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Abstract 

Protein-ligand interactions have a central role in all processes in living systems. A 

comprehensive understanding of protein interactions with small molecules is of 

great interest as it provides opportunities for understanding protein function and 

therapeutic intervention.  The major aims of this thesis were to characterise protein-

ligand interactions from databases of crystal structures and to apply molecular 

modelling techniques for accurate prediction of binding modes of molecular 

fragments in protein binding sites.  

The first aspect of the project was the analysis of hydrogen bond donors and 

acceptors in 187 protein-ligand complexes of resolution 2.5Å or better. The results 

showed that an extremely small fraction of them were not explicitly hydrogen 

bonded, with the hydrogen bond criterion of donor-acceptor distance ≤ 3.5 Å and H-

bond angle of ≥ 90°. It was also noticed that a vast majority of such cases were 

explicable on the basis of weak interactions and weak donor/acceptor strength. The 

results were consistent with reported observations for buried protein regions. In a 

series of docking calculations, the fraction of lost hydrogen bonds was evaluated as  

a discriminator of good versus bad docking poses. Docking and scoring with a 

standard program, rDock, did not create incorrect poses with missing hydrogen 

bonds to an extent that would make lost hydrogen bonds a strong discriminator. The 

second aspect of the research is related to weak (CH-π and XH-π, X=N,O,S) 

interactions. In a survey of IsoStar, a database of protein-ligand interactions, subtle 

differences were noticed in geometric parameters of π interactions involving 

different types of ligand aromatic rings with strong and weak donor groups in 

binding sites. The results supported the hypothesis that energetically favourable 

interaction patterns are more frequent when there are electron-donating 

substituents attached to the aromatic ring. Finally, the applicability of a modelling 

technique, multiple copy simultaneous search, in terms of predicting energetically 

favourable poses of solvents and fragments in target binding sites, was explored in 

detail. Several factors such as re-scoring with a better scoring function, use of 

multiple receptor structures and good quality prediction of water binding sites led to 

a robust protocol for high quality predictions of fragment binding in test datasets.  
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Chapter 1 Introduction 

Protein-ligand interactions have a central role in all processes in living systems. A 

comprehensive understanding of protein interactions with small molecules is of 

great interest as it provides opportunities for understanding function and 

therapeutic intervention. Molecular recognition is, however, a complex interplay of 

several factors such as inter-molecular interactions of protein, ligand and the 

surrounding solvent, conformational variations of binding partners and the 

thermodynamics of molecular association. Over the past few decades experimental 

and computational techniques have been developed that shed light on the role of 

these factors. Our understanding of molecular recognition is still far from perfect. A 

brief literature review of some of the most important aspects of protein-ligand 

interactions is presented in this chapter followed by the motivation and primary 

aims of this research work.  

1.1. Protein-ligand binding – Chemical and thermodynamic basis 

The non-covalent reversible binding of small-molecules to proteins has a central role 

in biology. Several processes crucial to living systems involve specific recognition of 

small molecule ligands by proteins. For example, enzymes act on their substrates 

and catalyse key chemical reactions inside cells, transporters recognize specific 

molecules for their movement across membrane barriers, receptors specifically bind 

to hormones or other chemical messengers for inter- and intracellular 

communication and finally antibodies uniquely bind to foreign chemical agents to 

mount vital defence mechanisms against infection and disease. In general, the 
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binding of a protein with a ligand in an aqueous environment is given by the 

reaction: 

P���� �  L����  	  PL���� 

The dissociation constant, KD for this reaction is described as:  

K� �  

P�
L�


PL�
 

Alternatively, the reciprocal of KD or the association constant, KA can be used. For a 

simple case of a ligand binding to a single site that is not affected by any other sites 

on the receptor, the value of KD is the concentration of the ligand at which half of the 

binding sites are saturated1. KD is therefore a measure of the affinity of the ligand 

towards its binding site and is measured in molar units, M.  

Chemical reactions accompany a change in the free energy (ΔG) which is influenced 

by change in two other important quantities; enthalpy (∆H) which is the heat 

content and entropy (∆S) which is the temperature-independent degree of disorder. 

The resulting relationship between these quantities is given by: 

ΔG° �  ΔH° � TΔS° 

The superscript ‘°’ indicates the value of each of these properties at molar 

concentration of unity2. The change in free energy of binding is influenced by several 

factors such as electrostatic and van der Waals interactions, ionization effects, 

conformational changes and the role of solvent. All of these factors manifest 

themselves as favourable or unfavourable changes in entropy and enthalpy.  

For example, the change in enthalpy is related to the breaking and formation of non-

covalent interactions such as loss of protein-solvent and ligand-solvent hydrogen 

bonds and the formation of protein-ligand hydrophobic contacts and hydrogen 
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bonds. The relative strengths of these interactions determine whether or not 

enthalpy change is favourable3.  

In the same way changes in entropy upon binding are related predominantly to 

solvent displacement and reduction in conformational degrees of freedom. The 

burial of lipophilic surfaces results in an increase in entropy whereas confinement of 

the ligand and protein side-chains has an opposite effect. Furthermore, gain in 

enthalpy also accompanies an unfavourable change in entropy as formation of 

precise interactions causes structural rigidity and therefore decreases the entropy. 

This phenomenon is called enthalpy-entropy compensation3, 4. 

For a reaction to spontaneously occur, its free energy change should be negative. At 

equilibrium, ∆G° is related to the equilibrium constant by the following expression: 

ΔG� �  �RT��K 

where R is the gas constant and T is the absolute temperature. Using this 

relationship, free energy changes can be derived from experimentally measurable 

quantity, KD. Biological KD values exhibit a wide range from weak to very strong 

binding. Weak binding of coenzymes, such as nicotinamide, to enzymes is generally 

within, 0.1μM to 0.1mM. On the other hand, the strong binding of antigen-antibody 

complexes exhibits KD values of up to 0.1 fM (1fM = 10-15M)1, 2. In drug design, very 

low KD values are desired because drugs can cause harmful side-effects due to off-

target interactions. Therefore, binding affinity in the range of 0.1 to 10 nM is 

considered suitable1. The extremely high affinity is achieved by precisely engineering 

molecular interactions at the binding interface and improving the specificity of 

binding.  
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The specificity is conferred by inter-molecular interactions between the binding 

partners and their precise geometries. For example, electrostatic complimentarity is 

an essential feature of protein-ligand complexes. Similarly, hydrogen bond donors 

and acceptors are satisfied by their counterparts at the binding interface2, 5.  

1.2. Experimental methods for measuring binding affinity 

The experimental techniques for measurement of binding affinity have been 

developed in past few years and are undergoing continuous development. The 

binding affinity can be determined indirectly using spectroscopic measurements 

such as change in absorption or fluorescence6.  

Indirect methods also involve physically restricting one of the binding partners and 

then measuring the free concentration of the other partner.  Surface Plasmon 

Resonance (SPR) spectroscopy is a method based on similar principle and has been 

shown to reproduce binding affinity values that are consistent with more accurate 

direct measurements 7. Other techniques for indirect measurement of protein-ligand 

binding affinity include NMR and Mass spectroscopy and atomic-force microscopy6.  

Direct methods give insight into thermodynamics of ligand binding and one of the 

most prominent technique is the isothermal titration calorimetry (ITC). ITC measures 

the heat of complex formation by incremental addition of ligand to the solution 

containing receptor molecules. The association constant, free energy change, 

enthalpic and entropic components can be derived from ITC data. Recent studies 

have highlighted the importance of thermodynamics analyses of ligand binding using 

ITC. For example, Klebe et al. showed that the minor difference in ∆G of a series of 

thrombin ligands was associated with significant mutually compensating changes in 
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enthalpic and entropic components of binding. In another study ITC measurements 

were used to identify the most optimal location of hydrogen bond donors and 

acceptors, for plasmepsin II inhibitors, by measuring enthalpic changes associated 

with different functional groups8. The importance of thermodynamic platforms 

based on ITC for studying protein-ligand binding has therefore been highlighted in 

recent reviews4, 9.  

1.3. Protein-Ligand Interactions  

The non-covalent binding of small-molecule ligand to proteins is mediated by a 

variety of inter-atomic interactions. Mainly, these include electrostatic and van der 

Waals interactions (Figure 1.1). The affinity of receptor-ligand binding also heavily 

relies on contributions from other factors such as entropy, desolvation, flexibility of 

receptor structure and the structural water molecules in the binding site6, 10. In the 

following, a brief literature review of important protein-ligand interactions and other 

factors contributing to binding affinity is described.  

1.3.1. Electrostatic Interactions 

Electrostatic complimentarity between the protein and the ligand at the binding 

interface is vital for complex formation. The predominant types of electrostatic 

interactions include; hydrogen bonding, salt bridges, and metal interactions6, 11 

(Figure 1.1). 

Hydrogen bonding is the most important directional interaction in biological 

macromolecules, known for conferring stability to protein structure and selectivity to 

protein-ligand interactions12. In general, hydrogen bonding occurs between two 

electronegative atoms, one of which (donor) has a covalently bound hydrogen atom 



 

whereas the other (acceptor) has a lone pair of electrons. The strong electrostatic 

attraction arises from the attractive interaction between partial positive charge on 

the hydrogen atom and partial negative charge on the acceptor atom. Theoretical 

and experimental studies

hydrogen bonds as well which is based on the interaction between empty σ* anti

bonding orbital of the hydrogen atom and highest occupied orbital of the acceptor

13.  
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(acceptor) has a lone pair of electrons. The strong electrostatic 

attraction arises from the attractive interaction between partial positive charge on 

the hydrogen atom and partial negative charge on the acceptor atom. Theoretical 

have confirmed an additional covalent component to 

hydrogen bonds as well which is based on the interaction between empty σ* anti-

bonding orbital of the hydrogen atom and highest occupied orbital of the acceptor12, 

ligand complexes. 

ray scattering of ice crystals 

acceptor distance of 2.85Å and hydrogen-acceptor 

bonded contacts in protein structures protein-

have been used to 

investigate geometric preferences of hydrogen bonding groups. In a recent survey, 

acceptor distance of a typical hydrogen 
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bond (e.g., NH…CO hydrogen bond) lies in the range 2.8-3.1Å whereas the donor-

hydrogen-acceptor angle was shown to be about 130°10.  

In the unbound state donors and acceptors from both protein binding site and the 

ligand are hydrogen bonded to water molecules. Upon binding the buried donors 

and acceptors at the interface make comparable hydrogen bonds. The difference in 

the strength of hydrogen bond in these two different environments (water and 

binding interface) determines the extent to which hydrogen bonds contribute to the 

affinity6. There have been a lot of studies to quantify the free energy gain from 

hydrogen bond formation but an agreement over a single value has not been 

reached. For example data from mutation studies on tyrosyl-tRNA synthetase 

suggest a reduction of binding affinity by 2.1-6.3 kJmol-1 after removing a hydrogen 

bond between a strong donor and a strong acceptor17. Similarly, a buried hydrogen 

bond was shown to contribute about -5.4 kJmol-1 to the stability of folded state of 

ribonuclease T118. On the other hand free energy of desolvation of a hydrogen bond, 

as demonstrated by transfer of peptides from water to octanol, was show to be 

unfavourable (4.6 kJmol-1). The differences observed in these values are 

compounded by the fact that the predominant electrostatic character of hydrogen 

bonds is influenced by the dielectric of surrounding medium. Buried hydrogen bonds 

in the protein interior are therefore considered to contribute more towards 

stability6, 18.  In fact, a survey of buried NH and CO groups in protein structures 

indicated that only 1-2% of these group fail to form hydrogen bonds19. The 

satisfaction of hydrogen bonding potential within protein structures and at protein-

ligand interface is further discussed in Chapter 2.  
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1.3.2. Hydrophobic Interactions 

Hydrophobic interactions involve contacts between non-polar parts of the molecule 

(Figure 1.1). In protein-ligand complexes non-polar parts at the interacting surfaces 

are buried upon binding10. This causes displacement of water molecules thereby 

increasing the entropy. The hydrophobic interactions are therefore entropy-driven 

and have been shown to play crucial role in ligand binding10, 11. The relationship 

between burial of non-polar surface area and binding affinity is well established and 

amounts to an affinity gain of 30 cal mol-1 for 1 Å2 of buried lipophilic surface area11, 

20, 21. This implies that optimizing non-polar contacts of ligand atoms in hydrophobic 

protein pockets results in tighter binding. For example, Peters et al. demonstrated 

that optimizing interactions of aromatic rings in hydrophobic pocket of dipeptidyl 

peptidase IV resulted in 105-fold increase in affinity22. 

Aromatic residues in protein binding sites such as His, Phe, Trp and Tyr are 

frequently involved in aryl-aryl interactions10. Aromatic rings are known to interact 

with each other predominantly via one of two geometries: T-shaped edge to face 

and parallel displaced stacking interaction. Quantum mechanical studies on model 

systems such as benzene dimers have shown that these two geometries are 

isoenergetic23. In protein structures, however, parallel displaced geometry has been 

more frequently observed24. Aliphatic-aromatic interactions involving alkyl groups 

and aromatic rings are also commonly occurring interactions at non-polar 

interfaces10. Like aromatic-aromatic interactions, preferable interaction geometries 

include edge-to-face and parallel displaced interactions. The strength of aliphatic-

aromatic interactions, particularly, CH-π interactions varies with increasing acidity of 

CH groups25. For example, ab initio calculation on model systems such as benzene 
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complexes with ethane, ethylene and acetylene show the highest interaction energy, 

-2.83 kcalmol-1, for acetylene who has a more acidic CH group than others26. The role 

of weak interactions in protein-ligand complexes is discussed further in Chapter 3.  

 

 

 

 

Figure 1.2. Aryl-aryl interactions in protein structures and protein-ligand 

complexes. A. Edge-to-face geometry, B. Parallel stacking geometry. 

 

1.4. Factors affecting protein-ligand binding affinity 

In addition to electrostatic and shape complementarity between protein and ligands, 

there are some other important factors contributing to protein-ligand affinity. These 

are briefly discussed here.  

1.4.1. Binding site water molecules 

Water molecules play an important role in the structure and interactions of 

biomolecules. In the absence of a bound ligand, the binding site of a receptor is 

usually occupied by water molecules that are displaced upon ligand binding. 

Visualizing and characterizing water molecules in the binding sites on the basis of X-

ray crystallographic structures is sometimes very difficult as these water molecules 

are highly disordered10. Highly conserved water molecules in the binding sites across 

multiple structures can however be considered to be tightly bound, for example 

water molecules in HSP90 N-terminal domain binding site are conserved across 

multiple structures (Figure 1.3). The displacement of water molecules increases the 

A B 
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entropy but it is offset by accompanying loss in enthalpy. The contribution of 

displacing a water molecule towards binding affinity therefore depends on how 

tightly it is bound and how efficiently the enthalpic loss by its displacement is 

compensated by interactions with the ligand molecule6.  

 

 

 

 

 

 

 

 

 

Figure 1.3. Water molecules at protein–ligand interface. The binding site of HSP90 

ATPase domain is shown with ligands and water molecules superimposed from 11 

different crystal structures (only one representative protein backbone is shown). 

Most ligands interact with tightly bound water molecules (HOH1, HOH3 and HOH4) 

which also interact with key binding site residues such as ASP93. In some cases, 

HOH2 is displaced upon ligand binding and replaced by a hydroxyl group. 

 

Experimental studies to directly compare the effect of displacing a water molecule 

from the binding site indicate dependence on its ‘coordination state’ and the nature 

of compensating interactions10. For instance, it was shown that when water 

molecules formed two or less hydrogen bonds, its replacement with a close analog in 

the inhibitor molecule retains or improved the affinity of EGFR kinase and p38 MAP 

kinase inhibitors27, 28. On the other hand, it was noted for acetylcholinesterase 
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inhibitors that displacement of an extensively hydrogen-bonded water molecule 

resulted in significant loss in affinity29.  

1.4.2. Solvation and Desolvation 

In addition to direct involvement in interactions with protein and ligand molecules, 

water also constitutes the medium in which biomolecular association occurs. Water 

molecules form a dynamic hydrogen bond network where each molecule is involved 

in 3 to 4 hydrogen bonds at a given instant6. The transfer of molecules that are non-

polar or have a non-polar part causes disruption of this network and re-organization 

of water molecules around the non-polar solute molecules. The resulting 

unfavourable loss of entropy is compensated by stronger hydrogen bonds in the 

water molecules that are organized in clathrates. The complexation of non-polar 

molecules in water is therefore driven mainly by the release of the water molecules 

from the interface which increases entropy of the system. This has been termed as 

the classical hydrophobic effect and known as one of the driving forces for protein-

ligand binding6, 10, 11.  

An almost opposite picture has emerged from spectroscopic studies such as neutron 

diffraction30 and total internal reflection spectroscopy of aqueous solutions31. These 

studies indicate that water molecules at non-polar surfaces are not as rigidly bound 

and strong as considered by clathrate model13. In host-guest chemistry enthalpy-

driven complexation has been observed giving rise to the idea of non-classical 

hydrophobic effect23. For example, the complex formation between benzene 

derivatives and a spherical hemicarcerand host was shown to be driven by 

favourable enthalpy change partially compensated by an unfavourable entropy 

change32. A classical example of this phenomenon from protein-ligand complexes 
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was reported by Homans et al.
33 where MUP (mouse major urinary protein) ligands 

were shown to bind with an extremely favourable enthalpy. The affinity of MUP 

ligands was shown to arise primarily from favourable solute-solute dispersion 

interactions with very little contribution from protein desolvation. This was 

attributed to sub-optimal hydration of the MUP binding site10, 33.  

The energetic cost related to desolvation plays an important role in drug design. An 

unfavourable desolvation of binding site or part of the binding site could result in full 

or partial loss of affinity10. For instance, Talhout et al. reported that the binding 

affinity of p-tert-butylbenzamidinium towards trypsin was lost because of 

unfavourable dehydration of Ser195 and His57 side-chains in oxyanion hole34. The 

alkyl substituent, which extended into the oxyanion hole, precluded the access of 

water molecules as shown by the calculated pKa shift for His57 side-chain.  This 

resulted in a desolvation cost significant enough to lower binding affinity34.  

It is also well-established that the electrostatic interactions made by polar groups are 

shielded in an aqueous environment, which implies that the desolvation cost of a 

polar group in the ligand could be high enough to compensate for its potential 

interaction with a polar group in the binding site6, 35. This is also reflected in the fact 

that charge-assisted hydrogen bonds are not necessarily associated with increase in 

binding affinity6.  

1.4.3. Flexibility 

The conformational flexibility of proteins is a well-known phenomenon and an 

important consideration in molecular recognition. Proteins are inherently flexible 

structures and conformational transitions of various scales play an important role in 

their function36. For example, the activity of HSP90 molecular chaperon is associated 
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with conformational transitions of an active site loop (residue 94-125 in yeast HSP90) 

which is also known as active-site lid37 (Figure 1.3). Colombo et al. used molecular 

dynamics simulations to suggest that these conformational transitions vary with the 

nature of binding partner which could probably explain nucleotide-sensitive activity 

and modulation of HSP9038.  

Upon ligand binding, protein binding sites exhibit a variety of motions ranging from 

small-scale side-chain rearrangements to loop movements in the active site. In some 

cases, undefined protein structures undergo complete organization upon ligand 

binding36. Surveys of X-ray crystallographic structures of proteins in their apo and 

holo forms indicate backbone motions of up to 1Å in 20% of binding site residues39 

and 25% of binding sites40.  

X-ray crystallography, despite producing the highest number of experimentally 

solved protein structures, is limited in terms of studying conformational changes in 

proteins associated with the activity. A partial picture can, however, emerge from 

multiple structures representing functionally relevant conformational states. For 

example, conformational changes associated with active-site “lid” of the HSP90 N-

terminal domain are suggested to be related to chaperone functioning of HSP90 

based on the X-ray crystallographic structures of unliganded, ligand-bound and 

mutant structures of N-terminal domain41. These data suggest that multiple 

conformational states along HSP90 chaperone cycle can be targeted using structure-

based drug design42. This is further supported by several structures of HSP90-ligand 

complexes emerging from drug design efforts that reveal altered conformational 

states of the active-site with different ligands43, 44.  
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 Nuclear magnetic resonance (NMR) is considered better suited to the study of 

structural dynamics of proteins. The main advantages are direct observation of 

protein in solution and the output in the form of an ensemble of low-energy 

conformations36. For example, data derived from 15N - 1H NMR experiments on 

mutant Sm14-M20, a Schistosoma mansoni fatty-acid binding protein, indicate 

differences in protein flexibility between apo and holo forms, particularly within the 

ligand binding region36, 45.  

Finally, computational approaches such as molecular dynamics (MD) simulations are 

used extensively to characterize protein flexibility36. Conformations generated from 

MD simulations can be used in other computational methods such as virtual 

screening, docking and scoring. Systems such as G-protein coupled receptors, 

(GPCRs) for which high resolution structural data is very challenging to generate 

using X-ray crystallography or NMR techniques, are widely studied using 

computational molecular dynamics. For instance, in one such study valuable 

predictive models were generated to successfully interpret QSAR data46.  

Continuing developments in these areas are expected to improve our understanding 

of the role of protein flexibility in protein function and molecular recognition36.  

1.5. Modelling and Prediction of Protein-Ligand Interactions 

Despite the inherent complexity of molecular recognition, computational methods 

have been extensively developed over past few years for modelling and prediction of 

protein-ligand interactions. These approaches can be divided into three main 

categories35. The categories here are listed in decreasing order of accuracy and 

computational demand. 
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1.5.1. Methods based on Free Energy Calculations 

Highly accurate modelling of protein-ligand binding is an extremely challenging task 

due to the complexity of the phenomenon. The principles of thermodynamics and 

statistical mechanics have been used to develop relatively accurate but 

computationally demanding treatment of protein-ligand interactions. These 

methods employ full-scale molecular dynamics simulation with explicit solvent and 

flexible protein and ligand molecules6, 35. Absolute or relative binding energies can 

be calculated in free energy calculation approaches. The absolute binding free 

energy calculations method, which are considered to be more accurate, involve 

separate simulation runs for solvated protein, ligand and the complex. No prior 

information on the structure and binding affinity of the complex is required6. In the 

case of relative free energy calculation methods, a known structure for the complex 

is used as reference and the difference in the binding free energy is calculated for 

the ligand of interest. The calculation is performed by alchemical transformation of 

reference ligand into target ligand. Molecular dynamics is used to exhaustively 

sample the configuration space35. The accuracy of these methods relies on the 

underlying atomic force field and the choice of an appropriate protocol for the 

problem at hand11, 35.  

1.5.2. MM-PBSA/GBSA Methods 

MM-PBSA (Molecular Mechanics with Poisson-Boltzmann and Surface Area model) 

and MM-GBSA (Molecular Mechanics with Generalized Born and Surface Area 

model) methods were developed in 1990s and have been in practice and 

continuously developed since then6, 35, 47. These methods are based on the principle 

that free energy of binding can be decomposed into individual terms that describe 
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important contributions to binding6. The sum of energetic contributions from 

individual terms such as intra-molecular terms, van der Waals interactions, 

electrostatic interactions and solvation is calculated for protein, ligand and complex 

structures. These energetic terms are calculated from molecular mechanics force-

fields such as CHARMm48 and AMBER49. The energies are calculated as an ensemble 

average over conformations generated from MD simulation or simple energy 

minimization.  Although conformations can be generated using explicit treatment of 

solvent, energy calculations are performed using implicit solvent models where 

solvent is represented as a continuum of high dielectric constant35.  

The polar interactions are therefore evaluated in the ‘presence’ of surrounding 

medium. Two major approaches in implicit solvent consideration are Poisson-

Boltzmann (PB) equation and Generalized Born (GB) model. PB equation gives the 

most rigorous treatment but is computationally expensive. GB method is based on 

approximation to PB equation50. Further details on these two methods are described 

in Section 1.6.4. The entropic contribution to binding is calculated by normal mode 

analysis of MD trajectories however in most applications involving similar ligands, 

this is considered to be constant35.  

1.5.3. Docking and Scoring  

Docking and scoring methods were designed to achieve high throughput 

computation of binding affinities. The accuracy is therefore less than the above 

mentioned methods. In general, docking and scoring involve generation of a set of 

poses for a ligand that can fit into a binding site. These poses are then rank ordered 

based on a scoring function35. A lot of scoring functions has been developed over the 

past few years. These can be classified depending on the approach that is used in 
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their formulation. Empirical scoring functions are based on the principle of additivity 

of individual terms contributing to total binding enthalpy6. These terms include 

important contributions to binding such as hydrogen bonds, hydrophobic 

interactions and ionic interactions and possibly entropic contributions. The weighted 

coefficients are adjusted to reproduce experimentally calculated binding affinities of 

a training dataset and derived using multiple linear regression and neural 

networks11. A generalized empirical scoring scheme can be described as: 

∑ ∆=∆ iii GfG  

where fi and Gi are the coefficient and free energy associated with an interaction 

term i. Some of the pioneering examples include SCORE151 and Chemscore52. One of 

the disadvantages of these scoring functions is that due to additivity of terms, larger 

ligands get higher score than smaller ligands53. This could in some cases ignore the 

fact that large ligands could accompany higher entropic cost of binding because of 

more rotatable bonds. In some cases, this is circumvented by considering the 

number of rotatable bonds during entropic estimation in these scoring functions54.  

Another group of methods known as knowledge-based scoring functions are rooted 

in inverse Boltzmann law. The fundamental idea is that the frequency of the 

occurrence of a particular structural arrangement of two types of atoms is related to 

its energy. The database of protein structures can therefore be used to derive 

statistical potentials for a given atom pair which can then be converted to a potential 

of mean force. These scoring functions benefit largely from huge number of protein-

ligand complexes to derive parameterization data but at the same time if a huge 

number of unique atom-atom pairs are included, there may not be statistically sound 

relationship for pseudo-potential of a particular atom-type54. Therefore, a careful 
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balance between well-defined atom-types and chemical diversity of interactions is 

treated. One such example is DrugScore5 which uses 17 atom types based SYBYL 

mol2 format54.  Other examples of knowledge-based scoring functions include 

BLEEP55 and PMF 56.  

