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ABSTRACT 

 

BACKGROUND 

Generally hypothesized hemodynamic forces and procedures (surgical and 

stenting) leading to arteriosclerosis and in-stent restenosis still remain 

entirely unclear.  More so, it is difficult to identify and differentiate which of 

the procedural injury and/or changes in the local hemodynamic forces due to 

stent presence influence the onset of undesired clinical events. This difficulty 

in identifying the main factors leading to in-stent restenosis is compounded 

as procedural injury and change in hemodynamic stresses usually co-exist 

in-vivo. To simplify the complexity in identifying the predictors of in-stent 

restenosis, this thesis focused on the effects of local hemodynamic forces 

within stented artery on endothelial cells that could lead to in-stent 

restenosis.   

Endothelial cells (ECs) play a critical element in the maintenance of healthy 

artery. Experimental studies of endothelial structure and function have 

presented evidence that physiological hemodynamic forces promote ECs 

elongation and atheroprotective endothelial phenotype whilst unphysiological 

hemodynamic forces promote atheroprone and polygonal shaped 

endothelial. Based on the above stated evidence, an experimental stent-cells 

interaction flow bio-reactor system was developed. This system is capable of 

subjecting ECs cultured in vitro to similar hemodynamic forces present within 

stented arteries in vivo. Computational models have been developed and 

used as complementary tool in the quantitative analysis of the mechanical 

forces being applied to the cultured cells. The computational models were 

validated to guarantee accuracy of computational results.  

METHODS AND RESULTS 

Human umbilical vein endothelial cells (HUVECs) were subjected to steady 

and realistic physiological left anterior descending artery (LAD) flow 

waveforms at hydrostatic pressures of 120/80 mmHg and 100 mmHg 

respectively at timescales of 6, 12 and 24 hours within the stent-cell 
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interaction model. The morphology of cells after exposure to the flow 

conditions where quantified by using a commercial computational image 

processing programme built on a MATLAB platform. The cells were also 

labelled for nuclear factor – kappaB (NFkB), a key regulator of inflammatory 

response [375, 425] and intercellular adhesion molecule (ICAM-1) after being 

stimulated with 200 U/ml of tumour necrosis factor-alpha (TNF-α) or exposed 

to the above stipulated flow and pressure conditions.   

Cultured HUVECs located anterior and proximal to the stented region of the 

stent-cell interaction model were observed to elongate and align more to the 

impinged flow direction with increasing time. These regions where marked by 

uniform wall shear stress (WSSs), spatial wall shear stress gradient 

(SWSSGs) and negligible oscillatory shear index (OSIs). This observation is 

consistent with investigations of the morphological changes of endothelial 

cells subjected to stresses in vivo and in vitro from other researchers [59, 

87]. Cells within the stented region however did not show strong alignment to 

the fluid flow direction. These regions were marked by non-uniform WSSs, 

SWSSGs and very high OSIs (0.35 – 0.45). Also HUVECs within the stented 

region were more polygonal shaped. It was also observed that in the 

absence of fluid stress, hydrostatic pressure stimulated cell proliferation, 

elongation, random alignment and a formation of cell multi layering structure. 

The phenomenon of cell multi layering is however absent when there is 

presence of fluid shear stress. HUVECs stimulated with TNF-α for 1 hour 

showed very high NF-kB expression whilst those cells exposed to the 

stipulated combined stress and pressure conditions for the same duration did 

not show NF-kB expression. Increased levels of ICAM-1 were observed 

when cells were stimulated with TNF-α for 6, 12 and 24 hours. However cells 

exposed to stipulated fluid stress and pressure conditions exhibited a time-

dependent selective expression of ICAM-1.    

CONCLUSION 

It is concluded from results of the experiments performed that different types 

of combined and/or individual stresses have distinctive effects on HUVECs 

morphological response and the genes that may be expressed by the cells.  
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CHAPTER 1 

INTRODUCTION AND OVERVIEW 

 

1.1 CORONARY ARTERY DISEASE:  IN – STENT RESTENOSIS 

 

Coronary artery disease (CAD) is the leading cause of death related to 

cardiovascular diseases worldwide [1-3]. The onset of this disease is initiated 

by the intimal thickening which reduces the arterial lumen size and possibly 

distal blood flow. This can cause tissue death downstream of the occluded 

artery as there is inadequate perfusion and ischemia due to reduced flow.  

It has been well documented that stent implantation in occluded coronary 

arteries improve resting coronary blood flow [4, 5]. However, the influence of 

stent geometry on local fluid dynamics and hemodynamic forces within the 

stented artery could lead to undesirable clinical events such as restenosis 

and in-stent restenosis (ISR) [6, 7]. Some researchers have shed light on 

how these local flow dynamics characterised by low WSS, high OSI and high 

SWSSG could be conducive to the continuous dysfunction of the 

endothelium and ISR progression [8-14].  Unfortunately clinical investigations 

into the changes of cells signalling cascade due to unphysiological 

mechanical force present at the stented site has not been firmly and fully 

established hence the pathophysiology of ISR still remains complex. 

Additionally, some clinical studies have postulated differences in risk factors 

associated with restenosis and those of native CADs. So, although there 

may be many similarities in the formation of restenosis and other CADs, 

each disease’s pathophysiology could be very distinct. Indeed, the 

pathophysiology of atherosclerosis involves lipid accumulation, inflammation  
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and smooth muscle cell proliferation that carries on for many years whilst 

restenosis is primarily a self-limited intimal hyperplasic process that results 

from damage to the integrity of the arterial wall by endovascular devices [14, 

15].  Hence, some mechanical stimuli such as WSSs may not necessarily 

play similar a role in the progression of ISR as have been associated with 

plaque formation in atherosclerosis [16, 17]. Mechanisms for ISR 

progression should therefore be independently evaluated for its contribution 

to the disease state.  

Computational studies have provided an alternate method in understanding 

and quantifying the hemodynamic forces which the cells are being predicted 

to experience. It has been hypothesized that WSS alters the functional 

properties and morphology of the cells which result in the activation of 

restenosis mechanisms [18, 19]. Whilst this assumption might not be totally 

flawed, it is difficult to make meaningful correlation between computational 

and experimental analyses of cells response to stresses and flow dynamics 

that influence the onset/progression of ISR. More so, computational analyses 

of the impact of local flow dynamics within stented arteries on arterial cells 

are built on several assumptions and fixed mathematical parameters. 

Computational limitations such as simplified simulation of complex stented 

artery geometry could also influence the ability to retrieve comprehensive 

data about the hemodynamic forces present in vivo. These factors therefore 

introduce a level of inaccuracy in the exact representation of flow dynamics 

and mechanical environment within a stented artery.  

There is therefore a need to establish a method that could relate 

computational data and experimental data to understand the sequential 

process and independent factors of cells response that initiate restenosis. 

The aim of my PhD project is therefore to address this need. To achieve this 

target, the project followed consecutively the below proposed plan: 
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1. Establishing computational model of a 2D cell-stent interaction design. 

2. Fabricating an experimental model of the 2D cell-stent interaction 

design. 

3. Analysing the effect of predicted mechanical forces on cellular 

response.  

 

1.2     FORMULATION OF HYPOTHESIS AND BASIS OF PROPOSED 

STUDIES 

 

1.2.1     COMPUTATIONAL MODELLING 

 

Hemodynamic forces experienced within the cardiovascular system could be 

analytically modelled and/or quantified by computational fluid dynamics 

(CFD) modelling. This could be achieved essentially by simplifying real 

events and physical parameters of the cardiovascular system into 

physiologically relevant and simple enough simulation models whilst taking 

into consideration the limitations of each analysis package. Some common 

limitations encountered with the use of either analytical models or CFD 

models are computational power and tools, measurement methods and 

mathematical parameters which could hinder in retrieving of detailed and 

accurate information. Thus to ensure true results of the mechanical 

environment present within the cardiovascular system from either analytical 

or CFD modelling, each model ideally needs to be validated against 

experimental data [20-22].  Blood flow dynamics within the cardiovascular 

system is complex as flow at each cardiac cycle is unique; both between 

different parts of the cardiovascular system as well as during time within 

each specific part. It is therefore important to note that the use of analytical 

models which could be an adequate tool to determine some mechanical 
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forces such as shear stresses experienced on arterial cells with simple flows 

could not be that adequate to provide accurate results for complex flows. For 

example early studies investigating mean WSS being subjected to vascular 

cells were calculated analytically using the Hagen-Poiseuille equation as 

shown below: 

 𝜏𝑚𝑒𝑎𝑛  =  
4𝜇𝑄

𝜋𝑅3  1.1 

where µ is the dynamic viscosity of blood, R is the radius of the vascular 

lumen and Q is the total volume flow rate. The assumptions used in this 

calculation are as follows: 

 The vascular lumen is of exactly circular geometry 

 Blood flow velocity profiles are axisymmetric and perfectly parabolic in 

both time and space 

 Flow is laminar (Reynolds number; Re < 1000) 

This method therefore obviates the need for CFD modelling especially if the 

physical system being analysed agrees with the assumptions made. 

However, healthy arterial lumen which may be considered nearly circular 

might necessarily not have axisymmetric blood velocity profiles due to 

complex geometry of the vascular vessel. Also, stenosed arteries do not 

have circular lumen which makes application of this method to a diseased 

artery not justifiable.  Additionally, this analytical calculation does not capture 

SWSSG and TWSSG which may be experienced on the arterial cells. So, to 

accurately evaluate the mechanical environment of either a healthy or 

diseased artery and especially when considering physiologically realistic flow 

profiles and factors, CFD modelling may be required.   

There have been several studies on the successful application of CFD 

simulations in evaluating the mechanical forces being subjected to arterial 
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endothelial cells (ECs). For example, Chaichana et al. [23] employed CFD 

simulations to model plaques in a left anterior descending (LAD) coronary 

artery generated from a patient’s data and investigated the hemodynamic 

effect of the stimulated plaques under realistic physiological cardiac 

conditions. Results from the CFD analysis of this study showed low flow 

velocity post-plaque region and high pressure gradient at the stenotic region 

in the LAD as compared to the LAD without plaques. It was consequently 

suggested that there is a direct parallel between coronary plaques and 

hemodynamic changes. The study by White et al. [24] is also another 

example where CFD analysis was successfully applied to flow systems used 

to subject ECs to mechanical stimuli. In this study, the effect of TWSSG and 

SWSSG on ECs under sudden or ramped onset of flow in a modified parallel 

plate flow chamber was investigated. The modified parallel plate flow 

chamber had a backward facing step which would simulate spatial patterns 

of fluid flow separation, re-attachment and recirculation. CFD results 

revealed locations of the reattachment points and the highest TWSSG within 

the modified parallel flow chamber to the different flow conditions. Cells 

responses were thereby able to be mapped to the fluid dynamics and 

mechanical forces present. 

In establishing an accurate computational model for the proposed study, it is 

considered imperative to determine the most appropriate rheological blood 

model to use especially if results are to be physiologically representative of 

occurrences in vivo. This is because there are some disparities in the 

analysis of blood flow phenomena and mechanical forces in some studies as 

these studies have used different blood rheological models. Hence, 

assessing the impact of blood flow fields and dynamics has varied. There 

have been many investigations, both theoretical and experimental studies 

which have led to the understanding of blood behaviour in stented and non-

stented coronary arteries [25-30].  
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Many computational studies in simulating blood flow in arteries have 

assumed blood to be Newtonian [31-34]. However, it is known that the 

rheology of blood is non-Newtonian. Bearing in mind the geometrical 

complexity of the human coronary artery, results achieved from assuming 

blood to be Newtonian to determine predictors of CADs could differ greatly 

from that achieved from a non-Newtonian simulations. Some studies argue in 

favour of using non-Newtonian models in analysing blood dynamics, albeit 

the assumption of blood flow in coronary artery as a Newtonian fluid could be 

a good approximation of blood characteristic [35-37].  

Soulis et al. [35] in an investigation into non-Newtonian models for molecular 

viscosity and WSS in the left coronary artery reported that for non-Newtonian 

blood behaviour, viscosity depended on the velocity gradient and varied 

depending on the flow conditions, the geometry of the artery and flow 

particulates. Hence there are many non-Newtonian viscosity models, the 

choice of the model of which could have noticeable quantitative and 

qualitative effects on the flow fields and shear stresses given the distinct 

geometry of the artery and parameters of each model. However, a standard 

non-Newtonian rheological model is not available to describe the exact 

behaviour of blood under all circumstances. So it is important to consider 

each investigation of blood flow and dynamics in the coronary artery 

individually. It is therefore important to choose the appropriate non-

Newtonian model to achieve acceptable results in the analysis of the effect of 

blood dynamics in the artery. Benard et al. [29] analysed the effect various 

blood rheological models on changes in intra-stent flow. In the study, it was 

reported that steady flow simulations of Newtonian model and non- 

Newtonian model based on Carreau-Yasuda in a 3.5mm diameter straight 

coronary artery with Helistent© implantation and subjected to flow rates of 

60mL/min and 140mL/min showed different WSS magnitudes. The WSSs 

achieved with the Newtonian model were under-estimated when compared 
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to the non-Newtonian model. However, a characteristic viscosity Newtonian 

model showed similar WSS magnitudes and distributions when compared to 

the non-Newtonian model. From this study, it was deduced that the use of 

characteristic viscosity Newtonian model could be a useful option in 

appropriately capturing the physics of a region of interest of which the use of 

a Newtonian model wouldn’t be ideal.    

Based on the above discussions, it is clear that the application of CFD 

simulations has been very useful in optimising and reproducing more realistic 

representation of the mechanical environment within physiological parts. It 

has also been useful in extending the range of quantifiable mechanical 

forces within cell culture fluidic flow systems; thus improving our 

understanding of cell mechanobiology.    

 

1.2.2     EXPERIMENTAL MODEL 

 

The damage to the integrity of endothelial monolayer during and after 

endovascular procedures has been proposed by studies as the initiator of 

some mechanisms that promotes restenosis and ISR [38-40]. As a result, 

there has been an active resurgence of studies into the technical and 

mechanical factors that could contribute to these adverse clinical events. For 

example, Briguori et al. [41] investigated the impact of stent strut thickness in 

relation to the rate of restenosis of nonrandomised group of patients with 

successful stent placement. Results achieved from the investigation led to 

the conclusion that thinner stent struts reduced the rate of restenosis. This 

result tend to agree with experimental findings which suggested that stent 

strut thickness could affect strut tissue coverage and therefore could lead to 

a delay in endothelialisation [42]. Jimenez et al. [43] and Mejia et al. [30] 

concluded from their studies on the effects of stent strut designs on 
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hemodynamic performance that stent strut designs did play a major role on 

influencing either a positive or negative hemodynamic performance within 

the stented artery.  Both studies also investigated into non-streamlined and 

streamlined struts and suggested that streamlined stent struts prevented 

blood flow conditions and hemodynamic forces that were conducive to 

initiate mechanisms that led to restenosis.  Mejia et al. [30] reported from 

their studies that more streamlined stent struts such as tear-drop shaped 

struts showed better hemodynamic performance than square or circular 

shaped struts. Hence, for tear-drop shaped struts, 96% of the inter-strut 

regions were exposed to favourable flow and hemodynamic conditions which 

prevented restenosis and for square shaped struts only 19.4%.  The 

significant progresses made within this research field have led to the 

optimisation of stents and stent designs as well as proposals of better and 

efficient methods of stent implantation. 

Comprehensive animal and human studies into restenosis and ISR have also 

helped to affirm mechanisms postulated to initiate these CADs. Karas et al. 

[44] and Farb et al. [45] linked arterial injury to neointimal thickness (NI) in 

stented coronary artery of a porcine and human respectively. Clinical 

investigations into the role of hemodynamic forces to the formation of NI 

hyperplasia in stented human coronary artery by Wentzel et al. [46] revealed 

the important interrelation that existed between them. It is crucial to note that 

these studies carried out have provided a more informed perspective into 

understanding the occurrence of the disease and its complexities. 

Nonetheless, running of these studies are expensive and so in vitro models 

have provided a much cheaper alternative to analyse predictors of CADs.   

The design of cell culture flow systems to subject cells to predicted 

mechanical stimuli has facilitated the understanding of the effects of 

hemodynamic forces to ECs. Bio-reactor flow systems capable of producing 

either physiological or non-physiological flow profiles onto cultured 
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monolayer of ECs on a microscopic glass slide within a parallel plate flow 

chamber (PPFC) or modified PPFC have been used to elucidate the 

independent and combined effects of varied stresses on ECs [24, 47-52]. 

Breen et al. [52] designed a flow bio-reactor system capable of applying 

WSS and tensile strain of physiological proportions concomitantly to ECs 

monolayers. Evidence in the studies demonstrated that whilst investigation of 

ECs response to isolated forces in vitro could provide valuable information; 

the effect of combined mechanical forces on ECs in vitro could provide more 

accurate information of cellular response similar to in vivo conditions. Also an 

important revelation from this literature was that it was critical that the bio-

reactor developed was biocompatible, non-cytotoxic, and appropriate for the 

cellular mechanical loading desired and for the duration needed in order to 

achieve accurate data.   

Therefore, in designing an experimental model able to provide the 

mechanical environment realistic to that of a stented artery in vivo; it is clear 

that the bio-reactor flow system used be able to meet the above stipulated 

conditions.  Also from the referenced literature on the application of bio-

reactors to study ECs response to fluid dynamics [24, 47-52], it is apparent 

that ECs cultured on microscopic glass slide is adequate enough to 

represent the structural ECs lining of the artery in vivo. However, the analysis 

of the response of ECs cultured on microscopic glass slide substrate to 

simulated arterial fluid flow could be comparable to that within an artery, if 

arterial wall is assumed rigid. As the focus of this project is to investigate into 

ECs response to fluid dynamic within stented artery, the assumption that 

artery is rigid is justified as diseased artery is marked by calcified lesions 

resulting in reduced or zero arterial compliance [4, 53]. Also the presence of 

stent in artery may reduce flexibility of artery [54]. So, in establishing our 

simple cell-stent experimental model it is proposed that a microscopic glass 

slide be used. However, since our investigation is to mimic the fluid dynamic 
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within a stented artery, the glass slide would be modified to represent a 2D 

local geometry of a stented artery. This is achieved by using two photon 

polymerisation (TPP) technique to fabricate stent like polymer microstructure 

features on the microscopic glass slide.  

TPP is a powerful microfabrication tool which has proved very useful in 

tissue engineering and biomedical engineering applications. Gittard et al. [55] 

in a review discussed how some researchers have used TPP technology to 

fabricate 3D microstructured medical devices, prostheses and scaffolds for 

tissue engineering. Koskela et al. [56] investigated into the biomedical 

applications of TPP by polymerising PEGda and poly(𝜀-caprolactone)-based 

oligomer (PCL-o) to create arbitrary microstructures on glass slide and 

studied the cell attachment, viability and migration on these structures. 

Human embryonic stem cells (hESCs) were static cultured on the two 

different polymer microstructures and results achieved showed the hESCs to 

have attached on the surface of both polymer microstructures. The cells 

were verified as viable and non-cytotoxicity of both polymers with the hESCs 

was also reported. However, the polymers did not promote cell migration. 

These two different polymer fabricated microstructures were therefore 

concluded to have potential for cell-based applications.  

Employing the TPP technology as part of the process in designing the cell-

stent interaction model is therefore thought to be suitable as bespoke 

biocompatible microstructures could be fabricated with micron accuracy for 

the cell-based application model. However microstructures fabricated using 

TPP may be unsuitable for direct fluid stress experimentation for numerous 

reasons that soft lithography method can address. For example, it is 

reasoned that the leaching out of uncured polymer process after the 

fabrication of microstructures via TPP could cause the fabricated structures 

to weaken. Thus the leached out structures may easily deform during the 

fluid flow experiment. To overcome this problem, soft lithography technique 
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was added to the design fabrication process. Soft lithography allows for 

microstructures fabricated via TPP to be replicated and also reinforces the 

structural strength of features fabricated. Hence, it is suggested that 

fabricating the stent like microstructure features on the microscopic glass 

slide via TPP and soft lithography would prevent significant deformation of 

the structures during flow experimentation which consequently could 

influence result analysis. The fabrication of stent like features on the glass 

slide is thought to simulate the local geometric change of artery as a result of 

stent implantation. Furthermore, flow conditions observed within the stented 

artery such as flow separation, flow recirculation and disturbed shear 

stresses are also believed to be captured when flow is simulated over the 

micro-fabricated stent like features. Therefore the microfabrication of the 

stent like features on the microscopic glass slide would create the 

mechanical milieu assumed to be present within stented artery.  

Correlating the two studies discussed above, it is hypothesized that the 

presence of stent within artery creates unphysiological mechanical stimuli 

which may influence cells response leading to activation of ISR. 

 

1.2.3     HYPOTHESIS 

 

It is hypothesized that local mechanical forces such as WSS, T/SWSSG and 

OSI present due to stent implantation into artery could influence the 

morphology and molecular response of ECs which could initiate ISR.  

To test this hypothesis, a computational model of a simple semi-circular 

helical stent was developed. This is discussed in chapter 4. This model 

would serve as a foundation to establish a cell-stent interaction model to 

study cells response under the determined flow dynamics. Chapters 6 



 

12 
 

CHAPTER 1 INTRODUCTION AND OVERVIEW 

 

discusses into details the mechanical forces present within the cell-stent 

interaction model. Correlating the computational model analyses to 

experimental cell-stent interaction studies which are discussed in Chapters 7 

and 8 provide an understanding to how cells respond to the flow dynamics. 

This analytical study is also indicative of the local mechanical conditions 

within the stented artery that might/might not influence the activation of ISR.   

The aim and objectives to address the proposed hypothesis are discussed 

below. 

 

1.3        AIM AND OBJECTIVES 

 

The aim is to quantitatively analyse the influence of mechanical forces on 

ECs within a stented artery and determine what mechanical forces, if any, 

correlate most strongly with the development of ISR. Particular emphasis of 

this study would be on the effect of the mechanical parameters at 

physiologically relevant levels on ECs.    

 

To achieve the stated aim, the following main objectives are addressed:   

 Use CFD to establish the most appropriate rheological blood model to 

use in the cell-stent experimental model. 

 Develop computational simulation of a simple cell-stent experimental 

model to predict WSS, T/SWSSG and OSI within the model. 

 Design a flow bio-reactor system to apply the predicted mechanical 

forces at physiologically relevant parameters on ECs.  

 Quantitatively analyse the images of ECs and determine their 

morphological changes in response to the mechanical forces 

experienced.  

 Label ECs for inflammatory and adhesion molecules to determine 
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cellular response of the cells to the predicted stimuli.    

 

1.4        RESEARCH OUTLINE 

 

Figure 1 shows a workflow diagram with the set objectives to achieve the 

given aim of project. 

 

     

Figure 1. Diagram showing workflow of objectives to achieve aim 

120/80 mmHg 

mmHg 
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CHAPTER  2 

 

BACKGROUND 

 

2.1        CORONARY ARTERY 

 

Coronary arteries are vessels that carry and supply oxygen rich blood to the 

heart muscle.  As the heart is a very important organ in the body, it is 

necessary to ensure that the heart is always healthy. In that, blood vessels 

that supply nutrients to the cardiac muscles to enable the heart work must 

also be healthy. The heart has two main coronary arteries namely [57]: 

 Right coronary artery (RCA): This artery supplies oxygenated blood to 

the right atrium and also to the walls of the ventricles. 

 Left main artery (LM): This artery distributes oxygenated blood to the 

left anterior descending and the left circumflex. The LM is bigger than 

RCA in diameter. 

Each of these main arteries also then branches into daughter arteries; thus 

the right coronary artery branches into the posterior descending artery and 

the left coronary artery also branches into the left anterior descending (LAD) 

and the left circumflex (LCx).  Figure 2.1 shows an illustration of these 

arteries. The daughter arteries all supply oxygenated blood to specific parts 

of the heart. Blood flow at the cardiac flow phases (systole and diastole) 

within the different vessels of the coronary artery are however distinct [58]. 

For instance, the extravascular compression of the myocardial vessels in the 

left ventricle where intra-ventricular pressure is at its highest causes flow in 

the LAD to fall to zero or even sub-zero during the systolic phase. In the RCA 
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however, intra-ventricular pressure is low during systole phase and so blood 

flow in the RCA is not heavily influenced as compared to that of the LAD. 

During the diastolic phase, the LAD becomes patent which causes an initial 

heavy inflow of blood and subsequently flow under aortic pressure. The 

blood flow in the LAD is therefore characterised by negative and positive flow 

in the systole and diastole phase respectively whereas in RCA there is 

positive blood flow at both systole and diastole phase.       

 

 

 

 

 

Figure 2.1  Anatomical illustration of the distribution of coronary arteries [55]. 
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2.1.1     ARTERIAL WALL ANATOMY  

 

Arteries are built of three distinctive wall layers: 

 Tunica Intima: This layer is composed of three components; a simple 

squamous epithelium called endothelium, a basement membrane and 

an internal elastic lamina. The tunica intima rests on a tissue 

membrane rich in elastic and collagenous fibre. It also serves as an 

antithrombotic surface.  

 Tunica Media: This layer consists of mostly smooth muscles fibres 

which encloses the tunica intima and an external elastic lamina. The 

elastic lamina helps the artery to expand and recoil during the 

expansion and contraction of the heart in circulating blood into the 

arterial system. The vasoconstriction and vasodilation of the smooth 

muscle fibres help to regulate the blood pressure. 

 Tunica Externa: This layer is relatively thin as compared to the other 

two layers and has connective tissue made up of irregularly arranged 

elastic and collagenous fibres. The tunica externa provides tensile 

strength to the artery. 

These distinctive arterial wall layers are illustrated in Figure 2.2. 

Arteries are constantly being subjected to mechanical stresses as a result of 

continuous flow of blood through them as shown in Figure 2.3. Some of the 

mechanical stresses which may be experienced in arteries are the hoop 

stresses and compressive stresses which are as a result of the pressure of 

blood flow. The endothelium also experiences a direct impact of shear 

stresses which is caused by the friction of blood flow on the endothelial 

surface. These and other stresses in arteries are important stimuli that 

influence atherogenesis by regulating the functions of ECs, activities of the 

smooth muscle cells and the interaction of ECs with blood components.   
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Figure 2.2  Anatomy of arterial wall layers 

 

 

 

Figure 2.3  Diagram of stresses experienced on arterial wall 
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Additionally, there is evidence that mechanical forces associated with blood 

flow in the artery play a vital role in the acute control of the vascular tone and 

the regulation of the arterial architecture [59-61]. A review article by Epstein 

et al. [62] reported a direct correlation between arterial remodelling and 

arterial stress. For example, there is an increase in width of arterial wall to 

width of artery lumen ratio when there is an elevation in arterial stress. 

Therefore increase in local blood flow in the artery is associated with arterial 

lumen diameter increase, whereas decrease in flow results to a decreased 

lumen diameter. Kohler et al. [63] investigated the effect of increased blood 

flow on neointimal thickening of endothelialised polytetrafluoroethylene grafts 

in male baboons. Results from the studies showed a significant decrease in 

the cross-sectional area of neointimal thickness with increase of blood flow 

and stress (arterial lumen increase), whereas decrease or complete 

cessation of blood flow resulted in a rapid elevation of neointimal thickness 

(arterial lumen decrease).   

Although the biological process of arterial remodelling may involve the 

cellular activities of many different cells in the artery, it is suggested that the 

endothelium plays a prominent role [62]. In that, the endothelium which 

ideally lines the interior surface of the artery is constantly being subjected to 

direct impact of mechanical forces and humoral factors. The endothelium 

therefore serves as sensory cells which transduces mechanical and humoral 

stimuli and elicit biological responses which consequently may affect the 

arterial structure.  

In the next section of this chapter, an overview to the cause and treatment of 

coronary artery disease are discussed. Additionally, this section would 

discuss the role of endothelium dysfunction to mediate the initiation and or 

progression of coronary artery disease.   
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2.2        CORONARY ARTERY DISEASE 

 

Coronary artery disease (CAD) is the hardening and thickening of the walls 

of arteries that supply blood to the myocardium; hence obstructing adequate 

perfusion throughout the blood vessels. This is caused by the build-up of 

fatty substances, calcium and cholesterol-containing deposits (plaques). 

Whilst the exact cause of this disease still remains unknown there are 

various factors which have been attributed to aid the progression of the 

disease such as smoking, high blood pressure, diabetes, obesity and high 

cholesterol.  

Symptoms of coronary artery disease are not always obvious as some may 

go unnoticed and only become apparent after an episode of a heart attack. 

However, some associated symptoms of CAD are angina, palpitations and 

irregular heartbeat. 

CAD is the most common cause of death in developed countries such as the 

UK and USA. Clinical review reports on CAD by the National Health Service 

(NHS) in the UK showed that about one in five men and one in seven women 

die from this disease [1]. The 2010 statistical update on CAD in the USA also 

showed that CAD was the main cause of death in one is six people [2]. 

Despite these disturbing statistics, it has been reported that there has been a 

recent decline in CAD mortality in developed countries whilst in the 

developing world both CAD mortality and the prevalence of CAD risk factors 

are on the sharp increase [3]. The decline of CAD mortality in developed 

countries is thought to be attributable to the identification of CAD risk factors 

which have led to better treatments for CAD patients and successful 

preventive efforts [64]. Over the past years, CAD mortality in the US has 

declined by 60% [65]. A study to show CAD mortality rates in developing 

countries estimated that mortality rate of CAD in developing countries would  
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double from 1990 to 2020 accounting for approximately 82% of death 

relating to CAD worldwide [3]. The increase in CAD mortality in developing 

countries is thought to be attributable to the urbanisation and “globalisation of 

dietary habits” – thus the culture of fast-food in the developing countries [66-

68]. For instance in some developing countries, increased tobacco use is 

associated with urbanisation and hence such lifestyle is adopted by the 

people living in these countries. Unfortunately smoking tobacco increases 

the risk of developing atheromatous plaques in the coronary artery which 

contributes to the progression of CAD. In 2003, a survey conducted on 

tobacco use in India showed that 30% of the Indian population between the 

ages of 15 years and over either smoked or chewed tobacco [69]. A study 

found CAD prevalence in the urban parts of India to have risen from 1% in 

1988 to 13.2% in the year 2007 [70]. 

 

2.3        CAUSES OF CAD 

 

Dawber et al. [71] indicated that the underlying cause for CAD was 

atherosclerosis. Atherosclerosis could lead to myocardial infarction (MI) or 

acute myocardial infarction (AMI). These can cause total blockage of blood 

flow through the coronary artery causing the heart cells to die. As discussed 

in a review by Aboyans et al. [72], atherosclerosis occurs mostly in large 

arteries. However, it was acknowledged that there was a wide disparity in 

what constituted a large and/or a small artery in relation other types of 

arteries being compared. Hence definition of a small or a large artery was 

based on the site where the atherosclerosis was present; thus proximal 

atherosclerosis occurred in large arteries and distal atherosclerosis occurred 

in small arteries. Atherosclerotic lesions could also be classified based on 

their severity. A report by Stary et al. [73] characterised the lesions into four 

main types based on their morphological features. The first two (type I and 
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type II) found mostly in children although could occur in adults.  

 The initial stage of the lesion development is known as type I. Lesions 

at this stage are marked by small amounts of lipids in the arterial 

intima.  

 The type II lesions consist mainly of macrophages foam cells and 

more distinctively defined.        

Atherosclerotic lesions could be termed type III when smooth muscle cells 

(SMCs) start to colocalize in the intima. At this point also, there is a 

significant presence of extracellular lipid droplets observed at lesion site and 

lesions tend to produce extracellular matrix [74]. This is the last stage of 

when the lesion is considered clinically silent (thus type I to type III) and 

before classed as an advanced lesions.   

Further development of the lesion and continuous stimulation of SMCs 

proliferation and migration into the intima by chemoattractant factors 

eventually lead to fibrous cap forming on top of the lesion [75]. This stage of 

the lesion is classified as type IV. The advanced stage of the lesion is further 

categorised into sub-types with each type indicating the developmental stage 

of the fibrous cap, its clinical manifestations and fatal outcomes [73].          

 

2.3.1     ASSOCIATION OF ARTERY MORPHOLOGY WITH 

ATHEROSCLEROSIS 

 

Studies have shown that atherosclerosis is more prone in arterial regions 

which are curved and bifurcated [8, 76, 77]. It has been suggested that these 

geometrical complexities of the artery could lead to complex flow field which 

possibly changes the haemodynamic conditions of the artery and hence 

influence the pathogenesis of atherosclerosis [78]. Dvir et al. [79] in a study 
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investigating the relationship between RCA morphology with atherosclerosis 

reported that C-shaped RCA was associated with atherosclerosis whilst the 

sigma-shaped RCA was not. In the study, the coronary angiogram of 120 

patients with RCA dominance was examined. Out of the 120 patients, 60 of 

them had no significant obstruction in the RCA whilst the other 60 patients 

had significant obstruction in the RCA. In the examination, it was reported 

that C-shaped RCA was shorter in length (115 ± 23 mm) compared to the 

sigma-shaped RCA (140 ± 31 mm). More so, there was significantly more 

atherosclerosis in the proximal region of the C-shaped RCA compared to the 

sigma-shaped RCA. 

These findings tended to agree with Dvir’s previous studies which made 

strong relation between short RCA and atherosclerosis [80]. In the previous 

studies by Dvir et al. [80] it was suggested that short RCA had a higher 

possibility of having fibrous plaque; hence higher susceptibility to 

atherosclerosis. Conversely in a long RCA, pressure decreases 

proportionally to the length of the RCA and therefore the longer the RCA the 

more the RCA is able to absorb cardiac cycle pulsations which could change 

the haemodynamic conditions in the artery and influence the onset of 

atherosclerosis.  

Several autopsy and angiography studies have reported proximal 

atherosclerosis to be more dominant in the coronary arteries [81-85], 

especially in the LAD and LCx arteries [86] as compared to distal 

atherosclerosis. Strong et al. [87] also attested strongly to these reports that 

stated LAD and LCx to be more disposed to atherosclerosis as it was 

reported that these arteries had more proximal branches which are described 

as predilection sites of atherosclerosis lesion formation. Gazetopoulos et al. 

[88] examined the association of the length of LM artery and the degree of 

atherosclerosis formation in 204 dead patients. In the investigation it was 

found that atherosclerotic lesions in LAD and LCx arteries with short LM  
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occurred quicker and progressed rapidly as compared to atherosclerotic 

lesions in LAD and LCx arteries with long LM. It was therefore suggested 

that the long LM artery may employ some protective mechanism against the 

development of atherosclerosis in its branches. 

 

2.3.2     ASSOCIATION OF MECHANICAL FACTORS WITH 

ATHEROSCLEROSIS 

 

As briefly discussed in section 2.1.1, ECs are known to play an important 

role in the homeostatic functions in response to several chemical and 

mechanical stimuli due to blood flow and blood pressure [89-91]. Hence 

normal functions of the ECs are essential and dysfunction of the cells plays a 

significant role in the occurrence and progression of the arterial disease. 

Many studies have reported that local mechanical and haemodynamic 

factors may be significant to the progression of atherosclerosis [92-94]. More 

so, WSSs in particular have been often linked to influence the development 

and localisation of the atherosclerotic plaque [16, 95, 96]. This principle is 

supported by the reasoning that WSS is proportional to the gradient of the 

flowing blood velocity particularly of a laminar flow in a regular sized artery.   

Hence WSS closely represents the local blood flow and could be considered 

as the most probable stimulus to cause ECs to respond to changes in blood 

flow rate. Experimental studies on the effect of WSSs on endothelial function 

revealed that WSSs above 4Pa cause the endothelium surface to be 

irreversibly damaged [97]. Additionally, the rapid flow change, oscillatory flow 

with flow reversal and low net flow could encourage endothelial dysfunction 

which may promote atherosclerotic plaque formation in the artery [98-100]. 

It has been postulated that low WSS due to low blood velocity leads to the 

arterial region becoming prone to atherosclerosis. In a study by Morrisett, low  
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WSSs were reported to influence the increase of low density lipoproteins 

which have been associated to atherosclerosis formation [101], whilst at the 

same time increase the permeability of the endothelium layer to the 

lipoprotein. 

The progression of these phenomena over a period of time initiates the onset 

and formation of atherosclerotic plaque. The growing plaque tends to 

minimise the lumen size which therefore causes lower and disturbed flow at 

the post-stenotic regions of the artery. These occurrences and flow pulsation 

which generates oscillatory shear stress (OSS) which may further facilitate 

the formation of atherosclerosis lead to the progression of atherosclerotic 

plaque downstream of the lesion [92]. In a study by Ku et al. [102], the 

effects of pulsatile flow conditions on hemodynamic forces to intimal plaque 

deposition in human carotid bifurcations was examined. A laser Doppler 

velocimetry was used to calculate the WSSs in the bifurcations and 

comparison made between the WSS and intimal plaque thickness. Results 

from the study showed strong correlation between intimal plaque thickness 

and low WSS and oscillations in the WSS direction. This led to support the 

hypothesis that low WSSs and OSS could be key predictors of 

atherosclerotic plaque formation and localisation. 

It is worth noting however that although significant correlation between low 

WSS and atherosclerosis development has been generally accepted and 

presented in most literature, recent study by Peiffer et al. [103] has 

concluded otherwise. In a systematic review of literature that compared 

hemodynamic forces with atherosclerotic plaques, Peiffer et al. reported that 

the evidence of the aforementioned hypothesis was less robust. It was also 

stated that interpretations of data from the different studies to support the 

current consensus were subjective; hence diverse techniques have been 

used to characterise the lesion distribution and the hemodynamic factors that 

might have caused them. To attest to this statement, Peiffer took five studies  
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that made a quantitative point-by-point comparison between lesion location 

and low WSS and OSS into account. The use of a point-by-point analysis 

was considered as a rigorous method for quantifying this relationship. 

Results achieved from the studies did reveal no significant connection 

between the low and oscillatory stresses and intimal thickening [104-108]. It 

should be made clear that although these findings are interesting revelations 

and heterodox to the established theory of low and oscillatory stresses, the 

level of significance is very much dependent on the statistical method used. 

Wentzel et al. [109] reached a conclusion that the significance level of the 

correlation between WSS and atherosclerotic lesion predilection sites in 

coronary arteries were affected depending on whether or not stresses data 

were averaged in the axial artery direction.    

 

2.4        TREATMENT OF CAD 

 

Treatments of CAD have involved coronary-artery bypass grafting (CABG), 

percutaneous coronary intervention (PCI) and/or medical treatments.  

 Medical Treatments: Over the past years, medical treatments of 

CAD have improved because of the availability of new and more 

potent drugs that lower the risks factors and development of CAD. 

The availability and use of cholesterol-lowering drugs such as statins, 

blood pressure lowering drugs, calcium blockers and anti-platelet 

agents have helped lower the risk of CAD development in high risk 

patients [110]. 

 

 Percutaneous Coronary Intervention: PCI treatments of CAD have 

improved in the past decades and thus revolutionised the 

management of CAD. The use of stents, - bare metal stents (BMS)  



 

26 
 

CHAPTER 2 BACKGROUND 

 

and drug eluting stents (DES) together with dual anti-platelet therapy 

has reduced CAD morbidity and mortality associated with PCI and 

made PCI safer [111]. 

 

 Coronary Artery Bypass Graft: Studies of CABG treatment in high 

risk CAD patients- patients with diabetes and patients with multi-

vessel disease revealed that CABG significantly reduced the rate of 

mortality and increased the rate of complete revascularisation in these 

groups [112-114]. 

PCI and CABG are both established treatment modalities of invasive 

revascularisation for CAD patients; however the debate on which treatment 

modality is best is still on-going [115-117]. Most of the conclusions reached 

on this debate have hugely been based on some factors such as the 

morphology and location of the lesion in the artery in addition to the medical 

conditions of the patient. Other factors such as complications and risk factors 

associated with each treatment have also been taken into account. 

Nonetheless, these factors used in comparing the efficacy and safety of 

CABG and PCI have sometimes led to conflicting data. Optimal treatment of 

CAD has therefore not been achieved and hence more needs to be done.  

