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Abstract 

The aim of the work described in this thesis was to investigate and characterise novel 

aspects of calcium (Ca2+) signalling in human immune cells. Ca2+ influx has important roles 

in directing intracellular signalling, therefore controlling cellular functions, consequently 

delineating the channels mediating Ca2+ influx is important. My work has focused on Ca2+ 

signalling in mast cells and macrophages, two cell types which have been demonstrated to 

be important contributors to respiratory disease such as asthma and COPD, respectively. 

Advancement in understanding of the signalling factors regulating mast cell and 

macrophages has an important application. The results from my study encompass three 

separate research areas and I report three novel contributions that further the 

understanding of Ca2+ signalling in immune cell biology. 

Inappropriate activation of the FcεRI, found predominantly on mast cells, is a crucial link 

between mast cells and allergic disease. Inappropriately activated mast cells release 

proinflammatory mediators leading to symptoms of allergic disease. Consequently 

mediators locally released in the lung contribute to symptoms of asthma such as 

bronchoconstriction, mucus production and inflammation (Barnes, 2008). A store-operated 

Ca2+ channel (SOCC), Orai, has recently been implicated in IgE-mediated Ca2+ signalling in 

rodent and human mast cells and importantly, the Orai channel was shown to be crucial for 

mast cell mediator release (Ashmole et al., 2012). These recent findings therefore 

implicated Orai as a potential therapeutic target for the treatment of IgE-mediated allergic 

disease. Another cation channel family, also shown to be capable of mediating Ca2+ 

signalling downstream of the FcεRI are TRPC channels. Previous studies have implicated 

TRPC channels as coupled to Orai in their activation and studies in rodent mast cells have 

implicated TRPC channels with a role in FcεRI-mediated mediator release  (Ma et al., 2008; 

Sel et al., 2008; Cohen et al., 2009; Suzuki et al., 2010b; Yildirim et al., 2012; Medic et al., 

2013). However there is limited research focused on the contribution of TRPC channels to 

IgE-mediated signalling in human mast cells. Novel work in this thesis has shown that 

although TRPC channel family members are expressed in human mast cells, TRPC channels 

make no contribution to IgE-mediated Ca2+ signalling in human mast cells. These data have 

provided important evidence to suggest that unlike the Orai channel, TRPC channel(s) do 

not represent a therapeutic target for the treatment of IgE-mediated allergic disease, such 

as asthma. Similarly this work has provided important information which has increased the 

current understanding of the signalling components involved in allergic mast cell activation. 

 

In comparison to other immune cells such as the T cell and mast cell, the study of Ca2+ 

signalling in macrophages has been neglected. Macrophages have important roles in innate 

immune defence; directing phagocytosis and inflammatory cytokine release to protect the 

body following pathogen attack. Therefore identifying modulators of macrophage biology is 

a crucial component in understanding how macrophages are regulated. Ca2+ channels such 

as Orai could represent vital components involved in aspects of macrophage activation. 

Store-operated Orai Ca2+ channels have been indicated to be active in rodent macrophage 

cells, however to date the role of Orai channels in human macrophage biology has not been 

studied. This study addresses this gap in the current knowledge. My results  have shown 
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that Orai (and its crucial activator protein, STIM) are expressed at mRNA level in human 

monocyte derived macrophages (hMDMs), importantly I demonstrate the functional 

activity of Orai-mediated Ca2+ signalling and identify Orai-mediated Ca2+ signalling as a 

contributor downstream of Immunoglobulin-G receptor (FcγR) activation. Interestingly, 

Orai was shown to be a significant contributor to the regulation of pHrodo® labelled 

Escherichia coli (E. coli) phagocytosis by interferon-γ (IFNγ) primed hMDMs. Orai inhibition 

however, had no effect on the cytokine release induced by lipopolysaccharide (LPS) or LPS 

+ Anti-Immunoglobulin G (Anti-IgG). This work has provided important evidence for Orai 

activity in aspects of human macrophage biology and has given key evidence to direct 

further work in the field. Similarly in respect to respiratory disease, as Orai has been 

implicated as a potential therapeutic target for treatment of allergic disease such as 

asthma, understanding how Orai inhibition would affect other immune cells resident in the 

lung represents a crucial aspect of identifying the risk of Orai inhibition.  

 

Macrophages have been implicated as crucial contributors in the pathogenesis of COPD, 

with an increase in macrophage numbers seen in COPD patients as well as an inappropriate 

release of proinflammatory mediators caused in response to cigarette smoke. Another 

regulator of Ca2+ signalling, the purinergic receptor family member has also been 

associated with COPD. P2X7 and its ligand ATP have been linked in the pathogenesis of 

COPD, with attenuation of P2X7 activity showing protective effects against symptoms 

associated with COPD and increased P2X7 expression and ATP concentrations in COPD 

patients (Lommatzsch et al., 2010);(Cicko et al., 2010);(Mortaz et al., 2009); (Eltom et al., 

2011). Despite the evidence suggesting P2X7 inhibition is a potential therapeutic target to 

treat COPD, evidence from rodent models suggest there is an implicit risk in interfering 

with macrophage regulated bacterial handling by P2X7 inhibition. Therefore my study has 

sought to further investigate the role of P2X7 in human macrophage Ca2+ signalling and 

bacterial handling in order to increase understanding about the consequences of P2X7 

inhibition. The results show that P2X7 does not significantly contribute to purinergic Ca2+ 

signalling in hMDMs and similarly that P2X7 inhibition had no effect on the phagocytosis of 

E. coli. However, preliminary evidence suggests P2X7 does contribute to ATP mediated Ca2+ 

signalling in human alveolar macrophages (hAMs). These results have provided data which 

has emphasised the importance of the translation of findings into human tissue resident 

cells, in particular for therapeutic target validation studies.  

 

In sum, the work described in this thesis shows novel findings which make significant 

advancements in the knowledge of ion channels in immune cell biology. Importantly the 

results of this thesis also provide strong evidence to aid direction for further work in the 

field.  
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1 Chapter 1 – Introduction 

 

1.1 General introduction 

1.1.1 Respiratory disease & key immune cells involved 
 

Ca2+ signalling has been demonstrated to have key roles in the control of immune cells. The 

studies described in this thesis addressed three novel aspects of research on Ca2+ signalling 

in immune cells, with the intention of increasing the understanding of immune cells 

associated with respiratory diseases such as COPD and asthma. Ca2+ channels found to have 

important functional roles could represent novel drug targets as a way to modulate 

aberrant immune cell activity in immune disease or conversely could be identified as 

channels whose activation are crucial to maintain for immune system homeostasis. COPD 

and asthma are both characterised by airway obstruction, with a progressive and 

irreversible obstruction in COPD and a variable and reversible obstruction in asthma. 

Coupled to airway obstruction is chronic inflammation of the respiratory tract caused by 

the release of proinflammatory mediators from a number of cell types. 

 

Asthma has a global prevalence of up to 18% and is expected to affect up to 400 million 

people worldwide by 2025 (McIvor, 2015), it therefore represents a significant burden on 

healthcare providers. One of the main cells implicated in the pathogenesis of asthma is the 

mast cell; other key cells involved are T-helper type 2 cells (Th2) and eosinophils. Allergens 

are heavily implicated with the symptoms of asthma – with an inappropriate immune 

response occurring to normally innocuous stimuli. Mast cells express a receptor involved in 

detecting antibodies made against allergic stimuli, the high affinity immunoglobulin E 

receptor (FcεRI). It is activation of this FcεRI which culminates in the production of 

proinflammatory mediators associated with bronchoconstriction. For example, preformed 

mast cell mediators such as histamine and newly synthesised mediators such as 

prostaglandins (PGDs) and leukotrienes (LTCs) have direct bronchoconstrictory functions. 

There are two stages of asthma reported, with the first driven by the preformed mediators 

and the second later and longer lasting response caused by the release of newly 

synthesized mediators (O’Byrne et al 2009). Cytokines such as interleukin -4, -5 and -13 (IL-

4, IL-5 and IL-13) are typically associated with asthma and are crucial for driving B cells to 

undergo immunoglobulin class switching to produce immunoglobulin E (IgE) and in driving 

eosinophilic differentiation (Barnes, 2008). Key cells and mediators implicated in the 

pathophysiology of asthma is showed in Figure 1.1. Activation of the FcεRI represents a 

crucial step in the initiation of asthmatic symptoms, therefore understanding the signalling 

associated with this receptor is crucial if receptor modulation is desired.  
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Figure 1.1 Schematic diagram showing key cells implicated in the pathophysiology 

of asthma 

Reproduced with permission from (Barnes, 2008). 

 

COPD encompasses a group of airway pathologies; chronic bronchitis, bronchiolitis and 

emphysema. COPD affects 8% of the world’s population and is the 3rd leading cause of 

death worldwide (Barjaktarevic et al., 2015). COPD pathogenesis is largely associated with 

smoking, as components from cigarette smoke are implicated in the activation of lung 

resident cells and subsequent release of inflammatory mediators such as IL-1β and IL-8 and 

chemotactic mediators to attract circulating neutrophils and monocytes in the lung. Whilst 

asthma is associated with Th2 cytokine response, COPD is typically Th1 mediated. Several 

cells are implicated in the pathogenesis of COPD including: macrophages, DCs, epithelial 

cells, neutrophils, eosinophils and T & B lymphocytes. A key cell implicated is the 

macrophage, which is shown to be increased by 5-10 fold in the lung of COPD patients. 

Macrophages contribute to symptoms of COPD through the release of proinflammatory 

mediators but are also have impaired capability in phagocytosis of bacteria and apoptotic 

cells. This suggests they also contribute to the increased susceptibility to bacterial 

infections as seen in COPD patients, which is the main cause of disease exacerbations 
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(Barnes, 2014). A diagram summarising the key cells and mediators that contribute to 

COPD pathophysiology is shown in Figure 1.2. 

 

 
 

Figure 1.2 Schematic diagram showing key cells implicated in the pathophysiology 

of COPD 

Reproduced with permission from (Barnes, 2008). 

 

Current pharmacological treatments for asthma and COPD include short or long acting 

bronchodilators and inhaled corticosteroids (ICS), which act to relax and open the airways 

and to decrease chronic inflammation, respectively. Long acting bronchodilators can be 

classified into long acting muscarinic antagonists (LAMA) and long acting β 2 adrenoceptor 

agonists (LABA), a wide range of LAMA and LABA monotherapies are available and similarly 

combination therapies of LABA and LAMA and LABA-ICS have been approved. Novel 

inhalers to improve delivery and treatment compliance are being marketed alongside these 

compounds (Barnes, 2010; Barjaktarevic et al., 2015; Weinstein, 2015). Notably, ICS are 

largely inadequate in the suppression of chronic inflammation in COPD and asthma 

(Marwick et al., 2010). It is thought that this is a consequence of oxidative stress which 
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impairs the glucocorticoid co-repressor histone deacetylase (HDAC-2) and subsequently 

prevents ability of glucocorticoids to mediate transrepression of proinflammatory genes. In 

COPD it is shown that cigarette smoke is involved in reducing HDAC activity (Marwick et al., 

2010; Barnes, 2011).  

 

Despite progress in therapeutics for respiratory diseases there remains a need for more 

effective therapies. In order to find new medicines to treat asthma and COPD, a better 

understanding of pathophysiology of the disease and the biology of the key cells implicated 

with roles in disease progression is required.  To this end, Ca2+ channels were characterised 

in two immune cell types, mast cells and macrophages, which are implicated with key roles 

in asthma and COPD, respectively. Although theoretically Ca2+ channels could represent 

targets to treat both asthma and COPD, there is equal value in characterising Ca2+ channels 

in immune cells as a way to discharge or identify the risk associated with modulating Ca2+ 

channel activity common to both cell types. Similarly as there are many areas of Ca2+ 

signalling biology in mast cells and macrophages that have not yet been investigated, 

research to complete gaps in the current knowledge provides important information from a 

basic science perspective.   

 

1.1.2 Importance of Ca2+ signalling in immune cell function  
 

Studies investigating human patients with mutations in ion channels, gene-targeted mouse 

models and the use of ion channel inhibitors have demonstrated how important ion 

channels are in immune cells; both in their development and in regulating innate, adaptive 

and allergic immune responses (Feske et al., 2015). Ca2+ influx is a critical second 

messenger in intracellular signalling cascades and is involved in directing functions ranging 

from the production of enzymes and transcription factors to regulated secretion. Other 

divalent cations such as Mg2+ and Zn2+ also have similar signalling roles. The membrane 

transport of other ions such as Na+ and K+ are responsible for the control of the cell’s 

membrane potential, which is indirectly responsible for immune cell signalling through 

control of ion channel electrochemical gradients (Feske et al., 2015). Although the role of 

Ca2+ is to direct intracellular signalling events, Ca2+ influx following receptor activation also 

causes depolarization of the cell membrane which can lead to a disruption to the 

electrochemical driving force for further entry. It is largely the efflux of K+ through K+ 

channels that is responsible for hyperpolarizing the membrane potential and providing the 

driving force to maintain Ca2+ influx (Vig & Kinet, 2009; Feske et al., 2015).  

 

There are many different types of Ca2+ channels, which, depending on their mode of 

activation, are classified as ligand-gated ion channels, voltage-gated ion channels, 

capacitative (store-operated) ion channels and stretch-activated ion channels. Generally 

speaking, voltage-gated Ca2+ channels are predominantly expressed in electrically excitable 

cells such as neurons and cardiomyocytes. Ligand and store-operated ion channels are 

ubiquitously expressed but are the main ion channel type reported in non-excitable cells 

such as immune cells. Even within the ligand and store-operated ion channel subgroup 

there are numerous distinct Ca2+ channels families with differing modes of activation and 
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signalling roles. The diagram below (Figure 1.3) shows examples of different Ca2+ channel 

families and some of the key proteins involved in modulating Ca2+ signalling (From Vig and 

Kinet 2009).   

 

 
 

Figure 1.3 Schematic diagrams showing common routes of Ca2+ influx and efflux 

Routes with similar mechanisms of activation are grouped together here. 

Reproduced with permission from (Vig & Kinet, 2009) 

Red dots, Ca2+; blue dots, Na+; green dots, K+. ROCE, receptor-operated Ca2+ entry; 

Kv, voltage-gated K+ channel; KCa, Ca2+-activated K+ channel; PMCA, plasma 

membrane Ca2+ ATPase; Ins(1,4,5)P3R, Ins(1,4,5)P3 receptor; TRPV6, transient 

receptor potential, vanilloid, member 6; ARC, arachidonate-regulated, Ca2+-

selective; P2 receptors, purinergic receptors; RyR, ryanodine receptor; SERCA, sarco-

endoplasmic reticulum Ca2+ ATPase; ER, endoplasmic reticulum.  

 

 

Ca2+ signalling has been recognised to have critical roles in immune cells, ranging from the 

degranulation of preformed mediators from mast cells (Vig & Kinet, 2009), to T lymphocyte 

induced cytokine production (Feske, 2009) and neutrophil chemotaxis (Lindemann et al., 

2013), to give a few examples. 

 

Aberrant Ca2+ signalling and homeostasis are known to be contributing factors to the 

pathophysiology of immune disease. For example; an endoplasmic reticulum (ER) resident 

transmembrane (TM) protein, orsomucoid like 3 (ORMDL3). This gene regulates ER 

homeostasis by sarcoendoplasmic reticulum (SR) Ca2+ transport ATPase (SERCA2b) 

inhibition and was identified through a genome wide association study (GWAS) study as a 

gene with a gain of function single nucleotide polymorphism (SNP) commonly found in 
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sufferers of childhood asthma (Moffatt et al., 2007). In Jurkat T cells, over expression of 

ORMDL3 was shown to reduce store-operated Ca2+ entry (SOCE),  however the basal Ca2+ 

levels were increased and there was an enhanced unfolded protein response (Carreras-

Sureda et al., 2013). ORMDL3 over-expression has since been shown to increase levels of 

airway remodeling and airway hyper responsiveness in mice models (Miller et al., 2014). 

This shows the potential implication of the dysregulation of a protein associated with Ca2+ 

homeostasis.  

 

Similarly, enhanced intracellular Ca2+ ion concentration has been reported in airway 

smooth muscle (ASM) cells from asthma patients, with an effect on enhanced 

bronchoconstriction and an association with ASM cell proliferation and extracellular matrix 

(ECM) deposition. The G-protein coupled receptor (GPCR) Ca2+ sensing receptor, (CaSR) is 

traditionally associated with its role in the regulation of parathyroid hormone secretion and 

is known to be activated by extracellular Ca2+ concentration, it can also respond to other 

stimuli such as polyvalent cations, amino acids and pH. A recent study has implicated the 

CaSR with a potential role in asthma. CaSR was shown to be expressed in human and 

mouse airways with an increased expression in asthmatic donors. Notably polycations were 

shown to activate the human CaSR in human ASM cells as assessed by Ca2+ signalling and 

CaSR inhibitors, calcilytics were demonstrated to abrogate the signalling pathways 

characteristic of airway contractility in asthma, whilst knockout of CaSR in ASM cells was 

protective against polycation induced bronchoconstriction. Calcilytics were also shown to 

reduce AHR and inflammation in an ovalbumin allergic mouse model (Yarova et al., 2015). 

Together these studies emphasise how aberrant Ca2+ homeostasis is linked to immune and 

respiratory disease. 

 

There are also direct examples of where anomalous Ca2+ channel activity has been 

implicated as a cause of disease. The members of the transient receptor potential (TRP) 

channel family have long been recognised as capable of mediating Ca2+ influx and 

increasingly of being associated with respiratory disease. TRP family members such as 

TRPA1, TRPV1, TRPV4 and TRPM8, although originally principally associated with neuronal 

cells, have now been shown to be expressed in mouse and human lung. Interestingly many 

of the activators of TRP channels; for example low pH, osmolarity changes, temperature 

alteration and factors associated with reactive oxygen species (ROS), are altered in airway 

disease. This indicates that aberrant activity of TRP channels and related inappropriate Ca2+ 

signalling may be a contributing factor to respiratory disease. A recent study demonstrated 

TRPA1 to have a role in mediating cough associated with environmental and occupational 

exposure (Grace et al., 2014). The highlights the importance of TRP channel family 

members in respiratory disease, although there is a lack of understanding regarding TRPC 

family contribution of immune disease, something my study aims to address.  

 

An immune disease caused directly by impairment of a plasma membrane Ca2+ channel was 

shown in a subset of patients with a severe combined immunodeficiency (SCID) like 

phenotype. SCID is most often associated with defective development of functional T and B 

cells, leaving patients with a severe susceptibility to infections. The X-linked form of SCID is 

associated with mutations in the γ chain of cytokine receptors and this is common to 
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around half of the cases of SCID. However autosomal recessive mutations in the Orai1 and 

stromal interaction molecule 1 (STIM1), two proteins shown to be crucial for conducting 

SOCE were also shown to have a SCID like phenotype and immunodeficiency symptoms 

manifested as recurrent severe infections with viral, bacterial, mycobacterial and fungal 

pathogens (Feske, 2009). T cells from patients with mutations in Orai1 were shown to be 

defective in SOCE and T cell activation was impaired. Lymphocyte numbers were normal 

however, suggesting Orai1 and STIM1 are not crucial for lymphocyte development. Patients 

with mutations in Orai1 and STIM1 were reported not to survive past their first year of life, 

STIM1 and Orai1 deficient mice were shown to die perinatally.  Orai1 and STIM1 were also 

associated with a role in skeletal muscle function and development, with myopathy 

reported as a severe symptom in Orai1 or STIM1 mutation patients (Feske et al., 2010). This 

illustrates a direct example of Ca2+ channel impairment causing immune disease. Together, 

these studies emphasise the importance of Ca2+ homeostasis for immune cell regulation 

and illustrate the impact of research in this area.  

 

1.1.3 Thesis summary 
 

The important role of Ca2+ signalling in maintaining immune homeostasis is emphasised by 

the studies described above. However there are numerous gaps in the current 

understanding regarding the role of Ca2+ in immune cell control. With the application of 

respiratory disease in mind, my work has focused on three specific original research areas: 

1. Identification and characterisation of TRPC channel contribution to FcεRI-mediated 
signalling in human mast cells 

2. Investigation of P2X7 contribution to purinergic Ca2+ signalling and bacterial 
handling in human macrophages. 

3. Identification and characterisation of Orai channels to Ca2+ signalling and function 
in human macrophages 

 

A summary of these three studies is described in the Abstract, however the key novel 

findings of these pieces of research can be summarised as followed. Firstly TRPC1 & 6 

channels are expressed in human mast cells but are not significant contributors to FcεRI-

mediated signalling. Secondly, P2X7 channels do not significantly contribute to purinergic 

Ca2+ signalling or E. coli phagocytosis in hMDMs nevertheless preliminary data suggests 

P2X7 is a functional contributor to purinergic signalling in hAMs. Thirdly, Orai-mediated 

Ca2+ signalling is active in IFNγ primed hMDMs and a significant contributor to Anti-IgG 

signalling. Orai-mediated Ca2+ signalling is involved in the control of E. coli phagocytosis in 

IFNγ primed hMDMs. 

 

The rest of this introduction will summarize the current knowledge of the cell types and ion 

channels that is relevant to this investigation namely; mast cells and macrophages, Orai, 

TRPC and P2X channels.  

 



24 
 

1.2  Introduction to mast cell biology  

Since their discovery in the 1800s there has been much learned about mast cell biology, 

Section 1.2 summarises some key areas of mast cell biology that are pertinent to this 

thesis.  

 

1.2.1 Mast cells; discovery, derivation and heterogeneity 
 

Mast cells were first identified by Paul Ehrlich in the 1800s; his identification was based on 

their characteristic and distinctive cytoplasmic granules. Ehrlich gave mast cells their name 

‘mastzellen’, after the Greek meaning of mast – ‘to feed’, as he had mistakenly 

characterised the cells as cells with phagocytic ability.  Mast cells develop from 

CD34+/CD117+ pluripotent progenitor cells found in the bone marrow. In order to undergo 

full maturation, human mast cells require KIT activation – through binding of the stem cell 

factor (SCF) ligand to the c-KIT receptor. This translates that mast cells kept in culture 

conditions require SCF supplementation for their survival. Interestingly, mouse mast cells 

can be cultured in the presence of IL-3 instead of SCF; this iterates some of the differences 

seen in rodent and human immunology. For full differentiation in vivo, mast cells migrate to 

their final location in peripheral tissues. Once there, cytokines released from cells in the 

surrounding milieu initiate the final differentiation process. As long as a supply of SCF is 

maintained, mast cells in vivo are relatively long lived (Gilfillan et al., 2011a). Mast cell 

heterogeneity is based on the tissue of residence, however broadly speaking mast cells are 

classically characterised according to the levels of chymase and tryptase present: 

 

 MCT mast cells = tryptase only. Most frequently found in respiratory and intestinal 

mucosa 

 MCTC mast cells = tryptase and chymase. Most frequently found in the skin, 

synovium, conjunctiva, lymph nodes, sub mucosa, stomach and intestine. 

 MCCc mast cells = chymase only. Found in mucosal tissue of stomach, intestine and 

colon.  

 

Although mast cell maturation is dependent on peripheral tissue location, it is likely that 

mast cells retain phenotypic flexibility in order to respond to changes in the environment 

(Beaven, 2009).  

 

1.2.2 Mast cell functions in innate and adaptive immunity 
 

Mast cells have a wide range of functions in the immune system, largely instigated by 

mediator release. Although more commonly known for their role in allergic disease and 

hypersensitivity, mast cells also have role in innate and adaptive immunity and in 

angiogenesis, wound healing and tumor growth. Their ability to have such wide ranging 

functions is a consequence of their flexible and diverse expression of activating receptors. 
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This enables them to secrete mediators selectively in given situations (Gilfillan & Beaven, 

2011). 

 

Mast cells were first demonstrated to have roles in innate immunity, in particular in the 

detection of invading organisms, through studies into mast cells and helminth infection.  

Woodbury et al. demonstrated that mast cells accumulate and degranulate at locations of 

helminth infestation in the intestine of rats (Woodbury et al., 1984). In support of this data, 

another study showed that mice with deficient mast cells have impaired ability for worm 

expulsion (Nawa et al., 1985), in combination this work demonstrates the importance of 

mast cells for protection against helminths.  

Mast cells have also been shown to have a protective role against bacterial infection; one 

study demonstrated that mast cell deficient mice were 20-fold less effective in the 

clearance of enterobacteria than the wild-type (WT) controls, here tumour necrosis factor 

α (TNFα) production by mast cells was implicated as key for neutrophil recruitment in 

mounting the immune response to clear this bacteria (Malaviya et al., 1996).  Subsequent 

studies have implicated mast cells with a role in the control of viral infection. In the HMC-1 

human mast cell line, following infection with respiratory syncytial virus HMC-1 cells were 

shown to release several chemokines which could be involved in immune cell recruitment 

to help tackle this viral infection in vivo (Al-Afif et al., 2015). Importantly, in allergic disease 

such as asthma, allergic symptoms are commonly reported to be exacerbated during 

bacterial/viral infections. A recent study compared the mediator release of mast cells 

following either IgE stimulation or simultaneous activation with IgE and toll like receptor 

(TLR) ligands. Interestingly they found that TLR+ IgE activation greatly enhanced cytokine 

production. This observation gives important evidence in support of the mechanism behind 

the augmented allergic symptoms seen during an infection (Suurmond et al., 2015). 

 

1.2.3 Mast cells and allergic disease 
 

Charles Blakely noted the first scientific report of allergic disease in 1869, when he 

performed a skin prick test to demonstrate that pollen was the causative agent for his hay 

fever (Beaven, 2009). Following this, the first links that mast cells were contributors to 

allergic disease were upon discovery that histamine could cause anaphylactic shock and 

that there was a correlation between histamine levels and mast cell counts in urticaria 

lesions (Riley 1953, Riley and West 1952). However, it was the discovery of the IgE class of 

antibodies by (Bennich et al., 1968) that signified a crucial breakthrough in the 

understanding of the immunological basis of allergy. It is now known that for antigen-IgE 

production to occur, IgE antigens are taken up by antigen presenting cells that present the 

processed antigen to naïve T cells to cause an acquired Th2 cell phenotype. Through the 

action of B cell major histocompatibility complex (MHC) class II molecules/IL-4 and IL-13, B 

cells then undergo class switch recombination to become IgE producing B cells. Once 

produced antigen-IgE mediates its biological functions through binding to FcεRI and CD23 

receptors which are predominantly expressed on mast cells but also on some other 

hematopoietic cells. Due to the primary expression of the FcεRI being on mast cells, this 
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shows how the link between IgE and allergy implicates mast cells as the effector cell type 

(Galli & Tsai, 2012). 

 

It is now well recognised that in allergic individuals, re-exposure to an antigen specific IgE 

causes FcεRI receptor cross linking on mast cells and basophils. This initiates a complex 

signalling cascade culminating in the secretion of mediators which leads to an immediate 

hypersensitivity reaction. If this release occurs in the airways then the symptomatic 

response is characterised by an increased vascular permeability, smooth muscle 

contraction and mucus secretion, if there is a systemic activation and mediator release 

anaphylaxis can occur (Beaven, 2009; Galli & Tsai, 2012). However, what predisposes some 

people to develop IgE antibodies towards allergens is unclear. 

 

1.2.4 Mast cell mediators 

Preformed mediators in granules 
 

Following mast cell activation, degranulation occurs within seconds and is complete after 

around 5-10 minutes.  The main components of mast cell granules include; proteases such 

as tryptase, chymase and carboxypeptidase. However histamine is arguably the most well 

known degranulated mediator as it has a key role in the contribution to mast cell mediated 

disease. Lysosomal enzyme, β-hexaminidase is released from mast cell granules and is 

frequently used as a way to measure mast cell degranulation using in vitro assays 

(Lundequist & Pejler, 2011). Once released, histamine acts through histamine GPCR 

receptors located throughout the body. Histamine activation of H1 receptors located on 

the bronchial smooth muscle and endothelial cells are responsible for bronchoconstriction 

– one of the main symptoms of allergic asthma. In sum, the release of histamine from mast 

cells can lead to; increased vascular permeability, vasodilatation and bronchial constriction 

(Lundequist & Pejler, 2011). 

 

Mast cell degranulation occurs via regulated exocytosis. Exocytosis is mediated through 

Soluble N-ethylmaleimide-sensitive factor Attachment Protein Receptor (SNARE) proteins 

which can be classified into; t-SNARES, located on the target membrane, and v-SNARES, 

located on the vesicle membrane. There are numerous members of each of the vesicle and 

target located SNAREs and work in the Seward lab has characterised which SNAREs are 

expressed in human mast cells and to link SNARE expression to distinct cytokine release 

(Reuben Friend thesis). Of the v-SNARE family, vesicle-associated membrane protein 

(VAMP)-8 deficient mast cells have been shown to have impaired FcεRI-mediated 

exocytosis. Similar studies have implicated Syntaxin and Soluble NSF Attachment Protein 

(SNAP)-23 (t-SNARES) in FcεRI-mediated exocytosis. Other regulators of exocytosis have 

been shown to be required for successful degranulation of mast cell mediators. For 

example, the bone marrow-derived murine mast cell (BMMCs) from Doc2α (a Ca2+ sensing 

protein involved in exocytosis regulation) deficient mice were shown to have reduced 

levels of FcεRI induced exocytosis (Kalesnikoff & Galli, 2008). 
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Eicosanoids  
 

Activated mast cells release newly generated eicosanoids in relatively large quantities over 

a short time period. Eicosanoids are lipid mediators that comprise PGDs and LTCs. The de 

novo production of eicosanoids occurs downstream of arachidonic acid production, and 

involves a combination of phosphorylation of mitogen-activated protein kinase (MAPK) and 

intracellular Ca2+ flux are required. LTCs are generated from 5-lypoxygenase activity (5-LO) 

and PGDs from cyclooxygenase isoenzmes (COX) (Funk, 2001). Following release, 

eicosanoids can act through specific GPCRs to exert effects on the local environment; the 

effects of PGD2 and LTC4 have been shown to cause bronchoconstriction and potentiation 

of airway hyper responsiveness. Consistent with mast cell hyperactivity, in broncho-

alveolar lavage fluid (BALF) from asthmatics the levels of PGD2 and LTC4 are enhanced 

compared to healthy controls (Boyce, 2007). 

 

Cytokines and chemokines 
 

Mast cells can produce a wide range of cytokines and chemokines including: IL-3, IL-4, IL-5, 

IL-6, IL-10, IL-13, granulocyte-macrophage colony-stimulating factor (GM-CSF) and TNFα 

and chemokine (C-C motif ligand (CCL)-2, 3,  5 and chemokine C-X-C Motif ligand (CXCL)-8 

(Galli et al., 2005). Cytokine and chemokine release occurs much later than that of the 

granulated and eicosanoid mediators, taking place several hours after mast cell activation. 

TNFα is an exception to this, as evidence has shown that this cytokine is also present in 

preformed granules, therefore its release can occur in two phases. Thymic stromal 

lymphoprotein (TSLP) is a member of the IL-2 cytokine family and has been shown to have 

a role in contribution to allergic asthma. The primary producers of TSLP are epithelial cells, 

keratinocytes and stromal cells but DCs and mast cells have also been shown to be capable. 

IL-4 primed mast cells were demonstrated to produce TSLP following FcεRI stimulation in a 

study by (Okayama et al., 2009). In health, TSLP has been largely thought to have roles in 

maintenance of Th2 type homeostasis at barrier surfaces, however in disease it is a 

contributor to the development of Th2 type inflammatory responses that lead to allergic 

asthma (Ziegler et al., 2013).   

 

1.2.5 Mast cell surface receptors 
 

Mast cells express a vast array of endogenous receptors giving them the ability to respond 

to a range of stimuli. A list of the commonly reported mast cell receptors is summarised in 

Figure 1.4 whilst further details regarding the signalling downstream of the mast cell 

receptors relevant to this study is given below. 
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Figure 1.4 Common mast cell receptors and their ligands and effect on mast cell 

function 

  Reproduced with permission from (Gilfillan & Tkaczyk, 2006) 

 

FcεRI receptors 
 

The FcεRI is a heterotetrameric receptor consisting of the IgE binding α subunit, the 

membrane tetraspanning β-subunit and two identical disulphide linked-γ subunits. It is the 

γ subunits that initiate the signalling events downstream through the immunoreceptor 

tyrosine based activation motifs (ITAM)s attached (Gilfillan & Beaven, 2011). Activation of 

FcεRI results in the stimulation of a complex signalling cascade with a number of signalling 

axes which branch off following the initial receptor cross linking. The principal signalling 

cascade activated following FcεRI activation is depicted in Figure 1.5; from the first steps 
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following receptor cross linking, the signalling is initiated by a SRC family kinase, Lyn, which 

is located in lipid membrane rafts along with the FcεRI receptors. Lyn phosphorylates 

tyrosine residues present in the β and γ chain associated ITAMs leading to tethering of 

spleen tyrosine kinase (Syk) and subsequent activation of the TM adaptor molecule, linker 

for activation of T cells (LAT) (Gilfillan et al., 2011b). Importance of LAT for FcεRI-mediated 

degranulation were demonstrated by (Saitoh et al., 2000) where profound defects in FcεRI-

mediated degranulation were seen in LAT deficient BMMCs. LAT regulated phospholipase-γ 

(PLCy) regulation has been shown to be key for initiation of the downstream signalling 

necessary for degranulation. Similarly, following activation of LAT-growth receptor-bound 

protein 2 (GRB2) pathways, signalling involving MAPK and extracellular-signal-related-

kinase (ERK) leads to activation of transcription factors involved in cytokine production. In 

addition to the Lyn directed signalling pathways, another alternative signalling pathway 

downstream of FcεRI activation was also proposed. (Rivera & Gilfillan, 2006) showed that 

another SRC family kinase, Fyn, was involved in mast cell mediator release and was 

involved in crosstalk with Lyn to initiate FcεRI regulated mast cell degranulation. Fyn was 

shown to activate phosphoinositide 3-kinase (PI3K) following GRB2-associated-binding 

protein 2 (GAB2) phosphorylation. Notably, FcεRI activation culminates in a signalling 

cascade that causes Ca2+ mobilization, the known Ca2+ channels mediating this Ca2+ flux are 

discussed in Section 3.1. 
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Figure 1.5 Schematic diagram showing key components of the principal FcεRI 

signalling cascade 

For clarity, only one high-affinity receptor for IgE (FcεRI) is shown. Reproduced with 

permission from (Gilfillan & Tkaczyk, 2006). 

c-kit receptor 
 

The c-kit receptor is a single chain receptor with five extracellular immunoglobulin-like 

domains. In order for receptor activation to occur, ligand binding by SCF needs to occur to 

induce dimerization and activation of the downstream signalling cascade. SCF has been 

shown to have a substantial modulatory effect of Anti-IgE induced degranulation and 

cytokine production. However, c-kit signalling alone seems insufficient to induce 

degranulation but studies have demonstrated the release of cytokines and PGDs (Lewis et 

al., 2013a). The c-kit signalling cascade is similar to that induced by FcεRI; c-kit signalling 

induces activation of Src kinases, PLCy1, PI3K and MAPK but it does not appear to initiate 

Syk, LAT or protein kinase C (PKC) signalling, perhaps explaining the lack of degranulative 

capacity (Gilfillan & Tkaczyk, 2006). A schematic diagram depicting the c-kit receptor 

activation cascade is shown in Figure 1.6. 

 
Figure 1.6 Schematic diagram showing key components of the c-kit signalling 

cascade 
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Reproduced with permission from (Gilfillan & Tkaczyk, 2006) 

 

1.2.6 Mast cell models 
 

Due to the difficulty in obtaining a source of primary tissue from which to isolate primary 

mast cells, frequently mast cell models are used instead. There are several mast cell models 

from human and rodent origins available. The oldest mast cell model is the RBL-2H3 cell 

line, derived from rat basophilic leukaemia cells. Originally this cell line was derived from a 

tumour in Wistar rats by (Eccleston et al., 1973), these RBL cells were defined as RBL-I-RBL-

IIII, and although they were demonstrated to have a good FcεRI expression they were not 

significant releasers of histamine in response to FcεRI activation. It was in 1981 when sub 

lines of the original RBL cells were cloned in order to produce the RBL-2H3 cell line which 

was subsequently shown to be strong histamine releasers (Barsumian et al., 1981). 

Although characterisation has shown that RBL cells function as would be expected for a 

mast cell, caution should always be taken in the translation from rodent to human studies. 

In this regard, the use of later established human mast cell lines may prove more relevant 

in most research scenarios.  

 

Two major human mast cell lines are referenced in mast cell research papers; namely the 

laboratory of allergic disease 2 (LAD2) mast cell line and the HMC-1 mast cell line. Another 

human mast cell line called the LUVA cell was also described in 2011, although the use of 

this latter cell line has not been widely verified (Laidlaw et al., 2011). LAD2 cells were first 

obtained from bone marrow aspirates from a patient with mast cell leukemia. Analysis of 

these cells once in culture found that they expressed FcεRI, stained with the characteristic 

mast cell kimura marker and had intracellular granules. Importantly they were shown to 

release β-hexaminidase in response to FcεRI activation showing their scope for mast cell 

research (Kirshenbaum et al 2003). The HMC-1 mast cell was first described in 1988 and 

was originally derived from peripheral blood of a patient with mast cell leukemia. Upon 

initial characterisation of the cells, it was found that they bear similarities to immature 

mast cells but importantly they do not possess FcεRIs (Butterfield et al., 1988). This 

therefore limits the scope of the mast cell research that can be undertaken with this model 

cell. A more recent comparison study of HMC-1 and LAD2 cells to primary skin mast cells 

stated that HMC-1 cells showed a very immature mast cell phenotype, whereas LAD2 cells 

were more intermediately differentiated as compared to the primary skin mast cells (Guhl 

et al., 2010). This highlights that LAD2 cells are a superior human mast cell model to HMC-1 

cells.  

 

Section 1.2 has covered key aspects of mast cell biology pertinent to my study, further 

information about the importance of Ca2+ in mast cell biology and the current knowledge of 

specific Ca2+ channels with defined roles in mast cell activation is discussed in Section 3.1. 

 

1.3 Introduction to macrophage biology 
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1.3.1 Macrophage – discovery and key characteristics 
 

Metchnikoff first described macrophages in 1882 - macrophages were described as cells 

that migrated to punctured starfish larvae and were able to uptake particles from the 

larvae digestive tract (Gordon, 2007). Over the last 100 years there has been a wealth of 

research into macrophages, delineating the important roles of macrophages in many 

different tissues. A wide functional diversity has been reported from macrophages taken 

from different tissue sites in vivo, phenotypic characterization of macrophages has led to 

the genesis of the rigid definitions of classical and alternatively activated macrophages 

otherwise denoted as M1 and M2 macrophages. M1 and M2 macrophages are defined due 

to distinct proinflammatory and anti-inflammatory effects when naïve macrophages are 

cultured with LPS/IFNγ or IL-4 and IL-13, respectively. It is increasingly apparent that these 

binary classifications represent two extreme states which are not representative of the 

complex in vivo tissue resident macrophage phenotypes (Mosser, 2003; Gordon, 2007). 

Macrophages are perhaps best described for their key role as cells of innate immune 

function and inflammation; they direct phagocytosis of pathogens and produce 

proinflammatory cytokines to initiate an immune response to aid host defense. Conversely, 

macrophages have been shown to have important roles in wound healing and repair 

(Murray & Wynn, 2011) and in other aspects of biology. For example macrophages have 

crucial roles in regulating development and metabolic homeostasis. Macrophages have also 

been shown to be key contributors to the pathogenesis of several types of disease; in 

particular cancer and inflammatory diseases, including respiratory diseases (Wynn et al., 

2013). 

 

1.3.2 Macrophage derivation 

Following from the identification of macrophages by Metchnikoff, it was commonly 

thought that tissue-resident macrophages originated from blood derived monocyte 

precursors. However, recent fate mapping experiments have demonstrated that some 

tissue resident macrophages arise from the yolk sac, which occurs before development of 

haematopoeitic stem cells (HSCs) (Dey et al., 2014). Macrophages resident in the liver, 

brain, epidermis and lung originate from colony-stimulating factor 1 receptor (Csf1r) 

erythro-myeloid progenitor cells, that are distinct from HSCs. Interestingly, throughout 

ageing in steady state conditions, lung AMs were shown to be replaced over time by cells of 

HSC origin, whereas the other macrophage subtypes were only marginally replaced by HSC 

cells and Csf1r+ve cells yolk sac derived were largely maintained throughout the time 

period assessed (Gomez Perdiguero et al., 2015). The transfer of bone marrow HSCs into 

lethally irradiated recipients with ablate tissue macrophages has demonstrated that 

monocyte precursors can differentiate into functional macrophages under certain 

conditions, for example in cardiac macrophages, the replenishment of macrophages has 

been shown to occur from blood monocyte cells following cardiac insult (Dey et al., 2014). 

Together these recent findings illustrate that although not all macrophages are originally 
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derived from blood monocyte precursors; further work is required to understand the 

contribution and in the replacement of tissue resident macrophage cells following immune 

insult or cell death. 

 

1.3.3 Macrophage functions 
 

The wide receptor expression on cell surface of macrophages enables them to detect a 

number of invading pathogens and act among the first line of defense in a pathogen attack. 

For example TLR and scavenger receptors alone can bind a large range of ligands which are 

present on the surface of microorganisms e.g. lectins, lipoproteins, proteins, 

oligonucleotides, polysaccharides, and other molecules.  

 

Mediator release 
 

Macrophages can direct inflammation through the release of a panel of proinflammatory 

mediators differentially released dependent on the activating ligand. In response to 

inflammatory stimuli, endogenous macrophage receptor activation leads to the release a 

range of proinflammatory cytokines including TNFα, IL-6, IL-8 and IL-2. Similarly they can 

release proinflammatory mediators such as PGDs, LTCs and complement. This panel of 

proinflammatory mediators have a range of functions dependent on the local environment 

they are released into, but are also known to direct specific components of the 

inflammatory immune response (Arango Duque & Descoteaux, 2014). Macrophages can 

also release ROS, reactive nitrogen species (RNS), hydrolytic enzymes and chemokines. 

Macrophages skewed towards an M2 phenotype can release anti-inflammatory/tissue 

healing mediators such as IL-10, transforming growth factor-β- (TGF-β), platelet-derived 

growth factor (PDGF), vascular endothelial growth factor (VEGF) and epidermal growth 

factor (EGF) (Laskin, 2009). 

  

Phagocytosis 
 

Phagocytosis is carried out by effector cells of the innate immune system, such as 

macrophages and neutrophils. Phagocytosis is essential for the clearance of microbes, 

apoptotic cells and foreign particles and is initiated through ligands found on the surface of 

the particles binding to receptors on the phagocytic immune cells. Upon particle ingestion, 

macrophages can process and present the antigens for the foreign particle which can be 

recognised by T helper cells. This culminates in the release of cytokines from T-lymphocytes 

to cause B cell activation and initiate antibody production specific to the foreign antigen. 

Specific antibodies then bind to the antigens located on the pathogen surface. These 

opsonized pathogens can then be detected again by macrophages through the FcγR which 

can initiate FcγR mediated phagocytosis (Arango Duque & Descoteaux, 2014). Phagocytosis 

also encompasses processing of the particle to cause phagosomal maturation; this is a key 

step in effective destruction of pathogens. Following engulfment of the particle, into a 
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membrane enclosed phagosome, the phagosome undergoes a maturation process which 

involves a process of lipid remodelling, fusion with endosomes or lysosomes, acidification 

and ROS generation to kill/destroy the particle (Nunes & Demaurex, 2010). Phagosomal 

acidification is involved in limiting bacterial growth and enhancing the effectiveness of 

microbicial components such as the activity of hydrolytic enzymes (Steinberg et al., 2007), 

and is also important in the contribution of phagosomal maturation due to its involvement 

in membrane traffic regulation.  

 

Dependent on the particle type, different ligands are found therefore a range of receptors 

can be activated. Examples of receptors involved in the initiation of phagocytosis include: 

FcγR, complement receptors (CR), scavenger receptors. Depending on the receptor 

initiating phagocytosis, there are differences in how the phagocytic engulfment can occur. 

For example, following FcγR or Dectin-1 receptor activation, an extension of the 

pseudopodia occurs and engulfment of the target. However the CR-mediated phagocytosis 

initiates ‘sinking phagocytosis’ where a force is applied on the particle to cause it to be 

pulled into the cell (Aderem & Underhill, 1999; Goodridge et al., 2012). Other differences 

between the phagocytosis initiated by FcγR and CR are that FcγR phagocytosis is tightly 

coupled to the release of inflammatory mediators whereas no release of mediators has 

been demonstrated through CR phagocytosis. FcγR-dependent phagocytosis is seemingly a 

Syk-dependent process with PI3K signalling initiated downstream, demonstrated by the 

inhibitory effects of wortmannin of FcγR mediated phagocytosis (Aderem & Underhill, 

1999). Although FcγR mediated phagocytosis is largely thought to occur through the 

binding of IgG opsonized particles, (Salmon et al., 1987) have also demonstrated a specific 

FcγR on human neutrophils initiates opsonin-independent phagocytosis of non-opsonized 

E. coli through the binding of mannose-binding adhesions to FcγRs. It was shown that 

blocking FcγR with a 3G8 anti –FcγR antibody led to inhibition of internalisation of E. coli. 

However the attachment of E. coli to the cell surface was not affected. There has been 

shown to be a large similarity between the phagocytic and endocytic pathways, and a lot of 

mechanistic understanding has been gained from knowledge of the endocytic pathway 

(Stenmark, 2009; Flannagan et al., 2012). For example, phagosomal maturation requires 

endolysosomal protein machinery to regulate the membrane targeting and fusion, SNARE 

proteins and RabGTPases have been shown to be involved (Dayam et al., 2015).  Similarly, 

although the typical definition of phagocytosis is defined by the uptake of particles larger 

than 0.5µM in size and endocytosis of particles smaller in size, the utilisation of endosomal 

pathways by pathogens, in non phagocytic and phagocytic cells has been described – often 

in the context of foreign pathogens evading detection by the immune system (Bonazzi & 

Cossart, 2006). As such an important role regulated by macrophages, research to delineate 

further details regarding the mechanisms controlling phagocytosis is important. 

  

1.3.4 Macrophage heterogeneity 
 

Tissue resident macrophages exist at a number of locations within the body, e.g. in the skin, 

spleen, lung, liver, gastrointestinal tract, CNS, blood and bone. Whilst the majority of tissue 

resident macrophages have roles in immune surveillance there are key differences 
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between other functions dependent on the tissue location. For example, whilst CNS located 

macrophages, microglia, have additional roles promoting neuronal survival, alveolar 

macrophages from the lung clear airway surfactant (Davies et al., 2013). An in-depth gene 

expression profile study has characterised the differences between tissue macrophages 

isolated from lungs, spleen, brain and peritoneum has been performed by (Gautier et al., 

2012). Further information regarding AMs and MDMs, the macrophage types used in the 

present study is provided below. 

 

Alveolar macrophages (AMs) 

 

AMs are located on the epithelial surface of the lung which puts them in immediate contact 

with the environment, and therefore exposed to inhaled pathogens and host-epithelial 

derived factors. Due to this location, AMs have a critical role in regulating the pulmonary 

immune responses in response to inhaled pathogens. It has been demonstrated that AM 

differentiation is dependent on GM-CSF; with GM-CSF driving peroxisome proliferator-

activated receptor (PPARγ) mediated AM maturation. A cell selective PPARγ knockout 

mouse (CD11c-CrePpargfl/fl mice) was shown to have a significantly reduced number of 

mature AMs when isolated from the BALF and lungs (Schneider et al., 2014). Similarly, 

PPARγ was shown to confer the transcriptomic profile specific to AMs (Gautier et al., 2012). 

The functional niche of AMs compared to other macrophage types may be explained by 

their residing in a tissue where marked changes in the environment occur on a frequent 

basis. For example, the partial O2 pressure, tissue oxygenation and microbial flora vastly 

change during periods of distinct microbial contact (Hussell & Bell, 2014). Although 

macrophages from the lung are generically referred to as AMs, in fact there are at least 

three types of macrophages resident in the lung: bronchial macrophage, interstitial 

macrophages and AMs. AMs are located in the air space and form 90-95% of the cells in the 

steady state (Kopf, Schneider and Nobs 2015). 

 

Monocyte derived macrophages 

 
In the original model of macrophage differentiation, macrophages were thought to 

originate from CD34+ myeloid progenitor cells in the bone marrow and upon stimulation 

with GM-CSF or macrophage colony-stimulating factor (M-CSF) differentiate into 

promonocytes, with further division leading monocytes released into the bloodstream for 

circulation for a 3 day period. It was originally believed that monocytes migrated to varying 

tissue locations to become mature tissue resident macrophages (Andreesen & Kreutz 

1991).  The differentiation cascade as understood from these studies led to the 

development of in vitro protocols to create monocyte derived macrophages. Human Ab 

serum was shown to induce monocyte to macrophage differentiation in culture over a 

period of 7 days (Musson, 1983; Andreesen et al., 1990). Monocyte to macrophage 

differentiation was originally  characterised by: a change in morphology - around a 10 fold 

increase in size with decrease in nucleus to cytoplasm ratio and multinucleation, an 

increase in ability to phagocytose particles and to perform antibody-dependent cell-

mediated cytotoxicity (ADCC), and expression of ‘maturation’ markers, some of which e.g. 
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CD16 have since been shown to be present on monocytes too (Andreesen and Kreutz 

1991). M-CSF and GM-CSF have been shown to have important roles in driving monocyte to 

macrophage differentiation in vitro (Brugger et al., 1991); (Eischen et al., 1991). In 2004, it 

was shown that M-CSF and GM-CSF mediated differentiation led to  two distinct groups of 

macrophages based on their phenotype and cytokine based responses was shown. M-CSF 

differentiation of human CD14+ monocytes produced macrophages that subverted the Th1 

response in face of mycobacterial infection and did not respond by releasing IL-23 or IL-12 

but did release IL-10. Conversely GM-CSF driven differentiation produced macrophages 

that promoted Th1 immunity in response to mycobacterial infection with secretion of IL-23 

and IL-12 in cells that had also been primed with IFNγ (Verreck et al., 2004). Further work 

by (Fleetwood et al., 2007) corroborate Verreck’s work in murine bone marrow derived 

macrophages (BMDMs). Experiments to attempt to characterise the transcriptomic and 

surface expression of M1 and M2 macrophages have since been described (Jaguin et al., 

2013; Vogel et al., 2014); (Martinez et al., 2006). Characterisation of polarised human 

macrophages in vitro of human macrophages cells differentiated in vitro with M-CSF or 

GM-CSF (with and without IFNγ/LPS, IL-4, dexamethasone and IL-10) showed that CD64 and 

CD40 were stereotypical M1 markers whereas CD163 was a characteristic M2 marker 

(Vogel et al., 2014). From this area of investigation, the coined M1 and M2 phenotypes 

have largely been interpreted in the macrophage field as somewhat rigid groups with 

distinct immune functions. However it has since been reiterated that these M1 and M2 

phenotypes do not strictly mirror tissue specific macrophage types and are merely 

examples of how differing lineage determining cytokines can lead to macrophages with 

vastly different roles. 

 

1.3.5 Macrophage surface receptors 
 

Macrophages express a variety of surface receptors, that upon ligand – receptor binding 

can lead to activation of the cell to initiate an immune response e.g. cytokine release or 

phagocytosis. Receptors endogenously expressed by macrophages include: pattern 

recognition receptors (PRRs), FcγRs, CRs, lectins and scavenger receptors (Taylor et al., 

2005). PRRs can be separated into 3 groups; TLRs, retinoic acid inducible gene like 

receptors (RLRs) and nucleotide binding oligomerisation domain like receptors (NLRs). A list 

of the key receptors and their functional roles is summarised in Figure 1.7. The 

macrophage receptors focused in my study are the FcγR and TLR families therefore more 

information on these families is provided in this Section (1.3.5) to provide the necessary 

context for the work of this thesis.  
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Figure 1.7 Overview of macrophage receptors implicated in immune recognition 

Reproduced with permission from (Taylor et al., 2005) 

 

TLR receptors 
 

The TLR receptor family includes 9 members and TLR receptor activation can lead to the 

propagation of a signal which can involve four types of adapter molecules; myeloid 

differentiation primary response gene 88 (MyD88), toll/interleukin-1 receptor domain-

containing adapter protein (TIRAP), TIR-domain-containing adapter-inducing interferon-β 

(TRIF) and TRIF–related adaptor molecule (TRAM). Broadly speaking, the TLR signalling 

cascade can be split into either MyD88 or TRIF-dependent pathways, with different TLR 

family members utilizing different pathways and adapter molecules. MyD88-dependent 

signalling can modulate NF-κB and MAPK transcription whereas TRIF- dependent signalling 

is more commonly associated with NF-κB  and interferon regulatory factor 3 (IRF3) 
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activation (Kawai & Akira, 2010) (Figure 1.8). TLR receptor activation is crucial for 

mediating innate immune response following pathogen attack.  

