force volume images were collected on a JPK 

Nanowizard 3 Ultra (JPK Instruments, Germany) and an Asylum MFP-3D atomic force 

microscope (Asylum Research, Santa Barbara).  

To reduce collection times, components of tapping mode and force volume/spectroscopy were 

merged for high approach rate ramps to be peformed at sub-resonance frequencies. A 

feedback loop to maintain the contact applied force at the trigger point was achieved through 

alteration in z piezo position. The application of a scan rate of 1 or 2 kHz leads to unwanted 

vibrations within the cantilever and oscillations in the individual force curves. Analysis and 

removal of these oscillations allowed commercialisation of the technique known as Peak Force 

quantitative nanomechanical (QNM)428. Peak Force QNM images were taken using a 

Dimension Icon atomic force microscope with Nanoscope V controller (Bruker, UK). The AFM 

cantilevers used for Peak Force QNM were Bruker silicon nitride MLCT (cantilever F, nominal 

stiffness 0.5 N m-1) probes. Peak Force QNM generated a DMT model fitted elastic modulus, 

which has been labelled as an elastic fitting parameter. This quantity is related to the stiffness 

of the surface; however the data cannot be presented as elastic modulus due to applicability of 

the DMT model, use of default parameters for an uncalibrated tip radius and the unknown 

impact of the higher approach rate on higher resonant modes of the cantilever. 

A similar mode which accounts for hydrodynamic effects of high speed force spectroscopy is 

the quantitative imaging (QI) mode. QI mode was used on a JPK Nanowizard 3 Ultra (JPK 

Instruments, Germany). Both Peak Force QNM and QI modes provide the same range 

information as force volume imaging, including surface stiffness, adhesion, height, unfolding 

events and modelled elasticity. 

 3.5.7. Thermal noise incorporated force spectroscopy 

The association of a thermal noise spectrum with a segment of a force-distance curve required 

the initial capture of deflection as a function of time at a very high data capture rate. 

Therefore, the collection of deflection as a function of time was undertaken simultaneously 

with the cantilever approach towards the sample in a force-distance curve. Through 

mathematical manipulation, the time series data was converted into frequency space. The 

oscillations observed are only due to thermal fluctuations. Due to the Nyquist sampling 

theorem, the collected data only translates into frequency bandwidth of half the data capture 

frequency after signal processing.  

Two experimental setups were used. The first was based on the use of a data acquisition card 

(National Instruments, Austin, TX) streaming deflection and z sensor data directly from the 

controller and into a separate computer. Data collection and storage was carried out by 

Labview Signal Express (National Instruments, Austin, TX). This was used on the MFP-3D AFM 

(Asylum Research, Santa Barbara). Due to the limited buffer size of the acquisition card and 

output streaming rates, only 10 seconds of 200 kHz data was able to be captured. As the force 

curve needed to fit into that time restriction, this had a consequential impact on the inter-
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related quantities of z length capture, the z resolution and spectral frequency resolution. 

Hence the minimum approach rate enabled by this setup was 125 nm s-1. 

The second experimental design utilised the in-built features of the JPK Nanowizard 3 Ultra 

(JPK Instruments, Germany). Using a feature known as a `real time scan`, the height 

information, vertical and lateral deflection were extracted at the maximum capture rate of 800 

kHz into a text file. The system was able to capture over a 100 seconds of data, leading to an 

approach rate being limited by thermal drift and stability considerations, instead of the 

hardware limitations. The minimum approach rate that was achievable and presented in the 

following chapters was 10 nm s-1.  

To enable the capture of thermal noise time series data without unwanted vibrations and 

spurious resonances, a comprehensive isolation system for the Nanowizard 3 designed and 

implemented by Dr Nicholas Mullin was used. A large mass base was decoupled from the 

building using passive damping, with a full enclosure to remove acoustic interference and 

allow a thermally equilibrated environment to be achieved. To ensure that equilibrium was 

reached, the AFM electronics were switched on and cantilever loaded about 12 hours before 

use. The typical temperature within the enclosure was (31 ± 0.4) °C.  

The cantilever choice was determined by the desire for an uncoated silicon lever to reduce 

thermal drift429, have a spring constant sufficient to enable brush compression/penetration259, 

430, and to have the widest range of cantilever resonances available for analysis. A large 

number of cantilevers were tested, however the cantilever that was selected for the majority 

of the work presented here was the rectangular point probe plus contact mode short 

cantilever (PPP-CONTSC cantilevers, nominal stiffness 0.2 N m-1). The PPP-CONTSC levers were 

designed by Nanosensors (Switzerland) and purchased from Windsor Scientific (Slough, UK).  

Data analysis was carried out by a combination of DIAdem (National Instruments, Austin, TX), 

Igor Pro (Wavemetrics, Portland, OR) and Origin (Origin Lab, Northampton, MA). The Fourier 

transform was carried out using a Hanning window with 50 % overlap for 16,000 data points 

which is the equivalent of 0.02 seconds of data and a power density spectral frequency 

resolution of 50 Hz. To remove any random noise in the power density spectrum, a 10 curve 

rolling average over 50 curves average was used to enable maximum analysis potential of each 

force-distance approach. For each averaged curve, the segmental distance was 5.1 nm with 

the rolling separation of 1 nm at an approach rate of 10 nm s-1. 

The analysis required the calibration of vertical and lateral deflection signals into distances. 

The vertical deflection invOLS was found by a force curve on a surface considered to be 

infinitely hard. The lateral deflection invOLS was calculated using the non-contact method of 

Mullin and Hobbs247, 248. The requirements were a lateral deflection thermal noise spectrum 

away from the surface and the cantilever plan view dimensions, for which manufacturers’ 

optical measurements were used. The torsional spring constant was found using the method 

developed by Green and Sader362, quantified at the measured fundamental torsional frequency 

of the cantilever. By substitution of the resonant peak properties and torsional spring constant 

into the equipartition of energy for the torsional degree of freedom, the angular and hence 

torsional invOLS was calculated. The calibrations described here allow the power spectral 
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density to represent the fluctuation power of the cantilever displacement per unit frequency, 

instead of the photodiode voltage variation, and hence was calculated in units of m2 Hz-1. 
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Chapter 4: Amine chain end modification of polymer 

brushes and consequent two brush block formation 

 4.1. Introduction 

The control of interfacial interactions is critical in many fields of research related to biomedical 

materials and biosensors. Control of surface chemistry may facilitate increased sensitivity and 

enable reduction in the analysis volume172, 173, 431. The control of non-specific adsorption is 

critical in any biosensor and hence much effort has gone into the design of materials that 

inhibit non-specific binding. For membrane proteins, the additional complication is their 

vectorial nature which makes orientation upon immobilisation crucial. Use of protein 

mutations for functional group addition and complexation chemistry, such as nickel(II) 

nitrilotriacetate-histidine, has allowed orientated attachment at monolayer surfaces29, 145, 177, 

178, 432 and on polymer brush surfaces174, 176, 184, 193, 227.  

Many generic non-orientation attachment protocols of proteins have been carried out for 

protein detection purposes. Alang Ahmad and co-authors utilised photo-generated aldehydes 

on POEGMEMA144, whereas Barbey and co-authors used monomer epoxy side chains to attach 

fluorescent proteins197, 390. Alternatively activation of hydroxyl functionalities on PHEMA and 

POEGMA brushes allowed immunoglobin134, DNA fusion enzyme410 and streptavidin183 

attachment. The side chain based methodology has the advantage that there is one binding 

site per monomer, allowing sufficient functionalisation despite low yield reactions being used. 

The issue with this approach is that the functionality of the unmodified sides chain is typically 

lost as a result of the attachment process, such as the pH responsiveness of poly(methacrylic 

acid) from amidation by activated ester chemistry433. The side chain functionality has potential 

use in reporter systems, for example pH response for observation of bacteriorhodopsin 

functionality from proton pumping168. 

The chain end functional groups retained by living polymerisation present an opportunity to 

generate orthogonal chemistry to that of the side chains. For solution polymers, initiator 

functionalities have been modified to add amine groups434 or more complicated moieties such 

as tert-butyl protected nitrilotriacetic acid435, 436, 437, which have been used for green 

fluorescent protein and lipase binding as well as protein purification. The post-polymerisation 

amination of solution polymer chains has been reported in several systems, involving reagents 

such as phthalimides 438, 439 and azides440 (figure 4.1).  

The addition of azides to molecules can be achieved by nucleophilic substitution at a carbon-

halogen bond, which makes this modification ideal for the chain ends of ATRP synthesised 

polymers and polymer brushes. This reaction can require long reaction times and hence, a 

copper catalysed azide reaction has been reported where quantitative conversion in solution 

was observed within 5 minutes441. This led to a one pot polymer synthesis and modification 

using the same copper catalyst for ATRP, azide substitution and azide-alkyne cycloaddition441.  

The direct reduction of azides by LiAlH4 has been reported for polystyrene in solution (figure 

4.1a)440 and thiol monolayers on surfaces442. Such direct reduction could prove problematic for 

less inert polymers such as polyacrylates and polymethacrylates. A reaction scheme was 
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developed to reduce azide capped polymers by reaction with triphenylphosphine and 

subsequent hydrolysis of the imide formed to generate an amine (figure 4.1b)411. This type of 

reaction scheme is called Staudinger ligation, as it has also been used in organic chemistry443, 

444 and protein coupling to surfaces173.  

 

 

Figure 4.1: Routes to generating amine terminated solution polymers synthesised by ATRP: a) 

azide-LiAlH4
440; b) azide-phosphine-hydrolysis411; c) phthalimide-hydrolysis438. 
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Click reactions have demonstrated wide utility in post-polymerisation modification and have 

been used to generate spatial functionalization through sequential or parallel reaction 

schemes445. One of the benefits of surface click reactions is the high yields generated with few 

or no side reactions, which is extremely useful for brush chain end modification where 

purification is not possible. Azide terminated monolayers have been formed by surface 

reactions446, 447 and molecular pre-synthesis448, 449, 450. These surfaces may be utilised in azide-

alkyne 1,3-dipolar cycloaddition reactions446, 447, 449, photocatalytic reduction to amine 

terminated surface mediated by quantum dots450 and photochemical coupling of primary 

amines448. Solution polymers have been used in copper catalysed azide-alkyne cycloaddition 

reactions for side group451 and chain end441, 452 conversion. 

Azide conversion of brush chain ends has mainly been utilised simply to remove the initiator as 

a means to prevent further polymerisation in spatial patterning schemes100, 141, 453 or for click 

chemistry454, 455. Due to increased activation energies that can occur at surfaces147, polymer 

brush azide modification reactions have been conducted at elevated temperatures100 and 

concentrations of significant excess100, 141. Click grafting reactions of polymers to a surface456 

and cycloaddition reactions of alkyne terminated “grafted to” brushes457 have been reported. 

The use of surface initiated ATRP polymer brushes with azide functionalisation and copper(I) 

accelerated alkyne cycloaddition was demonstrated for poly(oligoethylene glycol 

methacrylate) on gold (figure 4.2)454. One of the main issues with click reactions is the 

requirement to synthesise an alkyne molecule with the desired functionality, however the 

concurrent benefit is that typically fewer surface reactions are needed. This can be important 

for functionality density as surface reactions can be hindered by the steric and electrostatic 

bulk of reagents, and hence severely limit surface coupling efficiencies84.  

Beside from azide and click cycloaddition reactions, other reactions can be utilised with chain 

ends. An amine terminated “grafted to” polymer was reacted with anhydride and 

subsequently a primary amine in the presence of a carbodiimide, which led to surface 

functionalization with nitrilotriacetic acid groups174. A surface initiated polymerisation using 

reversible addition-fragmentation chain transfer (RAFT) utilised a chain transfer agent 

functionalised with a carboxylic acid group56. By using EDC/NHS activation, chain end 

attachment of amino-biotin was achieved.  

An alternative for amine functionalisation of brush ends is the use of Cu(0) mediated surface 

initiated living radical polymerisation by carrying out polymerisation in the presence of a chain 

transfer agent such as cysteamine458. The transfer agent usage has been found to generate 

50% hydrogen terminated and 50% amine terminated chains. The amine terminated brushes 

could be useful for protein attachment in many of the methods described above, such as 

disuccinimidyl carbonate, glutaraldehyde and EDC/NHS based coupling schemes. 

Brush chain end modification has been researched relatively little in comparison to the entire 

polymer brush field with the majority of papers being based on “grafted to” polymer which can 

be pre-functionalised in solution before grafting. While post-modification of chain ends from 

surface initiated brushes may be difficult, the reaction schemes are important for the 

development of high grafting density polymer surfaces that can be functionalised with 
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biological molecules and yet retain the functionality provided by the polymer side groups, such 

as pH response.  

In the present work, the use of an azide reduction scheme on a polymer brush to generate 

amine functional groups has been investigated, using the process described by Coessens and 

co-authors411. The mild nature of triphenylphosphine allows reactions to proceed in the 

prescence of acrylate and methacrylate polymers. The reaction conditions were altered from 

solution polymer modification, due to yield difficulties with surfaces and the inability to use 

purification processes, by utilisation of excess reagents instead of stoichiometric quantities.  

 

Figure 4.2: Surface initiated ATRP, azide functionalisation and subsequent azide-alkyne 

cycloaddition of polymer brush chain ends454. 
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The reactions for proof of concept work were conducted on silane monolayers to improve 

functional group detection and characterisation. The depth resolution on polymers and atomic 

proportion of chain end to polymer at the brush interface led to limited detection of chain 

ends by common surface analysis techniques, especially XPS. The main issue with thin film 

surface reactions is the electrostatic or sterically hindered approach of reagents and the 

limitation on reactivity that this poses84.  

An indirect measurement protocol was adopted for reactions on polymer brushes. This 

involved the re-functionalisation of the newly formed amines with initiator and formation of 

second block of polymer, with the appropriate control samples. Two main polymers were used 

for this testing: POEGMEMA because of its consistent living nature of the growth kinetics65, 

side group inertness and protein non-fouling brush properties212; and poly(methacrylic acid), 

which exhibits a conformational response to changes in salt concentration and pH, while 

presenting a challenging fast, non-ideal polymerisation due to the monomer acting as an ATRP 

catalyst poison48. The ideal and non-ideal polymerisations were useful for presenting the best 

and worst cases of the surface reactions.  

Herein, initiator layer and polymer brush growth measurements, surface characterisation of 

the model reaction scheme on a silane surface, and results from second brush growth on a 

modified brush surface are presented for the formation of amine terminated polymer brushes. 

Parts of this chapter were published in a peer-reviewed journal in 2015459. 

 4.2. Results and discussion 

 

Scheme 4.1: Polymer chain end modification reaction protocol for di-block brush formation. 
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The reaction scheme for the formation of a di-block polymer brush is shown in Scheme 4.1. 

The living chain ends of the polymer brush, alkyl bromide functional groups, undergo a series 

of reactions, which are nucleophilic substitution by sodium azide, reduction by 

triphenylphosphine for imine formation, followed by hydrolysis to yield an amine functional 

group. The amine functionality has a range of potential applications. Here it is used as a 

coupling site for the acyl bromide initiator, bromoisobutyryl bromide (BIBB). This allows a 

second polymerisation to be undertaken to confirm the presence of the pre-BIBB coupled 

amine (from comparison to an azide capped surface), in addition to the ability to change the 

chemistry and associated properties of the exposed polymer surface.  

 4.2.1. Model surface reactions 

To investigate the feasibility of the above reaction sequence, a model surface was utilised. The 

model surface chosen was the initiator surface, bromoisobutyryl amidotriethoxysilane (BIB-

APTES), which was generated from the same acyl bromide BIBB reaction with surface coupled 

amine functionalised APTES. The cyclic nature of this reaction scheme prevents direct 

usefulness of the generated surfaces (scheme 4.2); however the simplicity of the surface 

allows knowledge about the integral reactions to be collected. Surface characterisation of the 

APTES and BIB-APTES were carried out by x-ray photoelectron spectroscopy. 

 

Scheme 4.2: Reaction sequence and conditions for BIBB attachment (B), azide substitution (C), 

reduction (D) and hydrolysis (E) for an APTES surface (A). 

The high resolution C 1s, N 1s and Br 3d spectra for the APTES film are displayed in figure 4.3. 

The saturated carbon and carbon adjacent to nitrogen environments are detected in the fitting 

process as expected. Unusually a peak at 288 eV was detected, which is most likely due to the 

presence of an imide environment (C=N) generated during multilayer formation in the silane 

film. This is supported by the distinct presence of a shoulder on the N 1s peak at 397.5 eV. 

Additionally, the N 1s spectrum displays separate peaks from basic and protonated forms of 

the amine functional group.  



76 
 

 

Figure 4.3: XPS a) C 1s, b) N 1s and c) Br 3d spectra for an APTES film.  

 

 

Figure 4.4: XPS a) C 1s, b) N 1s and c) Br 3d spectra of a BIB-APTES surface film. 
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The comparison of Br 3d peak area for APTES (figure 4.3c) and BIB-APTES spectra (figure 4.4c) 

shows an increase from background signal to a significant atomic contribution. The Br 3d peak 

of BIB-APTES was fitted for the two LS coupling components for the angular and spin 

momentum of the 3d shell electrons of the bromine atoms present, with the expected 

intensity ratio (0.71 ± 0.06 cf 0.66). 

 

Table 4.1: XPS elemental composition and relative ratios for the model surface reaction 

scheme. 

 

Table 4.2: XPS C 1s environment composition and relative ratios for the model surface reaction 

scheme. 

 

Figure 4.5: XPS a) Si 2p and b) O 1s spectra of a BIB-APTES surface film. 
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The BIB-APTES carbon spectra showed an increase in the 286.3 eV and 288.2 eV peaks relative 

to the saturated hydrocarbon 285.0 eV peak, which was consistent with the introduction of an 

amide group with a carbonyl group and secondary adjacent carbon relative to the carbonyl 

group. Similarly the unprotonated amine peak at 400 eV increased in the N 1s spectrum due to 

the reduction in the protonated form during the amide bond formation. 

Quantification of the XPS spectra for silane reaction scheme was undertaken with the 

elemental and carbon environment results presented in Tables 4.1 and 4.2 respectively. This 

quantification proved difficult for the silane films. The thin film of silane molecules was below 

the x-ray penetration depth, leading to strong silicon and oxygen signals which prevented the 

useful analysis of the O 1s spectrum (figure 4.5). Similarly the multilayer film formation of 

silanes has led to peculiarities in the contributions observed, with significant deviations from 

the ideal ratios for silane molecules. One explanation is the surface distance dependent atomic 

shielding leading to different contributions of functional groups depending on depth below the 

surface. 

The values and ratios of the atomic and carbon environment for APTES and BIB-APTES are 

consistent with the observed qualitative spectral changes. However the bromine yield was 

calculated to be 29 ± 3 %, which was low considering the highly reactive nature of the acyl 

bromide reagent used. To investigate the possible reasons for the low measured yield, a 

surface film of a pre-synthesised and purified molecule was prepared to remove the 

uncertainty associated with the partial conversion of a surface reaction, which was then 

analysed by XPS. The specific surface prepared was a self assembled monolayer of a thiol 

anchored ATRP initiator, mercaptoundecyl bromoisobutyrate, on a gold substrate. The NMR 

(figure 4.6) and C 1s XPS spectra (figure 4.7a) of the received reagent were consistent with the 

chemical identity of the molecule. 

Repeat Br 3p spectral measurements on the same mercaptoundecyl bromoisobutyrate surface 

were conducted. The Br 3p spectral region was chosen, due to the overlap of the Br 3d peak 

with the Au 5p region. The trend observed was a linear decrease in Br 3p peak area with 

increased x-ray exposure (figure 4.7b). The equivalent x-ray dose of a sample at the point of Br 

3d acquisition was added to the plot. The significant dose of normal acquisition is due to the 

order of the spectral region scans being acquired, with the resulting decrease in Br 3p area and 

hence elemental Br being underestimated by approximately 50%. It is assumed that the same 

behaviour would occur for the Br 3d region as the same x-ray source was used.  

The removal of alkyl-halides by photonic excitation has been previously observed using lower 

energy UV sources for removal of bromide initiator functionalities to prevent 

polymerisation124. Surface coating degradation during analysis by XPS has also been previously 

reported460, 461. 

Since the C-N/C=O ratio is 2.3±0.1 (compared to an ideal ratio of 2), this implies that the 

coupling reaction has a yield in the region of 87%. The corroboration by the Br XPS leads the 

author to suggest that a much higher amount of bromide was present at the surface before 

measurement. The final analytical test of the initiator layer was that it was able to produce 

quality brush layers by surface initiated atom transfer radical polymerisation.  
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Figure 4.6: NMR spectral intensity against chemical shift for mercaptoundecyl 

bromoisobutyrate in deuterated chloroform. 

 

Figure 4.7: XPS C 1s spectrum and Br peak area behaviour with respect to increased x-ray 

exposure for gold-mercaptoundecyl bromoisobutyrate surfaces. 

Surface films of reasonable thicknesses (> 10 nm) were generated for two different polymer 

brushes. Poly(oligoethylene glycol methyl ether methacrylate) (POEGMEMA) displayed a linear 

polymerisation kinetics for brush thickness versus time, as expected for a well-controlled living 

surface polymerisation with sufficient initiator density (figure 4.8a). Similar brush heights were 

achieved by poly(methacrylic acid) (PMAA) with a poorly controlled polymerisation, as 

depicted by the highly non-linear kinetics (figure 4.8b), due to the monomer acting as a 

catalytic poison leading to a fast polymerisation where termination reactions were not 

minimised by the regeneration of the dormant polymer halide capped state.  
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The XPS analysis had background level N 1s and Si 2p spectra which suggested that both the 

silicon oxide substrate and initiator were sufficiently well shielded from the x-rays by the 

formation of a dense polymer film. The C 1s characteristic peaks were present for the two 

polymers, with the dominant ether peak at 286.5 eV for POEGMEMA and the carboxylic acid 

peak at 289 eV for PMAA (figure4.8c, d). 

 

Figure 4.8: The polymerisation kinetics by ellipsometry (a, b) and XPS C 1s spectra (c, d) of 

POEGMEMA (a,c) and PMAA (b,d) from BIB-APTES initiator films. 

 

Figure 4.9: Static water contact angles for APTES film reaction sequence. The letters 

correspond to chemical structures presented in Scheme 4.2. The surfaces are A) APTES, B) BIB-

APTES, C) Azidoisobutyryl APTES, D) Triphenylphosphine functionalised imidoisobutyryl APTES, 

and E) aminoisobutyryl APTES. 
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Since the quality of the initiator films has been determined, the silane surfaces were used to 

analyse the multi-step reaction scheme (scheme 4.2). The characterisation applied relied upon 

qualitative changes, as the initiator characterisation demonstrated the difficulty of 

quantitative analysis on silane multilayers. The analysis by contact angle of static water droplet 

was used to monitor the variation in surface hydrophilicity during the reaction steps (figure 

4.9). The APTES (A) conversion to the initiator motif (B) generated the largest increase in 

contact angle and hence hydrophobicity. From the subsequent reactions, the contact angle 

steadily decreased until the amine product of the hydrolysis achieved a contact angle 

comparable to the initial APTES film. This was due to increased electron density of surface 

groups compared to the alkyl halide, because of the multiple bonds (azide), conjugated 

structures (phenyl) and electron lone pairs (amine) incorporated into the introduced functional 

groups. 

 

Figure 4.10: XPS Br 3d spectra of a) BIB-APTES and b) corresponding surface following an azide 

reaction. 

The individual reactions were followed by XPS and SIMS. The azide reaction was characterised 

by the substantial decrease in the Br 3d peak area (figure 4.10). This suggested that the 

majority of alkyl bromide groups underwent the nucleophilic substitution reaction, however 

not to completion. The lack of quantitative reaction yields on thin surface films was 

unsurprising. Surfaces have been known to hinder reactions, due to the reduced 

dimensionality from 3D to 2D leading to increased importance of steric bulk and electrostatic 

repulsion on reagents reaching the required orientation and position to undergo a reaction84. 

The yield implied by the peak area reduction was 76 ± 7 %. An Al 2p impurity peak was 

observed within the Br 3d spectra, which was likely due to the reclaimed nature of the 

semiconductor silicon purchased and variant dopant levels therein.  

The C 1s spectra were expected to be consistent upon azide conversion, which was observed in 

the spectra (figure 4.11a, b) and peak area quantities (Table 4.2). An increase in the area of the 

saturated carbon peak was observed for the triphenylphosphine reaction (TPP, figure 4.11c), 

though the proportion of TPP remaining on the sample surface is in doubt due to the highly 

reactive nature of the species. This is supported by only a small C1s spectral change being 

observed upon hydrolysis (figure 4.11d). The C 1s was particular insensitive to the reaction 

sequence with lack of quantitative ratio agreement being observed, probably due to the lack of 

significant change in the carbon environment. 
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Figure 4.11: XPS C 1s spectra of a) BIB-APTES and products following the b) azide, c) TPP, and 

d) hydrolysis reaction steps. Corresponding elemental and carbon environment compositions 

found in Tables 4.1 and 4.2. 

 

Figure 4.12: XPS N1s spectra of a) BIB-APTES and products following the b) azide, c) TPP, and d) 

hydrolysis reaction steps. 
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Whereas the N 1s spectra shows an observable change upon azide substitution (figure 4.12b), 

with the appearance of a low electron density azide N peak at 404.7 eV. Additionally, the shift 

of the secondary nitrogen peak from 402 eV to 401.5 eV and an associated peak area increase 

was observed. This was due to the incorporation of the high electron density nitrogen atoms 

from the azide. The ratio of the 404.7 to 401.5 eV binding energy peaks was calculated to be 

0.4 ± 0.07, which was close to ideal value of 0.5.  

The reaction with TPP (figure 4.12c) led to the concurrent decrease of both the 404.7 eV and 

401.5 eV environments, due to the loss of N2 from the azide with the formation of the C-N=P 

functional group. The similarity of the N 1s spectra from before and after hydrolysis (figure 

4.12c, d), suggests that water impurities in the solvent system for the TPP reaction may have 

led to significant in-situ hydrolysis, supporting the similar behaviour observed in the C 1s 

spectra and the TPP/hydrolysis C 1s environment ratios in Table 4.2. 

