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ABSTRACT 

 

The main goal of the research presented in this doctoral thesis is to extend and enhance 

knowledge about the use of information and communication technology for learning 

purposes and its effects on the learning output. An integrative approach was utilised to 

combine elements from different perspectives – including attitudes, motivations, learning 

profiles, and behaviour – to build a theoretical framework which takes into account the 

learner characteristics and their interaction with virtual learning environments (VLE) in 

the achievement of learning goals. It is proposed that by accurate representation of the 

learner, and identifying relevant milestones along the learning process, it would be 

possible to enhance both the adoption of learning technology and the attainment of 

learning goals with a single framework. 

 In order to accomplish the research goal four studies were conducted. Study 1 

tested the most utilised approaches on adoption and effectiveness of learning technology, 

based on Davis’ Technology Acceptance Model (TAM) and a selection of indicators of 

learning effectiveness in virtual environments. The participants were 168 teachers 

enrolled in a 5-week e-learning course, who were asked to complete two questionnaires. 

The first questionnaire was delivered the first week of the course and it aimed to assess 

the variables related to the adoption of the learning technology (perceived ease of use and 

usefulness, previous experience with computers, intention of use, and behavioural 

planning). The second questionnaire was delivered once the course was finished and 

aimed to assess the time spent on the learning activities (online and offline), the 
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satisfaction with the course, and the self-perceived learning. The final mark of the 

participants was collected as an objective indicator of learning achievement. Results 

showed that a significant pathway can be observed from individual attitudes towards 

learning achievement through behavioural planning and actual use. Nonetheless, the 

explained variance was low, indicating that the model must be improved. 

 The second and third studies were aimed to test variables that could be included in 

the model in order to improve it. The second study was cross-sectional and included 268 

participants. It tested the relationship between learning approach, academic locus of 

control, and the learning environment characteristics – comparing one highly structured 

and one unstructured environment – with the core of the adoption of TAM. Structural 

Equation Modelling revealed an important effect of learning approach on attitudes and 

intention of use, and a significant improvement of the explained variance over study 1. 

The third study collected the responses of 115 participants, assessing the role of learner 

goals, thoughts about technology, learning style, and learning approach on attitudes and 

behaviour. As in the previous study, an important effect of learning approach was found 

on attitudes and on the behavioural indicators. The effect of learning style, goals, and 

thoughts about technology was not significant for the adoption parameters. The overall 

power of the adoption model was highly improved.  

 Study 4 aimed to test a new version of the model comprising adoption and 

effectiveness of learning technology. It involved the use of specially developed software 

to assist students in learning programming. Based on the previous studies and considering 

their limitation, a repeated measures design was chosen involving 30 students of higher 
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education for 12 weeks, assessing their learning process each week. A baseline of the 

knowledge on programming was measured at week 1, and was re assessed at week 6 and 

week 12. The marks of 4 assessments along the course were collected, and every week 

the attitudes towards the software, the module and its contents, and the time spent on the 

learning activities were collected. The results showed a strong effect of learning approach 

on attitudes and on the behavioural parameters, and how that effect decayed with time. 

Nonetheless, the engagement of the students with the learning activities and exercises 

was reinforced by the proximity of each assessment.  

The main conclusions of the present research are that the adoption of learning 

technology, the engagement with it over time, and the achievement of learning goals lie 

on the interaction of individual characteristics, the learning environment design, and the 

instructional design utilised. Being more precise, three stages on the adoption and use of 

learning technology can be distinguished, namely adoption, engagement, and goal 

achievement. The adoption of learning technology is strongly influenced by individual 

characteristics that shapes the attitudes towards the use of technology to achieve learning 

goals. Later on, the engagement with the technology will be sustained by the satisfaction 

of the user with it, especially considering its functional aspects. Finally, the materials and 

activities together with the plan of instruction will play a role on the level of achievement 

of the learners. The limitations of the research, and the theoretical and practical 

implications of these findings are discussed. 
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1. INTRODUCTION AND GENERAL INFORMATION 

 

1.1. General context of learning in virtual environments. 

1.1.1. Defining learning in virtual environments. 

Learning is a concept used so commonly that its definition is not always easy. Depending 

on the reference background it may be related to words such as change, acquisition, 

process, or construction, but more generally it may be defined as a process by which a 

person gains more knowledge about something, or develops the skills to do something 

(Pritchard, 2013). The first element to have in mind is the individual that goes through 

this process: the learner. The learner is in this case the one who processes the 

information, the one who deploys its cognitive, affective, and interpersonal resources in 

order to broaden its potential and, as a result, the one who embodied the change (Jarvis, 

2014). The acquisition of knowledge or the development of skills may occur by different 

methods – repetition, practice, reflection, and so on – depending on the complexity of the 

desired learning output, but it needs a source of information (or many) and a space (or 

multiples) to enable the learning to take place. In other words, the learning process does 

not occur in a vacuum. It is required to have a learning environment that supports both 

the information and the learner.  

 Commonly, a traditional learning setting can be identified as an in-classroom 

face-to-face interaction, utilizing stimuli delivered by conventional technology, such as 

speech, words and printed images, video and audio. However, the advance of computer 
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technology has resulted in a fast increasing of virtual learning environments [VLE], a 

term that can be applied to a large number of resources and functionalities. Gillespie et al. 

(2007) argue that the boundaries between different learning environments – such as 

managed learning environments or learning platforms, in its different presentations – are 

blurred more and more due to the continuous advance of computer technology. For this 

reason, analysing the effect of specific characteristics or particular media formats seems 

useless, and so the efforts should be focused on understanding the general variables that 

affect the learning process. Among the main characteristics of a virtual learning 

environment might be the capability of sharing files and information, using discussion 

boards, organize time and resources, support learning applications and activities, among 

others (Gillespie et al., 2007). 

For the purposes of the present research, the process of learning within a virtual 

environment is going to be understood as the acquisition of knowledge or the 

development of skills by an individual (learner) that uses its cognitive, affective, and 

relational resources for the processing of information delivered through a computer based 

application. 

1.1.2. The role of virtual environments on learning. 

The previous definition may seem too broad or unspecific, nonetheless literature suggests 

that despite the characteristics of the learning environment or the stimuli displayed by 

them, the learning output varies little or not at all when controlled by instructional design, 

this is, the strategy by which the instructional process and its resources are managed and 
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implemented (Reiser, 2001) . One of the first researchers to state that learning technology 

by itself has little or no effect on the learning output was Clark (1983). Clark found no 

significant benefits from utilizing any particular learning environment, and warned on 

serious problems in the research about learning performance supported by computer 

technology due to uncontrolled effects related to instructional methods and to the novelty 

of the situation. The same author in a subsequent study (1985) analysed the results of a 

series of meta-analysis by Kulik conducted between 1980 and 1984 arguing that the 

evidence suggests that the learning results can be related to the instructional design 

implemented by the learning environment and not by particular characteristics of it.  

Since then, various meta-analyses have reached similar conclusion. For example, 

Fletcherflinn & Gravatt (1995) found no significant effect of computer-based instruction 

when it was controlled by instructional design and learning materials, and when 

something was gained, it was due to a better quality of the instructional design rather than 

the delivery method. Lou et al. (2006) analysed 103 studies finding no difference between 

traditional instruction and different formats of instruction delivered by computer 

technology, suggesting that there is no particular feature of the virtual learning 

environments that made them intrinsically better than others. Another meta-analysis 

(Sitzmann, Kraiger, Stewart, & Wisher, 2006) found no difference between the results of 

different virtual learning environments and classroom instruction when the same 

instructional design was used, adding support to Clark’s idea. 

It could be considered that computer-based technology would not be useful, given 

the previous arguments that it does not directly contribute at the learning outcome. 
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Nonetheless, a different approach is to understand that when things are made in the same 

way - despite using new technologies - the results tend to be the same. The previous 

studies show the underlying elements of learning acting in the same way independently of 

the learning environment (traditional or virtual). However, digital environments possess 

characteristics that can affect or stimulate certain components of the learning process 

while interacting with the learner, and by this means, they can influence the learning 

output. Pintrich et al. (1986) emphasized the favourable effect of technology on different 

respects of learning which found on different studies and meta-analyses, but indicated 

that the variables involved are entangled in many ways, thus its effects are not easy to 

observe consistently among different conditions. 

For example, Bangertdrowns (1993) investigated the effect of word processing on 

writing instruction, finding a positive effect of technology on learning. The positive effect 

was achieved by acting on the way learners operate on writing tasks, making texts more 

flexible and thereby allowing the user to elaborate more complex materials, reaching 

higher quality outputs than those obtained by traditional (mechanical) ways. Nonetheless, 

the positive effect was significant mainly to those considered “weaker writers”, possible 

because those that have good writing skills can elaborate high quality output even without 

word processor tools, and thus the gaining of the technology is only marginal for them. A 

study by Moreno & Mayer (1999) also found a positive effect of technology on reducing 

cognitive overload with benefits on learning outputs in different scenarios. The effect of 

learning technology in these cases is to allow learners to deploy their cognitive resources 

in a better way, and therefore achieving better results. 
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Another example of technology assisting learning in a meaningful way is by its 

capacity for supporting interaction. Johnson and colleagues (2000) conducted a meta-

analysis on the effect of learning technology within cooperative contexts, this is, learning 

environments that allow participants to interact between them and in this way to 

exchange information, to discuss contents, and ultimately to build knowledge 

collectively. They compared collaborative methods with competitive methods, finding 

that collaborative methods are more effective, and that learning technology that can 

support such collaborative methods is playing a role in the construction of knowledge by 

allowing participants to reflect on the contents and improving learners’ engagement with 

the course. Again, the effect of the technology was to support the learning process, and 

by this action to impact on the learning outcome. 

More evidence on the effect of learning technology on the learning output can be 

found in the literature about learning attitudes and the use of learning technology. The 

main argument is going to be presented and illustrated by the following three 

representative studies, and presented in detail later in section 1.2.  

The first of these three studies was conducted by Connolly, MacArthur, Stansfield 

& McLellan (2007), a quasi-experimental study of three years of length. They aimed to 

investigate to what extent learning was enhanced by technology in comparison to face-to-

face instruction, and to identify the variables that could explain such variation. They 

looked for differences in student performance at the end of the module, between 

coursework and exam performance, and in dropout rates. The results showed a better 

performance of those enrolled on virtual learning environments, and higher levels of 
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satisfaction from students and faculty on the use of learning technology. Student 

satisfaction was related to the intention of using learning technology in the future. 

Despite that very positive results were obtained, people enrolled in virtual learning 

environments showed a lower rate of use of the learning materials than those in the 

traditional course, and also missed more sessions than those in the face-to-face courses. 

The authors indicated that while promising, quality learning environments demand more 

time to be designed and implemented, and even so the learners can evaluate learning 

materials as not completely satisfactory. This study highlights two issues that will be 

observed in forthcoming studies: first, virtual learning environments are attractive for 

students and they are usually enthusiastic with them, which is reflected by the high levels 

of satisfaction reported. The second is such positive attitudes do not imply more 

engagement with the course, reflected as time invested on the platform or as utilizing the 

learning materials, and so the participation may be lower than required. 

The second study, conducted by Johnson, Hornik, & Salas (2008), was focused on 

the factors that contribute to successful virtual learning environments. They included two 

dimensions in their research model. The first dimension was labelled as “human 

dimension”, which comprised the variable application-specific computer self-efficacy. 

The second dimension was named as “design dimension”, and comprised the perceived 

usefulness of the learning environment, the evaluation of the exchange of information 

between the stakeholders in the course – labelled as interaction –, and social presence – 

the evaluation on the importance of the interpersonal relationships. The outcome 

variables, which should reflect the success of the learning environment, were self-
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perception of learning – named as course instrumentality –, satisfaction with the course, 

and student performance as the final mark in the course. The results shown that computer 

self-efficacy and perceived usefulness were related with all three outcomes variables, 

peer interaction was related to course performance and course satisfaction, and social 

presence was related to course satisfaction and self-perceived learning. These findings 

present the important role of learners’ evaluations about their own performance and about 

the learning environment as good predictors of overall success, and the relevance of 

considering not only the technical aspects of virtual learning environments when 

designing them but also the learners’ characteristics that would facilitate their successful 

adoption. Nonetheless, it is important to note that this model only explains a variance of 

0.18 of the performance output, while the course satisfaction was the most represented 

output with a 0.41 of explained variance. The correlation between the variables included 

in the model and performance ranged between 0.18 and 0.36. It can be said that this 

model, whether useful to understand the importance of the interaction between the 

learning environment and the learners’ reactions to it, is not completely satisfactory to 

understand how to improve the learning outcome. 

The third study attempted to illustrate the relationship between learners’ attitudes, 

the use of learning technology, and learning performance. It was conducted by 

Hassanzadeh, Kanaani & Elahi (2012) by measuring the success of virtual learning 

environments in universities.  In their study, they included variables given account of 

learners’ evaluation of the system quality, content quality, and service quality as 

predictors of intention of use and satisfaction. The last two variables were predicted as 
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related to the use of the system and loyalty to the system. Intention of use, user 

satisfaction and loyalty, and actual use of the system were predicted as related to the 

perception of benefits of using the system, and as affecting directly the achievement of 

learning goals. The results showed that system and content quality positively affect 

satisfaction, and satisfaction influences directly intention of use, perception of benefits, 

loyalty to and use of the system, and goal achievement. The key role of user satisfaction 

implies that users’ comfort with the learning environment is fundamental to ensure its 

usage, the engagement with it, and consequently the achievement of learning goals. 

1.1.3. Current situation and main challenges for virtual learning environments. 

So far, it could be said that learning technology has a positive effect on learning, and that 

when learners are satisfied with it, then the achievement of learning goals is going to be 

assured. Nonetheless, the reality is a little bit more complicated than that. A number of 

studies have analysed the high rates of dropouts from different modalities of virtual 

learning environments, especially those complementing university courses (Levy, 2007), 

and the so called massive open online courses [MOOCs] (Rivard, 2013; Yang, Sinha, 

Adamson, & Rosé, 2013), where dropouts reach up to 90%.  

 This is a serious issue, mainly because of the increasing participation of learning 

technology in the formal learning system. According to projections, the global market of 

learning technologies will reach USD 51.5 billion by 2016 (approximately £34 billion), 

with an annual worldwide growth rate of 7.9% over the period 2012-2016 (Docebo, 

2014). This volume will impact the educational systems of all the countries and its 
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institutions, especially those who will lead this growth such as the Latin-American region 

(14.6%), Africa (15.2%), Eastern Europe – driven by Russia – (16.9%), and Asia – driven 

by China, India and Australia – (17.3%). The task for designers and practitioners of 

learning technologies seems to be clear: to face the challenge of increasing the rates of 

effective adoption and effective use of learning technology, and to improving the learning 

process supported by it. If this goal cannot be achieved, learners would face increasing 

rates of educational failure, and the important investment of resources – both, of 

specialized staff and of money – from Governments, universities, and companies will be 

worthless.  

Based on the previous literature, this research will be focused on the 

understanding of two processes related to the use of learning technology. The first of 

them is the well-studied process of adoption of technology, specifically learning 

technology. The second process is the achievement of learning goals in virtual 

environments, with particular focus on the variables affecting the learning outcome, 

considered as the main benchmark for this context. Moreover, these goals will be 

addressed pursuing not only the understanding of each isolated process, but looking for 

the variables which allow a theoretical and practical integration of them, stating that they 

are not two separate process, but two interdependent aspects of learning with computing 

technologies. 

