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Abstract 

At the present time, most prototype organic photovoltaic (OPV) devices are 

fabricated via spin-coating on to relatively small substrates. While spin-coating is a 

powerful tool for controllable and accurate material deposition, it is a relatively 

slow process and not easily scalable. In order for the technology to progress into 

commercial manufacturing, the fabrication of devices must be demonstrated via 

scalable deposition techniques. 

This thesis investigates ultrasonic spray coating as a scalable technique for the 

fabrication of organic solar cells. Several hole transport and photoactive materials 

are spray-cast and characterised. OPV devices are fabricated and a partial scale up is 

investigated, resulting in spray-cast device metrics comparable to those fabricated 

via spin coating. This work details fabrication of the largest OPV devices yet 

reported in which the PEDOT:PSS hole transport layer and the photoactive layer are 

both spray coated. It is therefore suggested that that spray coating is a potentially 

viable roll-to-roll deposition technique. 
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Chapter 1 Introduction 

As the energy demands of society increase, energy generation must increase to 

meet them. Due to environmental concerns and limited fossil fuel resources, 

renewable energy sources are becoming increasingly important. In 2014, 5.3% of 

global power generation was from renewable sources such as wind,  solar, 

hydrothermal, biofuels and waste [1] (excluding hydroelectric). Energy from sources 

other than fossil fuels, including nuclear and hydroelectric, contributed over 17% of 

the world total. 

 Worldwide electricity generation in 2014 was over 23 thousand terawatt-hours, a 

1.5% increase from that of 2013 [1]. Around 885 million terawatt-hours of sunlight 

reach the Earth's surface every year. Harnessing a fraction of this energy could 

therefore help to match the world’s increasing energy consumption. Sunlight can be 

harvested via solar photovoltaic cells, which convert incident sunlight into an 

electrical energy via the photoelectric effect. If the sun is directly overhead, the 

amount of atmosphere that light must travel through to reach the Earth's surface is 

defined as one atmosphere, or air mass one (AM1). This is only the case in 

equatorial regions however, and the tilt of the Earth requires sunlight to travel 

through more air to reach the ground at other latitudes. Many of the Earth's 

population centres are at a latitude mid-way between the equator and the pole, 

therefore a standardised reference solar spectrum was developed based on these 

locations[2]. Figure 1-1 shows solar irradiance at the Earth's surface as a function of 

wavelength at an air mass of 1.5 and a zenith angle of 48.2o. An integrated flux over 

the wavelength range is also displayed. 

Solar cells based on silicon were discovered over 60 years ago in 1941, with power 

conversion efficiencies (PCE) of <1%. This was improved upon over the next decade, 

with 10% efficiency cells fabricated in 1955 [3]. Single crystal silicon panels have 

now reached a record PCE of ~25% [4]. The low band gap (1.1 eve, 1127 nm) and 

high dielectric constant (~12) of silicon makes it an efficient light harvester, as even 
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low energy photons can excite electrons to the conduction band of the material and 

charges are easily separated. 
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Figure 1-1: Normalised AM1.5 solar spectrum  and integrated flux. 

Other popular photovoltaic materials include gallium arsenide (Gas), indium  

phosphate (Imp) and cadmium telluride (Cite), which have achieved PCEs of 29%, 

22% and 21% respectively.  

Efficiencies are not the only metric by which each system must be measured 

however, as factors such as energy pay-back time, scarcity of materials, toxicity, cell 

thickness and weight must also be considered.  

A potentially  low-cost alternative solar cell technology is organic photovoltaic's 

(OPV). This research field aims to produce solar cells from polymer materials for a 

much lower cost than traditional silicon. The goal is to produce low-cost, light-

weight, flexible solar cells via roll-to-roll fabrication. The materials here on 

deposited from solution, allowing rapid deposition processes to be used. The high 

absorption coefficient and low charge motilities of the polymer materials result in 

optimum thicknesses of <100 nm. This allows the production of solar cells on 

flexible substrates such as PET in a roll-to-roll environment. 
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Within the OPV research field, there has been a not-unreasonable tendency to push 

for higher efficiency 'hero' devices. This is achieved more easily with smaller device 

sizes and small-scale accurate deposition methods such as spin coating. While this 

push for higher performing materials is a very important part of the development 

process, the reality of taking a material or deposition system from laboratory 

testing to large scale manufacture is often overlooked. There are however many 

research groups now working on scale up processes and some have constructed 

roll-to-roll systems to fabricate large sheets of OPV cells [5]. 

1.1 Thesis Summary and Motivation 

This thesis aims to investigate the feasibility of an ultrasonic spray coating process 

for scale up of OPV devices. Both solution processed layers in an OPV device are 

spray cast and spray-cast devices achieve comparable device performances to spin-

cast references. The spray coating process is then used to scale up device sizes from 

those typically seen in the literature to a size more consistent with industrial 

requirements. 

Chapter 2 provides an overview of the background theory of organic 

semiconductors and their use within organic photovoltaic devices. Potential scale-

up deposition techniques and the progress towards roll-to-roll production is also 

discussed.  

Chapter 3 details the experimental techniques used to fabricate and characterise 

the OPV materials and devices within this thesis. 

Chapter 4 is the first experimental chapter, wherein an ultrasonic spray coating 

process is optimised for the deposition of PCDTBT:PC70BM active layers. The 

ultrasonic spray coater deposition technique is investigated and the following 

parameters explored: solvent blend, spray speed, solution concentration, 

deposition temperature, layer thickness and spray height. An optimised process is 

then used to fabricate devices, with a maximum PCE of 4.79% achieved. The process 

was then applied to a large scale 36-pixel device, achieving a 100% yield and 
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efficiencies above 3.5%. Finally, a 900mm2 single pixel is fabricated with a PCE of 

1.75% achieved. Light beam induced current maps show a variation in photocurrent 

generation across the cell.  

In Chapter 5, a spray coating process is been optimised for the metal oxide hole 

transport layers vanadium oxide and molybdenum oxide. Small-area devices are 

fabricated and performances matched those of devices with spin cast PEDOT:PSS 

hole transport layers of around 5% PCE. Film uniformity is characterised via atomic 

force microscopy, showing that the vanadium oxide film matches the surface 

morphology of the ITO substrate on to which it is cast. Large 36 pixel devices are 

then fabricated, providing high pixel yields of 86% and 89% for vanadium oxide and 

molybdenum oxide devices respectively. 

Chapter 6 describes the formulation of an ink for deposition of the hole transport 

material PEDOT:PSS. By combining an aqueous solution with isopropyl alcohol and 

ethylene glycol, wetting is improved on an ITO surface. OPV devices are then 

fabricated via spray casting the PEDOT:PSS layer and spin casting a PCDTBT:PC70BM 

active layer, achieving efficiencies of ~5%. The PCDTBT:PC70BM layer is also spray 

cast during fabrication, creating devices wherein no layer is spin cast. The spray 

coating process is then scaled up to larger substrate areas, and large device 

architectures are fabricated. A 36 pixel architecture achieves similar results to the 

small device sizes, indicating that the film is unchanged when spray cast over a 

larger area. A large four pixel device structure shows a decrease in performance 

when compared with the small area devices, potentially due to a mottling effect 

created by the drying film.  

Chapter 7 presents conclusions on the findings of this thesis and potential future 

work. 

1.2 References 

[1] British Petroleum, “BP Statistical Review of World Energy, June 2015,” Nucl. 
Energy, no. June, p. www.bp.com/statisticalreview, 2015. 
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spectra for solar energy systems testing,” Sol. Energy, vol. 73, no. 6, pp. 443–
467, Dec. 2002. 

[3] M. A. Green, “The path to 25% silicon solar cell efficiency: History of silicon 
cell evolution,” Prog. Photovoltaics Res. Appl., vol. 17, no. 3, pp. 183–189, 
2009. 

[4] P. K. Nayak and D. Cahen, “Updated Assessment of Possibilities and Limits for 
Solar Cells,” Adv. Mater., vol. 26, no. 10, pp. 1622–1628, Mar. 2014. 

[5] F. C. Krebs, N. Espinosa, M. Hösel, R. R. Søndergaard, and M. Jørgensen, 
“25th anniversary article: Rise to power - OPV-based solar parks,” Adv. 
Mater., vol. 26, no. 1, pp. 29–39, 2014.  
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Chapter 2  Background Theory 

2.1 Introduction 

In order to understand how variations in the performance of organic photovoltaic 

devices arise, a detailed understanding of the optoelectronic properties involved 

and the physical phenomena of device fabrication is required. The origin of the 

semiconducting properties of organic materials is fundamental to this 

understanding. This chapter introduces the background theory behind the 

photophysics, fabrication and characterisation of organic photovoltaic devices. 

2.2 Atomic Orbitals 

Electrons surrounding an atom are located in discreet energy levels called orbitals 

[1]. The characteristics of these orbitals depend on their four quantum numbers: 

the principle quantum number and potential energy of the electron (n), the 

magnitude of electron’s angular momentum (l), the orientation of the electron’s 

angular momentum (ml), and the spin direction of the electron (ms). The quantum 

numbers n, l and ml all have integer values, while ms has a value of ±1/2. The values 

of these numbers are determined by the conditions: 

     Equation 2.1 

         Equation 2.2 

         Equation 2.3 

         Equation 2.4 

These are used to calculate the quantum numbers of each atomic orbital, 

determining their shape and how many electrons they can contain. No two 

electrons in a shell can share all of the same quantum numbers due to the Pauli 

Exclusion Principle. This means that the total number of electrons that can occupy a 

shell is the number of the possible combinations of quantum numbers for that shell. 
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S orbitals have a quantum number of 1 and an angular momentum quantum 

number of 0, therefore there can only be two electrons in an s shell. P Orbitals 

however can have an angular momentum quantum number of 1, allowing for more 

combinations of quantum numbers and up to 6 electrons within the shell. For 

example, the first atomic orbital is called the 1s shell and can contain two electrons 

corresponding to the two possible spin direction quantum number (ms) values. The 

possible quantum numbers of the first two orbitals are shown in Table Chapter 2-

2-1 [2]. 

n l ml ms 
Orbital 

Name 

Total 

Electrons 

1 0 0 
+1/2 

1s 2 
-1/2 

2 

0 0 
+1/2 

2s 2 
-1/2 

1 

-1 
+1/2 

2px 

6 

-1/2 

0 
+1/2 

2py 
-1/2 

1 
+1/2 

2pz 
-1/2 

Table Chapter 2-2-1: Properties of the first two shells including quantum numbers, 
orbital names and the total number of electrons that a shell can contain. 

The angular momentum direction ml for the 2p orbitals can have three values, 

creating three equally energetic orbitals 2px, 2py and 2pz. 

2.3 Orbital Hybridisation 

A classical polymer such as PMMA and polystyrene comprises a series repeated 

covalently bound organic monomers, and is an electrical insulator. There are 

however certain types of polymer that exhibit electronic properties similar to those 
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of semiconductors. This section explores the formation and behaviour of the 

molecular orbitals, which confer semiconducting properties.  

There are six electrons in a neutral carbon atom, all filling positions in the atomic 

orbitals. An inner orbital containing two electrons (1s2) is surrounded by a second s-

orbital with two more electrons (2s2) and finally two p-orbitals, each with one 

electron (2px
1 and 2py

1) [3], with the electronic configuration being 1s22s22px
12py

1.In 

a carbon atom, there are four unoccupied orbitals in the outermost 2p shell. Due to 

the Pauli Exclusion Principle, there is no more room for another electron in the 2s 

orbital, therefore this leaves only 2 p-orbital electrons free to form covalent bonds. 

This is not enough to fill the entire outer p-orbital. A lack of available bonding 

electrons can be overcome via a process called hybridisation.  

If a 2s electron is promoted to an empty 2p orbital (2pz), the electronic 

configuration becomes 1s22s12px
12py

12pz
1. In this state, there are now four 

electrons free for use in bonding. Hybridisation is the process in which the 2s orbital 

combines with one or more of the 2p orbitals to create a new orbital (sp), with an 

energy level lying between the original 2s and 2p orbitals (Figure 2-1) [3]. 

 

 

Figure 2-1: Hybridisation of a 2s and a 2p orbital into an sp orbital. 



Chapter 2: Background Theory 
 Page 19 

 There are three possibilities (sp1, sp2 and sp3), depending on how many p orbitals 

the s orbital hybridises with. These are displayed in Figure 2-2. 

 

Figure 2-2: Orbital Hybridisation Possibilities. 

 In the case of a semiconducting polymer, sp2 hybridisation is the process 

responsible for their electronic properties. When sp2 hybridisation occurs, the 

electronic configuration becomes 1s2sp32pz
1 as shown in Figure 2-3. The sp2 orbitals 

form a trigonal arrangement on a common plane, with bond angles of 120o. The 

remaining p orbital is perpendicular to the sp2 orbitals. 
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Figure 2-3: Orbitals of a Carbon atom that has undergone sp2 hybridisation. The 
small components of the sp2 orbitals are not shown. 

The sp2 orbitals of a hybridised carbon atom can bind with the sp2 orbitals of 

neighbouring carbon atoms to create a sigma bond, which is cylindrically symmetric 

along the internuclear axis (Figure 2-4). The 2pz orbitals are perpendicular to this 

axis and therefore cannot merge to create a sigma (σ) bond. As the 2pz orbitals from 

neighbouring atoms approach each other, they create a pi (π) bond by pairing 

electrons. The π bonds are weaker that the σ bonds and are therefore not as 

localised. A σ bond on its own is called a single bond, and a σ bond combined with a 

π bond is called a double bond. 
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Figure 2-4: Two sp2 hybridised Carbon atoms combining with each other and four 
Hydrogen atoms to form Ethylene. The sp2 orbitals overlap to form a σ bond. The 
p orbitals also overlap, forming a π bond. 

2.4 Molecular Orbitals 

When two sp2 hybridised atoms come together as in Figure 2-4, their wavefunctions 

(ψ) overlap and combine into molecular orbitals. These orbitals have two different 

energy levels, one higher and one lower in energy than the original atomic energy 

levels. Figure 2-5 shows the amplitude of two atomic wavefunctions, ψ(A) and ψ(B). 

As they come together, the wavefunctions overlap to create the ψ(A) + ψ(B) 

bonding (π) and ψ(A) - ψ(B) antibonding (π*) orbitals via constructive and 

destructive interference [4]. The bonding orbital has a non-zero electron density at 

the centre point between the nuclei whereas the antibonding orbital has zero 

electron density. 
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Figure 2-5: Atomic wavefunctions combining to create bonding and antibonding 
orbitals. 

The superposition of these molecular orbitals in a solid gives rise to bands of 

bonding and antibonding orbitals (Figure 2-6). The highest occupied molecular 

orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) band act as 

the traditional semiconductor valance and conduction band respectively. The 

energy difference between the HOMO and LUMO is the energy gap (Eg). 

 

Figure 2-6: Molecular orbital band formation in solids. 
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2.5 Conjugated Polymers 

The most favourable arrangement of the orbitals in the sp2 hybridised Carbon atom 

is shown in Figure 2-3. If the sp2 carbon atom was bound to 5 other sp2 carbon 

atoms while maintaining its trigonal 60o bond angle, the result would be a 

hexagonal arrangement as shown in Figure 2-7. This is known as a benzene ring and 

it is conjugated, which means that it has alternating single and double bonds along 

its carbon chain. The positioning of the double bonds does not make a difference to 

its electronic properties therefore, and the two configurations on the left of Figure 

2-7 can be expressed as a ring of delocalised electrons shown on the right. π 

electrons are completely delocalised along the alternating single and double bonds. 

Benzene is a popular aromatic hydrocarbon and is often used as a building block 

within a semiconducting polymer.  

 

Figure 2-7: A benzene ring made up of six sp2 carbon atoms. 

 

Figure 2-8 shows two similar polymer chains, polyethylene and polyacytelene. 

Polyethylene is the combination of several of the Ethylene monomers from Figure 

2-4 however it loses its double bond when it bonds with another Carbon atom. 

Figure 2-8b and d are drawn using a skeletal form, where the Carbon and Hydrogen 

atoms are hidden. This is a common way of representing organic molecules. 



Chapter 2: Background Theory 
 Page 24 

 

Figure 2-8: Chemical structures with and without labelled carbon and hydrogen of 
a-b) polyethylene and c-d) polyacytelene. 

If carbon atoms were equidistant from each other, then there would be no 

difference between the bonding and antibonding states. The π electrons would be 

delocalised along the polymer chain and there would be no energy gap; the 

polymer would be quasi-one-dimensional metal as its band would be half filled [5]. 

This is however not the case, as measurements show that there is a difference in 

bond lengths between carbon atoms in a conjugated polymer. Figure 2-9a shows a 

carbon chain with equidistant atoms and equal bond lengths. Figure 2-9b 

demonstrates Peierls instability, wherein the polymer chain distorts and double 

bonds become shorter, while single bonds become longer. In the case of 

polyacetylene, Yannoni and Clarke measured the double and single bond lengths as 

1.36Å and 1.44Å respectively [6]. 

 

Figure 2-9: Alternating bond lengths creating regions of varying electron density 
along the polymer chain. 

After this bond length alteration, the bonding state becomes more energetically 

stable than the antibonding state.  The half filled band becomes two bands: a fully 

occupied valance band and an empty conduction band, analogous to a traditional 

semiconductor material. This separation into two bands is what affords a polymer 

b) 

a) 
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its semiconducting behaviour. Unlike polyethylene, polyacytelene therefore 

demonstrates semiconducting properties due to its conjugated backbone [3]. 

2.6 Device Photophysics 

2.6.1 Exciton Generation 

Figure 2-10 shows the singlet ground and excited states in an energy level diagram 

based on the Frank-Condon principle. These singlet states contain several quantised 

vibrational modes (n) which form a ladder of states. If the ground and excited state 

are labelled as S0 and S1 respectively, then these vibrational modes can be labelled 

as S0,n and S1,n. A ground state electronic transition occurs when a photon is 

absorbed by an electron in the S0 state with energy equal to or greater than the 

energy gap. As this photoexcitation transition occurs on a shorter timescale than 

the motion of the nuclei, they can be considered stationary and the transition is 

depicted by a vertical line in the energy level diagram. 

Should the absorbed photon have an excess of energy compared to that of the 

energy gap, the electron is promoted to one of the S1 vibrational modes. The 

electron then quickly relaxes via a non-radiative decay process to the lowest 

vibrational mode of the excited singlet state (S1,0). This occurs over timescales of ~ 

0.1 ps. 
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Figure 2-10: A Frank-Condon Diagram showing the processes that occur during 
photoexcitation. 

The promotion of an electron to an excited state leaves a “hole” in the ground 

state. This "hole" can be considered as a particle having a charge equal and 

opposite to that of the electron. The electron-hole pair is coulombically bound with 

a neutral net charge and is termed an exciton. If no external factor acts upon the 

exciton, it will recombine as the electron decays radiatively to one of the S0 

vibrational states in a process called fluorescence. This decay occurs on the 

timescale of 100 to 1000 ps, a much longer period than that of the vibrational 

relaxation [7]. This difference in timescales means that the decay to one of the S0 

states will occur from the S1,0 state, regardless of the initial photon energy.  Transfer 

between singlet states can occur if the wavefunctions of vibrational modes overlap. 

An example of this is shown using the S1,0 and S0,2 states in Figure 2-10. In this case, 
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the higher the energy of the ground state vibrational mode (S0,2), the lower the 

energy of the photon emitted during fluorescence. 

The transition can be expressed in terms of the electron wavefunction. As discussed 

earlier in section 2.2, electrons can have a spin of ± ½. Electron wavefunctions may 

combine with other electrons or holes to produce a total spin (S) of 0 (+ ½ - ½) or 1 

(+ ½ + ½). The wavefunction of the ground state S0 is given by  

             Equation 2.5 

and has a total spin of S = 0. The wavefunction Ψ of the excited singlet state also 

has a total spin of S = 0 and is asymmetric under particle exchange. It can be 

expressed as 

     
 

  
              Equation 2.6 

The S = 1 case can be achieved by three symmetric wavefunction configurations 

called triplets states; these are listed in Equation 2.7. 