Secondary ion mass spectrometry was applied to the sample surface to confirm that the 

chemical motifs applied through the reaction scheme appeared at the surface and observe any 

qualitative changes. Quantitative SIMS is difficult to achieve due to the influence of detector 

saturation for ion fragments. However, due to saturation, the higher intensity signal can only 

be larger than indicated and this allows the minimum conversion to be found by fragment 

comparison, hence giving a qualitative understanding of the reaction efficacy. Positive and 

negative spectra for the azide reduction reactions were collected and have been collated in 

Appendix A. Specific regions have been selected for fragments of particular significance using 

the mass-to-charge ratio (m/z) for identification. The bromine isotopes at m/z 79 and 81 were 

acquired during the initiator fabrication and the azide substitution (figure 4.13a, b). The APTES 

surface contained some bromine, which was likely due to a combination of the high sensitivity 

of the SIMS and sample contamination. However upon BIB-APTES formation, a significant 

increase in the bromide anion intensity was observed confirming the initiator viability. 

Similarly the Br 3d and N 1s XPS spectra were supported by the reduction in bromine peak 

intensity from ~37000 to ~15000 at the surface following azide substitution, with an implied 

azide yield of > 50 %.  

Further to the bromide anion, a bromine-carbon cationic fragment was identified to be in the 

region above the amide bond in the initiator. The two isotopic fragment peaks increased and 

subsequently decreased upon BIBB and azide reactions, as was expected (figure 4.14a, b). An 

equivalent fragment with the N substituted for the Br was found, which increased after the 

azide substitution (figure 4.14c). This is not direct evidence of the azide formation, despite the 

implied C-N, however an azide anion N3
− fragment was assigned which increased from 

background intensity (figure 4.15). For the reduction reaction with TPP, the azide fragment 

observably decreased in intensity, however not back to background level. This is consistent 

with the remnant N 1s XPS peak of the low electron density azide (figure 4.12) and the 

expected difficulty of the reaction due to bulky multiple phenyl rings of the reagent leading to 

significant steric hinderance at the surface. 
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Figure 4.13: Negative SIMS spectra of bromine isotopes for initiator formation and azide 

reaction (a, b), and the reaction of the hydrolysis product with BIBB (c, d) 

 

Figure 4.14: Positive SIMS spectra of initiator based fragments for initiator formation and azide 

reaction. 
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Figure 4.15: Negative SIMS spectra of azide fragment for initiator-azide and TPP reactions. 

 

Figure 4.16: SIMS spectra of monophenylphosphine cations for pre- and post-TPP reaction 

samples. Three mass ions were identified with a) loss, b) no change, and c) gain to the number 

of constituent hydrogen atoms. 

Multiple fragments were identified relating to the imido formation of TPP at the surface. These 

included monophenylphosphine cations (figure 4.16), a triphenylphosphine cation (figure 

4.17a) and an initiator-TPP cationic fragment (figure 4.17b). The initial spike in intensity from 

background for the azido to imido surface conversion was observed for all fragments. However 

reduction in intensity was limited in the following hydrolysis and initiator re-functionalisation 

reaction with BIBB, except for the initiator-TPP fragment where a substantial peak area 

decrease was observed (figure 4.17b). Since the only surface-coupled fragment behaved as 

expected, it is suggested that there was significant TPP reagent and/or triphenylphospine 
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oxide (TPP oxide) by-product contamination at the surface. Significant sample rinsing, 

sonication and alternative solvents may need to be applied to clean the sample surface of 

remnant TPP and TPP oxide.  

 

Figure 4.17: SIMS spectra of a) a TPP cation and b) an initiator-TPP cationic fragment for pre- 

and post-TPP reaction samples. 

The successful hydrolysis was also confirmed by the increased Br 3d peak area in Figure 4.13c 

and d. This was where the hydrolysis amine product underwent a reaction with BIBB to re-

incorporate bromide on the substrate, to further complete the cyclic nature of the model 

reaction scheme. 

The combined static water contact angle, XPS spectral changes and SIMS peak variation results 

provided confirmation that the azide substitution, reduction and hydrolysis reactions were 

achievable at a surface. However, the yields of these reactions were consistently non-

quantitative and partial conversion was observed for functional group densities of silane films. 

The polymer grafting density is substantially lower, approximately 10% conversion64, 74, which 

may provide improved applicability of the reaction scheme to polymer brushes (Scheme 4.1) 

than suggested by the model system.  

 4.2.2. Formation of di-block polymer brush systems using chain end amine 

formation and initiation 

The characterisation of the surface, as implemented above for the model surface, was applied 

to modified chain end brushes. However, the sampling depths were significant enough to 

`drown` out chain end environments with the bulk brush measurements. Only unique features, 

such as the Br 3d XPS spectra (figure 4.18a), were found to change, though with significant 

signal-to-noise limitations. The Br 3d spectrum of a POEGMEMA brush contained a small peak 

approximately 20% of the area for the equivalent BIB-APTES peak. By azide substitution, this 

peak was removed back to background level. However, the variability of Br peaks, due to XPS 

degradation and termination reactions especially between carbon radicals and water, means 

that the bromine peak is not a sufficiently reliable test for conversion. 

An alternative method was devised to confirm the success of the reaction schemes. This was 

based on the use of a second polymerisation to utilise the remaining living chain ends or newly 

generated brush-initiators to produce a larger measurable change. The brush thickness is 

relatively simple to follow using ellipsometry for brushes fabricated on silicon surfaces. 
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The azide substitution was carried out on a variety of POEGMEMA surfaces for different 

reactions times, followed by a second polymerisation of OEGMEMA. The kinetics of 

substitution was observed in the steadily reduced amount of secondary brush growth, leading 

eventually to negligible brush growth for times greater than 17 hours (figure 4.18b). This halt 

to secondary growth suggested that all living bromide chain ends were converted to inert 

species, either through azide substitution or termination reactions during the polymerisation. 

 

Figure 4.18: Characterization of azide-terminated POEGMEMA brushes with a) XPS Br 3d signal 

of POEGMEMA brush pre- and post-azide substitution reaction, and b) fractional height change 

from secondary brush growth on POEGMEMA (2) as a function of azide reaction time. The 

immersion times were 30 and 120 min respectively for the first and second OEGMEMA 

polymerisations and the polymer heights were measured by ellipsometry.  

 

Figure 4.19: Comparison of a second OEGMEMA polymerization on uncapped (B), azide-

terminated (C), and initiator re-functionalised amine-terminated POEGMEMA (D). Sample A is 

a POEGMEMA control. Sample B is a POEGMEMA brush control followed by OEGMEMA 

polymerization. Sample C is azide-passivated POEGMEMA with OEGMEMA polymerization. 

Sample D is amine-terminated POEGMEMA which undergoes an initiation step and OEGMEMA 

polymerization. OEGMEMA polymerisation times were kept constant at 30 min and 2 h, 

respectively. 

To investigate the feasibility of amine chain conversion, secondary OEGMEMA growth was 

carried out on a POEGMEMA base brush (figure 4.19). This base brush was chosen to be short 

in an attempt to maximise bromide chain end retention. The control sample (A) was a 
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POEGMEMA brush without any further modification. The secondary control sample (B) was the 

POEGMEMA brush which underwent a second polymerisation of OEGMEMA without any 

intermediate reactions. The third control sample (C) was prepared in an equivalent way to B 

with the inclusion of an intermediate sodium azide passivation step. Lastly, the sample of 

interest (D) was the two polymerisations as laid out above with intermediate chain end 

conversion using azide substitution, reduction and hydrolysis, followed by reaction with BIBB 

to form initiator chain end moieties.  

An increase in brush thickness between controls A and B of 2.4 ± 0.5 nm was measured, which 

confirmed the presence of remnant alkyl bromide chain ends as the polymerisation continued 

without any additional initiator reagent being added in between the polymerisations. By 

application of azide reaction to the brush surface, no further polymerisation was measured for 

sample C (0.2 ± 0.7 nm) which corroborated the XPS Br 3d spectral observations. The 

application of the azide reduction, hydrolysis and initiator binding led to a significantly 

increased POEGMEMA brush thickness of 14.7 ± 0.8 nm relative to A.  

The POEGMEMA polymerisation represents one of the most living polymerisations. Application 

to a less forgiving system was attempted, with use of PMAA as the base block and the second 

polymerisation being a living polymerisation of OEGMEMA. PMAA polymerisations are 

severely non-linear due to the need for a water based solvent system and the relatively 

uncontrolled nature from catalyst stability issues, hence the amount of living chain ends 

became severely depleted. 

 

Figure 4.20: Comparison of a second OEGMEMA polymerization on uncapped (B), azide-

terminated (C), and initiator re-functionalised amine-terminated PMAA (D). Sample A is PMAA 

control. Sample B is PMAA brush control followed by OEGMEMA polymerization. Sample C is 

azide-passivated PMAA with intermediate initiation and OEGMEMA polymerization. Sample D 

is amine-terminated POEGMEMA which undergoes an initiation step and OEGMEMA 

polymerization. OEGMEMA polymerization times were kept constant at 30 min and 90 min, 

respectively. 

The control system for PMAA base with azide substitution and initiator reaction (figure 4.20, C) 

had significant OEGMEMA polymerisation compared to the PMAA brush with no further 

modification (A). The brush thickness was below the unmodified two brush control (B); 
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however the significant amount of polymerisation was likely due to side reactions of the BIBB 

acyl bromide with hydroxyls formed between the reaction of water and polymer radicals. This 

type of reaction has been used for initiator attachment to hydroxyl terminated thiols74. The 

azide reduction and hydrolysis (D) allowed a measurable, though not substantial, increase in 

brush thickness to be observed over the two-polymerisation control surfaces (B, C). The Figure 

4.20 displays results that show the importance of using the most living polymerisation possible 

for the first brush block. 

Equivalent PMAA-b-POEGMEMA samples with no intermediate reactions (figure 4.20, B) and 

with amine conversion/initiation (figure 4.20, D) were analysed by XPS, alongside single PMAA 

and POEGMA components grown under the identical conditions. The C 1s and O1s spectra are 

displayed in Figures 4.21 and 4.22 respectively with the PMAA brush (a), POEGMEMA brush 

(b), unmodified di-block (c), and amine/initiator chain end di-block brush (d). The di-block 

brush system with no intermediate reactions has a C 1s spectra (figure 4.21c) that displays the 

appearance of the ether carbon environment, characteristic of the OEGMEMA, while being 

dominated by peaks characteristic of PMAA (figure 4.21a). However, after exposure to 

initiator, the PMAA-b-POEGMEMA (figure 4.21d) yielded a spectrum closer to POEGMEMA 

with a more dominant ether peak. The observation of similar carbonyl-ether oxygen ratios for 

the di-block and single component spectra supports the changes in the C 1s spectra (figure 

4.22). This suggests that the amine conversion and intermediate initiation steps allowed a 

better quality secondary brush formation on PMAA as compared to relying on retained alkyl 

bromide groups from the living polymerisation, despite only limited height differences being 

observed by ellipsometry of the dry brushes.  

 

Figure 4.21: XPS C 1s spectra from polymer brushes. This include single component a) PMAA 

and b) POEGMEMA, and multiple component PMAA-b-POEGMEMA brushes where c) there 

was no intermediate modification before initiator solution immersion and d) azide reduction 

and initiator re-functionalisation reactions were carried out between the two polymerisations. 
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Figure 4.22: XPS O 1s spectra from polymer brushes. This include single component a) PMAA 

and b) POEGMEMA, and multiple component PMAA-b-POEGMEMA brushes where c) there 

was no intermediate modification and d) azide reduction and re-initiation reactions were 

carried out between the two polymerisations. 

The quantitative analysis of O and C presented similarly deviated from the ideal ratio for single 

polymer components (table 4.3). This is because of the thin polymer layers required and 

consequent contribution of silicon bound oxygen of the substrate and oxygen contained within 

the initiator. Similarly, the di-block systems both had C/O ratios that deviated significantly 

from the ideal and the measured values for the single component brushes, potentially due to 

the increased shielding of the substrate during the second polymerisation or unidentified 

sample contamination. Despite this, C 1s environments allowed identification of polymers 

from reasonable agreement with the ideal ratios for the PMAA and POEGMEMA brushes, due 

to characteristic differences in binding environments (table 4.4). The C=O/C-O ratio became 

inverted from the unmodified diblock brush to the initiator re-functionalised amine PMAA-b-

POEGMA brush as expected from the C 1s spectra and the assertion that the amine conversion 

generated a higher quality brush (table 4.4, figure 4.21). 

 

Table 4.3: Single and block brush carbon and oxygen elemental composition by XPS. 
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Table 4.4: Single and block brush carbon environment composition by XPS. 

An alternative formulation of di-brush including POEGMEMA and PMAA was investigated, 

using POEGMEMA as the base block to utilise the more living polymerisation of the monomer. 

The ellipsometry of the dry brushes with the first brush block (A) and di-block brush with no 

modification (B), with intermediate azide substitution and BIBB reaction (C), and with 

intermediate amine formation and BIBB reaction (D) are shown in Figure 4.23. The unmodified 

di-block (B) increased in brush thickness by 17.8 ± 0.7 nm which was expected from the 

remnant surface initiator sites. The azide substituted and initiator immersed control (C) was 

observed to have a small increase in thickness compared to the first brush block of 7 ± 1 nm. 

This change in thickness was significantly reduced thickness compared to the unmodified di-

block (B) which provided evidence for substantial alkyl bromide removal, however an 

increased brush height was observed.  

 

Figure 4.23: Comparison of a MAA polymerization on uncapped (B), azide-terminated (C), and 

initiator re-functionalised amine-terminated POEGMEMA (D). Sample A is POEGMEMA control. 

Sample B is POEGMEMA brush control followed by MAA polymerization. Sample C is azide-

passivated POEGMEMA with MAA polymerization. Sample D is amine-terminated POEGMEMA 

which undergoes an initiation step and MAA polymerization. OEGMEMA and MAA 

polymerization times were kept constant at 30 min and 2 h, respectively.  

The amine converted di-block underwent intermediate azide substitution, reduction, 

hydrolysis and reactivation by treatment with BIBB (D). The second polymerisation of 

methacrylic acid generated brush growth of 40 ± 4 nm above the azide passivated brush. This 

was a large increase beyond the control samples (A, B, C) and suggested a significant 
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difference in surface functionalisation with chemical change probable. To confirm that the 

surface properties had incorporated the pH responsive behaviour of the PMAA block, 

ellipsometry of solution immersed samples was carried out. With solution change, the 

reversible chain stretch and collapse between basic and acidic pH was observed (figure 4.24). 

At basic pH, the dissociated carboxylic acid groups exhibit intra- and interchain net repulsion 

and stretch away from the surface to form an extended conformation. Whereas at acid pH, the 

protonated side group removed the enhanced steric interactions generated by the 

electrostatic forces and leads to brush collapse into the reduced solvation state. 

 

Figure 4.24: Ellipsometric thickness of fluid immersed and solvated POEGMA-b-PMAA brushes, 

generated via amine generation and initiator functionalisation. Solution change was carried 

out with a 15 min equilibration period. Odd numbered solutions were pH 4.85 10 mM acetate, 

90 mM NaCl aqueous solutions and even numbered solutions are pH 9.30 10 mM 

tris(hydroxymethyl)aminomethane, 90 mM NaCl aqueous solutions. 

Despite the loss of the bromine XPS signal (figure 4.18a), the ellipsometry data after repeated 

polymerization following azide capping showed that a non-negligible amount of growth was 

present at the inert polymer surfaces (figure 4.20 and 4.23). This additional growth was also 

present when preformed silane initiator was used (di-block POEGMEMA thicknesses, azide-

initiated 34 ± 1 nm, cf azide only 8 ± 1 nm), ruling out additional initiation of unreacted amine 

surface silane groups. One potential reason for the additional growth is that the incomplete 

azide modification of polymer chain ends, similar to a silane surface (figure 4.10), or polymer 

bromide chain ends were submerged and entangled such that visitation to the surface was 

prevented and hence went undetected. Alternatively, the use of water in the polymerization 

solution may lead to some chain ends being converted to hydroxyl groups during the active 

radical state of the polymerisation. Hydroxyl sites have been shown to react with acid bromide 

initiators74, 77; hence, upon immersion in initiator solution new chain end initiator sites with 

ester linkages may have been formed.  

However, significant PMAA growth from the amine modified chain ends on a POEGMEMA 

brush block, as compared to azide-capped chains, provided indirect evidence of successful 

azide reduction to amine groups (figure 4.23), alongside model surface characterisation. 

Indirect evidence was required for the chain-end modification as it was insensitive to the 

available surface analysis techniques, such as XPS and SIMS, due to the very low ratio of chain 
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end to polymer within the sampling depths. This is, to best of the author’s knowledge, the first 

report of azide reduction to “grafted from” polymer chain ends by a chemical methodology. 

 4.3. Future work 

The work presented allowed the identification of species, functional groups and important 

moieties in the conversion of alkyl bromide surface into an amine functionality. However the 

use of silane surface and the associated multilayers prevented quantitative analysis to be 

undertaken and utilised fully. To achieve this, the reactions presented would be repeated on a 

pre-synthesised mercaptoundecyl bromoisobutyrate on gold. The change in system is a 

distinctly less relevant situation for the reactions being undertaken on polymer surfaces as the 

silane stability on an oxide surface was greatly preferred. However, the use of gold allows well 

organised monolayer films to be generated and oxygen analysis to be presented due to the 

lack of an oxide surface. 

The reaction optimisation was severely hindered, due to the lack of direct analysis methods on 

the polymer surface. However organic synthetic optimisation of the reaction conditions on the 

surface films would be appropriate to improve the yields and surface quality generated, 

especially with regard to unwanted polymerisation from the azide passivated base brush 

blocks.  

The main disadvantage of the presented method is the significant number of reactions needed 

and the concurrently increased likelihood of side reactions and reduced functional group 

yields. Therefore simplified methods were investigated, however no suitable alternatives were 

found. One such example was a one-pot polymerisation-azide substitution-aminoalkyne click 

reaction sequence, as described in solution form by de Graaf and co-authors441. However while 

the azide substitution comprehensively halted the polymerisation, the azide substitution at the 

surface was limited and hence impacted severely yields of subsequent reactions with the 

aminoalkyne. Further feasibility studies into other simpler methodologies are worthwhile. 

Amine modified brushes present a functional group at the surface capable of a variety of 

coupling methodologies. The application for protein attachment, such as fluorescent markers, 

would be the first step in development of the amine terminated brushes as useful bio-

functional surfaces. 

 4.4. Conclusions 

The conversion of initiator chain end alteration to amine functionality has been investigated. 

The use of chemical analytical techniques was applied to a model surface, due to the low 

proportion of chain ends in the analysis region and the low detection ability for the 

modification of these groups. The initiator APTES surfaces underwent azide substitution, 

reduction and hydrolysis reactions, which were followed by XPS and SIMS measurements. This 

allowed the appearance of new chemical environments and surface fragments to be observed. 

The application of the chain end modification methodology was carried out on polymer 

brushes and the functionality change was monitored by the ability of the surface to undergo a 

secondary polymerisation. While the modification was found to be influenced by side reactions 

and incomplete conversion, substantial brush thickness changes were observed for the amine 
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modified brushes beyond the control samples and additionally changes in chemical 

environment presented at the surface were found.  

The generation of amine chain ends on surface initiated polymers significantly widens the 

potential for subsequent reactions and hence applications beyond simple homopolymer brush 

systems. The application of this methodology adds to a library of brush reactions that have the 

potential for orthogonal reaction sites between the chain ends and side groups of the brushes. 

To the best of the author’s knowledge, this was the first time that chemically mediated azide 

reduction and hydrolysis was carried out on the chain ends of surface “grafted from” polymer 

brushes. 
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Chapter 5: Lithography of photocleavable protecting 

groups for multiple polymer brush patterning 

 5.1. Introduction 

For many applications of polymer brushes, spatial organisation of the brush regions is a 

desirable feature. Selective positioning of different brush chemistries and imparted properties 

becomes useful for array production by biomolecule adsorption for biological sensor 

fabrication76, 212, 217, 218, 219. This type of directed adsorption has been used to generate 

fluorescent patterns of protein on surfaces126, 143, 144. A significant contribution to the literature 

has been the exploration of different methodologies of spatial patterning for single brush 

surfaces. Patterning can be achieved by either pre-polymerisation initiator placement or 

polymer removal. Ma and co-authors demonstrated microcontact printing of a thiol based 

initiator onto a gold substrate for selective brush growth94. Direct chemical change by electron 

beams to allow the spatially selective formation of photoinitiator was utilised by Schmelmer et 

al111 and Steenackers et al112. Kaholek and co-authors used a scanning probe nano-shaving 

methodology to remove a background thiol before backfill with a thiol initiator113. Degradation 

schemes of either the polymer brush42, 137, 138, 144 or pre-polymerised initiator films123, 127 have 

been undertaken for surface patterning. 

The formation of single brush patterns leaves remnant exposed substrate which is undesirable 

for adsorption of delicate components such as proteins. The response was the production of 

multiple brush films where the entire surface is coated in polymer, however spatial definition 

in topography and chemistry are provided by the use of different polymerisation conditions 

and the use of different monomers. The possibility of creating contrasting properties has led to 

interest in finding alternative protocols for multiple brush location on the same substrate. 

Sequential deposition techniques have been applied, based around repeated cycles of initiator 

deposition by microcontact printing followed by brush growth100, 141, 455, 462. This microcontact 

printing methodology allowed Zhou and co-authors to form binary, tertiary and quaternary 

patterned brush surfaces100. Binary patterned brushes were formed by capillary force 

lithography using a polystyrene printed mask over a pre-formed initiator layer with 

polymerisation with and without mask102. Konradi and Ruhe utilised a masked 

photopolymerisation and secondary thermal polymerisation step to form two polymer 

surfaces122. Spatial separation of surface films with different initiator molecules allows multiple 

types of polymerisation to be applied to the same surface34, 35, 36, such as atom transfer radical 

polymerisation (ATRP) and reversible addition-fragmentation chain-transfer polymerisation 

(RAFT)463, 464, 465. 

The ability to undertake lithography on surfaces by a non-contact, direct method allows 

surface fabrication to be performed with reduced contamination, reduced complexity and to 

aid production of bespoke patterns119. This is particularly important if considering future 

commercialisation of a methodology. One method that has garnered interest for its ease of 

use is photochemistry.  

The generation of polymer directly from photonic excitation has been explored, with authors 

presenting work on thiol-ene polymerisation from thiol induced radicals466, photo-sensitive 
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catalytic complexes to initiate ATRP under visible467, 468, 469 and ultraviolet470 irradiation, and 

direct grafting using gamma irradiation with a suitable transfer agent, CBr4, on 

polypropylene463. The use of very high energy photons or photonic reduction agents has the 

possibility to damage the polymer before the desired end point is reached and the 

polymerisation is halted. For less damaging schemes, these typically require specifically 

designed catalysts that are synthetically expensive. 

Fors and co-authors used an iridium catalyst to photo-activate the coupling of acrylate reagent 

onto a bromoisobutyrate initiator film, which generated spatial chemical variation on the 

silane surface through the use of appropriate masks471. By replacement with a methacrylate 

reagent, grafting-from polymer brushes were generated with the same catalyst due to the 

higher radical stability on the tertiary carbon of the methacrylate monomer468. Li and co-

authors used a grafting-to process for a thiol-poly(ethylene glycol) reagent to a hydroxyl 

functional group using UV irradiation in the presence of oxygen to form a surface bound 

thiolate472.  

Pattern fabrication by initiator photolithography has been applied to chloromethylphenyl124, 

473, 474 and bromoisobutyrate124, 131 silane films to generate chemical and hence brush patterns. 

Initiators incorporating photocleavable linkages, such as 2-nitrophenyl functionalities, have 

been used to generate cleaved brushes for molecular weight measurements90 and multiple 

brush surfaces142. Cao and co-authors used UV generated DMF solvent radical to form silane 

films and then UV irradiated aqueous ammonium persulfate to degrade the silane for spatially 

defined silane films to be formed475.  

Photochemistry on the side chain of pre-formed brush layers has allowed spatially defined 

chemical changes using reactions with lowered activation barriers. These include photo-

selective degradation of a thiol protection group before coupling to an isocyanate 

functionality201, 476 and the UV activated click reaction between alkyne side group and thiol 

molecules477. 

To generate distinct chemical regions, the preformed polymers in a multiple polymerisation 

system need to have the remaining dormant initiators on these polymers removed to prevent 

further polymerisation in the secondary steps. The common method used is the nucleophilic 

substitution of sodium azide at the alkyl halide terminus to generate alkyl azide functionality. 

This has found application in both solution411, 440, 441  and surface polymers73, 100, 141, 454, 462, 478, 479. 

Zhang and co-authors found by monitoring the reaction rate of alkyl bromide to azide 

conversion that mixed films could be reproducibly formed480. This reaction was utilised by 

Brault and co-authors to form a low density brush interface from a previously grown polymer 

brush, in a successful attempt to increase antigen and antibody binding to the polymer 

brush453.  

An amine capping agent, specifically tris(aminoethyl)amine, has been shown to react with 

brush chain ends and was used for activated ester chemistry with antibody attachment481. The 

azide chain end and the alternative alkyne-amine chain end modification was utilised in 

alkyne-azide cycloaddition chemistry to generate spatially separated brushes with different 

attached fluorophores455 or biological coupling agents such as biotin454. Strain promoted 

cycloaddition chain end reactions have also been reported478. 
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The generation of patterned brush on top of a pre-formed brush to form topographical brush 

structures have been achieved using micro-contact printing of initiator molecules73, 462. To the 

best of the author’s knowledge, the fabrication of such hierarchal brush structures has not 

been achieved by direct photolithography. 

In the present work, a combination of 2-nitrophenyl photochemistry and amine chain end 

formation, presented in the previous chapter, was used to enable the formation of chemically 

distinct and topographically varied regions using selective deprotection and secondary 

polymerisation. Nitrophenyl chemistry has been integrated into brush schemes in a variety of 

ways, which includes use as a hydroxyl side chain activation reagent410, initiator region 

cleavage of a fully formed brush90, definition of amine regions for initiation126, 127 and as a thiol 

side chain photoprotecting group201. Firstly, the ability to form two polymer brush surfaces 

from a 2-nitrophenyl containing silane film is presented as a proof of concept that chemically 

distinct regions are possible using the azide chain end reaction to generate regions inert to 

polymerisation. Secondly, incorporation of 2-nitrophenyl protecting groups into a fully formed 

amine terminated brush with subsequent patterning and secondary polymerisation is shown. 