Before explaining the research objectives and strategy in detail, it is necessary to 

examine the literature on the two main processes to be investigated. The next section is 

going to comprise the most relevant studies on adoption of learning technology and on 
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learning achievement with virtual environments, finishing with an integrative proposal 

which will guide the present research. 

1.2. Learning technologies in action: a literature review on the introduction and 

effect of technology on the learning practice and its results. 

The influence of different types of technology such as written and drawn materials, video, 

television, radio, and computer devices, has been studied through decades, since the 

pioneer work of Thorndike in 1912 (Clark, 1983). The general aim has been to make a 

comparison between distinct kinds of learning technologies and its effects on learning 

achievement. Since more than three decades, computer technology has been scrutinized 

from different approaches, whose main difference is the base role of technology on the 

learning process. One perspective claims that technology directly affects learning, just by 

using it, due to the particular symbol system employed by them (e.g. letters, images, 

sounds, concepts), and the processes that they allow to perform, resulting on different 

ways of information processing which would be specific to determined media (Kozma, 

1991; Kozma, 2003). An opposite approach claims that technology does not affect the 

learning outcome, neither positively nor negatively, being just a delivery medium of the 

information, and any effect is due only to the instructional design utilized (Clark, 1983, 

1994). The literature review that follows will summarize the relevant research on learning 

technology and its effects with focus on two aspects: the introduction and adoption of 

technology on learning practices, and the effectiveness of instruction supported by 

technology. 
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1.2.1. Introduction and adoption of learning technology. 

The introduction of technology in any human activity involves the adoption of 

behavioural patterns that modify the manner a person has been developing its activities. 

To understand why people do or do not adopt a certain technology a number of 

explanations have been developed, taking as reference more general elements from three 

theories. Bandura’s theory of social learning (1977) states that humans are active 

information processors, and as such the consequences of any action can make them more 

or less keen to perform in a certain way. The idea taken from this theory, and applied to 

adoption of technology, is that if something is perceived as beneficial, people will tend to 

adopt it. Ajzen’s reasoned action and planned behaviour theories (1977; 1985) propose 

that people’s behaviour is influenced by the valence of the attitudes towards that 

behaviour, in other words, if people perceive an action as positive, then the chance to be 

performed will increase. Last, the cost-benefit paradigm of Beach & Mitchell (1978) 

states that when the benefits of a behaviour are higher than the effort involved, then that 

behaviour will be performed more likely. In summary, when an action is considered as 

positive and the effort is less than the benefit, that action has a better chance to be 

performed than other that cannot fulfil these requirements. Therefore, the basis of 

technology adoption should be that when the technology is perceived as useful and easy 

to utilize, the users will have a good reception of it. 

Specifically centred on technology adoption, the main perspective on the topic has 

been Davis’ technology acceptance model [TAM], proposed in 1989 to explain why 

people would use computer technology within a working context. This explanation was 
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extended later to other contexts so different as sales, design, and education. The base of 

the model is that users’ behavioural intention and actual use are influenced by attitudes 

towards the technology, such as how useful and easy to use it is considered. In other 

words, it is proposed that while easier and more useful the technology is considered, then 

the rate of use will be higher. A number of modifications have been made since then, 

including social factors or context-specific variables, nonetheless the original core of the 

model remains the same. 

 

 

Figure 1. Davis' Technology acceptance model (1989) 
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Several researches on learning contexts have utilized the technology acceptance 

model trying to assess and explain the results of the introduction of certain technology to 

support or enhance learners’ achievement, using different approaches and reaching varied 

conclusions. A systematic literature review was conducted as part of the author’s Master 

Dissertation (2012) in order to achieve understanding on how the model works, how it 

has been modified, and what are the key variables that should be taken into account. It 

included an initial summary of 5 meta-analyses and 3 systematic published between 2000 

and 2012, as an overview of the main finding up to date. The highlights of such summary 

can be found in table 1. The second part of that work was to conduct a systematic 

literature review aiming to detect relevant variations of the original model proposed by 

Davis. The inclusion criteria comprised the availability of full text, the study had to be 

related to the use of learning technology, the study had to report quantitative data 

including beta values, and sample size equal or higher than 100. The first selection of 

articles was 69 out of 613, and the final selection included 16 (table 2). The main results 

were (i) the finding of several competing models based on TAM, and (ii) a consistent 

support to the key variables of TAM, but non-conclusive support for the variables which 

extent or modified the model.  
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Table 1. Summary of meta-analyses and systematic literature reviews included as 

theoretical background. 

Author (Year) Type of Study Articles 

included 

Major Findings 

(Legris, Ingham, 

& Collerette, 2003) 

SR 22 1. TAM variables measured inconsistently among researches, but 

model is supported. 

2. They found 39 factors affecting system satisfaction. 

3. The model would include social and individual change process. 

(Ma & Liu, 2004) MA 26 1. Diverse findings on TAM. 

2. Mean effects of the relationship between perceived ease of use 

and perceived usefulness and between perceived usefulness and 

technology acceptance are large. 

3. Mean effect of perceived ease of use on technology acceptance 

is medium. 

4. All mean effects are positive and significants.  

(King & He, 2006) MA 88 1. Relationship between perceived ease of use and behavioural 

intention is highly variable among studies. 

2. Relationship between perceived usefulness and behavioural 

intention is strong and consistent. 

3. Confirm Davis' model, but high variability is observed in 

correlation loads among studies. Influence of moderator variables 

is suggested. 

4. Results suggest a complete mediation effect of perceived ease 

of use through Perceived usefulness on behavioural intention. 

(Sun & Zhang, 

2006) 

SR 54 1. Experimental designs have higher explanatory power than field 

designs. 

2. Additional factors have to be included in posterior researches, 

because inconsistent relationships have been observed. 

3. Distinction among Organizational Factors, Technology Factors 

and Individual Factors should be taken into account. 
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(Schepers & 

Wetzels, 2007) 

MA 51 
1. Original TAM relationships were confirmed. A stronger 

relationship between perceived usefulness and attitudes towards 

technology than between perceived ease of use and attitudes 

relationship was observed. 

2. Correlations between social norms and behavioural intention, 

and between social norms and perceived usefulness passed the 

fail-safe N test, and possess large effect sizes. 

3. Strong relationships on student samples than non-student 

samples. 

4. Cultural differences are observed. 

(Turner et al., 

2010) 

SR 73 
1. Behavioural Intention is better predictor of actual use than 

perceived usefulness and perceived ease of use 

2. Association between variables and objective actual use and 

subjective use were different. 

    
(Sumak et al., 

2011) 

MA 42 
1. Davis' TAM is supported. 

2. Relationship between perceived ease of use, perceived 

usefulness and attitudes were similar for different groups of users. 

3. A large effect size was found to relationship PU-A; whereas a 

medium one was found to PEOU-A. 

(Wu, Zhao, Zhu, 

Tan, & Zheng, 

2011) 

MA 128 1. Davis' original model is supported. 

2. Attitudes appear as an important factor in the (extended) model. 

3. High relationships between trust (on the technology) and 

positive attitudes, trust and behavioural intention, trust and 

perceived usefulness, and trust and perceived ease of use.  
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Table 2. List of studies included in the literature review (2012).  

Authors Sample Size Model Supported 

(Yang & Yoo, 2004) 211 TAM No 

 

211 Extended TAM Yes 

(Drennan et al., 2005) 248 Extended TAM Yes 

 

256 Extended TAM Yes 

(Saadé & Bahli, 2005) 102 Extended TAM Yes 

(Pituch & Lee, 2006) 259 Extended TAM Yes 

 

260 Extended TAM Yes 

(Tung & Chang, 2007) 263 Extended TAM Yes 

(Saade & Kira, 2007) 114 Extended TAM No 

(Rezaei et al., 2008) 120 Extended TAM Yes 

(Chang & Tung, 2008) 212 Extended TAM Yes 

(Lau & Woods, 2008) 481 Extended TAM Yes 

(Park, 2009) 628 Extended TAM Yes 

(Lau & Woods, 2009) 312 Extended TAM Yes 

(Lee et al., 2009) 214 Extended TAM Yes 

(Arteaga Sanchez & Duarte 

Hueros, 2010) 226 Extended TAM Yes 

(Djamasbi et al., 2010) 134 Extended TAM Yes 

(Liu et al., 2010) 436 Extended TAM Yes 

(Sanchez-Franco, 2010) 431 Extended TAM Yes 

 

 

Considering the results of the previous literature review, it can be said that albeit 

the existence of other models to explain why technology is adopted, TAM appears as 

consistent and adequate to be included in an integrative model of adoption and effective 
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use of learning technology. The following theoretical background include the more 

relevant and illustrative studies to update the previous work. 

The first of them is a research conducted by Drennan, Kennedy & Pisarky (2005) 

on the factors affecting student satisfaction in flexible online learning, using a two-step 

design. Their results showed that perceived usefulness have the strongest relationship 

with course satisfaction, while perceived ease of use showed the opposite. Besides, the 

effect of students’ skills to use information technology does not appear as important for 

the prediction of course satisfaction. Another variable that was included on the research 

model was locus of control, which was observed having a direct effect on course 

satisfaction at the beginning of the training (first step of the research design), indicating 

that students with autonomous locus of control were more satisfied with flexible online 

learning, however since the stability of the variables was assumed, they were not assessed 

at step-two. The results suggest that perceived usefulness is the strongest predictor of 

course satisfaction, and that perceived ease of use plays just a secondary role. 

The role of cognitive absorption – the level of user involvement – as an extension 

of TAM was examined by Saade and Bahli (2005). Their objectives pointed out to 

measuring the predictive value of absorption, perceived usefulness, and perceived ease of 

use over intention of use within an online course. The core relationships of TAM were 

supported by the data, were perceived usefulness appears a better predictor of intention of 

use than perceived ease of use (β=0.43, p<0.001, and β=0.16, p<0.05, respectively). 

Cognitive absorption was observed as directly related to perceived usefulness and to 

perceived ease of use, but the variance explained by cognitive absorption for perceived 
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ease of use was just R²=0.06, while for perceived ease of use was R²=0.26. This research 

gives some light on the links between adoption of technology and the level of user’s 

involvement, but the current design does not allow to capture the variations of cognitive 

absorption over time or due to other circumstances, such as task novelty or different 

difficulty of the tasks. 

In 2006 Pituch and Lee, using TAM´s perspective, assessed students’ intention of 

use for two virtual learning scenarios that they considered related between them, as one 

should be used as a consequence of the intention of using other. The proposed research 

model stated that system characteristics and use beliefs will be directly related to the use 

of a virtual environment for supplementary learning (scenario1), and that system 

characteristics altogether with the supplementary learning environment will be directly 

related to the use of a virtual environment for distance education (scenario 2), given their 

shared characteristics. The results confirmed that TAM is a strong predictor of intention 

of use, but additionally showed that the characteristics of the environment, and how they 

are evaluated by learners are also important, since while more quality and reliability of 

the system are perceived there is a better disposition of the students towards using it. 

The role of a negative emotion – such as anxiety – on the adoption of technology 

has also been explored. Tung and Chang (2007) conducted a study on the relationship 

between computer anxiety, computer self-efficacy and adoption of technology with a 

sample of adolescent students. They found a positive relationship between computer self-

efficacy and behavioural intention, and an inverse effect of anxiety on both self-efficacy 

and behavioural intention. In other words, when feeling confident about using technology 
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users will have a higher intention of using it, and less anxiety associated to that use. At 

the same time, the direct effect of perceived usefulness and perceived ease of use on 

behavioural intention was confirmed. Another study, this time focused on the effect of 

anxiety on the perception of easiness of technology (Saade & Kira, 2007) found that the 

negative effect of computer anxiety might be cancelled out by the mediator role of 

computer self-efficacy. In 2008, Rezaei and colleagues tested a modified version of 

TAM, including computer self-efficacy, computer anxiety, and previous internet 

experience. The results showed a positive relationship between perceived usefulness and 

intention of use, and between computer self-efficacy and intention of use, and a negative 

effect of computer anxiety on intention of use. These results are similar to those 

previously presented, suggesting that while computer anxiety plays against the intention 

of using learning technology, a good sense of self-efficacy might counteract that effect. 

The role of computer self-efficacy on technology adoption was tested again by 

Chang and Tung (2008), this time in addition to the perception of system quality and the 

perception of compatibility with user’s values, experience, and needs. The analyses 

confirmed the relationships between the core variables of TAM, but also showed that the 

perception of compatibility has a significant direct effect on perceived usefulness, and 

that computer self-efficacy is significant and directly related to behavioural intention. In 

the same line that the perception of compatibility, Lau and Woods (2008) investigated the 

effect of attitudes and beliefs about learning objects – any pedagogical resource being 

part of a learning system – on the adoption of learning technology containing those 

objects. It was observed that positive attitudes and good perception of usefulness are 
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significant predictors of behavioural intention, although their effect on actual use is only 

indirectly expressed through user’s intention. Lau and Woods (2009) continued on the 

track of user’s thoughts about learning objects, this time evaluating the perceptions about 

the technical quality, content quality, and pedagogical quality.  

In 2009 Lee and colleagues conducted a study testing a modified version of Davis’ 

model measuring the adoption of e-learning instruction. In that study the model was 

extended by adding variables accounting perception of instructor characteristics, teaching 

materials, the design of the learning contents, and playfulness. The analyses, besides of 

confirming the relationship between the core variables of TAM, noted a direct effect of 

instructor characteristics and teaching materials on the perceived usefulness of the 

learning environment. Additionally, the evaluation about learning contents design had a 

positive effect on the perception of easiness of the tool. Furthermore, the reported level of 

playfulness elicited by the virtual environment – a variable that includes individual 

pleasure, psychological stimulation, and interest – was directly related to the intention of 

using it. These findings suggest that such as a rational evaluation of the learning 

environment is linked to user intention of use, the emotional response is also important 

and strong.  

A later study of Djamasbi, Strong, and  Dishaw (2010) also explored the effect of 

emotions on the technology adoption. Starting with the assumption that positive mood 

affects people’s cognition and behaviour, the researchers designed an experimental 

approach where subjects interacted with a computer-based application to complete a 

decision task.  The mood state was manipulated (positive, negative, and neutral), as well 
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as the degree of uncertainty of the task (moderate or high uncertainty levels). Results 

showed that under moderate uncertainty, positive mood influences perceived ease of use, 

but not perceived usefulness, both perceptions mediating the effect of mood on intention 

of use. Under high uncertainty the relationship was maintained, and no significant 

difference was found between the groups. From this research two major findings must be 

highlighted: i) that the effect of a positive mood is stronger than the effect of negative 

mood, and that ii) the uncertainty of the task, which should affect the perception of 

suitability of technology to complete the given task, was not as relevant as expected. 

In the same track, Sanchez-Franco (2010) conducted a study on the role of affective 

quality on the adoption of educational technology in higher education. In his research a 

modified version of the technology acceptance model was utilized, mixed with elements 

from human-computer interaction theory such as flow and perceived affective quality – a 

measure of how pleasant and interesting is the reaction to a stimulus. It was observed that 

the inclusion of affect quality significantly improved the power of the model (ΔR²=0.19), 

being positively related to a higher intention of use. The result suggests that a positive 

emotional response is a strong predictor of intention of use, a good complement for the 

traditional evaluation of the usefulness and easiness, although the stability of the variable 

might be questioned.  