 

 

Figure 1.8 Schematic diagram showing signalling downstream of TLR receptor 

activation 

Figure reproduced with permission from (O'Neill et al., 2013). 

 

Signalling downstream of the TLR adapter molecules involves signalling messengers such as 

interleukin-1 (IL-1) receptor-associated kinase (IRAK) and TRAF contrary to the Syk/PI3K-

dependent signalling cascades as seen in Fc and T cell receptors (TCR). However, a number 

of studies in immune and non immune cells alike, have demonstrated the involvement of 

PLC and subsequent Ca2+ influx following TLR4 receptor activation. A selection of this work 

has implicated the potential for SOCC as components of the TLR4 signalling cascade, details 

of these studies are provided in Section 5.1. Although the work summarised in Section 5.1 

provide evidence to support to activation of SOCE downstream of TLR activation, none of 

these studies address SOCE and TLR signalling in human macrophages identifying a gap in 

current knowledge. Similarly the details of LPS induced Ca2+ mobilization varies in each 

study, where different macrophage type and non immune cells were used, indicating 
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differential activity dependent on the cell type and associated microenvironment. In 

summary it is clear that translation of work into human macrophages is important  and 

there is a gap in the current knowledge that this study aims to address. 

 

FcγR 
 

FcγRs for IgG were recognised over 50 years ago and two general classes of IgG Fc 

receptors are now recognised; activation receptors characterised by ITAM motifs and 

inhibitory receptors characterised by ITIM motifs (Gessner et al., 1998). In the Fcγ receptor 

signalling cascade; following ITAM phosphorylation, Syk and LYN pathways are initiated 

leading to the PLCy production (Crowley et al., 1997; Wen et al., 2002) and therefore 

inositol trisphosphate (IP3) production and store depletion. Conversely, inhibitory FcγR 

subtype activation mediated by ITIM motifs leads to production of SRC kinase, promoting 

the recruitment of Src homology 2 (SH2) domain containing phosphatases such as SHIP, 

SHIP then acts to degrade phosphatidylinositol-4,5-bisphosphate (PIP2) which prevents PLC 

and IP3 production (Goodridge et al., 2012). The full signalling cascade initiated by Fcγ 

receptors is shown in Figure 1.9.  The 5 subtypes of the FcγR can be classified as activatory 

or inhibitory based on whether they are associated with an ITAM or ITIM motif. FcγR 

include 4 main family members in Homo sapiens; FcγRI, FcγRIIa, FcγRIIb and FcγRIII. Each 

differs in their affinity for the ligand, IgG. FcγRI is the high affinity activatory receptor 

subtype and leads to activation of the ITAM-Syk/LYN-PLC pathway. FcγRIIa and FcγRIII 

represent lower affinity activatory subtypes with differential preference for IgG subtypes. 

Figure 1.10 shows the different FcγR subtypes, their relative affinity for IgG and the 

expression profile in a number of immune cell types.  Activation of FcγR in vivo occurs 

following cross linking of the receptor by IgG immune complexes. Downstream functions 

associated with FcγR activation include phagocytosis, ADCC, transcription of cytokine genes 

and release of proinflammatory mediators (Dijstelbloem et al., 2001).  FcγRs are often 

described as the linkers between the innate and adaptive immune system: they are 

expressed largely on innate effector cells however they are activated by immunoglobulins 

binding to the Fc part of the receptor (Nimmerjahn & Ravetch, 2008b). Due to the 

activation by IgG, FcγRs are also associated with autoimmune disease, when IgG is 

inappropriately made against self-antigens. Similarly, FcγRIIb acts an important negative 

regulator of auto immune disease as it helps to balance the FcγR immune response by 

preventing overactivity (Brownlie et al., 2008).  

 

As described in detail in Section 5.1, there have been several studies that demonstrate a 

robust Ca2+ influx in cells following FcγR activation; this has been coupled to phagocytic 

ingestion in a selection of these studies. Due to the components of the signalling cascade 

initiated by FcγR, the Ca2+ influx is likely to be predominantly controlled from Ca2+ 

mobilisation the ER stores and subsequent SOCE from plasma membrane channels. There 

are reports which suggest a contribution of SOCE to FcγR signalling in murine macrophage 

cells, however there is a lack of knowledge regarding the direct involvement of Orai in FcγR 

signalling and of the Ca2+ signalling in human macrophages – again highlighting another gap 
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in knowledge that my study aims to address. Further details regarding SOCE contribution to 

FcγR signalling is covered in Section 5.1.3  

 

 

 
 

Figure 1.9 Schematic diagram showing the co-regulation of activating and inhibitory 

FcR signalling 

Red lines indicate points where inhibitory signalling pathways interfere with their 

activating counterparts. Moreover, factors that change the balanced expression of 

activating and inhibitory FcRs are shown at the top. See text for further details. 

Reproduced with permission from (Nimmerjahn & Ravetch, 2007) 
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Figure 1.10 Table showing human receptors for IgG 

 Table reproduced with permission from (Guilliams et al., 2014) 

 

 

Section 1.3 has covered areas of macrophage biology with relevance to my study, further 

information about the importance of Ca2+ in macrophage biology and the current 

knowledge of specific Ca2+ channels with defined roles in macrophage activation is 

discussed in Section 4.1 & 5.1. 

 

1.4  Orai channels  
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This section provides an overview of the key properties of Orai channels and the critical 

associated proteins. Topics covered have been selected to provide appropriate context for 

the work of this thesis. 

1.4.1 Discovery of SOCE, ICRAC and distinctive biophysical 

properties 
 

SOCE is now a well described activation mechanism to direct Ca2+ signalling through SOCCs 

(Smyth et al., 2010).  However it was Berridge in 1983 that first identified IP3 as the second 

messenger responsible for Ca2+ release from the ER, subsequently the process of SOCE as a 

consequence of IP3 regulated ER Ca2+ release was proposed by Putney in 1986. Further 

research by Hoth and Penner in 1992 revealed the first unequivocal evidence for a Ca2+ 

current in non-excitable cells. Their experiments performed in rat mast cells demonstrated 

Ca2+ release activated Ca2+ current (ICRAC). ICRAC was shown to be activated following ER store 

depletion, mediated either by IP3 or also through the action of Ca2+ chelator, BAPTA (Hoth 

& Penner, 1992). Together these studies provided evidence to elucidate the process of 

SOCE. 

 

From the work of Hoth and Penner, several defining characteristics of ICRAC were observed. 

ICRAC was shown to have characteristic current-voltage relationship, with the current 

amplitude greater at negative potentials and often zero during positive potentials (Hoth & 

Penner, 1993). When the standard voltage protocol was performed in electrophysiology 

experiments (voltage ramps of -100 to +100mV), the current-voltage relationship showed 

an inward rectification at negative voltages (Parekh & Putney, 2005). A high Ca2+ selectivity 

of the ICRAC current was demonstrated through the observation that ICRAC current was at 

zero at positive voltages when Ca2+ was the charge carrier (Parekh & Penner, 1997). 

Similarly, when fura Ca2+ dye was used to measure Ca2+ entry into a cell over time as a 

measure of Ca2+ permeability, rat mast cells were shown to be more Ca2+ selective than 

voltage-gated Ca2+ channels (Hoth, 1995).  Ca2+ release-activated Ca2+ (CRAC) channels were 

shown to lose their selectivity for Ca2+ in a divalent free external solution; in DVF conditions 

Na+ permeation shows corresponding store-operated currents that were 5-8 fold larger 

than Ca2+ (Parekh & Putney, 2005). Studies by Hoth and Penner were unable to distinguish 

single channel ICRAC activity however their predicted single channel conductance to be 

significantly lower than 1pS (Hoth & Penner, 1993). Other defining characteristics of the 

ICRAC current include fast Ca2+-dependent inactivation (CDI) which occurs within tens of 

milliseconds following Ca2+ influx into the cytosol. This was first observed in Jurkat T cells 

and subsequently in RBL cells (ZWEIFACH & LEWIS, 1995; Fierro & Parekh, 1999). Evidence 

supporting fast CDI of ICRAC was supported by data showing that hyperpolarising voltage 

steps reduced the current amplitude; the inactivation seen was greater in the presence of 

EGTA but was limited by the presence of BAPTA. This suggested dependence on the local 

Ca2+ concentration. ICRAC can also undergo slow CDI (ZWEIFACH & LEWIS, 1995). In 

summary, these distinct biophysical characteristics of ICRAC have been used to identify the 

current in a number of cell types and have allowed distinction of ICRAC activity prior to 

identification of selective ICRAC antagonists. 
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SOCE has been most commonly studied following activation of the immunoreceptors; TCR, 

BCR, FcεR and less commonly the FcγR. However SOCE can also be activated through G-

protein coupled chemokine receptors and some PRRs e.g. Dectin-1.  ER Ca2+ release and 

therefore SOCE can also occur following production of second messengers such as cyclic 

ADP ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP)(Feske et 

al., 2015). 

 

 

Figure 1.11 Schematic diagram showing the molecular choreography of Orai1 channel 

activation 

TCR and BCR-signalling cascades are shown as examples of receptors whose 

activation culminates in the production of IP3. Depletion of ER Ca2+ concentration 

causes dissociation of Ca2+ from STIM1 EF hand and initiates multimerization and 

translocation of STIM1 to junctional ER sites in close contact with the plasma 

membrane. STIM1 multimers form puncta where they recruit Orai1 channels. Green 

boxes of STIM1 represent the C terminus where the minimal CRAC activation 

domain (CAD or otherwise known as SOAR). This region of STIM1 interacts with the 

CC domain in the C-terminus of Orai1 (red boxes) and additional domains in the N-

terminus of Orai1 (not shown). Reproduced with permission from (Feske et al., 

2012). 

 

1.4.2 Identification of the proteins critical for SOCE/ICRAC 
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Although ICRAC was first described in 1992, it was only over ten years before the identity of 

the channel mediating ICRAC was found. The pore forming component directing ICRAC was first 

described in 2006, three studies simultaneously discovered the molecular identity of the 

pore forming protein. It had previously been observed that T cells from a subset of SCID like 

patients were deficient in SOCE and ICRAC, therefore a study by (Feske et al., 2006) 

performed linkage analysis of mutations in SCID patients, alongside a drosophila siRNA 

screen to find that the mutated protein causing this SCID/SOCE was a 4 TM protein they 

named Orai. Importantly they demonstrated that expressing WT Orai1 in SCID T cells 

caused a rescue of the SOCE and ICRAC. Also published in 2006 (Vig et al., 2006b; Zhang et 

al., 2006) described work where a drosophila RNAi screen was performed with the aim of 

identification of proteins that inhibited SOCE. Both of these studies proposed CRACM or 

Orai as the pore forming protein mediated the ICRAC current (the channel mediating ICRAC will 

be referred to as Orai throughout this thesis).  

 

The ER Ca2+ sensor protein responsible for the detection of ER Ca2+ depletion and 

subsequent activation of the ICRAC was identified as ER resident protein, STIM. Again, an 

RNAi screen in drosophila was the first indication that Stim or the mammalian homologue 

STIM1 was involved in SOCE (Roos et al., 2005). Similarly, a siRNA screen in HeLa cells 

identified STIM1 and another STIM family member (STIM2) as proteins required for SOCE 

mediated Ca2+ influx (Liou et al., 2005). Heterologous expression of Orai1 or STIM1 

individually had no effect on ICRAC, however when expressed together a significant 

amplification of the ICRAC was seen, thus demonstrating the functional interaction of the 

two proteins to mediate ICRAC (Peinelt et al., 2006; Soboloff et al., 2006a). The choreography 

of STIM and Orai proteins to initiate SOCE is illustrated in Figure 1.11. Identification of Orai 

and STIM as the critical proteins mediating ICRAC represents a significant breakthrough in the 

field. 

 

1.4.3 Orai1 
 

Orai channels are highly selective Ca2+ channels with four TM domains. They are now well 

recognised as the pore forming subunit of the ICRAC channel. The glutamate residue at the 

extracellular end of TM domain1 has been described as the region important for 

determining Ca2+ selectivity; this has been corroborated by several independent studies 

(Vig et al., 2006a; Yeromin et al., 2006). A point mutation of this glutamate region (E180 in 

Drosophila orai and E106 in Orai1) led to a significant change in the ion selectivity of the 

channel. Through the implicated role of the glutamate residue in Ca2+ selectivity it was 

hypothesized that the Orai channel selectivity filter was composed of a ring of glutamates 

to make a pore with a diameter in the region of 3.5anstrum. Indeed (McNally et al., 2009), 

demonstrated through cysteine scanning mutagenesis that the entire pore region of Orai1 

is lined by TM1 residues. The effect of the point mutation of the glutamate region is 

therefore proposed to affect the permeability by increasing the pore size to allow 

permeation of larger monovalent cations such as Cs+. 
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Original studies suggested that Orai channel stoichiometry was tetrameric (Mignen et al., 

2008; Penna et al., 2008). Studies of total internal reflection fluorescence (TIRF) 

photobleaching were used to count the number of photobleaching steps of single 

molecular entities and suggested that the tetrameric complex formation was most likely. 

However, the crystal structure of drosophila Orai was discovery was a hexameric assembly 

indicated; with a closed state with 3 Orai dimeric units organised around a central pore 

(Hou et al., 2012). A subsequent study has shown that a concatenated hexameric Orai 

channel structure is reflective of the Ca2+ selectivity of a native ICRAC channel (Yen et al 

2014). However not all subsequent studies have validated the hexameric structure as seen 

in dOrai crystal; (Thompson & Shuttleworth, 2013) found that only a tetrameric concatener 

assembly of Orai channel subunits produced the Ca2+ selective ICRAC like channel, a 

hexameric assembly showed non-selective cation currents. The reasons behind these 

discrepancies are possibly due to limitations in techniques to determine channel structure, 

or could be explained by a difference in stoichiometry in a resting or active state. In 

general, the other suggested functional residues of the Orai channel have been 

authenticated by the crystal dOrai structure. For example; the E106 region as selectivity 

filter, V102 as the hydrophobic gate, G98 as the gating hinge and R91 as basic gate, the 

structure of Orai1 and the key functional residues is shown in Figure 1.12 (Amcheslavsky et 

al., 2015). 

 

 
 

Figure 1.12 Diagram illustrating Orai1 structure-function mapping 

A.) Annotated sequence of Orai1. (Circles) Residues; (bold) conservation in the three 
human Orai channels. Color-coded channel functions defined by mutational analysis 
are highlighted from N- to C-terminus: N-terminal STIM1 and CaM binding; Ca2þ-
dependent inactivation (CDI); mutation that causes human SCID; constitutively 
active channel mutants; Ca2þ permeation; cation electrostatic attraction; second 
CDI site; TM3 residues that contribute to permeation and gating; and C-terminal 
STIM1 binding. B.) TM1 residues lining the Orai1 store-operated pore elucidated by 
functional analysis: selectivity filter E106, hydrophobic gate V102, gating hinge 
G98, L95, and basic gate R91. For clarity, only two TM1 domains, from two Orai1 
monomers, are represented. Reproduced with permission from (Amcheslavsky et 
al., 2015). 
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1.4.4 STIM1 
 

STIM1 and STIM2 have a single TM region with a putative Ca2+ binding domain in the ER 

lumen. STIM1 was shown to sense ER store depletion through its luminal EF-hand through 

mutagenesis assays. Notably following store depletion, STIM1 was shown to translocate to 

punctate regions near the plasma membrane (Liou et al., 2005). Further definition of the 

role of the EF- sterile α motif (SAM) domain was performed by (Stathopulos et al., 2008), 

where the EF-SAM domain was recombinantly expressed in E. coli and biophysical 

functional characterisation performed. Here the authors find that the EF-SAM binds Ca2+ 

and is monomeric when loaded with Ca2+ but upon Ca2+ depletion forms dimers and 

oligomers. Corroborating studies by (Zhang et al., 2005) identified STIM1 as a Ca2+ sensor 

and showed EF-hand mutants of STIM1 to cause constitutive activation of Orai in T-

lymphocytes without store depletion, thus implicating the EF hand as the region of STIM 

required for control of Orai activation. Importantly immunofluorescence, EM localisation 

and surface biotinylation showed the translocation of STIM1 from the ER to the plasma 

membrane upon store depletion. Further demonstration of the oligomerisation and 

translocation of STIM1 to form puncta at the plasma membrane upon store depletion was 

shown using FRET analysis of fluorescently tagged proteins expressed in HeLa and RBL cells 

(Liou et al., 2007). A schematic diagram illustrating the key functional domains of the STIM1 

protein is shown in Figure 1.13A. 
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Figure 1.13 Schematic diagram showing the topology and functional domains of 

STIM1 and Orai1 

A.) Topology of STIM1 and its functional domains. The domains include: signal 

peptide (Sig), EF-Hand (canonical and non-canonical EF-hand), sterile α motif 

(SAM), transmembrane domain (TM), coiled-coil domain (CC), CRAC Activation 

Domain (CAD), STIM Orai1-Activating Region (SOAR), Proline-Serine-rich domain 

(P/S), Lysine-rich domain (K-rich). The STIM1312–387 fragment is shown as a red 

bar below. B.) Topology of Orai1. Each Orai1 monomer includes four 

transmembrane domains (TM1–4). Residues important for Orai1 function are 

marked, and CAD binding regions of N- and C- termini are highlighted in golden 

yellow. Figure reproduced with permission from (Shim et al., 2015) 

 

1.4.5 STIM2 
 

Since the initial discovery of STIM proteins as ER Ca2+ sensing proteins responsible for Orai 

activation, numerous studies have elaborated on the function of STIM1. Whilst STIM1 and 

STIM2 are co-expressed in most cell types (Thiel et al., 2013), until recently the function of 

STIM2 was largely unknown. In 2006 STIM2 was reported to have an inhibitory effect on 

SOCE (Soboloff et al., 2006b), however it was later shown that STIM2 was capable of 

activating SOCE but in response to smaller decreases in ER Ca2+ concentration (Brandman et 

al., 2007). Interestingly subsequent work has shown that STIM2β, a splice variant of STIM2, 

does have an inhibitory effect on SOCE through proposed allosteric interaction with Orai 

(Rana et al., 2015). 

A structural difference between STIM1 and STIM2 was described by (Wang et al., 2014b); 

here it was shown that, Phe394, part of the SOAR gating region of the protein was present 

in STIM1 but not STIM2. Subsequent studies have revealed that STIM2 has a role in the 

detection of more subtle levels of ER Ca2+ depletion, and that it aids the normal 

translocation and clustering of STIM1 at ER-plasma membrane junctions following a mild 

stimulus, thus increasing the sensitivity of SOCE to occur following weaker agonist signals 

(Ong et al., 2015). Ong et al., showed the knockout of STIM2 in mice salivary glands 

decreased fluid secretion predominantly following relatively low stimulus intensity 

activation, demonstrating how modulation of STIM2 signalling can affect functions in vivo. 

STIM2 is also capable of clustering with Orai1 following its translocation to the plasma 

membrane from the ER, however relative to STIM1 is a very poor activator of Orai1. Studies 

by (Thiel et al., 2013) showed that STIM2 drives Ca2+ oscillations following low agonist 

concentrations and therefore mild store depletion. Another explanation for the differential 

activation thresholds for STIM1 and STIM2 could be due to STIM2 having a role in the 

regulation of Ca2+ entry in unstimulated cells or in the homeostatic maintenance of 

cytosolic Ca2+ concentrations.  
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1.4.6 STIM1-Orai1 interaction 
 

Identification of the CRAC activating domain (CAD) or STIM-Orai activating regions (SOAR) 

of STIM1 was found in independent studies. Indication that the C-terminal coiled-coil motif 

of Orai1 was key for dynamic coupling to STIM1 was shown in fluorescence resonance 

energy transfer (FRET) studies by (Muik et al., 2008). Subsequent investigations in HEK-293 

cells identified a 107aa region of the C-terminus of STIM1 as key for Orai1 activation. 

(Kawasaki et al., 2009) used a screen to assess the affect of Cherry-tagged fragments of 

STIM1 C-terminus to identify the crucial region, a finding that was confirmed by (Park et al., 

2009). Direct gating of Orai1 and STIM1 was shown by (Zhou et al., 2010). (McNally et al., 

2012) delineate the features of STIM1-Orai1 gating and identify V102 in the extracellular 

region of the Orai pore as a candidate. When V102 was mutated, Orai was shown to be 

constitutively active, independently of STIM1, thus showing the importance of V102 in 

gating regulation.   

 

1.4.7 Orai2 
 

Orai2 has been demonstrated to form a functional SOCC with largely similar ICRAC properties 

as originally described for Orai1. These include, a high selectivity for Ca2+ over sodium and 

an enhanced current in DVF solution (DeHaven et al., 2007; Lis et al., 2007). Subtle 

differences were shown in the Ba2+ and Na+ permeation between the Orai subtypes, 

observed through an in-depth biophysical characterisation of Orai1, 2 and 3 expressed in 

HEK-293 cells (Lis et al., 2007). Notably, Orai2 mediated currents were not susceptible to 

CDI. Presently the functions of Orai2 are not well known, however the expression of Orai2 

has been reported to coincide with that of Orai1 in a number of tissues and cell types (Hoth 

& Niemeyer, 2013).  

 

1.4.8 Orai3 
 

Like Orai2, Orai3 is able to conduct a typical ICRAC current following store depletion with 

similar properties as described above (DeHaven et al., 2007; Lis et al., 2007). However, 

Orai3 was reported to have a prominent fast CDI in comparison to Orai1 and 2. Notably 

Orai3 has been shown to be activated by 2-APB independently of STIM1 (Lis et al., 2007; 

Peinelt et al., 2008). It has been demonstrated that E81 is homologous to Orai1 E106 in the 

control of Orai3 Ca2+ selectivity.  

Orai3 is perhaps best known for its activity as an arachidonate-regulated Ca2+ channel (ARC) 

channel. A pentameric arrangement of Orai1 and Orai3 was shown to form a distinct Ca2+ 

channel that can be activated by arachidonic acid. ARC activated Ca2+ currents are similar to 

ICRAC and have been shown to require STIM but are store independent (Mignen et al., 2008). 

Interestingly LTC4 was shown to activate Orai1/Orai3 channels in vascular smooth muscle 

cells (VSMCs), whether LTC4 could activate Orai1/Orai3 channels in other cells types is not 

yet known (González-Cobos et al., 2013). Orai3 has been implicated with a role in cancer, 
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with increased Orai3 expression seen in cancer tissue and MCF-7 breast cancer cells (Faouzi 

et al., 2011). siRNA of Orai3 reduced expression of proto-oncogene, c-myc (Faouzi et al., 

2013). 

 

1.4.9 Interacting proteins 
 

A number of regulatory proteins have been associated with Orai channels since their 

molecular identification in 2006. A comprehensive list of other interacting proteins is 

summarised in Figure 1.14. These interacting proteins can modulate Orai activity and must 

be considered as potential influencers of Orai-mediated signalling. 
Regulator name Cellular localization Effect on SOCE Binding 

partner(s)/possible 

mechanism 

References 

Septin Resides at the ER-PM 

junctions. Organizes 

membrane domains to 

facilitate STIM1-

Orai1interactions at the 

ER-PM junctions 

Enhances SOCE STIM1:Orai1complex [81] 

CRAC regulatory protein 

2A(CRACR2A) 

Resides in the cytoplasm. 

Facilitates clustering of 

STIM1 and Orai1 at the 

ER-PM junctions. 

Enhances SOCE. 

Regulates SOCE in[Ca2+]i 

dependent manner 

STIM1 Orai1 N-terminus [82] 

Junctate Resides in the ER 

membrane. Recruits 

STIM1 to the ER-PM 

junctions 

Ensures efficient and 

timely assembly of 

STIM1/Orai1 complexes 

at the ER-PM junctions. 

STIM1 [84] 

SOCE-associated 

regulatory factor(SARAF) 

Resides in the ER 

membrane. Translocates 

to ER-PM junction in STIM 

dependent manner and 

facilitates dissolution of 

STIM1 clusters to turnoff 

SOCE. 

Diminishes SOCE STIM1 STIM2 [85] 

Calmodulin Resides in the cytoplasm. 

Site of action not 

established. 

Reduces SOCE through 

Ca2+-dependent 

inactivation. 

Orai  STIM [83,86,87] 

Golli Anchored at the plasma 

membrane. Cellular 

function unknown. 

May inhibit SOCE, 

mechanism unknown. 

C-terminal domain of 

STIM1 

[88,89] 

Partner ofSTIM1(POST) Resides primarily in the 

ER membrane. Binds to 

STIM1 and co-migrates to 

the ER-PM junction after 

store depletion. 

Organizes signalling 

molecules around the 

CRAC channel. 

No direct effect on SOCE 

but thought to organize 

signalling molecules 

around the CRAC channel. 

STIM1 [90]  

Figure 1.14 Table summarizing key regulators of SOCE 
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Reproduced with permission from (Shim et al., 2015), for full references refer to the full 
text.  

 

1.4.10 Orai channel pharmacology 
 

Before molecular characterisation of the proteins comparing the channel mediating Orai 

Ca2+ influx, finding compounds to selectively inhibit Orai was challenging. However a 

number of compounds were reported to confer inhibitory activity to SOCE; the compounds 

most commonly reported were La3+, Gd3+, 2-APB, BTP2, SK&F96365. Although these 

compounds were largely effective in Orai Ca2+ influx they were also shown to confer activity 

against a wide range of other ion channels and signalling processes.  For example, 

lanthanides (La3+ and Gd3+) have been shown to inhibit a number of TRPC subtypes in 

addition to Orai channels, (Jung et al., 2003; Putney, 2010), SKF96365 has been shown to 

inhibit voltage-gated Ca2+ channels and 2-APB has been shown to inhibit K+ channels and 

TRP channels whilst also activating TRPV6 (Lievremont et al., 2005). The inhibition of Orai 

channels by 2-APB is complex; at low concentrations (1-5µM) 2-APB has been shown to 

enhance Orai activity however at concentrations higher than 10µM it completely blocks 

Orai activity. At high concentrations, 2-APB has been shown to inhibit the cluster formation 

of STIM1 which could be altering the effectiveness of its ability to activation Orai channels 

(DeHaven et al., 2008). The reasons for this dual profile are unclear.  

 

Identification of the crucial proteins required for SOCE has allowed more accurate 

identification experiments to be performed to identify novel antagonists, using 

recombinant proteins expressed in a model system as a way to validate compounds. As 

summarised by (Sweeney et al., 2009), Orai channel selective antagonist development has 

been led by pharmaceutical companies. Initially this was in the form of pyrazole based 

compounds which were discovered through screening for immunosuppressive agents, for 

example compounds by Astellas were shown to inhibit IL-2 production from Jurkat T 

lymphocytes. In 2005 Synta pharmaceuticals first reported the discovery of inhibitors of 

Orai channels, as shown in human primary T cells, Jurkat T lymphocytes and RBL cells. After 

the development of these initial Synta compounds a novel antagonist; 3-fluoro-pyridine-4-

carboxylic acid (2’, 5’-dimethoxy-biphenyl-4yl)-amide, otherwise known as Synta66 was 

published through patent application WO2005/009954. Synta66 was supplied to several 

research groups who confirmed its action as a selective Orai antagonist in several cell 

types.  

 

Synta66 was first described by (Ng et al., 2008), in this study Synta66 was found to inhibit 

thapsigargin induced Ca2+ signal in RBL cells by 90%, similarly pre-treatment with Synta66 

for 5 minutes was sufficient to abolish ICRAC currents. A concentration-response experiment 

revealed an IC50 of 3µM. Later the effectiveness of Synta66 as a selective Orai channel 

antagonist was described by (Di Sabatino et al., 2009) in RBL cells they reported the IC50 to 

be 1.4µM. Di Sabatino used a panel of radio-ligand binding assays (CEREP) to show Synta66 

did not significantly affect the activity of other ion channels, receptors and enzymes at a 

concentration of 10µM.  (Li et al., 2011) demonstrated the activity of Synta66 against SOCE 
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in VSMCs, interestingly the potency of the compound was far greater in this cell type (IC50 

26nM) compared to a parallel experiment performed in leukocytes (showing IC50 of 

1.76µM).  

 

Distinct Orai selective inhibitors were then developed by GSK, the structure of these 

compounds (named GSK-7975A and GSK-5503A) compared to Synta66 is shown in (Derler 

et al., 2013). Functional patch clamp electrophysiology experiments demonstrate that the 

action of GSK-7975A, GSK-5503A and Synta66 exhibit similar inhibitory profiles. The 

potency of GSK-7975A for inhibition of Orai1 and Orai3 currents was shown to be ~4µM 

(IC50), indicating it has a lower potency than Synta66. Importantly, (Derler et al., 2013) also 

provides the first indication of mode of action the GSK-7975A. FRET assays demonstrated 

that GSK-7975A does not interfere with STIM1/STIM1 oligomerization or STIM1/Orai1 

interaction. However experiments with an Orai1 E106D pore mutant showed that GSK-

7975A no longer inhibited the Ca2+ currents. The explanation for the altered Orai pore 

geometry preventing the action of GSK-7975A could be: A) GSK-7975A binds to a site close 

or allosterically linked to the Orai pore selectivity filter in order to prevent ion permeation 

B) GSK-7975A inhibits permeation through Orai through enhancing the process of Ca2+-

dependent inactivation. Due to the lack of a concentration-dependent change in the Ca2+-

dependent inactivation seen through GSK-7975A this option is less likely. Notably Derler 

and colleagues also studied the selectivity profile of GSK-7975A against 16 other 

recombinantly expressed ion channels. The majority of ion channel activity was not 

modulated by 10µM GSK-7975A, including TRPC3 and TRPC6 importantly. However, GSK-

7975A showed a slight inhibitory effect on Cav1.2 Ca2+ entry and also showed minor 

inhibition of TRPV6 with a profile similar to that shown by La3+. A potential explanation for 

these two non specific effects could be due to similarities in the selectivity filter structure 

between the three channels, further research would be necessary to confirm such 

speculation. Given the difference in the mode of activation of TRPV6 and Cav1.2, it is 

unlikely that these singular off target effects would be a problem when GSK-7975A is used 

to study SOCE in vitro. Taken together, the work described in Section 1.4.10 illustrates that 

great progress has been made in the discovery of selective Orai channel antagonists. As 

work by the Seward lab and others have shown, availability of selective Orai inhibitor tools 

has allowed work to be performed to elucidate the function of Orai channels in primary 

human immune cells, where genetic manipulation is a significant technical challenge. 

 

In sum, Section 1.4 has revealed that there is a wealth of knowledge regarding the 

characteristic properties of Orai and STIM. However, as discussed in Section 5, there is a 

lack of understanding in the functional role of Orai channels in aspects of immune biology, 

in particular that of human macrophages.  

 

1.5 TRPC channels  

1.5.1 Discovery, background and overview 
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TRP channels are a super family of structurally related channels of which the majority are 

classified as cation channels with Ca2+ permeability (Venkatachalam & Montell, 2007).  TRP 

channels were first discovered in Drosophila photoreceptors, mutations in TRP were shown 

to have a transient response to light with a 10-fold decrease in Ca2+ influx mediated by the 

light. Further experiments showed that Ca2+ channel inhibitor lanthanum (La3+) mimicked 

the TRP mutant phenotype in drosophila photoreceptors, and that there was no further 

effect of La3+ on mutant TRP cells, indicating the TRP protein encoded a Ca2+ channel 

(Montell & Rubin, 1989). Subsequent heterologous expression studies indicated that TRP 

was a novel type of Ca2+ permeable channel (Hardie & Minke, 1992). 

 

The TRP super family of cation channels has 7 subfamilies which can be split into two 

further groups based on sequence similarity. Within the group 1 subfamily are the: TRPC, 

TRPV, TRPM, TRPN and TRPA channel families, although TRPN channels are not found in 

mammalian tissues. These subgroups all have 6 putative TM domains. Within the group 2 

subfamily are the TRPML and TRPP channel families, these TRP channels are distantly 

related to those in group 1 due to their large extracellular loop between the 1st and 2nd TM 

domain (Montell, 2005).  

 

In general the TRP channel structure consists of 6 TM segments with a pore region loop 

between TM S5 and S6. At the NH2 terminal are 3-4 ankyrin repeats which are involved in 

mediated protein-protein interactions (Minke & Cook, 2002). TRP channels can form 

homomeric and heteromeric channel formations, the frequency of heteromeric channel 

formations reported means that there is a possibility for more ion channels each with their 

own characteristics. Although some correlation between the channel sub grouping and 

activation mechanism is seen, in general the subfamily assignment is not a reliable 

indicator of the activation mechanism. For example there are thermally activated TRP 

channels found in the TRPV, TRPM and TRPA subfamilies and TRPV1 can respond to 

numerous stimuli ranging from proinflammatory mediators to heat. The majority of the 

TRP channel families have low selectivity for Ca2+ over other monovalent and divalent 

cations. Exceptions to this are TRPM4 and M5 which are not permeable to Ca2+, and TRPV5 

and V6 which have a high selectivity for Ca2+ (Birnbaumer, 2009). 

 

My study focuses on TRPC channels and the rest of Section 1.5 covers details of TRPC 

biology relevant to this thesis.  
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Figure 1.15 Diagram showing the structure of canonical transient receptor potential 

(TRPC) channel proteins 

 A.) Structure of TRPC channel subunits (represented by TRPC3) - consists of six 
transmembrane segments (orange) and one hydrophobic segment (P) that does not 
span the membrane completely and is thought to comprise the channel pore (blue). 
There is another hydrophobic domain (gray) that does not seem to span the membrane 
at all. The N-terminal region contains four ankyrin-like repeats (ARs). Near the C 
terminus, there is a region (CIRB) that binds both calmodulin and the inositol (1, 4, 5)-
trisphosphate receptor, and is important for proper trafficking of the protein to the 
plasma membrane. B.) The formation of a functional TRPC channel requires four 
subunits to come together. The image shows how four TRPC subunits with their 
transmembrane segments (orange) and pore sequences (blue) might be seen from 
above the plasma membrane. C.) Structural relatedness of the TRPC channel family. 
Scale bar=10 PAM units. Reproduced with permission from (Putney, 2004). 

 

1.5.2 TRPC activation 
 

There are 7 TRPC family members, with TRPC1, 3, 4, 5, 6 and 7 expressed in humans and in 

other mammalian cells TRPC2. TRPC2 is a pseudogene is human but is expressed in other 

species (Vannier et al., 1999). The structure of TRPC channels is denoted in Figure 1.15. In 

addition to Ca2+, TRPC channels also show permeability to K+, Na+, Cs+ and Ba2+ (Parekh & 

Penner, 1997). Classically the TRPC family was divided into 2 subgroups based on the 

sequence similarity and also largely correlating to their mode of activation. The TRPC1, 4 

and 5 channels form subgroup 1 and have been shown to be activated by PLC-dependent 

signalling processes; there is increasing evidence for activation of this subgroup by store 

depletion (Birnbaumer, 2009). TRPC3, 6 and 7 are subgroup family 2, these channel 

members share 70-80% amino acid homology and are sensitive to activation by DAG – a 
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component further down the PLC signalling cascade (Hofmann et al., 1999; Okada et al., 

1999). Whether TRPC3/6/7 also contributes to SOCE is controversial (discussed further in 

Section 1.5.8). A large proportion of the early work into TRPC activation mechanisms was 

performed using HEK over-expression systems; the emerging evidence of the influencing 

nature of the co-expression of other TRPC channels and STIM/Orai families suggests that 

TRPC mode of activation may be variable in different native systems dependent on the 

expression profile of such proteins.  

 

1.5.3 TRPC1 
 

(Zhu et al., 1995) identified TRPC1 through a screen to identify homologues of Drosophila 

TRP channels. TRPC1 has been demonstrated to be widely expressed in tissues including 

the brain, heart, lung, smooth muscle, salivary gland and liver (Wu et al., 2010). There are 5 

splice variants of TRPC1 at mRNA level, with three translated into functional proteins 

(Dietrich et al., 2014). Of all the TRPC family members, TRPC1 has been most consistently 

described to be a SOCC. (Zitt et al., 1996) report the first study of TRPC1 activity; CHO cells 

were transfected with TRPC1A, a splice variant of TRPC1. Significant currents were induced 

by thapsigargin and IP3 in TRPC1A expressing cells, with sensitivity to 10µM Gd3+; indicating 

TRPC1 is a SOCC. The current-voltage relationship of the store-operated TRPC1 currents 

was linear with the reversal potential close to zero indicating a channel with distinct 

biophysical properties than ICRAC currents. Substitution experiments ascertained that the 

TRPC1A channels were supporting Na+ and Ca2+ flux and noise analysis of currents 

predicted single channel amplitude of 1.1pA at -70mV and a single channel conductance of 

16pS. Comparable currents were induced by store depletion in Xenopus oocytes and Sf9 

insect cells providing further evidence to corroborate the channels activation mechanism.  

 

The first evidence for endogenous TRPC1 involvement in SOCE was described in human 

submandibular gland ductal cells (Liu et al., 2000), here it was shown that knockdown of 

TRPC1 led to a decrease in the SOCE. Native TRPC1 mRNA and protein expression and Ca2+ 

signalling activity was demonstrated in arterial smooth muscle cells (Xu & Beech, 2001). 

Since this discovery, TRPC1 has been linked with SOCE in a number of cell types including; 

keratinocytes, platelets, smooth, skeletal and cardiac muscles, HEK-293, salivary gland, 

neuronal, intestinal and endothelial cells (Cheng et al., 2013). Contrary to the store-

operated mode of activation, TRPC1 can also be mechanically gated, with activation 

occurring through tension across the lipid bilayer, as demonstrated by heterologous 

expression studies in CHO-K1 cells and in Xenopus oocyte cells (Maroto et al., 2005).  

 

Notably, TRPC1 was demonstrated to have an intracellular expression in HEK cells, when 

expressed alone. However, co-expression of TRPC1 with TRPC3, 4, 5 and 6 or dual 

expression of TRPC1 and TRPC4 was shown to be capable of altering TRPC1 localisation to 

the plasma membrane (Hofmann et al., 2002).  TRPC1 localisation at plasma membrane 

and intracellular sites has been described in sinus endothelial cells (Uehara, 2005). 

(Lockwich et al., 2000) show TRPC1 localises with cholesterol rich lipid rafts in the plasma 

membrane in human salivary gland (HSG) cell membranes, suggesting plasma membrane 
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localization. Emerging evidence, as covered in Section 1.5.10, suggests that TRPC channel 

localization is dependent on the expression levels of associated proteins and the activation 

state of the cell. Further details regarding TRPC1 activity as a SOCC and its reported role in 

mast cells is covered in Section 1.5.8 and 3.1, respectively.  

 

1.5.4 TRPC3 
 

TRPC3 was first described by (Zhu et al., 1996) as a channel activated by PLC. (Zitt et al., 

1997) later showed that TRPC3 expressed in CHO cells exhibited constitutive activity. TRPC3 

channels showed permeability for Ca2+ and sodium and were not enhanced by store 

depletion protocols. Notably, TRPC3 currents were enhanced by an increase in intracellular 

Ca2+ concentration, indicating a Ca2+-dependent activity. (Dietrich et al., 2003) suggest that 

TRPC3 constitutive basal activity is caused by the glycosylation status. When the 

glycosylation of TRPC3 and TRPC6 (TRPC6 a subfamily member without basal activity) were 

compared, TRPC3 was shown to be glycosylated on the 1st extracellular loop whereas 

TRPC6 has 2 glycosylated extracellular sites. Mutagenesis studies to impair the 2nd 

glycosylation site of TRPC6, gave TRPC6 a constitutive basal activity like TRPC3. 

  

Despite original heterologous expression studies showing no store-operated TRPC3 

currents, over-expression of TRPC3 in HEK-293 cells has been shown to cause increase in 

SOCE, similarly knockdown of TRPC3 in mouse models decreases SOCE (Kim et al., 2006); 

(Zagranichnaya et al., 2005). As discussed in Section 1.5.8 it is likely that the co-expression 

of STIM1 may be responsible for modulating the activation status of TRPC channels. 

  

1.5.5 TRPC4 and TRPC5 
 

TRPC4 was initially cloned from the bovine adrenal gland (Philipp et al., 2000) whereas 

TRPC5 was initially cloned from mouse brain (Okada et al., 1998). TRPC4 and TRPC5 have a 

high level of structural similarity and have a number of similarities. Unique to TRPC4 and 

TRPC5 channels is the expression of a PDZ-binding domain - where protein-protein 

interactions occur to direct signalling complexes (Tang et al., 2001). Evidence suggests the 

PDZ binding domain is crucial for localization of TRPC4 with signalling complexes at the 

plasma membrane – deletion of PDZ from TRPC4 expressing cells caused impairment in 

TRPC4 plasma membrane expression (Mery et al., 2002). 

 

Histamine and carbachol induced currents in HEK TRPC4 and TRPC5 expressing cells – with 

a current voltage relationship demonstrating a double rectifying form and reversal 

potential close to zero. IP3 did not induce any significant current. Notably, the basal Ca2+ 

concentration was higher in TRPC4 and TRPC5 expressing cells compared to that of control 

HEKs (Schaefer et al., 2000). The double rectifying current-voltage relationship is 

characteristic of TRPC4 and 5 and caused by Mg2+ block that occurs at negative membrane 

potentials (Blair et al., 2009). HEK cells expressing cloned murine TRPC5 revealed a Ca2+ 
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influx in response to 100µM carbachol which was sensitive to inhibition through PLC 

inhibitor U73122 demonstrating the dependence on PLC. However, in addition to activation 

by PLC-coupled receptors, some reports have shown TRPC5 to be activated/potentiated by 

increase in intracellular Ca2+ concentration and by high concentrations (10-100µM) of 

lanthanides (Jung et al., 2003; Blair et al., 2009). Studying the effect of lanthanides on 

TRPC5 in HEK cells, (Jung et al., 2003) reported a dual effect of La3+, with an inhibitory and 

activatory effect reported dependent on concentration. This was observed both through 

whole cell and single cell electrophysiological analysis; potentiation was predicted to occur 

through an increase in the channels open probability. A corroborating study in TRPC5 

expressing HEK cells using whole cell and single channel patch clamp recordings showed 

1µM [Ca2+]I caused a 25 fold increase in agonist activated TRPC5 current (Blair et al., 2009). 

Together these studies show that TRPC4 and TRPC5 can be activated by PLC coupled 

receptor mechanisms but also are sensitive to Ca2+-dependent activation.  

 

 
Figure 1.16 Current-voltage relationships of TRPC3, 6 and 7 channels 

Channels were expressed in HEK-293 cells and activated downstream of receptor 

stimulation. TRPC3 and TRPC7 have high basal activity compared with TRPC6 (see 

grey traces). Note that voltage is displayed to 100mV in the negative direction and 

only +60mV in the positive direction; all channels are outwardly rectifying with a 

reversal potential close to 0mV. Reproduced with permission from (Dietrich et al., 

2005). 

 

1.5.6 TRPC6 
 

TRPC6 is widely expressed throughout a number of tissue types; brain, kidney, lung, heart, 

ovary and testis (Garcia & Schilling, 1997). A number of physiological roles for TRPC6 have 

been delineated (Dietrich & Gudermann, 2007). Notably, gain of function TRPC6 patients 

present with focal segmental glomerulosclerosis, a kidney disease causing progressive loss 

of kidney function (Winn et al., 2005). Over-expression of TRPC6 in COS-7 cells was shown 

to cause an enhanced Ca2+ influx, indicating Ca2+ permeability through this channel (Boulay 

et al., 1997). CHO-K1 cells transfected with hTRPC6 and H1 histamine receptors exhibited 

histamine sensitive TRPC6 currents with dual inward and outward rectification, and a 

reversal potential of -3.6 mV, unitary single channel amplitude was estimated to be -1.5 ± 
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0.1pA at -60mV and TRPC6 was shown to be permeable to  Ca2+, Cs+, Na+ and K+ (Hofmann 

et al., 1999). Example current-voltage traces from cells expressing TRPC3, 6 and , 7 are 

shown in Figure 1.16. Interestingly, Hofmann and colleagues also showed that as opposed 

to TRPC1, TRPC6 was not activated by thapsigargin. This study revealed for the first time 

that the DAG analogue, OAG (100µM) caused Ca2+ influx via TRPC6 channels. Notably, OAG 

was also shown to activate hTRPC3 and hTRPC6 expressing cells but not hTRPC4 and 

hTRPC5. Further work by (Estacion et al., 2006) shows that TRPC6 activation can be 

regulated by the membrane potential of the cell, with a dual role of TRPC6 suggested based 

on the membrane potential. OAG mediated Ca2+ influx was shown to be impaired in HEK-

TRPC6 cells with a membrane potential close to zero, induced by high K+ however a Ca2+ 

influx was observed in cells with a negative resting membrane potential. DAG is a product 

downstream of PLC-linked receptors, and physiological activation of PLC-linked receptors in 

heterologous expression systems have been shown to activate TRPC6 currents (Boulay et 

al., 1997; Hofmann et al., 1999; Inoue et al., 2001; Venkatachalam et al., 2003; Cayouette 

et al., 2004; Estacion et al., 2004; Bousquet et al., 2010). Other reported activators of 

TRPC6 include a main constituent of St John’s Wort: hyperforin. Through studies for the 

treatment of depression, hyperforin has been demonstrated to reduce monoamine uptake 

by elevating the Na+ concentration and therefore decreasing the driving force for 

neurotransmitter transporters, this activity lead to the prediction of the mechanism of 

action occurring through a non-selective non voltage activated cation channel. Hyperforin 

was shown to drive driving Na+ and Ca2+ influx in a lanthanide and SK&F96365 dependent 

manner. PC12 cells transfected with a TRPC6 dominant negative mutant, exhibited a 

significant decrease in hyperforin induced Ca2+ entry and in PC12 WT cells, single channel 

properties of TRPC6 like channels were observed after hyperforin application (Leuner et al., 

2007). 

 

Despite original work demonstrating TRPC6 to be insensitive to store-operated activation, 

subsequent studies in platelet cells report contrary results.  Platelet cells from double 

TRPC6-/- and Orai-/- show a greater reduction in SOCE than in Orai-/- cells, suggesting a 

contribution or supporting role of TRPC6 to SOCE (Chen et al., 2014). It must be considered 

that this study is considering TRPC6 activation in combination with Orai, as discussed in 

more detail in Section 1.5.8 evidence suggests STIM/Orai can regulate TRPC activation and 

receptor/store-operated preferences.  

 

1.5.7 TRPC7 
 

TRPC7 is also a non-selective Ca2+ permeable cation channel with two splice variants 

reported. TRPC7 expression has been shown in the heart, lung, eye, brain, spleen and testis 

(Okada et al., 1999). Like TRPC3, TRPC7 has a high constitutive activity. It has been shown 

to be activated by DAG, similarly to TRPC3 and TRPC6, through work in HEK cells expressing 

murine TRPC7. TRPC7 activity has also been demonstrated following activation of ATP 

activated P2Y receptors (Shi et al., 2004).  

 



58 
 

1.5.8 TRPCs as SOCCs 
 

A wealth of evidence supporting TRPC channels as SOCC comes from work looking into 

TRPCs-STIM1-Orai interaction. An in depth and comprehensive review of this subject is 

summarized by (Choi et al., 2014), however Section 1.5.8 covers a few key studies which 

have provided important contributions to the understanding of TRPC-STIM1-Orai 

interaction and TRPC as SOCCs. Whilst initial homomeric expression studies in HEK cells 

suggested that TRPC3/6/7 are not store-operated, it appears that store-operated activation 

of TRPC channels is largely dependent on the expression and/or interaction with other 

SOCE machinery, STIM and Orai.  

 

There are a number of studies which suggest a functional interaction of Orai and TRPC 

channels, Experiments in over-expression HEK cell models demonstrate that thapsigargin 

induced Ca2+ entry in TRPC1, TRPC3 and TRPC6 stably expressing cells is enhanced by over-

expression of Orai1 (Liao et al., 2007).  HEK cells expressing Orai1 R91W (a mutant that 

results in inactive Orai channels) in combination with TRPC3 and TRPC6 caused a reduction 

of Ca2+ response to OAG in comparison to TRPC3 TRPC6 expression alone (Liao et al., 2009). 

GST pull down assays and co-immunoprecipitation (co-IP) experiments  provided evidence 

for physical interaction between TRPC/Orai proteins in HEK cells and similarly in human 

platelets (Jardin et al., 2008). Co-localisation of TRPC with Orai1 was reported in 

endogenously in HSG cells (Ong et al., 2007). Taken together these results suggest either a 

direct interaction of Orai and TRPC channels to explain the combination of phenotypes 

seen, or TRPC channel being dependent on Ca2+ signal through Orai channels for its 

activation. 

 

Notably, TRPC channel store-operated activation has also been shown to be dependent on 

the co-expression of certain TRPC subtypes or STIM expression. TRPC3 only functioned as a 

STIM1-dependent channel in the presence of TRPC1, and TRPC6 only functioned STIM1-

dependently with co-expression of TRPC4. However, TRPC channels were active in a 

receptor-operated manner irrespective of co-expression partner (Yuan et al., 2007). In HEK-

293T cells, TIRF experiments demonstrated that in the absence of STIM1, TRPC1 does not 

reside in membrane lipid rafts and acts as a ROCC, responding to carbachol but not 

thapsigargin. Cholesterol reducing agent, methyl-β-cyclodextrin (M-β-CD) also inhibited 

thapsigargin induced currents, even with STIM1 present, M-β-CD caused TRPC1 to act as a 

ROCC not a SOCC, demonstrating the integrity of the lipid raft is requisite to allow TRPC1-

STIM1 SOCC activity (Alicia et al., 2008). Substantiating studies to support a model of STIM1 

regulation of TRPC activity was shown in 2010. Mutagenesis of TRPC/STIM electrostatic 

interaction site in the TRPC channels led to a defective store-operated Ca2+ signal, whilst 

receptor-operated (carbachol activated) Ca2+ signalling was left intact (Lee et al., 2010). 

These studies show the mode of TRPC activity is influenced by co-expression of TRPC and 

STIM proteins.  

 

Progress in understanding the complex interaction of Orai and TRPC channels was aided by 

investigation into the functional domains of STIM1. STIM1 can interact and cause activation 
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of both TRPC and Orai channels, however the regions of STIM1 mediating Orai and TRPC 

interaction are independent (Zeng et al., 2008). Whilst STIM1 binds to TRPC1 through the 

ERM domain, this region was not required for TRPC activation (Huang et al., 2006). 

Subsequent work by (Zeng et al., 2008) showed that the K domain of STIM1 regulated 

gating and activation of TRPCs through electrostatic interaction. Expression of STIM1 KK684-

685EE mutant in HEK-293 cells caused impairment of TRPC1 activity but had no effect on 

STIM1 interaction. Co-expressing a TRPC1 mutant with mutation in same electrostatic 

interaction region caused a rescue of the phenotype. This demonstrated that it was the 

electrostatic regulated gating that was the crucial factor for STIM1 regulated TRPC1 

activation (Zeng et al., 2008). Subsequent studies by (Lee et al., 2010) showed that STIM1 

electrostatic interaction occurs in TRPC3, TRPC4, TRPC5 and TRPC6 channels in addition to 

TRPC1. Corroboration of distinct regulation of TRPC1 and Orai1 by STIM1 is demonstrated 

in studies in exocrine secretory cells. Expression of Orai1 and STIM1 in stimulated cells was 

demonstrated to co-localise around 50%, whereas localization of TRPC1 expression was 

indicated to be in the regions of STIM1 where Orai1 is not present (Hong et al., 2011). The 

distinct regions of STIM1 utilised for TRPC and Orai activation illustrate that whilst there is 

an overlap in the mode of activation of TRPC and Orai channels, the channels are regulated 

independently. 