Parts of this chapter were published in a peer-reviewed journal in 2015459. 

 

Scheme 5.1: Polymer chain end modification reaction protocol for spatially resolved di-block 

brush formation via a NPPOC-functionalised polymer brush. 
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 5.2. Results and discussion 

The ability to form a multiple component brush surface requires repeated initiator re-

functionalisation and polymerisation, without any additional growth from non-selected areas. 

This means that inert capping agents were required and components capable of selective 

patterning were needed. A scheme was designed (scheme 5.1) to enable spatial chemical 

variation to be achieved. This scheme utilised work presented in the previous chapter for the 

formation of an amine group on the end of a living polymer chain via azide substitution, 

reduction and hydrolysis (scheme 5.2). By then using a reactive chloroformate reagent for 

introduction of the photocleavable component to the amine brush chain ends, a 

photosensitive polymer surface was created (scheme 5.3). This surface allows a variety of 

photolithographic techniques to be applied; however due to the reaction complexity, 

patterning was limited to a contact mask methodology for generation of micron sized features.  

 

 

Scheme 5.2: Reaction protocol and conditions for azide substitution, reduction and hydrolysis 

for a chain end of a living methacrylate based polymer brush.  

 

Scheme 5.3: Reaction protocol and conditions for attachment and deprotection of a 

photocleavable NPPOC group for a chain end of a living methacrylate based polymer brush. 
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 5.2.1. Binary polymer brushes patterns from a photocleavable silane film 

The multiple step nature of the reaction schemes has subsequent yield impacts for every step. 

Quantification of the exact yields of the multiple different possible products in such a scheme 

is difficult. The possibility of some remnant azide or the photocleavable NPPOC functional 

group undergoing a reaction with the solution phase initiator, BIBB, needed to be eliminated 

and to confirm that the spatial fidelity of surface remained. Therefore, experiments were 

undertaken on photo-sensitive silane films to form two polymer patterns from the repetition 

of a deprotection, initiator functionalisation and polymerisation process.  

 

Scheme 5.4: Scheme for the formation of a spatially resolved binary polymer brush via a 

NPPOC functionalised silane film and an azide reaction with polymer chain ends. 

The scheme to be conducted for the photocleavable silane film is shown in Scheme 5.4., with 

the deprotection of the NPPOC group and initiator coupling by BIBB is demonstrated in 

Scheme 5.5. The NPPOC functionalised silane is attached to the substrate through siloxane 

bonds during the deposition process. Once good layer coverage was achieved, the NPPOC 

functional groups were cleaved at the amide bond by exposure to UV light. By exposure 

through a grid mask, squares of deprotected amine functional groups were generated. From 

functionalisation of the amine with initiator and subsequent polymerisation by ATRP, a 

positive height contrast was generated in the squares. The azide reaction was then utilised to 
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functionalise bromine terminated polymer brush chains and hence prevent further 

polymerisation by removal of the bromine. The next step was the exposure of the entire 

surface with 325 nm wavelength laser light to cleave away the NPPOC groups that were 

protected by the mask during the first exposure, without damage to the first polymer. 

Subsequent amine functionalisation with initiator molecules and ATRP with a second 

monomer provides the squares of the first polymer with a background of a second polymer 

brush in the bars.  

From a single deprotection, initiation and polymerisation process, a single component pattern 

of a POEGMEMA brush was fabricated (figure 5.1). There was imperfect mask alignment 

achieved for this sample, as an interference pattern has been formed in the height profile of 

the brush. An equivalent sample underwent passivation with sodium azide, followed by 

complete deprotection of the surface, initiation and brush growth of the monomer methacrylic 

acid. The height profile and image are shown in Figure 5.2. The square mesh used for the AFM 

experiment samples retained squares of POEGMEMA with background bars filled by PMAA 

from the secondary polymerisation. The brush thicknesses were not comparable due to the 

samples not being prepared in the same polymerisation solution and sealed system.  

 

Scheme 5.5: Reaction protocol for the initiation process of a photocleavable protected silane 

film, NPPOC-APTES.  

 

Figure 5.1: Single component brush surface of patterned POEGMEMA from a NPPOC-APTES 

surface, with a) a Peak Force QNM image in air and b) a line section from the image. 
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Figure 5.2: Two component brush surface of patterned POEGMEMA squares and PMAA bars 

from a NPPOC-APTES surface, with a) a Peak Force QNM image in air and b) a line section from 

the image. 

If the two brush pattern was perfect, the system would appear identical to the single brush 

pattern and be indistinguishable in topography except for a change in height difference 

between the two levels observed. However due to imperfections in the NPPOC-APTES film, the 

substrate was observed in the height channel of the Peak Force QNM mode and provided a 

fiduciary position for all the data channels collected. This allowed two levels to be identified, 

the 10 nm intermediate level of PMAA and the 30 nm top level of POEGMEMA relative to the 

substrate (figure 5.2). The assignment the lowest level as substrate was supported by sharp 

spike in stiffness of the surface in the respective region (figure 5.3). 

 

Figure 5.3: Comparison of a) POEGMEMA-APTES (red dashed line) and b) POEGMEMA-PMAA 

(black line) surfaces imaged by Peak Force QNM elastic fitting parameter with c) line sections 

from the two surfaces overlaid. 
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The nanomechanical behaviour was provided by the elastic fitting parameter (figure 5.3). The 

fitted DMT elastic modulus for a Peak Force QNM force-distance curve was available for each 

individual pixel and was renamed the elastic fitting parameter. This is due to the unknown 

validity for the application of a DMT model, non-rigorous calibration and unknown impact of 

high approach rates that makes the physical interpretation dubious and hence it is better 

described as a parameter that is related to the surface stiffness. 

The single component surface was slightly stiffer in the regions of NPPOC-APTES film, due to 

the greater proximity of the substrate and multilayer film presented. The bare substrate 

presented in the film defects (figure 5.3b) was observed in the middle of a PMAA region with 

the highest, sharp peak at 22 µm. The substrate was significantly stiffer than the polymers, as 

expected from the large difference in the properties of the materials. Surprisingly, the PMAA 

brush in the bars of the image was observed to have a stiffer surface than the silane film 

relative to the POEGMEMA brush (figure 5.3c). This was explained by the charged nature of 

the second polymer, which resisted penetration by the AFM probe tip due to the repulsive tip-

surface interaction from the weakly anionic polyelectrolyte brush and negative hydroxyl 

groups on the cantilever. 

 

Figure 5.4: Comparison of a) POEGMEMA-APTES (red dashed line) and b) POEGMEMA-PMAA 

(black line) patterned surfaces imaged by Peak Force QNM cantilever energy dissipation with c) 

line sections from the two surfaces overlaid. 

While the height and elastic fitting parameter were unable to help chemically distinguish the 

polymers on an ideal two polymer surface, the cantilever energy dissipation has potential to 

aid identification (figure 5.4). The dissipation is the inelastic energy loss by the cantilever when 

in contact with a surface. Surfaces with increased malleability and deformability have reduced 

elastic behaviour and hence decreased energy returned after contact. The baseline was 
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defined by the silane film and the defect surface, due to the proximity of the substrate making 

elastic behaviour dominant in these regions, and such allows the polymers to be compared.  

The POEGMEMA brush was observed to have the highest dissipation due to the highly 

penetrative nature of the brush from the neutral charge displayed and the greater 

entanglement from longer ethylene glycol side chain units. Within error, the POEGMEMA 

square patches formed by the photolithography have approximately the same dissipation at 6 

keV. The second brush PMAA presented a separate dissipation level observed in the black 

trace (figure 5.4c) at around 4 keV. The lower observed dissipation was due to the higher 

stiffness of the polymer from the charged nature of chains and repulsive interaction with the 

cantilever, leading to a higher amount of elastic contribution. The use of dissipation based 

imaging may be highly beneficial for multiple polymer identification when the polymers have 

monomers with different imparted properties. 

While AFM techniques may allow inference of chemical property localisation, specific and 

highly surface sensitive SIMS imaging allows spatial identification of the different polymers 

based on the intensity of charged fragments collected. Polymers based on different monomers 

have different fragmentation patterns, even if the structures are heavily related, such as 

POEGMEMA and PMAA which both contain the same methacrylate core with only variation in 

the R group adjacent to the ester.  

SIMS images were collected by imaging the sample using a focussed ion beam. A full mass 

spectrum was collected at each pixel. By selection of a species of interest, the ion intensity at 

every pixel in counts per second could be displayed. The image consists of complete SIMS 

spectra from every pixel in the imaged area (256 × 256 pixels). For the SIMS measurements, a 

Sjostrand grid consisting of bars of width 150 and 75 μm was used as the mask during 

photopatterning.  

 

Figure 5.5: SIMS spectra of unpatterned homopolymer brushes for POEGMEMA (black) and 

PMAA (red). The dominant ion fragments in each spectra are a) C2H3O− (45−), b) C3H7O+ 

(59+), c) Cu63 +(63+), d) C4H5O2
− (85−), e) cationic OEGMEMA fragment (113+), and f) 

multiple MAA monomer fragment (157+). Further information about the individual fragments 

are provided within this chapter. 
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Using SIMS spectra of unpatterned homopolymers, the characteristic ions of the polymers can 

be identified and hence mapped to visualise surface variation (figure 5.5). The POEGMEMA 

and PMAA homo-polymer spectra are presented in Appendix B. POEGMEMA brushes are 

mainly related to the poly(ethylene glycol) side group, with examples of ions at m/z 43 and 59 

in the negative and positive ion spectra respectively. These were identified as CH2CHO− and 

CH3OCH2CH2
+. With POEGMEMA presenting a derivatised PMAA surface, the PMAA spectra 

exhibited fewer distinctive ions that were unique from ions found in the OEGMEMA spectra. 

However, the elimination of a large side chain allowed fragments with greater similarity to the 

monomer unit to be observed. Characteristic peaks for PMAA corresponded to a monomer 

anion at m/z 85 and double acid monomer fragments, such as the cation found at m/z 157. 

  

Figure 5.6: Positive ion SIMS images of a) CH3O+, b) C2H5O+, c) C3H7O+ and b) C4H7O2
+ from 

a two component brush surface of patterned POEGMEMA bars and PMAA background from a 

NPPOC-APTES surface. 

The ethylene glycol repeat units in the side chain of POEGMEMA provide a very characteristic 

set of fragmentation peaks that were not present in PMAA. There are positive (figure 5.6) and 

negative (figure 5.7) ions that display the pattern of POEGMEMA on the SIMS sample. In the 

Sjostrand grid, the bars present the first exposed area which contains the POEGMEMA. The 

alkoxy cationic fragments represented both the chain end of the side group, CH3O+, and 

intermediate ethoxy fragments such as C3H7O+. 
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Figure 5.7: Negative ion SIMS images of a) C2H3O− and b) C4H5O2
− from a two component 

brush surface of patterned POEGMEMA bars and PMAA background from a NPPOC-APTES 

surface. 

 

Figure 5.8: Positive ion SIMS images of a) 63Cu+and b) 65Cu+ from a two component brush 

surface of patterned POEGMEMA bars and PMAA background from a NPPOC-APTES surface. 

 

The PMAA brush during synthesis develops associations with the copper cations of the 

catalyst, as part of its function as a catalytic poison. A small amount of copper resides within 

the brush (≤ 0.13 % was detected by XPS), however the high sensitivity of SIMS allowed these 

cations to be mapped. Both isotopes of copper (m/z 63 and 65) were identified and displayed 

the positioning of PMAA over the background of a Sjostrand grid (figure 5.8), the inverse 

pattern of the POEGMEMA fragments. Similar rearrangements of multiple PMAA monomer 

fragments with a single incorporated copper isotope were also mapped to the position of the 

second brush (figure 5.9). These dimonomer fragments have appropriate structures suggested 

with rearrangement into ring structure for the 219 and 221 m/z fragments for copper isotopes 

of mass 63u and 65u respectively. It is proposed that the 220 and 222 m/z fragments are an 

equivalent structure with the addition of a single hydrogen atom.  
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Figure 5.9: Positive ion SIMS images of ions with m/z ratios of a) 219, b) 220, c) 221 and b) 222 

from a two component brush surface of patterned POEGMEMA bars and PMAA background 

from a NPPOC-APTES surface. The inset displays tentative structure assignments for the 

fragments detected. 

 

Figure 5.10: Positive ion SIMS images of ions with m/z ratios of a) 113.1 and b) 157.1 from a 

two component brush surface of patterned POEGMEMA bars and PMAA background from a 

NPPOC-APTES surface. The inset displays tentative structure assignments for the fragments 

detected. 
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The SIMS image in Figure 5.10 shows directly the inverse pattern for an OEGMEMA 

methacrylate fragment and MAA dimonomer rearrangement. The inverse patterns and highly 

defined regions imply that no unwanted secondary polymerisation occurred from initiator side 

reactions with either the azide or NPPOC functionalities. It is clear that not even the imperfect 

capping reactions prevented the surface from retention of the original chemistry in the inert 

regions and any minor growth would have been obvious from the SIMS spectra, due to the 

high depth sensitivity of approximately 1 nm. The success of the binary pattern on NPPOC-

APTES allowed more complicated structures to be fabricated.  

5.2.2. Two polymer brush patterns from selective secondary polymerisation 

from a polymer brush base using NPPOC chain end functionalisation 

 

Figure 5.11: Intensity change in SIMS spectra of a) 79Br− and b) 81Br− before (black line) and 

after (red dashed line) deprotection-initiation of NPPOC-functionalised POEGMEMA. 

 

Figure 5.12: Intensity change in SIMS spectra of a) NO2
− and b) C2H5O− before (black line) and 

after (red dashed line) deprotection-initiation of NPPOC-functionalised POEGMEMA. 

This section documents the experiments conducted to generate a spatially resolved di-block 

polymer brush following the processes as presented in scheme 5.1. The bromide polymer 

chain ends on the POEGMEMA base brush were modified by azide substitution, reduction and 

hydrolysis to form amine groups. This was followed by an amine-chloroformate reaction to 

place a photocleavable group on each chain end to enable selective secondary polymerisation 

in a similar way to single brush patterns from photosensitive NPPOC-APTES films. The addition 

of the nitrophenyl group and subsequent deprotection-initiation was followed by SIMS for an 
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unpatterned surface. Significant intensity changes were observed for simple ion fragments, 

specifically the significant increase in both anionic bromine isotopes from the reaction with 

BIBB (figure 5.11) and the corresponding reduction in nitrite anion (𝑁𝑂2
−) from the 

deprotection step (figure 5.12a). The lack of measurable change in the alkoxy fragments 

implied that photonic induced damage was limited (figure 5.12b), due to high susceptibility of 

the ethylene glycol side group to degradation. 

The selectively deprotected and initiator functionalised surfaces of NPPOC-modified chain end 

POEGMEMA brushes underwent a second polymerisation to form a PMAA brush on top of the 

base block. This was designed to enable topographical and chemical variation to be generated. 

Tapping mode images of the surface were collected (figure 5.13). The topographical change 

was observed with higher squares of PMAA on the background POEGMEMA, as expected for 

an exposure through a square mesh grid mask and the behaviour of NPPOC as a positive tone 

resist. 

 

Figure 5.13: Tapping mode images from dry samples of PMAA grown from selectively 

deprotected NPPOC-terminated POEGMEMA base block. Images from the a) height channel 

(vertical scale 16 nm) and b) phase channel (vertical scale 70°) are presented; c) Height 

sections of tapping mode images under liquid for aqueous solutions of pH 5 10 mM acetate 

and pH 9 10 mM tris(hydroxymethyl)aminomethane (trisma). 
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The chemical variation was detected in the phase channel of tapping mode AFM (figure 5.13b). 

The phase channel of Bruker instruments is an inverted scale, where the brightest contrast and 

dullest contrast correspond to low phase lag (low adhesion) and high phase lag (high adhesion) 

respectively. Since a repulsive interaction between the cantilever tip and PMAA brush was 

likely to result in low adhesion, the brighter contrast of the PMAA region supports the 

expected outcome. Equally the duller contrast of the POEGMEMA supports the greater 

dissipative interactions from the long side chains and the lack of repulsive electrostatic 

interactions during neutral brush-tip contact. 

The pH responsiveness from the secondary brush growth of PMAA was confirmed by tapping 

mode in liquid (figure 5.13c). There was an increase in the observed height from pH 5 to pH 9 

of ~6 nm. The brush was highly swollen in the basic pH environment and generated an 

extended conformation, due to the repulsive chain-chain interactions and larger effective 

volume per chain from the dissociated carboxylate groups. The increase in effective chain 

volume led to chain stretching away from the surface due to the perceived increase in lateral 

steric interactions. Whereas in an acidic environment below the acidity dissociation constant 

(pKa), the carboxylic acid side groups became protonated and the brush was in an uncharged 

neutral state. This removed the intra- and inter-chain interactions, which led to brush collapse 

and the associated reduction in the observed height.  

 

Figure 5.14: Peak Force QNM imaging in air of PMAA grown from selectively deprotected 

NPPOC-terminated POEGMEMA base block. Images from the a) height channel (vertical scale 

70 nm); b) elastic fitting parameter channel (vertical scale in arbitrary units); c) adhesion 

channel (vertical scale 11 nN); d) height channel cross section are presented. Peak Force QNM 

vertical scales display relative differences, not absolute values. 
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Peak Force QNM imaging mode was applied to the multiple brush system (figure 5.14). Brush 

thickness changes were observed, with PMAA (squares) and POEGMEMA (background) height 

differential measured as 14 ± 2 nm (figure 5.14d). The thickness difference of equivalent 

unpatterned samples from the previous chapter was 40 nm from the ellipsometry 

measurement of initiator functionalised amine growth of PMAA from a POEGMEMA base block 

under similar conditions. From AFM measurement using a sharp probe, the pressure related 

disturbance of the brush surface was likely to lead to penetration leading to an 

underestimation in observed brush thickness; however the impact of the penetration was 

reduced by conducting the experiments in air on dry samples. However, the data suggests that 

the secondary brush growth on patterned samples had a grafting density reduction of 

approximately 50% from the ideal underlying modified POEGMEMA base brush. Since 

additional reactions were undertaken for incorporation of protecting groups and deprotection 

with the living nature variability of the POEGMEMA brush, it was unsurprising that the chains 

were less extended in the second polymerisation. Crucially, the polymer chain density was 

sufficient for the characteristic behavioural response of PMAA to pH change to be observed 

(figure 5.13c). 

The Peak Force QNM mode additionally allowed nanomechanical information about the 

probe-sample interaction to be extracted. From the instrument software, a protocol was 

applied to extract the local elastic modulus from each high approach speed force curve. This 

quantity was labelled as the elastic fitting parameter, which is related to the surface stiffness. 

The change in name of the measured value was due to the quantity being unable to be strictly 

described as an elastic modulus because default parameters were present, Derjaguin-Muller-

Toporov (DMT) mechanics was assumed, and higher approach rate has an unknown effect on 

the higher modes of the cantilever. Despite this, qualitative changes in sample stiffness were 

usable and it was observed that the POEGMEMA regions of brush were stiffer than 

corresponding squares of PMAA (figure 5.14b). This was consistent with the reduction in 

grafting density from non-ideal chain re-activation following selective deprotection. The lower 

grafting density allows the AFM probe tips to penetrate the brush to a greater extent with the 

same loading force, despite the presence of electrostatic repulsion, and hence lower stiffness 

was measured.  

Similarly the strength of the tip-surface adhesive interactions were mapped (figure 5.14c) with 

lower detachment forces observed for PMAA than POEGMEMA. Despite the expected increase 

in penetration and consequently higher contact area for the reduced grafting density polymer, 

PMAA displayed lower adhesion forces. This was explained by the small localised negative 

charge on the AFM tip and the associated repulsive interaction with the negatively charged 

PMAA.  

Peak Force QNM mode was able to identify the topographical and chemical variation across 

the spatially varied dual brush samples fabricated. However, to confirm the fidelity of the 

patterns, SIMS was applied to the surface and similarly compared to homo-polymer spectra 

(figure 5.5, appendix B). The Sjostrand grid patterned samples were prepared with a pattern of 

PMAA bars on a POEGMEMA background. The negative alkoxy fragments identified the 

background POEGMEMA regions (figure 5.15). A larger MAA monomer based fragment 

showed the inverse contrast to identify the PMAA bars (figure 5.16).  
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In the positive spectra, alkoxy fragments from the side chain of POEGMEMA brush were also 

found and mapped to show the same Sjostrand background (figure 5.17). The association of 

both copper isotope cations with the methacrylic acid monomers allowed successfully 

mapping of the PMAA bars from both the individual copper cations (figure 5.18) and multiple 

MAA monomer rearrangement with a single associated copper cation (figure 5.20). The inverse 

nature of the PMAA and POEGMEMA brush pattern was additionally confirmed by SIMS 

imaging of a POEGMEMA monomer fragment (figure 5.19a) and two MAA monomer ring 

rearrangement (figure 5.19b) with the exact complementary fragment intensity maps.  

The brush patterns of PMAA on selectively deprotected NPPOC terminated POEGMEMA 

displayed significant chemical contrast as observed by SIMS imaging, tapping mode phase 

imaging and Peak Force QNM adhesion force mapping. There was potential for secondary 

growth in non-deprotected regions from use of the solution phase initiator step, especially 

with the reactive acyl bromide functionality. However, a substantial amount of chemical 

identity remained, especially in the highly surface sensitive SIMS, which implied that the 

additional growth from inert NPPOC-protected regions was limited. 

 

Figure 5.15: Negative SIMS images of a) CH3O−, b)  C2H3O−, c) C2H3O2
−, and d) C4H5O2

− 

intensities from PMAA grown from selectively deprotected NPPOC-terminated POEGMEMA 

base block.  
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Figure 5.16: Negative SIMS images of C6H11O2
− intensity from PMAA grown from selectively 

deprotected NPPOC-terminated POEGMEMA base block.  

 

Figure 5.17: Positive SIMS images of a) CH3O+ and b)  C2H5O+ intensities from PMAA grown 

from selectively deprotected NPPOC-terminated POEGMEMA base block. 

 

Figure 5.18: Positive SIMS images of a) 63Cu+ and b) 65Cu+ intensities from PMAA grown from 

selectively deprotected NPPOC-terminated POEGMEMA base block. 
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Figure 5.19: Positive SIMS images of intensities for ions with m/z ratios a) 113.1 and b) 157.1 

from PMAA grown from selectively deprotected NPPOC-terminated POEGMEMA base block. 

Tentative structural assignment of fragments displayed in the inset images. 

 

Figure 5.20: Positive SIMS images of intensities for ions with m/z ratios a) 219 and b) 221 from 

PMAA grown from selectively deprotected NPPOC-terminated POEGMEMA base block. 

Tentative structural assignment of fragments displayed in the inset images. 

The height differences observed between AFM modes were a combination of experimental 

polymerisation variation and due to differences in the cantilever applied force. While tapping 

mode provides an improvement in reduction of the lateral force applied to the surface 

compared to contact mode, the magnitude of forces normal to the surface are considerably 

larger and less well optimised. Whereas Peak Force QNM mode has a controlled trigger force 

within error of the feedback loop used, which were triggered at 1 nN in these cases to 

generate contrast from other channels collected. This explains the discrepancy in height along 

with the reduced definition of the second brush in tapping mode, and why Peak Force QNM 

mode is useful for imaging soft, malleable samples. 

The adhesive interaction of the tip with brushes was shown to be higher in POEGMEMA and 

lower in PMAA regions (figure 5.14c). This was due to interactions of tip surface hydroxyl 
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groups with the anionic PMAA brush leading to a repulsive force, whereas the longer side 

chains of POEGMEMA led to a larger effective surface area for adhesive contacts with the tip. 

Surface attached polymer chains with sub-threshold grafting densities lead to retention of a 

random walk conformation and hemispherical mushroom conformations. The grafting density 

of the second polymer was expected to be reduced from the silane grown polymer brush 

because of the large number of surface reactions used on the chain ends, the possibility of 

radical termination processes during the first polymerisation and the high probability of 

incomplete surface reactions. Thus it was considered that the second polymer may enter the 

mushroom regime. Peak Force QNM indicated a reduced elastic fitting parameter for PMAA 

and hence PMAA was shown to be more deformable than the surrounding POEGMEMA 

background. This was consistent with the lower grafting density of a PMAA in the mushroom 

regime, due to the polymer being less able to resist the sharp AFM tip penetration than the 

higher grafting density POEGMEMA regions, irrespective of the polymer-tip interactions. 

The appearance of nitrite in the SIMS spectra of the NPPOC-terminated POEGMEMA 

confirmed successful modification of brush chain ends (figure 5.12a). The observation of 

higher mass PMAA and not higher mass POEGMEMA ions from brush-on-brush samples 

compared to homopolymer SIMS spectra supports the non-negligible secondary growth in 

inert regions, as POEGMEMA would be found lower in the sampling depth and only lower mass 

fragments may penetrate the top layer and be detected. This additional growth was potentially 

due to incomplete azide modification of the polymer chains end or submerged bromine chain 

ends prevented from visiting the surface and hence being detected. Alternatively, the water in 

the polymerisation solvent has the ability to convert radical activated chain ends into hydroxyl 

groups, which can be reacted with solution acyl bromide initiator to generate new chain end 

initiator groups via ester linkages. However, the observable growth of PMAA from patterned 

brush surfaces provides indirect evidence of successful azide reduction to amine functionality 

and azide passivation of polymerisation. 

 5.3. Future work 

Both NPPOC-APTES silane and NPPOC-terminated polymers demonstrated the ability to 

spatially locate chemical variation through monomer choice, which in these cases was 

methacrylic acid. The method of patterning was limited to contact masking photolithography. 

However by use of alternative ways to directing photonic sources (with > 300 nm wavelength 

to prevent polymer degradation) over a sample, more intricate and complicated patterns may 

be produced. These methods include interference lithography and scanning near-field 

photolithography (SNP).  

Interference lithography would be able to produce spatially defined corrals at smaller length 

scales, < 1 µm, than the micron patterning used. Repeated exposure would allow the 

incorporation of different monomers. The method of SNP would be able to further exploit this 

potential with multiple brushes of different chemistries with bespoke pattern generation on 

the nanoscale. The importance of chemical localisation would allow functional variation for 

protein patterning while providing a mechanical interface with reduced modulus compared to 

a solid surface. There are many possible applications for heterogeneous polymer brush 

surfaces that can be fabricated using the reported methodology. However, it is the author’s 



115 
 

opinion that alternative methods may present more facile and cleaner, i.e. fewer side 

reactions, routes to the same surfaces. 