A similar approach was followed by Lin (2012) when carried out a research on the 

role of perceived fit and satisfaction with the course in the adoption of a web-based 

learning system and its learning outcome. The results shown that perceived fit and 

satisfaction are strong predictors of adoption and continuance of using learning 
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technology. Furthermore, it was observed that these variables are related to self-

perception of learning, although data is not sufficient to determine the real impact of 

these variables on the learning outcome. Notwithstanding, this research suggests the idea 

that the adoption of learning technology can be interweaved with the learning process 

supported by it, measured as a learning output. 

So far, the role of attitudes on technology adoption looks as irrefutable. While 

many context specific variables may be added to the model, the core variables of Davis’ 

model are strongly supported by data and theory. Nonetheless, the relationship between 

intention of use and actual use is not as good as expected, and just a few studies have 

related adoption to learning achievement consistently. The next section will address the 

literature on learning achievement within virtual environments, with special focus on the 

variables that allow learners to perform successfully. 

1.2.2. The assessment of the effectiveness of learning technologies. 

 A key aspect regarding the use of technology on learning settings is the attaining of the 

proposed learning goals by using it, a basic and fundamental objective within this 

context. The complexity of this issue starts with the very definition of what is an effective 

learning environment, mainly because the success of a given instruction might include a 

large number of pedagogical, economic, and social factors that contribute to its result 

(Halachev, 2009). Therefore, a variety of indicators can be found in literature to give 

account of learning achievement or learning effectiveness, including objective measures, 

subjective measures, and a combination of several of them. Therefore, the results and 
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conclusions among studies might vary, or be difficult to compare, because either the 

conceptual or the operational definition of effectiveness components could be different. 

Some of these are going to be revised below for its methodological implications. 

 One approach focuses on evaluating the components of the learning process by an 

objective measure, such as the final mark (Kekkonen-Moneta & Moneta, 2002), or the 

time logged onto the learning platform (Lim, Lee, & Nam, 2007). The main advantage of 

such approach is to allow the collection of reliable data and the comparison of objective 

learning achievement indicators. Nonetheless, it is not always suitable to give into 

account of the learning process as a whole, since some variables cannot be easily 

measured in an objective way.  

This leads to the second approach, which is predominantly subjective. It considers 

self-reports of learning and other variables, as in the study conducted by Liaw (2008), but 

specifically the reliability of the self-perceptions of learning can be questioned by being 

subject of personal biases. The most common approach is a mixture of both objective and 

subjective measurements, including self-reports and tests to assess learning achievement 

marked according to a pre-set guideline (Bhuasiri, Xaymoungkhoun, Zo, Rho, & 

Ciganek, 2012; Buzzetto-More & Mitchell, 2009; Stonebraker & Hazeltine, 2004). 

For the purposes of this research, the effectiveness of the learning technology is 

going to be defined as the degree of achievement of the desired learning outcomes, and 

therefore reflected on a quantitative, objective measure of it: the higher the mark or score 

the student achieve in a test on the course subject, the more effective the course is. The 

intention of this definition is trying to avoid subjective biases, even when in some 
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respects the marking parameters can be discussed, but at least this approach can set a 

comparable indicator of learning achievement. 

Notwithstanding, the definition of the appropriate indicator to assess the learning 

effectiveness is only one part of the matter. To understand and eventually be able to 

improve learning effectiveness it is necessary to identify the learner-related 

characteristics on the learning process in digital environments.  

In the same way that there is not a unique criterion to define the concept of 

effectiveness in digital environments, there is not a unique theoretical framework to give 

account of the process and the variables taking part in it. Throughout the literature, some 

variables have been used frequently and consistently to explain how learners and 

technology interact in order to achieve the desired learning output. These variables 

comprise behavioural indicators, attitudes, and perceptions, which drive the learning 

process towards certain goals according to the valence of the elements and the 

interactions between them. Specifically, three variables will be highlighted by their 

relevance and consistency across the literature. 

The first variable to be considered is the actual use of the learning environment. 

This variable has a dual importance, since it is the final element of the adoption of 

technology process (as presented in section 1.2.1 and illustrated by Figure 1. Davis' 

Technology acceptance model (1989), and also the basic behavioural component of the 

learning process by reporting the time spent accessing to the learning materials and 

activities. This dual role posits actual use as a suitable bridge between adoption of 

learning technology and learning achievement, one of the aims of the present research.  
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Continuing with the trend of the literature, there is more than one way of measuring 

the actual use of the learning environment. Just as an example, Lim and colleagues 

(2007) considered actual use as the time spent by learners while logged into the platform. 

Other studies included logs to retrieve information about the activity of the users (Barab, 

Bowdish, Young, & Owen, 1996; Delialioglu & Yildirim, 2007; Gee-Woo, Sang Cheol, 

& Yanchun, 2010). The advantages of this method are the reliability of the data and the 

automated collection of the information. On the other hand, other studies had used self-

reports of the time spent in different system activities as a valid estimate of the actual 

usage of it (Igbaria, Schiffman & Wieckowski, 1994; Mathieson, 1991; Roberts & 

Henderson, 2000), being such measurements validated by Davis (1989) as sufficiently 

accurate estimates of the time spent in those activities. The positive aspect of the self-

report of actual use is that it can include the time spent on activities related to the learning 

environment while offline, such as completing the learning activities or reading the 

learning materials. Nonetheless, it is important to understand that an objective log-based 

report can be very different of the self-report indicator, as had been noted by a number of 

studies that include both of them (Horton, Buck, Waterson, & Clegg, 2001; Junco, 2013; 

Turner, Kitchenham, Brereton, Charters, & Budgen, 2010). Therefore, the choice of one 

or other method is more related to what is attempted to be investigated, and the suitability 

of the indicator with the theoretical framework.  

This research is going to consider actual use as the time spent both online and 

offline, attending that most of the learning activities are done in a variable mixture of 
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online and offline time. Consequently, a self-report of actual use is going to be utilized in 

the upcoming studies when necessary.  

 Another relevant variable that has been related to a successful learning process in 

digital environments is the satisfaction with the course. It is conceived as the level of 

agreement with the design and content of the course (Johnson et al., 2008). Satisfaction 

with the course is supposed to play an important role as enhancer of the learning process, 

due to its reinforcing effect on the usage behaviour as a consequence of a positive 

evaluation of the experience with it, increasing the chance of adoption and engagement 

with the virtual environment (Higgins, 2006; Levy, 2007). This variable has been widely 

studied as related to the adoption process, but according to several studies it may be 

linked to the effectiveness of the learning process by influencing the student’s 

preferences on the delivery media (Arbaugh & Duray, 2002), as an indicator of success of 

the course from the perspective of the designers/implementers (Eom, Wen, & Ashill, 

2006; Sun, Tsai, Finger, Chen, & Yeh, 2008), or because a relationship between 

satisfaction and actual use was found (DeBourgh, 1999; Johnson et al., 2008; Jung, Choi, 

Lim, & Leem, 2002). Satisfaction with the course is going to be considered as an 

antecedent of learning effectiveness because of its role as a booster of learning 

behaviours, under the assumption – based on previous research – that a satisfied, highly 

motivated learner, will be significantly engaged in a the learning activity and hence he or 

she is able of achieving better learning results. 

 The third and final element to be considered as a holder of the learning process is 

the self-perception of learning, which might be defined as the perception made by the 
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learner about how much improvement he/she made because of the course (Alavi, Yoo, & 

Vogel, 1997; Johnson et al., 2008). Literature has linked this variable to objectives 

measures of learning and to satisfaction with the course, being a logical component of a 

model for understanding learning effectiveness. Self-perceived learning is going to be 

included in this research project as an antecedent of learning achievement because its 

monitoring role on the learning process, because people’s self-perception acts 

strengthening the behaviours that drives to the desired goal. Nonetheless, it is necessary 

to notice that people can hold inaccurate self-perceptions, especially when emotional 

states interfere (Heath, 1995; Stanley & Burrow, 2015).  

 Up to this point, learning effectiveness has been defined as the achievement of 

measurable learning goals. As the present research is focused on the utilization of virtual 

learning environments, the achievement of learning goals is going to be circumscribed to 

this particular context. Previously it was stated that despite any specific characteristic of 

the virtual environment due to its similarities and commonalities, it will be relevant to the 

discussion those variables that can affect that process. This section proposes three 

variables – actual use, satisfaction with the course, and self-perceived learning – as 

antecedents of learning effectiveness, based mainly on their effect supporting and 

enhancing the learning process. The next section is going to be focused on the research 

proposal, its aims, and the research strategy to follow. 
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1.3. Research proposal and aims. 

As it was mentioned earlier in this chapter, the main goal of the present research is to 

identify the key variables involved on the achievement of learning goals through virtual 

learning environments. It is proposed that to attain that goal it is fundamental to 

understand the learning process in virtual environments from an integrative perspective, 

considering the interaction of the learner with the learning environment from the 

beginning – the first contact with the learning setting – to the end – the consecution of the 

learning goals. Therefore, the research proposal is going to include the study of the 

adoption of learning technology and how the variables that participate in it are related to 

learning achievement. The first challenge is to improve our understanding on the 

adoption of learning technology and then, the second is to integrate it to the variables 

related to learning achievement mentioned previously on section 1.2.2.  

 This first chapter has been focused on the theoretical and practical background to 

understand the proposed research. The following three chapters are going to be focused 

on the empirical component of the project.  

 Chapter 2 is going to test the initial approach towards the research goals. By 

integrating an extended version of Davis’ technology acceptance model with the 

proposed model of learning effectiveness in a design of two steps – assessments at the 

beginning and at the end of the learning process – this chapter will undertake the 

discussion about the ways to improve the understanding of the adoption of technology, 

about the feasibility of a theoretical and empirical bridge between adoption and 

effectiveness, and the ways to improve this initial proposal. 
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 Chapter 3 will take into consideration the results of chapter 2, by incorporating 

new variables into the theoretical approach. The chapter is going to include a brief 

literature review on the new variables that could affect technology adoption, following by 

two cross-sectional studies to test the new relationships proposed. The results will feed 

the theoretical understanding on the topic, opening new paths, and tuning up the research 

model. 

 Chapter 4 will incorporate the results of the previous two chapters in order to 

build a more suitable model to address the research goal. Following a new update of the 

literature review, in order to settle down the theoretical implications of the empirical 

examination, the last empirical study of the research project will utilise a repeated 

measures design to assess the learning process supported by an educational software from 

the beginning up to the end.  

 Finally, chapter 5 will focus on integrating the results, discussions, limitations, 

and highlights of previous chapters. It will attempt to reach a suitable solution to our 

research problem, by gathering the information obtained through the course of this 

research project, analysing it, and considering its theoretical and practical significance. A 

novel approach to the effective use of technology on learning settings is going to be 

presented, characterized by the importance of the learner, its active role on the learning 

process, and the key part that technology has on supporting the individual learning 

achievement. 
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2. TOWARDS AN INTEGRATIVE APPROACH OF COMPUTER-

BASED LEARNING. 

 

2.1. Introduction 

The first empirical chapter of this thesis is going to be focused on testing a first 

approximation towards the understanding of the learning process supported by 

technology. Specifically, an approach based on a mix of attitudinal and behavioural 

variables will comprise a model to explain the learning outcome of a group of learners 

enrolled in a 5-week e-learning course.  

 A brief summary of the theoretical foundations of the model will be presented in 

the next section, which was explained in detail in previous chapter. The method and 

results will follow, ending with the discussion about the relevance and implications of the 

findings. 

2.2. Theoretical framework. 

As it was discussed previously, computer-based instruction has been frequently used to 

complement or substitute for traditional face-to-face lessons, mainly due to its advantages 

such as easy and flexible access  (Lee, Cheung, & Chen, 2005), easier maintenance, 

updating, and lower costs (Saade & Bahli, 2005; Welsh, Wanberg, Brown, & Simmering, 

2003), and better self-perception of learning (Alavi et al., 1997). Computer technology 

can support a wide range of formats and stimuli, having the potential to satisfy multiple 

requirements related to the design of virtual learning environments. However, the 

continuance of usage of learning technology in the middle- and long-term is affected by 
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low levels of user satisfaction (Levy, 2007; Roca, Chiu, & Martínez, 2006), and low 

acceptance of the design (Reiser, 1994; Sitzmann et al., 2006), producing a lack of 

effectiveness through drop-out and/or underuse of the learning programs. On this 

scenario, and with an increasing demand for developing and implementing learning 

technology at all levels of the educational system, the main challenge seems to be to 

understand which variables are involved in the adoption of and the engagement with 

learning technologies, and how they could be related to the effectiveness of the learning 

process. 

The present study, being the first of the current research, introduces a novel 

perspective in exploring the relationship between the adoption of learning technology and 

the effectiveness of the learning process. The approach includes new variables - and 

relationships between them - to more traditional approaches that seem to be struggling to 

explain and prevent the high rates of dropouts and low learning outcomes faced by a great 

number of learning programs supported by virtual environments.  

As it was presented in length in the first chapter of this thesis, the proposed model 

bring together the Technology Acceptance Model with relevant effectiveness indicators, 

with the objective of represent the learning process assisted by computer technology from 

the beginning to the end. 

We expect to find – as it is suggested by the literature - support for both adoption 

of technology and learning-technology effectiveness processes as independent clusters, 

but we aim to establish a link between them to support our proposed integrative 
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perspective that technology-supported learning is a single process that starts with the 

encounter of an individual and a VLE, and finalizes with a desired learning outcome. 

2.3. Research questions and hypotheses. 

The main goal of the present study is to identify the key variables that could improve 

student's adoption of learning technology - in this case, e-learning - and its effectiveness. 

Specifically, three issues will be explored. First, we examine the best predictors of 

intention of use and actual use within the VLE, in order to improve the way VLEs are 

designed or adapted for distinct audiences, so as to enhance engagement and reduce 

dropout rates. Second, we investigate the interactions between behavioural and attitudinal 

variables in the achievement of learning goals. Third, we examine the linkage between 

the technology adoption process and the learning process, in order to advance towards an 

integrated framework that might be useful for practitioners from different disciplines 

entailed on the design and/or implementation of computer-supported learning programs. 

To address these goals we selected a set of variables that might predict the 

adoption of an e-learning environment, the engagement with it, and the final marks of the 

student (as an indicator of learning effectiveness). These variables were selected based on 

their consistency in the literature – as showed previously – and because of the theoretical 

relationship between them. Mediations and moderations were explored to better 

understand the interaction among the variables. Our first hypothesis is that the scores on 

perceived usefulness, perceived ease of use, and previous computer usage will be directly 

related to intention of using the e-learning platform. Hypothesis 2 is that the scores on 
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perceived usefulness, perceived ease of use, previous computer usage, and intention of 

use will be positively related to behavioural planning; the hypothesis 3 states that 

intention of use and behavioural planning will be directly related to the scores on 

satisfaction with the course, actual use, and self-perception of learning. The fourth 

hypothesis proposes that actual use, satisfaction with the course, and self-perception of 

learning will be directly related to students’ final mark; and hypothesis 5, that 

satisfaction with the course and self-perceived learning will have a positive effect on 

actual use. Our full theoretical model is depicted in figure 2. 