The use of PCI has increased over the years becoming, one of the most 

common medical interventions being performed [118, 119]. Further studies 

by Mack et al. [120], Ulrich et al. [121] and Gerber et al. [122] have all shown 

data which revealed increase in PCI treatment and decrease in CABG 

treatment for CAD between the years 1987 to 2004. In a recent national audit 

of PCI procedures published in 2014 by the British Cardiovascular 

Intervention Society it is reported that about 4 in 5 CAD patients are treated 

with PCI whilst 1 in 5 CAD patients are treated with CABG [123]. On the 

account of CAD treatment modalities presented, it is clear that PCI has been 

and still is very relevant in the management of CAD.  
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Although PCI has been suggested as the most preferred treatment choice for 

CAD, it is necessary to clarify that optimal treatment with PCI has not been 

achieved. However, there have been great improvements over the years to 

make PCI treatment more efficient. These improvements, successes and 

limitations in the use of PCI for CAD treatment is discussed in the next 

chapter. 

 

2.5        THE NEED FOR CORONARY ARTERY STENTS 

 

The initial method of performing PCI involved “plain old balloon angioplasty” 

(POBA) where an inflatable balloon with the aid of a catheter is inserted into 

the clogged artery to open it. However, its success was hampered by many 

problems such as restenosis, acute vessel closure and coronary artery 

dissection [124-126]. To reduce these complications the coronary stent was 

invented. The stent was to serve as a scaffold to hold open the occluded 

lumen and prevent vessel closure after PCI. The “Wall” stent was the first 

coronary stent to be implanted in a human and this was done by Sigwart et 

al. [127] in 1986. 

In 1993, the use of coronary stents during PCI became widely accepted after 

the publication of two benchmark trials; the Belgium Netherlands Stent 

Arterial Revascularisation Therapies Study (BENESTENT) and the North 

American Stent Restenosis Study (STRESS) which provided evidence of the 

safety of stenting and also significant improvements in angiographic 

outcomes [128, 129].  These studies established the use of coronary stent 

implants during PCI as the standard of care and also drove the Food and 

Drug Administration to approve bare metal stents (BMSs) to treat occluded 

blood vessels [130]. 
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2.5.1     THE SUCCESS AND COMPLICATIONS OF BMS 

 

By 1999, 84.2% of PCI procedures involved the use of BMS [131] due to the 

positive results published in the above mentioned benchmark trials. In the 

STRESS trial, it was reported that restenosis decreased from 42% to 32% 

and in the case of BENESTENT trial, restenosis decreased from 32% to 22% 

[130]. Also, in a further study on POBA and coronary stents, it was reported 

that the restenosis rate with the use of BMS was about 20% - 30% which 

was better compared to POBA which had restenosis rate of about 30% - 

60% [126]. 

Despite the reported advantages of BMS implantation during PCI, for 

instance the decreased rate of restenosis; the BMS restenosis rate is still 

considered clinically unsatisfactorily high due to the exponential increase in 

the use of BMS during PCI. In addition, BMS restenosis is very prominent in 

high risk patients. Subsequent trials on BMSs also showed that there were 

some risk factors and concerns related with this procedure. These trials 

reported that BMS implants resulted in acute and sub-acute stent thrombosis 

(ST) rates of 16%-24% and also in-stent neointimal hyperplasia (NIH) [44, 

132-135].  The rise of some of these problems as a result of BMS 

implantation were directly related to the abnormal proliferation and migration 

of vascular smooth muscle cells (VSMCs) at the stented site of the artery 

[136].  Additionally, injury to the endothelial layer of the artery due to stenting 

initiated inflammatory responses which also contributed to the event of 

restenosis [137, 138]. The initial use of BMS during PCI has led to more 

problems compared to the use of POBA alone as more incidents of ST, 

myocardial infarction (MI) and death were reported [128, 129].  Ultimately, 

the advent of BMS implantation during PCI which was thought to be the 

breakthrough in reducing restenosis and thrombosis now seemed elusive. 

However, subsequent practices and management during and after BMS  
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implantation such as optimising the collocation of the stent struts to the 

vessel wall and using dual-antiplatelet therapy after the stent implantation 

have led to significant reduction of ST [139-142]. These improvements in the 

management of BMS implants nonetheless did not reduce the occurrence of 

restenosis. BMS were still associated with a 20% to 30% rate of restenosis 

within 6 months of implantation [136] and an increased rate of target lesion 

revascularisation (TLR). Some literatures reported that repeat 

revascularisation occurred in about 60% - 80% of restenotic lesions [143-

145]. 

Reports on the advent of BMS ISR had been previously perceived as a 

benign event since clinical presentation of ISR had been silent [146]. 

However, Chen et al. [147] concluded from their study on the benignity of 

BMS ISR that clinical ISR was more severe than assumed. The study 

showed cases of unstable angina (36%) and myocardial infarction (MI) were 

the manifestation of ISR and that patient with unstable angina required 

hospitalisation. Nonetheless, depending on the classification applied to what 

clinical cases were considered as the acute coronary syndrome of BMS ISR, 

the statistics of the benignity of ISR could differ. Walters et al. [148] classified 

acute coronary syndrome as a combination of rest angina and acute MI and 

hence in the report stated  68% of acute coronary syndrome accounted for 

BMS ISRs.  

POBA, atherectomy, brachytherapy and repeat stenting have been some of 

the re-intervention mechanisms employed to prevent ISR [149-151]. 

However as reported by Yokoi et al. [150] and Lemos et al. [151] some of 

these treatments such as POBA increased the rate of restenosis to 85% and 

also treatment failure occurred in about 30% of cases after brachytherapy. It 

is thus concluded that restenosis is the bane of PCI treatment with BMS. 
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2.6        UNDERSTANDING THE ONSET/PROGRESSION OF ISR 

 

Since ISR remains the main complication associated with the use of BMS 

during PCI, many studies have tended to focus on understanding factors that 

initiate the onset and/or progression of ISR. These studies could be grouped 

into two main sections namely experimental studies and computational 

studies. 

 

2.6.1     EXPERIMENTAL STUDIES 

 

The mechanisms of restenosis have been under investigation since this 

disease was realised to limit the efficacy of POBA in treating CAD patients. 

Pathological studies by Nobuyoshi et al. [152]  on the causes of restenosis 

after POBA treatment in 20 CAD patients proposed three major mechanisms 

of restenosis. These mechanisms were; thrombus formation due to 

endothelial denudation, intimal proliferation of VSMCs as a result of plaque 

splitting and elastic recoil due to the expansion of the vessel wall. Out of the 

three mechanisms, intimal proliferation of VSMCs was considered to be the 

main mechanism of restenosis. The conclusion reached by Nobuyoshi et al. 

tend to agree with earlier studies by Garth et al. [153] which also examined 

the pathological changes in the coronary arteries of three CAD patients who 

died after POBA intervention. The report demonstrated that these patients 

had prominent proliferation of SMCs on the neo-intimal and intimal surfaces 

of the coronary arteries. These intimal proliferations of SMCs were attributed 

to cause restenosis in the patients after POBA. However, Clowes et al. [154] 

investigation into a rat ballooned carotid artery to demonstrate the 

contribution of SMCs migration to injury induced intimal thickening (IT) 

showed that SMCs migration alone without proliferation accounted partly for  
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the accumulation of intimal SMCs. The study therefore suggested that SMCs 

migration could play an important role in cells response to injury.  

Nonetheless, this dogma of SMCs proliferation and migration being the main 

mechanism responsible for the onset/progression of restenosis after POBA 

have been suggested as false in later studies. 

Clinical and animal studies have questioned the dogma which suggested 

SMCs proliferation and migration to be the predominant mechanism of 

restenosis after POBA [155-157]. This was because arterial remodelling 

rather than SMCs proliferation and migration was found to be the dominant 

factor responsible for restenosis after POBA.  This may explain the reason 

for the failure in strategies that were employed to prevent restenosis which 

were based on limiting SMCs proliferation after POBA treatment. An 

intravascular ultrasound (IVUS) study by Mintz et al. [158] pointed out that 

restenosis after POBA was determined predominantly by the direction and 

magnitude of arterial wall remodelling.   

 

2.6.1.1  ISR IN BMS 

 

Meta-analysis of ISR after stent placement with various coronary artery stent 

types by Kastrati et al. [159] highlighted that main predictors of restenosis be 

explored among lesion and procedural parameters. The knowledge of these 

factors would aid in predicting the risks of the disease. Indeed whereas 

restenosis in POBA has been shown to be mainly due to arterial remodelling, 

ISR after BMS implantation have been attributed primarily to neointimal (NI) 

tissue proliferation/migration and extracellular matrix (ECM)  accumulation 

[160, 161]. Arterial remodelling involves the expansion of the media and 

external expansion membrane during plaque development [162]. The plaque 

is located within the media and does not develop into the lumen. However,  
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the lumen area tends to diminish when the plaque growth reaches above 

40% area stenosis. On the other hand, NI tissue proliferation/ migration 

involves smooth muscle cells within the medial layer of the artery migrating 

into the intima where they continue to proliferate [163]. Continuous migration 

and proliferation of these smooth muscle cells consequently cause intimal 

thickening which also results to luminal size reduction.  Hoffmann et al. [160] 

in a study predicting the pattern and mechanisms of ISR using IVUS 

confirmed that intimal hyperplasia was the main mechanism of late lumen 

loss after BMS implantation. Results from the study also demonstrated that 

stents were able to resist remodelling forces that otherwise may have 

contributed to restenosis and hence arterial remodelling was not the major 

mechanism of ISR. Subsequent studies from Hoffmann et al. [164] on 

chronic arterial responses to stent implantation showed that BMS induced 

tissue proliferation both within the endo-luminal surface of the stent and in 

the tissue layers surrounding the stent struts. It has been postulated that 

there could be no parallels drawn between NI proliferations with injury period 

despite evidence that NI development is closely linked with medial dissection 

during stent placement [15]. It is therefore suggested that NI formation is a 

product of complex mechanisms which might also involve the axial 

displacement of the primary stenotic lesion to neighbouring arterial segments 

during stenting.      

In other studies, arterial injury and inflammation have been linked to ISR [45, 

165]. Animal studies by Karas et al. [44] and Schwartz et al. [166] into the 

relationship between arterial injury and NI thickness in stented porcine 

coronary artery released data which established proportional relation 

between artery injury and intimal SMCs proliferation. This relation of intimal 

SMCs proliferation due to arterial injury was similar to that seen in human 

restenosis. Farb et al. [45] performed an experimental investigation into the 

relationship between arterial injury, inflammation and NI tissue growth after    
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stenting in human coronary artery. In the study it was concluded that the use 

of coronary stents during PCI may result in medial damage or the stent struts 

may penetrate into a lipid core which induces arterial inflammation which is 

linked with increased NI tissue growth. Figure 2.4 shows the association of 

arterial injury with increased NI tissue growth. In a related study by Komatsu 

et al. [167] it was observed that there were extensive accumulations of 

macrophages which are known to be types of inflammatory cells at site of 

stent restenosis.   

 

Figure 2.4 Photomicrographs (A and B) and bar graph (C) showing the link 

between arterial injury (medial fracture, arrow in A) with increased NI 

thickness against stents in which the arterial media was undamaged (B). 

Medial fracture length as a percentage of the circumference of the internal 

elastic lamina was more in restenotic stents compared with stents without 

restenosis (D). A and B, Movat pentachrome stain. Scale bars = 0.23mm in A 

and 0.30mm in B. [45] 
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Continuous advancements in the study of ISR have led to the understanding 

that the mechanisms leading to ISR is complex and not as simple to be 

related to one event. In a study by Mitra et al. [168] the complex mechanisms 

of ISR was divided into two phases namely the early phase and the late 

phase. Figure 2.5 shows the sequential order of mechanisms leading to ISR 

at the early and the late phase. 

 

 

Figure 2.5  Sequential order of mechanisms of ISR at early phase and late 

phase [168]. 

 

As shown in figure 2.5, endothelial injury during stenting leads to a cascade 

of cellular events which finally causes the onset of restenosis. 
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2.6.1.2  LIMITATIONS IN EXPERIMENTAL STUDIES 

 

Many comprehensive experimental studies on the mechanisms of restenosis 

and ISR have been carried out in order to provide an integrated view of the 

pathophysiology of restenosis that explains the central role of SMCs 

proliferation/migration, arterial remodelling and/or inflammation. Needless to 

say, these studies have provided better understanding and evaluation 

techniques of each disease which has led to the development of more 

efficient treatments/prevention methods of ISR and restenosis [169-171]. 

Nonetheless, there is an uncertainty that exits over the exact cause of ISR 

and restenosis.  One of the reasons why the exact cause of ISR has still not 

been known is due to the fact that cellular and molecular pathways involved 

in each of the mechanisms leading to ISR have not been fully identified 

[168].    

Many animal models of restenosis have also provided great insights into 

human restenosis and allowed the development of better treatments. For 

instance, profound platelet inhibition with GP I1B/IIIa antagonist has been 

revealed to minimise NI proliferation in both animals and clinical restenosis in 

humans [172].  Unfortunately however, this is one of the few breakthroughs 

made in relation to using a specific treatment application which has proved 

successful in reducing mechanisms leading to restenosis in animals to also 

reduce clinical restenosis in humans. Reason for the lack of breakthroughs 

may be due to the fact that the pathophysiology of restenosis in animals is 

not exactly similar to that of humans and hence application of treatments to 

restenosis in humans may be to some extent limited.    
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2.6.2     COMPUTATIONAL STUDIES 

 

Absolute comprehension of the mechanisms of restenosis and ISR is very 

important for the future development of therapies to prevent and/or treat 

these clinical diseases. The fact that restenosis and ISR are prominent in 

arteries which are tortuous, bifurcated and angulated makes it more difficult 

to achieve experimental data to quantify processes involved in the 

onset/progression of disease [18, 173-175]. However, the use of 

computational models to simulate stenotic arteries has provided alternate 

method to investigate the factors which causes restenosis and ISR in 

arteries.  

Many computational studies into restenosis in blood vessels have been 

driven by the hypothesis that pathological changes are in part associated to 

WSS changes that result to activation of mechanisms of the disease [18, 19].  

Hence CFD models have been elicited to investigate the blood flow 

dynamics within stented arteries [27, 176, 177] and also the interactions 

between stents and the arterial wall that leads to ISR [178, 179].   

Experimental studies by Ku et al. [8], Zarins et al. [9], and Friedman et al. 

[10] into factors that contribute to the increased rate of restenosis have 

suggested strong correlations between intimal thickening  increase and 

WSSs. It has also been reported that WSS could alter the orientation and 

morphology of the endothelial cells which may increase the susceptibility of 

the arterial walls to restenosis and atherosclerosis [180, 181].   

Due to the substantial evidence linking WSSs to NI hyperplasia in arteries 

which have been reported in many literatures, early numerical and 

experimental studies into ISR and/or restenosis in stented arteries have tend 

to focus primarily on the influence of WSSs to the onset of ISR [7, 182, 183]. 

Needless to say other mechanical forces within the stented artery which may  
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equally be major predictors of restenosis might have been overlooked. 

Furthermore, on a macro-scale, the presence of the stent struts results in 

local geometric changes of the artery with flow conditions within the stented 

regions being characterised by flow separation, flow recirculation and 

disturbed shear stresses [184]. Thus the hemodynamic milieu within the 

stented artery is marked by complex and co-existing mechanical factors 

which might also contribute to the development of restenosis. A study by 

Rouleau et al. [11] used CFD analysis to quantify ECs response to both WSS 

and SWSSG. In the study it was reported that ECs subjected to only WSSs 

elongated and aligned in the direction of flow whilst ECs subjected to 

combined SWSSG and WSSs did not exhibit preferred alignment and 

elongation. Sakamoto et al. [185] also reported similar observations from 

their studies on the effect of SWSSG on the morphological changes of ECs 

and suggested that SWSSG may act as a suppressor to ECs morphological 

response to flow. These results are indicative of ECs responses at stented 

arterial regions where flow is highly disturbed both in vivo and in vitro [186, 

187]. Also, in an investigation into the effect of WSSs on intima hyperplasia 

in a rabbit carotid artery, Wang et al. [188] used CFD to provide quantitative 

data of the flow field distribution and WSS in the artery. Results from their 

studies showed that blood flow was severely disturbed at the stenosed 

region of the artery. Additionally increased intima hyperplasia was observed 

at regions with high SWSSG and thus led to a proposal that SWSSG may 

play significant role in endothelial dysfunction.    

The use of CFD modelling has not only elucidated the effects of combined 

mechanical forces on ECs functioning but also helped to optimise stent 

designs and to determine stent’s mechanical parameters which could 

influence disease progression.  Blouza et al. [176] and Dehlaghi et al. [27] in 

a study to analyse WSS in stented artery used CFD simulations to obtain 

optimal parameters of stent that could lead to reduced rate of restenosis. In  
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both studies, it was concluded that the blood flow pattern and WSS 

magnitude were significantly influenced by the stent thickness, strut shape 

and strut spacing.  Hence, to minimise the risk of restenosis due to changes 

in fluid dynamics and associated mechanical factors created by the presence 

of stent; these stent parameters are needed to be taken into consideration.  

 

 2.6.2.2  LIMITATIONS IN COMPUTATIONAL STUDIES 

 

The surge of technological advancements has led to the increase of 

computational studies in analysing CADs and the treatment options to 

determine how to optimise the safety and efficacy of these treatments. 

However, it is important to note that these computational simulations are built 

on some assumptions and fixed parameters. The assumption that blood 

could be considered as a Newtonian fluid when simulating blood flow in 

coronary arteries is very common in many literatures. Although this 

assumption might not be totally flawed, it nonetheless does not give very 

accurate account of blood behaviour. This is because the rheology of blood 

is non-Newtonian and considering the fact that the human coronary artery is 

of a complex shape, results achieved from assuming blood to be Newtonian 

to determine predictors of CADs could differ greatly from that achieved from 

a non-Newtonian simulation and/or experiment.  Rodkiewicz et al. [189] 

investigated Newtonian and non-Newtonian flow through a curved tube and 

highlighted differences between the Newtonian and non-Newtonian flow 

patterns.     

On the other hand, non-Newtonian blood models used in CFD are obtained 

by parameter fitting to experimental viscosity data attained under steady 

state conditions and at a certain shear rate [190-192]. However, it is mostly 

assumed that the steady flow conditions are analogous to pulsatile flow  
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conditions and hence results achieved should show exact representation of 

blood behaviour. This assumption is however implausible since the 

reformation of red blood cell rouleaux is different under each of the flow 

conditions [193]. It is therefore worth stating that physiological blood flow 

phenomena have not been fully understood. Hence computational simulation 

of blood flow to understand the onset of ISR is still an on-going process. 

Finally, most CFD studies have restricted to using simple computational 

geometries such as straight tubes for the analysis of fluid dynamics in 

stented coronary artery as modelling the exact shape of the artery could 

involve very complex procedures [176, 178, 179, 194]. However, a study 

showed that the effect of hemodynamic forces and stresses acting on a 

blood vessel may differ depending on the shape of the blood vessel [195]. 

This means that using simple CFD models could limit our knowledge on 

factors that influence ISR.    

 

2.7        DRUG ELUTING STENTS (DES) 

 

The effort to minimise and/or prevent in-stent NIH ultimately led to the 

development of DES [196]. Inhibiting leukocyte infiltration and SMCs 

proliferation by coating BMS with anti-proliferative agents such as sirolimus 

and paclitaxel, cardiologists hoped this would solve the problem of restenosis 

[196, 197]. The DES consisted mainly of three elements:  

 a stent platform  

 a polymer that served as a drug carrier  

 an anti-proliferative drug.  

The initial stent platform of DES was made of 316L stainless steel; same 

metal alloy used for BMS. This was because 316L stainless steel was radio- 
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opaque and provided enough radial strength with minimal recoil [111]. Drug 

eluting stents were first approved in Europe in 2002 whilst in the USA, the 

FDA for the use of sirolimus-eluting stent (SES) (Cypher®, Cordis 

Corporation) was granted in April 2003. Paclitaxel-eluting stent (PES) 

(Taxus®, Boston Scientific) was later granted FDA approval in March 2004. 

Randomised controlled trials on the implant of both SES and PES in patients 

with de novo coronary lesions showed that both DESs were very potent in 

reducing restenosis and NIH at 6-12 months when compared to BMS [198-

205]. Furthermore, studies on clinical safety and efficacy of the use of SES 

and PES revealed that both the DESs minimised late lumen loss [206, 207]. 

A meta-analysis of 16 randomised clinical trials of SES versus PES which 

included 8,695 patients with CAD showed major reduction in TLR with the 

use of SES [208]. Due to the positive results achieved from the use of DES, 

in 2005 it was reported that 85% of all stents implanted in the USA and 

Europe were DES [209].  

 

2.7.1     STENT OPTIMISATION 

 

Continuous experimental studies into ISR have led to the revelation that 

maintaining endothelial cell integrity (coverage and quality) is important in 

reducing the adverse clinical events after stent implantation [210, 211]. This 

is because damaging the endothelial cell layer could initiate blood 

coagulation which may consequently lead to thrombosis [212]. So to 

minimise damage to the endothelial monolayer, research has tend to focus 

on optimising the stent parameters. More so, the research on stent 

optimisation has mostly been focused on DES since many of the stent 

implantations during PCI has now involved the use of DESs.  Furthermore, 

advances in CFD modelling and finite element analysis of fluid-structure 
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interaction has led to more robust and efficient way of analysing mechanical 

interactions between stents and the arterial wall. These have therefore led to 

better stent optimisation techniques. Some criteria used in determining DES 

performance are: acute recoil, tissue stresses, hemodynamic disturbance, 

drug delivery, uniformity of drug distribution and flexibility of the stent [213]. 

Hence stent design optimisation has been concentrated in these areas.  

Briguori et al. [41] investigated the impact of stent strut thickness in relation 

to the rate of restenosis. Results achieved from the investigation led to the 

conclusion that thinner stent struts reduced the rate of restenosis. This result 

tend to agree with experimental findings which suggested that stent strut 

thickness could affect strut tissue coverage and therefore could lead to a 

delay in endothelialisation [42]. Figure 2.6 shows the rate of restenosis in 

lesions treated with two different stents: one stent having a strut thickness of 

<0.10mm and the other stent having a strut thickness of >0.10mm. 

 

Figure 2.6  Restenosis rate in lesions treated with stent strut thickness 

>0.10mm (Thin Group) and stent strut thickness of <0.10mm (Thick Group) 

[41].  

Many studies have numerically demonstrated that the geometry of the stent 

struts could influence the perturbation of the flow fields [28, 30, 43, 183, 214]. 
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This as a result creates recirculation and flow separation characterised by 

unphysiological mechanical forces at the peri-strut regions which have been 

postulated to serve as nidus for procoagulant molecules entrapment and 

precipitate thrombus formation [215-217]. It has therefore been predicted that 

strut-induced flow disruption could be further attenuated if cross-sectional 

strut shape is streamlined (semi-circular arc shape) than non-streamlined 

(rectangular shape) [43]. Mejia et al. [30] quantified the effect of both 

streamlined struts and non-streamlined struts on WSSs within the peri-strut 

regions and affirmed that 4% of the regions around streamlined struts were 

exposed to low WSS whilst that of non-streamlined struts was 81%.  

As we appreciate the synergistic beneficial effects of stent strut streamlining 

and thinning as critical determinants for favourable post stent implantation 

hemodynamic milieu, it is also important to note that these factors are limited 

by the need to maintain adequate stent radial strength to prevent recoil. 

 

2.7.2     SECOND GENERATION DES 

 

Progress in stent optimisation led to development of second-generation drug 

eluting stents which has been suggested to be better than first-generation 

DES. Second-generation DESs were composed of cobalt chromium (CoCr) 

as this alloy possessed more radial strength and better radio-opacity  which 

allowed for thinner stent struts as opposed to 316L stainless steel [218, 219]. 

Radial strength is the measure of the stent’s strength and ability to maintain 

the shape of the vessel lumen [220]. Hence adequate radial strength of the 

stent is very important in order to minimise stent recoil. Additional advantage 

of using CoCr as a stent platform is that due to its mechanical strength 

properties, unique stent designs that could facilitate precise drug delivery to 

target lesions could be built [221]. Furthermore, a variety of biocompatible  
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polymers could be built on to these unique stent to serve as drug carriers. 

The use of CoCr led to the creation of different DESs such as Endeavor 

Zotorolimus-eluting stent (ZES) and Xience V everolimus-eluting stent (EES) 

which have been claimed to have better efficacy compared to the first-

generation DES. This claim has been supported by several clinical studies 

which have compared the superiority of ZES (second-generation DES) to 

SES (first-generation DES) and have revealed that ZES had greater 

endothelial coverage of struts, significantly lower in-stent restenosis and TLR 

[222-225]. 

Clinical outcome data has shown that second-generation DESs are better 

than BMS in promoting arterial wall healing [226]. However, this evidence 

has been questioned lately with the emergence of studies which have 

showed varied results in the efficacy of stents. In a study by Joner et al. 

[227], first-generation DESs (PES and  SES), second-generation DESs (ZES 

and EES) and BMS were implanted into the iliac arteries of a rabbit to 

investigate the trends in endothelial coverage and recovery; thus an indicator 

of arterial healing between the stents.  The result of the study affirmed that at 

day 14 there was significantly greater endothelial coverage in EES, followed 

by ZES then PES and lastly SES. However on day 28 there wasn’t any 

statistically significant difference of endothelial coverage amongst the 

different type of stents. It was also postulated that stent struts lacking 

endothelial coverage served as nidus for focal aggregates of platelets and 

inflammatory cells. Results of this study are illustrated in figure 2.7. 

Animal models of stenting may maintain predictive value to some significant 

extent to humans as arterial healing stages are remarkably similar [228]. 

Nonetheless, it is imperative to note that interpretation of animal data is 

highly contingent on factors which might or might not significantly influence 

results as compared to that of humans. In a review study comparing vascular 

healing after DES placement in both humans and animals it was reported  
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that there was characteristic difference in the healing timeline between 

humans and animals [228]. Thus long term follow up of patients with DES 

placement for restenosis is necessary.  

In 2011 and 2012, Boston Scientific unveiled their new stents called 

OMEGA™ and PROMUS Element™ respectively which were both built on a 

platinum chromium platform. Using platinum chromium alloy, stent designs 

could be further optimised to improve conformability, minimise recoil and 

enable precise drug delivery across complex lesions due to the increased 

radio-opacity of the stents [220, 229].  

 

Figure 2.7  Radiographic images of endothelial coverage of stents at day 14 

(top left), Radiographic images of endothelial coverage of stent at day 28 

(bottom left), Scanning morphmetric analysis bar graphs showing 

quantitative analysis of endothelial coverage between stents at day 14 (A) 

and day 28 (B) respectively [227]. 
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2.8        COMPLICATIONS WITH DES USE 

 

Clinical enthusiasm owing to the advantages of DES over BMS was 

lessened due to concerns over ST after DES implantation [230].  

One of the main criticisms of the first-generation DES was that initial clinical 

investigations into ISR with the use of first-generation DESs during PCI were 

only concentrated on patients who had stable de novo lesions. As a result of 

the biased patient selection, data achieved from the clinical trials about the 

efficacy of DES were positive. Early studies on DES by Spaulding et al. 

[231], Kastrati et al. [232], and Stone et al. [233] all involved patients who 

had simple lesions and conclusions from their results were that there were 

no significant mortality and morbidity rates in DES use. These results 

however do not reflect the real world as patients may present with complex 

lesions. Hence clinical outcomes from DES treatment on complex lesions 

could be devastating. Comparative studies of DES use between simple and 

complex lesions have shown higher rates of deaths, MI and repeat 

revascularisation in the latter [234, 235]. 

Additionally, patients may present different medical conditions which mean a 

clinical intervention using DES may not be the appropriate form of treatment 

for a specific patient. Also, although the use of DES reduced restenosis 

compared to BMS, concerns were raised about ST which seemed to be the 

“Achilles heel” of this device. Luckily, ST is rare; however it is an 

unpredictable event that causes high rate of deaths (45% to 75%) and MI 

(25% to 65%) [236-240]. The first cases of late stent thrombosis (LST) were 

reported by McFadden et al. [241] when four patients implanted with DES 

over a year (two with SES and two with PES) developed LST and MI after 

stopping their anti-platelet treatment. Reported treatments after a diagnosed 

case of LST and MI have involved balloon angioplasty, re-continuation of the 
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anti-platelet treatment and intra-aortic counter-pulsation [242, 243]. Although 

these treatments have proved successful in managing ST and MI, 

complications associated with these treatments however could lead to death. 

Waters et al. [242] investigated a case study of 4 CAD patients who 

developed LST following treatment of ISR with DES after cessation of anti-

platelet treatment. In the investigation it was affirmed that one case patient 

died after being treated with vasopressor therapy and intra-aortic counter-

pulsation following a diagnosis of MI. The death of the patient was attributed 

to complications associated with cardiogenic shock which was due to acute 

MI. Finn et. al [39] concluded from a study on pathological correlates of late 

DES thrombosis that the lack of re-endothelialisation was the most powerful 

predictor of ST. It was stated the reason for the lack of re-endothelialisation 

was as a result of non-uniform incomplete healing of the arterial wall. The 

causes for the non-uniformity and incompleteness of arterial wall healing 

however remain unknown. It is postulated that the lesions characteristics, 

drug dose and distribution and the biocompatibility of the polymer may have 

important roles to play in the incomplete healing of the artery. Nevertheless 

the influence of each of these factors to cause this problem has not been 

fully understood hence increasing the complexity and difficulty in the study of 

LST with DES. Hwang et al. [244] study on how physiological transport 

forces govern drug distribution for stent-based delivery provided a possible 

explanation for the non-uniform healing with DES.  From the study it was 

understood that the nearness of the lesion to the drug coated stent did not 

guarantee adequate drug distribution. More so, the local concentrations of 

the drug are extremely dependent on the stent strut spacing and therefore 

inconsistencies in the distances between the struts will increase the 

difference in concentrations, leading to non-uniformity of arterial healing and 

subsequently result to LST. Researchers are now looking into the 

physiochemical properties of the drug and geometric stent characteristics to 

help explain the onset of LST in DES implantations. 
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2.8.1     CONCERNS ABOUT DURATION OF DUAL ANTI-PLATELET 

THERAPY 

 

Meta-analysis of randomised and observational clinical outcome data has 

demonstrated that patients with DES implantation have reduced rates of 

death and MI with the extended use of aspirin and clopidogrel [245-248]. 

Nonetheless, the optimal duration of continuous dual anti-platelet therapy 

after DES implantation remains a central issue. This is because the 

administering of aspirin and clopidogrel to DES patients has been associated 

with some side effects. In the CURE trial, CAD patients who were on both 

clopidogrel and aspirin medication were observed to have major bleeding 

[249]. Previous studies into the side effects of clopidogrel and aspirin therapy 

demonstrated that the bleeding was not life-threatening and that the clinical 

benefits of dual anti-platelet therapy outweighed the side effect [249-251]. 

However, in the Global Registry of Acute Coronary Events (GRACE) registry 

by Moscucci et al. [252] major bleeding was reported as life-threatening as 

patients who had severe bleeding were reported to be at a higher mortality 

risk.  

Lastly, there exist some discrepancies in data showing the potential adverse 

effects of prolonged dual anti-platelet therapy in CAD patients. In an 

observational cohort study on the influence of extended use of clopidogrel 

after DES implantation by Park et al. [253], it was reported that continued 

clopidogrel use beyond 1 year did not reduce ST and adverse clinical events. 

In the TYCOON (Two-Year ClOpidOgrel Need) registry however, 

investigation into the effectiveness of dual anti-platelet therapy use in 

preventing ST showed positive results [254]. In the study, 447 CAD patients 

were treated with DES and out of the 447 patients, 173 of the patients were 

put on dual anti-platelet therapy for 12 months and the rest of the patients 

were put on dual anti-platelet therapy for 24 months. Follow-ups on the two 
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patient groups revealed no difference in adverse clinical events; however, 

there were reported 5 cases of ST in the 12 month group and in the 24 

months group 1 case of ST. The conclusion therefore reached on the study 

was that prolonged anti-platelet therapy does not affect clinical events but 

significantly reduces the rate of ST. From these conflicting data, it could 

therefore be concluded that it remains still unclear if prolonged dual anti-

platelet carry better prognosis after PCI.       

The unexpected discoveries of the complications associated with the DES 

use have ultimately generated an uncertainty about its efficacy and safety.  

 

2.9        PROGNOSIS OF ST 

 

Prognosis of ST still remains very poor as there are no known exact causes 

of this disease. However, many studies and registries have identified 

implicating factors that may increase the risk of ST. 

 

2.9.1     PATIENT FACTORS 

 

One of the independent predictors of ST is the patient factor. ST is more 

likely to occur in high risk patients; thus patients with renal failure and 

diabetes. Spaulding et al. [231] and Karvouni et al. [255] reported incidents 

of very LST in diabetic patients after SES implantation. Also, though studies 

on the relation between renal insufficiency and ST is limited, initial studies 

have suggested that chronic kidney disease is associated with stent 

thrombosis in patients who have undergone PCI with DES [256]. 

The management and treatments to prevent and/or minimise the risk of LST  



 

49 
 

CHAPTER 2 BACKGROUND 

 

in patients could sometimes lead to the opposite effect. For instance 

brachytherapy or PCI for acute coronary syndrome, left ventricular ejection 

fraction and ST segment elevation myocardial infarction can lead to episodes 

of LST [257, 258]. The strongest independent predictors of ST are the early 

discontinuation of dual antiplatelet therapy. A rate of 7.8% in ST was 

recorded in patients who had prematurely discontinued taking clopidogrel, 

aspirin or both in a report study by Park et al [259]. Kuchulakanti et al. [260] 

reported an increase in LST in patients who discontinued taking clopidogrel 

compared to those who kept up with the clopidogrel therapy; thus suggested 

that clopidogrel compliance was vital in high-risk patients. 

 

2.9.1.1  CLOPIDOGREL RESISTANCE 

 

The benefits of clopidogrel in the prevention of ST are well established but it 

emerged that some patients treated with clopidogrel show signs of resistance 

[261, 262]. Clinical trials have led to the suggestion that patients who are 

non-responsive to clopidogrel may be at a greater risk of thrombotic 

outcomes [263, 264].  The principal mechanisms leading to clopidogrel 

resistance are not completely elucidated, but are thought to probably occur 

through clinical, cellular factors and/or pharmacokinetics of clopidogrel in the 

patient’s system [261, 265].  Further studies are therefore needed to provide 

better understanding on the impact of individual response variability to 

clopidogrel that could lead to better treatment management.  
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2.9.2     LESION CHARACTERISTICS 

 

Examples of lesion characteristics that could influence the onset of ST and 

adverse clinical events include lesion length, calcified and complex lesion in 

the artery [141, 266]. 

Hougaard et al. [267] in a randomised study assessed the influence of lesion 

length on clinical outcomes amongst patients treated with EES and SES. In 

the study, 383 patients with short lesions and 890 patients with long lesions 

were treated with EES. Also, 417 patients with short lesions and 900 patients 

with long lesions were treated with SES. Results obtained from this study 

revealed significant adverse cardiac events in the patient group who long 

lesions (8.8%) compared to patients who had short lesions (6.2%). 

Conversely, there was not any significant difference in adverse cardiac 

events between patients with long lesions treated with either EES (8.6%) or 

SES (9.1%). These results therefore attest to the fact that lesion 

characteristic as suggested by many studies is a predictor of adverse clinical 

outcomes and ST. 

 

2.9.3     BIOLOGICAL FACTORS 

 

In addition to the above predictors mentioned, biological factors such as 

hypersensitivity reaction and drug resistance have been reported to 

contribute to the development of early/late ST [238, 268, 269]. 

In a clinical investigation study by Virmani et al. [238] it was shown that 

localised hypersensitivity reactions after DES implantation plays a probable 

role in the pathogenesis of LST. The study involved a 58 year old man who 

died of LST 18 months after having two SESs implantation for unstable  
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angina. Findings presented after angiographic and ultrasound showed no 

incidence of NI formation, however, an autopsy showed the stented arterial 

regions with severe localised hypersensitivity reaction consisting mainly of T 

lymphocytes and eosinophils. Conclusion therefore reached on this study 

tended to suggest that pharmacokinetic elution profile of SES might have 

caused an adverse reaction in the artery which might have led to the 

development of LST. 

 

2.9.4     MECHANICAL AND TECHNICAL FACTORS 

 

Inadequate stent expansion and stent malapposition are predisposing factors 

for ST. A study by Kenichi et al. [38] to investigate factors that contributed to 

ST after SES implantation concluded that stent under-expansion was one of 

the associated factors. Additionally, malappositioning of stents in arteries 

especially ones with significant tortuosity have been suggested to play a role 

in the pathogenesis of LST [40].   Stent design parameters could also be 

critical to influence ST and restenosis; hence studies have also been focused 

on stent optimisation. In a report by Gurbel et al. [270] stent designs were 

affirmed to influence the degree of platelet activation which contributed to the 

pathophysiology of ST. 
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2.10      THE DEBATE: BMS VERSUS DES 

 

2.10.1   MORTALITY/ MI 

 

The controversy over either BMS or DES being the better stent intensified as 

publication of 4 studies raised concerns about the increased mortality rate 

associated to DES use. 

 Nordmann et al. [271], performed an evaluation on the effect of DES 

and BMS treatment on patients with CAD on cardiac and non-cardiac 

death. In the randomised trials, sirolimus-DES and paclitaxel-DES 

treatment for CAD did not reduce the mortality rates when compared 

to BMSs. Interestingly however; preliminary results suggested that 

sirolimus-DES use led to significant increase in non-cardiac mortality.  

 In the BASKET (Basel Stent Kosten Effektivitats Trial) study by 

Pfisterer et al. [272] which assigned randomly 746 patients to either 

DES or BMS and treated them with clopidogrel reported that there 

was no difference in the rate of 18 months cardiac mortality/MI 

between DES and BMS patients. Nonetheless, a discontinuation of 

clopidogrel resulted to 4.9% of cardiac death/MI for DES patients as 

compared to 1.3% which occurred in BMS patients. Figure 2.8 shows 

the statistical data of clinical outcomes with the use of BMS and DES.  

 Camenzind et al. [230] analysed a pooled data of mortality rates from 

the Cypher and Taxus randomised trials and compared with that of 

BMS to come to a conclusion that mortality rates were higher with 

first-generation DES compared to BMS. 

 Comparative study on mortality/MI rate between two study groups; 

one group being patients treated with BMS and the other group being  
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patients treated with DES using data from SCAAR (Swedish Coronary 

Angiography and Angioplasty Registry); Lagerqvist et al. [273] 

presented results which associated increased mortality rate with the 

use of DES.  

 

 

Figure 2.8  Statistics of late clinical outcomes (7 – 18 months) after BMS 

(blue colour bar) and DES (red colour bar) implantation [272] 

These studies have triggered research into investigating the general 

comparison between DES and BMS in terms of mortality and morbidity at 

short- and long-term follow-up. A meta-analysis comparing the safety and 

effectiveness of DES and BMS in patients conducted by Stettler et al. [274] 

reported that sirolimus-eluting stents were clinically better than BMS and 

paclitaxel-DES. Additionally, the rates of mortality for patients treated with 

paclitaxel-DES, sirolimus-DES and BMS were similar.   Kirtane et al. [275] 

and Kastrati et al. [232]  concluded on the safety and efficacy of DES and 

BMS; that is, there were no substantial differences observed in the rates of 

mortality/MI after DES or BMS use.  

BMS 

DES 
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2.10.2   ENDOTHELIALISATION 

 

Delay in endothelialisation because of the anti-proliferative agents of DES 

could cause stent struts to remain thrombogenic which consequently 

increases the risk of ST which is associated to 45% of mortality [39, 241]. 

Conversely BMSs have been demonstrated to facilitate complete 

endothelialisation  after implant  thus minimising the onset of stent 

thrombosis [39]. 