 5.4. Conclusion 

Two polymer brush patterning techniques have been presented for either brush next-to brush 

placement by NPPOC-APTES silane or brush-on-brush structures by formation of NPPOC-

terminated brush. The NPPOC-APTES scheme utilised azide passivation of the first polymer in 

between deprotection-initiation-polymerisation sequences. The two polymer brush-on-brush 

patterning was achieved using chemical azide reduction and lithography of a photocleavable 

protecting group. 

Both methods successfully generated topography and chemical contrast. The two polymers 

were chemically distinguishable in both cases by SIMS and AFM methods, despite the 

likelihood that prevention of polymerisation from alternative sites was incomplete. Tapping 

mode and Peak Force QNM AFM observed height, adhesion and stiffness contrast for the 

patterned two brush surfaces. The cantilever energy dissipation allowed distinct separation 

and identification of side-by-side PMAA and POEGMEMA brushes from a NPPOC-APTES film. 

The low applied force of Peak Force QNM indicated a 14 nm height difference change of PMAA 

on a POEGMEMA base block. Characteristic ions from secondary ion mass spectrometry (SIMS) 

for the two polymers allowed contrast to be generated. POEGMEMA was identified by mass 

ions from oligoethylene glycol side chain fragmentation. PMAA had multiple monomer 

fragments of either organic (m/z of 157) or mixed organic associated copper composition (m/z 

of 219 and 221). Photopatterned brush-on-brush and brush-next to-brush structures allow 

topographic, chemically varied features to be formed by direct patterning techniques. 



116 
 

Chapter 6: Thermal noise methodology for polymer brush 

interface detection and characterisation 

6.1. Introduction 

The aim of this chapter is to investigate the nature of the fluid-polymer interface for solvated 

polymer brushes and characterise the nano-mechanical behaviour of this region. The brush-

fluid interface is a poorly understood region. There is a significant amount of literature that 

reports tapping mode images of brushes showing a compressed interface but without 

adequate explanation482. The image of brushes has been an idealised one, based on the 

theoretical scaling behaviour described by de Gennes and Alexander483. In all likelihood, 

however, the real brush interface is not well defined with height dependent grafting density 

due to continual termination reactions during synthesis.  

Chemical reactions with polymer brush side group functionalities can be located spatially 

within the brush, dependent on the steric and electrostatic reagent interactions with the 

polymer. This has been utilised advantageously by Alswieleh and co-authors484 by solvent 

control. Unintended segregation has occurred in modification reactions, which have been 

analysed by small angle neutron scattering485 and depth resolved XPS390 to locate the 

functionalised regions. A temperature responsive brush was shown to exhibit a solvency 

response with respect to topography and lubrication, which involved friction force microscopy 

(FFM) measurements392. However this study could not investigate interface behaviour due to 

the required friction-load behaviour of FFM experiments leading to significant brush 

penetration at modest applied pressures. 

Polymer brushes have been analysed chemically using a variety of techniques. These include 

methodologies with differing depth penetration, such as XPS, SIMS and FTIR spectroscopy. For 

mechanical characterisation, surface sensitivity is one of the crucial factors. Using an AFM to 

measure the flexural bending of a cantilever, the effect of applied force on a solvent immersed 

brush has been investigated121, 215, 259, 260, 261, 262, 263, 264, 271, 272. The use of continuum based elastic 

contact models for polymer brushes has oversimplified the tip-surface interaction. This 

includes problematic assumptions such as infinite depth, entirely elastic sample and that 

penetrative effects are negligible. Utilisation of colloidal probes to create compression based 

profiles from force spectroscopy has increased the applicability of these models259, 261, 266, 268, 

however the interface and depth resolution becomes difficult to distinguish or is often 

undetected. A brush surface is very different from the surfaces of bulk polymers and hydrogels 

due to the lack of lateral cross-linking, which makes property determination and useful 

application of force spectroscopy difficult. 

The method chosen here for interface analysis was the measurement of thermal noise in the 

output of a sensor. In the present case the output is the measured deflection as a function of 

time and the sensor is an AFM cantilever. The thermal noise exists in fluctuations of collected 

signals over the top of the DC component because of the random Brownian motion from the 

system’s constituent atoms. By suitable numerical analysis from a Fourier transform, the 

resonant behaviour of the cantilever within the frequency bandwidth is recovered, and 
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subsequent changes in the resonances due to environmental perturbations, such as the 

presence of a polymer brush, can be monitored.  

It was decided to measure the AFM thermal noise because of the passive nature of the method 

and the frequency resolved spectra it yields. The methodology is passive in that the energy 

contributed and subsequent amplitude of the fluctuations are only provided by intrinsic 

environmental factors, i.e. temperature of surroundings, and are not actively forced 

oscillations. This means that the fluctuation amplitude and hence the interrogating force are 

minimised. The property measurement is taken from an object that is as close as possible to 

the object’s unperturbed configuration, which is particularly important for soft matter such as 

polymer brushes. By simultaneous collection of thermal noise data with a force-distance 

approach curves, the deflection time series can be segmented and Fourier transformed to give 

individual thermal noise spectra which can be associated with a specific indentation of the 

cantilever. Therefore, depth dependent changes can also be resolved and this methodology 

was termed Brownian fluctuation force spectroscopy. 

The thermal vibrations of the cantilever from Brownian motion are detected using the optical 

lever deflection measured on the photodiode used for routine AFM. In routine AFM, a low pass 

filter is applied to the deflection to remove the fluctuations. Therefore to enable thermal noise 

measurements, the deflection data is extracted before the application of the low pass filter. 

The detected deflection signals have been Fourier transformed into a frequency resolved 

power spectral density, which enables analysis of the cantilever motion and hence the 

frequency dependent behaviour of the response function to be captured246, 353, 363, 364. Previous 

application of coupled force spectroscopy and high data capture rates on instruments with 

exceptional sensitivity and stability allowed the interaction coupled cantilever to sense the 

liquid organisation on the approach to a solid substrate, such as water on mica369 and 

(octamethyl)cyclotetrasiloxane (OMCTS) on graphite370.  

The use of forced oscillations, such as in acoustically and magnetically driven small amplitude 

experiments, has been employed to improve property extraction. The purpose of these 

measurements was to correlate the sample response and application of initial force through 

measured parameters. The application with fluids for density/viscosity326, 327, 328 and rheological 

parameter extraction329, 330, 331 has been successful, due to the non-interacting nature of the tip 

in the fluid environment with the accessibility of amplitude and phase delay upon fluid 

immersion. Incorporation of low amplitude oscillation into force spectroscopy was used to 

probe soft matter rheology313, 314, 315, 316, 317, 319, 333, 486; however the absolute values have 

significant uncertainty, particularly the highly clipped use of the Hertz model Taylor expansion. 

Requirement for a Fourier transformed ratio of the applied force to the indentation is also a 

concern, especially for the indentation to be collected unbiased from the approach and at 

sufficient frequency resolution. The active nature of these oscillations means that the 

investigated volume may be larger than desired, leading to blurring of detected property 

variations370, when high resolution spatial differentiation is desired. 

The non-driven thermal noise collection on approach to soft matter surfaces has been applied 

using piezoelectric stepping. Application to polymer brushes surfaces to track the effects of 

solvency changes376, pH and salt response378, and extract complex frictional coefficients377 have 
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been undertaken. However, limited depth resolution in the z direction and use of only the 

highly overdamped fundamental flexural mode meant that the main interaction studied was 

potentially liquid squeeze damping, not the brush interface. Torsional thermal oscillations of a 

colloidal probe were studied by von Sicard and co-authors upon brush indentation for 

asymmetric and symmetric brush-substrate surfaces, which measured significant shifts in 

resonant frequency and quality factor with increased applied pressure between the 

surfaces382. Similarly, analysis of thermal noise upon retraction of cantilever-attached single 

molecules enables extraction of molecular stiffness and internal dissipation. This has been 

applied to various biological molecules, including myosin rods487, dextran polysaccharides383, 384 

and adhesive proteins386, 387. 

The difficulty with thermal noise is the extraction of the cantilever response function and the 

calculation of cantilever independent surface properties. For liquid environments, the 

response function has been analytically solved to generate relationships between cantilever 

properties and the hydrodynamic function362, 363, 364. For contact resonance in air, only two 

states exist, free and clamped vibrations, which allowed an analytical solution of the loss 

tangent to be used if the effective mass is assumed to be constant and independent of 

frequency320, 321. Even contact resonance becomes a complex problem once a viscous fluid 

medium is introduced, where a complex hydrodynamic function is required to calculate 

interaction based properties322, 324.  

For thermal noise incorporated force spectroscopy, the mode shape of the oscillations is 

constantly changing from initial surface contact to an effectively clamped cantilever. The 

effective mass is not only influenced by frequency, distinct changes are predicted to occur 

upon penetration into a solvent-brush environment with a likely depth dependent nature as 

well. With the highly complicated problem presented and likely intractability of the response 

function, it may not be possible to extract quantitative, cantilever independent properties 

without significant and undesirable assumptions. However, this does not mean that the 

cantilever spectra and resonant behaviour do not contain important information about the tip-

brush interaction by resonant peak fitting with simplified expressions. 

Polymer brushes have a single dominant chemistry present and varied mechanical properties, 

which make them particularly suited to thermal noise analysis. To allow thermal noise 

detection to be optimised, drift issues need to be minimised. Churnside and co-authors 

showed that the use of uncoated silicon cantilevers were significantly more stable than gold 

coated cantilevers, likely due to the reduction of bimetallic thermal effects429. From the 

advances in data capture technology and AFM instrumentation, it may be possible to extract 

more information from the thermal noise spectra than has been in the published literature. 

The optimisation of the thermal noise methodology as applied to brush systems is presented in 

this chapter. This includes a comparison of water immersed brushes of different chemistries, 

which are to different degrees designated protein-resistant, by thermal noise coupled force 

spectroscopy. 

6.2. Results and discussion 

The methodology used during this chapter involves the incorporation of the Brownian 

fluctuation measurements into force spectroscopy. By segmentation and Fourier transform of 



119 
 

the measured deflection time series data, power spectral density as a function of frequency 

were generated for specific regions of the cantilever approach by the AFM piezoelectric-

actuator. 

6.2.1. Sample preparation for Brownian fluctuation force spectroscopy 

When observing samples by AFM, there needs to be a fiduciary region to allow absolute 

thickness measurements for the object of interest. The same applies to polymer brush 

samples. The quality and thickness of an unpatterned film become unknowns, though some of 

this uncertainty can be removed through application of ellipsometry. To generate a reference 

background, a patterning strategy was applied based on degradation of the alkyl bromide 

group of the surface attached initiator film BIB-APTES using laser irradiation to selectively 

prevent polymerisation from the surface regions. This methodology was applied by Alang 

Ahmad and co-authors for protein resistant POEGMEMA brush patterning to fabricate micron 

and nanometre scale features124.  

 

Figure 6.1: Static water contact angle variation for BIB-APTES as a function of exposure to 

irradiation at wavelength of 244 nm. 

The extent of surface modification was estimated by measurement of the static water contact 

angle as a function of laser exposure for BIB-APTES modified silicon (figure 6.1). The contact 

angle was reduced upon degradation, indicative of the surface becoming more hydrophilic. 

The scission of the C-Br bond likely involves radical stabilisation from creation of C-O bonds, 

however the exact products formed are unknown. The contact angle decrease was relatively 

steep with a long plateau, once bromide removal was completed. This profile allows a range of 

exposures to be applied without variation of the surface chemistry. The range of exposures 

capable of complete bromide removal is limited at high exposures by the degradation of silane 

film from cleavage of other bonds, such as the Si-C bond, from prolonged exposure to 244 nm 

laser light. The exposure required for these degradation processes were sufficiently high that 

their impact was not observed in figure 6.1.  

Tapping mode imaging of a BIB-APTES film patterned through a square mesh mask was 

undertaken. The height channel displayed some variation on the sub-nanometre scale with 

some contamination observed, likely due to aggregates formed from solution phase initiator 

reacting with water impurities (figure 6.2a, b). The lack of a distinct pattern was consistent 
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with the chemical degradation process, which is expected to lead to changes in chemical 

composition but very modest changes in adsorbate height. The surface root mean square 

surface roughness was 1 nm, which was higher than ideal due to the presence of the observed 

aggregates. The hydrophilic nature of the surface changed as observed by the phase channel 

(figure 6.2c, d). The exposed squares of degraded initiator had low contrast, which indicates a 

high amount of phase lag (due to scale inversion) from increased adhesive interactions, as 

expected between the more hydrophilic degradation product and silicon tip. The background 

bars of unexposed initiator had brighter contrast for a lack of phase introduced, due to the 

limited interaction between the hydrophilic silicon tip and more hydrophobic initiator film. The 

phase result confirmed that laser irradiation was suitable for surface patterning, while also 

being consistent with the observed contact angle variation. 

 

Figure 6.2: Tapping mode AFM images of a selectively laser exposed BIB-APTES film for 

dehalogenation. The imaged surface is displayed using the a) height (vertical scale 6 nm) and c) 

phase channel (vertical scale 4°) with associated line sections b) and d) respectively. 

A patterned initiator surface was used for poly(methacrylic acid) (PMAA) brush growth using 

atom transfer radical polymerisation. The brush displayed contrast variation in the height, 

phase and amplitude channels (figure 6.3). The height channel allowed the absolute dry 

thickness of the brush to be determined and confirmed a successful polymerisation. The phase 

and amplitude channels observed contrast indicative of the difference between soft and hard 

surfaces. The phase channel observed bright contrast, low phase lag for the brush regions, due 

to the lack of interaction between the negative hydroxyl groups on the probe tip and the 

negatively charged side groups of the PMAA brush. Whereas, the amplitude error signal had a 

brighter contrast, due to the higher roughness of the brush regions from grafting density 

variation and the greater susceptibility of the brush to variation in applied force compared to 

the substrate. 
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Figure 6.3: Tapping mode AFM images of a PMAA brush grown from a BIB-APTES film exposed 

to UV light through a mask. The a) height image (vertical scale 150 nm) together with b) 

associated line section, c) phase image (vertical scale 74°) and d) amplitude error channels 

(vertical scale 660 mV) are displayed.  

For dry brushes, the ellipsometry and tapping mode thicknesses overlapped within a small 

degree of variation (figure 6.4). This suggested that the brushes had collapsed in the drying 

process and hence that significant penetration by a sharp AFM probe was prevented, while 

ellipsometry was able to model the brush as a solid block of polymer without any extraneous 

solvation. This provided confirmation that ellipsometry was a legitimate way of measuring dry 

brush thicknesses, despite the non-specific nature of the models used. 

 

Figure 6.4: Comparison of dry PMAA brush thickness by ellipsometry (black squares) and 

patterned brush samples imaged by tapping mode AFM (red spheres). Polymerisation used 

water/methanol (1:1) solvent. 
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The pH responsive PMAA brushes were immersed in pH adjusted aqueous solutions and were 

imaged by AFM under various conditions (figure 6.5). The cantilever used for both contact 

mode and tapping mode imaging under aqueous solution was the E cantilever on the Bruker 

MLCT chip (nominal spring constant of 0.1 N m-1). The deflection far away from the surface was 

-1 V before contact mode approach, with the smallest possible imaging force applied before 

the tip-surface disengagement issues occurred at a deflection setpoint of ≥ -0.9 V. For contact 

mode in liquid, when the applied force represented by the deflection setpoint was decreased, 

the observed brush thickness increased. This was more severe for extended brushes in pH 9, 

which become stretched away due to inter- and intra-chain electrostatic repulsion. This 

indicates that the sharp tip penetrates the brush with variable severity depending on the 

applied force. In the collapsed conformation at pH 3, the brush presented a lower brush 

thickness and a less solvated surface into which the tip could penetrate. However at both pH 

values, the tapping mode in liquid presented higher thicknesses than the corresponding 

contact mode imaging. This was explained by the penetration in contact mode being a 

continuous form of ploughing through the non-crosslinked brush chains, similar to walking 

through field of tall grass.  

 

Figure 6.5: Comparison of PMAA thicknesses from contact (squares, circles) and tapping (70% 

of free amplitude, lines) mode AFM imaging under liquid for pH 3 (black squares, dashed line) 

and pH 9 (red circles, dashed line), 100 mM ionic strength buffered solutions. Error on the 

tapping mode values (dashed lines) was negligible compared to the contact values (points). 

However, while the continuous ploughing was eliminated in tapping mode, the vertically 

applied forces by the cantilever probe are still significant and likely to involve surface 

penetration until sufficient compression was achieved and an effectively solid interface was 

generated. This is of particular concern for highly solvated brush systems, such as PMAA in 

basic pH conditions, where a significant proportion of the volume is solvent and leading to 

common imaging modes, tapping and contact modes in liquid, not sensing a large proportion 

of some brush systems. Therefore, further investigations into the nature of brush interfaces 

were required. 
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6.2.2. Development of Brownian fluctuation force spectroscopy 

Brownian fluctuation force spectroscopy is the coupled acquisition of thermal noise data and a 

force-distance approach curve. Experimental details are found in section 3.5.7 of chapter 3, 

models utilised are described in 1.3.5 of chapter 1 and an experimental description follows. A 

schematic representation of the process described is shown in Scheme 6.1. 

 

Scheme 6.1: A pictorial representation of the Brownian fluctuation force spectroscopy 

experimental method applied for each force curve. 
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The cantilever is undriven and the fluctuations measured have amplitudes determined by the 

temperature and subsequent Brownian motion from the constituent atoms of the cantilever. 

The collected data during an experiment is the deflection of cantilever as a function of time. By 

data collection occurring at a high rate, the fluctuations of the cantilever are captured in the 

deflection measured by AFM hardware and is subsequently recorded.  

To achieve depth information, the cantilever probe approaches the surface in a controlled 

manner using a force-distance curve (i.e. force spectrum) and the deflection as a function of 

time is captured at the same time. Sections in the time data correspond to a range of positions 

for the cantilever, which are defined by the applied force and the tip-sample separation from 

the force-distance approach curve. This sectioning is achieved by using a moving window that 

takes data snapshots of a certain time period. The window type chosen was a Hanning type, 

which has a sinusoidal shape and places less emphasis on the edges of the data range 

(compared to a rectangular window which has uniform contributions).The reason for using the 

Hanning window is to prevent the discontinuities introduced by the edges of window from 

impacting the subsequent analysis of the time series data when Fourier transformed into 

frequency space. 

In typical AFM instruments, the deflection data has a low pass filter which prevents fluctuation 

information at higher frequencies from being measured in the deflection-time series. To 

ensure no data is lost, the low pass filter needed to be circumvented in data acquisition. This 

was achieved by separate collection of deflection-time series from the force-distance curve. 

Examples included using an acquisition card on the Asylum MFP-3D AFM and an in-built 

routine on the JPK Nanowizard 3 Ultra. The data collected by the JPK Nanowizard 3 Ultra was 

recorded at 800,000 samples per second. 

The deflection data segments, formed by the Hanning windows, underwent a numerical 

Fourier transform which converted the time series into a function of frequency. The frequency 

represents the frequency of the fluctuations generated by Brownian motion. The output 

quantity of the Fourier transform is the power spectral density, which is the cantilever energy 

per unit frequency. The cantilever energy can be simplified to the deflection 𝑢 squared.This is 

due to the work of the cantilever 𝐸 being the product of force 𝐹 and distance travelled 𝑥 (i.e. 

deflection), in addition to force being the product of the cantilever spring constant 𝑘𝑐  and the 

deflection 𝑢. 

𝐸 = ∫ 𝐹𝑑𝑥 =
1

2
𝑘𝑐𝑢2   (28) 

Hence power spectral density was reported in units of 𝑚2 𝐻𝑧−1. The power spectral density of 

the deflection 𝑢 is given by an integral over all time steps for the deflection as a function of 

time and is shown below, where the power spectral density is given by 𝑑〈𝑢2(𝜔)〉) 𝑑𝜔⁄ , the 

time is 𝑡, radial frequency is 𝜔 and the time step is 𝜏: 

𝑑(〈𝑢2(𝜔)〉)
𝑑𝜔

⁄ = ∫ 〈𝑢(𝑡)𝑢∗(𝑡 + 𝜏)〉𝑒−𝑖𝜔𝜏𝑑𝜏 = 2 ∫〈𝑢(𝑡)𝑢∗(𝑡 + 𝜏)〉𝑒−𝑖𝜔𝜏𝑑𝜏

∞

0

∞

−∞

   (29) 
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This provided a power density spectrum as a function of frequency for each Hanning window. 

To increase the clarity of spectra, a rolling average of 10 windows over 50 spectral windows 

was applied. This provided a thermal noise depth profile as each averaged set of windows has 

an associated mean tip-sample separation and applied force from the acquired force-distance 

curve.  

Each spectrum identifies the dominant resonant modes of the cantilever at that position, due 

to the energy of the cantilever being concentrated into the modal shapes that define each 

resonance. Changes in resonant modes with depth are expected due to the contribution of the 

interaction with the surface upon contact. To aid data interpretation, the resonant peaks 

within the spectra were each fitted with a point mass oscillator model. This is simplified to a 

Lorentzian form by the assumption that the fitting is taking place near resonance (𝜔 ≈ 𝜔0) and 

improves the fitting at low Q values in the same way as the fit used by Pirzer and Hugel354. The 

point mass oscillator model replicates the modal oscillation and provides characteristic 

information about the behaviour of the cantilever. The equation used in the fitting for the 

power spectral density 𝑑〈𝑢2(𝜔)〉 𝑑𝜔⁄  is given below with the corresponding Lorentzian fit 

(parameters A, B and C): 

𝑑(〈𝑢2(𝜔)〉)
𝑑𝜔

⁄ =  (
4𝑘𝐵𝑇𝜔0

𝑄𝑚
) (

1

(𝜔0
2 − 𝜔2)2 + (𝜔0

2 𝑄⁄ )2
) =

𝐴

(𝐵 − 𝜔2)2 + 𝐶
     (30) 

The equation above provides the resonant frequency 𝜔0, the quality factor 𝑄,  the full width at 

half maximum (= 𝜔0 𝑄⁄ ), and the maximum amplitude ((𝑑〈𝑢2(𝜔)〉) 𝑑𝜔⁄  at 𝜔 = 𝜔0) for each 

mode.  

When attempting to follow surface properties with changes in the thermal noise spectra, there 

can be spurious results generated by the system used. The main issue is squeeze damping, 

which is where the fluid motion around the fluctuating cantilever becomes hindered by the 

approaching surface. This leads to increased energy dissipation and hence resonant peaks with 

lower sharpness as indicated by Q factors. The onset of this phenomenon occurs when the 

length scale of the approaching surface, i.e. cantilever width, is of the order of the cantilever-

surface separation. 

Initially colloidal probes were chosen for reduction in the pressure exerted for a set applied 

force by the increase in probe’s effective surface area. This was to enable improved sensing of 

the brush-liquid interface. In all cases for colloidal probes, a decrease in resonant frequency 

and quality factor were observed at separations (distance of probe tip from surface contact) 

far away from contact, ≥ 200 nm (figure 6.6 and 6.7). This behaviour was a clear indication of 

squeeze damping behaviour.  

The first experiment was conducted using a data acquisition card and limited to 100 kHz of 

usable frequency bandwidth (figure 6.6). Only the first flexural oscillation of the cantilever was 

observed at 4.5 ± 0.5 kHz and with a Q < 0.5. The second flexural mode was not seen, likely 

due to having an amplitude value below background from being overdamped. Despite the 

broad, low frequency peak, the free to contact spectra showed a transition to an over-damped 

behaviour as expected (figure 6. 6a, b). The second experiment utilised the in-built data 

acquisition functions of the AFM software, which increased the number of available modes to 



126 
 

follow due to a larger frequency range of 400 kHz. The depth variation of the second flexural 

mode and first torsional mode were observed to have the same squeeze damping incurred 

resonant frequency decrease (figure 6.7). This is despite a free vibrational peak with a Q ≥ 2 

and free resonant frequencies significantly greater than the first flexion in the first experiment 

(torsional 114 ± 1 kHz, second flexural 25 ± 1 kHz).  

 

Figure 6.6: Approach at 125 nm s-1 to silicon under aqueous, 100 mM ionic strength, pH 5 

solution of a 10 µm polystyrene colloidal MLCT E cantilever. Fourier transformed deflection 

provided averaged power spectral density plots with positions a) 454 ± 16 nm and b) -2 ± 12 

nm shown. The Lorentzian fit to each averaged spectrum provided c) resonant frequency and 

d) quality factor Q as a function of separation. Experiment conducted on Asylum MFP-3D with 

NI data acquisition card. 

 

Figure 6.7: Approach at 125 nm s-1 to silicon under aqueous, 100 mM ionic strength, pH 9 

solution of a 10 µm polystyrene colloidal MLCT E cantilever. The Lorentzian fit to each 

averaged power density spectrum provided resonant frequency as a function of separation for 

the a) first torsional mode and the b) second flexural mode. Experiment conducted on JPK 

Nanowizard III Ultra. 
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Figure 6.8: Approach at 100 nm s-1 to mica under aqueous pH 8.9 solution of an unmodified 

silicon PPP-CONTSC cantilever. The Lorentzian fit to each averaged power density spectrum 

provided resonant frequency as a function of separation for the a) first torsional mode, b) first, 

c) second and d) third flexural modes. Experiment conducted on JPK Nanowizard III Ultra. 

 

Figure 6.9: Uncalibrated free non-contact thermal noise spectra of a silicon PPP-CONTSC 

cantilever from the a) lateral and b) vertical deflection signals. 

The ability of the system to undergo squeeze damping was therefore not determined simply by 

the cantilever stiffness, resonant frequency or Q of the cantilever, or by the AFM system used. 

There was the possibility that the presence of the colloidal and its additional hydrodynamic 

drag were a contributing factor, especially by the colloid mass being centred at the end of the 

cantilever. Additionally, enhanced probe stability by reaching thermal equilibrium was of great 

importance. It was shown by Churnside and co-authors429 that a silicon probe had a significant 

improvement over reflective coating based probes for force stability below pN level. This 
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stability was to allow longer and slower force curves to be taken and provide more detailed 

differences about the interface to be observed from enhanced z resolution. 