 

 

Figure 2. Theoretical model 

2.4. Method 

2.4.1. Participants. 

Participants were one hundred and sixty-eight Chilean teachers from primary and high 

school, both urban and rural, which voluntarily took part in this study. All of them were 
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enrolled into a five-week online-delivered course on teaching methodologies, suitable for 

practitioners with diverse backgrounds. From them, thirty-seven were male (22%), 

although no significant differences were found due to gender. The age of the participants 

ranged from 24 to 62 (M=39.4, SD=10, Q1=30, Q3=48), and no significant correlation 

was found with the main variables of the research model. 

2.4.2. Design. 

The design chosen to attain the research goal included two measuring times along the 

course: the first at the beginning of the course – week one –, right after the first utilisation 

of the learning platform. The learning platform was Moodle based, serving as a content 

repository – texts, images, and videos – and as a social platform – discussion boards, 

private messages, chat. The contents were organised in 4 modules delivered weekly, and 

a final assessment on week five. The second measuring time was on week five, after final 

assessment was submitted.  

 The first measuring time aimed to assess attitudes towards technology, intention 

of use, and background information (Questionnaire 1). The second measuring time 

assessed individual evaluations about the course, its contents and its design, and the time 

spent on the course activities (Questionnaire 2). The final mark of each participant was 

collected after explicit permission granted.  

 As the participants were territorially dispersed, and the course was delivered via 

online, the data was collected in the same way. A link to the online questionnaires was 

sent via personal email in week one and week five. The rate of response was dissimilar, 
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and from the whole sample a group of 54 participants completed only the initial 

questionnaire, 58 completed only the second questionnaire, and 56 completed the two 

questionnaires.  

2.4.3. Instruments. 

A set of previously validated instruments was adapted to suit this specific e-learning 

environment. The instrument were organized onto two sets of questionnaires as detailed 

below. 

Questionnaire 1 

Perceived ease of use & perceived usefulness: Perceived ease of use and perceived 

usefulness were assessed by adapting items developed by Davis (1989), which tapped 

respondents' perceptions regarding how straightforward the e-learning environment 

would be for them to use (example item: “Learning to operate the e-learning platform 

would be easy for me”), and about how convenient they thought it would be (example 

item: “Using the e-learning platform would enable me to accomplish tasks more 

quickly”), respectively. Respondents rated the items on a seven-point Likert scale 

(1=”Strongly disagree”, 7=”Strongly agree”). The scores were summed. 

Intention of use: To assess respondents’ intention to use the e-learning environment, we 

used an adaptation of the statement used by Davis (1989). Item tap the extent to which 

the respondent intends to use the resource (item: ‘I will try to use the e-learning platform 

on many occasions as possible’, 1=”Strongly disagree”, 7=”Strongly agree”.). A summed 

score was obtained. 
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Behavioural planning: To augment the intention variable described above, we 

developed three new questions in an attempt to capture respondents’ level of planned 

engagement with the e-learning platform. These questions refer to a projection of the 

frequency of use: “On average, how many days a week do you plan to use the platform?”, 

“On average, how many hours a week do you plan to use the platform?”, and 

“Considering the next seven days, how much time do you think you will dedicate to the 

platform activities?”. These questions were scored on a 1 to 7 Likert scale (1= 1 day a 

week/0 hours 7=7 days a week, 10 or more hours) and summed to obtain and indicator of 

how strong is the subject intention. 

Computer use: The frequency with which respondents use the computer for a range of 

activities was measured with a 8-item questionnaire used by Tan & Teo (2000) (example 

item: “Please indicate the extent to which you use a computer to perform the following 

tasks: 1) Gather information, 2) Communicate (e.g., email, chat), 3) Download free 

software, etc.”). Each statement was scores 0 to 7 depending of the number of days a 

week these behaviours are done. The scores were summed. 

Questionnaire 2 

Satisfaction with the course: We measured students' contentment with the learning 

environment using the 6-item Course Satisfaction Scale (Johnson et al., 2008), (example 

item: “I am satisfied with the clarity with which the class assignments were 

communicated”), which uses a 7 point Likert scale (1= “Strongly-agree”; 7:=“Strongly-

disagree”). A general score is obtained by summing the scores of each item. 
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Self-perception of learning: The students’ perception about how much they have 

learned through the course was assessed with the 6-item adaptation of Alavi’s Self-

Reported Learning Scale (1997), (example item: “I learned to interrelate the important 

issues in the course material”). Items are rated on a 1 (“Strongly disagree”) to 7 

(“Strongly agree”) Likert scale, and summed to get a general score. 

Actual use: The time students dedicated to the course activities was measured using five 

items asking about the amount of hours per day, and days per week, that participants 

spent engaging in learning activities (example item: “On average, how many days a week 

did you access to the e-learning platform?”). This measure asked about both the time 

spent online and offline, in order to tap total time spent working on course materials and 

activities. Items were scored on a 1 to 7 Likert scale (1=”1 day a week” / “0 hours”; 7=”7 

days a week”, /”10 or more hours”), and then added to obtain an indicator of the strong of 

the behaviour. 

Final Mark: As regular part of the course, participants were required to complete a 

formal assessment task, which involved the application and discussion of the course 

contents. The tutors of the e-learning course assessed this work using a scale, which 

scores were from a minimum of 1.0 to a maximum of 7.0, according to how well the 

work reflected the course contents, discussions, and goals. These scores were given to the 

research team by the tutors - with the consent of the participants - as a measurement of 

the level of learning achievement. 



56 

 

2.5. Procedure. 

Participants were enrolled in a five-week e-learning course on teaching methodologies 

about sexuality and affectivity. The course consisted on five modules, which explained 

the methodology, presented and discussed relevant topics on the matter, and proposed 

practical exercises to put all the theory, readings and discussions onto real teaching 

materials by the teachers. The first stage of the study was in week one of the course, with 

the second stage in the last week of the course, using online administration of the 

questionnaires described in section Instruments. Participation was voluntary at both 

stages. The data of the participants that answered both questionnaires was matched by an 

identification code assigned to each of them. In the case that any participant answered 

only one questionnaire, the unaccounted information was treated as missing data. The 

research model, proposed relationships, and the procedure are illustrated by the figure 3. 

 

Figure 3. Research model - Study 1. 



57 

 

2.6. Results 

The data were processed using SPSS Statistics and SPSS Amos v22. We present first the 

quality of the instruments utilized in the study and the general coherence of the proposed 

relationships, and then we evaluate and develop the research model in order to confirm or 

dismiss the proposed hypotheses. 

2.6.1. Scales reliability and correlations 

Internal consistency reliability (ICR) as Cronbach's alpha scores for all measures ranged 

from 0.73 to 0.95, which is consistent with previous literature (table 3). ICR was not 

calculated for intention of use and behavioural planning since there were three or less 

items for these variables. The correlations between variables (table 4) were coherent with 

the relationships proposed in the research model in figure 3, where variables related to 

technology adoption correlate between them, and the variables related to learning 

effectiveness do the same between them. Control variables such as age, gender, teaching 

expertise area, previous knowledge about the topic, and whether or not the participants 

have had previous experience with e-learning showed no significant effect nor 

interactions. 
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Table 3. Mean, standard deviation, and internal consistency reliability of the variables 

included in the model. 

Observed Variable Mean SD ICR 

Perceived usefulness 5.74 0.31 0.91 

Perceived ease of use 5.89 0.08 0.92 

Computer experience 4.20 1.50 0.79 

Intention of use 5.93 0.80 - 

Behavioural planning 6.51 2.07 - 

Satisfaction with the curse 5.58 0.13 0.90 

Self-perceived learning 5.88 0.08 0.95 

Actual use 3.54 1.08 0.82 

Final mark 5.90 1.12 - 

 

Table 4. Correlation coefficients of the variables included in the model. 

Observed Variable 1 2 3 4 5 6 7 8 

1. Perceived usefulness 1.00 
       

2. Perceived ease of use 0.54*

* 

1.00 
      

3. Computer experience -0.04 0.17 1.00 
     

4. Intention of use 0.67*

* 

0.47*

* 

0.07 1.00 
    

5. Behavioural planning 0.26*

*0 

0.25*

* 

0.22

* 

0.17 1.00 
   

6.Satisfaction with the 

course 

0.21 0.07 -0.07 0.10 0.24 1.00 

  

7. Self-perceived learning 0.39*

* 

-0.07 -0.09 0.13 0.27* 0.66*

* 

1.00 
 

8. Actual Use 0.19 0.09 0.10 0.26 0.38*

* 

0.26*

* 

0.42*

* 

1.00 

9. Marking 0.00 0.06 0.01 -0.01 0.20*

* 

0.18 0.20* 0.22* 

Note:   *p<.05  ;  **p<.001 
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2.6.2. Analytic strategy for the research model 

Structural equation modelling (SEM) was performed using SPSS Amos v22, through 

Maximum Likelihood, to test the proposed hypotheses. SEM has become more than a 

statistical technique and nowadays is one of the most utilised methodologies to test 

theory-derived hypotheses, comprising four stages: i) the conceptualization of the model, 

ii) the identification and estimation of the parameters, iii) the assessment of data-model 

fit, and iv) the potential modification of the model (Mueller & Hancock, 2008). The main 

advantage of the structural equations is their explanatory power of the relationships 

described in the model, reporting direct and indirect effects of a group of interactions. For 

the purpose of this study, it gives an important benefit over other multivariate analysis 

techniques. 

It was decided to use parcels as indicator of the constructs included in this 

structural equation modelling. As described by Little (Little, Cunningham, Shahar & 

Widaman, 2002), the parcelling technique consists in aggregating the scores of individual 

items which belong to the same theoretical construct. As a result, the structural model is 

centred on a factor-solution opposite to an item-solution approach – for example, as in a 

Confirmatory Factor Analysis of a scale –, resulting in less parameters to be estimated, 

and avoiding potential item-level issues such as lower reliability, or greater likelihood of 

distributional infringements. In order to use this technique it is required that the variable 

is a) one-dimensional, and b) explicit and clearly defined. The variables included in our 

model fulfilled these conditions. Total scores were obtained for each variable, and then 

centred in order to avoid biases due to their differences in maximum scores.  
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Four parameters were considered to assess the model quality: a) the chi-square 

statistic, whereby a non-significant result indicates good fit; b) the relative chi-square 

ratio [CMIN/DF], which is expected to be 3 or less in case of good fit; c) the comparative 

fit index, where model fit is considered good when CFI ≥0 .95; and d) the root mean 

square error approximation, which is considered acceptable when RMSEA ≤0 .06. 

All the variables composing the research model were included in the analysis. The 

results indicated a poor fit of the model in general, with χ² (16) =96.165, p≺0.000, 

CMIN/DF=6.010, CFI=0.652, and RMSEA=0.173. As can be observed on Figure 4 and 

Table 55 , the variable perceived usefulness was a strong predictor of intention of use 

with a good standardised estimate (beta-value or β) associated, but neither perceived ease 

of use nor previous experience with computers were significantly related to intention of 

use. It is interesting to observe the null relationship between previous experience and 

perceived usefulness of the learning environment. Both perceived usefulness and 

previous experience with computers were significantly related to behavioural planning, 

although the amount of explained variance was low. The almost null relationship between 

intention of use and behavioural planning is particularly interesting. On the right hand of 

the model, the major finding is the lack of relationship between intention of use and all 

the variables composing the Engagement cluster, whereas behavioural planning has a 

positive relationship significantly related to satisfaction, self-perceived learning, and 

actual use. Finally, satisfaction with the course and actual use were directly related to 

final mark, with a small effect of satisfaction on actual use. 
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Figure 4. Standardised beta values of the research model 

Table 5. Results of the research model 

Observed Variable 

Standardised 

Estimate (β) Est./S.E. 

Two-tailed  

p-value 

    Intention of Use ON 

   Perceived Usefulness 0.60 7.29 0.00 

Perceived Ease of Use 0.14 1.63 0.10 

Computer Use 0.06 0.79 0.43 

    Behavioural Planning ON 
   

Perceived Use 0.27 2.08 0.04 

Perceived Ease of Use 0.09 0.79 0.43 

Computer Use 0.24 2.57 0.01 

Intention of Use  -0.05 -0.40 0.69 
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Actual Use ON 

Intention of Use  0.14 1.57 0.12 

Behavioural Planning 0.35 2.94 0.00 

Satisfaction 0.10 0.93 0.35 

    Satisfaction ON 

   Intention of Use  0.06 0.48 0.63 

Behavioural Planning 0.42 3.99 0.00 

    Self-perceived Learning ON 

   Intention of Use  0.10 0.89 0.38 

Behavioural Planning 0.47 4.52 0.00 

    Final Mark ON 

   Satisfaction 0.25 2.74 0.01 

Actual Use 0.23 2.49 0.01 

Self-perceived Learning -0.10 -1.15 0.25 

    R-SQUARE 

   Intention of Use  0.48 

  Behavioural Planning 0.15 

  Satisfaction 0.19 

  Self-perceived Learning 0.25 

  Actual Use 0.23 

  Final Mark 0.13     
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On the basis of these results the testing model was modified, excluding the 

variables perceived ease of use, intention of use, and self-perceived learning, which had 

been demonstrated to be non-significant components in the model. The fit of the revised 

model was significantly improved, with χ² (8) = 6.850, p=0.553, CMIN/DF=0.856, 

CFI=1.000, and RMSEA=.000. The new model (Figure 5) is much simpler, with less 

crossed paths mainly due to the exclusion of intention of use, and with perceived 

usefulness and previous computer use as direct predictors of behavioural planning, and 

then behavioural planning directly related to satisfaction with the course and actual use, 

and then actual use positively related to final mark. Satisfaction with the course is also 

directly related to actual use and final mark, although its p value is slightly over 0.05. The 

detailed information can be seen on Table 66. Despite the positive and significant 

relationships between the variables comprising the model, overall percentages of 

explained variance were disappointingly low, with R²=0.12 for behavioural planning, 

R²=0.07 for satisfaction with the course, R²=0.22 for actual use, and R²=0.11 for final 

mark. 

 

 

Figure 5. Standardised beta values of the corrected research model. 
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Table 6. Results of the optimized research model. 

Observed Variable 

Standardised 

Estimate (β) Est./S.E. 

Two-tailed  

p-value 

Behavioural Planning ON 

  

 

Perceived Usefulness 0.27 3.00 0.00 

Computer Use 0.23 2.51 0.01 

   
 

Satisfaction ON 

  

 

Behavioural Planning 0.26 2.21 0.03 

   
 

Actual Use ON 

  

 

Behavioural Planning 0.38 3.39 0.00 

Satisfaction 0.18 1.90 0.05 

   
 

Final Mark ON 

  

 

Satisfaction 0.18 1.94 0.05 

Actual Use 0.11 2.50 0.01 

   
 

R-SQUARE 

  

 

Intention of Use 0.12 

 

 

Satisfaction 0.07 

 

 

Actual Use 0.22 

 

 

Marking 0.11 

 
 

 

According to these results, hypothesis 1 that perceived usefulness, perceived ease of 

use, and previous use of computer would be directly related to intention of use, is 



65 

 

partially supported, due to the weak relationship between previous computer usage and 

intention of use. The second hypothesis, which states that perceived usefulness, perceived 

ease of use, and previous use of computer would be directly related to behavioural 

planning is also partially supported, because of the non-significant relationship between 

ease of use and behavioural planning. The third hypothesis, which states that intention of 

use and behavioural planning would be directly related to satisfaction with the course, 

actual use, and self-perceived learning, is also partially supported, due to the non-

significant effect of Intention of use on the other variables. The fourth hypothesis, stating 

that satisfaction with the course, self-perceived learning, and actual use, would be 

predictors of learners’ final mark finds support for the effect of actual use, while the p-

value of satisfaction with the course is slightly over 0.05, and the effect of self-perceived 

learning is non-significant. The fifth and last hypothesis, proposing that satisfaction with 

the course would have a positive effect on actual use was not supported, since its p-value 

was slightly over 0.05. Theoretical and practical implications will be discussed next. 