 

(Cheng et al., 2011b) convincingly demonstrated that TRPC1 is a component of SOCE in HSG 

cells, using the STIMKK684-685EE mutant as a way to differentiate between Orai and TRPC-

mediated SOCE. Thapsigargin induced Ca2+ entry was attenuated in cells expressing the 

STIM1 KK684-685 mutant. Patch clamp analysis showed that the characteristic properties of 

an Orai-mediated ICRAC current were hidden in WT HSG cells, but following STIM1 KK684-685 

mutant expression, ICRAC current was revealed. Through analysis of biotinylated membrane 

fractions, it was shown that TRPC1 plasma membrane insertion was dependent on 

thapsigargin mediated local Ca2+ influx through Orai channels but that the co-clustering of 

STIM1 and TRPC1 was unaffected by Orai1 knockdown. Together these findings illustrate a 

distinct activity of Orai and TRPC in HSG SOCE, but that TRPC activity is dependent on Ca2+ 

entry through Orai channels (Cheng et al., 2011b). The model of TRPC activation proposed 

by Cheng is shown in Figure 1.17. 

 

In contrast to the studies described above, (DeHaven et al., 2009) report that TRPC 

channels function independently to STIM1 and Orai1. In this study STIM1 was co-expressed 

with TRPC channels in HEK-293 cells with the aim to delineate whether STIM1 potentiated 

TRPC Ca2+ influx. DeHaven and colleagues reported no enhancement in the carbachol 

induced TRPC Ca2+ signal by STIM co-expression. However these results could be explained 

by the methodology used. Experiments were performed in the presence of 5μM Gd3+, with 

the aim to remove a contribution of Orai Ca2+ influx from the signal recorded. However  

based on work by (Cheng et al., 2011b), it is clear than Gd3+ block of Orai-mediated Ca2+ 

influx would prevent a STIM regulated contribution of TRPC, therefore providing an 

explanation for why no enhancement in the signal was reported by STIM1 co-expression. 

The work of (DeHaven et al., 2009) has not considered the investigation of TRPC in respect 

to their dependence on Orai/STIM for store-operated activity. Consequently it is not 
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surprising that TRPC and STIM/Orai were found to function independently based on the 

assay used.  

 

Together these studies exhibit the modulating role STIM and Orai proteins can have on 

TRPC channel activity. Although TRPC channels may be commonly activated through PLC or 

DAG, increasing evidence supports that in native systems, co-expression and functional 

interaction of STIM and Orai proteins leads to TRPC activation in a store-dependent 

manner. 

 

 
 

 

Figure 1.17 Proposed model for TRPC1 activation 

In resting cells Orai1 and STIM1 have diffused localization in the PM and ER 

membrane, respectively. We predict that TRPC1 is localised in recycling vesicles (top 

panel). Following Ca2+ store depletion, STIM1 aggregates and translocates to the 

ER/PM junctional domains. Orai1 is recruited to the STIM1 puncta resulting in CRAC 

channel activation. The resulting [Ca2+]i increase leads to activation of NFAT and 

insertion of TRPC1-vesicles into the plasma membrane (middle panel). TRPC1 is then 

gated by STIM1 resulting in enhancement of Ca2+ entry, higher [Ca2+]i, and 

activation of KCa channels and NFκB (lower panel). Reproduced with permission 

from (Cheng et al., 2011a) 
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1.5.9 TRPC heteromerisation 
 

TRPC family members are known for their heteromeric channel interactions with each 

other and other distinct TRP channel members. FRET analysis and co-IP studies in HEK over-

expression models, revealed that TRPC channels were able to heteromultimerize with other 

channels within their subfamily (i.e. TRPC3/6/7 partners and TRPC1/4/5 partners). All 

homomultimeric TRPC channel combinations displayed a FRET signal (Hofmann et al., 

2002). In contrast to (Hofmann et al., 2002), (Yuan et al., 2007) described co-IP of TRPC3 

with TRPC1, in the presence of STIM1, similarly interaction between TRPC4 and TRPC6 was 

reported. Although this work does not determine direct interaction, it is possible that the 

co-expression of STIM1 is crucial for an alternative heteromeric partner formation. 

Heteromeric store-operated TRPC1/TRPC4 channels have been reported in endothelial cells 

with interaction of Orai1 upon store depletion (Cioffi et al., 2012a). Using 

electrophysiological techniques, TRPC1 was shown to form heteromeric channel complexes 

with TRPC3, 4, 5, 6 and 7 (Storch et al., 2012). TRPC1 channels have also been shown to 

form heteromers with TRPV4, with current-voltage relationships distinct from TRPV4 

homomers (Ma et al., 2011a) and TRPP2  (Tsiokas, 2009; Ma et al., 2010). These studies 

highlight that consideration of the heteromeric capacity of TRPC channels in interpretation 

of TRPC data is important.  

 

1.5.10 TRPC supporting proteins 
 

TRPC channel function and plasma membrane localisation is regulated by a variety of 

trafficking, scaffolding and regulatory proteins. A comprehensive list of the trafficking and 

scaffolding proteins shown to interact with TRPC channels is shown in Figure 1.18. It is 

possible that TRPCs mode of activation is also dependent on the expression of these 

regulatory proteins.  

 

For example the lipid raft scaffolding component, Caveolin-1 (Cav1) has been shown to 

have a crucial role in TRPC localisation at the plasma membrane. (Brazer et al., 2003) use 

immunocytochemistry, co-IP, GST-pull down and yeast-two hybrid assays to demonstrate 

an interaction between TRPC1 and Cav1. Mutagenesis studies in HSG and Madin darby 

canine kidney cells showed that TRPC and Cav1 interaction occurs through the N-terminus 

of TRPC1. A disruption to the TRPC1-Cav1 binding domain (TRPC1aa271-349 deletion) 

impaired translocation to the plasma membrane and similarly decreased the Ca2+ influx in 

response to thapsigargin. Similarly a mutation to alter the corresponding TRPC1-Cav1 

binding domain region in Cav1 caused the same phenotype. This study revealed the 

importance of lipid raft scaffolding proteins such as Cav1 with roles in localisation and 

activation of TRPC1 channels. Similarly, TRPC6 channel localisation has been shown to be 

regulated by Gq-protein mediated receptor activation, ER store depletion and PI3K 

activation (Cayouette et al., 2004; Monet et al., 2012). These examples demonstrate the 
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regulative capacity of TRPC channels by interacting proteins and highlight that a number of 

factors must be considered when studying TRPC activity. Some of the contradictory results 

seen in the literature could be a result of differences in the regulatory protein expression in 

the model systems used. 

 

 

Channel   Other channels   Signalling proteins  
 Scaffolding and trafficking 
proteins  

 TRPC1  

TRPC1a, TRPC3 (Xu 
et al.1997), TRPC4, 
TRPC5 (Strubing et 
al.2001), TRPC6 
(Strubing et al.2003), 
TRPC7 
(Zagranichnaya et 
al.2005), TRPV4 (Ma 
et al.2010), TRPV6 
(Schindl et al.2012), 
Orai1 (Cheng et 
al.2008)  

 IP3R, CaM, Gq/11 (Lockwich 
et al.2000), PLCγ (Tu et 
al.2005), PMCA (Singh et 
al.2002), SERCA (Redondo et 
al.2008), STIM1 (Huang et 
al.2006)  

 β-tubulin (Bollimuntha et 
al.2005a), Cav-1 (Lockwich et 
al.2000), Enkurin (Sutton et 
al.2004), Homer (Yuan et 
al.2003), MxA (Lussier et 
al.2005), RhoA (Mehta et 
al.2003), SNAP-25, 
VAMP(Redondo et al.2004)  

 TRPC6  

 TRPC1, TRPC4, 
TRPC5 (Strubing et 
al.2003), TRPC3, 
TRPC7,  (Hofmann et 
al.2002), Orai1 (Liao 
et al.2007)  

 IP3R, CaM, Calcineurin (Tang 
et al.2001), FKBP12 (Kim and 
Saffen 2005),  Fyn (Hisatsune 
et al.2004),  Gαq/11 
(Bandyopadhyay  et al.2005),  
mAChR,PKC (Kimand  
Saffen2005),  PLCγ (Hirschler-
Laszkiewicz et al.2009),   
SERCA (Redondo et al.2008)  

 Clathrin, dynamin (Goel et 
al.2005), MxA (Lussier et 
al.2005), PI(3)K, PTEN (Monet 
etal.2012),  Rab9, Rab11 
(Cayouette  et al.2010), RhoA 
(Tianetal.2010),  Syntaxin 
(Bandyopadhyay  et al.2005)  

 

Figure 1.18 TRPC1 and TRPC6 interacting and scaffolding proteins. Adapted with 

permission from (Ong et al., 2014) 

 

1.5.11 TRPC channel pharmacology 
 

In general there is a great lack of selective compounds to activate or inhibit specific TRPC 

family members. The discovery of such compounds has not been aided by the lack of a 

crystal structure for TRPC proteins to date. Classically non-selective Ca2+ antagonists such 

as: lanthanides, 2-APB, flufenamic acid (FFA) and SKF-96365 have been used to characterise 

TRPC channels activity. The wide inhibitory ability of lanthanides: Gd3+ and La3+ and SK&F-

96365 and 2-APB has been summarised in Section 1.4.10.  FFA, an N-phenyanthranilic acid, 

has been shown to stimulate TRPC6 but inhibit other TRPC and TRPM channels (Kraft & 

Harteneck, 2005; Foster et al., 2009). In the absence of more selective tools the 

concentration variable effects of Lanthanides, 2-APB and FFA have previously been utilised 

as a way to distinguish between different channel activities. A few novel TRPC inhibitors 
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have been described over the past 6 years (Miller et al., 2011; Schleifer et al., 2012; Richter 

et al., 2014); however these newly described TRPC inhibitors have a range of off target 

effects and are not selective for individual TRPC family members. 

 

Recently (Washburn et al., 2013) described a high throughput screen with the aim to 

identify highly potent and selective TRPC3/6 blockers, with a good oral PK to provide small 

molecule blockers to be put forward for lead optimization and target validation. Due to the 

association of TRPC3 and TRPC6 with cardiac hypertrophy, these channels have been 

identified as novel targets to treat cardiac disease. Screening was performed using HEK 

cells over expressing TRPC3 or TRPC6 and using carbachol as an agonist to measure the 

resulting change in electrical potential using membrane potential dyes measured on a 

FLIPR machine. This study identified a number of compounds with a proven high selectivity 

for TRPC3/6; assay results showed that there was no effect of the compound on a number 

of other ion channels including: TRPA1, TRPV4, Cav1.2, hERG and Nav1.5. One of these GSK 

compounds, GSK-3503A (example 19 in the publication) has been used in experiments 

described in Section 3.2.6 of this thesis. Subsequent publications validated the use of these 

compounds with endogenous TRPC3/6 receptors as the TRPC3/6 antagonist was shown to 

dose dependently block cell hypertrophy signalling triggered by angiotensin II or endothelin 

II in (Seo et al., 2014a). 

 

Whilst the work of Washburn and Seo represent a significant advance in the development 

of selective TRPC antagonists, it is clear there is a still great need for development of TRPC 

selective antagonists against all subtypes. Section 1.5 has described the intricacy of TRPC 

activation; the availability of robust potent and selective TRPC antagonists would aid 

further research to delineate TRPC function.  

 

1.6 P2X7 receptors 

1.6.1 Purinergic receptors history and overview 
 

Purinergic receptors were first classified into P1 and P2 subtypes based on their activation 

by either adenosine or ATP (Burnstock, 1978). However a few years later the P2 receptor 

subtype was categorized again, into the P2X and P2Y family, this time based on their 

selectivity for ATP and ADP, respectively (Burnstock & Kennedy, 1985). Following the first 

receptor cloning in 1994 (Brake et al., 1994) it was found that P2X receptors are ligand 

gated ion channels, whereas the P2Y receptors are G protein coupled receptors (Webb et 

al., 1993). P2X receptors are activated by ATP and function as non-selective ion channels 

that are permeable to Na+, K+, Ca2+, Sr2+ and Ba2+ (North, 2002). 

 

P2X receptors are widely expressed throughout the body, for example P2X has been shown 

to be expressed in; macrophages, DCs, monocytes, lymphocytes, erythrocytes, osteoblasts, 

fibroblasts, endothelial and epithelial cells, as well as cells from the central and peripheral 

nervous systems (Bartlett et al., 2014). P2X7 has been shown to be implicated in a number 
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of diseases, most of which have been elucidated through P2X7 single nucleotide 

polymorphisms, further details of the involvement of P2X7 in immune disease is provided 

in Section 4.1 however a full review covering the involvement of P2X channels in a range of 

diseases is provided by (Bartlett et al., 2014). 

 

1.6.2 P2X family distinct characteristics 
 

There are 6 other members of the P2X family all of which can also be activated by ATP. 

However there are distinguishing characteristics which can be used to discern between 

family members in the absence of selective antagonists. Differences in the pharmacological 

profile of the P2X family are summarised in Figure 1.19. Other defining characteristics of 

the P2X receptor family members are there desensitization properties following agonist 

application, these are summarised in Figure 1.20. 

 

 

Receptor ATP ADP αβmeATP βγmeATP 2meSATP BzATP 

P2X1 1 30 1-3 10 1 3 

P2X2 10 ~300 >100 >300 3 30 

P2X3 1 ~50 1 >300 0.3  

P2X4 10 >>100 >>100  10-100  

P2X5 10 ~300 >>100  10 >500 

P2X7 100/1000 >>300 >>300 >100 10 3/30 

P2X4/P2X6 10  30    

Figure 1.19 Agonist sensitivities of cloned P2X receptors 

Numbers denote EC50 (µM). Values are taken from rP2X7 data, however rP2X7 and 

hP2X7 EC50s are shown for P2X7, with the latter in bold type. Table adapted from 

North and Surprenant 2000 reproduced with permission 
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Figure 1.20 Whole cell currents in HEK293 cells expressing P2X channels 

P2X2 and P2X4 exhibit slow desensitization whereas fast desensitization was observed 

for P2X1 and P2X5. P2X7 shows no desensitization over the duration of ATP application. 

Graph shows the fast (top) and slow (bottom) desensitization of homomeric rat P2X 

receptor subtypes, caused by a brief application (2-s duration) or prolonged application 

(60-s duration) of ATP. HEK293 cells were transfected with P2X cDNA 48hr prior to 

whole cell recordings - 30μM of ATP was applied or 1μM ATP for P2X7. Figure 

reproduced with permission from (North & Surprenant, 2000; North, 2002) 

 

1.6.3 P2X7 structure 
 

P2X7 receptors are membrane proteins that consist of oligomers of 3 subunits with two 

membrane spanning domains per subunit. P2X7 is characterised by its short N-terminus 

and longer C-terminus.  Since the elucidation of the crystal structure of the drosophila P2X4 

(Kawate et al., 2009) it was suggested that 3 ATP molecules bind to the P2X receptors at 

locations between each subunit. P2X7 receptors in monomeric confirmation has a total of 

six helical transmembrane domains (TMDs) (2 from each subunit) with TM2 responsible for 

forming the physical gate to allow ion flow (Bartlett et al., 2014). A diagram illustrating the 

structure of P2X7 receptors is shown in Figure 1.21. Through the identification of loss-of-

function single polymorphisms in motifs of the P2X7 protein, the regions responsible for 

certain P2X7 channel functions have been described. A rare polymorphism in the R307Q of 

human P2X7 was shown to cause a reduction in the affinity of ATP binding to the P2X7 

channel and therefore has an inhibitory functional effect on the P2X7 current (Gu et al., 

2004). Similarly as shown in studies in HEK-293 cells and Xenopus oocytes, residue 551 in 

the carboxy terminus of P2X7 when mutated leads to an attenuation in receptor function 



66 
 

and cell surface expression, indicating this motif is important for regulation of the surface 

expression of the pore forming part of the  P2X7 receptor (Smart et al., 2003). 

 

Figure 1.21 Structural model of P2X7: the transmembrane ion-conducting pathway in 

the human P2X7 

 

1.6.4 P2X7 defining characteristics 
 

P2X7 was originally known as P2Z and was first characterised in 1996 (Surprenant et al., 

1996). Cloned rat P2X7 receptor were heterologously expressed in HEK-293 cells, using 

whole cell patch clamp electrophysiology Surprenant and colleagues showed bzATP 

induced currents reversed at -2mV and exhibited a linear current voltage relationship. This 

was contrary to other P2X channels which showed no rectification between -90 to 50mV. A 

sustained nonselective conductance was observed following repeated application of 

agonist. The EC50 for ATP and bzATP were shown to be 115μM and 7μM respectively. The 

magnitude of the current amplitude and the duration of the current were increased in low 

divalent solution (removal of Mg2+/Ca2+ or both), however switching to low divalent 

solution had no major effect on the EC50 for bzATP and ATP.  (Rassendren et al., 1997) 

subsequently described the cloning and expression of human P2X7, characterisation of 

endogenous P2X7 currents in hMDMs was compared alongside heterologously expressing 

hP2X7 in HEK-293 cells. Notably, the properties of the heterologously expressed hP2X7 in 

HEK-293 cells were largely similar with those observed in the hMDM cells, suggesting that 

hMDM used in Rassendrens study express homomultimeric P2X7 assemblies. When 

compared to rat P2X7 it was seen that higher concentrations of agonist were required to 

activate hP2X7 in normal divalent conditions, the EC50 for bzATP was around 50μM and for 

ATP was around 1000μM (compared to 7μM and 115μM respectively). Similarly the 

removal of extracellular Mg2+ led to a greater potentiation of the current compared to rat 

P2X7. A sequence homology similarity of 80% between rat and human P2X7 may account 

for the functional differences observed. The rank of potency of agonists for P2X7 is as 
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follows: bzATP>>ATP>2,methylthio ATP > ATPγS>>adenosine diphosphate (Surprenant et 

al., 1996). bzATP is around 10-30 times more potent than ATP to P2X7 receptors and P2X7 

channels are less responsive to ATP than other P2X channels, with ATP concentrations over 

100μM required to cause receptor activation (North 2002).  

 

The P2X7 channel opens following ATP application within a millisecond timeframe, 

following removal of the extracellular ATP the channel then closes within tens of 

milliseconds. However unlike other P2X channels, P2X7 has a slower desensitization rate – 

ATP application can be present for minutes with only a very small decrease in the P2X7 

current. Following P2X7 receptor activation there is an initial fast influx of monovalent and 

divalent cations, predominantly Na+ and Ca2+, however following continual agonist 

application to the P2X7 receptor, a large permeability pore opens that permits the entry of 

large organic molecules up to 900D in size. There are conflicting results in the literature 

about whether the pore opens through P2X7 channel dilation or whether there is the 

activation of a secondary channel such as the hemichannel, pannexin. P2X7 mediated pore 

formation is associated with a rapid lowering in cytoplasmic K+ through the large pore, 

therefore P2X7 activation leads to a complete collapse in the normal ionic gradients (Qu et 

al., 2007). Experiments to study P2X7 mediated pore formation can be undertaken through 

the measurement of the uptake of dyes such as ethidium and YO-PRO. Lower levels of YO-

PRO uptake were seen hP2X7 expressing cells compared to rP2X7, with higher agonist 

concentrations required for hP2X7 mediated permeabilisation (Rassendren et al., 1997). 

 

Early studies indicated P2X7 had a bifunctional role, mediating ion influx and pore 

formation by distinct mechanisms. Truncation of the COOH region of P2X7 was 

demonstrated to inhibit dye uptake without altering ion channel currents (Surprenant et 

al., 1996; Rassendren et al., 1997). This was followed by a breakthrough paper in 2006 that 

demonstrated a hemichannel; pannexin-1 was connected to P2X7 and the mediator of 

large pore formation. siRNA knockdown of pannexin-1 was shown to inhibit P2X7 mediated 

dye uptake without altering the associated membrane current or Ca2+ influx, whilst P2X7 

expression was left intact (Pelegrin & Surprenant, 2006). However despite this seemingly 

clear cut hypothesis of a secondary channel directing P2X7 mediated pore formation, later 

work has disputed this conclusion. Macrophages from pannexin-1 knockout mice and 

following siRNA knockdown of pannexin-1 were shown to have no defect in P2X7-mediated 

dye uptake (Qu et al., 2011; Alberto et al., 2013), similarly the pannexin-1 inhibitor, CBX 

had no effect on dye uptake in HEK-P2X7 and human monocyte cells (Bhaskaracharya et al., 

2014). It seems further work is necessary to determine the mechanism involved in P2X7 

mediated pore formation.  

 

In relation to P2X7 mediated pore formation, P2X7 activation has been linked to directing 

the production and release of IL-1β in macrophage cells (Ferrari et al., 1997b; Solle et al., 

2001). IL-1β secretion and release can often be separated into two different steps; with the 

first requiring an inflammatory signal from a pathogen-associated molecular pattern 

(PAMP) or damage-associated molecular pattern (DAMP) to initiate the gene expression of 

the IL-1β precursor and inflammasome components. The second step is characterised by 
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the ATP P2X7 receptor mediated inflammasome assembly, caspase-1 activation, IL-1β 

maturation and secretion. K+ efflux through P2X7 channels is initiated following pore 

formation and is shown to be important for P2X7 mediated caspase-1 mediated IL-β 

maturation. There are conflicting results about whether Ca2+ influx is also required (Brough 

et al., 2003; Franchi et al., 2007; Qu et al., 2007; Piccini et al., 2008; Katsnelson et al., 

2015).  

 

1.6.5 P2X7 splice variants and single nucleotide 

polymorphisms 
 

There have been 9 splice variants of P2X7 described for the human P2X7 

(Cheewatrakoolpong et al., 2005; Feng et al., 2006) and numerous SNPs causing either a 

gain or loss of function to human P2X7 (Gu et al., 2001; Wiley et al., 2003; Cabrini et al., 

2005; Dardano et al., 2009). For example the analysis of two splice variants expressed in 

hHEK293 cells, one with a lacking 1st TMD and the 2nd missing the entire cytoplasmic tail 

revealed a resulting non-functional channel or channel with reduced functionality, 

respectively (Cheewatrakoolpong et al., 2005).  Subsequently (Feng et al., 2006) report a 

novel  hP2X7 variant (P2X7j) which lacks the entire intracellular carboxy terminus, the 2nd 

TMD and the distal 3rd of the extracellular P2X7 loop. P2X7j expressed in human cervical 

epithelial cells and HEK cells was shown to be defective bzATP induced Ca2+ mobilisation, 

pore formation and apoptosis. Notably, co-IP experiments revealed a potential interaction 

between P2X7j and WT P2X7 which led to the hypothesis that P2X7j can hetero-oligomerise 

with the full length P2X7 to form non-functional P2X7 oligomers. These two examples 

reveal the significant impairment seen in certain P2X7 splice variants 

 

A number of SNPs in human P2X7 have been associated with disease, for example a P2X7 

489C>T allelic variant leading to His 155 into Tyr change in extracellular receptor domain 

causes a gain of function to the P2X7, this mutation was seen in lymphocytes from patients 

with chronic lymphocytic leukemia (CLL). Notably P2X7 489T expression in HEK cells caused 

a higher functional activation than WT P2X7, as observed by the Ca2+ mobilisation in 

response to bzATP and the rate of EtBr uptake. Other loss of function SNPs such as 1513C 

caused a loss of function to P2X7; this SNP was seen 3-fold greater levels in patients with 

CLL than in controls. It was hypothesised that the combined presence of loss of function 

variants with 489T in CLL individuals increased P2X7 function to variable extents (Cabrini et 

al., 2005). A SNP present at a low frequency within the causasian population is A Glu-496 to 

Ala. This SNP produces non-functional P2X7 when expressed homozygously and reduces 

P2X7 mediated function in heterozygous expression. In particular this was shown by a 

reduction in the ATP induced Ca2+ signal, EtBr uptake and bzATP induced cytotoxicity of T-

lymphocytes (Gu et al., 2001). These examples illustrate the impact of the impaired 

function of P2X7 in human biology. 
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1.6.6 P2X7 heteromultimerization 
 

The P2X channel family is well reported to interact and form heteromultimeric channel 

complexes, despite this, the involvement of P2X7 as a heteromeric channel is less clear. 

Original data showed P2X7 was the only member of the P2X family unable to form hetero-

oligomeric channels. Investigation into the protein-protein interactions between P2X family 

members using co-IP assays showed that a number of interacting partners were found for 

members P2X1-6; however no interactions were detected in any combinations for the P2X7 

channel. The possibility of this result being caused by interference of their unique long 

intracellular carboxy terminus was proven not to be the case through co-IP experiment 

repeated with a P2X7 channel with a deletion of the carboxy tail (Torres et al., 1999).  

 

In subsequent studies a conflicting result was found (Guo et al., 2007). Here evidence was 

produced that indicated P2X4 and P2X7 channels formed heteromeric channels. For 

example, co-IP and functional assays showed that P2X4 and P2X7 are able to interact, 

similarly, a non functional P2X4 mutant expressing cell inhibited P2X7 mediated current. 

The differences in the results of the co-IP in this study and in (Torres et al., 1999) could be 

explained by the difference in detergents used. (Guo et al., 2007) used DDM which has a 

better ability to preserve proteins, therefore the harsher detergent used in the Torres 

study could have led to degradation of part of the P2X7 interacting region.  However taken 

on its own the study by (Guo et al., 2007) is not direct proof of P2X4 and P2X7 forming a 

heteromeric channel assembly, interaction as assessed by co-IP could occur due to an 

interaction between the two channels but with them both remaining in their homomeric 

forms, i.e. homotrimeric interaction.  

 

Further work by (Nicke, 2008) used antibodies and sodium dodecyl sulfate (SDS) 

polyacrylamide gel electrophoresis (PAGE) to investigate the interaction of P2X4 and P2X7 

and concluded there was no evidence for heteromeric channel formation. Instead they 

proposed that previous reports of channels with a combined P2X4/P2X7 functional 

phenotype could be due to homotrimeric complexes. This conclusion is supported by later 

work by (Boumechache et al., 2009) who performed experiments to cross-link solublized 

proteins with DSS and resolved through SDS-PAGE to show that P2X7 can assemble as 

monomers, homodimers and homotrimers, but not heteromeric formations. As 

homotrimers of P2X7 were able to co-immunoprecipitate with P2X4 this suggests that 

interaction of the channels occur between the receptor complexes rather than within. This 

hypothesis was confounded in work by (Antonio et al., 2011), who performed in situ 

proximity ligation, co-immunoprecipitation, co-isolation using affinity beads, chemical 

cross-linking and atomic force microscopy to conclude that P2X7 and P2X7 interact in the 

form on homotrimers but not in a heteromeric assembly. Notably, although there have 

been inconsistencies in the conclusions regarding the channel subunit formation of P2X 

receptor families, there are a number of corroborating studies that show convincing 

evidence for a functional interaction between P2X7 and P2X4 and thus investigators should 

consider the possibility of P2X7/P2X4 functional interaction in the analysis of experiment 

(Casas-Pruneda et al., 2009); (Ma et al., 2006).  
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1.6.7 P2X7 pharmacology 
 

The first generation of P2X7 antagonists were described in between 1980 and 1990, 

namely; suramin and brilliant blue G (BBG) (Dunn & Blakeley, 1988; Soltoff et al., 1989) this 

was closely followed by the introduction of pyridoxalphosphate-6-azophenyl-2',4'-

disulfonic acid (PPADs), oxidised ATP (oATP) and KN-62 (Lambrecht et al., 1992; Murgia et 

al., 1993; Gargett & Wiley, 1997). These classical P2X7 receptor antagonists are largely non-

selective between purinergic receptor family members (Jacobson et al., 2002). PPADs is an 

irreversible P2X7 blocker and has been shown to have the highest potency at human P2X1, 

P2X7 and P2Y1 receptors and is largely ineffective in rP2X4R inhibition however was found 

to have an IC50 of 27.5μM ± 3.4 at hP2X4R expressed in HEK 293 cells (Garcia-Guzman et 

al., 1997). Similarly Suramin is a weak antagonist of P2X4 and P2X7 receptors. Suramin was 

shown to have an IC50 of 178μM ± 46.9 to hP2X4 expressed in HEK 293 cells whereas it 

P2X1, 2, 3 and 5 with an IC50 in the range of 1-10μM (Garcia-Guzman et al., 1997; North & 

Surprenant, 2000). Suramin has also been demonstrated to antagonize G-proteins and 

proteases such as the HIV reverse transcriptase (Jacobson et al., 2002). oATP has been 

more frequently described as a P2X7 selective antagonist, however this compound has too 

been shown to inhibit other targets; P2X2 and P2X3 (Evans et al., 1995) and to attenuate 

proinflammatory signalling in a model where P2X7 had been deleted (Beigi et al., 2003).  

oATP is an irreversible blocker of P2X7.  

BBG and KN-62 are non competitive P2X7 antagonists, with BBG being demonstrated to 

have off-target effects on voltage gated sodium channels, similarly KN-62 also shows 

activity as an antagonist of Ca2+/calmodulin-dependent protein kinase II  (North & Jarvis, 

2013). Interestingly KN-62 is inactive at the rat P2X7 receptors, but active at hP2X7, 

whereas BBG has been described as a rat selective P2X7 antagonist and inactivate at hP2X7 

(Donnelly-Roberts et al., 2009). These examples demonstrate the differential activity of 

P2X7 antagonists observed at receptors from different species.  

 

Subsequent development of more selective P2X7 antagonists has been aided by the high 

throughput screening of large chemical libraries. This work has largely been driven by 

realisation of the therapeutic potential of selective P2X7 compounds in the treatment of 

pain and inflammation. Importantly these second generations of P2X7 antagonists have 

been developed with the profile of a therapeutic compound in mind, whereas the classical 

antagonists largely did not have the properties that would aid pharmacokinetics and 

dynamics in vivo (Bartlett et al., 2014). Examples of these novel P2X7 selective compounds 

are summarized by (Nelson et al., 2006; Donnelly-Roberts et al., 2009). One example is 

A740003 which was shown to have an IC50 of 40nM at human P2X7 and 18nM at rat p2X7. 

A740003 was shown to be ineffective in the blockage of other P2X and P2Y receptors (at 

concentrations up to 100μM) and a CEREP panel gave further confirmation of its lack of 

activity at other common ion channels and receptors (Honore et al., 2006). Certain novel 

P2X7 antagonists have also been shown to have the potential in the treatment of 

inflammatory pain; GSK314181A and A389977 had dose-dependent effects on rodent 

models of inflammatory pain (Broom et al., 2008; Honore et al., 2009). 
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The P2X7 selective antagonists used in the present study were developed by 

GlaxoSmithKline. The validity of the GSK-2160A and GSK-3583A compounds in the 

inhibition of P2X7 currents has been demonstrated through robust studies FLIPR, 

electrophysiology and functional assays with rat and human P2X7 expression systems to 

confirm the compounds selectivity and potency for the P2X7 target. Similarly, published 

use of the GSK-2160A compound was reported in (Ali et al., 2013) where an in depth 

pharmacokinetic and pharmacodynamic profiling first in human study was performed. 

Although the results shown in (Ali et al., 2013) led to the decision to halt the use of the 

compound for clinical use, the results do give convincing proof that the compound is active 

against P2X7 in native cells as well as over-expression models. This gives confidence that 

these P2X7 antagonists will be effective tools in this study.  

 

There are also a number of naturally derived compounds which have been shown to block 

P2X7 activity, for example the Chinese herb emodin, plant derived alkaloids and estrogen 

hormone 17-β estradiol (Bartlett et al., 2014). A gout treatment therapeutic, probenecid, 

has been demonstrated to block the P2X7 channel function and pore formation 

(Bhaskaracharya et al., 2014). Importantly, probenecid is also frequently used as a 

component of FLIPR imaging buffer in order to prevent dye extrusion from the cell, 

therefore this publication reveals that caution is needed in the design of Ca2+ imaging 

assays to monitor P2X7 activation. 

 

It is known that SNPs and splice isoform variants of P2X7 can respond differently to P2X7 

inhibitors. For example, GSK1370319A was shown to have a 7 fold greater potency in 

individuals with a gain of function A348T SNP compared to individuals with the E496A loss 

of function SNP (McHugh et al., 2012). This emphasises care is needed in translation of 

results using P2X7 antagonists, there may be stark differences seen within species based on 

variation in P2X7 expression.  

 

As introduced in Section 1.6.7 cations can act to inhibit P2X7 activation. (Virginio et al., 

1997; Virginio et al., 1998) provide a detailed study of the inhibition of P2X7 by divalent 

cations. Here they show the IC50 for Ca2+ and Mg2+ is around 2-3mM, an increase in 

divalent cations causes a rightward shift in the agonist concentration response curve and 

Virginio propose that the divalent cations act in an allosteric way to change the affinity of 

ATP for the P2X receptor. The reported reduction in P2X7 mediated Ca2+ influx under 

physiological concentrations of Ca2+ and Mg2+ could suggest that this is a mechanism by 

which P2X7 activity is regulated.  

  



72 
 

 

2 Chapter 2 materials and methods  

 

2.1 Cell culture  

All cell types described below were incubated at 37oC in a 5% CO2 humidified atmosphere. 

 

2.1.1 LAD2 cell culture 
 

LAD2 cells were a kind gift from Dr. D Metcalfe at the National Institute of Allergy and 

Infectious Diseases, National Institute of Health, Bethesda, MD. The cell line was originally 

derived from a patient with mast cell leukemia. LAD2 cells were cultured in StemPro-34 

media supplemented with StemPro-34 nutrient supplement and 2mM L-glutamine (all 

Gibco Life Technologies) in addition to 100ng/ml rhSCF (R&D systems). Cells were passaged 

weekly; and media was added to maintain a density of 400,000-500,000 cells/ml. To re-

thaw cells from frozen stocks, a total of 1.5ml of media + 100ng/ml SCF was added to the 

cell vial. The cell suspension was transferred to a 6-well plate and rocked continuously at 

room temperature for 6 hours, every 30 minutes the cells were gently pipetted to disperse 

any clumps. At the end of these steps, the cells were transferred to a 12.5cm2 Nunclon 

surface tissue culture flask. To freeze cells, 10 million cells were spun at 100g for 5 minutes 

and then resuspended in PZerve cryopreservation supplement (Protide) with 200ng/ml 

rhSCF. The cells suspension was transferred to a cryovial and placed in a cryocontainer for 

30 minutes at room temperature, 1 hour at -20oC, 1 hour at -80oC before being placed into 

liquid nitrogen for long term storage.  

 

2.1.2 HEK-293 cell culture 
 

HEK-293 cell culture media - Dulbecco’s modified eagle media (DMEM) (Gibco 31331-028) 

containing 10% foetal calf serum (FCS)  

 HEK-293 TRPC6 cell culture media – DMEM (Gibco 31331-028) containing 10% FCS and 

400μg/ml geneticin (Gibco) 

HEK-293 cells were split twice weekly, or when 90% confluency was reached. Cell 

Dissociation Solution (CDS – Sigma C5914) was used to free adherent cells. 1ml of CDS was 

used per 25cm2 Nunclon tissue culture flask and was incubated at 37oC for 1 minute 

followed by addition of 2ml of HEK media to wash out the flask; the cell suspension was 

transferred into a 15ml tube and was spun at 110g for 4 minutes. Cells were resuspended 

in fresh media and 20% of the cell suspension was re-seeded into a 25cm2 Nunclon surface 

tissue culture flask, containing 5ml of culture media.  
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A stable HEK-TRPC6 cell line was a generous gift from Professor Guylain Boulay. TRPC6 was 

cloned from mouse brain RNA and amplified using PCR. A stable cell line was then created 

by transfecting HEK-293 cells with mTRPC6-pcDNA3 using a Ca2+ phosphate-based protocol. 

The pcDNA3 plasmid conferred resistance to geneticin to allow for selection of TRPC6 

expression (Boulay et al. 1997). HEK-TRPC6 cells were therefore cultured with geneticin.  

 

2.1.3 HLMC isolation and purification 
 

Culture media used throughout the HLMC isolation purification and culture: 

 HLMC media : DMEM Gibco Cat: 32430-­­027, 10% heat inactivated FCS Gibco cat: 

10108, 1% antibiotic/antimycotic solution – (containing 10 units/ml penicillin, 10 

units/ml streptomycin and 25μg/ml amphotericin B) and 1% MEM non-essential 

amino acids (NEAA) Gibco Cat: 11140-­­ 035. 

 HLMC culture media: DMEM Gibco Cat: 32430-­­027, 10% heat inactivated FCS 

Gibco cat: 10108, 1% antibiotic/antimycotic solution – (containing 10 units/ml 

penicillin, 10 units/ml streptomycin and 25μg/ml amphotericin B) and 1% MEM 

non-essential amino acids (NEAA) Gibco Cat: 11140-­­ 035, Rh-IL-10 R&D systems 

Cat 217-IL, Rh-IL-6 R&D systems Cat 206-IL & Rh-SCF R&D systems Cat 255-SC - at 

concentrations of 10ng/ml, 50ng/ml and 100 ng/ml respectively. 

 DMEM wash media: DMEM (Gibco Cat: 32430-­­027) +2% heat inactivated FCS 

(Gibco cat: 10108) 

 Hank’s Balanced Salt Solution (HBSS) wash media: HBSS w/o Ca2+ or Mg2+ Gibco 

14170 HBSS + 2% FCS 

 HBSS protein solution: 85% HBSS w/o Ca2+ or Mg2+ Gibco 14170, 2% FCS, 10% 

horse serum, 1% BSA 

 Kimura stain: 0.05% Toludine blue solution, 0.03% Light green, Saponin saturated 

in 50% ethanol, 0.067M/6.4pH Phosphate buffer. (0.05% Toludine blue contained: 

0.05g toludine blue dissolved in 50ml of 1.8% NaCl solution, 22ml EtOH and 28ml 

dH2O.) 

 

Antibody coating of dynabeads 
 

Magnetic Dynabeads (Dynabeads Sheep anti-mouse IgG Invitrogen Cat 110.31) were 

coated with mouse anti human CD117 antibody (BD Pharmingen Cat 555713) so they could 

be used to isolate CD117+ cells from a mixed cell population using positive magnetic 

selection. 100µL of the bead solution was initially rinsed with HBSS wash media using the 

MPC-1 magnet to retain the magnetic beads in-between each wash/removal of the 

supernatent. Following the washing steps, the beads were resuspended in 400µL of HBSS 

protein with 8µL of the CD117 antibody. The bead mixture was then incubated for 2hours 

at 4oC under continuous rotation. Following the incubation period, the magnetic beads 

were then washed 3x using the MPC-1 magnet as described previously. Finally the CD117 

coated beads were then resuspended in 100µL HBSS protein solution, ready for immediate 

use.  
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HLMC isolation and purification  

 

The provision of human lung tissue and the use of the tissue in this study were approved by 

the National Research Ethics Service (REC reference: 10/H1010/50). All human subjects 

gave written informed consent for the use of their tissue. Human lung tissue samples were 

obtained from patients undergoing lung resection surgery at the Northern General 

Hospital, Sheffield.  Dr Peter Peachell obtained the ethical consent for the use of human 

tissue in research. 

 

Lung tissue was collected no longer than 24 hours after surgery. Upon receipt of the tissue 

in the lab, the mast cell isolation protocol was carried out using aseptic technique 

throughout. The lung tissue was cut into a fine pulp and then transferred to 100µM gauze 

fixed over a sterile screw top pot and was rinsed with DMEM wash media to remove any 

unbound cells. The chopped tissue was then transferred into a fresh 200ml sterile pot 

containing HLMC media, 4mls of this media was used per 1g of tissue and the resulting cell 

mix was left at 40C overnight. 

  

The following day, the tissue was equilibrated to room temperature before adding 

collagenase (Sigma C2674) and, hyaluronidase (Sigma H3506) enzymes to digest the tissue. 

3mg of collagenase and 3.75mg per 1g of tissue was added and left stirring continuously at 

37oC for 75 minutes. To further liberate cells from the connective tissue, the cell 

suspension was forced through a sterile 50ml syringe 30 times, followed by filtering the cell 

suspension solution through 100µM gauze whilst rinsing with DMEM wash media.  The cells 

were then washed, by centrifuging three times for 8 minutes at 160g at 4oC, re-suspending 

in fresh DMEM wash media after each spin. Before the last spin, a 10μL sample of the cell 

suspension was collected and added to 45μL of Kimura stain. Mast cells were identified as 

cells that had taken up the kimura stain and counted using a haemocytometer. After the 

last wash step, the pelleted cells were resuspended in 2ml of HBSS protein solution and 

incubated at 40C for 30 minutes under continuous rotation - this step acts to block non-

specific binding of the CD117 antibody used subsequently. Following the blocking step, the 

cells in HBSS protein solution were diluted in HBSS wash media to obtain a 50ml volume 

and the diluted cell suspension was filtered through 100µM gauze to remove any excess 

mucus remaining at this stage. The cell suspension was spun at 160g for 5 minutes at 4oC 

and the pellet was resuspended in 4ml HBSS wash media.  

 

Isolation of mast cells from the mixed cell population was then performed using a Dynal 

magnetic bead purification system. The CD117 antibody coated magnetic beads (prepared 

as described previously) were added to the cell suspension at a ratio of 1:5 which equates 

to 125µL of beads to 10x106 mast cells. The bead/cell mixture was transferred to a sterile 

2ml tube (or numerous tubes if had more cells) incubated at 4oC under continuous rotation 

for 90 minutes. The bead/cell mixture was transferred to a fresh 15ml tube, made up to 

10mls in HBSS wash media and was connected to the MPC-1 magnet and left for 3 minutes. 

The supernatent which contains only CD117-ve cells was discarded. The CD117+ cells were 
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left attached to the surface of the tube in contact with the magnet and two further washes 

of the CD117+ve cells were performed using HBSS wash buffer, the CD117+ve cells were 

resuspended in 1ml of HLMC culture media and counted – CD117+ve cells were cultured at 

a final density of 500,000 cells/ml. 

 

2.1.4 Human lung mast cell (HLMC) cell culture 
 

Purity of the HLMCs was verified using kimura staining, a well described mast cell marker 

that binds to peptidoglycans; when taken up by mast cells the stain takes on a 

cerise/purple colour whereas eosinophils stain green, for (Kimura, 1973). HLMC isolated 

and cultured using the present methodology was shown to have 97% ± 3 purity of mast 

cells, as determined by kimura stain. Similar purity levels were seen in HLMCs isolated using 

the same methodology by (Oskeritzian et al., 2005) – 95%, and (Sanmugalingam et al., 

2000) – 99.4%.  

 

HLMC purity was further confirmed by staining cells with an anti-CD117 (c-kit receptor) 

antibody, (phycoerythrin (PE) - tagged anti-CD117 IgG1 antibody (Miltenyi Biotech, Surrey 

UK)). Representative data in Figure 2.1 shows the cells stained with the anti-CD117 

antibody and the corresponding isotype control (PE-tagged mouse IgG1 isotype). Staining 

was performed in a selection of donors, following Ca2+ imaging experiments. Cells were 

excited at 488nm to visualize staining with PE anti-CD117 and PE-mouse IgG1 isotype 

followed by excitation at 340nm to visualize all cells loaded with fura-2AM. The number of 

fura-2AM loaded cells were used to calculate the total cell number, then the cells with 

positive staining for CD117 were calculated as a % of this total.  Over 97% of cells showed c-

kit antibody staining providing further evidence to support high HLMC purity when using 

the isolation methodology stated here. Although CD117 is present in a number of cells 

throughout the body, of the mixed cell population obtained from lung tissue, CD117 

expression is exclusive to mast cells except from one study suggesting a small population of 

pulmonary fibroblasts exhibited CD117 expression also (Ding et al., 2013). However, based 

on the stark morphological differences between HLMC and fibroblast cells, the 

contamination of the culture with fibroblast cells would be evident.  

 

HLMCs were cultured once a week, the cells in media were spun down at 100g for 5 

minutes at room temperature, and then resuspended in fresh HLMC culture media.  
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Figure 2.1 HLMC cells stained with CD117 antibody 
 

A.) HLMCs stained with fura2-AM, excited at 340nm. B.) HLMCs stained with 

CD117, excited at 488nm C.) HLMCs stained with isotype control antibody, excited 

at 488nm. Pictures were taken by Reuben Friend. 

 

2.1.5 PBMC isolation and hMDM differentiation  
 

Fresh whole blood supplemented with heparin anti-coagulant was collected from the GSK 

Blood Donation Unit. Typically 100mls of blood was used per isolation experiment with a 

final hMDM yield of 16-40 million cells. Blood was diluted 1:1 with sterile PBS; it was then 

added to accuspin tubes containing 15ml of histopaque (Sigma 10771). 25ml of diluted 

blood was added to each tube. Tubes were spun at 350g for 25minutes (brake =1). The 

buffy coats were then combined and volume was made up to 50ml before another spin was 

performed (350g for 5minutes). The supernatant was removed and pellet resuspended in 

PBS, making the volume up to 50ml, at this stage the cells were counted using a 

haemocytometer.  Cell suspension was spun and the pellet resuspended in miltenyi buffer 

(Phosphate buffered saline (PBS) w/o Ca and Mg, 0.05% bovine serum albumin (BSA), 5mM 

ethylenediaminetetraacetic acid (EDTA) with MACS CD14+ microbeads (#130-050-201) 

(80µL/107 cell) and incubated for 15minutes at 4oC before positive selection of CD14+ cells 

through the use of a LS column (Miltenyi 130-042-401) and magnet. CD14+ cells were spun 

at 350g for 5 minutes in a volume of 15mls of miltenyi buffer and cell culture media, cells 

were then resuspended in media (Iscove's Modified Dulbecco's Media (IMDM) 

Thermofisher 12440, 10% human Ab serum (Sigma H4522), 1% L-glutamine (Gibco 25030), 

1% Pen/Strep (Gibco 15140)) at an assay specific density of 300,000 - 750,000 cells/ml. 

Cells in suspension were plated out into a 96well plate – 100µL per well to give a density of 

75,000 cells/well. The 36 external wells were filled with PBS to circumvent evaporation. 

rhGM-CSF (R&D systems) (5ng/ml) was applied to each well and cells were left for 7 days to 

differentiate into MDMs.  
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Figure 2.2 Flow cytometric assessment of CD14+ monocytes  
 

Flow cytometry was performed in CD14+ monocytes following their isolation from a 
blood PBMC experiment. A.) Scatter plot with % of CD14+ cells, B.) Histogram to show 
representative mean fluorescent intensity (MFI) for isotype control and CD14+ stained 
cells, C.) Mean ± SEM of CD14+ cells in a live cell population (95.4 ± 0.9%) of 3 donors 
randomly tested. For methodology used for Figure 2.2 see Section2.16. 

 

 

As part of the present study, some experiments were performed to support that 

monocytes had been isolated correctly and that monocyte differentiation had occurred. 

Flow cytometry experiments were performed to assess the percentage of CD14+ cells 

obtained following magnetic bead isolation. It was considered that contaminant CD14- cells 

could impact on the differentiation process, so validation of the purity of the starting 

material was required. As shown in Figure 2.2 these experiments demonstrated that over 

90% of day0 blood monocytes were CD14+ve, which provided confidence in the starting 

material.  Notably, morphological analysis of the cells at day0 and day7 of the culture 

process showed cells that were in line with the predicted morphology for monocytes and 

macrophages, respectively. The cells at day0 were around 3µm in diameter, spherical in 

space with a uniform interior. Conversely, the cells at day 7 were around 20µm in diameter, 

showing around a 10 fold increase in size. The cells displayed a spherical shape with the 

stereotypical ‘fried egg’ morphology, a ring like actin cytoskeleton surrounding the main 

cell body (Figure 2.3).  
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Figure 2.3 Representative images of human CD14+ monocytes. 
 

hMDM cells shown at day0 and at day 7 after differentiation with GM-CSF 

(5ng/ml), demonstrating the morphological change. 

 

Furthermore, flow cytometry experiments assessing the expression of CD68 were 

performed. CD68 is a scavenger receptor originally described as a macrophage marker, 

albeit CD68 is now known to be expressed in monocytes and some lymphocyte cells too. As 

shown in Figure 2.4, there was one population of cells based on the size and granularity (as 

assessed by the FSC and SSC), with over 90% of which positively expressed CD68 (Figure 

2.4). If remaining undifferentiated monocytes were contaminants of this culture it would 

be predicted that there would be two CD68+ve populations due to differential size and 

granularity of these two cell types (Andreesen et al., 1990). 

 

 
 

Figure 2.4 Flow cytometric analysis CD68+ hMDMs  
 

Flow cytometry was performed in hMDMs stained with CD68/isotype control A.) Scatter 
plot with CD68 stained cells over FSC-A, B.) Histogram to show representative MFI for 
isotype control and CD68+ stained cells. 
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In sum, the flow cytometry data shows over 90% of  CD14+ cells were obtained from the  

starting material; a notable morphological change occurred over a 7 day differentiation 

period, and a single population of CD68+ve cells was observed in flow cytometry indicated 

that the resulting cells had successfully differentiated into hMDMs.  

 

2.1.6 hAM Isolation 
 

hAM media: Roswell Park Memorial Institute medium (RPMI) 1640 (Gibco 31870-025), 10% 

heat inactivated FCS (Gibco 10100), 1% L-glutamine (Gibco 25030), 1% Pen/Strep (Gibco 

15140). 

 

Lung pieces were flushed with media using a needle syringe. Wash through was collected 

and 25ml was added to each 50ml Falcon tube, on top of 15ml of histopaque solution 

(Sigma 10771). Cells were spun at 350g for 25minutes with brake on low. Buffy coats were 

taken off and collected into a fresh 50ml tube, volume was diluted to 50ml with PBS and 

cells were spun at 350g for 5minutes (brake on 9). Cells were resuspended in PBS and 

washed/spun twice more. On the last spin, cells were counted using a haemocytometer. 

Cells were seeded into 96 well plates at assay-dependent density of 500,000-1million 

cells/ml or 50,000/100,000 cells per well (100μL volume). hAMs were left to adhere for 2 

hours, and then a media wash was performed to remove non-adherent cells.  

 

2.2 Coverslip Preparation 

16mm, thickness no.1 glass coverslips (VWR) were washed in 95%ethanol, 5% acetic acid 

solution overnight on a rocker. The following morning, coverslips were washed with dH2O, 

spread out onto filter paper and dried before autoclaving. 0.1% poly-L-lysine hydrobromide 

(Sigma) was used to coat the glass coverslips and aid plating of non-adherent cells (e.g. 

LAD2s and HLMCs). Poly-L-lysine was made to 0.1% using dH2O and 90µL was applied per 

16mm coverslips contained in a 12 well plate. Poly-L-lysine was incubated on the coverslips 

for 30mins at 37oC followed by flooding the coverslips with dH2O to wash off the poly-L-

lysine. All liquid was then removed and coverslips were left to dry in the tissue culture 

laminar flow hood. Coverslips were kept sterile at 4oC until use. 10-50µL of cells in 

suspension were applied to each coverslip and left at 37oC for 30mins to allow adherence.   

 

2.3 Intracellular Ca2+ imaging 

Fluorescent Ca2+ indicator dyes were used to monitor changes in intracellular Ca2+. Ca2+ 

selective indicator dyes are based on Ca2+ chelators such as EGTA developed by Roger Y. 

Tsien (Tsien et al., 1985). The indicator dyes exhibit a spectral response following Ca2+ 

binding, this change in fluorescent signal can be quantified to measure changes in Ca2+ 
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signal. Ca2+ dyes can be ratiometric or single wavelength; examples of each include Fura-2 

and Fluo-4/Cal-520, respectively. Membrane permeant AM ester dyes allow the dye to be 

loaded into the cell; following entry past the cell membrane, the ester is cleaved by 

esterases causing the dye to become membrane impermeable and trapped within 

intracellular compartments. However, indicator dyes can be actively pumped out of cells 

that express anion-transporter channels. In these instances, an anion-transporter inhibitor, 

probenecid can be included in loading and imaging solutions in order to prevent dye 

extrusion(Di Virgilio et al., 1990).  