The third class of scoring functions is known as force-field-based scoring functions. 

These methods use molecular-mechanics force-fields such as CHARMm48 and 

Amber49 to calculate enthalpy of binding. In most applications, values of non-bonded 

energy terms are pre-calculated on a grid and then interpolated to positions where 

atoms in docked protein-ligand complexes are located. The non-bonded terms 

normally include, van der Waals, electrostatic interactions and internal energy 

components related to bond lengths, bond angles, torsional angles. Additionally, a 

crude approximation of solvent effects by applying a distance-dependent dielectric 

constant can be added. More sophisticated approaches to account for long-range 

shielding of electrostatic interactions are implemented by combining Molecular 

Mechanics with Poisson-Boltzmann or Generalized Born approaches54.  

Force-fields contain parameters that allow for different atoms and their different 

properties. These parameterized are adjusted to reproduce experimentally or 

quantum-mechanically determined target data57. Therefore, quality of these 

parameters is extremely important in such calculations. Force-field based scoring 

could be time-consuming when applied on a large scale. Additionally, accurate 

modelling of charges is a considerable challenge54.   

Ferrara et al. showed in their assessment of most widely used scoring functions that 

the success rate of about 80% in terms of discriminating between correct poses 

among a set of decoys could be achieved for most of the scoring functions58. The 
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binding affinity prediction however remained challenging in most cases and at best a 

correlation coefficient of 0.51 was obtained for experimental and predicted values.  

1.6. Protein-Ligand Interactions in Drug Discovery 

The understanding of protein-ligand interactions and the ability to predict binding 

affinities are extremely important in drug discovery process. Despite their 

limitations, computational methods are extensively utilized in drug discovery 

campaigns. Structure-based drug discovery has become a vast field over the past few 

years because of continuous developments and several successful applications. The 

more recent trends, particularly connected to the contents of this thesis, are 

reviewed in the following. For instance, fragment-based lead discovery has emerged 

as one of the most successful approaches in drug discovery59. This has further 

increased the interest in computational methods for docking and scoring small 

molecules in protein binding sites.  

1.6.1. Introduction to Fragment-based Lead discovery 

Traditionally, drug discovery programs employ high-throughput screening (HTS) of 

huge corporate collections of compounds against the target of interest. Despite 

continuous developments, main challenges to HTS such as configuration of robust 

assays for screening number of compounds, insufficient coverage of chemical space 

and false-positive hits still remain60. Alternatively, fragment-based lead discovery 

(FBLD) methods for discovering potent lead compounds against drug targets have 

gained wide-spread interest in recent years. The size of fragments (molecular weight 

< 250 Da) allows a smaller library of compounds to sample a large chemical space 

and provide higher hit rates than screening of larger compounds as in high 
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throughput screening60. This is demonstrated by the fact that for fragments with up 

to 12 heavy atoms the chemical space is estimated to be 107 compounds whereas 

for drug-like compounds with 30 heavy atoms, this number increases up to 1060. The 

small size and little complexity of fragments also enable them to bind with target 

sites more frequently with low affinity (100μM to 10mM range)59. Most importantly, 

the ligand efficiency for fragments, which is defined as the amount of free energy 

change per heavy atom upon binding, remains as good as for larger hit molecules. 

Consequently, it has been shown that optimizing ‘hits’ from fragment screening is a 

promising alternative61,62.  

Several recent reviews have summarised fragment-based lead discovery, and a 

number of examples have been published that demonstrate the various medicinal 

chemistry strategies to develop low-affinity fragments into high-affinity inhibitors 

against different targets59, 63, 64, 65. 

Due to their size and weak binding, conventional methods for detecting binding and 

activity are not useful in fragment screening. Alternatively, biophysical methods such 

as Nuclear Magnetic Resonance (NMR), Surface Plasmon Resonance (SPR) and X-ray 

crystallography are employed in order to detect and characterize fragment binding. 

The prioritization of fragments prior to experimental screening is particularly 

attractive66. Computational methods have been shown to assist FBLD at various 

stages including fragment-library design, docking and scoring of fragments for 

screening and lead-optimization67.  

1.6.2. Predicting functional group position in binding sites – GRID and MCSS 

Algorithms to predict binding modes and affinity of small-molecule fragments and 

functional groups in binding sites were first developed before FBLD came into 
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practice. Most notably, two pioneering efforts in this case were the GRID program by 

Goodford68 and Multiple Copy Simultaneous Search (MCSS) method from Karplus 

and co-workers69. Essentially, the idea behind these methods was to probe a protein 

active site for energetically favourable positions of polar, non-polar and charged 

functional groups of the ligand.  

GRID represents chemical probes as single spheres. The interaction energy is 

calculated on a grid covering the target molecule or the binding site. The probes are 

mostly those molecules that can be represented as single spheres, such as water and 

methane, but ‘multi-atom’ probes can also be used by combing results from single-

sphere probes70. The GRID energy function is an empirical scoring function which 

includes terms for non-bonded interactions, including van der Waals, electrostatic 

and hydrogen bonding interactions which are parameterized on the basis of 

equivalent terms in CHARMM energy function68. GRID has been successfully applied 

in the improvement of lead compounds and de novo ligand design70, 71. 

MCSS takes functional groups, fragments and even larger molecules (up to 30 atoms) 

as probes. Several copies of the probe (from 1,000 to 10,000) are randomly 

distributed in the binding site and energy minimization is performed simultaneously 

on all copies using time-dependent Hartree approximation69. This means that during 

minimization copies of the probe experience force-field only from the protein, 

independent of each other. The probe molecules are allowed to move under the 

effect of force-field and different copies converge to similar positions during 

minimization in which case duplicates are removed. At the end of minimization, a 

number of energy minima are obtained each of which is associated with an 

interaction energy and geometry. The CHARMm energy function is given in Table 5 
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(as molecular mechanics energy component, EMM).  The output from MCSS was used 

for the construction of ligands from functional group positions and binding modes 

using different strategies72, 73 and applied on different protein targets such as HIV-1 

aspartic proteinase72, human α-thrombin74, picornavirus capsid proteins75 and others 

(see review by Schubert and Stultz76). 

The X-ray crystallographic data on the binding of small probe molecules such as 

organic solvents to protein binding sites also became available based on a technique 

called Multiple Solvent Crystal Structures (MSCS)77, 78. The comparison of 

experimental positions of solvent probes with predicted positions from MCSS and/or 

GRID was performed for RNase A79, thermolysin80, 81 and elastase82 which indicated 

good correlation in some cases but in others it highlighted the shortcomings of 

computational methods. Most of the poor quality predictions were associated with 

the lack of appropriate treatment of desolvation and conformational flexibility of the 

receptor76.  

In order to overcome some of the shortcomings, energy minima obtained from 

mapping algorithms can be evaluated based on rigorous scoring functions that 

estimate binding affinity based on implicit solvent models and therefore take the 

solvation component of binding free energy into account. In one such application, 

the binding free energy of MCSS minima was estimated based on contributions from 

bonding energy terms, van der Waals interaction and polar and non-polar solvation 

free energy74. The polar solvation free energy contribution was further divided into 

inter-molecular shielded electrostatic interactions, protein and ligand desolvation 

energy which was evaluated by solving linearized Poisson-Boltzmann (PB) equation. 

The ranking of energy minima produced in this was shown to be more realistic and in 
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agreement with experimental data. Solvation correction in this way is accompanied 

by additional computational cost74, 76. There have been significant developments in 

the use of implicit solvent methods in biomolecular simulations and estimation of 

binding affinity for protein ligand complexes50. Scoring schemes based on such 

methods have been employed in docking and virtual screening47, 83-85. 

1.6.3. Alternative computational approaches for solvent mapping and fragment 

docking 

Other approaches have also been developed for computational solvent mapping. 

Dennis et al. developed CS-Map algorithm to address the problem of false-positives 

by using a scoring function that included a desolvation term86. The method was used 

to predict solvent positions and to identify consensus sites for seven enzymes87. A 

‘consensus site’ can favourably interact with most of the probe molecules and is 

shown to be a major part of the binding site. The results from this study showed 

good agreement with experimental mapping results where such data were available. 

CS-Map was further developed into FT-Map which uses fast Fourier transform 

correlation approach to perform the initial search step88. The exhaustive evaluation 

of an energy function is done on rotational and translational grids for billions of 

conformations of probe molecules in a so called rigid body docking step. After the 

initial docking, the top 2000 poses for the probe molecule are further minimized 

using CHARMm potential with an analytic continuum electrostatics model. Finally, 

minimized poses are clustered ranked according to their Boltzmann averaged 

energies. The method was applied on elastase, for which solvent binding sites were 

identified in good agreement with experimental data. Similarly, for rennin, FT-Map 

was able to identify consensus sites that trace out the shape of inhibitor, aliskiren. 
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Multiple solvent crystal structure (MCSS) approach and FT-Map were used in 

conjunction on DJ-1 and Glucocerebrosidase and similar binding hotspots were 

identified89. 

Majeux et al. developed a method for docking and scoring small to medium-sized 

fragments in protein binding sites based on continuum electrostatic approach, hence 

named, Solvation Energy for Exhaustive Docking (SEED)90. Polar fragments are 

initially placed in the binding site making at least one hydrogen bond with optimal 

geometry. Apolar fragments are placed in hydrophobic region that are pre-evaluated 

for having low electrostatic desolvation and favourable van der Waals interactions 

with an uncharged probe sphere. The binding energy is then calculated for each 

fragment position where bad contacts are not present as a sum of van der Waals and 

electrostatic terms. The electrostatic term includes screened fragment-receptor 

interactions and fragment and receptor desolvation components which are 

calculated based on continuum electrostatic model90.  

In a later version of the SEED program, exhaustive electrostatic calculations are 

performed after a pre-processing step with approximated solvation treatment91. The 

so called electrostatic energy with fast solvation is based on linear distance-

dependent dielectric model and Columbic approximation for electric displacement92. 

It was shown to speed up the docking and scoring process by discarding 

unfavourable binding modes and correct rank ordering for micro-molar inhibitors or 

close analogs of a set of proteins was also obtained. Further development of 

fragment docking methods in the Caflisch group includes flexible docking of 

combinations of three SEED-docked fragments using FFLD that uses a genetic 

algorithm and an efficient scoring function93. These triplets are then scored by a 
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variation of linear interaction energy model94. The application of these methods in 

development of low molecular inhibitors of four proteases and two kinases has been 

reviewed elsewhere95.  

Recently, another method for finding the most probable position and orientation of 

small ligands on protein surfaces has been developed96 based on an integral 

equation theory of liquids, known as three-dimensional reference interaction site 

model (3D-RISM)97, 98. This method generates distribution functions of solvent site on 

a 3-D grid encompassing protein surface. The solvent is a mixture of water and target 

molecule for which spatial distributions of atomic sites are obtained. From the peaks 

of these distributions, favourable positions and orientations of ligand molecules are 

determined. The method was applied to thermolysin with solvent probes for which 

MSCS data are available81 and sufficient agreement with experimental results was 

obtained96. 

1.6.4. Treatment of desolvation in solvent mapping/fragment docking 

One of the most important issues in solvent mapping, fragment docking and protein-

ligand docking in general is the accurate treatment of electrostatic interactions that 

take into account the solvent effects. The screened electrostatics interactions can be 

treated with different approaches or desolvation models. The methods developed 

after GRID and MCSS, as described earlier, address this issue in different ways. To 

date, continuum electrostatics models have been developed extensively and applied 

widely for protein-ligand binding affinity prediction. The relative success of such 

methods comes from the treatment of free energy of solvation using an implicit 

solvent model with continuum dielectric approach.  
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In a continuum dielectric implicit solvent model charged atoms in the solute 

molecules are embedded in a low-dielectric cavity, representative of the protein 

interior and are surrounded by a high dielectric continuum representing the 

characteristics of water99.  

The classical force-field based calculation of the total energy, ET, of a molecule is 

based on the assumption that it can be decomposed into gas-phase potential energy, 

Egas, and the free energy of solvation, ∆Gsolv,which is the free energy of transferring 

the molecule from vacuum to the solvent100.  

ET = Egas + ∆Gsolv 

The implicit solvent model is then used to calculate the solvation free energy which 

is further divided into two sub-components. 

∆Gsolv = ∆Gelec + ∆Gnp 

∆Gelec represents the electrostatic component which is the amount of free energy 

required to charge the molecule from zero to full charge in the presence of solvent. 

∆Gnp is non-polar component of salvation energy, which is the amount of free energy 

required to solvate the molecule when all charges have been removed.  

The accurate estimation of the electrostatic potential used to calculate the energy is 

therefore essential to this approach. The most rigorous treatment is provided by 

Poisson theory which describes the electrostatic potential φ(r) as a function of the 

charge density ρ(r) and the position-dependent dielectric constant ε(r)101: 

[ ] )(4)()( rrr πρφε −=∇∇  

 Additionally, charges from mobile ions can also be considered in the calculation of 

φ(r) from by assuming Boltzmann distribution of ions inside the potential field. The 

charge density ρ(r) in this case is equal to: 
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Where nj and zj are the molar concentration and charge of each ionic species j and 

|e| is the elementary charge100. 

Substituting the expression for ρ(r) into the Poisson equation gives the non-linear 

form of the Poisson-Boltzmann (PB) equation. A linearized form of PB equation is 

more commonly used in biomolecular modelling and simulation102, 103.  

[ ] )()()(4)()( 2 rrrrr φεκπρφε +−=∇∇  

The Debye-Huckel screening parameter, κ, encapsulates the screening effects of 

monovalent salt ions and is assumed to be 0.1Å-1 at physiological conditions. The 

electrostatic potential calculated from this equation is then used to calculate the 

∆Gelec with the following expressions: 
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Due to the computational cost associated with this approach, alternative methods 

have been developed with efficient approximations. Generalized Born (GB) model is 

one such method which is based on Born expression for the solvation free energy of 

a single ion in a dielectric medium50, 99. A general expression for the electrostatic 

solvation energy under GB formalisms is given as50, 99: 
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where εp and εw represent solute and solvent dielectric constants, ri,j is the distance 

between atoms i and j, αi is the GB radius of atom i. The factor F is a scaling factor for 

GB radii, whose most commonly used value is 4. The GB radius of an atom reflects 
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the distance of the atom from the solvent boundary50, 99. It was shown that in order 

to reproduce results obtained from PB equation, the calculation of Born radii or 

effective Born radii is crucial104. Poisson theory can be used to calculate the ‘perfect’ 

value for GB radii as it reproduces the results obtained from PB equation but the full 

advantage of GB formalisms lies in the alternative faster methods. Coulomb field 

approximation can be used to calculate GB radii for an atom with a charge at its 

centre50, 105 and further developments have led to its application on biomolecules 

with off-centre charges106, 107. The definition of dielectric boundary is also of 

paramount importance in the accuracy of continuum dielectric models which in turn 

depends on the calculation of molecular surface. The exact calculation of solvent 

accessible surface represents a sufficiently accurate model for calculation of 

electrostatic potential with Poisson theory100. GB methods approximate molecular 

surface which leads to disagreement with the calculations based on PB equation. As 

a consequence much effort has been focused on approximating molecular surface 

that takes into account solvent excluded low dielectric cavities50. One such method, 

called Generalized Born using Molecular Volume (GBMV) uses a combination of 

Coulomb filed approximation and calculation of molecular surface to produce very 

good agreement with PB equation-based calculations107.  

The non-polar contribution to solvation free energy is computed based on the 

approximation that the van der Waals interactions between the solute and solvent 

molecules are proportional to the solvent accessible surface area of the solute 99. An 

appropriate relationship for this is Gnp = γSASA + b, where γ and b are constants 

derived from experimental data and SASA is the solvent accessible surface area 50, 

108.  
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1.7. Aims 

This thesis is based on the research work undertaken under two broad themes; the 

analysis of protein-ligand interactions and prediction of energetically favourable 

positions of small-molecule fragments in protein binding sites.  

The wealth of information in the databases of protein-ligand complexes can be used 

to carry out analyses that improve our understanding of molecular recognition. 

Similarly, docking calculations performing on a subset of high-resolution structures 

shed light on strength and weaknesses of scoring functions. The first part of the 

thesis (Chapter 2 and 3) is related to this aspect of the project, as explained in detail 

in the next section. 

The second theme is covered in the second part (Chapter 4 and 5) of the thesis. With 

structure-based design gaining a very special role in drug discovery process, 

substantial efforts are devoted to the development and improvement of 

computational approaches for predicting protein-ligand interactions. Therefore, 

application of molecular modelling approaches to study the most challenging aspects 

of binding such as flexibility, water molecules, solvation and desolvation is an active 

and exciting area of research.  

1.7.1. Unsatisfied Hydrogen Bonds 

It has been noted that studying repulsive interactions in protein-ligand complexes is 

as important for our understanding of molecular recognition as the study of 

attractive interactions11. As noted previously, presence of unsatisfied hydrogen bond 

donors and acceptors in protein interior is a rare phenomenon. A buried donor or 

acceptor at protein-ligand interface should also cause destabilization6. The main 
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aims of this study were to conduct a survey of a set of protein-ligand complexes to 

study and characterize unsatisfied buried donors and acceptors in the binding 

interfaces. Additionally, the use of unsatisfied donors/acceptors as a metric to 

discriminate between good and bad docking poses was also investigated (Chapter 2).  

1.7.2. Weak Hydrogen Bonds 

Weak hydrogen bonds have been observed in small molecules and protein-ligand 

complexes and implicated in phenomena such as crystal packing, supramolecular 

assembly and molecular recognition. Non-bonded contact analysis and systematic 

surveys of structural databases are routinely used to study these interactions. In this 

study weak interactions between ligand aromatic ring acceptors and donors in 

protein-binding sites were analyzed to study the distributions of geometric features 

and the potential effect of ring substitutions on interactions geometries (Chapter 3). 

1.7.3. Prediction of fragment positions in binding site 

As noted in Section 1.4, the accurate prediction of functional groups in protein 

binding sites with favourable interactions and correct geometry is of fundamental 

importance in ligand design but represents a formidable challenge. Various 

approaches have been developed over the last three decades to address this 

problem. In this part of the project, the application of a CHARMm force-field based 

method, Multiple Copy Simultaneous Search (MCSS), on X-ray crystallographic 

structures of protein-fragment/solvent complexes is investigated. MCSS calculations 

were performed on solvent mapping dataset and compared with another solvent 

mapping technique (Chapter 4). Similarly, calculations were performed for fragment 

docking dataset but with additional rescoring steps to overcome the shortcomings of 
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MCSS. Additionally, various aspects of calculations such as comparison with other 

docking programs and the affect of multiple receptor structures on the success rate 

were also investigated (Chapter 5).  
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Chapter 2  

Unsatisfied Hydrogen Bond Donors and Acceptors at Buried 

Protein-Ligand Interfaces 

2.1. Introduction 

Hydrogen bonding is the most important directional interaction underpinning 

protein structure109 and has been studied extensively using experimental and 

theoretical approaches. The role of hydrogen bonding in protein folding was first 

recognized in Pauling's proposals for secondary structure elements110, 111. The 

experimental determination of protein structures then provided the evidence which 

contributed to a better understanding of the role of hydrogen bonding in stability of 

protein structure and protein folding19.  

In one of the first benchmark studies of hydrogen bonding in proteins, Baker and 

Hubbard surveyed 12 globular proteins for hydrogen bonding patterns and 

characteristics109. In their analysis, they observed that approximately 11.2% and 

12.4% of the main-chain CO and NH groups, respectively, were not explicitly 

hydrogen-bonded, and suggested that spatial constraints within the structure might 

prevent some of the carbonyl groups from satisfying their full hydrogen bonding 

potential. In a later study of hydrogen bonding in protein structures, McDonald and 

Thornton showed that these percentages might also include those groups that 

interact with disordered solvent and are expected to be satisfied19. They investigated 

the satisfaction of hydrogen bonding potential in a set of 57 high resolution protein 

structures (resolution 2.0 Å or better). They identified unsatisfied donors and 
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acceptors using different sets of criteria. In standard criteria, hydrogen-acceptor 

distance of 2.5 Å and hydrogen bond angle of 90°, 5.8% and 2.1% of main chain 

oxygen and nitrogen atoms, respectively, were observed to remain unsatisfied 

(Figure 2.1). In relaxed criteria, hydrogen-acceptor distance of 3.0 Å and hydrogen 

bond angle of 60°, these percentages reduced to 1.3% and 1.8%. They also showed 

that, in most of the cases, failure to form a hydrogen bond could be explained on the 

basis of factors such as electronic properties of the donor/acceptor type, the poor 

stereochemical quality of the structure, the difficulty in resolving some side-chains or 

compensating favourable interactions. Savage et al. surveys a set of 90 different 

protein structures at resolution 1.9 Å or better to study the correlation between the 

loss of potential hydrogen bonds and compensating stabilizing factors such as 

hydrophobic effect, ion pairs and disulfide bridges112. They noted that the loss of 

potential hydrogen bonds was highly correlated with buried surface area. Joh et al. 

observed in a set of six membrane protein structures that about 4% of polar atoms 

were not hydrogen bonded113. They also showed using double-mutant cycle analysis 

that hydrogen bonding interactions in membrane proteins were only modestly 

stabilizing.  

 

Donor
H

Accceptor
D

r

w

 

Figure 2.1. Hydrogen bonding criteria from McDonald and Thornton19. r, hydrogen-

acceptor distance, D, donor-acceptor distance, w, acceptor-hydrogen-donor angle. 

 

 

Geometric criteria for hydrogen bonds: 
r ≤ 2.5Å 
D ≤ 3.9Å 
w ≥ 90° 
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In a more recent study, Fleming and Rose re-surveyed the unsatisfied groups in the 

McDonald study19 and showed that almost all instances of unsatisfied donors or 

acceptor could either be explained or appeared because crystal structures in 

databases represented time-averaged snap-shots and therefore could fail static 

geometric tests for hydrogen bonding114.  

Hydrogen bonding also plays a major role in stabilizing protein-ligand complexes. It 

is, therefore, reasonable to expect that ligand binding should be accompanied by the 

satisfaction of the hydrogen bonding potential along the binding interface. The 

presence of unsatisfied buried hydrogen bonding groups in an apolar interface can 

reduce binding affinity significantly10. For example energetic penalty of up to 5 kcal 

mol-1 was reported for burial of a hydroxyl group in a hydrophobic pocket of mouse 

major urinary protein (MUP-I)115. The inclusion of such destabilizing terms has been 

highlighted as an important consideration in developing scoring functions for 

protein-ligand docking116, 117. For example, Reulecke et al. developed a scoring 

function HYDE that takes into account the unfavourable contribution resulting from 

dehydration of polar groups that fail to form hydrogen bonds with ideal geometry 

after protein-ligand binding117. The application of HYDE on test cases resulted in 

enrichment factors similar to or better than Flex118 in 70% of the cases and worse in 

30% of the cases. Similarly, in HINT forcefield, polar-polar interactions are either 

favoured or penalized depending on the charge and acid/base character of 

interacting atoms119.   
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2.2. Aims 

The aim of this study was to quantify the occurrence of unsatisfied or "lost" 

hydrogen bonds at protein ligand interfaces and assess whether such lost 

interactions could be used to discriminate between true and false ligand poses in 

computational docking.  To achieve this, a set of 187 protein ligand complexes was 

analyzed to survey the number of unsatisfied hydrogen bond donors and acceptors 

in these binding sites.  The same data set was then used in a docking study to assess 

whether unsatisfied hydrogen bonds could identify incorrect docking poses. 

2.3. Methods 

2.3.1. Dataset and Programs 

The CCDC/Astex Test Set120 was chosen as the data set to study the distribution of 

unsatisfied donors and acceptors in buried protein-ligand interfaces. This set 

contains 305 complexes chosen for evaluation of docking programs and other 

calculations related to protein-ligand interactions. It provides a diverse range of 

complexes at varying resolution with manually assigned protonation states for 

ionizable groups. An initial survey of the whole data set using protocols described 

below indicated a dependence of the number of unsatisfied hydrogen bonds on 

resolution. Therefore the final analysis covers a subset comprising 187 structures 

with resolution 2.5 Å or better.  

The following protocols for various steps were written as Python scripts, using the 

MolKit package121 for structure data parsing. For each complex in the data set, the 

ligand was identified and any atom belonging to the polypeptide, cofactors, metals 
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or water molecules lying within 7.0 Å of any ligand atom was considered to be part 

of the binding site. 

2.3.2. Atom Typing 

Following the extraction of ligands and binding sites, the next step was to type each 

polar atom according to its potential for being a hydrogen bond donor, acceptor or 

in some cases both.  

Table 2.1. Typing of protein and ligand polar atoms with respect to their hydrogen 

bonding potential. 

Proteins (atom names) 

Donor Acceptor Donor-Acceptor 

Main-chain N Main chain O Ser OG 

Asn ND2 Asp OD2, OD2 Thr OG1 

Gln NE2 Glu OE1,OE2 Tyr OH 

Trp NE1 Met SD  

Cys SG Cys SG (in disulphide)  

Lys NZ Asn OD1  

Arg NE, NH1, NH2 Gln OE1  

His ND1/NE2 (protonated) His ND1/NE2  

Ligands (SYBYL atom types) 

Donor Acceptor Donor-Acceptor 

N.am, N.4, N.pl3 N.1, N.ar1  N.3, N.2 

 O.2, O.3, O.co2  O.3 

 

Hydrogen atoms for protein polar atoms and protonation states had previously been 

assigned to the dataset120, so atom typing was therefore straightforward for 

proteins. The atlas of side-chain and main-chain hydrogen bonding122 was used to 

construct a simple dictionary of donor, acceptor and donor-acceptor groups (Table 
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2.1), with additional entries to reflect the protonation states of atoms in Asp, Glu 

and His residues.  For Cys SG atoms, the presence of a disulphide bond was checked 

before typing.  