2.7. Discussion and implications 

In this study with Chilean teachers embarking on an e-learning environment, we found 

that i) behavioural planning was a better predictor of actual use of the learning platform 

than was intention of use; ii) it seems to be a mismatch between the self-perception of 

learning and actual learning, showing that the usage rate of the platform was a better 

predictor of performance than the learner's perceptions; and iii) that both adoption and 

effectiveness of learning technology can be seen as parts of an integrated technology-

enhanced learning model in which personal attitudes are related to behaviour, and 
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behaviour is related to learning achievement. These findings are important both 

theoretically and practically, as we will discuss in turn. 

2.7.1. Adoption of learning technology 

Our findings do support Davis´s model for predicting intention of using technology (in 

this case an e-learning environment). Nonetheless, the poor relationship between 

intention of use and the actual use suggests that other variables may be involved on 

learning technology adoption. We found that behavioural planning predicted actual use, 

suggesting that variables other than attitudes, such as those tapping motivation and 

intention, might influence the adoption of learning technology. At the same time, actual 

use was significantly related to the students' final mark (a measure of learning 

achievement), reinforcing the idea that the first step towards improving the effectiveness 

of computer-based instruction is to achieve higher rates of adoption and continued, 

engaged use. 

As a second issue, it is important to consider that the correlation between learners' 

declared intention to use the e-learning environment assessed at the beginning of the 

course, and their declared time dedicated to the course reported five weeks later, was 

relatively low (r = 0.38). Thus, what participants thought they would do was not a good 

predictor of what they actually did. The effect of satisfaction on actual use (ß=0.18, 

p=0.05) combined with the fact that the high initial expectations of use were not reflected 

in the actual use of the platform, suggest that the adoption of learning technology varies 

through time and that other variables are involved, which would likely explain an 
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important amount of the remaining variance. Therefore, the adoption of learning 

technology should not be seen as a passive, static response of the user that starts with an 

intention and ends with the execution of a plan of action, but as a dynamic and iterative 

process that may evolve over time and through changing circumstances. In future 

research, a design including repeated measures should help to clarify whether or not these 

ideas are correct. 

2.7.2. Learning achievement 

The results revealed only a small effect of the attitudinal variables - satisfaction with the 

course and self-perceived learning - on the learning outcome. There seems to be a 

mismatch between the self-perception of learning and the objective measure of the 

learning achievement, in other words, learners' view about their own learning was not 

accurate when compared with the mark obtained. This might be related to a self-

discrepancy between people's representation of their self and their actual self (Higgins, 

1987; Stanley & Burrow, 2015).  

Satisfaction with the course was slightly related to actual use (ß=0.18, p=.05) and 

to final mark (ß=0.18, p=.05), which suggest that satisfied learners spend more time 

doing the course activities, and hence they achieve better results. However, from the 

current study, we cannot determine how these results were achieved. It might be due to 

differences on the individual attributes and the social capital of the learners - such as 

learning orientation and shared understanding, respectively (Kankanhalli, Pee, Tan, & 

Chhatwal, 2012), or to the role of motivation as an enhancer of self-directed learning 
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(Shinkareva & Benson, 2007) and self-perceived learning (Chang, Chen, Huang & 

Huang, 2011).  

The time spent using the platform and developing the learning activities was the 

most relevant variable explaining students’ mark. Nonetheless, the explained variance 

was low (R² = 0.11), which suggests that other factors not included in the model must be 

considered. For instance, variables related to the way that people learn that might 

influence the learning outcome, such as their learning approach (J. Biggs, Kember, & 

Leung, 2001; Kember, Biggs, & Leung, 2004) and learning styles (Dağ & Geçer, 2009; 

Felder & Spurlin, 2005; Tulbure, 2011). Additionally, the marking criteria, while known 

beforehand, might have been inconsistently applied. Finally, the initial knowledge of the 

participants about the topic of the course was assessed by a self-perception rating, 

correlating low but significantly (r =0.21, p<0.01), but had a non-significant contribution 

to the path analysis and made a worse fit for the overall model. In future, an objective 

baseline of the knowledge on the topic must be included in order to compare the results 

and get more reliable results. 

2.7.3. Integrated model of computer-based learning 

One of the main objectives of the present study was to develop a theoretical and empirical 

bridge between the learning technology adoption process and the effective use of learning 

technology for the achievement of learning goals. From the perspective of technology 

usage, it must enhance the way people develop their activities, hence a well-integrated 

model would be useful for a better design and improved adaptability of the VLEs to 
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specific learner characteristics, goals, and conditions. The proposed model was based on 

the individual attitudes and evaluations widely considered in the literature to explain 

these phenomena, but nonetheless resulted in a low overall power (R² = 0.11).  

From this, two ideas emerge as central for discussion. The first idea – relating to 

one of our main hypotheses – is that it is possible in a logical and empirical way to 

connect adoption and effectiveness of learning technology. The path from individual 

attitudes towards learning achievement, through behavioural planning and actual 

behaviour, indicates that strong planning and then implementation of such a plan is 

related to a better outcome. Our future research will focus on understanding which 

aspects of the interaction between learners and virtual learning environments are more 

important to improve the engagement with and the effectiveness of learning technology, 

and whether they are related to the learner (user) or to the learning environment (design).  

The second idea – which is a consequence of the first – is that the model must be 

augmented, probably through the inclusion of two kinds of variables: i) individual 

variables related to cognition and motivation, and ii) those related to the dynamic aspects 

of the process, even including some modifications to the testing design. Regarding the 

individual variables, locus of control has been found directly related to attitudes towards 

the use of virtual environments and to continued use (Broos & Roe, 2006; Coovert & 

Goldstein, 1980; Eom & Reiser, 2000; Joo, Joung, & Sim, 2011). In the same line, 

internal dispositions such as learning approach (Biggs et al., 2001; Kember et al., 2004) 

and learning styles  (Dağ & Geçer, 2009; Tulbure, 2012) have been related to 

instructional designs and learning achievement. Perhaps the inclusion of these variables 
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will give some insight about individual attitudes towards learning technology, the rate of 

use that learners are willing to accomplish, and how learners deploy their cognitive 

resources to achieve the proposed learning goals. Finally, to understand the time-

dependent aspects of the model (e.g. actual use among different weeks or key events of 

the course, or satisfaction with the course regarding specific activities) it is important to 

utilise a design with repeated measures capturing the role and response of variables such 

as actual use and satisfaction with the course over the time (Nezlek, 2012).  
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3. EXPLORING THE EFFECTS OF LEARNER CHARACTERISTICS 

ON THE ADOPTION OF LEARNING TECHNOLOGY. 

 

3.1. Introduction 

Building on the results of Study 1, this chapter presents two studies exploring variables to 

modify the initial research model in order to improve it. Specifically cognitive variables 

such as Academic Locus of Control, Learning Approach, and Learning Style will be 

included on the left side of the model. Additionally, the variable Perceived Fit will be 

included among the adoption parameters on the left side of the model.  

 The rationale for including these variables and the theory that supports them are 

presented in the next section, followed by the research question and hypotheses that lead 

to the studies of this chapter.  Following, the method and results of each study will be 

presented, finishing with the discussion section, integrating the highlights of both studies.  

3.2. Theoretical framework. 

As explained in the Introduction to the thesis, each chapter contains a brief theoretical 

section in order to contextualise, extend or complement the understanding of the variables 

included in the studies. Below the theoretical foundations to include new variables into 

the research model will be presented, highlighting their main definition, and some studies 

demonstrating their connection with the present research project. 
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3.2.1. Academic Locus of Control. 

The concept of locus of control was introduced in a series of studies from 1950s and 

1960s about the influence of personal beliefs on own behaviour and chance, and its 

consequences on an individual’s current situation. Locus of control refers to the degree of 

personal responsibility that people accept for what happens to them (Lefcourt, 1966). 

Known as well as “control of reinforcement”, it states that people’s attribution about the 

source of the event that originated a current state or consequence is going to affect how 

they evaluate their own behaviour and consequently reinforce it in a positive or negative 

way (Kormanik & Rocco, 2009). 

 Academic Locus of Control refers to a continuum – from internal to external – of 

students’ perceived responsibility for their own academic performance (Arlin & Whitley, 

1978). In other words, when students have a tendency towards external academic locus of 

control, they think their success or failure is due to fortune or other’s actions, and that 

there is nothing or little they can do to change it. On the contrary, students with a 

tendency towards internal academic locus of control think their academic success or 

failure depends on their own actions and personal responsibility. The repercussion on 

their behaviour is related to how, by taking responsibility of their own academic results, 

they take control of their actions in order to achieve the learning goals. 

 In the context of learning supported by computer technology, it should be related 

to attitudes and behaviours related to the use of such environment. One of the first works 

linking locus of control with attitudes towards computers was the one conducted by 

Coovert & Goldstein (1980), which found that people with higher scores for internal 
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locus of control have a more favourable attitude towards the use of computers than those 

with extrinsic locus of control. Since then, more research has been done exploring this 

link with similar results.  

 For instance, Drennan (2005) proposed that internal locus of control was 

positively related to attitudes towards computers at the beginning of a flexible online 

course1, and that better attitudes at the beginning of the course were related to higher 

satisfaction with the course at the end of it. The results of the study suggest that when 

students face a less structured learning course and they have an internal locus of control, 

then they will feel more comfortable - they will have better attitudes - than those with 

external locus of control, and they will have better results as well. This could be related to 

the lack of external guidance, and with the resultant demand for self-regulated learning 

behaviour, making this learning scenario more suitable for students with low dependence 

on external guidance and proactive learning strategies. 

 The role of academic locus of control on the continued use of a computer-based 

course was also investigated by Levy (2007). He found that, on the contrary to what 

previous studies suggested, locus of control has no role on the decision of dropout of an 

e-learning course or to continue with it. It was found that lack of satisfaction with the 

course was the main reason for dropping out. It suggests that the trends observed in 

                                                 

 

1 A “flexible online course” involves learners studying at their own pace and time, using the amount of 

learning materials that they consider as necessary, and requiring instructional support at their own 

discretion.  
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previous studies are dynamic and can evolve within the length of the course, and also that 

locus of control would have an effect on the initial attitudes towards the learning 

environment, but later on it would be subordinated to process-related effects. 

 In a later study, Joo and colleagues (2011) explored the relationship between 

locus of control, user satisfaction, and persistence. They found a direct relationship 

between intrinsic locus of control and user satisfaction, and between internal locus of 

control and learner persistence. These findings suggest that those students with a 

perception of self-control over their academic results and learning-related behaviour 

report more enjoyment and lower rates of dropout. 

 In summary, the role of academic locus of control seems to be related to 

motivation and control behaviour. It has been suggested that people with traits of internal 

locus of control are more self-aware of the consequences of their own behaviour, and that 

they can adapt better to learning situations where the responsibility of the learning relays 

on them. Nonetheless, what appears to be a behavioural tendency has been observed to 

change over time and give way to other variables to shape learning behaviour. The 

following studies will try to understand better the relationship between academic locus of 

control and the attitudes involved in the process of adoption of learning technology. 

3.2.2. Learning Style. 

Another variable which is going to be explored in the following studies is called 

“learning style”, as it has been proposed to be related to learning media preferences and 

to learning achievement. Learning style has been defined as “the complex manner in 
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which, and the conditions under which, learners most efficiently and most effectively 

perceive, process, store and recall what they are attempting to learn” (James & Blank, 

1993, pp. 47–48). In 1979, Keefe complemented this definition by adding that learning 

styles are relative stable indicators – which comprise cognitive, affective, and 

psychological behaviours – of how learners perceive, respond to, and interact with a 

learning environment (Felder & Spurlin, 2005). Even though other definitions may 

include certain nuances, the two above comprise the most relevant characteristics of 

learning styles: a complex system of individual characteristics including cognitive, 

affective and behavioural indicators, which give account of information processing 

tendencies or preferences while interacting with a learning environment. 

 The field of learning styles is very complex, due to the large number of variants of 

its definition, which varies depending of the focus of interest of the authors, and the 

variables and relationships proposed in their models. For instance, Coffield and his 

colleagues (2004) identified 71 different instruments to assess learning styles, with 

substantial differences related to their background theory and with various limitations due 

to their design, applications, or reduced utilisation – leading to lack of empirical support. 

They classified five families of learning styles, named: 

(i) Constitutionally-based learning styles and preferences, referring to some set of 

characteristics based on genetics and/or developmentally imposed, which are fixed or 

difficult to change.  

(ii) Cognitive structure, understood as ways of thinking that are deeply embedded in the 

cognitive system and not susceptible of training or modification. 
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(iii) Stable personality type, which argues that learning styles are an expression of 

personality characteristics.  

(iv) Flexibly stable learning preferences, an approach based on the idea that learning 

styles are not fixed patterns of conduct, but preferences for some learning activities and 

related conducts that can change among learning situations. 

(v) Learning approaches and strategies, which follow the statement that learning styles 

are related to general motivational drivers and behavioural tendencies that can be 

modified and shaped. 

 Approaches (i), (ii), and (iii) have failed to probe the genetic or structural 

foundation of learning styles, so they will not be considered in this research. Approach 

(v) in some respect is not always considered as learning styles due to their lack of 

stability among learning situations, so learning approaches will be considered in a 

separate subsection of this chapter. From the many models available among the flexibly 

stable learning preferences (iv), the more relevant in the literature are the models 

proposed by Alison and Hayes, by Kolb, by Honey and Mumford, and by Felder and 

Silverman. All of them are good and reliable models, but not all their measurement 

instruments are publicly available, and some of them requires too much time to be 

included in a set of questionnaires like the one to be used in this research. Considering the 

previous, it was decided to use the Felder and Silverman Learning Styles Model, which 

has been widely used, it is openly available for research purposes, and for which there is 

robust evidence of good psychometric qualities (Felder & Spurlin, 2005; Graf, Viola, & 

Kinshuk, 2006; Graf, Viola, Leo, & Kinshuk, 2007; Litzinger, Lee, & Wise, 2005; 
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Litzinger, Lee, Wise, & Felder, 2007; Viola, Graf, & Leo, 2006). The model states that 

individuals engaged in learning activities will select, from all the external and internal 

sources of information, those materials that have a better match with their way to utilise 

information, ignoring the rest (Felder & Silverman, 1988). These information-processing 

preferences have five dimensions according to how learners perceive the information, the 

type of information they are dealing with, the organization of the information, how it is 

processed, and how the students’ progress towards the understanding of the information. 

For each preferred learning style, the authors proposed a corresponding teaching style. 