     
 

  
                                            Equation 2.7 

The probability for specific transitions to occur depends on the symmetry of the 

wavefunction. The Pauli Exclusion Principle states that two particles must have a 

total wavefunction that is asymmetric under particle exchange. For an optical 

transition, the change in S (ΔS) must equal 0 and the change in angular momentum 

(ΔL) must be non-zero. The angular momentum of the photon provides this change 

in angular momentum. The transition from S0 to S1 in Figure 2-10 satisfies this 

condition for instance, as the states have angular momentums of 0 and 1. 

Fluorescence is then possible from the S1 to S0 states as a photon is emitted, again 

providing a change in angular momentum. 

For a S1 to T1 transition to occur, there would need to be a change in total spin as all 

of the triplet states have a total spin of 1.This spin-forbidden transition can occur 
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via spin-orbit coupling, which is an interaction between the spin of an electron and 

its orbital angular momentum. This interaction allows the S0 to T1 transition to 

occur, as long as the spin of an electron ‘flips’ and the total spin becomes 1. 

Relaxation via emission of a photon from the T1 state to the ground state can occur 

in a process called phosphorescence, however this happens on much longer 

timescales (μs) than singlet fluorescence (ns) [8]. Triplet states therefore have a 

longer lifetime than singlet states. 

A phonon is a quantised mode of vibrational energy created by oscillations in a 

lattice. Unlike in inorganic materials, electron-phonon interactions in organic 

semiconductors are comparable in strength to electronic interactions [9]. The 

electron interaction with a phonon can be considered a quasi-particle called an 

electron-polaron. When an electron enters the excited state in a conjugated 

polymer, the surrounding molecular structure undergoes a relaxation. The 

relaxation in surrounding bonds acts to lower the energy of the system, and the 

LUMO level is reduced. The presence of a hole in the HOMO level also causes a 

deformation in the polymer chain, creating a hole-polaron and  reducing the depth  

of the HOMO energy. This brings the electron and hole closer together, thus 

increasing their coulombic attraction. 

2.6.2 Exciton Diffusion 

The Coulombic attraction between the electron and hole is given by 

   
  

       
 Equation 2.8 

where e is the charge of an electron εr is the dielectric constant of the medium, ε0 is 

the permittivity of free space and r is the distance between the charges. Organic 

photovoltaic materials have comparatively small dielectric constant (εr≈2-4) when 

compared to a more traditional silicon semiconductor (εr≈12) [7]. The resultant 

increase in coulombic attraction means that charges are not affectively screened 

and maintain a binding energy that is much larger than kBT. The exciton cannot 
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therefore be dissociated by thermal means alone. This bound pair is known as a 

Frenkel exciton. In order to prevent the charges recombining, the exciton needs to 

travel to an interface with a favourable energy for charge dissociation. The exciton 

can ‘hop’ between the localised states along a polymer chain, or from one chain to 

another within a material domain. Equation 2.9 gives the length travelled (LD) by an 

exciton before recombination occurs. This is calculated by the diffusion coefficient 

(D) and the photoluminescence decay lifetime (τ). 

        Equation 2.9 

During this process, the electron hole pair is considered neutrally charged and 

therefore is not directed by the electric field within the device. If the exciton 

reaches an interface within this diffusion length, it can be separated into free 

charge carriers. In a conjugated polymer, this length is of the order of 10nm [10]. 

This short length scale can be addressed by tuning the morphology of the active 

layer materials in order to minimise the distance between exciton generation and a 

suitable interface. This will be discussed in more detail in section 2.8. 

2.6.3 Exciton Dissociation 

An exciton is dissociated if the electron and hole are separated into free charge 

carriers. This can occur at the interface between the conjugated polymer donor and 

the acceptor material, as long as it is energetically favourable to do so [11]. Figure 

2-11 displays the dissociation process in stages. 

An electron is excited in part a), creating a bound electron-hole pair. If the LUMO of 

the acceptor material is further from the vacuum level than the LUMO of the donor 

level, a driving force acts upon the excited electron and it can transfer to the 

acceptor LUMO as shown in part b). The donor and acceptor LUMO energies must 

be offset by an energy ΔE greater than the binding energy of the exciton (~0.3eV) 

[12][13]. The HOMO of the donor material must also be further from the vacuum 

level than the HOMO of the acceptor material; otherwise both the electron and the 

hole could travel to the acceptor. In this case, only energy transfer would occur 
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instead of charge transfer, as the exciton pair would be travelling to the acceptor 

together. 

The electron and hole are still spatially close at this point, and due to the low 

dielectric constants in the materials, the electron and hole are still bound in what is 

known as a geminate pair. A geminate pair is a bound electron-hole pair in which 

the hole was created by the same electron that it is bound to [7]. 

If a suitably strong electric field acts upon the pair, they can separate into free 

charges. If this field is not present however, the charges can recombine via transfer 

of the electron from the acceptor LUMO back to the donor HOMO in a process 

called geminate recombination. 

 

Figure 2-11: a) An excited electron is still coulombically bound with its hole in an 
exciton pair. b) The electron is transferred to the HOMO level of the acceptor 
material. The charges are still bound together c) an electric field allows the bound 
pair to separate in to two free charges. 

2.6.4 Charge Transport 

Upon dissociation into free charge carries, the electron and hole must reach 

electrodes in order for the photocurrent to be successfully extracted. Free charges 

can still recombine with unassociated charge carriers via bimolecular recombination 

before they reach their respective electrodes for extraction. 

As discussed in section 2.5, a conjugated polymer has localised sites of differing 

electron densities along its backbone. The free charge can move from one site to 
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another via intramolecular transport along the polymer. The charges must also 

move via intermolecular travel to other donor/acceptor materials if they are to 

reach their corresponding electrodes. 

Organic semiconductors are disordered materials and there is little coupling 

between individual molecules. The transition of a charge from one localised state to 

another is therefore described as ‘hopping’ instead of a band like charge transport. 

Charges must hop between polymer segments and also between separate polymer 

molecules. This hopping process is dependent on the temperature and the presence 

of an electric field. 

We can estimate the energetic distribution of the sites g(E) of charge transport via a 

Gaussian distribution of disordered states [14]. 

 

    

 
 

    
     

  

   
  

Equation 2.10 

The disorder parameter σ characterises the width of the density of states and 

increases with system disorder.  

If there is no electric field present, the charges can diffuse towards lower energy 

states. The hopping rate vij between the occupied site i and the unoccupied site j 

can be described by the Miller-Abrahams equation [15]: 

               
   
 
  

     
     
  

         

                                         

  Equation 2.11 

The factor ν0 is the attempt to escape frequency. The jump distance between sites 

rij is normalised by the inter-state distance a. γ is the coupling matrix element 

between sites and Ei and Ej are the energies at site i and j respectively. When site i is 

at a higher energy that site j, charge transport between the sites is energetically 
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favourable. If the charge carrier hops to a site that is lower in energy than all of its 

surrounding sites, it can become trapped. 

An electric field can be introduced either externally or via the difference in 

electrode work function in fully fabricated solar cell. When an electric field is 

applied, the density of states is tilted and the activation energy for charge transport 

is lowered. 

2.6.5 Charge Extraction 

Upon reaching the appropriate electrode, free charges must transfer from the 

donor to the anode and the acceptor to the cathode. The morphology of the film 

can aid or hinder this process. For instance, if there is a domain of donor material 

between the acceptor and the cathode, the free electrons can be lost in the 

acceptor via bimolecular recombination.  

Figure 2-12a) depicts two metal materials in vacuum-level aligned and Fermi-level 

aligned configurations. A metal-metal contact occurs at the cathode of the OPV 

devices in this thesis, in the form of a calcium/aluminium interface. When the 

materials come in to contact, electrons from the metal with the shallower Fermi 

level flow in to the metal with the deeper level. This flow of electrons aligns the 

Fermi levels of the two materials. 
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Figure 2-12: Energy level alignment via electron transfer between interfaces of 
work function Ф, showing the energy difference Δ between vacuum alignment 
and fermi level alignment. a) a metal/metal interface, b) a metal/organic interface 
when ФMetal<ФP and c) a metal/organic interface when ФMetal>ФN. 

In the case of a metal/organic contact shown in Figure 2-12b, the metal work 

functions (ФMetal) ideally align with the HOMO or LUMO of the organic materials as 

described by Equation 2.12 and Equation 2.13. 

                  Equation 2.12 

                       Equation 2.13 

This would create an ohmic contact between the two materials. In reality however, 

work functions and molecular orbitals are rarely so closely aligned. 

The transfer of charges across the metal/organic interface can be described by the 

integer charge-transfer model. This model assumes that metal/organic interfaces 
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are passivated by oxides or residual hydrocarbons, which block the formation of 

interface dipoles. Electron transfer can still occur via tunnelling through this 

passivating layer however, as long as the layer is thin enough [16]. An integer 

amount of electrons must tunnel into charged states on the polymer, one at a time. 

The energy of the negative integer charge-transfer state (ФP) is the energy gained 

when an electron is added to the polymer. This energy includes the polaronic 

contribution discussed earlier in this section and lies below the LUMO level of the 

polymer. Conversely, the energy of the positive integer charge-transfer state (ФN) is 

the energy required to remove an electron from the polymer and must include the 

polaronic contribution that the transition creates. Charge transfer over the 

metal/organic interface can occur when the metal work function is greater (smaller) 

than the formation energy of positively (negatively) charged states within the 

organic layer. 

Figure 2-12b shows a metal/organic contact in which ФMetal lies above the LUMO of 

the organic material. As the materials come in to contact, electrons will flow from 

the metal to the organic LUMO. The metal becomes increasingly positively charged 

and the polymers at the interface become increasingly negatively charged due to 

electron transfer. This creates a dipole at the interface and the vacuum level is 

shifted downwards. This process continues until ФMetal aligns with ФP and 

equilibrium is reached. ФP is now equal to the sum of the potential energy at the 

interface (Δ) and ФMetal. The inverse of this process is shown in Figure 2-12c, 

wherein electrons flow from the organic HOMO to the metal upon contact. ФMetal at 

equilibrium is now equal to the sum of Δ and ФN. As long as the work function of the 

cathode (anode) is shallower (deeper) than the LUMO (HOMO) of the organic layer, 

charge transfer can occur upon contact. If ФMetal lies between ФP and ФN however, 

then electrons will not flow in either direction and the interface will remain vacuum 

aligned. 
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2.7 Device Characterisation 

 

The principle metrics for device characteristics are achieved by analysing a current-

voltage (J-V) curve. This is obtained by illuminating the device under simulated solar 

radiation while applying a voltage sweep. Exciton generation, diffusion, 

disassociation and extraction will occur within a working device. The power 

conversion efficiency (PCE) of the device is an indication of the success of these 

processes.  

Figure 2-13 shows a typical J-V curve obtained from an organic photovoltaic device 

under illumination. Current density is a preferential metric to current as it takes in 

to account the area being illuminated and thus allows for comparison between 

devices of different architectures and size.  

An effective solar cell should be able to generate a high current even when a large 

bias is applied, therefore increasing its output power output given by 

      Equation 2.14 

The open circuit voltage (Voc) is the applied voltage at which the generated current 

is zero (J = 0 mAcm-2). Voc is determined by the difference between work functions 

of the anode materials and difference between the HOMO of the donor and the 

LUMO of the acceptor [17][18]. The larger the energy gap, the greater the applied 

bias that can be applied before current generation is prevented. The acceptor 

LUMO must therefore be deep enough compared to the donor LUMO so as to 

overcome the binding energy discussed in 2.6.3, but not so deep as to reduce the 

open circuit voltage of the cell[19][20].For an organic polymer to be an effective 

solar cell material, it must also absorb photons of a suitable wavelength within the 

solar spectrum. This requires energy gap engineering in order to tune the 

absorption of the polymer system. Structures can also be added to the polymer in 

order to engineer its electronic and physical properties. HOMO and LUMO energies 
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can be tuned by addition of electron-rich ‘donor’ units such as thiophene and 

electron-poor ‘acceptor’ units such as benzothiadiazole [21]. 

The short circuit current (Jsc) is the measured current when there is no applied bias 

(V=0 V), i.e. the current generated using the in-built electric field of the cell. The 

narrower a polymer band gap, the more light can be absorbed and the more 

charges generated. A smaller band gap also lowers the Voc however; therefore an 

efficient solar cell will strike a balance between these two factors. 

 

Figure 2-13: An example of a current-voltage curve, showing key values and 
features used in characterising a photovoltaic device. Jsc is the short circuit current 
density, Voc is the open circuit voltage, JMP and VMP are current density and voltage 
respectively at the maximum power point MPP. Rs is series resistance and Rsh is 
shunt resistance. The dotted red lines indicate the gradient of the slope at the two 
axes. 

The current-voltage relationship in a simple solar cell can be expressed via the diode 

equation 
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     Equation 2.15 

where Jrev is the reverse saturation (dark) current, e is the electron charge, k is the 

Boltzmann’s constant and T is the absolute temperature [22]. In real device 

operation, there are losses via resistances in the cell. Series resistance (Rs) depends 

upon bulk transport, interface charge transfer and contact charge transport. It can 

be calculated from the inverse of the gradient at open circuit voltage (typical values 

are 1-10 Ω cm2) [23].Shunt resistance (Rsh) depends upon leakage and shorts 

through the device and can be calculated from the inverse of the gradient at short 

circuit current density. Shunt resistance is typically between 1000 - 10000 Ω cm2, 

with some high-performing cells reaching 0.1 MΩ cm2 [24][25]. An ideal solar cell 

will have a large shunt resistance, low series resistance and diode characteristics 

capable of withstanding high voltages. Total current density for a real solar cell is 

composed of three contributions: the diode current, the shunt current and the 

short circuit current density. Taking these factors into account, Equation 2.15 

becomes 

             
        

  
     

     
   

     Equation 2.16 

Figure 2-14 shows a circuit representation of the solar cell described by Equation 

2.16. A large shunt resistance prevents current leakage across the device and a low 

series resistance reduces the current losses within the device. 

 



Chapter 2: Background Theory 
 Page 38 

Figure 2-14: An equivalent circuit for a solar cell. Jsc is short circuit current density, 
Rs is series resistance, Rsh is shunt resistance and Jdiode is the diode current. 

The maximum power point (Mpp) is the location on the J-V curve at which the most 

power is being generated. The fill factor (FF) is a measure of the ability to extract 

photocurrent as the voltage is increased. It is given by the ratio of the maximum 

possible power generation (smaller box in Figure 2-13) to the power that would 

have been generated if there was no reduction in current with increased voltage 

(larger box). 

     
      
      

 Equation 2.17 

The fill factor is affected by both series and shunt resistance in the cell, as a can be 

seen in Figure 2-13. The power conversion efficiency (PCE) is the ratio of input 

power to output power and can be calculated as: 

      
    
   

  
      
   

  
        

   
 Equation 2.18 

An efficient device will therefore have a deep Jsc, a high Voc and a square shaped 

curve giving a high FF. 

2.8 Device Architecture 

2.8.1 Early Devices 

The initial organic solar cells were made using a single junction between two 

electrodes of differing work function. This produced an electric field within the 

device to direct charge extraction. In 1973 Ghosh et al. used a tetracene active layer 

with aluminium and gold for the electrodes [26]. The efficiencies of these devices 

were very low however, only achieving <1% PCE. 

As the exciton lifetimes in organic polymers are so low, the charges need to arrive 

at an interface suitable for separation within a short period of time. This requires a 

short travel distance (~10nm in polymer films). An active layer of 10nm is not thick 
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enough to absorb the amount of light required for efficient photocurrent 

generation. There is also no internal force present to separate the bound excitons 

before they reach an electrode. 

2.8.2 Donor and Acceptor Bilayers 

To work around this problem and aid dissociation in organic materials, a donor and 

acceptor system was introduced. An electron rich donor material is combined with 

an effective electron transport acceptor material at a lower energy level to aid 

charge extraction. The majority of the electrons are generated in the donor polymer 

and travel to an interface with the acceptor material. The high electron mobility of 

this acceptor material allows for a thicker active layer and thus increased light 

absorption. The bilayer also aided photocurrent generation by separating the bound 

excitons before they reached an interface. 

In 1986, Tang et al. made a donor acceptor photovoltaic system based using bilayers 

of thermally evaporated copper phthalocyanine (CuPc) and a 

perylenetetracarboxylic derivative (PV) [27]. There was a large increase in efficiency 

from the single junction system, with devices achieving ~1% PCE. Even with this step 

up in efficiency, the films maintained a relatively small charge transfer interface, as 

they were deposited sequentially creating two vertically separate domains. As with 

the original single junction devices, only excitons generated near an interface could 

be dissociated. 

Tang’s devices also used indium tin oxide as a transparent electrode due to its 

excellent conduction at high transmittance. This layer is still the most commonly 

used within organic photovoltaic research. Replacements are being sought however 

due to its inflexibility and the scarcity of indium [28]. 

2.8.3 Bulk Heterojunction 

In 1995, Gao et al. blended the semiconducting donor polymer MEH-PPV with a 

fullerene acceptor to create a bicontinuous network donor and acceptor 
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heterojunctions. This resulted in a large increase in external quantum efficiency and 

device efficiencies of 2.9% [29]. The preferred morphology of a donor acceptor 

system provides short distances from an area of exciton generation to an interface 

at which it can dissociate, while maintaining a film thick enough for maximum light 

absorption. A large interfacial area between the donor and acceptor increases the 

number of excitons dissociated, as more of them reach an interface after 

absorption. A bicontinuous interpenetrating network of donor and acceptor 

material throughout the film therefore greatly improves photocurrent extraction. 

 

Figure 2-15: A schematic representation of polymer chains surrounded by PCBM 
domains. 

2.8.4 Fullerenes 

To achieve a bicontinuous network, the acceptor material needs to be mixed within 

the donor polymer solution. The most common acceptor materials are derivatives 

of fullerene. The original fullerene, C60, was synthesised by Kroto et al. in [30]. It has 

a spherical geometry comprised of 60 carbon atoms connected via sp2 hybridised 

orbitals. Photoinduced electron transfer from a conducting polymer to C60 was 

found to occur efficiently, on a timescale of ~45 fs [31]. PC60BM is a fullerene that 

has been functionalised with a solubilising side chain which allows it to dissolve at 

higher concentrations [32]. A more recently developed fullerene derivative is 
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PC70BM, which has greater absorption of light in the visible region compared to 

PC60BM [33]. 

2.9 Donor Polymers 

2.9.1 PCDTBT 

For several years, regioregular poly(3-hexylthiophene) (P3HT) was the most popular 

donor material within the field of organic photovoltaic's due to its simple synthesis 

and high power conversion efficiencies relative to its time [34].  P3HT has a 

relatively large band gap of ~1.9eV [35]. This prevents it from harvesting light of 

longer wavelengths of the solar spectrum, reducing its overall PCE. Carbazole 

copolymers were developed as alternative donor materials, having deep HOMO 

levels to protect against oxidation and tunable band gaps due to the presence of 

electron donating and accepting units within the polymer chain [36]. One such 

carbazole polymer is poly[[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-

thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl] (PCDTBT). PCDTBT 

has a low band gap of 1.2 eve, meaning that it can absorb a large part of the solar 

spectrum compared with larger band gap polymers such as P3HT. After 

optimisation of solvent blends and combining PCDTBT with PC70BM, an external 

quantum efficiency of nearly 100% was achieved by Heeger [37]. The maximum 

performance was further increased by controlling the morphology of the blend by 

way of a DMSO additive, with efficiencies of over 7% reported [38]. 