SYBYL atom types for ligands were used to define donor/acceptor types as shown in 

Table 1. The atom types that can only have either donor or acceptor role were typed 

accordingly. The atom types that are able to switch roles between donor and 

acceptor (such as N.3) were assigned donor or acceptor type by checking for the 

presence of attached hydrogen atoms. Finally, the atom type O.3 (hydroxyl oxygen) 

was typed as both donor and acceptor.   

 

2.3.3. Solvent Accessibility Calculations 

Only donors/acceptors with zero solvent accessible surface area were chosen for 

subsequent identification of hydrogen bonds. Solvent exposed donors and acceptors 

that do not appear to be explicitly hydrogen bonded might still be interacting with 

disordered solvent molecules.  Mobile solvent molecules are very difficult to 

visualize in X-ray structures therefore in order to prevent false-positives, only 

completely buried donor/acceptors atoms were investigated in this study. NACESS123 

was used to calculate accessible surface area (ASA) which is based on Lee and 

Richards algorithm124. ASA is calculated for each atom by rolling a probe of 1.4Å 

radius over the van der Waals surface of the complex (Figure 2.2). If the resulting 

ASA value is zero, only then it is considered as a completely buried donor or acceptor 

atom.  
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Figure 2.2 Solvent accessible surface calculation using Lee and Richards 

algorithm124. Surface traced by a solvent probe over van der Waals radii of atoms on 

target molecule is considered to be solvent accessible. 

 

2.3.4. Optimization of side-chain orientations 

Ligand binding sites in proteins could contain side-chains for which experimentally 

indistinguishable orientations are possible for example, Asn, Gln and His. This arises 

from the problem that due to the similar size of C, N and O atoms, they are very hard 

to distinguish in crystal structures. As Asn, Gln and His contain symmetrical side-

chains therefore opposite orientations to those assigned in the structure could 

possibly occur. In the dataset Astex CCDC dataset, at least His side-chain orientations 

and their protonation states were manually assigned by authors120.  

For optimization of ‘flip orientations’ of Asn and Gln, the program REDUCE125 was 

used. REDUCE assigns optimal flip states by optimizing hydrogen bonding and van 

der Waals overlapping. Additionally, it also optimized rotatable groups such as OH, 

SH, NH3+ and assigns an optimal orientation based on the same principle125. The 

updated coordinates of each PDB file are then used for further analysis.  

Probe (water) 
diameter 1.4Å 

vdW atomic 
radii  

Solvent accessible 
surface area 
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2.3.5. Identification of hydrogen bonds 

The hydrogen bonds formed by buried donors and acceptors from the protein and 

the ligand were identified using the relaxed criteria, defined by McDonald and 

Thornton19, of donor-acceptor separation ≤ 3.5Å, hydrogen-acceptor distance ≤ 2.5 

Å, hydrogen bond angle ≥ 60°. Occasionally, buried donor and acceptors make 

hydrogen bonds with interstitial water molecules at the protein-ligand interface. To 

allow for the disorder of such solvent molecules, the hydrogen bonding criteria is 

further relaxed by considering only the donor-acceptor distance at a cut-off value of 

4.5 Å. A hydrogen bond is implied if a water molecule is found within the cut-off 

value, despite no explicit hydrogen bonding interaction.  

2.3.6. Calculation of Normalized B factors 

The normalized B factor values for individual atoms were derived according to the 

method of Parthasarathy and Murthy126. Donors and acceptors atoms were divided 

into hydrogen-bonded and unsatisfied groups. Within each group, for every atom, 

the B factor of corresponding Cα atoms was recorded. The mean B factor of Cα 

atoms within each group could this be calculated by: 

N

b
b i∑=α  

where bi is B factor of ith Cα atom. 

After obtaining bα, the standard deviation, of donors and acceptors, about this mean 

value was calculated for each group as follows: 

N

bb∑ −
=

2)( ασ  
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where b is the original B factor of the donor or acceptor atom and N is the total 

number of donors and acceptors in the group (hydrogen-bonded or unsatisfied). 

The values of these two measures, bα (mean B factor of Cα atoms) and σ (standard 

deviation about bα) were used to calculate normalized B factor of each donor or 

acceptor, as follows:  

σ
αbb

B
−=′  

where b is the original B factor of the donor or acceptor atom. 

 The distributions of normalized B factors (B’) across both groups, hydrogen-bonded 

and unsatisfied donors/acceptors, were then compared for analysis. 

2.3.7. Ligand Docking 

Ligands in the subset of 187 complexes were docked into their corresponding 

protein structures using rDock127. rDock uses a steady state genetic algorithm for 

docking search. The input ligand centre of mass is placed at the centre of binding site 

and then all rotatable bonds are randomized. The resulting poses are scored using an 

empirical scoring function. The scoring function is based on the terms that account 

for hydrogen bonds, attractive lipophilic interactions, repulsive steric interactions, 

positively-charged carbon-acceptor interactions, aromatic stacking interactions, 

donor-donor and acceptor-acceptor interactions and finally an estimate of entropy 

of ligand binding127. The overall score is a weighted sum of these terms and 

weighting coefficients are derived to reproduce experimental binding data.  

In a variation from the standard scoring function, polar repulsive terms in the inter-

molecular receptor-ligand interaction component are replaced by desolvation terms 

based on a weighted solvent accessible surface area model. Both the standard 
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scoring function and desolvation scoring function were used in separate docking 

runs.  

Before docking, the conformation of each of the ligand structures was energy 

minimized using the obminimize utility of Open Babel128 and then docked into the 

active site. The active site is defined as a predefined volume around crystal pose 

which is a spherical cavity with 10Å radius from the centre of ligand, excluding 

volume occupied by receptor atoms. For each ligand 20 docked poses were 

generated and the RMSD of each pose from the crystal pose was calculated. The 

fraction of unsatisfied ligand donors and acceptors was then calculated for each 

pose.   

2.4. Results 

2.4.1. Correlation with resolution 

An initial survey of the complete data set of 305 protein-ligand complexes, suggested 

that the percentage of unsatisfied donors/acceptors increased as the resolution 

decreased.  To characterize this, an average value for the percentages of unsatisfied 

main-chain NH and CO in binding sites was calculated for all the structures of a 

particular resolution.  Figure 2.3 shows a plot of this average against the resolution 

range.  The gradual upward trend can be attributed to the quality of structures 

affecting the accuracy of the calculations. Manual inspection of a few structures 

showed this was largely due to false positives where the unsatisfied 

donors/acceptors are just outside the cut-off criteria.  Further analysis was, 

therefore, restricted to the 187 structures with resolution 2.5 Å or higher.  
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Figure 2.3. The average fraction of unsatisfied main-chain NH and CO groups, F, at 

different crystallographic resolutions. Crystal structures in each resolution value 

shown at X-axis were grouped together and their average fractions of unsatisfied 

main-chain NH and CO groups were plotted against the resolution. 

 

2.4.2. The percentage of unsatisfied buried donors/acceptors 

A total of 15, 542 polar groups at buried protein-ligand interfaces was surveyed in 

this subset of 187 structures. The percentage of unsatisfied groups for both proteins 

and ligands are shown in Table 2.2.  Unsatisfied donors/acceptors appear roughly at 

similar frequencies in both proteins and ligands. The percentages of unsatisfied 

main-chain NH and CO groups (2.02% and 2.72%, respectively) are similar to those 

found in the McDonald and Thornton survey for protein core regions (1.3% and 

1.8%, respectively).  A higher percentage of unsatisfied protein donors/acceptors 

comes from side-chains atoms which has also been observed in the previous 

analyses of internal protein hydrogen bonding patterns19, 114. Table 2 shows the 

number of unsatisfied donors/acceptors across different types of side chain and the 

ligands.  Overall, these results show that, as with the protein interior, losing a 

hydrogen bond in the binding site upon ligand binding is also an extremely low 
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incidence occurrence. For ligands, the major contribution of unsatisfied groups 

comes from polar atoms that are involved in weak interactions, most prominently, 

CH-O and NH-π hydrogen bonds.   

Table 2.2. The percentage of buried unsatisfied donors/acceptors at protein-ligand 

interface. 

Type Total Unsatisfied %age 

Main-chain donors 4453 90 2.0 

Main-chain acceptors 4506 123 2.7 

Side-chain donors  2469 67 2.7 

Side-chain acceptors 2873 189  6.6 

Ligand donors 428 5 1.9 

Ligand acceptors 813 29 4.4 

 

It was noticed that out of 15,542 total buried polar atoms surveyed, in 4,601 cases, 

either protein or ligand atoms were involved in hydrogen binding with interstitial the 

binding site also take part in polar interactions mediating the binding of ligand. One 

such example from chloramphenicol acetyltransferase complex with 

chloramphenicol is shown in Figure 2.4. 

 

 

 

 

 

Figure 2.4. Water-mediated hydrogen bonds in chloramphenicol acetyltransferase- 

chloramphenicol complex (PDB code: 3CLA). Such water molecules in the binding 

site were considered during the identification of unsatisfied hydrogen bond donors 

and acceptors. 

Chloramphenicol 
HOH26 

HOH137 

ILE147 
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2.4.3. Normalized B factor profiles 

B factors in protein structures reflect thermal fluctuation and positional disorder of 

atoms and therefore their analysis can provide information about protein stability 

and flexibility129. Normalized B (B') factors can be calculated (as explained in Section 

2.3.6) to compare among different categories of atoms in crystal structures. Previous 

analyses demonstrated that high-resolution structures show characteristic B factor 

profiles, with two peaks at -1.1 and 0.4, representing buried and exposed residues, 

respectively.  The difference between the number of satisfied and unsatisfied donors 

and acceptors is very large, therefore, to compare the B' factor profiles, the number 

of satisfied donors/acceptors was scaled down to reflect similar sample size. The 

scaling factor is simply the ratio of satisfied to unsatisfied atoms. The resulting plots 

of B' factor distribution are shown in Figure 2.5. The similar B' factor profiles suggest 

that the occurrence of unsatisfied donors/acceptor surveyed in this study is not 

associated with disorder or flexibility of the structures. 

 

 

 

 

 

Figure 2.5 Normalized B factors, B´, for satisfied and unsatisfied donors and 

acceptors. For each group of atoms B' factors were calculated for comparison, as 

described in 'Methods'. 
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2.4.4. Docking Results 

The success rate of docking programs is usually reported as the percentage of test 

cases in the dataset for which the top scoring pose has an RMSD ≤ 2.0 (or 3.0Å) from 

the crystallographically determined binding pose58, 120. The dataset used in this study 

is an extension of the original GOLD validation dataset. The success rate of GOLD on 

the original validation set was reported to be 71% at RMSD ≤ 3.0Å120. In this study, 

using rDock standard and desolvation scoring functions, we observe success rates of 

65% and 66%, respectively. The scoring function has little effect on docking output; 

therefore all subsequent analysis is for poses generated using the desolvation 

scoring function.   

The native binding pose is amongst the 20 poses generated by rDock for more than 

90% of the dataset. However, these do not all receive the highest score, highlighting 

that improved scoring could increase docking performance.  Figure 2.6 shows a plot 

of the fraction of unsatisfied donors and acceptors against the RMSD between the 

top scoring docked poses and crystallographically observed poses, presented for 

proteins, ligands and both proteins and ligands.  The large number of points on the 

horizontal axis above RMSD of 3Å, shows that a substantial number of the top 

scoring poses have no unsatisfied hydrogen bonds (F = 0.0), but are docked far from 

the crystallographically observed position.  This is emphasized in Table 3.  This 

summarizes the number of complexes for which the poses have different fractions of 

lost hydrogen bonds for different RMSD values.  The number of X-ray poses with 

different fractions of lost hydrogen bonds is also listed.  
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Figure 2.6. Fraction of unsatisfied donors and acceptors observed in top-scoring 

docking poses. Fractions are plotted (for ligands, protein binding sites and for both) 

against RMSD of the top scoring pose from the crystallographically determined pose. 

The scatter plots indicate that the fractions are somewhat similar for correct and 

incorrect docking solutions (marked by 3.0Å RMSD cut-off from the X-ray pose). 

 

2.5. Discussion 

2.5.1. Energetics of Lost hydrogen bonds  

Intra-peptide hydrogen bonds are important for the stabilization of protein 

structures but there has been some debate about the energetic contribution made 

by each hydrogen bond114.  For example, calorimetry experiments by Sholtz et al. 

Correct 
docking 
solutions 

Wrong 
docking 
solutions 



60 
 

indicate that the enthalpy of alanine helix formation in water was estimated  about 1 

kcal mol-1 for a hydrogen bond130, whereas the enthalpy of an intrapeptide hydrogen 

bond was estimated about 12 kcal mol-1 by Makhatadze and Privalov131. Myers and 

Pace estimated a net conformational stability of -1 to -2 kcal mol-1 per intrapeptide 

hydrogen bond for proteins by making series of single residue polar to non-polar 

mutations132. Similarly, buried hydrogen bonds have been estimated to contribute as 

much as -3.5 kcal mol-1 18.  Despite the variation in these estimates of net energetic 

contribution, it is clear that intrapeptide hydrogen bonds stabilize protein structure 

and their loss will therefore result in conformational instability114.  

The results of our analysis of lost protein hydrogen bonds at the interface of protein-

ligand interactions correlate closely with those of McDonald and Thornton for 

internal protein hydrogen bonds.  In both cases, between 1-3% of main chain NH or 

CO hydrogen bonds are not made.  We can apply the Boltzmann hypothesis to relate 

the probability of the occurrence of structural interactions to free energy133, using 

the following expression: 

RTEhbep /∆=  

Considering various estimates for the energetic cost of losing a buried hydrogen 

bond, this equation gives a probability ranging from 0.00273 (ΔEhb = -3.5 kcal mol-1) 

to 0.038 (ΔEhb = -2 kcal mol-1). In other words, the percentage of unsatisfied groups is 

expected to fall in the range of 0.27% to 3.8%, comparable to the total percentage of 

unsatisfied donors/acceptors observed in this study (3.23%, Table 2.2). If we 

consider only main-chain NH and CO groups to be true representatives of the 

population of unsatisfied donors/acceptors, the percentage falls to 1.37%.  The low 

incidence of buried unsatisfied hydrogen bonding groups in both protein core 
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regions and buried protein-ligand interfaces is therefore consistent with each 

hydrogen bond contributing a few kcal mol-1 to the stability of the system.  

2.5.2. Identification of lost hydrogen bonds 

The positioning of H-atoms is crucial in identifying unsatisfied donors and acceptors. 

The identification of unsatisfied hydrogen bond donors and acceptors is complicated 

by factors such as ambiguity in the position of hydrogen atoms, experimentally 

indistinguishable side-chain orientations and the presence of disordered solvent. For 

groups with unambiguous hydrogen positions such as backbone NH (Fig 4A, PHE442 

main-chain NH PDB code: 1tka) the standard criterion for identifying hydrogen bonds 

is most sufficient to identify hydrogen bonds. In such cases, the position of the 

hydrogen atom can be inferred from the peptide bond geometry. The position of the 

hydrogen atom can, however, be ambiguous (Fig 2.7B, TYR448 OH PDB code: 1tka) 

and it becomes quite difficult to ascertain hydrogen bonding partners. For example, 

in Figure 2.7B, the optimization of the side-chain orientation of Tyr448 favours 

hydrogen bonding to a nearby carbonyl oxygen.  

For side-chains where alternative ‘flip’ orientations are possible, it is necessary to 

evaluate them thoroughly. An alternative orientation may satisfy hydrogen bonding 

but could create other problems such as steric clashes. Such cases were largely 

eliminated after the optimization of hydrogen atom positions and the orientation of 

flippable side-chains with REDUCE125. As REDUCE optimizes hydrogen bonding 

network therefore the orientations with a better hydrogen bond geometry are 

favoured. 
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Figure 2.7. Identifying unsatisfied hydrogen bond donors and acceptors. A. A simple 

case, where H-atom position can be considered reliable, simple geometric criteria are 

useful to identify an H-bond (e.g., placement of H-atom in H-bond angle of 94° 

(which is within the cut-off used in this study). B. However in a case of ambiguous H-

atom position, initial placement of hydrogen doesn’t completely fulfil H-bond criteria 

(3.0Å distance but unsuitable angle). These cases were dealt with the H-bond 

optimization step in the protocol (See 2.3.4). 

 

2.5.3. Types of unsatisfied donors and acceptors 

The distribution of different protein and ligand polar atoms in the population of 

unsatisfied donors and acceptors is shown in Figure 2.8. The number of each of the 

different donors/acceptors found unsatisfied is normalized against the frequency of 

their occurrence at protein-ligand interfaces as Ni = ni × fi where ni is the number of 

donor/acceptor i appearing unsatisfied as a fraction of the total unsatisfied 

donors/acceptors and fi is the frequency of occurrence of donor/acceptor i in the 

binding site. 

94° 
79° 

3.0Å 
3.9Å 

A B 
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Previous surveys have shown that the presence of unsatisfied donor or acceptor in 

protein core regions can mostly be rationalized on the basis of either limitations in 

experimental/theoretical methods or due to compensating weak interactions19, 109, 

112, 114. In this survey for buried protein-ligand interfaces, we observe that the largest 

category of unsatisfied donors/acceptors is side-chain atoms (54%) (Figure 2.8). 

Unsatisfied acceptors appear more frequently than unsatisfied donors. It has been 

observed that an unsatisfied donor at protein-ligand interface is energetically more 

unfavorable than an unsatisfied acceptor19. It was observed for a set of kinase 

inhibitors that one of the NH groups located at the centre of the hinge β-strand was 

almost always hydrogen bonded to the ligand with the exception of one case. On the 

other hand, ligands binding to hinge region of kinases often failed to hydrogen bond 

with a backbone carbonyl group leaving it unsatisfied10.  

This trend was also observed throughout the data set including protein backbone, 

side-chain and ligand atoms. Within the unsatisfied side-chain acceptors, Met SD and 

Tyr OH make the largest contribution (48%) (Figure 2.8). This can be explained on the 

basis of the lower electronegativity of sulfur atoms and delocalization of Tyr OH 

electrons over aromatic side-chains, making these two groups poor hydrogen bond 

acceptors. Similarly, ambiguity in the position of His, Asn, Gln side chains, steric 

crowding of Ser and Thr side-chains have been given as reasons for their inability to 

satisfy hydrogen bonding potential19, 114. We observe that the frequency of 

unsatisfied atoms belonging to these side-chains is consistent with these arguments.   

Fleming and Rose compared electron density maps with the known PDB structures 

(which were documented by McDonald and Thornton as containing unsatisfied 

hydrogen bonds) and observed that in some cases the unsatisfied group has an 
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alternative but satisfied rotamer or a neighbouring side-chain's alternative rotamer 

allowing solvent access, particularly if it lies in a region of low electron density114. 

Such detailed analysis could further explain the frequency of appearance of some of 

the unsatisfied donors/acceptors. However, given the number of structures surveyed 

in this study, more detailed analysis of the unsatisfied donors/acceptors was not 

feasible.  

 

 

 

 

 

 

 

 

Figure 2.8. Distribution of unsatisfied donors/acceptors atom in side-chains and 

ligands.  N is the number of unsatisfied occurrences for a given donor/acceptor 

normalized by the frequency of its occurrence at protein-ligand interfaces. 

 

The unsatisfied donors and acceptors in ligands (Table 2.4) were also often 

associated with compensating weak interactions (Figure 2.9). Among ligand atoms, 

O.3 atom type (hydroxyl or ether oxygen) was observed to be most frequently 

unsatisfied and was mostly involved in CH-O interactions. An example of such weak 

interaction is shown in Figure 2.9, PDB code: 1poc. In this case, two oxygen atoms in 

the ligand were observed to be in hydrogen bonding geometries with CH groups in 

proteins. It has been noticed in previous studies that alkyl and aromatic groups 
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interact with groups containing O atoms in a similar manner as donor acceptor 

groups in conventional hydrogen bonds134. CH-O hydrogen bonds have also been 

implicated in protein-ligand complexes of pharmaceutical importance such as 

retinoic acid receptor complex with a selective agonist SR11254135.  

 
 

 

 

 

 

 

Figure 2.9. Weak interactions in unsatisfied donors and acceptors. Unsatisfied 

donors/acceptors often make weak interactions such as CH-O hydrogen bonds with 

geometric characteristics similar to conventional hydrogen bonds, as indicated by the 

values of D (donor-acceptor distance) and A (hydrogen bond angle) in the case of 

1poc. 

 

A further visual inspection of all these cases indicated that some of these cases could 

be rationalized on the basis of solvent disorder or orientation of rotatable groups. 

The criterion for donor-acceptor separation was extended by 1.0Å where a water 

molecule was present in the vicinity of a donor or acceptor, to take into account 

residual mobility associated with water molecules. 

2.5.4. Unsatisfied buried donors/acceptors in protein-ligand docking 

The extremely low incidence of unsatisfied buried donors and acceptors in X-ray 

structures prompts the argument that a correctly docked ligand pose should satisfy 

almost all of its hydrogen bonding potential at the binding interface. Since 
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imperfections in scoring functions lead to poor ranking of candidate poses, we asked 

the question whether poor poses generated by computational docking methods 

could be identified on the basis of the number of lost hydrogen bonds.  A set of 

docking poses was generated for each of the set of 187 protein-ligand complexes.  

The results were somewhat surprising.  The success of docking is measured as the 

RMSD between the crystallographically observed pose and that generated by the 

docking.  The plots in Figure 2.6 show there was no substantial difference in the 

distribution of protein or ligand hydrogen bonding groups that were left unsatisfied.  

What is striking, however, is how many of the poses that have poor RMSD (>3Å) 

have no unsatisfied hydrogen bonds - the points that lie on the horizontal axis.  This 

is emphasized by the summary provided in Table 2.3.  The number of complexes for 

which docked poses have unsatisfied hydrogen bonds is approximately equivalent to 

the pattern of unsatisfied hydrogen bonds seen in the X-ray structures.  For example, 

18 complexes have an X-ray pose with between 10 to 25% of the buried protein-

ligand hydrogen bonds unsatisfied, compared to 16 in the docked poses.  In addition, 

very few of the docked poses with RMSD > 3Å have unsatisfied hydrogen bonds. 

Table 2.3. A summary of the number of complexes with different fractions (F) of 

unsatisfied ligand donors and acceptors in X-ray binding modes and in docked 

ligand poses (subdivided into RMSD categories) 

 F = 0 F < 0.1 0.1 < F < 0.25 F > 0.25 

X-ray poses 151 10 18 8 

Docked 
poses 
RMSD (Å) 

0.0 – 2.0 83 7 11 7 

2.0 – 3.0 23 1 2 1 

>= 3.0 42 5 3 2 
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Three further analyses are useful to report.  First, it is reassuring that the 83 docked 

poses for which the fraction of unsatisfied acceptors or donors (F) is 0 and where the 

RMSD (R) is less than 2.0 Å are all complexes where F = 0 for the X-ray pose.  

Secondly, 25 of the 39 complexes where the docked poses have F > 0 also have F > 0 

in the X-ray pose.  Of these 25 complexes, 16 have R < 2Å, the remaining 9 have R > 

2Å.  Finally, among the 14 cases where R > 2Å and F > 0, there were only 3 cases 

where the docked pose had a higher F than the X-ray pose.  

An example from this last set (R > 2Å and F > 0) illustrates the issue with using 

unsatisfied hydrogen bonds as a criteria to select the correct pose.  Figure 2.10 is a 

diagram of protein-ligand interactions in the complex 1poc.  In the crystal structure, 

there are two oxygen atoms in the ligand (O1 and O3), that are buried and do not 

appear to form hydrogen bonds.  For at least one of these O atoms there are CH 

groups in a position where weak hydrogen bonds could be formed.  In docking, the 

top-scoring pose has an RMSD of 7.3 Å with a higher fraction of unsatisfied ligand 

donors and acceptors than in the X-ray structure.  In addition to O1 and O3, three 

other buried acceptor atoms in the ligand, O2, O1P and O5P do not make hydrogen 

bonds..  The candidate pose from docking with the lowest RMSD from X-ray pose is 

ranked 12th.  In this pose, one of the additional three unsatisfied acceptors (O5P) is 

hydrogen-bonded with one of the donor groups within the ligand.  However, there 

are other poses where there are only three unsatisfied hydrogen bonds (ranked 7th 

and 19th in the docking), but which have a poor RMSD (4.8 Å and 9.5 Å, 

respectively).   
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Figure 2.10. Hydrogen bonding interactions of GEL420 in 1poc. A). Crystallographic 

binding mode B). Top-scoring candidate pose C). Lowest RMSD pose. (blue/green/black: 

H-bond interactions, magenta: charge-charge interactions, dark blue circle: solvent accessible) 
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The results obtained from this study, therefore, suggest that poor ranking in the 

docking calculations can not be reliably associated with unsatisfied ligand donors 

and acceptors.  Prioritising the results on unsatisfied hydrogen bonds would not 

improve the success rate of the docking. 

Our analysis of the predictive power of lost hydrogen bonds for the assessment of 

poor docking poses should be contrasted with the more extensive incorporation of 

energy terms that reflect hydrogen bonding geometry and hydrophobicity as 

developed for the scoring function HYDE117. According to the scoring function, 

dehydration of non-polar groups contributes favourably to the overall score whereas 

dehydration penalties are associated with the burial of polar groups unless they are 

involved in a hydrogen bond with good geometry. The results reported for that 

program show that for some systems (estrogen receptor), such detailed 

considerations can improve the success of docking calculations, but that for other 

systems it has little effect (thrombin) or gives worse results (p38 kinase).  The 

analysis presented here shows that across a wider range of targets, there are as 

many unmade hydrogen bonds in the "correct" X-ray pose as generated in the 

docking poses and this simplistic count of missing interactions is therefore not 

sufficiently discriminatory to allow incorrect poses to be identified.  
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Chapter 3 

Weak Interactions in Protein-ligand Complexes: A survey of 

ligand aromatic ring acceptors 

3.1. Introduction 

3.1.1. Weak Hydrogen Bonds in Small molecules and Proteins 

As described in Chapter 1, a classical hydrogen bond is represented as X–H…A, where 

both X and A are electronegative atoms. However, the ability of making hydrogen 

bonds is not just restricted to highly electronegative atoms such as F, N and O. In 

fact, a wide variety of hydrogen bonds exist involving weak donors such as acidic CH 

groups (e.g., CH groups flanked by strongly electronegative atoms) and weak 

acceptors such as π rings. Due to the varying character of donors and acceptors, 

hydrogen bonds span a wide energy range from 0.5 kcal mol-1 to 30 kcal mol-1 [137].  