2.3.1 Ratiometric Ca2+ imaging with Fura-2 
 

Fura-2 AM is a commonly used ratiometric Ca2+ indicator dye. The advantage of a 

ratiometric dye is the reduced effects of dye leakage and photobleaching. Fura-2 AM has a 

dual excitation profile (at 340nm and 380nm). At 340nm Fura-2 exhibits an increase in 

fluorescence when Ca2+ concentration increases, whereas at 380nm a decrease in 

fluorescence signal occurs.  A ratio of these two signals is then calculated in order to 

quantify the total change in Ca2+ signal. For experiments using human mast cells, cells were 

plated to 16mm poly-L-lysine coated coverslips (as described above) and then were loaded 

with fura-2 AM (1 µM) (Invitrogen Molecular Probes) in LAD2/HLMC culture media 

(omitting antibiotic-antimycotic) for 30 minutes at 37°C. Cells were subsequently washed in 

culture media without fura-2AM for 15 minutes at 37oC following by a final wash in Ca2+ 

imaging external solution for 15 minutes at room temperature. 16mm coverslips with fura-

2AM loaded cells were placed into a recording chamber (Warner 24l x 13w x 4.1 H mm, 

volume by depth 133µl/mm – RC-25F, Warner Instruments) and superfused with external 

imaging solution. The flow rate was determined to be 3ml/minute. A main reservoir bottle 

was connected to a series of tubing and syringes which passed through a heating element 

before reaching the bath of the recording chamber (temperature set to 28°C). Syringes 

were connected to the tubing to allow addition of various different solutions. The height of 

these syringes was set to be the same as the main reservoir bottle to ensure a constant 

flow rate. Similarly, stoppers with inserted tubing were placed to seal the syringes to help 

maintain a constant flow following volume change. The experimental set up is detailed in 

Figure 2.5. External solution composition for use in all mast cell Ca2+ imaging experiments 

was (in mM; 120 NaCl, 10 KCl, 10 HEPES, 2 MgCl2, 2 CaCl2, 10 Glucose (300mOsm/litre, pH 

7.3, NaOH). An inverted microscope (Axiovert S100 TV, Zeiss, Cambridge, UK) equipped 

with a 40x oil immersion objective (NA 1.3, Zeiss) was used to image the cells. Cells were 

alternately illuminated at 340 and 380 nm with a 20 ms exposure time with a 

monochromater (Polychrome IV, TILL Photonics, Munich, Germany). Emitted light was 

passed through a 510 nm band pass filter and collected by a 512B Cascade CCD camera 

(Photometrics, Tucson, AZ, USA) and images were acquired at 0.5 Hz.  

 

MetaMorph® Meta imaging software  (Molecular Devices, Sunnyvale, CA, USA) was used to 

analyse all Ca2+ imaging experiments. A region of interest (ROI) was placed over each cell in 

the field of view – the raw fluorescent values at 340 and 380nm were exported, along with 

background fluorescence values (taken as a region in the field of view where no cells were 
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present). The background-subtracted 340nm fluorescence values were then divded by the 

background-subtract 380nm fluorescence values to obtain the Ca2+ signal ratio.   

 

 
 

Figure 2.5 Experimental set up of Ca2+ imaging superfusion system. 
 

Figure reproduced from Reuben Friend’s thesis 

 

2.3.2 Fluorometric Imaging Plate Reader (FLIPR)  
 

Fluo-4 is an example of a single excitation wavelength Ca2+ indicator. Fluo-4 is excited at 

488nm. Cal-520 is another single excitation Ca2+ indicator with improved signal to noise 

ratio and intracellular retention compared to dyes such as Fluo-4 (Life technologies F-

14201), Cal-520 (Stratech 21130) can also be excited at 488nm. These dyes were used in 

FLIPR Ca2+ imaging assays. 

 

FLIPR assays allow high throughput Ca2+ imaging assays to be carried out and are commonly 

used for drug screening. FLIPR assays were utilized for all experiments on macrophage cells. 

Here macrophages were seeded into a black-edged clear bottom 96 well plate at a density 

of 75,000cells/well. Culture media was replaced with FLIPR buffer containing 2µM Fluo-

4AM/5µM Cal-520 and cells were loaded for 1 hour at 37oC. Loading buffer was then 

removed, and cells washed with FLIPR buffer. Antagonists were pre-incubated for 

15minutes prior to measuring the fluorescence signal at 488nm; data acquisition was 

performed at a frequency 0.5Hz. FLIPR buffer contained (in mM): 1.8 CaCl2, 5.6 Glucose, 2.7 

KCl, 1.0 MgCl2, 137.0 NaCl, 0.4 NaHPO4, 20 HEPES, 11.9 NaHCO3. 2.5mM probenecid was 

added to the FLIPR buffer for all experiments unless indicated.  

 

An average signal test was performed before each FLIPR assay was run, to ensure the 

starting signal was consistent between each of the 96 wells recorded and to confirm that 

starting signal was within same signal window from assay to assay. To account for any 
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variability between starting fluorescence in each well, caused by a difference in cell number 

or dye loading capacity, the starting fluorescence was normalised to the mean basal values 

(first 10 readings). The raw data from each plate was assessed prior to normalisation to 

check for drug-induced changes to basal signal. Each condition was performed in triplicate 

to account for variability between wells. In each plate a control row of vehicle controls 

(DMSO or H2O) was performed to enable any spontaneous rise in baseline fluorescence to 

be accounted for in further calculations, similarly a control row of agonist application was 

performed in each plate/for each donor to evaluate the responsiveness of each 

plate/donor.  

 

Data analysis 
 

For each donor, the mean value from the triplicate data was calculated, the data was 

normalised to their respective baseline values and plotted as signal over time. Data points 

were recorded every 2 seconds for duration of up to 30 minutes. For concentration-

response graphs, data was analysed by calculating the area under the curve for each 

condition (values over 1 from normalised data). The % of the control response was then 

calculated for each donor, using the respective control data performed in parallel for each 

individual experiment. The mean ± SEM of the data from each donor was then plotted for 

the graphs presented in the present study. X axis concentration values were transformed 

into log values using the GraphPad Prism analysis function. Non-linear regression analysis 

was then performed to calculate IC50 and EC50 values. For experiments with antagonists 

and agonists exhibiting a sigmoid curve the following equation was used: 

Y=100/(1+10^((LogIC50-X)*HillSlope)) For experiments where low concentrations 

stimulated a response and high concentrations reduced a response a bell-shaped curve was 

plotted using the following equation: Span1=Plateau1-Dip, Span2=Plateau2-Dip, 

Section1=Span1/(1+10^((LogEC50_1-X)*nH1)), Section2=Span2/(1+10^((X-

LogEC50_2)*nH2)), Y=Dip+Section1+Section2. 

 

2.4 Determination of the appropriate 
concentration of Anti-IgE for activation of 
human mast cells. 

Anti-IgE is known to initiate Ca2+ mobilisation in mast cells through cross-linking of the 

FcεRI, previous work in the Seward lab has been performed to find the optimal reagents for 

use in such experiments in LAD2 and HLMCs i.e. the most effective concentration and type 

of IgE to prime human mast cells and Anti-IgE to activate FcεRI (Kathryn Wareham and 

Claire Tree-Booker’s theses). Ca2+ imaging experiments were performed as part of the 

present study to validate these prior findings. Figure 2.6 shows that 1 and 3μg/ml Anti-IgE 

induced a significant Ca2+ signal and these concentrations were sufficient to initiate 

histamine release at a consistent and robust level. Therefore these concentrations of Anti-
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IgE were considered appropriate for the initiation of Ca2+ signalling in human mast cells for 

two reasons; firstly they initiate a Ca2+ signal which is robust and provides a signal dynamic 

window from which to assess antagonist effects and secondly these concentrations were in 

the range needed to initiate mediator release thereby indicating the physiological 

relevance of Anti-IgE in this concentration range.   

 

 
 

Figure 2.6 Anti-IgE concentration validation for initiation of Ca2+ signalling in human 
mast cells. 

A.) Single cell Ca2+ imaging was performed as described in section 2.3.1 on fura-

2AM loaded HLMCs, Anti-IgE was applied and resulting Δfluorescent signal 

(340/380) was analysed as Ca2+ signal. The bar graph shows the % of the response 

initiated by 3μg/ml anti-IgE as mean ± SEM from N=3 donors tested. B.) Histamine 

secretion from HLMC cells initiated by Anti-IgE, histamine release was measured 

as described in (Siraganian, 1975; Ennis, 1991), % of total was calculated by lysing 

cells with perchloric acid. N=3 donors tested. Experiments in B performed by 

Jasmine Farrington.  

2.5 Quantitative PCR 

qPCR primers were designed by PrimerDesign® melt curve specificity tests were performed 

by PrimerDesign as part of the primer design but were also performed in house. SYBRgreen 

detection chemistry was used in all qPCR experiments.  SYBRgreen dye intercalates to the 

DNA double helix which alters its structure and leads to an increase in dye fluorescence. 

This means that during a PCR reaction, as more DNA is created, an increase in SYBRgreen 

fluorescence intensity also occurs. Because SYBRgreen dyes are non-specific, accurate 

results are based on good quality primer design and analysis of the primer’s specificity. If a 

PCR reaction causes amplification of any double stranded DNA this would be reported by 

SYBR green, therefore in order to confirm that the signal produced is caused by 

amplification of the target of interest further analysis needs to be performed. This analysis 

is in the form of a melt curve. In all qPCR experiments in the present study, following the 
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PCR temperature change cycle, a melt curve cycle was performed. Here the temperature 

was increased above the dissociation temperature, therefore causing the double stranded 

DNA amplicons to be broken down and subsequently causing a decrease in fluorescent 

signal. The temperature at which the dsDNA dissociation occurs is known as the melting 

temperature. Because different sized amplicons have different melting temperatures, for 

each primer target sequence a specific melting temperature can be predicted. As shown in 

Figure 2.7 the identity of the amplified products in a SYBRgreen PCR reaction can be 

predicted by performing a melt curve analysis at the end of the experiment. If only the 

target of interest has been amplified, there should be a single peak on the melt curve at the 

predicted temperature. Double peaks or misaligned peaks are indicators of primer dimer or 

non-specific amplification.  Melt curve analysis was performed following all qPCR reactions 

to confirm amplification measured was specific to the primer target.  

 

 
 

 

Figure 2.7 Example melt curve analysis from qPCR experiment 
 

A.) Example of single melt curve with amplification of one target. B.) Example of 

melt curve with a double peak, due to primer dimer formation or non specific 

amplification. C.) Example of poorly dissociated dsDNA D.) Example of melt curve of 

with two single peaks with distinct dissociation temperatures, indicative of different 

target amplification 

 

 

RNA was extracted from 250,000 cells/donor (RNeasy Kit. Qiagen), the optional DNase 

clean up step was performed. RNA concentration/purity was determined using a nanodrop 

(260/280 ratio ~2.0) (Thermo-scientific) and cDNA conversion was completed immediately 

using a high capacity RNA to cDNA kit (Applied Biosystems) according to the manufacturer’s 

instructions. cDNA was stored at -20oC until use. QPCR was run on a BioRad thermocycler 

machine (for HLMC experiments) or ABI 7900 (for hMDM experiments) using 5µg of cDNA 

per reaction. Per reaction; 1μL of primer mix, 10μL of mastermix and 4μL of RNase/DNase 

free water was used. Primers were custom designed and optimised by PrimerDesign©, 
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‘Precision mastermix for the Bio-Rad iCycler/ABI 7900 with SYBR green’ was used 

throughout. qPCR was performed adhering to the temperature and timings as indicated in 

Figure 2.8. cDNA titration qPCR experiments were performed to evaluate the primer 

efficiency (Figure 2.11 and 2.12), all primers tested had an efficiency of 100% ± 10 

indicated by a slope in the range of 3.0-3.6.  

 

Step Time Temp 

Enzyme activation 2min 95oC 

Denaturation 15sec 95oC 

Data Collection 60sec 60oC 

Melt Curve**   

 

Figure 2.8 qPCR protocol – temperature and timings 
 

** Melt curve run according to manufacturer’s instructions for the ABI 7900/BioRad 

machine.  

 

Reverse transcriptase and non-template controls were used to verify that there was no 

genomic DNA contamination and melt curves were analysed to assess the primer 

specificity. geNorm analysis was performed to determine the most consistently expressed 

housekeeping gene in cDNA samples from numerous HLMC and hMDM donors - out of a 

range of 5/6 commonly used housekeeping genes. The most stably expressed 

housekeeping gene was 18sRNA in mast cell cDNA (Figure 2.9) and GADPH in macrophage 

cDNA (Figure 2.10). geNorm experiments were analysed using Qbase software to 

determine expression stability. In order to analyse the qPCR results, raw Ct values were 

normalised to the housekeeping gene (18sRNA or GAPDH) and data was expressed as 

2^∆Ct. 
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Figure 2.9 geNorm assay results from HLMC cDNA 
 

Graph to show the average expression stability for each reference gene target. A lower 
geNorm M value = high expression stability. Performed with cDNA from 10 donors. 

 

 

 

 

 

 

 

 
Figure 2.10 geNorm assay results from hMDM cDNA 

 

Graph to show the average expression stability for each reference gene target. A lower 
geNorm M value = high expression stability. Performed with cDNA from 10 donors 
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Figure 2.11 Primer efficiency standard curve – FcγR genes 
 

qPCR experiment was performed with a titration of hMDM cDNA to calculate the primer 
efficiency. Efficiency calculated: 10(-1/slope-1). All primers tested had an efficiency of 
100% ± 10. Slope of 3.32 = 100%, 3.6 = 90% and 3.0 = 110%. N=2 

 

 

Figure 2.12 Primer efficiency standard curve – Orai and TRPC genes 
 

qPCR experiment was performed with a titration of LAD2 cDNA to calculate the 
primer efficiency. Efficiency calculated: 10(-1/slope-1). All primers tested had an 
efficiency of 100% ± 10. Slope of 3.32 = 100%, 3.6 = 90% and 3.0 = 110%. N=2 

 

2.6 Microarray  
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Microarray experiments were performed using an Agilent SurePrint G3 Gene Expression 

8x60K one-colour microarray system, which enables estimation of absolute levels of gene 

expression between arrays. RNA was collected from 500,000 LAD2 or HLMC cells using 

RNeasy Kit (Qiagen) according to manufacturer’s instructions. The data was normalised to 

the 75th percentile intensity of all non-control probes according to Agilent instructions, 

allowing comparison across arrays. Experiments were performed with assistance from Paul 

Heath at University of Sheffield.  

 

2.7 Immunocytochemistry in mast cells 

Cells were fixed with 4% paraformaldehyde + 4% sucrose (pH7.4) for 10 minutes followed 

by washing in PBS and permeabilisation with PBS + 0.1% Triton-X-100 (Sigma) for 15 

minutes. Blocking solution of 0.02% Triton-X-100 and 0.2% fish skin gelatin (Sigma) was 

applied for at least 2 hours at room temperature before addition of primary antibody 

overnight at 4oC (TRPC1, Alomone ACC-010; TRPC6, Origene TA306349; Rabbit polyclonal 

IgG, Abcam ab27472 each used at 1:200). The epitope of primary antibodies were raised 

against intracellular amino acid residues hence the need to permeabilise the cells prior to 

antibody incubation. Secondary antibodies at concentrations of 1:1000 (Anti-Rabbit Alexa 

Fluor 488, polyclonal, Invitrogen) were incubated for 1.5 hour at room temperature before 

the coverslips were mounted onto glass slides using DAPI-Fluoromount G (Southern 

Biotech). Images were taken with an Olympus FV1000 confocal microscope with SIM-

scanner on a BX61 upright microscope. Samples were illuminated at the required 

wavelength using 405nm and 488nm lasers and quantification was performed using Image 

J.  

 

2.8 Immunocytochemistry in macrophages 

Cells were fixed with 4% paraformaldehyde (pH7.4) for 10 minutes followed by washing in 

PBS and permeabilisation with PBS + 0.1% Saponin (Sigma) for 15 minutes. Blocking 

solution (0.1% Saponin, 50µg/ml Human IgG, 1% BSA (Sigma) was applied for at least 2 

hours at room temperature before addition of primary antibody at 1:200 for 1 hour at 

room temperature (Anti-P2X7 antibody [EPR4723] ab109246 Abcam or Rabbit IgG, 

monoclonal – Isotype control ab172730 Abcam.).  Secondary antibodies at concentrations 

of 1:200 (Goat F (ab’) 2 Anti-Rabbit IgG – Fc (Dylight 650) pre-adsorbed. Ab98483 Abcam) 

were incubated for 1.5 hour at room temperature before DAPI +PBS was added and plates 

analysed using INCellAnalyser 2000, quantification was performed using InCell macro 

analysis software. The P2X7 antibody epitope was raised against an intracellular amino acid 

sequence hence the need to permeablise the cells prior to antibody incubation.  

 

2.9 Western blotting 
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2.9.1 Western blot protocol for mast cell work 
 

Protein lysate collection  
 

Cells were counted using a haemocytometer. A minimum of 100,000 cells were used per 

protein lysate condition. The cells were washed 2x in cold PBS and resuspended in ice cold 

RIPA buffer (Sigma) + protease inhibitor cocktail (Fisher). 40μL of RIPA buffer was used per 

100,000 cells. The cells were then freeze thawed twice, each time pipetted thoroughly 

between each freeze cycle. Following this, the cells were spun at 15,000rpm for 20 minutes 

at 4oC (the centrifuge was pre-cooled prior to spinning). The supernatent was aliquoted 

into 10μL volumes and stored at -80oC until further use.  

  

Bradford Assay - determining the protein lysate concentration 
 

BSA protein standards were made to serial dilutions ranging from 2mg/ml to 0.25mg/ml. 

5μL of each protein standard was pipetted into a 96well plate in triplicate. To the blank 

wells add 5μL of H2O. 5μL of each protein lysate was also transferred to the 96 well plates 

after diluting 1 in 2. 250μL of Bradford reagent was then added to each well. The plate was 

incubated for 5-30 minutes and then read on a spectrophotometer to measure the 

absorbance at 595nm. A standard curve was created; plotting net absorbance vs. protein 

standard concentration to work out the concentration of the protein lysates.  

 

Western blot protocol 
 

SDS-PAGE running gel (10%) was made using: 

2.5ml Tris (pH8.8), 200μL 10% SDS, 3.2ml Acrylamide (30%), 50μL APS 10%, 5μL TEMED, 

4.10ml H2O. 

 

5% stacking gel was added on-top of running gel using: 

1.25ml Tris 0.5M pH 6.8, 50μL 10% SDS, 500μL 30% Acrylamide, 5μL TEMED, 25μL APS 10%, 

3.2ml H2O.   

 

Protein lysate samples were defrosted on ice and diluted in a 1:1 ratio with 2x Laemelli 

buffer (Sigma 38733). The samples were heated for 10 minutes at 70oC (or 90oC for non 

membrane proteins) and spun to remove any precipitate and kept on ice until loading to 

the gel. The gel was transferred to the running tank and filled with running buffer (250mM 

Glycine, 25mM Tris-base, 0.1% SDS – all SIgma). The wells were loaded with the protein 

lysates (10-20μg protein/well), with the ladder e-stained recombinant protein ladder 

(Fisher Cat: BP3603-500) loaded in the first well (max of 18μL volume for a 10 well comb) 

followed by the protein samples, the gel was run at 100V for 1-1.30 hours. The gel was 

removed and immersed in transfer buffer (25mM Tris-base, 192mM Glycine, 15% 
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methanol) and the 'transfer sandwich' was prepared. The holder was placed black side on 

the bench, then sponge-filter paper-gel-membrane-filter paper-sponge was stacked on top 

- transfer was performed at 100V for 1 hour 15 minutes. Next, the membranes were 

transferred into the blocking solution consisting of TBST (50mM Tris, 150mM NaCl, 0.05% 

Tween-20 (Sigma)) supplemented with 5% skim milk powder and placed on an orbital 

shaker for 1 hour 30 minutes. The primary antibodies were made up to the appropriate 

concentrations (initial experiments were performed to assess optimal concentration – a 

sample of 2/3 concentrations was tested in a range based around the manufacturer’s 

recommendations and previous publications) with a primary antibody for a loading control 

such as GAPDH or α tubulin also applied. Following blocking, the membranes were 

transferred to plastic wallets containing the primary antibody, the wallets were sealed and 

the membranes incubated overnight at 4 oC on an orbital shaker. 

 

The following day the membranes were taken out of the primary antibody solution and 

washed in 1xTBST 4 times for 8 minutes per wash. The secondary antibody was then 

prepared and incubated on the membrane in the plastic wallets for 1 hour at room 

temperature on an orbital rocker, followed by 4 further wash steps of 8 minute duration in 

1xTBST. The membranes were transferred face up onto a flat piece of Clingfilm and the ECL 

reagent was added (around 1ml per membrane). At this stage the membranes were ready 

for developing using Amersham ECL Film, excess liquid was removed and the membrane 

transferred to a film cassette. Chemiluminescence film (GE healthcare cat: RPN2132) was 

exposed to the membrane in the dark and developed using an X-ray developer.  

 

2.9.2 Western blot protocol for macrophage work 
 

Reagents for western blot (NuPAGE system): 

Lysis buffer 

 Cell lysis buffer (cell signalling no. 9803) stock at 10x  

 Protease and phosphatase inhibitor (Halt no. 78440) stock at 100x 

 Solution was kept on ice at all times.  

 

NuPAGE 10% Bis-Tris Gel NP0316 

NuPAGE  MOPS SDS Running Buffer NP0001 Lot 1537451 

NuPAGE Transfer Buffer NP0006-1 

iBlot PVDF Gel Transfer Stacks IB401002.  

Odyssey LICOR Blocking Solution 92740000 

Chameleon Pre-stained Ladder 928 60000 Cat 40530-03 

NuPAGE LDS Sample Buffer (4X) NP0007 

 

hMDM protein lysate preparation 
 

Adherent cells were washed with PBS followed by addition of cell dissociation solution 

which was incubated in the culture flask for 5 minutes at 37oC. Cells were tapped vigorously 
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to unstick any cells and the cell suspension was then transferred into a 15ml Falcon tube. 

The suspension was centrifuged at 350g for 5 minutes, the supernatent was aspirated off 

and cell pellet was resuspended in cell lysis buffer + protease inhibitor (Cell signalling no. 

9803 and protease and phosphatase inhibitor Halt no. 78440 -100μL per 500,000 cells). The 

resuspended cell solution was incubated on ice for 30minutes followed by vortexing for 5 

minutes and a final centrifugation at max speed for 10minutes at 4oC. The supernatent was 

collected and stored at -20oC until needed.  

 

Western Blot protocol (using NuPAGE system) 
 

Protein lysates concentrations were determined using a Pierce BCA protein assay kit 

(Thermoscientific 23225 23227), following manufacturer’s instructions. Desired quantities 

(10-20μg) were added to a loading buffer and denatured in heating block at 70oC for 10 

minutes. Samples were transferred to the gel, with a pre-stained ladder added at this stage 

too, samples were run for 200V for 2 minutes, 60V for 15 minutes and then 170V for 50 

minutes or until the ladder reached the bottom of the gel. The proteins run through the gel 

were then transferred to a PVDF membrane using the iBlot system, following 

manufacturer’s instructions. The gel was placed in a sandwich: Anode – membrane – gel – 

filter paper – cathode, all components were wetted with transfer buffer and transfer was 

performed for 7 minutes (program P3). The membrane was then transferred into blocking 

solution for 2 hours. For blocking peptide experiments, at this stage the blocking peptide 

was incubated with primary antibody for at least 30minutes at room temp. The antibody 

and membrane were then incubated overnight at 4oC under continual rotation. The 

following day the membranes were washed x3 times for 5-10 minutes with TBST, the 

secondary antibody was then applied for 2 hours at room temperature. Another wash step 

for x3 times for 5-10 minutes was performed before the membrane was analysed using an 

infrared odyssey system.  

 

2.10  Determining the specificity of TRPC1, TRPC6 
and P2X7 antibodies 

To confirm that the antibodies used in this study could be reliably used as an indicator of 

positive TRPC/P2X channel expression, some validation experiments were performed. Each 

antibody was run in a western blot experiment in order to assess the size of the band 

obtained. For the P2X7, TRPC1 and TRPC6 antibodies, the bands seen following antibody 

incubation were around the predicted size and were the only significant band seen through 

the protein ladder (Figures 2.13-2.15), giving the first piece of evidence to suggest that the 

antibodies used in this study are able to accurately report the expression of the peptide 

they are raised against. Blocking peptides raised against the TRPC1 and P2X7 

peptide/epitope led to a significant reduction in the band seen at the expected channel size 

(Figure 2.13 & 2.14), this gives further evidence to support TRPC1/P2X7 antibody 

selectivity. In the case of TRPC6, no blocking peptide was available, however this antibody 
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was assessed in cell lysates from HEK WT and HEK TRPC6 expressing cells which are 

expected to have a low and high TRPC6 expression level, respectively. The band at ~106kDa 

in the HEK-TRPC6 cells has a significantly greater intensity than that in HEK-WT-cells (Figure 

2.15), suggesting the antibody is able to detect between low and high protein expression 

levels. What must be considered is that there is not conclusive proof from the validation 

experiments described, that TRPC1/TRPC6/P2X7 antibodies do not non specifically bind to 

other proteins with similar epitopes that are available in fixed cells, but not in cell lysates. 

However it could be argued that because under western blot conditions there is evidence 

for the selectivity of binding to the respective target (P2X7, TRPC1 or TRPC6) that it is 

unlikely that the P2X7/TRPC1/TRPC6 antibodies are reporting non-specific binding of other 

family members when used in immunocytochemistry experiments. Further evidence 

supporting the specificity of the TRPC1 antibody comes from its use in previous peer 

reviewed publications. For example lack of a signal induced by the TRPC1 antibody in TRPC1 

blocking peptide experiments in immunocytochemistry of human astrocytoma U373 MG 

cells, and following TRPC1 siRNA of mouse PASMCs using western blot provides further 

confirmation of its specificity (Barajas et al., 2008; Ng et al., 2012). The TRPC6 and P2X7 

antibody specificity is supported by data on the provider’s website (Origene and Abcam 

respectively).  

 

Taken together these experiments show that the antibodies have a high selectivity for the 

protein epitope they are raised against, as shown in western blot experiments. The IgG 

isotype control experiments performed alongside the immunocytochemistry experiments 

provide further evidence to suggest against non specific binding of the antibody to IgG 

receptors expressed in the target cells, similarly  experiments incubating the secondary 

antibody alone provide evidence that the secondary antibody is accurately reporting signal 

from primary antibody targets.   
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Figure 2.13 P2X7 antibody staining was significantly reduced following incubation 
with P2X7 blocking peptide 

 

Western blot experiment with protein lysates from hMDM cells. A.) P2X7 antibody 
staining B.) P2X7 antibody + blocking peptide. Bar graph shows mean ± SEM of 
normalised intensity ratio of P2X7 band in each condition. N=3. Results were analysed 
with students paired t-test. 
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Figure 2.14 TRPC1 antibody staining was significantly reduced following incubation 
with TRPC1 blocking peptide 
 

Western blot experiment with protein lysates from WT HEK cells. A.) TRPC1 
antibody staining with blocking peptide B.) TRPC1 antibody. Bar graph shows mean 
± SEM of normalised intensity ratio of TRPC1 band in each condition. N=2. Results 
were analysed with students paired t-test. 

 

Figure 2.15 TRPC6 antibody staining was significantly reduced in HEK-WT conditions 
compared to HEK-TRPC6 cells 
 

Western blot experiment with protein lysates from WT HEK/ HEK-TRPC6 cells. A.) TRPC6 

antibody staining in HEK-TRPC6 cells B.) TRPC6 antibody in HEK-WT cells. Bar graph shows 

mean ± SEM of normalised intensity ratio of TRPC6 band in each condition. N=2. Results 

were analysed with students paired t-test. 
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Antibody 
details 

Manufacturer 
Catalogue 
number 

Application used 
Antibody 

type 

Mouse 
monoclonal 

actin c-z 
antibody  

Santa Cruz  sc8432  Western blot Primary 

Anti-P2RX7 
antibody  

Abcam   
[EPR4723] 

(ab109246) 
Western and 

immunocytochemistry 
Primary 

P2RX7 
peptide   

Abcam  (ab191248) Western blot Control 

Rabbit IgG, 
monoclonal 

– Isotype 
control   

Abcam ab172730 Immunocytochemistry 
Primary 
isotype 
control 

(Goat F ab’) 
secondary. 
Anti-Rabbit 

IgG – Fc 
(Dylight 

650) pre-
adsorbed.  

Abcam Ab98483  Immunocytochemistry  Secondary 

TRPC6 
(human 

anti-rabbit 
polyclonal) 

Origene TA306349 
Immunocytochemistry 

and western blot 
Primary  

Anti-Rabbit 
Alexa Fluor 

488, 
polyclonal 

Invitrogen   Immunocytochemistry Secondary 

TRPC1 
(human 

anti-rabbit 
polyclonal) 

Alomone ACC-010 
Immunocytochemistry 

and western blot 
Primary 

Rabbit 
polyclonal 

IgG 
Abcam ab27472 Immunocytochemistry 

Isotype 
control 

Donkey 
anti-Mouse 

IRDye 
680RD  

LICOR 926-68072  Western blot  Secondary 

Donkey 
anti-Rabbit 

IRDye 
800CW  

LICOR 926-32213 Western blot Secondary 

 

Figure 2.16 Details of antibodies used for western blot and immunocytochemistry 

2.11  Bacterial transformation and DNA 
extraction 
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Solutions for Bacterial Transformation and DNA extraction: 

Luria broth (LB): 10g Tryptone, 5g Yeast extract, 10g NaCl. (pH 7.5 NaOH). Volume made up 

to 1l using ddH2O 

 

Super optimal broth with catabolite repression (SOC): 20g Tryptone, 5g Yeast extract, 

10mM NaCl, 2.5mM KCL, 10mM MgCl2, 20mM Glucose in 1l dH2O.  

 

DH5 competent cells (Sigma) were used to grow up constructs of plasmid DNA following 

the manufacturer’s protocol. The first step was addition of 1µL of DNA to 20µL of DH5 cells 

incubation on ice for 30minutes; this step is to allow the DNA to stick to the cells. Next, the 

cells were heat shocked for 30s at 42oC – this opens up the cell membrane to allow the 

DNA construct to enter. Cells were then placed back on ice for 2 minutes to allow the 

membrane’s to re-seal. 250µL of SOC media was added to cells and then were placed in a 

shaking incubator for 37oC for 1 hour. After this, 100µL of cell suspension was pipetted 

onto LB agar plates with appropriate antibiotic and left overnight at 37oC. The following 

day, plates were sealed with parafilm at stored upside down at 4oC. 

 

To make a starter culture to grow up the transformed colonies, a single colony was picked 

by scraping off the bacteria with a pipette tip and incubating the tip in 1ml of LB broth 

supplemented with appropriate antibiotic for 8 hours at 37oC in a shaking incubator 

(225rpm). In the mean time conical flasks containing 50ml of sterile LB broth with 

appropriate antibiotic were prepared, ready for addition of the starter cultures. The 

combined mixture was incubated at 37oC in a shaking incubator (225rpm) overnight. 

 

The next morning, the DNA constructs were extracted from the bacterial cultures using a 

GenEluteTM Plasmid midiprep kit (Sigma) as per manufacturer’s instructions. If necessary, 

DNA was concentrated to 1g/ml before use. Purified DNA was sequenced by the 

University of Sheffield Core Genomic Facility to confirm sequence integrity.  

 

2.12  LAD2 cell transfection  

A Neon® Life Technologies electroporation system was used for LAD2 transfection. LAD2 

cells were counted, 100,000 cells were used per transfection condition. The appropriate 

number of cells was removed from the culture flask and the cell suspension was spun down 

at 100g for 5minutes. The pellet was resuspended in 1ml PBS and the cells were then spun 

again and resuspended in Buffer R (12µL per transfection). Plasmid DNA was added at a 

concentration of 1µg/transfection. DNA concentration was made so that the DNA volume 

was no more than 10% of the total volume. The cell suspension in Buffer R was taken up 

with the electroporation pipette, transferred to the Neon electroporation station 

(containing 3ml of Buffer E). Care was taken to ensure no bubbles were created in the Neon 

pipette tip. Following loading into the electroporation station the cells were electroporated 

with pulse duration of 30ms at 1600mV. Cells were transferred to a 96well plate containing 

LAD2 media supplemented with 100ng/ml SCF. Cells were used in experiments 48 hours 
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after transfection. Human STIM1-WT-YFP/MO91 with a CMV promoter was bought from 

Addgene, STIM1 (KK684-685EE)/pcDNA3.1 with a CMV promoter was kindly donated by 

Ambudkar lab.  

 

2.13  MSD cytokine assays  

MesoScaleDiscovery (MSD®MULTI-SPOT Array System) Human Proinflammatory panel 1 V-

plex with 10 cytokine detection spots, were used. MSD plate assay systems utilize an 

electrochemiluminutescence detection technology in order to quantify analyte. A SULFO-

TAG™ label is used; this emits light upon electrochemical stimulation which can be initiated 

at electrode surfaces on the microplates. Each individual spot in a single well of the plate is 

pre-coated with a capture antibody specific for the analyte of interest. The analyte solution 

is then incubated with the MSD plate to allow binding of the analyte to the respective 

capture antibody. A SULFO-TAG™ labelled detection antibody solution is then applied 

which binds to the capture antibody – analyte and allows detection through application of 

an electrochemical signal which is passed through the electrode surface of the plate. In this 

case, MULTI-SPOT plates were used with a complex of 10 individual cytokine detection 

spots. These cytokines were: IL-1β, IL-12p70, IL-2, IL-4, IFNγ, IL-6, IL-8, IL-10, IL-13 and TNF-

α. 

 

hMDM cells were activated with LPS (0.1-1000ng/ml) with or without 10ng/ml IFNγ (as 

defined) for 24 hour; cells were used at day 7-10 following initial PBMC isolation and 

hMDM differentiation. 50,000 cells were plated in each well of a 96 well plate on the day of 

PBMC isolation, fresh media was added prior to agonist application and where antagonists 

were used these were applied for 15 minutes prior to agonist application. Supernatants 

were collected after the 24 hour incubation period and stored at -80oC until assay was run. 

MSD proinflammatory cytokine V-plex plates were used and samples were run at a dilution 

of 1:10 or 1:20 according to manufacturer’s instructions.  

 

2.14  Phagocytosis assay 

pHrodo® labelled E. coli bioparticles were used to measure phagocytosis in macrophages. 

Phagocytotic activity was measured based on the acidification of the particles ingested - E. 

coli particles are conjugated to pHrodo® dye, a novel, fluorogenic dye that dramatically 

increases in fluorescence as the pH of its surroundings becomes more acidic. Therefore, 

upon particle ingestion into phagosomes and change in environment pH, phagocytosis 

activity can be measured by the increase in fluorescence.  

 

pHrodo® red labeled E. coli (K-12 strain) bioparticles (Life Technologies P35361) were made 

up in HBSS with 20mM HEPES (Invitrogen 14025050, Sigma Aldrich 83264) to obtain a stock 

concentration of 1mg/ml. Macrophages were seeded into a black edged clear bottom 96 
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well plate (Greiner) at a density of 40,000 cells per well. Culture media was replaced with 

HBSS/HEPES + 1µM Cell Tracker Green CMFDA (Invitrogen - C2925) and was incubated for 

30minutes at 37oC. Antagonists were then added for 15 minutes prior to media 

replacement with pHrodo® labeled E. coli (added at 20µg per well of 100μL volume) + 

Hoescht (0.5µg/ml). Phagocytosis was then allowed to proceed and fluorescent image from 

three wavelengths were acquired (DAPI (Hoescht), FITC (cell tracker green) and TexasRed 

(pHrodo labeled E. coli)) using an InCell Analyser 2000 at 1 hour time points over 4-5 hours 

with 4 images were acquired per well with a minimum of 5 wells used per condition for 

each donor. Cells were maintained at 37°C between reads. Analysis was performed using 

InCell analysis macro software, intact cells that were included in analysis were defined by 

those which positively stained with Hoescht and cell tracker green (defined as total live 

cells). The % of responding cells was defined as the number of cells with uptake of pHrodo 

out of the total number of live cells, the density in responding cells was calculated as the 

mean fluorescent intensity of the pHrodo red signal as calculated from each ‘total live’ cell 

from each individual well, the phagocytosis index was calculated as the fluorescent 

intensity of the pHrodo (TexasRed) channel per cell divided by the background signal in the 

TexasRed channel.  

Opsonization of pHrodo® labeled E. coli was performed using BioParticles opsonizing 

reagent (Invitrogen E2870). Following reconstitution of the opsonizing reagent, 100μL was 

added to 100μL of pHrodo® labeled E. coli (20μg/μl) the solution was mixed by vortexing 

and then incubated for 1 hour at 37oC, the  opsonized bioparticles were then washed 2 

times in PBS using low speed centrifugation (800g for 10 minutes at 4oC). Resuspension of 

the opsonized E. coli was then performed following the same protocol as with non-

opsonized bioparticles.  

 

2.15  Cytotoxicity assay 

Cytotoxicity of the 3 antagonist compounds used throughout the present study was tested 

using the Thermo Scientific™ Pierce™ LDH Cytotoxicity Assay Kit (see manufacturer’s 

instructions for full protocol and reagent information). hMDMs cultured in a 96 well plate 

(75,000 cells per well) were incubated with DMSO, GSK-2160A, GSK-161A or GSK-7975A for 

24 hours in a 100μL volume. Spontanous LDH activity controls, medium only controls and 

Maximum LDH activity control conditions were included. To obtain the maximum LDH 

activity 10μL of lysis buffer was used to lyse cells. 50μL of media from each condition was 

then transferred to a new plate and mixed with 50μL of reaction mixture. After 30 minute 

room temperature incubation, reactions were stopped by adding 50μL of stop solution. The 

absorbance at 490nm and 680nm was then measured using a plate-reading 

spectrophotometer to determine LDH activity. To calculate % cytotoxicity  

% cytotoxicity = compound treated LDH activity – spontaneous LDH activity x 100 

                            Maximum LDH activity – spontaneous LDH activity  

 

Experiments were performed in triplicate with cells from 3 hMDM donors.  
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Figure 2.17 GSK-161A, GSK-2160A and GSK-7975A has no significant effect on hMDM 
cell viability over a 24 hour time period 

 

Presence of the cell viability indicator enzyme LDH was quantified by colorimetric assay 
in hMDMs following 24 hour incubation 10μM GSK-161A, GSK-2160A or GSK-7975A or 
DMSO, shown in comparison to total enzyme from equivalent number of lysed cells. 
N=3 donors, data = mean ± SEM. Results were analysed using one-way ANOVA with 
Tukey’s post hoc test.   

  

2.16  Flow cytometry 

Analytical flow cytometry was performed using the BD LSRFortessa machine, a FACS 

machine with fixed lasers. Flow cytometry is a way to analyse the relative size, internal 

complexity and fluorescent intensity of cells as they pass in suspension through a laser 

beam. The use of antibodies conjugated with fluorophores allows the expression of cell 

surface markers to be analysed through the fluorescent signal omitted. Flow cytometry 

utilizes fluidic, optic and electronic systems to give an output signal that relates to the cells 

size, relative complexity and fluorescent intensity as introduced above. The fluidics system 

controls the suction of the cells contained in suspension within a FACS tube so that they 

reach the ‘interrogation point’, which is defined as the location where the light beam is 

directed at an individual cell. It is the optic system which provides the excitation source i.e. 

a laser beam at a specific wavelength and also consists of filters and mirrors to collect the 

light signals. The electronic subsystem then converts the light signal into a digital electronic 

signal. 
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As a cell passes through the interrogation point where a laser beam of light is directed 

through the centre of the cell the light passing through the cell can be divided into: forward 

scatter light and side scatter light. The forward scatter light is effected by the size of the cell 

and its refractive index, with the larger the cell and greater the refractive index = greater 

FSC value. Similarly the side scatter light is affected by the internal complexity or 

granularity of the cell, with a more granular cell causing greater side scatter (SSC). Analysis 

of the FSC and SSC values can be useful in distinguishing different cell types within a mixed 

population. I.e. an erythrocyte and a lymphocyte would have different FSC and SSC 

properties. Upon set up of a flow cytometry experiment, the voltages of the FSC and SSC 

collection channels need to be altered so that they collect signal within the right threshold 

levels. By increasing the FSC and SSC voltage range this can allow debris particles to be 

discounted from the number of events recorded.  

When assessing the expression of cell surface markers through flow cytometry the 

excitation and emission properties of the fluorophores used needs to be carefully 

considered. In the BD LSRFortessa flow cytometer there are three fixed laser beams for 

excitation at 355-nm UV, 

450-nm violet, 488-nm blue and 640-nm red wavelengths. The use of filters that transmit 

or block light at specified wavelengths allows the distinction of fluorescent light from a 

number of different fluorophores. However the emission window of distinct fluorophores 

can overlap in spectral properties meaning that false signals in certain fluorophore 

channels can be obtained from excitation at a certain wavelength. If spectral overlap occurs 

in the fluorophore panel used in an experiment, compensation mechanisms can be used to 

prevent errors in the analysis caused by overlap in the signals.  The flow cytometry 

experiments performed in this study were relatively simple fluorophore combinations 

which were chosen so that no spectral overlap occurred.  Data collected was analysed in 

FlowJo.  
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Figure 2.18 Diagram to illustrate the FSC and SSC parameters in a flow scatter plot. 
 

From a flow cytometry experiment, showing distinct populations.  

Reproduced with permission from http://www.backbonebiology.com/flow-cytometry 

 

5x105 cells were used per condition for flow cytometry experiments. Following CD14+ cell 

isolation from peripheral blood mononuclear cells differentiation cells were plated into T75 

nunclon tissue culture flasks and cultured with GM-CSF for 7 days to allow differentiation in 

hMDM cells. On the day of the experiment, cells were detached from the flask by gently 

using a cell scraper, no detachment agent was used. The culture flask was rinsed out with 

FACS buffer (PBS -/-, 0.1% FCS) and cells were spun down at 350g for 5 minutes at room 

temp. Cell pellet was resuspended in 100μL/condition of FACS buffer + Human TruStain 

FcX™ (Fc Receptor Blocking Solution - Biolegend) (95μL of FACS buffer: 5μL of Human 

TruStain FcX block) and transferred into individual eppendorf tubes for different staining 

condition. Cells were incubated with Human TruStain FcX block solution for 5 minutes 

before addition of antibodies. Antibody incubation was performed for 20minutes at 4°C 

followed by addition of 1ml FACS buffer and a centrifugation at 350g for 5 minutes at room 

temp to wash off any unbound antibody. Cells were then resuspended in 300μL of FACS 

buffer (+ SYTOX ® Blue Nucleic Acid Stain (S11348) dead cell dye if needed) and transferred 

into FACS tubes ready for analysis using the BD FACS LSRFortessa.  

 

For experiments with the CD68 antibody, with an intracellular epitope, cells were fixed and 

permeabilised prior to antibody incubation. This was done using a BD Cell Fix and Perm kit 

(BD 554714): the cells were fixed in Cytofix for 10minutes following an initial wash with 

PBS, cells were then scraped off the flask and the preparation process was identical to that 

in non-fixed cells apart from use of the Perm/Wash buffer in the place of the standard FACS 

buffer. Performance of the BD LSRFortessa machine was calibrated daily using cytometer 

set-up and tracking (CST) beads (BD biosciences). All experiments were performed with 

unstained controls for initial setting of voltage thresholds for the FSC/SSC gates and the 

fluorophore channels. Isotype controls were performed in parallel to their respective 

antibody conjugates. 
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Figure 2.19 Flow cytometry antibody details 
 

2.17  ROS assay (bacterial killing) 

hMDMs were seeded into a 96 well plate at density of 50,000cells/well, cells were 

transferred into antibiotic free media 24hr before experiment.  On the day of the 

experiment, culture media was replaced with HBSS with 20mM HEPES (Invitrogen 

14025050, Sigma Aldrich 83264) and 20µM H2DCFDA (D-399)  was added and plate 

incubated 30mins at 37oC. H2DCFDA was removed and cells were washed with HBSS + 

HEPES solution. Subsequently, antagonists were applied for 15mins, prior to addition of S. 

Pneumoniae (MOI 5). ROS production was then measured after 4 hrs incubation at 37oC– 

using a XPS Gemini plate reader to measure the signal at 485Em/535Ex nm. Heat inactived 

bacteria was used as a negative control and addition of 50 μM Tert-Butyl Hydrogen 

Peroxide was used as a positive control.  

  

Flow cytometry antibody details Company 

Cat 

number 

APC anti-human CD64 Biolegend 305013 

APC Mouse IgG1 isotype control  Biolegend 400121 

Alexa Fluor 488 anti-human CD68  Biolegend 333811 

Alexa Fluor 488 Mouse IgG2b Isotype control Biolegend  400329 

Alexa Fluor 488 anti human CD86 Biolegend 305413 

Alexa Fluor 647 anti human CD14 Biolegend 325611 

Alexa Fluor 647 Mouse IgG1 kappa Isotype control  Biolegend 400130 
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3 Chapter 3: Investigation of TRPC channel 
contribution to FcεRI signalling in human mast 
cells 

 

3.1 Chapter 3 introduction 

3.1.1 The role of Ca2+ in mast cell mediator release 
 

Mast cells are key contributors to allergic disease (Metcalfe et al., 1997) - inappropriate 

activation of the high affinity FcεRI on the mast cell surface culminates in proinflammatory 

mediator release and contribution to symptoms of allergic disease. FcεRI activation leads to 

the generation of DAG and IP3 therefore mobilizing Ca2+ signalling from intracellular stores 

and through store/receptor operated Ca2+ channels. Ca2+ has been demonstrated to be 

have an important role in the control of mast cell mediator release; both degranulated 

mediator and newly synthesized lipid mediators and cytokines (Di Capite & Parekh, 2009).   

 

The process of degranulation has long been recognised as being Ca2+-dependent. Even 

before the exocytotic mechanism of degranulation was recognised, studies showed that 

without Ca2+, degranulation of histamine was impaired (Beaven et al., 1984). Following 

activation, mast cells can synthesise cytokines and chemokines through activation of 

transcription factors such as nuclear factor of activated T cells (NFAT) and nuclear factorB 

(NFB). NFAT activation and translocation occurs following dephosphorylation by the Ca2+-

sensitive protein calcineurin (Crabtree & Olson, 2002). However in general the level of Ca2+-

dependency for cytokine production mediated by transcription factors is complex. For 

example it has been demonstrated that NFAT and NFB can separately regulate the 

production of distinct cytokines, but also that there is some overlap between transcription 

factor roles i.e. both NFAT and nuclear factorB (NFB) have been shown to be involved in 

TNF production (Pelletier et al., 1998; Marquardt & Walker, 2000; Klein et al., 2006). 

Research by Dolmetsch et al., (1997), shows differential dependence of transcription factor 

activation on the Ca2+ signals amplitude and duration,  they demonstrate NFB can be 

activated solely by intracellular Ca2+ signalling from store depletion (Ca2+ spikes), while 

NFAT activation is dependent on extracellular Ca2+ influx. These results indicate that 

although there are defined levels of Ca2+ dependency for the initiation of transcription 

factors involved in cytokine release, the actual Ca2+ dependency of each cytokine is hard to 

define due to the overlap in control of cytokine production between transcription factors.  

This should be considered in experiments where the effect of a Ca2+ inhibitor on release of 

cytokines is assessed. Although experimental inhibition of Ca2+ may limit the activation of 

one transcription factor, its activity could be compensated by another, compounding the 

interpretation of results. Eicosanoid production can be more simply described as Ca2+-

dependent due to the Ca2+-dependent steps involved in their synthesis. Eicosanoids are 
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derived from arachidonic acid production which is regulated by the Ca2+-dependent 

phospholipase A2 (PLA2) (Chang & Parekh, 2004). Taken together, it is clear Ca2+ signalling 

plays a crucial role in controlling human mast cell functions, therefore identification of 

specific Ca2+ channels activated downstream of specific mast cell receptors represents an 

important area of research. My study aims to address a gap in understanding to provide 

further knowledge about Ca2+ signalling in mast cells. 

 

3.1.2 Evidence implicating Orai and TRPC in FcεRI-mediated 

mast cell signalling 
 

In rodent and human mast cells, several studies have implicated Ca2+ signalling through 

Orai channels as crucial components of effective FcεRI-mediated mast cell mediator 

release.  For example, in mouse foetal liver-derived mast cells, Orai1 or STIM1 knockdown 

causes significant attenuation in the FcεRI-mediated Ca2+ signalling and mediator release 

(Baba et al., 2008; Vig et al., 2008). Pharmacological inhibition of Orai channels in primary 

rat tracheal mast cells was shown to prevent allergen-driven contractions (Rice et al., 

2013). Notably Orai has also been shown to have a key role in Ca2+ signalling in FcεRI driven 

human mast cell functions. (Ashmole et al., 2012) and work by the Seward lab (Wajdner et 

al., 2015 – in press) described functional Orai/ ICRAC currents and Ca2+ signals following FcRI 

activation in HLMCs and importantly, through the use of an Orai selective antagonist, 

Synta66, demonstrated that inhibition of Orai channels caused a reduction in the release of 

proinflammatory mediators. The release of degranulated mediator, histamine was inhibited 

by Synta66 by 73% ± 10 demonstrating a primary role for Orai, whereas the release of IL-5, 

IL-8, IL-6 and CSFα was inhibited by 50-60% (Wajdner et al., 2015 – in press). Notably, lipid 

mediator PGD2 was not significantly inhibited by Synta66. Together these studies show the 

important role of Orai-mediated Ca2+ signalling in FcεRI-mediated human mast cell 

activation; however it also suggests that Orai is not the only Ca2+ channel required for the 

release of cytokine and lipid derived mediators. 

 

In addition to Orai, the involvement of TRPC channels in FcεRI-mediated mast cell 

activation and mediator release has been reported in numerous studies using rodent mast 

cell models. Similarly, in vivo studies of allergic disease have implicated TRPC channels as 

key contributors. However unlike research into Orai signalling in mast cells, until now, no 

work has addressed the contribution of TRPC channels to FcεRI-mediated signalling in 

human mast cells. In mast cells there are several examples where aspects of cell signalling 

or receptor expression are not replicated in a human model therefore studies designed to 

address the translation of findings from rodent models into primary human cells are crucial 

(Bischoff, 2007).   

 

The first report of TRPC having a role in mast cell biology was work performed by (Ma et al., 

2008). This study using the RBL-2H3 rat mast cell line, described that RBL cells express 

TRPC1, 2, 3, 5 and 7 but not TRPC6. Interestingly this study showed that shRNA knockdown 

of TRPC5 substantially impaired the Sr2+ and Ca2+ entry following both thapsigargin or 



105 
 

antigen stimulation. Interestingly here TRPC5 activity was shown to be dependent on 

Orai1/STIM1, as Orai1/STIM1 knockdown impaired store operated Sr2+ influx. Subsequent 

work, also in RBL-2H3 cells emphasised an alternate role for TRPC; (Cohen et al., 2009) 

demonstrate shRNA mediated knockdown of TRPC1 causes a decrease in responsiveness to 

antigen and a decrease in the frequency of Ca2+ waves located at the extended protrusions 

of the RBL cells. Therefore Cohen’s study indicates TRPC channels have a role in localised 

Ca2+ signalling within microdomains rather than controlling global Ca2+ signalling. The 

importance of TRPC channels in rodent mast cell FcεRI signal transduction is corroborated 

by two more studies; examination of the phenotype of Fyn-/- BMMCs (Sanchez-Miranda et 

al., 2010) showed that TRPC channels regulate FcεRI/Fyn-dependent FcεRI-mediated 

signalling and degranulation. A more detailed investigation by (Suzuki et al.) supports this, 

they showed Fyn-/- BMMCs have attenuated degranulation, reduced antigen induced Ca2+ 

signals and impaired inward and outward currents in patch clamp assays. This led to a 

hypothesis that the Fyn phenotype is caused by loss of a non-selective Ca2+ current. 

Examination of TRPC channel protein expression in the Fyn-/- BMMCs showed that TRPC1 

levels were reduced in Fyn deficient mice, and convincingly TRPC1 current was restored 

when Fyn kinase was reconstituted and TRPC1 over-expression could rescue the FcεRI-

mediated degranulation and Ca2+ entry (Suzuki et al.). In summary, this study indicates 

TRPC1 has a role in global Ca2+ signalling and is critical for degranulation in BMMCs.  

 

Literature on TRPC function in rodent mast cell signalling is inconsistent; in contrast to the 

studies described above, (Medic et al., 2013) examined BMMCs from TRPC1 knockout mice, 

finding a seemingly opposite phenotype to that seen in the Fyn-/- mice. Although these 

BMMCs displayed low TRPC1 expression, they had an enhanced FcεRI induced Ca2+ entry 

and subsequent enhanced transcription of Ca2+-dependent transcription factors (NFAT and 

JUN). The discrepancy between this study and others could be due to differences in 

methodology; (Medic et al.) permanently delete TRPC1 from development which could lead 

to permanent phenotypic alterations, whereas (Cohen et al.) and (Suzuki et al.) used 

transient knockdown techniques. An in vivo model of TRPC1-/- mice reported by (Yildirim et 

al., 2012) found a reduction in Th2 cytokines and chemokines in the lungs of ovalbumin 

sensitized mice. The methodology of TRPC1-/- knockdown by (Yildirim et al.) is consistent 

with (Medic et al.), yet there is a direct contrast in expected results, however, the cell types 

mediating the phenotype of the in vivo model are unknown. A study by (Sel et al., 2008) 

shows similar results to the TRPC1-/- in vivo mouse (Yildirim et al.) but with a TRPC6-/- 

knockout mouse, here in addition to reduced Ca2+ signalling there was also a decrease in 

ovalbumin induced Th2 cytokines compared to the WT controls.  