They suggest that when learning and teaching styles are aligned, then the student can 

obtain the best of the learning experience, being more comfortable and engaged and, 

consequently, improving their learning performance. A summary of the five dimensions 

of Learning and Teaching Styles, retrieved from Felder & Silverman’s original article 

(1988, p. 675) is reproduced in Table 7. Later, these five dimensions were reduced to four 

by the authors, by the exclusion of the dimension “Organization”.  
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Dimensions of Learning and teaching Styles| 

Preferred learning Style Corresponding Teaching Style 

Sensory 
Perception 

Concrete 
Content 

Intuitive Abstract 

Visual 
Input 

Visual 
Presentation 

Auditory Verbal 

Inductive 
Organization 

Inductive 
Organization 

Deductive Deductive 

Active 
Processing 

Active 
Student 

Participation 
Reflective Passive 

Sequential 
Understanding 

Sequential 
Perspective 

Global Global 

 

Table 7. Dimensions of learning and teaching according to Felder-Silverman’s Learning 

Styles Model. 

 Researchers have explored the relationship between learning styles, learning-

technology preferences, and learning-related behaviour in digital environments. For 

instance, Sun, Lin and Yu (2008) looked for a relationship between learning styles and 

academic performance as part of a wider research. They used a different learning styles 

model (Kolb’s model of learning styles) finding no difference between learning styles 

and academic performance. Similar results were found by Akkoyunlu and Soylu (2008), 
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who found evidence of a relationship between learning style and attitudes towards the 

virtual learning environment.  

 A study led by Brown (2006) looked for differences in learning performance 

between different learning styles while using a virtual learning environment. A group of 

students was assessed according to Felder-Silverman’s model – utilising the Felder-

Soloman’ Index of Learning Styles – regarding their visual-verbal dimension, and then 

assigned to a matched or mismatched learning environment. At the end of the course their 

learning achievement was compared, finding no significant difference between the groups 

of students.  

 Saeed, Yang and Sinnappan (2009) conducted a study investigating the 

relationship between Felder-Silverman’s learning styles model and preferences on 

learning technologies with higher education students. They proposed that learning style 

would influence the preference for and the use of learning technology, increasing the 

preference/use when learning style and learning technology characteristics are aligned. 

They also proposed that the appropriate use of learning technology would have a positive 

impact on academic performance. The results showed that learning styles were related to 

learners’ preference by specific characteristics of the learning environments, but that 

students are generally flexible enough to effectively use different formats of digital 

environments without affecting their overall performance. It was also observed that 

learning styles did not affect the academic achievement of the participants, with no 

significant difference between them in the outcome. The authors suggested that most of 

the learners did not have a distinct predominance of a single learning style – on the 
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contrary, there was a majority of well-balanced profiles –, so they were capable to deploy 

their own learning strategies regardless the characteristics of the digital environment.  

 Consistent with previous research, these results lead to the conclusion that 

students can adapt their information processing strategies to different learning scenarios. 

This adaptation might be facilitated by the features that different learning systems share, 

and by the varied media included in them (text, video, images). 

 Taken together, this body of literature allows us to speculate that learning styles 

might not be related to academic success, and that they might be related to characteristics 

of the learning environments that can be self-perceived as matching with the way students 

prefer to analyse the information. In light of this, in the following study, learning styles 

will be included to test the hypothesis that they are related to learners’ preference for a 

given learning environment. Preference should be maximised when the learning style and 

the characteristics of the learning environment are aligned. The relationship between 

learning styles and learning achievement will be assessed in a forthcoming study, 

included in the next chapter. 

3.2.3. Learning Approaches. 

The concept of “learning approach” has been considered as part of the learning style 

theories, but most of the learning approach researchers claim that there is a fundamental 

difference between learning style and learning approach. While “learning styles” informs 

about learners’ preferences on information processing, students’ learning approaches 

inform about how they engage with the learning process, comprising motivations and 
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general learning strategies. The first mention of “approach to learning” came from a 

study made by Marton and Saljo (1976, cited by  Biggs, 1990) which explained the 

differences between two types of students when addressing a text learning task. In the 

study, it was found that one group of students had the intention of focus on the actual 

words used by the author, so they reproduced sections of the text. The other group was 

focused on the meaning, so they were more focused on the concepts included in the text. 

The correspondence between intention and process was called “approach” to learning. 

 In his paper from 1990, Biggs described three approaches to learning: surface, 

deep, and achieving. Later on, in a revised version of his theory, the approaches to 

learning were reduced to surface and deep. The surface approach to learning has been 

characterised as driven by extrinsic motivations, avoiding failure but trying not to work 

too much, and focusing on selected and relevant details. On the other hand, the deep 

learning approach is driven by intrinsic motivations, aiming to satisfy curiosity about a 

subject, and trying to maximise understanding even when it involves more effort (Biggs, 

1990; Biggs et al., 2001; Kember et al., 2004). 

 In a study conducted by Gurpinar et al. (2013), deep learning approach was found 

to be associated to higher levels of satisfaction in problem-based learning, an 

instructional strategy which makes students self-direct their cognitive and affective 

resources to solve a given task. Even though this relationship goes beyond the use of 

learning technology, it is important to consider how the instructional design – learning 

goals, activities, and materials – can influence the attitudes of the students to engage with 

a learning setting. It might be that the perception of a virtual learning environment is 
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influenced in a basal level by how individuals became deep-motivated by the 

instructional design of the learning environment. As Jackson (1998) noted, a learning 

environment might be evaluated from different perspectives, including easiness of use, 

efficiency, learner’s preferences, attractiveness, and cost-effectiveness. As students can 

have a deep or surface approach towards the learning program, then their attitudes to the 

environment that supports it might be influenced by their learning approach. 

 For instance learning approaches, assessed by Biggs’ Study Process Questionnaire 

(SPQ), were linked to attitudes towards the value of learning technology and to academic 

achievement (Ellis, Weyers, & Hughes, 2013). In particular, deep learning approach was 

observed as related to positive perceptions of learning technologies and with better 

marks. On the other hand, surface approach was observed as related to poorest 

conceptions on the suitability of learning technology to achieve the learning goals and 

with lower marks. The authors concluded that those students with predominance of 

surface profile need to be reinforced externally on the usefulness of the contents and 

activities of the course in order to engage them more – for instance, highlighting the 

target of the activity and how it is related to the overall goal. 

 The following studies will assess the relationship of learning approaches with the 

adoption parameters tested in Study1, and chapter 4 will assess their relationship with the 

learning process in general. 
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3.2.4. Perceived Task-technology Fit 

The degree of usefulness of a determined information system is a key aspect at the time 

of understanding its future usage. This has been demonstrated by Davis’ TAM research, 

where perceived usefulness impresses as the most important predictor of intention of use. 

Nonetheless, this is not the only way to assess people’s perception of the instrumentality 

of a tool for a given context. The degree of coincidence between the technology features 

and the user requirements of the system is known as “perceived task-technology fit” 

(TTF), and it has important implications for the potential utilisation of a virtual learning 

environment, being linked with usage rates and performance. 

 An early study conducted by Goodhue & Thompson (1995) found that user 

evaluation of TTF is related to characteristics of the task and characteristics of the system 

at the same time, and it is also related to individual performance (in a work context). 

Another study, from Klopping & McKinney (2004), modified Davis’ TAM by adding 

TTF to it, and considering it as a variable able to explain perceived usefulness and ease of 

use of an e-commerce platform, resulting in positive valuable inclusion into Davis’ 

model, notwithstanding its effect on intention of use was not assessed. 

 Task-technology fit has been linked with intention of continued use of a learning 

system  (Larsen, Sørebø, & Sørebø, 2009), having an important influence on individual’s 

satisfaction. Larsen and colleagues found that when users have a positive evaluation of 

TTF they have higher levels of satisfaction when using it, and they are keener to use the 

system in the future. Nonetheless, this study assessed the variables only of those who 

actively and consistently used the system along the semester, and there was no 
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measurement of intention of use or of actual use. As our intention is to find evidence of 

an eventual link between the initial TTF perception and intention of use, and between 

initial TTF perception and behavioural planning, this study will not be considered as a 

demonstration of it, but will give some good insight about the bond between TTF and 

intention of use. 

 Yu & Yu (2010) conducted a study combining TTF with the theory of planned 

behaviour and technology acceptance model, in order to understand people’s usage of 

online learning systems. They stated that technology and individual characteristics might 

interact with or moderate the relationship between the learning environment and the user 

perceptions. They did not find a significant relationship between TTF and behavioural 

intention, but they did find a positive relationship with attitudes towards the system. 

Similar results were obtained by Lin & Wang (2012) in a study investigating the effect of 

attitudes and TTF on continued use and acceptance of learning systems. They realised 

that coherence between the features of the learning system and the goals of the learning 

instruction improves people’s actual use and intention of continued use. 

 Sometimes the utilisation of a virtual learning environment is not optional and 

higher rates of use do not imply a better adoption of it. In the same way, when the system 

has a poor fit between what it does and what it should do, the performance is not going to 

be improved by its use. Nonetheless, how the potential user evaluates the adequacy of 

any tool for his/her purposes is going to be fundamental for the decision of using or not 

using that system.  
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 On the other hand, even though it might be very difficult to have an accurate 

picture of the relevant characteristics of the users of a learning environment, 

understanding how some of these might increase the liking for particular setting would be 

worthy. The selected variables “learning approach” and “learning style” would be related 

to the match between the learning environment and personal dispositions on how to 

proceed in a learning situation (learning approach), and between the learning 

environment and personal preferences in order to access the information and processing it 

(learning style). 

3.3.  Overview of studies 2 and 3. 

The present chapter explores the relationship between learning dispositions, attitudes 

towards virtual learning environments, and the adoption of them. Two studies were 

designed for this purpose. Study 2 focuses on the relationship between a cluster of 

variables assessing academic locus of control and learning approach, and perceived ease 

of use, perceived usefulness, perceived fit, self-efficacy, and intention of use.  In a 

between-participants design, participants were randomly assigned to two groups to 

evaluate the suitability of two different learning environments in helping them to 

complete a learning-related task.  

The focus of study 3 is similar, but employs a different methodology. In study 3, 

participants first complete measures (similar to study 2), then view a video explaining the 

features of a virtual learning environment, and finally, they complete a questionnaire to 

evaluate the learning environment. The purpose of using these two methodologies to gain 

insight into the relationship between learning dispositions and attitudes towards learning 
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environments is to test the independence of learning dispositions from learning 

environment design in different settings, and the dependence of attitudes from learning 

environment characteristics and goals.  

STUDY 2.  

The goal of study 2 is to delineate the relationship between learning approach and 

academic locus of control with the adoption parameters. In this study, we examine the 

attitudes towards two different virtual learning environments for the fulfilment of a 

fictitious learning-related task in a between-participants design. The VLEs are 

differentiated by their opposite degrees of constraint on the learning-task flow. As well as 

examining the effects of VLE on the adoption parameters, we also look at the potential 

effects of the individual difference in learning characteristics discussed above, namely 

learning approach and academic locus of control, on the attitudes towards the VLE, 

namely perceived ease of use, perceived usefulness, computer self-efficacy, and 

perceived fit. 

To this end, the first hypothesis is that a positive correlation will be observed 

between academic locus of control and deep learning approach. Our hypothesis 2 is that 

an inverse correlation will be observed between academic locus of control and surface 

learning approach. Based on what has been observed about the effect of the learning 

environment characteristics and the attitudes towards them, out third hypothesis is that 

there will be significant differences on the scores of perceived ease of use, perceived 

usefulness, perceived fit, self-efficacy, and intention of use according to the virtual 

learning environment evaluated. According to the theories about the role of cognitive 
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dispositions on behaviour, our hypothesis 4 states that academic locus of control will 

have a positive effect on the attitudinal variables; hypothesis 5 proposes that deep 

learning approach will have a positive effect on the attitudinal variables; and hypothesis 

6, that attitudes will significantly predict intention of use. 

3.4. Method 

3.4.1. Participants 

Participants were 228 volunteer students from undergraduate and postgraduate level from 

a British university, 67.1% of them were female. The age of participants ranged from 17 

to 33 with a mean age of 21.35 and a standard deviation of 3.35. All subjects were 

recruited through an online research participation system, and their participation was also 

online. 

3.4.2. Design and Procedure 

This is an online study, in which participants faced a fictional task to be completed by 

utilising a virtual learning environment. The study can be split into three stages, in order 

to explain its flow. In the first stage the participants completed a measure of learning 

approach and academic locus of control. In the second stage, they were randomised to be 

allocated into either a structured or an unstructured virtual learning environment in which 

they should have to complete the hypothetical task. The simulated “structured VLE” 

included specific folders with reading resources and class materials, and everything was 

ordered in step-by-step program-controlled environment. The “unstructured VLE” was 

the complete opposite, and it only comprised a web browser, the more flexible tool to 
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find the resources to complete the given task, allowing students to access to different 

kinds of materials depending of their own interests and preferences, being a completely 

learner-controlled environment. Finally, the participants reported Perceived Usefulness 

(PU), Perceived Ease of Use (PEOU), Perceived Fit (PF), Computer Self-Efficacy (CSE) 

and Intention of Use (IOU) associated to the specific VLE they were allocated.  

3.4.3. Instruments 

A set of questionnaires and scales were selected to assess the variables included in this 

study. The selected material was adapted when necessary to fit with the research setting.  

Perceived Usefulness and Perceived Ease of Use were previously used in Study 1, and 

described on section 2.4.3.  

The rest of the instruments are described below: 

Perceived Self-Efficacy: The degree of confidence that students’ have on their own 

ability on using digital learning environments was assessed with a scale utilised by Liaw 

(2008). It consists in three items scored from 1 (Strongly disagree) to 5 (strongly agree). 

The score is obtained after adding the items, with a minimum score of 5, indicating low 

self-confidence, and a maximum of 15, indicating high self-confidence (example item: “I 

feel confident using the contents of the learning platform”). 

Perceived Fit: Student’s perceptions about the suitability of the learning environment to 

achieve the task aims were measured by a perceived fit scale extracted from Lin (2012). 

It comprises seven Likert-type items scored from 1 to 5 according to their degree of 

agreement between the scale’s statement and the student perception (example item: “This 
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learning environment provides good functions to help me complete my learning tasks”). 

The items were added to obtain a general score. 

Intention of Use: The behavioural driver on using the virtual learning environment of the 

participants was measured by a scale also used by Liaw (2008). It is a three items Likert-

type scored from 1 to 5, which are summed to obtain the scale’s score with high scores 

directly indicating a positive behavioural intention (example item: “I would like to use 

the content of the learning platform to assist my learning”). 

Academic Locus of Control: The students’ perception on the degree of relationship 

between their academic output and their own or some else’s behaviour was assessed with 

Levy’s ALOC instrument (2007). It comprises twelve items on a 5-points Likert-type 

scale from “Strongly Disagree” (1 point) to “Strongly Agree” (5 points). The total score 

is obtained by adding the score of each item, ranging from 12 – as an External Academic 

Locus of Control –, to 60 – as in Internal Academic Locus of Control (example item: 

“Some of my good grades may simply reflect that these were easier courses than most”). 

Learning Approach: The set of motivations and strategies that students typically deploy 

in a learning context were assessed by the R-SPQ-2F (Revised Two-Factor  Study 

Process Questionnaire) developed by Biggs et al. (2001). It is comprised by 20 items 

clustered in two factors named “Deep” and “Surface” – approach – which are composed 

by two subscales of 5 items each, regarding the source of motivations (intrinsic or 

extrinsic) and strategies (narrow target or maximizing meaning). The items use a Likert-

type response from 1 (“this item is never or only rarely true of me”) to 5 (“this item is 

always or almost always true of me”). Each participant scores in both factors 
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independently by adding the score of the items included in each dimension, as the author 

states that every person poses deep and surface characteristics, nonetheless one of the 

factors can be predominant. The “Deep Approach” can be exemplified by the item “I find 

that at times studying gives me a feeling of deep personal satisfaction”, and the “Surface 

Approach” by “I generally restrict my study to what is specifically set as I think it is 

unnecessary to do anything extra”.  