Weak hydrogen bonds involving aromatic rings and donors such as NH and OH 

groups have been well-studied in organic structural chemistry138. The significance of 

such interactions in the context of biological molecules was appreciated first in 

1980’s after observation of NH – π interactions in bovine pancreatic trypsin inhibitor 

and haemoglobin139, 140. In both studies an NH group was observed to point to the 

centre of an aromatic ring belonging to an adjacent side-chain or bound drug 

molecule. With the accumulation of high resolution protein crystal structures, 

systematic surveys of WHBs have been carried out to highlight distributions of 

geometric parameters associated with them and, in general, a mean distance 

between the donor atom and the ring centroid of 3.2 to 3.8Å was observed25, 137, 141, 
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142. The role of WHBs as an additional stabilization factor in protein secondary 

structures has been proposed based on their frequent occurrence at helix termini143 

and β-sheets144.  

Studies from small molecules in the field of structural organic chemistry and crystal 

engineering have shed some light on the characteristics of WHBs25. For example, it 

was shown that highly activated CH groups have been shown to form hydrogen 

bonds with the strength approaching that of classical hydrogen bonds (about 7-8 kcal 

mol-1)145. However, as the acidity of the CH group decreases the significance of the 

weak interaction becomes negligible providing very little stabilization (about 0.5 kcal 

mol-1)25. Nevertheless, the interaction of CH groups with acceptors of varying 

strength (O, N, halogens and π rings) has been observed in small molecules and 

protein structures134 and implicated in wide variety of phenomena such as crystal 

packing, supramolecular assembly146 and macromolecular recognition147.  

Aromatic ring systems are involved in a variety of interactions in chemical and 

biological systems23. WHBs involving π rings as acceptors and donors of various 

strengths are well known. The analyses of non-bonded contacts observed in 

structural databases CSD148 and PDB149 have been routinely performed to study 

statistically favoured types and orientation of XH-π interactions. In the most recent 

survey of CSD, Bissantz et al. have noted that in CSD there is a clear preference for 

activated CH groups to interact with π rings in an above-ring orientation, with CH 

group pointing to the centre of the ring10. Similarly in protein systems, the aromatic 

side-chains, Trp, Tyr and Phe frequently interact with polarized CH groups150. 

Relatively stronger donors such as OH and NH interact slightly less frequently with 
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aromatic acceptors which is probably due to the attached desolvation cost of 

forming a hydrogen bond between a strong donor and π ring10, 25. 

3.1.2. Geometric and Energetic Considerations 

The question pertaining to the significance of weak interactions such as CH…O and 

NH…π hydrogen bonds, particularly their energetic consequences on protein-ligand 

binding, has been a subject of debate10, 25, 134.  Model systems such as benzene-

water, benzene-ammonia and benzene-formamide complexes are used in 

theoretical investigations of weak hydrogen bonds23. The stabilization enthalpies of 

benzene H-bonding with ammonia and water, based on high-level CCSD(T) 

calculations, were estimated to be -2.0 kcal mol-1 (O…ring centre distance 3.4Å) and -

1.61 kcal mol-1 (O…ring centre distance 3.6Å), respectively151. The experimental 

interaction energy value for benzene-water and benzene-ammonia weak hydrogen 

bonding was calculated to be -2.44±0.09 kcal mol-1 [152] and -1.84±0.12 kcal mol-1 [153], 

respectively, indicating close agreement between the two approaches23. The main 

contribution towards binding energy comes from long range interactions such as 

electrostatic and dispersion interactions151. This modestly stabilizing contribution is 

consistent with the prevalence of these interactions in secondary structures134, 141, 

154, 155.  

Another study involving MP2 calculations on benzene-formamide complex, 

mimicking aromatic-amide interactions in proteins indicated interaction energy of up 

to -4.0 kcal mol-1 with two isoenergetic orientations 156: T-shaped geometry, where 

XH vector (X=N/O) is perpendicular to the ring plane (Figure 3.1A), and alternatively 

parallel geometry, where XH is stacked above the ring23, 156 (Figure 3.1B). The parallel 

stacking geometry between amide group and π rings has been observed to occur 
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frequently in peptides and proteins and can be rationalized on the basis that the 

amide group can still form additional hydrogen bonds whilst stacked on top of the 

ring, thereby giving additional stabilization23, 137.  

 

 

 

 

 

 

Figure 3.1. Favourable geometries of XH-π interactions.  A. T-shaped geometry B. 

parallel stacking geometry. 

 

Weak hydrogen bonds have been observed in protein-ligand complexes with 

pharmacological significance. Some of the major examples were surveyed by Toth et 

al.
134 where they highlighted the importance of these interactions in drug design. For 

instance, the difference in the binding affinity of different ligands for Protein Kinase 

C (PKC) δ was explained on the basis of additional CH-π interactions of higher affinity 

ligands in the binding site157. Similarly, the effect of substitution on a ring system in 

terms of its affinity to the target receptor was investigated by Schoepfer et al.
158. A 

series of inhibitors of Src homology 2 (SH2) domain complexed with growth factor-

bound receptor protein 2 (Grb2) showed different activities and the addition of 

electron donating groups on the indolyl moiety increased the affinity.  

In some cases, the direct influence of weak hydrogen bonds on the ligand affinity is 

hard to determine and could be over-estimated, as argued by Bissantz et al.
10. The 

case of ChK1 kinase ligands was highlighted for which it has been shown that the 

A B 
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favourable substitution on the phenyl ring leads to almost 100 fold increase in the 

affinity159, 160. They argue that the main factor behind affinity gain is not the NH-π 

interaction on its own, instead multiple interactions of the substituted ring.  

Although it is not clear if weak hydrogen bonds at protein-ligand interface can lead 

to substantial gain in affinity, their supportive role in ligand design and lead 

optimization is well-established 10, 25, 134.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. Examples of weak hydrogen bonds.  A. NH-π interaction in bovine 

pancreatic trypsin inhibitor. B. OH-π interaction in glutathione transferase. C. CH-O 

interaction between retinoic acid receptor γ and Z-SR11254.  

3.2. Aims 

In the most recent survey of weak hydrogen bonds in protein-ligand complexes, 

particularly CH-π and XH-π (X= N, O) interactions, the geometric parameters and 
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contact densities of query atoms such as C, N, O around an aromatic ring were 

described10. The data originating largely from CSD148 indicated that the 

perpendicular T-shaped geometry of CH-π interactions is observed more frequently 

when the CH group is attached to one or two hetero-atoms (N or O)10. This 

preference was however less well defined for NH and OH interactions with π-rings.  

In this survey, we analyze the interaction preferences of CH, NH and OH groups in 

protein binding sites to ligand aromatic rings. We take into account the influence of 

ring substitution, fusion or presence of hetero-atom on geometric features and 

frequency distributions of contacts. The brief objectives of the study are: 

1. Survey ligand ring systems in PDB and study frequency distribution of 

geometric parameters. 

2. Identify any variation in the geometric pattern upon change in the type of 

ring system. 

3. Compare the interaction geometries of strong donors (XH, X = N, O, S) and 

weak donors (CH) with π rings. 

The distributions of CH, NH and OH groups around π-rings are expected to vary 

depending upon the character of the ring, for instance the nature of attached 

substituent, presence of heteroatom and fusion with another aromatic ring. It is 

generally accepted that an optimum geometry favours orientation of donor group 

pointing to the ring centre23. We therefore expect that changes in ring types such as 

the presence of an electron donating substituent would increase the frequency of 

observing optimum geometry or presence of an electron withdrawing substituent 

would decrease such occurrences.  
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3.3. Methods 

3.3.1. Dataset 

The data for non-bonded contact analysis was obtained from IsoStar. IsoStar14 is a 

knowledge-base that stores information about interactions between different 

chemical groups. The information in IsoStar is organized as pairs of interacting 

groups and their interaction could be shown as scatter plot based on all the 

instances of that interaction observed in CSD or PDB. One group in the pair is chosen 

as the central group and the other is called contact group. A contact is defined when 

the central and contact atoms are at distance which is sum of their van der Waals 

radii plus a 0.5Å tolerance. To generate the scatter plot the central group is least-

squared superimposed and the spatial distribution of the contact group is displayed. 

Such plot highlights important features of the interactions such as directionality, 

orientation and geometrical preference of the contact group. Other features include 

statistical measures for a given interaction and theoretical calculations of interaction 

energies. IsoStar also supports querying interactions other than those already 

specified in the library using ConQuest which is available in its commercial package14.  

In this survey, the public IsoStar package was used to obtain spatial distribution of 

central and contact groups. The central groups (ligand π-rings) were divided into five 

categories and for each category, two contact groups (donors in protein binding 

sites) were analysed. Figure 3.1 shows further description of central groups. The five 

categories include, terminal phenyl group (Figure 3.3A), mono-substituted terminal 

phenyl with an electron donating functional group at one of three rings positions 

indicated  (ortho-, para- and meta- positions) (Figure 3.3B), referred to as Phenyl-ED  



 

A. Phenyl 

 

 

B. Phenyl with an electron donating substituent (Phenyl

 

 

 

 

C. Phenyl with an electron withdrawing substituent (Phenyl

 

 

 

 

 

 

D. 5 or 6 membered aromatic rings with a heteroatom (O or N)

 

 

E. Phenyl ring fused with another aromatic ring

 

 

Figure 3.3. Ring types used to query IsoStar database 

 

Phenyl with an electron donating substituent (Phenyl-ED) 

Phenyl with an electron withdrawing substituent (Phenyl-EW) 

5 or 6 membered aromatic rings with a heteroatom (O or N) 

ith another aromatic ring 

used to query IsoStar database in this study.  

77 
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from this point, mono-substituted terminal phenyl with an electron withdrawing 

functional group at one of three (Figure 3.3C), referred to as Phenyl-EW from this 

point, phenyl fused to another aromatic ring (Figure 3.1D) and 5 or 6 member 

heterocyclic rings (with N, O as heteroatoms) (Figure 3.1E). Only mono-substituted 

phenyl rings were considered to study the effect of ring substitution, as with 

increasing number of substituents, additional interactions influence ring properties 

and it is hard to assign a category to the aromatic ring. Electron donating (ED) 

functional groups considered in this study include NH2, OH, OCH3 and electron 

withdrawing (EW) functional groups include NO2, and halogens.  

The contact groups were divided into two categories: weak donors (CH groups) and 

strong donors (XH groups where X = N, O or S). Although it is known that the donor 

strength is affected by flanking atoms but in this study, atoms connected to CH or XH 

groups are not considered and each group is treated as a potential donor.  

The spatial distribution data were collected for each category of central group 

against each category of contact groups. Each file contained the aromatic ring and 

the atoms in contact, where threshold for contact distance was limited to sum of the 

van der Waals radii of the two atoms + 0.5Å. Any atom that is within this distance of 

any of the ring atoms is included in the analysis. Similarly where a substituent or a 

heteroatom in the ring is present, contacts to these atoms are also considered.  

The resulting files were saved as SYBYL mol2 format for further analysis.  

3.3.2. Non-bonded contact analysis 

After obtaining contact atom distributions around central groups, each data file was 

processed with analysis scripts to extract and plot distributions of various geometric 

parameters. MolKit121 package was used to read and analyse mol2 files. The location 
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of hydrogen atoms in protein structures is relatively uncertain, therefore, only heavy 

atoms were considered in this study.  

For the aromatic ring, a centroid position was assigned and a normal vector from 

ring plane (M) was drawn (Figure 3.4). The distance of each contact atom (r) and the 

angle between M and vector pointing from contact atom to ring centre (w) was 

calculated. The distributions of the values for r and w parameters were obtained in 

each category.  The in-plane distance of each contact atom from the ring centre (s) 

and its height from the ring plane (h) was also calculated to plot radial distribution of 

contact groups around the ring. The method for calculating radial distribution was 

based on Bissantz et al.
10 

  

 

 

 

 

 

Figure 3.4. Geometric parameters calculated for weak interactions involving an 

aromatic ring system and a donor atom (O, N, S, C).  An example of ring (grey) with 

its centre (green) and an interacting atom X (red) is shown. N: normal to ring plane, 

w: angle between N and vector pointing from X to ring centre, r: distance between X 

and the ring centre, h, height of X from ring plane, s, in-plane distance of X from the 

ring centre.  

 
 

 

 



80 
 

A 2-D grid of s and h values was constructed with 0.1Å x 0.1Å spacing, covering 7Å2 

with the ring centre at its origin. The number of contact atom counts at each grid 

point was calculated and scaled by the factor, F: 

22

1

r
NF

π
×= , where N is the total number of counts in the category and r is 

distance from ring centre.   

The scaled values of contacts at each grid point were then plotted on an s versus h 

graph and each point was coloured (greyscale) where depth of the colour is 

proportional to the number of counts observed at that point. This graph simplifies 3-

D spatial distribution plot into a simple 2-D plot where the propensity of contact 

atoms at a particular position from the ring can be observed.  

3.4. Results 

3.4.1. Frequency Distribution of Contacts 

Table 3.1 summarizes the number of CH and XH contacts obtained from IsoStar for 

each category of ring system. The largest number of contacts was observed for 

heterocyclic rings, whereas the lowest number of contacts was observed for fused 

ring systems. In order to simplify the analysis, the criteria set for fused ring system 

was a phenyl ring attached to two aromatic carbon atoms which could eliminate 

some of the more complicated ring types. The number of CH and XH contacts 

decrease successively for phenyl, phenyl-ED and phenyl-EW categories.  

From the total number of contacts found in each category, radial distribution plots 

were generated to show contact densities of query atoms above the rings (Figure 

3.5). The frequency of observing a donor atom at a particular position around the 

ring is projected to a 2-D plot whose coordinates are defined by the in-plane 
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distance from ring centroid (s) and height above the ring plane (h). The intensity of 

color describes the frequency with dark color representing high frequency. The 

origin of the plot can be considered as the ring centroid. As the distance between 

ring centre and one of the ring atoms is about 1.5 Å therefore s values within 1.5 Å 

represent interaction above the ring.  

Table 3.1. Number of CH and XH (X= N, O or S) contacts found in IsoStar for each of 

the ring system category studied in this survey.  

Ring System CH contacts XH contacts 

Phenyl 2598 1655 

Phenyl with an electron donating substituent 2171 1184 

Phenyl with an electron withdrawing substituent 986 480 

Phenyl ring fused another aromatic ring 509 282 

Heterocyclic ring (5/6 members) 5066 5020 

 

The contacts between the donor atom and the aromatic rings can be defined by s 

values in the range of 4.5 Å to 5.5 Å and h values in the range of 3.0 Å to 4.0 Å. It is to 

be noted that for Phenyl-ED and Phenyl-EW category, contacts outside these values 

of s and h could possibly include contacts to the substituent atoms.  

For phenyl rings, the distribution of CH groups is almost uniform around the ring and 

concentrated primarily within the above-mentioned ranges of s and h values, 4.5-5.5 

Å and 3.0-4.0 Å, respectively (Figure 3.5A). The distribution of XH groups is roughly 

similar but with two subtle differences. Firstly, the frequency of contacts is slightly 

lower above the ring (s = 0.0-1.5Å) as compared to other regions.  
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Figure 3.5. Radial distribution plots of CH and XH (N, O or S) atoms around 

different aromatic ring systems in the PDB. The centre of the ring coincides with the 

origin of the plot and x-axis (s) is the in-plane distance of contacts atoms from the 

ring centre and y-axis (h) is the height of contact atoms above the ring plane. The 

frequency of contacts is proportional to the darkness of colour, at each point in the 

plot.  
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This was unexpected as strength of XH donors should dictate a preference towards 

above-ring orientation. Secondly, the lower limits of XH contacts, both in terms of s 

and h are not as well defined as for CH groups. This indicates that shorter contact 

distances can be observed for strong donors (Figure 3.5A).  

The distribution of CH groups around phenyl-ED rings shows a clear preference for T-

shaped geometry whereas it diminishes around the ring (Figure 3.5B). It was 

mentioned in Methods section (3.3.1) that contacts to substituent atoms are also 

included which can be observed in this case by the spread of distribution at large s 

and small h values. The distribution for XH…phenyl-ED contacts shows a different 

pattern. It can be observed that contact frequency above the ring is lower than what 

was observed for CH…phenyl-ED contacts and XH…phenyl contacts. The contacts 

distribution around the ring shows a wide range of geometric orientations. This can 

be explained by the presence of contacts to substituent atoms (Figure 3.5B). 

 Finally, contact distributions around phenyl-EW rings show lowest frequencies 

among other ring types (Figure 3.5C). This observation is consistent with the idea 

that an electron withdrawing functional group should decrease a π ring’s capacity as 

an electron acceptor. For CH groups, the T-shaped geometry appears to be most 

frequently encountered, among the observed contacts. For XH groups a clear pattern 

can not be observed due to a very small number of contacts observed which appear 

to be randomly distributed (Figure 3.5C).   

 Figure 3.6 shows radial distribution plots of CH and XH contacts with fused ring 

systems. It was expected that the presence of a fused ring could provide a large 

contact surface area therefore more chances for contacts above the ring. In general, 

a high frequency at an s-value of 0.0-1.5Å should indicate a preference towards 
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above-ring orientation. In the case of fused rings, a relatively high frequency region 

appears to be spread over s values of 0.0-2.5Å (Figure 3.6). This could arise from 

contacts over an extended region above the ring provided by the fused rings system. 

Similar, observation was made for XH groups although in general a much lower 

overall frequency of contacts was also noticed (Figure 3.6).  

  

 

 

 

 

 

Figure 3.6. Radial distribution plots of CH and XH (N, O or S) atoms around fused 

ring systems in the PDB. 

 

 

 

 

 

 

Figure 3.7. Radial distribution plots of CH and XH (N, O or S) atoms around 

heterocyclic ring systems in the PDB. 

 

The last category of aromatic rings includes 5- or 6-membered heteroaromatic ring 

systems. For CH groups contact density is relatively higher above the ring but 

gradually diminished while moving away from the ring (Figure 3.7). This trend is 

completely revered for XH groups which indicates the when a strong donor is 
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present interactions to hetero-atoms, which most probably involve hydrogen 

bonding, is clearly preferred (Figure 3.7). 

3.4.2. Distribution of Geometric Parameters 

In proteins, aromatic-amide interactions have been observed at donor-centroid 

distance of ≥ 3.5 Å10. The distribution of donor-centroid distance (r) and the donor 

angle from the normal to ring plane (w) was compared among different classes of 

ring types. The resulting histograms are shown in Figure 3.8.  

The vast majority of both CH-π and XH-π contacts is observed at r values higher than 

3.5Å. For phenyl rings, CH contacts have a sharp peak at 4.8Å whereas for phenyl-ED 

rings, there is a relatively flat peak at 4.5 to 5.0Å (Figure 3.6A). There is an additional 

peak at much longer donor-centroid distance. These contacts could possibly include 

interactions with substituent atoms and are not discussed in the current comparison. 

CH contacts with phenyl-EW rings do not show a distribution with as well-defined 

peaks as observed for phenyl and phenyl-ED rings. However, the highest frequency is 

observed at around 5.0Å. The spread of the distribution is also wider than other two 

categories of rings. It was expected for phenyl-EW rings to have an almost random 

distribution of contacts with donor groups as their strength as acceptor is much 

lower than phenyl or phenyl-ED rings (Figure 3.6A).  

For XH contacts the shape of r distributions did not show much difference among 

phenyl, phenyl-ED and phenyl-EW rings (Figure 3.6A). For phenyl rings, XH contacts 

show a sharp peak at 4.8Å. For phenyl-ED rings, there was similar peak but the 

distribution is spread further towards longer distances. Finally, for phenyl-EW rings, 

the shape of XH contact distribution is very similar to what was observed for 

CH…phenyl-EW contacts (Figure 3.6A).  
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Figure 3.8. Distributions of geometric parameters in CH…π and XH…π contacts. A, r: 

distance between donor atom and ring centre (d). B, w: angle between normal to 

ring plane and the vector pointing from donor atom to ring centre. 

 

The angular distributions for CH and XH contacts with different ring types are shown 

in Figure 3.6B. As observed for the distance distributions, the shape of angular 

distributions for CH contacts varies more significantly with different ring types than 

for XH contacts (Figure 3.6B).  

CH contacts with phenyl rings show a symmetrical distribution centred around 60°. 

For phenyl-ED rings, the distribution is skewed towards shorter angle with peak 

observed at 40°. For phenyl-EW, the opposite trend is observed with the highest 
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peak at 80°. Interestingly, XH contacts did not show much difference in the shape of 

angular distribution with almost all three distributions showing a peak at 80° (Figure 

3.6B). 

The median values of distance and angle distributions are reported in Table 3.2. As 

the mean values can be affected by the outliers such as contacts to substituent 

atoms, therefore, median values represent a better assessment of the distributions.  

Table 3.2. Median values for distance (d) and angle (w) distributions of CH and XH 

contacts with ring systems in the PDB.  

Ring 
CH XH 

d (Å) w (°) d (Å) w (°) 

Phenyl 4.5 49.5 4.5 62.7 

Phenyl-ED 4.6 48.0 4.7 67.8 

Phenyl-EW 4.8 57.0 4.7 61.7 

 

3.5. Discussion 

Theoretical studies and database surveys of interactions involving aromatic rings and 

chemical moieties such as CH, OH and NH groups have pointed towards two 

isoenergetic orientations23, 134. In a T-shaped geometry, the XH group is located 

above the ring, pointing towards its centre (Figure 3.1A). In a stacking geometry, the 

XH group is also located above the ring however it is parallel to ring plane (Figure 

3.1B). Other less favourable configurations in which XH group is located around the 

ring and in some case interacting with one of the –CH groups in the ring are also 

possible151, 156. In a survey of aromatic-amide interactions in 592 high resolution 

protein structures (≤ 1.6Å) stacking geometry was observed more frequently137. In 

another recent survey of molecular interactions, CH-π contacts involving polarized 

CH groups (such as those flanked by heteroatoms, O/N) were shown to have a 
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preference towards an above-ring orientation (C on top of the ring and CH vector 

pointing to ring centre)10.  

In this study, the above ring orientation includes both T-shaped and stacking 

geometries as the orientation of CH vector relative to ring centre was not 

considered.  

It is expected that the interaction preferences of aromatic rings should be affected 

by the nature of attached substituents. A study on a series of Grb2-SH2 inhibitors 

indicated that the type of substituent on an indolyl group which was involved in a 

CH-π interaction influenced the affinity of the inhibitor. For example, the increase in 

affinity was related to the increasing electron donating character of the 

substituent134, 158. In another ab initio fragment molecular orbital study on a set of 

leucocyte-specific protein tyrosine (LCK) kinase  inhibitors, the role of CH-π and NH-π 

hydrogen bonds was highlighted161. Moreover, a ten-fold increase in the affinity of 

an inhibitor was attributed to the modulation of CH-π and NH-π interactions which 

was achieved by replacing an electron withdrawing chloro- functional group with 

two electron donating methyl groups on an aniline ring in the ligand161.  

Based on this idea, a survey of ligand aromatic rings in protein-ligand complexes 

from PDB was conducted to investigate the orientation of CH and XH contacts 

(where X = N, O, S) around different types of rings (Figure 3.3). A qualitative 

assessment of interaction preferences of rings with different substituents was done 

by plotting the distribution of geometric features of aromatic interactions (Figure 

3.4). Due to ambiguity in the position of hydrogen atoms in protein structures, it was 

not possible to discriminate between T-shaped and stacking geometry. A distinction 

could, however, be made between an above-ring orientation (which include both T-
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shaped and stacking geometry) and other less favourable configurations around the 

ring. It was expected that the above-ring interaction should be more favourable for 

XH groups than for CH groups. Similarly, electron donating substituents and fused 

rings with larger contact surface area should also favour above-ring orientation.  

The results of the survey indicated some interesting trends. One of the most 

important aspects was that the variation in interaction preferences was more well-

defined for CH-π contacts then for XH-π contacts (Figure 3.5 and 3.8).  For example, 

the above-ring geometry preference in the case of CH…phenyl-ED contacts was 

relatively more obvious than for XH…phenyl-ED contacts (Figure 3.5). Similarly, the 

change in the shape of distance and angular distribution was more visible for CH 

groups (Figure 3.8). These results are similar to the trend noticed in a recent 

database survey which showed more clear preference of polarized CH groups for 

above-ring geometry than for OH/NH groups10. This trend was explained by the 

increasing strength of OH/NH-π interactions which could in principle impose a higher 

desolvation cost on binding energy. Therefore, in general it is expected for ligands to 

employ strong donors in hydrogen bonding with strong acceptors to overcome 

desolvation penalty and achieve optimal binding. It can therefore be expected XH-π 

weak hydrogen bonds should be formed with most optimum geometry. We have 

observed that for above-ring orientation, which corresponds to in-plane distance (s) 

within 0.0-1.5Å, the minimum above-plane height (h) for XH groups (2.7Å) was 

shorter than that of CH groups (3.0Å) (Figure 3.5A). One such example is shown in 

Figure 3.9A. This example is based on the complex between third PDZ domain of 

synaptic protein and its peptide ligand. A Phe ring in the ligand is shown to form a 

hydrogen bond with NH group of an Asn side-chain.  
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Figure 3.9. Selected examples of weak interactions from IsoStar.  A. An NH-π 

interaction in PSD-95 (PDB code: 2KA9) at a very short donor-centroid distance B. An 

example of multiple CH-π interactions with fused ring systems observed in LCK 

kinase (PDB code: 3AD4). 