 
Taken together these studies suggest that the TRPC channels have important roles in FcεRI-

mediated rodent mast cell biology. However the specific role of TRPC channels is highly 

variable in each different study described, the reasons for these differences could be due to 

a combination of factors.  It is important to note both the differences in methodologies, 

and the differences incurred by the complex regulation of TRPC activity based on the level 

of expression of other family members/interacting partners. Several of the studies 

described above, delineating the function of TRPC, were performed using mouse knockout 

models or siRNA knockdown. Use of these methods has been a necessity due to the lack of 
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selective pharmacological tools to distinguish between receptor subtypes, but the 

possibility of compensatory mechanisms complicating the results must be taken into 

account.  

 

In combination the results from the studies described show that there is a clear role for 

Orai channels in FcεRI-mediated  rodent and human mast cell biology, similarly there is 

clear evidence for some role of TRPC channels to FcεRI regulated rodent mast cells 

however there is a clear lack of studies assessing TRPC contribution to human mast cell 

biology. The aim of my study was to address this novel and important area of research with 

the hypothesis that TRPC channels would contribute to FcεRI Ca2+ signalling in human mast 

cells, based on the supporting evidence described. 

 

3.2 Results 

3.2.1 Assessment of TRP, Orai and STIM family mRNA 

expression in LAD2 and HLMCs through microarray 
 

A microarray study was performed to assess the expression of TRP, Orai and STIM families 

in both LAD2 and HLMC cells. The results of these experiments confirm previously 

published work that Orai and STIM family genes are expressed in HLMCs at mRNA level and 

also show the expression of Orai and STIM into LAD2 mast cells. The microarray data 

presented in Figure 3.1 shows positive expression of Orai1, 2 and 3; Orai 1 and 2 expression 

was greatest with relative expression levels of 3-4 whereas Orai2 was expressed at more 

than half these levels, at <1 relative expression. Similarly, STIM1 was expressed at greater 

levels compared to STIM2. 
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Figure 3.1 Orai, STIM and TRP family mRNA expression as assessed by microarray 

 
Microarray data was normalised to the 75th percentile of all non-control probes, 
according to Agilent instructions. A.) LAD2 mRNA expression from three 
independent RNA extractions ± SEM B.) HLMC mRNA expression from one HLMC 
donor.  

 

The microarray experiments also revealed novel information about the expression levels of 

members of the TRP channel family. There are several classes of the TRP family, including 

the ankyrin, canonical, vaniloid, and melanostatin transient receptor potential families 

(Section 1.5). Although this study focuses on the function of the TRPC channel family, the 

expression of other TRP families was also assessed to provide preliminary data to direct 

future research in the field. Of more direct relevance, the commonly reported promiscuity 

of TRP channels in terms of channel heteromerisation and interaction (Section 1.5.9) 

means that identifying potential partners for TRPC in mast cells is important. Microarray 

data demonstrates that members of the TRPC, TRPM and TRPV family are expressed in 

both LAD2 and HLMC cells. TRPV2 was most highly expressed with relative expression 

levels around 50 in both cell types. TRPV1 was also expressed in LAD2 and HLMCs, however 

the expression levels were much lower at ~0.6-0.7. Of the TRPM family, TRPM2 and M7 

were expressed in both cell types at similar levels. TRPM4 was also expressed in HLMC and 

LAD2s, but its expression is far greater in LAD2s than in HLMCs, with more than a 10-fold 

difference in expression (Figure 3.1). TRPM7 has previously been functionally characterised 

in human mast cells (Wykes et al., 2007), demonstrating that this level of mRNA expression 
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is sufficient to provide a functional contribution to cell physiology. Finally, the results 

presented in Figure 3.1 also show novel evidence that TRPC1, TRPC3 and TRPC6 are 

expressed in LAD2 and HLMCs, with TRPC6 expressed at the highest levels in both cell types 

(~5), TRPC1 was expressed at around 0.2 in LAD2s and 0.8 in HLMCs, and TRPC3 around 0.1 

in both cell types. Together these results show Orai, STIM and a range of TRP channel 

families are expressed at mRNA level with high correlation in levels of expression between 

LAD2 and HLMC cells.  

 

3.2.2 Confirmation of mRNA expression of the Orai, STIM and 

TRPC family in other HLMC donors by qPCR 
 

Quantitative PCR was used to verify the consistency of expression of TRPC subtypes in 

HLMCs between different lung donors. geNorm assays were initially performed to verify 

the most stably expressed housekeeping gene from which to normalise, 18SrRNA (Figure 

2.9) was demonstrated to have an M value of less than 0.55 and was the most stably 

expressed out of the 5 other genes assessed in HLMC cDNA. SYBR green primer probe 

technology was used in these experiments, therefore primer specific amplification of the 

target gene was assessed for each experiment using a melt curve analysis (Figure 2.7). 

Similarly cDNA concentration titration experiments were performed to ascertain the primer 

efficiency (Figure 2.12). Together these data provide validation that the qPCR results can 

be interpreted to assess relative quantitative gene expression. 

 

qPCR was performed in HLMC cells from 4 additional lung donors which allowed an 

assessment into any variation in expression between donors.  Whereas the microarray data 

showed no expression of TRPC5 and TRPC7, qPCR showed low expression of TRPC5 and 

TRPC7 in donors P294 and P315 but not in donors P312 and P319. There was a significantly 

higher expression of Orai2 in Donor P312 compared to the other three donors. However, all 

other gene expression values were largely consistent between donors. Notably, all donors 

showed high expression levels for FcεRI, which has a key role in mast cell function. 
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Figure 3.2 Orai, STIM and TRPC mRNA expression as assessed by qPCR in further 
HLMC donors 

 
Quantitative PCR to assess the expression of Orai, STIM and TRPC mRNA in HLMCs. 
Expression was normalised to 18S endogenous control and expressed as % relative 
to 18S. –RT and NTC controls were performed to show no genomic contamination 
was present. SYBR green probes were used and melt curves plotted to assess primer 
specificity. A.) mRNA expression with data from individual donors presented. B.) 
mRNA expression with data from all donors meaned. Results were analysed using 
one-way ANOVA with Tukey’s multiple comparison test. * p <0.01, **** p<0.0001 

 

 

In general the qPCR results presented in Figure 3.2 confirmed that Orai and STIM 

expression follows a similar expression profile as observed in the microarray experiments; 

however only expression of TRPC1 and TRPC6 was observed by qPCR, TRPC3 was not seen 

at significant levels. As in the microarray results TRPC6 expression was higher compared to 

TRPC1, however the levels of TRPC6 were not in line with the expression of Orai and STIM 

genes as shown in microarray. The reasons for these discrepancies could be explained due 

to differences in the specificity of the individual gene amplification between the two 

techniques. In summary, the experimental results presented in Figures 3.2 confirm the 
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previously published data that Orai and STIM families are expressed in human mast cells. 

The results also show novel evidence that there are numerous members of the TRP channel 

family expressed in LAD2s and HLMCs at mRNA level and in general the expression is 

consistent between the two cell types. Identification of the expression of certain members 

of the TRP family provides useful information from which to direct future ion channel mast 

cell research. Of particular interest in respect to the present study; TRPC1 and C6 are 

shown to be expressed in both LAD2 and HLMC cells at mRNA level. This result provided 

identification of the TRPC family members to focus upon for the rest of this study. 

 

3.2.3 TRPC1 and TRPC6 expression was observed in HLMCs 

and LAD2s at protein level. 
 

Based on the evidence from the microarray and qPCR experiments, follow up studies to 

verify the protein expression of TRPC1 and TRPC6 were performed by 

immunocytochemistry (Figure 3.3-3.5). As described in Section 2.10 (Figure 2.14 and 2.15), 

the selectivity of the TRPC1 and TRPC6 antibodies were supported by a western blot 

experiments. Data presented in Figure 3.3 and 3.4 shows that TRPC1 and TRPC6 are 

expressed in HLMCs with a MFI significantly greater than the MFI seen in IgG isotype 

control conditions (TRPC1 MFI – background = 36.8 ± 4.8 n=31, TRPC6 MFI – background = 

31.6 ± 1.1 n=41, IgG isotype control MFI-background = 16.7 ± 0.7 n=69). Fluorescent 

intensity profiles shown in Figure 3.3E and 3.4E indicate that the intensity profile is evenly 

distributed through the cell diameter rather than being brighter at the edges of the cell as 

would be seen if the expression was localised to the plasma membrane. TRPC1 protein 

expression was also found in LAD2 cells (Figure 3.5), giving confidence to translatability of 

TRPC channel expression between LAD2 and HLMC mast cells. (TRPC1 MFI-background = 

142.7 ± 1.1 n=41, IgG isotype control MFI – background = 45.7 ± 1.4 n=35). Together these 

results show evidence to support the expression of TRPC1 and TRPC6 in human mast cells 

at protein level.  

 

 

 

 

 

 

 

 

 



111 
 

 
Figure 3.3 TRPC1 expression in HLMCs at protein level 

 

Immunocytochemistry to assess TRPC1 channels in HLMCs, cells were stained with:  

A.) anti-TRPC1 B.) IgG isotype control, and all cells were fixed with DAPI 

fluoromount. Cells were imaged using a fluorescent confocal microscope, images 

taken at 488 and 405nm. C.) Bar graph shows quantification of mean fluorescent 

intensity of cells in each conditions mean ± SEM, D.) Example cell for surface profile 

analysis E.) TRPC1 surface profile fluorescent intensity. N=3 donors. Results were 

analysed using one-way ANOVA with Tukey’s multiple comparison test. * p <0.01 

**** p<0.0001 
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Figure 3.4 TRPC6 expression in HLMCs at protein level 

 

Immunocytochemistry to assess TRPC6 channels in HLMCs, cells were stained with:  

A.) anti-TRPC6 B.) IgG isotype control, and all cells were fixed with DAPI 

fluoromount. Cells were imaged using a fluorescent confocal microscope, images 

taken at 488 and 405nm C.) Bar graph shows quantification of mean fluorescent 

intensity of cells in each conditions mean ± SEM, D.) Example cell for surface profile 

analysis E.) TRPC6 surface profile fluorescent intensity. N=3 donors. Results were 

analysed using one-way ANOVA with Tukey’s multiple comparison test. * p <0.01 

**** p<0.0001 
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Figure 3.5 TRPC1 expression in LAD2s at protein level 

 
Immunocytochemistry to assess TRPC1 channels in LAD2s, cells were stained with:  
A.) anti-TRPC1 B.) IgG isotype control, and all cells were fixed with DAPI 
fluoromount. Cells were imaged using a fluorescent microscope, images taken at 
488 and 405nmmC.) Bar graph shows quantification of mean fluorescent intensity 
of cells in each conditions mean ± SEM, D.) TRPC1 surface profile fluorescent 
intensity. Results were analysed using one-way ANOVA with Tukey’s multiple 
comparison test. * p <0.01 **** p<0.0001 

 
 
 

3.2.4 Orai/Orai-regulated Ca2+ entry contributes to FcεRI Ca2+ 

signalling in LAD2 and HLMCs 
 

To investigate the contributors to FcεRI-mediated Ca2+ entry, Synta66, an Orai selective 

inhibitor was used to show the contribution of Orai and Orai regulated channels.  

A concentration of 10µM concentration Synta66 has been shown to have a high selectivity 

for Orai channels and a comprehensive list of ion channels and receptors were shown to be 

insensitive to 10µM Synta66 treatment (Di Sabatino et al., 2009). The compound structure 

of Synta66 and its comparison to other Orai selective antagonists was shown in (Derler et 

al., 2013). Similarly data obtained by the Seward laboratory (Claire Tree-Booker thesis) has 

demonstrated that 10µM Synta66 was insensitive against OAG induced signals in HEK-
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TRPC6 cells and in S1P induced signals in HEK-TRPC5 cells. Further work by the Seward lab 

has shown that 10µM was the IMAX concentration for inhibition of store-operated currents 

in HEK Orai1/STIM1 expressing cells. In combination these pieces of data provide robust 

evidence that 10µM Synta66 causes maximal inhibition of Orai-mediated currents and that 

it is selective for Orai channels.  

 

 

Figure 3.6 FcRI activated Ca2+ influx in HLMCs and LAD2s is partly inhibited by Orai 
inhibitor, Synta66 

 
Single cell Ca2+ Imaging of fura 2-AM loaded HLMCs/LAD2s. HLMCs and LAD2s were 
incubated overnight with 300ng/ml IgE A.) Ca2+ signal over time, 3μg/ml Anti-IgE 
and external solution containing 2mM Ca2+ were bath applied as indicated by the 
horizontal bars. 10μM Synta66 was preapplied for 15mins prior to experiment and 
kept constant throughout. A&C shows mean of cells per donor ± SEM  B.) Bar graph 
showing mean fluorescence change in Ca2+ signal (t300sec - t0sec) for conditions 
with and without Synta66. n>40 cells from each donor N=3 donors. C&D.) = same as 
A&B but for LAD2 cells. Results were analysed using unpaired students t-test 

***p<0.001, ****p<0.0001. Experiments performed by Jasmine Farrington and 
Claire Tree-Booker. 

 

 

In order to separate the Ca2+ signal induced by ER store release and from the Ca2+ influx 

through plasma membrane channels, Ca2+ ‘add back’ protocol was performed. Here the 

Anti-IgE stimulus was initially applied in the absence of extracellular Ca2+ to reveal any Ca2+ 
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signal initiated by store release alone, and then extracellular Ca2+ was reapplied to monitor 

the resulting influx through plasma membrane channels. As shown in Figure 3.6 the 

kinetics of the FcεRI induced Ca2+ signal exhibited an initial fast increase in signal (store max 

– basal = 40/60sec for LAD2/HLMC) followed by a more sustained signal rise (max-basal = 

130/100 second for LAD2/HLMC). In HLMCs pre-application of 10µM Synta66 reduced the 

Anti-IgE induced Ca2+ influx by 69%, and in LAD2s Synta66 caused a 67% inhibition. 

Interestingly, Synta66 had no effect on the store component of the signal in either cell 

type, although the amplitude of the store signal was shown to be consistently higher in 

HLMCs vs. LAD2 cells (~0.3 vs. 0.1 ∆signal). This data gives clear evidence of the 

contribution of Orai and Orai regulated channels to FcεRI-mediated Ca2+ signalling in HLMC 

and LAD2 cells. The translation in the effect of Synta66 between HLMC and LAD2 cells 

provides evidence to indicate that Anti-IgE mediated signalling is mediated by the same 

mechanism in HLMC and LAD2 cells.  

 

Although 10µM of Synta66 was shown to completely ablate the Orai-mediated current in a 

HEK O/S over-expression system (Jasmine Farrington’s thesis) the results here show the 

EMAX concentration of Synta66 causes a less than 70% inhibition in the signal, therefore 

suggesting that there are other contributory signals to the FcεRI-mediated Ca2+ entry. This 

evidence contributes to that already illustrated in  Setion 3.1 in support of the hypothesis 

of TRPC contribution to FcεRI signalling.  

 

3.2.5 STIM1-regulated TRPC does not contribute to FcεRI or 

SOCE in LAD2 cells 
 

At present, there is a deficit of selective pharmacological tools to inhibit TRPC channels, 

particularly in the differentiation between TRPC and Orai channel activity. We sought 

another approach to test the functional contribution of TRPC channels to FcεRI signalling in 

human mast cells. As described in Section 1.5.8 STIM1 has been shown to electrostatically 

interact with TRPC channels to control their activation. (Zeng et al., 2008) reported that the 

Lys 684-685 region of STIM1 electrostatically interacts with TRPC1 aspartate residues to 

control gating of TRPC1, but notably not Orai channels. Therefore mutating this Lys region 

of STIM1 to glutamate reverses the charge so that STIM1 is no longer able to activate 

TRPC1, i.e. creating a TRPC1 inactivating mutant. (Cheng et al., 2011a) use this STIM1-KK684-

685EE mutant to identify the contribution of STIM1 regulated TRPC1 signalling in HSG cells, 

without interfering with Orai functionality. Further studies have demonstrated that STIM1 

gates all TRPC channels with the Lys 684-685 region (Lee et al., 2010). This significant finding 

has provided a way to independently assess the contribution of TRPC to Ca2+ signalling. The 

YFP tagged - STIM1-KK684-685EE construct as used and validated by (Zeng et al., 2008) and 

(Cheng et al., 2011a) was kindly donated to the Seward lab for use in the present study. 

The construct sequence integrity was confirmed by sequencing before it was used in 

further experiments. YFP tagged - STIM1-KK684-685EE or STIM1-WT constructs were 

transfected into LAD2 human mast cells by electroporation. Successfully transfected cells 

were monitored by visualisation of the cells expressing the YFP tag. Initial validation 
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experiments as presented in Figure 3.7 show live time lapse imaging experiments of LAD2 

cells transfected with the YFP tagged constructs. The results of these experiments display 

that the normalised YFP intensity was significantly greater at the plasma membrane 

following thapsigargin activation (WT=1.00 to 1.18 ± 0.06 N=3 and STIM1-KK684-685EE = 1.00 

to 1.13 ± 0.07 N=3), indicating that the STIM1 constructs are able to translocate to the 

plasma membrane upon store depletion. These results confirm that the YFP tagged STIM1 

constructs functioned as expected based on the known role of the STIM1 protein and 

provide validation of the constructs activity.  

 

Ca2+ imaging experiments were performed with cells successfully transfected with the 

STIM1 constructs aiming to determine whether STIM1-regulated TRPC was contributing to 

the Ca2+ signalling in LAD2 cells. First LAD2 cells were stimulated with thapsigargin to 

monitor whether STIM1 regulated TRPC1 was a contributor to the resulting signal from this 

generic store depletion protocol. However, the results presented in Figure 3.8 show there 

was no change in the Ca2+ signalling between the STIM1-WT and STIM1-KK684-685EE 

expressing cells; in either the max-basal Ca2+ signal or the 1st derivative (mean change of 

Ca2+ signal of 0.41 ± 0.06 n=23 and 0.35 ± 0.06 n=25 was seen in STIM1-KK684-685EE and 

STIM1-WT cells respectively). Similar results were shown when the transfected cells were 

activated with Anti-IgE (Figure 3.9), a mean change in Ca2+ signal of 0.6 ± 0.1 (n=20) was 

seen in both STIM1-WT and STIM1-KK684-685EE expressing cells. In order to assess the 

amount of construct expression was not different between the STIM1-WT and STIM1-KK684-

685EE constructs, the standard deviation of the YFP intensity in cells from each condition 

was measured. This analysis revealed that there was no significant difference in the YFP 

intensity between the two conditions (STIM1-WT SD of YFP intensity=212.0 ± 50 n=20, 

STIM1-KK684-685EE cells =167.1 ± 20.4 n=30), so a differential level of transfected protein 

expressed per cell was unlikely to  explain the lack of attenuation of the Ca2+ signalling in 

STIM1-KK684-685EE expressing cells. Unfortunately, as transfection of cells is required to 

express the TRPC1 inactivated mutant (STIM1-KK684-685EE), it was not possible to perform 

the same experiments in HLMCs, due to technical limitations in the transfection of a 

primary cell type. Neon electroporation was attempted in HLMCs but sufficient numbers of 

viable cells were not recovered from this methodology. Taken together, these results 

provide evidence that STIM1-regulated TRPC channels do not contribute to thapsigargin or 

FcRI induced Ca2+ signalling in LAD2 cells. These results are contrary to the original 

hypothesis described. 
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Figure 3.7 YFP tagged STIM1-WT and STIM1 KK684-685EE constructs translocate to 
plasma membrane following store-depletion 

 
Live time lapse imaging of LAD2 cells transfected with YFP tagged - STIM1 WT  or 
STIM1 KK684-685EE constructs. 2μM Thapsigargin (TG) was applied to visualise 
translocation of STIM1 to the plasma membrane. Images were normalised for 
bleaching and are representative cells from 3 experiments, n=6 cells. B&C.) YFP 
intensity at the plasma membrane before and after TG treatment, values were 
normalised to fluorescence at beginning of time lapse. Results were analysed using 
an unpaired t-test. **p<0.01, **p<0.001. 
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Figure 3.8 STIM1-regulated TRPC does not contribute to thapsigargin mediated Ca2+ 
entry in LAD2 mast cells 

 
Single cell Ca2+ imaging of fura 2-AM loaded LAD2 cells transfected with YFP-
STIM1-WT or YFP-STIM1 KK684-685EE. Experiments were performed 48hr after 
transfection. A.) Ca2+ signal over time, 2μM thapsigargin was applied as indicated 
by horizontal bars, mean ± SEM. B.) Bar graph showing mean fluorescent change in 
Ca2+ signal (max-basal) C.) Bar graph showing the 1st derivative of the Ca2+ signal at 
t=400s. All data is shown as mean ± SEM.  n > 20 cells N=3 experiments. Only YFP+ 
cells were included for analysis. Results were analysed using unpaired students t-
test, ns p>0.05 
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Figure 3.9 STIM1 regulated TRPC does not contribute to FcεRI mediated Ca2+ entry in 
LAD2 mast cells 

 
Single cell Ca2+ imaging of fura 2-AM loaded LAD2 cells transfected with YFP-
STIM1-WT or YFP-STIM1 KK684-685EE. Experiments were performed 48hr after 
transfection. LAD2s were incubated overnight with 300ng/ml IgE prior to 
experiment. A.) Ca2+ signal over time, 1μg/ml Anti-IgE applied as indicated by 
horizontal bars, mean ± SEM. B.) Bar graph showing the 1st derivative of Ca2+ signal 
at t=400s. All data is shown as mean ± SEM. C.) Bar graph showing mean 
fluorescent change in Ca2+ signal (max-basal) D.) Bar graph showing standard 
deviation of YFP intensity in transfected cells. n > 10 cells N=3. Only YFP+ cells 
included for analysis. Results were analysed using unpaired students t-test, ns 
p>0.05. 

 

 

3.2.6 TRPC6 channels are not contributors to Ca2+ signalling in 

HLMCs 
 

Results presented thus far have demonstrated a role for Orai but not STIM1 regulated TRPC 

contributing to FcεRI induced Ca2+ entry. In order to selectively identify the contribution of 

TRPC6 to Ca2+ signalling in human mast cells, recently discovered TRPC3/6 agonists and 

antagonists from GSK were used. These compounds were shown to be potent and selective 

for TRPC3/6, demonstrated in previous publications (Washburn et al., 2013; Seo et al., 

2014b). The TRPC3/6 antagonist, GSK2833503A (GSK-3503A) is a selective inhibitor of 

TRPC3 and TRPC6 with at least 100-fold selectivity over other Ca2+-permeable channels 

(example 19 in Washburn et al., 2013).  GSK1702934A (GSK-2934A) is a potent TRPC3/6 
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agonist and did not stimulate TRPV4, TRPA1, M1, M4, CaV1.2, hERG, NaV1.5, or CXCR5 

receptors at concentrations <10µM (supplementary data in Wajdner et al., 2015 – in press) 

 

In order to find the EC80 and EMAX for the agonist and antagonist, respectively, Ca2+ 

imaging experiments were performed in HEK 293 cells over-expressing TRPC6. A 

concentration-response curve as presented in Figure 3.10 shows that GSK-2934A induces 

Ca2+ signals with a pEC50= 6.3 ± 0.04 N=3, whilst the antagonist GSK-3503A inhibits 

TRPC3/6 mediated Ca2+ signals pIC50=7.8 ± 0.03 N=3. These results allowed appropriate 

concentrations of the compounds to be used in further experiments in HLMCs. The potency 

for each of these compounds found from the data in Figure 3.10 is in accordance with the 

reported potency in experiments performed during compound validation at 

GlaxoSmithKline. Interestingly, these compounds were shown to have similar activity in rat 

TRPC3/6 models (supplementary data in Wajdner et al., 2015 – in press).  

 

 
 

 

Figure 3.10 TRPC3/6 agonist and antagonist concentration-response validation in 
HEK-TRPC6 cells 

 
Single cell Ca2+ imaging of fura 2-AM loaded HEK-TRPC6 cells. A.) Ca2+ signal over 
time response to GSK-2934A agonist; GSK-2934A applied at varying concentrations 
as indicated by the horizontal bars. Graph shows mean signal from all cells tested. 
B.) Concentration-response curve in HEK-TRPC6 cells – summarising change in Ca2+ 
signal to varying concentrations of GSK-2934A agonist C.) Ca2+ signal over time – 

effect pre-incubation of varying concentrations of antagonist GSK-3503A to 3M 
GSK-2934A induced Ca2+ signal. Graph shows mean signal from all cells tested D.) 



121 
 

Concentration-response curve summarising change in Ca2+ signal to varying 
concentrations of GSK-2934A agonist. n>20 cells N=3 independent experiments. 
Data is shown as mean ± SEM.  

 
 

Following these initial validation experiments, Ca2+ imaging in HLMCs was performed. 3µM 

of the GSK-2934A TRPC3/6 agonist was applied to fura-2AM loaded HLMCs (Figure 3.11), 

however the TRPC3/6 agonist was shown not to induce a significant increase in Ca2+ signal 

above the baseline (0.01 ± 0.001, n=126 cells N=5 donors). The same cells did respond to a 

stimulus of Anti-IgE applied at the end of the experiment as an experimental control, with 

the response in the range of magnitude typically observed in the Seward lab (Δ0.6) 

therefore confirming that the cell viability and experimental set-up were not to blame for 

the lack of signal induced by GSK-2934A.  

There has been previous work showing that TRPC6 channels are not located at the plasma 

membrane until translocation is initiated by signalling proteins (Cayouette et al., 2004; 

Monet et al., 2012), therefore further experiments were performed taking this into 

consideration. In order to test whether TRPC6 activity is coupled to FcRI mast cell 

signalling, the effect of the TRPC3/6 antagonist (2M GSK-3503A) on FcRI-induced Ca2+ 

influx was investigated. The results presented in Figure 3.12 show that FcRI activation 

induced a mean max-basal change of 0.6 ± 0.02 (n=49 cells N=3 donors) in control HLMC, 

which was the same as the 0.6 ± 0.02 (n=45 cells N=3 donors) response seen in GSK-3503A 

pre-treated cells. In combination, these data demonstrate that when using selective 

pharmacological tools, there is no evidence for a contribution from TRPC3/6 to FcRI- 

initiated Ca2+ signalling in HLMCs.  
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Figure 3.11 TRPC3/6 agonist has no effect on Ca2+ signalling in HLMCs 

 
Single cell Ca2+ imaging of fura 2-AM loaded HLMCs. HLMCs were incubated 
overnight with 300ng/ml IgE A-C.) Ca2+ signal over time; DMSO vehicle control/ 

3M GSK-2934A was applied as indicated by the horizontal bars, followed by Anti-
IgE at 1μg/ml. A.) Single cell example traces, B.) All cells meaned. C.) Scatter graph 
showing Ca2+ signal in response to TRPC3/6 agonist (t=240sec-t=60sec) - before 
Anti-IgE application, line in bar graphs shows mean ± SEM. n>80 cells for each 
condition, N=3 donors. Results were analysed using unpaired students t-test, ns 
p>0.05.  
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Figure 3.12 TRPC3/6 antagonist has no effect on FcεRI mediated Ca2+ signalling 

Single cell Ca2+ imaging of fura 2-AM loaded HLMCs. HLMCs were incubated 
overnight with 300ng/ml IgE. A-C.) Ca2+ signal over time. 2μM of GSK-3503A 
antagonist was pre-applied for 15 minutes before bath application of 1μg/ml Anti-
IgE, as indicated by the horizontal bars. A&B show example single cell traces, C.) 
shows mean signal from all cells tested D.) Scatter graph showing change in Ca2+ 
signal (max-basal) to Anti-IgE in each cell from all experiments. n>50 cells for each 
condition N=3 or 4 donors. Results were analysed using students unpaired t-test, ns 
p>0.05 
 

 

Translocation of TRPC6 has been reported to occur through several different mechanisms. 

Gq-protein mediated receptor activation; ER store depletion and PI3K activation have all 

been shown to cause an increase in TRPC6 receptor expression at the plasma membrane 

(Cayouette et al., 2004; Monet et al., 2012).  While it is clear that FcεRI is initiating ER store 

depletion, the involvement of PI3K in FcεRI signalling could be dependent on whether the 

classical or alternative FcεRI signalling cascade is initiated (Gilfillan & Tkaczyk, 2006), 

similarly the Gq mediated translocation is not addressed through FcεRI activation. To 

account for this TRPC6 mediated Ca2+ signalling in HLMCs was studied following c-kit 

receptor activation (SCF ligand) and P2Y (ADP ligand) receptor activation. c-kit signalling 

cascade is similar to that in the alternative FcεRI cascade and utilises PI3K whereas P2Y 

activates a Gq protein mediated receptor activation. Application of the c-kit agonist, SCF, to 

HLMCs was shown to induce oscillatory Ca2+ signals (Figure 3.13). When the TRPC3/6 

antagonist was pre-applied  before application of SCF, there was no significant change in 
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the area under the curve (62.73 ± 30.36 n>50, N=3 in SCF control and 95.74 ± 15.23 n> 50, 

N=3 in SCF + GSK-3503A) or the normalised max of the Ca2+ signal (1.67 ± 0.07 n>50, N=3 in 

SCF control and 2.18 ± 0.24 n>50, N=3 in SCF + GSK-3503A) compared to control conditions, 

providing no evidence for TRPC3/6 contribution to SCF mediated Ca2+ signalling. Similarly, 

Figure 3.13 shows that application of the P2Y agonist, ADP, to HLMCs induced a fast 

transient Ca2+ signal, however there was no significant change in the ADP induced Ca2+ 

signal when the TRPC3/6 antagonist was pre-applied (mean Ca2+ signal 0.04 ± 0.005 n>50, 

N=4 in ADP + GSK-3503A and 0.07 ± 0.004 n>50, N=4 in ADP control). In summary, use of 

the TRPC3/6 selective compounds indicated there is no activity of TRPC6 as plasma 

membrane localised Ca2+ influx channels in human mast cells.   

 

 
Figure 3.13 TRPC3/6 antagonist has no effect on P2Y or c-kit receptor mediated Ca2+ 
signalling 

Single cell Ca2+ Imaging of fura 2-AM loaded HLMCs. A.) Mean Ca2+ signal over time. 

2M of GSK-3503A antagonist was pre-applied for 15 minutes before bath 

application of 100M ADP, as indicated by the horizontal bars. B.) Scatter graph 
showing change in Ca2+ signal (max-basal) to ADP in each cell from all experiments, 
C.) shows representative Ca2+ signal traces from individual cells, 100μg/ml SCF 

applied as indicated by horizontal bars  and 2M GSK-3503A was pre-applied for 
15minutes prior to agonist application. D.) shows a bar graph summarising the 
normalised max (max calculated from signal after normalisation to baseline 
fluorescence) and the area under the curve change in Ca2+ signal to SCF. n>50 cells for 
each condition over N=3 or 4 donors. Results were analysed using student’s unpaired 
t-test/Two-way ANOVA with Bonferroni post test, as appropriate. ns p>0.05 
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3.3 Discussion 

The results from this chapter shows novel evidence in support of a model for human FcεRI- 

induced mast cell activation with involvement of Orai but not TRPC-mediated Ca2+ entry. 

Microarray and qPCR experiments demonstrate that Orai1, 2, 3; STIM1 and 2; TRPC 1 and 6 

are expressed in LAD2 and HLMC cells at the level of mRNA. Notably immunocytochemistry 

data provided evidence for the expression of TRPC1 and 6 at protein level. In corroboration 

with previous publications, my data shows Orai-mediated Ca2+ signalling as a component of 

FcRI Ca2+ signalling in HLMCs and also in LAD2 cells. In contrast to previous studies, this 

work shows no contribution of TRPC1 or TRPC3/6 to FcεRI-mediated Ca2+ signalling in 

LAD2s/HLMCs, respectively. These results provide important novel contributions regarding 

TRPC biology in human mast cells. 

 

Orai and TRP channel expression via microarray in LAD2 and HLMC 
 

TRP channels are known  for their ability to form heteromeric channel complexes with 

other family members (Hofmann et al., 2002; Tsiokas, 2009; Ma et al., 2011b; Cioffi et al., 

2012b; Storch et al., 2012), with numerous combinations reported. Similarly TRPC channels 

have been shown to functionally interact with SOCE channel components, Orai and STIM 

proteins (Huang et al., 2006; Jardin et al., 2008; Zeng et al., 2008; Cheng et al., 2011c; Hong 

et al., 2011). To ascertain the expression profile of TRP channel genes and other known 

interacting Ca2+ channels, in LAD2s and HLMCs, a microarray study was performed. 

Assessing the mRNA expression of these genes in LAD2 and HLMC mast cells in parallel has 

provided useful indications into the channels with functional significance in human mast 

cell biology. Our results showed expression of Orai and STIM family members, with the 

expression profile of family members consistent with previously published findings  in 

HLMCs (Ashmole et al., 2012) and as reported in human macrophage cells (Chapter 5).  

Orai2 and STIM2 expression was shown to be lower than other Orai and STIM family 

members in LAD2s and HLMCs. My study shows novel evidence for the expression of TRPC1 

and TRPC6 in LAD2 and HLMC cells. A gene chip affymetrix expression array performed in 

2003 did not reveal any expression of TRPC1-7 in HLMC cells, the reasons for the 

differences are not known. However, (Bradding et al., 2003) also reported no expression of 

P2X4 or P2X7 in HLMCs which was subsequently contradicted in a study by the Seward and 

Bradding labs (Wareham et al., 2009) where RT-PCR experiments showed positive 

expression of the P2X1, 4 and 7 in HLMC cells and electophysiology experiments 

determined functional activity. This demonstrates that perhaps a difference in sensitivity 

between methodologies is responsible for the discrepancies seen.  

 

Notably, my data reveals the expression profile of other TRP family members in mast cells. 

For example TRPM2, 4, 5 and 7 and TRPV1 and V2 members was reported, whereas TRPA 

channel mRNA expression was not. Importantly, TRPM7 has previously been shown to have 

a crucial role in regulating human mast cell survival (Wykes et al., 2007). This provides 
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evidence to support that gene expression at this level is sufficient for a contributory role in 

human mast cells.  Emerging evidence has suggested that TRP channels have important 

roles in respiratory disease, with many TRPA, V and M channel activators (e.g. eicosanoids, 

low pH, osmolarity changes, temperature alteration factors) found to be increased in 

airway disease (Grace et al., 2014). With mast cells as crucial effector cells in the 

pathogenesis of asthma, understanding TRP channel expression is key for delineating the 

potential contribution of TRP mediated mast cell activation in lung disease.  

 

Of all the genes studied in the microarray experiments, TRPV2 expression was found to be 

the highest expressed of all the TRP channels present, by over 10fold. TRPV2 is a 

temperature regulated ion channel, with activation by temperatures ~52oC. TRPV2 

expression has also been shown in RBL-2H3 and HMC-1 mast cells and similarly the 

indication of TRPV2 activity has been demonstrated in these studies either by 52oC heat 

induced Ca2+ signalling in Ca2+ imaging assays (Stokes et al., 2004), or through observation 

of TRPV2 like currents that are ruthenium red sensitive (Zhang et al., 2012). The high 

expression of TRPV2 in both LAD2 and HLMC cells and previous indications of activity in 

other mast cell types indicates that investigation into the functional role of TRPV2 in mast 

cells is a worthwhile area for further research.   

 

Orai and TRPC expression in HLMCs from a number of donors – 
investigating donor to donor expression variability 
 

Results of the qPCR experiments confirm that Orai and STIM families are expressed in 

HLMCs at mRNA level and shows that TRPC1 and TRPC6 are expressed albeit with TRPC6 

expression lower than in the microarray. Slight differences seen in the data from the qPCR 

to the microarray experiments are possibly a result of the differences in the methodology 

between these two techniques. Some donor variability in the expression of TRPC channel 

subtypes was observed through the qPCR experiments, for example TRPC3 and TRPC5 were 

shown to be expressed at low levels in half of the donors assessed. Recent publications 

have demonstrated that TRPC6 expression is variable, depending on the hypoxic status of 

the tissue and the exposure to cigarette smoke.  Cigarette smoke (3-6month exposure) and 

10nM nicotine were shown to cause an increase in TRPC1 and TRPC6 mRNA & protein in rat 

pulmonary arterial smooth muscle cells and similarly potentiate the Ca2+ signal induced by 

CPA.  Similarly chronic hypoxia induction into PASMCs and pulmonary venous smooth 

muscle cells also showed an increase in TRPC1 and TRPC6 mRNA (Wang et al., 2014a; Xu et 

al., 2014). Although these studies have been performed in rat pulmonary arterial smooth 

muscle tissue/cells, it is possible that the variability existing in my study is a result of donor 

hypoxia/cigarette exposure. An important area for further research would be to investigate 

the effect of cigarette exposure and hypoxia on the function of Ca2+ signalling in mast cells. 

 

TRPC1 and TRPC6 expression at protein level 
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Evidence supporting the expression of TRPC1 and TRPC6 at protein level was demonstrated 

through immunocytochemistry experiments. Reassuringly, the expression of TRPC1 and 

TRPC6 as observed at mRNA level was also observed at protein level, with positive 

expression of TRPC1 and TRPC6 seen in the over 90% of cells imaged. Notably the surface 

expression profile observed for TRPC1 and TRPC6 revealed a diffuse localization rather than 

within distinct plasma membrane regions, this could be due to the intracellular location 

prior their translocation initiation by signalling proteins (Cayouette et al., 2004; Monet et 

al., 2012).  Of all the TRPC channel family members assessed at mRNA and protein level, my 

study has revealed a combination of TRPC 1 and TRPC6 expression in LAD2 and HLMC cells.  

Original work by (Hofmann et al., 2002) described that TRPC channels were only capable of 

forming heteromeric channel complexes with other members of their subfamily (i.e. 

TRPC1/4/5 and TRPC3/6/7), however further work has established that TRPC channels have 

wider heteromultimerization capability (Storch et al., 2012). For example, a TRPC1-TRPV4-

TRPP2 channel assembly with a flow-induced Ca2+ signal was described in vascular 

endothelial cells (Du et al., 2014).  

Based on the evidence for TRPC1 and TRPC6 expression in human mast cells it would be 

interesting to use biochemical or structural experiments to determine if TRPC1 and TRPC6 

directly interact with each other or with other TRP channel members in human mast cells.  

 

Synta66 inhibits FcεRI-mediated Ca2+ entry in HLMCs and LAD2 cells 
 

Aside from the demonstration of expression of TRPC1 and TRPC6, the second aim of my 

study was to assess what contribution TRPC channels made to FcεRI signalling. As discussed 

in Section 3.1, there have been numerous reports demonstrating that TRPC channels are 

functionally active as FcεRI contributors in rodent mast cells, although the details of these 

studies indicate a complex activity (Ma et al., 2008; Sel et al., 2008; Cohen et al., 2009; 

Suzuki et al., 2010b; Freichel et al., 2012; Yildirim et al., 2012; Medic et al., 2013).    

 

In respect to FcεRI signalling, my study confirms the contribution of Orai-mediated Ca2+ 

entry to FcεRI activation in LAD2 and HLMC cells, through the use of the Orai selective 

antagonist Synta66.  Orai contribution to FcεRI signalling in human mast cells has previously 

been demonstrated by Ashmole et al., where they similarly use Synta66 in HLMC cells. To 

my knowledge we are the first to specifically show the translation of Orai activity in FcεRI 

signalling in LAD2 cells. Although Synta66 caused a significant inhibition of the FcεRI-

mediated Ca2+ signal, there was ~30% signal remaining. The signalling cascade downstream 

of FcεRI leads to production of known activators of the TRPC family; PLC and DAG. It was 

therefore considered whether this Synta66 insensitive component of the FcεRI Ca2+ signal 

was evidence of TRPC channel activity. Furthermore, Synta66 does not cause inhibition of 

directly activated TRPC channels (Section 3.2.4) - evidence that this compound is selectively 

inhibiting Orai-mediated Ca2+ signalling. However, if the model of TRPC1 activation as Orai-

dependent, proposed by Ambudkar’s group (Cheng et al., 2011a) – described in Section 

1.5.8), is applicable in human mast cells, then inhibition of Orai activity would ablate TRPC 

activity too, albeit indirectly. This line of thinking does not discount the involvement of 
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TRPC to FcεRI signalling but suggests that TRPC Ca2+ entry could be also Synta66 sensitive as 

it is an Orai-dependent Ca2+ signal.  

 

The findings of this study, utilising tools to specifically ablate TRPC function, provide 

convincing evidence that TRPC channels are not composing the remaining Synta66-

insensitive Ca2+ signal, and neither are they a component of the Synta66 sensitive Ca2+ 

signal. This result leads to the question; what other Ca2+ channel is conducting the Synta66 

insensitive Ca2+ signal? Interestingly, as shown in (Wajdner et al 2015 – in press) and 

Ashmole et al 2012, FcεRI regulated Ca2+-dependent mediator release is also not fully 

inhibited by 10µM Synta66, further evidence suggestive of another Ca2+ channel being 

activated downstream of FcεRI. It could be reasoned that although 10µM Synta66 has been 

demonstrated to cause 100% inhibition of Orai-mediated currents in HEK Orai/STIM cells, 

the compound may not cause complete endogenous channel inhibition. Evidence for this 

hypothesis is provided in work by Ashmole et al 2013. Here Ashmole et al. describe a 

Synta66 insensitive component of their FcεRI-mediated signal and FcεRI-mediated 

degranulation. However, following over-expression of a dominant negative Orai1 using a 

lentiviral method a full inhibition of degranulation was seen. This illustrates a potential 

underestimation of channel involvement when using the pharmacological tools available. 

However, the variability in the level of inhibition by Synta66 in our work suggests that this 

is not a complete explanation of the Synta66 insensitive Ca2+/mediator release.  

Interestingly, the L-type voltage-gated Ca2+ channel (Cav1.2) was shown to be expressed in 

RBL-2H3 and BMMC cells and importantly was demonstrated to have a role in FcεRI-

mediated IL-13 and TNFα release (Yoshimaru et al 2009). Microarray data from the Seward 

lab confirms the mRNA expression of Cav1.2 in human mast cells; further investigation is 

required to determine if Cav1.2 also contributes to FcεRI-mediated signalling in HLMCs and 

LAD2s. 

 

Translation between LAD2 and HLMC biology observed in this study 
and differences between rodent and human mast cell biology 
 

To my knowledge, we are the first to show experimental evidence of Orai-mediated Ca2+ 

entry in LAD2 cells in parallel to HLMCs. Similarly the expression analysis data shows a high 

degree of translation in the expression of Orai, STIM and TRP channel families in LAD2s and 

HLMCs. This data is important for the comparison of experiments examining Orai activity 

between primary HLMCs and the model human mast cell, LAD2s. Given the reported 

differences between mast cell biology in human and rodent models there is a possibility for 

disparity between experiments performed in human and rodent models. An example of 

this is demonstrated by IL-3 receptor activity; in murine mast cell populations there is a 

physiological response to IL-3, whereas in human mast cells very low IL-3 receptor 

expression is detected and no observable response (Bischoff, 2007). This emphasises the 

need for caution in translating data from mouse models into humans. The present study 

has provided a degree of confidence in the functional translatability between primary 

human mast cells and the LAD2 human mast cell model – showing that LAD2s represent a 
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useful mast cell model for the study of Ca2+ signalling where primary human cells are not 

available.  

 

As described above a number of studies  have shown TRPC involvement in FcRI or 

allergen- induced signalling in rodents (Ma et al., 2008; Sel et al., 2008; Cohen et al., 2009; 

Suzuki et al., 2010b; Freichel et al., 2012; Yildirim et al., 2012; Medic et al., 2013).  Although 

the differences in the methodology used in the rodent studies and in my human study must 

be considered.  The results of my study imply there is a discord between the functionality 

of TRPC channels in rodent mast cells compared to human mast cells, thus emphasizing the 

importance of caution in the translation between animal and human models. 

 

TRPC channels do not contribute to FcεRI-mediated signalling in 
human mast cells 
 

In contrast to the original hypothesis formed from data in the literature (Section 3.1.2), the 

results shown in this study do not provide any evidence for contribution of STIM regulated 

TRPC to FcεRI or thapsigargin mediated Ca2+ entry in LAD2 mast cells. The kinetics, 

magnitude and store release component of the signals in both thapsigargin and FcεRI 

activating conditions were not significantly different in the STIM1 KK684-685EE expressing 

cells compared to that seen in the STIM1 WT expressing control cells. Furthermore, despite 

an increased likelihood of TRPC contributing to FcεRI-mediated signalling due to the range 

of downstream signalling activated, no effect was observed with the STIM1 TRPC 

inactivating mutant in response to either stimulus.  

 

Initially the question was posed as to whether the lack of effect of the STIM1 mutant was 

due to technical problems; however a number of pieces of evidence show this is an unlikely 

explanation. 

The STIM1 KK684-685EE mutant used in this study was obtained from the Ambudkar lab, who 

had previously demonstrated its functionality as a way to ablate the function of STIM 

regulated TRPC1 – STIM1 regulated TRPC inactivating mutant. Upon receipt of the STIM1 

constructs from the Ambudkar group, STIM1 KK684-685EE (and WT control) were sequenced 

after bacterial transformation to confirm construct sequence integrity. In the present study 

further validation experiments confirmed the functional activity of the transfected STIM 

constructs in LAD2 cells. Live time lapse imaging experiments showed that both the STIM 

WT- YFP and STIM1 KK684-685EE -YFP constructs translocated to the plasma membrane 

following a store depletion protocol using thapsigargin – indicating the STIM constructs 

were able to function according to their endogenous role. As the nature of these 

experiments compared the Ca2+ signalling seen in the STIM1-WT and STIM1 KK684-685EE 

mutant conditions, the possibility of differential expression levels of STIM1-WT and STIM1 

KK684-685EE was considered as an explanation for the lack of inhibition by STIM1 KK684-685EE 

mutant. To address this, quantification of the intensity of the YFP constructs per cell was 

performed. The results show that there was no significant difference in the YFP intensity, 

between the cells expressing the STIM-WT versus STIM1 KK684-685EE constructs, suggesting 

no difference in expression levels of the constructs. Taken together these data provides 



130 
 

evidence supporting the functionality of the STIM1 KK684-685EE mutant and STIM1-WT 

constructs. 

 

To my knowledge, no studies have distinguished a role of STIM2 in the electrostatic 

interaction and gating of TRPC channels. However it cannot be discounted that STIM2 could 

be activating TRPC mediated Ca2+ entry in compensation for the presence of the inactive 

STIM1 construct. This possibility cannot be explored without further investigation into the 

interaction between STIM2 and TRPC channels.  It was also considered whether if 

endogenous STIM1 expression was enhanced in STIM1 KK684-685EE mutant cells to 

compensate for the expression of the mutated version. However if this were the case it 

would be expected that there was an enhanced Ca2+ signal in the STIM1 KK684-685EE mutant 

conditions compared to the STIM-WT conditions because any enhanced endogenous STIM1 

expression would be additive to the STIM1 KK684-685EE  in respect to the STIM protein 

available to activate the Orai channels.  These experiments were designed to investigate 

the function of TRPC as STIM regulated channels, therefore in a store-operated manner, it 

is arguably more likely that a compensation of enhanced Orai signalling could be occurring 

to keep the levels of Ca2+ signalling constant, however based on the dependence of TRPC 

on Orai for store-operated activation, tools were not available to test this possibility.  

 

The results from my study provide evidence to show that there is no contribution of TRPC 

channels to Ca2+ signalling following thapsigargin and FcεRI-mediated activation in human 

mast cells.  Although my results are in contrary to the majority of studies reported in 

rodent models (Ma et al., 2008; Sel et al., 2008; Cohen et al., 2009; Suzuki et al., 2010b; 

Freichel et al., 2012; Yildirim et al., 2012; Medic et al., 2013)  one of these studies, Medic et 

al., 2013, saw an opposite phenotype, where an enhancement in the FcεRI-mediated Ca2+ 

entry and an enhancement in the transcription of the Ca2+-dependent transcription factors, 

NFAT and JUN was observed following TRPC1 deletion. Similarly the work by Yildirim and 

Sel cannot be conclusively taken as evidence of TRPC contribution to mast cell activity but 

rather in allergic mediated inflammation. For example in (Sel et al., 2008), the reduction in 

Th2 cytokines seen in response to allergic stimulation in TRPC6-/- mice could be mediated 

by other immune cells such as eosinophils rather than mast cells. Lastly the method 

investigation of TRPC1 activity by Suzuki and colleagues (linking TRPC1 activity as the 

explanation for the Fyn-/- phenotype) could be resulting in indirect disruption to TRPC1 

activity and thus inferring a sole dependence on TRPC1 is misleading. This further 

examination of the literature and highlight of discrepancies seen in previous studies 

illustrate the complexity in the role of TRPC function in mast cells and suggest that further 

knowledge of the role of TRPC proteins will aid the understanding and interpretation of 

these studies. 

 

TRPC3/6 selective compounds have no effect on Ca2+ signalling in 
HLMCs 
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In addition to FcεRI signalling, the contribution of TRPC6 to Ca2+-induced by other mast cell 

receptors activation was considered. C-kit and P2Y receptor signalling pathways were 

chosen as components of signalling proteins downstream of these receptors can be 

coupled to TRPC6 plasma membrane translocation.  C-kit signalling has largely been studied 

as a receptor which acts in cooperation with the FcεRI - SCF+ Anti-IgE activation has been 

shown to potentiate FcεRI mediated Ca2+ signalling and mediator release when compared 

to Anti-IgE signalling alone (Hundley et al., 2004; Lewis et al., 2013a; Smrž et al., 2013). SCF 

has also been shown to initiate Ca2+ signalling when individually applied (Hundley et al., 

2004; Smrž et al., 2013), however in contrast to my results, the kinetics of the SCF induced 

signal in other studies did not display an oscillatory signal nor did prior work seek to 

identify the Ca2+ channel involved in mediating the c-kit regulated Ca2+ signal. (Lewis et al., 

2013b) show that SCF is capable of mediating mediator release without the involvement of 

FcεRI activation, showing there was a donor variability in the response seen, which 

correlated to the expression level of the c-kit receptor. Signalling downstream of the c-kit 

receptor follows a cascade similar to the alternative activatory pathway of the FcεRI 

receptor – it is reasonable to hypothesise the potentiation caused by SCF addition is due to 

this signalling cascade being switched on. The signalling factors that are part of the 

alternative cascade are dependent on PI3K, demonstrated by the inhibitory activity of 

wortmannin. Interestingly there are studies implicating TRPC channels are dependent on 

PI3K activation however my study results suggest that TRPC6 channels at least are not 

contributing here (Monet et al., 2012).  Notably, SCF is found at increased levels in 

asthmatic patients providing a good reason to investigate Ca2+ channel characterisation as 

part of c-kit receptor signalling (Da Silva & Frossard, 2005).  

 

Purinergic receptors expressed on mast cells are known to have important roles in 

degranulation (Gao et al., 2010; Gao et al., 2013) and therefore identification of an ion 

channel responsible for the Ca2+ signal induced by the GPCR P2Y family would also be 

useful. ADP initiated a transient signal which was relatively small in magnitude compared to 

that induced by FcεRI and thapsigargin, this signal is in line with that observed in 

macrophages in response to bzATP, a P2X agonist (Section 4). Nonetheless no inhibition of 

the ADP response by TRPC3/6 antagonist was seen in my study. Expression of P2Y channels 

has been described in RBL-2H3 and LAD2 mast cells (Gao et al., 2010; Gao et al., 2013). 

Similarly ADP mediated Ca2+ mobilisation has been recorded in cord blood derived human 

mast cells and in RBL-2H3 cells (Feng et al., 2004; Gao et al., 2010).  However to my 

knowledge little work has focused on characterisation of the Ca2+ channels involved in P2Y 

receptor Ca2+ mobilisation. Whilst the experiments investigating c-kit and P2Y signalling  

provide further evidence that TRPC6 channels are not functionally active in global Ca2+ 

signalling in human mast cells, it is clear that there are gaps in the knowledge of the specific 

regulation of the Ca2+ signal mediated by these two receptors.  