2.10 Interlayers 

While the bulk heterojunction aids in dissociation of excitons and the transport of 

free charges to the electrodes, they must still be extracted at the organic-metal 

interface. Interlayers aid this process by providing energy levels more closely 

matched to the HOMOs and LUMOs of the donor and acceptor materials 

respectively. 
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2.10.1 PEDOT:PSS 

One of the interlayers used in this thesis is poly(3,4-

ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS), a combination of 

PEDOT and PSS as shown in Figure 2-16. PEDOT:PSS is a widely used hole transport 

layer in the organic photovoltaic field due to its high hole mobility and its aqueous 

solubility [28]. 

 

Figure 2-16: The polymers PEDOT and PSS. Together they make the interlayer 
material PEDOT:PSS. 

PEDOT is a conjugated polymer that has a positive charge in its oxidised state. PSS is 

a polymer with a deprotonated sulfonyl group and has a negative charge. Its high 

stability and high conductivity at high transparency make it an excellent interlayer. 

Unfortunately it is insoluble in common solvents [39]. PSS acts to balance the 

PEDOT charge and increases its aqueous solubility. 

2.10.2 Vanadium Oxide 

Elements with partially filled d orbitals are called transition metals. As the d orbital 

can contain up to ten electrons, there are nine transition metals for every shell.  

Transition metal oxides are formed when the 2p orbitals of oxygen atoms are 

completely filled by the d orbital electrons of the transition metal atoms. In the case 

of Vanadium pentoxide (V2O5), the now-empty 3d orbitals act as a conduction band 
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(LUMO) and the filled O 2p orbitals act as a valance band (HOMO). Vanadium oxide 

has been chosen as a hole transport interlayer in some organic photovoltaic devices 

[40][41] due to its high work function (~5.5eV). 

2.11 Large Scale Deposition Methods 

This section will explore the current state of the field in terms of scaling up organic 

photovoltaic's. There are several important factors when judging the ‘best’ 

fabricated devices including device size, cell stability and lifetime, power conversion 

efficiency, pixel yield and performance variation. Much of the literature has focused 

on ‘hero’ devices, wherein OPV performance is increased in laboratory conditions, 

typically on device sizes of 1-10 mm2 in area. While these increases in material 

performance are very important for the field to progress, the route from laboratory 

to large scale production must be taken into account. If a very efficient material 

degrades rapidly when inside a solar panel, it will not be suitable for use in large 

scale manufacture despite its high initial performance. 

2.12 Roll To Roll Deposition Techniques 

There are many techniques suitable for the scaling up of organic photovoltaic's from 

a laboratory technology to mass production. For a deposition method to be 

effective on a large scale, it must be a rapid process and maintain accurate 

reproducibility. Some of the scalable processes most commonly used to deposit 

OPV materials are discussed in this section. 

Flexible substrates are desirable for rapid manufacturing as sheets can be passed 

through printing equipment without the need for the large longitudinal footprint 

that rigid substrates would require. 

2.12.1 Ultrasonic Spray Coating 

Spray coating is a technology designed to quickly coat large areas with high 

uniformity. The spray coating setup employed for the majority of depositions in this 
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work is shown in Figure 2-17. The solution of interest is fed through a tube at a 

controlled pressure onto a tip which vibrates at an ultrasonic frequency. This causes 

it to break up into uniformly sized droplets. After atomisation, droplets are allowed 

to fall under their own gravity. A nitrogen flow widens and planarises the spray into 

a uniform mist, allowing even coating of a substrate below the spray head. A Prism 

300 spray coater was used in this work which has a tip frequency of ~35KHz. 

 

Figure 2-17: Schematic of the ultrasonic spray coater. 

Traditional aerosol spray coating uses a nozzle, and solution flow rate is controlled 

by increasing pressure. Droplet size, flow rate and droplet kinetic energy are all 

altered with an increase in pressure when solution passes through a nozzle. As 

ultrasonic spray coating breaks up the solution using a tip, the droplet size and 

kinetic energy can be kept constant regardless of flow rate. Droplet speed can be 

reduced to gravitational acceleration and a high flow rate can be achieved without 

high droplet kinetic energy and a potentially disruptive jet of carrier gas. The spray 

head is mounted on a computerised gantry which allows for a high precision and 

reproducibility. Substrates are also placed on a hotplate which allows for control 

over drying time. There is a large parameter space when producing a film using the 

ultrasonic spray coater. Solvent choice must take into account solubility of material, 

boiling point, surface tension, viscosity and vapour pressure. In an ideal case, a 
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uniform wet film is formed via merging of droplets before evenly drying. Film 

thickness can be controlled via spray height, lateral spray speed, solution flow rate 

and solution concentration. For example, a similar thickness can be obtained using a 

low concentration and a high flow rate or a high concentration and low flow rate. 

Drying time will be changed as a result, and the final films will have different 

morphologies. Optimising a spray recipe must take into account the amount of 

solution deposited in an area, solution flow properties, drying time of that solution 

and amount of material remaining once the solvent has evaporated. Table Chapter 

2-2-2 shows a literature review of spray-cast OPV materials, pixel areas and device 

performance.  

Spray 
Technique 

PCE 
(%) 

Pixel 
Area 

(mm2) 
Sprayed HTL 

Sprayed 
Photoactive 
Layer (PAL) 

Citation 

Airbrush 2.83 16.4 - P3HT:PC61BM Vak 2007[42] 

Airbrush 2.8 3.4 - P3HT:PC61BM 
Girotto 

2009[43] 
Airbrush 2.7 20 PEDOT:PSS P3HT:PC61BM Hoth 2009[44] 

Ultrasonic 3.5 - PEDOT:PSS P3HT:PC61BM 
Steirer 

2009[45] 
Airbrush 2.17 4.66 PEDOT:PSS P3HT:PC61BM Na 2010[46] 
Airbrush 3.4 4.75 - P3HT:PC61BM Yu 2010[47] 

Ultrasonic 3.75 3 PEDOT:PSS P3HT:PC61BM 
Girotto 

2011[48] 
Airbrush 5.8 15 - P1: PC61BM* Nie 2012[49] 

Ultrasonic 4.3 4.5 - PCDTBT:PC71BM 
Wang 

2013[50] 
Airbrush 4.1 - - P3HT:PC61BM Tait 2013[51] 
Airbrush 4.2 10  P3HT:PC61BM Vak 2015[52] 

Ultrasonic 3.7 165 PEDOT:PSS PCDTBT:PC71BM This Thesis 

Table Chapter 2-2-2: A literature review of spray-cast OPV materials, including 
pixel areas and device performance. 

Much progress has been made using spray coating as a deposition technique. There 

is still a disparity between devices with high efficiencies and those with large device 

areas however.  
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2.12.2 Doctor Blading 

Doctor blading (or knife coating) is a one dimensional printing technique which has 

been used to coat photoactive layers such as P3HT [53]. A schematic of a doctor 

blade can be seen in Figure 2-17. Ink is fed onto a substrate which passes under a 

sharp blade held at a fixed height above the substrate surface. The height of the 

blade determines the amount of material that can pass under it and thus the final 

film thickness. This is a simple technique and therefore does not allow for high 

control over the film wetting area or uniformity [54]. 

 

Figure 2-18: A simplified schematic of a doctor blading system. 

Both spray coating and doctor blading lack lateral precision during the deposition 

process, therefore two dimensional patterns are difficult to achieve via the 

deposition itself. This can be overcome via patterned masks or laser 

patterning/ablation after film deposition [55]. 

2.12.3 Slot Die 

Slot die coating uses a similar concept to doctor blading, in which the solution is fed 

from an ink reservoir onto a surface through a slot. Unlike doctor blading however, 

the width of the wet film can be controlled by the width of the slot. Film thickness 

can be controlled by solution pressure and substrate speed. 
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Figure 2-19: A simplified schematic of a slot die coating system. 

This offers an advantage over doctor blading and spray coating, as the film can be 

patterned in to thin strips during deposition due to the slot having a finite width. 

These strips can then be connected in series to produce multiple, long solar cells on 

one substrate [56]. 

2.12.4  Screen Printing 

A schematic of screen printing is displayed in Figure 2-20. A screen of woven 

material is fastened to a frame and put under tension. A squeegee presses down on 

the taught screen, forcing an ink through holes onto the surface below. The holes in 

the screen determine where the ink will be, allowing for two dimensional patterning 

of a surface. This deposition has been used to pattern smooth photoactive layers 

with thicknesses as low as 40 -60 nm in OPV devices [57][58]. Ink formulations used 

for screen printing musty have a high viscosity to prevent solution flowing to areas 

outside the designated pattern. Modules of 132 cm2 have been fabricated using 

screen printing on flexible substrates for several layers in a device stack, however 

device performance was poor [59]. Screen printing can also be used to pattern 

solution processable electrode materials such as silver paste into current collecting 

grids [60]. 
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Figure 2-20: A simplified schematic of a screen printing system. 

2.12.5  Gravure Printing 

Gravure printing has been well established as printing technique capable of 

depositing organic films. It has been used to coat both PEDOT:PSS hole transport 

layers [61] and photoactive layers [62] for OPV devices. Figure 2-21 shows a 

schematic of a gravure printing system. A patterned roller is passed through a bath, 

where it collects ink on its surface in a thick layer. A doctor blade is used to limit the 

film thickness to within grooves on the pattern roller surface. These patterns are 

then transferred to a flexible substrate as it is pressed onto the pattern roller by an 

impression roller. 

 

Figure 2-21: A simplified schematic of a gravure printing system. 
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2.12.6 Spray Coating in This Thesis 

While there are multiple coating and printing techniques available for use with 

organic photovoltaic materials, spray coating offers fast, large-area deposition while 

maintaining the ability to produce films on both nanometre and micrometre scales. 

The large parameter space between deposition settings and solution recipes allows 

for the deposition of many different materials. The more numerous the approaches 

to the challenges of OPV roll to roll processing, the faster they can be overcome.  

As shown in Table Chapter 2-2-2, ultrasonic spray coating of OPVs has so far 

resulted in high efficiencies or large areas, yet few publications report of both 

simultaneously. This thesis attempts to bridge the gap between these two metrics 

and comment on the viability of ultrasonic spray coating for use in the fabrication of 

OPVs. 

2.13 Wetting 

In order to achieve uniform, continuous polymer films over a large area, the wetting 

properties of an ink must be controlled. This can be done in a number of ways, 

some of which will be discussed in this section.  

2.13.1 Contact Angle 

When a liquid droplet is deposited on to a solid, it spreads out over its surface as 

the free energy of the system is minimised. The droplet will stop spreading when an 

equilibrium is reached between the surface tensions of the solid, liquid and gas 

interfaces. Figure 2-22 shows a representation of a droplet on the surface of a solid, 

surrounded by air. The contact angle (ϴE) is determined by the balance of interfacial 

tensions at the solid/liquid (γSL), the solid/air (γSA) and the liquid/air (γ) boundaries 

and given by Equation 2.19. It is a quantative measurement used to indicate how 

well a given liquid wets when dropped upon a given solid. 
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Figure 2-22: A droplet on a substrate, showing interfacial forces and contact angle. 

         
         

 
 Equation 2.19 

2.13.2 Spreading Parameter 

Two possible scenarios can occur when a droplet lands on a surface: partial wetting 

or total wetting. Partial wetting occurs when the droplet forms a blob (Figure 2-23a-

b) and total wetting occurs when contact angle is very small and the droplet spreads 

(Figure 2-23c). When a liquid partially wets the surface, it can either be mostly-

wetting, wherein the contact angle is below 90o (Figure 2-23b), or mostly non-

wetting if the angle is above 90o (Figure 2-23a). 

 

Figure 2-23: Wetting scenarios including a) mostly non-wetting, b) mostly wetting 
and c) total wetting. 

Using Equation 2.19, a spreading parameter can be determined as an indication of 

how well a droplet will spread over a surface. The parameter S is the difference in 
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energy between a bare solid surface (γSA) and a surface covered with a liquid film 

(γSL + γ) [63]. 

               Equation 2.20 

If S>0 then the energy of the bare solid surface is greater and the droplet covers the 

surface. If S<0, partial wetting occurs. Inserting Equation 2.19 into Equation 2.20 

gives  

                 Equation 2.21 

If ϴE is π/2 or greater, the liquid will not wet to the surface.   
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Chapter 3 Device Fabrication and Characterisation 

3.1 Spin Coating 

Spin coating is the most common deposition technique for solution processed 

organic photovoltaic devices [1]. It allows reproducible smooth films to be created 

with fine control over thickness. Substrates are placed in a recessed chuck or held in 

place using a vacuum. The chuck is then spun at a chosen rotational velocity and 

solution is deposited on to the spinning substrate via a micropipette. The solution is 

spread over the substrate by the centrifugal force of the spinning substrate. 

Solution drying time is dependent on the solvent boiling point and spin speed which 

both influence the resultant film thickness. A fast drying solvent will result in a 

thicker film, as less solvent has a chance to leave the substrate before it can 

evaporate and deposit its solute. With a higher boiling point solvent, more solvent 

leaves the substrate before evaporating, therefore films are thinner. The 

relationship between final film thickness τ  is given by:  

   
  

  
 Equation 3.1 

where c is the solution concentration, v is the solution viscosity and ω is the spin 

speed [2]. When the same solution is used, c and v are constant and  thicknesses at 

differing spin speed can be calculated after a single thickness measurement using: 

 
   

     

   

 Equation 3.2 

where τ1 is the measured thickness given by spin speed ω1. The evaporation speed 

also effects film uniformity. The concentration of the film changes during solvent 

evaporation and thus effects viscosity. The longer the film takes to dry, the less 

rapidly viscosity changes and the more uniform it will be. The downside of a long 

drying film is that more solvent is wasted by leaving the substrate. A trade-off is 

therefore required between a less wasteful fast drying film, and a more wasteful yet 
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more uniform film. Regardless of spin speed, much of the solution used in spin 

coating is lost during the process. Spin coating over a large area is also problematic, 

as the thickness of the film changes as the solution moves further from its centre. 

3.2 Solution Preparation 

Glass vials were blown with a dry nitrogen gun to remove any large dust particles. 

The vials were then partially filled with isopropyl alcohol, shaken and dried using 

the gun. Materials were weighed out on scales and then transferred to a nitrogen 

glove box. Solvent was added at the desired concentration and the solutions were 

left to dissolve on a hotplate. For the PCDTBT:PCBM donor:acceptor system, the 

PCDTBT was dissolved first at and then added to the PCBM powder to obtain a 

weight ratio of 1:4. For spin-coating solutions, a total concentration of 25mg.ml-1 

was used and 8mg.ml-1 was typically used for spray-coating solutions. For 

PEDOT:PSS preparation, stock solution was filtered through a 0.45µm 

polyvinylidene difluoride PVDF filter into a pre-cleaned glass vial. For spray-coating 

solution, this was then combined with IPA and Ethyl Glycol at a solution ratio of 

1:8:1. 

3.3 Spin Coating and Spray Coating Comparison 

During spray coating, the solution is deposited on top of a substrate and no external 

force acts to remove it. This means that apart from solvent flowing over edges, the 

solution that lands on a substrate will stay there until the solvent has evaporated. 

The polymer within that solution will remain and thus determines the thickness of 

the dry film. In the case of spin coating, some of the solution is forced off the edge 

of the substrate before the film has dried, due to centrifugal force. This means that 

not all of the deposited polymer will remain after the film has dried. Solution 

concentration must therefore be increased when spin coating compared to spray 

coating, in order to achieve similar final film thicknesses. The differences in solution 

flow and drying kinetics may lead to differences in film morphology of the final film, 

as shear forces acting on the spin cast film are not present in the thermally 
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evaporated spray cast film. This difference in drying must be taken into account 

when making comparisons between solar cells fabricated using the two techniques. 

3.4 Vacuum Evaporation 

A calcium/aluminium cathode is used in all the devices described in this thesis. This 

is produced via thermal evaporation inside a vacuum chamber containing several 

sources to allow for successive materials to be evaporated without opening the 

chamber to atmosphere. The evaporation chamber is located inside a nitrogen  

glovebox that allows subsequent encapsulation without exposing the evaporated 

layers to air. Substrates are secured in a patterned stainless steel shadow mask and 

loaded in to the chamber. The chamber is pumped down to a pressure of 10-7 mbar 

to remove any gases that could interfere with the path of the evaporated materials. 

A material is heated inside a resistive tungsten coil until it begins to evaporate. A 

shutter prevents the material reaching the substrates until a desired evaporation 

rate is achieved. Deposition rate and therefore thickness is obtained by a quartz 

crystal inside the chamber which is calibrated depending on source position. 

3.5 Device Fabrication 

There were several stages in fabrication process. They are detailed below and 

shown schematically in Figure 3-1. 

3.5.1 Substrate Preparation 

ITO substrates were cleaned via sonication for five minutes successively in sodium 

hydroxide, Hellmanex, hot deionised water and IPA with a dunk rinse in hot DI 

water between the sodium hydroxide and Hellmanex stages. The substrates were 

then dried using a nitrogen jet and placed on a hot plate for 10 minutes. 

3.5.2 PEDOT:PSS 

PEDOT:PSS layers were deposited via spin coating or spray coating. Substrate edges 

were required for electrical contacts and were therefore wiped clean using a cotton 
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bud dipped in DI water, as illustrated in Figure 3-1b. Substrates were then placed on 

a hotplate at 120oC to bake off any excess water. For spin coating, a spin speed of 

5000rpm was used to achieve a film of ~30nm in thickness. The PEDOT:PSS spray 

coating deposition is described in detail in Chapter 6. After deposition, substrates 

were wiped at the edges and annealed for a further 10 minutes. 

 

Figure 3-1: Deposition stages in the fabrication of an OPV device. A pre-patterned 
ITO substrate (a) is first coated (spin or spray) with a hole transport layer (b), then 
a photoactive layer (c) and finally a Ca/Al cathode is evaporated on top (d). 

3.5.3 Photoactive Layer 

The donor:acceptor photoactive layers were spin or spray coated from solution. As 

with the hole transport layers, substrates were cleaned at the edges using 

whichever solvent they were spin cast from to clean the electrical contact of the 

device as shown in Figure 3-1ac. Detailed deposition parameters are given in the 

experimental chapters of this thesis. 
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3.5.4 Cathode Layer 

After the photoactive layer deposition, substrates were transferred to a vacuum 

evaporation chamber within a Nitrogen glovebox. Calcium was deposited at a rate 

between 0.1 and 0.4Å.s-1 to create a 5nm thick film and Aluminium at a rate of 

1.5Å.s-1 to produce a film of 100nm. A shadow mask allowed pixel areas to be 

defined, such as the six pixel design shown in Figure 3-1d. The cathode connected 

the top of the photoactive layer with the ITO contacts at the edge of the substrate. 

3.5.5 Encapsulation 

Once all of the device layers had been deposited, a glass slide was secured to the 

substrate with a UV curable epoxy resin. This sandwiched the device layers and 

heavily reduced the amount of water and air that they would be exposed to when 

removed from the glovebox environment. 

3.6 Solar Spectrum Simulator 

One of the main goals of solar cell research is to produce devices that efficiently 

harvest sunlight. It is therefore important to find the efficiency of such devices 

under illumination of a simulated solar spectrum and intensity. Device 

characterisation was performed using a Newport 92251A-1000 solar simulator with 

a power output of 100mW/cm2 and an AM1.5 spectrum. A certified NREL silicon 

reference cell was used to calibrate the system. The illuminated area was defined 

using a shadow mask in order to negate edge effects when testing devices [3]. A 

Keithley 237 sourcemeter was used to perform a voltage sweep from -1V to 1V and 

measure the resultant current response from a solar cell while under illumination. 