 

The idea that XH groups preferably form hydrogen bonds with strong acceptors is 

further strengthened by contact distributions of XH groups around heterocyclic rings 

(Figure 3.7). Almost opposing trends were observed for CH and XH groups. CH 

groups show wide range of configuration around heterocyclic rings with relatively 

less contact density around the hetero-atom. XH groups on the other hand were 

predominantly involved in interactions with the heteroatom. The heteroatom in the 

ring is a potential acceptor and an unsatisfied ligand acceptor in protein binding site 

is extremely unfavourable6, as noted in the survey of protein-ligand complexes in 

Chapter 2.  

Another consideration in aromatic interactions is the contact surface area of the π 

ring. In a survey of 592 high resolution protein structures, 17.5% of Trp side-chains 

were involved in weak hydrogen bond which was almost twice the percentage of 

other aromatic residues such as Tyr (8.8%) and Phe (5.8%)137. This was rationalized 
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on the basis of larger aromatic surface and conjugation of fused ring systems which 

could possibly increase the acceptor strength. In our analysis of fused ring systems in 

ligands, an above ring preference appeared to span a broader range of s values (0.0 

to 3.0Å) (Figure 3.6). As the fused ring could also act as second acceptor so the broad 

range of s values reflects interaction above the fused ring systems. The relatively 

higher frequency is therefore consistent with the stronger interaction of CH or XH 

groups with fused rings. One such example related to ligand binding in LCK kinase is 

shown in Figure 3.9B. This represents a reported case of CH interactions with fused 

ring in the ligands and with role in binding affinity161. In fact a ten-fold increase in the 

affinity was noticed when this CH-π interaction involved aromatic rings with electron 

donating substituents. 

Surveys of molecular interactions in X-ray crystallographic structures always have 

some limitations6, 10. For example, the resolution of the majority of structures lie 

between 2 to 3 Å which corresponds to a standard deviation in the position of 

atomic coordinates of up to 0.4Å6. This is further complicated by uncertainty in the 

position of hydrogen atoms, indistinguishable side-chain orientations such as His, 

Asn, Thr and mobile water molecules.6, 19 Furthermore, protein-ligand binding is a 

dynamic phenomenon where both protein and ligand could exhibit multiple bound 

states35. Therefore, the general trends observed in such surveys give only a 

qualitative assessment of the variation in interaction geometries with the nature of 

interacting moieties.  

The trends observed in this survey are consistent with previous studies however they 

have been investigated in a different setting. For example, a recent survey of CH-π 

and XH-π weak interactions compared interaction geometries of polarized CH groups 
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to NH/OH groups. In this survey, we focused on the types of ligand aromatic rings 

and analyzed their interaction preferences. It is intuitively expected that an increase 

in electron density of the aromatic ring should stabilize its interaction with CH or XH 

groups. In a combined theoretical and spectroscopic study, Gosling et al. showed 

that both vibrational frequency and ab initio calculations indicate stabilization of 4-

flurotoluene–ammonia complex formation162.   

This database survey further supports these results based on the frequent 

occurrence of favourable above-ring orientation of CH or XH groups (T-shaped and 

stacking geometry) as compared to other configurations around the ring. It was also 

noticed that the above-ring interaction preference was more pronounced for CH 

groups than for XH groups. This is an interesting observation as the role of CH and XH 

groups involved weak interactions and their comparison has been a subject of 

debate. An important question in this regard is if XH-O interactions are 

interchangeable with CH-O interactions and what consequence it should have on the 

binding affinity?”25. Pierce et al. investigated strong CH-O interactions in optimized 

kinase ligands and reported that the replacement of standard hydrogen bonds with 

their CH analogs resulted in almost similar binding affinities160. The comparable 

strengths of the two types of hydrogen bonds were explained on the basis of higher 

desolvation penalty on the part of strong donor groups. It was noted that in the 

cases where this kind of interchange does not bring about significant affinity changes 

there should be significant opportunities in optimizing non-binding related 

properties of inhibitors such as solubility, permeability and metabolism25, 160.  
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Chapter 4 

Predicting solvent and fragment positions in protein binding 

sites using MCSS and CHARMm 

4.1 Introduction 

As described in Chapter 1, fragment-based lead discovery has gained huge interest 

for its ability to efficiently sample chemical space and providing suitable starting 

points for drug discovery. In the field of computer-aided ligand design, equivalent 

techniques are under development for a long time and a wide range of methods now 

exist to probe binding sites for favourable positions of functional groups and small-

molecule fragments. Some of these methods were reviewed in Chapter 1 including 

Multiple Copy Simultaneous Search (MCSS), one of the pioneering efforts in this 

area. The challenges in predicting fragment binding to proteins still remain such as 

appropriate treatment of solvent molecules, flexibility of the binding site and correct 

protonation states. The work described in this chapter investigates the performance 

of the current version of MCSS calculations as a method for probing binding sites for 

fragment binding.  The results were compared with similar calculations using the 

program GOLD, performed by Hugues-Olivier Bertrand of Accelrys.   

4.2 Aims 

In this study, MCSS calculations were performed on different datasets to investigate 

docking and scoring of solvent molecules and fragments to protein binding sites.  

There were 5 main components to the study: 
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• The success rate of MCSS docking and scoring was evaluated for reproducing 

and correctly ranking experimentally observed positions of solvents and 

fragments in the protein binding sites of a dataset of experimental structures. 

• A rescoring method using an implicit solvent model was assessed for its 

ability to improve the ranking of correct protein-fragment poses in the 

dataset. 

• The same dataset was used to evaluate the performance of the docking  

program GOLD and the solvent mapping program, FT-Map. 

• A preliminary assessment was made of the importance of protein flexibility 

by assessing the impact of using multiple protein structures in the MCSS 

calculations. 

• The effect of including conserved water molecules in the protein binding site. 

4.3 Datasets 

4.3.1 Elastase Dataset 

Porcine pancreatic elastase (elastase) is a serine protease with a characteristic 

catalytic triad in the binding site cleft consisting of Ser206, His60 and Asp108. Its 

well-characterized active site consists of multiple sub-sites that accommodate amino 

acid residue flanking the peptide bond that is to be cleaved. These sub-sites were 

named S1, S2, S3, S4/S5 and S1’, S2’, S3’ before and after the scissile bond, 

respectively78 (Figure 4.1). The experimental solvent mapping was performed by 

Mattos and co-workers using different solvent probes which showed at least 16 

unique binding sites for different organic solvents (numbered from 1006 to 1010), 6 
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of which corresponded to the sub-sites in the binding cleft, whereas the rest were 

mostly located in crystal contacts82.  

In total 9 crystal structures from this study were available from the PDB.  As we are 

interested in predicting solvent binding sites that lie in the active site cleft only the 

relevant structures were selected for the analysis. The PDB codes of these 

structures, names of the bound solvent, their experimentally observed binding sites 

and corresponding binding cleft sub-sites are shown in Table 4.1. 

Table 4.1. Solvent-bound X-ray structures of Elastase used in this study. Solvent-

binding sites that overlap with S1, S3, S4, S1’ and S3’ sub-sites are considered. For 

each structure, PDB code, resolution (R), name of bound solvent and occupied sub-

sites are given. 

PDB R (Å) Solvent S1 S3 S4 S1’ S3’ 

2FO9 2.0 Acetone ACN1001 - - - - 

2FOA 1.9 Isopropanol IPA1001 - IPA1002 - - 

2FOC 2.0 Dimethylformamide - - - - DMF1004 

2FOD 2.0 Ethanol ETH1001 ETH1003 ETH1002 - ETH1004 

2FOE 2.2 5-Hexene-1,2-diol HE X1001 - - - HEX1004 

2FOG 1.9 Trifluoroethanol TFE1001 TFE1003 TFE1002 TFE1008 - 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. Binding site of elastase with experimentally determined positions of 

ethanol solvent probe.  

S4 
S1 

S3 
S3’ 

S1’ 
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4.3.2 Thermolysin Dataset 

Thermolysin is a metalloproteinase that specifically cleaves peptides bonds 

containing hydrophobic residues. Its large active-site cleft contains four sub-sites, 

named S2, S1, S1’ and S2’, where S1’ forms the main specificity pocket having 

preference for hydrophobic residues80 (Figure 4.2). Experimental mapping studies 

were performed using isopropanol80, acetone, acetonitrile and phenol81.  

 

 

 

 

 

 

 

 

Figure 4.2. Binding site of thermolysin with experimentally determined positions of 

isopropanol solvent probe.  

 

Table 4.2. Solvent-bound X-ray structures of Thermolysin used in this study. Only 

the solvent-binding sites in the active site are considered. For each structure, PDB 

code, resolution (R), names of bound solvent molecules and occupied sub-sites are 

given. 

PDB R (Å) Solvent S2 S1 S1’ S2’ 

1FJQ 1.7 Acetone - - ACN1 - 

1FJU 2.0 Acetonitrile - - CCN1 - 

1FJW 1.9 Phenol - - IPH1 - 

8TLI 2.2 Isopropanol IPA5 IPA8 IPA1 IPA9 
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S1 

S1’ 

S2’ 
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All four solvent molecules bind to the main specificity pocket S1’ whereas other sub-

sites were also occupied by at least one of the solvent probes. The PDB structures 

corresponding to solvent binding sites overlapping with the active site cleft were 

used in this study. Table 4.2 summarizes the details of these structures. 

4.3.3 Fragment docking dataset 

Recently, a set of 12 fragment-protein complexes was described which consists of 

targets investigated using fragment-based methods and for which X-ray structures 

bound to various fragments are available in the PDB59. This dataset will be referred 

to as the ‘fragment docking dataset’. The protein targets, their corresponding PDB 

codes and literature references are listed in Table 4.3. The chemical structures of the 

fragments are shown in Table 4.4. 

4.3.4 HSP90 dataset 

Heat shock protein (HSP) 90 is well-known for its function as a molecular chaperone. 

Due to its important role in assisting protein folding, preventing self-aggregation and 

cell cycle progression, it has been established as a valuable target in anti-cancer drug 

development. The structure of HSP90 contains a highly conserved N-terminal 

domain that is linked, via a highly flexible linker, to a middle domain and a C-terminal 

domain163. The N-terminal domain contains an adenosine binding pocket, 

responsible for its ATPase activity and has an unusual motif known as a Bergerat 

fold163. 

 

 

  



 

Table 4.3. List of protein-ligand 

PDB code Receptor 

1EQG Cyclooxygenase-1 (COX

1FV9 Urokinase (uPA) 

1GWQ Estrogen Receptor α (ER)

1N1M Dipeptidyl Peptidase IV (DPP

1S39 tRNA Guanine Transglycosylase (TGT)

1WCC Cyclin Dependent Kinase 2 (CDK2)

1YZ3 Phenylethanolamine N
Transferase (PNMT)2ADU Methionine Aminopeptidase (MetAp2)

2C90 Thrombin 

2JJC Heat Shock Protein 90 (HSP90)

2OHK β-Secretase (BACE-

Table 4.4. List of fragments in fragment

molecular weight), rotatable bonds consider only rotation around single bond, 

hydrogens are omitted for simplicity.

PDB Fragment 

1EQG  
 
 
 
 
 

1FV9 

1GWQ 

1N1m 

 

1QWC 

1S39 

ligand complexes in fragment docking dataset.

Resolution (Å) Reference

1 (COX-1) 2.60 Selinsk 

3.00 Hajduk 

Estrogen Receptor α (ER) 2.45 Warnmark

l Peptidase IV (DPP-IV) 2.50 Rasmussen

tRNA Guanine Transglycosylase (TGT) 1.95 Meyer et al.

Cyclin Dependent Kinase 2 (CDK2) 2.20 Hartshorn 

Phenylethanolamine N-Methyl 
Transferase (PNMT) 

2.40 Wu et al.

Methionine Aminopeptidase (MetAp2) 1.90 Kallander 

2.25 Howard 

Heat Shock Protein 90 (HSP90) 1.90 Congreve 

-1) 2.20 Murray 

List of fragments in fragment docking dataset. (RB: rotatable bonds, MW: 

, rotatable bonds consider only rotation around single bond, 

are omitted for simplicity. 

RB MW  PDB Fragment

4 206  1WWC 

 

0 149  1YZ3 

 

0 242  2ADU 

 

2 171  2C90 

 

3 177  2JJC 

 

0 161  2OHK 

98 

dataset. 

Reference 

 et al. 2001 164 

Hajduk et al. 2000 165 

Warnmark et al. 2002 166 

Rasmussen et al. 2003 167 

et al. 2004 168 

Hartshorn et al. 1999 169 

et al. 2005 170 

Kallander et al. 2005 171 

Howard et al. 2006 172 

Congreve et al. 2008 59 

Murray et al. 2007 173 

RB: rotatable bonds, MW: 

, rotatable bonds consider only rotation around single bond, 

Fragment RB MW 

 

0 130 

 

0 202 

 

0 161 

 

0 181 

 

0 95 

 

0 144 
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This fold is characterized by a rigid adenosine binding site and a flexible loop in a 

phosphate binding region, acting mostly as an active-site lid174. The N-terminal 

domain of HSP90 is known to undergo conformational changes upon binding to 

various ligands38. The ATPase activity of the N-terminus drives structural transitions 

required for chaperone functioning therefore it has been targeted in several drug 

discovery campaigns175.  

 

 

 

 

 

 

 

 

 

 

Figure 4.3. HSP90 N-terminal domain active site. Endoplasmic reticulum paralog of 

cellular HSP90 is shown with 2-chlorodideoxyadenosine inhibitor bound to the active 

site, along with 4 water molecules that are highly conserved in HSP90 protein-ligand 

complexes (PDB code: 1QYE). 

 

In order to study the performance of MCSS calculations in a protein-ligand docking 

context, a set of HSP90 structures bound to various fragments was included in this 

study (Table 4.5). There are 3 to 4 highly conserved water molecules in the active 

site of almost all HSP90 structures in the dataset (Figure 4.3). These water molecules 

Active-site lid W343 

W407 

W382 W353 
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play an important role in ligand binding by bridging interactions between ligand and 

protein atoms, as described in the references mentioned in Table 4.5. The chemical 

structures of the fragments are shown in Table 4.6. 

Table 4.5. List of HSP90-fragment complexes used in HSP90 dataset. 

PDB code Resolution (Å) Reference 

1QYE 2.10 Soldanoet al. 2003 176 

1ZWH  1.65 Immormino, R.M (to be published) 

2CCS 1.79 Barril et al. 2006 177 

2JJC 1.95 Congreve et al. 2008 59 

2QF6 3.10 Huth et al. 2007 43 

2QFO 1.68 Huth et al. 2007 43 

2WI1 2.30 Brough et al. 2009 44 

2WI2 2.09 Brough et al. 2009 44 

3BM9 1.60 Gopalsamy et al. 2008 178 

3EKO 1.55 Kung et al. 2008 179 

3FT5 1.90 Barker et al. 2009 180 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 4.6. List of fragments in HSP90 dataset.

weight), rotatable bonds consider only rotation around single bond, hydrogens are 

omitted for simplicity.  

PDB Fragment 

1QYE 

1ZWH 

 

2CCS 

 
2JJC 

 

2QF6 

 
2QFOa 

 
 

 

 

 

 

 

List of fragments in HSP90 dataset. (RB: rotatable bonds, MW: molecular 

bonds consider only rotation around single bond, hydrogens are 

Res RB MW  PDB Fragment

 

2.10 2 270  2QFOb 

1.65 1 188  2WI1 

1.79 2 295  2WI2 

1.95 0 95  3BM9 

3.10 1 316  3EKO 

1.68 1 177  3FT5 

101 

RB: rotatable bonds, MW: molecular 

bonds consider only rotation around single bond, hydrogens are 

Fragment Res RB MW 

 

1.68 0 189 

 

2.30 4 183 

 

2.09 1 156 

 

1.60 1 322 

 

1.55 1 219 

 

1.90 0 181 
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4.4. Methods 

All the steps described below for preparation of input structures, docking and 

scoring were performed in Discovery Studio 2.5181. 

4.4.1 Preparation of Receptor Structures 

The general steps for the preparation of receptor structures, applicable to all 

different datasets, are as follows. In order to prepare receptor structures for 

docking, all ligands and water molecules were removed, except for some cases that 

are described separately. Only one set of conformations was kept for side chains 

with alternate conformers. The resulting protein chains were assigned CHARMm 

atom types and MMFF94 partial charges. Hydrogen atoms were placed and their 

positions optimized with CHARMm energy minimization. Each receptor structure was 

subjected to 5000 cycles of energy minimization using Adopted Basis Newton-

Raphson algorithm. Heavy atoms were fixed during the minimization and distance-

dependent dielectric model was used for approximating the solvent. The calculations 

were performed with neutral histidine residues.  

Elastase: For elastase, the binding sites for placement of solvent molecules was 

defined as a sphere around S1, S3, S4, S1’ and S3’ sub-sites, which is roughly centred 

on S3 sub-site (43.38, 24.06, 35.04) and has a radius of 17Å.  

Thermolysin: The binding site for thermolysin was defined as a sphere around S2, S1, 

S1’ and S2’ sub-sites, whose centre is located in S2 sub-site (34.71, 41.11, -7.16) with 

a radius of 10Å. The Zn2+ ion in thermolysin binding site and water molecule(s) 

coordinated to it were not removed during the calculations. 
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Fragment docking and HSP90 datasets: In order to prepare receptor structures, all 

ligands and water molecules were removed, except for HSP90 (2JJC) and PNMT 

(1YZ3), where water molecules bridging interactions between the fragment and the 

protein binding site were kept. The conserved water molecules in the binding site of 

all structures in the HSP90 dataset were also kept (Names of these water molecules 

in PDB files are provided in Table 5.9). All ions were removed except for MetAp2 

(2ADU) where two Cobalt (Co2+) ions are involved in key interactions with the bound 

fragment. Where two or more copies of the protein-fragment complex were present 

in the asymmetric unit, the copy with the lowest B-factors of binding site residues 

was selected. Only one set of conformations was kept for side chains with alternate 

conformers (conformer A).  The standard CHARMm atom typing and parameter set 

were used for the protein atoms. Histidine residues were treated as neutral. These 

include His residues interacting with the fragments (for 1GWQ and 2ADU) in which 

case it was confirmed from the literature that there was no particular change in 

protonation state of His residues associated with fragment binding. The binding sites 

for docking were defined for each receptor as an 8.0Å sphere from the centre of the 

fragment binding positions.   

4.4.2 Preparation of solvent probes and fragments 

The bound solvent and fragment molecules were extracted from the original PDB 

files and stored as separate SD files. The coordinates were extracted from the 

original PDB files and visually inspected to correct bond orders and hydrogen atoms 

added to complete valency.  The atom types in the fragment were assigned based on 

connectivity and bond order and parameters assigned from the CHARMm Momany 

and Rone forcefield182 and assigned MMFF94 charges.  The resulting atom types for 
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fragments and partial charges are shown in Appendix (Section 7.1).  Missing 

forcefield parameters were estimated automatically based on similar combinations 

already available in the parameter list.  Hydrogen atom positions were then 

optimized using CHARMm183 and the fragment structures minimized with ABNR 

minimization to a gradient of 0.1 kcal mol-1Å-1.  The minimized structures were then 

used as input for the docking procedures.  

4.4.3 MCSS Minimization 

In a typical MCSS protocol, several copies (up to 1000) of a functional group are 

placed in the binding site and then simultaneously energy-minimized such that 

copies experience only the field from the protein. If more than one copy converges 

to the same position within a specified distance threshold, only one copy is retained. 

At the end, a collection of energy minima is obtained, each of which is associated 

with a position, interaction geometry and energy score. In this study, 750 copies of 

each fragment were placed inside the binding site of corresponding receptor 

structure. A distance-dependent dielectric model was used to approximate the 

solvent, using a dielectric constant of 1.   

The energy minimization was carried out by performing an initial 500 steps of 

steepest descent followed by 300 steps of additional steepest descent and then 20 

repetitions of 500 steps of conjugate gradient minimization. At each repetition, a 

single copy was retained where multiple copies converged within an RMSD of 0.2Å.  

At the end of the MCSS run, energy minima within 2.0Å RMSD of each other were 

considered as one cluster and the minimum with the highest score were selected as 

the cluster representative. 
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For the fragment docking dataset, MCSS calculations were performed for each 

fragment in its own receptor. For the HSP90 dataset set cross-docking calculations 

were also performed by running MCSS calculations for each fragment against all 

receptors in the binding site sphere defined by the position of the native fragment.  

4.4.4 Minimization of fragment poses 

As a post-processing step, MCSS and GOLD poses were minimized in the context of 

the target binding site with ABNR minimization to a gradient of 0.1 kcal mol-1Å-1. The 

protein was held rigid while the fragments were fully flexible. The native position of 

the fragment was also minimized under the same conditions to give the in situ 

minimised X-ray pose. 

4.4.5 Docking with GOLD  

For the fragment docking dataset, docking and scoring was also performed with 

GOLD184 by Hugues-Olivier Bertrand of Accelrys.  The binding site sphere defined 

previously for each receptor structure was used and 40 docking runs were 

performed for each fragment. Default values were used for genetic algorithm 

parameters, “Generate Diverse Solutions” was set to TRUE (Cluster Size = 2, RMSD 

=1) and solutions were scored using the GOLDScore fitness function. 

4.4.6 MM/GBMV-SA Scoring Scheme 

The binding free energy of energy minima obtained from MCSS was evaluated using 

a variation of the standard MM-GB/SA approach47. The outline of this scoring 

scheme is shown in Figure 4.4.  
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Figure 4.4. Summary of the scoring scheme (MM/GBMV-SA) used in this study. 

 

For each pose obtained from MCSS or GOLD, the binding free energy is evaluated as:  

ligandproteincomplexbind GGGG −−=∆  

The free energy of each of the above terms is calculated from: 

TSGGEG npelecMM −++=  

EMM is the molecular mechanical energy calculated from CHARMM force-field, Gelec 

and Gnp represent electrostatic and non polar components of solvation free energy. 

TS represents the solute entropy which, in this study, was assumed to be constant 

among a set of poses for the same ligand in a binding site. The mathematical 

expressions for each of these terms are presented in Table 4.7. EMM represents the 

gas-phase forcefield energy and consists of internal energy (Eint), electrostatic energy 

(Eelec) and van der Waals energy components. Eint is further divided into Ebond, Eangle, 

Etorsion and Eoop to take into account energies associated with bonds, angles, torsions 

and out of plane motions. The electrostatic component, Eelec is calculated from 
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Coulomb’s expression using a dielectric constant of 1 and van der Waals energy, 

EvdW, is calculated from the Lennard-Jones 6-12 potential.  

The electrostatic component of the solvation free energy (Gelec) was calculated using 

the Generalized Born method with Molecular Volume integration (GBMV)50, 101, 107. 

GB methods are semi-analytical approximations to the more rigorous PB equation 

and they have been shown to reproduce electrostatic solvation energies obtained 

from the latter, with an error rate of ≤ 1%107. The expression used for the 

electrostatic solvation energy under GB formalisms is: 
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where εp and εw represent solute and solvent dielectric constants, ri,j is the distance 

between atoms i and j, αi is the GB radius of atom i. The factor F is a scaling factor for 

GB radii, whose most commonly used value is 4. The GBMV approach uses a 

numerical integration of molecular volume to calculate Born radii100, 107. In this study, 

for the solute and the solvent, dielectric constants of 1 and 80 were used, 

respectively. The non-polar contribution (Gnp) to solvation free energy was 

calculated based on Surface Area (SA) model which assumes a linear relationship 

between Gnp and the solvent accessible surface area. The values for constants, γ and 

β, were set to 0.00542 Kcal/molÅ and 0.92 Kcal/mol, respectively. 
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Table 4.7. Energy terms in MM/GBMV scoring scheme used in this study. 

Term Mathematical Expression Notes 

EMM 

∑ −= 2
0)( rrkE bbond  Bond potential 

∑ −= 2
0)( θθθkEangle  Angle potential 

∑ −= )cos(|| ϕϕϕ nkkEtor  Torsional potential 

∑ −= 2
0)( ωωωkEoop  Out-of-plane motion potential 
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Lennard-Jones 6-12 potential, sw() is a 
switching function to control the size 
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Electrostatic potential: based on 
Columbic interactions, In MCSS a 
distance-dependent model is used 
where ε is dielectric constant and r is 
the distance between two atoms 
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Electrostatic component of free 
energy of solvation: standard form of 
the GB model, details are described in 
4.1.4 

Gnp bSASAGnp +=∆ γ  Non-polar component of free energy 
of solvation 

 

 

4.5. Results 

The output of an MCSS calculation is a set of poses for each probe or fragment 

molecules inside protein binding sites. Each of these poses has an MCSS score - a 

binding energy that is calculated based on the CHARMm forcefield (Table 4.7). These 

poses are ranked according to their MCSS scores, with the highest scoring pose 

representing the most energetically favourable one. This pose is actually a 

representative of a cluster that results from the convergence of multiple functional 

group copies to a similar position in the binding site. The top-scoring pose within the 

cluster is chosen as the representative.  

When the experimentally determined position of a ligand is known then the 

validation of MCSS calculations is performed by comparing the root mean square 

deviation (RMSD) of predicted pose against the reference (experimental) pose. The 
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experimental positions of ligands are derived from X-ray model building and 

refinement. An energy minimization protocol applied to the X-ray poses inside the 

binding site could result in a deviation from the original position, which could be a 

result of either force-field limitations or poor ligand placement in the X-ray structure. 

Therefore, in this study, the in situ minimized pose was also considered as the 

reference.  

This chapter presents the results of MCSS calculations on solvent mapping datasets 

(elastase and thermolysin) and their comparison with another solvent mapping 

algorithm (FT-Map).  

4.6 MCSS calculations on Elastase Dataset 

The results of MCSS calculations on elastase are summarized in Table 4.8. For each 

solvent position, the RMSD from the X-ray position (RMSDX-ray) of the nearest 

predicted pose along with its rank and MCSS score is listed. Out of 14 solvent 

positions in the active site cleft, nine were predicted at an RMSDX-ray equal to or less 

than 2.0Å. None of the predicted poses that were closest to the experimental 

binding position was given the highest rank.  