 

2.10.3   SUMMARY 

 

It is clear that coronary stents are an indispensable component of modern 

PCI, although associated with some adverse clinical events such as 

restenosis and ISR. The understanding of mechanisms that lead to these 

diseases after stent implantation is however unclear as pathophysiology of 

each disease is complex and influenced by many cellular and molecular 

events. Therefore identification of good therapeutic targets is complicated.  

Researchers have performed a lot of studies to disclose mechanisms leading 

to restenosis and ISR both experimentally and computationally. Nonetheless 

substantial evidence to suggest the main predictors of ISR and restenosis 

has still remained elusive.  

The use of computational modelling tool such as CFD has helped to quantify 

the mechanical milieu predicted to be experienced by cells within artery. 

Cellular responses that lead to initiate ISR within stented artery can therefore 

be mapped onto these quantified local mechanical stimuli. Hence possible 

mechanisms that may initiate ISR can be identified. In the next chapter, CFD 

is used to quantify the mechanical forces within a stented artery. 
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CHAPTER  3 

COMPUTATIONAL FLUID DYNAMICS (I) 

 

Figure 3. Graphical chart showing the processes involved in CFD simulation 

There are three main processing phases involved in CFD simulation namely; 

the pre-processing, solution and post-processing phase as shown in figure 3. 

It is essential that caution is taken when performing each processing phase 

involved in the CFD simulation. This is because CFD results obtained have 

been shown to be operator specific and thus each phase that is poorly 

simulated can lead to final results being highly misleading [276].  

In this chapter, CFD simulation of blood flow dynamics within a stented artery 

is analysed. However, before this analysis was performed, the appropriate 

blood rheological model to use for the flow simulation was established.     

 

3.1        ESTABLISHING APPROPRIATE BLOOD RHEOLOGICAL MODEL 

 

3.1.1     INTRODUCTION 

Vascular endothelial cells are known to play an important role in the 

homeostatic functions in response to several chemical and mechanical 
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stimuli due to blood flow. To investigate these mechanical stimuli and its 

potential effects on cell function, researchers have employed both 

experimental and numerical methods. Numerical methods however have 

been the preferred choice by researchers especially when analysing a wide 

range of hemodynamic parameters. 

Evidence relating shear stresses to NIH has led to investigating the influence 

of stents on the local blood flow dynamics and associated stresses that lead 

to stenosis within stented arteries [8-10]. Blood plays an imperative role 

transporting oxygen and nutrients throughout the body. Its circulation is 

dictated by its rheological properties and the characteristics of the blood 

vessel it flows through [277].  It is commonly known that blood is thixotropic 

and exhibits non-Newtonian characteristics. However above shear rate of 

100s-1 blood is considered to exhibit Newtonian characteristic in large 

arteries [31-34]. Ignoring the non-Newtonian effect of blood based on the 

aforementioned argument is plausible especially if artery is healthy and of 

regular size [278]. Nonetheless, this argument weakens when complex 

arterial geometry and transient blood flow which may involve reverse flow 

directions or stops are considered. Thus the non-Newtonian effects could 

become significant in this case.   

Current consensus suggests WSS as the dominating mechanical stimulus in 

stent performance as stated by Mejia et al. [279]. So, the constitutive blood 

model chosen must take into account the local shear rate dynamics at the 

stented arterial region. In predicting the effects of different constitutive blood 

models on resulting transient WSSs in a stented coronary artery; Mejia et al. 

[279] compared Newtonian blood model against non-Newtonian blood model 

under normalised cardiac waveform. Two Newtonian blood models were 

simulated; the first using a Newtonian viscosity of 3.5 cP which is the lower 

viscosity limit of blood. The second Newtonian model used a calculated 

characteristic viscosity of 4.7 cP. For the non-Newtonian blood model, a  
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Carreau-Yasuda viscosity model was employed. Three different time points 

of the cardiac cycle were selected for analysis; two of the time points 

corresponded to ascending and descending flow with instantaneous 

Reynolds number of 190 respectively and the third corresponded to the peak 

flow rate. Results obtained at these time points all showed the two 

Newtonian viscosity blood models to have under-estimated the WSSs within 

the stented artery when compared to the non-Newtonian model. Thus 

prediction of the risk of restenosis in stented arteries could be over-estimated 

when Newtonian models are used. The use of characteristic Newtonian 

viscosity here to compensate for the under-estimation of viscosity observed 

with the Newtonian model and to produce quantitatively similar WSSs when 

compared to Carreau-Yasuda model just as reported by Benard et al. [29] 

did not produce expected results. The WSS levels of the characteristic 

Newtonian model although higher than the Newtonian model still were 

substantially lower than the non-Newtonian model. The authors of this study 

argued that the discrepancies between results achieved and that reported by 

Benard et al. was likely to be due to the different flow models used. Whilst 

Benard et al. simulated the flow dynamics in the stented artery under steady-

state conditions; Mejia et al. simulated a transient flow condition. Additionally, 

this discrepancy observed is supported by the investigations of rheological 

blood models by Soulis et al. [35] which suggested that blood viscosity model 

is dependent on flow conditions amongst many other factors. Careful 

interpretation of CFD simulations is therefore required as results obtained 

are operator specific and also poorly executed simulations could potentially 

produce highly misleading data.   

It is suggested that validating CFD simulations against experimental data will 

prevent misleading interpretations of CFD analysis. Hence in this section, 

different constitutive blood viscosity models is compared against 

experimental blood rheology to determine the blood model that best fits the  
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experimental blood data. Using the best fit blood viscosity model as a bench 

mark, quantitative assessment of the WSSs difference between the best fit 

model and other blood viscosity models in a helical stented artery under LAD 

physiological flow would be determined. 

 

3.2        ANALYTICAL METHOD 

 

3.2.1     VALIDATION OF CFD VISCOSITY BLOOD MODEL 

 

In the LAD, ECs are predicted to experience a mean WSS of 1.38±0.1 Pa to 

maintain normal homeostatic functions [280]. So in determining the most 

suitable rheological blood model to mimic blood dynamics in the artery, it 

was important to also determine the nature of blood viscosity under these 

stresses as viscosity influences greatly the blood flow phenomena. 

Haematocrit levels also play important role in determining the behaviour of 

blood. Haematocrit is the percentage volume of red blood cells (RBCs) in 

blood. Blood fluidity at a specific shear rate and temperature is determined 

by haematocrit; hence alterations of haematocrit could influence greatly 

haemorheological variations in disease [281]. Also paucity of blood fluidity 

may affect vascular tissue perfusion and subsequently result in vascular 

tissue dysfunction [281].  

Newtonian model and non-Newtonian models based on Carreau and non-

Newtonian Power Law were therefore validated against experimental blood 

rheology data of normal haematocrit level of 45% [282, 283]. The three 

different rheological blood model under investigation thus; Newtonian model, 

non-Newtonian Power Law and Carreau models were analysed using the 

analytical formulation presented in table 3.1.    
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Table 3.1  Formulations of rheological blood models 

Blood model Viscosity Parameter 

Newtonian model 

[278] 

𝜏 = 𝜇�̇� 

𝜇 = 0.0035 𝑃𝑎. 𝑠  

Carreau model [282] 

                              

𝜇 =  𝜇∞ + (𝜇0 − 𝜇∞)[1 + (𝜆�̇�)2](
 n

 – 1) / 2 

𝜆 = 3.313𝑠, 𝑛 = 0.03568,  𝜇∞ = 0.00345 𝑃𝑎. 𝑠, 

𝜇0 = 0.056 𝑃𝑎. 𝑠 

Non-Newtonian Power 

Law model [284] 

 

𝜏 = 𝑘𝛾 ̇ ( n – 1) 

𝑛 = 0.7, 𝑘 = 0.017𝑘𝑔 𝑠
𝑛−2

𝑚⁄ , 𝜇0 = 0.0001 𝑃𝑎. 𝑠, 

𝜇∞ = 0.1 𝑃𝑎. 𝑠 

 

 

3.2.2     ANALYTICAL MODELLING 

 

Given the analytical equation for WSS in a pipe, assuming the shape of the 

artery is analogous to a pipe: 

 

𝜏 =  𝜇�̇�   3.1 

where 𝜏 is the WSS, 𝜇 is the dynamic viscosity and �̇� is the shear rate. 

and flow is laminar, spatially and temporally fully developed throughout the 

artery, then the use of computational modelling is obviated. Thus the use of 

analytical modelling to assess the relationship between the shear rate and 

viscosity of each constitutive blood model is appropriate.  
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Figure 3.1  Comparative analysis of blood viscosity between experimental 

data and computational rheology blood data. 

 

It is observed in figure 3.1 that the Carreau viscosity model fits best the 

experimental rheological blood data of Cho et al. and Chien et al. 

respectively. Hence it is proposed that Carreau model is the best amongst 

the other analysed constitutive blood model in capturing the non-Newtonian 

viscosity of blood and consequently the effects of flow hemodynamic in the 

LAD. Nonetheless as discussed earlier in this section, many studies have 

suggested Newtonian model to mimic the non-Newtonian characteristics of 

blood above shear rate of 100s-1. Taking the mean WSS in LAD is 1.38±0.1 

Pa, then using equation 3.1 and viscosity of 0.0035 Pa.s, the calculated 

mean shear rate respective to the physiological mean WSS is 394.3s-

1±28.6s-1. Thus in the LAD, the mean shear rate is above 100s-1 and so 

based on the above deductions, Newtonian viscosity model is an appropriate 

alternative model to use in simulating flow hemodynamic in the LAD.  
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Additionally, the data produced in figure 3.1 tends to support this consensus 

and more so if the dynamic Newtonian viscosity is modified to 0.004 Pa.s 

instead of 0.0035 Pa.s as suggested by [285] then a much better agreement 

could have been observed between the Newtonian and Carreau model. 

 

3.3        COMPUTATIONAL METHOD 

 

3.3.1     STENTED LAD ARTERY (PRE-PROCESSING PHASE) 

 

In section 3.2 the use of analytical method to determine the relationship 

between viscosity and shear rate of different constitutive blood models is 

sufficient as the geometry of artery and flow is considered simple. In the case 

of a stented artery however, the presence of the stents results in local arterial 

geometric changes and complex flow with subsequent changes in local 

shear rates as previously discussed. Thus the effect of non-Newtonian blood 

viscosity on hemodynamics in the stented artery could be more complicated 

than in a simple artery. Additionally, although blood viscosity is considered 

virtually constant at high shear rate condition [282], the instantaneous shear 

rate for example in the LAD varies significantly over a cardiac cycle. So the 

artery is predicted to experience an immensely different viscosity over a 

cardiac cycle which consequently could affect its mechanical milieu; more 

especially in that of a stented artery.  

Taking into consideration the above stipulations, it is clear that CFD is 

required to accurately analyse the mechanical environment of the stented 

LAD artery and also investigate if the Newtonian viscosity model still remains 

an acceptable alternative able to capture correctly the hemodynamics in the 

stented artery. 
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3.3.2     GEOMETRICAL CONDITIONS  

 

A 3D straight stented LAD was designed with an arterial diameter of 3mm 

after a fully deployed helical stent implantation. The LAD artery was 

assumed to be straight with a rigid wall. This assumption was supported by 

evidence in literatures which emphasised that artery curvature decreased 

after stent implantation. In a comparative study by Zhu et al. [54] on coronary 

artery dynamics pre- and post-stenting, a stent length of 18𝑚𝑚 was 

implanted in a LAD artery. Results attained from the stented artery affirmed 

that regions of the LAD at which pre-stent mean curvature was at the 

greatest were evidently straightened by the stent. The stent dimensions were 

modelled similar to typical coronary stents; thus stent strut diameter of 

0.15𝑚𝑚 and struts pitch-to-pitch distance of 0.7𝑚𝑚 [30].   

 

Figure 3.2  Geometry of helical stented LAD 
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3.3.3     GOVERNING EQUATIONS 

 

Based on predicted complexity of blood flow dynamics in the stented LAD 

artery and the assumption that blood is incompressible, a finite volume 

method (FVM) is implemented to analyse the flow. FVM is a well-established 

and robust CFD technique which enables the numerically solving of the 

Navier-Stokes (N-S) equation that governs fluid flow [286]. The fluid flow is 

governed by the following equations: 

 

 The N-S equation which describes the momentum conservation of the 

fluid; 

𝜕�⃑⃑⃑�

𝜕𝑡
+ (�⃑⃑� ∙ ∇)�⃑⃑� =  −

∇𝑝

𝜌
+ 𝜇∇2�⃑⃑� +  �⃑�  3.2 

Writing the Navier-Stokes equations in this form allows for the various uses 

of non-Newtonian blood models. 

 

 The continuity equation which describes the mass conservation of the 

fluid; 

 
𝜕𝜌

𝜕𝑡
+ ∇ ∙ 𝜌�⃑⃑� = 0  3.3 

 

where �⃑⃑� is the velocity vector, 𝑡 the time, 𝑝 the static pressure, 𝜌 the blood 

density, �⃑� is other forces, and 𝜇 the kinetic viscosity.  
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A no-slip condition was applied to the artery wall and a fully developed LAD 

pulsatile velocity profile was applied at the inlet boundary of the artery. At the 

outlet boundary, normal diffusive flux for all flow variables was assumed to 

be zero. This outlet boundary condition is used in cases where velocity and 

pressure details of the flow exit are not known prior to solving the flow 

problem. The equation describing this condition is given below: 

 

−𝑝�⃑⃑� +
1

𝑅𝑒

𝜕�⃑⃑⃑�

𝜕�⃑⃑�
= 0  3.4 

where �⃑⃑� is a unit directional vector normal to the outlet boundary. 

 

3.3.3.1 SOLUTION PROCEDURE FOR GOVERNING EQUATIONS 

 

The governing equations for the fluid motion are highly nonlinear, hence are 

solved using a segregated iterative algorithm built in ANSYS Fluent 13 

software (Ansys inc., Canonsburg, PA, USA). The segregated iterative 

algorithm used to solve the flow problem is the FVM. The use of FVM has 

achieved widespread acceptance because of its accuracy and also as it is a 

thoroughly validated CFD technique. So, in solving a given flow problem 

using this computational numerical algorithm, the following steps are 

involved: 

 Discretisation of flow domain: Based on the reasoning that fluid 

dynamics in the flow domain are governed by N-S equations which are a set 

of partial differential equations and thus couldn’t be solved analytically, the 

entire flow domain is discretised into control volumes 𝐶𝑉 also known as cells 

[286]. Discretising the flow domain as shown in figure 3.3 converts the partial 

differential equations into several algebraic equations; one for each 𝐶𝑉 which 
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is then solved generally using iterative method. Discretising the governing 

equations is mostly demonstrated by considering a steady-state conservation 

equation for transport of a mass.  

 

 

     

 

Figure 3.3  Discretised flow domain 

 

 Integration of governing equation:  After discretisation of the flow 

domain, the momentum and continuity equations shown in equations (3.2) 

and (3.3) respectively are integrated over a constant volume 𝑉 and enclosed 

surface 𝐴; the 𝐶𝑉. This is shown in the given formulation below [286]: 

 

∫
𝜕(𝜌�⃑⃑⃑�)

𝜕𝑡𝐶𝑉
𝑑𝑉 + ∫ �⃑⃑�

𝐴
∙ (𝜌�⃑⃑��⃑⃑�)𝑑𝐴 = ∫ �⃑⃑�

𝐴
∙ (𝜇∇�⃑⃑�)𝑑𝐴 + ∫ �⃑�

𝐶𝑉
𝑑𝑉   3.5 

 

∫
𝜕𝜌

𝜕𝑡
𝑑𝑉 +

𝐶𝑉
∫ �⃑⃑�
𝐴

∙ (𝜌�⃑⃑�)𝑑𝐴 =  0  3.6 

where �⃑⃑� is velocity vector, 𝑝 the pressure, 𝑡 the time, 𝜌 the fluid density, 𝜇 

the kinetic viscosity, and �⃑⃑� a directional vector normal to surface 𝐴. 

Discretisation of equations 3.5 and 3.6 over time and space produces  

Control Volume  Face  Node  Boundary node 
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algebraic equations describing transport of mass and momentum through the 

𝐶𝑉 at each time step [287]. In the case of a transient simulation, it becomes 

necessary for the governing equations to be discretised in both time and 

space. Spatially discretising time-dependent equations are similar to that of a 

steady-state case. On the other hand, temporal discretisation involves 

integration of every term in the partial differential equation which yields a set 

of algebraic equations at each 𝐶𝑉 describing the transport of mass and 

momentum over a time step ∆𝑡 [287]. 

 Iteration of algebraic equations: The algebraic equations from the 

flow discretisation are then finally solved by iteration with a selection of a 

convergence criterion which ensures that there are no significant changes in 

results when further iterations are performed [287]. Solutions were therefore 

judged to have met convergence criterion when scaled residuals for 

continuity and all three velocity components; (x-, y-, and z-velocity) have 

fallen to below 10–5.     

 

3.3.4     MESH GENERATION AND MESH INDEPENDENCE 

 

Achieving mesh independence of a model although not a sufficient condition 

to ensure complete accuracy of results is nonetheless an essential 

requirement in validating CFD results [288]. Solutions are termed to be mesh 

independent when to they are independent of grid density, simulation time 

and further computational iterations performed.    

The flow domain of the stented LAD was discretised using a CutCell 

algorithm in Ansys Workbench 13. This algorithm is a mesh generator which 

results in meshes having a high proportion of hexahedral cells as illustrated 

in figure 3.4.  Mesh refinements studies where then performed by using the  
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WSS results attained from the simulation of stented LAD model after each 

successive refinement as a measure for determining the convergence 

behaviour of results. Thus increasing the cell number over the entire flow 

domain generates finer meshes: (coarse mesh: 61159, 244651; medium 

mesh: 460271, 621698; and finest mesh: 936716, 1070554, hexahedral cells 

respectively). For each successive mesh generated, an increased cell 

density was imposed at immediate regions around the stent strut where most 

complex flow dynamics is anticipated. Mesh independence is considered to 

be achieved when relative WSS error percentage between two successive 

meshes is ≤ 5%.  

 

Figure 3.4 Hexagonal Meshing of stented LAD. The dashed line is a center 

line showing axisymmetric stented artery and the arrows show flow direction  

 

Figure 3.5a shows the WSS distributions and magnitude across a selected 

section of the stented LAD for each mesh. A general agreement exists in the 

WSS distributions for all the meshes; however a detailed examination of the 

WSS magnitudes reveals that there is an appreciable difference between the 

different meshes at the peri-strut regions as shown in figure 3.5b. Thus to 

quantify these WSS magnitude differences, the mean WSS magnitude of the  

Flow inlet 

z-axis x-axis 

y-axis 

Flow outlet 
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region where flow at the peri-strut region was deemed to have recovered 

was taken. Table 3.2 shows result of the mean WSS from the coarsest to the 

finest mesh simulations. 

 

 

Figure 3.5  Comparison of WSSs in stented LAD between all meshes. 

(Figure 3.5a) shows a general WSS distribution within the stented model and 

(Figure 3.5b) is the WSS at a zoomed in section of the peri-strut region. 

 

Table 3.2  Mean WSS of recovered flow at peri-strut region 

Mesh Refinement Number of Cells  Mean WSS (Pa) 

Coarsest 61159 1.92 

 244651 1.82 

460271 1.76 

621698 1.73 

936716 1.64 

Finest 1070554 1.62 

 

3.5a 3.5b 
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The results here tend to suggest that mesh with insufficient spatial resolution 

could yield over-estimated WSS levels. Considering the finest mesh obtained 

as a “gold standard”, the relative percentage WSS error [289] between 

successive meshes, where 𝑖 is the order of mesh number and 𝜏6 is the WSS 

of the finest mesh is calculated to be 18.5%, 12.3%, 8.6%, 6.7%, 1.2% 

respectively. It is therefore demonstrated that mesh independence is 

established at 936716 cells and that this density was sufficient enough to 

provide acceptable accurate CFD results as further mesh refinement 

(1070554 cells) yielded an insignificant change to the WSS magnitude. The 

mesh of 936716 hexahedral cells represents a compromise between result 

accuracy and computational costs, and so this mesh density is used in the 

simulation of the flow dynamics with error < 5% expected in results. The 

computational cost in running simulations for the different mesh densities is 

shown in table 3.3. A Viglen Omnino all-in-one desktop pc with a random-

access memory of 4.00 GB was used for the CFD simulation.  

 

Table 3.3  Computational costs for different mesh densities 

Mesh Density Computational Cost 

 Hours Minutes Seconds 

61159 0 4 49 

244651 0 24 20 

460271 0 33 48 

621698 1 26 23 

936716 2 23 3 

1070554 2 52 54 
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3.3.5     SIMULATION (SOLUTION PHASE) 

 

With the convergence criterion established to ensure that results are 

insensitive to mesh density, integrations of the fluid flow governing equations 

thus equations 3.5 and 3.6 are then solved by iterations. Since the pressure 

term of the discretised Navier-Stokes equation is unknown and fluid flow 

cannot be determined if flow pressure field is neglected, a method to couple 

pressure and velocity is needed. Thus Semi-Implicit Method for Pressure-

Linked Equations (SIMPLE) algorithm was used for velocity-pressure 

coupling [290].  Simulations were therefore executed using a pressure based 

Navier-Stokes solver on a double precision solver FVM platform. Pressure 

and momentum were discretised using a second order scheme as this 

provided for a second order accurate numerical solution in space.   

Flow boundary conditions controlling the model included no slip at the tube 

walls and velocity inlet and outlet boundary conditions. A user defined 

function (UDF) was written to apply a physiological pulsatile LAD inlet 

velocity flow waveform derived by Marcus et al. [58] at the inlet boundary of 

the model. This flow waveform is shown in figure 3.6. Also, the flow velocity 

waveform imposed at the inlet boundary was assumed to be parabolic. At the 

outlet boundary, a constant pressure value was specified and a zero normal 

derivative was also specified for the velocity. To eliminate start up effects, 

three cycles of the LAD flow waveform was performed with only the results 

from the third cycle taken for analysis.  

Since the present study is based on transient LAD physiological flow, it 

becomes imperative to perform a time step convergence in addition to the 

mesh convergence done in order to ensure better accuracy of results. Thus 

temporal discretisation should be sufficient enough to produce accurate time 

evolution of velocity component of a transient flow. This is necessary  
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especially as there are significant time dependent flow dynamics within the 

LAD flow cycle. So simulation of each LAD pulse cycle was discretised into 

300 time steps of size 0.005s which was used for final CFD analysis as 

further discretisation of time step produced negligible results but only 

increased computational cost. Solutions for each time step were deemed to 

have converged when the normalised scaled continuity residuals and x-, y-, 

and z- velocity components had fallen to below 10–5 or after 200 iterations. 

Blood was assumed incompressible with a density, 𝜌 of 1057𝑘𝑔/𝑚3and an 

average inlet velocity, 𝑉 of 0.265𝑚/𝑠 [291]. Considering blood flow to be 

Newtonian with dynamic viscosity 𝜇 of 0.35 𝑚𝑃𝑎. 𝑠 through the LAD of 

internal diameter, 𝐷 of 3𝑚𝑚 the mean Reynolds number, 𝑅𝑒 is calculated to 

be 240. Blood flow is therefore considered laminar as 𝑅𝑒 calculated is less 

than 1000 [292]. Re is defined as [43]: 

𝑅𝑒 =  
𝜌𝑉𝐷

𝜇
   3.7                  

Taking a normal resting heart rate of an adult to be 70 beats/min (i.e 𝜔 =

7.3), Womersley number, 𝛼 that defines the unsteady nature of the LAD 

flow is calculated to be 2.4. Wormersley number is defined as [293]: 

𝛼 =  
𝐷

2
√

𝜔𝜌

𝜇
  3.8 

Thus flow is laminar and satisfies physiological LAD flow dynamics [294].  

 

Figure 3.6  LAD flow waveform 
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3.3.6     QUANTIFICATION OF BLOOD MODEL DIFFERENCES  

 

A quantitative measure of WSSs within the stented model with the use 

different constitutive blood models was introduced to determine the WSS 

differences between each model in the analysis of blood flow dynamics. So 

for the quantitative analysis different time points of the LAD cardiac cycle; 

thus 𝑡1 = 0.1𝑠, 𝑡2 = 0.2𝑠, 𝑡3 = 0.3𝑠, 𝑡4 = 0.4𝑠, 𝑡5 = 0.5𝑠, 𝑡6 = 0.6𝑠, 𝑡7 =

0.7𝑠, 𝑡8 = 0.8𝑠, 𝑡9 = 0.9𝑠 𝑎𝑛𝑑 𝑡10 = 1𝑠  were taken. Data produced from 

using Carreau model in the flow simulation was considered as the target data 

as this model was shown to best fit the experimental rheological blood data. 

The Newtonian and non-Newtonian Power Law models were compared to 

the Carreau model to find the agreement between each set of data. 

Quantitative analysis of the disagreement between Carreau model and the 

Newtonian and non-Newtonian Power Law models were performed by the 

formulation given below:  

𝜀 = 100 × 
(|𝐴(𝑠;𝑡)− 𝐵(𝑠;𝑡)|)

0.5×(𝐴(𝑠;𝑡)+𝐵(𝑠;𝑡))
  3.8 

  

where 𝜀 is the measure of error between two different constitutive blood 

models.  𝐴 and 𝐵 are the acquired and target averaged WSS data 

respectively produced from the flow simulation at instantaneous time point 𝑡 

and at specific region 𝑠 within the stented artery. The specific region 𝑠,  

is a 0.2mm square area taken at the inlet, outlet and peri-strut regions where 

flow is assumed to be most stable. In the case of the peri-strut region, the 

most stable flow region is where flow is deemed to have recovered; thus 

have similar WSS magnitudes as that of the inlet and outlet regions. The fit 

of the agreement WSS data produced by the two rheological models was 

considered good if 𝜀 was less than 0.1 and excellent if less than 0.05. 
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3.4        RESULTS 

 

3.4.1     DATA ANALYSIS (POST-PROCESSING PHASE) 

 

Pulsatile LAD flow computation of three different constitutive blood models 

(Newtonian, non-Newtonian Power Law, Carreau) within a stented artery 

was performed and the WSS data in the stented model from each blood 

model was analysed. Figure 3.7 shows the WSS distributions within the 

stented artery at specific instantaneous time points of the LAD flow 

waveform.  

 

 

             

 

W
S

S
 (

P
a
) 

t1 

t5 

t2 

t7 
t9 

t1 = 0.1s t2 = 0.2s 

t3 

t1 = 0.1s 

W
S

S
 (

P
a
) 



 

74 
 

CHAPTER 3 COMPUTATIONAL FLUID DYNAMICS 

 

                  

 

              

 

Figure 3.7 shows an xy-plane of WSS distribution (Pa) contour plots within 

stented LAD artery at time points of 0.1s, 0.2s, 0.3s, 0.5s, 0.7s and 0.9s. 

Flow direction is indicated by arrow (left to right). WSS magnitude shown on 

the colour bar legend ranges from 0.008 Pa (indicated by the colour dark 

blue) to 23.9 Pa (indicated by the colour red).    

The grooves shown in figure 3.7 represent the stent position within the 

artery. It is noticed that at time; t5 = 0.5s, the WSS magnitudes recorded at 

these grooves are the highest (~19 Pa) comparatively to the WSS 

magnitudes recorded at other time points. Additionally, lower WSS 

magnitude across the LAD stented artery were recorded at time t1 = 0.1s, t2 

= 0.2s and t3 = 0.3s  

t3 = 0.25s t4 = 0.35s 

t3 = 0.3s t5 = 0.5s 

t7 = 0.7s t9 = 0.9s 
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Figure 3.8 shows the WSSs generated along the centre plane of the stented 

artery by the different constitutive blood models at instantaneous time points 

of a complete LAD cardiac cycle. 

 

 

 

 

 

 

 

t1 = 0.2s t2 = 0.2s 

t3 = 0.3s t4 = 0.4s 

t1 = 0.1s 
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t7 = 0.7s t8 = 0.8s 

t5 = 0.5s t6 = 0.6s 
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Figure 3.8  Line Graph of WSSs (Pa) in stented LAD artery using different 

constitutive blood models and at different time points.  

As seen from figures presented in figure 3.8, WSS magnitudes experienced 

on the stents are higher compared to the WSS magnitudes at regions around 

the stent. This phenomenon is similar to that shown in figure 3.7. It is also 

noted that at t4 = 0.4s to t10 = 1s, the first stent strut in relation to the flow 

direction (thus from left to right) experiences high WSS compared to that of 

the consecutive stent struts. Plausible reason for this occurrence is that flow 

over the first ridge is faster than the subsequent struts and from Bernoulli’s 

equation the pressure at the first strut would be lower than the subsequent 

struts. As pressure is high at the immediate regions of the strut due to low 

fluid velocity, this creates a pressure difference across the strut. This 

pressure difference leads to increase WSS magnitudes. 

Newtonian, non-Newtonian Power Law and Carreau models are seen to 

produce similar WSS pattern along the centre plane of the stented LAD as 

shown in results figure 3.8. Nonetheless, WSS magnitudes at selected time 

points of the LAD waveform amongst the three models are different. This 

result was expected and consistent with similar studies of Benard et al. [29]. 

From this study we could appreciate that non-linear and linear flow models 

t9 = 0.9s 
t10 = 1s 
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generate differences in near wall viscosity behaviour which results in the 

alteration of WSSs recorded. It is also observed that increased flow rate led 

to an emphasis of fluid perturbation within the stented region of the artery 

and yielded a WSS rise. Minimal WSS levels are experienced at immediate 

peri-strut regions and with peak WSS levels experienced on top of stent 

struts. WSS levels are also observed to increase with increase in flow 

recovery within inter-strut regions. Quantitative analysis of WSS error 

between the different blood rheological models at different time points within 

the stented artery is shown in Table 3.4.  

 

  

Table 3.4 Quantitative measurements of WSSs (Pa) error between different 

constitutive blood models and at varied regions and time points. 

 Measure of Error between  WSS data 

Time: t1 = 0.1s 

 Newtonian Vs. 
Carreau  

Carreau Vs. non- 
Newtonian Power Law 

Inlet  0.0595 0.1744 

Inter-strut 1 and 2  0.0248 0.0753 

Inter-strut 2 and 3 0.0242 0.0858 

Inter-strut 3 and 4 0.0258 0.0977 

Inter-strut 4 and 5 0.0201 0.0768 

Outlet 0.0190 0.194 

 

Time: t2 = 0.2s 

 Newtonian Vs. 
Carreau  

Carreau Vs. non- 
Newtonian Power Law 

Inlet  0.1724 0.2514 

Inter-strut 1 and 2 0.0642 0.0655 

Inter-strut 2 and 3 0.0642 0.0719 

Inter-strut 3 and 4 0.0766 0.0837 

Inter-strut 4 and 5 0.0631 0.0648 

Outlet 0.0881 0.1182 

Inlet Outlet 
Strut 1 Strut 2 Strut 3 Strut 4 Strut 5 
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  Measure of Error between  WSS data 

Time: t3 = 0.3s 

 Newtonian Vs. 
Carreau  

Carreau Vs. non- 
Newtonian Power Law 

Inlet  0.4099 0.1086 

Inter-strut 1 and 2 1.0557 0.1745 

Inter-strut 2 and 3 1.6118 0.2771 

Inter-strut 3 and 4 2.1068 0.3624 

Inter-strut 4 and 5  2.0252 0.3527 

Outlet 2.7880 0.4632 
 

Time: t4 = 0.4s 

 Newtonian Vs. 
Carreau 

Carreau Vs. non- 
Newtonian Power Law 

Inlet  0.0390 1.3473 

Inter-strut 1 and 2 0.0209 0.4165 

Inter-strut 2 and 3 0.0221 0.4321 

Inter-strut 3 and 4 0.0253 0.4736 

Inter-strut 4 and 5 0.0194 0.3582 

Outlet 0.0202 0.4812 

 

Time: t5 = 0.5s 

 Newtonian Vs. 
Carreau  

Carreau Vs. non- 
Newtonian Power Law 

Inlet  0.0229 1.9033 

Inter-strut 1 and 2 0.0148 0.6036 

Inter-strut 2 and 3 0.0166 0.6287 

Inter-strut 3 and 4 0.0194 0.6735 

Inter-strut 4 and 5 0.0158 0.5311 

Outlet 0.0178 0.74 

 

Time: t6 = 0.6s 

 Newtonian Vs. 
Carreau  

Carreau Vs. non- 
Newtonian Power Law 

Inlet  0.0280 1.6904 

Inter-strut 1 and 2 0.0169 0.5461 

Inter-strut 2 and 3 0.0187 0.5703 

Inter-strut 3 and 4 0.0215 0.6167 

Inter-strut 4 and 5 0.0172 0.4810 

Outlet 0.0194 0.6853 
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 Measure of Error between  WSS data 

Time: t7 = 0.7s 

 Newtonian Vs. 
Carreau  

Carreau Vs. non- 
Newtonian Power Law 

Inlet  0.0316 1.5635 

Inter-strut 1 and 2 0.0190 0.5123 

Inter-strut 2 and 3 0.0211 0.5367 

Inter-strut 3 and 4 0.0244 0.5841 

Inter-strut 4 and 5 0.0195 0.4538 

Outlet 0.0224 0.6516 

 

Time: t8 = 0.8s 

 Newtonian Vs. 
Carreau  

Carreau Vs. non- 
Newtonian Power Law 

Inlet  0.0367 1.4095 

Inter-strut 1 and 2 0.0217 0.4687 

Inter-strut 2 and 3 0.0243 0.4942 

Inter-strut 3 and 4 0.0283 0.5409 

Inter-strut 4 and 5 0.0226 0.4188 

Outlet 0.0267 0.6097 

 

Time: t9 = 0.9s 

 Newtonian Vs. 
Carreau  

Carreau Vs. non- 
Newtonian Power Law 

Inlet  0.0416 1.2851 

Inter-strut 1 and 2 0.0247 0.4350 

Inter-strut 2 and 3 0.0279 0.4612 

Inter-strut 3 and 4 0.0327 0.5072 

Inter-strut 4 and 5 0.0263 0.3922 

Outlet 0.0319 0.5768 
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 Measure of Error between  WSS data 

Time: t10 = 1s 

 Newtonian Vs. 
Carreau  

Carreau Vs. non- 
Newtonian Power Law 

Inlet  0.0563 1.0140 

Inter-strut 1 and 2 0.0327 0.3504 

Inter-strut 2 and 3 0.0370 0.3752 

Inter-strut 3 and 4 0.0437 0.4162 

Inter-strut 4 and 5 0.0353 0.3209 

Outlet 0.0447 0.4874 

 

From the WSS error data presented in Table 3.4, Newtonian is noticed to 

compare more closely to Carreau model than non-Newtonian Power Law 

compared to Carreau model.  

 

3.5        DISCUSSION 

 

Numerical transient simulations were applied to a straight helical stented 

artery under LAD pulsatile flow conditions for Newtonian and two non-

Newtonian viscosity blood models. The WSS distribution trends within the 

stented artery are observed to be same for all the blood viscosity models 

investigated at the selected cardiac time points; however the WSS 

magnitudes differed from one viscosity model to another.   

Based on the CFD results presented, the WSS distributions within the 

stented LAD artery can be seen as highly non-uniform. During the flow 

deceleration phase (t1) characterised by a negative flow rate, the WSS 

magnitudes produced by Carreau model and Newtonian model are seen to 

be very similar throughout the entire stented arterial region. The agreement 

between these two constitutive blood models at this phase was considered 

excellent within the areas of interest thus; inlet and outlet regions of the 

stented artery and inter-strut regions, 𝜀 < 0.05. The agreement between the 
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non-Newtonian Power Law and the Carreau model within the inter-strut 

regions was considered good as 𝜀 < 0.1. Conversely, the agreement 

between these two latter constitutive blood models at the inlet and outlet 

regions was considered poor as 𝜀 > 0.1. On the top of the stent struts, WSS 

magnitudes produced by the non-Newtonian Power Law model was 

observed to be lower compared to the Newtonian and Carreau models which 

recorded very similar WSS magnitudes. 

At the acceleration phase (t2) characterised with a forward flow rate, the 

WSS magnitudes produced by the Newtonian and the non-Newtonian Power 

within the inter-strut regions are shown to have good agreement with that of 

the WSS magnitude produced by Carreau model within the same regions; 

thus 𝜀 < 0.1.  At the inlet and outlet regions, there was a poor agreement 

between the non-Newtonian Power Law and Carreau model (𝜀 > 0.1). Also, 

the agreement between Newtonian and Carreau model at the inlet region 

was poor, however at the outlet region the agreement between the two 

models was good. It is suggested that the difference of WSS error seen 

between these two regions may be as a result of the local dynamic nature of 

flow at the respective regions which could influence the impact of both 

constitutive blood models. 

At deceleration phase (t3), flow rate is predicted to be very minimal and this 

is marked by the very low WSS magnitudes as shown in figure 3.8. However, 

the WSS magnitudes produced by all the blood models being investigated 

were seen to be incongruent to each other at the regions of interest. The 

measures of error difference between the three rheological models were very 

poor (𝜀 > 0.1) and thus the error difference considered very significant. It is 

noted however that Newtonian model at this phase compared worse to 

Carreau model as opposed to non-Newtonian Power Law compared to 

Carreau model.  



 

83 
 

CHAPTER 3 COMPUTATIONAL FLUID DYNAMICS 

 

During the continuous acceleration phases (t4, t5) and deceleration phases 

(t6, t7, t8, t9 and t10) with each phase having a forward flow rate and 

considerable high flow rate magnitude, the WSS magnitudes produced by 

the Newtonian model and Carreau model are seen to be more comparable 

throughout the entire region of the stented artery. The agreement between 

the Carreau and Newtonian models were also considered to be excellent as 

𝜀 < 0.05. Conversely the agreements between the non-Newtonian Power 

Law and Carreau models at these different phases were observed to be very 

poor 𝜀 > 0.1. Additionally, non-Newtonian Power Law model was observed to 

under-estimate the WSS magnitudes produced within the stented artery 

during these phases. 

From the results analyses it is noted that Newtonian model is able to capture 

very closely most of the non-Newtonian blood viscosity’s (Carreau model) 

effect on WSS magnitudes within the stented LAD model. For instance at 

cardiac time points of (t1, t2, t4, - t10) the agreement between WSS data 

produced by Newtonian model and the Carreau model at regions of interest 

were considered excellent and thus the error difference in WSS data 

between these two rheological models used for the LAD flow simulation 

considered insignificant. Therefore the assumption that Newtonian model 

could serve as an acceptable rheological model to analyse the non-

Newtonian blood characteristics within straight stented LAD is justifiable.  

At time point (t3) of the cardiac cycle however, the Newtonian model is noted 

not able to mimic the behaviour of the non-Newtonian rheological blood 

model. Whilst this result is indicative of the fact that Newtonian model is not 

able to fully capture the behaviour of the non-Newtonian rheological blood 

model over a complete cardiac waveform of the LAD, general results 

nonetheless show that Newtonian model agrees very well with the non-

Newtonian rheological blood model over 80% of the LAD cardiac cycle. Thus 

the Newtonian model and Carreau model is observed to show a good 
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agreement quantitatively in the WSSs during the LAD cardiac cycle. On the 

contrary, non-Newtonian Power Law model is found to produce much lower 

WSS values. This observation is consistent with other observations made by 

Soulis et al. [35], Liu et al. [295] and Johnston et al. [296] in the investigation 

of non-Newtonian blood flow in the human coronary artery. It should be 

noted however that although observations made on the effect of non-

Newtonian Power Law model on WSS correlated to that reported by Soulis et 

al., Liu et al., and Johnston et al; each study reported was carried out under 

different flow condition. Liu et al., investigated into the influence of non-

Newtonian model on WSS in right coronary artery under non-physiological 

unsteady flow conditions whilst Soulis et al., and Johnston et al., performed 

their investigation simulating steady flow conditions. On the other hand, 

investigation on the impact of non-Newtonian blood models on WSS reported 

in this thesis was conducted using physiologically realistic LAD pulsatile flow 

conditions. Also, in the investigation by Soulis at el. [35] it was reported that 

at mid- to high strain rates Carreau model tends to behave like Newtonian 

model. The centre-line velocity used in the simulation of the constitutive 

blood models in this thesis is 0.53 𝑚/𝑠 and at mid- to large velocity centre-

lines (around 0.1 𝑚/𝑠 ≤ ) it has been reported by Liu et al. [295] and 

Johnston et al. [296] that WSS magnitude for Carreau and Newtonian 

models are similar whilst Power Law model produces very low WSSs. This 

therefore tends to explain further the reason why the WSS magnitudes of the 

Carreau and Newtonian models observed are similar and that of non-

Newtonian Power Law model are much lower.      