The approach of an unmodified silicon cantilever, PPP-CONTSC, to a mica surface was followed 

(figure 6.8). The mica surface was chosen instead of the silicon surface, due to the greater 

consistency achievable for the calibration approach curves from the simple ability to cleave 

top layers away from the sample to provide a clean, flat substrate. A wide variety of 

resonances were observed with no observable changes occurring until much closer to the 

substrate, < 50 nm, such that the squeeze damping was no longer a dominant effect. 

 

Scheme 6.2: Pictorial representation of the flexural fluctuation of a) a free and e) a surface 

clamped cantilever. The red circle denotes the fixed points with minimal amplitude. The b) 

first, c) second, d) third flexural free modes and f) first, g) second, h) third flexural clamped 

modes are displayed as amplitude (in arbitrary units) as a function of the fractional position 

along the cantilever, x/L, where L is the length of cantilever. The interpretation of clamped in 

this context is that these modes exist when there are two fixed ends of the cantilever. These 

are only a basic representation of the modal shapes, adapted from Rabe and co-authors488. 
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The non-contact power density spectra from lateral and vertical deflection were collected 

(figure 6.9). While cross-talk between the lateral and vertical deflection signals on the 

photodiode were observed, the non-perpendicular nature of the two signals was not severe 

and the cross-talk resonances were of limited amplitude. In the 400 kHz bandwidth spectra, 

first and second torsional modes in the lateral signal were observed, while first, second and 

third resonant flexural modes were found in the vertical deflection spectra (figure 6.9). 

Amplitude plots as function of position on the cantilever for the free and clamped flexural 

modes are displayed in Scheme 6.2 and show the modal shapes present during thermal 

fluctuations. During the approach of the cantilever towards a surface, the free flexural modal 

shapes were present (scheme 6.2b, c, d). Once the cantilever fluctuations were sufficiently 

restricted, the modal shapes transitioned into the flexural clamped modes shown (scheme 

6.2f, g, h). The torsional modes have similar modal shapes, except that the response is the 

degree of angular twist along the length of the cantilever, instead of the amplitude away from 

the static position of the cantilever. 

 

Figure 6.10: Approach at 10 nm s-1 to mica under aqueous pH 8.9 solution of an unmodified 

silicon PPP-CONTSC cantilever. The Lorentzian fit to each averaged power density spectrum 

provided resonant frequency as a function of separation for the a) first torsional mode, b) first, 

c) second and d) third flexural modes. Experiment conducted on JPK Nanowizard III Ultra. 

The ability to reduce the approach rate one order of magnitude was demonstrated in Figure 

6.10. No undesirable changes in resonant frequency were observed before the cantilever was 

close to contact, < 10 nm. This was shown for a variety of modes, with the corresponding 

range of resonant frequencies. Attempts at reduction in approach rate to 1 nm s-1 were 

unsuccessful, with significant drift occurring relative to the z piezoelectric-actuator movement 
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preventing well-controlled approach curves from being collected, while the data storage also 

became an issue for force curves greater than 120 s leading to associated software crashes and 

consequent data loss. 

The use of sharp PPP-CONTSC cantilevers removed the added benefits of a colloidal probe for 

surface sensing from pressure reduction. However, the sharp probe allowed data collection 

without dominance by fluid squeeze damping and additionally allowed depth variation of the 

resonances for softer surfaces, such as polymer brushes, to be undertaken. 

6.2.3. Solid interface sensing of mica by Brownian fluctuation force 

spectroscopy 

When a cantilever interacts with a solid wall, the resonant behaviour of the cantilever is 

changed substantially from the non-contact spectra. A selection of the lateral deflection 

thermal noise spectra on approach towards mica have been displayed as log-log (figure 6.11) 

and normal axes plots (figure 6.12). Similarly a selection of the vertical deflection thermal 

spectra have been shown (figure 6.13 and 6.14 respectively). The mica was immersed in water 

at pH 8.9. 

 

Figure 6.11: Lateral deflection power spectral density as a function of separation and applied 

force (inset values) for PPP-CONTSC approach towards mica at 100 nm s-1, immersed in 

aqueous pH 8.9 solution. A log-log scale was used to increase the clarity for the greatest 

number of resonances. 
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Figure 6.12: Lateral deflection power spectral density as a function of separation and applied 

force (inset values) for PPP-CONTSC approach towards mica at 100 nm s-1, immersed in 

aqueous pH 8.9 solution. A standard scale was used to increase the clarity for a single 

resonance, the first torsional mode. 

 

Figure 6.13: Vertical deflection power spectral density as a function of separation and applied 

force (inset values) for PPP-CONTSC approach towards mica at 100 nm s-1, immersed in 

aqueous pH 8.9 solution. A log-log scale was used to increase the clarity for the greatest 

number of resonances. 
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Figure 6.14: Vertical deflection power spectral density as a function of separation and applied 

force (inset values) for PPP-CONTSC approach towards mica at 100 nm s-1, immersed in 

aqueous pH 8.9 solution. A standard scale was used to increase the clarity for a single 

resonance, the first flexural mode. 

The force-distance curve acquired during the measurement of Brownian fluctuation force 

spectroscopy is displayed in Figure 6.15. The point of contact is defined as the zero separation 

between the tip and the sample and is found by an algorithmic search for the minimum 

increase in cantilever deflection above the background noise. In the case of mica, there is an 

obvious contact due to the jump-to-contact from attractive van der Waals’ forces (figure 6.15, 

inset). However, in some cases no jump-to-contact is observed and the exact position of zero 

separation becomes less well defined, which is common in soft matter systems. 

 

Figure 6.15: Force-distance curve for the approach of a sharp PPP-CONTSC cantilever towards 

mica at 100 nm s-1, immersed in aqueous pH 8.9 solution. Inset is the zoomed in contact region 

of the same force-distance approach curve. 
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One of the main features upon contact with a solid substrate is the appearance of stationary 

waves that have nodal points at both ends of the cantilever. This is effectively the indication 

that the cantilever has become clamped at both ends, as opposed to non-contact modes 

where one end must have finite free amplitude. In the flexural modes, the loss of the finite 

amplitude leads to the energy within the cantilever being re-proportioned into clamped 

modes, which have modal shapes that satisfy the new boundary conditions. 

The second feature is the variation in amplitude of the resonant peaks as contact is 

approached. Modal amplitudes are reduced in response to conditions making the modal shape 

less likely, or in extreme cases, forbidden from the introduction of new boundary conditions. 

Additionally, the resonances are able to shift within a spectrum from the effect of tip-surface 

interactions. This is due to the resonant frequency 𝑓0 being directly proportional to the square 

root of the sum of the cantilever 𝑘𝑐𝑎𝑛𝑡  and tip-surface interaction 𝑘𝑠𝑢𝑟𝑓  spring constants and 

inversely proportional to the effective mass 𝑚∗ of the cantilever-solvent-substrate system269, 

332, 383, 489, 490, 491. The two stiffness values are additive for fluctuations due to the sample and 

cantilever being considered to be connected through the tip, while the sample and cantilever 

are also linked through instrument383. Hence the cantilever and sample act as parallel springs 

with additive stiffness values. 

𝜔0 = 2𝜋𝑓0 = (
𝑘

𝑚∗
)

1
2

  

= (
𝑘𝑠𝑢𝑟𝑓 + 𝑘𝑐𝑎𝑛𝑡

𝑚∗
)

1
2

   (31) 

For the first flexion seen in Figure 6.14 at approximately 4 kHz, the disappearance of the non-

contact mode was re-proportioned into the non-forbidden clamped mode at around 25 kHz. 

The second flexural mode, at around 30 kHz, became broadened and formed a double peaked 

resonance before the clamped mode at the lower frequency became dominant as the non-

contact mode disappeared (figure 6.13). The clamped and free modes co-exist for a range of 

forces, likely due to the cantilever being insufficiently clamped at the formerly free end to 

remove the non-contact resonance entirely. This is then overcome by the steadily increased 

applied force from the approach of the force-distance curve such that only the clamped mode 

remains. The third flexural mode at around 100 kHz was observed to reduce in intensity, while 

another peak appeared at close to 200 kHz. Whether this is the formation of a higher order 

clamped mode or a shift to higher frequency of the third flexion from the introduction of 

contact stiffness has not been determined. 

In the lateral thermal noise, the torsional first and second resonances were both apparent and 

significantly above the noise floor to allow the resonance model to fit the peaks (figure 6.11). 

The first torsion steadily decreased in amplitude, while the increasing amplitude of the first 

clamped mode was concurrently observed at higher frequency (figure 6.12). The clamped form 

of the torsional modes occurred at higher frequencies than the non-contact mode, due to the 

modal shape been unrelated to wavelength along the length of the cantilever. The change 

associated with clamped mode was the position alteration of the rotational pivot point with 

the torsion becoming centred on the tip-surface contact, instead of the non-contact position at 

the centre of the cantilever beam cross-section (figure 6.16). Similarly, the second torsion was 

observed to have increased in frequency by a similar amount which suggested that this 

mechanism of torsional clamping may be uniform over the entire spectra. However larger 
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bandwidth experiments need to be undertaken for confirmation which was not possible on 

this instrument. 

 

Figure 6.16: Pictorial representation of the torsional fluctuations of a) a free and b) a surface 

clamped cantilever. The red circle denotes the pivot point axis for rotational freedom at the 

end of the cantilever not attached to the AFM head.  

The low frequency noise is known as perturbation noise, which is present in the form of 

external vibrations from the mechanical surrounding (e.g. enclosure, buildings) and electronic 

control systems (e.g. feedback loop electronics, piezoelectric-actuator, and controller). This 

type of noise is also known as 1/f noise, due to the reciprocal nature as function of frequency. 

Hence, in log-log plots the 1/f noise becomes a linear dependence with a negative gradient in 

the low frequency region. The 1/f noise was not visible in the non-contact approach in either 

deflection signal, however becomes steadily more apparent as the distance from contact 

decreases in the region of 0 to 10 kHz in the lateral thermal noise and 0 to 1 kHz in the vertical 

thermal noise spectra. The increased noise was likely due to the fluid coupling the cantilever 

with the sample, such that any noise sources affecting the sample stage were transmitted to 

the cantilever and hence allowed observation.  

A large quantity of data was available and therefore to aid the analysis of the surface approach 

fitted quantities to the visible resonances were plotted. In Figure 6.17, the resonant frequency 

is shown as a function of tip-surface separation for the 100 nm s-1 approach. The approach rate 

provides a z distance spacing of 10 nm between rolling averaged spectra. The z distance is the 

combination of separation and deflection, such that once contact is made and the cantilever 

begins to bend, the separation resolution is improved. To provide more detail, 10 nm s-1 

approach was used which provided a z resolution of 1 nm. The comparison of the resonant 

frequency for the first clamped mode displayed a much more accurate onset to contact for the 

slower approach rate, with the appearance of the clamped mode at 15 nm separation 

compared to 0.8 nm separation (figure 6.17f, 6.18f). Therefore for all further analyses, the 

fitted spectral values were from 10 nm s-1 approach ramps.  
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Figure 6.17: Approach of a sharp PPP-CONTSC cantilever towards mica at 100 nm s-1, immersed 

in aqueous pH 8.9 solution. Combined plot of the force-distance curve and the resonant 

frequency from the thermal noise fit as a function of tip-sample separation for the a) first 

torsional, b) second torsional, c) first flexural, d) second flexural, e) third flexural, and f) first 

clamped flexural modes. 

The torsional oscillation of the cantilever in the first (figure 6.18a) and second (figure 6.18b) 

modes displayed a significant shift in resonant frequency to a higher value (Δ𝑓 of 35 and 22 

kHz respectively). This could only be described by the modes becoming clamped on the solid 

substrate. The first torsion underwent an increase in peak width (figure 6.20a) concurrent with 

a decreased peak amplitude (figure 6.21a), which were indicative that energy dissipation 

increased as expected from a cantilever being unable to go through its full range of motion. 

The degree of variability upon contact observed for the resonant properties and in approach 

curve of the torsional modes, in addition to all flexional modes, was due to the drift present in 

the z piezoelectric-actuator and the measured deflection once hard contact was achieved 

(figure 6.18, inset). 
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Figure 6.18: Approach of a sharp PPP-CONTSC cantilever towards mica at 10 nm s-1, immersed 

in aqueous pH 8.9 solution. Combined plot of the force-distance curve and the resonant 

frequency from the thermal noise fit as a function of tip-sample separation for the a) first 

torsional, b) second torsional, c) first flexural, d) second flexural, e) third flexural, and f) first 

clamped flexural modes. Insets are a zoomed in portion of the contact region. 

The Q value decreased initially from the broadened resonance before increasing to a larger 

value, due to the onset of the clamped mode (figure 6.19a). The second torsional resonance 

behaved in the opposite way where the peak amplitude increased on contact (figure 6.21b) 

with consequently increased peak sharpness Q (figure 6.19b). This was likely due to the 

redistribution of energy within cantilever and the second clamped torsion had increased 

fractional contribution, due to the suppressed amplitude of the first clamped torsion. 
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Figure 6.19: Approach of a sharp PPP-CONTSC cantilever towards mica at 10 nm s-1, immersed 

in aqueous pH 8.9 solution. Combined plot of the force-distance curve and the quality factor Q 

from the thermal noise fit as a function of tip-sample separation for the a) first torsional, b) 

second torsional, c) first flexural, d) second flexural, e) third flexural, and f) first clamped 

flexural modes. Inset is a zoomed in portion of the contact region. 

The flexural modes had a reduction in resonant frequency (figure 6.18c, d) and peak amplitude 

(figure 6.19c, d) with increased dissipation (figure 6.20c, d) and lower quality factor (6.19c, d) 

associated with over-damping. The vertical deflection was hindered by the contact and 

associated increase in effective mass from that contact which led to the over-damping of the 

flexural resonances. The third flexural mode (figure 6.18-6.20e) did not follow the same trend 

as the higher effective stiffness of this mode meant that contact had little impact before over-

damped oscillation and a switch to a clamped mode was achieved within the spectral range of 

fitting algorithm. 
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Figure 6.20: Approach of a sharp PPP-CONTSC cantilever towards mica at 10 nm s-1, immersed 

in aqueous pH 8.9 solution. Combined plot of the force-distance curve and the full width half 

maximum (FWHM) from the thermal noise fit as a function of tip-sample separation for the a) 

first torsional, b) second torsional, c) first flexural, d) second flexural, e) third flexural, and f) 

first clamped flexural modes. Inset is a zoomed in portion of the contact region. 

The first clamped mode was followed independently of the non-contact second mode. From 

the initial appearance at very close to contact, the amplitude was relatively constant (figure 

6.21f) with an increasing resonant frequency from the increased pressure applied at the tip-

surface contact (figure 6.18f). As the hard surface allowed the elastic behaviour of the Hookian 

cantilever to be maintained, the Q was relatively unaffected after contact and the increase in 

applied pressure (figure 6.19f, 6.20f). 
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Figure 6.21: Approach of a sharp PPP-CONTSC cantilever towards mica at 10 nm s-1, immersed 

in aqueous pH 8.9 solution. Combined plot of the force-distance curve and the maximum peak 

amplitude from the thermal noise fit as a function of tip-sample separation for the a) first 

torsional, b) second torsional, c) first flexural, d) second flexural, e) third flexural, and f) first 

clamped flexural modes. Inset is a zoomed in portion of the contact region. 

The approach and increase in applied pressure at a solid interface allowed the behaviour of 

flexural and torsional non-contact cantilevers modes to be followed, and additionally observe 

the appearance of clamped oscillator modes from the creation of a second nodal boundary 

condition and tip stiction for flexural and torsional oscillations respectively. The changes 

observed here provide a distinct counter-point to the soft polymer brush interfaces that are of 

interest. 
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For hard substrates such as mica, large scale changes in the resonant behaviour occurred at a 

tip-substrate separation of zero. The loss of peak amplitude, overdamped oscillations of the 

first two flexural modes, and formation of clamped modes in both torsion and flexion all 

happened immediately upon reaching the contact point. The clamped modes were highly 

stable with an amplitude plateau, due to the good clamping points available on a hard surface. 

6.2.4. Brownian fluctuation force spectroscopy of polymer brush-aqueous 

solution interfaces 

Three contrasting protein resistant polymer brushes were investigated using thermal noise 

spectra after immersion in a phosphate buffered saline solution, with a physiological pH of 7.3. 

The difference between the polymers is the chemistry of the individual monomer units. These 

include poly(methacrylic acid) (PMAA), poly(2-hydroxyethyl methacrylate) (PHEMA) and 

poly(oligoethylene glycol methyl ether methacrylate) (POEGMEMA). PMAA displays resistance 

to only negatively charged proteins, whereas PHEMA and POEGMEMA display a generic ability 

to resist protein adsorption. The synthesis of polymer brushes are as described in chapter 3 

and the same as previously utilised in chapters 4 and 5. 

6.2.4.1. Poly(methacrylic acid) brush 

 

Figure 6.22: Tapping mode AFM image in air of PMAA brush grown from a dehalogenated 

initiator pattern. Image displayed is the a) height channel (vertical scale 293 nm) with b) cross-

section.  

The pH responsive brush was imaged initially in air (figure 6.22), with heights observed that 

were close to the solvated brush value in pH 9 deionised water (~200 nm, effective ionic 

strength 0.02 mM). This was expected from brushes synthesised from sodium methacrylate 

monomer and the post-rinse nitrogen drying led to a frozen snap shot of the fully extended, 

entirely deprotonated PMAA brush. Once immersed in phosphate buffered saline at pH 7.3, 

the height decreased to around 50 nm (figure 6.23). The decreased thickness of brush was due 

to the lessened charge on the polymer from a reduced pH relative to the circa neutral pKa of 

the brush405 and also the inter- and intra-chain charge screening from the introduction of a 

solution with an ionic strength of 0.17 M. 
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Figure 6.23: Quantitative imaging AFM mode applied to PMAA brush, grown from a 

dehalogenated initiator pattern, imaged under phosphate buffered saline (pH 7.3). The a) 

height image (vertical scale 101 nm) was extracted from contact point fitting to individual 

force curves of the image, with b) appropriate cross-section. 

The thermal noise spectral fitting of the modal resonant frequency (figure 6.24), quality factor 

(figure 6.25), full width at half maximum (figure 6.26) and maximum amplitude of the resonant 

peak (figure 6.27) have been collated. The first torsion underwent an increase in resonant 

frequency with an onset at a substantial distance after contact at -47 nm and 12 nN of applied 

force (figure 6.24a). Despite an increased resonant frequency, the quality factor decreased due 

to an increased peak width (figure 6.25a, 6.26a). The amplitude of the first torsion only 

decreased at the coincident onset of the shift in resonant frequency (figure 6.27a). The second 

observed torsional mode had a similar high force onset to resonant frequency shift, though 

without any noticeable change in Q, width or amplitude (6.24b to 6.27b). 

The first flexural mode underwent a gradual stiffening transition from contact with an 

increased resonant frequency without becoming immediately overdamped (figure 6.24c). The 

peak only disappeared after a separation of -49 nm, which was due to the presence of the 

substrate at a high degree of brush penetration, circa 98%. Steady changes were observed 

from an onset at contact, including decreased resonant amplitude (figure 6.27c). The stiffer 

second flexural mode had consequentially later onsets for resonant frequency changes (figure 

6.24d, e). The substantial dissipation changes from decreased Q and increased peak width 

were not observable until much closer to the trigger force (figure 6.25-6.26, d and e). The first 

clamped flexion was only found after 49.0 nm of indentation was reached, however the 

amplitude of the clamped mode did not plateau in the same way as with the solid substrate 

contact. This is due to the large amount of penetration needed to achieve a clamp point and 

the remaining force applied was insufficient to produce a stable clamping mode with constant 

amplitude. Hence, if the trigger force was raised, the same plateau in the maximum amplitude 

of the first clamped flexion would have been observed. 
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Figure 6.24: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush at 10 nm s-1 in 

pH 7.3 phosphate buffered saline. Combined plot of the force-distance curve and the resonant 

frequency from the thermal noise fit as a function of tip-sample separation for the a) first 

torsional, b) second torsional, c) first flexural, d) second flexural, e) third flexural, and f) first 

clamped flexural modes. Inset is a zoomed in portion of the contact region. 

 

The PMAA brush behaved as a fluid, for example a viscous dominated viscoelastic material, for 

the majority of the indentation, with limited Q and FWHM variation until forces greater than 

10 nN (tip radius circa 10 nm) were applied for all modes except the first flexion. This was due 

to the high susceptibility of the first flexion to applied pressure, however only moderate 

changes were observed in this mode and disappearance only occurred after a large amount of 

penetration, approximately equivalent to brush thickness observed in QI mode (figure 6.23). 



143 
 

 

Figure 6.25: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush at 10 nm s-1 in 

pH 7.3 phosphate buffered saline. Combined plot of the force-distance curve and the quality 

factor from the thermal noise fit as a function of tip-sample separation for the a) first torsional, 

b) second torsional, c) first flexural, d) second flexural, e) third flexural, and f) first clamped 

flexural modes. Inset is a zoomed in portion of the contact region. 

The formation of a solid interface occurred at -49 nm, once the clamped mode appeared and 

observable changes in other modes were noted. This was likely due to the indentation of the 

polymer brush until the applied pressure was large enough to allow the cantilever tip to 

interact sufficiently with the substrate to form a clamping point. PMAA had only a limited 

ability to form an interface in phosphate buffered saline and had dissipation properties more 

similar to the solution, due to the high solubility of PMAA under appropriate aqueous 

conditions and the solvated nature of the polymer chains. The confined region of fluid and 

polymer, known as the brush, has an increased stiffness as a function of penetration depth as 

indicated by the resonant frequency of the first flexural mode. This may be due to compressed 
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fluid beneath the tip or alternatively the increased proportion of grafted polymer at larger 

penetrations due to radical termination during the brush synthesis. 

 

 

Figure 6.26: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush at 10 nm s-1 in 

pH 7.3 phosphate buffered saline. Combined plot of the force-distance curve and the full width 

half maximum from the thermal noise fit as a function of tip-sample separation for the a) first 

torsional, b) second torsional, c) first flexural, d) second flexural, e) third flexural, and f) first 

clamped flexural modes. Inset is a zoomed in portion of the contact region. 
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Figure 6.27: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush at 10 nm s-1 in 

pH 7.3 phosphate buffered saline. Combined plot of the force-distance curve and the 

maximum amplitude from the thermal noise fit as a function of tip-sample separation for the 

a) first torsional, b) second torsional, c) first flexural, d) second flexural, e) third flexural, and f) 

first clamped flexural modes. Inset is a zoomed in portion of the contact region. 
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 6.2.4.2. Poly(2-hydroxyethyl methacrylate) brush  

 

Figure 6.28: PHEMA polymerisation kinetics followed by ellipsometry of dry samples. 

 

Figure 6.29: Tapping mode AFM image in air of a PHEMA brush grown from a dehalogenated 

initiator pattern. Image displayed is the a) height channel (vertical scale 165 nm) with b) cross-

section. 

 

Figure 6.30: Quantitative imaging AFM mode applied to a PHEMA brush, grown from a 

dehalogenated initiator pattern, imaged under phosphate buffered saline (pH 7.3). The a) 

height image (vertical scale 205 nm) was extracted from contact point fitting to individual 

force curves of the image, with b) appropriate cross-section. 
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Poly(2-hydroxyethyl methacrylate) (PHEMA) brushes were fabricated by surface initiated 

ATRP, with a linear thickness-time kinetics at short polymerisation times and comparable 

maximum brush thicknesses once the chain end termination was completed at longer times to 

other polymerisations conducted (figure 6.28). By conducting the polymerisation from a 

photo-patterned initiator film, PHEMA surfaces with fiduciary areas were generated. The dry 

brush thickness and PBS solvated thickness were approximately 80 nm from tapping mode 

(figure 6.29) and 100 nm from QI mode (figure 6.30) respectively. The thickness increase upon 

fluid immersion indicated that the PHEMA underwent solution uptake and has aqueous 

solubility, however the degree of swelling was low compared to PMAA. This was supported by 

the static water contact angle for PHEMA which was measured to be 45 ± 2 °.  

 

Figure 6.31: Approach of a sharp PPP-CONTSC cantilever towards a PHEMA brush at 10 nm s-1 

in pH 7.3 phosphate buffered saline. Combined plot of the force-distance curve and the 

resonant frequency from the thermal noise fit as a function of tip-sample separation for the a) 

first torsional, b) second torsional, c) first flexural, d) second flexural, e) third flexural, and f) 

first clamped flexural modes. Inset is a zoomed in portion of the contact region. 



148 
 

The first and second torsional modes underwent resonant peak changes from the onset of 

contact. These include a steady increase in resonant frequency (figure 6.31a, b) and decrease 

in first modal amplitude (figure 6.34a). The total change in magnitude for the resonant 

frequency was around 25 kHz for the first torsion and 20 kHz for the second torsional mode. 

These values are comparable with changes upon contact with mica (figure 6.18), which 

suggests that the indentation of PHEMA led to clamped mode torsion. During the resonant 

frequency decrease, there was a simultaneous decrease in the quality factor and increase in 

peak width. The behaviour observed suggested that the lateral motion of the cantilever tip 

becomes hindered by low solvated polymer and hence led to dissipative interactions, despite 

the non cross-linking nature present within the brush. 

 

Figure 6.32: Approach of a sharp PPP-CONTSC cantilever towards a PHEMA brush at 10 nm s-1 

in pH 7.3 phosphate buffered saline. Combined plot of the force-distance curve and the quality 

factor from the thermal noise fit as a function of tip-sample separation for the a) first torsional, 

b) second torsional, c) first flexural, d) second flexural, e) third flexural, and f) first clamped 

flexural modes. Inset is a zoomed in portion of the contact region. 



149 
 

The first flexural mode underwent an overdamped transition at contact, with a sharp decrease 

in both resonant frequency (figure 6.31c) and peak amplitude (figure 6.34c) before 

disappearance at -0.98 nm. Similarly the second flexion was overdamped (figure 6.31d, 6.34d), 

despite an initial small increase in resonant frequency at contact, with eventual disappearance 

at 19.7 nm of indentation and 2.4 nN of applied force. The first two non-contact flexural 

modes had increased dissipation with depth as indicated by sharply increased peak width 

(figure 6.33c, d) in addition to a decreased Q value (figure 6.32c, d). The third flexural mode 

had sufficient stiffness to prevent being overdamped, however the peak disappeared at -55.4 

nm before the trigger point was reached (-61.5 nm, 20.6 nN). An increase in resonant 

frequency of 35 kHz with formation of a clamped mode was observed (figure 6.31e), however 

the amplitude decreased below the noise floor (figure 6.34e).  