 

The complexity of TRPC channel activity 
 



132 
 

Despite no contribution of TRPC channels to FcεRI-mediated Ca2+ signalling in human mast 

cells or of TRPC6 in P2Y and c-kit HLMC signalling, as already suggested, further 

consideration of the complexity of TRPC channels is necessary to aid interpretation of these 

results. The issue of TRPC6 translocation was addressed, using previously identified 

activators of TRPC6 translocation. However, (Albarran et al., 2014) showed another route 

of controlling TRPC6 localisation and functionality whereby STIM1 over-expression led to 

the translocation of TRPC6 from the plasma membrane to the ER. Without further 

investigation, it is not clear whether the levels of STIM1 expression human mast cells are at 

a level necessary to affect TRPC6 localisation. Nonetheless, Albarran’s study illustrates that 

other factors may be influencing TRPC activity that must be considered in the data 

interpretation.  

 

Finally, evidence that TRPC channels can have functions not directly linked to their function 

as a Ca2+ influx channel is described by (Py et al., 2014). Instead Py and colleagues show 

that TRPC1 acts a substrate for caspase-11 which is needed for the degradation in the 

production of IL-1β in mouse peritoneal macrophages.  This highlights that although this 

study has focused on the role of TRPC as contributors to Ca2+ signalling in human mast cells, 

the methods used in this study would not reveal other roles TRPC may have. In relation to 

this, it has been suggested that rather than having important roles in driving Ca2+ signalling, 

TRP channels have predominant roles in regulating the driving force for Ca2+ entry via other 

channels. TRP channels can conduct Na+ entry which causes plasma membrane 

depolarisation which could act to reduce the driving force for Ca2+ (Vennekens & Nilius, 

2007).  Further experiments would be necessary to explore these speculations.  

 

3.4 Conclusion and future directions 

Throughout the discussion of the results of this thesis a number of areas with potential for 

further investigation have been suggested to increase the understanding of the role of Ca2+ 

signalling in human mast cells.  In sum, my data has shown evidence supporting no role for 

TRPC1 or 6 in FcεRI-mediated global Ca2+ signalling in human mast cells. However it is 

possible that the positive expression of these channels is indicative of other yet 

undiscovered roles. Nevertheless, my data has provided an important contribution to the 

literature demonstrating that TRPC Ca2+ signalling is not significantly contributing to FcεRI-

mediated signalling, contrary to suggestions from rodent models. Furthermore, this study 

supports the model whereby Orai Ca2+ influx is the primary conducer of FcεRI signalling in 

human mast cells. This provides key information which will guide the development of 

potential therapeutics aiming to attenuate FcεRI-mediated allergic disease.  
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4 Chapter 4: Investigation of P2X7 contribution 
to Ca2+ signalling and bacterial handling in 
human macrophages 

 

4.1 Chapter 4 Introduction 

P2X7 is expressed in a range of immune cells and has been specifically implicated with 

functions in macrophage cells. For example; P2X7 activation in LPS primed macrophages is 

important for directing the production and release of mature of IL-1 regulated cytokines, IL-

1β (Ferrari et al., 1997b; Solle et al., 2001). P2X7 activation has also been associated with 

the control of nitric oxide (NO) release and cytokine production via NF-κB (Ferrari et al., 

1997a; Sperlágh et al., 1998). Another well known function of mediated by P2X7 activation 

is apoptosis (Mackenzie et al., 2005). Significantly, emerging data has implicated P2X7 with 

a role in the pathogenesis of COPD this suggesting that P2X7 could be a therapeutic target 

for COPD treatment. Section 4.1 summarises key studies which have led to the generation 

of this hypothesis and contrarily the evidence for P2X7 involvement in bacterial handling is 

also discussed.  

 

4.1.1 Evidence implicating P2X7 as a novel target for COPD 

treatment 
 

A number of studies describe a correlation between ATP, P2X7 and COPD pathogenesis. 

Under normal physiological conditions, the endogenous agonist for P2X7, ATP, is present at 

low concentrations extracellularly and is tightly regulated through the action of 

ectonucleotideases to break down excess ATP. However during an event which leads to 

hypoxia, infection or inflammation extracellular ATP levels can rise significantly, through 

the release from inflammatory or epithelial cells or through a downregulation of 

ectonucleotideases (Lucattelli 2010). (Lommatzsch et al., 2010) reported increased levels of 

ATP in BALF from COPD sufferers vs. non smokers, and showed that P2X7 expression was 

greater on macrophages from COPD patients. Similarly, ATP mediated release of pro-

inflammatory mediators; matrix metalloproteinase-9 (MMP-9) and IL-1β was enhanced in 

macrophages isolated from the BALF of COPD patients. Substantiating work by(Cicko et al., 

2010) showed that P2Y2R deficient mice had less smoke induced lung inflammation vs. 

controls. Whilst, (Mortaz et al., 2009)showed that cigarette smoke activated purinergic 

signalling in mouse neutrophils which led to downstream CXCL8 & elastase release. In 

relation to this, P2X7 attenuation was shown to lead to a reduction in acute cigarette 

smoke induced lung inflammation in mice. In BALF collected from mice following cigarette 

smoke exposure, in P2X7 antagonist  or P2X7 knockout conditions there was a  reduction in 

IL-6, IL-1β, keratinocyte-derived chemokine (KC), IFNγ and macrophage inflammatory 
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protein-2 (MIP-2) and the number of macrophages was reduced compared to control BALF 

(Lucattelli et al., 2011). (Eltom et al., 2011) describe supporting results from a P2X7-/- mice, 

a reduction in the release of inflammatory cytokines in response to cigarette smoke 

exposure was seen in BALF from P2X7-/- animals compared to controls. Together, these 

studies demonstrate the protective effect of P2X7 inhibition to reduce the cigarette smoke 

induced inflammation and provide evidence to support the inhibition of P2X7 as a target to 

treat COPD.  

 

P2X7 has also been implicated in regulating inflammatory responses during viral infection. 

The P2X7 inhibitor, oATP caused a reduction in the inflammatory response in macrophage 

and epithelial co-cultures following adenovirus infection. The reduction in the 

inflammatory response in these experiments was determined by an inhibition in NO 

generation, a reduction in the number of ROS positive cells and a decrease induction of IL-6 

and KC. Similarly in P2X7 deficient J774.A1 mouse macrophage cell line and primary mouse 

peritoneal macrophage it was shown that there was less IL-1β and IL-18 following 

adenoviral infection, compared to controls. Importantly, intranasal adenoviral infection in 

mice deficient in P2X7 or caspase-1 led to an enhanced survival rate compared to WT 

animals most likely due to the reduced inflammatory response demonstrated in P2X7 

inhibition/deletion settings (Lee et al., 2012). This result provides evidence that supports 

the involvement of P2X7 in a viral exacerbation condition, as is seen in COPD and asthma. 

This hypothesis is supported by the research of Birrell and Belvisi. A publication from their 

group (Eltom et al., 2014)  hypothesises that the exacerbations of asthma and COPD are 

caused by enhanced ATP levels. Excess ATP could activate the P2X7/caspase-1 axis within 

extracellular vesicles, leading to IL-1β and IL-18 release and subsequently causing 

proinflammatory symptoms. Their paper showed that LPS, H. influenzae and viral mimetic, 

poly:IC caused the release of extracellular vesicles which when followed by ATP stimulation 

led to increased levels of IL-1β and IL-18 release. Together these results emphasise the 

contributory role of P2X7 to the excessive proinflammatory response seen in COPD 

patients.   

 

P2X7 has also been implicated with a role in acute lung injury, a major cause of hypoxemia 

respiratory failure initiated by trauma, infection and sepsis. (Wang et al., 2015) recently 

showed that blockage of P2X7 attenuated acute lung injury through reduction of NLRP3 

inflammasome pathway activation. NLRP3 is crucial for the activation of caspase-1 and  

therefore IL-1β maturation. This shows another example of how dysregulation of IL-1β 

through P2X7 activity causes lung disease.   

 

In sum, this data gives compelling evidence that P2X7 receptors would make an effective 

drug target to treat diseases such as COPD, where exacerbations following a bacterial or 

viral infection are commonplace. Similarly, the data also implies that P2X7 activity could be 

involved in the pathogenesis of cigarette smoke induced inflammation and acute lung 

injury.  
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4.1.2 The role of P2X7 in macrophage bacterial handling 
 

Despite the compelling evidence in favour of targeting P2X7 as a treatment for COPD, 

evidence suggests that P2X7 also has a role in the control of bacterial phagocytosis and 

intracellular bacterial killing. The key role macrophages have in immune defence against 

bacterial infection means that understanding if P2X7 inhibition would hamper these innate 

immune roles is important.  A summary of the central studies providing this evidence are 

described here. In hMDMs infected with M.bovis BCG, ATP application was shown to 

induce apoptosis of infected cells and reduced the bacterial viability by 50-70%. Inhibition 

of P2X7 by o-ATP caused ATP treatment to be ineffective in initiating bacterial killing 

(Lammas et al., 1997). Similarly, macrophages from P2X7-/- mice had impaired ability in 

ATP-induced mycobacterium killing. The mechanism involved in the ATP-P2X7 driven 

bacterial killing was shown to be due to a fusion of the phagosome-lysosome - this was 

absent in non-ATP stimulated macrophages (Fairbairn et al., 2001). Likewise, (Fernando et 

al., 2007) showed that a loss of function polymorphism in human P2X7 led to increased 

susceptibility to M. tuberculosis,  illustrating the importance of P2X7 in the regulation of M. 

tuberculosis infection. In relation to this, several P2X7 receptor polymorphisms were shown 

to reduce macrophage apoptosis and mycobacterium killing (Saunders et al., 2003; 

Fernando et al., 2005).Together these studies implicate P2X7 with an important role in 

mediating ATP-induced mycobacterium killing. 

 

In addition to the mycobacterium species, P2X7 has also been shown to direct the killing of 

the intracellular bacteria of the Chlamydia genus. ATP treatment of Chlamydia infected 

macrophages was shown to cause a 70-90% death of intracellular bacteria (Coutinho-Silva 

et al., 2001). Conversely, in some cells types there was a reported resistance to P2X7 

mediated Chlamydia killing, thus illustrating the potential diversity in the mechanisms of 

bacterial killing between cells and also between bacteria. The P2X7 receptor was shown to 

mediate the killing of an intracellular parasite, Toxoplasma gondii. Macrophages isolated 

from patients with a P2X7 1513C loss of function polymorphism had impaired ability to kill 

intracellular, Toxoplasma gondii after exposure to ATP (Lees et al., 2010). Although these 

examples suggest a role for P2X7 in the killing of two bacteria types and intracellular 

parasite, the role of P2X7 receptor signalling in the killing of all types of bacteria is yet to be 

determined. Similarly, this work was largely performed in mouse macrophage models or in 

human macrophage cell lines; therefore it remains to be conclusively shown whether the 

same involvement occurs in primary human macrophage cells.  

 

P2X7 signalling was shown to be important in regulating phagocytosis by macrophages. 

Phagocytosis is accompanied by the re-arrangement in the actin-myosin cytoskeleton and 

initial studies implicated P2X7 with a role in controlling cytoskeleton reorganisation (Gu et 

al., 2009). Subsequent work showed that P2X7 has a dual role in phagocytosis; as the level 

of ATP regulated whether P2X7 enhanced or limited phagocytosis. In the absence of 

extracellular ATP, P2X7 expression on HEK-293 cells conferred phagocytic ability to this cell 

type, inhibitors of P2X7 or non-muscle myosin heavy chain IIA (NMMHC-IIA) inhibited 

phagocytosis of beads and live S. aureus. Conversely, the application of the ATP caused an 
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inhibition of the phagocytosis of beads and S. aureus. The involvement of P2X7 receptor in 

this ATP mediated inhibition was confirmed by the lack of effect of ATP on phagocytosis in 

macrophages from P2X7-/- mice. The reason for the varying role of P2X7 to macrophage 

phagocytosis is not clear (Gu et al., 2010). Further investigations suggested that P2X7 

receptor acts as a scavenger receptor due to similarities in the cytoskeletal arrangement, 

topology and tissue distribution, suggesting ligands on the surface of foreign particles bind 

to P2X7 and initiate phagocytosis similarly to other phagocytic receptors such as scavenger, 

FcyR and CRs (Gu et al., 2011).  Together the work by Gu and colleagues suggested a role 

for P2X7 phagocytosis performed by macrophage cells, indicating another risk associated 

with P2X7 inhibition as a therapeutic. 

 

In sum, the work described throughout Section 4.1 has provided compelling evidence to 

suggest that P2X7 represents a novel target to treat COPD, due to the contributory role 

P2X7 has in mediating cigarette smoke and viral induced inflammation. However, 

macrophages also have crucial roles in the innate immune defence and these roles must be 

kept intact for proper immune system homeostasis. P2X7 signalling has also been 

implicated with a regulatory role in the handling of bacterial infection. Due to differences 

described throughout this thesis regarding the pharmacology and characteristics of P2X7 

between species it is key to assess the effect of the P2X7 antagonists on bacterial handling 

and ion channel function using the same human macrophage model throughout. Similarly 

Ca2+ influx is a key function mediated by P2X7 channels, as discussed in Section 5.1 and 

Section 4.1.2 there is evidence to support the involvement of Ca2+ in the control of the 

production of proinflammatory cytokines, in phagocytosis and bacterial killing. Further 

understanding the effect of P2X7 inhibition on Ca2+ signalling constitutes a worthwhile area 

of investigation to complete the knowledge of the role of P2X7 in human macrophage 

biology. The aim of my study was to address whether P2X7 had a significant contribution to 

purinergic Ca2+ signalling in human macrophages and whether P2X7 pharmacological 

inhibition significantly affected the phagocytosis of bacteria and killing of bacteria by 

human macrophages.  

4.2 Results 

4.2.1 P2X7 is expressed in hMDM and hAMs 
 

In order to confirm the expression of P2X7 in hMDMs and hAMs, immunocytochemistry 

experiments were performed. A monoclonal P2X7 selective antibody was validated using a 

blocking peptide in a western blot experiment, results of which are described in Section 

2.10. Using the P2X7 antibody immunocytochemistry experiments reveal that hMDM and 

hAM cells both show positive expression of P2X7, the mean fluorescent intensity (MFI) in 

P2X7 stained hMDMs was 22.93 ± 5.32 versus 4.23 ± 0.96 in the isotype control (mean ± 

SEM N=4)  (Figure 4.1). Similar values were obtained in hAMs; P2X7 stained hAMs showed 

a MFI of 26.21 ± 2.18 versus 4.23 ± 0.96 in the isotpye control (mean ± SEM N=4). These 

results give strong evidence that P2X7 is expressed at protein level in both hMDM and hAM 

cells. Interestingly, the staining profile of P2X7 in hMDMs vs. hAMs was noticeably 
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different, in MDMs the surface profile shows a distribution suggestive of increased staining 

at the plasma membrane location (Figure 4.2) whereas in the AMs the surface profile 

shows a more diffuse staining pattern. Although the images were not acquired using 

confocal microscopy, it would be expected that if diffuse staining was caused by a light 

refractive artifact that this would be the same in both cases. On the whole, the data 

presented here give confirmation of the expression of P2X7 at a protein level, which is in 

line with previously published literature in mouse and human macrophage models. 

 

 

Figure 4.1 P2X7 expression in hMDMs and hAMs.  
 

Immunocytochemistry to assess P2X7 expression in macrophage cells, - hMDMs and 
hAMs were stained with anti-P2X7 antibody and Hoescht/IgG isotype control 
antibody and Hoescht (1:200 concentration), fluorescent images were taken at 650 
and 405nm using an INCell Analyser A.) hAMs, B.) hMDMs.  C.) Bar graph shows 
quantification of mean fluorescent intensity of cells in each conditions mean ± SEM. 
N=4 donors (hMDMs), N=2 donors (hAMs). Results were analysed using one-way 
ANOVA with Tukey’s multiple comparison test. * p <0.01 ** p <0.001  



138 
 

 

Figure 4.2 P2X7 antibody staining surface profile 
 

Immunocytochemistry to assess P2X7 channels in macrophage cells, hMDMs and 
hAMs were stained with anti-P2X7  antibody (1:200 concentration), fluorescent 
images were taken at 650nm using an INCell Analyser A&C.) Representative images 
to demonstrate the staining profile of P2X7 in the macrophage cells. B&D.) surface 
plot profile of P2X7 expression. Representative of cells from N=4 donors (hMDMs), 
N=2 donors (hAMs). 

 

4.2.2 ATP and bzATP initiate a concentration-dependent 

increase in Ca2+ signal in hMDMs 
 

To investigate the functional contribution of P2X7 channels to Ca2+ signalling in hMDMs a 

series of Ca2+ imaging experiments were devised. These experiments were performed using 

a FLIPR machine as described in Section 2.3.2. The Ca2+ signalling was measured in 

response to purinergic ligands, bzATP and ATP, applied at a range of concentrations. ATP 

induced a concentration-dependent Ca2+ signal, a transient signal was produced which 

reached maximum signal intensity by 1 minute and returned to baseline levels within 3-4 

minutes of ATP application (Figure 4.3). The normalised average signal change in response 

to 33μM of ATP was 1.23. The concentration-response to ATP (Figure 4.4) showed a bell-

shaped relationship with the EC50 ~9.6 ± 4μM/pEC50 = 4.9 ± 0.3 n=5, the concentration-

response was plotted as the percentage of the max from Ca2+ signal area under the curve 
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values. Concentration-response experiments were also performed with bzATP (Figure 4.3), 

bzATP initiated a Ca2+ signal with similar kinetics to that induced by ATP. The signal 

maximum was also reached by 1 minute with a return to baseline levels by 2-3 minutes. 

However the magnitude of the normalised average signal change to 33μM of this bzATP 

was ~0.33 which is almost 10 fold lower than the response induced by ATP (Figure 4.3). 

bzATP had an EC50 of 9μM ± 0.2/pEC50 = 5.0 ± 0.2 N=5 (Figure 4.4) Control experiments 

shown in Figures 4.3C&D show there was a significant difference in the Ca2+ signal induced 

by bzATP and ATP between 0external Ca2+ and normal Ca2+ conditions, the mean Ca2+ signal 

induced by ATP in Ca2+ versus 0external Ca2+ conditions was  (34.16 ± 1.49 with Ca2+ and 

2.84 ± 1.30 in 0externalCa2+, N=2 mean ± SEM, normalised AUC values) and in the two 

conditions in response to bzATP the Ca2+ signal was (26.03 ± 5.61 with Ca2+ and 5.63 ± 1.31 

in 0external Ca2+, mean ± SEM,  N=4, normalised AUC values). These results demonstrate 

that ATP and bzATP agonists are initiating a significant Ca2+ influx from plasma membrane 

localised Ca2+ channels but that a Ca2+ signal from intracellular stores is also a component.  

 

 

   
Figure 4.3 ATP and bzATP initiates a concentration-dependent Ca2+ signal in 
hMDMs. 
 

Ca2+ imaging of fluo-4 AM loaded hMDMs using FLIPR. A&B.)  Ca2+ signal over time, 
bzATP/ATP was applied at t=20s and was present throughout experiment duration. 
These are representative traces from an N>5 donors, signal was normalised to 
baseline fluorescent values. C&D.) Comparison of the Ca2+ signal induced by 30μM 
ATP/bzATP with and without Ca2+ present in the external solution, values taken 
from area under curve analysis. Bar graph shows mean ± SEM. Results were 
analysed using a paired student’s t-test. N=4. * p <0.01 **** p<0.0001 
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Figure 4.4 ATP and bzATP concentration-response curve in hMDMs  
 

Ca2+ imaging of fluo-4 AM loaded hMDMs using FLIPR – analysis of signal/time data 
shown in Figure 4.3. A.) Concentration-response curve showing area under curve 
values from normalised signal/time (signal was normalised to baseline fluorescent 
values).  B.)  Concentration-response curve showing percentage of max Ca2+ 
response as calculated from area under curve values. N=5 donors.  

 

These experiments show evidence for the activity of ATP and bzATP sensitive Ca2+ influx 

receptors in hMDMs. The EC50 of ATP and bzATP found in the present study are not in the 

range predicted for a cell that expresses P2X7 alone and instead are suggestive of the 

expression of a range of P2X or P2Y channels. Further comparison of the results in my study 

to those reported from heterologous expression systems is discussed in Section 4.3. 

 

4.2.3 Effect of non-selective purinergic antagonists on ATP 

mediated Ca2+ signalling 
 

To investigate the overall purinergic receptor contribution to Ca2+ mobilisation following 

ATP and bzATP stimulation FLIPR experiments were performed with non-selective 

purinergic antagonists, suramin and PPADs. As widely reported classical purinergic 

antagonists these compounds would be expected to inhibit the Ca2+ signal induced by P2X 

and P2Y channels. Notably it was seen that PPADs but not suramin (Figure 4.5) caused a 

concentration-dependent inhibition in the ATP/bzATP induced Ca2+ signal. PPADs inhibited 

the Ca2+ signal induced by 30μM ATP/bzATP with a pIC50 of 5.6 ± 0.3 and 5.6 ± 0.5 N=4, 

respectively. Suramin had no effect on the Ca2+ signal induced by 30μM bzATP and ATP 

measured in 4 donors. The potential explanation for the pharmacological profile obtained 

with suramin and PPADs is discussed in Section 4.3. Importantly, from this data it can be 

taken that the present assay conditions are sensitive enough to detect an inhibition of the 

30μM bzATP and ATP mediated Ca2+ signals in hMDMs.  
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Figure 4.5 ATP activated Ca2+ influx in hMDMs is inhibited by PPADs but not by 
suramin in a concentration-dependent manner 
 

Ca2+ imaging of fluo-4 AM loaded hMDMs using FLIPR, agonists were applied at 
t=20s and remained throughout, antagonists were pre-applied 15mins prior to 
agonist application and remained for experiment duration. A.) Representative Ca2+ 
trace in response to 30μM ATP in the presence of PPADs signal was normalised to 
baseline fluorescent values.  B&C.) Concentration-response curve showing 
percentage of control response to 30μM ATP/bzATP, N=3. D.) Representative Ca2+ 
trace in response to 30μM ATP in the presence of suramin E.) Concentration-
response curve showing percentage of control response to ATP, N=3. All 
concentration-response data was calculated using area under curve values. Results 
were analysed using one-way ANOVA with Tukey’s multiple comparison test. ns 
p>0.05 

 

4.2.4 P2X7 antagonists do not inhibit the bzATP/ATP 

mediated Ca2+ signalling in hMDMs 
 

The results from Figures 4.3-4.4 show evidence of ATP/bzATP stimulated purinergic Ca2+ 

channels in hMDMs. Based on the EC50s in response to bzATP and ATP, the evidence is 

supportive of a range of purinergic channels that are active in hMDMs and suggest against 

P2X7 having a predominant contribution to the Ca2+ signalling induced by ATP/bzATP. 

However taken on its own, although this data suggests that other purinergic channels have 

a greater contribution to Ca2+ signalling in hMDMs, it does not prove against a P2X7 

contribution. The distinct contribution of P2X7 to the ATP and bzATP induced Ca2+ signals 

was investigated using selective P2X7 antagonists. The P2X7 antagonists used in the 

present study have been well validated as potent and selective P2X7 inhibitors. GSK-2160A 

and GSK-3583A have been robustly tested in FLIPR and electrophysiology assays to 

demonstrate their effectiveness at inhibition of P2X7 (Section 1.6.7). In HEK-hP2X7 cells 
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GSK-2160A was reported to have a pIC50 of 8.5 and was shown to have no significant 

activity at 50 targets in a radio-ligand binding assay (CEREP), 32 targets (tested at GSK), 31 

Kinases and no effect at hERG. Secondly, (Ali et al., 2013) assess the pharmacokinetic and 

pharmacodynamic activity of GSK-2160A in man. (Ali et al., 2013) showed that GSK-2160A 

was effective in the inhibition of IL-1β production from human whole blood. Although it 

cannot be confirmed that this was driven through inhibition of IL-1β production from 

macrophage cells, it is likely that macrophage inhibition was contributory to these results. 

Importantly, this data showed that GSK-2160A is effective in the inhibition of endogenous 

receptors as well as in over-expression systems. Together these data provide confidence 

that the GSK P2X7 antagonists are robust tools to measure P2X7 contribution from.  

 

In my study, neither of the P2X7 selective antagonists caused a significant inhibition of ATP 

nor bzATP induced Ca2+ signals (Figure 4.6). No significant reduction in the ATP or bzATP 

induced Ca2+ signal was seen to GSK-2160A or GSK-3583A at a range of concentrations 

following stimulation with 30μM ATP/bzATP. These agonist concentrations were chosen as 

they were closest to the EC80 values (as revealed through the experiments in Figure 4.4) 

and provided a stable maximum response with the greatest dynamic window from which to 

measure the effect of the antagonist from. The results plotted in Figure 4.6 show the % 

control values from the area under the curve Ca2+ signal at each antagonist concentration, 

similarly no inhibition was seen when the concentration-response curve was plotted using 

max-basal values. When the results from Figures 4.3-4.6 are taken together, these results 

are supportive of no contribution of homomeric P2X7 to Ca2+ signalling in hMDMs.  
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Figure 4.6 bzATP/ATP mediated Ca2+ influx in hMDMs is not significantly inhibited 
by P2X7 antagonists; GSK-2160A and GSK-3583A 
 

Ca2+ imaging of fluo-4 AM loaded hMDMs using FLIPR. A&D.) Representative 
graphs showing Ca2+ signal induced by 30μM ATP/bzATP in the presence of GSK-
2160A. Agonists were applied at t=20s, antagonists were pre-incubated for 15min 
prior to agonist addition, both kept constant throughout duration. Signal was 
normalised to baseline fluorescent values. B&C.) Concentration-response for P2X7 
antagonists showing % of control response (30μM ATP), mean ± SEM N=5 donors. 
E&F.) Concentration-response for P2X7 antagonists showing % of control response 
(30μM bzATP) mean ± SEM N=5 donors. Concentration-response data calculated 
from area under curve values. Results were analysed using one-way ANOVA with 
Tukey’s multiple comparison test. ns p>0.05 

 

4.2.5 Investigation into experimental influencers of P2X7 

signalling 
 

Consideration was made as to whether the experimental conditions of this study were 

influencing the activity of P2X7 mediated Ca2+ signalling, by masking its contribution or 

limiting its activation capacity. Based on evidence from the literature, two factors with 

potential influencing capacity on P2X7 activity were investigated.  
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Figure 4.7 Removal of probenecid from FLIPR buffer had no significant effect on 
P2X7 antagonist activity or bzATP/ATP mediated Ca2+ signal in hMDMs 
 

Ca2+ imaging of fluo-4 AM loaded hMDMs using FLIPR, antagonists were pre-
incubated for 15mins prior to agonist application at t=20s, Ca2+ signal was 
measured for a duration of 400s agonist and antagonist kept constant throughout. 
A&B.) Concentration-response of Ca2+ signal induced by 30μM bzATP, with and 
without probenecid included in FLIPR buffer with a range of concentrations of GSK-
2160A (A) or GSK-3583A (B). Graphs are showing % of control response calculated 
from area under curve values. C.) Comparison of the control Ca2+ response to 30μM 
bzATP/ATP with and without probenecid included in FLIPR buffer, bar graph is 
shown as normalised area under curve values mean ± SEM. Area under curve values 
were taken from fluorescent signal over time following normalisation to baseline 
fluorescence.  Results were analysed using one-way ANOVA with Tukey’s multiple 
comparison test. ns p>0.05,* p <0.01 ****, p<0.0001. N=5. 

 
 

Probenecid has been shown to cause inhibition of P2X7 mediated currents and Ca2+ 

signalling in HEK-P2X7 cells (Bhaskaracharya et al., 2014). Probenecid is an organic anion 

transporter inhibitor and is commonly added to FLIPR buffer to prevent the Ca2+ indicator 

dye being extruded from the cell after initial loading. A concentration of 1mM was 

demonstrated to be effective in P2X7 inhibition by (Bhaskaracharya et al., 2014), whereas 

2.5mM probenecid was used in the FLIPR buffer in the experiments described in Figure 4.6. 

The possibility of probenecid limiting the activation of P2X7 in hMDMs was tested by 

performing further FLIPR imaging, excluding probenecid present in the FLIPR loading buffer. 

The inhibition capacity of P2X7 antagonists, GSK-2160A and GSK-3583A to the Ca2+ signal 
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induced by bzATP in conditions with and without probenecid was assessed in parallel. The 

results in Figure 4.7 demonstrate that there was no significant effect of the P2X7 

antagonists on the Ca2+ signal induced by bzATP or ATP in conditions with or without 

probenecid present. Notably, neither was there any significant change in the Ca2+ signalling 

response to 30μM ATP or bzATP when probenecid was excluded. Whilst a Ca2+ signal of 

19.37 ± 5.90 was observed in response to bzATP with probenecid present, a Ca2+ signal of  

18.36 ± 4.64 was seen without probenecid, a value that was not significantly different 

(normalised mean area under curve values ± SEM N=6). Similarly the ATP normalised signal 

was 65.26 ± 14.08 and 58.23 ± 34.88 N=4, with and without probenecid respectively again 

values that were not significantly different (normalised mean area under curve values ± 

SEM N=4). Together these results suggest that probenecid had no effect on the bzATP/ATP 

induced Ca2+ signal in hMDMs and provide further evidence to support against an 

involvement of homomeric P2X7 to bzATP/ATP Ca2+ signalling in hMDMs.  

 

 

Figure 4.8 24hr priming of hMDMs with LPS had no significant effect on the Ca2+ 
signal induced by 30μM bzATP nor did it alter the activity of P2X7 antagonist (GSK-2160A) 
 

Ca2+ imaging of fluo-4 AM loaded hMDMs using FLIPR; hMDMs were primed for 
24hr with 100ng/ml LPS prior to experiment. Antagonists were pre-incubated for 
15mins prior to agonist application at t=20s both kept constant throughout 
experiment duration, Ca2+ signal was measured for duration of 400s. A&B.)  
Concentration-response curve of signal induced by 30μM bzATP in the presence of 
GSK-2160A - without LPS priming (A) - with LPS priming (B).  Data showing 
percentage of control response calculated from area under curve values.  C.) 
Comparison of the control Ca2+ signal induced by 30μM bzATP in cells with and 
without LPS priming, bar graph shows normalised area under curve Ca2+ signal, 
mean ± SEM. Area under curve values were taken from fluorescent signal over time 
following normalisation to baseline fluorescence. Results were analysed using 
unpaired students t-test. ns p<0.05, * p <0.01, **** p<0.0001.  N=3. 
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(Humphreys & Dubyak, 1996) describe how P2X7 expression and function can be 

modulated by the treatment with pro-inflammatory cytokines and bacterial products in the 

THP-1 monocytic cell line. For example; LPS and IFNy treatment was shown to increase the 

bzATP induced changes in cytosolic Ca2+ and ethidium uptake with a corresponding 

increase in the P2X7 mRNA levels. Therefore further FLIPR experiments were performed to 

test whether LPS priming would affect P2X7 mediated Ca2+ entry in hMDMs. No change in 

the responsiveness of the P2X7 antagonists was seen following 24 hour LPS priming, no 

significant inhibition of the bzATP induced Ca2+ signal seen in LPS primed hMDMs (Figure 

4.8). Similarly, there was no difference in the control Ca2+ signal initiated by bzATP in LPS 

primed vs. unprimed cells, the mean signal induced by bzATP was 6.18 ± 2.10 N=3 in LPS 

primed hMDMs vs. 5.34 ± 1.50 N=3 in unprimed cells (normalised area under curve values, 

mean ± SEM) Figure 4.8. These results suggest that LPS priming has no effect on the activity 

of P2X7 in hMDMs.  

 

In sum, the results in Figure 4.1 & 4.2 show evidence to support that hMDMs express P2X7 

channels at protein level; however the FLIPR assay results (Figures 4.3-4.8) do not show 

evidence to suggest that P2X7 is functionally active as a homomeric Ca2+ influx channel 

under these conditions. Nevertheless, these results do support the activity of other 

purinergic receptors the possible identity of which is discussed in Section 4.3.  

 

4.2.6 Investigating the contribution of P2X7 to purinergic 

mediated Ca2+ signalling in hAMs 
 

Although hMDMs represent a more physiologically relevant macrophage model than an 

immortalised cell line or a mouse model, due to the known heterogeneity of macrophages 

(see Section 1.3.4) we also wanted to study the effects of the GSK P2X7 antagonists on Ca2+ 

signalling in hAMs. This cell type is more physiologically relevant to the end target this 

study is aiming to investigate, i.e. in a COPD patient, macrophages resident in the lung 

would be amongst the population of cells to be targeted by a P2X7 therapeutic. Therefore 

it is important to find out whether the results obtained in hMDMs are translatable to the 

tissue resident macrophages.  

 

Unfortunately due to the limitations in human tissue availability through the duration of 

the P2X7 study only 2 donors of hAM cells were obtained for experiments. However the 

results of these experiments provided interesting preliminary results which indicate key 

differences between the results seen using MDMs, follow-up studies would be critical to 

complete target validation work.  
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Figure 4.9 ATP activated Ca2+ influx in hAMs from healthy and COPD donors 
 

Ca2+ imaging of fluo-4 AM loaded healthy and COPD hAMs using FLIPR. A&B.) 
Representative Ca2+ trace, response to varying concentrations of ATP, agonist 
application at t=20s and kept constant throughout - in healthy hAM (A) and COPD 
hAMs (B). Signal normalised to baseline fluorescent value. C.) concentration-
response curve showing percentage of max response, using area under curve 
values, mean ± SEM. N=2 donors for each group. 

 

Results in Figure 4.9 show the Ca2+ signal initiated by ATP in healthy and COPD cells - there 

are similarities in the kinetic signature obtained following ATP stimulation to that seen by 

ATP in the hMDM cells, with a return to baseline signal within 4-5 minutes in both hMDM 

and hAM cells. Similarly, the maximum signal increase had occurred within 1 minute in 

hAM and hMDM cells. The concentration-response relationship displayed a 

sigmoidal/linear relationship in response to increasing ATP concentrations (Figure 4.9C), in 

contrast to the bell-shaped response seen to ATP in hMDMs. The pEC50 of ATP in healthy 

hAM cells was 5.6 ± 0.2 N=2 and around 4.8 in COPD hAMs  N=1, this was in contrast to the 

4.8 ± 0.3 pEC50 shown in hMDM cells. This pharmacological profile is indicative of a 

significant contribution of purinergic receptors with a lower potency for ATP in hAM cells 

than those seen in hMDM and COPD hAM cells.  

 

Interestingly the ATP response in the COPD hAMs resulted in a Ca2+ signal with a lesser 

magnitude and with a lower potency than the hAM cells, (signal change to 100μM ATP is 

1.50 in healthy hAMs and 1.00 in COPD hAMs), although these results must be interpreted 

with caution due to the low N numbers, finding differences in the Ca2+ signalling in COPD 

vs. healthy hAMs could provide indicators into changes that have occurred in COPD 

macrophages to cause aberrant activity.   
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Figure 4.10 bzATP activated Ca2+ influx in hAMs from healthy and COPD donors 
 

Ca2+ imaging of fluo-4 AM loaded AMs using FLIPR. A&B.) Representative Ca2+ 

trace, response to varying concentrations of bzATP, agonist application at t=20s 

and kept constant throughout - in healthy hAM (A) and COPD hAMs (B). Signal 

normalised to baseline fluorescent value. C.) concentration-response curve showing 

percentage of max response using area under curve values, mean ± SEM. N=2 

donors for each 

 

Results displayed in Figure 4.10 show the concentration-response to bzATP in healthy and 

COPD hAM cells from 2 donors. The kinetics of the Ca2+ mobilisation initiated by bzATP are 

similar to those observed in the hMDM cells, with a return to baseline signal within 4 

minutes. The pEC50 of bzATP in healthy hAMs was 4.9 ± 0.4 N=2, this is compared to 5.0 ± 

0.2 N=5 in hMDMs.  An accurate pEC50 for bzATP in COPD hAMs cannot be accurately 

derived from the current data in one donor, however it is clear that bzATP has a lower 

potency in COPD hAMs compared to healthy hAMs and hMDMs.  

 

Notably, in contrast to the work shown in Figures 4.6-4.8,  the GSK-2160A P2X7 inhibitor 

was shown to inhibit the Ca2+ signal induced by bzATP in healthy hAMs and ATP in healthy 

and COPD hAMs, in a concentration-dependent manner (Figure 4.11).  The pIC50 for GSK-

2160A to ATP mediated Ca2+ signals was  6.3 ± 0.5 N=1, in healthy hAMs and 6.4 ± 0.9 N=1 

in COPD hAMs, however the pIC50 to bzATP was ambiguous and estimated to be around 

10.9. The raw Ca2+ signal traces showed a drop in the baseline fluorescence upon agonist 

application, subsequently there is not an obvious inhibitory pattern when looking at the 

Ca2+ signal over time trace; however the concentration-response curve demonstrates a 

concentration-dependent inhibition. This data has been plotted as the percentage of 

control response as calculated from area under the curve values. It must be emphasised 

that these results must be taken as preliminary finding, as experiments have only been 

performed in one hAM donor, but they indicate that there may be important differences in 

the functional contribution of P2X7 to Ca2+ signalling in hMDM and hAM cells.  
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Figure 4.11 Effects of the P2X7 antagonist GSK-2160A on bzATP and ATP induced Ca2+ 
signal in hAMs, preliminary data from one donor 
 

Ca2+ imaging of fluo-4 AM loaded hAMs using FLIPR. A, C, E.) Representative Ca2+ 
trace, response to varying concentrations of bzATP/ATP in the presence of GSK-
2160A, agonist application at t=20s, antagonist pre-incubated for 15min prior to 
agonist, both kept constant throughout experiment. Signal normalised to baseline 
fluorescent value. B, D, F.) Concentration-response curve showing effect of GSK-
2160A on 30μM bzATP/ATP induced signal, data represented as % of control 
response calculated from area under curve values. N=1, 1 healthy and 1 COPD.   

 

4.2.7 P2X7 contribution to macrophage bacterial handling 
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Despite the lack of evidence shown for P2X7 contribution to bzATP/ATP mediated Ca2+ 

influx in hMDMs, further experiments were performed to discharge the risk of P2X7 

inhibition in bacterial handling. There have been numerous examples where P2X7 has been 

described as controlling downstream functions independently of cation influx (Surprenant 

et al., 1996; Brough et al., 2003; Qu et al., 2007) therefore investigating the activity of P2X7 

antagonists on macrophage bacterial handling is equally important. 

 

The effect of the P2X7 antagonists on hMDM bacterial handling was assessed through the 

evaluation of phagocytosis assays using pHrodo labelled E. coli. 10μM of GSK-2160A was 

kept constant throughout the phagocytosis assay; the intensity of the pHrodo labelled 

particles found in acidic intracellular compartments was used as readout of phagocytosis. 

The phagocytosis of pHrodo labelled E. coli was assessed through the phagocytosis index, 

density in responding cells and the % of responding cells. The inhibitor of F-actin 

polymerisation, Cytochalasin-D was shown to significantly inhibit phagocytosis under all 

parameters measured. The phagocytosis index in control conditions was 1.31 ± 0.03 N =3, 

this was not significantly different in the presence of GSK-2160A at 1.31 ± 0.04 N=3, 

however Cytochalasin-D significantly reduced the phagocytosis index by 0.99 ± 0.007, the % 

of responding cells was 73% ± 3.4 in control and 70% ± 2.9 with GSK-2160A however there 

was only 0.55% responding cells in Cytochalasin-D conditions. The density in responding 

cells was 1581 ± 102.6 in control, 1559 ± 171.3 in the presence of GSK-2160A and 384 ± 

13.5 in Cytochalasin-D conditions (all numbers = mean ± SEM). The significant reduction by 

Cytochalasin-D in all experiment read-outs provides confidence in the assay methodology, 

however the data also shows no supportive evidence for P2X7 contribution to pHrodo 

labelled phagocytosis (Figure 4.12).   

 

Figure 4.12 P2X7 antagonist (GSK-2160A) caused no significant inhibition to the 
phagocytosis of pHrodo labelled E. coli by hMDM cells 
 

hMDMs were pre-incubated with; vehicle, 10µM Cytochalasin-D or 10µM GSK-
2160A before uptake of opsonised pHrodo labelled E. coli was assessed at 3hr post 
infection, 20μg of E. coli was added to each well of 40,000 hMDMs. hMDMs were 
stained with cell tracker green (1μM) and Hoescht (0.05μg/well) to enable 
quantification of intact cells. Bar graphs show the mean ± SEM for each donor 
tested  A.) phagocytotic index. B.) percentage of responding cells.  C.) density in 
responding cells. Results were analysed using two-way ANOVA with Tukey’s 
multiple comparison test. N=3 donors. 
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Experiments to assess the effect of P2X7 antagonists in macrophage bacterial killing were 

also performed (data obtained by Simon Hall and Katie Anders at GSK).  Bacterial killing 

assays were performed by using the measurement of ROS (as an indirect readout) following 

infection of the macrophages with S. pneumoniae bacteria. These experiments 

demonstrated that there was no significant effect of bzATP as an agonist to enhance ROS 

mediated bacterial killing, or of the P2X7 antagonists (GSK-2160A and GSK-3583A) in the 

inhibition of bacterial killing (data not shown).  

 

Together these results provide no evidence for the contribution of P2X7 to macrophage 

bacterial handling and when the results obtained in hMDM cells are considered alone, the 

results from this study provide evidence to suggest a discharge of the risk involved in 

impairing macrophage ability to handle bacterial infection by attenuating P2X7 activity. 

However it is clear that experiments to validate the effects of the P2X7 inhibitor in ATP 

induced Ca2+ signalling and bacteria handling in hAMs need to be performed before a final 

conclusion can be made.  

 

4.3 Discussion 

In sum, the results presented in Chapter 4 indicate expression of P2X7 in hMDM cells and 

hAM cells but the pharmacological profile observed from the FLIPR assay results suggest 

that the P2X7 receptor is not functionally active as a Ca2+ influx channel in hMDMs under 

these conditions. 

 

Expression of P2X7 in hMDMs 
 

The results from my study have provided evidence for P2X7 protein expression in hMDMs, 

however my results have shown no evidence for P2X7 contribution to Ca2+ signalling. This 

apparent contradiction in results warrants the question of whether the P2X7 antibody 

staining as shown in the present study is selective for P2X7 or whether it is reporting 

nonspecific protein binding. As discussed in Section 2.10 antibody validation experiments 

show that the P2X7 antibody effectively and solely binds to the antigen it was raised 

against, there was only 1 band observed in the protein ladder following P2X7 antibody 

incubation and this was removed following blocking peptide preincubation. The IgG isotype 

control experiments illustrate that there is no non specific binding of the antibody to native 

IgG receptors on the cell of interest, however what cannot be conclusively proven is 

whether the P2X7 antibody binds to other receptors when a potentially different repertoire 

of epitopes are available in a fixed hMDM cells as opposed to cell lysates from hMDM cells. 

Although this latter possibility is unlikely based on the expected larger repertoire of 

epitopes in a western blot experiment compared to protein expression in their native state, 

i.e. in immunocytochemistry. The results demonstrated a significant level of expression in 

comparison to the IgG isotype controls and the staining pattern observed is consistent with 

an active ion channel protein location Therefore it can be taken with relative confidence 

that the P2X7 staining observed is reflective of P2X7 expression. 
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Pharmacology of ATP and bzATP responses in hMDMs 
 

 A robust Ca2+ signal was induced by ATP which had a relatively large magnitude, however 

the EC50 of ATP in hMDMs obtained in my study, 9.6 ± 4μM reflects potency in the range 

associated with the activation of P2X family members other than P2X7. As summarised by 

North 2002, the EC50 for ATP at hP2X7 is 1000μM which is 100 fold greater than the value 

obtained in my study, whereas the EC50 for ATP EC50 at P2X2, P2X4 and P2X5 is closer to 

10μM, suggesting a major contribution to the ATP-mediated Ca2+ signal from these other 

P2X family members. Therefore taken alone,  the pharmacology of the ATP-mediated Ca2+ 

signal in hMDMs does not support a model of predominant homomeric P2X7 channel 

activity. The activity of bzATP gives an EC50 closer to what would be expected from P2X7 

activation although the signal induced by bzATP was significantly smaller in magnitude 

compared to that induced by ATP. The inhibition of ATP and bzATP induced Ca2+ signal by 

PPADs but not suramin is suggestive of a contribution of P2X4.  Whilst PPADs and suramin 

are pan purinergic receptor antagonists, suramin is a weak antagonist of P2X4 with a 

reported IC50 at hP2X4 of 178.1μM ± 46.9 (Garcia-Guzman et al., 1997). PPADs is shown to 

be largely ineffective at rP2X4R inhibition (Jacobson et al., 2002), however it has been 

demonstrated to have an IC50 of 27.5μM ± 3.4 to hP2X4R. Although the IC50 for PPADs 

obtained in my study (~2.7μM) is closer to that reported for P2X1, 2, 3 and 5 (EC50 ~1-

5μM) (North & Surprenant, 2000) the insensitivity to suramin provides compelling evidence 

for some contribution of P2X4, although it could be that P2X4 contributes as part of a 

heteromeric channel complex. (Chessell et al., 1998) report the IC50 for PPADs and suramin 

in hP2X7 as 1 and 70μM respectively therefore indicating the possibility of P2X4/P2X7 

interaction too, this is discussed further in Section 4.3. The distinct contribution of P2X7 

channel activity was evaluated by the use of P2X7 antagonists (GSK-2160A and GSK-3583A), 

however no significant inhibition was observed to either the Ca2+ signal induced by bzATP 

or ATP thereby providing compelling evidence that P2X7 was not contributing to the 

ATP/bzATP mediated Ca2+ signal in hMDM cells in my study. As described in Section 1.6.4 

there are numerous reports of P2X7 activity in human and mouse monocyte and 

macrophage cells, therefore the results obtained in the present study were contrary to my 

original hypothesis. The initial characterisation of hP2X7, (Rassendren et al., 1997) 

performed a comparison of hP2X7 activity in HEK-293 cells expressing hP2X7 and hMDMs 

with endogenous P2X7 expression. Rassendren reported the activity of P2X7 in hMDMs to 

be similar to P2X7 in HEK-293 cells and proposed that due to the similar pharmacological 

profile between the two cell types, hMDMs predominantly express homomeric P2X7 

channels. However, Rassendren used hMDMs taken from only one donor, whereas in my 

study the experiments were performed using hMDMs from numerous blood donors. It is 

possible that variable expression of P2X7 splice variants and or P2X7 SNPs in the hMDMs 

used in my study vs. Rassendren could be an explanation of the different results seen. 

Alternatively, the interaction of P2X4 and P2X7 channels in my study could be resulting in 

an altered pharmacological profile which is a combination of these two channel types; this 

is discussed further in Section 4.3. 
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Consideration was made as to whether the culture conditions used in my study was 

responsible for the lack of P2X7 activity observed. As discussed in Section 4.2.5 previous 

work in the literature has shown that priming hMDMs with bacterial products can enhance 

P2X7 activity. In this regard I tested the effect of 24 hour LPS priming on the ATP/bzATP 

induced Ca2+ signal and the effect of the P2X7 antagonists, but found no significant 

difference. Although investigating LPS priming was a valid line of investigation, there are 

differences in the experiments performed by Humphreys and Dubyak that could explain the 

lack of change seen in my study. Humphreys and Dubyak performed experiments in the 

THP-1 monocytic cell line which has relatively low P2X7 expression levels, therefore it is 

possible that the change seen following LPS/IFNγ priming was due to very low level of P2X7 

in control cells to begin with, and suggests that the main cause of LPS induced P2X7 

potentiation was due to an increase in expression.  Although direct comparisons cannot be 

made, the convincing protein expression of P2X7 channels in resting hMDMs shown in my 

study suggest that a lack P2X7 channel expression is not responsible for the lack of 

functional contribution seen.  

Based on the literature, another possible influencing factor to P2X7 activity was the 

presence of probenecid in the FLIPR buffer. A recent publication demonstrated that 

probenecid, was an inhibitor of P2X7 channels. Therefore experiments were performed 

without probenecid to see whether this revealed a P2X7 contribution, however no  

significant change in the effect of the P2X7 antagonist on bzATP induced Ca2+ entry was 

seen thereby discounting this as an explanation for the lack of P2X7 activity.   

 

Confirmation of the FLIPR methodology having an appropriate dynamic range to detect 

signal inhibition was demonstrated through the experiments monitoring the inhibitory 

action of PPADS on signal induced by ATP and bzATP. If excessive gain set up and threshold 

of signal, or conversely a signal with a small dynamic range was to blame for the lack of 

inhibition seen by the P2X7 antagonists, it would be expected that no inhibition would be 

observed for any signal induced by bzATP and ATP. However PPADs was demonstrated to 

inhibit the bzATP and ATP induced Ca2+ signal, in a concentration-dependent manner, 

demonstrating the sensitivity of the FLIPR assay as it was able to resolve Ca2+ signal changes 

in the dynamic range exerted by bzATP and ATP stimulation.  

 

The distinction of P2X7 activity in the present study is reliant upon the activity of P2X7 

selective antagonists, however as discussed in Section 4.2.4 there are numerous pieces of 

evidence which provide confirmation that these antagonists are effective in P2X7 

inhibition.  Firstly initial validation of the compounds in FLIPR and patch clamp 

electrophysiology experiments using HEK cells over-expressing human and rat P2X7 

confirm compound activity and IC50. As part of these validation experiments the inhibitors 

were shown to be inactive at 50 receptors and ion channels (CEREP) and 31 Kinases and 

had no effect at hERG. Secondly, the compound, GSK-2160A, was used in a publication to 

assess its pharmacokinetic and pharmacodynamic properties in man (Ali et al., 2013). GSK-

2160A caused inhibition of IL-1β production from human whole blood. Although it cannot 

be confirmed that this was driven through inhibition of IL-1β production from macrophage 

cells, given the predominant contribution of macrophages in IL-1β production, it is likely 

that macrophage inhibition was contributory to these results. Importantly, this data shows 
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that the compound is effective in the inhibition of endogenous receptors as well as in over-

expression systems. Thirdly, the positive inhibition of the bzATP/ATP mediated Ca2+ signal 

in one donor of healthy and COPD hAMs demonstrates that the compounds are active 

under the assay conditions used in this study. Lastly, a chemical QC experiment was 

performed to validate the chemical properties of the batch of P2X7 antagonists used in the 

present study. Taken together, this data gives compelling evidence that the compound is 

active and effective in the blockage of P2X7 receptors in a number of assay types.  

 

There is evidence that P2X7 activation can be inhibited by extracellular divalents such as 

Ca2+ and Mg2+ (Surprenant et al., 1996; Rassendren et al., 1997). The possibility of this 

being an explanation for the results presented here was not directly investigated, so cannot 

be ruled out, however there are a number of pieces of evidence which suggest this 

explanation is unlikely. Where the effect of Ca2+/Mg2+ concentration on P2X7 activity has 

been studied previously, the action of the divalents was shown to decrease the magnitude 

of the Ca2+ signal/current seen but not to alter the potency of the agonist for the receptor 

(Surprenant et al., 1996). As significant Ca2+ signals were observed for ATP/bzATP activation 

it would be expected that even if the signal was attenuated by the Ca2+/Mg2+ concentration 

that would be sufficient signal remaining to observe the effects of a P2X7 antagonist. 

Similarly, the preliminary results indicating P2X7 mediated Ca2+ entry in hAM cells were 

performed under the same experimental conditions as in hMDMs therefore showing that 

the concentrations used in this study are not hindering P2X7 activation completely. 

Likewise,  other studies have been able to successfully measure P2X7 mediated Ca2+ entry 

using a Ca2+ indicator dye and Ca2+/Mg2+ concentrations in the external solution at 

comparable levels, suggesting that this is not a likely explanation for my results (Cabrini et 

al., 2005). Taken from a different perspective, the focus of this study was to observe the 

effects of the P2X7 antagonists on human macrophages under physiological conditions, i.e. 

to understand how inhibition of P2X7 would affect human macrophage biology under 

conditions as close to those occurring in vivo as possible. This means that understanding 

whether P2X7 was active in low divalent conditions would be interesting from a 

mechanistic point of view, but would not help in the understanding of how P2X7 

antagonists might act to alter Ca2+ signalling in human macrophages in ‘physiological’ 

conditions. The ultimate aim of the present study was to understand and elucidate the 

effects of the P2X7 antagonists, GSK-2160A and GSK-3583A on human macrophage Ca2+ 

mobilisation and bacterial killing and was not designed as an in depth characterisation of 

P2X7 pharmacology. In sum, the points discussed above provide evidence to confirm that 

the lack of inhibition of Ca2+ signalling by the P2X7 antagonists is reflective of a lack of P2X7 

Ca2+ influx activity in hMDMs under the present assay conditions. 