A CFD analysis by Razavi et al. [297] into stenotic flow dynamics using six 

non-Newtonian viscosity models; (i.e. Power Law, Carreau Yasuda, Carreau, 

Generalised Power Law, modified Casson, Walburn–Schneck) and a 

Newtonian model suggested Carreau model as a suitable model for the 

analysis of stenotic fluid flow dynamics in a carotid artery under pulsatile flow 
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conditions. In the study it was suggested that the cut-off value for global non-

Newtonian importance factor; IG = 1 for which blood flow could be assumed 

to exhibit non-Newtonian behaviour. IG defines the relative difference 

between Newtonian viscosity value and non-Newtonian viscosity value over 

an entire fluid model [192]. So in the analysis of IGs of the non-Newtonian 

models it was observed that Carreau and Carreau Yasuda models predicted 

moderate IG values whilst the other models predicted either high or low IGs. 

Using either high or low IG models could lead to overestimation or 

underestimation of non-Newtonian behaviour respectively. This consequently 

could dominate the effect of the mechanical parameters such as WSS 

magnitudes being recorded and therefore could produce a false 

representation of the mechanical milieu present in the artery. The use of 

Carreau model on the other hand produced a moderate non-Newtonian 

behaviour which therefore showed better representation of the mechanical 

environment in the artery. This conclusion from Razavi et al. [297] thus tend 

to further support the reason why Carreau model was considered as the 

benchmark for comparing the Newtonian and non-Newtonian Power Law 

effects on WSSs within the stented LAD artery in addition to having shown in 

figure 3.1 that Carreau model best fitted experimental blood rheological 

models.  

 

3.5.1     LIMITATIONS 

 

One limitation of this study was that a straight stented tube was used as a 

model for the stented LAD artery. This simplified geometry of the artery 

constitutes another assumption because the anatomical shape of the artery 

is tortuous and curved. Additionally, stenosis is more prone to arterial regions 

which are curved and bifurcated because of the strong relation existing  
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between recirculation regions induced by the effect of curvature and 

atherogenesis process. Seo et al. [214]  investigated into the flow fields 

within straight and curved vessels and revealed that the extent of flow 

disturbance and flow separation is dependent on angle of arterial curvature.   

Also, a simplified helical stent design was modelled to investigate the effect 

of stent on flow characteristics. Whilst the hemodynamic data achieved helps 

us appreciate the effects of stent on fluid flow dynamics it is however known 

that not all stent designs alter hemodynamic parameters in the same manner 

and probably analysis of different constitutive blood models on complex 

stents may not be comparable. Comparative studies of different stent 

designs but of identical stent parameters within arteries have shown 

disparities in local hemodynamic milieu which have been likely attributed to 

the difference in stent design [298, 299]. It is also reasoned that most 

standard commercial stents have stent connectors which links two struts 

together. These connectors increase the complexity of the stent designs and 

depending on their length and the alignment to fluid flow could affect the 

hemodynamic environment [300]. Therefore analysis from our simplified 

stent geometry may not be sufficient enough to capture different flow 

dynamics that may be present in a real case. 

It is therefore not clear how Newtonian and Carreau models would compare 

when more complex arterial and stent geometries are examined. 

 

3.6       CONCLUSION 

 

In summary, the choice of rheological viscosity model used for analysing 

blood flow behaviour and in assessing its impact on WSS in stented LAD 

artery as afore discussed can significantly affect WSS magnitudes. This 

subsequently influences our judgment in predicting accurately stented  
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arterial sites more prone to restenosis. Endothelial transport properties have 

been reported to alter as a result of endothelial structural and functional 

changes mediated by WSS [301]. Hence it is important to quantify accurately 

the WSS that may induce ECs functional and structural changes.  

As discussed in section 3.5 of this chapter, the use of non-Newtonian Power 

Law in simulating blood flow in a stented coronary artery led to under-

estimation of WSS magnitudes. Conversely, the use of Carreau model and 

Newtonian model showed similar WSS magnitudes under realistic pulsatile 

LAD flow condition simulation. So, the choice of rheological blood model 

used to simulate blood flow could under-estimate or over-estimate WSS 

predicted in arterial models. From the WSS data presented in this chapter, 

the use of Newtonian model other than Carreau model in the analysis of 

WSSs in a straight stented LAD, is a better alternative option. This 

proposition is made based on the reasons that: 

 75% of total coronary blood flow occurs during the diastolic period 

[302] and at this period Newtonian model is seen to be able to mimic 

the non-Newtonian rheological blood model based on Carreau model.  

 

 Additionally, the 10% which constitutes the total percentage of which 

Newtonian model is not able to mimic the non-Newtonian rheological 

blood models behaviour occurs during systolic where flowrate is very 

low. It is postulated that taking into account a complete cardiac cycle 

(1s), the failure of the Newtonian model to capture the non-Newtonian 

blood behaviour for a tenth of a second may result in an insignificant 

effect in the general analysis of blood flow dynamics on EC response.  

Finally, as illustrated in figure 3.8, the use of different rheological blood 

models in blood flow simulation within stented artery resulted in 

comparatively different WSS magnitudes; however WSS distributions were  
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similar. Interestingly, WSS magnitude recorded on the first stent strut 

respective to the flow direction was the highest compared to the subsequent 

stent struts which showed relatively lower WSS magnitudes. Explanation to 

this observation was that fluid flow tends to reduce in speed as it flows 

across successive struts. So, employing Bernoulli’s equation, it is deduced 

that pressure on the first stent strut would be the lowest compared to the 

subsequent struts. Additionally, flow speed at the very immediate regions of 

stent strut is very low and thus pressures at these regions are high. The 

pressure difference gives rise to the WSS magnitudes which therefore 

implies that the lower the pressure on top of the strut, the higher the WSS 

magnitude. 
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CHAPTER  4 

 

FLOW BIOREACTOR 

 

4.1        EFFECTS OF STRESSES ON ECs RESPONSE 

 

Numerous studies have established relationships between ECs structure, 

transport properties and gene activity changes to mechanical stresses [51, 

303-308]. The mostly reported ECs alteration when subjected to fluidic WSS 

has been in its morphological change. When ECs are not stimulated thus by 

stress they are shown to be cobblestone-like and disposed to a random cell 

alignment nature. However when they are exposed to appropriate 

physiological fluidic WSS levels, they have been shown to elongate and align 

in the direction of flow in a time dependent manner [308]. It should be made 

clear however that ECs in vivo are not only subjected to fluidic WSS but also 

tensile hoop strain as a result of cyclic stretching and contraction of arterial 

walls [309]. These shear stress and tensile strain coexist and may impact the 

function of ECs to the onset of arterial disease [310]. In the case of a 

diseased artery, the arteries are said to be stiffer [311]. Thus the cyclic 

stretching and contraction action of arteria walls are reduced or become 

negligible. From the above discussion it could therefore be assumed that 

WSS play dominant role influencing ECs response within diseased arteries. 

So, the effect of tensile hoop strain on ECs could be ignored based on 

arterial stiffness.  

It is agreed that CFD analysis of local hemodynamics within stented artery 

based on the assumptions of rigid arterial wall and fixed stent may affect  
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WSS and fluid flow dynamics results. So performing fluid-structure 

interaction analysis of the local hemodynamics within the stented artery 

which takes into account arterial wall compliance may produce further 

hemodynamic data that CFD simulations may fail to capture. Nonetheless, a 

study by Chiastra et al. [312] on the necessity of modelling fluid-structure 

interaction for stented coronary arteries revealed that CFD analysis based on 

the assumption of rigid arterial wall for fluid-structure interaction simulations 

are adequate when analysing WSSs.      

When ECs are stimulated under hydrostatic pressure in the absence of 

fluidic stresses, the cells are shown to elongate with time but have a random 

cell alignment disposure [313]. Further investigations into the independent 

effects of hydrostatic pressure and fluidic stress on EC response have shown 

increase in cell proliferation and a formation of a multi-layered cell structure 

when the cells are exposed to only hydrostatic pressure [313]. When cells 

are exposed to a physiological laminar WSS however, proliferation is 

inhibited and cells form a monolayer structure [314]. Interestingly, White et 

al. [24] have suggested that temporal gradient but not spatial gradient shear 

stress stimulates EC proliferation. Also disturbed WSS is predicted to 

influence EC proliferation [315]. Investigations into the response of ECs to 

combined hydrostatic pressure and shear stress have shown ECs to 

elongate and align to the flow direction and also exhibit a monolayer 

structure [316]. It is therefore postulated that shear stress has an over-riding 

effect on ECs morphology when the cells are subjected to combined shear 

stress and hydrostatic pressure. Studies by Bond et al. [317, 318] into the 

morphological changes of EC nuclei indicated that nuclei elongated and 

aligned with applied shear stress. This implied that there is a parallel 

behaviour between morphological changes of EC and its nucleus. However 

one needs to be very careful when making assumptions of nuclei behaviour 

based on that of EC behaviour as there is quiet a weak correlation  
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between nucleus elongation and stress. Thus other factors such as pulsatility 

of flow or arterial wall stiffness may influence nucleus elongation [317]. 

Understanding ECs morphology can be beneficial in predicting arterial sites 

which are healthy and those prone to diseases. It is suggested that arterial 

sites having ECs of cobblestone morphology are more atheroma prone 

whereas sites with elongated ECs are athero-protected [92, 181, 319].  

Endothelial morphological changes and functions mediated by mechanical 

stresses are regulated by very complex molecular signalling cascades [320]. 

A study by Warboys et al. [305] into the effect of chronic and acute stresses 

on ECs function demonstrated that chronic shear stress reduced ECs 

permeability to macromolecules. It was suggested that this ECs response 

was achieved as constant shear stress induced nitric oxide (NO) synthesis 

through production of phosphatidylinositol 3-OH (P13K) and soluble guanylyl 

cyclase. Increase permeability of endothelium layer to macromolecules such 

as lipoprotein over a period of time has been suggested to trigger 

atherosclerosis [92], thus this stress-NO phenomenon could help explain the 

athero-protective nature of ECs subjected to shear stress.   

 

4.2        TYPES OF STRESSES ON ECs  

 

Several studies have produced compelling evidences to suggest a link 

between WSSs and the disposure to an arterial site being prone to disease 

[12, 109, 321-323]. Whilst these evidences are acceptable, they are still not 

sufficient and therefore it is not prudent to exclude other factors that may 

influence the anatomic state of an artery. Hence, other additional theories 

have been postulated based on either temporal (TWSSG) or spatial 

(SWSSG) rate of change of the WSS or oscillatory shear index (OSI) [11, 

324-326]. These additional theories allow for the consideration of the 
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physiological pulsatile blood flow behaviour in the arteries and also the 

complex geometrical structure of the artery. 

 

4.2.1     TEMPORAL WALL SHEAR STRESS GRADIENT (TWSSG) 

 

The dynamic nature of blood flow with respect to the cardiac cycle gives rise 

to TWSSG. White et al. [50] postulated that TWSSG induced increased 

endothelial turnover by stimulating ERK 1/2 activation. This effect has been 

implicated to contribute in the development of atherosclerotic lesions [327]. 

TWSSG is calculated by the mathematical formulation given below: 

𝑇𝑊𝑆𝑆𝐺 = 
𝜕𝜏𝑤

𝜕𝑡
  4.1   

where 𝜕𝜏𝑤 is the change in WSS and 𝜕𝑡 is the change in time. 

 

4.2.2     SPATIAL WALL SHEAR STRESS GRADIENT (SWSSG) 

 

The complex geometric shape of the artery could cause local spatial 

variation of the stresses acting on ECs. It has been implied that these local 

changes of stresses acting on the EC could induce intercellular junction gaps 

which consequently would lead to uncontrolled permeability of 

macromolecules [328, 329]. SWSSG is calculated by the mathematical 

equation given below: 

𝑆𝑊𝑆𝑆𝐺 =  
𝜕𝜏𝑤

𝜕𝑠
   4.2 

where 𝜕𝑠 is the change in distance.  



 

93 
 

CHAPTER 4 FLOW BIOREACTOR 

 

4.2.3     OSCILLATORY SHEAR INDEX (OSI) 

 

OSI is the measure of deflection of the WSS vector from the main directional 

blood flow; thus an indication of flow disruption during the flow cycle in the 

artery as suggested by Ku et al. [102]. A study by Zhang et al. [330] into the 

flow patterns and WSS in the human carotid artery made a correlation 

between elevated OSI with increased risk of stenosis in the artery. This OSI 

formulated as: 

𝑂𝑆𝐼 = 0.5 × (1 −
|∫ 𝜏𝑤⃑⃑ ⃑⃑  ⃑𝑑𝑡

𝑇

0
|

∫ |𝜏𝑤⃑⃑ ⃑⃑  ⃑|𝑑𝑡
𝑇

0

)  4.3 

where 𝜏𝑤⃑⃑ ⃑⃑   is the instantaneous WSS vector at a cardiac time point, 𝑑𝑡 is the 

change in the time point over a complete cardiac period 𝑇.  

Substantive evidence to explain the onset and progression of atherosclerotic 

lesions still remains elusive. Hence it begs the questions if current popular 

flow metric; i.e. WSS, SWSSG, TWSSG and OSI are enough to capture 

physiological blood flow physics? And do these metrics accurately quantify 

the essence of ECs response to dynamic flow so commonly suggested in 

many literature? Chakraborty et al. [331] demonstrated that directionality of 

shear significantly affected ECs response when the effects of biaxial 

oscillatory shear stress on ECs were investigated. Thus it was implied that 

directional oscillatory shear index could play a critical role in atherogenesis. 

 

4.3   FLOW BIOREACTOR SYSTEMS FOR SUBJECTING ECs TO 

FLUIDIC STRESSES 

 

As discussed in sections 4.1 and 4.2, ECs undergo morphological and 
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functional changes under mechanical stress and there have been numerous 

experimental evidences to demonstrate these phenomena. The use of flow 

bioreactors to simulate measured mechanical stimuli on cells has proved 

critical in quantifying of cells response to different dynamic stresses [24, 49, 

51, 304].  Some of these studies are summarised in table 4.1.   

 

Table 4.1  Flow bioreactor subjecting ECs to mechanical stimuli 

  Mechanical Stresses  

Ref. 

 

WSS  SWSSG  TWSSG  OSI Pressure  Flow  ECs 

Ohashi 

[332] 

Yes No No No Yes Steady BAEC 

Galbraith 

[308] 

Yes No No No No Steady BAEC 

Vara 

[333] 

Yes No Yes No Yes Physio

-logical 

HUVEC 

Conklin 

[334] 

Yes No Yes Yes Yes Physio

-logical 

PCCA 

(ex vivo) 

Estrada 

[48] 

Yes No Yes Yes Yes Physio

-logical 

HAEC 

Dolan 

[335] 

Yes Yes No No Yes Steady BAEC 

Punchard 

[336] 

Yes No Yes No Yes Physio

-logical 

HUVEC 

Dardik 

[337] 

Yes Yes Yes No No Orbital BAEC 

Lane 

[338] 

Yes No No No No Steady HUEPC 
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White [24] Yes Yes Yes Yes Yes Steady HUVEC 

Frangos 

[47] 

Yes No No No Yes Steady HUVEC 

 

HUVEC = Human Umbilical Vein Endothelial Cell, BAEC = Bovine Aortic 

Endothelial Cell, HAEC = Human Aortic Endothelial Cell, PCCA = Porcine 

Common Carotid Artery segment, HUEPC = Human Umbilical Endothelial 

Progenitor Cell. 

 

4.3.1     INTEGRAL PARTS OF FLOW BIOREACTOR SYSTEM 

 

4.3.1.1  FLOW CHAMBER 

 

In flow bioreactor systems, the design of the flow chamber is one of the most 

integral part of the bioreactor system [339]. The flow chamber houses the 

ECs and also influences the mechanical environment being experienced by 

the cells. One of the most widely used and well characterised flow chambers 

is the parallel plate flow chamber (CytoDyne, La Jolla, CA) [47]. This flow 

chamber is a simple and re-usable device which houses ECs seeded on a 

substrate; mostly on glass microscope slides to be subjected to predicted 

flow dynamics. The parallel plate flow chamber (PPFC) allows for a uniform 

distribution of WSSs on cells. In other studies, the PPFC has been modified 

to allow for a wide range of mechanical stimuli which the conventional PPFC 

is not able to achieve. One such example was illustrated by DeVerse et al. 

[340] who housed ECs in a cone-and-plate shearing device; thus subjecting 

the cells to both steady WSS and oscillatory shear stress to investigate and 

characterise the inflammatory state of the ECs. Other flow chambers used by 
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researchers are the compliant cylindrical grafts which facilitate cells to be 

subjected to shear stress and hoop stretch [336, 341] and the converging 

flow chambers which cause spatial variation of shear stress to be 

experienced on the cells [335, 339]. 

 

4.3.1.2  FLOW CIRCUIT PUMP 

 

A simple flow circuit pump is normally used to apply steady flow of culture 

media to subject cells to measured steady stress. However, the physiological 

nature of blood flow in arteries is transient and so there is temporal variation 

of stress suspected to be experienced by ECs in vivo. To capture this 

temporal stress dynamics, researchers developed programmable syringe 

pump which would vary the flow rate produced with respect to time and thus 

produced pulsatile flow instead of a steady flow waveform [24, 342, 343]. 

This application led to cultured ECs experiencing temporal variation of shear 

stress. Whilst data achieved from the afore-mentioned references helps us 

appreciate the independent effects of temporal shear stress variation on 

cells, conclusions made from the results may highly not be applicable to the 

physiological response of ECs in vivo. This is because the syringe pump was 

programmed to apply non-physiological flow parameter on the cells. More so, 

there was no constant recirculation of culture media to the cells thus 

experimentation period was short. This as a result could influence our ability 

to accurately predict ECs response in vivo as short-term and long-term 

exposure to either independent or combined mechanical stimuli could cause 

ECs to respond differently [305].  To overcome these limitations, other 

investigators have developed new pulsatile perfusion systems which could 

produce physiological flow parameters over a continuous long period of time 

[336, 344, 345]. As noted in sections 4.3.1.1 and 4.3.1.2 the flow chamber 
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and flow circuit pump are important parts of the flow bioreactor system that 

aid in achieving desirable flow metrics and creating predicted mechanical 

environment for cells. Furthermore, it is also of equal importance when 

conducting cell experimental studies with the bioreactor system that the 

system is able to be kept under good sterile conditions and provide the ECs 

with the appropriate temperature, CO2, pH and oxygen. Additionally, the flow 

tubing used for the system should be non-compliant to yield accurate and 

repeatable mechanical stresses on the cells over the desired period of time.   

 

4.4        DESIGNING FLOW BIOREACTOR SYSTEM 

 

In designing the flow bioreactor system, one of the main objectives set out to 

achieve was for the system to be able to produce a LAD physiological 

waveform with its associated WSS waveform as illustrated in figure 4.2. Also 

the system was to be simple, cheap and able to produce similar flow 

dynamics in a stented LAD artery as discussed in section 3.4.  

 

4.4.1     DESIGNING FLOW CIRCUIT  

 

The design of the flow circuit system was based on that of Conklin et al. 

[334]. Conklin et al. developed a pulsatile perfusion system which consisted 

of a peristaltic pump that yielded a steady flow and a custom designed cam-

driven physiologic flow simulator to superimpose physiologically relevant 

pulsatile flow waveform on top of the steady flow. An advantage of this 

system was that the cam-driven physiologic flow simulator could be easily 

detached from the system when only steady flow is desired. Additionally the 

system allowed independent control of flow rate and pressure subjected to 
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the cells. The disadvantage to this system however was that accuracy of the 

pulsatile flow waveform reproduced to that targeted was poor.  El-Kurdi et al. 

[346]  designed a similar flow perfusion system to that of Conklin et al. but 

with an added advantage of the system being able to produce a pulsatile flow 

waveform that was more comparable to the targeted waveform. Whilst it 

would appear to be of a better judgement to therefore base the design of the 

flow bioreactor system to that of El-Kurdi et al., it is noted that El-Kurdi’s flow 

system is highly complicated compared to that of Conklin et al. and also 

likely to be relatively more costly to establish. Hence it was deemed 

appropriate to base the flow design on that of Conklin et al. as the design 

was simple and relatively cheap to build. It is proposed that the limitation of 

the flow system by Conklin et al. could be overcome by including a feedback 

control system to the flow simulator to keep a constant angular velocity of the 

camshaft and thus improve the accuracy of the flow waveform produced 

throughout the flow cycle. Additionally, it is noted that Conklin’s flow system 

was designed to study intact vascular segments however it is anticipated that 

this system could be easily modified to incorporate any type of flow chamber 

to investigate ECs response to various mechanical stimuli.  

Illustrated below is a schematic diagram of the flow bioreactor system. The 

bioreactor system works by drawing culture media from a reservoir (A) by the 

use of a peristaltic pump (B) through a non-compliant tube. A compliance 

chamber (C) is connected to the tube to dampen oscillations that may arise 

from the use of the peristaltic pump. The desired pulsatile flow waveform is 

then superimposed onto the flow through the action of the cam-driven 

pulsatile flow simulator (E) and to ensure that this pulsation effect is not 

dampened by the compliance chamber, a one-way flow check valve (D) is 

connected to the tube. The pulsatile flow now passes through a test flow 

chamber (H) were cells cultured on a substrate are housed. To build 

pressure in the system, a flow resistance valve (J) is used to lower the 
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outward flow rate thereby causing a build-up of media in the compliance 

chamber which consequently leads to an increase change in pressure. The 

flow waveform and pressure are quantified using the flow sensors (F) and 

pressure sensors (G) connected to analogue to digital converters. A sterile 

filter (K) is connected to the media reservoir which allows for gaseous 

exchange.       

 

 

 

Figure 4.1 Shows a schematic diagram of flow bioreactor system setup. 

Components housed in the incubator are shown within the dashed line 

square. The arrows show culture media pathway during flow experiment.   A 

= media reservoir, B =peristaltic pump, C = compliance chamber, D = one-

way flow check valve, E = cam-driven pulsatile flow simulator, F = flow 

sensor, G = pressure sensor, H = test flow chamber, J = flow resistance 

valve, K = filter.    

A 

B 
C 

D 

E 

F G 

H 

J 
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Figure 4.2  LAD waveform; Flow rate (L), WSS (R) [58]. 

 

4.4.1.1  FLOW AND PRESSURE SENSORS 

 

To ensure accurate recordings of the flow and pressure data in the system, it 

was crucial that the sensors used to take the measurements were able to: 

 Record sufficient data points to ensure reproducibility of predicted 

flow and pressure waveforms. 

 Sensitive enough to detect any slight changes that may occur in the 

flow and/or pressure at low and high levels. Thus higher accuracy in 

the measurements is obtained.    

 Maintain sterility of flow experiment.   

To achieve the above stipulated requirements, it was suggested that 

ultrasonic flow sensors be used. This is because these sensors have no 

contact to the flow media as they are clamped onto the flow tubing and 

measurements are taken via the acoustic nature of the fluid flow. Hence the 

sterility of the fluid flow experiment is maintained. The flow sensor selected 

for the flow measurement was the Em-Tec SonoTT Clamp-On transducer 

(www.em-tec.com/index.php?topic=produkte&subtopic=emtecProducts). The  

http://www.em-tec.com/index.php?topic=produkte&subtopic=emtecProducts
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flow data were then taken on a flow computer (BioProTT) that controlled the 

sensor.  To calibrate the flow sensor for our system, a peristaltic pump was 

used to produce a referenced steady flow rates through a 3.2𝑚𝑚  internal 

diameter tubing. The flow sensor was used to measure the flow rate 

produced by the peristaltic pump using the BioProTT flow computer.  To also 

verify that the peristaltic pump was producing the required flow rate, 

analytical measurements were made by timed collection of the steady flow 

volume exiting the tube over at least 60 seconds. Figure 4.3 and table 4.2 

shows the agreement of flow rates between that measured with the flow 

sensor and also from the analytical measurements to that produced by the 

peristaltic pump. All measurements were repeated at least three times and 

performed under similar conditions that the cell experiments would be 

conducted such as keeping the fluid flow at a temperature of 37℃. 

 

 

 

 

 

 

Figure 4.3  Calibration of flow sensor and peristaltic pump 
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Table  4.2  r2 values and gradient of best fit line (m) for  correlation between 

flow rates measured analytically or from a SonoTT clamp-on flow sensor to 

flow rate from a peristaltic pump.  

Flow Measurement Device m r2 

SonoTT Clamp-On Flow Sensor 0.9011 0.9997 

Analytical Measurements 0.9115 0.9996 

 

 

To also measure the physiological pressure in the system whilst still keeping 

the flow experiment under sterile conditions, a piezoelectric pressure sensor 

(Physiological Pressure Transducer, AD Instruments; MLT844) was used. 

This pressure sensor is used in combination with appropriate signal amplifier 

equipment (Bridge Amp, AD Instruments; ML221) and a PowerLab 4/25T, 

AD Instruments; ML845 which serves as an analogue to digital converter. 

The pressure signals from the pressure transducer are read on a PowerLab 

LabChart software (LabChart 6, AD Instruments) installed on a computer. 

The LabChart is set to convert the signals which are in voltages to pressure 

unit mmHg. It is important that the pressure transducer is able to measure 

accurately a wide range of pressure; for example of relevant physiological 

pressure levels and at a sampling rate at least as high as for the fluid flow. 

To calibrate the pressure transducer, different referenced amount of distilled 

water at temperature of 37℃ is put into a centimetre calibrated column and 

the pressure transducer used to record the pressure in unit voltage exerted 

by each referenced amount of distilled water. Figure 4.4 shows the 

calibration graph of the pressure transducer. Table 4.3 shows the correlation 

between pressure (mmHg) and the voltage measured. 
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Figure 4.4  Calibration of pressure transducer 

 

Table  4.3  r2 values and gradient of best fit line (m) for  correlation between 

pressure and measured voltage of pressure sensor. 

Pressure Sensor Device m r2 

Pressure Transducer 0.0347 0.9999 

 

 

4.4.1.2  CAM DRIVEN PULSATILE FLOW SIMULATOR 

 

The cam driven pulsatile flow simulator shown in figure 4.5 was built in-

house and can power different cams independently to simultaneously 

produce different flow waveforms.  However since the interest of this project 

was to investigate the LAD flow, only the LAD cam was used. The LAD cam 

is attached to a shaft which is connected to a power motor (V5253, Rotalink, 

UK) at one end and at the other end a bearing which constrained its rotation. 
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A proportional-integrated-differential (PID) control system (RedDrive 10A, 

Rotalink, UK) was also connected to the motor to ensure that constant 

angular speed throughout the flow cycle was maintained. A push rod with 

one end attached to a carbon filled polytetrafluoroethylene (PTFE) cap was 

kept constantly in contact with the cam by the use of a stainless steel spring. 

The other end of the push rod which had a no head screw was connected to 

a plunger of a syringe whose barrel is held fixed. When the motor is powered 

on, the shaft tends to rotate which causes the cam to consequently rotate 

and also cause a forth and backward motion of the plunger in the syringe 

barrel. The shape of the cam and angular speed with which the shaft rotates 

determines the velocity of the plunger and also the flow rate at which fluid 

exits out the syringe barrel. In the case of producing a physiological 

waveform, the shaft is caused to rotate at 60𝑟𝑝𝑚 (revolution per minute) to 

give a pulse frequency of physiological level. 

 

 

Figure 4.5  Cam driven pulsatile flow simulator 
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The design of a cam to produce a particular pulsatile waveform can be 

achieved by having define the flow rate in the periodic waveform over a 

complete time period, 𝑇. Thus given a function 𝑔(𝑡) that defines the flow 

rate, the pulsatile component of the waveform could be calculated as 

follows:  

 

1. Firstly, subtract the mean flow rate from the function 𝑔(𝑡) to get the 

oscillatory component: 

𝑔𝑜𝑠𝑐𝑖(𝑡) = 𝑔(𝑡) − 
∫ 𝑔𝑑𝑡
𝑇

0

𝑇
  4.4 

 

2. Based on the cross sectional area of the syringe barrel (𝑎) and the 

oscillatory component of the flow rate 𝑔𝑜𝑠𝑐𝑖(𝑡), the velocity of the 

plunger 𝑢(𝑡) is determined: 

𝑢(𝑡) =  
𝑔𝑜𝑠𝑐𝑖(𝑡)

𝑎
 4.5 

 

3. Integrate 𝑢(𝑡) with respect to time to get the particular position of the 

plunger (𝑥) as a function of time with respect to an arbitrary datum: 

𝑥(𝑡) =  ∫ 𝑢(𝑡)𝑑𝑡  4.6 

 

4. Add a constant, 𝑐 to the above calculated step: 

𝑥′(𝑡) =  𝑥(𝑡) + 𝑐  4.7 
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5. Define the angle at which the cam turns on a cycle: 

𝜃(𝑡) = 2𝜋𝑡  4.8 

 

6. To finally produce the shape of the cam, plot 𝑥′ against 𝜃 in polar 

coordinates: 

 

The plotted coordinates from the above calculations are then exported for 

CNC machining. Figure 4.6 shows a cam profile of a LAD flow waveform. 

 

 

Figure 4.6  Cam profile of LAD waveform 

 

4.4.1.3  PERISTALTIC PUMP AND TUBING 

 

It was important to use a peristaltic pump which could provide a given flow 

rate required to produce a predicted WSS especially in the case where  



 

107 
 

CHAPTER 4 FLOW BIOREACTOR 

 

physiological WSS levels are being considered. Hence the peristaltic pump 

selected to use for the flow system was a Masterflex LS 115/230 drive from 

Cole-Parmer, UK which could deliver very high flow rates (~348 ml/min).  

Also the tubing used for the flow system was required to have acoustic 

properties suitable for use with the flow sensor, ability to withstand the fluid 

flow forces and made of materials suitable for cell culture applications. 

Hence PharMed tubing of internal diameter 3.2𝑚𝑚 and of thickness 1.6𝑚𝑚 

from Fisher Scientific, UK which satisfies the above stated characteristics 

was used.      

 

4.4.2     DESIGNING FLOW CHAMBER  

 

A parallel plate flow chamber was developed to house the ECs cultured on a 

custom designed glass substrate. In designing the parallel plate flow 

chamber, notice was taken of the fact that the dimensions of the flow 

chamber and the flow media viscosity do affect the magnitude of WSSs 

associated with the LAD flow waveform produced on the cells. Hence to 

relate the predicted WSS applied to the ECs to the flow rate of the media and 

the flow chamber, a constant K is defined. This constant, K is given by the 

mathematical formula: 

 

𝐾 =  
6𝜇

𝑏ℎ2
  4.4 

𝜏𝑤 = 𝐾𝑄  4.5 

where 𝜇 is the media viscosity, 𝑏 and ℎ is the width and height 

respectively of the flow chamber, 𝑄 is the flow rate and 𝜏𝑤 is the  



 

108 
 

CHAPTER 4 FLOW BIOREACTOR 

 

predicted WSS. The constant K, from the above equation 4.4 signifies that 

fluid viscosity is considered Newtonian. 

As flow in the coronary artery is laminar, it is expected that the Re of flow in 

the flow chamber is sufficiently low to ensure that fluid flow is laminar. Thus 

particular consideration must be taken when choosing the constant K.  To 

verify the condition that flow is laminar and Re is satisfied, the below 

mathematical equation is employed. 

 

𝑅𝑒 =  
𝜌𝑄𝐷ℎ

𝜇𝑏ℎ
  4.6 

𝐷ℎ =  
4𝑏ℎ

2(𝑏+ℎ)
  4.7 

where 𝐷ℎ is the hydraulic diameter. The Reynolds number of the designed 

flow chamber with height of 0.48𝑚𝑚 and fluid density of 1000𝑘𝑔/𝑚3 is 

366.2 at a flow rate calculated to obtain a mean WSS of 2 𝑃𝑎. Flow with Re 

< 1000 is considered laminar. Thus our flow condition is laminar as Re 

is 366.2.  

 

4.4.2.1  DESIGNING ECs SUBSTRATE  

 

As the aim of this project is to investigate cells response to mechanical 

stimuli in a stented artery, it was imperative that the mechanical environment 

experienced on cultured cells is similar to that of a real case. It was therefore 

one of the main objectives in this project to design a flow system capable of 

subjecting a wide range of mechanical stresses such as WSS, SWSSG, 

TWSSG and OSI which are predicted to be present within a stented artery on  
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the cells. To achieve this objective it was necessary to establish a flow 

chamber which could create such desired combined mechanical stimuli to be 

experienced on the cells. A simple generic stented LAD artery model which 

was to be investigated would have five independent semi-circular rings as 

shown in figure 4.7. The generic stented artery had dimensions of 3𝑚𝑚 

internal artery diameter, stent strut diameter of 0.15𝑚𝑚 and inter-strut 

spacing of 0.625𝑚𝑚. Thus the flow and WSS dynamics applied to the 

cultured cells is similar to WSS dynamics in a helical stented LAD artery as 

described in section 3.4.1. So, the choice to use a parallel plate flow 

chamber to create the mechanical stimuli needed only subjected cultured 

cells to spatially uniform WSS [47] and not to both spatial and temporal 

gradients in stress which have been suggested to be present within stented 

arteries [4]. However, this parallel plate flow chamber is of a very simple 

design and applies uniform WSS proportional to the flow rate onto cells 

which is one of the main stresses to be investigated in this project. It is 

therefore proposed that in order to use the parallel plate flow chamber, the 

substrate for the cultured cells should be modified so as to create the other 

mechanical stresses of interest i.e. SWSSG and OSI.                  

 

           Figure 4.7  Generic stented artery model 

A glass microscope glass slide which served as the substrate for the cultured 

cells was therefore suggested to be modified into a shape that represented a 

2D shape of the generic stented LAD artery model as shown in figure 4.8. 



 

110 
 

CHAPTER 4 FLOW BIOREACTOR 

 

This was expected to create the desired mechanical milieu predicted to be 

subjected to ECs in the stented artery. The dimensions of the semi-circular 

ridges on the glass microscope slide are of the exact dimensions of the stent 

struts and stent spacing of the generic stented artery model. The 

combination of the parallel plate flow chamber and the modified glass 

microscope glass slide is termed as a cell-structure interaction experimental 

model. Detailed development and CFD analysis of the mechanical 

environment within the cell-structure interaction experimental model will be 

discussed in chapter 5.   

 

Figure 4.8  2D shape of the generic stented artery model 

 

4.5        CHARACTERISING CELL CULTURE MEDIUM PROPERTIES 

 

As discussed in chapter 3, viscosity affects the shear rate of a fluid especially 

if it is of non-Newtonian characteristics. More so, viscosities of fluids are 

temperature dependent, hence it was important that the viscosity of culture 

medium at a temperature required for the medium to sustain cell viability be 

quantified.  Additionally, the WSS being experienced in the flow chamber 

could be accurately determined if the viscosity and density of the culture 
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medium flowing through the flow bioreactor system are quantified. 

The cell culture medium used for the flow experiment is made of the 

following compositions; M199 culture media (Sigma-Aldrich) containing 20% 

foetal calf serum (BioSera, UK), 30𝑢𝑔/𝑚𝑙 endothelial cell growth factor 

(Sigma-Aldrich, UK), 30𝑢𝑔/𝑚𝑙 heparin (Sigma-Aldrich, UK), 2𝑚𝑀L-

Glutamine (Sigma-Aldrich), 100𝑢𝑔/𝑚𝑙 Penicillin Streptomycin (Sigma-

Aldrich). Since the flow chamber is placed in an incubator at a temperature of 

37℃, the viscosity of the culture medium was determined at that temperature 

using a vibro viscometer (A&D Vibro Viscometer SV-1A).   

To determine the density of the culture medium, a known volume of the 

medium in a graduated cylinder was weighed on a high precision balance. 

To ensure that measurement of the cell culture medium density recorded 

was accurate, the density of distilled water at  20℃ was also determined and 

compared to that reported by Calvert et al. [347]. 

 

 Table  4.4  Measurements of viscosity and density of cell culture medium at 

37℃ and distilled water at 20℃.   

Fluid  Viscosity (mPa.s) Density (kg/m3) 

Culture Medium 0.64 1005 

Distilled Water 1 998 

Referenced Distilled Water [347] 1.002 1000 
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4.6        CHARACTERISING THE FLOW CIRCUIT 

 

The flow circuit was set up as shown in figure 4.1 with the appropriate flow 

parameters set on the peristaltic pump and the cam driven pulsatile flow 

simulator to produce the desired LAD flow waveform as shown in figure 4.2 

and at a physiological pressure of 120/80mmHg. The flow waveform 

recorded was then compared with the target flow waveform to analyse the 

deviation between them. Analytical measurement of this deviation was 

performed by calculating the mean squared error (𝑀𝑆𝐸) between the two 

waveforms i.e. the measured and the target waveforms, normalised against 

the variance of the of the target waveform as shown in the equation given 

below. 

𝑀𝑆𝐸 =  
∑ (𝑄𝑖− �̅�𝑖)

2𝑁
𝑖=1

𝑁𝜎𝑄
2   4.8 

where 𝑄𝑖 and �̅�𝑖 are the measured and target flow rate respectively at 

sampling point 𝑖 on the flow waveform, 𝑁 is the number of sampling point 

and  𝜎𝑄
2 is the variance of the target flow waveform.  

Chetwynd et al. [348] used this equation to quantify the difference between a 

neural network predicted output and the true target output. How the two 

outputs compared was considered good if 𝑀𝑆𝐸 was less than 0.1 and 

excellent if 𝑀𝑆𝐸 was less than 0.05. Figure 4.9 shows the measured flow 

waveform compared with the target waveform and figure 4.10 shows the 

pressure at which the flow data was obtained. The inclusion of a feedback 

control system to the cam-driven pulsatile flow simulator ensured angular 

velocity of camshaft was kept constant throughout the flow cycle. This 

therefore helped improve the accuracy of the target flow waveform 

reproduction. Table 4.5 shows the quantitative data of the deviation between   
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the measured and target flow waveform. 

 

Figure 4.9  Measured vs target LAD flow waveform.  

 

 

Figure 4.10  Physiological pressure at 120/80mmHg 

 

Table 4.5   Measure of deviation between measured and target flow data  

Waveform 𝑴𝑺𝑬 

LAD 0.031 
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It is observed that the flow bioreactor system designed is capable of 

producing the desired physiological LAD flow waveform at a physiological 

pressure of 120/80mmHg. Additionally quantitative analysis performed to 

determine how well the flow waveform produced from the system agreed 

with that of the target showed a very good agreement (𝑀𝑆𝐸 = 0.031). It is 

however acknowledged that for the system to produce a different type 

of waveform, a new cam is needed to be designed. Nonetheless it is 

reasoned that the designed flow system can allow for possible 

modification of flow waveform achieved if desired without requirement 

for new apparatus.   

 

4.7        CONCLUSION 

 

A modular flow bioreactor system has been designed which allows for easy 

addition of new features. This flow system is thus highly versatile and permits 

for a wide range of experiments to be performed with it. As discussed in this 

chapter, the flow bioreactor system is capable of running a parallel steady 

flow and LAD pulsatile flow experiment simultaneously. Also with the addition 

of the feedback control system to the in-house built cam-driven pulsatile flow 

simulator, higher accuracy of target flow waveform is constantly reproduced.    