3.7 Light Beam Induced Current Mapping 

While testing devices under a solar simulator provides characteristics of the whole 

cell, it provides no information about variation in current generation over the film 

surface. Light beam induce current mapping (LBIC) allows characterisation of lateral 

variations in current generation over the device area. A schematic of the current 
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mapping system used in this thesis can be seen in Figure 3-2. A laser of wavelength 

405nm was focused down through an objective lens to a spot size of <5um. Two 

Thorlabs LTS300 translation stages were attached together perpendicularly to 

create an XY stage and positioned underneath the objective lens. A beam chopper 

was positioned in the path of the beam and connected to a lock in amplifier to 

recover the signal. A device holder with electrical contacts was fastened to the 

movable platform on top of the stages and connected to the lock in amplifier.  

 

Figure 3-2: A schematic of a light beam induced current mapping system. 

The stage was operated via USB connection to a computer and the lock in amplifier 

was controlled via a GPIB connection.  A custom program to operate the system 

was written using the LabVIEW programming language. The program operated the 

lock in amplifier, moved the stage and stored measured current. The stage moved 

in a raster pattern, with step sizes determine by the user. Step sizes ranged from 

1um to 100um, depending on the desired resolution, area and time constraints of 

the measurement. Measurements required a settle time to ensure accurate 

readings after each step. Figure 3-3a) shows an LBIC map taken with a time delay of 

<1s between measurements. This creates artificial ‘streaks’ as the scan reaches the 

edge of a pixel. The arrows indicate the scan direction. The lock in amplifier did not 

have enough time to measure the change in current as the laser spot moves off (red 

arrow) or on to (black arrow) the edge of a pixel. Figure 3-3b shows line profiles of 
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two arrows from 3a. To eliminate this effect, a pause of  ~1 second was introduced 

between each measurement.  Measuring a 165mm2 pixel using a step size of 1um 

would require 165000000 data points, taking over five years with a 1 second pause. 

Large scale measurements were therefore performed using a higher step size and 

provided a lower resolution. 

 

Figure 3-3: A section of a scan performed using a short settle time, resulting in 
artificial 'streaks' dependent on scan direction. Stage step size was 10µm. 

To focus the beam, line profiles were taken by scanning from one pixel to another, 

via the ‘dead’ area between pixels. The smaller the spot size incident on the device, 

the larger this gap between pixels will appear in the measurement. The transition to 
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generating current will also be more abrupt with a smaller spot size, represented by 

a steep slope in a line profile. Figure 3-4 shows line profiles taken at various lens to 

substrate distances. The n + 150μm line shows the largest gap between pixels and a 

steep slope, indicating a well-focused beam. It also shows a lower generated 

current when incident on a pixel, indicating that the laser spot size is reduced 

compared to the other lens distances. 

 

Figure 3-4: Line profiles taken at various lens-substrate distances during the 
focussing process. The gap between two device pixels allows the user to 
determine when the spot size is smallest. 

3.8 Atomic Force Microscopy 

Atomic force microscopy (AFM) provides small scale characterisation of a film 

surface. A schematic of an AFM is shown in Figure 3-5. A cantilever with a 

nanometre scale tip is scanned across the surface of a film. The tip is deflected by 

the surface of the film, and the measurement of this deflection gives information on 

the surface structure. To measure the deflection, a laser is reflected off the 

cantilever and into a quadrant photodiode. The position of the resultant laser spot 
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on the photodiode changes with tip deflection. The film to be investigated is placed 

on a piezoelectric X,Y stage beneath the probe and moves in two dimensions 

relative to the tip. 

 

Figure 3-5: Simplified schematic of an atomic force microscope. A laser is reflected 
off a cantilever and into a photodiode, allowing the AFM to measure variation in 
surface height as the cantilever moves up and down.  

 The AFM can be operated in contact mode, non-contact mode and tapping mode. 

Contact mode drags the tip along the surface, measuring the height of the film 

directly from the deflection of the tip. Non-contact mode oscillates the tip at a low 

amplitude and measures height via the change in amplitude and frequency of the 

tip when is at the surface. Tapping mode oscillates the tip at a large amplitude, 

repeatedly coming into contact with the surface. Tapping mode reduces the shear 

forces which would scratch the delicate films, therefore it is the mode used in this 

work. In tapping mode, height is given by the oscillation of the amplitude of the 

cantilever, while phase is determined by the difference in oscillation of the 

cantilever relative to the driving signal.  

3.9 Contact Angle and Surface Tension 

Contact angle measurements were conducted using a Theta optical tensiometer. 

The desired sample is prepared and placed on an adjustable stage. A CCD camera 
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capable of high speed photography is aligned with the stage and focused on the 

substrate. The solution to be investigated is held in a syringe above the substrate 

and close to the surface. The camera is set to take hundreds of images at 16ms 

intervals. Once the camera begins recording, a droplet of solution is released from 

the syringe and lands on substrate below.  

 

Figure 3-6: Simplified schematic of an optical tensiometer. A light source 
illuminates a droplet upon a stage and a camera captures an image. 

Figure 3-6 shows a typical image taken using a tensiometer. This example shows a 

droplet of a PEDOT:PSS solution upon an ITO substrate. The user inputs the location 

of a horizontal substrate baseline and image processing software fits an ellipse to 

the droplet, extending it below the level of the substrate. The software then uses 

this information to calculate  the left and right contact angles ϴ of the droplet in 

each recorded frame. For surface tension measurements, a droplet is held at the 

point of dropping while an image is recorded. Surface tension is calculated via 

fitting a curve to the droplet silhouette.  
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Figure 3-7: An image of a droplet on a substrate captured using an optical 
tensiometer. Image processing software is used to calculate the contact angle ϴ. 

3.10 Optical Absorption 

UV-vis absorption was measured using a Horiba Fluoromax-4 spectrometer as 

shown in Figure 3-8. A xenon light source is focused on to the entrance slit of a 

monochromator using an elliptical mirror. Slit width controls the intensity of light 

allowed to enter the monochromator section. A second mirror then collimates light 

onto a blazing diffraction.  Diffracted light is then reflected by a third mirror through 

a second slit. The angle that the diffraction grating makes with the incoming light 

determines the wavelength of light directed through this slit. Slit width can 

therefore be used to tune the wavelength resolution of the incoming light, as a 

narrower beam allows fewer wavelengths of diffracted light through it.  Light is then 

reflected through a beam splitter on to a sample. The split beam enters a reference 
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detector which measures the light intensity incident on the sample. A second 

detector sits behind the sample, and measures the transmitted light.  

 

Figure 3-8: A simplified schematic of a  UV-vis spectrometer. 

The transmittance is calculated  using the equation 

                  
     

     
 Equation 3.3 

where I0 and It are intensities of the light incident on the sample and transmitted 

light respectively. To measure the transmittance of a deposited film, the 

transmittance of the substrate must also be measured as a reference, so as to 

account for its absorption when measuring both layers at once. The contribution to 

the transmittance of the sample film alone can then be determined. 

3.11 Optical Ellipsometry 

Ellipsometry measures changes in the polarisation of light as it reflects off a sample. 

These changes are caused by the optical properties and thickness of the materials 

that the light passes through while being reflected. If the optical properties of a film 

can be modelled, then the film thickness can be determined. Figure 3-9 shows a 

simplified schematic of an optical ellipsometer. Light is passed through a 

monochromator and polarised before reflecting off the sample under investigation. 
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The light then enters an analyser which determines the change in polarisation 

between the emitted light and the incoming light. Software is used to construct a 

model of the sample being studied. The model must take into account the 

thicknesses, refractive indices and extinction coefficients of the reflective substrate 

and the layer of interest. This information is well established for the Silicon wafers 

used in this work, therefore the difference between the measured data and the 

estimated fit is primarily due to the deposited film.  

 

Figure 3-9: A simplified schematic of an optical ellipsometer. Polarised light is 
reflected off a sample and into and into an analyser to determine its change in 
polarisation  due to passing through the sample layers. 
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Chapter 4 Spray Coating and Scale Up of 

PCDTBT:PC70BM As a Photoactive 

Material 

4.1 Introduction 

At the present time, most prototype organic photovoltaic (OPV) devices are 

fabricated via spin-coating on to relatively small substrates. While spin-coating is a 

powerful tool for controllable and accurate material deposition, it is a relatively 

slow process and not easily scalable. In order for the technology to progress into a 

commercial manufacturing, the fabrication of devices must be demonstrated via 

scalable deposition techniques. Many such scalable techniques have already been 

used in the fabrication of OPVs. There has been progress in printing using 

techniques such as gravure [1], slot die [2], inkjet [3] and screen printing [4]. These 

have all demonstrated compatibility with OPV layers. 

One of these roll-to-roll compatible techniques currently gaining increased 

attention is ultrasonic spray coating. This technique can be used to rapidly deposit a 

variety of materials from a range of inks with varying physical properties. There are 

many types of spray coating, with airbrush being the most common in the 

literature. This technique has notably been used to deposit the popular 

donor:acceptor combination P3HT:PCBM [5]–[8]. Ultrasonic spray coating has also 

been demonstrated as an effective deposition technique. Girotto et al. achieved a 

PCE of 3.75% by ultrasonic spray coating a P3HT:PC60BM blend. Table 4-1 shows the 

results of a literature review into spray cast photoactive layers in OPV devices. 

Several reports have achieved spray cast device performances comparable to those 

of spin cast devices. 
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Spray 
Technique 

PCE 
(%) 

Pixel 
Area 

(mm2) 

Sprayed Photoactive 
Layer Materials 

Rms 
Roughness 

(nm) 
Citation 

Airbrush 2.83 16.4 P3HT:PC61BM 52 Vak 2007[8] 

Airbrush 2.8 3.4 P3HT:PC61BM 12.91 Girotto 2009[9] 

Airbrush 2.7 20 P3HT:PC61BM 24.1 Hoth 2009[10] 

Ultrasonic 3.5 - P3HT:PC61BM 4 Steirer 2009[11] 

Airbrush 2.17 4.66 P3HT:PC61BM - Na 2010[12] 

Airbrush 3.4 4.75 P3HT:PC61BM 13 Yu 2010[13] 

Ultrasonic 3.75 3 P3HT:PC61BM 1.1 Girotto 2011[14] 

Airbrush 5.8 15 P1: PC61BM* 1.29 Nie 2012[15] 

Ultrasonic 4.3 4.5 PCDTBT:PC71BM 15 Wang 2013[16] 

Airbrush 4.1 - P3HT:PC61BM 11.3 Tait 2013[17] 

Airbrush 4.2 10 P3HT:PC61BM 50 Vak 2015[18] 

Table 4-1: A literature review of OPV photoactive layers deposited via spray 
coating. *poly[4,8-bis(1-pentylhexyloxy)benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl-
alt-2,1,3-benzoxadiazole-4,7-diyl. 

Most pixel sizes have been < 5 mm2 however; therefore the true scalability of the 

proposed techniques has not been fully demonstrated. There is as yet no 

standardised way of demonstrating the scalability of deposition techniques, which 

leads to some reports lacking key information such as pixel size and film surface 

roughness. Device active areas are often given with no indication of the number of 

individual pixels that area encompasses, or even device geometries. These are 

important factors, as device architectures with many small pixels do not represent 

the scalability of a technique in the same way that a large single pixel of the same 

area would. 

4.2 Chapter Summary 

An ultrasonic spray coating process is optimised for the deposition of 

PCDTBT:PC70BM photoactive layers. Ink formulation and deposition parameters are 

explored including: solvent blend, spray speed, solution concentration, deposition 

temperature, layer thickness and spray height. An optimised deposition process is 

used to fabricate devices on both small-area and large-area device architectures, 
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and the effect of scale-up on performance is discussed. Film uniformity is 

characterised via atomic force microscopy, profilometry and light beam induced 

current mapping. 

4.2.1 Device Preparation 

The vertical device architecture used in this chapter is displayed in Figure 4-1a. The 

materials and thicknesses of the materials in the stack are as follows: 

ITO/PEDOT:PSS (30 nm)/PCDTBT:PC70BM/Ca (5 nm)/Al (100 nm). The thickness of 

the PCDTBT:PC70BM layer will vary throughout the chapter. Device preparation and 

fabrication is discussed in Chapter 3. Three device architectures are used in this 

chapter, shown in Figure 4-1(b), (c) and (d). The six pixel substrate shown in (b) is 

used for the optimisation stages of this chapter, with the larger area 36 pixel (c) and 

single pixel (d) employed during scale up in section 4.7.  

 

Figure 4-1: Schematics showing a) vertical device structure and device 
architectures for b) a small 6 pixel substrate, b) large 36 pixel substrate and d) a 

large single pixel substrate. 

This range of substrate architectures are designed to investigate the scale up 

potential of the ultrasonic spray coating technique. The small 6 pixel substrate (b) is 

used for initial ink optimisation and material characterisation. The large 36 pixel (c) 

architecture has similar pixel sizes to the small 6, as displayed in Table 4-2. It is 

therefore a useful tool for exploring the effect of spray coating over larger 
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substrates, without needing to account for the potential detrimental effect of an 

increase in pixel size.  The large single pixel (d) represents the final stage of the scale 

up investigation process; investigating the effects of a  substantial increase in pixel 

size.   

Architecture 
Name 

Substrate 
Dimensions 
mm x mm 

Pixel 
Dimensions 
mm x mm 

Pixel 
Area 
mm2 

Pixels Per 
Substrate 

Small 6 20 x 15 2 x 2 4 6 

Large 36 50 x 50 2.54 x 2.54 6.45 36 

Large Single 50 x 50 30 x 30 900 1 

Table 4-2: Substrate dimensions, pixel number and pixel areas for the device 
architectures used in this chapter. 

The donor:acceptor ratio for the PCDTBT:PC70BM system has been extensively 

studied in the literature and a weight ratio of 1:4 has been shown to be an effective 

donor:acceptor ratio [19]. The PCDTBT used in this chapter had a Mw of 26.5 kDa 

and was synthesised by Hunan Yi according to a previously reported method [20]. 

PC70BM was purchased from Ossila Ltd. and used as received. 

4.3 Deposition Parameters 

4.3.1 Spray Speed 

Spray speed can be used to control the volume of solution deposited upon a 

substrate during the spray coating process. It is one of several parameters that can 

be tuned during the optimisation of a material deposition. Dry film thickness has a 

large dependence on volume deposited; the more material in solution, the more 

will remain once the carrier solvent has evaporated. A  PCDTBT:PC70BM solution of 

concentration 8 mg ml-1 was spray cast on to ITO substrates held at a temperature 

of 40oC. Deposition spray speed was varied and images of the resultant films were 

scanned using an Epson Perfection V370 scanner; they are displayed in Figure 4-2. 

Film thicknesses were measured using a Dektak stylus profilometer. In addition to 

the film thickness, spray speed also has a clear effect on the quality of the dry film. 



Chapter 4: Spray Coating and Scale Up of PCDTBT:PC70BM As a 
Photoactive Material 
 Page 75 

Speeds below 80 mm s-1 result in a drying edge enclosing a smooth film. Films cast 

as speeds above 140 mm s-1 are not continuous and uniform. 

 

Figure 4-2: Scanned images of PCDTBT:PC70BM films deposited at varying spray 
speeds. All films were deposited on to substrates held at 40oC. 

Thickness as a function of spray speed is displayed in Figure 4-3. The relationship 

between spray speed and film thickness appears to follow an inverse function 

described by the equation: 

 
  

 

           
 

Equation 4.1 

where τ is film thickness and A is constant that depends on several factors involved 

with the spray coating process which will be discussed in this chapter. The value of 

A in Figure 4-3 is 11790 nm mm s -1, or 11790 μm2 s-1.  
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Figure 4-3: A plot of PCDTBT:PC70BM film thickness as a function of spray speed. 
Substrate temperature was 40oC, solution concentration was 8 mg ml-1 and the 
spray head to substrate distance was 35 mm. 

Spray speed not only affects final film thickness, but also the quality of the film once 

it has dried. An increase in solution volume leads to an increase in drying time, and 

this can have a large effect on the morphology of the film. Figure 4-4 shows the 

three left-most films of Figure 4-2, each spray cast at low speeds. Drying times of > 

50 s result in large drying edge that slowly ingresses to the centre of the substrate 

causing a 'picture framing' effect. The longer the drying time, the larger the drying 

edge and the smaller the smooth central film region. On smaller substrates with a 

width of 15 mm, this has a large impact on the pixelated regions that run across the 

substrate centre. 
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Figure 4-4: PCDTBT:PCBM films deposited via spray coating at lower spray speeds. 
Increased drying time causes an inward-moving drying edge. All films were 
deposited on to substrates held at 40oC. 

The spray coating recipe must therefore by optimised so that the desired final film 

thickness can be achieved with a fast drying time, so as to minimise the drying edge 

ingress. This can be achieved by reducing the volume of solution deposited per 

substrate. Conversely, if too little solution is deposited then drying times are too 

fast and spray cast films will not properly form, as displayed in Figure 4-5. These 

films all had drying times of less than 14 seconds. This fast drying time creates 

'coffee rings', wherein droplets dry before merging. This has been seen in other 

spray coating studies and is a common phenomenon in spray cast films 

[21][22].They are characterised by regions of no coverage and giraffe patterns of 

thicker material. It is therefore clear that the drying time of the deposited material 

is crucial in the optimisation of a recipe.  

 

Figure 4-5: PCDTBT:PC70BM films deposited via spray coating at higher spray 
speeds. Fast drying times prevent the film from coalescing before the bulk of the 
film is dried. All films were deposited on to substrates held at 40oC. 
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The two cases illustrated here indicate that there are definite limits to the solution 

volume that can be deposited. When droplets reach the substrate, they begin to 

spread and merge with each other; this must be allowed to occur before the solvent 

evaporates. If the drying time is too long however, a drying ring will spread into the 

film and cause a large reduction in film uniformity. There appears to be a ‘sweet 

spot’ between the two examples above, in which a uniform film can form before 

drying with a minimal edge ring. Figure 4-6 displays three examples of such films.  

 

Figure 4-6: PCDTBT:PCBM films deposited via spray coating at medium speeds. 
Solution droplets have time to merge, yet dry fast enough to minimise drying ring 
ingress. All films were deposited on to substrates held at 40oC. 

As described in Equation 4.1, there is a significant relationship between spray 

speeds and final film thickness. The spray speed boundaries imposed by drying time 

coupled with this relationship define a limited range of thicknesses achievable for a 

given solution. The preferred thickness of a PCDTBT:PC70BM layer is established in 

the literature  to be 50 – 70 nm [23][16]. If this thickness range lies outside the 

uniform film boundaries, efficient devices cannot be fabricated. This problem could 

perhaps be avoided by changing device architecture so that device pixels are all 

situated inside the drying rings, where the film remains uniform. The standard 

architecture for large scale production is long thin pixel strips running along a 

substrate. If the entire width of the substrate was coated simultaneously, perhaps 

only the edges would suffer from these effects and the pixels themselves would 

remain untouched.  
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4.3.2 Deposition Temperature 

One way of shifting the solution volume boundaries is to change the temperature of 

the substrate on to which the solution is deposited. This alters the drying time of a 

given solution volume, thus reducing the drying ring of high volume depositions. 

Films deposited at various temperatures are displayed in Figure 4-7. 

 

Figure 4-7: PCDTBT:PCBM films spray cast on to substrates of various 
temperature. Depositions are shown for two spray speeds. 

The drying rings of a solution deposited at a spray speed of 60 mm s-1 can be 

dramatically reduced by increasing the temperature to 60oC as shown on the left of 

the image. If the temperature is increased to 80oC however, the solvent evaporates 

very quickly and droplets cannot merge into a uniform film. Solution volumes that 

resulted in uniform films when deposited at 40oC evaporate too quickly when 

deposited at 60oC, as shown on the right of the image.  