 

Potential for P2X7 activity in hMDMs independent of Ca2+ signalling 
 

P2X7 mediated K+ efflux has been convincingly demonstrated to be the signalling modality 

specific to P2X7 receptors which leads downstream maturation of IL-1β in LPS primed 

macrophages. Notably there is some evidence to suggest that P2X7 mediated K+ efflux is 

required independently from Ca2+, suggesting two independent roles for the P2X7 receptor 
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(Brough et al., 2003; Franchi et al., 2007; Qu et al., 2007; Piccini et al., 2008; Katsnelson et 

al., 2015). The results obtained from the FLIPR assay do not allow investigation of the K+ 

signalling component and therefore we cannot rule out that K+ efflux is occurring following 

P2X7 agonist application. It may be that a small amount of Ca2+ entry does occur through 

the P2X7 channel in the experiments demonstrated here, but if the primary function P2X7 

activation is K+ efflux (and non selective Na+ influx), this could explain why a significant 

inhibition is not seen with the P2X7 antagonists in Ca2+ imaging experiments, yet there is 

evidence to support P2X7 protein expression.  The details of further experiments that could 

be performed to address this possibility are discussed in Section 4.4. 

 

Could P2X7 channels be forming heteromers with P2X4 in hMDMs? 
 

Another possible explanation for the lack of effect of the P2X7 antagonists and other 

pharmacological evidence suggesting lack of P2X7 activity could be due to expression of 

P2X4/P2X7 heteromers. P2X4 and P2X7 channels have a high sequence homology and are 

the most similar of all the P2X family members, they have often been found to be 

expressed in the same tissues/cell types. Of particular note to my study, P2X4 and P2X7 are 

the most commonly expressed P2X channels in immune cells (Bowler et al., 2003; Xiang & 

Burnstock, 2005). Functional interaction of P2X4 and P2X7 channels have been shown in 

airway ciliated cells, where the expression of an ATP gated P2X receptor was demonstrated 

with biophysical and pharmacological properties of both P2X4 and P2X7 (Ma et al., 2006). 

Similarly, (Casas-Pruneda et al., 2009) describe receptors in secretory epithelia with ATP 

activated currents that have distinct functional and pharmacological characteristics to 

homomeric P2X4 and P2X7 HEK-293 expression cells. As described in Section 1.6.6, the 

data in the literature is supportive of a homotrimeric interaction of P2X4 and P2X7 rather 

than a direct heterotrimeric interaction (Nicke, 2008); (Antonio et al., 2011); (Guo et al., 

2007). Through the study of a variety of P2X heteromeric channel assemblies it has been 

observed that in general the properties of a heteromer are a combination of the properties 

of the subunits it is formed from (Jiang et al., 2003). Therefore the pharmacological profile 

of the Ca2+ signal initiated by bzATP and ATP from this study could be explained by of a 

functional interaction between P2X4 and P2X7; the insensitivity of the ATP induced Ca2+ 

signal to suramin could indicate suggestive of a P2X4 contribution (Jacobson et al., 2002) 

and the EC50 for ATP is in line with that previously demonstrated by a P2X4 channel (North, 

2002). A close functional interaction between these two P2X subtypes could cause a 

conformational change or even a close interaction between subunit structures could block 

the P2X7 antagonist binding site and explain the lack of inhibition by the antagonists. 

Further experiments would be required in order to confirm whether the results seen here 

are due to P2X7 and P2X4 homotrimeric channels or whether the data described above is 

simply indicative of a homomeric P2X4 contribution or P2X4 heteromeric interaction with 

another purinergic family member.  

 

P2X7 in phagocytosis and bacterial killing in hMDMs 
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Importantly, the results demonstrated through this study showed that the P2X7 

antagonists do not cause a significant inhibition of the phagocytosis of pHrodo labelled E. 

coli and also had no effect on the production of ROS, as a readout of bacterial killing. 

Previous studies investigating the role of P2X7 in phagocytosis have been performed in 

mouse peritoneal macrophage cells, human PBMCs and in HEK-293 cells transfected with 

P2X7, flow cytometry was used to assess the phagocytosis uptake of fluoresbrite yellow-

green carboxylate microspheres (YG beads), S. aureus, E. coli or apoptotic cells (Gu et al., 

2010; Gu et al., 2011). Work in Gu’s 2011 study demonstrates that anti-P2X7 mAb and 

recombinant P2X7 extracellular domain (ED) inhibited the phagocytosis of YG beads, E. coli 

and S. aureus by human PBMCs, showing contrast in the data presented in my study. The 

reasons for these differences could be due to the difference in expression/functionality of 

P2X family members in PBMCs vs. hMDMs or differences in the methodology. Notably, the 

evidence for other P2 receptors to Ca2+ signalling in hMDMs in my study suggests it is 

possible that these other P2X receptors may compensate for P2X7 when its functionality is 

hindered.  

 

Secondly, whilst prior investigations have demonstrated a role for P2X7 in regulating the 

killing of Mycobacterium and Chlamydia, to my knowledge, this study was the first to assess 

the contribution of P2X7 to the killing of S. pneumoniae. Chlamydia and Mycobacterium are 

both classified as obligate or facultative intracellular parasites which utilise the intracellular 

machinery of the cell to replicate (Baron 1996 medical microbiology 4th edition; Sherris 

Medical Microbiology, 5th Edition), whereas S. pneumoniae is an extracellular bacteria and 

is capable of replicating independently. It could be that the intracellular killing pathways 

utilised are different dependent on the bacteria type and differentially involve P2X7 

signalling. A differential Ca2+ involvement in phagocytosis has been shown to occur 

dependent on particle type (Nunes & Demaurex, 2010).  

 

When the lack of effect of P2X7 antagonists on bacterial phagocytosis and killing are taken 

in combination with the evidence that P2X7 does not contribute to ATP/bzATP mediated 

Ca2+ signalling in hMDMs, these pieces of data from hMDMs suggest that there is little risk 

associated with P2X7 inhibition. There is no evidence to suggest that P2X7 inhibition would 

have an effect on the critical function of macrophages in bacterial handling, a role that is 

particularly needed to remain intact in COPD patients. However, due to the preliminary 

findings in hAMs which are suggestive of P2X7 contribution to Ca2+ signalling, contrary to 

that seen in hMDMs, further experiments in hAM cells are required to ensure no 

differences are seen between hMDM/hAM bacterial handling functions as well.  

 

Differences in hMDM and hAM Ca2+ handling responses 
 

In contrast to the Ca2+ imaging results obtained in hMDM cells, the preliminary data 

obtained in hAM cells suggests a contribution of P2X7 to the bzATP and ATP mediated Ca2+ 

signalling. The concentration-response relationship initiated by ATP in hAMs demonstrated 

a classical sigmoidal/linear relationship with the EC50 around 2.63μM however the 

concentration-response to ATP in hMDMs exhibited a bell-shaped response with a 
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decrease in the response to ATP at concentrations over 100μM. As it is known that 

concentrations of around 100-1000μM are required to maximally activate P2X7 the 

concentration-response data from these two cell types indicate that there is a greater 

contribution of P2X7 channels to the hAMs than hMDMs. Further evidence for P2X7 activity 

was shown as the P2X7 antagonists inhibited the ATP and bzATP induced Ca2+ signal, in a 

concentration-dependent manner. However the pIC50 for GSK-2160A in the healthy hAMs 

and COPD hAMs was 6.3 which show a lower potency than was reported for hP2X7 

homomeric channels expressed in HEK-293 cells (pIC50 of 8.5). Similar variability was 

observed in the activity of Synta66 between different cell types, for example in Jurkat T 

cells Synta66 was shown to have an IC50 of 1μM whereas in VSMCs it was shown to be 

26/43nM (Di Sabatino et al., 2009; Li et al., 2011). This apparent observed lower potency of 

the GSK-2160A compound to ATP induced Ca2+ signals in hAMs compared to that reported 

in HEK-293 P2X7 expressing cells could be explained by differences in the level of P2X7 

protein expressed in these difference assays thus affecting protein binding. 

 

Due to the wide accessibility of blood donations and easy isolation of CD14+ peripheral 

blood mononuclear cells, a large number of groups now utilise blood derived hMDMs for in 

vitro experiments. A pub med search of ‘human blood derived monocyte derived 

macrophages’ yields over 8000 results indicating the vast use of this cell type. Since the 

recent findings that tissue resident macrophages are not derived from blood mononuclear 

cells but are instead foetal derived and maintained in situ during steady state conditions 

(Dey et al., 2014), this has brought to question the translatability of this macrophage model 

as a mature macrophage cell type. However, due to the difficulties in obtaining primary 

human tissue from which to isolate tissue resident macrophages, blood MDMs is arguably a 

more representative macrophage model than immortalised macrophage cell lines and 

similarly has a key role in translation from mouse models.  

 

Reports of functional differences between murine and human biology in mast cells have 

been described above (Section 3.3), similar differences have also been shown in monocyte 

and macrophage cells. A 2010 study transcriptionally analysed the differences between 

murine and human monocyte subsets. A high level of similarity was seen between murine 

and human monocyte subsets; however key differences were also reported. Interestingly, 

the largest difference in expression profile reported between the two species was in 

classical scavenger and apoptotic cell recognition molecules (Ingersoll et al., 2010).  Further 

differences between mononuclear phagocytic cells from two species were summarised by 

(Reynolds & Haniffa, 2015). 

 

Although current macrophage model systems may have flaws in the translation to human 

tissue resident cell, determination of components found in the extracellular milieu in 

macrophage tissue resident locations could be a novel way to create a monocyte derived 

tissue specific mature macrophage, albeit a challenging feat. (Guth et al., 2009) described 

an adoptive transfer of GFP+ve BMDMs to the mouse airway that led to a change in the cell 

differentiation characteristics that were in line with the hAM phenotype. The high 

expression of CD11c in hAMs but not in other tissue-resident macrophages was used as the 

predominant indicator of adoption of the hAM phenotype in this study. Through GM-CSF 
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knockdown studies it was found that locally produced GM-CSF was required for directing 

the CD11+ve phenotype to BMDMs where it was shown that blood monocytes adopted the 

phenotypic characteristics of hAM cells when transferred to the lung tissue environment 

provides evidence that this methodology is theoretically possible. A worthwhile area of 

future investigation would be to comprehensively identify the components in the local 

environment that confer the tissue specific phenotype. Successful validation of such 

methods could be performed by comparison of the artificially created ‘mature’ tissue 

specific macrophage with cells isolated from this area. 

 

The specific reasons for differences seen between hAM and hMDM purinergic Ca2+ 

signalling in my study could be due to a number of possibilities. Considering the medical 

history of the hAM donors, it is known both the donors of the healthy and COPD hAM cells 

were smokers (Healthy donor, L282, was a 57year old male smoker, COPD donor, 53year 

old male smoker who had been diagnosed with COPD for 5-6 years). In could be that the in 

vivo lung environment and constant exposure to cigarette smoke may have had a 

significant effect on the P2X7 expression and functionality and that this may account for 

the active involvement in Ca2+ signalling seen here in comparison to the hMDM cells, 

indeed (Lucattelli et al., 2011) describe a significant upregulation of P2X7 mRNA in 

neutrophils and macrophages isolated from the BALF of mice exposed to cigarette smoke 

of 5 cigarettes for 3 consecutive  days, providing support to this hypothesis.   

 

It has been demonstrated that the activity of P2X7 exhibits variation dependent on the 

species but also between individual donors due to polymorphisms. There have are over 

1500 SNPs of P2X7 as reported by NCBI SNP database, although the majority of these are 

intronic it has been shown that gain of function mutations such as the A348T mutation 

leads to a protection against infection, however gain of function mutations are associated 

with an increased risk of developing certain inflammatory diseases (Bartlett et al., 2014). It 

would be worthwhile to evaluate the sequence of the P2X7 gene found in the hAM versus 

the hMDM donor cells to investigate whether polymorphic exceptions in the hAM cells 

were an explanation of the findings in my study. P2X7 is also known to form 7 naturally 

occurring splice variants (Cheewatrakoolpong et al., 2005) with P2X7A the member first 

described in (Rassendren et al., 1997). Each P2X7 splice variant can vary in its distribution, 

its functional characteristics but also in the associated cellular functions it controls (Adinolfi 

et al., 2010), again it would be important to identify the splice variant distribution seen in 

the hMDM and hAM cells as differentiated/isolated in this study to see whether this shed 

any light on the functional differences suggested.  

 

In conclusion, the results of this study using hMDMs indicate that inhibition of P2X7 does 

not represent a risk in the interference of macrophage Ca2+ signalling or bacterial handling. 

Nevertheless the preliminary data suggesting a difference in the Ca2+ signalling in hAM cells 

shows that translation experiments are required to confirm the activity of P2X7 in hAMs 

and whether the interpretations made from the hMDM experiments are physiologically 

valid. These results highlight the importance of translating biological studies into the most 
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physiologically relevant system available, to confirm that the conclusions obtained are 

accurate.  

 

4.4 Future directions 

In order to provide definite conclusions to answer the original research objectives set, 

further experiments in a larger number of hAM donors are required. Both FLIPR 

experiments and bacterial handling assays are required to validate or discharge the 

preliminary results obtained in hAM cells. These experiments would be the priority to 

complete this work for publication. 

 

Although outside the scope of my study aims, from a basic science point perspective there 

are number of avenues of investigation which could be explored in order to better 

understand P2X7 in hMDMs under these assay conditions. Whilst a number of these 

experiments have been published in other macrophage cell types, they would help to fully 

understand the biology of P2X7 in hMDM cells under the present assay conditions and to 

confirm why differences are seen in my experimental conditions compared to others. 

Although the Ca2+ signalling experiments have revealed no activity of P2X7 in hMDMs, to 

understand fully the components of ion flow following P2X receptor activation, patch 

clamp electrophysiology could be performed, for example this would allow discernment of 

the potential for K+ efflux occurring in response ATP/bzATP. It has been demonstrated that 

P2X7 contribution to IL-1β maturation is mediated by K+ efflux and is independent to Ca2+ 

signalling (Brough et al., 2003; Franchi et al., 2007; Qu et al., 2007; Piccini et al., 2008; 

Katsnelson et al., 2015). Therefore it may be that K+ efflux mediated by P2X7 is a distinct 

function of P2X7 channels and important for regulating downstream cellular functions. In 

relation to this, to directly elucidate P2X7 regulated downstream functions in hMDMs, YO-

PRO or ethidium dye uptake assays could be performed to find whether bzATP/ATP 

activation lead to P2X7 mediated pore formation. Similarly mature IL-1β production assays 

could be performed following ATP stimulation in the presence and absence of P2X7 

antagonists; this would allow confirmation regarding P2X7 activity independently to Ca2+ 

signalling. A recent study by (Liang et al., 2015) investigated the effect of extracellular Ca2+ 

on the allosteric interaction with P2X7. To further understand the effect of extracellular 

Ca2+ on P2X7 activation in my assay conditions, dye overload patch clamp electrophysiology 

experiments could be performed, as described in Liang’s work. Similarly, further Ca2+ 

imaging experiments could be performed in the presence of low divalent concentrations to 

elucidate the potential effect on P2X7 activity. As discussed earlier in Section 4.3, although 

the activity of P2X7 activity in low divalent conditions is not relevant for the purpose of the 

present study from a mechanistic perspective it would be an interesting comparison study 

to understand the activity of P2X7 in hMDMs in ‘physiological’ conditions (normal divalent 

external solution) vs. ‘P2X7 tuned conditions’ (low divalent external solution).  

 

One of the discussed possibilities for the lack of inhibition seen by P2X7 inhibitors in the 

present study was the potential for P2X4/P2X7 heteromeric/functional interaction. Co-IP 



160 
 

and FRET experiments could be performed to assess the interaction of the two proteins. 

Whereas, electrophysiology could be used to measure the desensitisation properties of the 

ATP induced current, utilising the distinct densensitisation characteristics reported in 

homomeric P2X4 and P2X7 channels. Potentiation induced by Ivermectin was traditionally 

used as a way to distinguish P2X4 from other P2X channels, however (Nörenberg et al., 

2012) recently demonstrated that human P2X7 was also sensitive to ivermectin therefore 

invalidating this as an approach. 

 

Finally, a direction for further study would be to ascertain how the P2X7 antagonist used in 

the present study altered in activity between different SNPs and splice variants of hP2X7. 

Parallel genetic analysis of the P2X7 expression from hMDM and hAM donors would be an 

interesting way to understand further about the variability in the results between 

hMDM/hAM/donors.  

 

Together, it can be seen that there are a number of avenues for further investigation that 

the results from the present study have revealed. Most importantly, the present study has 

identified preliminary differences between hMDM and hAM purinergic signalling which 

represents a significant area of interest to follow up upon.  

  



161 
 

5 Chapter 5: Investigation of Orai contribution to 
Ca2+ signalling and function in human 
macrophages 

 

5.1 Chapter 5 introduction 

Ca2+ has been specifically linked to macrophage functions explored in this study e.g. 

inflammatory mediator production, phagocytic ingestion and phagosomal maturation – 

however there are a number of gaps in knowledge which show there is scope for further 

work in this field. This chapter summarises what is already known about Ca2+ signalling in 

macrophage biology and describes the experiments performed as part of this PhD project 

to investigate the role of Orai in human macrophage signalling. 

5.1.1 The role of Ca2+ in production of inflammatory 

mediators from macrophages 
 

The activation of transcription factors, NFAT and NF-κB  requires Ca2+ signalling (Dolmetsch 

et al., 1997) as discussed in more depth in Section 3.1.1. NF-κB and NFAT have both been 

shown to have a role in innate immune responses and activation of endogenous 

macrophage receptors including TLR, Dectin and CD14 are known to lead to NFAT and NF-

κB activation (Vallabhapurapu & Karin, 2009; Buxadé et al., 2012; Zanoni & Granucci, 2012). 

We therefore hypothesized that Ca2+ signalling is a crucial factor in the control of 

macrophage transcriptionally activated cytokines.  

 

Recent characterisation of a selenoprotein (SelK) has aided the identification of certain Ca2+ 

regulated functions in macrophage cells. Selenium is an essential micronutrient which has 

important roles in the regulation of immune cell responses. Selenium is incorporated into 

selenoproteins as the amino acid selenocysteine which provides it with active properties. 

(Verma et al., 2011) described for the first time that SelK is an ER localised membrane 

protein expressed in immune cells. Ca2+ signalling assays revealed that the Ca2+ signal 

induced by the TCR, chemokine receptor (CCR) and FcγR respectively was impaired in SelK-/- 

T cells, neutrophils and BMDMs. Importantly the SelK deletion did not affect signalling 

induced by thapsigargin, therefore providing evidence that SelK does not change the 

amount of Ca2+ in the ER store, or the SOCE through plasma membrane channels. Later 

work by the Hoffman group identified that SelK acts to interfere with Ca2+ mobilisation 

through regulating IP3R expression via IP3R palmitoylation (Fredericks et al., 2014). This 

implicates SelK with a role in the regulation of receptor signalling where involvement of 

IP3R occurs, FcγR, TCR and CRR all being examples of such receptor signalling cascades.  
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SelK-/- has been used as a tool by which to impair receptor mediated Ca2+ signalling, in a 

study designed to investigate into FcγR regulated mediator production in BMDM cells  

(Huang et al., 2012). The authors showed that FcγR stimulation with immune complex 

caused the release of IL-6, TNFα, monocyte chemoattractant protein-1 (MCP-1), 

macrophage inflammatory protein-3α (MIP3α) and PGE2 at detectable levels and that in 

SelK-/- BMDMs there was a reduction in the level of release of TNFα, PGE2, IL-6 up to 50%. 

As SelK-/- is known to disrupt FcγR mediated Ca2+ signalling it is likely that the reduction 

seen in the release of certain mediators is due to their dependence on Ca2+ for their 

production/secretion. Similarly, FcγR activation of MAPK regulated ERK phosphorylation 

and resulting proinflammatory cytokine production was impaired in SelK-/- mice, to a similar 

degree as observed with Ca2+ chelation by BAPTA pre-treatment. Two other MAPKs; p38 

and c-Jun N terminal kinase (JNK) were not significantly affected by SelK depletion 

indicating they do not require FcγR mediated Ca2+ signalling in the same way. SelK has been 

demonstrated to have a role in control of IP3 regulated Ca2+ mobilization therefore these 

results suggest that FcγR- regulated mediator release in BMDMs is regulated by Ca2+. In 

sum, the known Ca2+ dependency of NFAT and NF-κB  transcriptional activation and 

evidence supporting Ca2+ dependency of FcγR mediated macrophage functions exemplify 

the importance of Ca2+ in macrophage biology.  

 

5.1.2 The role of Ca2+ in macrophage phagocytosis 
 

The Ca2+ dependency of phagocytosis is controversial. Initial studies linked a rise in 

intracellular Ca2+ with phagocytic ingestion, for example (Young et al., 1984) demonstrated 

that an increase in intracellular free Ca2+ occurred following FcγR receptor activation, with 

initiation of Ca2+ signal seen in seconds and the signal lasting around 5-10 minutes. In the 

absence of extracellular Ca2+, the FcγR induced Ca2+ response was reduced by 70%, 

concurrently the phagocytic index in J774 and peritoneal mouse macrophages was reduced 

by 60% and 95%, respectively. Work on mouse peritoneal macrophage cells by (Hishikawa 

et al., 1991) showed that intracellular Ca2+ store depletion is sufficient for one or two 

phagocytic events of IgG coated beads however extracellular Ca2+ influx appear necessary 

for multiple phagocytic events. Conversely, a study by (McNeil et al., 1986) showed no 

increase in Ca2+ signal during FcγR mediated phagocytosis in mouse peritoneal 

macrophages. An explanation for the discrepancy seen between these studies could be 

explained by differences in methodology – with (McNeil et al., 1986) recording the average 

Ca2+ signal in a population of cells rather than Ca2+ signal from individual cells, as in 

(Hishikawa et al., 1991). (Kruskal & Maxfield, 1987) postulated that as phagocytosis is an 

asynchronous event in different cells, the Ca2+ increase occurs in different cells at different 

times. This could mean that when an average Ca2+ signal measurement was made from a 

cell population any Ca2+ changes seen might average out to below the sensitivity of the 

assay method. (Di Virgilio et al., 1988) compared the Ca2+ signal primary macrophages from 

mouse peritoneum and in the J774 macrophage cell line using quin2 and fura-2 Ca2+ 

indicator dyes and different acquisition methods. Although Di Virgilio and colleagues 

corroborate that an increase in Ca2+ occurs following FcγR activation and subsequent 
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phagocytotic particle ingestion, in their study no effect on phagocytosis was seen in the 

absence of extracellular Ca2+, following intracellular Ca2+ store depletion. Possibly the 

simplest interpretation for the conflicting results in the literature is due to numerous 

receptors simultaneously involved in the control of phagocytosis, with differential Ca2+ 

dependency. Whilst some receptors might signal via an elevation in cytosolic Ca2+, other 

receptors might not involve Ca2+ and therefore the requirement for Ca2+ in phagocytosis 

can be circumvented. This hypothesis is supported by (Lew & Stossel, 1980) – in their study 

they report that phagocytosis is differentially Ca2+-mediated dependent on the receptor 

initiating the phagocytic process. For example a change in intracellular Ca2+ concentrations 

reduced FcγR mediated phagocytosis in human neutrophils; whereas C3bR mediated 

phagocytosis was unaffected. Which step in the ingestion of particles may be regulated by 

Ca2+ is unclear. Moreover, whether differences exist in dependency of phagocytosis on Ca2+ 

in different populations of macrophages (Section 1.3.4) is also unclear. These unknown 

factors highlight gaps in knowledge in this area.  

 

As described in Section 1.3.3, phagocytosis is a complex process with many distinct phases 

involved. Upon particle internalisation into a phagosome, phagosome maturation must 

occur for the phagocytic cell to destroy the foreign particle. Phagosomal maturation 

encompasses steps of phago-lysosome fusion and also phagosomal acidification. 

Interestingly, (Nunes & Demaurex, 2010) suggest that there is more evidence for the 

phagosome maturation process versus particle ingestion to be dependent on Ca2+ 

signalling. Evidence suggesting a role for Ca2+ in phagosomal maturation has been shown in 

numerous studies. (Downey et al., 1999) perform a study in COS-1/CHO cells transfected 

with FcγRIIA to infer phagocytic properties to this cell type. Here they found that 

phagosomal acidification was reduced but not abolished by chelation of intracellular Ca2+. 

Conversely,  (Zimmerli et al., 1996), found that phago-lysosome fusion in hMDMs, as 

assessed by lysosomal-associated membrane protein 1 (LAMP) markers, was resistant to 

reduction in intracellular Ca2+ concentration. These experiments were performed for 

phagosomes containing: zymosan, staphylococci and mycobacterium bovis bacillus 

calmette–guérin (M. bovis BCG). However, Zimmerli and colleagues did not assess the 

intracellular killing mechanisms of the phagocytosed particles and therefore direct 

comparisons between these two studies cannot be made. (Malik et al., 2000) show 

evidence for the involvement of Ca2+ signalling in phagosome-lysosome maturation and 

phagosome acidification in hMDMs. Here the Ca2+ ionophore ionomycin was shown to 

increase the rate phagosome-lysosome fusion and phagosome acidification, as assessed by 

cathepsin D, LAMP-1, CD63 markers and LysoTracker Red to assess phagosomal pH, 

following Mycobacterium tuberculosis (M. tuberculosis) infection. Opposite results were 

seen when Ca2+ chelator MAPTAM and EGTA were added in addition to M. tuberculosis - 

supporting the specific role of Ca2+ in mediating the phagosome maturation parameters 

measured. Interestingly the phagosome acidification was not reduced to the same level as 

phagosome-lysosome fusion in EGTA conditions, suggesting only a small increase in 

intracellular Ca2+ is required for normal acidification. Notably, other experiments 

performed by (Malik et al., 2000) showed that the involvement of Ca2+ in phagosome 

maturation was dependent on the receptor involved in particle detection. In predominantly 

complement mediated M. tuberculosis phagocytosis, there was no increase in Ca2+ and 



164 
 

subsequently M. tuberculosis had significantly improved rates of intracellular survival. 

Alternatively, when M. tuberculosis was opsonized to enable FcγR mediated phagocytosis, 

Ca2+ signalling was observed and the intracellular M. tuberculosis viability was reduced. 

Further investigation is required to ascertain whether the role of Ca2+ in the phagosome 

maturation and bacterial killing of M. tuberculosis is required for other bioparticle types. 

However, the apparent coupling of the receptor initiating phagocytosis and Ca2+ 

dependency highlights again that there is distinct variability in the Ca2+ dependency of 

phagocytosis dependent on particle type. In sum, the variability of results from the studies 

discussed above show the importance of Ca2+ in phagocytosis but also indicate the gaps of 

knowledge in this area.  

 

5.1.3 Evidence implicating Orai in macrophage biology 
 

Evidence supporting a role for Orai & SOCE in macrophage cytokine release and 

phagocytosis has been described in a small number of studies in rodent macrophages. In 

mouse peritoneal macrophages SK&F96365, a non-selective SOCC antagonist, caused 

significant inhibition to LPS + IFNγ mediated Ca2+ signals as well as IL-10, TNFα, IL-6 and 

MCP-1, NO and ROS release. Similarly, phagocytosis of pHrodo® labelled E. coli was 

reduced (~25%) by SK&F96365 pre-treatment. It has been assumed that appropriate 

vehicle controls have been performed in parallel for these experiments, but no obvious 

statement of their use was indicated in the text, so interpretations must be made with 

caution (Ye et al., 2012a; Ye et al., 2012b). In another study in peritoneal macrophages 

taken from STIM1-/- mice, it was shown that there was an attenuation in FcγR mediated 

Ca2+ signalling and impaired Fcγ-mediated phagocytosis. Following immune complex 

induced pneumonitis there was a reduction in levels of secreted TNFα and MIP-2 in BALF 

compared to control mice. In vivo studies revealed that STIM1-/- mice were protected 

against IgG mediated anemia, IgG mediated thrombocytopenia and anti-GPIIb/IIIa induced 

anaphylaxis. Similarly BALF collected and lung tissue examined following IgG IC-mediated 

pneumonitis/alveolitis in STIM1-/- mice revealed that C5a mediated neutrophil migration 

was impaired compared to WT mice.  However, it could be argued that in vivo work 

showing involvement of STIM1 in IgG mediated autoimmune disease is not direct evidence 

of STIM1 involvement in macrophage biology but in any cell where FcγRs are expressed.  

Nevertheless the in vitro work showed attenuation of FcγR Ca2+ signalling and FcγR-

mediated phagocytosis in STIM1-/- macrophages therefore showing convincing evidence for 

a role of SOCE signalling in macrophage biology (Braun et al., 2009). In the J774A.1 

macrophage cell line CD38 internalisation following FcγR mediated phagocytosis of IgG 

opsonized particles was shown to be crucial for Ca2+ mobilization. The non-selective Ca2+ 

antagonist, SK&F96365 was shown to inhibit FcγR mediated Ca2+ signal and IgG bead 

internalisation, the latter by 38% providing evidence that SOCE – regulated through CD38 is 

important for FcγR mediated phagocytosis in J774A.1 macrophages (Kang et al., 2012).  

 

Whilst these three studies support a role of SOCE in TLR and FcγR signalling and function, 

contradictory results were observed by (Vaeth et al., 2015). Inducible ablation of STIM1 

and STIM2 in BMDMs caused a significant inhibition to the thapsigargin induced Ca2+ 
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signalling, indicating the functional activity of SOCE in BMDMs, however no alteration in 

response to STIM1 or STIM2 ablation was found in any macrophage functions tested. 

Contrary to the study by Braun, Vaeth described no attenuation in the phagocytosis of IgG 

coated fluorescent beads and S. aureus in STIM1 STIM2 ablated BMDMs. Interestingly 

chelation of intracellular Ca2+ with BAPTA did cause a reduction to phagocytosis of IgG 

coated beads – suggesting some general requirement for Ca2+, however an alternative 

explanation for the effect of BAPTA could be an alteration to the BMDMs metabolic 

activity. Assessment of the contribution of STIM regulated Orai to phagosome maturation 

was also performed, using LAMP markers to assess phago-lysosome fusion no difference 

was seen in BMDMs from WT and STIM ablated cells. Similarly, PRR ligand mediated 

cytokine production and activation of NLRP3/NLRP4 inflammasomes was also shown not be 

affected by STIM ablation. Likewise, T cell responses initiated by BMDMs were not changed 

in STIM ablated mice. Work by Vaeth and colleagues (2015) suggest that Orai Ca2+ signalling 

is active in macrophages but is not critical for mediating innate functions of the 

macrophage. The reasons for the differences in the results reported by Vaeth versus Braun 

could be explained by heterogeneity in the macrophage cells used – peritoneal 

macrophages were used in Braun et al, whilst BMDMs were used by Vaeth. Nevertheless, 

together these studies have shown evidence supporting a role for SOCE in rodent 

macrophage signalling. 

 

 

To my knowledge there have not been any studies into the contribution of Orai to Ca2+ 

signalling or function in human macrophages, indicating that this is a significant gap in the 

current picture of macrophage biology. Taken together, the work from mouse models has 

provided preliminary data suggesting the importance of SOCE in macrophages. Given the 

potential significance of the findings and the lack of work currently performed in human 

macrophages the aim of this investigation was to investigate the activity and function of 

Orai signalling in human macrophages, with the hypothesis that Orai-mediated Ca2+ 

signalling was active and contributing to TLR and FcγR signalling cascades.  

 

5.2 Results 

5.2.1 Orai and STIM are expressed in hMDMs at mRNA level 
 

The expression of members of the Orai and STIM families at mRNA level in hMDMs was 

assessed using quantitative PCR. It is increasingly accepted that the characteristic 

housekeeping genes such as β- actin are not stably expressed in each cell type (Bustin, 

2002). To control for this, as described in Methods Section 2.5 geNorm experiments were 

performed find the most stably expressing housekeeping gene in my cell of interest, 

hMDMs. The results indicate that GAPDH is expressed at consistent levels between the 10 

donors tested and has a geNorm stability value of less than 0.40; therefore this gene was 

used for normalisation in further hMDM qPCR experiments (Figure 2.10). SYBR green 

primer probe sets were used, validation of primer specificity and efficiency was performed 
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by performing a melt curve analysis (Figure 2.7) and cDNA concentration titration 

experiments, respectively (Figure 2.11). Together, these validation experiments allow the 

qPCR data to be interpreted as a relative quantitative assessment of mRNA expression. As 

shown in Figure 5.1, qPCR results demonstrated that all Orai and STIM family members 

were expressed at mRNA level, with Orai1 and STIM1 (6.2x10-4 ± 1.2x10-4 and 7.1x10-

4 ± 1.5X10-4) expressed at significantly higher levels than Orai2 and STIM2 (1.5x10-

4 ± 2.47X10-5 and 2.4X10-4 ± 4.41X10-5), respectively. As shown in Figure 5.1A there is 

variability in the expression between hMDM donors, in particular D91232 showed a lower 

expression of STIM1 and STIM2 than the other four donors evaluated. Nevertheless, 

expression of each Orai and STIM family member was seen in all donors assessed.   

 

 

 

 
 

Figure 5.1 Orai and STIM are expressed in hMDMs at mRNA level 

 

Quantitative PCR was performed using cDNA isolated from hMDM cells; SYBR green 
primer/probe technology was used to assess mRNA expression. Data is presented as 
relative expression 1/2^Ct levels and was normalised to GAPDH. A.) mRNA 
expression from each individual hMDM donor, mean ± SEM from donor triplicates 
B.) mean ± SEM expression of all donors tested. Results were analysed using one-
way ANOVA with Tukey’s multiple comparison test. N=5 donors. * p <0.01, **** 
p<0.0001 

 

5.2.2 Thapsigargin initiates a concentration-dependent Ca2+ 

influx in hMDMs 
 

Having obtained evidence of the presence of Orai and STIM mRNA these results warranted 

further investigation to assess whether the store-operated Orai/STIM channels are 

functionally active in hMDM cells. Ca2+ signalling assays following passive store depletion 

using thapsigargin and FLIPR were used as described in Section 2.3.2. Results show that 

thapsigargin initiated a concentration-dependent Ca2+ signal in hMDMs, with two 

kinetically distinguishable phases at concentrations of 0.12µM and above (Figure 5.2). 
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Based on zero external Ca2+ controls (mean area under curve 803.4 ± 289 N=6) (Figure 

5.2B&E) the data suggests that the initial faster and smaller increase in the Ca2+ signal, with 

maximum signal reached by 3 minutes is caused by Ca2+ release from the intracellular 

stores, whilst the larger more sustained Ca2+ signal rise (mean area under curve 1863 ± 243 

N=6, with maximum signal reached by 15minutes) is formed by Ca2+ influx across the 

plasma membrane. The concentration-response relationship exhibited by thapsigargin in 

hMDMs showed a bell shaped curve, concentrations of thapsigargin higher than 3.3µM 

exhibited a less than maximal response. The pEC50 for thapsigargin in this cell type was 

7.2 ± 0.2 N=6, as calculated from the whole concentration range. These data indicate that 

there are SOCCs present in hMDMs, with a potential contribution from Orai/STIM channels. 

 

5.2.3 GSK-7975A significantly inhibits the Ca2+ signal initiated 

by thapsigargin 
 

To confirm the contribution of Orai channels to the Ca2+ influx mediated by thapsigargin, an 

Orai selective antagonist was utilized. GSK-7975A is a well validated compound that has 

been shown to have a high selectivity for Orai channels over a number of other ion 

channels and receptors (Derler et al., 2013). Importantly it is insensitive to TRPC channel 

proteins (at concentrations 10µM and lower) unlike the majority of the SOCE inhibitors 

used (Section 1.4.10). Preincubation of hMDMs for 15 minutes with GSK-7975A inhibited 

the thapsigargin mediated Ca2+ entry in a concentration-dependent manner (Figure 

5.2B&D). The IC50 of GSK-7975A from these experiments was 1.9µM or pIC50 6.0 N=4. This 

is in line with previously published values for this inhibitor in heterologously expressed 

channels in RBL (pIC50 6.1 ± 0.1) and Jurkat T cells (pIC50 6.3 ± 0.03) (Derler et al., 2013; 

Rice et al., 2013). The initial Ca2+ signal (6.86% of max ± 4.37 N=4) observed in the presence 

of 10µM of GSK-7975A is likely to represent Ca2+ release from intracellular stores, based on 

the data obtained with thapsigargin applied in zero external Ca2+, showing a signal in the 

same order of magnitude. Taken together the qPCR data and Ca2+ signalling studies 

provides compelling evidence for the expression of functional Orai channels in hMDMs.   
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Figure 5.2 Thapsigargin (TG) activates concentration-dependent Ca2+ influx in 
hMDMs that is sensitive to inhibition by the Orai selective antagonist, GSK-7975A 

 

Ca2+ imaging of hMDMs loaded with fluo-4, using FLIPR. A.) Ca2+ signal over time, 
1µM TG was applied at t=30s and kept constant throughout. Signal was normalised 
to baseline fluorescent value. This is a representative trace from N=5 donors tested 
B.) Ca2+ signal over time, 1µM TG added at t=30s to varying concentrations of GSK-
7975A which was pre-incubated for 15mins prior to agonist application and kept 
constant throughout. Signal was normalised to baseline fluorescent value. C.) 
Concentration-response curve to TG, showing percentage of max Ca2+ response N=5 
donors. D.) Concentration-response curve – response to 1µM TG in the presence of 
varying concentrations of GSK-7975A, graph showing percentage of control 
response. N=5 donors. Concentration-response graphs calculated using area under 
curve values from normalised signal/time. E.) Bar graph representing the Ca2+ signal 
induced by 1µM TG in hMDM cells incubated with and without Ca2+ as a component 
of the external solution, mean ± SEM. Results were analysed using an unpaired t-
test. N=5 donors. * p <0.01, **** p<0.0001 

 

5.2.4 TRPC3/6 agonist GSK-2934A has no effect on Ca2+ 

signalling in hMDMs 
 

TRPC channels have often been shown to act in concert with Orai channels (Ambudkar et 

al., 2007; Liao et al., 2007; Liao et al., 2009; Smyth et al., 2010) with some subtypes shown 

to have a store-operated mode of activation. For these reasons, it was investigated 

whether TRPC channels were also active in hMDMs. For most TRPC subtypes, selective 

pharmacological tools are not available to allow discernment of individual channel 

contribution, however recently validated selective TRPC3/6 agonists and antagonists are 

currently the exception (Seo et al., 2014b). Therefore the effect of the selective TRPC3/6 

agonist – GSK-2934A was tested in hMDMs. Previously, it was shown that the EC50 for 

TRPC3/6 agonist in a TRPC6 HEK cell line was 0.5µM (Figure 3.10), however experiments in 
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hMDMs showed that concentrations in the range of 0.03-10µM did not induce any Ca2+ 

signal (data not shown); therefore suggesting that TRPC3/6 is not functionally active in 

hMDMs.  

 

Taken together the data presented in Figures 5.1&5.2 provides novel evidence for the 

functional activity of Orai-mediated Ca2+ signalling in hMDM cells. This is an exciting finding 

that leads to the question; what is the role of Orai-mediated Ca2+ entry in hMDMs. As 

discussed in Section 1.1.3, the discernment of the role of Orai in other immune cells has 

shown the SOCC to have crucial roles in immunology.  Further work in my study addresses 

Orai-mediated Ca2+ signalling in control of human macrophage functions. 

 

Macrophages express a number of endogenous surface receptors which can initiate a range 

of signalling cascades. Although thapsigargin is a useful tool to assess SOCCs, it is not a 

physiological agonist and is a relatively crude tool for studying Orai channel activity. 

Consequently, experiments were performed to investigate whether Orai-mediated Ca2+ 

entry contributed to signalling downstream of an endogenous macrophage receptor. 

Receptors which have been implicated in the initiation of signalling cascades with a 

potential for SOCC activation were considered; FcγR, TLR, Dectin and chemokine receptors 

are all examples of such receptors. As described in Section 5.1 there are a number of 

studies which show evidence to support the involvement of Orai in TLR and FcγR signalling, 

based on this preliminary evidence the contribution of Orai to FcγR and TLR signalling was 

focused upon in my study.  

 

5.2.5 LPS (+IFNγ) mediated cytokine release was not sensitive 

to GSK-7975A inhibition 
 

Investigation into the contribution of Orai signalling to LPS mediated Ca2+ entry was 

performed in experiments presented in Figures 5.3 & 5.4. As summarised in Section 5.1, a 

number of studies have shown that inhibition of SOCE can lead to impairment in the LPS 

mediated cytokine release, in particular that of IL-6 and TNF-α. Cytokine assays using MSD 

ELISA plates were performed to ascertain the importance of Orai-mediated Ca2+ signalling 

in LPS mediated cytokine release from hMDM cells. 100ng/ml of LPS was applied to 

hMDMs for 24 hours and supernatants collected after this stimulation period. 100ng/ml 

concentration of LPS was chosen based on the concentration-response of TNF-α release to 

a titration of LPS. Results presented in Figure 5.3 shows that LPS induced the release of a 

number of cytokines, including; TNFα, IL-6, IL-1β, IL-12p70, IL-13, and IL-10 were detected 

within the upper and lower limits of detection. IL-8 was detected but above the higher 

limits of detection. IL-12p70 and IL-1β were released in the range of 62-80 in LPS 

stimulation conditions, IL-13 at 475.2 ± 21.32, IL-6 at 6006 ± 617 whereas IL-10 and TNFα 

were released at 15599 ± 3807 and 65248 ± 3294 respectively (all ng/ml mean ± SEM N=4).  

To compare the results of this present study with the work reported in peritoneal 

macrophages (Ye et al., 2012a) stimulation of hMDMs with LPS + IFNγ was also performed. 

Interestingly, in comparison to LPS treatment alone, the release of IL-12p70 and TNFα was 
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significantly higher, with an increase  in release from 79.61 ± 9.73 to 461 ± 108.0 and 

65248 ± 3291 to 118848 ± 8852  (ng/ml, mean ± SEM N=4) whereas release of IL-10 was 

significantly reduced to 4295 ± 1478 from 15599 ± 3807 (ng/ml, mean  ± SEM N=4). Other 

cytokines were not significantly affected by addition of IFNγ. Notably, there was no 

significant reduction in cytokine release in conditions where 10µM GSK-7975A has been 

pre-applied. This data suggests that Orai-mediated Ca2+ entry is not required for TLR4 

mediated cytokine release.  

  

 

 
Figure 5.3 Effect of 10µM GSK-7975A on LPS (+IFNγ) stimulated cytokine release 
from hMDMs 

 

hMDMs were activated with 100ng/ml LPS or 100ng/ml LPS + 10ng/ml IFNy for 
24hrs with 10µM GSK-7975A pre-applied for 15 minute before stimulus and kept 
constant throughout. After 24hr incubation, supernatants were collected, diluted 
1:10 and run on pro-inflammatory V-plex MSD plate. Of the 10 cytokines present in 
the blot: IL-6, IL-8, TNFα, IL-10, IL-12p70, IL-13 and IL-1β were detectable at levels 
well above the lower limit of detection. Graphs show the concentration in pg/ml, 
mean ± SEM. Results were analysed using one-way ANOVA with Tukey’s multiple 
comparison test. N=3 donors. * p <0.01, **** p<0.0001 

 

5.2.6 LPS did not induce a significant increase in Ca2+ signal, 

over a time course of 20 minutes, in hMDMs 
 

Although, the cytokine assays revealed no role for Orai-mediated Ca2+ signalling in LPS 

mediated cytokine production, there is evidence to suggest that LPS initiates Ca2+ entry 

(Section 5.1),  FLIPR experiments were undertaken to investigate the Ca2+ signalling 
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occurring downstream of TLR4. No Ca2+ signal increase was observed following application 

of 0.1-1000ng/ml LPS, over a time course of 20 minutes (Figure 5.4). However a small 

increase in Ca2+ signal was seen at 80 minutes following LPS addition at concentration of 

37.03µM and below. The change in the Ca2+ signal seen at 80 minutes to 37.03µM was 

significant compared to the vehicle control wells (mean normalised Ca2+ signal 1.53 ± 0.03 

in 37.03µM LPS and 1.28 ± 0.01 in spontaneous control, N=3) , however no concentration-

dependency to the response was seen (response to LPS at 80minutes showed a normalised 

Ca2+ signal in the range of 1.51-1.56 at 37.03µM concentration), posing the question as to 

whether it was a direct LPS-TLR4 mediated Ca2+ signal or whether an indirect mechanism 

was causing the activation. These experiments were also performed in IFNγ primed hMDMs 

with the same effect on LPS reported (data not shown). Due to the lack of concentration-

dependency seen and the very small dynamic window seen in the response, no further 

experiments into the Ca2+ signalling downstream of LPS were performed.  

 

 
Figure 5.4 LPS application to hMDMs results in no concentration-dependent change 
to the Ca2+ signalling 

 

Ca2+ imaging of hMDMs loaded with cal-520 using FLIPR. A.) Ca2+ signal over time, 
LPS at a range of concentrations was applied at t=30s and kept constant 
throughout, signal was normalised to baseline fluorescent value. This is a 
representative trace from N=3 donors tested B.) Bar graph showing the normalised 
Ca2+ signal at t=4800s, following LPS application, mean ± SEM of all donors tested. 
Results were analysed using one-way ANOVA with Tukey’s multiple comparison 
test. N= 3 donors. * p <0.01, **** p<0.0001 
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5.2.7 Anti-IgG causes a concentration-dependent increase in 

Ca2+ signal in hMDMs 
 

In the FcγR signalling cascade; following ITAM phosphorylation, Syk and LYN pathways are 

initiated leading to activation of PLCγ (Crowley et al., 1997; Wen et al., 2002), generation of 

IP3, store emptying and SOCE. It is therefore possible that signalling downstream of FcγR 

activation initiates Ca2+ influx that is mediated by STIM and Orai, in a similar manner to 

FcεRI and T cell receptor activation. Experiments were performed to address the 

contribution of Orai-mediated Ca2+ signalling to FcγR signalling. 

 

FLIPR experiments revealed that Anti-IgG initiated a concentration-dependent Ca2+ signal 

with kinetics markedly different from those induced by thapsigargin. In response to Anti-

IgG the Ca2+ signal reached its maximum by 4 minutes following agonist application and 

then gradually decreases back to baseline levels (Figure 5.5). Whereas following 

thapsigargin activation the signal was sustained throughout the 20 minute experiment 

duration (Figure 5.2). The continual presence of thapsigargin throughout the experiment 

duration would be causing permanent store depletion (SERCA ATPase inhibitor), 

subsequently a continual Orai activity and sustained signal is possible. However the 

activation of FcγR may not lead to full store depletion and the signal is also dependent on 

the receptor-PLC coupling and the inhibitory activity of FcγRIIb to restrict activation; 

therefore differences in kinetics are not unexpected. The initial rise in the Ca2+ signal 

induced by Anti-IgG was not composed of two kinetically distinct phases, however Anti-IgG 

induced Ca2+ signal in 0 extca2+ conditions was of a significantly smaller magnitude and 

duration compared to the signal induced in the presence of Ca2+. The mean Ca2+ signal 

induced by 1/100 Anti-IgG in external Ca2+ was 519 ± 161, whereas the Ca2+ signal caused 

by Anti-IgG application in zero external Ca2+ numbers was 88.16 ± 28.64 (area under curve 

values, mean ± SEM, N=6) (Figure 5.7B). This demonstrates that the Anti-IgG Ca2+ signal is 

composed of an intracellular store release component in addition to Ca2+ influx occurring 

through plasma membrane Ca2+ channels. Although the concentration-response curve data 

(Figure 5.5B) does not indicate that the maximum response has been reached with 1/30 

concentration, due to the volume of Anti-IgG required even for 1/30 dilutions it was 

deemed uneconomical to use higher concentrations. Instead it was considered whether the 

conditions for measuring Ca2+ signalling downstream of the FcγR could be optimised to 

obtain a response with a greater magnitude.  

 

 

 

 

 

 



173 
 

 
Figure 5.5 Anti-IgG induces a concentration-dependent Ca2+ signal in hMDMs 

 
Ca2+ imaging of Cal-520 loaded hMDMs using FLIPR. A.) Ca2+ signal over time, Anti-
IgG was applied at t=30s at a range of concentrations, and kept constant 
throughout. Signal was normalised to baseline fluorescence value. This is a 
representative trace from N=6 donors. B.) Concentration-response curve, 
mean ± SEM values from all donors plotted as % of signal mean signal induced by 
3μg/ml response (max concentration used), response calculated from area under 
curve values. C.) Signal in response to 1/100 Anti-IgG, area under curve value for 
each donor tested, mean ± SEM. N=6 

 

5.2.8 FcγRI/CD64 mRNA and protein expression was 

enhanced by IFNγ priming 
 

As there are both inhibitory and activatory FcγR (Section 1.3.5) that may be co-activated, 

the ratio of activatory and inhibitory receptor expression is likely to dictate whether an 

ITAM or ITIM signalling cascade predominates (Nimmerjahn & Ravetch, 2008b). 

Importantly, ITAM directed signalling is expected to lead to Ca2+ entry, whereas ITIM turns 

off Ca2+ signalling by inactivation through SHIP. Expression analysis of the FcγR subtypes 

was performed to investigate the ratio of inhibitory and activatory subtypes in hMDMs. 

qPCR data shows that the high affinity activatory subtype, FcγRI, was expressed at relatively 

low mRNA levels in unprimed hMDMs (8.9x10-4 ± 2.2x10-4, relative expression mean ± SEM, 

N=5), with no significant difference between the level of FcγRI and FcγRIIb (1.3x10-

3 ± 2.5x10-4, relative expression mean ± SEM, N=5) (Figure 5.6). It is likely that a 

consequence of relatively low FcγRI mRNA expression was translated in the results of Ca2+ 

imaging FLIPR experiments.  Anti-IgG was shown to initiate a Ca2+ signal however the 

magnitude of this signal was relatively small and variable between donors (Figure 5.5C). It 

is well established in the literature that FcγRI expression, the high affinity FcγR subtype, can 

be enhanced via priming with IFNγ (Kårehed et al., 2007; Sellge et al., 2014), studies have 

also indirectly shown that other agents such as LPS and TNFα can initiate an increase in 

FcγR expression (Rubel et al., 1999; Wijngaarden et al., 2008). The effect of IFNγ/LPS/TNFα 
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priming on FcγR expression was investigated here, concentrations of these priming agents 

used in my study was based from the literature; however a range of concentrations were 

tested in preliminary experiments to find the EC80. Ca2+ imaging FLIPR experiments showed 

that IFNγ but not LPS or TNFα cause a significant increase in the Anti-IgG mediated Ca2+ 

influx, following 24 hour IFNγ priming this was an average signal change from 306.1 ± 78.8 

to 972.3 ± 283.2 (area under curve mean ± SEM, N=4)  (Figure 5.7). Following 24hour IFNγ 

priming of hMDM cells,  qPCR data confirmed a significant up regulation in the FcγRI mRNA 

levels, with an approximate 10 fold increase in mRNA levels in primed cells (from 8.9X10-4 ± 

2.2x10-4 to 1.03X10-2 ± 7.6x10-4, relative expression mean ± SEM, N=5). FcγRIIb was found 

to be down regulated, however the decrease of FcγRIIb expression was not statistically 

significant (1.34x10-3 ± 2.5x10-4 down to 5.95x10-4 ± 1.0x10-4, relative expression 

mean ± SEM, N=5). Flow cytometry experiments indicated that FcγRI protein expression 

was also increased following IFNγ priming, with the MFI in unprimed cells was 4162 ± 1034 

whilst in IFNγ primed cells it was more than 5 fold higher at 23900 ± 2579 (mean ± SEM, 

N=4) (Figure 5.8). These results show that priming of hMDMs with IFNγ for 24hour 

increases high affinity activatory FcγRI subtype expression. Moreover is also enhanced the 

Anti-IgG mediated Ca2+ signal, providing a signal with a larger dynamic window. 