The flow circuit, culture medium and features used in recording flow and 

pressure parameters have been characterised and calibrated accordingly to 

ensure accuracy of results. The main requirement set out in this chapter was 

that the bioreactor system is capable of producing LAD flow waveforms and 

hydrostatic pressure at physiologically relevant levels and this requirement 

was able to be met. Thus WSSs, OSIs, SWSSGs and TWSSGs experienced 

by the cells when subjected to this flow condition in the designed flow 

bioreactor would be of physiologically realistic levels.    
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CHAPTER  5 

 

CELL-STRUCTURE INTERACTION MODEL 

 

5.1        INTRODUCTION TO STEREO-LITHOGRAPHY 

 

As briefly discussed in section 4.4.2.1 a glass microscope slide which was 

considered as a cell substrate was to be modified to represent a 2D artery 

with five independent semi-circular rings which served as stent as shown in 

figure 4.8. So, to fabricate these stent-like structures on the glass 

microscope slide, a two photon stereo-lithography technique was employed.   

 

5.1.1     STEREO-LITHOGRAPHY 

 

Stereo-lithography is an additive manufacturing technique that involves 

fabricating 3D structures by selectively curing photo-curable polymer based 

resins in a layer-by-layer form [349]. These photo-curable polymer resins 

which are initially of a liquid state are sensitive to specific range of laser 

wavelengths and thus upon exposure to these wavelengths the resins 

change to a solid state. Typically the chemistry involved in this process is 

that the initiator component in the resin gets excited to an unstable state 

when a laser of a specific wavelength is beamed onto the resin. At this 

unstable state, the initiator tends to cleave into its radical components which 

as a result cause a chain of crosslinking reaction with the monomer units. 

Thus a solid polymer network is formed.  Limitation to this technique however 
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is that resolution achieved is dependent on the wavelength used and 

diffraction of light within the polymer based resin which is dictated by Beer 

Lambert Law [350] .  

An advanced technique to the standard stereo-lithography technique is the 

two-photon polymerisation (TPP) [55]. TPP technique can be used to 

fabricate complex bespoke structures with improved resolution and accuracy 

since as it involves curing a pin-point position of the resin at a time as 

opposed to curing the resin in bulk [351].  The main procedure involved when 

using TPP technique to fabricate structures is the absorption of two photons 

simultaneously which enables direct laser writing within photo-curable 

polymer resins. This direct laser writing is based on the quadratic relationship 

between laser excitation wavelength and the two photon absorption cross 

section [352].  Conditions to this relationship are only satisfied at a focal point 

of a laser objective where there is sufficient amount of photon flux. This pin-

point location at the focal spot of the objective in an area known as a voxel 

[353] is of an elliptical volumetric space and acts like a single building block 

for creating complex structures. The laser beam outside this region has 

negligible effect on the photo-curable resin. Thus by translating this focal 

point relative to a curable resin, complex structures could be fabricated in a 

direct laser write approach within a bulk resin [354]. A self-smoothing effect 

of the 3D structure fabricated can be achieved when the voxel overlap is 

sufficiently close [355]. This fabricating technique has been found useful in 

multiple tissue engineering applications and in the preparation of medical 

devices with micro-scale properties [356-358]. TPP technique has also been 

employed to fabricate microfluidic channels as well as structures within 

microfluidic channels [359, 360].  
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5.2        FABRICATING SEMI-CIRCULAR RIDGES ON GLASS SLIDE 

 

5.2.1     GLASS MICROSCOPE SLIDE FUNCTIONALISATION 

 

The surface of a glass microscope slide with dimensions of 70𝑚𝑚 𝑥 25𝑚𝑚 

(Corning, USA) was initially functionalised before fabricating the semi-circular 

ridges on them. Piranha solution using a 3:1 mixture of sulphuric acid 

(𝐻2𝑆𝑂4) and hydrogen peroxide (𝐻2𝑂2) respectively was prepared and the 

glass microscope slide submerged into the mixture for at least 1 hour. This 

solution is a powerful oxidizing agent which exposes the hydroxyl groups 

(−𝑂𝐻) on the surfaces of the glass microscope slide and also removes any 

dirt or organic residue from the slide. After an hour, the glass slide is washed 

in deionised water and dried prior to it being submerged into 10𝑤𝑡% 

methacryloxypropyltrimethoxysilane (𝑀𝐴𝑃𝑇𝑀𝑆) solution in toluene for a 

minimum of 24 hours. Submerging the glass slide into 𝑀𝐴𝑃𝑇𝑀𝑆 solution in 

toluene causes methacrylate groups from the 𝑀𝐴𝑃𝑇𝑀𝑆 solution to bind to 

the −𝑂𝐻 groups exposed on the glass slide. This step allowed for better 

adhesion of polymer-resin during the polymerisation process of fabrication of 

the semi-circular ridges [361]. 

 

5.2.2     FABRICATION OF SEMI-CIRCULAR RIDGES 

 

The fabrication process of the semi-circular ridges firstly involved preparing a 

photo-curable polymer based resin by mixing poly(ethylene glycol) diacrylate 

(PEGda) of molecular weight 700𝑔/𝑚𝑜𝑙 with a 4𝑤𝑡% of photo-initiator 2-

Hydroxy-2-methylpropiophenone (Sigma Aldrich, UK). This polymer resin is 
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then able to be cured in a 266𝑛𝑚 region from the absorption of two photons 

produced by the TPP using a Nd:YAG microchip laser emitting at 532𝑛𝑚.  

To start fabricating the semi-circular ridges, a well of the prepared 

photo-curable polymer resin was created at a region on the 

functionalised glass slide where the structures were desired as shown 

in figure 5.1. This sample glass slide was then affixed to a glass slide 

holder attached to a motorised xyz- stage. The motorised stage was 

controlled by computer-based software which translated the sample 

glass slide relative to the focal point of a stationary 20𝑥 laser objective 

lens. The focal point was positioned just below the polymer/glass slide 

boundary prior to fabrication and for reproducibility all glass 

microscope slides used were needed to be of 1𝑚𝑚 thickness. The 

fabrication setup for patterning the desired structures is illustrated in figure 

5.2. 

 

 

Figure 5.1 shows a well of photo-curable resin on microscope glass slide 

 

 

Well of photo-curable 

polymer resin 
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Figure 5.2 shows the fabrication setup for TPP. The glass slide is mounted 

on the motorised stage (A). The objective lens (B) focuses the laser beam 

(C) onto the mounted glass slide for fabrication process to begin.  

The structural dimensions and positions of the semi-circular ridges are 

entered into a computer-controlled proprietary software called 𝑁 𝑉𝑖𝑒𝑤. This 

software converted the entered data into the xyz- stage movements and 

concurrently controlled the polymerising focal spot. In an initial attempt to 

fabricate the semi-circular ridges,   the xyz- stage was programmed to trace 

a semi-circle oscillatory waveform with reference to the dimensions of the 

semi-circular ridges along the width of the glass slide (z- position) relative to 

the fixed objective lens. Thus a semi-circular arc is created at the end of a 

traced oscillatory waveform at a region along the z- position. The spacing 

between each created semi-circular arc was set at 1𝑢𝑚 to ensure sufficient 

attachment to the previously cured arc. This process was repeated along the 

width of the glass slide to produce a ridge of length 25𝑚𝑚. After the 

specified length of the semi-circular ridge had been produced, the above 

processes were repeated again to create subsequent ridges at specified 

positions on the glass slide. Fabricating a ridge of a length of 25𝑚𝑚 

however took 7 hours and so fabricating 5 ridges on a glass slide took over a 

day. This method of fabricating the semi-circular ridges was therefore 

C 

B 

A 
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deemed not time efficient. To overcome the problem of time spent to 

fabricate the desired structures, a quicker method was employed. In this new 

method, the ridge structure was produced by translating straight polymerised 

lines in a back and forth motions over the 25𝑚𝑚 distance and with each line 

offsetted in the x- and y- position by 1𝑢𝑚 to create a semi-circular shape. 

The high confinement of polymerising region with TPP although 

advantageous for micro-structuring over a few 𝑚𝑚, over long distances such 

as 25𝑚𝑚, any micron tilt of sample; in this case the glass slide, could be 

detrimental. This is because there could be significant variation of height of 

the ridges produced as the tilted glass slide moved relative to the fixed 

position of the polymerising focal spot. Upon finding out that the sample 

holder attached to the stage was at a slight angle to the objective lens, it was 

reasoned that the problem forecasted could occur. To overcome this 

limitation, the glass slide had to travel at an angle to offset the angle at which 

the glass slide was being held. To do this, the polymerising focal spot at both 

ends of the width of the glass slide was first determined. The glass slide was 

then repeatedly scanned over a localised region while gradually changing the 

height of the stage. At a point region on the glass slide where polymerisation 

occurred, a ripple light effect was observed. These ripple light effects helped 

determined the exact polymerising height at different regions of the glass 

slide. It was therefore calculated that the height difference with reference to 

the start and end position of the polymerising region along the 25𝑚𝑚 

length was 24𝑢𝑚. 

So to fabricate a uniform straight line, the stage was set to translate the 

glass slide along the objective lens with an increase angle of 0.055° 

which compensated for the tilt of the glass slide with a laser scan speed 

of0.6𝑚𝑚/𝑠. After polymerisation, the glass slide was gently submerged into 

a 50:50 solution mixture of 4 − 𝑚𝑒𝑡ℎ𝑦𝑙 − 2 − 𝑝𝑒𝑛𝑡𝑎𝑛𝑜𝑛𝑒 and 2 − 
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𝑝𝑟𝑜𝑝𝑎𝑛𝑜𝑙 to wash away the uncured polymer resins. The advantage to this 

method was that the total time taken to fabricate 5 ridges, each of length 

25𝑚𝑚 was 8 hours. Figure 5.3 shows the fabricated semi-circular ridges on 

the glass microscope slide. 

 

Figure 5.3  Microstructure semi-circular ridges (A) fabricated on microscopic 

glass slide (B) 

 

5.2.3    CALLIBRATION OF FABRICATED SEMI-CIRCULAR RIDGES 

 

To determine the optimal starting height position to fabricate the micro-

structure ridges via TPP, different starting positions of the polymerising focal 

spot was calibrated. Thus for each consecutive single ridge structure 

fabricated, the initial focal spot height position was gradually increased 

by10 𝑢𝑚 through lowering the glass slide towards the objective lens by 

10 𝑢𝑚. This process also allowed for testing the stability of the ridge 

fabricated against collapse within the design parameters and during the post-

polymerisation washing stage. Scanning electron microscopy (SEM) images 

were taken of the ridges fabricated at different starting focal spot height as 

shown in figure 5.4 and it is observed that the last ridge on the right has 

started to detach from the glass slide surface. Explanation for the 

B 

A 
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detachment of the ridge is reasoned to be as a result of there being only a 

small part of the ridge base attached to the glass slide due to very high 

starting focal spot position. The starting height of the polymerising focal spot 

therefore chosen for the ultimate fabrication of the semi-circular ridges was 

33.1 𝑢𝑚 to ensure ridge fabricated was very stable.   

 

Figure 5.4  SEM images of  fabricated semi-circular ridges of 1mm length, 

from left to right; starting height is increased by 10um.  

 

5.3        PDMS PREPARATION AND STAMPING 

 

5.3.1     PDMS PREPARATION 

 

Patterning the semi-circular ridges design via TPP enables us to control the 

design dimensions with micron accuracy. However the directly structured 

ridges were unsuitable for direct experimentation for numerous reasons that 

polydimethylsiloxane (PDMS) replication addresses. The fragile hollow 

nature and the glass/polymer boundary of the fabricated structures made it 

unsuitable for direct use in the fluid flow experiment as they were easily 

washed off. Therefore a soft lithography approach for replication of the 



 

123 
 

CHAPTER 5 CELL-STRUCTURE INTERACTION MODEL 

 

surface ridges was adopted.  A negative PDMS elastomer mould was 

created of the patterned surface of the microscope glass slide, and was 

subsequently used to reproduce the fabricated structure features via PDMS 

stamping for experimentation.  To make the negative PDMS elastomer 

mould, Sylgard 184 silicone elastomer was mixed in a 1:10 weight ratio with 

the base silicone elastomer curing agent (Dow Corning, UK). The mixture 

was then degassed under vacuum in a desiccator to release trapped air 

caused by the mixing process, thus resulting in a clear viscous liquid. The 

glass microscope slide with the fabricated micro-semi-circular ridges (master 

slide) was placed in an aluminium rectangular-shaped box and the degassed 

silicone elastomer mixture was then poured over the master slide gently 

without introducing any air bubbles. In the case where air bubbles were 

introduced into the mixture whilst pouring the mixture onto the master slide, 

further degassing was done to remove the trapped air. The now aluminium 

box containing the master slide and the silicone elastomer mixture was 

heated to 60℃ in an oven for at least 3 hours to cure and become solid. 

Figure 5.5 shows the silicone elastomer mould with in the negative imprint of 

the fabricated micro-structure semi-circular ridges on the master slide. 

 

 

Figure 5.5  A negative imprint of master slide silicone mould used for the 

reproduction of test slides through PDMS stamping. 
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5.3.2     PDMS STAMPING 

 

After curing of the silicone elastomer mixture into a mould, the mould was 

then carefully removed from the master slide to get an exact negative of the 

micro-structure features of the master slide onto the silicone mould. This 

silicone mould was used to re-create replicas of the master slide patterns via 

PDMS stamping. The simple technology and ease of use behind PDMS 

stamping makes it both a low cost and effective tool for reproducing the 

desired surface pattern. Also, PDMS stamping has been shown to reproduce 

surface features with high accuracy [362].  To create a PDMS stamp, a pre-

polymer PEGda with molecular weight 250𝑔/𝑚𝑜𝑙 (Sigma Aldrich, UK) was 

mixed with a 2 𝑤𝑡% of photo-initiator 2-Hydroxy-2-methylpropiophenone 

(Sigma Aldrich, UK). The choice of PEGda (250𝑔/𝑚𝑜𝑙) use for the PDMS 

stamping process was because this polymer had low swelling rate which 

ensured firm attachment of the polymer when cured onto the glass substrate. 

Figure 5.6 shows the poor attachment of PDMS stamped PEGda (700𝑔/

𝑚𝑜𝑙)  as compared to that of PEGda (250𝑔/𝑚𝑜𝑙) after been submerged 

into a phosphate buffered saline (PBS) solution for 24 hours. Also, for cell 

culture experimentation purposes, it has been reported that PEGda with 

lower molecular weight helped promote better cell adhesion as compared to 

PEGda with higher molecular weight [363]. So, few drops of the PEGda 

(250𝑔/𝑚𝑜𝑙) mixture with the photo-initiator were placed on the silicone 

mould and then a functionalised glass slide was placed into the negative 

imprint of the mould. During this process, it was ensured that there was no 

air interface between the polymer mixture and the glass slide and that there 

was a uniform coverage of the PEGda mixture over the entire surface of the 

glass slide. The silicone mould with the glass slide was then placed under an 

ultra-violet light with the intensity of the light gradually increased from 1% to 

100% to cure the PEGda polymer mixture. To facilitate easy removal of the 
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PDMS stamped glass slide and also ensure that the silicone elastomer 

mould was hydrophobic to the polymer mixture, the mould was pre-treated 

with tridecafluoro − 1H, 1H, 2H, 2H − tetrahydooctyl trichlorosilane, 97% 

(Sigma Aldrich, UK) which is a silanizing agent before being used for PDMS 

stamping. Replication of the fabricated micro-structure semi-circular ridges 

via this technique improved the structural strength of the micro-structures 

due to the bulk curing process during PDMS stamping. Thus the PDMS 

stamped glass slides were more suitable to use for fluidic flow 

experimentations. Figure 5.7 shows the PDMS stamped microscope glass 

slide with the micro-structure semi-circular ridge features.  

 

a)   b)    

Figure 5.6  PDMS stamped glass slides with different molecular weight 

PEGda: 700 g/mol (A) and 250 g/mol (B) respectively after 24 hours 

submersion in PBS  
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Figure 5.7  PDMS stamped microscope glass slide for flow experiment  

 

5.4      CALIBRATION OF THE SEMI-CIRCULAR RIDGES FABRICATED 

VIA TPP AND PDMS STAMPING 

 

To confirm that the micro-structure semi-circular ridges fabricated via the 

TPP technique met the design parameter requirements, SEM images were 

taken of the micro-structures as shown in figure 5.8. To prepare the sample 

for SEM imaging, the sample was first mounted on a stud using a carbon 

adhesive and gold coated using a gold sputter coater (Edwards S150b, 

Crawley, UK). Gold coating of the sample helped to prevent charge build-up 

at areas of the sample which were non-conductive. SEM images of the 

sample were then generated using Philips XL-20 SEM (Philips, Eindhoven, 

Netherlands).  The surface profile of the ridge was also determined using a 

profilometer (Dektak Profilometer, Veeco, USA) with a stylus force of 3 𝑚𝑔, 

a scan resolution of 0.056 𝑢𝑚/𝑠𝑎𝑚𝑝𝑙𝑒 and a scan speed of 10 𝑢𝑚/𝑠. 

Figure 5.9 shows the surface profile of a fabricated ridge compared that of a 

semi-circle shape calculated analytically. Using equation 4.8, the deviation 

between the target shape of the ridge and that produced via TPP was 

measured and this measure of error is shown in table 5.1.  
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Figure 5.8  SEM images of fabricated ridges via TPP. Left: A close-up of one 

of the ridges. Right: All 5 semi-circular ridges on the glass slide.  

 

Figure 5.9  Profilometer scan of the surface of the semi-circular ridge 

fabricated via TPP compared to target semi-circle perimeter. 

 

Table  5.1  Error between measured and target surface perimeter 

 Surface Perimeter  𝑴𝑺𝑬 

Semi-Circular Ridge 0.085 
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The agreement between the target shape of the ridge to that fabricated via 

TPP is shown to be relatively good as 𝑀𝑆𝐸 < 0.1. However, it is presumed 

that the initial method employed to fabricate the ridges as discussed in 

section 5.2.2 could have produced better semi-circular ridge shape but this 

method was not very time efficient. A probable solution to this problem could 

be in the use of synchronised multiple focal points to fabricate many 

structures at a time; thus cut down the time spent on fabricating the 

structures but this method has not been established.    

A surface scan across the entire length of the PDMS stamped semi-circular 

ridges was also performed using the profilometer to determine how each 

ridge height varied from the other. As shown in figure 5.10, each ridge height 

was in between ± 1.5𝑢𝑚 of the desired height which is 75𝑢𝑚. It therefore 

could be concluded that the above discussed processes used to 

develop the desired structure of five independent semi-circular ridges 

on a microscope glass slide has been achievable with relatively minor 

deviations from the target structural design.   

 

Figure 5.10  Profilometer scan of the surface of five semi-circular ridges 

spaced 550um apart. 
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5.5        RIDGE SHEATH FABRICATION 

 

As stated in the introduction section, ECs may become denuded during the 

process of stent implantation. Hence at the immediate regions of the stent 

strut and on the stent strut, there might not be the presence of healthy ECs. 

To mimic this in vivo condition in the cell-structure interaction experimental 

model, a thin ridge sheath was fabricated. This thin sheath is used to cover 

the ridges before cell seeding and thus prevented cells from being seeded 

onto the ridges before subjecting the cells to the flow experiment.   

The ridge sheath was fabricated using photo-stereo lithography in a direct 

laser write method. The fabrication process involved a passively Q-switched 

DPSS microchip laser (Pulselas P-355-300, Alphalas, Gottingen, Germany) 

with a wavelength 532𝑛𝑚 to emit a laser beam. An ultra-violet light was then 

isolated from the laser beam emitted using a Pellin Broca Prism (ADB-10, 

Thorlabs, Germany). This ultra-violet light was expanded using a Galilean 

beam expander to around 8𝑛𝑚 before being reflected via a silver coated 

mirror into a x10 objective lens (Carl Zeiss, EC Plan-Neofluar 10x, Numerical 

Aperture 0.3) to initiate polymerisation of a liquid polymer resin. The 

exposure of the laser beam emitted was controlled automatically by a 

mechanical shutter (LS6ZM Uniblitz Electronics). The polymer resin sample 

was held to a motorised xyz- stage which was controlled by two types of 

computer-based software which worked concurrently; thus Aerotech 

ANT130XY and PRO115 software that controlled the xy- translation and z- 

translation of the stage respectively.   

The polymer resin used for the sheath fabrication process was PEGda 

(700 𝑔/𝑚𝑜𝑙) mixed with a 4𝑤𝑡% 2-Hydroxy-2-methylpropiophenone photo-

initiator. A well of this polymer-based resin was created on a non-

functionalised microscope glass slide to allow easy detachment of the  
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fabricated sheath from the glass slide. The glass slide sample was then 

affixed to the stage and was translated relative to the focal point of the 

objective lens via the xyz- stage to begin the fabrication of the ridge sheath 

process.  Figure 5.11 shows the fabricated ridge sheath of 1𝑚𝑚 thickness.  

 

Figure 5.11  A 1mm thick ridge sheath  

 

5.6        ASSEMBLY OF CELL-STRUCTURE INTERACTION MODEL 

 

Assembling the cell-structure interaction model involved mounting the test 

glass slide with fabricated microstructure semi-circular ridges into a parallel 

plate flow chamber. The parallel flow chamber is formed of three main parts; 

namely, a top plate, bottom plate and a silicon gasket as illustrated in figure 

5.12. The plates were machined in-house. The model was assembled by first 

carefully placing the PDMS stamped microscope glass slide with seeded 

ECs into the groove on the bottom plate. The silicone gasket was then 

placed to fit the perimeter of the groove and finally the top plate was placed 

on top of the bottom plate. The two plates were held tightly together by 

machine screws. One end of a 2 way, 1/8 NPT – barbed connectors (Cole-

Parmer, UK) was screwed into both ports of the top plate and the other end 
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connected to the rest of the flow circuit system. Figure 5.13 shows the 

complete experimental set-up of parallel plate flow chamber connected to the 

flow circuit system and placed inside an incubator. 

 

 

Figure 5.12. A schematic diagram of a parallel plate flow chamber for 

housing the PDMS stamped test glass slide.  

Barbed connectors are attached to the top plate (A) to allow fluid flow to and 

out of the flow chamber. The dashed lines displayed on the top plate show 

the flow domain of the parallel plate flow chamber. The test glass slide sits 

within the groove of the bottom plate (B). The silicon gasket is sandwiched 

between the two plates to prevent fluid from leaking out of the flow domain. 

 

 

Barbed connector 
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  Flow pathway 
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Figure 5.13 A complete set-up of test flow chamber and flow circuit system. 

The assembled parallel plate flow chamber encasing the test glass slide (test 

flow chamber) is represented within the red dashed line square. The test 

chamber is placed within an incubator of 37℃, 5% 𝐶𝑂2 and also connected 

to the flow circuit system.     

 

5.7        SUMMARY 

 

In summary, a cell-structure interaction model was designed so that in 

combination to the flow circuit discussed in Chapter 4, cultured ECs on the  

Test flow 

chamber 

Flow 

circuit 

Flow media 

reservoir 
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modified microscope glass slide could in respect to cell position on the 

modified glass slide experience different magnitude of WSSs, SWSSGs and 

OSIs concomitantly. The model consisted of three main parts: 

 A parallel plate flow chamber. This flow chamber is made of two 

plates; thus a bottom flat plate with a groove which houses the ECs 

cultured on the modified microscope glass slide and a top flat plate 

with inlet and outlet ports. The top and bottom plate produces a gap 

of a known height when put together and thereby allows fluid flow 

through the flow chamber   

 A modified microscope glass slide. This is a PDMS stamped 

microscope glass slide with semi-circular micro-structure ridges. ECs 

are seeded on this glass slide.   

 A silicone gasket. The gasket is fitted in between the two plates to 

ensure fluid does not leak out of the parallel plat flow chamber. 

Application of TPP technique enabled for the fabrication of desired micro-

structures on the glass slide and PDMS stamping enabled for a quick and 

easy replication of the fabricated structures on the master microscope glass 

slide onto other glass slides. Calibrations of the semi-circular ridge structures 

fabricated were observed to have deviated slightly from the desired structure 

dimensions but were within an acceptable range of error margin. Thus CFD 

analysis of the ideal cell-structure interaction model could be applicable to 

the cell-structure interaction model fabricated within accepted error margin.    
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CHAPTER  6 

 

COMPUTATIONAL FLUID DYNAMICS (II) 

 

In this chapter, the mechanical forces present within the cell-structure 

experimental model described in chapter 5 is investigated and quantified. To 

investigate these mechanical forces, the fluid flow domain of the cell-

structure model is simulated using CFD. 

 

6.1        CFD ANALYSIS 

 

As discussed in chapter 3, CFD analysis based on FVM method has been 

proved to enable numerical solving of complex fluid flow dynamics with high 

accuracy. So, flow simulations within the cell-structure interaction model 

were performed using FVM built in ANSYS Fluent 13 software (Ansys inc., 

Canonsburg, PA, USA). The fluid domain of the cell-structure interaction 

model in which simulations were performed is illustrated in figure 6. 

 

A 

Inlet port 

Outlet port 

Test flow chamber 

Rounded rectangular cavity  
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Figure 6. Geometry in which simulations were performed (Not to scale). The 

isometric view (A) of the modelled geometry shows the inlet and outlet flow 

positions and the test flow chamber where flow dynamics are subjected onto 

cells. The bottom view (B) shows the position of the fabricated semi-circular 

ridges within the test flow chamber. The semi-circular ridges are placed 

sufficiently far away from the inlet so that flow is developed before influenced 

by the presence of the ridges. 

Fluid flow is simulated to pass through the inlet port of diameter 3 mm, then 

through a rounded rectangular cavity of length 17 mm, semi-circular width of 

4mm diameter and height of 6 mm. The fluid then passes through the test 

flow chamber of length 71 mm, width of 20 mm and height of 0.48 mm then 

finally through the outlet port of same inlet port dimensions. The height of the 

test flow chamber was chosen to be 0.48 mm so as to achieve instantaneous 

WSS of 2 Pa within the flow chamber at a flow rate of 144 ml/min. This 

calculation is based on equation 4.5.        

The fluid properties used for the CFD simulations were based of on the cell 

culture media which would be used during the experimental stage of 

investigation ECs response to complex flow dynamics. Thus the density of 

the flow used is 1005 𝑘𝑔/𝑚3 at a viscosity of 0.64 𝑚𝑃𝑎. 𝑠. As cell culture 

media is suggested to be Newtonian [364], the flow was simulated to 

Semi-circular ridge features 

B 
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behave as a Newtonian fluid. Using Newtonian fluid as a 

representation of blood flow characteristics for this model is deemed 

adequate. Reason for this suggestion was highlighted in chapter 3 as 

Newtonian fluid was showed to capture the non-Newtonian blood 

characteristic based on Carreau model within a straight stented artery.   

Flow boundary conditions were imposed at the inlet and outlet 

boundary and a no slip condition set at the walls of the model. A UDF 

script was written to apply pulsatile LAD inlet velocity flow waveform at the 

inlet boundary. This flow waveform used is derived by Marcus et al. [58]. This 

written UDF defines the time evolution of the velocity distribution at the inlet 

boundary, assuming velocity profile to be parabolic and matching the volume 

flow rate to that described of the target LAD flow waveform shown in figure 

4.9. At the outlet boundary, a zero normal velocity derivative was specified. 

Meshing of the model was done using the same CutCell algorithm used in 

section 3 to discretise the spatial flow domain of the cell-structure interaction 

model into many hexahedral cells as illustrated in figure 6.1. To ensure CFD 

results were independent of the mesh density, mesh refinement studies of 

the model were carried by performing steady flow simulations on different 

mesh densities as shown in figures 6.2a and 6.2b. Although steady flow was 

simulated, it was expected that there may be some time dependent features 

due to the flow dynamics across the semi-circular ridge structures in the 

model. Therefore the flow was modelled as an unsteady flow with time steps 

lasting 0.005s. To ensure that a steady state solution had been reached, 

sufficient time steps were calculated. The WSSs recorded at the inlet of the 

model with the spatial flow domain discretised into 612,097 and 865,281 

hexahedral cells were 1.97 𝑃𝑎 and 1.98 𝑃𝑎 respectively. The percentage 

WSS error calculated between these two mesh densities was found to be 

< 1% with insignificant changes to the WSS upon further mesh refinements.  
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This therefore demonstrated that mesh independence of CFD result was 

established at mesh density of 612,097 cells. Finer meshes at regions nearer 

to the semi-circular ridges were also ensured to enable detailed flow 

dynamics and WSS to be captured. Simulation settings of the flow were 

similar to those used in section 3, with SIMPLE algorithm used for pressure-

velocity coupling. A second order scheme was used to discretise both the 

pressure and momentum which ensured a numerically second order higher 

accuracy. The computational cost in performing flow simulation with different 

mesh densities is tabulated in table 6.1. 

 

Figure 6.1  Meshed flow domain of cell-structure experimental model. A – A 

shows the meshed region of the semi-circular ridges 

 

Figure 6.2a  WSSs at inlet region of cell-structure model for different mesh 

densities. Mesh convergence is assumed at mesh density of 612097 cells. 

A A 

Q 

A 
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Figure 6.2b  WSSs  at inter-ridge region of cell-structure interaction 

experimental model for different mesh densities. Mesh convergence is 

assumed at mesh density of 612097 hexagonal cells. 

The correlation between increase in mesh density and increase WSS 

magnitude is evident from the mesh refinement studies study although 

further mesh refinements resulted in insignificant WSS changes. Based on 

this evidence it is reasoned that the true WSS subjected on ECs is slightly 

higher than that of CFD analysis predictions.   

 

Table 6.1  Computational costs for different mesh densities 

Mesh Density Computational Cost 

 Hours Minutes Seconds 

62455 0 10 0 

23274 3 5 30 

465009 5 25 27 

529472 9 53 42 

612097 13 59 22 

865281 15 9 40 
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Simulations of each LAD pulse cycle was discretised into 300 time steps of 

0.005s time step size. Three LAD pulsatile waveform cycles were performed 

with results from at least the second cycle used for analysis. This was done 

so as to eliminate analysing data which might have been influenced by 

simulation start-up effects. The simulation at each time step was deemed to 

have reached convergence when the normalised scaled continuity residuals 

and the velocity components had all fallen to below 10–5 or after 200 

iterations. This reasoning was ascertained through the examination of the 

WSS convergence history at different regions of the flow model which 

showed that this condition was adequate enough to produce data which had 

insignificant WSS changes upon further iterations.   

 

6.2        RESULTS 

 

The cell-structure interaction model was designed to apply combined 

mechanical stimuli such as WSS, SWSSG and OSI to seeded cells. Analysis 

of these mechanical stresses distributions within the model are discussed 

below. 

 

6.2.1     WALL SHEAR STRESS DISTRIBUTION ANALYSIS 

 

Figure 6.3a shows a contour plot of the WSS distribution on the entire 

cultured cell surface area of the model and figure 6.3b shows the WSS 

distribution specifically at the region with the semi-circular ridges under 

steady flow simulations to produce a steady shear stress of 2 𝑃𝑎. The 

contour plot of the entire cell culture surface area shows relative spatially 

uniform WSS distribution at regions away from that where the semi-circular 
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ridges are present.  Regions with the semi-circular ridges are however 

observed to have a wide varied range of WSS distribution. WSSs at this 

region tend to follow a complex pattern of alternating peaks and troughs with 

the top of the ridges experiencing very high WSSs and the very immediate 

end base of the ridges experiencing very low WSSs. This WSS distribution 

phenomenon is similar to that observed within the helical stented artery 

discussed in section 3 and also from literature [30].  

 

 

Figure 6.3a  Contour plot of WSS distribution (Pa) on cell culture surface 

area under steady flow simulations. Flow is from left to right. Uniform WSS of 

magnitude ~ 2 Pa is observed at regions far away from the inlet and also at 

the outlet.  
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Figure 6.3b  Contour plot of WSS distribution (Pa) at region with semi-

circular ridges under steady flow simulations. Flow is from left to right. The 

plot shows WSS is highest (~ 5 Pa) at the top of the ridges and at the 

immediate peri-ridges the lowest WSSs (~ 0 Pa) were recorded.   

A 2mm distance from the immediate side walls of the inlet, outlet and length 

sides of the cell culture surface area were negated in the WSS distribution 

analysis. Data at these regions where considered to have been strongly 

influenced by the entrance, exit and side wall effects of the flow chamber.   

Pulsatile flow simulation of the LAD waveform at mean WSS of 2 𝑃𝑎 over 

the cell cultured surface was also computed. Figures 6.4a – 6.4f show the 

WSS distributions of the entire cell culture surface area and regions with the 

semi-circular ridges at different time points of the LAD waveform. It was 

noted that WSS distributions on the entire cell culture surface area at 

different time points of the LAD waveform where similar to that observed 

under steady flow simulations although WSS magnitudes recorded were 

different for each time point.   
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Figure 6.4a  Contour plot of WSS distribution at 0.1s in the LAD waveform on 

entire cell culture surface area (Top) and at region with semi-circular ridges 

of cell-structure interaction model. Flow is from left to right. WSS magnitudes 

across the cell culture surface area are noted to be generally very low. This 

observation is as a result of very low volume flow rate at that instantaneous 

time.    
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Figure 6.4b  Contour plot of WSS distribution at t = 0.2s in the LAD waveform 

on entire cell culture surface area (Top) and at region with semi-circular 

ridges of cell-structure interaction model. Flow is from left to right. WSS 

magnitude across the culture surface area is noted to be low, however WSS 

on the top of the ridges are observed to be relatively high (~ 3 Pa).  
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Figure 6.4c  Contour plot of WSS distribution at t = 0.3s in the LAD waveform 

on entire cell culture surface area (Top) and at region with semi-circular 

ridges of cell-structure interaction model. Flow is from left to right. WSS 

magnitudes across the culture surface area are noted to be low. This is as a 

result of low flowrate at this waveform phase. 
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Figure 6.4d  Contour plot of WSS distribution at t = 0.5s in the LAD waveform 

on entire cell culture surface area (Top) and at region with semi-circular 

ridges (Bottom). Flow is from left to right. Flow rate at this phase is highest 

hence high WSS magnitudes across culture surface area (~5 Pa). High 

WSSs (> 15 Pa) were recorded at the top of the ridges whilst WSSs at the 

peri-ridge regions ranged between 0 Pa to 3 Pa.   
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Figure 6.4e  Contour plot of WSS distribution at 0.6s in the LAD waveform on 

entire cell culture surface area (Top) and at region with semi-circular ridges 

(Bottom). Flow is from left to right. In this figure as well as in figure 6.4d, 

WSS spikes are observed on the ridges whilst lowest WSSs are observed at 

immediate regions adjacent to the ridges. The WSS tend to increase with 

distance from the ridges and at its highest in the region furthest away from 

the ridge, with exception of the WSS on the ridges themselves. 
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Figure 6.4f  Contour plot of WSS distribution at t = 0.9s in the LAD waveform 

on entire cell culture surface area (Top) and at region with semi-circular 

ridges (Bottom). Flow is from left to right. WSSs experienced across the cell 

culture surface show similar WSS distribution trends as illustrated in figures 

6.4d and 6.4e however with relatively lower WSS magnitudes. This 

occurrence is as a result of lower flowrate at this phase compared to that of t 

= 0.5s and t = 0.6s.   
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One of the main objectives of this project is to be able to map the mechanical 

stresses within the cell-structure interaction model to cells response. Thus 

CFD simulations serve as a tool to quantify these stresses and also help 

make decisions earlier in the experimental set up stages in relation to 

achieving desired results.  

As discussed in chapter 4, there have been many studies which have utilised 

parallel plate flow chamber in the investigation of WSS on ECs. Mostly in 

these studies, WSSs within parallel plate flow chambers have been 

calculated analytically using the formula given in equation 6.1 to obtain WSS 

from flow rate.   

𝜏𝑤 =  
6𝜇𝑄

𝑏ℎ2
  6.1 

where 𝜏𝑤 is the instantaneous WSS, 𝑄 is the flow rate, µ is viscosity of flow 

medium and 𝑏 and ℎ are the width and height of the flow chamber 

respectively. 

The use of this formula therefore obviates the need for CFD modelling. 

However this approach is only valid based on the assumptions that flow is 

fully developed spatially and temporal, laminar, Newtonian, two dimensional 

flow domain and no effect of side wall of the flow chamber on flow. 

Being that the culture fluid used for the CFD simulation is Newtonian, as 

discussed earlier in this chapter, one of the above assumptions is satisfied. 

The assumption that flow domain is two dimensional is however clearly not 

satisfied in regions close to the flow chamber side walls. Nonetheless it has 

been suggested that as long as the width to height ratio of the parallel flow 

chamber is greater than 10:1, then this two-dimensional flow can be 

assumed [365]. The calculated width to height ratio of the modelled test flow 

chamber is approximately 42:1 and thus assumption that flow in the 

modelled test chamber is two-dimensional can be made.  
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From the CFD steady flow simulation presented in figure 6.3a, uniform WSS 

magnitude at inlet and outlet region of flow domain was approximately 2 Pa. 

Hence using the flow and flow chamber parameters already stated in section 

6.1, and substituting those into equation 6.1, one can calculate flow rate, 

(𝑄 = 2.4 𝑥 10−6 𝑚3/𝑠) needed to get a WSS of 2 Pa.  This flow rate would 

result to an average flow velocity of 0.25 𝑚/𝑠. The Reynolds number, Re, 

of the flow can be calculated using the formula below: 

𝑅𝑒 =  
𝜌𝜇𝑙

𝜇
                                                                                                    6.2 

Substituting the average velocity, 𝜇 and taking ℎ as the characteristic 

length scale, the Reynolds number of the fluid is 188.43. This flow is 

therefore classified as laminar as Re < 1000 [292]. Hence the assumption of 

laminar flow in the flow chamber is satisfied.  

To justify that flow is developed spatially and temporally, it is reasoned that 

start up effects quickly dissipate under steady flow, hence flow is developed 

in time after few seconds of an experiment. To ascertain if flow becomes 

spatially developed in the flow chamber, the entrance length, 𝐿𝑒 is defined. 

Using the formula for calculating the entrance length for laminar flows 

between two parallel plates by Schlichting et al. [366] as shown below: 

𝐿𝑒 = 0.01ℎ. 𝑅𝑒                                                                                      6.3 

The entrance length in this flow chamber when the WSS is 2 Pa is therefore 

0.90 mm, which is a negligible proportion of the entire chamber length 

(≈ 70 𝑚𝑚). Flow is therefore assumed to be spatially developed after 

0.90mm of the flow chamber entrance. This assumption is justified in figure 

6.3a as WSSs of the flow domain under steady flow simulation is observed to 

be relatively uniform after few distance from the entrance of the flow 

chamber. It should be noted nonetheless that although analytical methods 
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were used to predict approximately the WSS applied to cells within the test 

flow chamber, this method and assumptions made may not entirely be 

applicable for our custom designed flow chamber. This is because the 

assumption that led to the basis of equation 6.1 is thought to be more 

applicable for flow within a uniform space and non-disrupted flow. Therefore, 

since our custom designed flow chamber is not entirely of a uniform space 

and flow is slightly disrupted within some regions of the flow chamber due to 

the presence of the semi-circular ridges, the extent to which this assumption 

is applicable to our flow chamber is limited. CFD was therefore used to 

predict accurately the mechanical milieu experienced by the cells in the cell 

structure interaction experimental model. 

Correlation between the WSS LAD waveform determined using analytical 

equation 6.1 and that predicted by CFD analysis is shown in figure 6.5. It is 

observed that the WSS data produced from both methods compared 

relatively very close; thus the assumption made of the relationship between 

flow rate and WSS is plausible. Nonetheless, it is noted that there were at 

some time points where the WSS predicted by the analytical equation 

deviated slightly from that recorded by the CFD. This deviation implies that 

for complex flow, analytical equation many not be able to capture accurately 

the fluid dynamic present and thus the use of CFD is needed. 

 

Figure 6.5  Graph showing the correlation between analytical WSS and CFD 

WSS over LAD waveform in flow chamber.      