4.4 Materials 

4.4.1 Solvent Choice 

Solvent choice plays an important role when spray coating organic solar cells. The 

surface tension of the solution determines how well it will spread when a droplet 

lands on a substrate surface. The lower the surface tension, the larger the spread 

and the better the solution will wet the surface. Figure 4-8 shows a drop of 

PCDTBT:PC70BM in a CB solution landing on a spin-cast PEDOT:PSS substrate. The 
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droplet flattens quickly, spreading over the surface in less than a second. The initial 

contact angle is also small due to the low (4 mg ml-1) concentration of the solution. 

 

Figure 4-8: A droplet of PCDTBT:PC70BM in CB spreading after contact with a 
PEDOT:PSS substrate. 

Solvent choice can also affect the morphology of the dried film, particularly when 

depositing a donor:acceptor polymer system. Some solvent blends have been 

shown to encourage vertical stratification within the film, enabling regions 

favourable for charge transport. For example, a PCBM-rich area near the cathode 

can increase electron extraction in a PCDTBT:PC70BM blend [24]. 

Three solvents were chosen for initial solution testing: chloroform (CF), 

chlorobenzene (CB) and dichlorobenzene (DCB). These solvents are extensively used 

in the field of organic photovoltaic's. PCDTBT:PC70BM was dissolved in solvent blend 

of various ratios. An optical tensiometer was used to measure the surface tension of 

the blends and their contact angle upon PEDOT:PSS films. The results are displayed 

in Table 4-3. All of the blends have surface tensions of ~ 30 mN m-1 and relatively 

low contact angles when dropped onto PEDOT:PSS. The solutions should wet well 

when spray coating, as low surface tensions and contact angles allows droplets to 

spread over the film and merge before drying. 
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Solvent Contact Angle (o) Surface Tension (mN m-1) 

CB 3.5 29 

DCB 1.2 31.3 

DCB:CB (1:1) 1.8 30.8 

DCB:CF (7:3) 1.8 31.5 

DCB:CF (6:4) 1.8 29.8 

DCB:CF (5:5) 1.2 31 

DCB:CF (4:6) 2.6 29.8 

DCB:CF (3:7) 2.9 31.5 

Table 4-3: Surface tension and contact angle of PCDTBT:PC70BM solutions with 
various blend ratios. Droplets were measured on substrates of PEDOT:PSS at room 
temperature. 

While CB had the highest contact angle, this is still relatively low and indicates good 

wetting over the substrate surface.  

The various DCB:CF solution blends detailed above were spray cast on top of 

PEDOT:PSS substrates held at a temperature of 50oC. The solution concentration 

was 4 mg ml-1 and the tip to substrate distance was 35 mm. Twelve devices spread 

over two substrates were fabricated for each blend ratio. 

Due to the challenges associated with spray coating materials, several devices did 

not function correctly. This number of 'dead' pixels may be due to several factors 

such as poor film formation, shorts in the film or a unwanted morphology. Because 

of this uncertainty, the completely dead devices do not give a useful indication of 

which solvent blends performed the best. Poorly performing devices will provide 

useful information for optimisation, however devices that don't work at all will not. 

There are rarely more than 50% completely dead pixels over two substrates, 

therefore the top 50% of data was chosen for analysis. The top 50% of devices are 

used throughout this chapter, except where stated. An obvious exception to this is 

when film uniformity is the object of investigation, as a more uniform film may 

produce fewer dead pixels, therefore the lack of working devices is a useful metric. 
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Figure 4-9 shows a box chart of the PCEs for the devices discussed above. Each box 

represents six devices and displays the minimum, maximum, mean (open square), 

median (horizontal line) and the interquartile range of the data. 

 

 

Figure 4-9: Box chart displaying the power conversion efficiencies of devices 
fabricated from solvent blend s of DCB and CF. The layers were deposited at a 
temperature of 50oC, a spray height of 35 mm and a spray speed of 80 mm s-1. 
Solution concentrations were 4 mg ml-1. 

There is a trend to higher PCE with increasing chloroform concentration. The 3:7 

blend created the most efficient devices on average, while the 4:6 blend provided 

the smallest variation in performance. DCB has a higher boiling point than CF, 

therefore a given volume will take longer to evaporate. This slower drying process 

causes drying rings to form in the film similar to those shown in Figure 4-4. The 

blend ratios that have a higher DCB content show the largest spread in 

performance, which is consistent with the non-uniformity of the dry films. The 

performance characteristics of the devices are displayed  in Table 4-4. There is an 

increase in short circuit current density and fill factor as the CF ratio increases. 
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Solvent PCE (Average) FF Jsc Voc 

 
% % mA cm-2 V 

DCB:CF (3:7) 2.89 ± 0.35 37.1 ± 1.8 -9.63 ± 0.72 0.81 ± 0.02 

DCB:CF (4:6) 3.67 ± 0.26 38.5 ± 1.3 -9.98 ± 0.81 0.81 ± 0.31 

DCB:CF (5:5) 3.28 ± 0.33 39.0 ± 4.8 -10.68 ± 0.57 0.78 ± 0.02 

DCB:CF (6:4) 3.44 ± 0.15 40.8 ± 1.3 -10.25 ± 0.14 0.82 ± 0.03 

DCB:CF (7:3) 3.76 ± 0.18 43.1 ± 2.1 -10.41 ± 0.46 0.84 ± 0.01 

Table 4-4: Performance characteristics of OPV devices fabricated with spray-cast 
PCDTBT:PCBM photoactive layers. Films were deposited from a range of solvent 
blends. 

To investigate the impact of deposition temperature on device performance, 

devices were fabricated from blends of 7:3 and 3:7 at varying temperatures. Figure 

4-10 shows the resultant device performance. The performance of the 7:3 blend 

increased with deposition temperature, whereas the 3:7 blend peaked at 50oC. The 

long drying time of DCB at low temperatures caused drying rings, and there is a 

larger spread in device performance as seen in the previous section. The decrease in 

drying times at higher temperatures reduced the impact of these rings, and the 

resultant device performance improved. The predominantly CF 3:7 blend performed 

worse at the highest temperature, as the films dried before the solvent could 

spread into a uniform film. 
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Figure 4-10: PCE as a function of deposition temperature for devices fabricated 
from solvent blends DCB and CF. Spray head to substrate distance was 35 mm, 
solution concentration was 4 mg ml-1 and spray speed was 80 mms-1. 

Films sprayed from a solution of CF on its own did not form a good enough film for 

device fabrication as the solvent began to evaporate before reaching the substrate 

surface, resulting in an incomplete film. Along with the solvent blends, a single 

solvent system was also investigated using chlorobenzene (CB). Table 4-5 shows 

performance metrics for devices fabricated from a DCB:CF 3:7 blend and a CB single 

solvent system. A single solvent system appears to be more reproducible, with a 

lower spread in performance. The fill factor was increased significantly from 43.2 to 

50.1.  The increase in fill factor and consistency may both be due to increased 

uniformity of films produced by the CB solution. 

Solvent 
PCE 
(%) 

FF 
(%) 

Jsc 
(mA cm-2) 

Voc 
(V) 

CB 4.24 ± 0.06 50.08 ± 1.10 -10.14 ± 0.17 0.84 ± 0.01 

DCB:CF (3:7) 3.76 ± 0.18 43.15 ± 2.17 -10.41 ± 0.46 0.84 ± 0.01 

Table 4-5: OPV devices fabricated from a DCB:CF solvent blend and a CB single-
solvent solution. Substrate temperature was 40oC, spray speed was 80 mm s-1 and 
spray height was 35 mm.  



Chapter 4: Spray Coating and Scale Up of PCDTBT:PC70BM As a 
Photoactive Material 
 Page 85 

 

Devices fabricated via film deposition from pure chlorobenzene solutions 

performed the best out of the various solvent blends, with power conversion 

efficiencies of 4.24% at a deposition temperature of 40oC. This solvent choice and 

deposition temperature are used for all of the PCDTBT:PC70BM solution depositions 

in this thesis, unless otherwise stated. 

The results in section 4.4.1 were published as part of an article by Tao Wang in 

reference [16] 

4.4.2 Solution Concentration 

The most obvious way to tune final film thickness for a given solution volume is to 

change the solution concentration, as an increase in solution concentration allows a 

thicker film to be deposited from a given solution volume. This is impractical when 

optimising the spray coating process however, as if all other parameters are kept 

constant then a new solution is required for every thickness. To achieve films of 

similar thicknesses at different concentrations, the volume of the solution must 

change. This therefore affects the drying kinetics of the films, and can result in 

poorer quality devices at the same thickness. 

PCDTBT:PC70BM layers were spray cast on to ITO/PEDOT:SS substrates from 

solutions of concentrations 4mg ml-1, 8 mg ml-1 and 10 mg ml-1, and devices were 

fabricated as described in Chapter 3. Figure 4-11 shows PCE data for all three 

concentrations along with the standard deviation of the data. Although the films are 

all the same thickness, there is an increase in efficiency when films are cast from a 

solution concentration of 8 mg ml-1. To achieve a specific thickness with the 10 mg 

ml-1 solution, a smaller volume of solution must be deposited compared to the 8 mg 

ml-1 or 4 mg ml-1 solutions, therefore a faster spray speed is required. 
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Figure 4-11: PCEs of OPV devices with spray cast PCDTBT:PC70BM active layers of 
60 nm thickness. Films were spray cast from three different solution 
concentrations: 4, 8 and 10 mg ml-1. Substrate temperature was 40oC and the 
spray head to substrate distance was 35 mm. The spray speed varied between 
solutions so as to keep the final film thickness constant. 

The reduction in wet film volume causes a decrease in drying time and results in 

films similar to those in Figure 4-5. The 8 mg ml-1 solution however had time to form 

a uniform film before drying, resulting in a higher performance. When the 

concentration is at 4 mg ml-1, the films take longer to dry and drying rings are more 

prominent.  

4.4.3 Film Thickness 

A concentration of 8 mg ml-1 appears to allow for uniform films in a suitable 

thickness range for active layer deposition. The next phase in optimisation was to 

determine the appropriate film thickness of the PCDTBT:PC70BM layer.  
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Figure 4-12: J-V characteristics of OPV devices fabricated via spray coating 
PCDTBT:PC70BM layers at various spray speeds. Resultant film thicknesses are also 
displayed. Substrate temperature was 40oC, solution concentration was 8 mg ml-1 
and the spray head to substrate distance was 35 mm. Spray speed was varied to 
change final film thickness. 

Figure 4-12 shows averaged J-V data for devices fabricated with different active 

layer thicknesses. There were six devices per thickness, the device metrics are 

displayed in Table 4-6. There is an increase in short circuit current as the layer 

thickness is reduced, which is indicative of the lower charge mobility of PCDTBT in 

thicker films. There could also be a contribution from the film morphology caused 

by a longer drying time.  

Thickness 
(nm) 

PCE 
(%) 

FF 
(%) 

Jsc 
(mA cm-2) 

Voc 
(V) 

70 2.81 ± 0.12 41.1 ± 0.84 -8.25 ± 0.26 0.83 ± 0.01 

60 3.18 ± 0.26 43.6 ± 0.82 -8.54 ± 0.56 0.85 ± 0.00 

55 3.32 ± 0.17 44.7 ± 1.50 -8.68 ± 0.51 0.86 ± 0.01 

45 3.96 ± 0.04 50.6 ± 2.23 -8.91 ± 0.37 0.88 ± 0.01 

40 3.48 ± 0.05 53.5 ± 2.40 -7.48 ± 0.32 0.87 ± 0.01 

Table 4-6: Performance metrics of the devices characterised in Figure 4-12. 
Substrate temperature was 40oC, solution concentration was 8 mg ml-1 and the 
spray head to substrate distance was 35 mm. Spray speed was varied to change 
final film thickness. 
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Upon reduction to a thickness of 40 nm, the short circuit current is once more 

reduced. This is likely due to the lower light absorption of the thinner films, 

reducing the photocurrent generation inside the cell. Figure 4-13 shows normalised 

absorption of spray cast PCDTBT:PC70BM films of varying thicknesses. The peak 

absorption in the 40 nm films is 91% of the peak at 60 nm. This is comparable to the 

Jsc devices of the same active layer thicknesses, with the 40 nm devices obtaining 

87% the Jsc of the 60 nm devices.  

 

Figure 4-13: Absorption of spray cast PCDTBT:PC70BM films of varying thickness. 
Deposition temperature was 40oC, solution concentration was 8 mg ml-1, spray 
height was 35 mm and spray speed was 80 mm s-1. 

4.4.4 Spray Height 

In order to deposit a film onto larger sized substrates, the height of the spray head 

may have to be increased in order to cover a larger area with solution. Due to the 

large parameter space when optimising a system for spray coating, it is useful to be 

able to predict a likely range of thicknesses for given set of parameters. It is 

therefore important to determine the change in solution volume deposited when 

the height of the spray head is altered. 
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Spray Speed (mm-1) Thickness (nm) 

 
Height 40 mm  Height 70 mm 

53 220 110 

100 90 55 

150 50 30 

Table 4-7: Film thickness dependence on spray head height. Deposition 
temperature was 40oC and solution concentration was 8 mg ml-1. 

The final film thicknesses in Table 4-7 appear to be inversely proportional to spray 

head height (i.e. doubling the height will half the film thickness). This provides an 

estimate for film thickness when optimising a material system for a different head 

heights. 

4.5 Thermal Annealing 

For some donor polymer systems such as P3HT:PCBM, it is well known that 

thermally annealing the active layer will increase device performance due to an 

increase in P3HT crystallinity and PCBM phase-separation [25]. 

 

Figure 4-14: The effect of thermal annealing on device performance. Deposition 
temperature was 40oC, solution concentration was 8 mg ml-1,  spray height was 45 
mm and spray speed was 150 mm s-1. 
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Figure 4-14 shows the PCE and standard deviation of five devices as cast, after 

annealing at 80oC for 10 minutes and after annealing at 100oC for 10 minutes. There 

is no significant improvement in device performance when annealing at 80oC, and 

there is a slight decrease in performance at 100oC. The spread in device 

performance does not change dramatically during this process, indicating that the 

decrease in performance happened to every device. This result is in agreement with 

the literature, where it has been suggested that thermal annealing of a 

PCDTBT:PC70BM system can reduce π-π stacking within the active layer, resulting in 

a reduction in hole mobility[26].The PCDTBT:PC70BM films in the remainder of this 

thesis were therefore not annealed after fabrication. 

4.6 Film Uniformity 

The active layer in a device stack should ideally be relatively smooth as this prevents 

issues when depositing an electrode material on to it. The calcium electron 

transport layer used in this work is only 5 nm thick, therefore a large surface 

roughness could prevent full surface coverage. A atomic force microscopy image of 

an 80 nm thick PCDTBT:PC70BM layer is shown in Figure 4-15. The rms roughness 

over the 100 μm2 surface area is 0.92 nm. This low roughness is comparable to the 

ultrasonically sprayed P3HT:PCBM layers reported by Girotto et al. wherein a rms 

roughness of 1.1 nm was achieved[7].  
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Figure 4-15: Atomic force microscopy image of a spray cast PCDTBT:PC70BM film of 
80 nm thickness. Rms roughness is 0.92nm over an area of 100μm2. 

While the AFM image demonstrates a smooth film, homogeneity of the film over 

larger areas is also desirable. Roll-to-roll production requires consistent 

performance between batches, therefore uniform photocurrent over a device is 

important to determine. Figure 4-16 shows a light beam induced current (LBIC) map 

of an OPV device fabricated with a spray cast PCDTBT:PC70BM layer. The data has 

been normalised and the top 50% of generated current is displayed, so as to 

highlight the differences in current generation over the cell. There are over 18000 

data points in the image, each taken during a 1 second interval. This was a time 

consuming experiment to complete, however the results give additional insight into 

how film morphology effects current generation within a cell. There is some 

variation in photocurrent generation over the four pixels, which appears to follow 

the pattern of drying edges created while the wet film was evaporating. These 

'picture frame' effects have been reported previously as a result of droplets not 

merging properly before drying during deposition [27]. 
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Figure 4-16: LBIC map of an OPV fabricated via spray casting a PCDTBT:PC70BM 
photoactive layer. The scale has been normalised. 

The LBIC data is displayed in the form of a histogram in Figure 4-17. Data points 

below 50% of the maximum signal are ignored, as they account for the ‘dead’ areas 

surrounding the pixels. A large part of the current generation is within 10% of the 

maximum value, with some outlying samples producing a reduced current.  

 

Figure 4-17: A histogram of the current map displayed in Figure 4-16. 

While this is relatively uniform, a 10% variation in yield may not be suitable for large 

scale production. This issue could be resolved by improving overall film uniformity, 

or allowing for drying space at the substrate edge, with devices fabricated in the 

centre. 
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4.7 Scale Up 

4.7.1 Large Area Surface Roughness 

Once the PCDTBT:PCBM system had been optimised over a small scale substrate, a 

larger substrate design was chosen allowing  film uniformity over a greater area to 

be investigated. A profilometer scan PCDTBT:PCBM film spray cast over an area of 

40 mm x 40 mm is shown in Figure 4-18. Although the large scan has several streaks 

in it, the mottled PCDTBT:PCBM features can clearly be seen. The profilometer tip 

moved vertically with respect to the image and a line profile (inset) shows the 

variation in film height over a distance of 30 mm. The rms roughness over the entire 

900 mm2 is 30 nm, with a peak to trough distance of 18 μm.  

 

Figure 4-18: A profilometer scan of a PCDTBT:PC70BM film spray cast over a large 
area. Rms roughness is 30 nm and  over an area of 900 mm2. 

A smaller section of this scan was investigated further and line profiles are shown of 

some of the larger scale features of the film in Figure 4-19. The region with a cross 

section labelled as (a) has a roughness of ± 5 nm. Other regions are more textured 

(b) and have a ‘mottled’ surface with features having a vertical height of up to 40 

nm. These features can be seen all over the film and are the cause of the mottled 

appearance of the completed device shown in Figure 4-21. 
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Figure 4-19: A profilometer map of a PCDTBT:PCBM film spray cast over an area of 
25 cm2. The map covers an area of 9mm2 and has an rms roughness of 8.92 nm. 

4.7.2 36 Pixel Architecture 

A large device architecture with 36 individual pixels is displayed in Figure 4-1c. Pixel 

sizes are the same as with the smaller architecture (4mm2) in Figure 4-1b, therefore 

this provides an effective test of the deposition technique over a larger substrate. 

Devices were fabricated using the optimised recipe described earlier in this chapter 

and performance metrics are displayed in Figure 4-20. 



Chapter 4: Spray Coating and Scale Up of PCDTBT:PC70BM As a 
Photoactive Material 
 Page 95 

 

Figure 4-20: Performance metrics of a 36 pixel architecture OPV fabricated with a 
spray cast PCDTBT:PC70BM photoactive layer. Deposition temperature was 40oC, 
solution concentration was 8 mg ml-1. 

The device has an excellent yield, with all 36 pixels achieving PCEs of over 3.5%. This 

high yield may be partly due to the larger gap between the substrate edges and the 

pixel locations, preventing the drying edge from reaching the main pixel device 

area. The mottling effect discussed in section 4.7.1 can be seen in a photograph of 

the device in Figure 4-21. This does not seem  to have an impact on performance 

however, as the results are similar to those achieved with the small area device 

architecture. 
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Figure 4-21: A photograph displaying the small 6 pixel and large 36 pixel 
architectures after full fabrication. 

 

4.7.3 Large Single Pixel 

The previous section demonstrated a device with 36 individual pixels over large 

substrate area. The next stage in the scale up process is to increase pixel sizes 

themselves, with the aim of scaling up to a commercially desirable active area. For 

this purpose, a large single pixel cell was fabricated of area 900mm2 using the 

architecture displayed in Figure 4-1c. This substrate type uses a pixel size two orders 

of magnitude greater in area than the architectures discussed earlier in this chapter. 