 

Figure 6.33: Approach of a sharp PPP-CONTSC cantilever towards a PHEMA brush at 10 nm s-1 

in pH 7.3 phosphate buffered saline. Combined plot of the force-distance curve and the full 

width half maximum from the thermal noise fit as a function of tip-sample separation for the 

a) first torsional, b) second torsional, c) first flexural, d) second flexural, e) third flexural, and f) 

first clamped flexural modes. Inset is a zoomed in portion of the contact region. 



150 
 

 

Figure 6.34: Approach of a sharp PPP-CONTSC cantilever towards a PHEMA brush at 10 nm s-1 

in pH 7.3 phosphate buffered saline. Combined plot of the force-distance curve and the 

maximum amplitude from the thermal noise fit as a function of tip-sample separation for the 

a) first torsional, b) second torsional, c) first flexural, d) second flexural, e) third flexural, and f) 

first clamped flexural modes. Inset is a zoomed in portion of the contact region. 

The flexural clamped mode became evident at 16.7 nm of indentation with 1.8 nN of applied 

force. The maximum amplitude of the stationary wave mode exhibited a plateau, which 

showed that a stable clamping point was formed (figure 6.34f). Unusual changes observed in 

the first clamped flexural mode, such as an initial decrease in the resonant frequency (figure 

6.31f) and Q (figure 6.32f), were an artefact from the fitting process, due to the close proximity 

and overlap in frequency space of the first clamped and second non-contact flexural modes 

with the subsequent depth dependent suppression of the second flexural mode. 

The power density spectral changes observed from PHEMA were closer to mica than PMAA, 

with the existence of clamped modes, overdamped oscillation observed and the onset of 
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changes at contact. The changes in resonant frequency at contact and immediately 

overdamped first flexural mode led to the identification of an interface at contact, 0 nm of 

indentation. The different intensity loss positions of the non-contact flexural modes 

(indentations of 0, 19.7 and 55.4 nm) and separate appearance of the first clamped flexion 

(indentation 16.7 nm) suggest that the PHEMA behaves as a graded solid, despite the uptake 

of fluid. This was supported by the dissipation inferred by the full width half maximum that 

increased for the various different modes as the penetration increased. There was also a 

positional slip in the force curve at a separation of -46 nm (figure 6.34f). This was indicative of 

a sudden release of a chain entanglement from within the brush. 

The clamped modes were identified in the torsional spectra and higher order modes of the 

flexural vibrations. The existence of clamped modes is only possible once the tip is trapped 

sufficiently to prevent amplitudes at the previously free end. While the flexural modes were 

expected to be hindered by depth penetration, the torsional modes were expected to remain 

free due to the non-crosslinked nature of the polymer and the hydrated chains from water-

hydroxyl hydrogen bonding. These harmonics did not retain their modal shape and became 

clamped which was indicative of a proportion of the polymer being a solid block that was 

relatively water immiscible 

 6.2.4.3. Poly(oligoethylene glycol methyl ether methacrylate) brush 

Protein resistant POEGMEMA brushes were grown from patterned initiator to generate 

regions of polymer and of bare substrate. The dry brushes had thicknesses of approximately 

120 nm (figure 6.35), while solvated in phosphate buffered saline led to brush swelling to 180 

nm (figure 6.36). The POEGMEMA was considerably less stiff than the PMAA and PHEMA 

brushes as a trigger force of 20.6 nN led to a considerably larger penetration of 132.2 nm into 

the polymer. This was also borne out in the power density spectral analysis. 

 

Figure 6.35: Tapping mode AFM image in air of POEGMEMA brush grown from a 

dehalogenated initiator pattern. Image displayed is the a) height channel (vertical scale 233 

nm) with b) cross-section. 
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Figure 6.36: Quantitative imaging AFM mode applied to POEGMEMA brush, grown from a 

dehalogenated initiator pattern, imaged under phosphate buffered saline (pH 7.3). The a) 

height image (vertical scale 363 nm) was extracted from contact point fitting to individual 

force curves of the image, with b) appropriate cross-section. 

 

The first torsional mode was observed to undergo only a small increase in resonant frequency 

of about 1 kHz with a similarly negligible peak amplitude decrease at an onset penetration of 

108 nm (figure 6.37a, 6.40a). The second torsional mode was completely unaffected by the 

presence of polymer (figure 6.37b - 6.40b). The first flexural mode had the maximum peak 

amplitude gradually decreased from contact, however the decrease was more pronounced at -

50 nm separation (figure 6.40c). The resonance frequency only increased by about 5 kHz with 

an onset indentation of around 25 nm, while Q and width changes were small and only 

apparent at penetrations deeper than 90 nm (figure 6.37c – 6.39c). The higher flexural modes 

only exhibited resonance changes at around 80 nm and 100 nm of penetration respectively 

(figure 6.37d - 6.40d, 6.37e); however the quality factor, peak width and amplitude of the third 

flexion were totally unaffected by the brush (figure 6.38e – 6.40e). Perhaps most importantly, 

no clamped modes were identified, especially the first flexural clamped mode which were 

present in the depth profiling of the other two brushes (figure 6.37f-6.40f). 

The lack of any clamped modes suggested that the brushes retain fluid-like properties, with 

the absence of any solidified regions needed to produce the necessary amplitude or angular 

restriction for the cantilever to be clamped. The onset of changes at 100 nm of penetration 

was most likely the impact of the substrate relative to tip penetration and the consequential 

compression of any chains located beneath of the tip. For the existence of clamped modes to 

be observed, higher trigger forces need to be applied for sufficient interaction with the 

substrate to be generated. 
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Figure 6.37: Approach of a sharp PPP-CONTSC cantilever towards a POEGMEMA brush at 10 

nm s-1 in pH 7.3 phosphate buffered saline. Combined plot of the force-distance curve and the 

resonant frequency from the thermal noise fit as a function of tip-sample separation for the a) 

first torsional, b) second torsional, c) first flexural, d) second flexural, e) third flexural, and f) 

first clamped flexural modes. 
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Figure 6.38: Approach of a sharp PPP-CONTSC cantilever towards a POEGMEMA brush at 10 

nm s-1 in pH 7.3 phosphate buffered saline. Combined plot of the force-distance curve and the 

quality factor from the thermal noise fit as a function of tip-sample separation for the a) first 

torsional, b) second torsional, c) first flexural, d) second flexural, e) third flexural, and f) first 

clamped flexural modes. 
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Figure 6.39: Approach of a sharp PPP-CONTSC cantilever towards a POEGMEMA brush at 10 

nm s-1 in pH 7.3 phosphate buffered saline. Combined plot of the force-distance curve and the 

full width half maxmimum from the thermal noise fit as a function of tip-sample separation for 

the a) first torsional, b) second torsional, c) first flexural, d) second flexural, e) third flexural, 

and f) first clamped flexural modes. 
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Figure 6.40: Approach of a sharp PPP-CONTSC cantilever towards a POEGMEMA brush at 10 

nm s-1 in pH 7.3 phosphate buffered saline. Combined plot of the force-distance curve and the 

maximum amplitude from the thermal noise fit as a function of tip-sample separation for the 

a) first torsional, b) second torsional, c) first flexural, d) second flexural, e) third flexural, and f) 

first clamped flexural modes. 

Additionally the lack of any significant changes in the torsional modes for a significant degree 

of the total penetration and application of forces up to 20.6 nN implies that the POEGMEMA 

brush had some lubrication properties when immersed in aqueous liquids. The reality is that 

the brush displayed a penetration profile more akin to a fluid than a solid surface. Further, the 

POEGMEMA lacked a distinct interface as not even the most susceptible resonance, the 

fundamental flexion, disappeared during the indentation. This surface provided an excellent 

counter-point to the PHEMA brush, where stiction and dissipation dominated. 
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6.3. Future work 

To enable more detailed interface analysis, a suitable colloidal cantilever system that is 

resistant to squeeze damping needs to be found. The compressive nature of a colloidal force 

curve compared to the penetrative nature of the sharp probe used in this chapter would 

provide contrasting information about the polymer surfaces investigated. A good starting point 

would be the use of a tip-less cantilever to allow colloids with diameters smaller than the tip 

height to be used with the concurrent reduction in attached mass.  

Additionally, the investigation of polymer brush samples with chemistry variation 

perpendicular to substrate would be of great interest, as to whether depth variation in 

mechanical properties could be resolved by Brownian fluctuation force spectroscopy. 

Examples could include di-block polymer brushes of two distinctly different monomers or 

samples where the z-position and density of cross-linked brushes within the samples was 

varied484. Further to this, more complex samples that vary spatially in the z direction, such as 

brushes with a supported lipid bilayer, would allow the depth variation of the frequency space 

for the surface to be probed. 

The analysis detailed herein was rudimentary and limited by the expertise of the author. The 

analysis presented was data intensive and significantly limited by the time available to extract 

the sample information. By full utilisation of programming skills, much more detailed analysis 

and batch incorporation would enable greater automation and faster analysis of differing 

samples, with the possibility for more detailed and complex analysis to follow. 

Ideally quantitative analysis would be undertaken to calculate the complex response function 

for interpretation of changes in conservative and dissipative tip-surface interactions. 

Numerous attempts were made to calculate the complex response function, however no 

further understanding was extracted from the quantities due to the dominance of the 

cantilever. Therefore, the ability to fully extract the behaviour of the cantilever is required to 

generate cantilever-independent mechanical and rheological properties, such as frequency 

resolved shear moduli, loss tangent and viscosity, to elucidate further the behaviour of 

samples analysed by Brownian fluctuation force spectroscopy. The complexity of the transfer 

function between the random thermal force and the measured deflection with the lack of any 

phase lag information makes this task a significant challenge. Further experiments and 

simulations need to be utilised to develop theory that can be applied to such highly frequency 

dependent systems in complex, changing environments. 

With sufficient advancement of theory and extraction of sample specific properties, the 

application of Brownian fluctuation force spectroscopy to brush surfaces with different 

characteristic properties and under different environmental conditions is of great interest to 

gain a greater understanding of the mechanical properties of these polymers. 
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6.4. Conclusions 

By using high data capture rates in conjunction with force spectroscopy, this enabled thermal 

noise and the consequent power density spectra to be studied as function of depth and 

penetration. The development of Brownian fluctuation force spectroscopy hinged on a suitable 

cantilever system being found which allowed the surface detail to be probed, while not being 

drowned out by squeeze damping effects. This allowed the methodology to be applied to a 

variety of surfaces. Indentation of a hard substrate such as mica led to appearance of many 

clamped modes, where the position of maximum amplitude was at zero penetration. Polymer 

brushes had significantly less immediate dissipation; however a large variety of changes were 

observed in the vibrational modes of the cantilever used as well as between different brush 

surfaces.  

By changing the chemistry of the brush surface, the position of a distinct interface and 

whether the brush had fluid or solid based properties was identified. Hydroxyl functionalised 

PHEMA brushes had the sharpest interface and behaved most like a solid, whereas ethoxy side 

chain POEGMEMA brushes had no clamped mode indicative of a fluid like structure without 

any distinct interfaces. The PMAA in neutral pH phosphate buffered saline was observed to 

have an intermediate behaviour between POEGMEMA and PHEMA with clamped modes only 

observed after significant penetration, once a significant proportion of the brush was indented 

and the substrate effects became dominant. This difference between PMAA and POEGMEMA 

is the applied force required to generate substrate clamped resonant modes. 

The interface of a polymer brush defies a fixed definition due to the variability presented by 

different brush chemistries and immersion in different solvents. In this chapter, different brush 

chemistries presented both an effectively confined fluid with no distinct interfaces at the 

forces applied and a solid interface observed directly upon contact between the tip and brush 

surface which was more reminiscent of solid substrate behaviour, such as mica, when 

immersed under the same solution. Therefore when polymer brushes are being selected for 

surface applications, one factor that needs to be considered is the interface behaviour and 

how the interface varies under the specific environmental conditions chosen. This topic is 

considered further in Chapter 7. 
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Chapter 7: Thermal noise investigation of the 

polyelectrolyte brush response when exposed to external 

environmental stimuli  

 7.1. Introduction 

The responsive nature of polyelectrolyte brushes has led to their application in nanoscale 

actuation, such as proton gradient sensing168, surface pressure detection152 and fluidic 

gating153. The effect of external stimuli is not limited to polymer brushes, different stiffness 

values and unfolding pathways with respect to membrane orientation have been detected for 

the protein bacteriorhodopsin13, 15, 16, 492. It is not only basic and acid polyelectrolytes that 

exhibit such behaviour; zwitterionic polymers display dual pH transitions and salt 

concentration dependencies, such as the transitions observed in poly(cysteine methacrylate)154 

and an intrinsically disordered polypeptide493. 

The majority of studies have been performed on weakly acidic polyelectrolyte brushes such as 

poly(acrylic acid) and poly(methacrylic acid), due to the variety of responsive behaviour 

presented. The pH swelling transition of poly(methacrylic acid) brushes has been directly 

visualised by AFM, which has shown that the brush transition occurs on a timescale of one to 

six seconds494. This is comparatively slow molecularly, however this is still very fast on 

macroscopic time scales especially for typical AFM image collection which requires at least 6 

minutes. The highly reversible nature of polyelectrolyte brush transitions has been 

demonstrated, which included the use of a pH based chemical oscillatory system404, 406. 

The acid dissociation constants (pKa) of surface tethered brushes of poly(acrylic acid) and 

poly(methacrylic acid) have been measured by a variety of methods (figure 7.1a). Values of 6.5 

to 7.5 and 6.25 to 7.0 have been recorded for poly(acrylic acid) and poly(methacrylic acid) 

brushes respectively93, 192, 405, 406. These values are approximately one to two pH units higher 

than for the equivalent solution phase monomer and polymer. Dong and co-authors were able 

to show that the bulk brush pKa gave the higher value, whereas brush surface pKa had lower 

values closer to a solution polymer and were comparatively easily dissociated in relation to 

carboxylic acid groups near the substrate surface405. This suggested that strong ion 

confinement occurs in brush systems, which increases with depth and that some side groups 

closer to the substrate remain uncharged due to the entropic penalty incurred by dissociation 

and consequent induced stretching transition to an extended conformation405, 406.  

It has been shown that both the acidity constant (pKa) and pH response can be fine-tuned 

through post-polymerisation modification of the carboxylic acid groups192. This led to small 

increase in pKa and a broader pH transition when modified with 4-aminophenol and O-

phosophorylethanolamine respectively. 

Weak polyelectrolyte brushes are greatly impacted by the ionic strength of a solution into 

which they are immersed. Strong and dissociated weak polyelectrolyte brushes behave in the 

same way, where there is a steady decrease in brush height with ionic strength due to charge 

screening effects alone97, 495. Complications exist for weak polyelectrolyte brushes protonated 

by immersion in acidic solvent (figure 7.1b). The initial regime is the osmotic regime where 
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increased salt leads to proton-cation exchange, which produces an increased brush swelling as 

solvated cations are electrostatically confined within the brush87, 95, 97, 496. This osmotic 

behaviour is not present for fully dissociated brushes, as cationic confinement has already 

been attained. Once a critical threshold in salt concentration is passed, brush height starts to 

decrease due to additional salt effectively screening the interactions between the charges on 

the brush side groups and leads to the salted brush regime97, which has also been observed for 

basic solvent immersed brushes497. Eventually the brush becomes neutral and collapsed, with 

no further dependence on salt concentration. 

 

Figure 7.1: Weak polyelectrolyte brush response with pH (left) and ionic strength at acidic pH 

(right). The left image was adapted from Santonicola and co-authors406 and the right image 

was adapted from Wu and co-authors97. 

Scaling relationships have been developed, initially by De Genne and Alexander, by highly 

simplifying the grafted polymer system and allowed analytical equations to be extracted, 

which while not exact, typically recovered the important behavioural characteristics of 

polymer brushes483. Theoretical relationships have been derived for weak polyelectrolyte 

brushes as functions of dissociation, salt concentration and grafting density498. The theoretical 

relationships have been tested experimentally with the variation of ionic strength87, 93, 97, 496, 499 

and grafting density93, 95, 97 of the polyelectrolyte brushes. These experiments have had various 

outcomes: partial agreement with theory95, 97; disagreement with theory87; and in addition 

completely different brush regimes than expected have been observed93. Therefore, very little 

overall agreement exists in this field, hence experiments with pH responsive brushes are still 

required to fully understand the changes occurring. 

The electrolyte species used for adjustment of the ionic strength can also impact brush 

behaviour. Monovalent group 1 cation variation have a negligible impact on brush swelling496, 

while the use of higher valency and more unusual cations can lead to significant differences. 

The use of divalent alkaline earth cations and Ag(I) led to the switch of polyelectrolyte brushes 

from hydrophilic to hydrophobic, hence the generation of irreversibly collapsed conformations 

which were due to cationic binding and subsequent polymer dehydration499. 

Alternatively, other metal ions such as Al(III) and Cu(II) were found to act as bridging centres 

for several carboxylate side groups499. The strong complexation led to fast collapse of the 

brushes, even at low ionic strengths. Hence, behaviours such as these mean that to maintain 
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reliable and reversible pH response for use with biological molecules, which need salt to 

prevent denaturation, careful selection of ionic strength and the ions utilised is required.  

While the brush conformation has been widely studied as a function of response parameter, 

fewer studies have investigated the interface and the mechanical behaviour of these surfaces. 

The interface and depth resolved properties of a polyelectrolyte brush will vary with the brush-

solvent interaction, which in turn is influenced by the responsive state as defined by the pH 

and salt parameter space. Gelbert and co-authors studied thermal noise as a function of 

approach distance for poly(methacrylic acid) brush with a colloidal probe378. This chapter will 

extend the work of Gelbert and co-authors378 by making use of improved z resolution and 

increased frequency bandwidth, while using a sharp probe to allow depth dependent 

information to be extracted and interface sensing. A range of data is presented for 

poly(methacrylic acid) brushes for various different salt concentrations and pH values, using 

simplified fitting routines based on the Lorentzian fit of the simple harmonic oscillator as 

presented in chapter 6. 

 7.2. Results and discussion 

The surfaces used in the studies presented were generated using dehalogenation by laser 

irradiation of the initiator film before surface initiated atom transfer radical polymerisation. 

The fabricated samples have areas of non-functional initiator which allowed them to be used 

as fiduciary regions for the locations that underwent good polymerisation and subsequent 

analysis of the polymer brush. The method was covered in chapter 6, along with development 

of the experimental methodology applied herein.  

Poly(methacrylic acid) (PMAA) is one of a large number of polymers that has functional 

response to environmental conditions, which allows for application in a wide range of 

circumstances. One such application was the use of a modified PMAA brush as a responsive 

polymeric support of a lipid bilayer, as shown by de Groot and co-authors227. Similar 

experiments were attempted in collaboration with Dr Peng Bao and Professor Steve Evans at 

the University of Leeds. The bilayer formation was a combination of lipid vesicle deposition 

and subsequent induced rupture to form a continuous bilayer on the surface, which is known 

as vesicle fusion. Preliminary experiments with short brushes of thickness 6.9 ± 0.2 nm have 

shown successful coverage indicated by sufficient fluorescence intensity from incorporated 

fluorescently tagged lipid molecules; however the diffusion coefficient measured from the 

small fraction of labelled lipids using fluorescence recovery was highly variable depending on 

the immersed solution. The diffusion coefficient was determined by the movement of 

fluorescent lipids within the bilayer into a region which has been controllably photobleached 

and hence the appropriate fitting to the recovery of fluorescent intensity within this region 

allowed determination of parameters related to two-dimensional molecular diffusion. 

In figure 7.2, the photobleached recovery of lipids on PMAA was conducted under a variety of 

conditions. The two conditions where the sample was under deionised water (figure 7.2a, e, c, 

g) had a slower recovery and reduced homogeneity in comparison to when the sample was 

immersed in high salt solution (figure 7.2b, f, d, h). Since the lipid films are situated at the 

interface between the fluid surroundings and the polymer brush, the changes in the interface 

becomes an important factor in the behaviour of the lipid bilayer. It was this experiment that 
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led to preliminary investigations into the change in the interface of a responsive polymer brush 

with variation in external environmental stimuli. PMAA brushes are susceptible to 

conformational changes upon variation in ionic strength and pH of the solution in which it is 

immersed. Both sets of conditions were varied and consequent depth variation of the brushes 

was probed by Brownian fluctuation force spectroscopy to characterise the alteration of the 

properties and changes in the interfaces present within the polymer. 

 

Figure 7.2: Fluorescence images before (a-d) and after a set amount of time (e-h) from a 

photobleaching event. The determined diffusion constant for the fluorescent lipids of each set 

of conditions is beneath respective images. The lipid vesicles were a combination of a 3:1 ratio 

of neutral POPC and positively charged DOTAP lipids with 0.25% Texas Red DHPE, which was 

reconstituted in phosphate buffered saline solution at pH 7.4. The vesicle incubation was at 

50°C for 1 hour. The sample underwent various steps including an initial deionised water rinse 

and immersion (a, e), 90 minute immersion in aqueous 2 M NaCl, 400 mM glucose at 50°C (b, 

f), rinse and immersion in deionised water (c, g), and overnight deionised water immersion 

followed by rinse and immersion in aqueous 2 M NaCl, 400 mM glucose (d, h). The respectively 

delay times were 610 s (a, e), 240 s (b, f), 310 s (c, g) and 1230 s (d, h). The aperture size was 

150 µm with 28 µm bleach spot. The experiment and analysis was conducted by Dr Peng Bao 

(University of Leeds). Sample provided by the author. 

7.2.1. Brownian fluctuation force spectroscopy of PMAA as a function of ionic 

strength  

The sample used for the data capture that will be shown in this section was imaged by tapping 

mode in air (figure 7.3) and quantitative imaging (QI) mode when immersed under aqueous 

solutions (figure 7.4). The height channel displayed a significant thickness increase relative to 

the substrate, concurrent with a well defined polymer brush. The amplitude error and phase 

contrast were reduced by the amount of polymer synthesised, as seen in other samples, 

however the malleable nature of the brush led to greater variation within the brush regions 

than the hard substrate. This allowed visible demarcation of the brush regions, despite the lack 

of contrast. 



163 
 

 

Figure 7.3: Tapping mode AFM images of the PMAA brush grown for the ionic strength 

experiment. The imaged surface is displayed using the a) height (vertical scale 350 nm) with b) 

associated line section, c) amplitude error (vertical scale 189 mV) and d) phase channels 

(vertical scale 1.3 °). 

 

Figure 7.4: Quantitative imaging mode applied to a PMAA brush imaged under a) 1 mM 

(vertical scale 300 nm) and b) 1000 mM (vertical scale 300 nm) ionic strength aqueous solution 

at pH 8.2 ± 0.1 with 5 % buffer concentration. The height map was extracted from the contact 

point fitting to individual force curves of the image. Appropriate c) cross-sections of the height 

images are displayed for the samples immersed in 1 mM (black) and 1000 mM (red) solutions. 
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Quantitative imaging (QI) is a mode where a force-distance spectrum is taken at every pixel of 

an image and contributes relevant quantities to generate property and topography maps. To 

achieve the resolution used in this mode, acquisition and subsequent approach/retract 

velocities are higher than in regular force spectroscopy which separates QI mode from force-

volume mapping. QI mode was used in liquid to image the PMAA brush, with the results for 1 

mM and 1000 mM ionic strength solutions shown in Figure 7.4. The extracted quantity was 

contact offset height, which was the difference in absolute piezoelectric-actuator position 

from an arbitrary reference pixel, which was chosen to be on the substrate for these samples. 

The relatively small difference in height between tapping mode and the 1 mM immersed 

values indicated that the brush was once again frozen in an extended sodium counter-ion form 

upon nitrogen drying.  

The height differential between the 1 mM and 1000 mM immersed surfaces was marked, from 

circa 225 nm to 75 nm. The differential was due to the increased electrostatic shielding 

provided between the intra- and inter-chain charges that are present at pH 8.2 ± 0.1, which is 

above the acidity dissociation constant of the PMAA brush. Hence, lessened repulsion between 

the chains led to reduction in brush thickness as random walk configurations became 

increasingly favourable. 

The decreased thickness of the patterned brush was followed over a range of ionic strengths 

(figure 7.5). The same overall decrease was observed due to the electrostatic screening of 

repulsive interactions that contribute to the chain stretching into an extended conformation. 

Initially there was a plateau in brush height with ionic strength, which was consistent with the 

chain being salted and extended from the initial polymerisation. If the additional added salt 

was at concentrations less than or equal to the internal brush salt concentration, then minimal 

screening and height change were observed as expected. The sudden onset of height decrease 

was measured at 30 mM ionic strength with gradual decrease in height beginning at 80 mM 

(figure 7.5). Once the ionic strength significantly exceeded the point of effective screening, the 

brush response effectively becomes neutral and the brush height was expected to plateau. As 

no such secondary plateau was observed, the point of the neutral response was likely to exist 

at ionic strengths greater than 1000 mM. 

 

Figure 7.5: PMAA brush thickness measured by the contact point offset from QI mode as a 

function of the solution ionic strength at a fixed pH of 8.2 ± 0.1. 
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 Figure 7.6: Representative force-distance curves recorded during the Brownian fluctuation 

force spectroscopy for the approach of a PPP-CONTSC cantilever towards a PMAA brush at 10 

nm s-1 when immersed in different ionic strength solutions with a fixed pH of 8.2 ± 0.1. 

 

Figure 7.7: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

aqueous pH 9.0, 0.02 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the 

force-distance curve and the resonant frequency from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. Insets are a zoomed in portion of 

the contact region. 
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Force spectroscopy curves that were recorded concurrently with the Brownian fluctuation 

force spectroscopy data are displayed in Figure 7.6. At low salt concentrations, an abrupt 

change in gradient was observed in the force-distance plot as the tip approaches and makes 

contact with the surface (figure 7.6a). This is consistent with the expected mechanical 

properties of an osmotically swollen brush. At 7.5 mM upto 10 mM, there is a region of 

gradually increasing force that is observed upto circa -70 nm separation, where the gradient of 

the force-distance curve increases steeply. At 20 mM and 30 mM, no sharp gradient increase 

and hence no sharp interfaces were observed. 