3.5. Procedure 

The study comprised three parts. In the first part, participants completed two 

questionnaires, one on academic locus of control and another one on learning approach. 

In the second part, the participants were randomly allocated into two groups, A and B. 

Both groups had the same hypothetical task, as it follows: 

“Imagine you are taking a course on "Research Methods". The final 

assessment consists on comparing two different methods to address a 

study and to write a report justifying your choice”. 

To address the task, group A was told to use a learning platform that contained all the 

required material to complete the task – such as papers, lecturer notes and presentations – 

and a proposed order to access the contents. This environment was named as “Structured” 

(Figure 6). On the other hand, group B was indicated to complete the task making use of 

a web browser, with complete freedom to choose the source and amount of information. 

This setting was called as “Unstructured” (Figure 7).  In the third part of the study, the 

participants had to answer a set of questionnaires about attitudes and behavioural 

intention. Figure 8 shows the process flow of the study. 
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Figure 6. Screenshot of the structured environment. 
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Figure 7. Screenshot of the unstructured environment. 
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Figure 8. Study 2 Process flow. 
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3.6. Results 

The data was analysed using SPSS and AMOS v.22. The psychometric quality of the 

instruments will be presented in the following section. The analytic strategy and the 

assessment of the proposed research model will follow. 

3.6.1. Scales reliability 

The internal consistency of all instruments was assessed by using Cronbach’s alpha. The 

values ranged from 0.70 to 0.90, consistent with has been reported in similar studies. 

Detailed information about the mean, standard deviation, and internal consistency of all 

the scales can be found in Table 8. 

Table 8. Mean, standard deviation, and internal consistency reliability of the variables 

included in the model. 

Variable Mean SD ICR 

Academic Locus of Control 37.86 5.93 0.74 

Deep Learning  Approach 27.17 6.34 0.80 

Surface Learning Approach 32.16 5.87 0.79 

Self-efficacy 12.31 2.26 0.89 

Perceived Usefulness 12.34 3.16 0.90 

Perceived Ease of Use 16.12 2.81 0.88 

Perceived Fit 24.46 3.77 0.70 

Intention of Use 11.93 1.81 0.74 
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The psychometric quality of the R-SPQ-2F, which assesses learning approach, 

was judged at both item-level and structure-level, as it was proposed by Biggs (2001) in 

his original article presenting the instrument. In this article, the author specifies that 

learning approach is composed by two independent factors, “Deep” and “Surface” 

approach with 10 items each. These factors are likewise composed by a dimension called 

“Motivation” and another one called “Strategy”, each of them represented by a subscale 

of 5 items (Figure 9). 
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Figure 9. Biggs’ R-SPQ-2F (learning approach) ítem-level strucutre 
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In the current dataset, at item-level a simple Cronbach’s Alpha indicates a good 

reliability of the two-factor model with values of 0.80 for Deep Approach and 0.78 for 

Surface Approach. Nonetheless, Confirmatory Factor Analysis performed with AMOS 

v.22 reveals that the two-factor structure does not fit the data very well, obtaining 

CMIN/DF=2.625, CFI=0.765, and RMSEA=0.085 (More details in Figure 10).  

 On the other hand, at structure-level, the two dimensions of each factor were 

assessed considering each dimension as an observed aggregated variable (sum of the 

items score), as proposed by Biggs (2001). The results show a satisfactory fit to data, 

with χ² (1)=0.125, p=0.723, CMIN/DF=0.125, CFI=1.000, and RMSEA=0.000 (Figure 

11). 

 It can be said that, even when the structure-level analysis can be considered as 

strong, the item-level analysis shows some flaws. Nonetheless, the psychometric quality 

of the R-SQP-2F has been assessed using larger samples and consistently finding good fit 

to data, as it was presented in section 3.2.3. For this reason, the scale and the items are 

going to be maintained as they are, but recognising that further analyses are needed, 

especially with larger samples that allow more sophisticated factor analysis.  
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Figure 10. Results of Confirmatory Factor Analysis for Biggs' R-SPQ-2F at item-level. 
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Figure 11. Results of Confirmatory Factor Analysis of Biggs' R-SPQ-2F at structure-

level. 

3.6.2. Analytic strategy for the research model. 

In order to test the proposed hypotheses three analyses were applied. First, 

Pearson’s correlation coefficient was utilised to tests the covariance between the 

variables; then, an independent sample t-test was performed in order to observe the 

difference in the participants’ scores depending of the learning scenario evaluated. 

Finally, a path analysis was performed to test the effect of the variables on intention of 

use. 
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The relationships between the variables included in the study can be observed in 

Table 9. It shows, as expected i) similar correlations between scenarios for the variables 

related to cognitive preferences, and ii) higher correlations among the variables in the 

unstructured scenario. 

Table 9. Correlation coefficients of the variables included in the model by learning 

environment. 

Structured Learning Environment 

Observed Variable 1 2 3 4 5 6 7 

1. A. Locus of Control 1.00  

     2. Surface L. A. -0.31** 1.00 

     3. Deep L.A. 0.34** -0.51** 1.00  

   4. Self-efficacy 0.04 0.03 0.10 1.00    

5. Perceived Usefulness 0.07 0.06 0.06 0.57** 1.00   

6. Perceived Ease of Use 0.17 0.01 0.12 0.54* 0.54** 1.00  

7. Perceived Fit 0.03 -0.28** -0.05 0.30** 0.57** 0.33** 1.00 

8. Intention of Use 0.06 0.08 0.03 0.48* 0.53** 0.50** 0.51** 
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Unstructured Learning Environment 

Observed Variable 1 2 3 4 5 6 7 

1. A. Locus of Control 1.00       

2. Surface L. A. -0.35** 1.00      

3. Deep L.A. 0.39** -0.37** 1.00     

4. Self-efficacy 0.09 -0.22* 0.23* 1.00    

5. Perceived Usefulness 0.13 -0.21* 0.23* 0.54** 1.00   

6. Perceived Ease of Use 0.15 -0.17 0.33** 0.66** 0.46** 1.00  

7. Perceived Fit 0.02 -0.09 0.17 0.42** 0.57** 0.43** 1.00 

8. Intention of Use 0.06 -0.14 0.21* 0.35** 0.54** 0.55** 0.56** 

Note: *p<.05 ; **p<.001               

 

Additionally, it sheds some light on the relationship between learning approach 

and attitudes towards learning technology, which can be observed in the small but 

significant correlation between deep approach on the one hand and self-efficacy, 

perceived usefulness, and perceived ease of use on the other. Surface approach showed 

no relationship with any variable except by the negative relationship with deep approach. 

The same thing can be observed about academic locus of control, being related with deep 

approach and with perceived ease of use.  

Regarding the characteristics of the virtual learning environment and the reaction 

of the learner towards it a number of significant differences can be observed.  

 

Table 10 shows the results of an independent-samples t-test for the difference of the mean 

scores on the attitudinal scales between learning scenarios and Figure 12 presents this 
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information graphically. All the differences, although discrete, are significant and suggest 

that the students have a better reception of a learning environment that grants them more 

freedom, in opposition to a more structured one.  

 

Table 10. Independent-Samples t-test assessing the difference between attitudes towards 

the learning environments. 

Observed Variable 
Learning 

Environment 
Mean 

Std. 

Deviation 

Std. 

Error 

Mean 

t 
Mean 

Difference 

sig. 

(2-

tailed) 

Self-Efficacy 

  

Structured 11.79 2.39 0.22 -3.70 -1.08 0.00 

Unstructured 12.86 1.98 0.19    

Perceived 

Usefulness 

  

Structured 11.91 1.61 0.15 -3.88 -0.89 0.00 

Unstructured 12.79 1.84 0.18    

Perceived Ease of 

Use 

Structured 15.57 2.60 0.24 -3.07 -1.12 0.00 

Unstructured 16.69 2.91 0.28    

Perceived Fit 
Structured 23.67 3.45 0.32 -3.36 -1.64 0.00 

Unstructured 25.31 3.92 0.37    

Intention of Use 
Structured 11.38 1.61 0.15 -4.90 -1.12 0.00 

Unstructured 12.50 1.84 0.18    
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Figure 12. Independent-samples t-test for mean differences. 

 

Finally, a path analysis was performed by using AMOS v.22. The goodness-of-fit 

of two models were compared to take into account the effect of the learning environment 

characteristics, the attitudes, and the interaction between attitudes and learning approach 

on intention of use. Both models are based on Davis’ TAM, but modified by adding self-

efficacy, perceived fit, and the interaction with deep learning approach. The first model 

comprises the effect of attitudes towards the learning environment and the type of 
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learning environment the students were assigned (structured or unstructured) on intention 

of use. The second model includes the effect of deep learning approach while interacting 

with the attitudes, and how it can predicts intention of use.  

The two models are graphically explained by Figure 13 

 

Figure 13. Research models. Model b) includes the interaction of deep learning approach 

with the attitudes towards technology. 
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The results showed that the first model (Figure 14) predicts intention of use 

according to what could be expected by Davis’ TAM, with a significant positive effect of 

perceived fit, perceived ease of use, and perceived usefulness, and a discrete but 

significant effect of the learning environment. These results are congruent with the 

relationships observed on the covariance matrix (Table 9). Nonetheless, and despite the 

46% of explained variance, the fit indexes suggest the model does not fit with the data, 

χ²(3)=17.696, p=.001, CMIN/DF=5.899, CFI=0.956, RMSEA=0.147. Most of the 

indexes suggest a bad fit with the data, except CFI.  

 

Figure 14. Results of research model a). 
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 The second model includes the interaction of the variable “deep learning 

approach” with the attitudinal parameters. This modification changes considerably the 

results, showing a non-significant effect of the attitudinal variables on intention of use, 

and a stronger effect of the learning environment on the output variable than in the 

previous model. The fit indexes improve considerably, being χ²(3)=3.285, p=0.350, 

CMIN/DF=1.095, CFI=0.999, RMSEA=0.020. On the other hand, the explained variance 

decreases to 12.2%. Figure 15 illustrates these results and the path diagram. 

 

Figure 15. Results of research model b). 



107 

 

 The comparison between the models shows that model (a) has a high R² but bad 

goodness-of-fit, and that model (b) has low R² and an adequate goodness-of-fit. This 

suggests that model (a) is more reliable in its projections (high R²), but that its results 

might be biased, maybe for the low variability in the scores of the attitudinal scales. 

When deep learning approach was introduced in model (b) interacting with the rest of the 

variables, it generated more variability in the scores, therefore the decreasing in the R², 

but a better adjustment with the estimated parameters of the goodness-of-fit, and 

modifying the strength in the relationship between the independent and the dependent 

variables. This might be related to the observed inconsistencies between the attitudes-

intentions and the actual behaviour. It might be that people tend to respond with some 

bias the attitudinal scales that makes them have a strong consistency, but when they face 

the real task their behaviour would be driven by something different. When learning 

approach, a variable much less affect-dependent than attitudes, was included in the 

analysis, the variability augmented, increasing the uncertainty of the model, but fitting 

better with data. It has to be considered in forthcoming studies to observe its relationship 

with actual use and other process–related variables. 

In summary, the results of study 2 support the hypothesis that academic locus of 

control and deep learning approach are positively related (H1). It can be said that the 

level of perceived control over the learning process has a positive effect on the attitudes 

towards the learning environment that support such learning process (H3). Besides, it can 

be said that attitudes are strong predictors of intention of use (H6). There was found 

partial support for the hypothesis that deep learning approach has a positive effect on 
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attitudes (H5). The hypothesis that academic locus of control and surface learning 

approach have an inverse relationship (H2) cannot be supported because the inverse 

relationship observed between them is not significant. Finally, the hypothesis that deep 

learning approach has a direct effect on attitudes can be supported only partially, because 

a direct effect was observed on perceived ease of use and usefulness, and on self-efficacy, 

but not on perceived fit neither on intention of use.  

STUDY 3.  

The goal of study 3 is to assess the relationship between individual learning 

characteristics and the adoption parameters in a different setting, but incorporating 

learning style as an antecedent of individual preferences. Study 3 builds on study 2 by 

reassessing the relationship between learning approach and attitudes towards learning 

technology in order to gather more data to support or reject the findings of study 2. Here, 

we focus on the relationship between learning approaches, learning styles, and adoption 

parameters named intention of use and behavioural planning. Subsequent to completing 

measures of learning approach/style, participants evaluated a media-rich learning 

environment and stated their estimated usage of it.  

This study looks to complement the results of study 2, testing the idea that there will 

be no relationship between learning approaches and learning styles (hypothesis 1). Our 

hypothesis 2 is that scores of the attitudinal variables will vary among learning styles. 

Based on the results of the previous study, it is hypothesised that deep learning approach 

have a positive effect on the attitudinal variables (hypothesis 3). Finally, our hypothesis 
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4 is that attitudes will significantly predict intention of use; and that attitudes will 

significantly predict behavioural planning (hypothesis 5). 

3.7. Method 

3.7.1. Participants 

Participants were 115 psychology undergraduate students from a British University. All 

participants were volunteers recruited through an online research participation system, 

and then were invited to an experimental session to collect their responses. The mean age 

was 19 years-old with a standard deviation of 1.96, and the female proportion of the 

sample was 79.1%. Notwithstanding that females might be seen as over-represented, the 

correlations between gender and the variables included in the model were non-significant. 

3.7.2. Design. 

Study 3 was a cross-sectional study. All the information was given by the participants in 

a single experimental session, and then collected and stored by a computer-based 

experimental environment. The composition of the sample was not random, because its 

composition was voluntary and subject to a reward system based on academic credits. 

The study comprised three parts: i) the collection of data regarding participants’ learning 

approach and learning styles, ii) the presentation of a video showing a rich-media 

learning environment, and iii) the collection of participants’ perceptions about the 

learning environment keeping in mind that it is the instructional system to complete a 

mandatory course. 



110 

 

3.7.3. Instruments 

Most of the instruments used in this study were described previously. This is the case for 

R-SPQ-2F (learning approach), perceived usefulness, perceived ease of use, intention of 

use, behavioural planning, and perceived fit. The only instrument that has not been used 

before is the Felder-Soloman Index of learning styles (ILS), described below. 

Index of Learning Styles: It was developed by Felder and Soloman (n.d.), aiming to 

assess individual preferences on the four dimensions proposed by Felder-Silverman 

learning style model. The ILS consists of four bi-dimensional scales composed by eleven 

items. Each item present a learning-related scenario followed by two alternatives that 

represent both dimensions of the scale from which the participant have to choose one. 

Litzinger and colleages (2005) describe the four scales representing the following 

learning preferences: 

Active (learn by doing, prefer groups) or Reflective (learn by thinking, prefer to work 

alone or with few). Example item: 

“I understand something better after I: 

a) try it out. (as active) 

b) think it through. (as reflective)” 

Sensing (practical, focused on facts) or Intuitive (conceptual, focused on theory). 