The current voltage characteristics of the device are shown in Figure 4-22 and 

performance metrics are displayed in Table 4-8. 
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Figure 4-22: Current-voltage characteristics of a large single-pixel OPV in which 
the PCDTBT:PC70BM active layer was spray cast. Deposition temperature was 
40oC, solution concentration was 8 mg ml-1. 

There is a clear reduction in device performance as device area increases. Voc is 

primarily affected by the work function of the electrodes and the difference 

between the donor HOMO and acceptor LUMO and is therefore independent of 

device area [28][29]. The Voc is relatively high in this device, which it implies that the 

vertical morphology is consistent with the cells fabricated earlier in this chapter. A 

loss in fill factor is likely due to the large series resistance of the ITO anode[30]. This 

issue has been previously overcome via the use of metallic grids or bus-bars[31]. 

PCE 
(%) 

FF 
(%) 

Jsc 
(mA cm-2) 

Voc 
(V) 

RShunt 
(Ω) 

RSeries 
(Ω) 

1.75 30.7 -6.91 0.822 181 82.15 

Table 4-8: Performance metrics of the large single pixel device characterised in 
Figure 4-22 

4.8 Conclusion 

An ultrasonic spray coating process has been optimised for the deposition of 

PCDTBT:PC70BM active layers. The ultrasonic spray coater deposition technique was 

investigated and the following parameters explored: solvent blend, spray speed, 
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solution concentration, deposition temperature, layer thickness and spray height. 

An optimised process was then used to fabricate devices, with a maximum PCE of 

4.79% achieved. The process was then applied to a large scale 36-pixel device, 

achieving a 100% yield and efficiencies above 3.5%. Finally, a 900mm2 single pixel 

was fabricated with a PCE of 1.75% achieved. This demonstrates the feasibility of 

the spray coating process over a larger area. Light beam induced current maps show 

a variation in photocurrent generation across the cell on the same length scales of 

the film ‘mottling’. Still more work is needed to understand the features formed 

during drying and their impact on performance. 
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Chapter 5 Spray Coating and Scale-up of Vanadium 

Oxide and Molybdenum Oxide as Hole 

Transport Layers 

The previous chapter details the spray coating of the photoactive layer in an organic 

photovoltaic device. The remaining spin cast layer in the device stack is the hole 

transport layer (HTL). In this chapter, both vanadium oxide and molybdenum oxide 

hole transport layers are spray cast. Films and devices are fabricated and 

characterised and a deposition process is optimised. Device sizes are then partially 

scaled up to investigate the feasibility of larger scale production.  

5.1 Introduction 

Vanadium oxide (V2Ox) and molybdenum oxide (MoOx) have previously been 

shown, along with other metal oxides such as WOx, to be effective hole transport 

layers in organic photovoltaic devices [1][2].  

 In a bulk heterojunction OPV of standard architecture, the hole transport layer lies 

between the transparent anode (usually ITO) and the organic donor material as 

shown in Figure 5-1. HTL layers used in this architecture must be thick enough for 

their hole transport characteristics to be effective, yet thin enough to allow 

transmission of light through to the active layer. The balance between these 

properties inside the cell is important, as a reduction in hole transport or light 

penetration both result in reduced photocurrent generation and therefore a 

reduced power conversion efficiency. 
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Figure 5-1: Device architecture in a standard bulk heterojunction OPV device. 

The active layers used in this work are the donor material poly[9-(heptadecan-9-yl)-

9H-carbazole-2,7- diyl-alt-(40 ,70 -di-2-thienyl-20 ,10 ,30 -benzothiadiazole)-5,5- 

diyl] (PCDTBT) and the fullerene derivative acceptor   PC70BM. V2Ox and MoOx have 

work functions of 5.6 eV [3] and 5.4 eV  respectively, which align well with the 

HOMO level of a PCDTBT donor (5.35 eV) [4]. 

In this chapter, a solution processable from of vanadium oxide is spray cast as part 

of the device fabrication process. The spray coating process is optimised via 

deposition parameters and processing conditions. The vanadium oxide layers are 

then incorporated into organic photovoltaic devices and characterised. 

5.2 Chapter Summary 

An ultrasonic spray coating process is optimised for the deposition of solution 

processed metal oxide layers vanadium oxide and molybdenum oxide. Ink 

formulation and deposition parameters are explored, including: solvent blend 

ratios, spray speed, solution concentration and layer thickness. PCDTBT:PC70BM 

deposition parameters developed in Chapter 4 are then tuned for deposition onto 

the spray-cast metal oxide films An optimised deposition process is used to 

fabricate devices on both small-area devices and performance compared with spin 

cast PEDOT:PSS. Large-area device architectures are then fabricated using 
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optimised deposition parameters and the effect of scale-up on performance is 

discussed. 

5.3 Device Preparation 

The vertical device architecture used in this chapter is displayed in Figure 5-1a. The 

materials and thicknesses of the materials in the stack are as follows: 

ITO/HTL/PCDTBT:PC70BM/Ca (5 nm)/Al (100 nm), where the hole transport layer 

(HTL) is either V2Ox or  MoOx. The thickness of the HTL and PCDTBT:PC70BM layers 

will vary throughout the chapter as they are optimised for use with one another. 

The photoactive layer was spray cast from a chlorobenzene solution with a 

concentration of 8 mg ml-1 onto a substrate held at 40oC. The other stages of device 

fabrication are described in Chapter 3. Two device architectures are used in this 

chapter, shown in Figure 5-2(b) and (c). The six pixel substrate shown in (b) is used 

for the optimisation stages of this chapter, with the larger area 36 pixel (c) 

employed during scale up in sections 4.7 and 5.9. A discussion on these device 

architectures can be found in Chapter 4. 

  

Figure 5-2: Schematics showing a) vertical device structure and device 
architectures for b) a small 6 pixel substrate, b) large 36 pixel substrate and d) a 
large single pixel substrate. 
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5.4 Vanadium Oxide in Solution 

Vanadium oxide in its basic form is not easily solution processable using common 

solvents. This issue is overcome via the addition of side chains to the Oxygen atoms 

which increase solubility, as shown in Figure 5-3. The resultant precursor material is 

called vanadium oxytriisopropoxide. This material was sourced from Sigma Aldrich 

and used as received. 

 

Figure 5-3: Vanadium oxytriisopropoxide 

When exposed to air during the deposition, a hydrolysis reaction occurs as 

described by Equation 5.1 and 5.2. 

                                     Equation 5.1 

                    Equation 5.2 

The solvent used in this investigation was isopropyl alcohol (IPA) as it dissolves the 

vanadium oxytriisopropoxide well, is relatively non-toxic and is a common solvent 

used in industrial applications. IPA has excellent wetting properties when deposited 

on to an ITO anode: the first layer in an OPV stack. 

5.5 Spray Speed and Film Thickness 

To investigate the effect of spray parameters on device performance, it is important 

to determine final film thickness. The lateral velocity of the spray head determines 

the volume of solution deposited and therefore has a large impact on the thickness 
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of the film upon drying. vanadium films were sprayed at several speeds on to silicon 

substrates and film thickness was measured using an optical ellipsometer. Figure 

5-4 shows the resultant data, wherein film roughness is used as thickness error. In 

Chapter 4, film thickness  appeared to be inversely proportion to spray speed as 

described by the equation: 

 
  

 

           
 

Equation 5.3 

where τ is film thickness and A is a constant dependent on several factors involved 

with the spray coating process (e.g. spray height, deposition pressure, solution 

concentration etc.). The value of A in the fit of Figure 5-4 is calculated to be 858 nm 

mm s -1, or 868 μm2 s-1. This empirically derived value is used for the calculation of 

vanadium film thickness in this chapter. 

 

Figure 5-4: Dependence of V2Ox film thickness on lateral spray velocity. Films 
were spray cast at 20oC from an IPA solution of concentration 1 mg ml-1

 at a spray 
height of 35 mm. 
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5.5.1 Transmission of Vanadium Oxide Films 

Absorption measurements were performed in order to determine the transmission 

of spray cast V2Ox films. The transmission of V2Ox films with varying thickness is 

shown in Figure 5-5.  

 

Figure 5-5: Transmission of spray cast V2Ox films of varying thickness. Films were 
spray cast at 20oC from an IPA solution of concentration 1 mg ml-1

 at a spray 
height of 35 mm. 

After a peak absorption at ~375 nm, film transmission increases to 100% in all film 

thicknesses at around 500 nm. The band gap of vanadium oxide is around 2.42 eV, 

equivalent to 512 nm, which agrees well with the increased transmission [5]. High 

transmission is a preferable characteristic of a hole transport layer, as light must 

pass through it to reach the active layer of the device stack. High transmission 

above 500 nm is also beneficial in the device architecture used in this work, as the 

donor material PCDTBT has a narrow band gap [6], and will therefore absorb the 

lower energy photons that pass through the V2Ox layer.  

5.5.2 Spray Speed 

A V2Ox layer thickness of less than 10 nm is preferable for efficient hole transport, 

therefore a low solution concentration is chosen for initial device fabrication [3]. 

Figure 5-6 shows metrics of devices fabricated using several lateral spray velocities 
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from a V2Ox solution concentration of 0.25mg/ml and a deposition temperature of 

20oC. This low deposition temperature is made possible by using IPA as a solvent, 

which has a boiling point of 82.6 oC and a low surface tension of 23 mN m-1 [7]. This 

allows the solvent to quickly spread and then evaporate without causing the 

'picture framing' seen in Chapter 4. There is a limit to this however, and a film of 

low enough volume may not achieve full coverage. Because of this effective 

wetting, all V2Ox films in this chapter were deposited at 20oC. 

As with the devices in Chapter 4, twelve devices were fabricated over two 

substrates for each data point, and the top 50% were used in the data analysis. 

While some of the fabricated devices perform well, there is a large inconsistency 

between devices, and even individual pixels. This indicates a non-uniform layer 

across the cell. A low solution concentration might not form a continuous layer, 

giving rise to such variation. 

 

Figure 5-6: The effect of spray-head lateral velocity on device parameters for a 
solution with concentration 0.25mg.ml-1. Films were spray cast at a spray height 
of 35 mm. 
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If the non-uniformity is due to film coverage, then increasing the film thickness may 

improve performance. Film thickness can be increased via solution concentration, 

spray speed, spray height and pressure. The latter three parameters change the 

volume of solvent deposited onto the substrate. This will increase the final film 

thickness, however drying kinetics will also be changed and final film uniformity 

may be affected. A more effective method for comparing film thickness 

performance is to increase the solution concentration. Using the same spraying 

parameters will not affect the solution volume and drying time, just the dry film 

thickness. Solution concentration is raised to 1 mg ml-1 in order to increase final film 

thickness and investigate the effect on device performance. As the solution 

concentration is four times greater, similar spray parameters will not provide similar 

final film thicknesses. The range of spray speeds was therefore increased in order to 

include speeds four times greater than previously. Final device metrics are shown in 

Figure 5-7.  

 

Figure 5-7: Device metrics showing the affect if lateral spray speed on device 
performance for solution concentration of 1 mg ml-1. Films were spray cast at a 
spray height of 35 mm. 



Chapter 5: Spray Coating and Scale-up of Vanadium Oxide and 
Molybdenum Oxide as Hole Transport Layers  

Page 110 

There is a clear drop in all four metrics as spray speeds are increased past 200 mm s-

1. The spread in device efficiencies is also much larger at higher spray speeds, 

indicating incomplete film coverage over the substrate surface. Devices with films 

sprayed at 100 mm s-1 had a much smaller spread in performance, implying greatly 

increased coverage over the substrate. 

5.5.3 Effect of Film Thickness on Device Performance 

A second set of devices with even thicker vanadium layers were fabricated using the 

same deposition parameters apart from spray speed. These are shown in Figure 5-8 

where they are compared with the first devices from Figure 5-7, which have been 

re-plotted in Figure 5-8 using film thickness as the x axis instead of spray speed. 

 

Figure 5-8: Device metrics for OPVs fabricated with spray cast V2Ox layers of 
varying thickness. Solution concentration was 1 mg ml-1. Films were spray cast at a 
spray height of 35 mm. 
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There is a clear increase in performance of devices fabricated with thicker V2Ox, 

achieving a maximum PCE of 3.30% at a thickness of 6 nm. Thinner films than 6 nm 

cause a large variation between devices and all device metrics are lower. For 

devices with thicker V2Ox layers, there is a decrease in average short circuit current 

density from 7.46 to 6.5 mA cm-2 between films of 6 nm and 30 nm respectively. 

Open circuit voltage however remains at ~0.88 for higher thicknesses. The 

reduction in device performance could therefore attributed to poorer hole 

transport through the thicker V2Ox layer leading to a decrease holes reaching the 

anode and therefore a decrease in extracted current. The absorption of the 30 nm 

thick layer in Figure 5-5 is much greater than the thinner layers and extends over a 

larger range of wavelengths. The optical transmissivity of the layer could therefore 

also be causing a reduction in light reaching the active layer. This is in agreement 

with Zilberberg's findings [3], wherein Jsc decreased due to increased absorption as 

a V2O5 hole transport layer was increased in thickness from 10 to 45 nm. 

5.6 Surface Roughness 

High film uniformity is desirable as manufacturing of solar cells would require 

repeatable results between devices. The optimised vanadium oxide layer is very 

thin, therefore a rough surface could create voids in the film and reduce its 

performance. Furthermore the scalability of the process is dependent on 

repeatability, as manufacturing requires similar performance between device 

batches. Atomic force microscopy (AFM) was used to investigate the surface 

roughness of spray cast films of varying thickness. Figure 5-9 shows films of 

thickness a) 30 nm, b) 15 nm and c) 6 nm and an ITO substrate d). 
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Figure 5-9: Atomic force microscopy spray cast vanadium oxide films of thickness 
a) 30 nm, b) 15 nm and c) 6 nm. An ITO substrate is also shown in d). Films were 
spray cast at 20oC from an IPA solution of concentration 1 mg ml-1

 at a spray 
height of 35 mm. 

The roughness of each film is listed in Table 5-1. Even in films as thick as 30 nm, 

there is little variation in film thickness. Unlike PEDOT:PSS which planarises the ITO 

surface [8], V2Ox appears to conform to the ITO surface topography, even at higher 

thicknesses. This results in a final film roughness that directly relates to the 

roughness of the substrate on to which it is cast. 

Vanadium Oxide Film  
Thickness (nm) 

RMS 
 Roughness (nm) 

30 2.81 

16 2.05 

6 2.08 

ITO 2.65 

Table 5-1: Roughness of vanadium oxide films at varying thickness, measured via 
atomic force microscopy 

At thicknesses lower than 6 nm, the V2Ox film will be unlikely to achieve full 

coverage, as the ITO will puncture the film in some regions. This explains the 
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reduction in all device characteristics shown at very low film thicknesses in Figure 

5-8. Optimum film thickness is therefore determined to be ~6 nm, in agreement 

with literature. The optimised processing parameters are used for the investigations 

in the further sections of this chapter. 

5.7 PCDTBT:PC70BM 

5.7.1 Film Thickness 

A suitable processing method for the V2Ox must be accompanied by an effective 

photoactive layer. The spray speed and therefore thickness of PCDTBT:PC70BM must 

be optimised for this system to increase the performance of spray coated devices. 

The V2Ox layer was spray cast using the conditions optimised earlier in this chapter, 

namely a concentration of 1mg ml and a spray speed of 150 mm s-1 to achieve a 

final film thickness of 6 nm. The effect of varying PCDTBT:PC70BM film thickness on 

device performance is shown in Figure 5-10.  
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Figure 5-10: The variation in device performance with spray cast PCDTBT:PC70BM 
layer thickness. V2Ox films were spray cast at 20oC from an IPA solution of 
concentration 1 mg ml-1 at a spray speed of 150 mm s-1. Both V2Ox and 
PCDTBT:PC70BM films were spray cast at a height of 35 mm. 

The short circuit current density decreases with increasing film thickness from -8.06 

mA cm-2 with a 40nm film to -6.16 mA cm-2 at 85 nm. This result is unexpected, as 

Jsc values in Chapter 4 of above 8.5 mA cm-2 were achieved for active layer 

thicknesses of between 45 and 60 nm. There is also a large loss in fill factor, 

indicating possible shorts in the film or increased series resistance. PCDTBT has 

relatively low charge mobility in thicker films therefore this could contribute to this  

loss is, however this does not account for such a large decrease in performance [9]. 

5.7.2 Comparison with PEDOT:PSS 

PEDOT:PSS was used as a HTL in the previous chapter, wherein PCDTBT:PCBM was  

spray cast on to a spin cast PEDOT:PSS film, achieving power conversion efficiencies 

above 4%. In order to determine the effectiveness of the optimised spray cast V2Ox, 
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a batch of devices was fabricated by spin casting PEDOT:PSS and spray casting V2Ox. 

A PCDTBT:PC70BM layer was then spray cast on to both types of HTL at various spray 

speeds. Device performance is very similar between the two architectures as shown 

in Figure 5-11. 

  

Figure 5-11: A comparison between devices fabricated with spray cast V2Ox and 
spin cast PEDOT:PSS hole transport layers. A PCDTBT:PC70BM photoactive layer 
was spray cast in both cases. 

A maximum PCE of 4.58 % for the V2Ox devices compares well with a maximum of 

4.82 % for the spin cast PEDOT:PSS devices. The V2Ox devices performed 

significantly better during this device run, despite using the same deposition 

parameters as that of Figure 5-10. Averaged J-V data for the 45 nm devices of Run 1 

and Run 2 are shown in Figure Figure 5-12.  
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Figure 5-12: Averaged J-V data for 60 and 63 nm devices from Run 1 and Run 2 
respectively. 

The fill factor and Jsc appear to be the most significant differences between the 

devices, producing a loss in performance. Series and shunt resistances were 

calculated from the J-V data and are shown in Table 5-2. The series resistance of the 

Run 1 device is almost double that of the Run 2 device. 

Run number 
RShunt 
(Ω) 

RSeries 
(Ω) 

1 271 39.78 

2 461 20.82 

Table 5-2: Roughness of vanadium oxide films at varying thickness, measured via 
atomic force microscopy 

The variation between runs when using the same deposition parameters implies an 

inherent uncertainty in the spray coating and device fabrication process. Factors 

including humidity, ambient temperature and even spray pipe cleanliness are all 

difficult to control with a small scale research set up. When scaling up to an 

industrial process, there would be more control over the manufacturing 

environment and thus repeatability would most likely improve. 
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5.8 Scale Up 

To investigate the scalability of the spray coating process, a larger device was 

fabricated using the 36 pixels architecture shown in Figure 5-2(c). Film quality over 

the surface of the large ITO substrate was similar to that of the small substrates. 

The IPA based solution spread well and there were no visible defects in the film. The 

full dataset of the 36 pixels is displayed in Figure 5-13, showing a relatively high 

yield of 86% with five outliers. In previous sections, the optimisation of a recipe was 

the goal, therefore only the top 50% of devices were studies. During scale up 

however, consistency and yield are potentially as important as overall performance, 

therefore all pixels on the large device are included. The outlying pixels here are not 

like the poorer performing devices discussed in previous chapters, as all five outliers 

appear to be primarily caused by a large reduction in Voc and not Jsc or FF. These 

are considered 'dead' pixels, and would normally be discounted in the lower 50% of 

devices.  

 

Figure 5-13: Distribution of device metrics for a 36 pixel device fabricated via 
spray casting of both a vanadium oxide hole transport layer and a PCDTBT:PC70BM 
photoactive layer. 
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This high yield is promising as despite the run-to-run variation discussed in section 

5.8, consistency of devices over a single large substrate demonstrates that the 

technology can be effective in these circumstances. 

A manuscript is in preparation for the work on spray coating and scale up of 

vanadium oxide in this chapter. 