 

151 
 

CHAPTER 6 CFD ANALYSIS OF CELL-STRUCTURE MODEL 

 

6.2.2     SPATIAL WALL SHEAR STRESS GRADIENT ANALYSIS 

 

From the WSS results shown in figures 6.3a – 6.4f it is noted that WSSs at 

the inlet and outlet of the cell-structure model is relatively uniform. However 

at regions with the semi-circular ridges, there were varied WSSs as 

expected. The very high then low WSSs recorded at this region brings about 

a spatial WSS gradient. Figure 6.7 shows the SWSSG predicted to be 

experienced on the cell culture surface under the simulated steady flow and 

figures 6.8a – 6.8d show the SWSSG under the LAD pulsatile flow simulation 

at selected time points of the LAD waveform. 

 

Figure 6.6  Labelled section of the cell culture surface area   

 

Sections of the cell culture surface area were taken to show the SWSSG 

distributions under the two flow conditions. These sections were annotated 

as follows: 

Inlet section is annotated with the letter ‘a’ 

Ridges Region is annotated with the letter ‘b’ 

Outlet Region is annotated with the letter ‘c’ 
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a  

b  

c  

Figure 6.7  SWSSG (Pa/m) distribution under steady flow simulation. From 

this figure, there is no SWSSG (~ 0 Pa/m) at the inlet and outlet regions. 

SWSSG are however at the highest at immediate ridges region ( ≥ 3.0 x 105 

Pa/m). Also, SWSSG tend to decrease as we move further away from the 

ridges. 
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a  

b  

c  

Figure 6.8a  SWSSG (Pa/m) distribution under LAD flow simulation at t = 

0.1s. As seen in this figure, there is on SWSSG across the inlet and outlet 

regions. However there is slight increase in SWSSG at immediate ridge 

regions.  
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Figure 6.8b SWSSG (Pa/m) distribution under LAD flow simulation at t = 

0.3s. As seen in this figure, there is on SWSSG across the inlet and outlet 

regions. However there is slight increase in SWSSG at immediate ridge 

regions.  
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Figure 6.8c SWSSG (Pa/m) distribution under LAD flow simulation at t = 

0.5s. As seen in this figure, there is on SWSSG across the inlet and outlet 

regions. However there is very high SWSSG at immediate regions around 

the ridges.   
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a  
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c  

Figure 6.8d SWSSG (Pa/m) distribution under LAD flow simulation at t = 

0.9s. This figure shows that at the inlet and outlet regions there are no 

SWSSG. Conversely, there is high SWSSG at immediate regions around the 

ridges.  
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The general observation made with regards to figures 6.7 – 6.8d, is that 

there is zero or relatively minimal SWSSG at the inlet and outlet regions of 

the model under the steady and LAD pulsatile flow simulation performed. 

However, under steady flow simulation, SWSSG spikes are observed on the 

ridge regions and SWSSG valleys are observed at very immediate regions of 

ridges. Thereafter, the SWSSG levels tend to decrease with distance from 

the ridges. Under LAD pulsatile flow simulations, the SWSSG phenomenon 

at the ridges region at time phase t = 0.5s and t = 0.9s is similar to that 

observed under steady flow simulation. The reason for this similarity is that 

flowrate at these time points are comparable to that of the flowrate used for 

steady flow simulations. On the other hand, at time points t = 0.1s and t = 

0.3s of the LAD waveform, flowrate is suggested to be very low. Hence 

SWSSGs magnitude at the ridge regions are not as pronounced as that 

observed with the steady flow simulations and at time phase t = 0.5s and 

0.9s of the LAD pulsatile flow simulation. It is evidently seen in figures 6.8a 

and 6.8b that SWSSGs at the ridge regions are relatively very low. 

   

6.2.3     OSCILLATORY SHEAR INDEX ANALYSIS 

 

OSI, as previously discussed, is a measure that allows evaluating the local 

oscillatory effect within an artery which has been postulated to correlate with 

increased risk of stenotic lesions [330]. OSI values are within the range of 0 

and 0.5 with the lowest value 0, representing a region in which there are no 

flow reversals; hence total instantaneous shear is in one direction. The 

highest value 0.5, indicates the region in which there are opposite flow 

directions and thus the oscillatory shear flow at this region results in a zero 

WSS. Regions of high OSIs have been suggested to be more prone to 

endothelium dysfunction [367]. Figure 6.9 shows the OSI distribution within 

the region with semi-circular ridges during one complete cardiac LAD cycle.  
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Figure 6.9  OSI distribution within ridges (R1, R2, R3, R4, R5) region during 

a complete LAD waveform cycle. 

As shown in figure 6.9, high OSIs (≥ 0.3) are experienced some distance 

after the immediate ridge region which therefore meant that there were 

opposing flow directions at that area.       

 

 

6.3        DISCUSSION 

 

Of clinical relevance are ‘site-specific’ endothelial functional changes 

associated with particular flow dynamics and mechanical stresses that 

develop at arteries with certain geometrical characteristics such as curvature 

and bifurcations [104, 368]. On this premise, the mechanical stresses and 

flow characteristics at stented arteries associated with endothelial response 

are equally of high clinical importance as the presence of stents results in 

local geometric changes of the artery with flow conditions characterised by 

disturbed shear stresses [184]. Increasing evidence has led to the 
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suggestion that the number, shape, width and thickness of stent struts 

influence the arterial floor exposed to increased SWSSGs, TWSSGs, OSI 

and low WSSs that are associated with the spatial and sequential localisation 

of NIH and consequently in-stent restenosis [30, 216, 369-372].    

CFD analysis allowed for evaluation of these individual mechanical stresses 

applied to ECs within a modified cell-structure interaction model which 

represented a simplified stented artery.  The model was designed to apply 

combined stresses thus WSS, SWSSG, TWSSG and OSI to ECs. It is noted 

that at the immediate inlet regions of the model, there are some disturbed 

WSSs. This occurrence is as a result of flow being disturbed as it enters the 

cell-structure model from the flow tubing due to the significant geometrical 

difference between the flow tubing and the entrance of the model. Also, the 

“No Slip’’ condition of the wall of the cell-structure model comes into effect 

when flow initially hits its boundary. Nonetheless, the flow is seen to develop 

quickly downstream from the inlet and have a uniform steady flow and thus 

majority of the ECs at the inlet region are suggested to be subjected to 

uniform WSSs. ECs at the very immediate region of the entrance region will 

not be taken into analysis due to this entrance effects. Figure 6.10 shows a 

line graph of the WSS and SWSSG distribution along the centreline of cell-

structure model under steady flow simulations. Figures 6.11a and 6.11b 

show the WSS and SWSSG distributions respectively along the centreline of 

the cell-structure model under LAD pulsatile flow simulations at selected time 

points of the LAD waveform.  
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Figure 6.10 Line graphs showing WSS (top) and SWSSG (bottom) 

distributions on the centre of the cell-structure model under steady flow 

simulation.  

From figure 6.10, it is observed that areas where ridges were not present 

showed constant uniform WSSs and zero SWSSGs. However, ridge regions 

were characterised with WSS spikes on ridges and WSS valley around the 

immediate regions of the ridges. It is also noted that the first ridge in relation 

to the direction of flow (left to right) showed higher WSS magnitude. On the 

subsequent ridges however, WSS magnitudes reported were comparatively 

lower to that of the first ridge. Explanation to this occurrence is that flow over 

the first ridge is faster than the subsequent ridges. Hence from Bernoulli’s 

equation pressure at the first ridge is lower than that of the subsequent 

ridges. The pressure difference across the ridge causes an increase in WSS 

and thus the lower pressure the higher the WSS produced.   
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Figure 6.11a  Line graphs showing WSS distributions at: (a) Inlet region, (b) 

Ridges region and (c) Outlet region of the cell-structure model under pulsatile 

LAD flow simulation at different time point (0.1s, 0.3s, 0.5s, 0.9s). WSSs at 

the inlet and outlet regions are characterised by uniform WSS whilst WSSs 

at ridge regions are marked by WSS spikes and WSS valleys. 
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a  

b  

c  

Figure 6.11b  Line graphs showing WSS distributions at: (a) Inlet region, (b) 

Ridges region and (c) Outlet region of the cell-structure model under pulsatile 

LAD flow simulation at different time point (0.1s, 0.3s, 0.5s, 0.9s). From this 

figure it is observed that there is no SWSSG at the inlet and outlet regions. 

Conversely, there are high SWSSG at the very immediate ridge regions.  
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Consistent with the literature, it is observed that regions with spatially uniform 

WSS have no SWSSG; (inlet and outlet regions of the model) as opposed to 

regions where WSS is varied due to flow reversal, separation and 

reattachment regions (ridges region of  the model), thus presenting spatial 

WSS gradient [11, 327, 373]. It is also noted that very high WSSs (> 5 𝑃𝑎) 

are recorded on the semi-circular ridges due the ridges disturbing the fluid 

flow and negative or low WSS (< 1 𝑃𝑎) at immediate regions near the 

ridges where recirculation flow vortices and flow separation are predicted. 

Flow is predicted to tend to recover from the flow disruption downstream 

from the location of the ridges as this region is characterised by increasing 

WSSs. This flow recovery is however hampered when flow goes past a 

subsequent semi-circular ridge. As noticed also, the WSS distributions are 

similar across the cell-structure interaction model regardless of the time point 

selected under the LAD pulsatile flow simulation. Conversely, the WSS 

magnitudes recorded are significantly different at the different time points 

selected and this occurrence could be explained by the direct proportionality 

relationship between flow rate and shear stress as indicated in equation 6.1.    

Detailed identification and quantification of local mechanical stresses 

distributions within stented arteries as similarly identified in the designed cell-

structure model helps to predict arterial regions which may be more prone to 

restenosis. As discussed in earlier sections of this report, low and high WSS, 

SWSSG, TWSSG and oscillatory shear stress all have been proposed to 

influence the pathophysiology of diseased artery [97, 101, 327, 329, 330]. 

Although these findings have been validated by experimental data, it must be 

taken into account that it is not known specifically which of these mechanical 

stimuli is mediator of arterial disease. Thus it is thought by some researchers 

that the state of the disease may be as a result of the combined effect of 

these mechanical stimuli. Several studies have reported on the co-existence 

of increased WSS and positive SWSSG in complex arteries and have 
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postulated this co-existence relationship to trigger cerebral aneurysms [374-

376]. Based on this premise, Dolan et al. [373] in a review on high WSS and 

SWSSG in vascular pathology presented findings to illuminate how these co-

existing mechanical risk factors may influence the pathobiology of stenosis in 

arteries. To investigate this relationship of stresses within the cell-structure 

model, the WSSs predicted from the CFD analysis were compared with the 

recorded relative SWSSG and OSI. Figure 6.12 shows the correlation of the 

mechanical stress markers within the designed cell-structure interaction 

model where flow is mostly disturbed.     

 

   

 

 

 

A schematic diagram (not drawn to scale) showing the cell culture surface 

area of the cell-structure interaction model with the five independent semi-

circular ridges annotated by R1, R2, R3, R4 and R5. The arrow shows the 

direction of flow at flow rate, Q. 
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Figure 6.12  Line graphs showing the relationships between WSSs and 

SWSSGs (Left) and WSSs and OSIs (Right) within regions with ridges under 

LAD pulsatile flow simulation at time point 0.5s. 

 

From figure 6.12, it can be deduced that within the ridges, OSI is at its 

highest when WSS is relatively zero. Also increase in WSS led to decrease 

in OSI. Comparative analysis of WSS and SWSSG within ridges revealed 

that SWSSG tends to increase at the point where WSS within the ridge 

regions starts to increase. The SWSSG however subsequently decreased 

whilst WSS still increased. 
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The SWSSG and WSS relationship observed within the experimental model 

is similar to that reported by Schirmer et al. [377] in a study investigating the 

spatial and temporal hemodynamic changes within patient specific stenotic 

carotid artery. In the study, WSS increased at the throat of the stenotic artery 

whilst SWSSG changed from positive and negative past the throat of the 

stenotic artery. Furthermore, positive SWSSG was reported post stenotic 

region where endothelial erosion or plaque ulceration has been predicted to 

be most frequent [378, 379]. Rouleau et al. [11] findings of WSS and 

SWSSG distributions from a study on the effect of spatial wall shear stress 

gradient on ECs morphological response in an idealised in vitro stenotic 

artery was also consistent with that reported by Schirmer et al. [377]. It is 

thus interesting that in the cell-structure model similar observations are made 

as WSS is seen to increase at the ridge region and SWSSG changed from 

positive to negative past the ridge section. More so, a positive SWSSG is 

also observed post ridge region. The relationship between WSS and OSI is 

also demonstrated in the cell-structure model as high OSIs are recorded at 

proposed flow separation regions which are characterised by both negative 

and positive WSSs. In addition marked high OSI correlated to the post ridge 

region where positive SWSSG was recorded as shown in figure 6.13.  It is 

proposed that the choice of strut design could influence local flow conditions 

which may be conducive to the development of stent thrombosis or ISR.   

 

Figure 6.13  Line graphs showing the relationship between SWSSG and OSI 

within R4 and R5 region under LAD flow simulation at time point 0.5s. 
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Garasic et al. [301] investigation into the effect of stent and artery geometry 

on intimal thickening independent of arterial injury reported the existence of 

NIH within the centres of diamond shaped stent implanted in rabbit iliac 

arteries. Using a similar stent geometrical design LaDisa et al. [380] reported 

marked elevated SWSSGs and high WSS at these regions which were 

reported by Garasic et al. to have NIH. LaDisa et al. revelation seems to 

contradict the classic hypothesis that high WSS enables the athero-

protective nature of EC [91, 92, 181]. In the study by LaDisa et al., on the 

circumferential vascular deformation after stent implantation, it was reported 

that vascular circumferential straightening as a result of stent implantation 

induced areas of high WSS between stent struts. This phenomenon was 

however absent in stented circular vessels. It was therefore concluded from 

the study that WSS distribution that may be linked to NIH onset may be 

influenced by the geometrical changes of the vessel after stent implantation.  

The cell-structure interaction model designed represents a simplified 

idealised stented LAD artery; thus results presented should be interpreted 

within the constraint of the limitation of the model. The simulation results are 

of stented healthy arterial segment; however results may likely differ if 

simulations were of a stented diseased artery. The assumption of rigid 

arterial wall was made in the simulations presented. A study by LaDisa et al. 

[4] on the alteration of hemodynamic after stent implantation into the LAD 

arteries of 6 dogs reported a reduction of arterial compliance to zero at the 

stented region. Arterial compliance after stent implantation could however 

differ depending on the geometry of the vessel being investigated. Also, the 

arterial compliance of the proximal and distal regions to the stented segment 

could potentially alter vasodilation of the vasculature through the stented 

region. Thus to model this phenomenon would necessitate simulations using 

fluid-structure interactions.  
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6.4        CONCLUSION 

 

The CFD results presented show regions within the cell-structure interaction 

model marked by reverse flow, flow separation and reattachment to have 

varied WSSs, high SWSSGs and OSIs whilst regions marked by relatively 

uniform flow exhibit uniform WSSs and negligible SWSSGs and OSIs. These 

results provide quantitative data that guides our experimental studies and 

understanding of the mechanical milieu within a stented artery and also the 

mechanical forces which might influence the onset of ISR.        
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CHAPTER  7 

 

EXPERIMENTAL ANALYSIS OF ECs MORPHOLOGICAL 

RESPONSE TO PHYSIOLOGICAL RELEVANT FLUID 

DYNAMICS IN STENTED MODEL 

 

7.1        INTRODUCTION 

 

There have been, to the author’s knowledge, no studies on in vitro 

examinations of the morphological and molecular responses of ECs within 

stented artery to a combination of physiologically relevant pulsatile flow 

waveform and pressure. The flow bioreactor system discussed in sections 4 

and 5 is thus suggested suitable to study the effects of combined stresses on 

ECs exposed to physiological flow waveform and pressure. The bioreactor 

system designed is also suitable for the investigation of ECs response to 

steady flow. As the effects of steady flow on ECs responses have been well 

characterised, it is deemed that investigations using the designed bioreactor 

system could be validated by the confirmation of experimental results under 

steady flow being comparable to that reported in literature.   

As discussed in earlier sections of this report, several studies have 

hypothesised the relationship between ECs response (morphological and 

molecular) and mechanical stresses such as WSS. Some of the classic 

hypotheses have been that cells experiencing physiological relevant levels of 

WSS elongate and align parallel to the direction of the fluid flow [11]. The 

degree of the cell alignment however depends up on the magnitude of the 

WSS and the time duration for which the cells have been subjected to the 



 

170 
 

CHAPTER 7 CELL-STRUCTURE INTERACTION EXPERIMENT 

 

WSS [180]. Conversely cells experiencing low or no WSS are cobblestone 

shaped and do exhibit random orientation [320]. As ECs distinctively alter 

their morphological shape (i.e. either elongated or cobblestone) in response 

to the type and strength of mechanical stimuli being applied to them, it is 

hence proposed that the morphology of the cells may be a focal indicator for 

predicting the arterial site prone to lesion growth. Low WSSs have been also 

postulated to upregulate vascular cell adhesion molecule (VCAM-1); a 

marker for plaque development [381]. Comprehensive in vitro and in vivo 

analyses have revealed a myriad of shear stress regulated genes [382]. Of 

these stress-regulated genes, 70% have been attributed to depend on 

Krüppel-like factor-2 (KLF-2) and nuclear factor erythroid 2-related factor 

(NrF2) which are mechano-sensitive transcription factors and suggested to 

be activated by shear stresses. These transcription factors play crucial roles 

in regulating pro-inflammatory, pro-thrombotic and pro-proliferation gene 

activation of the endothelial [383-385]. 

Despite the successes gained from having been able to map cellular 

responses and molecular responses of the ECs to mechanical stresses in 

vivo and in vitro; thus this knowledge have been used to infer the functional 

state of the artery, there still exist some pertinent challenges in interpreting 

clinical observations of diseased arteries and more especially stented 

arteries. Some of these challenges arise due to the disparities between some 

clinical results and experimental results. In most computational models (i.e. 

CFD) of stented arteries, simplification of the flow dynamics and/or the artery 

constituents are generally made. For example in many computational models 

of the artery, the arterial floor and blood is considered as a continuum thus 

disregarding the varied constituents of the blood (red blood cells, platelets) 

and the artery (smooth muscle cells, ECs) or the intercellular activities within 

constituents [382]. In recent studies however, a multi-scale modelling 

approach whereby mechanical stimuli and biological function at varied spatial 
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and transient scales are combined to provide a framework for analysing 

mechano-biology across scales have been employed in the study of ISR 

development [386-390]. Evans et al. [388] described a detailed formulation of 

a multi-scale model in analysing stenosis in stented coronary artery. This 

framework could potentially reveal the key mediators of clinical ISR and thus 

results achieved could be more comparable to clinical observations. 

However, whilst it is appreciated that multi-scale modelling approach could 

provide detailed insight into the predictors of disease progression in arteries, 

it is noted that most of the frameworks are modelled implicitly. Thus other 

molecular influences and/or reactions might have been neglected in the 

modelling due to the limited knowledge underpinning the relationship blood 

between mechanical stimuli and disease onset. Hence the main cause of 

ISR still remains elusive. Although there are some failings with the 

conventional computational modelling approach in correlating constituents 

and flow dynamics with cells response, this technique is a well-established 

and robust method. Thus it is suggested that if the appropriate processes of 

this technique are observed and results understood within the context of the 

model simulated and limitations of the model, results attained could be 

interpreted with some clinical relevance. 

Many in vitro experimental studies to investigate ECs response to different 

mechanical stresses have mostly been performed under non-physiologically 

realistic flow waveforms (i.e. steady or sinusoidal) albeit physiologically 

realistic pulsatile flow dynamics could have a marked effect on the cells 

response. Although some studies have shown similar morphological changes 

of cells when exposed to physiological pulsatile flow dynamics or steady flow 

[98, 391], molecular and gene expressions of the cells however have been 

reported to differ [98, 392, 393]. Blackman et al. [98] in the in vitro 

examination of the effects of pulsatile arterial stress waveforms on ECs 

reported that ECs exposed to either arterial flow or equivalent steady flow  
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exhibited similar elongation and alignment, but the protein and cellular 

adhesion molecule expressions of the ECs differed with respect to the type 

of flow applied to the cells. It nonetheless should be made clear that the 

suggested similarity in morphological response of cells when exposed to 

either pulsatile or steady flow is only valid to a certain extent. Helmlinger et 

al. [391] investigated the influence of three types of pulsatile flow (i.e. non-

reversing, reversing and pure oscillatory flow) and steady flow on bovine 

aortic endothelial cells (BAECs) shape and elongation. It was confirmed from 

the studies that there were differences in the elongation and also the 

duration it took for the ECs to change shape in respect to the flow waveform 

the cells were exposed to. It is therefore proposed that there is a distinctive 

responsiveness of ECs to any type of flow waveform irrespective of the 

similarities in results that may be observed. Thus to be able to explicitly 

compare in vitro results to in vivo results, then physiological parameters need 

to be employed in the experimental investigations.  

 

7.2        METHOD  

 

7.2.1     PRE-CELL CULTURE PREPARATION 

 

The PDMS stamped glass microscope slides with the micro-structure semi-

circular ridges were submerged into phosphate buffered saline (PBS) for at 

least seven days. This process ensured that uncured polymer resin was 

sufficiently leached out of the stamped glass slides. The stamped glass 

slides were then sterilised in 70% ethanol for at least two hours. The ridge 

sheaths fabricated as discussed in section 5.5 were also sterilised in 70% 

ethanol for at least two hours. 
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7.2.2     CELL CULTURE  

 

T25 flasks were initially coated with sterile 0.1% bovine skin gelatin and 

incubated in a humidified cell culture incubator (37℃, 5% 𝐶𝑂2) for at least 

45 minutes. This process ensured focal adhesion of cells to the base of the 

flasks. Frozen down human umbilical vein endothelial cells; HUVECs 

(Promocell, Germany) were revived at passage number 3 (P3) and seeded 

at sub-confluent density in the coated T25 flasks.  The HUVECs were 

cultured with the cell growth medium M199 (Sigma-Aldrich) containing 20% 

foetal calf serum; FCS (BioSera, UK), 30𝑢𝑔/𝑚𝑙 endothelial cell growth 

supplement; ECGS (Sigma-Aldrich, UK), 30𝑢𝑔/𝑚𝑙 heparin (Sigma-Aldrich, 

UK), 2𝑚𝑀L-Glutamine (Sigma-Aldrich), 100𝑢𝑔/𝑚𝑙 Penicillin Streptomycin 

(Sigma-Aldrich). After every three days, the cell culture medium was 

aspirated from the cells and then after the cells were washed with Hank’s 

balanced salt solution; HBSS (Sigma-Aldrich, UK) containing no calcium and 

magnesium to remove any dead cells before feeding the cells with new 

culture medium. When the cultured cells were about 90 − 100% confluent, a 

routine cell passage was performed but this time the passaged cells were 

used for the flow experiment. Thus HUVECs were used at P4 for 

experiments.    

 

7.2.3     CELL SEEDING 

 

The sterilised PDMS stamped glass slides were washed thoroughly with 

sterile PBS three times to completely remove any ethanol from the slides and 

after the slides were placed in dry petri dishes. The surface of the sterile 

stamped slides with the micro-structure ridges were then each coated  
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with1 𝑚𝑙 of 50 𝑢𝑔/𝑚𝑙 fibronectin solution and incubated for at least 1 hour. 

The fibronectin solution used was a mixture of 50 𝑢𝑙 fibronectin (Sigma-

Aldrich, UK) and 950 𝑢𝑙 HBSS. After 1 hour of incubation, the fibronectin 

were aspirated from the stamped slides. Ridge sheaths were then carefully 

placed on top of the micro-structured ridges on the stamped slides after they 

have been washed thoroughly with sterile PBS. 1.5 𝑚𝑙 of HUVECs at P4 and 

a cell suspension of 330,000 𝑐𝑒𝑙𝑙𝑠/𝑚𝑙 were then seeded onto each 

stamped slides with care taken not to dislodge the ridge sheath from its 

position. This resulted in a cell seeding density of about  26,700 𝑐𝑒𝑙𝑙𝑠/𝑐𝑚2 

on the stamped slides. The now cell seeded stamped slides were carefully 

returned to the incubator for an added 3 hours to allow the cells to 

completely attach to the substrate, after which the ridge sheaths are 

removed and the cells flooded with 20 𝑚𝑙 of the cell growth culture medium. 

The flooded cells were then incubated for 24 hours to become confluent. In 

all the experimental investigations, HUVECs were seeded at a cell density of 

26,700 𝑐𝑒𝑙𝑙𝑠/𝑐𝑚2, used at P4 and incubated in a 5% 𝐶𝑂2 incubator at 37℃ 

unless otherwise stated. 

 

7.2.4     CELL-STRUCTURE INTERACTION EXPERIMENT SETUP  

 

The flow bioreactor system was setup to expose cells to: 

 LAD physiological flow waveform with a mean fluid shear stress of 

2 𝑃𝑎 and a physiological hydrostatic pressure of 120/80 𝑚𝑚𝐻𝑔.   

 Steady flow at a mean hydrostatic pressure of 100 𝑚𝑚𝐻𝑔 and fluid 

shear stress of 2 𝑃𝑎. 

 Hydrostatic pressure of 100 𝑚𝑚𝐻𝑔 and a fluid shear stress < 0.1 𝑃𝑎.   
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Since the mean fluid shear stress applied to the cells were same for both the 

LAD pulsatile flow and steady flow, examinations of cells response under 

pulsatile and steady flow were run in parallel. To run the LAD pulsatile flow 

experiments the flow bioreactor system was assembled as described in 

figure 4.1. To run the steady flow experiments however, the flow bioreactor 

was set up in a similar way to the pulsatile flow system but with the tubing 

connecting to the pulsatile simulator disconnected. The flow bioreactor 

circuits and gaskets were sterilised by autoclaving with the exception of the 

parallel plates of the test chamber which were sterilised using 0.1% 

peracetic acid in PBS for at least a day. Once the flow circuits were 

sterilised, the medium reservoirs were filled with the cell growth culture 

medium. In a sterile cell and tissue cabinet, the culture medium was run 

through the respective flow circuits without the test chambers (that is the cell-

structure interaction model) connected to the flow systems to set the required 

pressure and flow waveform parameters. After the relevant parameters were 

set, the flow circuits were placed in the incubator and the culture medium 

primed throughout the flow circuits at a low flow rate of 10 𝑚𝑙/𝑚𝑖𝑛  for at 

least 2 hours.  

During the priming of the cell culture media, the test chambers were then 

assembled.  To completely mount a test chamber, the stamped slide with the 

seeded HUVECs was initially washed with warm HBSS and then carefully 

placed into the groove of the sterilised bottom plate of the test chamber. The 

gasket was then placed on the bottom plate and carefully 1 𝑚𝑙 of warm 

culture media was pipetted onto the cells without spilling the culture media 

anywhere on the bottom plate. Finally, the top plate of the test chamber was 

placed on top of the bottom plate and firmly and securely affixed with 

machine screws. Warm culture medium was then gently introduced into the 

test chamber whilst making sure that there were no trapped air bubbles in 

the test chamber. After priming of the cell media, the flow circuits were  
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moved back into the sterile tissue cabinet where the test chambers were now 

connected to them. To connect the test chambers to the flow circuits, either 

sides of the tubing where the test chambers would be connected were 

initially clamped. Then after connecting the tubing to the inlets and outlets of 

the test chambers the clamps were removed. The now completed flow 

bioreactor system is moved to the incubator. Before the desired experiments 

were started, the flow rate was gradually increased after every 5 minutes 

starting from 5 𝑚𝑙/𝑚𝑖𝑛 and doubling the flow rate thereafter until the 

required flow rate is reached. Once the required flow rate had been reached 

the cam driven physiologic flow simulator is switched on to add the desired 

pulsatile component onto the flow waveform.   

HUVECs were exposed to either LAD pulsatile and steady flow at a mean 

flow rate of 144 𝑚𝑙/𝑚𝑖𝑛. This resulted in a mean WSS of 2 𝑃𝑎 experienced 

by the cells. In examining HUVECs under only hydrostatic pressure, the cells 

were subjected to a steady flow rate of 7 𝑚𝑙/𝑚𝑖𝑛 which resulted in a WSS of 

approximately 0.07 𝑃𝑎. Initial experiments investigating the hydrostatic 

pressure effects on HUVECs was done at a cell density of approximately 

10,114 𝑐𝑒𝑙𝑙𝑠/𝑐𝑚2. It was suggested that fluid flow rate at 7 𝑚𝑙/𝑚𝑖𝑛 to yield 

a shear stress < 0.1 𝑃𝑎 had negligible fluid stress effects on the cells but 

rather allowed for adequate perfusion of cell growth medium to the cells 

[313].  All three main experiments were run for 6, 12 and 24 hours. 

 

7.2.5     CELLS STAINING  

 

After exposure of the cells to the combined pressure and flow stimuli or 

pressure stimulus only for the desired time duration, the flow bioreactor 

system was stopped. The test chambers were then disconnected from the  
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flow circuit in a sterile tissue cabinet and the stamped slides carefully taken 

from the test chambers into petri dishes. The cells were washed once in 

20 𝑚𝑙 of HBSS and then twice with PBS before fixing them in 20 𝑚𝑙 of 3.7% 

formaldehyde for 20 minutes. The cells were then stained for their actin 

cytoskeleton, nuclei and some inflammatory molecules and to ensure good 

staining of the cells this was done in a dark tissue cabinet.  

 

7.2.5.1  STAINING FOR CYTOSKELETON AND NUCLEI  

 

After the cells had been fixed, they were washed three times with PBS for 5 

minutes each. After the third wash, the PBS was aspirated and then the cells 

permeabilised by adding 1% Triton X-100 for 3 minutes. The cells were 

washed again three times with PBS for 5 minutes each after being 

permeabilised. After this step, 1% bovine serum albumin (BSA) in PBS 

solution was added to the cells for 1 hour to block nonspecific binding. The 

staining solution was then made by adding 100 𝑢𝑙 of a 5𝑚𝑔/𝑚𝑙 

concentration FITC conjugated Phalloidin (Sigma-Aldrich, UK) and a 10 𝑢𝑙 of 

0.1 𝑢𝑔/𝑚𝑙 aliquoted DAPI into 10 𝑚𝑙 of  1% BSA in PBS. The BSA was 

aspirated from the cells after the 1 hour and 1 𝑚𝑙 of the stain solution was 

put on the cells for 1 hour. The cells were then washed once with PBS after 

the staining for 1 hour and then preserved in PBS before visualised with a 

fluorescence upright LSM510 Meta confocal microscope. The actin 

cytoskeleton of the cells were stained green when labelled with the FITC 

conjugated Phalloidin. This fluorophore was able to be seen using 488𝑛𝑚 

excitation laser with an emission filter of 500 − 550𝑛𝑚 setting on the 

confocal microscopy. The DAPI stained the nuclei of the cells blue and this 

was also observed by setting the emission filter of the microscopy to 

435 − 485𝑛𝑚.  
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7.2.6     CELLS SEGMENTATION        

 

HUVECs stained with fluorophores after exposure to the mechanical stimuli 

and results obtained with confocal light microscopy system help provide 

qualitative assessment of the changes in cell morphology and orientation. 

This method of obtaining cell results for assessment is relatively better than 

the use of conventional optical microscope as the former provides enhanced 

distinctive features of the cell [394]. Whilst the use of this modern technique 

to produce excellent epifluorescent cell images is well appreciated, it is noted 

that achieving detailed quantitative data with this method can be very 

challenging.  

Previous investigators have quantitatively analysed epifluorescent cell 

images by manually counting and assessing the cell morphological features 

[395]. This type of quantitative analysis is however severely influenced by the 

operator and thus results are highly not repeatable, may not be set to the 

same standards and have high inaccuracies.  To overcome this problem, 

researchers have developed computational image processing programmes    

capable of producing unbiased and repeatable quantitative cell data [396-

399]. It should however be noted that the choice of a cell image processing 

programme could be inadequate for analysing complex data and also the 

robustness of statistical methods of the image programme could influence 

results [396, 400]. Thus care should be taken when choosing appropriate 

image processing programme for cell data analysis.   

A modular image processing software called CellProfiler was used to 

quantitatively analyse the cell data produced in this report. This software is a 

robust, high - throughput and free open-source image analysis programme 

that provides frameworks to measure standard biological assays (i.e. cell 

size and count) and complex morphological assays (i.e. cell shape and  
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protein staining) [396, 401]. The algorithm of this image analysis is built on a 

MatLab platform with the adoption of watershed transform methods which 

allows for accurate cell identification and measurements on crowded cell 

samples [401]. This software has been validated to solve several realistic 

biological problems with high accuracy [402, 403].   

 

7.2.6.1  WORKFLOW OF CELL SEGMENTATION                   

 

Segmentation of the stained cells was performed using a pipeline (a 

sequential set of image analysis algorithms) constructed using CellProfiler 

version 2.1.0 software package. The sequential flow to segmenting the 

stained cells is illustrated in figure 7.1 below.    
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Figure 7.1  Flowchart of cell segmentation. Each cell and its nucleus is colour 

coded to facilitate easy identification quantification of the cell and nucleus.  

The propagation alogorithm was used to identify cells as this method was an 

improvement on the conventional watershed transform method and 

appropriate for cell images with small gaps [404]. The propagation algorithm 

works by considering the identified nuclei as seed points and determines the 

Voronoi region of each given seed point on a Riemann manifold with a metric 

defined in the local image plane [404]. Cells and nuclei touching the image 

boundary are negated in the process of segmenting the cells as they may not 
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be segmented in their entirety and could compromise accuracy of results. 

This is shown with nuclei touching the image boundary outlined with yellow 

hue and the cells touching the image boundary not outlined.        

 

7.2.6.2  QUANTIFICATION OF SEGMENTATION DATA     

 

Once the cells had been segmented, the morphology such as the shape, 

size, aspect ratio and orientation of the cell and nuclei could now be 

quantified. Thus a MatLab script was written to analyse the segmented data. 

Figure 7.2 illustrates some of the morphological parameters obtained from 

the segmentation process.  The maximum ferret diameter (a) and the 

minimum ferret diameter (b) show the length and width respectively of the 

cell. Taking that flow (Q) direction is from left to right; the orientation of the 

cell is calculated by finding the angle (θ) between the major axis of the cell 

and the axis parallel to the flow direction. Nucleus localisation (upstream or 

downstream) in respect to the flow direction was determined by taking the 

distance between the centroid of the cell (C1) and that of the nucleus (C2).     

 

                   

 

 

 

 

 

Figure 7.2  Morphological parameters produced from cell segmentation 
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The aspect ratio of the cell can also be calculated by dividing the minor ferret 

diameter by the major ferret diameter. Calculating the aspect ratio by this 

method produces a conceptual binary result; thus 1 represents a fully 

rounded cell and 0 represents a fully elongated cell. 

 

 

  

 

Figure 7.3  A schematic diagram to explain aspect ratio. The cell is assumed 

to be fully elongated when aspect ratio is 0.0 and cobblestone when the 

aspect ratio is 1.0 

 

7.3        RESULTS  

 

Images of all stained cells taken were at the centre plane of the stamped 

glass slides. This ensured that results were then comparable. Additionally all 

images were taken with a x10 objective lens of the confocal microscopy and 

a standard scale bar of 200 𝑢𝑚 was set on the images. 

 

7.3.1     CELLS EXPOSED TO HYDROSTATIC PRESSURE  

 

Results presented in figure 7.4 shows HUVECs response to 100 𝑚𝑚𝐻𝑔 

hydrostatic pressure only seeded at a cell density of 10,114 𝑐𝑒𝑙𝑙𝑠/𝑐𝑚2 for 

time durations 0, 6, 12 and 24 hours. 
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Figure 7.4  Images of stained HUVECs after exposure to sustained 

hydrostatic pressure 100mmHg and fluid stress of 0.07 Pa for 0, 6, 12 and 24 

hours. Direction of fluid stress is from left to right. 

 

As observed in figure 7.4, local cell density of cell increased with increasing 

time when cells were exposed to sustained hydrostatic pressure.  

    

HUVECs morphological response to the hydrostatic pressure when seeded 

at a cell density of 26,700 𝑐𝑒𝑙𝑙𝑠/𝑐𝑚2 is shown in figure 7.5 below. Cell 

images shown here are in respect to specific locations on the cell-structure 

interaction model.   
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Figure 7.5 Stained HUVECs after exposure to sustained hydrostatic pressure 

100mmHg and fluid stress of 0.07 Pa for 6, 12 and 24 hours. 
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It is observed in figure 7.5 that HUVECs subjected to hydrostatic pressure 

increase in local cell density with increase in time. Also cells show random 

orientation and are cobblestone shaped. 

 

7.3.2     CELLS EXPOSED TO COMBINED FLUID STRESS AND 

HYDROSTATIC PRESSURE  

 

The results presented in figure 7.6a shows HUVECs morphological response 

when subjected to combined mechanical stimuli that is LAD pulsatile flow 

with a mean shear stress of 2 𝑃𝑎 and physiological hydrostatic pressure of 

120/80 𝑚𝑚𝐻𝑔.  

In figure 7.6b, the stained cell images are of the morphological changes of 

HUVECs when subject to steady laminar flow that yields a shear stress of 

2 𝑃𝑎  and hydrostatic pressure of 100 𝑚𝑚𝐻𝑔.  

The results shown in figure 7.6a and 7.6b were of the experiments with cells 

seeded at a cell density of 26,700 𝑐𝑒𝑙𝑙𝑠/𝑐𝑚2 and run for different time 

durations of 6, 12 and 24 hours. 
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Figure 7.6a Stained HUVECs after exposure to LAD pulsatile flow and 

hydrostatic pressure 120/80 mmHg for 6, 12 and 24 hours. Cells appear to 

elongate and align more in flow direction at 12 and 24 hours in the inlet and 

outlet regions. Cells at 6 hours appear less elongated at the inlet and outlet. 
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Figure 7.6b Stained HUVECs after exposure to steady flow and hydrostatic 

pressure 100 mmHg for 6, 12 and 24 hours. Cells appear to elongate and 

align more in flow direction at time 12 hours and 24 hours in the inlet and 

outlet regions. Cells within the ridges regions however are less aligned to 

flow direction. Cells are also observed on top of ridges at 12 and 24 hours. 
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7.3.3     MORPHOLOGICAL QUANTIFICATION      

 

Quantifying the morphology of cells after been exposed to the desired 

mechanical stimuli included cell orientation distribution, aspect ratio, average 

nuclei and cell size, local cell density and nucleus localisation. Statistical 

analyses of results were expressed as the mean ± SEM (standard error 

mean). Statistical significance was assessed by analysis of a 2 tailed, 

unpaired, Student’s T test with critical values of 𝑃 < 0.05 considered 

significant. The number of repeat for each specific test is denoted by the 

letter ‘n’. 

 

7.4      RESULT ANALYSIS II 

 

In this section, the change in morphology of sub-confluent and confluent 

cultured HUVECs when exposed to only sustained hydrostatic pressures are 

analysed. 

 

7.4.1    SUB-CONFLUENT CULTURED CELLS EXPOSED TO ONLY 

HYDROSTATIC PRESSURE    

 

The data presented here are of the experiments conducted with cell density 

of 10,114 𝑐𝑒𝑙𝑙𝑠/𝑐𝑚2 and cells exposed to hydrostatic pressure of 

100 𝑚𝑚𝐻𝑔.  
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Figure 7.7a Histogram graph showing orientation of sub-confluent cultured 

cells exposed to hydrostatic pressure of 100 mmHg for 0, 6, 12 and 24hrs. n 

= 1. Error bars show SEM of 6 images. From this graph, it can be reported 

that HUVECs randomly orientate when subjected only to hydrostatic 

pressure. 

 

Figure 7.7b  Line graph showing average aspect ratio of cells exposed to 

hydrostatic pressure of 100 mmHg for 0hrs, 6hrs, 12hrs and 24hrs. n = 1. 