The experimental solvent mapping studies indicate that almost all of the solvent 

probes bound to the S1 sub-site and such clustering of solvent probes could reflect 

ligand binding sites82. The predictions for this site are, therefore, particularly 

important. It was noticed that for five solvent positions in S1, three were predicted 

with RMSDX-ray ≤ 2.0Å. The S4 sub-site is lined with hydrophobic residues and has a 

preference for apolar residues in the substrate185. It was noticed that one out of 

three solvent positions in S4 sub-site were predicted with RMSDX-ray ≤ 2.0Å. Similarly, 
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for S1’ and S3’ sub-sites which also provide hydrophobic contacts to bound 

substrates82, two out of four positions were predicted within the RMSDX-ray cut-off. 

Finally, for the oxyanion hole, represented by the S3 sub-site and characterized by 

mainly polar interactions82, all three experimental solvent positions were predicted 

at RMSDX-ray ≤ 2.0Å. 

Table 4.8. Results of MCSS calculations on Elastase for different solvent probes in 

their native protein structures.  

Solvent PDB Sub- site 
Nearest Pose 

RMSDX-ray Rank Score 
ACN1001 2FO9 S1 2.19 31 10.87 
IPA1001 2FOA S1 3.21 27 13.45 
IPA1002 2FOA S4 2.29 52 10.36 
IPA1003 2FOA S3 1.93 3 17.86 
DMF1004 2FOC S3’ 0.66 11 19.96 
EOH1001 2FOD S1 1.88 11 15.17 
EOH1002 2FOD S4 1.87 22 13.18 
EOH1003 2FOD S3 1.88 13 15.06 
EOH1004 2FOD S3’ 1.85 51 9.99 
HEX1001 2FOE S1 1.31 54 7.12 
HEX1004 2FOE S3’ 3.06 43 8.25 
TFE1001 2FOG S1 2.07 4 15.13 
TFE1002 2FOG S4 2.02 30 9.74 
TFE1003 2FOG S3 1.56 6 13.57 
TFE1008 2FOG S1’ 3.47 32 9.69 

 

MCSS calculations were also performed with the same solvent probes but on a 

generic thermolysin structure in order to investigate the effect of starting 

conformation of the receptor. The structure (2FO9) was chosen as the one which 

had the minimum average pair-wise backbone RMSD with all other structures in the 

dataset. The results are summarized in Table 4.9. 
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Table 4.9. Results of MCSS calculations on Elastase for solvents in a generic (2FO9) 

receptor structure.  

Solvent Sub- site 
Nearest Pose 

RMSDX-ray Rank Score 
ACN1001 S1 2.19 31 10.87 
IPA1001 S1 0.52 12 16.81 
IPA1002 S4 2.12 19 14.71 
IPA1003 S3 1.82 3 14.62 
DMF1004 S3’ 0.87 9 19.72 
EOH1001 S1 1.98 14 15.00 
EOH1002 S4 1.58 21 13.14 
EOH1003 S3 1.44 11 15.21 
EOH1004 S3’ 1.96 46 10.10 
HEX1001 S1 3.08 68 5.03 
HEX1004 S3’ 8.81 61 6.11 
TFE1001 S1 1.63 15 11.35 
TFE1002 S4 2.71 19 10.90 
TFE1003 S3 0.94 2 13.17 
TFE1008 S1’ 2.38 26 9.78 

 

Although the number of solvent positions predicted within the RMSDX-ray ≤ 2.0Å are 

similar, the composition of these predictions is slightly different (Table 4.9). The 

nearest predicted pose for TFE1003 has a higher RMSDX-ray in the generic receptor 

than in native receptor. On the other hand, the nearest predicted pose 1PA1001 gets 

a better rank and has much lower RMSDX-ray in the generic receptor than in the 

native receptor. Apart from these cases, the overall results were similar to those 

obtained for native receptors (Table 4.8).  

The output of MCSS was also analysed with the in situ minimized X-ray pose as 

reference. It should be noted that in some cases in situ minimization resulted in 

significant deviation from the X-ray positions of solvents, as indicated by RMSDX-ray|X-

rayMin column in Table 4.10.  
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Table 4.10. Results of MCSS calculations on Elastase using in situ minimized poses 

as reference. For each solvent position, the RMSD of in situ minimized pose from the 

X-ray pose (RMSDX-ray|X-rayMin) is given whereas the nearest predicted pose with 

respect to in situ minimized pose (RMSDX-rayMin) is shown with its ranks and score. 

Solvent PDB RMSDX-ray|X-rayMin RMSDX-rayMin Rank Score 
ACN1001 2FO9 0.73 2.04 31 10.87 
IPA1001 2FOA 0.53 3.60 27 13.45 
IPA1002 2FOA 2.04 1.88 52 10.36 
IPA1003 2FOA 0.98 1.42 3 17.85 
DMF1004 2FOC 0.77 0.67 11 19.96 
EOH1001 2FOD 0.84 2.03 44 10.79 
EOH1002 2FOD 1.88 0.06 22 13.18 
EOH1003 2FOD 1.50 1.77 13 15.06 
EOH1004 2FOD 1.01 1.45 51 9.99 
HEX1001 2FOE 0.71 1.24 54 7.12 
HEX1004 2FOE 0.60 3.14 43 8.25 
TFE1001 2FOG 0.55 2.23 4 15.13 
TFE1002 2FOG 1.57 0.87 30 9.74 
TFE1003 2FOG 1.37 1.29 6 13.57 
TFE1008 2FOG 1.56 3.22 50 6.78 

 

For example the in situ minimized pose of IPA1002 in 2FOA moves deeper into the S4 

sub-site where it can make hydrogen bonding interactions with Arg226 and Val224  

(Figure 4.5) and probably better hydrophobic contacts with Phe223 and Ala104. In 

such a case, the output of MCSS is expected to be closer to the X-ray in situ 

minimized pose, showing lower RMSD of the nearest cluster from in situ minimized 

pose than RMSD from the X-ray pose. This was noticed from the comparison of 

RMSDX-ray and RMSDX-rayMin for IPA1002, EOH1002, EOH1003, EOH1004, TFE1002, 

TFE003, TFE1008 in Table 4.8 and 4.10.  
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Figure 4.5. Change in the X-ray position of IPA1002 (green C-atoms) after in situ 

minimization (blue C-atoms).  

 

4.7 Comparison with experimental positions 

4.7.1 Acetone 

Organic solvents were shown to bind to at least 6 sites in the elastase active site (S1, 

S2, S3, S4, S1’ and S3’)82. In the active site acetone bound only to S1 but three other 

sites were also observed, two of which were crystal contacts and one was a potential 

interaction site (named ACN1006). Although this site is located quite far from the 

active site cleft, it is still inside the binding site sphere used in this study. The top 

scoring pose predicted from MCSS had RMSDX-ray of 2.8Å with respect to this position 

and reproduced the same interactions as observed for ACN1006 experimentally82, 

hydrogen bonding with the Lys234 Nε atom and hydrophobic interactions with 

Leu227 (Figure 4.6). In the active site, the nearest predicted pose for ACN1001 was 

ranked 31 with an RMSDX-ray 2.19Å. A hydrogen bond with Ser225 side-chain was 

observable which was also noted in the X-ray structure82. 

 

Arg226 

Val224 IPA1002 
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Figure 4.6. X-ray (green C-atoms) and nearest MCSS poses (blue C-atoms) 

generated for ACN1001 and ACN1006.  

4.7.2 Iso-propanol 

IPA binds to three positions in binding sites S1 (IPA1001), S4 (IPA1002) and S3 

(IPA1003). The top-scoring pose from MCSS was located in a region which is 

occupied by water molecules in the X-ray structure, making similar hydrogen 

bonding interactions to protein side-chains (Figure 4.7).  

It was noticed that, in general, the solvent positions in the oxyanion hole (the S3 sub-

site) were reproduced relatively accurately as compared to other sub-sites (Table 

4.8).  

 

 

 

 

 

Figure 4.7. Top-scoring IPA pose generated by MCSS and a corresponding bound 

water molecule in the X-ray structure.  
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For IPA1001, the nearest predicted pose (RMSDX-ray 3.21Å) (Figure 4.8B) was ranked 

27 in the native structure. Surprisingly, in the generic receptor structure, the X-ray 

pose was reproduced at very low RMSDX-ray, 0.52Å (Table 4.9). The pair-wise RMSD 

between these two receptor structures is only 0.26Å.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8. MCSS predicted poses for IPA. A. X-ray (green C-atoms) and B. nearest 

MCSS (blue C-atoms) poses generated for IPA1001, IPA1002 and IPA1003.  

 

IPA1002 represents a special case as it is the solvent position with the highest 

deviation from the X-ray pose during in situ minimization (Table 4.10). In the original 

structure, this pose is suggested to make hydrophobic contacts in S1 sub-site 
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involving Phe223, Val102, Ala104 and Thr18282 and possibly hydrogen bond with 

Val224 main-chain carbonyl group (Figure 4.8A). As discussed before, it was 

observed that in situ minimization resulted in a pose that makes hydrogen bond with 

good geometry and buried slightly deeper into the hydrophobic patches in S1 than 

the X-ray pose (Figure 4.5).  

The average atomic B-factor of IPA1001 (47.15Å2) is also slightly higher than the 

average atomic B-factors of all other solvent molecules bound at S1 (39.38 Å2). If the 

minimized pose is considered as reference then a relatively closer pose is predicted 

(RMSDX-ray in 1.81Å) (Table 4.10) at rank 52. 

The third experimentally observed position of IPA (IPA1003) lies in the oxyanion hole 

(the S3 sub-site) and it was observed that as for other solvent positions in oxyanion 

hole, IPA1003 was also reproduced relatively accurately with 1.93Å RMSDX-ray and at 

rank 3 (Table 4.8) (Figure 4.8A and B). 

4.7.3 Dimethylformamide (DMF) 

DMF binds only at S3’ sub-site in the active site82. MCSS calculations resulted in a 

DMF pose with RMSDX-ray value of 0.66 and rank 11. The top-scoring pose did not 

represent any other experimentally relevant positions or water binding sites.  

4.7.4 Ethanol (EOH) 

Ethanol is shown to bind to 4 sub-sites in the active site cleft82, S1, S3, S4 and S3’. 

MCSS results indicate that for all these interactions sites solvent binding modes were 

reproduced at RMSDX-ray ≤ 2.0Å (Table 4.8). However, the binding orientations of 

predicted poses are slightly different in most of the cases. A very noticeable feature 

of the poses predicted nearest to all EOH sites is that they are more extensively 
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hydrogen bonded to protein side-chains than their X-ray counterparts (Figure 4.9A 

and B). 

For EOH1001, the X-ray pose is oriented in a way that points non-polar –CH3 group 

into the hydrophobic pocket in S1 and hydroxyl group is exposed to the solvent. Due 

to the absence of detailed treatment of water mediated interactions in the MCSS 

scoring scheme, the predicted pose at this position favours a binding mode where 

the hydroxyl group forms a hydrogen bond with the Ser203 side-chain (Figure 4.9A 

and B). This contributes mainly to the observed RMSDX-ray as the distance between 

the methyl carbon of X-ray and predicted poses (1.9Å) is less than the distance 

between hydroxyl oxygen (2.4Å) of the two poses.   

Similarly, at S4, the predicted and X-ray pose of EOH1002, shows slightly different 

binding orientations. The predicted pose shows favourable hydrogen bonding with 

backbone groups of Val224 and Arg226, which is absent in the case of X-ray pose 

(Figure 4.9A and B). In solution, such interactions are not always favourable because 

of the screening effect of high dielectric solvent81. For EOH1003 and EOH1004, the 

binding orientation of predicted poses is also favoured towards hydrogen bonding 

interactions, causing deviation in the hydrophobic contacts (Figure 4.9A and B). This 

is further strengthened by the observed deviation of in situ minimized poses from X-

ray poses for EOH, as indicated in Table 4.10. It should be noted that the in situ 

minimization protocol also uses a distance-dependent dielectric model for solvent 

approximation therefore similarity in the outputs generated by in situ minimization 

protocol and MCSS is expected. 
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Figure 4.9. MCSS calculations with EOH probe.  A. X-ray poses (green C-atoms) and 

B. nearest MCSS poses (blue C-atoms ) generated for EOH1001, EOH1002 and 

EOH1003 and EOH1004. 

 

4.7.5  5-Hexene-1,2-diol (HEX) 

HEX is the largest solvent probe in the dataset and consists of two hydroxyl groups 

and a relatively large non-polar part, as compared to other solvent probes. The 

experimental binding sites of HEX include S1 and S3’ which provide hydrophobic 

pockets for alkene side-chain and hydroxyl groups are projected to the solvent82. For 

HEX1001, this binding mode was predicted by MCSS at RMSDX-ray 1.31Å, at rank 54. 

Among the top-scoring poses of HEX, at least two were located in S3 where no 
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experimental pose of HEX was observed. In the original 

HEX82, there is a sulphate ion bound at this site making similar interaction as 

observed for top-scoring pose (Figure 4.10). It was previously noted that the binding 

at S3 sub-site is driven mainly by polar interactions. The most favourable pose of HEX 

was predicted at this site. 

 

 

 

 

 

 

 

 

Figure 4.10. The top-scoring pose for HEX at S3 sub

sulphate ion was bound at this site.

 

For HEX1004, a binding mode was predicted close to the X

RMSDX-ray 3.47Å. The non

manner, missing key hydrophobic contacts with Leu77 which were observed in the X

ray pose. 

4.7.6 Trifluoroethanol (TFE)

The experimental binding sites for TFE are located in S1 (TFE1001), S3

(TFE1002) and S1’ (TFE1008) sub

to TFE1001 and TFE1003, respectively. The observed deviation in the predicted 

experimental pose of HEX was observed. In the original structure solved in 80% 

there is a sulphate ion bound at this site making similar interaction as 

scoring pose (Figure 4.10). It was previously noted that the binding 

site is driven mainly by polar interactions. The most favourable pose of HEX 

cted at this site.  

scoring pose for HEX at S3 sub-site. In the original structure a 

sulphate ion was bound at this site. 

For HEX1004, a binding mode was predicted close to the X-ray position but with 

3.47Å. The non-polar side-chain was oriented in a completely different 

manner, missing key hydrophobic contacts with Leu77 which were observed in the X

Trifluoroethanol (TFE) 

The experimental binding sites for TFE are located in S1 (TFE1001), S3

(TFE1002) and S1’ (TFE1008) sub-sites. The clusters 4 and 6 from MCSS correspond 

to TFE1001 and TFE1003, respectively. The observed deviation in the predicted 
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binding modes mainly results from the different orientation of the hydroxyl group 

from the X-ray pose (Figure 4.11A and B). This is consistent with observations for 

similar solvent probes noted previously and is a consequence of the force-field 

favouring the hydrogen bonding for the hydroxyl within the S1 sub-site, instead of 

projecting it towards the solvent.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11. MCSS calculations with TFE probe.  A. X-ray poses (green C-atoms) and 

B. nearest MCSS poses (blue C-atoms) generated for all crystallographically observed 

poses are shown.  

 

For TFE1002, on the other hand, the nearest predicted pose (RMSDX-ray 2.02Å) 

reproduced key interactions as observed in the X-ray pose and was ranked 30. For 

TFE1008, the nearest predicted pose was still far away from the X-ray pose (RMSDX-
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ray 3.47Å) (Figure 4.11). One of the fluorine atoms in this predicted binding mode was 

located at the position of a water molecule in the original structure. The absence of 

waters in the calculations could possibly be the reason for MCSS favouring the 

binding mode at this position deviated towards a nearby water molecule.  

4.8 MCSS calculations on Thermolysin 

The results of MCSS calculations on thermolysin are summarized in Table 4.11. For 

each solvent position, the RMSD from the X-ray position (RMSDX-ray) of the nearest 

predicted pose along with its rank and MCSS score is indicated. It was observed that 

out of seven solvent molecules in the active site cleft, the binding modes of four 

molecules were predicted at RMSDX-ray equal to or less than 2.0Å. Three of these 

predicted poses were also ranked 1 or 2 among the candidate poses.  

Table 4.11. Results of MCSS calculations on Thermolysin for solvents in their native 

protein structures. The predicted poses with the lowest RMSD from X-ray (RMSDX-ray) 

are shown with their ranks and scores.  

Solvent PDB Sub- site 
Nearest Pose 

RMSDX-ray Rank Score 
ACN1 1FJQ S1’ 1.72 1 26.92 
CCN1 1FJU S1’ 2.26 1 23.18 
IPH1 1FJW S1’ 0.61 2 22.39 
IPA1 8TLI S1’ 1.61 10 15.05 
IPA5 8TLI S8 2.19 17 13.41 
IPA8 8TLI S5 1.53 11 14.77 
IPA9 8TLI S2’ 2.31 20 12.58 

 

The experimental studies performed by English et al. (2001) showed that almost all 

of the solvent probes bound to the S1’ sub-site, the main specificity pocket for the 

enzyme. The predictions for this site are, therefore, particularly important. It was 

noticed that most of the correct predictions corresponded to solvent positions in S1’. 

Only for one probe (CCN), the binding mode at S1’ was predicted with relatively 
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higher RMSDX-ray (Table 4.11). Additional solvent binding sites were considered for 

IPA, two of which, IPA1 and IPA8, were predicted within RMSDX-ray cut-off of 2.0Å.  

In order to test the sensitivity of the method towards the starting conformation of 

the receptor, the same calculations were performed on a generic thermolysin 

structure (PDB code: 2TLX) and results are shown in Table 4.12. In general, the 

results are somewhat similar in terms of the number of solvent positions reproduced 

with reasonable RMSDX-ray. In some case, slight differences can be observed both in 

ranking and the RMSDX-ray of the nearest pose. For instance, the nearest predicted 

pose for IPH1 in the generic receptor structure had lower RMSDX-ray and poorer rank 

then in the native structure. On the other hand, the nearest predicted pose 1PA1 

had a better rank and a much lower RMSDX-ray in the generic receptor than in the 

native receptor (Table 4.12).  

Table 4.12. Results of MCSS calculations on Thermolysin for solvents in generic 

(2TLX) solvent-bound structure.  

Solvent 
Sub- 
site 

Nearest Pose 
RMSDX-ray Rank Score 

ACN1 S1’ 0.74 1 26.13 
CCN1 S1’ 2.20 1 22.19 
IPH1 S1’ 2.24 3 23.20 
IPA1 S1’ 1.36 2 22.99 
IPA5 S8 2.43 11 14.36 
IPA8 S5 1.68 9 16.41 
IPA9 S2’ 2.20 21 11.76 

 

The in situ minimization of X-ray poses of solvent resulted in significant deviations 

for four cases, as indicated by RMSDX-ray|X-rayMin values in Table 4.13. When this is 

compared with the results in Table 4.11, it appears that, in all such cases using X-ray 

pose does not give correct predictions. Consequently, a comparison of the predicted 

poses with in situ minimized poses shows better RMSD values and ranks (Table 4.13).  
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Table 4.13. Results of MCSS calculations on Thermolysin using in situ minimized 

poses as reference.  

Solvent PDB RMSDX-ray|X-rayMin RMSDX-rayMin Rank Score 

ACN1 1FJQ 1.20 0.99 1 26.099 
CCN1 1FJU 2.25 0.87 1 23.181 
IPH1 1FJW 0.56 2.47 2 19.942 
IPA1 8TLI 2.02 1.11 9 15.054 
IPA5 8TLI 1.04 2.02 4 16.569 
IPA8 8TLI 0.71 0.98 7 15.648 
IPA9 8TLI 1.75 2.55 2 17.606 

 

4.9 Comparison with experimental positions 

All the solvent probes used in the experimental solvent mapping studies for 

thermolysin81 have a hydrophilic and a hydrophobic part. The S1’ sub-site contains 

hydrophobic residues at the base of the pocket (Phe130, Leu133, Val139, Ile188, 

Val192 and Leu202) and polar residues (Asn112, Glu143, Arg203 and His231) 

towards the edges. The experimentally determined binding mode for all the solvent 

probes at S1’ sub-site is roughly similar in terms of the orientation of polar and non-

polar groups. The poses predicted from MCSS at this sub-site reproduce similar 

binding geometries for ACN1, IPA1 and IPH1 (Figure 4.12). In the case of CCN1, 

although a high-scoring pose is predicted at the same location but with almost 

opposite orientations of methyl and nitrile groups. It was notable that in the original 

X-ray structure, the CCN1 has a high atomic B-factor and was expected to be 

mobile81. Furthermore, the in situ minimization also resulted in a pose with large 

deviation from the X-ray pose (Table 4.13). 

 IPA also binds to three additional sub-sites in thermolysin binding site, denoted by 

IPA5, IPA8 and IPA9 (Figure 4.12). These interactions were observed at high 

concentration (90% isopropanol) (English et al. 2001) and interestingly the quality of 
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prediction from MCSS for these sites was reduced compared to IPA1, as seen in 

RMSDX-ray values and ranks (Table 4.11). It was noted the observed RMSDX-ray of the 

nearest predicted poses for IPA5 and IPA9 results from MCSS favouring a binding 

mode with distinct hydrogen bonding interactions. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12. The X-ray (green C-atoms) and predicted poses (grey C-atoms) for 

solvent probes in thermolysin binding site. For each solvent the nearest pose 

predicted from MCSS is shown. A. IPA (isopropanol), B. ACN (acetone), C. CCN 

(acetonitrile), D. IPH (phenol)  

4.10 Discussion 

MCSS was developed primarily as a technique to probe binding sites for energetically 

favourable positions of functional groups. As discussed above, the experimental 

solvent mapping data is a very useful resource in evaluating MCSS predictions. Here 

we also discuss a comparison of MCSS calculations with another solvent mapping 
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algorithm. The results of computational solvent mapping for elastase and 

thermolysin based on FT-Map were reported by Brenke et al.
88.  A brief overview of 

FT-Map method was described earlier (Section 1.4.3) and the most important 

difference between the MCSS and FT-Map lies in the way electrostatic interactions 

are taken into account by these two methods. FT-Map evaluates electrostatic and 

solvation terms for solvent binding modes using Analytic Continuum Electrostatic 

model implemented in CHARMM 27 version88 whereas MCSS energy minimization 

uses a distance-dependent dielectric model. A set of 16 solvent probes was applied 

on an inhibitor-bound structure of elastase (PDB code: 2ELA) and a dipeptide-bound 

structure of thermolysin (PDB code: 2TLX). For each solvent probe, the six lowest 

free energy clusters were superimposed and compared with experimental probe 

positions to delineate consensus sites, which have been experimentally shown to 

correspond to substrate binding pockets of proteins78. For elastase, the largest 

consensus site, which contained 20 clusters represented by all 16 probes, was 

identified in the S1 sub-site. Similarly, for the other four sub-sites (S3, S4, S1’ and S3’) 

clusters represented by four up to nine different probe molecules were obtained. 

For thermolysin, the largest consensus site contained 19 clusters, represented by all 

16 probes and the centre of this site, the lowest energy cluster, corresponded to the 

main specificity pocket, S1’. Three additional sites, adjacent to S1’, contained 16, 7 

and 8, probe clusters, respectively and trace out S1 and S2 sites collectively (Brenke 

et al. 2009).  

These results are in qualitative agreement with the results from MCSS in this study. 

For elastase, out of 5 solvent probes, MCSS reproduced clusters represented by 2 to 

3 different probes in each of the solvent binding sub-sites. Similarly, for thermolysin, 
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high scoring clusters for all four probes were predicted in S1’. The main difference 

between the two methods is reflected in the ranking of clusters from MCSS. The 

probe clusters in the case of FT-Map that line the binding site are always within the 

six lowest free energy clusters whereas in the case of MCSS the scoring and ranking 

are not so efficient, particularly in the case of elastase. For thermolysin, the ranking 

of probe clusters nearest to experimental solvent binding sites is slightly better. 

English et al. compared experimental results with MCSS results for thermolysin and 

highlighted the absence of desolvation terms as a possible reason for the 

appearance of false positive energy minima and poor ranking81. Additionally, 

Silberstein et al. using FT-Map, showed that ranking of poses could be improved by 

taking the mean score for each cluster and choosing the pose closest to the mean 

value as cluster representative. MCSS on the other hand takes the highest scoring 

pose within a cluster as the cluster representative. We therefore repeated the 

calculations, described in 5.2 and 5.4, with a different ranking strategy where at the 

end of MCSS, the mean value pose was chosen as the cluster representative. The 

results of these calculations are shown in Appendix (Table 7.1 and 7.2).  

It was observed that ranking improved in some cases, however, in other cases it 

remained unchanged or even deteriorated. The overall effect of re-ranking therefore 

did not significantly improve the quality of predictions. In principle at a low 

clustering RMSD, the difference among poses within a cluster should not be 

significant. In previous application of MCSS on thermolysin81, a clustering RMSD of 

3.5Å was used whereas in this study it was set to 2.0Å. That could be the reason why 

re-ranking did not have a significant effect.  
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In the experimental studies for solvent mapping, it was noted that favourable 

solvent positions on the protein surface appear at particular concentration of 

solvents in which crystal soaking experiments were performed81, 82. The 

concentration at which a solvent molecule is bound to a binding pocket in the 

protein, therefore, can be considered as a rough measure of the strength of binding. 

Similarly each MCSS pose has an associated score which also reflects binding affinity. 

We therefore compared the score of the experimentally nearest pose for each 

solvent position with its concentration. It should be noted that several solvent 

positions appear at the same concentration reflecting that those positions are 

identically favourable. The data for concentrations was obtained from the literature, 

and the resulting plot is shown in Figure 4.13. 

A strong negative correlation should indicate good agreement as the MCSS score for 

a solvent pose observed at low concentration should be high. It was noted that the 

correlation coefficient was very weak (Figure 4.13). This is consistent with some of 

the limitations of MCSS scoring that were observed in the analysis of predicted 

solvent poses. It was however noted that the solvent molecules binding at high 

concentrations (≥ 80%) were clustered mostly below an MCSS score of 15.00 (Figure 

4.13). At least three solvent probes binding at very low concentrations (DMF1004, 

40%, IPA1, 10% and IPH1, 0.4%) were located outside this cluster with relatively high 

MCSS score. IPH1 position which was predicted with a very low RMSDX-ray and was 

rank 2nd but also obtained a high MCSS score. It was therefore concluded that rank 

ordering resulting from MCSS for solvent mapping datasets was incorrect in most 

cases (Table 4.8 and 5.4). Experimentally relevant positions were, however, 

generated for each solvent probe and scoring efficiency was relatively better for 
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buried sub-sites such as S3 for elastase and S1’, where solvent screening of 

electrostatic interactions are less significant.  