 

Figure 5.6 FcγR subtypes expressed in hMDMs at mRNA level, FcγRI mRNA 
expression is enhanced following 24hr priming with IFNγ 

 

Quantitative PCR was performed using cDNA isolated from hMDM cells; SYBR green 
primer/probe technology was used to assess mRNA expression. Where stated 
hMDMs were primed for 24hr with IFNγ at 10ng/ml. Data is presented as relative 
expression 1/2^Ct levels and was normalised to housekeeping gene levels. A.) mean 
± SEM expression of all donors tested. B.) each data point represents the FcγRI 
mRNA expression level of each donor tested, before and after IFNγ priming. C.) 
Mean mRNA expression of all FcγR subtypes before IFNγ priming. D.) Mean mRNA 
expression of all FcγR subtypes after IFNγ priming.  Results were analysed using 
one-way ANOVA with Tukey’s multiple comparison test... N=5 donors. * p <0.01, 
**** p<0.000 
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Figure 5.7 Anti-IgG induced Ca2+ signalling is enhanced by IFNγ priming but 
unaffected by TNFα and LPS treatment 

 

Ca2+ imaging of hMDMs using FLIPR. A.) Ca2+ signal over time, 1/100 Anti-IgG was 
applied at t=30s to hMDMs with and without IFNγ priming (10ng/ml for 24hr). This 
is a representative trace from N=4 donors. B.) bar graph showing mean Ca2+ signal 
± SEM in response to 1/100 Anti-IgG with and without prior IFNγ priming  + 0extca2+ 
control C-E.) Scatter plot showing values of the Ca2+ signal in response to 1/100 
Anti-IgG (area under curve) from all donors –C.) With and without prior IFNγ 
priming D.) With and without LPS priming for 24hr (111ng/ml). E.) With and 
without prior TNFα priming for 24hr (11ng/ml). Results were analysed using 
students paired t-test. N=4. * p <0.01, **** p<0.0001 
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Figure 5.8 FcγRI protein expression is enhanced following 24hr priming with IFNγ 

The expression of FcγRI in hMDMs at protein level was quantified using flow 
cytometry. Where stated hMDMs were primed for 24hr with IFNγ 10ng/ml. A single 
population of hMDM cells were used in the experiments, cells were blocked with 
FcX solution to prevent nonspecific binding prior to incubation with a conjugated 
CD64/FcγRI antibody (5μL/1mil cells). A.) Scatter plot of the events recorded in a 
typical experiment, Sytox dead cell dye and FSC were used to create a gate for live 
hMDM cells. B.) Representative histogram from one donor to show the mean 
fluorescent intensity of cells stained with FcγRI antibody +/- IFNγ priming or the 
FcγRI isotype control. C.) Representative histogram from one donor, showing the 
MFI of cells stained with FcγRI antibody +/- IFNγ priming. D.) Bar graph 
summarising the MFI values in +/- IFNγ priming conditions from all donors tested, 
mean ± SEM. Results were analysed using paired students t-test. N=5. * p <0.01, 
**** p<0.0001 
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Figure 5.9 Orai and STIM mRNA expression  is not significantly altered by IFNγ 
priming 

 

Quantitative PCR was performed using cDNA isolated from hMDM cells; SYBR green 
primer/probe technology was used to assess mRNA expression. Data is presented as 
relative expression 1/2^Ct levels and was normalised to housekeeping gene levels. 
A.) mRNA expression as mean of data from all donors before and after IFN priming. 
B&C.) Graph showing data points from each individual donor, mRNA expression 
before and after IFN priming B.) Orai1, C.) STIM1. From each individual hMDM 
donor. Results were analysed using paired students t-test. N=5. * p <0.01, **** 
p<0.0001 

 

To investigate whether the enhanced Ca2+ signal in IFNγ primed cells was caused by an 

increase in Orai/STIM mRNA level, qPCR experiments were performed to assess the mRNA 

in IFNγ primed cells. As shown in Figure 5.9  there was no significant effect on the 

expression of Orai and STIM mRNA levels following IFNγ priming (Orai1 expression = 

6.20x10-4  ± 1.2x10-4 in unprimed conditions and 4.26x10-4 ± 4.2x10-5 in IFNγ prime 

conditions, STIM1 expression = 7.05x10-4 ± 1.50x10-4 in unprimed conditions and 4.95x10-

4 ± 1.09x10-4 in IFNγ prime conditions, relative expression mean ± SEM, N=5). To assess 

whether the functional activity of SOCCs were enhanced independent of receptor; Ca2+ 

imaging experiments were performed to compare the Ca2+ influx initiated by thapsigargin 

in IFNγ primed cells vs. unprimed cells. No difference in thapsigargin mediated Ca2+ 

signalling was seen (Ca2+ signal, area under curve was 598.1 ± 97.9 in non primed cells and 

609.3 ± 61.1 in IFNγ primed cells, mean ± SEM, N=4) (Figure 5.10). These data strongly 

suggest that there was no change to the Orai expression or functional activity in IFNγ 

primed cells and that the priming activity occurs at the level of the FcγRI receptor. Based on 

these results further experiments investigating Ca2+ signalling via FcγR were performed in 

IFNγ primed cells.  
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Figure 5.10 Thapsigargin induced Ca2+ signalling in hMDMs  is not altered by IFNγ 
priming 

 

Ca2+ imaging of hMDMs loaded with Cal-520 using FLIPR. Overlaid data from 
control unprimed (grey trace) and hMDMs primed for 24hr with IFNγ 10ng/ml (red 
trace). A.) Ca2+ signal over time, 1µM TG was applied at t=30s and kept constant 
throughout. Signal was normalised to baseline fluorescent value. These are 
representative traces from N=3 donors tested showing TG induced Ca2+ signal with 
and without IFNγ priming. B.) Bar graph quantifying the TG mediated Ca2+ signal, 
calculated using area under the curve values from signal/time data, in +/- IFNγ 
conditions, mean ±  SEM. Results were analysed using an unpaired students t-test. 
N=3.* p <0.01, **** p<0.0001 

 

5.2.9 Anti-IgG Ca2+ signalling is abolished following inhibition 

of Syk, with GSK-161A 
 

To confirm that Anti-IgG application was initiating the signal transduction downstream of 

FcγRI, experiments were performed to disrupt the FcγR signalling cascade, through 

inhibition of Syk with GSK-161A (otherwise known as NVP-QAB-205). Syk is well defined as 

a critical step in the FcγR pathway (Crowley et al., 1997). GSK-161A is a well validated Syk 

inhibitor and was shown to inhibit Anti-IgE mediated tryptase release in cord blood derived 

monocytic cells (CBDMCs) with a pIC50 of 7.2 and 7.1 in screening experiments (Kaur et al., 

2013). In my study, Ca2+ imaging experiments showed that GSK-161A caused a 

concentration-dependent inhibition of the Anti-IgG mediated Ca2+ signal in IFNγ primed 

hMDMs (Figure 5.11) with a pIC50 of 7.3 ± 0.05, (mean  ±  SEM, N=3). Following stimulation 

with 1/100 Anti-IgG in the presence of 1µM of GSK-161A, there was a Ca2+ signal that was 

1.3% ± 0.5 of the max, indicating Syk inhibition ablated Ca2+ store depletion, as would be 

expected based on its position in the signalling cascade. This data gives convincing evidence 

that Anti-IgG initiated a Syk-dependent FcγR signalling cascade.  
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Figure 5.11 Anti-IgG induced Ca2+ signalling in IFNγ primed hMDMs is inhibited by Syk 
antagonist GSK-161A in a concentration-dependent manner 

 

Ca2+ imaging of hMDMs loaded with Cal-520 using FLIPR, hMDMs were primed for 
24hr with IFNγ 10ng/ml. A.) Representative trace of Ca2+ signal over time, 1/100 
Anti-IgG was applied at t=30s to hMDMs after cells were pre-incubated with GSK-
161A for 15minutes, solutions kept constant throughout. Signal was normalised to 
baseline fluorescent value. B.) Concentration-response curve to varying 
concentrations of GSK-161A followed by 1/100 Anti-IgG challenge, showing 
percentage of control response, calculated from area under curve values of 
signal/time data. N=3 donors. 

 

5.2.10 GSK-7975A inhibits Anti-IgG mediated Ca2+ 

signalling in IFNγ primed hMDMs in a concentration-

dependent manner 
 

Thus far the data presented shows that in IFNγ primed hMDMs, Anti-IgG application 

initiates a robust Syk-dependent Ca2+ signal with an intracellular store release component 

and Ca2+ influx through plasma membrane channels. To ascertain whether Orai channels 

are mediating part or all of the Anti-IgG mediated Ca2+ signal, the Orai selective antagonist, 

GSK-7975A was used. FLIPR experiments showed that GSK-7975A caused a concentration-

dependent reduction in the Anti-IgG induced Ca2+ signal in IFNγ primed hMDMs (Figure 

5.12). The IC50 of GSK-7975A on the Anti-IgG mediated Ca2+ signal was 1.55x10-6M/pIC50 = 

5.8 ± 0.3, mean ± SEM, N=9 and 10µM GSK-7975A inhibited 84.75% of the Ca2+ signal. The 

IC50 was in line with that in thapsigargin activating conditions (1.93x10-6M). As seen in the 

thapsigargin experiments, 10µM GSK-7975A did not cause a full inhibition of Ca2+ signal, 

however the zero external Ca2+ controls showed a remaining Ca2+ signal of the same order 

of magnitude and with the same kinetics, indicating any remaining signal is composed of 

Ca2+ release from internal store depletion. This gives convincing evidence of the 

contribution of Orai channels to FcγR mediated Ca2+ entry in IFNγ primed hMDMs, a novel 

and significant finding. Having linked FcγR Ca2+ signalling with a dependence on Orai – 

further experiments were performed to address the functional application of these 

findings.  
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Figure 5.12 Anti-IgG induced Ca2+ signalling in IFNγ primed hMDMs is inhibited by 
Orai antagonist GSK-7975A in a concentration-dependent manner 

 

Ca2+ imaging of hMDMs loaded with Cal-520 using FLIPR, hMDMs were primed for 
24hr with IFNγ 10ng/ml A.) Representative Ca2+ signal over time trace, 1/100 Anti-
IgG was applied at t=30s to hMDMs that were pre-incubated with GSK-7975A for 
15minutes – both kept constant throughout. Signal was normalised to baseline 
fluorescent value. B.) Concentration-response curve to varying concentrations of 
GSK-7975A followed by 1/100 Anti-IgG challenge, showing percentage of control 
response. N=9 donors. C.) Bar graph summarising the mean Ca2+ signal induced by 
1/100 Anti-IgG in cells bathed in external solution with and without Ca2+. B&C 
calculated using area under curve values from normalised signal/time data. Results 
were analysed using student’s unpaired t-test. N=3 donors. * p <0.01, **** 
p<0.0001 

 

5.2.11 Anti-IgG (+LPS) activation of IFNγ primed hMDMs 

did not lead to a significant release of proinflammatory 

cytokines 
 

As discussed in Section 1.3.3, the release of cytokines from macrophages is another key 

role in which they carry out their immune function. Data in Figure 5.4 showed that Orai 

was not a contributor to LPS mediated cytokine release in hMDMs. Emerging data is 
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highlighting the importance of FcγR in regulating cytokine release in co-ordination with PRR 

activation, although FcγR activation alone is not sufficient to induce cytokine production 

(Vogelpoel et al., 2015). Due to the novel findings in the present study of Orai contribution 

to FcγR signalling the involvement of Orai to FcγR-mediated cytokine release in human 

macrophages was investigated.  

 

Cytokine assays were performed in IFNγ primed hMDM cells, supernatants were collected 

24hour after agonist application and the LPS + Anti-IgG stimulus was kept constant 

throughout. The release of IL-1β, IL-12p70, IL-2, IL-4, IL-6, IL-8, IL-10, IL-13, and TNF-α was 

measured, the release of IL-13, IL-8, IL-6, IL-10 and TNFα was detected within the upper 

and lower limits of detection, however no significant decrease was seen through the 

application of 10µM GSK-7975A. Also, no significant difference was seen in the cytokine 

release between the LPS and the LPS with supplemented Anti-IgG stimuli, except for IL-13 

which was significantly enhanced by a dual stimulus of LPS + Anti-IgG (Figure 5.13). These 

results demonstrate that there was no significant involvement of GSK-7975A sensitive Ca2+ 

channels in the production of cytokines initiated by TLR4 and FcγR activation in IFNγ primed 

hMDMs.  

 

 

Figure 5.13 Effect of 10µM GSK-7975A on LPS (+/-IFNγ) + Anti IgG stimulated cytokine 
release from hMDMs 

 

hMDMs primed for 24hr with IFNγ 10ng/ml prior to activation with 100ng/ml LPS or 
100ng/ml LPS + 1/100 Anti-IgG for 24hrs with 10µM GSK-7975A pre-applied for 15 minute 
before stimulus and kept constant throughout. After 24hr incubation, supernatants were 
collected, diluted 1:10 and run on pro-inflammatory V-plex MSD plate. Of the 10 cytokines 
present in the blot: IL-13, IL-8, IL-6, IL-10 and TNFα were detectable at levels above the 
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lower limit of detection. Graphs show the concentration in pg/ml, mean ± SEM. Results 
were analysed using one-way ANOVA with Tukey’s multiple comparison test. N=3 donors. * 
p <0.01, **** p<0.0001 

 

5.2.12 Phagocytosis of pHrodo® labelled E. coli is 

insensitive to GSK-7975A in unprimed hMDMs 
 

Phagocytosis is an important function performed by macrophages as a key response to a 

bacterial attack. There are reports in the literature indicating involvement of Ca2+ in the 

phagocytosis process (Nunes & Demaurex, 2010), as is discussed in depth in Section 5.1. 

Similarly there are numerous receptors shown to be involved in initiating phagocytosis, 

including; scavenger, lectin, Fcγ and CRs (Taylor et al., 2005). The involvement of each of 

these receptors is dependent on the type of particle detected by the macrophage for 

ingestion, although there is overlap in the presence of ligands for these receptors on 

certain particle types, e.g. an IgG opsonized bacterial particle will also express ligands for 

scavenger receptors. Similarly it has been shown that unopsonized E. coli can activate FcγR 

independently of IgG coating through mannose like adhesions on their surface (Salmon et 

al., 1987).  

 

Phagocytosis experiments were performed using a pHrodo® labeled E. coli, either 

opsonized or unopsonized. Due to the pHrodo® tag, this enabled an accurate quantification 

of successful particle phagocytosis – through fluorescent microscopy and subsequent 

quantification of the intensity of the associated pHrodo® fluorophore. Upon ingestion into 

the acidic phagosome, the fluorescently tagged E. coli is excited to emit fluorescent light. 

Unlike traditional approaches this method means that the bacteria can remain present 

throughout the experiment and no wash steps are required. This assay has the advantage 

that any damage/activation of the cell initiated by washing or labelling to assess 

binding/internalisation is prevented and moreover the assay allows a time-course 

experiment to be performed by real-time monitoring of the pHrodo® E. coli uptake. 

However, as the experimental read out for this assay is dependent on pH of the 

phagosomal compartment, it is possible that a decrease in signal could be caused either by 

a decrease in the number of particles ingested or by a decrease in the acidification of the 

phagosome. As both of these processes are classified as mechanisms involved in 

phagocytosis the assay can be used to study modulators of phagocytosis generally but 

cannot be specifically linked to ingestion or phagosomal maturation. The phagocytosis 

experiments were quantified to give three read outs of successful phagocytosis; density in 

responding cells, phagocytosis index and % of responding cells.  

 

Phagocytosis experiments were first performed with unopsonized E. coli in the presence of 

the Orai antagonist GSK-7975A. Although, as described above, there is some evidence to 

suggest that unopsonized E. coli can activate FcγR, it is more commonly reported that E. 

coli phagocytosis is mediated by the  MARCO scavenger receptor and other scavenger 

receptors (van der Laan et al., 1999) which to my knowledge based on the signalling 

cascade, is unlikely to activate Orai channels. The results shown in Figure 5.14 demonstrate 
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that the Orai antagonist had no significant effect on the phagocytosis of unopsonized E. coli 

(phagocytosis index was 1.56 ± 0.31 in control conditions and 1.13 ± 0.45 in GSK-7975A, 

density in responding cells was 1134 ± 339 in control conditions and 995 ± 298 in GSK-

7975A treated conditions, signal at 3hour time point, mean ± SEM, N=6). However, 

Cytochalasin-D, an inhibitor of actin polymerization and well reported phagocytosis 

inhibitor was shown to significantly inhibit phagocytosis of pHrodo® labeled E. coli in this 

assay therefore verifying the assay conditions.  

 

 

Figure 5.14 GSK-7975A had no significant effect on the phagocytosis of pHrodo 
labelled E. coli in non-primed hMDM cells 

 

hMDMs were pre-incubated with; vehicle, 10µM Cytochalasin-D or 10µM GSK-
7975A before uptake of pHrodo labelled E. coli was assessed at 3 hours post 
infection by fluorescent microscopy using an INCell Analyser, 20μg of E. coli was 
added to each well of 40,000 hMDMs. hMDMs were stained with cell tracker green 
(1μM) and Hoescht (0.05μg/well) to enable quantification of intact cells. Graphs 
show the individual data points for each donor tested in control and GSK-7975A 
conditions, the level of inhibition by Cytochalasin-D is inhibited by the hashed line 
on each graph.  A.) phagocytotic index. B.) density in responding cells. C.) 
percentage of responding cells.  Results were analysed using students paired t-test 
N=6 donors. * p <0.01, **** p<0.0001  

 

 

5.2.13 Phagocytosis of opsonized pHrodo® labelled E. coli 

in IFNγ primed hMDMs is attenuated by GSK-7975A 
 

To investigate FcγR mediated phagocytosis more directly, pHrodo® labeled E. coli were 

opsonized by coating the particles with polyclonal IgG. Orai antagonist (10µM GSK-7975A) 

caused a significant reduction in the phagocytosis of opsonized E. coli in IFNγ primed 

hMDMs. The phagocytosis index was significantly reduced from 1.74 ± 0.11 in control to 

1.38 ± 0.15 N=6 in GSK-7975A conditions (mean ± SEM), similarly the density of responding 

cells was significantly reduced from 3641 ± 1139 in control, to 2889 ± 1077 N=4 in GSK-

7975A conditions (mean ± SEM). Notably, the % of responding cells was not affected by the 

Orai antagonist, indicating again that Orai-mediated Ca2+ signalling has a role in controlling 

the magnitude or efficiency of phagocytosis (Figure 5.15). These results provide novel 
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evidence for the involvement of Orai signalling in opsonized bacterial phagocytosis in IFNγ 

primed hMDMs.  

 

 

Figure 5.15 GSK-7975A causes significant inhibition to the phagocytosis of opsonized 
pHrodo labelled E. coli by IFNγ primed hMDM cells 

 

IFNγ (24hr prime at 10ng/ml) hMDMs were pre-incubated with; vehicle, 10µM 
Cytochalasin-D or 10µM GSK-7975A before uptake of opsonized pHrodo labelled E. 
coli was assessed at 3 hours post infection by fluorescent microscopy using an 
INCell Analyser, 20μg of E. coli was added to each well of 40,000 hMDMs. hMDMs 
were stained with cell tracker green (1μM) and Hoescht (0.05μg/well) to enable 
quantification of intact cells. Graphs show the individual data points for each donor 
tested in control and GSK-7975A conditions, the level of inhibition by Cytochalasin-D 
is inhibited by the hashed line on each graph.  A.) phagocytotic index. B.) density in 
responding cells. C.) percentage of responding cells.  Results were analysed using 
students paired t-test N=4 donors. * p <0.01, **** p<0.0001  

 

5.2.14 Phagocytosis of non-opsonized pHrodo® labelled 

E. coli in IFNγ primed hMDMs is attenuated by GSK-

7975A 
 

Phagocytosis experiments of unopsonized E. coli in IFNγ primed MDMs were also shown to 

be significantly attenuated by pre-treatment with the Orai antagonist. The density in 

responding cells was significantly reduced (1935 ± 190 in control and 1224 ± 160 in GSK-

7975A conditions, mean ± SEM, N=7) as was the phagocytosis index (1.36 ± 0.05 in control 

and 1.17 ± 0.03 in GSK-7975A conditions, mean ± SEM, N=7), however the % of responding 

cells was not affected by GSK-7975A (Figure 5.16). Taken together the results from these 

experiments suggest that Orai-mediated Ca2+ signalling has a role in the phagocytosis of 

pHrodo® labelled E. coli in IFNγ primed hMDMs but not in unprimed cells.  
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Figure 5.16 GSK-7975A causes significant inhibition to the phagocytosis of pHrodo 
labelled E. coli by IFNγ primed hMDM cells 

 

IFNγ (24hr prime at 10ng/ml) hMDMs were pre-incubated with; vehicle, 10µM 
Cytochalasin-D or 10µM GSK-7975A before uptake of pHrodo labelled E. coli was 
assessed at 3 hours post infection by fluorescent microscopy using an INCell 
Analyser, 20μg of E. coli was added to each well of 40,000 hMDMs. hMDMs were 
stained with cell tracker green (1μM) and Hoescht (0.05μg/well) to enable 
quantification of intact cells. Graphs show the individual data points for each donor 
tested in control and GSK-7975A conditions, the level of inhibition by Cytochalasin-D 
is inhibited by the hashed line on each graph.  A.) phagocytotic index. B.) density in 
responding cells. C.) percentage of responding cells.  Results were analysed using 
students paired t-test N=7 donors. * p <0.01, **** p<0.0001  

 

5.2.15 GSK-7975A decreases pHrodo® labelled E. coli 

phagocytosis at the same rate over 1-5hour time course 
 

Figures 5.14-5.16 display phagocytosis data from the 3 hour time point, however the 

experiment was performed over a 4-5 hour time course and this is presented in Figure 

5.17. The kinetic profile of the phagocytosis experiment show a parallel change in the 

phagocytosis parameters over time in the control and GSK-7975A conditions. In the IFNγ 

primed cells, the level of inhibition caused by GSK-7975A was shown to be relatively 

consistent at each time point. For example there is a difference between control and GSK-

7975A treated conditions of 0.27, 0.28 and 0.27 in the phagocytosis index of opsonized E. 

coli by IFNγ primed cells at 1.5, 3 and 4 hour post infection, respectively. In non IFNγ 

primed cells, the phagocytosis index and density in responding cell signals were lower in 

GSK-7975A conditions, but as indicated by the overlap in the standard error of the mean, 

no significant difference in the two conditions was seen at any time point. Although the % 

of responding cells was not affected by GSK-7975A in any condition, the amount of % of 

responding cells varied between conditions. The lowest amount of % responding cells was 

seen in the non IFNγ primed hMDMs (42-59.2%), whereas the highest level of responding 

cells was seen in the IFNγ primed hMDMs infected with opsonized pHrodo® labelled E. coli 

(55-81%) (Figure 5.17). In sum these results show that the involvement of Orai in 

phagocytosis of pHrodo® labelled E. coli in IFNγ primed cells occurs to the same degree 

over a 4 hour time course.  
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Figure 5.17 Phagocytosis of opsonised/non opsonized pHrodo labelled E. coli in 
primed hMDM cells over a 4/5 hour duration 

IFNγ primed/unprimed  hMDMs (24hr prime at 10ng/ml) were pre-incubated with; 
vehicle, 10µM Cytochalasin-D or 10µM GSK-7975A before uptake of opsonised 
pHrodo labelled E. coli assessed at 3 hours post infection by fluorescent microscopy, 
20μg of E. coli was added to each well of 40,000 hMDMs. hMDMs were stained 
with cell tracker green (1μM) and Hoescht (0.05μg/well) to enable quantification of 
intact cells.  Graphs show the individual data points for each donor tested in control 
and GSK-7975A conditions and Cytochalasin-D over the 4/5 hour time course. A, D, 
G.) Phagocytotic index. B, E, H.) Density in responding cells. C, F, I.) Percentage of 
responding cells.  N=4-7 donors. Results were analysed using Two-way ANOVA with 
Sidak’s post hoc test, stars denoted on the graph indicate significant difference 
between GSK-7975A and control conditions* p <0.01, **** p<0.0001  

 

5.2.16 GSK-7975A inhibits thapsigargin induced Ca2+ entry 

in hAM cells in a concentration-dependent manner. 
 

When lung tissue was available, translation of these experiments to investigate Orai 

function in hAMs was performed. Unfortunately throughout the duration of these 
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experiments there were only lung resident cells available to allow one experiment type to 

be translated. Figure 5.18 shows FLIPR data from hAMs. hAMs were also found to have a 

concentration-dependent Ca2+ signal in response to thapsigargin; this was inhibited by GSK-

7975A. Although this data is from one lung donor, it provides indication that Orai-mediated 

Ca2+ signalling is active in this cell type also.  

 

Figure 5.18 Thapsigargin activates concentration-dependent Ca2+ influx in hAMs that 
is sensitive to inhibition GSK-7975A 

Ca2+ imaging of hAMs using FLIPR. A.) Ca2+ signal over time, 1µM TG was applied at 
t=30s. This is a representative trace from N=5 donors tested C.) Concentration-
response curve to TG, showing percentage of max Ca2+ response (calculated from 
area under curve N=5 donors. B.) Ca2+ signal over time, 1µM TG added at t=30s to 
varying concentrations of pre-applied GSK-7975A. D.) Concentration-response curve 
to varying concentrations of GSK-7975A, showing percentage of control response. 
N=1 donor.  

 

5.3  Discussion 

Taken together the results from this chapter show novel evidence for the functional activity 

of Orai-mediated Ca2+ entry in hMDMs. Through the use of an Orai selective antagonist it 

was demonstrated that Orai-mediated Ca2+ signalling is a critical component of hMDM 

SOCE and notably Orai-mediated Ca2+ entry is the predominant contributor of Ca2+ 

signalling induced following Anti-IgG activation. Inhibition of Orai-mediated Ca2+ signalling 

led to a significant reduction in the phagocytosis of pHrodo® labelled E. coli by IFNγ primed 

hMDMs but not in unprimed hMDMs. The data presented in this chapter shows evidence 

for Orai-mediated activity in human macrophages for the first time and provides interesting 

findings which will help in the direction of future work.   
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Orai and STIM family expression in hMDM cells 
  

The quantitative PCR experimental results shown in this chapter demonstrate that all 

members of the Orai and STIM family are expressed at mRNA level. Orai1 and 3 and STIM1 

were expressed at levels significantly greater than Orai 2 and STIM2. This mRNA expression 

profile is in line with that seen in HLMCs (see Section 3  and (Ashmole et al., 2012). All three 

Orai family members have been demonstrated to mediate functional ICRAC Ca2+ currents (Lis 

et al., 2007), although the majority of past work in the literature has focused on elucidating 

the function of Orai1. Nonetheless, Orai2 has been shown to have a very similar expression 

profile to Orai1 but data in the literature is unclear about the functional role of Orai2 (Hoth 

and Niemeyer 2013). Orai3 has been shown to have a wider range of functions, with 

heteromeric interaction with Orai1 forming a non-store-operated channel, the arachidonic 

acid activated channel. Interestingly Orai3 has been particularly implicated in cancer, with 

increased Orai3 expression found in MCF-7 breast cancer cells and breast cancer tissue 

(Faouzi et al., 2011). GSK-7975A, the Orai inhibitor used in my study, is known to inhibit 

Orai1 and Orai3 with similar potency (Derler et al., 2013), however whether the compound 

would inhibit Orai1/3 heteromeric channels has not been directly assessed. To further 

understand the individual contribution of Orai subtypes to the Ca2+ signalling in hMDMs 

further experiments are necessary. Investigation of Orai1/3 arachidonic acid sensitive 

channels could be performed by using arachadonic acid as a ligand to activate hMDMs. 

Arachidonic acid is a pre-cursor produced in the process of PG synthesis. Although PG is 

produced by a wide range of cells, PGD is produced by HLMCs (Ricciotti & FitzGerald, 2011). 

This link to the availability of arachidonic acid in the lung immune cell environment gives 

evidence for physiological relevance in this investigative approach. To further evaluate the 

distinct roles of the different Orai channels as homomeric assemblies in macrophage 

biology would require utilisation of genetic manipulation to knockdown each Orai subtype. 

 

This thesis also reports mRNA expression of STIM1 and STIM2 in hMDMs. Similarly to the 

Orai family, the majority of past work has focused on the role of STIM1; however, as 

discussed in detail in Section 1.4.5 further investigations have revealed that STIM2 is 

involved in the activation of SOCE following a relatively small depletion in ER Ca2+ levels. 

Therefore, STIM2 is a more sensitive Ca2+ sensing protein, and importantly is coupled with a 

moderate activation of Orai channels, arguably with the purpose to re-fill the stores and 

maintain homeostasis (Ong et al., 2015). Investigation into whether STIM1 and 2 

expression profile was maintained at protein level would be required before further work 

was performed to assess the functional consequence of a predominant STIM1 or STIM2 

expression. It is possible that a lower STIM2 protein expression may occur to regulate the 

inappropriate SOCE activation initiated by the more sensitive subtype, again further 

investigation utilizing genetic knockdown techniques would allow further evaluation of the 

specific STIM1 or STIM2 contribution.  
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Orai contribution to Ca2+ signalling in human macrophages 

 
The results reported in this thesis show evidence supporting the functional activity of Orai-

mediated Ca2+ entry as a critical contributor to SOCE in hMDMs. Notably this thesis also 

provides convincing novel evidence that Orai-mediated Ca2+ entry is the primary 

contributor to the Ca2+ signalling observed following Anti-IgG activation in IFNγ primed 

hMDM cells. Based on the ablation of the Anti-IgG induced signal by the Syk inhibitor and 

the increase in Ca2+ signal following an increase in FcγRI expression this gives convincing 

evidence that the Anti-IgG Ca2+ entry is mediated through FcγR activation, however further 

experiments to block FcγRI would be required to validate if the increase in Ca2+ signal by 

Anti-IgG is caused by FcγRI specifically. The activity of SOCC in macrophage signalling is in 

line with previously published work in mouse macrophage models, as summarised in 

Section 5.1.3. In (Braun et al., 2009; Vaeth et al., 2015) STIM1-/- mice and STIM1 and STIM2 

inducible ablation in BMDMs have been used to delineate a contributory role of SOCC to 

FcγR signalling. Similarly in (Ye et al., 2012b) and (Kang et al., 2012) non-selective Orai 

antagonists were utilised to indicate SOCE activity in mouse macrophage cells. However, 

although the work by Braun, Vaeth, Kang, Ye and I use a variety of experimental 

approaches to infer SOCE activity in macrophage cells, the tools used do not provide direct 

proof of reduction in current through Orai channels as explanation for the results seen. 

Although the attenuation of Ca2+ in the absence of STIM is suggestive of Orai involvement 

in peritoneal macrophages and BMDMs (Braun et al., 2009; Vaeth et al., 2015), STIM1 is 

also capable of activating TRPC channels, which can act as SOCCs too (Zeng et al., 2008; Lee 

et al., 2010) (refer to Section 1.5.8 for details). Therefore studies to genetically ablate STIM 

cannot be taken as confirmation of Orai involvement, but show STIM regulated SOCE. In my 

study, although a number of experiments have validated GSK-7975A as an Orai selective 

pharmacological tool (Ashmole et al., 2012; Derler et al., 2013); it could be argued that 

GSK-7975A does not exclude the involvement of TRPC channels, indirectly. In HSG cells, 

TRPC1 channel activation was shown to be dependent on Ca2+ influx through Orai channels 

(Cheng et al., 2011a; Cheng et al., 2011b), it is therefore possible that TRPC channels are 

also composing a component of the GSK-7975A sensitive Ca2+ signal seen in the my hMDM 

experiments, albeit indirectly. However based on the model proposed by Cheng et al., 

2011, any tool whereby Orai activity was inhibited would also interfere with TRPC activity. 

To further evaluate the direct activity of Orai as a Ca2+ influx channel in human 

macrophages, patch clamp electrophysiology experiments together with knockdown 

strategies could be performed to characterise the biophysical properties of the store-

operated currents.  

 

Possibility of TRPC contribution 
 

As discussed in depth throughout Section 1.5 the mechanism of TRPC channel activation is 

complex, with TRPC family members exhibiting store-operated modes of activation under 

certain conditions. In this respect, the contribution of TRPC channels to the store-

operated/Orai regulated Ca2+ signalling seen in hMDMs cannot be ruled out. My 

experiments with TRPC3/6 agonist (GSK-234A) indicate at least that these TRPC subtypes 
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are not functionally active in hMDMs. Previous studies have indicated the potential activity 

for TRPC6 in hAMs, mRNA and protein expression analysis indicated TRPC6 expression in 

hAMs that was enhanced in hAMs from COPD patients (Finney-Hayward et al., 2010). Some 

evidence of TRPC6 activity was further demonstrated through patch clamp experiments – 

platelet activating factor (PAF), was used to activate TRPC6 - with 50-60% of macrophages 

tested displaying current-voltage relationships consistent with activation of a non-selective 

cation current which moreover was inhibited by non-selective TRPC antagonist SK&F96365. 

While indications of TRPC6 activity in human macrophages were provided by Finney-

Hayward’s work, without the use of a selective TRPC6 antagonist or TRPC6 knockdown, it is 

possible that the results observed are mediated by other TRPC family members or non-

selective cation channels (Finney-Hayward et al., 2010). Although outside the scope of the 

present study, further elucidating the role of TRPC channels in macrophage biology could 

represent a novel area of study.  TRPC6 in particular has been demonstrated to have a key 

role in the direction of neutrophil chemotaxis (Lindemann et al., 2013). Similarly, as 

described in Section 3.1.2 in vivo mouse models indicate that TRPC6 is important for the 

control of symptoms of allergic disease (Sel et al., 2008), confirmation of TRPC expression 

in hMDMs would be required to direct further experiments. 

 

LPS mediated Ca2+ signalling 

 
The data described in this thesis shows no increase in Ca2+ in response to LPS stimulation 

over duration of 20 minutes, a small rise in Ca2+ signal was observed by 80 minutes but this 

was not concentration-dependent. In murine microglia LPS is also observed to increase 

basal Ca2+ concentration but caused no significant transient response (Hoffmann et al., 

2003), conversely, (Ye et al., 2012b) show LPS + IFNγ to initiate a Ca2+ signal rise over time 

in mouse peritoneal macrophages, with an trending increase in signal from 30 minutes and 

measurements taken over a total of 3hours.  In my study the Ca2+ signal was quantified by 

taking an average reading from a well containing 75,000 cells rather than imaging the Ca2+ 

signal in individual cells. It is possible that if there is differential LPS response by 

macrophages within the population, in terms of kinetics and magnitude, that the average 

Ca2+ signal measured would not reflect an increase in Ca2+ signal in a small population of 

cells. Indeed in (Ye et al., 2012b), single cell Ca2+ measurements were performed.  

 

Orai contribution to hMDM cytokine release 
 

As described in Section 5.1 there are mixed reports regarding the role of SOCE in the 

control of LPS mediated cytokine production. The aforementioned (Ye et al., 2012b) show a 

reduction in the LPS and IFNγ mediated release of IL-10, TNF-α, IL-6 and MCP-1 following 

pre-treatment with SK&F96365. In murine microglia, SOC inhibitors and Orai1/STIM1 siRNA 

attenuated LPS induced TNFα and IL-6 production (Michaelis et al., 2015). In contrast 

(Vaeth et al., 2015) show that  in BMDMs PRR ligand mediated cytokine release was not 

affected by STIM1/STIM2 ablation . My results demonstrated no effect of the Orai 

antagonist on LPS or LPS + IFNγ mediated cytokine production. This is in line with the work 

by Vaeth and colleagues. The reasons for differences between the works of Ye compared to 
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Michaelis and Vaeth could be a combination of heterogeneity between macrophage types 

used in each study, and the different tools used to define SOCE contribution. The 

confirmation of Orai inhibition having no impact on the LPS induced cytokine release has a 

positive implication in respect to unwanted effects of Orai inhibition. LPS induced cytokine 

release occurs in order to tackle a bacterial infection, therefore impairing this response 

would limit the ability of the macrophage to handle the bacterial infection. As described in 

Section 5.1, Orai-mediated signalling is a potential target for the treatment of allergic 

disease, as Orai is a key contributor to FcεRI-mediated signalling. Therefore assessing any 

risks in the inhibition of Orai in other immune functions is important.  

 

The key role of FcγR in directing cytokine release is emerging. Sole activation of FcγR is not 

sufficient to drive cytokine release, and interaction with other stimuli, generally PRRs is 

required (Vogelpoel et al., 2015). (Braun et al., 2009) measured the release of TNFα and 

MIP-2 in the BALF from mice following immune complex induced pneumonitis. Interestingly 

they observed attenuation in release in STIM1-/- animals. My results assessing cytokine 

release from Anti-IgG and LPS stimulated hMDMs did not reveal any Orai contribution. 

Vogelpoel’s work reported that FcγRIIa is the predominant receptor involved in mediating 

cytokine production. FcγRIIa mRNA expression is relatively low in the hMDMs used in my 

study; speculatively it is possible that this is the explanation for no obvious modulation of 

cytokine release by Anti-IgG application, irrespective to Orai. Similarly, it may be that a 

difference in methodology to assess the cytokine release from macrophages following 

infection with opsonized bacteria could give different results. It is also possible that the 

complex interaction between the stimulation of inhibitory ITIM and activatory ITAM FcγR 

may be an explanation for the lack of change seen with Anti-IgG as a co-stimulus to LPS - 

ITIM could prevent activation of ITAM over a time frame required to initiate cytokine 

transcription. Lastly, the results reported by (Braun et al., 2009) are using an in vivo mouse 

model, where the interplay and communication between the immune cells activated 

following pneumonitis are likely to have a major impact on the cytokine production 

reported.  

 

Orai involvement in the phagocytosis of pHrodo® labelled E. coli 
 

In the present study, phagocytosis was assessed using a pHrodo® labelled E. coli assay 

system. In this methodology, the pH tag on the E. coli bioparticles dictates that the 

fluorescent signal only occurs upon internalisation into an intracellular acidic compartment. 

The assay methodology provides evidence that particle of interest has been successfully 

ingested into the phagocytic cell, as opposed to merely binding to the phagocyte cell 

surface. In phagocytosis assays where fluorescent bioparticle uptake is measured by 

confocal microscopy, further staining and washing steps are required to differentiate 

between particle binding to the cell surface and internalisation. The results described in 

Section 5.2.13-14 of this thesis, show an inhibitory effect of the Orai antagonist on the 

phagocytosis of pHrodo® labelled E. coli into IFNγ hMDMs. The weaker signal reported in 

GSK-7975A conditions could be a result of either; a direct decrease in the amount of 

pHrodo® labelled E. coli internalised, or alternatively an impairment in the acidification that 
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occurs in the phago-lysosome as part of phagosome maturation. To identify which 

particular aspect of the phagocytosis process is affected by antagonist activity, further 

experiments should be performed. For example flow cytometry experiments with 

fluorescently tagged bioparticles could be performed to assess the internalisation process. 

A bacterial killing, ROS assay or measurement of phagolysosomal pH reporter could be 

performed to measure the effect of compounds on phagosome maturation. Whilst the 

specific mechanism of action of the Orai antagonist on phagocytosis was not assessed in 

my study, as both internalisation and phagosome maturation constitute crucial 

components of the phagocytosis process, the results of this assay provide useful 

information to identify a general phagocytosis modulator.  

 

It is theoretically possible that in the presence of the Orai inhibitor, the E. coli particles 

were instead directed down an endocytic pathway, with acidification a component of this 

mechanism too, the pHrodo® signal would still be produced. Although endocytosis of 

pathogens has been reported, largely these instances have been in non-phagocytic cells 

where the pathogen is utilising the ingestion process to evade immune detection (Bonazzi 

& Cossart, 2006). The differential level of phagocytosis of opsonized E. coli vs. unopsonized 

and in IFNγ primed cells suggests engagement of the phagocytotic receptors. If endocytotic 

pathways were being utilised to mediate bacterial entry into the cell it would be expected 

that factors to enhance the microbicidal properties of the cell (IFNγ) (Schroder et al., 2004) 

and factors to engage FcγR phagocytic receptors (IgG opsonization) would have no 

significant effect on the level of phagocytosis. It can therefore be taken as unlikely for 

pHrodo® labelled E. coli to be endocytosed rather than phagocytosed in my study.  

 

Markedly, significant involvement of Orai-mediated Ca2+ signalling in regulating the 

phagocytosis of E. coli by hMDMs was only seen in cells that had been primed with IFNγ. 

The phagocytic index and the density of opsonized and non-opsonized E. coli uptake in the 

responding cells were significantly attenuated by Orai inhibition, in IFNγ primed cells. The 

original hypothesis was that Orai Ca2+ signalling would contribute to the phagocytosis of 

opsonized E. coli but not non-opsonized E. coli because of the previously established 

involvement of Orai in FcγR mediated Ca2+ signalling. It would be expected that a greater 

sensitivity to GSK-7975A was seen in the IFNγ primed hMDMs ingesting opsonized E. coli vs. 

non opsonized E. coli, if IgG opsonization was dictating Orai involvement. Instead the 

results suggest that the IFNγ priming is causing a modulatory effect on the mechanism by 

which hMDM are ingesting phagocytic particles possibly through induction of a differential 

phagocytic receptor expression profile. From the results of my study it has been shown that 

IFNγ leads to a significant increase in the expression of the FcγRI subtype, the high affinity 

activatory subtype – at mRNA and protein level. Concurrently an increased Ca2+ signal is 

seen following Anti-IgG activation in IFNγ primed cells, therefore indirectly showing that 

this increase in signal is likely to be due to an increase in activation of FcγRI. 

 

It was considered whether an alternative explanation for the enhanced Ca2+ signal in IFNγ 

primed cells, and perhaps an explanation for the Orai-dependent phagocytosis in IFNγ cells 

was that IFNγ priming also led to an increase in Orai/STIM expression; however the results 

from qPCR experiments indicate this did not occur. Importantly, the thapsigargin mediated 
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Ca2+ signal – a readout of the active Orai Ca2+ signal – was unaffected by IFNγ priming, 

consistent with the view that IFNγ priming does not have an effect on the Orai channel 

expression or function, per se.  IFNγ is a ligand for the IFNγ receptor which initiates a JAK-

STAT signalling pathway and is well known as an activator of macrophages directing them 

down an ‘M1’ phenotype - increasing their receptor mediated phagocytosis and microbial 

killing activity (Schroder et al., 2004). IFNγ priming is known to enhance macrophage and 

neutrophil phagocytosis (Maródi et al., 1993; Marchi et al., 2014). Interestingly (Boehm et 

al., 1997) describe that IFNγ priming of monocytes and macrophages leads to several 

changes in the gene expression of some surface receptors. For example; the macrophage 

mannose receptor, CD14, scavenger receptor and CR-type 1 are down regulated by IFNγ 

treatment. In contrast, FcγRI, C3 and β-1γ1 integrin receptors are up regulated by IFNγ 

treatment. With the majority of these receptors having been implicated in phagocytosis – a 

change in expression of phagocytic receptors could be dictating how IFNγ priming is 

changing Orai involvement. (van der Laan et al., 1999) demonstrate that E. coli is 

phagocytosed by the MARCO scavenger receptor. Alternatively, an early paper looking into 

the mechanisms of macrophage phagocytosis of E. coli shows that FcγR on human PMN 

cells can facilitate the opsonin-independent phagocytosis of E. coli through lectin-

carbohydrate interactions between the bacteria and FcγR receptor. The binding and 

phagocytosis of E. coli by PMNs was inhibited by D-mannose and α methylmannoside, 

showing evidence for the dependency on mannose for successful phagocytosis. However, 

blocking FcγR with an antibody, also caused a similar attenuation of the phagocytosis of E. 

coli by PMNs, implicating FcγRs as an alternative phagocytic regulator of E. coli (Salmon et 

al., 1987). Speculatively, a change in expression of phagocytic receptors induced by IFNγ 

and a subsequent switch in phagocytosis of E. coli mediated by FcγR could be an 

explanation for my results, however further experiments to evaluate this hypothesis, these 

are described in Section 5.4. 

 
Investigation into Ca2+ dependency of phagocytosis in neutrophil cells has also revealed 

some possible alternate explanations for the results seen in the present study. In HL-60 

neutrophil like cells, it was observed that intracellular Ca2+ store depletion was sufficient 

for the ingestion of IgG opsonized zymosan particles but that Orai1/STIM1 induced Ca2+ 

entry was required for ROS production, thus indicating a role for Orai1/STIM1 in the steps 

of phagosomal maturation (Steinckwich et al., 2011). In bone marrow derived neutrophils 

further delineation of how Orai1/STIM1 contributed to phagocytosis was described. STIM1 

was reported to recruit the ER to the phagosome where it mediates localised Ca2+ 

elevations through Orai1 channels which lead to actin shedding, an early event of 

phagosomal maturation. Interestingly this study showed for the first time the activity of 

STIM1/Orai1 at the phagosomal membrane. Notably, knockout of STIM1 attenuated 

phagocytosis of opsonized RBC/zymosan particles, but only when there was a high particle: 

cell ratio, i.e. implying that STIM1 has a particular role in sustaining high levels of 

phagocytotic ingestion. In my experiments, although the ratio of E. coli: hMDMs was 

consistent throughout experiments, the effect of IFNγ priming on the cells may have been 

the factor which switched the hMDMs to phagocytosing particles at a higher rate. A higher 

density of E. coli was measured in responding cells in IFNγ primed conditions compared to 

non IFNγ primed conditions (mean density = 1935 in IFNγ primed vs. 1134 in unprimed), 
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this is in line with the predicted action of IFNγ – to enhance the microbicidal properties of 

macrophages. Replication of some of the experiments performed by Steinckwich would 

allow evaluation of whether the results obtained in neutrophils translated into human 

macrophages.  

 
(Vaeth et al., 2015) report no attenuation in the phagocytosis of IgG coated fluorescent 

beads or S. aureus in BMDM cells following STIM1 and STIM2 ablation, but the use of Ca2+ 

chelator BAPTA did impair the uptake of IgG coated beads, indicating some role for Ca2+ 

signalling. In contrast another study of phagocytosis in STIM1-/- mice, this time investigating 

peritoneal macrophages showed a significant impairment FcγR mediated phagocytosis 

(Braun et al., 2009). The difference in these two studies could be explained by the 

difference in macrophage cell type used, or could reflect minor differences in methodology; 

for example the type of particle used to assess phagocytic ingestion or the ratio of 

bioparticles: macrophage cells.   

 

In summary, the results presented in this chapter show that Orai-mediated Ca2+ signalling is 

a key contributor downstream of Syk-dependent Anti-IgG activation and show Orai has a 

contributory role in E. coli phagocytosis by hMDMs in IFNγ primed cells. Evidence for Orai 

in mediating phagocytosis in hMDMs provides preliminary evidence to direct further 

research to expound these findings.  

 

5.4 Future directions 

 

Based on the results obtained in this chapter there are numerous directions of further 

research that should be pursued. 

 

A primary area of interest is to further delineate the role of Orai-mediated Ca2+ signalling in 

macrophage phagocytosis. Initially it would be useful to utilise a wider range of techniques 

to define which aspect of phagocytosis the Orai signalling is contributing to. This could be 

done by performing separate bacterial ingestion assays using fluorescently tagged 

bioparticles and flow cytometry. Similarly the phagosomal maturation could be evaluated 

through bacterial killing or indirectly through a ROS assay. The results of this thesis indicate 

that IFNγ priming may be modulating the signalling processes utilized to mediate E. coli 

phagocytosis – to involve Orai signalling. However this preliminary evidence requires follow 

up work to fully understand what effect IFNγ is having on hMDMs. Experiments to confirm 

if IFNγ priming is directly leading to Orai involvement in phagocytosis or whether the 

results could be explained by an indirect effect on hMDMs caused by IFNγ priming are 

needed. In particular, experiments could be performed to confirm or discount whether 

IFNγ acts to decrease mannose and scavenger receptor expression, resulting in the 

phagocytosis of E. coli being mediated by interaction with the FcγR through mannose 

specific adhesions on the surface, as is seen in (Salmon et al., 1987). To evaluate the 

hypothesis proposed by Salmon and colleagues, experiments could be performed to 
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directly assess the effect of FcγR inhibition of E. coli phagocytosis and to evaluate the 

expression profile of phagocytic receptors before and after IFNγ priming. To test whether 

Orai contribution only occurs in phagocytosis of higher volumes of particle, as seen in 

neutrophils (Steinckwich et al., 2011) experiments could be performed to directly alter the 

ratio of macrophages to bacteria and investigate Orai-dependence. In relation to the 

disease application of my study, macrophages have crucial roles in the phagocytosis of 

bacteria which enter the lungs, for example: Streptococcus pneumoniae, Haemophilus 

influenzae, Staphylococcus aureus and Mycobacterium tuberculosis. Experiments should 

therefore be performed to investigate whether Orai signalling had a similar role in the 

control of phagocytosis of bacteria encountered in the lung, and similarly to compare the 

difference in Orai involvement before and after IFNγ priming and in opsonized and non-

opsonized bacteria. Based on the known PLC-coupled signalling cascade initiated 

downstream of the Dectin-1 receptor (Xu et al., 2009), investigating the contribution of 

Orai-mediated Ca2+ entry to the phagocytosis of Dectin regulated particles and Dectin-1 

mediated cytokine production represents an attractive research avenue. (Xu et al., 2009) 

show that signalling downstream of Dectin-1 is associated with PLCy2 and that this is 

critical for the mediation of Ca2+ influx and cytokine production downstream of Dectin-1 

activation in DCs.  

 

My study has primarily utilised hMDM cells, due to the limited availability of tissue resident 

cells. As discussed in Section 1.3.4, it is well known that there is a wide heterogeneity of 

macrophages between tissue resident locations and blood derived cells. Particularly for the 

application of lung disease, investigation into the contribution of Orai-mediated Ca2+ entry 

to the phagocytic capacity of hAMs should be investigated. Similarly as the phagocytic 

ability of macrophages from COPD cells is known to be impaired, investigating whether 

there are any changes in the involvement of Orai in the phagocytosis process could provide 

useful information. Efferocytosis, the uptake of apoptosed cells is a process with 

mechanisms similar to phagocytosis. Orai/Ca2+ signalling involvement has not yet been 

delineated for this process either. 

 

Whilst work in this thesis showed no involvement of Orai in the cytokine release following 

TLR4 and Anti-IgG stimulation, investigation into the Orai involvement in cytokine 

production following stimulation with opsonized bacteria commonly encountered in the 

lung was not performed. Such experiments would provide a more physiological approach 

from which to confirm whether Orai was redundant in FcγR/PRR mediated cytokine 

release.  

 

Although more commonly known for their role in phagocytosis and in inflammatory 

mediator release, macrophages are also contributors to antibody-dependent cell 

cytotoxicity (ADCC). ADCC of B cell lymphoma was shown to be regulated via the 

PI3K/protein kinase B (Akt) pathway in IFNγ primed murine macrophages (Joshi et al., 

2009). Importantly, FcγR are known to be critical for effective ADCC (Nimmerjahn & 

Ravetch, 2008a). Based on the indication of Orai involvement in FcγR signalling, performing 

experiments to investigate its contribution would be worthwhile. Understanding the 

biology of ADCC has key therapeutic applications, as ADCC is the mechanism that is 
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manipulated by immuno-oncotherapy therapies such as herceptin that are designed to 

target and eliminate tumour cells (Mellor et al., 2013).  

 

In conclusion, whilst work in this thesis has showed that Orai is functionally active in 

hMDMs there are a number of further avenues of research which could be undertaken 

based on the initial findings of my study. In particular, to fully understand the translational 

impact of the findings, further work needs to be performed in lung derived cells in 

combination with disease causing pathogens.   
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6 Chapter 6: Conclusion 

This thesis has provided novel findings which increase the understanding of the role of Ca2+ 

signalling in mast cell and macrophage biology. Significantly, important gaps in the current 

knowledge have been addressed, in addition new experimental evidence to guide and 

direct further research to complete understanding in the area has been generated.  In 

particular it was shown that Orai but not TRPC channels have an important role in FcεRI 

mediated Ca2+ signalling in human mast cells, which provides vital information regarding 

the contributors to allergic signalling pathways. Secondly it was demonstrated that P2X7 

does not significantly contribute to ATP and bzATP Ca2+ signalling in hMDMs under these 

assay conditions and similarly P2X7 inhibition has no effect on the phagocytosis of pHrodo 

labelled E. coli or in ROS-mediated bacterial killing of S. pneumoniae. Preliminary data 

showed that P2X7 Ca2+ signalling activity was different between hMDM and hAM cells 

highlighting the importance of translating macrophage biology into the relevant tissue 

resident cells. Lastly, novel evidence is described for the activity of Orai-mediated Ca2+ 

signalling in human macrophages. Orai-mediated Ca2+ signalling was shown to be a crucial 

component of FcγRI signalling- a central signalling pathway for bridging innate and adaptive 

macrophage functions. Orai inhibition had no effect on the production of LPS or LPS and 

Anti-IgG mediated cytokine release however Orai inhibition significantly impaired the 

phagocytosis of E. coli by IFNγ primed hMDMs. In summary, the results of my research 

provides important insight in the knowledge of how Ca2+ signalling pathways could be 

contributing or preventing mast and macrophage related disease.  
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