5.9 Molybdenum Oxide in Solution 

As is the case with vanadium oxide, the molybdenum oxide used in this work is 

deposited as a precursor, namely ammonium molybdate tetrahydrate. This material 

was sourced from Sigma Aldrich and used as received. This precursor dissolves well 

in DI water, which is promising for non-toxic processing. Unfortunately water has a 

high surface tension and spray coating the solution is not possible as it is causes 

dewetting across a substrate. In order to reduce the surface tension of the ink and 

allow it to flow across the substrate surface, a new ink formulation was required. A 

secondary solvent must be miscible with water, have a lower surface tension to aid 

wetting and have a similar boiling point to water so that it does not evaporate too 

quickly. Acetonitrile was chosen for this purpose as it has a surface tension of 29 

mN m-1, which is much lower than that of water (72.8 mN m-1). It has a boiling point 

of 82oC, slightly less than that of water[7]. The ratio of acetonitrile to water was 

steadily increased until the molybdenum tetrahydrate began to drop out of 

solution. At this point, the ratio was reduced again and a final ratio of 2:3 (DI water : 

Acetonitrile) was chosen. The optimisation of molybdenum oxide for the small-area 

device architecture was investigated in collaboration with Jonathan Griffin. 

5.10 Scale up Of Spray Cast Molybdenum Oxide 

Final material solution concentration was 6 mg ml-1 and the solution was sprayed at 

a speed of 60 mm s-1 onto ITO substrates held at a temperature of 60oC to produce 

a MoOx layer with a thickness of 13 nm. Upon film deposition, substrates were then 

annealed on a separate hot plate at 350oC to complete the decomposition of the 

precursor material into molybdenum oxide [10]. A PCDTBT:PCBM layer was then 
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spray cast on to the MoOx from a solution concentration of 4 mg ml-1 at a spray 

speed of 80 mms-1 and a height of 35 mm to produce a film thickness of 60 nm. Full 

devices were then fabricated as described in section 5.3.  Performance 

characteristics are displayed in Table 5-3. 

PCE 
(%) 

Max PCE 
(%) 

FF 
(%) 

Jsc 
(mA cm-2) 

Voc 
(V) 

4.0 ± 0.3 4.4 50.9 ± 1.3 -7.37 ± 2.16 0.88 ± 0.01 

Table 5-3: Performance characteristics of OPV devices fabricated via spray casting 
of both MoOx hole transport layers and PCDTBT:PC70BM[ photoactive layers. 

This work was published in ref [11]. 

This fabrication process was repeated using the large 36 pixel architecture as shown 

in Figure 5-2(c). The spray height was changed to 70 mms-1 and the spray speed was 

reduced to 40 mms-1 to achieve similar film thicknesses. Performance 

characteristics of all 36 pixels are displayed in Figure 5-14. There is high yield of 

89%, with only 4 outliers.   

 

Figure 5-14: Performance characteristics of a 36 pixel device fabricated via spray 
casting both a molybdenum oxide and a PCDTBT:PC70BM photoactive layer. 
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The performance of spray cast MoOx devices is slightly poorer than the V2Ox devices 

when scaled up using the 36 pixel device architecture. They both perform relatively 

consistently over the substrate area, however they achieve power conversion 

efficiencies lower than what is possible with this material system. This implies that 

further optimisation is required if these hole transport layers are to be a viable 

alternative to PEDOT:PSS during large scale fabrication. 

5.11 Conclusion 

A spray coating process has been optimised for the metal oxide hole transport layer 

vanadium oxide. Small-area devices were fabricated and performances matched 

those of devices with spin cast PEDOT:PSS hole transport layers of around  4.6% 

PCE. Film uniformity was characterised via atomic force microscopy, showing that 

the vanadium oxide film conforms to the surface morphology of the ITO substrate 

on to which it is cast. A large 36 pixel device was then fabricated, providing a high 

pixel yield of 86% and indicating that the film remains relatively uniform when 

spray-casting over a larger area. Another metal oxide layer, molybdenum oxide was 

also spray cast on small and large area devices. This too performed well over a 

larger surface area, with a high pixel yield of 89%. 
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Chapter 6 Spray Coating and Scale Up of PEDOT:PSS 

as a Hole Transport Layer 

The previous chapter demonstrated the fabrication of OPV devices wherein both a 

vanadium oxide hole transport layer and a PCDTBT:PC70BM photoactive layer were 

spray-cast. Vanadium oxide is an effective hole transport layer, however it has been 

shown to have a much shorter lifetime than the widely used PEDOT:PSS [1]. 

6.1 Introduction 

PEDOT:PSS is undoubtedly the most popular hole transport material within the field 

of organic photovoltaic's, and it has been used in a large variety of studies. 

PEDOT:PSS is typically spin-cast on to a transparent anode material such as indium 

tin oxide (ITO), however spin coating not a scalable process and alternative 

deposition techniques must be explored. As discussed in the Background Theory 

chapter of this thesis, PEDOT:PSS has been deposited via several scalable 

techniques already. Studies involving spray coating of the material are limited 

however. PEDOT:PSS is typically supplied in an aqueous medium characterised by a 

high surface tension. This is not an issue when spin coating layers, as shear forces 

acting on the wet film force it to spread over the surface of a substrate. This does 

pose a problem for spray coating however, as droplets must spread and merge 

without external lateral force acting upon them. Figure 6-1 shows an droplet of an 

aqueous PEDOT:PSS solution on an ITO substrate in ambient conditions. After initial 

settling, the droplet reached equilibrium with the surface at a high contact angle of 

22o. During spray deposition, droplets of this solution will not spread across a 

surface and merge into a uniform film. This high contact angle must therefore be 

overcome via ink formulation and deposition parameters. 
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Figure 6-1: A contact angle image taken 7 seconds after PEDOT:PSS was dropped 
onto an ITO substrate. The droplet had a high contact angle and did not wet well 
to the surface. 

There have been a limited number of successful attempts at spray coating 

PEDOT:PSS in the past, as detailed in Table 6-1. The aqueous nature of the 

PEDOT:PSS ink poses a difficulty for spray casting, and many of the reported films 

have coffee rings after drying due to poor film wetting. 

Spray 
Technique 

PCE 
(%) 

Pixel 
Area 

(mm2) 

Sprayed HTL Sprayed Photoactive 
Layer 

Citation 

Airbrush 2.7 20 PEDOT:PSS P3HT:PC61BM Hoth 2009[2] 

Ultrasonic 3.5 - PEDOT:PSS P3HT:PC61BM Steirer 2009[3] 

Airbrush 2.17 4.66 PEDOT:PSS P3HT:PC61BM Na 2010[4] 

Ultrasonic 3.75 3 PEDOT:PSS P3HT:PC61BM Girotto 2011[5] 

Table 6-1: A literature review of spray-cast PEDOT:PSS in OPV devices. 

6.2 Chapter Summary 

An ultrasonic spray coating process is optimised for the deposition of PEDOT:PSS 

hole transport layers. Ink formulation and deposition parameters are explored and 

an optimised deposition process is used to fabricate devices on both small-area and 

large-area device architectures. PCDTBT:PC70BM and PBDTTT-EFT:PC70BM 

photoactive layers are then spray-cast onto the optimised PEDOT:PSS layer. The 

effect of scale-up on performance is discussed. Film uniformity is characterised via 

atomic force microscopy, and light beam induced current mapping 
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6.3 IPA As a Wetting Agent 

In order to reduce the contact angle of the solution and increase wetting to the 

substrate surface, the solution was mixed with isopropyl alcohol (IPA) at a ratio of 

2:8. Figure 6-2 displays contact angle as a function of time for the PEDOT:PSS ink 

and a solution of PEDOT:PSS and IPA. The IPA clearly reduces the contact angle and 

wettability of the solution, quickly spreading over the surface. 

 

Figure 6-2: Contact angle measurements on ITO of PEDOT:PSS and a mixture of 
PEDOT:PSS with IPA at a ratio of 2:8. IPA dramatically decreases the contact angle 
of the solution and the droplet spreads rapidly over the ITO surface. 

A single droplet of the mixed solvent ink covered an entire substrate surface (300 

mm2) within 2 seconds of contact. This means that coffee rings are less likely to 

occur, as the droplets will likely spread and merge before drying. To investigate the 

use of this blend during device fabrication, the 2:8 ratio ink was spray-cast on to ITO 

substrates held at a temperature of 20oC. While initial wetting was much improved 

with the addition of IPA to the spray coating process, the films had large 

inconsistencies in surface coverage upon drying. IPA evaporates quickly, leaving a 

thin film of water. The solution then dewets before drying, creating holes in the 

film. 
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6.4 Ethyl Glycol as a Binding Agent 

To solve this problem, a small amount of Ethylene Glycol (EG) was added to the 

solution at a ratio of PEDOT:PSS, IPA and EG of 2:7:1. EG has a much higher boiling 

point (197oC) than water (100oc) and IPA (82.6oC) [6]. Once the film has spread 

during the initial contact with the substrate, the IPA evaporates quickly. This leaves 

a thin film of EG and water containing the PEDOT:PSS material. The substrate is 

then transferred to a hot plate at 120oC, at which point the remaining water quickly 

evaporates. Ethylene glycol has a lower surface tension (47.7 mN m-1) than water 

(72.8 mN m-1) at 20oC, therefore it does not dewet as readily and keeps the spread 

PEDOT:PSS material in a single film. The EG then evaporates, leaving a continuous 

PEDOT:PSS film. A problem with this process is that during the hand-held transfer 

process, the EG can flow around the surface if the substrate is not held at a flat 

enough angle. In a real industrial setting, the substrate would be transferred from 

one annealing stage to another by mechanical means, therefore this would be less 

of a problem. The spreading process of a droplet of the 2:7 1 solution is shown in 

Figure 6-3. The droplet wet quickly to the surface, even with the presence of the 

higher surface tension EG. After three seconds, the droplet is too flat to achieve an 

accurate contact angle measurement with the optical tensiometer. After four 

seconds, it is not visible as it has flattened to the surface of the substrate. 

 

Figure 6-3: Contact angle images for an optimised PEDOT:PSS ink dropped on to 
an ITO substrate. The ink consisted of PEDOT:PSS, IPA and EG in a ratio of 2:7:1. 
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6.5 Device Preparation 

The vertical device architecture used in this chapter is the same as Chapter 4, as 

displayed in Figure 6-4(a). The small six pixel architecture in (b) is once again used 

for the optimisation of the spray-cast film, with a large 36 pixel (c) substrate and 

large four pixel in (d) used for scale up in section 6.9. Substrate areas are 3 cm2 and 

25 cm2 for the small and large substrates respectively. Pixel sizes are defined by the 

overlap of the ITO anode and the evaporated cathode. They are 4mm2, 6.45mm2 

and 165mm2 for the small 6 pixel, large 36 pixel and large 4 pixel architectures 

respectively. As discussed in the previous two chapters, the large 36 pixel 

architecture allows investigations into film variations over a larger device substrate 

area, as the pixel sizes are relatively similar to those of the smaller architecture. The 

large 4 pixel can be employed for investigations into the effect of increased pixel 

size on device performance, without the substantial increase in resistance seen for 

the large single pixel substrate in Chapter 4. 

 

Figure 6-4: Simplified schematics showing the vertical structure of the OPV 
devices (a) along with small 6 pixel (b), large 36 pixel (c) and large 4 pixel (d) 
device architectures. Pixel sizes of the various architectures are 4mm2, 6.45mm2 
and 165mm2 for the small 6, large 36 and large 4 architectures respectively. 

The materials and thicknesses of the materials in the stack are as follows: 

ITO/PEDOT:PSS/PCDTBT:PC70BM/Ca (5 nm)/Al (100 nm). The thickness of the 

PEDOT:PSS and PCDTBT:PC70BM layer will vary throughout the chapter. The 
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substrate cleaning procedure, evaporation and encapsulation are described in 

Chapter 3.  The substrate to nozzle distance was 40 mm and 65 mm for small and 

large substrate architectures respectively. Spray parameters are as described in this 

chapter. After initial spraying of the PEDOT ink at 20oC, the substrates were then 

transferred to a hotplate held at 120oC. Reference PEDOT:PSS films were spin-cast 

at 5000rpm and the photoactive layer was then spin-cast at 1200rpm or spray-cast 

using optimised conditions as described in Chapter 4. 

6.6 Film Thickness 

Figure 6-5a shows scanned images of PEDOT:PSS films spray-cast from a solution of 

PEDOT:PSS, IPA and EG in ratios of 1:8:1. The decrease in the PEDOT:PSS 

component of the blend (from 2:7:1) was to further reduce the water content in a 

given volume and increase the stage one evaporation time.  The films were spray-

cast at varying speeds resulting in a spread of film thicknesses and scans were taken 

using an Epson Perfection V370 scanner.  Figure 6-5b shows a manipulated version 

that enhances contrast in order to distinguish the transparent films. Films appear 

smooth and continuous until spray speeds reach as low as 40 mm-1. Final film 

thickness varies over the surface. Profilometer depth measurements of the film cast 

at 40 mm-1 show a difference in thickness of 57 nm to 100 nm over the substrate 

surface. This variation is due to a large amount of ethyl glycol present on the 

surface after the IPA has evaporated. During the transfer from the spray coater to 

the hot plate, the solution readily flows around the substrate surface as discussed 

above. This effect can be lessened by depositing a lower volume of solution. The 

desired thickness of a PEDOT:PSS layer in an OPV has been shown to be ~30 nm. 

The corresponding spray speed is well within the limits of poor film uniformity 

imposed by the solution drying time. 
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Figure 6-5: Scanned images showing a) PEDOT:PSS films spray-cast at various 
spray speeds from PEDOT:PSS, IPA and EG in a ratio of 1:8:1. There is a large 
variation in film thickness for spray speeds <40 mms-1. b) shows a) with a higher 
contrast, in order to distinguish the transparent films. 

PEDOT:PSS films were spray-cast onto ITO substrates at various speeds to create a 

variation in film thickness and a spin-cast reference was deposited. A 

PCDTBT:PC70BM photoactive layer was then spin-cast from a chlorobenzene 

solution with a concentration of 25 mg ml-1 at a speed of 1200rpm, creating a 70 nm 

thick layer. Device preparation proceeded as described in section 6.5. Figure 6-6 

shows the performance characteristics of the fabricated devices, along with a spin-

cast reference. The spray-cast PEDOT:PSS performs well, showing a slight decrease 

in short circuit current density as film thickness decreases, likely due to a reduction 

in hole transport. Overall the thickness of the PEDOT:PSS layer did not seem to 

greatly alter the final device performance, unlike the vanadium oxide in Chapter 5 

which relied heavily on achieving the optimum thickness. A large thickness 

threshold is desirable during the scale up process, as variations in thickness will not 

reduce yield as much. 
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Figure 6-6: Performance characteristics of OPV devices fabricated with spray-cast 
PEDOT:PSS layers of varying thickness. PEDOT:PSS blend ratio was 1:8:1  and films 
were deposited at 20oC before being transferred to a hotplate held at 120oC. 

6.7 Film Uniformity 

When PEDOT:PSS is used as a hole transport layer in an OPV devices, it is usually 

deposited between an ITO anode and a solution processed photoactive layer. It 

should therefore ideally provide a smooth surface on which the layer above it can 

be deposited. A PEDOT:PSS film was  spray-cast from a solution of PEDOT:PSS, IPA 

and ethyl glycol at a ratio of 1:8:1 and a deposition speed of 80 mms-1. Dry film 

thickness was 30 nm, an appropriate thickness for a PEDOT:PSS hole transport layer. 

Atomic force microscopy was used to characterise the film surface, as displayed in 

Figure 6-7. This film has a root-mean-squared (rms) roughness of 2.57 nm and a 

uniformity of ± 12 nm over an area of 100 μm2. 
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Figure 6-7: Atomic force microscopy image of a spray-cast PEDOT:PSS film. The 
deposition ink consisted of PEDOT:PSS, IPA and ethylene glycol in a ratio of 1:8:1. 
The film has an rms roughness of 2.57 nm and a uniformity of ± 12 nm over an 
area of 100 μm2. 

The rms roughness is only ~9% of the thickness of the PEDOT:PSS layer. As seen in 

Section 6.6, such a small variation is unlikely to significantly alter performance. 

6.8 Spray coating PEDOT:PSS and PCDTBT:PC70BM 

In previous sections of this chapter demonstrated devices fabricated via the spray 

coating of PEDOT:PSS hole transport layers, while the PCDTBT:PC70BM layer was 

spin-cast. If the spray coating technique is to be roll to roll compatible, both layers 

must be spray-cast sequentially. Spin and spray-cast PEDOT:PSS devices were 

fabricated as described in Section 6.6, however the PCDTBT:PCBM layer was spray-

cast from a solution of concentration 8 mg ml-1 instead of spin-cast as previously. 

The PCE results of this fabrication run are displayed in Figure 6-8. Devices in which 

both layers are spray-cast have similar power conversion efficiencies to those in 

which only the active layer was spray-cast.  



Chapter 6: Spray Coating and Scale Up of PEDOT:PSS as a Hole 
Transport Layer  

Page 131 

 

Figure 6-8: Power conversion efficiency as a function of spray-cast active layer 
thickness for devices fabricated with spin-cast and spray-cast PEDOT:PSS layers. 

Table 6-2 shows the performance characteristics of the spray cast PEDOT:PSS 

devices from Figure 6-8. There is a reduction in efficiency at higher film thickness 

which appears to be due to a reduction in FF. It has been shown that the FF of a 

PCDTBT:PC70BM device reduces when the thickness of the film increases over 70 nm 

due to increased carrier recombination. This is therefore suggested as the loss 

mechanism in this study.  

PCDTBT:PC70BM  Thickness PCE (Average) FF Jsc Voc 

nm % % mA cm-2 V 

40 3.87 ± 0.39 54.5 ± 2.8 -8.29 ± 0.3 0.85 ± 0.02 

70 4.12 ± 0.22 49.7 ± 1.4 -9.43 ± 0.3 0.88 ± 0.01 

100 3.08 ± 0.13 42.2 ± 2.3 -8.31 ± 0.48 0.88 ± 0.01 

Table 6-2: Performance characteristics of the devices shown in Figure 6-8. 

6.9 Scale Up 

This section investigates the effect of scale up on the uniformity and performance 

of the spray-cast PEDOT:PSS film. Devices were fabricated and characterised using 

the large 36 pixel and large four pixel architecture designs, as shown in Figure 6-4(c) 

and (d) respectively. 
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6.9.1 Large 36 Pixel 

The individual pixel sizes of the 36 pixel architecture are similar in size (6.45 mm2 to 

4 mm2) to those of the small 6 pixel substrates used previously in this chapter. This 

allows for a study of layer uniformity over a larger device area, without needing to 

account for the detrimental effects of scaling pixel size. This architecture is 

therefore used during the first stage of the scale up process. 

PEDOT:PSS layer was spray-cast on to a 25 cm2 36 pixel ITO substrate held at a 

temperature of 20oC from a solution of PEDOT:PSS, IPA and EG at a ratio of 1:8:1. 

The sample was then transferred on to a hot plate held at 120oC to evaporate the 

remaining ethylene glycol. The spray speed was 80 mm s-1 and the resulting film 

thickness was 30 nm. A PCDTBT:PCBM photoactive layer was then spray-cast at 

40oC from a chlorobenzene solution with a spray speed of 100 mms-1 to create a 60 

nm thick film. Device fabrication then proceeded as described in section 6.5. 

Devices were characterised using a solar simulator and shadows masks as described 

in Chapter 3. Figure 6-9 shows the performance characteristics of the spin-cast and 

spray-cast PEDOT:PSS devices. There is a large reduction in open circuit voltage and 

fill factor in the devices fabricated via spray coating. The short circuit current does 

not decrease however, performing better than the spin-cast reference.  
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Figure 6-9: Box charts of 36 pixel devices with PEDOT:PSS layers deposited via 
spin-casting or spray coating. In both cases, the PCDTBT:PC70BM active layer was 
spray-cast. 