 

 

Figure 4.13. Correlation between MCSS score and concentrations of solvent probes 

from experimental mapping studies. The table shows solvent positions and the 

concentration at which those were observed in the binding site. The plot shows a 

weak negative correlation with R = -2.01.  

 

4.11 Summary 

The results of MCSS calculations on solvent mapping datasets indicate that MCSS can 

generate experimentally relevant poses for solvent probes. However, the ranking of 

poses is problematic and leads to false positive energy minima. A part of this 

problem, as highlighted before, is caused by the crude approximation of solvent 
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effects using a distance-dependent dielectric model. As a result, charge interactions 

between two polar groups that are considered favourable by the force-field could, in 

fact, be unfavourable76. The over-estimation of electrostatic interactions and 

appropriate treatment of solvent screening effects poses a significant challenge in 

protein-ligand docking and scoring53. In principle this should be overcome by an 

explicit treatment of solvent molecules during binding affinity prediction. Explicit 

solvent treatment through molecular dynamics simulation is computationally very 

expensive and might not be feasible at a large scale35. Over the past few years, 

however, advances have been made in the use of implicit solvent models based on 

continuum electrostatics50. These approaches treat solvent as a continuum of high 

dielectric medium whereas the protein is treated as a low dielectric medium with 

immersed partial charges.  



130 
 

Chapter 5 

Fragment Docking and Scoring with MCSS and MM/GBSA 

Rescoring  

5.1 Introduction 

The results of MCSS calculations on solvent mapping datasets indicate that MCSS can 

generate experimentally relevant poses for solvent probes. However, the ranking of 

poses is problematic and leads to false positive energy minima. A part of this 

problem, as highlighted before, is caused by the crude approximation of solvent 

effects using a distance-dependent dielectric model. As a result, charge interactions 

between two polar groups that are considered favourable by the force-field could, in 

fact, be unfavourable76. The over-estimation of electrostatic interactions and 

appropriate treatment of solvent screening effects poses a significant challenge in 

protein-ligand docking and scoring53. In principle this should be overcome by an 

explicit treatment of solvent molecules during binding affinity prediction. Explicit 

solvent treatment through molecular dynamics simulation is computationally very 

expensive and might not be feasible at a large scale35. Over the past few years, 

however, advances have been made in the use of implicit solvent models based on 

continuum electrostatics50. These approaches treat solvent as a continuum of high 

dielectric medium whereas the protein is treated as a low dielectric medium with 

immersed partial charges.  

Fragment docking and scoring programs that make use of implicit solvent models 

have been discussed before. One of the examples reported earlier was based on 
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combining MCSS with an MM-PB/SA re-scoring scheme74. A significant re-ordering of 

MCSS poses was reported with this approach. As PBSA is considered the most 

rigorous and time-consuming implicit solvent treatment, faster approximations to 

PBSA have been developed, such as the generalized Born (GB) model, which in some 

cases, reproduces results from PBSA at error margin of ≤ 1%101.  

Therefore, we attempted to use a GB implicit model in the GBSA re-scoring scheme 

along with MCSS. This particular GB model uses molecular volume integration for 

efficient approximation of molecular surface area calculation, hence it is called 

GBMV/SA186. The details of this scoring strategy are explained in Chapter 4 (4.4.6). 

The results of the application of these calculations on fragment docking and HSP90 

datasets are described below.  

5.2 MCSS calculations on fragment docking dataset 

The result of the MCSS calculations is a set of poses for each fragment in a binding 

site, each with an associated score calculated within the MCSS protocol (a CHARMm 

interaction energy) and with a subsequent MM-GBMV/SA rescoring.  The best 

scoring post for each fragment was compared with the original X-ray pose and the in 

situ minimized X-ray pose and the success rate assessed at 1 Å and 2 Å RMSD cut-

offs. As in situ minimization of the X-ray pose sometimes leads to significant 

deviations therefore it is important to consider both poses as references. Table 5.1 

summarizes the results for the fragment docking dataset.  The success rate is defined 

as the percentage of fragments for which the top-scoring pose was predicted within 

the RMSD cut-off. It was noticed that the success rate for MCSS was the same at 1Å 

and 2Å RMSD regardless of the reference pose. The same trend was observed after 
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rescoring with MM-GBMV/SA. As expected, the rescoring improved the success rate 

up to 67% at 1Å RMSD and 75% at 2Å RMSD.  

Table 5.1. Success rate of MCSS and MCSS with MM-GBMV/SA scoring on fragment 

docking dataset, at different RMSD cut-offs and considering X-ray and in stiu 

minimized X-ray poses as reference. 

RMSD 1Å 2Å 
Reference X-ray X-ray Min X-ray X-ray Min 
MCSS 50% 50% 67% 67% 
MM-GBMV/SA 67% 67% 75% 75% 

 

Further details of results from MCSS are summarised in Table 5.2 where in each case, 

the top-scoring pose from MCSS is shown, along with its RMSD from the X-ray pose 

(RMSDX-ray) and from the in situ minimized X-ray pose (RMSDX-rayMin). The RMSD 

between the X-ray pose and the in situ minimized X-ray pose is also shown 

(RMSDXray|XrayMin). These values lie in the range 0.2Å to 1.0Å.  High RMSDXray|XrayMin 

values (> 0.50 Å) are mostly associated with resolution lower than 2.0 Å, as expected.  

Further inspection of the case, for which an MCSS top-scoring pose was not within 

1.0Å or 2.0Å of any of the reference poses, revealed that the MCSS protocol had 

found a correct pose in all cases, but the MCSS score was not able to identify it 

reliably.  The results after rescoring with MM-GBMV/SA are summarised in Table 5. 

For each case, the most favourable pose obtained after rescoring is shown along 

with RMSDs against references. The success rate increases with improvement in 

scoring. This was particularly noticeable for 1WCC, 2C90 and 2JJC where poses within 

1.0Å of the references pose were picked up by MM-GBMV/SA scoring as the most 

favourable ones.  
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Table 5.2. Results of MCSS docking for fragments in fragment docking dataset (top-

scoring poses for each test case). (RMSDXray|Xray Min: RMSD of in situ minimized X-ray 

pose from X-ray pose, RMSDX-ray: RMSD of the best pose from the X-ray pose, RMSDX-

rayMin: RMSD of the best pose from the in situ minimized X-ray pose). 

PDB RMSDXray|XrayMin RMSDX-ray RMSDX-ray Min 
1EQG 0.3 0.3 0.1 
1FV9 1.0 2.0 1.9 
1GWQ 0.5 1.5 1.5 
1N1M 0.5 0.8 0.4 
1QWC 0.8 1.0 1.2 
1S39 0.3 0.3 0.0 
1WWC 0.2 4.8 4.8 
1YZ3 0.4 0.4 0.0 
2ADU 0.5 0.5 0.1 
2C90 0.6 5.2 5.0 
2JJC 0.4 6.3 6.4 
2OHK 0.5 2.7 2.6 

 
In total, there were three failures: 1GWQ, 2ADU and 2OHK. Further analysis revealed 

that 1GWQ was scored correctly by MCSS alone with 1.5 Å RMSDX-ray of the top-

scoring pose but after re-scoring, this pose obtained a ∆G of binding that was only 

0.7 kcal/mol higher than that of the most favourable pose with 7.1 Å RMSDX-ray. The 

ΔG values for X-ray, in situ minimized X-ray and top-scoring poses is given in 

Appendix. These two poses differ in the orientation of two distal phenolic groups in 

the fragment. The opposite orientation of these groups still satisfies their hydrogen 

bonding potential but the position of sulphur atom in the thiophene ring is different 

which could explain the minor difference in the binding energy values of the two 

poses (Figure 5.1). 

In the case of 2OHK the top ranking pose from MCSS remained the most favourable 

binding pose with RMSDX-ray and RMSDX-rayMin values 2.6Å and 2.7Å, respectively 

(Table 5.3). On the other hand, another MCSS pose at RMSDX-ray 1.26Å and RMSDX-



 

rayMin 1.04Å improved from rank 4 to rank 3 but did not achi

binding energy. 

 

 

 

 

 

 

 

Figure 5.1. MCSS generated poses for 1GWQ ranked 1

(grey C-atoms) by MM/GBMV

(RMSD 1.5Å) is 0.6 kcal/mol less favourable than the 1

opposite orientation to the X

 

Table 5.3. The most favourable MCSS poses after MM

fragments in fragment docking dataset

the X-ray pose, RMSDX-ray Min

ray pose).  

PDB RMSDX-ray RMSD
1EQG 0.3 
1FV9 2.0 
1GWQ 7.1 
1N1M 0.8 
1QWC 1.0 
1S39 0.3 
1WWC 0.2 
1YZ3 0.4 
2ADU 9.1 
2C90 0.6 
2JJC 0.3 
2OHK 2.7 

 

1.04Å improved from rank 4 to rank 3 but did not achieve the most favourable 

MCSS generated poses for 1GWQ ranked 1st (magenta C-

atoms) by MM/GBMV-SA. The 2nd pose which corresponds to the X

(RMSD 1.5Å) is 0.6 kcal/mol less favourable than the 1st pose which is in completely 

opposite orientation to the X-ray pose with high RMSD (7.1Å). 

The most favourable MCSS poses after MM-GBMV/SA scoring for 

gment docking dataset. (RMSDX-ray: RMSD of the nearest pose from 

ray Min: RMSD of the nearest pose from the in situ

RMSDX-ray Min 
0.1 
1.9 
7.1 
0.4 
1.2 
0.0 
0.0 
0.0 
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2ADU is a unique entry in the dataset as the fragment interacts with two Co2+ ions in 

the binding site. The parameters for Co2+ ions were missing in the MMFF94 force-

field so these were changed to Zn2+ ions for calculations. The resulting ∆G values 

obtained for the X-ray and in situ minimized X-ray poses were all positive. Similarly, 

most of the MCSS poses obtained a positive binding energy value. The most 

favourable pose was located very far from the binding site. Interestingly, MCSS 

produced a correct solution but the re-scoring reduced the quality of prediction, 

giving the most favourable energy to a different pose that was located very far from 

the X-ray pose (Table 5.3). It was noticed that all MCSS poses which were interacting 

with the metal ions received unfavourable binding energy values like the X-ray and 

X-ray minimized pose.   

This can probably be explained by the lack of adequate parameterization of 

interactions involving metal ions. This was also noted for 1QWC where the X-ray 

pose of the fragment makes key interactions with the heme group in the binding 

site. The amidine group stacks on top of heme pyrrole B with hydrogen bonding to 

Glu592 and 3-aminomethyl group also makes salt bridges with heme propionic acid 

groups187. The candidate poses generated from both MCSS protocols were 

dominated by distorted fragment conformations where either amidine nitrogen 

atom or amino group nitrogen atom interacted with iron atom at the heme centre, 

resulting in unrealistic binding energy values after rescoring. Only after discarding 

these poses was a correct ranking was obtained (Table 5.3).   

As MCSS is an energy minimization routine, the efficiency of sampling low energy 

conformations of fragments in the binding sites is an important consideration. One 

way of assessing this is by plotting the difference in ∆G values obtained for the top-
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scoring (lowest energy pose) and the in situ minimized X-ray pose. This could 

indicate if MCSS minimization is finding energy minima in the binding site that would 

otherwise be found by minimizing the X-ray pose in the binding pose.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Figure 5.2. Most favourable MCSS and GOLD poses after MM-GBMV/SA scoring in 

fragment docking dataset. The difference in binding affinity with the in X-ray situ 

minimized pose (∆∆GX-rayMin|Best) is plotted alongside RMSD with respect to in situ 

minimized pose (RMSDX-rayMin) for each case. 

 

The values for ∆G calculated for the X-ray pose, in situ minimized X-ray pose and top-

scoring poses are shown in the Appendix (Table 7.3 and 7.4). Here only differences in 
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∆G values are described as they are more meaningful. Figure 5.2 shows plots for the 

dataset where the difference in ∆G values (∆∆GX-rayMin|Best) is plotted alongside the 

RMSDX-rayMin of the top-scoring pose. A positive value of ∆∆GX-rayMin|Best reflects that 

docking produced a low energy pose. The RMSD bar next to ∆∆GX-rayMin|Best indicates 

if this low energy pose corresponds to the in situ minimized X-ray pose. In this way, it 

is possible to see if incorrect ranking is related to poor sampling efficiency. The plot 

for fragment docking dataset shows that in almost all cases docking sufficiently 

sampled the low energy conformations (Figure 5.2A). This indicates that MCSS 

consistently finds low energy poses in the binding site therefore it is mostly the 

imperfections in scoring that lead to false positives. 

There are two cases that lie between the 1.0Å and 2.0Å RMSD cut-off (Table 5.3). 

1FV9 represents a case where the top-scoring pose is about 2.0Å away from the 

reference poses. Although for the most part the two poses superpose nicely, the 

top-scoring pose is inverted with reference to the position of hydroxyl group 

attached to the benzene ring (Figure 5.3). This highlights the importance of using 

rather strict criterion when assessing the performance of scoring functions on 

protein-fragment complexes.  

 

 

 

 

 

 

 

Figure 5.3. Top-scoring MCSS pose for 1FV9 at 2.02 Å RMSD. The top-scoring pose 

(grey C-atoms) overlaps with the X-ray pose (green C-atoms) for the most part, 

except a hydroxyl group. 

Opposite orientation of a ligand 
hydroxyl group in top-scoring pose 
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5.3 Comparison with GOLD 

In order to compare the performance of MCSS and MM-GBMV/SA scoring, the same 

procedure was repeated with a standard docking program, GOLD, in the place of 

MCSS. Table 5.4 shows the success rate obtained from GOLD at 1.0 Å and 2.0 Å 

RMSD cut-offs with respect to X-ray and in situ minimized X-ray poses. The 

performance of GOLD docking and scoring at 1.0 Å with either of the two references 

was slightly better than that of MCSS. At 2.0 Å the success rate was similar to MCSS 

(Table 5.1 and 5.4). The rescoring of GOLD poses with MM-GBMV/SA resulted in a 

success rate at 1.0 Å that was lower than equivalent success rate for MCSS. At 2.0 Å, 

however, the success rate after rescoring after either of the two methods is the 

same (Table 5.1 and 5.4).  

Table 5.4. Success rate of GOLD and GOLD with MM-GBMV/SA scoring on fragment 

docking dataset, at different RMSD cut-offs and considering X-ray and in situ 

minimized X-ray poses as references. 

RMSD 1Å 2Å 

Reference X-ray X-ray Min. X-ray X-ray Min. 

GOLD 58% 58% 67% 67% 

GOLD-GBMV/SA 50% 58% 75% 75% 
 

Further analysis of the results from GOLD docking is summarized in Table 5.5. 

Although the top-scoring pose in 5 cases did not correspond to the X-ray or in situ 

minimized X-ray pose, the docking search yielded a pose within 2.0 Å of either of the 

references for all cases. The effect of rescoring was therefore further investigated to 

understand the improvement in ranking of these cases.  

Further analysis of the results from MM-GBMV/SA rescoring of GOLD poses is 

summarized in Table 5.5 and 5.6. The increase in the success rate after rescoring was 
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due to the ranking of correct poses for 1FV9 and 1WWC. In three other cases, 1QWC, 

2C90, 2OHK, rescoring did not improve results.  

The plot of ∆∆GX-rayMin|Best and RMSDX-rayMin for the top-scoring poses after rescoring 

shows that failures in scoring were not related to an inadequate search for low 

energy conformers (Figure 5.2B) and GOLD found correct poses for almost all cases.  

Although the performance of MCSS and GOLD after rescoring is comparable, it can 

be seen from Figure 5.2A and B that most of the failures are different in each 

method. The combined result gives success rate of 75% at 1Å RMSD considering in 

situ minimized X-ray poses as the reference.  

Table 5.5. Results of GOLD docking for fragments in fragment docking dataset (top-

scoring poses for each test case). (RMSDXray|XrayMin: RMSD of in situ minimized X-ray 

pose from X-ray pose, RMSDX-ray: RMSD of the best pose from the X-ray pose, RMSDX-

rayMin: RMSD of the best pose from the in situ minimized X-ray pose). 

PDB RMSDX-ray|XrayMin RMSDX-ray RMSDX-rayMin 
1EQG 0.3 0.3 0.3 
1FV9 1.0 2.0 1.9 
1GWQ 0.5 0.7 0.1 
1N1M 0.5 0.5 0.8 
1QWC 0.8 5.2 5.2 
1S39 0.3 0.2 0.4 
1WWC 0.2 6.2 6.2 
1YZ3 0.4 0.7 0.9 
2ADU 0.5 0.6 0.5 
2C90 0.6 5.2 5.0 
2JJC 0.4 0.3 0.4 
2OHK 0.5 3.2 3.3 
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Table 5.6. The most favourable GOLD poses after GBMV scoring for protein-

fragment complexes from fragment docking dataset. 

PDB RMSDX-ray RMSDX-rayMin 
1EQG 1.2 1.1 
1FV9 1.2 0.5 
1GWQ 0.6 0.0 
1N1M 0.8 0.4 
1QWC 2.5 2.6 
1S39 0.4 0.1 
1WWC 0.2 0.0 
1YZ3 0.4 0.1 
2ADU 1.3 1.5 
2C90 5.1 5.2 
2JJC 0.3 0.4 
2OHK 3.3 3.2 

 

5.4 MCSS-GBMV calculations on HSP90 dataset 

The docking and scoring protocol with MCSS and MM-GBMV/SA was applied to the 

HSP90 dataset which contains 11 HSP90 N-terminal domain structures bound mostly 

to fragment sized molecules. All the fragments were docked into their native and the 

non-native receptor structures in the dataset. Table 5.7 and 5.8 summarize the 

results obtained from docking fragments into their native structures with MCSS and 

scoring based MM-GBMV/SA scoring for each case.  

 

Table 5.7. Success rate of GOLD and GOLD with MM-GBMV/SA scoring on HSP90 

dataset, at different RMSD cut-offs and considering X-ray and in situ minimized X-ray 

poses as references. 

RMSD 1Å 2Å 

Reference X-ray X-ray Min. X-ray X-ray Min. 

GOLD 17% 25% 25% 25% 

GOLD-GBMV/SA 50% 58% 58% 67% 
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The success rate for docking into the native receptor structures was 58% and 67% at 

1Å and 2Å RMSD, respectively, using the in situ minimized X-ray pose as the 

reference (Table 5.7). This was significantly better than original success rate from 

MCSS before re-scoring.  

It can be seen from Table 5.8 that for 7 cases, the predicted pose with the lowest 

RMSDX-ray was assigned the most favourable binding energy. There were five cases 

where the most favourable binding pose was far from the X-ray pose. Further 

analysis indicated that for two of such cases, 1QYE and 2QFOa, the lowest RMSDX-ray 

pose was ranked 2nd whereas in other three cases, 2CCS, 2QFOb and 3EKO, the 

lowest RMSDX-ray pose was ranked 6th, 7th and 4th respectively. These observations 

are reflected in the plot of ∆∆GX-rayMin|Best and RMSDX-rayMin which shows the MCSS 

efficiently samples low energy conformations in most cases and mostly it is the 

scoring function that is unable to assign the most favourable binding energy to the 

energy minima that is closest to the X-ray or in situ minimized pose (Figure 5.4).  

Table 5.8. Most favourable MCSS poses after docking and MM-GBMV/SA scoring of 

fragments in native receptor structures from HSP90 dataset. 

PDB RMSDX-ray RMSDX-rayMin 
1QYE 4.10 4.13 
1ZWH  2.07 1.08 
2CCS 5.91 5.89 
2JJC 0.34 0.03 
2QF6 0.36 0.13 
2QFOa 3.72 3.61 
2QFOb 2.29 2.08 
2WI1 0.92 0.11 
2WI2 1.00 0.90 
3BM9 0.32 0.62 
3EKO 5.06 4.95 
3FT5 0.78 0.71 
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The values for ∆G calculated for the X-ray pose, in situ minimized X-ray pose and top-

scoring poses are shown in the Appendix (Table 7.5) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4. Most favourable MCSS and GOLD poses after MM-GBMV/SA scoring in 

HSP90 dataset. The difference in binding affinity with the in situ minimized pose 

(∆∆GX-rayMin|Best) is plotted alongside RMSD with respect to in situ minimized pose 

(RMSDX-rayMin) for each case. 

 

A distinct case in HSP90 dataset is that of 1ZWH where the most favourable pose is 

on the margin of the 2.0Å threshold (Table 5.8). This is also the case with the largest 

deviation between the X-ray pose and in situ minimized pose. In the X-ray binding 

mode of the fragment, the carboxylic group attached to the ring is partially exposed 

to the solvent. The in situ minimization which was done with distance-dependent 

dielectric model favoured a binding mode where this group formed a hydrogen bond 

with ASN92 in the binding site. It should be noted that the MCSS minimization is also 

carried out with distance-dependent dielectric. The initial placement of fragments 
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can therefore result in an experimentally relevant pose getting a very low MCSS 

rank. In the case of 1ZWH, however, an MCSS pose which reproduced most of the 

key interactions in the native binding mode obtained the most favourable binding 

energy after re-scoring.  

2QFOa and 2QFOb represent a case of co-operative binding. It was shown that 

2QFOb binds only in the presence of 2QFOa43. The native binding mode of these 

fragments also indicates π-π stacking interactions between the pyrimidine ring of 

2QFOa and the phenyl ring of 2QFOb. In this protocol, these fragments were docked 

and scored independent of each other therefore energetic contributions resulting 

from the direct interactions between these two fragments could not be accounted 

for. This probably contributed to the lowest RMSDX-ray poses for 2QFOa and 2QFOb 

getting rank 2 and 7, respectively. The difference in the top scoring and lowest 

RMSDX-ray poses for 2QFOa was only about 0.5 kcal/mol. In the top scoring pose of 

2QFOb, the furanone moiety was accurately superimposed on the X-ray pose and 

the major deviation came from the benzene ring which is stabilized by staking 

interactions with pyrimidine ring of 2QFOa (not present in 2QFOb docking and 

scoring).  

The most compelling reason for using MM-GBMV/SA re-scoring of MCSS poses is the 

treatment of solvent effects that take into account screening of electrostatic 

interactions between polar groups. Therefore, the initial MCSS ranking of lowest 

RMSDX-ray poses is expected to be improved in GBMV scoring, in at least those cases 

where electrostatic interactions play major roles in binding affinity, as it was noticed 

previously that for 7 correct predictions (Table 5.8), the ranks of the lowest RMSDX-ray 

poses during MCSS improved or remained unchanged (3 cases). Similarly, in those 
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cases where the lowest RMSDX-ray pose did not obtain the most favourable binding 

energy, there was still considerable improvement in the ranking.  

5.5 Effect of Multiple Receptor Structures 

The HSP90 binding site is known for ligand induced conformational changes175. The 

base of the pocket (containing the purine binding site with conserved solvent 

structure binding to Asp93) remains relatively static across all known structures.  The 

main change is the rearrangement of a helix at the lip of the binding site which can 

sometimes open up an additional hydrophobic pocket42.  It is therefore important in 

docking and scoring of fragments to use the most appropriate target structure.  One 

approach is to use multiple receptor structures obtained either from molecular 

dynamics simulation or from X-ray crystallography36. The fragments in the HSP90 

dataset were therefore docked into the set of non-native structures to study how 

the consideration of multiple structures could possibly affect the outcome of 

docking.  

Cross-docking indicated that the performance of individual receptor structures, in 

terms of percentage of fragments in the dataset correctly docked and scored varied 

from 0 to 45%. It was noticed that the correct binding mode for each fragment was 

reproduced and scored at the top in at least one or more receptor structures, except 

2QFOb.  The successive addition of structures can therefore increase the total 

performance up to 91%. Figure 5.5 shows the increase in the performance as 

structures are added randomly. The average performance of 100 random selections 

is plotted against the number of receptor structures and the error bars represent 

standard deviation in the average performance. As expected, the average 
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performance increased almost linearly with successive addition of structures at 

random, leading up to the performance of 91% when using all structures in the 

dataset. The increases in performance is observed at 1Å and 2Å RMSD criteria for 

success rate (Figure 5.5) 

 

 

 

 

 

 

 

 

 

Figure 5.5. The effect of multiple structures on scoring performance. The scoring is 

defined as the percentage of correctly docked and scored ligands in at least one 

receptor structure. Successive addition of structures is based on 100 random 

selections at each point and the average performance is plotted against the number 

of structures with error bars representing standard deviation of success rate in 100 

random selections of additional structures.  

 

This performance, is however, based on the criterion that the X-ray crystallographic 

binding mode of the fragment is reproduced and scored correctly in at least one 

receptor structure. For brevity, the terms native and non-native receptor would 

imply the receptor structure in which fragments were docked. Different receptor 

structures in the dataset can either improve or deteriorate the quality of predictions. 
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If a native receptor predicts the X-ray binding mode with the most favourable 

interaction energy (the highest rank), it is possible that a non-native receptor gives 

poor rank to the lowest RMSD pose, thereby deteriorating the quality. Similarly, if a 

native receptor fails to reproduce and correctly rank the X-ray binding mode, a non-

native receptor can improve the performance by reproducing the correct binding 

mode with the top rank. 

In order to compare how non-native receptors perform with respect to the native 

receptor, the criteria were set for the improvement or deterioration of the quality of 

predictions as follows. The receptor structure is considered deteriorating when a 

native receptor reproduces a pose with ≤ 2.0Å RMSDX-ray with the highest score and 

the non-native receptor fails to score a pose with ≤ 2.0Å RMSDX-ray within top 3. The 

receptor structure is considered improving when a native receptor fails to reproduce 

the native binding mode and score it correctly and a non-native receptor reproduces 

a pose with ≤ 2.0Å RMSDX-ray within the top 3 poses. In this way for each fragment, 

the number of non-native receptors that have an improving or deteriorating effect 

on the quality of predictions can be calculated. This is shown in Figure 5.6 where for 

each fragment the number of improving versus deteriorating receptor structures is 

shown.  