Error bars show SEM of 6 images. 

Analysing the graph of figure 7.7b it could be deduced that HUVECs 

subjected to only hydrostatic pressure elongate. This deduction is made 

based on the decrease of cell aspect ratio with time under the stipulated 

condition.  
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Figure 7.7c  Line graph showing average number of cells within a local area 

of 0.18m2 after exposure to hydrostatic pressure of 100 mmHg for 0hrs, 6hrs, 

12hrs and 24hrs. n = 1. Error bars show SEM of 6 images. 

From figure 7.7c, it is realised that HUVECs only under hydrostatic pressure, 

first increase in density (0 to 6 hours) and then later decrease (6 to12 hours). 

There is however a surge in cell density again (12 to 24 hours).  

 

 

Figure 7.7d  Line graph showing average cell size in microns of cells 

exposed to hydrostatic pressure of 100 mmHg for 0hrs, 6hrs, 12hrs and 

24hrs. n = 1. Error bars show SEM of 6 images.  
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From the graph shown in figure 7.7d, it is seen that cells initially decrease in 

size and thereafter increase in size with respect to time when subjected to 

only hydrostatic pressure.  

 

Figure 7.7e  Line graph showing average nuclei size in microns of cells 

exposed to hydrostatic pressure of 100 mmHg for 0hrs, 6hrs, 12hrs and 

24hrs. n = 1. Error bars show SEM of 6 images. 

From figure 7.7e, it is observed that there is a relative change in nuclei size 

when subjected only to hydrostatic pressure for different timescales. 

 

Figure 7.7f Line graph showing average distance between centroid of 

nucleus and cell centroid after cells exposed to hydrostatic pressure of100 

mmHg for 0hrs, 6hrs, 12hrs and 24hrs. n = 1. Error bars show SEM of 6 

images. 
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From the graphs shown in figure 7.7f, it is observed that there is an increase 

in the average distance between the nucleus centroid and cell centroid of cell 

between 0 – 12 hours. This then tend to decrease at time 12 hours to 24 

hours.  

 

7.4.2    CONFLUENT CELLS EXPOSED TO ONLY HYDROSTATIC        

PRESSURE    

 

The data below are of the experiments conducted with cell density of 

26,700 𝑐𝑒𝑙𝑙𝑠/𝑐𝑚2 and cells exposed to hydrostatic pressure of 100 𝑚𝑚𝐻𝑔. 
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Figure 7.8a  Histogram showing orientation of cells exposed to hydrostatic 

pressure of 100 mmHg for 6hrs, 12hrs and 24hrs. n = 3. Error bars show 

SEM of 3 images. * p < 0.05 vs. 6 hrs and ** p < 0.05 vs. 12 hrs. 

From the histogram graph presented in figure 7.8a, it is seen that confluent 

cultured cells tend to orientate randomly when subjected to only hydrostatic 

pressure for different timescales.   
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Figure 7.8b  Line graph showing average nuclei size in microns of cells 

exposed to hydrostatic pressure of 100 mmHg for 6hrs, 12hrs and 24hrs. n = 

3. Error bars show SEM of 3 images. * p < 0.05 vs. 6 hrs and ** p < 0.05 vs. 

12 hrs. 

It is observed from the above graph that the nuclei size of confluent cells 

generally tend to decrease when exposed to only hydrostatic pressure with 

increase timescales.   

 

Analysis of the density of the cells when HUVECs were exposed to 

hydrostatic pressure for 6 hours, 12 hours and 24 hours are presented 

below. 
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Figure 7.8c  Line graph showing average number of cells within a local area 

of 0.18mm2 after exposure to hydrostatic pressure of 100 mmHg for 6hrs, 

12hrs and 24hrs. n = 3. Error bars show SEM of 3 images. * p < 0.05 vs. 6 

hrs and ** p < 0.05 vs. 12 hrs. 

Analysis of the graphs in figure 7.8c show a general increase in cell density 

with increasing time periods when cells are subjected to hydrostatic 

pressure.  

 

7.5      DISCUSSION TO RESULT ANALYSIS II 

 

7.5.1     HUVECs EXPOSED TO SUSTAINED HYDROSTATIC PRESSURE   

 

Most studies investigating into the effects of hydrostatic pressure on ECs 
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morphology have reached similar conclusions that ECs elongate without 

prime cell orientation upon exposure to sustained hydrostatic pressure in a 

time dependent manner [313, 405]. Also, the actin cytoskeleton is reported to 

rearrange to form a multilayer structure. So it was as expected when results 

of HUVECs seeded under both sub-confluent (10,114 𝑐𝑒𝑙𝑙𝑠/𝑐𝑚2) and 

confluent (26,700 𝑐𝑒𝑙𝑙𝑠/𝑐𝑚2) conditions and exposed to hydrostatic 

pressure of 100 𝑚𝑚𝐻𝑔 exhibited similar behaviour. The random 

orientations of cells when subjected to hydrostatic pressure are shown 

in figures 7.7a and 7.8a respectively. In figure 7.9, cell elongation is 

marked by decrease in aspect ratio. Below is a comparative quantitative 

analysis of HUVECs aspect ratio under sub-confluent and confluent 

conditions for 6, 12 and 24 hours. 

 

Figure 7.9  Line graph of average aspect ratio of HUVECs exposed to 

sustained hydrostatic pressure of 100 mmHg for 6, 12 and 24 hours. Cells 

under confluent condition before exposure to stimulus (dashed lines) and 

cells under sub-confluent conditions before exposure to stimulus (straight 

line). Error bars show SEM of 6 images. 

From figure 7.9 it is shown that there is a general decrease of cell aspect 

ratio with increase in time when subjected to hydrostatic pressure. This 

decrease in aspect ratio of cell can be related to as cell elongation. Thus  



 

197 
 

CHAPTER 7 CELL-STRUCTURE INTERACTION EXPERIMENT 

 

continuous exposure of cells to hydrostatic pressure may cause cells to 

elongate. It is important however to note that morphology and cell 

function of sub confluent ECs could differ to those of confluent 

conditions [406, 407]. Hence results of ECs under different confluency 

and exposed to hydrostatic pressure were careful analysed.  

Under sub-confluent conditions, HUVECs were inferred to elongate as the 

aspect ratio of the cells were quantified to decrease with time (average 

aspect ratio of ~ 0.65 at 0 hours to ~0.55 at 24 hours) as shown in figure 

7.7b. Also in figure 7.7c, local density of cells within a 0.18mm2 area is 

observed to increase with time with only a slight decrease in local density at 

12 hours. However results from the cells seeded under confluent conditions 

and exposed to same hydrostatic pressure level showed a general increase 

in local cell density from 6 hours to 24 hours. This data is presented in figure 

7.8c.  From these results, it is implied that hydrostatic pressure promotes 

ECs proliferation, a deduction which has been made in several similar 

investigations [313, 405, 408, 409]. The hypothesis that the confluency level 

of ECs could affect experimental findings was justified when HUVECs 

seeded at confluent conditions were qualitatively demonstrated to form 

multilayers as opposed to ECs under sub-confluent condition at 24 hours. 

Shown below are the figures of stained HUVECs exposed to hydrostatic 

pressure for 24 hours when seeded under two different confluent levels. 

Multilayering of HUVECs is suggested in the image ‘A’ of figure 7.10 as 

distinct features of the cells actin cytoskeletons reported to be only present in 

multi-layered  cell form were noticed.  
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                  A.             B.               

Figure 7.10  HUVECs exposed to sustained hydrostatic pressure of 100 

mmHg for 24 hours. Cells under confluent conditions (A) and cells under 

sub-confluent conditions (B) before exposure to stimulus. 

The multi-layered cells were observed to have more apparent thicker and 

central actin filaments (shown by the very bright green fluorescence around 

the cells) and formed a web-like structure. Additionally, cells further away 

from the substrate level are seen to exhibit cobblestone morphology 

characteristics. It is also realised that the dense peripheral band around the 

cells were lost and thus the shape of the cells were not evidently defined.  

These observations are analogous to that reported by Salwen et al. [410]. In 

contrast to these observations, the non-confluent cell result showed ECs 

which were more elongated, had parallel actin fibres and thin actin filaments. 

Salwen et al. [410] also reported similar ECs characteristics of non-confluent 

cells exposed to hydrostatic pressures of 1.5 𝑐𝑚𝐻2𝑂, 5 𝑐𝑚𝐻2𝑂, 10 𝑐𝑚𝐻2𝑂 

respectively for 7 days at substrate level. 

Furthermore, it is observed that the nuclei size of the confluent cells exposed 

to the sustained pressure tend to decrease (from ~ 23um to ~ 21um) whilst 

that of the non-confluent cell increased (~ 20.5um to ~ 22.5um) with time. 

This is evidently shown in figures 7.8b and 7.7e respectively. It would 

therefore be of great interest in future to investigate if these changes in the 

nuclear form would evoke different and/or similar gene activities of the cells. 

Thus this investigation might provide some insight into the influence of 



 

199 
 

CHAPTER 7 CELL-STRUCTURE INTERACTION EXPERIMENT 

 

pressure on endothelialisation after PCI. It is thought that as the nucleus is a 

mechanosensor, its nuclear form just like the cytoskeleton of the cell is 

induced by mechanical stimuli. Thus understanding the changes to the 

nucleus morphology as a result of stress could be indicative of the process 

by which cells respond to physical stimuli; for instance cell migration. In fact, 

the roles played by cytoskeleton and nucleus in ECs mechanotransduction 

are not mutually exclusive and may be interrelated through complex cellular 

pathways [411].  

To further quantify the nuclei response to mechanical stimuli and in this case 

sustained hydrostatic pressure, the average distance between the centroid of 

cell and its respective nucleus was determined. Figure 7.11 shows a 

schematic line graph representation of this measured average distance 

between the cell and nucleus at 6, 12 and 24 hours.  

 

Figure 7.11  Line graph showing average distance between the centroid of 

cells and nucleus for HUVECs under confluent condition (dashed lines) and 

HUVECs under sub-confluent conditions (straight line) exposed to 

hydrostatic pressure of 100 mmHg for 6, 12 and 24 hours. Error bars show 

SEM of 6 images. 

A negative distance is defined as the centroid of the nucleus displaced 

downstream to the centroid of the entire cell. From figure 7.11 it is thus  
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observed that nuclei centroid of HUVECs under confluent conditions tend to 

move from the downstream of the cell (~ -0.45um) at 6 hours to the upstream 

of the cell (~ 0.20um) at 24 hours. On the other hand, HUVECs under the 

non-confluent condition showed the centroid of the nuclei to initially move 

upstream (~ 0.3um at 6 hours to ~ 0.5um at 12 hours) before being located 

downstream of the cell (~ -0.35 um) at 24 hours.      

 

7.6      RESULT ANALYSIS III 

 

In this section, the change in cell morphology when exposed to a 

combination of fluid stress and hydrostatic pressure is analysed 

 

7.6.1   CELLS EXPOSED TO COMBINED LAD FLUID STRESS AND 

HYDROSTATIC PRESSURE    

 

The data below are of the experiments conducted with cell density of 

26,700 𝑐𝑒𝑙𝑙𝑠/𝑐𝑚2 and cells exposed to LAD pulsatile flow waveform with a 

mean shear stress of 2 𝑃𝑎 and hydrostatic pressure of 120/80 𝑚𝑚𝐻𝑔. 

The following set of data show the statistical analysis of cell orientation 

to flow direction within ± 10° and ± 20° respectively.  In addition to these 

data provided, analyses of the other morphological features of cells 

such as cell size and aspect ratio are also presented. 
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Figure 7.12ai  Histogram showing orientation of cells exposed to LAD 

pulsatile flow and hydrostatic pressure of 120/80 mmHg for 6hrs, 12hrs and 

24hrs. n = 3. SEM of 3 images. Statistical significance of cells aligned in 

± 10° of flow direction; * p < 0.05 vs. 6 and ** p < 0.05: 24 hrs vs. 12 hrs. 

Analyses of the graphs in figure 7.12ai show that cells align more in the 

± 10° of flow direction with increase time period under LAD pulsatile flow 

simulation at the inlet and outlet regions. However, cell alignment to ± 10° 

* 
* 

* 

* 
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of flow direction within inter-ridges regions are not pronounced but generally 

are more randomly aligned. 

 

The analysis of cell alignment to ± 20° of flow direction under LAD pulsatile 

flow is presented below.   

 

 

 

 

 

 

 

 

* 
*  

Inlet Region 
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Figure 7.12aii  Histogram showing orientation of cells exposed to LAD 

pulsatile flow and hydrostatic pressure of 120/80 mmHg for 6hrs, 12hrs and 

24hrs. n = 3. SEM of 3 images. Statistical significance of cells aligned in 

± 20° of flow direction; * p < 0.05 vs. 6 hrs and ** p < 0.05: 24 hrs vs. 12 hrs.  

Analyses of the graphs in figure 7.12aii show that cells tend to align more in 

the ± 20° of flow direction with increase time period under LAD pulsatile flow 

simulation at the inlet and outlet regions. More so, this time dependent 

increase in the cell alignment to the ± 20° of flow direction is statistically 

significant. Conversely, although there may be a time dependent increase of 

cells aligned to ± 20° of flow direction within inter-ridges regions, these 

increments are not statistically significant. 

 

The next set of data show the aspect ratio of cells when subjected to a 

combination of LAD pulsatile fluid shear stress and hydrostatic pressure of 

120/80 𝑚𝑚𝐻𝑔.  

 

 

 

* 
** 
*  

Outlet Region 
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Figure 7.12b  Line graph showing average aspect ratio of cells exposed to 

LAD pulsatile flow and hydrostatic pressure of 120/80 mmHg for 6hrs, 12hrs 

and 24hrs. n = 3. SEM of 3 images. * p < 0.05 vs. 6 hrs and ** p < 0.05: 24 

hrs vs. 12 hrs.  

It is observed from figure 7.12b, that there is a time dependent gentle 

decrease of aspect ratio of cells. However at the inlet and outlet regions, the 

decrease in aspect ratio of cell with respect to time is generally statistically 

significant. 
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Figure 7.12c  Line graph showing average cell size in microns of cells 

exposed to LAD pulsatile flow and hydrostatic pressure of 120/80 mmHg for 

6hrs, 12hrs and 24hrs. n = 3. Error bars show SEM of 3 images. * p < 0.05 

vs. 6 hrs and ** p < 0.05: 24 hrs vs. 12 hrs. 

It is noted from figure 7.12c that there is a general statistically significant time 

dependent increase of cell size across the experimental model when 

subjected to the stipulated fluid stress and hydrostatic pressure. 
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Figure 7.12d  Line graph showing average nuclei length size in microns of 

cells exposed to LAD pulsatile flow and hydrostatic pressure of 120/80 

mmHg for 6hrs, 12hrs and 24hrs. n = 3. Error bars show SEM of 3 images. * 

p < 0.05 vs. 6 hrs and ** p < 0.05: 24 hrs vs. 12 hrs. 

The graphs presented in figure 7.12d show an increase in nuclei size with 

increase in time period although generally not statistically significant when 

subjected to stipulated fluid stress and hydrostatic pressure.  

** 
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Figure 7.12e  Line graph showing average number of cells within a local area 

of 0.18mm2 after exposure to LAD pulsatile flow and hydrostatic pressure of 

120/80 mmHg for 6hrs, 12hrs and 24hrs. n = 3. Error bars show SEM of 3 

images. * p < 0.05 vs. 6 hrs and ** p < 0.05: 24 hrs vs. 12 hrs. 

It is noticed from the graphs presented in figure 7.12e that local cell density 

tend to decrease at the inlet and outlet regions whilst there is a gentle 

increase in local cell density within the inter-ridges regions. 

* * 
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7.6.2     CELLS EXPOSED TO COMBINED STEADY FLUID STRESS AND 

HYDROSTATIC PRESSURE    

 

The data below are of the experiments conducted with cell density of 

26,700 𝑐𝑒𝑙𝑙𝑠/𝑐𝑚2 and cells exposed to steady laminar flow of a shear stress 

of 2 𝑃𝑎 and hydrostatic pressure of 100 𝑚𝑚𝐻𝑔.  

The following set of data show the statistical analysis of cell orientation 

to flow direction within ± 10° and ± 20° respectively.  In addition to these 

data provided, analyses of the aspect ratio of cells and cell size are 

also presented. 

 

 

 

 

 

* 
* 
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Figure 7.13ai  Histogram showing orientation of cells exposed to steady flow 

and hydrostatic pressure of 100 mmHg for 6hrs, 12hrs and 24hrs. n = 3. 

SEM of 3 images. Statistical significance of cells aligned in ± 10° of flow 

direction; * p < 0.05 vs. 6 hrs and ** p < 0.05: 24 hrs vs. 12 hrs. 

Analyses of the graphs in figure 7.13ai show that cells tend to align more in 

the ± 10° of flow direction in a time dependent manner at the inlet and outlet 

regions under steady flow simulation. However, cell within ridges regions are 

noticed to be generally randomly aligned. 

 

The analysis of cell alignment to ± 20° of flow direction under steady flow is 

presented below.   

 

 

Inlet Region 
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Figure 7.13aii  Histogram showing orientation of cells exposed to steady flow 

and hydrostatic pressure of 100 mmHg for 6hrs, 12hrs and 24hrs. n = 3. 

SEM of 3 images. Statistical significance of cells aligned in ± 20° of flow 

direction; * p < 0.05 vs. 6 hrs and ** p < 0.05: 24 hrs vs. 12 hrs. 

Analyses of the graphs in figure 7.13aii show that cells tend to align more in 

the ± 20° of flow direction with increasing timescale under steady flow 

simulation at the inlet and outlet regions. More so, this time dependent 

increase in the cell alignment to the ± 20° of flow direction is statistically 

significant. Conversely, although there may be a time dependent increase of 

cells aligned to ± 20° of flow direction within inter-ridges regions, this 

increment is not statistically significant. 

 

Outlet Region 
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The next set of data show the aspect ratio of cells when subjected to a 

combination of steady fluid stress and hydrostatic pressure of 120/

80 𝑚𝑚𝐻𝑔. 

 

 

 

Figure 7.13b  Line graph showing average aspect ratio of cells exposed to 

steady flow and hydrostatic pressure of 100 mmHg for 6hrs, 12hrs and 

24hrs. n = 3. SEM of 3 images. * p < 0.05 vs. 6 hrs and ** p < 0.05: 24 hrs 

vs. 12 hrs. From figure 7.13b it is noted that generally there is a time 

dependent decrease of cell aspect ratio. Nonetheless, this decrease in cell 
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aspect ratio is slightly more pronounced at inlet and outlet regions.  

 

 

 

 

Figure 7.13c  Line graph showing average cell size in microns of cells 

exposed to steady flow and hydrostatic pressure of 100 mmHg for 6hrs, 

12hrs and 24hrs. n = 3. Error bars show SEM of 3 images. * p < 0.05 vs. 6 

hrs and ** p < 0.05: 24 hrs vs. 12 hrs. 
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From data produced in figure 7.13c, it is generally seen that average cell size 

tend to increase with increasing timescale under steady flow simulation. This 

cell size increment with time is statistically significant. 

 

 

 

 

Figure 7.13d  Line graph showing average nuclei length size in microns of 

cells exposed to steady flow and hydrostatic pressure of 100 mmHg for 6hrs, 

12hrs and 24hrs. n = 3. Error bar show SEM of 3 images. * p < 0.05 vs. 6 hrs 
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and ** p < 0.05: 24 hrs vs. 12 hrs. 

From the graphs presented in figure 7.13d, increase in nuclei size is seen to 

be time dependent although this phenomenon is more pronounced at the 

inlet and outlet regions. 

 

 

 

 

Figure 7.13e  Line graph showing average number of cells within a local area 

** 

** 
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of 0.18mm2 after exposure to steady flow and hydrostatic pressure of 100 

mmHg for 6hrs, 12hrs and 24hrs. n = 3. Error bars show SEM of 3 images. * 

p < 0.05 vs. 6 hrs and ** p < 0.05: 24 hrs vs. 12 hrs. 

From the data presented in figure 7.13e, the local cell density is seen to 

somewhat decrease with increase in time. This decrement however is 

generally not statistically significant.  

 

7.6.3     RESULTS COMPARING STEADY FLOW VS. LAD PULSATILE 

FLOW VS. HYDROSTATIC PRESSURE CONDITIONS   

 

The data below are of the experiments conducted with cell density of 

26,700 𝑐𝑒𝑙𝑙𝑠/𝑐𝑚2 and cells exposed to different flow and pressure 

conditions as discussed in this section.  

Comparative statistical analysis of cell orientation to flow direction within 

± 10° with respect to the different flow conditions at various time points 

is demonstrated in addition to the analysis of the morphological features of 

cells. 
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Figure 7.14ai  Histogram showing orientation of cells exposed to steady, LAD 

pulsatile flows and sustained hydrostatic pressure for 6hrs. n = 3. SEM of 3 

images. Statistical significance of cells aligned in ± 10° of flow direction; # p 

< 0.05 vs. static and ## p < 0.05: steady vs. LAD. 

It is observed from figure 7.14ai that cells subjected to either LAD, steady or 

sustained hydrostatic pressure for 6 hours exhibit random orientation and do 

not predominantly align in the ± 10° of flow direction.  

 

 

 

 

# # 
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Figure 7.14aii  Histogram showing orientation of cells exposed to steady, 

LAD pulsatile flows and sustained hydrostatic pressure for 12hrs. n = 3. SEM 

of 3 images. Statistical significance of cells aligned in ± 10° of flow direction; 

# p < 0.05 vs. static and ## p < 0.05: steady vs. LAD. 

From the above data it is observed that cells at inlet and outlet regions 

subjected to steady flow of 12 hours show more pronounced alignment in 

± 10° of flow direction compared to that of LAD flow and hydrostatic  
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pressure for the same time duration. On the other hand, cells within the 

ridges regions do not show any strong alignment to flow ± 10° direction 

regardless of the type of flow or pressure subjected to them.  

  

 

 

 

Figure 7.14aiii  Histogram showing orientation of cells exposed to steady, 

LAD pulsatile flows and sustained hydrostatic pressure for 24hrs. n = 3. SEM 

of 3 images. Statistical significance of cells aligned in ± 10° of flow direction; 
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# p < 0.05 vs. static and ## p < 0.05: steady vs. LAD. 

Figure 7.14aiii shows that there is statistically significant difference between 

the number of cells aligning within ± 10° flow direction at inlet and outlet 

regions when comparing steady flow, LAD pulsatile flow and hydrostatic 

pressure after 24 hours. However, although there are evidently slight 

differences in the cell proportion aligned within ± 10° flow direction when 

comparing steady flow with LAD flow at the inlet and outlet regions, these 

differences are not statistically significant. On the other hand, cells within the 

inter-ridges regions generally do not show strong alignment within ± 10° of 

flow direction regardless of the type of stimulus subjected to cells. Also, there 

are generally no statistically significant difference between the cells aligned 

within the 10 degrees at the inter-ridges region with the exception of steady 

flow stimulated cells within ridges 3 and 4 which are statistically significant 

when compared to that of the LAD flow stimulated cells. 

 

The next data presented shows comparative analysis of aspect ratio of cells 

when subjected to steady and LAD flow waveform 
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Figure 7.14b  Line graph showing average aspect ratio of cells exposed to 

steady and LAD pulsatile flows for 6hrs, 12hrs and 24hrs. n = 3. SEM of 3 

images. ## p < 0.05 vs. LAD flow.  

It is observed from figure 7.14b that cells to either steady flow or LAD 

pulsatile flow exhibit a time dependent decrease of cell aspect ratio. These 

decrease in cell aspect ratio are however very minimal and there is no 

statistical significance of cell aspect ratio with respect to the type of flow 

stimulus the cells were subjected to.  

 

Comparative analysis of the average cell sizes when HUVECs were 

subjected to either steady or LAD pulsatile flow is presented below. 
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Figure 7.14c  Line graph showing average cell size of cells exposed to 

steady and LAD pulsatile flows for 6hrs, 12hrs and 24hrs. n = 3. SEM of 3 

images. ## p < 0.05 vs. LAD flow.  

From figure 7.14c, a general trend of increase in cell size with respect to time 

when cells are subjected to either steady or LAD flow is observed. It is 

however noted that cells within the inter-ridges region and subjected to 

steady flow show greater increase in cell size than when subjected to LAD 

pulsatile flow. 
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Figure 7.14d  Line graph showing average number of cells within a local area 

of 0.18mm2 after exposure to steady, LAD pulsatile flows and sustained 

hydrostatic pressure for 6hrs, 12hrs and 24hrs. n = 3. SEM of 3 images. # p < 

0.05 vs. static and ## p < 0.05: steady vs. LAD. 
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As shown in figure 7.14d, HUVECs were subjected to either steady, LAD 

pulsatile flow or sustained hydrostatic pressure. From the graphs presented 

in this figure, it is clearly seen that cells subjected to sustained hydrostatic 

pressure show greater increase in cell density with respect to time. Cells 

subjected to steady flow show a relatively slow increase in cell density within 

the inter-ridges regions and decrease in cell density at the inlet and outlet 

regions. On the other hand, cell subjected to LAD pulsatile flow tend to 

decrease in cell density at the inter-ridges regions and also inlet and outlet 

regions.  More so, comparative analysis of the effect of sustained hydrostatic 

pressure, steady flow and LAD pulsatile flow on the local density of cell was 

showed to be statistically significant.  
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Figure 7.14e  Line graph showing average nuclei length size after exposure 

to steady, LAD pulsatile flows and sustained hydrostatic pressure for 6hrs, 

12hrs and 24hrs. n = 3. # p < 0.05 vs. static and ## p < 0.05: steady vs. LAD.  

The average nuclei size of cells subjected to sustained hydrostatic pressure 

tend to decrease with time whilst that of cells subjected to either LAD 

pulsatile flow or steady flow increase with time as shown in figure 7.14e. It 

however suggested that steady flow does have stronger effect on the nuclei 

size of cells compared to LAD pulsatile flow. This suggestion is made based 

on the results presented in figure 7.14e which showed greater increase in 

nuclei size of cells subjected to steady flow to cells subjected to LAD 

pulsatile flow. 

The average distances between nucleus centroid and cell centroid when 

cells are subjected to either steady or LAD pulsatile flow is analysed and 

results presented below. This analysis was grouped under cells that were 

subjected to steady uniform shear stress, steady non-uniform shear stress, 

LAD shear stress and LAD non-uniform shear stress.  

Classification of non-uniform shear stress was based on the shear stress 

dynamics within ridge regions. As reported in chapter 6, WSS dynamics at 

ridge regions are marked by WSS spikes on ridges and WSS valleys 

between the ridges and thus WSS at ridges region is non-uniform. Hence 

steady shear stress and LAD pulsatile shear stress at these regions are 
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categorised as steady non-uniform shear stress and LAD non-uniform shear 

stress respectively. Also, it is reported in chapter 6, that WSS at inlet and 

outlet regions of the experimental designed model were relatively uniform. 

So, steady stress and LAD stress at these regions are also categorised as 

steady uniform shear stress and LAD uniform shear stress respectively.  

 

 

Figure 7.14f  Line graph showing average distance between centroid of 

nucleus and cell centroid after cells exposed to steady and LAD pulsatile 

flows for 6hrs, 12hrs and 24hrs. n = 3. Error bars show SEM of 6 images. # p 

< 0.05: steady uniform stress vs. steady non-uniform stress and ## p < 0.05: 

LAD uniform stress vs. LAD non-uniform stress. 

A negative distance is defined as the centroid of the nucleus displaced 

downstream to the centroid of the entire cell. As shown in figure 7.14f, it is 

observed that steady uniform stress and LAD pulsatile uniform stress both 

have greater effect on nuclei centroid downstream displacement over 

increased timescale compared to steady and LAD pulsatile non-uniform 

shear stresses. Comparatively, steady uniform stress showed stronger effect 

on the nuclei centroid downstream displacement when compared to that of 

LAD uniform stress although not statistically significant.  
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7.7      DISCUSSION TO RESULT ANALYSIS III 

 

Biomechanical cues arising in the cellular milieu have generally been 

hypothesised to play major role in regulating EC function. Thus physical 

forces induced on ECs could lead to change in cell morphology and 

phenotype [61, 89, 289, 412-415]. It has been postulated that changes in cell 

shape does influence gene expression and cell cycle progression, albeit the 

precise mechanism and/or mechanisms which brings about this 

phenomenon remains unclear. It is however assumed that these cellular 

effects due to mechanical forces are mediated at least partly by changes in 

the actin cytoskeleton and nuclear structure of the cell [411, 412, 416]. 

Hence, it is imperative to understand how mechanical stimuli could bring 

about alterations in the cytoskeleton, nucleus and the cell in general. 

Understanding of how mechanical stimuli influence cell behaviour could be 

indicative to having better insight into the predictors of some arterial diseases 

such as restenosis.  It is well documented from in vitro and in vivo 

experiments that ECs elongate together with rearrangement of the 

cytoskeleton with increasing shear stress and align parallel to the dominant 

flow direction [180].  ECs are therefore considered as high resolution 

localised flow sensors and their morphology used to classically describe the 

shear stress patterns that may be present. Indeed whilst it is appreciated the 

knowledge gained in correlating shear stress to cell morphology and thus 

helped predict arterial disease prone sites, it is important that the nuclear 

form is not overlooked. This is because it has been realised that the nucleus 

of the cell plays an important role in the regulation of protein-gene 

expression and transcriptional activity [417]. In fact the nucleus itself has 

been suggested to be a mechanosensor as it elongates and aligns in the 

direction of imposed flow [418]. More so, some studies have proposed the 

nuclei to modulate cellular phenotype and have a stronger correlation to 

diseased states [419, 420]. For example, a study into the nuclear  
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organisation of breast cancer cells after being exposed to a level of shear 

stress found a striking correlation between cancer cells phenotype and 

nucleus morphology compared to that of cellular morphology and the 

cancerous cells [419].  It is therefore suggested that greater strides could be 

made in the quest of establishing mechanisms involved in the onset and/or 

progression of restenosis and subsequently better ISR treatment strategies if 

the role of the nucleus in the cell function is thoroughly examined. 

ECs in arteries are known not to be only exposed to shear stress due to 

blood flow dynamics but also hydrostatic pressure as a result of blood 

pressure. These stresses could therefore have independent or contributory 

effect on cells response. As shown in the results section of this chapter, ECs 

exposed only to hydrostatic pressure and combined stresses thus fluid stress 

and hydrostatic pressure resulted in marked cellular morphological 

differences. It is these differences and the effects of the physical stimuli on 

the cell state which would be elaborated in this chapter.  

 

7.7.1     HUVECs EXPOSED TO COMBINED PRESSURE AND SHEAR 

STRESS 

 

HUVECs exposed to combined stresses; thus steady WSSs and hydrostatic 

pressure of 100 𝑚𝑚𝐻𝑔  and also LAD pulsatile shear stress and hydrostatic 

pressure of 120/80 𝑚𝑚𝐻𝑔, in the cell-structure interaction experimental 

model showed ECs distinctive response to different type of stresses. 

HUVECs were observed to elongate and align predominately in the flow 

direction at the inlet and outlet regions of the model in a time dependent 

manner as shown in figures 7.12ai, 7.12aii, 7.12b, 7.13ai, 7.13aii and 7.13b. 

WSSs at these regions were proposed to be relatively uniform with an 

average stress magnitude of 2 𝑃𝑎 as indicated by the CFD simulations in  
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chapter 6. These observations are analogous to the findings reported in 

several in vitro and in vivo studies that ECs subjected to unidirectional WSS 

elongate and align in the direction of the imposed flow [61, 180, 304, 395, 

421, 422]. Analysis of the number of ECs aligned within ± 10° and ± 20° to 

the impinged flow directions over increasing timescales at the inlet and outlet 

regions indicated statistical significant differences. This statistical significant 

difference of time-dependent ECs alignment to flow is shown in figure 7.12ai, 

7.12aii, 7.13ai and 7.13aii. Nonetheless, although there were increased 

number of ECs aligned within ± 10° and ± 20° of flow direction at 24 hours 

than at 12 hours under exact same flow conditions, this difference in number 

of ECs alignment between the two timescales was not statistically significant. 

In general steady flow was observed to induce more ECs to align within the 

± 10° of the flow directions when compared to that of LAD pulsatile flow 

conditions as shown in figures 7.14aii and 7.14aiii. However the difference in 

number of ECs aligned to flow direction between the two flow conditions was 

generally not statistically significant. It is noted nonetheless that ECs 

alignment to flow direction at the outlet region at 12 hours between the 

steady and LAD pulsatile flow conditions was statistically significant whereas 

the inlet region of the same experiment showed otherwise. Plausible 

explanation for this observation could be that local cell density at the 

selected outlet region might have been slightly different from that of the inlet 

region. Hence the type of fluid stress subjected to the cells could have a 

profound effect on the number of cells aligned to the imposed flow direction. 

This variation in local cell density may be as a result of normal experimental 

procedural inconsistencies. However studies have demonstrated that steady, 

non-reversing pulsatile and reversing pulsatile flow conditions all have 

different effects on ECs morphological response [318, 423]. Steady flow 

conditions have been reported to influence strongly cell morphological 

response whilst that of reverse pulsatile flow conditions triggered weaker 

morphological response [318]. So as the experimental LAD pulsatile flow  
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condition included a small reversing component, it is possible that the 

associated stresses due to the LAD flow type such as OSIs, and also slight 

increase of SWSSG at the outlet region as shown in chapter 6 could cause 

weaker alignment of cells to the flow direction and thus bring about the 

statistical difference recorded. Further examination into this occurrence is 

therefore needed to clarify clearly if the observed outcome was more as a 

result of experimental inconsistencies or mechanical stress related. As 

explained earlier, different type of fluid stress have different effects on cells 

morphological response and this statement is justified as steady flow is 

shown to induce greatly an increase in cell aspect ratio when compared to 

that of the LAD pulsatile flow at the inlet and outlet regions.  

Conversely in the regions where flow was “disturbed” thus regions marked 

with flow recirculation, flow separations and flow recovery, HUVECs were by 

qualitative inspection seen to be somewhat of a polygonal shaped as shown 

in figures 7.6a and 7.6b. This disturbed flow phenomenon occurred at the 

inter-ridges regions and from the CFD analysis discussed in chapter 6, these 

regions were characterised with SWSSG, OSIs and both low (~ -2.5 Pa) and 

high (~ 2.5 Pa) WSSs. This observation presents the evidence that the 

application of disturbed stresses to ECs in vitro have distinct influence on 

ECs shape compared to the effects of uniform stresses on ECs shape. This 

said evidence is supported by results from other similar investigations [319, 

424]. Comparative quantitative analysis on the effects of “disturbed steady 

shear stress” and “disturbed LAD pulsatile shear stress” on ECs average 

aspect ratio showed similar results as illustrated in figure 7.14b.  However, 

this quantitative data tends to obviate the proposed hypothesis that different 

types of fluid stress (i.e. steady and pulsatile) do have different effects on 

ECs. To ascertain if this observation holds true for other morphological 

parameters of the ECs under the two stipulated disturbed stresses, further 

quantitative examinations of cell morphology was performed. Investigation  
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into the effect of disturbed stresses on cell size length revealed that steady 

disturbed shear stress stimulated greater increase in cell size than that of 

disturbed LAD pulsatile stress as shown in figure 7.14c.  Furthermore, there 

were recorded statistical significant differences in the cell sizes between ECs 

exposed to the two disturbed stresses at timescales of 12 hours and 24 

hours. Qualitative evidence of difference in cell size is shown in figure 7.15. 

A.               B.  

Figure 7.15  HUVECs exposed to disturbed steady shear (A) and disturbed 

LAD pulsatile shear (B) for 12 hours. 

This additional data helps clarify the inference made about the similar 

morphological disposition (i.e. aspect ratio) of HUVECs exposed to both 

disturbed steady and LAD pulsatile stresses. It is therefore suggested that 

although ECs exposed to different disturbed stresses may have the same 

average aspect ratio, the size of the cells could differ greatly, hence the said 

hypothesis stills holds true.  

Additionally, cells exposed to disturbed flow regimens were noticed to be 

more randomly aligned to the ± 10°  flow directions irrespective to the stress 

exposure duration as shown in figures 7.12ai and 7.13ai. However there 

were observed slight major alignment of cells to the ± 20° flow directions 

although this observation was not consistent across all the disturbed flow 

locations as also shown in figures 7.12aii and 7.13aii. Estrada et al. [425] in 

a study investigating ECs morphological response to disturbed flow 

conditions also reported similar observations. Saksamoto et al. [185] also  
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reported a weaker alignment of ECs to imposed flow direction and attributed 

this occurrence to high SWSSG present. Thus from our CFD simulations 

which showed high SWSSGs at the disturbed flow regions, this conclusion 

reached by Saksamoto et al. [185] tends to support our experimental 

observation.  

Regardless of the type of combined fluid stress and pressure exposed to the 

cells, a general observation of the cells being able to maintain their 

monolayer integrity was made. Thus the effect of the hydrostatic pressure of 

cells to cause the cells to form multilayer structure is void. It is therefore 

suggested that in the presence of hydrostatic force and shear stress, shear 

stress becomes the overriding force that tends influence the morphology of 

the ECs.  

As previously discussed, hydrostatic pressure is reported to stimulate 

increase in ECs proliferation whereas studies have demonstrated uniform 

shear stress inhibits ECs proliferation [423, 426, 427]. On the contrary, 

disturbed shear stresses which may give rise to shear gradients, more 

specifically temporal shear gradient have been attributed to enhance ECs 

proliferation [24, 428]. White et al. [24] concluded from their investigations on 

the effect of temporal gradient in shear and spatial gradient in shear on EC 

proliferation that temporal shear gradient induced ECs proliferation. Spatial 

shear stress gradient on the other hand was suggested to affects ECs 

proliferation similarly to that of a uniform shear stress. If increase in local cell 

density is implied to as increase in ECs proliferation, then these hypotheses 

are suggested to be in accord with the results achieved from our 

experimental studies. This is because it has been demonstrated clearly that 

ECs subjected to predominant hydrostatic pressure of 100 𝑚𝑚𝐻𝑔 enhanced 

increase of local cell density per unit area. The local cell density of HUVECs 

exposed to steady flow where observed to decrease even at regions where 

flow was classified disturbed. Since steady flow has no transient  
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characteristics, the effect of TWSSG on HUVECs may be very minimal or 

non-existent. This hence explains why there was no increase in local cell 

density at the disturbed flow region under steady flow simulation. On the 

other hand, the local cell density of cells exposed to LAD pulsatile flow 

decreased at regions where shear stress was classified uniform (inlet and 

outlet regions) and increased at disturbed stress regions (inter-ridges 

regions). It is reasoned that due to the transient nature of the LAD flow 

waveform, disturbed LAD flow brings into effect strongly the influence of 

TWSSG on HUVECs present and thus elucidate the observation made.  

It is also important to take into account the effect of the different type of fluid 

stress on the nucleus morphology. The shape of EC nuclei is well defined as 

an ellipse and aligns in the direction of an imposed uniform flow as reported 

by Flaherty et al. [429] The nucleus is also reported to elongate upon 

exposure to shear stress. In the analysis of the nucleus morphology after 

HUVECs had been exposed to both LAD pulsatile and steady shear stress, it 

is observed that the latter had a dominant time dependent effect on the 

nuclei length size. Interestingly, this effect on nuclei size was generally not 

statistically significant when compared to that of the LAD pulsatile stress as 

shown in figure 7.14e. If the increased in nuclei length size is thus inferred to 

as elongation of the nuclei since the shape of nuclei is generally well defined, 

then it could be suggested that cells exposed to both flow conditions (i.e. 

steady and LAD pulsatile) caused elongation of the nucleus. This deduction 

of nuclei elongation thus tends to support Flaherty et al. [429] experimental 

findings on nuclei elongation due to shear stress. Bond et al. [318] in a study 

of endothelial nuclei elongation around mouse aortic branches reported that 

steady flow had more dominant effect on ECs nuclei elongation than the 

corresponding reverse pulsatile flow. This conclusion by Bond et al. [318] 

therefore supports our evidence of HUVECs nuclei elongation under the 

stipulated flow conditions. Conversely, HUVECs exposed to sustained  
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hydrostatic pressure showed a general time-dependent decrease of nucleus 

length size.  