This can be explained by a combination of the 36 pixel device geometry and a 

change in PEDOT:PSS conductivity between the spin-cast and spray-cast films. 

Several studies have shown that the treatment of a PEDOT:PSS film with EG can 

increase its interchain and intrachain carrier mobility [7]. The 36 pixel device 

operates on the principle that each ITO strip is electrically insulated from the other 

as shown in Figure 6-10. Each crossing of the ITO and the cathode material create a 

device pixel. Current is prevented from travelling laterally between the electrode 

strips by large gaps. 
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Figure 6-10: Anode and cathode materials crossing in a 36 pixel substrate, wherein 
each crossing forms a pixel. 

If the PEDOT:PSS acts as a conductive material, this can essentially create a single 

large anode, joining the ITO strips together. If there are any regions where 

PEDOT:PSS is directly in contact with the cathode material, this can create a short 

and electrically link the ITO anode with the cathode, bypassing the active layer. 

Figure 6-11 shows a 36 pixel device covered by a shadow mask used for solar 

simulator measurements. This mask allows individual pixels to be illuminated 

independently for testing. Each pixel has a coordinate designated by the letter and 

number of its anode and cathode strip respectively. Each of these electrode strips is 

connected to a switch, allowing for J-V measurements of individual sets of strips. If 

the ITO strips are electrically insulated from one another, illuminating pixel F6 

should not result in a measurable photocurrent when connected to strips E and 5 

for instance. 
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Figure 6-11: A shadow mask covering all but one pixel on a 36 pixel device during 
a solar simulator measurement. 

A series of measurements were taken while pixel F6 was being illuminated, as 

display in Table 6-3. For a spin-cast device, connecting to the device through ITO 

strip 'F' and the 6th cathode strip, a non-zero PCE is measured as expected. When 

connecting via ITO strip 'E' and the 6th cathode strip however, there is zero 

photocurrent measured. When the process is repeated for the spray-cast device 

however, a photocurrent can still be measured when connected to an entirely 

different ITO strip. This extends all the way to ITO strip 'A', 3 cm from the ITO strip 

being illuminated. The conductive PEDOT:PSS  in the spray-cast device is creating a 

bridge between ITO strips across the substrate, creating a single large anode. 

Strips Connected Measured PCE (%) 

Cathode Anode Spin-cast Spray-cast 

Left 6 Top F 3.94 1.65 

Left 6 Top E 0.00 0.78 

Left 6 Top D 0.00 0.55 

Left 6 Top C 0.00 0.49 

Left 6 Top B 0.00 0.44 

Left 6 Top A 0.00 0.39 

Table 6-3: Measured PCE of pixel F6 for two 36 pixel devices with spin-cast and 
spray-cast PEDOT:PSS layers, when connected via various anode and cathode 
combinations. 
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The conductivity of the spin-cast and spray-cast PEDOT:PSS films were measured by 

Mr Yiwei Zhang to be 0.0023 S cm-1 for the spin-cast films and 4.45 S cm-1 for the 

spray-cast films; an increase of three orders of magnitude. While conductive 

PEDOT:PSS is usually desirable due to its charge carrying ability, it renders this 

particular device architecture ineffective. More devices were fabricated, using the 

same experimental method as previously, however the PEDOT:PSS layer was wiped 

off between the electrode strips using a fine-tipped cotton bud, as shown in Figure 

6-12. This created 'islands' of PEDOT:PSS, insulating the individual pixels once again. 

 

Figure 6-12: A 26 pixel device with a portion of the photoactive layer and top 
cathode removed, showing the wiped PEDOT:PSS layer. 

The performance characteristics of the 'wiped' device are displayed in Figure 6-13. 

There is no longer a drop in open circuit voltage when spray coating the PEDOT:PSS 

layer. The fill factor is inconsistent between pixels however, indicating resistance 

issues within the cell. 
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Figure 6-13: Performance characteristics of a 36 pixel device fabricated via spray 
coating the PEDOT:PSS layer and wiping the final film between pixels. The 
PCDTBT:PC70BM layer was also spray-cast. 

In order to investigate the versatility of the spray-cast PEDOT:PSS process, a 

different donor:acceptor system was deposited as the photoactive layer in large 36 

pixel device. The high-performing polymer poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-

yl)-benzo[1,2-b;4,5-b′]dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-

b]thiophene-)-2-carboxylate-2-6-diyl)] (PBDTTT-EFT) has been shown to achieve 

efficiencies of over 9% [8]. A separate material system provides an opportunity to 

investigate the versatility of the deposition technique. 

 A large-area PEDOT:PSS film was prepared as described earlier in this chapter and 

the film was wiped away between electrodes. PBDTTT-EFT was blended with PCBM 

at a ratio of 1:1.5 and dissolved in chlorobenzene and a DIO additive of 3%. The 

solution was spray-cast on top of the PEDOT:PSS film and devices were fabricated as 

described in section 6.5. Active layer deposition and subsequent device fabrication 

and testing were performed by Yiwei Zhang. Reference samples were also prepared, 
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wherein PBDTTT-EFT was spray-cast on to spin-cast PEDOT:PSS film. Table 6-4 

displayed performance characteristics of the large area devices fabricated. There is 

a remarkable similarity in performance between the devices with spin and spray-

cast PEDOT:PSS layers. These results were published by Yiwei Zhang in reference 

and at the time of writing are the highest reported efficiencies of OPVs fabricated 

via the spray coating process. [9]. 

Deposition Technique PCE FF Jsc Voc 

 
(%) (%) (mA cm-2) (V) 

Spin-cast 7.7 ± 0.6 65 ± 2.2 15.7 ± 0.8 0.77 ± 0.09 

Spray-cast 7.5 ± 0.3 65 ± 2.1 15.2 ± 0.3 0.77 ± 0.04 

Table 6-4: Performance characteristics of 36 pixel devices fabricated via spray 
coating PBDTTT-EFT on to spin-cast and spray-cast PEDOT:PSS films. 

This material system has been shown to achieve PCEs of over 9% when fabricated 

inside a glove box environment [8]. The result above is promising, as being able to 

process materials in air while maintaining high efficiencies is crucial for large scale 

fabrication. A high film uniformity of a large area is also a desirable result and this is 

also achieved. 

6.9.2 Large Four Pixel 

A large four pixel substrate architecture allows for a study of how scaling pixel size 

affects device performance. For the technology to progress to commercialisation, 

pixel sizes must be increased so as to harvest as much light as possible for a given 

panel area. A PEDOT:PSS layer was spray-cast on to two large 4 substrate designs 

from a solution of PEDOT:PSS, IPA and EG at a ratio of 1:8:1. A PCDTBT:PC70BM layer 

was spray-cast on top of this, and devices were fabricated as described in section 

6.5. J-V curves of a large 4 pixel and a small 6 pixel device are displayed in Figure 

6-14 and performance characteristics are displayed in Table 6-5. The data displayed 

includes all eight pixels fabricated on the two large substrates, instead of the top 

50% used for the smaller substrates. As discussed in Chapter 5, device yield is an 

important metric when scaling up manufacture, therefore even very poorly 

performing pixels are important to note.  
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Figure 6-14: J-V characteristics of OPV devices fabricated using the small six and 
large 4 device architectures shown in Figure 6-4. Both the PEDOT:PSS hole 
transport layer and the PCDTBT:PC70BM photoactive layer were spray-cast. 

There is a decrease in short circuit current density as the area of the pixel increases. 

This is likely due to an increase in series resistance losses due charges having to 

travel further through the ITO anode [10]. The resistance of uncoated large and 

small area ITO substrates was measured from the centre of the pixel to the anode 

contacts at the substrate edge. These distance were 10 mm and 19 mm for the 

small and large substrates respectively. The resistance of the small substrate was 

found to be 29 Ω, while the large substrate had a resistance of 40 Ω. The resistance 

of the large substrate is therefore 1.4 times that of the small. This is in agreement 

with the series resistance of the devices calculated from the averaged JV data. 31.3 

is 1.8 times 17.1, which explains some of the losses associated with the scale up. 

Voc is primarily dependent upon the work function of the electrodes and the donor-

acceptor energy difference, it is expected to be independent of device area [12], as 

is seen here. This is promising, as it implies that the vertical structure of the cell is 

relatively unchanged between the small area and large area devices. In practice the 

resistance of the ITO substrate can be improved using bus bars or metallic grids and 

the substrate architecture can be altered to reduced the pixel - contact distance 
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[11]. This reduction in efficiency therefore may not be an inherent part of the scale 

up process. 

Pixel Size 
mm2 

Max PCE 
(%) 

FF 
(%) 

Jsc 
(mAcm-2) 

Voc 
(V) 

Rshunt 

(Ω cm2) 
Rseries 

(Ω m2) 

4 4.12 ± 0.22 49.7 ± 1.4 -9.43 ± 0.3 0.88 ± 0.01 452 17.1 

165 3.36 ± 0.24 44.7 ± 0.91 -8.62 ± 0.68 0.87 ± 0.01 319 31.3 

Table 6-5: Performance characteristics of fully spray-cast devices for the small 6 
and large 4 device architectures. 

These efficiencies are still below what it possible with this material system however, 

and more work must be done to improve film uniformity. Figure 6-15 shows 

photographs of fully fabricated devices using the small 6 and large 4 pixel 

architectures. The active layer appears mottled, with film uniformity changes on the 

order of millimetres. This could be due to mass transfer of polymer material, as the 

drying edge of the film pulls some material along with it. 

 

Figure 6-15: A photograph displaying the small 6 pixel and large 4 pixel 
architectures after full fabrication. 

Light beam induced current mapping was performed on a large fully spray-cast 

pixel, and is shown in Figure 6-16(a). There is a clear fluctuation in photocurrent 

over the ‘mottled’ areas as a variation in film thickness alters the photocurrent 

generation of the cell.  
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Figure 6-16: Part (a) shows laser beam induced current map of a large 4 
architecture pixel, with part (b) showing a histogram of the photocurrent data 
shown in part (a).  

Figure 6-16(b) shows a histogram of the photocurrent in (b). The lower values are 

not shown, as these are from the ‘dead’ area surrounding the pixel. There is a 

variation in photocurrent generation of 10 – 20 % across the cell. This variation in 

photocurrent across a single pixel is larger than the variation of Jsc in Table 6-5 

across both substrates (8%). This implies that there are film fluctuations on the pixel 

scale of 165 mm2 which are evened out at the substrate scale of 900 mm2. This can 

be seen in Figure 6-15, where the mottled effect is fairly uniform over the whole 

surface. If photocurrent generation can be improved on the pixel-scale by reducing 

the mottling, the scale up process will become more effective. 

The work on scale-up of PCDTBT:PC70BM and PEDOT:PSS cells discussed in this 

chapter was published in reference [11]. 

6.10 Conclusion 

An aqueous ink of the hole transport material PEDOT:PSS was combined with IPA 

and EG to aid wetting on to an ITO surface. OPV devices were then fabricated via 

spray casting the PEDOT:PSS layer and spin casting a PCDTBT:PC70BM active layer, 

achieving efficiencies of ~5%. PCDTBT:PC70BM and PBDTTT-EFT:PC70BM  layers were 

also spray cast during fabrication, creating devices with no spin cast layers. The 
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spray coating process was then called up to larger substrate areas, and large device 

architectures were employed. A 36 pixel architecture achieved similar results to the 

small device sizes, indicating that the film is unchanged when spray cast over a 

larger area.  A high PCE of over 7.5% was achieved for the ‘fully’ spray-cast large 

area PBDTTT-EFT devices. A large four pixel device structure showed a decrease in 

performance when compared with the small area devices, potentially due to 

increased ITO resistance and a mottling effect created by the drying film.  

6.11 References 

[1] E. Bovill, N. Scarratt, J. Griffin, H. Yi, A. Iraqi, A. R. Buckley, J. W. Kingsley, and 
D. G. Lidzey, “The role of the hole-extraction layer in determining the 
operational stability of a polycarbazole:fullerene bulk-heterojunction 
photovoltaic device,” Appl. Phys. Lett., vol. 106, no. 7, p. 073301, Feb. 2015. 

[2] C. N. Hoth, R. Steim, P. Schilinsky, S. a. Choulis, S. F. Tedde, O. Hayden, and C. 
J. Brabec, “Topographical and morphological aspects of spray coated organic 
photovoltaics,” Org. Electron. physics, Mater. Appl., vol. 10, no. 4, pp. 587–
593, Jul. 2009. 

[3] K. X. Steirer, J. J. Berry, M. O. Reese, M. F. a. M. van Hest, A. Miedaner, M. W. 
Liberatore, R. T. Collins, and D. S. Ginley, “Ultrasonically sprayed and inkjet 
printed thin film electrodes for organic solar cells,” Thin Solid Films, vol. 517, 
no. 8, pp. 2781–2786, Feb. 2009. 

[4] S.-I. Na, B.-K. Yu, S.-S. Kim, D. Vak, T.-S. Kim, J.-S. Yeo, and D.-Y. Kim, “Fully 
spray-coated ITO-free organic solar cells for low-cost power generation,” Sol. 
Energy Mater. Sol. Cells, vol. 94, no. 8, pp. 1333–1337, Aug. 2010. 

[5] C. Girotto, D. Moia, B. P. Rand, and P. Heremans, “High-Performance Organic 
Solar Cells with Spray-Coated Hole-Transport and Active Layers,” Adv. Funct. 
Mater., vol. 21, no. 1, pp. 64–72, Jan. 2011. 

[6] D. R. Lide, “CRC Handbook of Chemistry and Physics, 84th Edition, 2003-
2004,” Handb. Chem. Phys., vol. 53, p. 2616, 2003. 

[7] J. Ouyang, C. W. Chu, F. C. Chen, Q. Xu, and Y. Yang, “High-conductivity 
poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film and its 
application in polymer optoelectronic devices,” Adv. Funct. Mater., vol. 15, 
no. 2, pp. 203–208, 2005. 



Chapter 6: Spray Coating and Scale Up of PEDOT:PSS as a Hole 
Transport Layer  

Page 143 

[8] W. Huang, E. Gann, L. Thomsen, C. Dong, Y.-B. Cheng, and C. R. McNeill, 
“Unraveling the Morphology of High Efficiency Polymer Solar Cells Based on 
the Donor Polymer PBDTTT-EFT,” Adv. Energy Mater., vol. 5, no. 7, p. n/a–
n/a, Apr. 2015. 

[9] Y. Zhang, J. Griffin, N. W. Scarratt, T. Wang, and D. G. Lidzey, “High efficiency 
arrays of polymer solar cells fabricated by spray-coating in air,” Prog. 
Photovoltaics Res. Appl., p. n/a–n/a, 2015. 

[10] W.-I. Jeong, J. Lee, S.-Y. Park, J.-W. Kang, and J.-J. Kim, “Reduction of 
Collection Efficiency of Charge Carriers with Increasing Cell Size in Polymer 
Bulk Heterojunction Solar Cells,” Adv. Funct. Mater., vol. 21, no. 2, pp. 343–
347, Jan. 2011. 

[11] N. W. Scarratt, J. Griffin, T. Wang, Y. Zhang, H. Yi, A. Iraqi, and D. G. Lidzey, 
“Polymer-based solar cells having an active area of 1.6 cm2 fabricated via 
spray coating,” APL Mater., vol. 3, no. 12, 2015. 

[12] S. Choi, W. J. Potscavage, and B. Kippelen, “Area-scaling of organic solar 
cells,” J. Appl. Phys., vol. 106, no. 5, p. 054507, 2009.  



Chapter 7: Conclusions and Further Work  
Page 144 

Chapter 7  Conclusions and Further Work 

7.1 Conclusions 

Organic photovoltaic's present a promising technology for the manufacture of 

cheap, light weight and flexible solar power. The potential of roll-to-roll fabrication 

techniques are high as large sheets of OPV cells can be printed rapidly onto flexible 

substrates, unlike more the traditional silicon based technology [1]. More work 

must be done to improve the quality of printing films and the performance of large-

area cells however. Along with device efficiencies, the long term performance and 

lifetimes of OPV cells must be improved in order to produce a commercially viable 

technology [2] [3].  

A concept roll-to-roll production line has already been demonstrated by Krebs et al. 

and a resultant ‘solar park’ installation has been operating for over a year [4]. 

Out of the many large-scale solution deposition techniques, ultrasonic spray coating 

offers rapid, low temperature fabrication of a large range of materials. This work 

aimed to demonstrate the feasibility of ultrasonic spray coating as a technique for 

the fabrication of low band gap organic photovoltaic devices. All of the solution 

processed materials in a device stack were spray cast, achieving comparable results 

to those of spin cast references.   

Chapter 4 showed an ultrasonic spray coating process optimised for the deposition 

of PCDTBT:PC70BM active layers. The ultrasonic spray coater deposition technique 

was investigated and several deposition parameters were explored.  An optimised 

process is then used to fabricate devices, with a maximum PCE of 4.79% achieved. 

The process was then applied to a large scale 36-pixel device, achieving a 100% yield 

and efficiencies above 3.5%. Finally, a 900mm2 single pixel is fabricated with a PCE 

of 1.75% achieved. Light beam induced current maps show a variation in 

photocurrent generation across the cell.  
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In Chapter 5, a spray coating process was optimised for the metal oxide hole 

transport layers vanadium oxide and molybdenum oxide. Small-area devices were 

fabricated and performances matched those of devices with spin cast PEDOT:PSS 

hole transport layers of around 5% PCE. Film uniformity was characterised via 

atomic force microscopy and it was found that the vanadium oxide film matches the 

surface morphology of the ITO substrate on to which it is cast. Large 36 pixel 

devices were then fabricated, providing high pixel yields of 86% and 89% for 

vanadium oxide and molybdenum oxide devices respectively. 

Chapter 6 described the formulation of an ink for deposition of the hole transport 

material PEDOT:PSS. By combining an aqueous solution with isopropyl alcohol and 

ethylene glycol, wetting was improved on an ITO surface. OPV devices were then 

fabricated via spray casting the PEDOT:PSS layer and spin casting a PCDTBT:PC70BM 

active layer, achieving efficiencies of ~5%. PCDTBT:PC70BM and PBDTTT-EFT:PC70BM  

layers were also spray cast during fabrication, creating ‘fully’ spin cast devices. The 

spray coating process was then scaled up to larger substrate areas, and large device 

architectures were employed. 36 pixel architectures achieved similar results to the 

small device sizes, with the large PBDTTT-EFT devices achieving PCEs of over7.5%. A 

large four pixel device structure showed a decrease in performance when compared 

with the small area devices, potentially due to a mottling effect created by the 

drying film.  

7.2 Further Work 

Chapter 4 

The mottling effect of spray cast PCDBT:PC70BM causes a decrease in performance 

across the cell area. Further investigation into the cause of this mottling during 

drying is required. Further solvent blends and processing conditions can be 

investigated in order to increase film uniformity. Other photoactive material 

systems can be spray cast in order to investigate the versatility of the spray coating 

process. 
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Chapter 5 

While both the vanadium oxide and molybdenum oxide layers performed well when 

spray cast on large 36-pixel devices, the pixel area was not significantly increased 

during the investigation. The large pixel architectures employed in chapters 4 and 6 

can be used to access film performance over a larger area. 

Chapter 6 

The performance of PEDOT:PSS over a large area appears to be consistent with that 

of small area devices. The conductivity of the spray cast layer may aid with this 

process, and this should be investigated. 

 New device architectures could be designed, with conductive PEDOT:PSS in mind so 

as to reduce the impact a higher conductivity has on shunt resistance in the device. 

The conductive PEDOT:PSS could  also potentially be used as a replacement for the 

ITO anode layer. 
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