It was previously observed for the HSP90 dataset that in 5 cases prediction in the 

native structures was not successful (Table 5.8). It can be seen from Figure 5.6 that 

for such cases (1QYE, 2CCS, 2QFOa, 2QFOb and 3EKO) at least one non-native 

receptor was able to reproduce the native binding mode with correct scoring, 

thereby improving the quality of predictions. This was particularly notable for 2QFOa 

for which all of the non-native receptors reproduced the native binding mode. 
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Figure 5.6. Relative contribution of non-native receptor structures towards scoring 

of each docked fragment in HSP90 dataset.  

 

For the 7 cases where docking and scoring in native receptor was successful (1ZWH, 

2JJC, 2QF6, 2WI1, 2WI2, 3BM9 and 3FT5), a fraction of non-native receptors 

deteriorating the quality of scoring and ranking were also present (Figure 5.6). The 

most significant of these was 1ZWH where none of the non-native receptors could 

reproduce the native binding mode with correct ranking.  

This suggests that it can be useful to assess relative contribution of multiple 

structures in docking and scoring known ligands before using them in a library 

screen. The balance between the improving and deteriorating effect of multiple 

structures on the quality of predictions should therefore be taken into account.  

5.6 Prediction of conserved water molecules in the binding site 

The role of conserved water molecules in modulating interactions in the HSP90 

binding site is well established44. The treatment of these water molecules as part of 

the binding site contributed to reasonable predictions in docking and scoring. An 
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important question therefore is how well MCSS can predict the positions of ordered 

water molecules in the binding site. The HSP90 binding site can be used as a test 

case.  

In this dataset 3 to 4 interstitial water molecules were observed in the binding site, 

mostly bridging interactions between protein and the bound ligand. These are 

referred to as HOH1, HOH2, HOH3 and HOH4 (Table 5.9) (Figure 5.7). Apart from 

HOH2, all of these water molecules were present in all 11 structures whereas HOH2 

was present only in 7 structures.  

In order to predict the position of water molecules, the MCSS protocol mentioned 

above was applied to all receptors in HSP90 dataset with water as the probe. It was 

noticed that the top ranking predicted water position in all receptor structure always 

corresponded to the crystallographic water position HOH1, with an average RMSD of 

0.27Å. The water position HOH4 was predicted with an average RMSD of 0.56Å and 

was ranked variably from 2 to 4 in 9 structures. Similarly, HOH3 was predicted with 

an average RMSD of 0.49Å and was ranked variably from 3 to 5 in 8 structures. 

Finally, HOH2 was predicted only in one of 7 structures where it is present. It should 

be noted that the position of HOH2 in HSP90-ligand complexes is replaced by an 

oxygen atom from the ligand in some cases (Figure 5.7). The displacement of HOH2 

by ligand indicates that it is relatively less stabilized as compared to other water 

positions. The prediction of conserved water molecules in HSP90 binding site was 

quite reasonable. A detailed study on the prediction of ordered water molecules in 

different binding site using MCSS would be required to further validate these results. 
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Table 5.9. Conservation of four key water positions across multiple HSP90 

structures. The residue names of water molecules in PDB files corresponding to each 

of the positions are shown. 

PDB HOH1 HOH2 HOH3 HOH4 

1QYE W4 W19 W43 W68 

1ZWH W3 -- W5 W4 

2CCS W174 -- W303 W173 

2JJC W166 W292 W78 W164 

2QFO W12 W3 W11 W6 

2WI1 W94 W123 W33 W59 

2WI2 W86 W119 W23 W48 

3BM9 W8 -- W2 W4 

3EKO W1 -- W3 W2 

3FT5 W11 W5 W14 W15 

 

 

 

 

 

 

 

 

 

Figure 5.7. Prediction of conserved water molecules in HSP90 binding site using 

MCSS. Crystallographic position of water molecules in the 11 structures in HSP90 

dataset (red) are superposed along with the bound ligand. The averaged predicted 

position from all receptor structures is shown in green. For each water position, the 

following details are shown: the rank of nearest predicted pose, its average RMSD 

based on prediction in all structures, the number of receptor structures where it was 

predicted versus total number of receptor structures where this water position was 

observed.  
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5.7 Discussion 

MCSS is one of the longest established methods designed with the aim of predicting 

energetically favourable positions of functional groups in protein binding sites69. As 

the fragment-based lead discovery methods come of age60, the significance of 

computational techniques to aid the discovery of novel fragments, that could be 

used as starting points for designing potent lead compounds, has increased 

tremendously67. The challenges posed by docking and scoring of fragments persist 

because of the promiscuity of fragment binding and the limitations of scoring 

functions. In the context of MCSS, a recent review76 highlighted the need for 1) 

evaluation of MCSS minima and their ranking for high quality predictions and 2) 

sampling multiple receptor conformations as receptor is held rigid in MCSS 

minimization. In this study we investigated both of these issues by applying MCSS 

calculations followed by binding energy estimation on a set of 12 different protein-

fragment complexes and on a set of 11 flexible HSP90 protein- fragment complexes.  

In the MCSS scoring function the solvent effects are taken into account by a very 

crude approximation of dielectric screening from a distance-dependent dielectric 

model. This has led to inaccuracies in scoring as the desolvation penalty 

accompanying some of the polar interactions between the protein and the 

functional group is not appropriately taken into account. An alternative approach is 

to couple the molecular mechanical energy component with polar and non-polar 

solvation free energies derived from implicit solvent formalisms in MM-GB/SA or 

PB/SA method. The sorting of MCSS minima based on MM-PB/SA derived free 

energy estimates was previously described and showed encouraging results. The 

MM-PB/SA method, considered as benchmark in implicit solvent methods, is time-
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consuming and less feasible on a large-scale. Continuing developments in implicit 

solvent methods have led to semi-analytical solutions to PB equation with high 

accuracy, such as the GB equation107. It is therefore timely to investigate and 

evaluate the performance of MCSS combined with a MM-GB/SA as a fragment 

docking and scoring scheme. The calculations based on a set of protein-fragment 

complexes suggest encouraging results with some limitations.  

The assessment of the success rate was complicated by factors such as the choice of 

reference pose and the RMSD cut-off for comparison with the predicted poses. As 

MCSS is an energy minimization routine so the X-ray position for each fragment was 

in situ minimized to provide an additional reference for the comparison. Similarly, 

due to the small size of fragment molecules the RMSD cut-off for determining the 

success rate was set at 1Å and 2Å to highlight borderline cases. It was also noticed 

that the choice of reference position was more relevant at lower RMSD cut-off as the 

success rate converged to similar values at 2Å regardless of the reference chosen.  

Using MCSS primarily as a method to generate poses for subsequent evaluation with 

a more rigorous scoring function shows significant increase in scoring accuracy as 

compared to docking and scoring with MCSS alone. The observed increase in the 

percentage of correctly docked and scored ligands was from 50% to 75%. This was 

the same amount of improvement that was observed for a standard docking and 

scoring method, GOLD, combined with MM-GB/SA scoring. Interestingly, despite the 

similar success rate both methods show success and failure for different cases. This 

enables a combined success rate of 83% and suggests that probably docking and 

scoring by combining the output from different methods is a suitable approach.  
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Occasionally, MCSS was unable to generate a pose close to any of the reference 

poses which probably indicates incomplete sampling of low energy conformations in 

the binding site. In most failures however, non-experimentally relevant energy 

minima were given favourable binding energy values.  

The main source of poor ranking is the incomprehensive treatment of solvent effects 

which is largely rectified in the GB/SA scoring step. This is reflected in the observed 

improvement of ranking. As with any other docking program sampling receptor 

conformations is a challenging aspect in MCSS. Multiple receptor structures from X-

ray crystallography or molecular dynamics simulations provide a way of sampling 

different conformations36. Therefore, we studied the feasibility of using this docking 

and scoring scheme for a flexible target by including multiple ligand-bound 

conformations. It was noted that random addition of structures to see if a particular 

fragment can be docked and scored correctly in at least one receptor structures in 

the dataset increases the overall percentage performance. However, some receptor 

structures would improve the quality of predictions by reproducing correct binding 

mode and interaction energy where native receptor structure has failed to do so. 

Similarly, some receptor structures produce incorrect scoring following correct 

scoring in the native structure, thereby reducing the quality of prediction. It could 

probably be useful to benchmark a set of receptor structures based on how 

efficiently they reproduce and score binding modes of non-native ligand/fragments. 

This can then be used as a pre-selection criterion for how many and which receptor 

structures could be used for optimal results. It should be noted that the plastic 

nature of binding in flexible active sites cannot be fully accounted for in this 
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approach as the ligand could induce novel conformational variations in the binding 

site.  

We also revisited the capability of MCSS in to predict energetically favourable 

binding positions of functional groups in the binding site. As the treatment of 

conserved water molecules as part of the binding site in HSP90 docking and scoring 

yielded very good quality predictions, we asked the question if the positions of these 

ordered water molecules could be predicted at the first place. For HSP90 binding 

site, the results show very good correlation with experimentally observed positions. 

The ranking of these positions, without solvent correction, also corresponded 

reasonably with some experimental observations such as the top ranking cluster of 

waters in all receptor structures always corresponded to an experimentally observed 

water position. Similarly, often a low ranking MCSS predicted cluster corresponded 

to a much less stabilized water molecule in the HSP90 binding site which is often 

displaced by the ligand. A detailed study on prediction of conserved water molecules 

in a variety of binding sites would be required to further investigate the consistency 

in these predictions. 

The work described in this chapter has shown that MCSS followed by re-scoring with 

MM/GBSA is a more successful method than GOLD for predicting fragment position 

in a target protein site.  However, without re-scoring, the results from MCSS were 

poorer than those obtained with GOLD.  The success rate of MCSS plus MM-GB/SA is 

high enough that the technique could be a useful method to support early ligand 

discovery efforts when it is not possible to determine crystal structures of fragments 

binding to proteins.   
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The conformational variations in the receptor structure upon binding and water 

molecules at the binding interface pose significant challenges. We show that the use 

of multiple receptor structures can possibly increase the success rate but at the 

expense of including receptor structures that also deteriorate quality of predictions. 

For HSP90, reasonable prediction of highly conserved water molecules in the binding 

site were obtained with MCSS but its applicability a large and more challenging 

scenario is yet to be evaluated.  
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6. Concluding Remarks 

This thesis describes the characterisation of protein-ligand interactions using 

cheminformatics tools and application of computational methods for prediction of 

molecular fragments in protein binding sites. A summary of the conclusions from this 

research is presented below. 

6.1 Unsatisfied donors/acceptors in protein-ligand complexes  

An analysis of a set of 187 protein-ligand complexes showed that the total 

percentage of protein and ligand donor atoms that are inaccessible to water and are 

not explicitly hydrogen bonded is 3.23%. This percentage was found to be consistent 

with the earlier observations made for protein interiors19. Weak interactions, 

particularly CH-O and NH-π interactions were frequently associated with unsatisfied 

donors and acceptors.  The fraction of unsatisfied donors and acceptors was used as 

a metric to discriminate between good and bad poses resulting from docking of 

ligand into their receptor structures in the same dataset. The results however did 

not show a direct relationship between RMSD of the top-scoring pose and the 

fraction of unsatisfied ligand donors and acceptors. It was therefore not possible to 

identify correct poses merely by a simple of count of missing hydrogen bonds.  

Recent studies with more sophisticated treatments, such as HYDE scoring function, 

where burial of polar groups lacking hydrogen bonds with ideal geometry is 

penalized, showed that only about a third of test cases showed better ranking of 

native-like poses than that which is achieved by another standard scoring scheme. 

The results from current analysis support the intuitively valid requirement of 

complete satisfaction of hydrogen bonding groups at buried protein-ligand interfaces 
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however fraction of unsatisfied donors and acceptors alone was not a useful metric 

for improvement in the ranking.  

6.2 Weak aromatic interactions  

As the importance of weak interactions in protein-ligand complexes is becoming 

more well-established, a survey of different types of ligand aromatic rings involved in 

interactions with CH and XH (X = N, O, S) groups in protein binding sites was 

conducted using IsoStar databse. The results of the survey indicate slight but 

meaningful differences in interaction preferences for different ring types. As 

expected, the presence of an electron-donating substituent on a phenyl ring was 

accompanied by higher CH/XH contact density above the ring plane. This geometry 

has been shown to be energetically more favourable and could include one of two 

isoenergetic configurations, T-shaped or parallel stacking geometry. An interesting 

observation was that this preference was slightly more obvious for CH groups than 

for XH groups. Similar observations were made in a recent survey where CH groups 

flanked by heteroatoms (N, O) showed higher above-ring preference than XH 

groups10. The modulation CH-π interactions by introducing electron donating 

substituents to an interacting ring moiety led to an increase in binding affinity of LCK 

kinase inhibitors161. Our database analysis therefore is therefore consistent with the 

idea that aromatic interactions have characteristic geometric patterns that probably 

have at least a ‘supportive’ role in ligand binding affinity in some cases.  
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6.3 Fragment docking and scoring with MM-GB/SA 

Probing protein binding sites for energetically favourable positions for chemical 

moieties has been an elusive goal in computer-aided ligand design. Although 

pioneering methods date from before the advent of fragment-based lead discovery, 

there has been a renewed interest in developing robust methods for solvent 

mapping of protein binding sites or fragment docking and scoring due to successful 

FBLD campaigns against a variety of targets. The primary challenges however remain 

for scoring functions related to accurate treatment of solvent effects and target 

flexibility67. It was noticed from the application of MCSS on experimental solvent 

mapping datasets that a part of the problem in MCSS ranking was related to in 

overestimation of electrostatic interactions. Very crude approximation of solvent 

such as distance-dependent dielectric constant often leads to false positive energy 

minima. However, introduction of physically more accurate approaches such as 

implicit solvent models with continuum electrostatics led to improvement in scoring. 

This was noticed from the success rate (up to 75%) of MCSS (with MM-GB/SA) on a 

set of 12 protein-fragment complexes. Additionally, this scoring approach was also 

observed to benefit from the use of multiple structures in the case of receptors with 

multiple binding modes. Finally, good quality predictions were obtained for highly 

conserved water positions in the example of HSP90. Further improvement in 

parameterization of metal-ligand interactions, accurate treatment of water-

mediated interactions and entropy estimation in the case of ligands belonging to 

different classes would enhance the applicability of MCSS followed by MM-GB/SA 

scoring.  
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6.4 Future Work 

The results from this work have opened further opportunities in using MCSS as a 

robust method for mapping protein binding sites for fragment binding. The 

evaluation of MCSS minima with an implicit solvent based scoring function is 

however crucial. Further developments in MM-PB/ or MM-GB/SA scoring should 

enhance the applicability of the protocol of fragment docking and scoring described 

in this study.  

The survey of unsatisfied hydrogen bond donors and acceptors done in this study 

further supports the intuitive expectation that a lost hydrogen bond should have a 

largely unfavourable effect on protein-ligand binding. The inclusion of such aspects 

of molecular recognition in docking and scoring should be a rewarding exercise. 

Although simple counts of the fractions of missing hydrogen bonds are not 

discriminatory enough, probably a more sophisticated approach would improve the 

ranking of candidate poses. This is supported by some recent developments in new 

scoring functions such as HYDE.  

Finally, with the ongoing investigations and debate on the role of weak interactions 

in protein-ligand complexes, the survey in this study reflects to some extent that 

changes in interaction preferences of weak interactions follow intuitive chemical 

logic. The idea that at best a supportive role of weak interactions can be exploited in 

ligand design is becoming well-established and this study further supports this. 

Detailed theoretical and experimental investigation of weak interactions is, 

therefore, an interesting opportunity. 
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7. Appendix 

7.1. Atom Typing and Partial Charge Assignment

The preparation of ligands (solvent probes and fragments) for MCSS calculations 

(Chapter 4, 4.3) involved assigning atom

forcefield 182 and partial charges

is shown with force-field atom types as atom labels. For each ligand, atom

partial charges used in the calculations are also presented. 

7.1.1 Solvent Probes 
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HA 0.00 
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HA 0.00 
HA 0.00 
HA 0.00 

CT 0.00 HA 
CT 0.28 HA 

CT 0.00 HA 
OT -0.68 HA 
HA 0.00 HA 
HA 0.00 HO 

CT 0.30 HA 

CT 0.30 HA 
C 0.57 HA 
O -0.57 HA 
NX -0.66 HA 

HA 0.00 HA 

Atom Typing and Partial Charge Assignment 

The preparation of ligands (solvent probes and fragments) for MCSS calculations 

(Chapter 4, 4.3) involved assigning atom-types from CHARMm Momany and Rone 

charges from MMFF94188. Here a 2-D diagram of each ligand 

field atom types as atom labels. For each ligand, atom

partial charges used in the calculations are also presented.  
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CHARMm Momany and Rone 

D diagram of each ligand 

field atom types as atom labels. For each ligand, atom-types and 
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CT 0.00 HA 
CT 0.14 HA 
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7.1.2 Fragment Docking Dataset
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C6R -0.14 HA 

C6R -0.15 HA 
C6R -0.15 HA 
CT 0.14 HA 
N5R 0.30 H 

N5R -0.23  

XCL -0.18 N5R 
C6R 0.18 N5R 
C6R -0.15 N5R 
C6R -0.15 HA 

C6RP -0.02 HA 
C6R -0.15 HA 
C6R -0.15 HA 
N5R 0.59 HA 

C5R 0.04  

-0.18 
0.00 
0.00 

0.45 
0.45 
0.00 
0.00 

0.00 
0.00 
0.15 
0.15 

 

 

-0.42 
0.15 

0.15 
0.15 
0.15 
0.15 

0.00 
0.00 
0.00 
0.27 

 

-0.34 
0.00 
-0.42 
0.15 

0.15 
0.15 
0.15 
0.15 
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2JJC 

2OHK 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NC -0.90 C6R 
C6R 0.72 HC 

N6R -0.62 HC 
C6R 0.16 HA 
N6R -0.62 HA 
C6R -0.15 HA 

NP -0.90 CR66 
C6R 0.46 H 

N6R -0.18 H 
C6R 0.21 HA 
C6R -0.15 HA 
CR66 0.00 HA 

C6R -0.15 HA 
C6R -0.15 HA 
C6R -0.15 HA 
C6R -0.15 H 

 

 

0.16 
0.40 

0.40 
0.15 
0.15 
0.15 

 0.00 
0.40 

0.40 
0.15 
0.15 
0.15 

0.15 
0.15 
0.15 
0.46 
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7.2. Solvent Mapping with MCSS 

The following tables show results of solvent mapping with MCSS on thermolysin and 

elastase dataset with slightly different approach for selecting cluster representative. 

The cluster representative is chosen on the basis of average MCSS score of the 

cluster and the pose nearest to this value.   

Table 7.1.Results of MCSS calculations on Elastase for solvents in generic solvent-

bound structure. The predicted poses with the lowest RMSD from X-ray (RMSDX-ray) 

are shown with their ranks and scores. The results after re-ranking cluster based on 

average scores are also indicated. 

Solvent 
Sub- 
site 

Nearest cluster Nearest cluster (re-ranked) 
RMSDX-ray Rank Score RMSDX-ray Rank Score 

ACN1001 S1 2.19 31 10.87 2.19 30 10.87 
IPA1001 S1 0.52 12 16.81 0.52 5 16.81 
IPA1002 S4 2.12 19 14.71 2.12 14 14.71 

IPA1003 S3 1.82 3 14.62 1.04 15 14.67 
DMF1004 S3’ 0.87 9 19.72 1.17 10 18.43 
ETH1001 S1 1.98 14 15.00 1.84 20 12.06 
ETH1002 S4 1.58 21 13.14 2.12 27 11.56 

ETH1003 S3 1.44 11 15.21 1.43 13 13.58 
ETH1004 S3’ 1.96 46 10.10 1.96 46 10.10 
HEX1001 S1 3.08 68 5.03 3.08 68 5.03 
HEX1004 S3’ 8.81 61 6.11 8.81 56 6.11 

TFE1001 S1 1.63 15 11.35 1.63 8 11.35 
TFE1002 S4 2.71 19 10.90 2.21 31 8.32 
TFE1003 S3 0.94 2 13.17 2.21 3 12.14 

TFE1008 S1’ 2.38 26 9.78 2.81 23 9.42 

Table 7.2. Results of MCSS calculations on Thermolysin for solvents in their native 

protein structures. The predicted poses with the lowest RMSD from X-ray (RMSDX-ray) 

are shown with their ranks and scores. The results after re-ranking cluster based on 

average scores are also indicated. 

Solvent PDB 
Sub- 
site 

Nearest cluster Nearest cluster (re-ranked) 
RMSDX-ray Rank Score RMSDX-ray Rank Score 

ACN1 1FJQ S1’ 1.72 1 26.92 1.52 1 26.10 
CCN1 1FJU S1’ 2.26 1 23.18 2.26 1 23.18 
IPH1 1FJW S1’ 0.61 2 22.39 2.53 2 19.94 
IPA1 8TLI S1’ 1.61 10 15.05 1.61 9 15.05 

IPA5 8TLI S8 2.19 17 13.41 1.63 14 13.39 
IPA8 8TLI S5 1.53 11 14.77 1.15 7 15.65 
IPA9 8TLI S2’ 2.31 20 12.58 2.43 18 11.61 
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7.3. ∆G values calculated from MM-GB/SA method 

In the following detailed results of MM-GB/SA scoring are presented for fragment-

docking and HSP90 datasets. This includes the values of ∆G for the top-scoring poses 

in each case. All ∆G values are reported in kcal mol-1 

Table 7.4. Results of MM-GB/SA scoring of MCSS poses generated for fragment-

docking dataset along with ∆G estimates for the X-ray pose (∆GXray), in situ 

minimized X-ray pose (∆GXrayMin) and top-scoring pose (∆GBest)  

PDB RMSDXray|XrayMin ∆GXray ∆GXrayMin ∆GBest 
MCSS 
rank RMSDXray RMSDXrayMin 

1EQG 0.3 -22.52 -25.32 -25.42 1 0.3 0.1 
1FV9 1.0 -9.39 -17.08 -18.45 1 2.0 1.9 
1GWQ 0.5 -1.96 -23.20 -23.56 2 7.1 7.1 
1N1M 0.5 -10.12 -35.39 -35.89 1 0.8 0.4 
1QWC 0.8 -62.50 -95.00 -144.93 1 1.0 1.2 
1S39 0.3 -34.14 -45.33 -45.63 1 0.3 0.0 
1WWC 0.2 -22.77 -23.94 -23.84 22 0.2 0.0 
1YZ3 0.4 -13.35 -19.73 -19.58 1 0.4 0.0 
2ADU 0.5 72.61 62.59 -5.17 15 9.1 9.1 
2C90 0.6 -14.90 -15.84 -15.88 2 0.6 0.0 
2JJC 0.4 -8.84 -12.53 -12.55 9 0.3 0.0 
2OHK 0.5 5.85 -9.34 -17.22 1 2.7 2.6 

 

Table 7.4. Results of MM-GB/SA scoring of GOLD poses generated for fragment 

docking dataset along with ∆G estimates for the X-ray pose (∆GXray), in situ 

minimized X-ray pose (∆GXrayMin) and top-scoring pose (∆GBest)  

PDB RMSDXray|XrayMin ∆GXray ∆GXrayMin ∆GBest 
MCSS 
rank RMSDXray RMSDXrayMin 

1EQG 0.3 -22.52 -25.32 -25.90 33 1.2 1.1 
1FV9 1.0 -9.39 -17.08 -18.39 19 1.2 0.5 
1GWQ 0.5 -1.96 -23.20 -34.09 4 0.6 0.0 
1N1M 0.5 -10.12 -35.39 -50.29 28 0.8 0.4 
1QWC 0.8 -62.50 -95.00 -98.45 4 2.5 2.6 
1S39 0.3 -34.14 -45.33 -48.43 17 0.4 0.1 
1WWC 0.2 -22.77 -23.94 -23.93 12 0.2 0.0 
1YZ3 0.4 -13.35 -19.73 -18.13 3 0.4 0.1 
2ADU 0.5 72.61 62.59 74.75 18 1.3 1.5 
2C90 0.6 -14.90 -15.84 -18.14 5 5.1 5.2 
2JJC 0.4 -8.84 -12.53 -12.38 6 0.3 0.4 
2OHK 0.5 3.10 -10.23 -15.35 10 3.3 3.2 
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Table 7.5. Results of MM-GB/SA scoring of MCSS poses generated for HSP90 

dataset along with ∆G estimates for the X-ray pose (∆GXray), in situ minimized X-ray 

pose (∆GXrayMin) and top-scoring pose (∆GBest)  

PDB RMSDXray|XrayMin ∆GXray ∆GXrayMin ∆GBest 
MCSS 
rank RMSDXray RMSDXrayMin 

1QYE 1.0 11.11 -6.22 -10.50 2 4.1 4.1 

1ZWH  2.2 116.03 11.61 -7.63 23 2.1 1.1 

2CCS 0.3 51.97 -12.78 -8.66 12 5.9 5.9 

2JJC 0.4 -8.84 -12.53 -12.55 9 0.3 0.0 

2QF6 0.3 -12.09 -22.95 -23.01 1 0.4 0.1 

2QFOa 0.9 -5.46 -10.80 -11.78 51 3.7 3.6 

2QFOb 0.4 -9.60 -12.29 -16.44 11 2.3 2.1 

2WI1 0.9 -5.93 -30.33 -30.11 10 0.9 0.1 

2WI2 0.5 -27.13 -27.72 -33.38 1 1.0 0.9 

3BM9 0.3 150.80 -28.24 -34.70 1 0.3 0.6 

3EKO 0.3 267.84 -14.08 -15.17 7 5.1 4.9 

3FT5 0.2 -19.18 -21.16 -23.12 2 0.8 0.7 
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