In a study conducted by Tkachenko et al. [418] into the sensory role played 

by the nucleus of ECs, a hypothesis that ECs upon sensing the direction of 

shear stress through hydrodynamic drag induce the nucleus to polarise 

downstream of the cell was proposed. To confirm this hypothesis in our 

experiments, an investigation into the effect of steady and LAD pulsatile 

flows on the downstream displacement of the nuclei within HUVECs was 

conducted. In the study by Tkachenko et al. [418], cells were only subjected 

to uniform steady shear flow, thus results of nuclei displacement within cells 

was that of cells under steady flow conditions. In our experimental model 

however, cells were exposed to both physiological relevant shear (LAD 

pulsatile WSS) and steady WSS. Also, due to the design of the experimental 

model there were regions where ECs were exposed to uniform shear stress 

(inlet and outlet regions) and other regions where ECs were exposed to 

disturbed shear stress (ridge regions).  The localisation of the nuclei within 

HUVECs when exposed to uniform and disturbed LAD pulsatile WSS and 

also uniform and disturbed steady WSS are shown in figures 7.16 and 7.17 

respectively.  

 

Figure 7.16  Line graph showing average distance between nucleus and cell  

## 
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centroids after exposure to stimuli for 6hrs, 12hrs and 24hrs. n = 3. Error 

bars show SEM of 6 images. # p < 0.05 vs. 6 hrs and ## p < 0.05: 12 hrs vs. 

24 hrs. 

Cells localised at the inlet and outlet regions are predicted to experience 

constant uniform shear stress across these regions. It is thus suggested that 

LAD shear stress at these areas is uniform and this suggestion is supported 

by the evidences presented in chapter 6. On the other hand WSS at the 

ridges region are marked by WSS peaks and valleys and because of the 

irregularities of WSSs at this region, LAD shear stress at this region is 

classified as non-uniform shear stress. From figure 7.16, it is observed that 

from time duration of 6 hours to 12 hours, cells being subjected to either LAD 

uniform shear stress or LAD non-uniform shear stress both show a similarly 

gradual negative displacement of nuclei centroid. However after 12 hours, 

there is a sharp increase in the negative displacement of nuclei centroid with 

cells that were subjected to LAD uniform shear stress whilst cells subjected 

to LAD non-uniform shear stress maintained a gradual increase in negative 

displacement of the cell nuclei centroid.   

 

Figure 7.17  Line graph showing average distance between nucleus and cell 

centroids after cells exposed to stimuli for 6hrs, 12hrs and 24hrs. n = 3. SEM 

of 6 images. # p < 0.05 vs. 6 hrs and ## p < 0.05: 12 hrs vs. 24 hrs. 
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The nuclei centroid displacement of cells when subjected to steady uniform 

shear stress and steady non-uniform shear stress show similar behaviour to 

that observed for the LAD pulsatile shear stresses in figure 7.16. 

A negative distance is defined as the centroid of the nucleus displaced 

downstream to the centroid of the entire cell. As could be seen from figures 

7.16 and 7.17, both flow conditions induced a downstream displacement of 

the nucleus within HUVECs, thus our findings support the hypothesis 

proposed by Tkachenko et al. [418].  It is however noted that the uniform 

shear stress had greater effect of the nuclei displacement when compared to 

that of the disturbed shear stress. Also there were time dependent statistical 

significant differences of the nuclei displacement when subjected to uniform 

shear stresses. Of interest, whilst disturbed steady shear brought about a 

time dependant statistical significant differences in nucleus displacements, 

disturbed LAD pulsatile shear on the other hand showed no statistical 

significant difference. Additionally, comparative analysis of the nuclei 

localisation between HUVECs exposed to steady and LAD pulsatile flow 

conditions revealed steady flow conditions to induce more the downstream 

localisation of the nucleus. This steady flow effect on the nucleus 

displacement was however not statistically significant when compared to that 

under LAD pulsatile flow condition as shown in figure 7.14f. Nonetheless, 

these experimental evidences reiterate the earlier stated hypothesis that 

different fluid stresses have different effects on endothelial cellular response.  

Another important observation made about the response of HUVECs 

exposed to the stated combined mechanical stresses within the experimental 

model was the presence of HUVECs on the fabricated micro-structure ridges 

at 12 hours and 24 hours. During the experimental seeding procedure, the 

ridges were covered with a sheath to prevent HUVECs from being seeded 

onto the ridges before being subjected to fluid stresses and pressure. Upon 

exposure of the stresses on the cells for a duration of 6 hours there were no  
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observed cells on the ridges, however at time points 12 hours and 24 hours, 

there were cell present on the ridges as shown in figures 7.6a and 7.6b. 

Several possible explanations to this phenomenon could include that some 

cells might have been seeded on the ridges during the seeding process due 

to experimental procedure negligence. This explanation although reasonable 

is considered not probable as the ridge sheath covered fully the ridges and 

was taken off until the cells had fully bedded down. Additionally this 

explanation does not tend to justify the non-existence of HUVECs on the 

ridges after exposure to the stated stimuli for 6 hours.  So, another plausible 

explanation to this phenomenon could be that the mechanical stresses 

subjected to HUVECs induced cells to “migrate” and hence led to the cells 

covering the ridges. This latter explanation is deemed more appropriate for 

the observed occurrence. In a study by Ostrowski et al. [430] on ECs 

migration, it was reported that gradient in shear due to fluid flow stimulated 

ECs to migrate against the impinged flow direction and concentrate in region 

of high WSS. As shown in our CFD simulation in chapter 6, high WSSs (> 10 

Pa) were recorded on top of the ridges and also high SWSSGs were 

recorded at the inter-ridges region. So in relating to Ostrowski et al. [430] 

explanation on ECs migration, it is proposed that HUVECs within the inter- 

ridges region upon sensing gradient in shear stress migrated towards the 

region of increased WSSs (i.e. the top of the ridge). 

 An in vivo study by Sprague et al. [431] into the impact of parallel micro-

engineered stent grooves on ECs migration and function produced results 

that further supported our experimental observations. Sprague et al. [431], 

reported that parallel microgrooves stent within coronary artery of a swine 

induced cell migration and positive cell function which consequently inhibited 

the NI formation.   
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7.8      SUMMARY 

 

From the discussions presented in this chapter, it can be concluded that the 

type of fluid stimuli or hydrostatic pressure subjected to cells show marked 

difference in the morphological response of cell. Cells subjected to either 

LAD pulsatile flow or steady flow tend to align more to the direction of flow 

with increase time periods whilst cells subjected to only hydrostatic 

pressures show random orientation. However, cells subjected to unstable 

flow regimes which are characterised by WSS peaks and valleys tend to 

show random alignment to flow direction. Additionally whilst exposure of cells 

to only hydrostatic pressure caused strong increase in local cell density, the 

effect of steady and LAD pulsatile flow on cell density was opposite. Thus, 

cell density decreased when cells were exposed to steady flow. Cells 

exposed LAD pulsatile flow however showed a gentle increase in cell density 

within the ridge regions whilst at the inlet and outlet regions cell density 

decreased. It is also noticed that cells within the inter-ridges region and 

exposed to steady flow showed increased average cell size when compared 

to that of cells exposed to LAD pulsatile flow.   

 

7.4.3     LIMITATIONS 

 

It is notable from the results produced of HUVECs exposed to independent 

and combined stresses that the designed flow bioreactor system is capable 

of supporting healthy cultured ECs for experimental investigations for at least 

24 hours. Qualitative and quantitative analyses of the HUVECs response 

when subjected to defined mechanical environment are in parallel agreement 

to similar studies reported by other researchers. Thus these scientific studies 

have been the benchmark for which our experimental results have been  
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compared and validated. Additionally, results observed in the designed cell-

structure interaction experimental model demonstrates the feasibility of 

studying HUVECs response to mechanical stimuli that may be present within 

stented arteries.  

Despite experimental results of cells response to a given stimuli which has 

been shown to be analogous to that observed in vivo, one should 

nonetheless be very careful when interpreting the results achieved for clinical 

relevance. This is because the timescales for which the cells experiments 

were conducted, although sufficiently long to induce significant cell 

morphological response, was relatively short compared to the timescales for 

which cells may be experiencing same stimuli in vivo. It is known that ECs in 

stented arteries characteristically experience mechanical stimuli relevant to 

restenosis and/or ISR for timescales of many months or even years [432, 

433]; a system which cannot practically be repeated in vitro. Thus practical 

experimental considerations dictate the duration of in vitro experiments 

performed and that certain cellular responses occurring at later stages might 

have been overlooked. 

The common use of HUVECs in the investigation of cells response to 

mechanical stresses have been well documented and with results suggested 

to represent in vivo arterial occurrences [424, 434-436]. However, it must be 

made clear that HUVECs are not arterial cell type and thus the phenotype of 

cell could influence differently the cells response to stimuli. It should 

therefore be considered that results achieved from the experiments may not 

be an entirely accurate indicator of arterial cells response to mechanical 

stimuli. Albuquerque et al. [437] reported a weak correlation between 

HUVECs response to steady laminar shear and human coronary arterial 

endothelial cells response to the same shear. It is therefore of importance 

that future work would involve the use of arterial ECs to compare and 

validate results documented.       
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CHAPTER  8 

 

EXPERIMENTAL ANALYSIS OF ECs MOLECULAR 

RESPONSE TO PHYSIOLOGICAL RELEVANT FLUID 

DYNAMICS IN STENTED MODEL 

 

8.1        INTRODUCTION 

 

As previously discussed in chapter 7, the choice of stress applied to cells 

could influence significantly the cells morphology. Moreover, the ability of 

cells to discriminate between flow types is dependent on the shear-induced 

molecular mechanochemical signal transduction [415]. The complex interplay 

and processes involved in the shear induced signalling molecules tend to 

alter transcription factors which modulate endothelial gene expression and 

thus results in differential cell function [438]. Amongst the transcriptional 

factors being altered is the nuclear factor kappa B (NF-𝑘B). NF-𝑘B is thought 

to play a very important role in controlling inflammation, cell adhesion 

molecules and proliferation and if activated becomes the bane of the arterial 

system [439]. A mechanobiological modelling of restenosis in stented artery 

by Boyle et al. [389] suggested that inflammation accounted for restenosis in 

stented artery. Studies have demonstrated that 𝑝50/𝑝65 NF-𝑘B heterodimer 

lies dormant in the cell cytoplasm complexed to 𝐼𝑘B, its inhibitory element 

[440]. Upon stimulation of the cells by cytokines or low/disturbed shear 

stress, NF-𝑘B tend to dissociates from 𝐼𝑘B and translocates into the nucleus, 

thus becomes active [100, 440, 441]. The activation of NF-𝑘B therefore 

promotes inflammation and other adverse gene transcription which 
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subsequently evokes arterial disease. It should however be noted that not all 

genes modulated by NF-𝑘B is deleterious to the arterial system [442]. One of 

the many cytokines regulated by NF-𝑘B is the tumour necrosis factor-alpha 

(tnf-𝛼). Tnf- 𝛼 is considered a critical mediator of inflammatory process that 

occurs during atherosclerosis and known to promote the expression of 

adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1), 

vascular cell adhesion molecule-1 (VCAM-1) and endothelial selectin (E-

selectin) [443].  Although studies have reported inflammation to play critical 

roles in atherosclerosis and restenosis development, it is still necessary to 

clarify that inflammatory pathway leading to each stated disease could be 

different. Hence investigations into restenosis based on atherosclerosis and 

the role played by inflammation in the development of atherosclerosis could 

be entirely flawed.  It is therefore suggested that the role of inflammation in 

restenosis should be explicitly investigated. In addition to cytokines inducing 

inflammatory genes and expression of adhesion molecules, fluid shear stress 

has also been reported to modulate ECs adhesion molecules [444]. 

Nonetheless, as it is suspected that inflammation may play a pivotal role in 

linking arterial injury to the eventual consequence of restenosis, it is 

proposed that key inflammatory molecules be investigated. The main 

objective of this chapter is therefore to gain better understanding of how 

combined stresses thus fluid stress and hydrostatic pressure affect the 

expression of ICAM-1 and NF-𝑘B.    

 

8.2        METHOD 

 

Pre cell culture preparation and cell seeding process for this experiment was 

similar to that discussed in sections 7.2.2 and 7.2.3 respectively but with the 

difference that cells were seeded under low density (≈ 13,000 𝑐𝑒𝑙𝑙𝑠/𝑐𝑚2) 
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so as to attain confluency within 4 days. Cells were seeded under low 

confluence so as to allow cells enough time to regenerate new membrane 

proteins which may have been damaged when cells were initially trypsinized. 

Initial experiment performed with the now confluent cells involved stimulating 

the cells with the cell growth media containing human recombinant tumour 

necrosis factor alpha; tnf-𝛼 (Life Technologies, UK) of different 

concentrations; thus 100 𝑢𝑛𝑖𝑡𝑠/𝑚𝑙, 200 𝑢𝑛𝑖𝑡𝑠/𝑚𝑙 and 300 𝑢𝑛𝑖𝑡𝑠/𝑚𝑙 for 1 

hour and kept under static flow conditions in the incubator. This experiment 

was to determine the most appropriate tnf-𝛼 dose level to cause 

translocation of 𝑝65 subunit of NF-𝑘B from the cytoplasm of HUVECs to the 

nucleus. A positive control did not involve any stimulation of the cells; 

however the cells were kept under static flow conditions in the incubator for 

equal duration. After the cells had been stimulated with tnf-𝛼 for an hour, the 

cells were then washed once in 20 𝑚𝑙 of HBSS and then twice with PBS 

before fixing them in 20 𝑚𝑙 of 3.7% formaldehyde for 20 minutes. The 

unstimulated cells were also fixed in the exact manner as the stimulated 

cells. Both stimulated and unstimulated cells were then stained for the 

location of NF-𝑘B. 

Subsequent experiments involved the investigation of the effect of the 

stipulated combined stresses on NF-𝑘B and ICAM-1 expressions. In the 

experiment to investigate NF-𝑘B expression due to stress conditions, this 

experiment involved similar flow setup as discussed in section 7.2.4 but this 

time the confluent cells were exposed to combined flow and pressure 

conditions for 1 hour. Investigation of ICAM-1 expression also involved same 

experimental flow setup as illustrated in 7.2.4 at different timescales of 6 

hours, 12 hours and 24 hours. Negative controls of the ICAM-1 investigation 

involved stimulating confluent HUVECs for 6 hours, 12 hours and 24 hours 

respectively with cell growth media containing tnf-𝛼 at a concentration of   
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200 𝑢𝑛𝑖𝑡𝑠/𝑚𝑙 under static culture. On the contrary, positive controls of this 

investigation involved HUVECs not being stimulated under static culture for 

also 6 hours, 12 hours and 24 hours. 

 

8.2.1     CELLS STAINING  

 

8.2.1.1  STAINING FOR NF-kB  

 

After the cells had been fixed, they were washed three times with PBS for 5 

minutes each. After the third wash, the PBS was aspirated and then the cells 

permeabilised by adding 1% Triton X-100 for 3 minutes. The cells were 

washed again three times with PBS for 5 minutes each after being 

permeabilised. After this step, 1% bovine serum albumin (BSA) in PBS 

solution was added to the cells for 1 hour to block nonspecific binding. A 

primary antibody solution containing 40𝑢𝑙 of a 200𝑢𝑔/𝑚𝑙 concentration anti-

NF-𝑘B/𝑝65 goat polyclonal IgG (Santa Cruz Biotechnology, Santa Cruz) in 

4 𝑚𝑙 of 1% BSA-PBS was pipetted onto the cells and left for 1 hour at room 

temperature. After an hour, the primary antibody solution was aspirated from 

the cells and the cells washed three times in PBS with each wash lasting for 

5 minutes. The cells were then incubated with a secondary antibody solution 

made of 10𝑢𝑙 of a 1.5𝑚𝑔/𝑚𝑙 concentration biotinylated anti-goat IgG 

(Vector Laboratories, UK) in 10 𝑚𝑙 of 1% BSA-PBS for 1 hour at room 

temperature. The cells were then washed three times with PBS again after 

the 1 hour had elapsed and then stained with a fluorophore solution 

containing 40𝑢𝑙 of a 1𝑚𝑔/𝑚𝑙 concentration fluorescein streptavidin (Vector 

Laboratories, UK) in 4 𝑚𝑙 of 1% BSA-PBS for 30 minutes at room 

temperature. Then after, the cells were washed twice with PBS before being  
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stained with the DAPI solution for 10 minutes. The cells were for the final 

time washed with PBS after being stained with DAPI and visualised using 

confocal microscopy. The fluorophore stain for the NF-𝑘B was able to be 

seen using the same confocal settings used with the FITC conjugated 

Phalloidin.  

 

8.2.1.2  STAINING FOR ICAM-1  

   

HUVECs were stained for ICAM-1 expression after stimulations with the 

stipulated combined stresses and also tnf-𝛼. After having initially fixed the 

stimulated cells, the cells were then washed three times with PBS and each 

wash lasted for 5 minutes. After the third wash, the PBS was aspirated and 

the cells then permeabilised by adding 1% Triton X-100 for 3 minutes. After 

the 3 minutes had elapsed, the cells were washed again three times with 

PBS. After the third wash, 1% bovine serum albumin (BSA) in PBS solution 

was added to the cells for 1 hour to block nonspecific binding. A primary 

antibody solution containing 20𝑢𝑙 of a 0.5𝑚𝑔/𝑚𝑙 concentration purified anti-

human CD54 ICAM-1 (Affymetrix eBioscience, UK) in 10 𝑚𝑙 of 1% BSA-

PBS was pipetted onto the cells and left overnight in a 4℃ fridge. After the 

cells have been left in the fridge overnight, the primary antibody solution was 

then aspirated from the cells. The cells were again washed three times with 

PBS and each wash lasted for 5 minutes. The cells were later incubated with 

a secondary antibody solution made of 20𝑢𝑙 of goat anti-mouse IgG, Alexa 

fluor 633 (Life Technologies, UK) in 20 𝑚𝑙 of 1% BSA-PBS for 1 hour at 

room temperature. The cells were then washed three times and the 

cytoskeleton and nuclei stained with FITC conjugated Phalloidin (Sigma-

Aldrich, UK) and DAPI solution respectively. The cells were then washed for 

the final time with PBS and after visualised using confocal microscopy. The  
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fluorophore stain for ICAM-1 was able to be seen using 632𝑛𝑚 excitation 

laser with an emission filter of 647𝑛𝑚 setting on the confocal microscopy. 

8.3        RESULTS 

 

Images of all stained cells taken were at the centre plane of the stamped 

glass slides. Additionally all images were taken with a x10 objective lens of 

the confocal microscopy and a standard scale bar of 200 𝑢𝑚 was set on the 

images. 

 

8.3.1     CELLS STAINED FOR NF-kB    

 

Figure 8.1  Image showing localisation of NF-kB after static culture 

simulation of human recombinant Tnf-𝛼 at different concentrations for 1 hour. 

Scale bar (0 – 6) shows activation level of NF-kB in nuclei. n = 1. 
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As seen in figure 8.1, when NF-kB is inactive, the nucleus form within the cell 

and the cytoplasm is clearly identified and defined. However when NF-kB is 

active; the structure of the cytoplasm becomes less defined. 

 

 

 

Figure 8.2  Image showing localisation of NF-kB in HUVECs after stimulation 

for 1 hour. Static culture stimulation; positive Control (Top row), stimulation 

with human recombinant Tnf-𝛼 at concentration of 200 units/ml under static 

control (2nd row), combination of steady flow and hydrostatic pressure of 

100mmHg (3rd row), combination of LAD pulsatile flow and hydrostatic 

pressure of 120/80mmHg (4th row). Scale bar (0 – 6) shows activation level 

of NF-kB in nuclei. n = 1. As illustrated in figure 8.2, cells subjected to LAD 

and steady flow showed no activation of NF-kB. However, NF-kB was 

activated when cells were stimulated with Tnf-𝛼.  
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8.3.2     CELLS STAINED FOR ICAM-1  

                  

Figure 8.3  Images showing expression of ICAM-1 (Red stain) and stained 

nucleus (Blue) in HUVECs after stimulation for 6 hours. Static culture  
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stimulation; positive control (Top row), stimulation with human recombinant 

Tnf-𝛼 at concentration of 200 units/ml under static control (2nd Row), 

combination of steady flow and hydrostatic pressure of 100mmHg (3rd Row), 

combination of LAD pulsatile flow and hydrostatic pressure of 120/80mmHg 

(4th Row). Scale bar (0 – 6) shows expression level of ICAM-1 with 0 being 

least or no expression of ICAM-1 and 6 being fully expressed ICAM-1. n = 1. 

Stimulation of HUVECs with human recombinant Tnf-𝛼 for 6 hours caused 

an increased level of ICAM-1 expression as shown in figure 8.3. However 

it is noticed that HUVECs exposed to both steady and LAD pulsatile flow 

exhibited selective expression of ICAM-1 in HUVECs for same time duration.  
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Figure 8.4  Images showing expression of ICAM-1 (Red stain) and stained 

nucleus (Blue) in HUVECs after stimulation for 12 hours. Static culture 

stimulation; positive control (Top row), stimulation with human recombinant 
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Tnf-𝛼 at concentration of 200 units/ml under static control (2nd row), 

combination of steady flow and hydrostatic pressure of 100mmHg (3rd row), 

combination of LAD pulsatile flow and hydrostatic pressure of 120/80mmHg 

(4th row). Scale bar (0 – 6) shows expression level of ICAM-1 with 0 being 

the least or no expression of ICAM-1 and 6 being fully expressed ICAM-1. n 

= 1. 

Stimulation of HUVECs with human recombinant Tnf-𝛼 for 12 hours caused 

an increased level of ICAM-1 expression in HUVECs as shown in figure 

8.4. However it is noticed that HUVECs exposed to both steady and LAD 

pulsatile flow exhibited selective expression of ICAM-1 in HUVECs for same 

time duration.  
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Figure 8.5  Images showing expression of ICAM-1 (Red stain) and stained 

nucleus (Blue) in HUVECs after stimulation for 24 hours. Static culture  
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stimulation; positive control (Top row), stimulation with human recombinant 

Tnf-𝛼 at concentration of 200 units/ml under static control (2nd row), 

combination of steady flow and hydrostatic pressure of 100mmHg (3rd row), 

combination of LAD pulsatile flow and hydrostatic pressure of 120/80mmHg 

(4th row). Scale bar (0 – 6) shows expression level of ICAM-1 with 0 being 

the least or no expression of ICAM-1 and 6 being fully expressed ICAM-1. n 

= 1. 

Stimulation of HUVECs with human recombinant Tnf-𝛼 for 24 hours 

showed increased levels of ICAM-1 expression in HUVECs as 

illustrated in figure 8.5. However it is noticed that HUVECs exposed to both 

steady and LAD pulsatile flow exhibited selective expression of ICAM-1 in 

HUVECs for same time duration.  

 

8.4        DISCUSSION  

 

ECs in the arterial vasculature are constantly being subjected to different 

combined stresses such as shear stress, cyclic strain and hydrostatic 

pressure. The effect of combined shear stress and hydrostatic pressure at 

physiological levels on HUVECs has been discussed to elicit marked 

changes of cell morphology; thus change in nuclear and actin cytoskeleton 

forms. Several studies have proposed that ECs predisposed to disturbed or 

low shear were more prone to atherogenesis [90, 413]. In most cases of 

arterial disease development, inflammation has been suggested to play a 

notable mediating role of disease [389, 445]. Many studies have reported low 

and disturbed shear induced NF-𝑘B to cause adhesion molecules and 

inflammatory cytokines to be upregulated [441, 446-448]. However, there are 

few studies which have considered the role of combined hydrostatic pressure 

and shear stress on the regulation of NF-𝑘B and subsequently on the 
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expression of NF-𝑘B dependent adhesion molecules.  

In vitro experiment presented in this chapter shows the activation of NF-𝑘B 

and expression of ICAM-1 in HUVECs exposed to combined stresses (i.e. 

steady shear stress and hydrostatic pressure of 100 mmHg; and LAD 

pulsatile shear stress and hydrostatic pressure of 120/80 mmHg). Due to the 

design of the experimental model, fluid stresses were characterised by 

unidirectional mean shear stress of 2 𝑃𝑎 and disturbed shear stress of 

approximately −2 𝑃𝑎 to 2.5 𝑃𝑎. Activation of NF-𝑘B as previously discussed 

is marked by the translocation of the 𝑝65 subunit NF-𝑘B from the cytoplasm 

into the nucleus. The reason why HUVECs were stimulated for 1 hour in the 

investigation of NF-𝑘B activation and no longer was that studies have 

reported ECs subjected to high shear stress to exhibit a biphasic response of 

NF-𝑘B [449, 450]. Thus, stimulation of ECs to high shear stress causes an 

initial increase of NF-𝑘B expression level followed by a steady decrease to a 

level at which NF-𝑘B cannot be detected. Lan et al. [450] reported maximum 

activation of 𝑝65 subunit NF-𝑘B  at 1 hour of BAECs being subjected to only 

shear stress of 1.2 𝑃𝑎  and then a decrease in activation thereafter. Based 

on the conclusion reached by Lan et al. [450], it was considered appropriate 

that the investigation of NF-𝑘B activation in HUVECs when subjected to the 

stipulated stresses be for a duration of 1 hour. Qualitative analysis of 

HUVECs exposed to these combined stresses for 1 hour showed no 

activation of NF-𝑘B as the nuclei of HUVECs appeared “black”. However, 

HUVECs stimulated with tnf-𝛼 for the same duration showed full activation of 

NF-𝑘B as the nuclei this time appeared “green” as shown in figure 8.2. This 

observation made however conflicts with that reported by Lan et al. [450] and 

more so with Nagel et al. [446] report which suggested disturbed shear to 

promote NF-𝑘B activation.  Reason to these differences in results could be 

due to the added stress; thus the hydrostatic pressure in our experiment. 
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We can draw some parallels of results on the effect of combined stresses on 

HUVECs in the activation of NF-𝑘B presented here to that of Nakadate et al. 

[316] studies on the effect of combined hydrostatic pressure and shear stress 

on ECs expression of adhesion molecules. In the study by Nakadate et al. 

[316], it was reported that cells subjected to combined stresses induced 

different gene expression compared to the genes expressed by the cells 

subjected to only individual stress. The report further concluded that not only 

does the type of stress and/or combined stresses applied to the cells have 

an effect on the type of gene expressed but also the magnitude of these 

stresses also account for the difference in the gene expressed. It should be 

noted however that results presented are of a singular experiment and thus 

should only be considered as an indication of the possible response of cells 

exposed to a combination of shear stress and hydrostatic pressure on NF-𝑘B 

activation. Further experiments are therefore needed to validate results. 

HUVECs exposed to the stipulated combined stress conditions for ICAM-1 

expression showed sporadic expression ICAM-1 at 6 hour, 12 hours and 24 

hours whilst HUVECs stimulated with tnf- 𝛼 showed maximum ICAM-1 

expressions at the same timescales as shown figures 8.3 – 8.5. Due to the 

experimental model design, there were regions where HUVECs were 

exposed to uniform shear and other regions they were exposed to ‘disturbed’ 

shear. Quantification of the levels of ICAM-1 expression of HUVECs exposed 

to uniform steady shear and uniform LAD pulsatile shear are shown in figure 

8.6. Also the level of ICAM-1 expression of HUVECs exposed to disturbed 

steady shear and disturbed LAD pulsatile shear are shown in figure 8.7.  
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Figure 8.6 Line graph showing ICAM-1 expression level of HUVECs 

stimulated under stipulated combined stresses and Tnf-alpha. SEM = 3 

images. n = 1.  

As shown in figure 8.6, HUVECs stimulated with tnf-alpha show high 

expression levels of ICAM-1 when compared to HUVECs stimulated under 

LAD pulsatile and steady flow. However, the level of ICAM-1 expressed by 

cells stimulated with tnf-alpha is seen to decrease with time. On the other 

hand, there is a gentle increase in the expression levels of ICAM-1 when 

cells were exposed to either steady or LAD pulsatile uniform stress from time 

6 hours to 12 hours and then decreased from 12 hours to 24 hours. 

 

Figure 8.7 Line graph showing ICAM-1 expression level of HUVECs 

stimulated under stipulated combined stresses and Tnf-alpha. SEM = 3 

images. n = 1. 
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As shown in figure 8.7, HUVECs exposed to disturbed steady and LAD 

pulsatile shear stress exhibit a time dependent ICAM-1 expression. 

Therefore, there is an increase in ICAM-1 expression of cells subjected to 

disturbed steady and LAD pulsatile shear stress from 6 to 12 hours and then 

a decrease in the level of ICAM-1 expression from 12 to 24 hours. On the 

other hand, HUVECs stimulated by tnf-alpha do exhibit generally a time 

dependent decrease of ICAM-1 expression levels. 

 

Quantitative analysis of ICAM-1 expression levels of HUVECs exposed to 

combined stress (i.e. steady shear stress and hydrostatic pressure of 100 

mmHg; and LAD pulsatile shear stress and hydrostatic pressure of 120/80 

mmHg) was performed by using the image toolbox in ImageJ to identify and 

count cells with ICAM-1 molecules stained as red. Whilst it is assumed that 

identification and count of ICAM-1 cells with ImageJ were accurate, it should 

be noted that form of analysis is operator dependent and therefore it is to be 

expected that results may be variable between operators. However, the 

human brain is very capable of recognising and interpreting images and thus 

it should be expected that analysis performed is sufficiently accurate. 

From the quantitative data shown in figures 8.6 and 8.7, the local ICAM-1 

expression levels are seen to increase up to 12 hours and then decrease 

until 24 hours when HUVECs are subjected to combined stress. This result is 

comparable to the results presented by Nakadate et al. [316] after exposing 

human aortic endothelial cells to combined stress of steady shear stress of 

1.5 𝑃𝑎 and hydrostatic pressure of 100 𝑚𝑚𝐻𝑔 and also pulsatile flow with a 

shear stress of 1.2/1.8 𝑃𝑎 and hydrostatic pressure of 120/80 𝑚𝑚𝐻𝑔. It is 

however suggested that to validate results further experimental analysis is 

needed. 

 



 

256 
 

CHAPTER 8 CELL-STRUCTURE INTERACTION EXPERIMENT (II) 

 

8.5        CONCLUSION     

 

HUVECs were subjected to either a combination of shear stress and 

hydrostatic pressure conditions or stimulated with human recombinant Tnf-𝛼 

to investigate the effects of these stimuli on ICAM-1 and NF-𝑘B activation of 

the cells. It is observed that NF-𝑘B and ICAM-1 are fully activated when 

HUVECS is stimulated with Tnf-𝛼 as shown in figures 8.2 to 8.7. Taking into 

consideration the design and CFD analysis of our cell-structure 

interaction model, cells were predicted to experience either a uniform 

or ‘disturbed’ shear stress depending on the localisation of the cells 

within the model. It was therefore interesting to observe that regardless 

of the localisation of the cells within the model, cells subjected to combined 

shear and hydrostatic pressure (i.e. LAD pulsatile shear and 120/80 mmHg 

or steady shear and 100 mmHg) for a given duration showed no activation of 

NF-𝑘B. There was however a decreased level time-dependent selective 

expression of ICAM-1 when HUVECs were subjected to afore mentioned 

combined shear stress and hydrostatic pressure as shown in figures 8.6 and 

8.7. These data suggest that combination of shear stress and hydrostatic 

pressure may play significant role in genes that could be expressed in ECs.  
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CHAPTER  9 

 

CONCLUSIONS AND FUTURE WORK 

 

9.1        CONCLUSIONS        

 

This thesis sought to provide insights into the interrelation between physical 

forces arising in a stented arterial model and ECs response to elucidate the 

occurrence of restenosis within stented coronary artery. To achieve this 

purpose, the objectives as discussed in Chapter 1 were needed to be 

executed. Summarised below were the work done to achieve the following 

objectives of this thesis. 

1. Establishing appropriate rheological blood model to be used in CFD 

analysis of fluid dynamics within straight stented artery: To achieve 

this objective the three most commonly used rheological blood models 

were investigated (i.e. Newtonian model, Non-Newtonian Power Law 

model and Carreau model) as discussed in Chapter 3. Based on the 

specific geometrical dimensions of the stented model simulated, fluid 

dynamics analysis based on Newtonian model were seen to be >80% 

comparable to non-Newtonian blood dynamics based on Carreau 

model. It was thus suggested that analysing blood dynamics within a 

stented model using Newtonian fluid model in this case was 

acceptable. 

 

2. Establishing a computational model of a 2D cell-stent interaction 

design: This objective was to mimic an in vivo 2D stented artery and  
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consequently investigate the mechanical forces created within the 

local stented artery. The classic hemodynamic factors such as WSSs, 

OSIs, SWSSGs and TWSSGs proposed in many experimental (in vivo 

and in vitro) and computational studies to play critical roles in the 

development and progression of CADs were also considered in the 

investigation. As demonstrated in Chapter 6, the proximal and distal 

regions of the stented region were characterised with uniform shear 

and no shear gradients. However, within the stented regions were 

marked high shear gradients, disturbed WSSs and high OSIs. 

 

3. Develop a flow bioreactor system capable of applying physiologically 

relevant parameters and producing appropriate mechanical milieu 

within stented artery model: This objective was achieved as the flow 

system developed was able to produce physiologically realistic LAD 

pulsatile flow waveforms and also physiological hydrostatic pressure 

of 120/80 𝑚𝑚𝐻𝑔. As further elaborated in Chapter 4, data produced 

from the flow bioreactor system was comparable with that of analytical 

data. The design of the test section; thus the cell-interaction structure 

model, of the flow bioreactor system as discussed in depth in Chapter 

5, helped elicit the characteristic fluid flow dynamics experienced 

within a stented artery. Indeed, the application of the flow bioreactor 

system and the designed test section produced the WSSs, SWSSGs 

and OSIs illustrated in Chapter 6 at approximately physiological 

levels. Thus the CFD analysis performed in Chapter 6 was used to 

quantify the mechanical environment applied to the cells in the test 

section of the flow bioreactor system. More importantly, this flow 

bioreactor system was capable of maintain cells under sterile 

conditions. 
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4. Quantitatively analyse ECs morphological response to either 

combined or individual stress: As demonstrated in Chapter 7, ECs 

subjected to a specific type of stress resulted in a marked change in 

the morphology of cultured cells. HUVECs subjected to uniform shear 

stress elongated and aligned to flow direction whilst HUVECs 

subjected to varied shear stresses exhibited random orientation to 

flow direction. These morphological changes were then quantified 

using commercial image programming software called CellProfiler. 

Results of morphological cells response reported in this thesis were 

similar to that reported by other researchers undertaking similar 

experimental investigations.  

 

5. Investigate into shear-induced molecules expressed by the ECs: As 

discussed in Chapter 8, HUVECs exposed to shear stresses and 

hydrostatic pressures created within the cell-structure interaction 

model did not activate the inflammatory molecule NF-kB. However, 

ICAM-1 was selectively expressed in respect to stimulation duration. 

To the author’s knowledge there has been no investigation into the 

effects of cells exposed to a combination of shear stress and 

hydrostatic pressure on NF-kB activation.  

 

Based up on the above observations, the following conclusions were 

reached: 

1. The mechanical milieu within a stented artery is marked by varied 

WSSs, high SWSSGs and High OSIs due to flow disturbances at local 

site. WSS spikes are observed on top of stent struts whilst WSSs at 

the immediate regions of stent struts are very low.  

 



 

260 
 

CHAPTER 9 CONCLUSION AND FUTURE WORK 

 

2. There is a relationship between WSS, SWSSG and OSI present within 

stent struts regions. It was elucidated in chapter 6 that regions within 

stent struts which were predicted to experience flow separations were 

not only marked by high OSIs but both negative and positive WSSs 

and also high SWSSGs.  

 

3. HUVECs subjected to steady and LAD pulsatile shear stress although 

may show qualitatively very similar response to shear stress may be 

quantitatively different. As discussed in chapter 7, HUVECs subjected 

to increase LAD SWSSGs showed slight increase in cell density whilst 

those subjected to increase steady SWSSG exhibited a decrease in 

cell density for the same time duration. Plausible reasoning to this 

observation is that TWSSGs may induce cell proliferation. Thus as 

steady flow has no transient characteristics, the effect of TWSSG on 

cells may be minimal or non-existent. Also as discussed in chapter 7, 

HUVECs subjected to steady and LAD pulsatile flow all show cell 

elongation and alignment to flow direction. More so there were no 

statistical differences in the number of cells that aligned to flow 

direction depending on the type of shear stress the cells were 

subjected. However, as evidently shown in figures 7.14aii and 7.14aiii, 

steady flow induced more cells to align to the flow direction compared 

to LAD pulsatile flow. Hence the type of stress subjected to cells may 

have a more distinctive effect compared to the other.   

 

4. Most studies have focused on the individual stress effects of on ECs 

response albeit the effects of combined stress on ECs response more 

specifically on the type of genes being expressed could be different. It 

is thus proposed that investigations based on individual stress may 

not yield sufficient data to clarify clinical incidence of restenosis. 
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5.  The modular design of the flow bioreactor system allows for easy 

addition and/or alteration of components such as the test sections and 

pulsatile cams. Thus permits a wide range of investigations into 

different types of combined stresses that may be applied to cells.   

 

   

9.2        FUTURE WORK 

 

Results presented in this thesis has provided some insights into how semi-

circular struts dictate the fluid flow dynamics experienced on cells and how 

this stimuli influence cells response. It is however suggested that different 

strut designs may cause different fluid flow dynamics. Hence it is proposed 

that for future works, cells are subjected to different fluid flow dynamics 

dictated by the different stent strut designs and the cells response under 

each flow dynamics investigated to determine which strut design provides 

fluid dynamics more favourable to cells physiological behaviour.   

It was also realised that combined stress and individual stress may influence 

differently the type of genes that are expressed. Hence future work may 

involve the investigation of various genes and signalling molecules that may 

be induced by different types of stress. 

As previously stated the modular design of the flow bioreactor system allows 

for addition of other enabling technologies. It is therefore envisaged that a 

video camera could be incorporated to the bioreactor system so as to 

capture in real-time how cells respond to specific mechanical stimuli.      
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APPENDIX A      

 

This appendix contains stimulated HUVECs stained for ICAM-1 expressions 

and also showing the stained cytoskeleton of the cell. 
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Figure 1  Images showing expression of ICAM-1 (Red stain), stained nucleus 

(Blue) and stained cytoskeleton (Green) in HUVECs after stimulation for 6 

hours. Static culture stimulation; positive control (Top row), stimulation with 

human recombinant Tnf-𝛼 at concentration of 200 units/ml under static 

control (2nd row), combination of steady flow and hydrostatic pressure of 

100mmHg (3rd row), combination of LAD pulsatile flow and hydrostatic 

pressure of 120/80mmHg (4th Row).  
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Figure 2  Images showing expression of ICAM-1 (Red stain), stained nucleus 

(Blue) and stained cytoskeleton (Green) in HUVECs after stimulation for 12 

hours. Static culture stimulation; positive control (Top row), stimulation with 

human recombinant Tnf-𝛼 at concentration of 200 units/ml under static 

control (2nd row), steady flow and pressure of 100mmHg (3rd row), LAD flow 

and pressure of 120/80mmHg (4th row). 
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Figure 3  Images showing expression of ICAM-1 (Red stain), stained nucleus 

(Blue) and stained cytoskeleton (Green) in HUVECs after stimulation for 24 

hours. Static culture stimulation; positive control (Top row), stimulation with 

human recombinant Tnf-𝛼 at concentration of 200 units/ml under static 

control (2nd row), steady flow and pressure of 100mmHg (3rd row), LAD flow 

and pressure of 120/80mmHg (4th Row). 
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