 

 Figure 7.8: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 9.0, 0.02 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the full width half maximum from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. Inset is a zoomed in portion of 

the contact region. 
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The amount of penetration steadily increased from 5 mM to 30 mM ionic strength, as the 

osmotic pressure of the brush reduced from the salt concentration equilibration process 

(figure 7.6a). However from 30 mM to 1000 mM, the penetration of the cantilever decreased, 

likely due to the reduced brush thickness being an impediment to further penetration, instead 

of a change in the surface (figure 7.6b). The position of contact (0 nm separation) was defined 

by the minimum significant increase in the deflection of cantilever above the background 

noise, as found by an algorithmic search.  

 

Figure 7.9: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in pH 

9.0, 0.02 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-distance 

curve and the maximum amplitude from the thermal noise fit as a function of tip-sample 

separation for the a) first torsional, b) second torsional, c) first flexural, d) second flexural, e) 

third flexural, and f) first clamped flexural modes. Inset is a zoomed in portion of the contact 

region. 
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Due to the quantity of data from the thermal noise analysis being substantial, only a 

proportion is shown here to display the significant changes within the resonant behaviour of 

the cantilever modes as a function of depth and ionic strength. The entire data collection from 

the sample series displayed is presented in Appendix C. For 0.02 mM ionic strength water (pH 

altered deionised water), the onset of resonant frequency change in the torsional modes and 

third flexural mode, overdamping of first and second flexural mode, and appearance of the 

first clamped flexural mode all occurred close to contact at a separation of 0 nm (figure 7.7). 

The decrease in resonant frequency for the first flexural mode before disappearance, by 40%, 

demonstrated a significant increase in the effective mass from the tip-surface interaction 

(figure 7.7c).  

The resonant frequency shift of approximately 35 and 20 kHz for the first and second torsional 

resonances (figure 7.7a, b) were in line with shifts observed on mica in chapter 6. Along with 

stable discrete shifts in full width half maxima (figure 7.8a, b), this confirmed the formation of 

torsional clamped modes. A similar observation was made for the third flexural mode, with a 

circa 60 kHz increase in resonant frequency (figure 7.7e) and 4 kHz increase in full width half 

maximum (figure 7.8e). The clamped modes were different for the second flexural mode 

where the peaks were spectrally resolved at early onset and enabled identification with 

separate fits. The first flexural clamped mode reached a plateau in resonant frequency, full 

width half maximum and maximum amplitude with appearance onset at contact (figure 7.7f to 

7.9f). This was indicative of a stable clamp point being achieved, such that fixed amplitudes 

were maintained with increasing pressure. 

For the PMAA brush immersed in 0.02 mM ionic strength water, spectral changes were 

observed immediately at tip-brush contact and this suggested that a sharp interface was 

present with the brush behaving as a solid. This is despite the brush being in its most 

extended, cationic state (figure 7.5). The explanation of this behaviour at very low ionic 

strengths was that the counter-ion concentration would be significantly higher within the 

brush than the surrounding fluid, the conformation would be maintained by a high osmotic 

pressure from the brush due to the ionic strength differential and isolate the internal brush 

environment. Hence the interface detected by the cantilever exists from the detection of the 

osmotic pressure with the consequent overdamping and clamping transitions of the cantilever 

modes from an effectively solid interface. 

The force-distance curve at the ionic strength of 1 mM was observed to have less penetration 

than the 0.02 mM ionic strength water approach, with the trigger force being reached at -5.3 

nm instead of -11.7 nm. This difference in indentation was not expected, however local 

variation in the brush morphology was expected due to small differences in the termination 

reactions of the chains from the fast kinetics of the methacrylic acid SI-ATRP. While the 

difference in maximum penetration was observed, the spectral features were unchanged from 

the very low ionic strength water measurements. This suggested that the 1 mM ionic strength 

did not exceed the internal brush salt concentration to bring about brush conformational 

changes from the associated equilibration process. 

The cantilever approach curve when immersed in 2.5 mM aqueous solution developed a 

transition from a lower to higher stiffness at approximately 7.5 nN. This was also observed by 
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discrete changes within the resonant behaviour. The first and second torsional modes, as well 

as the third flexural mode, underwent a change akin to a point of inflexion in the resonant 

frequency data (figure 7.10) and minima in the quality factor (figure 7.11). The implication is 

that the top portion of the brush has undergone salt equilibration with the associated osmotic 

pressure reduction. However, these changes must have been relatively minor since both the 

first and second flexural modes still underwent overdamping at -0.2 and -0.4 nm respectively, 

with the clamped mode generation at -0.6 nm. 

 

Figure 7.10: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.2 ± 0.1, 2.5mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the resonant frequency from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. Insets are a zoomed in portion of 

the contact region. 

 



170 
 

The increase in the resonant frequency of the torsional modes and third flexural mode were 

greater than 30 kHz and consistent with the formation of clamped modes. The first flexural 

clamped mode was stable, as the magnitude was consistent and reached a plateau after onset 

(figure 7.12). Despite the fixed amplitude, the resonant frequency of this clamped mode was 

not constant (figure 7.10f). This is due to the complex environment within the brush as a 

function of depth and led to two separate stiffening transitions as indicated by the plateau and 

secondary increase in resonant frequency (figure 7.10f). 

 

Figure 7.11: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.2 ± 0.1, 2.5 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the quality factor from the thermal noise fit as a function of tip-sample 

separation for the a) first torsional, b) second torsional, c) first flexural, d) second flexural, e) 

third flexural, and f) first clamped flexural modes. Insets are a zoomed in portion of the contact 

region. 
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Figure 7.12: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.2 ± 0.1, 2.5 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the maximum amplitude from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. Inset is a zoomed in portion of 

the contact region. 

The transition, first observed at 2.5 mM, continues at ionic strength of 5 mM within the 

resonances and the force-distance curve with a point of inflexion at a separation of circa -16 

nm, instead of -9 nm, relative to the initial brush-tip contact. This is indicative of an increased 

equilibrated region, as additional salt was included in the immersion solution. The first flexural 

mode was overdamped at -10.4 nm of separation, as a weak interaction was detected in the 

region between contact and the disappearance (figure 7.13c). Similarly the second flexural 

mode disappeared at -12.0 nm (figure 7.13d), however an increase in resonant frequency was 

detected before the resonance became overdamped, unlike at ionic strengths below 5 mM. 

The first flexural clamped mode appeared at -11.0 nm, hence the free and clamped flexion co-

existed for 1 nm of penetration (figure 7.13f). 
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Figure 7.13: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.2 ± 0.1, 5 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the resonant frequency from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. Insets are a zoomed in portion of 

the contact region. 

Additionally, the torsional and third flexural resonances transitioned into clamped modes at a 

higher applied force than the lower order flexural modes without significant increase in 

penetration, -15 nm (figure 7.13). This suggests that the brush has fluid like properties from 

contact until the flexural modes begin to be affected by the polymer, then solid polymer 

behaviour becomes dominant with sufficient resistance to penetration to enable clamped 

modes. 
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Figure 7.14: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.2 ± 0.1, 10 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the resonant frequency from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. Insets are a zoomed in portion of 

the contact region. 

Both ionic strengths of 7.5 mM and 10 mM immersed spectral profiles were very similar, with 

no kink being observed in the force curve or resonances. The torsional resonances did not 

detect the brush penetration until large amount of indentation had taken place, at a 

separation of circa -70 nm (figure 7.14a, b). The first flexion was overdamped at -67.9 nm and -

68.4 nm for 7.5 and 10 mM respectively. However the first flexural mode at 7.5 mM was the 

first ionic strength to observe resonant frequency increase within this mode and consequent 

stiffening of the surface (figure 7.14c). The other free flexural resonances were relatively 

unaffected by the brush indentation either until the transition to higher resonant frequencies 

was made possible at large penetrations (figure 7.14d, e) by penetration resistance, which was 

consistent with the appearance of the first flexural clamped mode at -68.8 nm. The lack of 



174 
 

significant variation during the penetration of the brush implied the extension of the fluid-like 

polymer region to a larger proportion of the brush. 

 

Figure 7.15: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.2 ± 0.1, 20 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the resonant frequency from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. Insets are a zoomed in portion of 

the contact region. 

The sample immersed in 20 mM ionic strength solution had a further increased penetration 

before the onset of the first clamped flexural mode at -100 nm (figure 7.15). Similarly the 

appearance of large increases in the resonant frequency for the torsional modes in addition to 

the second and third flexural modes occurred at circa -100 nm penetration. These modes had 

shifts in resonant frequency below 1 kHz for the majority of the indentation in region from tip-

brush contact until the cantilever became clamped. The first flexion underwent a gradual 

increase in resonant frequency until being overdamped at -98.6 nm.  
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Figure 7.16: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.2 ± 0.1, 30 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the resonant frequency from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. 

The clamping transitions and highly increased resonant frequencies were no longer observed 

at an ionic strength of 30 mM for the trigger force applied, which included the first flexural 

clamped mode (figure 7.16f). Only small changes were observed with the maximum 

differential in resonant frequency being 5 kHz for the first flexural mode (figure 7.16c). The 

onset for increase in resonant frequency of the first flexion was at contact, whereas the higher 

flexural modes only detected stiffness changes at around 50 nm of indentation (figure 7.16d, 

e). The torsional modes barely sensed any change during the penetration, indicative of the lack 

of resistance to lateral motion (figure 7.16a, b). Higher applied trigger forces may be required 

to observe the clamped modes that were no longer visible.  
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Figure 7.17: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.2 ± 0.1, 100 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the resonant frequency from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. 

The approach resonant behaviour was unaltered by further ionic strength increase to 50, 80 

and 100 mM. Figures 7.16 and 7.17 display the minimal variation observed through the 30 to 

100 mM range. Small changes in the maximum indentation were expected, however the 

differences were not significant (< 5 nm) and expected to be localised changes in force curve 

positioning. The maximum penetration at 300 mM ionic strength was 58.7 nm, with minimal 

resonant differences except for first flexural mode being overdamped at 0.2 nm and 0.7 nN 

before the maximum applied force was reached (figure 7.18). The amount of penetration was 

reduced due to the impact of the substrate and the minimised brush height from the counter-

ion shielding. The impact of the substrate led to the overdamping of the first flexion and was 

not due to the behaviour of the polymer, which retained fluid-like indentation properties up to 

a very high proportion of the total indentation. 
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Figure 7.18: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.2 ± 0.1, 300 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the resonant frequency from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. 

Once at 500 mM ionic strength, the only change was the observed overdamping within the 

first flexural mode where the resonant frequency reaches a maximum before decreasing and 

finally disappearance at -62.4 nm of separation (figure 7.19). The marginal increase in 

penetration was thought to be due to localised variation of the brush surface, due to the 

difference being less than 5 nm which is within roughness measurements for brush surfaces. 

The inversion in the first flexion resonant frequency was a substrate effect as the additional 

effective mass of the surface led to the reduction in resonant frequency before the amplitude 

was sufficiently minimised from being overdamped from the close proximity of a hard surface. 
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Figure 7.19: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.2 ± 0.1, 500 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the resonant frequency from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. 

The final approach curve was taken for 1000 mM ionic strength where the maximum 

penetration and first flexural mode disappearance were at -52.5 nm and -49.0 nm respectively. 

The small changes in maximum penetration for the brush suggested that the brush was close 

to neutral behaviour, however for confirmation this would require experiments at ionic 

strengths greater than 1 M. The first flexural mode at 1000 mM maintained a maximum 

followed by decreased resonant frequency, with the remaining resonant features being 

unchanged (figure 7.20). 
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Figure 7.20: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.2 ± 0.1, 1000 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the 

force-distance curve and the resonant frequency from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. 

After the ionic strength of 30 mM, the first torsional mode resonant frequency and full width 

half maximum (figure 7.21, 7.22), which are associated with the stiffness and dissipation of the 

contact, were observed to have minimal changes in the presence of the polymer, compared to 

the lower ionic strengths. This indicated that the viscosity of the polymer upon lateral 

interactions was not increased by the densification and expected entanglements generated by 

the collapse and thickness reduction of the polymer brush. 
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Figure 7.21: Resonant frequency changes of the first torsional mode for different ionic 

strengths with fixed pH (8.2 ± 0.1) immersion approach towards a PMAA brush. The a) 

fractional applied force with respect to the maximum trigger force for the onset of significant 

observable change of and b) maximum shift in the resonant frequency of the first torsional 

mode. Open symbols indicate that clamped spectral change was not observed before the 

trigger force was reached. 

 

Figure 7.22: Full width half maximum (FWHM) changes of the first torsional mode for different 

ionic strengths with fixed pH (8.2 ± 0.1) immersion approach towards a PMAA brush. The a) 

fractional applied force with respect to the maximum trigger force for the onset of significant 

observable change of and b) maximum shift in the FWHM of the first torsional mode. Open 

symbols indicate that clamped spectral change was not observed before the trigger force was 

reached. 

For zero to 20 mM ionic strength, the clamp positions of flexural and torsional modes started 

at the tip-brush contact and transitioned deeper into the brush as the ionic strength increased 

(figure 7.23). The existence of inflexion clamp points and eventual removal of any detected 

change upon contact indicated a distinct change in the brush surface. Once within an ionic 

strength of 30 mM, all clamp points are removed. The hypothesis generated is that an 

effectively solid interface at contact exists when immersed in very low ionic strength solutions, 

due to the osmotic pressure exerted by the brush. Before the brush thickness decreased, the 

presence of salt led to movement of the solid interface deeper into the brush until it could no 

longer be reached using the force trigger of circa 17 nN. Once the salt concentrations within 

the brush and solution were equillibrated, the clamping points disappear and the brush attains 

fluidic properties which was observed at 30 mM ionic strength. 
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The loss of clamping and the retention of fluidic properties was maintained for ionic strengths 

greater than 30 mM, despite the concurrent thickness reduction from charge screening effects 

of the increased salt concentration. The only observed impact of the increased salt was on the 

first flexural mode which became overdamped before the trigger force was reached at ionic 

strengths greater than and equal to 300 mM (figure 7.23). This was the impact of the substrate 

due to the penetration and thickness no longer being significantly different, and hence the 

brush became compressed against the substrate leading to the first flexural mode 

dissappearence being observed. 

 

Figure 7.23: Comparison of the a) PMAA brush thickness indicated by the contact point offset 

of QI mode AFM and the b) fractional indentation with respect to the maximum indentation 

for the disappearance of the first flexural mode (black squares) and appearance of the first 

flexural clamped mode (red circles) positions measured relative to the tip-brush contact of 

cantilever as a function of solution ionic strength at a fixed pH of 8.2 ± 0.1. 

The expected increased dissipation and therefore increased full width half maxima at higher 

ionic strengths was not observed. The collapse of the polymer was expected to concentrate 

the polymer by the reduced hydration. This densification was expected to enhance the viscous 

properties of the polymer chains and the brush to behave in a similar way to a polymer 

solution. However, remnant hydration must be present, despite the thickness reduction, and 

hence provide sufficient lubrication to prevent increased energy dissipation from occurring. 

7.2.2. Brownian fluctuation force spectroscopy of PMAA in acidic and basic 

pH environments  

While ionic strength data above was collected when the side group of PMAA was completely 

dissociated, the variation of pH relative to the acidity dissociation constant allows 

conformational changes to also occur by changing the protonation state of the polymer. This 

behaviour, however, is also dependent on the ionic strength from the allowed mixing of the 

internal brush environment with the external solution. Therefore the pH behaviour was 

studied in three different ionic strength environments, which were 0.02 mM ionic strength 

water, 10 mM ionic strength and 300 mM ionic strength solutions. 
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Figure 7.24: Tapping mode AFM image of the PMAA brush grown for the pH experiment. The 

imaged surface is displayed using the a) height channel (vertical scale 350 nm) with b) a line 

section. 

 

Figure 7.25: The responsive behaviour of the PMAA brush as function of pH and ionic strength, 

as studied by a) brush thickness, from the difference in contact point offset between a 

reference point and the polymer in QI mode, and b) indentation into the brush, from force 

spectroscopy.  

The tapping mode image of the PMAA sample used is shown in Figure 7.24. The significant 

height and well defined pattern enabled this sample to be chosen as a suitable surface for 

depth resolved property extraction. Using QI mode and regular force spectroscopy, the 

changes in the polymer behaviour with respect to pH as a function of the chosen ionic 

strengths were identified (figure 7.25). In very low ionic strength water, the maximum brush 

thickness was measured due to the internal salt concentration being minimised to counter-

ions only. However, the salt differential between the brush and solution led to osmotic 

pressure preventing the pH adjusted solution equilibrating with brush. Hence the expected 

brush collapse at lower pH, due to protonation, was not observed and the thickness decrease 

was minor. This was supported by the lack of penetration at both pH values in deionised water 

due to the associated osmotic pressure (Figure 7.25b). The QI imaged surface of the sample in 

0.02 mM (pH altered deionised water), 10 mM and 300 mM ionic strength aqueous solutions 

are displayed in Figures 7.26, 7.27 and 7.28 respectively.  
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Figure 7.26: Quantitative imaging mode applied to a PMAA brush imaged under a) pH 4.4 

(vertical scale 380 nm) and b) pH 8.9 (vertical scale 380 nm), 0.02 mM ionic strength aqueous 

solution. The height image was extracted from contact point fitting to individual force curves 

of the image. Appropriate c) cross-sections of the height images are displayed for the samples 

immersed in pH 4.4 (black) and pH 8.9 (red) solutions. 

 

Figure 7.27: Quantitative imaging mode applied to a PMAA brush imaged under a) pH 4.4 

(vertical scale 200 nm) and b) pH 8.9 (vertical scale 200 nm), 10 mM ionic strength aqueous 

solution. The height image was extracted from contact point fitting to individual force curves. 

Appropriate c) cross-sections of the height images are displayed for the samples immersed in 

pH 4.4 (black) and pH 8.9 (red) solutions. 
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Once salt was added to the immersion solution, the equilibration process was allowed to 

proceed once the molarity had exceeded the internal brush ionic strength. At 10 mM, the 

additional shielding had reduced the brush height within this sample, however more 

significantly pH response was observed with an extended-collapsed conformation change in 

thickness with a response ratio of 1.7 ± 0.3 (figure 7.25a). The difference in the ionic strength 

onset of the thickness reduction for the deprotonated PMAA compared to the work in the 

previous section was associated with sample-to-sample variation and differences in solution 

pH (ΔpH ~0.5). The indentation of the extended brush at pH 8.9 was significantly increased, as 

was expected by the removal of the osmotic pressure to hinder cantilever penetration into the 

polymer (figure 7.25b). Whereas, the collapsed state retained a low penetration form, likely 

due to the reduced thickness and densification from loss of aqueous solvation upon 

protonation. 

 

Figure 7.28: Quantitative imaging mode applied to a PMAA brush imaged under a) pH 4.4 

(vertical scale 100 nm) and b) pH 8.9 (vertical scale 100 nm), 300 mM ionic strength aqueous 

solution. The height image was extracted from contact point fitting to individual force curves. 

Appropriate c) cross-sections of the height images are displayed for the samples immersed in 

pH 4.4 (black) and pH 8.9 (red) solutions. 

At higher ionic strengths such as 300 mM, the charge screening has a greater impact with 

further reduction in brush heights (figure 7.25a). However it was at 300 mM that the 

maximised response was observed with an extended-collapsed brush thickness ratio of 2.5 ± 

0.4. It was likely due to the combination of the osmotic pressure loss and electrostatic 

screening regimes that at intermediate ionic strengths, enhanced pH response was observed 
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before sufficient ionic strength is reached to induce neutral polymer behaviour and concurrent 

removal of responsive behaviour.  

The resonant behaviour was followed through thermal noise spectra, with all the fitted 

Lorentzian parameter approach curves collated in Appendix D. In 0.02 mM ionic strength 

aqueous solution at pH 4.4 and pH 8.9, the resonant behaviour displayed was very similar 

(figure 7.29, 7.30). The onset for overdamping of the first two flexural modes occurred 

effectively at contact, with the first flexural clamped mode appearing within the first 

nanometre of penetration into the brush. Clamped modes were identified for all of the 

observable resonances, with the first flexural mode having been overdamped at contact.  

 

Figure 7.29: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 4.4 ± 0.2, 0.02 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the 

force-distance curve and the resonant frequency from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. Insets are a zoomed in portion of 

the contact region. 
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Figure 7.30: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.9 ± 0.1, 0.02 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the 

force-distance curve and the resonant frequency from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. Insets are a zoomed in portion of 

the contact region. 

At pH 4.4 in 10 mM ionic strength solution, the amount of penetration was increased from -

12.7 nm to -20.4 nm (figure 7.31). However, the disappearance of the first flexural mode and 

appearance of the first flexural clamped mode occurred at an indentation of 3.3 and 3.7 nm, 

only a few nanometres deeper than observed in the lower pH, low ionic strength immersed 

sample. Additionally, clamped oscillations were again identified for all torsional and flexural 

cantilever modes. This means that the loss of osmotic pressure had little impact on the 

position of the solid polymer interface. 
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Figure 7.31: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 4.4 ± 0.2, 10mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the resonant frequency from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. Insets are a zoomed in portion of 

the contact region. 

For PMAA immersed in pH 8.9 and 10 mM ionic strength, a significant change in properties 

was observed from the behaviour observed in high pH at very low ionic strength (0.02 mM) 

(figure 7.32). This was characterised by the increased maximum brush penetration to 55.9 nm, 

in addition to the loss of the first flexural mode at a separation of -41.5 nm and the 

appearance of the first flexural clamped mode at -42.3 nm. While the first flexural mode 

observed an increased resonant frequency close to contact which indicated the presence of 

the brush, the torsional modes and other observed higher order flexural modes were 

unaffected until high degrees of penetration into the brush were reached. This indicated the 
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contact and top brush regions had taken a more fluid-like basis with a solid-like interface 

occurring at larger indentations. 

 

Figure 7.32: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.9 ± 0.1, 10 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the resonant frequency from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. Insets are a zoomed in portion of 

the contact region. 

At pH 4.4, the difference between 10 mM and 300 mM ionic strength in maximum indentation 

was relatively minor (21.7 nm cf 20.4 nm). There was a shift in the disappearance indentation 

for the first flexural mode which increased to 8 nm and the onset of the first flexural clamped 

mode at an indentation of 12.2 nm (figure 7.33). The appearance of clamped variants of all 

modes were observed which indicated, that within 13 nm of contact, a solid interface had 

been reached and effectively prevented oscillations at the free end of the cantilever. 
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Figure 7.33: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 4.4 ± 0.2, 300 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the resonant frequency from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. Insets are a zoomed in portion of 

the contact region. 

For pH 8.9 at 300 mM, the onset for the disappearance of the first flexural mode was observed 

before maximum applied force was reached with removal at a separation of -40.6 nm (figure 

7.34). This was due to the reduction in total thickness of the brush from charge screening and 

hence the approach at larger indentations began to be affected by the substrate. Whereas the 

first flexural clamped mode had an onset closer to contact, the maximum amplitude of the 

resonance no longer reached a plateau unlike all other conditions in this section. This indicated 

that for the same applied force, the cantilever was unable to reach a stable clamp point, 

indicative of an approach through fluid type brush where all resonances except the first 

flexural mode remained unaffected until larger penetrations were reached. 
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Figure 7.34: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.9 ± 0.1, 300 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the resonant frequency from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. Insets are a zoomed in portion of 

the contact region. 

At pH 4.4, onset of the solid interface present moved further from contact with the increased 

ionic strength (figure 7.35). The explanation is that a gradient of acidity dissociation constant 

pKa exists within the brush, with the top having a much lower pKa than the base405. Hence the 

top of the brush at pH 4.4 retains some dissociated functional groups and upon addition of 

salt, this region begins to have increased fluidic character and the concurrent increase in 

indentation until clamping and overdamping. These indentation changes are only small as the 

overall pKa is circa 7 and there was a collapsed densified region below the fluid-like top layer. 
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Figure 7.35: Comparison of the a) PMAA brush thickness indicated by the contact point offset 

of QI mode AFM and the fractional indentation with respect to the maximum indentation 

relative to the tip-brush contact for the b) disappearance of the first flexural mode and c) 

appearance of the first flexural clamped mode of cantilever, as a function of solution ionic 

strength and pH.  

 

Figure 7.36: Resonant frequency changes of the first torsional mode at acid and  basic pH 

values for 0.02, 10 and 300 mM ionic strength solutions used in the immersion of a PMAA 

brush. The a) fractional applied force with respect to the maximum trigger force for the onset 

of significant observable change of and b) maximum shift in the resonant frequency of the first 

torsional mode.  

 

Figure 7.37: Full width half maximum (FWHM) changes of the first torsional mode at acid and 

basic pH values for 0.02, 10 and 300 mM ionic strength solutions used in the immersion of a 

PMAA brush. The a) fractional applied force with respect to the maximum trigger force for the 

onset of significant observable change of and b) maximum shift in the FWHM of the first 

torsional mode. 
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The positive resonant frequency change of the first torsional mode at pH 4.4 indicates that 

stiffness decreased from 0.02 mM to 10 mM ionic strength (figure 7.36). This was because of 

the removal of osmotic pressure that dominated the PMAA brushes immersed in very low ionic 

strength water which isolated the internal brush environment. However upon transition to 300 

mM ionic strength, the first torsional resonant frequency and full width half maxima increased 

significantly (figure 7.36, 7.37). This was indicative of the stiffness and dissipation increases 

expected upon the collapse transition and densification of the brush upon aqueous solution 

displacement from the thickness reduction. 

For the pH 8.9 data, the clamping and overdamping proceeded at contact for very low ionic 

strengths (0.02 mM), which then transitioned towards much larger indentations at higher ionic 

strengths (figure 7.35). This was characteristic for the removal of the osmotic pressure found 

at low ionic strengths which resisted penetration into the brush to present an effectively solid 

interface. However once removed, the extended, solvated brush of PMAA displayed fluidic 

behaviour and led to increasing cantilever insensitivity to the presence of the polymer. This 

supported the observed decrease in stiffness and dissipation, as indicated by the resonant 

frequency (figure 7.36) and full width half maximum (figure 7.37) of the first torsional mode, as 

a function of applied force with the 300 mM immersed surface displaying no significant 

changes over the entire applied force range.  

By probing the brush as a function of depth by Brownian fluctuation force spectroscopy, this 

has enabled the identification of where interfaces exist within the polymer. For immersion in 

very low ionic strength water, the interface existed at the contact point between the brush 

and the cantilever, whereas at higher ionic strengths this situation becomes complicated and 

the interface transitions deeper into the brush to different degrees. 

One of the important applications of polymer brushes was the function as a support for 

biological objects, such as membrane proteins and lipid bilayers, of which PMAA was 

considered a suitable option. The presence of both liquid-like and solid types of mechanical 

behaviour were observed for PMAA brushes under different environmental conditions. At 

physiological conditions, the behaviour was of a fluid-like brush and hence would provide a 

viscous layer support, as opposed to a sharper solid interface. The variation of the diffusion 

constant for fluorescently tagged lipids embedded in a PMAA brush supported lipid bilayer 

may depend on the nature of the interface (figure 7.2). A hypothesis would be that at very high 

ionic strengths, the fluid behaviour of the interface allows a high degree of lipid mobility. At 

low ionic strengths, static friction between the lipid molecules and the solid brush interface 

would lead to the reduction in the lipid mobility observed. However, the observation of lipid 

vesicle rupture and fusion for bilayer formation at very high ionic strengths is contrary to the 

assertion that stiff substrates are required for this process, due to the fluidic nature of the 

brush under these conditions. To confirm these hypotheses, further experiments of the 

integrated lipid-brush systems would need to be undertaken. 
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7.3. Future work 

The work presented can only be considered as preliminary data, as to enable a full study of the 

polymer brush grafting density-pH-ionic strength phase space requires the creation of bespoke 

programs to calculate the required quantities in much shorter time scales than was currently 

achievable by the author. The ability of such a program may enable spatially mapped data 

based on the thermal fluctuations of the cantilever, through merging force-volume mapping 

and the Brownian fluctuation analysis developed in chapter 6.  

The presence of the cantilever during collection precludes the calculation of material 

properties. However, further development of cantilever theory and the data analysis routine 

may allow subtraction of the cantilever and its subsequent effects from the data collected. This 

would then allow cantilever independent properties to be reported, such as frequency 

dependent stiffness, viscosity and energy dissipation for the materials of interest. However, 

another additional development worth pursuing is the ability to analyse regions of the brush at 

depth specified values. The issue with the data subtraction method for the current data set 

was that for the cantilever used, the cumulative increase in contact area was not constant due 

to its conical form. While a subtraction algorithm for a conical shape would be possible, 

additionally the applied pressure to surface is also non-uniform. Hence the development of 

punch tipped cantilevers and their use within this type of experiment should be pursued, 

because of the constant cumulative increase as a function of depth for the contact area and 

the linear pressure increase applied normal to the surface. Also, the development of a suitable 

colloid system to analyse compression profiles without the hindrance of squeeze damping to 

compare to depth profiles of sharp tips is considered worthwhile for investigation. 

7.4. Conclusions 

The application of thermal noise analysis, termed Brownian fluctuation force spectroscopy, to 

a polyelectrolyte brush under various environmental stimuli has been presented. The 

methodology allowed the position of the interfaces within the polymer brush and mechanical 

behaviour of the polymer brush to be investigated. During data analysis, multiple flexural and 

torsional resonances were followed during the controlled approach and indentation of the 

AFM cantilever into the polymer.  

The polyelectrolyte brush studied was poly(methacrylic acid), which is known for 

conformational changes in response to variation of pH and ionic strength. The depth profiling 

of the brush was followed in a variety of conditions which enabled identification of the 

important interfaces within the polymer when the different external stimuli were applied.  

At very low ionic strengths (< 5 mM), an effectively solid interface was identified at contact 

between the tip and the brush, with immediate clamping and overdamping of resonant 

modes. In low pH samples, the solid interface was maintained, however onset was deeper into 

the brush with increased ionic strength which was indicative of the depth dependent acidity 

dissociation constant of the weak polyelectrolyte brush. Whereas, at high pH and high ionic 

strengths (> 30 mM), the brush became an effectively fluid environment with only minor 

changes occurring within the resonances as compared to the low ionic strength spectra.  
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These changes in interfacial environment are interesting when considering the fundamental 

polymer physics behind the behaviour of polyelectrolyte brushes, in addition to the application 

of these surfaces as supports for biological objects such as lipid bilayers and membrane 

proteins. Additionally, the nature of the interface has importance when considering 

topographic imaging of polymer brushes by AFM under liquid. If the brush is present in a fluidic 

state, the imaged brush will have a representative height value, however this value then 

becomes highly dependent on the imaging force and hence the optimisation of the imaging 

parameters, AFM mode choice and cantilever selection.  
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Chapter 8: Summary of thesis 

For the work presented in this thesis, the key theme has been the interface of a polymer 

brush, either as region within which reactions can be undertaken or as a part of complex 

system which needs to be understood. This chapter will summarise the results presented and 

the direction that future work would lead.  

8.1. Surface chemistry at polymer brush interfaces  

This section summarises chapters 4 and 5. Polymer brush modification for biological object 

attachment has typically occurred through side group chemistry. Since it is the chemistry of 

the side group that dominates the behaviour (e.g. non-fouling) and responsive properties of 

the brush, the modification of these groups would lead to loss of the desired functionality. 

Therefore, a modification strategy was designed to change the chain ends of a polymer into 

amine functionalities for attachment purposes, while side group chemistry was retained.  

The reaction scheme used was the sequence of sodium azide nucleophilic substitution, azide 

reduction and imide hydrolysis. Initial proof of concept analysis was conducted on an initiator 

silane film. Appearance and peak area reduction in x-ray photoelectron spectroscopy of an 

electron poor nitrogen environment, characteristic of azide surface addition and subsequent 

imide formation, was observed. Similarly, recognisable fragments from secondary ion mass 

spectrometry indicated successful imide formation and then removal from the silane film. 

Application of detailed chemical techniques, such as x-ray photoelectron spectroscopy and 

secondary ion mass spectrometry, to the chain end modification were unable to detect 

changes brought about by the reactions, due to the sampling depths being dominated by the 

polymer chemical environments and fragments. To understand whether the chemical changes 

at the chain ends were successful, secondary polymerisation was used to grow polymer chains 

from the amine chain end functionalities introduced. The thickness change of the brush grown 

from the amine modified interfaces was significantly greater than the unmodified and initiator 

immersed azide controls. There was some growth from the initiator immersed azide modified 

brush, which challenged the assumption that this surface would be a completely inert control. 

Despite concerns about secondary growth from inert regions, application of the methodology 

to brush surfaces with subsequent attachment of a photocleavable protecting group was 

achieved. This was confirmed by secondary ion mass spectrometry due to the highly 

characteristic ion fragments of the nitrophenyl group which were resolved separately from the 

polymer fragments. The use of photolithography and secondary polymerisation allowed a 

responsive poly(methacrylic acid) brush to be selectively grown on top of protein non-fouling 

poly(oligoethylene glycol methyl ether methacrylate) brush. This patterning strategy was 

confirmed by atomic force microscopy and secondary ion mass spectrometry techniques, 

which displayed a high fidelity for the different brush regions. The secondary polymer was also 

shown to retain its pH responsive behaviour. This strategy has the ability to be utilised for 

other brush combinations, as long as the first brush is suitably inert to the modification 

reagents and especially the solution phase initiator. 
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The success of the secondary growth and the spatially selective patterning of a brush on top of 

a primary brush suggested that the amine functionality was successfully formed. Future work 

would include the design and implementation of protein attachment strategies to utilise this 

introduced functionality on the chain end of the polymer brushes to generate 

biofunctionalised end-terminated polymer chains. Additionally, the application of 

photocleavable protecting group lithography would be further enhanced by use of scanning 

near-field photolithography to generate bespoke patterns of multiple different secondary 

polymerisations on top of primary polymer brush base.  

8.2. Brownian fluctuation force spectroscopy 

The section summarises chapters 6 and 7. The aim was to develop a methodology to 

investigate the mechanical properties of a polymer brush as a function of depth. By collecting 

force spectroscopy data at a high data capture rate, the time series data can be sectioned, 

Fourier transformed and averaged to a give mean power density spectra as a function of tip-

brush separation. The ability to capture at 800 kHz allows the frequency bandwidth of 400 kHz 

to be generated and subsequently allowed both multiple torsional and flexural resonant 

behaviour to be analysed. 

Due to the high density of data provided, the resonant features of the cantilever spectra were 

fitted to allow characteristic peak properties of the different resonances to be observed. This 

included the resonant frequency, quality factor, full width half maximum and maximum 

amplitude. To enable depth profiling without interruption by squeeze-damping effects, a sharp 

tip cantilever was required despite the reduced pressure benefits of a colloidal probe for 

interface sensing. 

When applied to a solid surface such as mica, the resonant behaviour displayed the shift of 

resonant peaks to clamped modes. In flexion, this meant that the modal free amplitude has 

decreased to zero by shift of a node to the free end of the cantilever and hence an observed 

change in resonant frequency for the existence of a clamped mode relative to a free mode. 

Additionally torsional modes exhibited clamped behaviour, however this involved the shift of 

the pivot point from the cantilever plane to the tip-surface contact. The additional torsional 

stiffness attributed to this change led to increased resonant frequency of the associated 

clamped torsional mode.  

The changes in modal clamping points were followed as different polymer brush factors were 

changed. By changing the chemistry of the monomer used, the properties of the brush varied 

greatly. Poly(2-hydroxyethyl methacrylate) in aqueous phosphate buffered solution exhibited a 

clamping transition under immediate tip-brush contact, which was indicative of a solid 

interface. In contrast, poly(oligoethylene glycol methyl ether methacrylate) was subject to 

minimal changes as a function of depth including lack of clamp points and it was concluded 

that the brush was dominated by fluidic properties, where penetration was relatively 

unhindered. 

In a stimulus responsive system, such as poly(methacrylic acid), it was shown that alteration of 

the response stimuli changed the position of the interface and the nature of the brush 

properties. At high pH (above pKa), as ionic strength was increased, the interface transitioned 
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from a solid type observed at contact to a fluidic entity with no clamping points. Whereas at 

low pH (below pKa), the surface retained the solid interface behaviour and associated changes 

to form clamped resonances as the ionic strength was increased. 

The importance for the position of the interface becomes relevant when considering the 

interaction of biological objects with polymer brushes, such as during the use as a support for 

either lipid bilayer or adsorbed/attached proteins. Therefore future work would involve the 

formation and investigation of polymer brush supported biological systems, such as polymer 

brush supported lipid bilayer with and without incorporated membrane proteins. 

Additionally, to extract the most relevant quantities from such a data intensive technique, 

bespoke programmed calculation routines need to be developed. This would then allow faster 

testing and implementation of more complicated analyses to extract the cantilever from the 

measured surface to provide material-specific quantities. This would involve development of a 

complex transfer function capable of dealing with the approach to and interaction with a soft 

matter surface with depth dependent effective mass changes and modal variation. Further to 

this, section specific properties may be potentially extracted through the development and use 

of punch tipped cantilevers, with the additional benefit of linear pressure increase from the 

contact area dependence. 

8.3. Concluding remarks 

The data and analyses presented within were the development and characterisation of 

polymer brush interfaces. It is important to generate chemical and lithographic methodology 

to make the most of this interface with respect to device fabrication and highlight potential 

usage in suitable, wider research areas beyond research driven fabrication, such as biosensors. 

However, with such development, the question of what the interface meant for different 

polymer brush systems arose. This led to a protocol for data extraction from a form of atomic 

force microscopy and was used to show that the interface of a polymer brush is a widely 

variable concept which depends on the brush chemistry, the immersed solvent and the 

external environmental stimuli of the responsive systems, such as pH, ionic strength and 

temperature. The work on spatially selective secondary brush formation from a primary brush 

base was published in a peer-reviewed journal in 2015459. 
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Appendix A: Secondary ion mass spectrometry of silane film surfaces for azide reduction and 

hydrolysis modification strategy. 

Figure A1: Negative ion spectrum of APTES film by TOF-SIMS.  

 

Figure A2: Positive ion spectrum of APTES film by TOF-SIMS. 
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Figure A3: Negative ion spectrum of BIB-APTES film by TOF-SIMS. 

 

 

Figure A4: Positive ion spectrum of BIB-APTES film by TOF-SIMS. 
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Figure A5: Negative ion spectrum of azide modified BIB-APTES film by TOF-SIMS. 

 

 

Figure A6: Positive ion spectrum of azide modified BIB-APTES film by TOF-SIMS. 
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Figure A7: Negative ion spectrum of azide and TPP modified BIB-APTES film by TOF-SIMS. 

 

 

Figure A8: Positive ion spectrum of azide and TPP modified BIB-APTES film by TOF-SIMS. 
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Figure A9: Negative ion spectrum of amine modified BIB-APTES film from azide substitution, 

reduction and hydrolysis by TOF-SIMS. 

 

Figure A10: Positive ion spectrum of amine modified BIB-APTES film from azide substitution, 

reduction and hydrolysis by TOF-SIMS. 
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Figure A11: Negative ion spectrum of BIBB reacted, amine modified BIB-APTES film from azide 

substitution, reduction and hydrolysis by TOF-SIMS. 

 

Figure A12: Positive ion spectrum of BIBB reacted, amine modified BIB-APTES film from azide 

substitution, reduction and hydrolysis by TOF-SIMS. 
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Appendix B: Secondary ion mass spectrometry of homo-polymer brush surfaces for 

characterisation and identification of more complicated systems. 

 

 

Figure B1: Negative ion spectra of homopolymer POEGMEMA by TOF-SIMS. 

Mass (u)

10 20 30 40 50 60 70 80 90 100

5
x10

1.0

2.0

3.0

4.0

5.0

6.0

In
te

n
s
it
y
 (

c
o
u
n
ts

)

Mass (u)

110 120 130 140 150 160 170 180 190 200

4
x10

0.5

1.0

In
te

n
s
it
y
 (

c
o
u
n
ts

)

Mass (u)

210 220 230 240 250 260 270 280 290 300

3
x10

0.5

1.0

1.5

In
te

n
s
it
y
 (

c
o
u
n
ts

)

Mass (u)

310 320 330 340 350 360 370 380 390 400

2
x10

0.2

0.4

0.6

0.8

1.0

1.2

In
te

n
s
it
y
 (

c
o
u
n
ts

)

Mass (u)

410 420 430 440 450 460 470 480 490

2
x10

0.2

0.4

0.6

0.8

In
te

n
s
it
y
 (

c
o
u
n
ts

)
File: OEGn1_5.ita    

Sample Info:

Sample:

Comment:

Origin:

Primary Beam:

Species: Bi3++

Area: 500 x 500 µm²

Dose:

 Polarity: NegativeDate: Fri Mar 07 16:13:07 2014



233 
 

 

Figure B2: Positive ion spectra of homopolymer POEGMEMA by TOF-SIMS. 
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Figure B3: Negative ion spectra of homopolymer PMAA by TOF-SIMS. 
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Figure B4: Positive ion spectra of homopolymer PMAA by TOF-SIMS. 
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Appendix C: Lorentzian spectral fitting parameters as a function of depth probed by Brownian 

fluctuation force spectroscopy of a PMAA brush immersed in different ionic strength solutions. 

 

Figure C.1: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in pH 

9, 0.02 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-distance 

curve and the resonant frequency from the thermal noise fit as a function of tip-sample 

separation for the a) first torsional, b) second torsional, c) first flexural, d) second flexural, e) 

third flexural, and f) first clamped flexural modes. 

 

Figure C.2: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in pH 

9, 0.02 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-distance 

curve and the full width half maximum from the thermal noise fit as a function of tip-sample 

separation for the a) first torsional, b) second torsional, c) first flexural, d) second flexural, e) 

third flexural, and f) first clamped flexural modes. 
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Figure C.3: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in pH 

9, 0.02 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-distance 

curve and the quality factor from the thermal noise fit as a function of tip-sample separation 

for the a) first torsional, b) second torsional, c) first flexural, d) second flexural, e) third 

flexural, and f) first clamped flexural modes. 

 

Figure C.4: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in pH 

9, 0.02 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-distance 

curve and the maximum amplitude from the thermal noise fit as a function of tip-sample 

separation for the a) first torsional, b) second torsional, c) first flexural, d) second flexural, e) 

third flexural, and f) first clamped flexural modes. 
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Figure C.5: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in pH 

8.2 ± 0.1, 1 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the resonant frequency from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. 

 

Figure C.6: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in pH 

8.2 ± 0.1, 1 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the full width half maximum from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. 
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Figure C.7: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in pH 

8.2 ± 0.1, 1 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the quality factor from the thermal noise fit as a function of tip-sample 

separation for the a) first torsional, b) second torsional, c) first flexural, d) second flexural, e) 

third flexural, and f) first clamped flexural modes. 

 

Figure C.8: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in pH 

8.2 ± 0.1, 1 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the maximum amplitude from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. 
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Figure C.9: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in pH 

8.2 ± 0.1, 2.5 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the resonant frequency from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. 

 

Figure C.10: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.2 ± 0.1, 2.5 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the full width half maximum from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. 
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Figure C.11: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.2 ± 0.1, 2.5 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the quality factor from the thermal noise fit as a function of tip-sample 

separation for the a) first torsional, b) second torsional, c) first flexural, d) second flexural, e) 

third flexural, and f) first clamped flexural modes. 

 

Figure C.12: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.2 ± 0.1, 2.5 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the maximum amplitude from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. 
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Figure C.13: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.2 ± 0.1, 5 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the resonant frequency from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. 

 

Figure C.14: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.2 ± 0.1, 5 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the full width half maximum from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. 
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Figure C.15: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.2 ± 0.1, 5 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the quality factor from the thermal noise fit as a function of tip-sample 

separation for the a) first torsional, b) second torsional, c) first flexural, d) second flexural, e) 

third flexural, and f) first clamped flexural modes. 

 

Figure C.16: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.2 ± 0.1, 5 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the maximum amplitude from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. 



244 
 

 

Figure C.17: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.2 ± 0.1, 7.5 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the resonant frequency from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. 

 

Figure C.18: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.2 ± 0.1, 7.5 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the full width half maximum from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. 
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Figure C.19: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.2 ± 0.1, 7.5 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the quality factor from the thermal noise fit as a function of tip-sample 

separation for the a) first torsional, b) second torsional, c) first flexural, d) second flexural, e) 

third flexural, and f) first clamped flexural modes. 

 

Figure C.20: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.2 ± 0.1, 7.5 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the maximum amplitude from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. 
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Figure C.21: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.2 ± 0.1, 10 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the resonant frequency from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. 

 

Figure C.22: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.2 ± 0.1, 10 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the full width half maximum from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. 
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Figure C.23: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.2 ± 0.1, 10 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the quality factor from the thermal noise fit as a function of tip-sample 

separation for the a) first torsional, b) second torsional, c) first flexural, d) second flexural, e) 

third flexural, and f) first clamped flexural modes. 

 

Figure C.24: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.2 ± 0.1, 10 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the maximum amplitude from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. 
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Figure C.25: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.2 ± 0.1, 20 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the resonant frequency from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. 

 

Figure C.26: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.2 ± 0.1, 20 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the full width half maximum from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. 
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Figure C.27: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.2 ± 0.1, 20 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the quality factor from the thermal noise fit as a function of tip-sample 

separation for the a) first torsional, b) second torsional, c) first flexural, d) second flexural, e) 

third flexural, and f) first clamped flexural modes. 

 

Figure C.28: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.2 ± 0.1, 20 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the maximum amplitude from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. 
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Figure C.29: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.2 ± 0.1, 30 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the resonant frequency from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. 

 

Figure C.30: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.2 ± 0.1, 30 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the full width half maximum from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. 
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Figure C.31: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.2 ± 0.1, 30 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the quality factor from the thermal noise fit as a function of tip-sample 

separation for the a) first torsional, b) second torsional, c) first flexural, d) second flexural, e) 

third flexural, and f) first clamped flexural modes. 

 

Figure C.32: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.2 ± 0.1, 30 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the maximum amplitude from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. 
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Figure C.33: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.2 ± 0.1, 50 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the resonant frequency from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. 

 

Figure C.34: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.2 ± 0.1, 50 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the full width half maximum from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. 
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Figure C.35: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.2 ± 0.1, 50 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the quality factor from the thermal noise fit as a function of tip-sample 

separation for the a) first torsional, b) second torsional, c) first flexural, d) second flexural, e) 

third flexural, and f) first clamped flexural modes. 

 

Figure C.36: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.2 ± 0.1, 50 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the maximum amplitude from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. 
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Figure C.37: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.2 ± 0.1, 80 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the resonant frequency from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. 

 

Figure C.38: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.2 ± 0.1, 80 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the full width half maximum from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. 
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Figure C.39: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.2 ± 0.1, 80 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the quality factor from the thermal noise fit as a function of tip-sample 

separation for the a) first torsional, b) second torsional, c) first flexural, d) second flexural, e) 

third flexural, and f) first clamped flexural modes. 

 

Figure C.40: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.2 ± 0.1, 80 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the maximum amplitude from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. 
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Figure C.41: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.2 ± 0.1, 100 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the resonant frequency from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. 

 

Figure C.42: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.2 ± 0.1, 100 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the full width half maximum from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. 
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Figure C.43: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.2 ± 0.1, 100 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the quality factor from the thermal noise fit as a function of tip-sample 

separation for the a) first torsional, b) second torsional, c) first flexural, d) second flexural, e) 

third flexural, and f) first clamped flexural modes. 

 

Figure C.44: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.2 ± 0.1, 100 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the maximum amplitude from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. 
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Figure C.45: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.2 ± 0.1, 300 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the resonant frequency from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. 

 

Figure C.46: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.2 ± 0.1, 300 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the full width half maximum from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. 
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Figure 7.47: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.2 ± 0.1, 300 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the quality factor from the thermal noise fit as a function of tip-sample 

separation for the a) first torsional, b) second torsional, c) first flexural, d) second flexural, e) 

third flexural, and f) first clamped flexural modes. 

 

Figure C.48: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.2 ± 0.1, 300 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the maximum amplitude from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. 
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Figure C.49: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.2 ± 0.1, 500 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the resonant frequency from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. 

 

Figure C.50: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.2 ± 0.1, 500 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the full width half maximum from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. 
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Figure C.51: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.2 ± 0.1, 500 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the quality factor from the thermal noise fit as a function of tip-sample 

separation for the a) first torsional, b) second torsional, c) first flexural, d) second flexural, e) 

third flexural, and f) first clamped flexural modes. 

 

Figure C.52: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.2 ± 0.1, 500 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the maximum amplitude from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. 
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Figure C.53: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.2 ± 0.1, 1000 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the 

force-distance curve and the resonant frequency from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. 

 

Figure C.54: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.2 ± 0.1, 1000 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the 

force-distance curve and the full width half maximum from the thermal noise fit as a function 

of tip-sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. 
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Figure C.55: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.2 ± 0.1, 1000 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the 

force-distance curve and the quality factor from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. 

 

Figure C.56: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.2 ± 0.1, 1000 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the 

force-distance curve and the maximum amplitude from the thermal noise fit as a function of 

tip-sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes.
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Appendix D: Spectral fitting parameters as a function of depth probed by Brownian fluctuation 

force spectroscopy of a PMAA brush in different pH solutions. 

 

Figure D.1: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 4.4 ± 0.2, 0.02 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the 

force-distance curve and the resonant frequency from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes.. 

 

Figure D.2: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 4.4 ± 0.2, 0.02 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the 

force-distance curve and the full width half maximum from the thermal noise fit as a function 

of tip-sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. 
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Figure D.3: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 4.4 ± 0.2, 0.02 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the 

force-distance curve and the quality factor from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. 

 

Figure D.4: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 4.4 ± 0.2, 0.02 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the 

force-distance curve and the maximum amplitude from the thermal noise fit as a function of 

tip-sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. 
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Figure D.5: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.9 ± 0.1, 0.02 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the 

force-distance curve and the resonant frequency from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. 

 

Figure D.6: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.9 ± 0.1, 0.02 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the 

force-distance curve and the full width half maximum from the thermal noise fit as a function 

of tip-sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. 
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Figure D.7: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.9 ± 0.1, 0.02 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the 

force-distance curve and the quality factor from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. 

 

Figure D.8: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.9 ± 0.1, 0.02 mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the 

force-distance curve and the maximum amplitude from the thermal noise fit as a function of 

tip-sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. 
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Figure D.9: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 4.4 ± 0.2, 10mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the resonant frequency from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. 

 

Figure D.10: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 4.4 ± 0.2, 10mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the full width half maximum from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. 
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Figure D.11: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 4.4 ± 0.2, 10mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the quality factor from the thermal noise fit as a function of tip-sample 

separation for the a) first torsional, b) second torsional, c) first flexural, d) second flexural, e) 

third flexural, and f) first clamped flexural modes. 

 

Figure D.12: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 4.4 ± 0.2, 10mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the maximum amplitude from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. 
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Figure D.13: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.9 ± 0.1, 10mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the resonant frequency from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. 

 

Figure D.14: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.9 ± 0.1, 10mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the full width half maximum from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. 
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Figure D.15: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.9 ± 0.1, 10mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the quality factor from the thermal noise fit as a function of tip-sample 

separation for the a) first torsional, b) second torsional, c) first flexural, d) second flexural, e) 

third flexural, and f) first clamped flexural modes. 

 

Figure D.16: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.9 ± 0.1, 10mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the maximum amplitude from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. 
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Figure D.17: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 4.4 ± 0.2, 300mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the resonant frequency from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. 

 

Figure D.18: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 4.4 ± 0.2, 300mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the full width half maximum from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. 
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Figure D.19: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 4.4 ± 0.2, 300mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the quality factor from the thermal noise fit as a function of tip-sample 

separation for the a) first torsional, b) second torsional, c) first flexural, d) second flexural, e) 

third flexural, and f) first clamped flexural modes. 

 

Figure D.20: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 4.4 ± 0.2, 300mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the maximum amplitude from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. 
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Figure D.21: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.9 ± 0.1, 300mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the resonant frequency from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. 

 

Figure D.22: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.9 ± 0.1, 300mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the full width half maximum from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. 
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Figure D.23: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.9 ± 0.1, 300mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the quality factor from the thermal noise fit as a function of tip-sample 

separation for the a) first torsional, b) second torsional, c) first flexural, d) second flexural, e) 

third flexural, and f) first clamped flexural modes. 

 

Figure D.24: Approach of a sharp PPP-CONTSC cantilever towards a PMAA brush immersed in 

pH 8.9 ± 0.1, 300mM ionic strength aqueous solution at 10 nm s-1. Combined plot of the force-

distance curve and the maximum amplitude from the thermal noise fit as a function of tip-

sample separation for the a) first torsional, b) second torsional, c) first flexural, d) second 

flexural, e) third flexural, and f) first clamped flexural modes. 