Example item: 

“I would rather be considered: 

a) realistic. (as sensing) 

b) innovative. (as intuitive)” 
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Visual (preference for visual material) or Verbal (preference by written or spoken 

information). Example item: 

“When I think about what I did yesterday, I am most likely to get 

a) a picture. (as visual) 

b) words. (as verbal)” 

Sequential (tendency to linear thinking) or Global (use of holistic thinking). Example 

item:  

“I tend to 

a) understand details of a subject but may be fuzzy about its overall structure. (as 

sequential) 

b) understand the overall structure but may be fuzzy about details. (as global)” 

 The indicated preference scores as 1 point on the selected scale, and a total score 

is obtained for all of them. On each dimension, the smaller total is subtracted from the 

larger, indicating the preferred style and the difference with the opposite, with a 

minimum of 1 and a maximum of 11. A difference up to three indicates a mild 

preference, and a difference of seven or more indicates a strong preference for a learning 

style. 

3.8. Procedure 

Participants had to attend an experimental session lasting 20 to 30 minutes, including an 

initial introduction to the task and time for participants’ questions at the end of the 

session, when required. After receiving the instructions, the participants were left alone 

inside the room to complete the task delivered by a computer-based experimental 

platform.  
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 The study comprised three parts. The first part was an electronic questionnaire 

comprising the Felder-Soloman Index of Learning Styles and Biggs’ Study. In the second 

part, the participants watched a video presenting a virtual learning environment 

(http://tinyurl.com/odzuzym). The main characteristics of this VLE is that it allows rich 

contents such as video, the script of lectures, and visual support materials, in addition to 

static text and image files. In the third part the participants answered questionnaires 

regarding their attitudes towards the VLE, and a behavioural projection of the time they 

would spend using it in order to complete an 8 weeks module required to progress on 

their plan of studies. The complete task took around 15 minutes to be completed. 

 

 

Figure 16. Screenshot of the virtual learning environment used in study 3. 

http://tinyurl.com/odzuzym
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3.9. Results 

SPSS and AMOS v.22 were utilised to analyse the data. Reliability and factor 

composition of the instruments will be presented first. The analytic strategy and results of 

the research model will follow. 

3.9.1. Scales reliability 

Internal consistency of the attitudinal scales was assessed by using Cronbach’s alpha. The 

values ranged from 0.631 to 0.946, similar to what has been observed in the previous 

studies of this thesis, and in other similar studies. Detailed information about the scales 

comprising internal consistency, mean, and standard deviation can be found in Table 

1111. 

 

Table 11. Mean, standard deviation, and internal consistency reliability of the variables 

included in the model. 

Observed Variable  Mean SD ICR 

Deep Learning  Approach 33.47 4.99 0.74 

Surface Learning Approach 26.03 6.16 0.82 

Self-efficacy 11.66 2.48 0.95 

Perceived Usefulness 13.06 1.45 0.63 

Perceived Ease of Use 16.35 2.56 0.87 

Perceived Fit 25.62 3.14 0.63 

Intention of Use 12.70 1.94 0.84 

      



114 

 

Learning Styles 

   Active – Reflective 17.31 2.21 0.56 

Sensing – Intuitive 15.91 2.63 0.69 

Visual – Verbal 16.12 2.48 0.68 

Sequential – Global 15.46 1.66 0.14 

 

The psychometric quality of the R-SQP-2F (learning approach) was assessed in 

the same way than in section 3.6.1. A Confirmatory Factor Analysis was performed in 

AMOS v.22 according to instrument’s author, comprising a two-factor design with a two 

subscales of 5 items each. The item-level analysis result is congruent with was found in 

the previous study in this chapter, not achieving the standards to be considered as good 

(CMIN/DF=1.876, CFI=0.743, RMSEA=0.088). The structure-level analysis offers better 

results, suggesting a good fit, with χ²(1)=2.584, p=0.108, CMIN/DF=2.584, CFI=0.992, 

RMSEA=0.118. Finally, Cronbach’s alpha for internal consistency shows a good item-

test covariance and values of 0.740 for Deep Approach and 0.818 for Surface Approach. 

The results of both the item-level and the structure-level analysis for R-SPQ-2F are 

consistent to what was found on the previous study, and can be observed in Figure 17 and 

Figure 18. 

The index of learning styles (ILS) is composed by four bi-dimensional factors, as 

described previously in section 3.7.3. Being an attitudinal instrument that measures two 

opposite dimensions in each subscale, an α=0.5 is going to be considered as an acceptable 

indicator of internal reliability, according to Tuckman’s criterion (Tuckman & Harper, 

2012). 



115 

 

 

Figure 17. Results of Confirmatory Factor Analysis for Biggs' R-SPQ-2F at item-level. 
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Figure 18. Results of Confirmatory Factor Analysis for Biggs' R-SPQ-2F at structure-

level. 

 

The analysis shows that three out of four subscales has acceptable ICR according 

to the adopted criterion: Active-Reflective=0.557, Sensory-Intuitive=0.669, and Visual-

Verbal=0.675. The fourth subscale, Sequential-Global possess a low ICR (0.136). The 

Inter-Item correlation matrix showed low relationship between the items, and the Item-

Total statistics reported poor improvement in case any of the items were deleted. Based 

on these results it has been decided do not include this subscale in the forthcoming 

analyses. 
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3.9.2. Analytic strategy of the research model. 

In order to test the proposed relationships, two analyses were performed. First, Pearson’s 

correlations to estimate the covariance between the variables included in the research 

model. In second place, a path analysis assessed the effect of the variables on intention of 

use and on behavioural planning.  

Table 122 shows the correlation between the learning style dimensions, where the 

only significant relationship is the one between the Active-Reflective and the Visual-

Verbal dimensions. The rest of the scales have a low and non-significant correlation.  

 

Table 12. Correlation between the Index of Learning Styles' dimensions. 

  Active Reflective Sensing Intuitive Visual Verbal Sequential Global 

Active 1.00               

Reflective -1.00 1.00 
      

Sensing -0.14 0.14 1.00 
     

Intuitive 0.14 -0.14 -1.00 1.00 
    

Visual 0.30** -0.30 -0.05 0.05 1.00 
   

Verbal -0.30 0.30** 0.05 -0.05 -1.00 1.00 
  

Sequential -0.01 0.01 0.34** -0.34 -0.08 0.08 1.00 
 

Global 0.01 -0.01 -0.34 0.34** 0.08 -0.08 -1.00 1.00 

**p< 0.01 (2-tailed). 
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Table 133 contains the covariance matrix between learning styles, learning 

approaches, and the adoption parameters. It only shows poor and non-significant 

correlations. Finally, Table 144 contains the relationship between learning approach and 

the adoption parameters, which shows that – consistently with the previous study – 

learning approach has no relevant relationship with attitudinal parameters, but a 

significant relationship is observed with both behavioural planning variables. Based on 

these results, the whole set of learning style dimensions will be excluded of the 

forthcoming analyses. 

Table 13. Correlations matrix between learning styles, learning approaches, and 

adoption parameters. 

 Observed Variables Active Sensing Visual Sequential 

Deep Learning Approach -0.08 -0.02 -0.15 -0.05 

Surface Learning Approach 0.09 0.03 0.17 0.03 

     Perceived Fit 0.02 -0.04 0.09 -0.05 

Self-efficacy -0.06 0.13 0.13 0.06 

Perceived Usefulness 0.05 0.05 -0.10 -0.07 

Perceived Ease of Use 0.03 0.07 0.16 0.01 

Intention of Use 0.00 0.01 0.03 -0.04 

Behavioural Planning – Days -0.04 -0.05 -0.02 -0.05 

Behavioural Planning – Hours -0.04 0.03 -0.04 -0.07 

* p<.05 (2-tailed).         
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Table 14. Correlation matrix between learning approaches and adoption parameters. 

 Observed Variables 

Deep Learning 

Approach 

Surface Learning 

Approach 

Perceived Fit 0.13 -0.05 

Self-efficacy 0.25** -0.13 

Perceived Usefulness 0.17 -0.13 

Perceived Ease of Use 0.16 -0.08 

Intention of Use 0.14 -0.15 

Behavioural Planning - Days 0.22* -0.29 

Behavioural Planning - Hours 0.27** -0.32 

** p<.001 (2-tailed) * p<.05 (2-tailed).    

 

Therefore, the main analysis is going to be focused on the effect of learning 

approach on the attitudes towards technology, the effect of the attitudes on intention of 

use and behavioural planning, and the interaction between them. 

The first analysis shows the effect of learning approach on attitudes, and the effect 

of attitudes on intention of use. As can be observed on Figure 19 – and as it was observed 

in study 2 – the effect of surface learning approach is almost null, and the effect of deep 

learning approach is only significant on self-efficacy and perceived ease of use. In the 

right side of the figure it can be observed that perceived ease of use and self-efficacy 

have a small and non-significant effect on intention of use, and that perceived usefulness 

and perceived fit have a significant and positive load on the output (0.34 and 0.58 

respectively). The total variance explained by this model is 49%, similar to what was 
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found on studies 1 and 2.  The fit indexes show a poor model fit,  χ²(9)=259.486, p=.000, 

CMIN/DF=28.8, CFI=0.321, RMSEA=0.494. 

 

 

Figure 19. Predictive model for Intention of Use based on attitudes. 

 

When the interaction of deep learning approach with the attitudinal variables was 

considered as predictor of intention of use (Figure 20), the result varies consistently with 

the results of study 2: the effect of the attitudes becomes non-significant and all the 

predictive power is allocated on perceived fit. The fit of the model is poor χ²(6)=492.895, 

p=0.000, CMIN/DF=82.16, CFI=0.071, RMSEA=0.844, and moreover, the explained 

variance decreases to 32%. 
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Figure 20. Predictive model for Intention of Use based on the interaction of deep 

learning style and attitudes.  

 

The second analysis comprises the same structure than the first one but replacing 

intention of use for the amount of days that students plan to use the learning environment 

(Figure 21). As previously, the effect of surface learning approach is practically null, and 

the effect of deep learning approach is significant only on self-efficacy and perceived 

ease of use. In the right side of the model, only perceived fit is a significant predictor. 

The model does not have a good fit, χ²(9)=268.024, p=0.000, CMIN/DF=29.8, CFI=0.134 
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, RMSEA=0.502. The variance explained is 24%, 9% more than what was observed in 

study 1.  

When the interaction between deep learning approach and the attitudes was 

included as predictor (Figure 22) the results changed. Self-efficacy and perceived fit 

becomes better predictors and the explained variance increases up to 40%. Nonetheless, it 

results interesting that self-efficacy possesses a negative load on the output (-0.15), and 

the model fit decreases, χ²(6)=492.285, p=0.000, CMIN/DF=82.16, CFI=0.050, 

RMSEA=0.844. 

 

 

Figure 21. Predictive model for Behavioural Planning (days) based on attitudes. 
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Figure 22. Predictive model for Behavioural Planning (days) based on the interaction of 

deep learning style and attitudes. 

  

 The last analysis followed the same approximation, but this time considering as 

output variable the amount of hours a week of using of the learning environment 

attempted by the students (Figure 23). In line with the previous two analyses surface 

learning approach has a null effect on the attitudinal variables, and the effect of deep 

learning approach is only significant on self-efficacy and perceived ease of use. Perceived 

usefulness and perceived fit have a significant and positive effect on the outcome variable 
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(0.32 and 0.35 respectively). The model fit does not achieve the acceptable threshold 

χ²(9)=270.679, p=0.000, CMIN/DF=30, CFI=0.148, RMSEA=0.505. The explained 

variance is 24%. When the interaction of deep learning approach with the attitudinal 

variables was utilised as predictor variable (Figure 24), once again the results varied. 

Self-efficacy became a significant negative predictor (β=-0.19, p=0.015), perceived 

usefulness diminished its b-value from 0.35 to 0.20 remaining significant, and perceived 

fit increased its power from 0.35 to 0.45. The model fit indicators fall to χ²(6)=288.603, 

p=0.000, CMIN/DF=96.2, CFI=0.096, RMSEA=0.914, and the explained variance 

increases just 4%. 

 

 

Figure 23. Predictive model for Behavioural Planning (hours) based on attitudes. 
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Figure 24. Predictive model for Behavioural Planning (hours) based on the interaction of 

deep learning style and attitudes. 

  

 The results are consistent with what was observed in study 2, but increasing 

explained variance is at a cost of reduced model fit. Attitudes towards the learning 

environment, specially perceived fit, are good predictors of intention of use and 

behavioural planning. Once again the effect of deep learning approach on the attitudinal 

variables alters their strength as predictors of the dependent variable, affecting at self-

efficacy, perceived ease of use, and perceived usefulness, by reducing their effect on the 
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outcome variable. The opposite effect is observed on perceived fit. Additionally, learning 

styles were unrelated to any variable.  Even though this study cannot be considered as 

conclusive on the relationship between learning styles and adoption of learning 

technology, because of the null relationship observed its inclusion as part of the model 

might be reconsidered in future studies. 

By way of summary, the hypothesis that learning approaches and learning styles are 

not related can be supported by the data (H1). In addition, the idea that attitudes are 

strong predictors of intention of use (H4) and of behavioural planning (H5), is supported, 

but with some differences related to the specific weight of the predictors in each case. 

There was partial support for the hypothesis that deep learning approach has a direct 

effect on attitudes (H3). Finally, the hypothesis that learning styles would have an effect 

on attitudes (H4) is rejected as a result of the findings.  

3.10. Discussion and implications of the findings 

The two studies comprising this chapter offer some important insights for understanding 

the adoption of learning environments, and how it is to actual use and the learning 

process leading to the achievement of learning goals. The general conclusions that rise 

from this study are: i) Davis’ technology adoption model is a very strong and consistent 

approach to predict intention of using a determined learning environment; ii) some 

characteristics of the learning environment – specifically an unstructured, student 

controlled learning environment – leads to better students attitudes, and this effect is 

independent of the academic locus of control of the student; iii) attitudes work differently 

in predicting the behavioural component of intention of use (behavioural planning), being 
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observed a strong relationship between perceived usefulness and perceived ease of use 

with intention of use, and an important association between perceived fit and behavioural 

planning; iv) learning styles have no effect on adoption of learning technology, and no 

relationship with learning approach; and v) learning approach interacts with student 

attitudes by reducing their predictive power on intention of use, but improving it on 

behavioural planning.  

 The main conclusions listed above, limitations of the studies, and guidelines for 

continuing the research project will be discussed below. 

3.10.1. Technology adoption model. 

As the character of these studies was exploratory, the original adoption model proposed 

by Davis – which has been noted previously as the reference model for technology 

adoption – was modified. One of the introduced variables was student’s computer self-

efficacy, which effect was not as expected. The almost null effect of self-efficacy suggest 

that how proficient the students think they are was not a relevant variable at the time of 

evaluating the learning environments. This might be due to at least two reasons: a) the 

variability between the subjects was too small, or b) when evaluating a learning 

environment the students are more focused on the environment characteristics than on 

their computer skills. 

 The first explanation can be evaluated with some more data analysis.  Figures 

Figure 25 and Figure 26 show the distribution of scores obtained by the participants. The 

scale has a maximum score of 15 and it can be observed that the percentage of 



128 

 

participants obtaining 12 or more was almost 80% in study 2 and almost 65% in study 3. 

With this concentration of scores, the variability is so small that no relationship can be 

observed between computer self-efficacy and intention of use.  

 

 

Figure 25. Scores distribution of Computer Self-efficacy in study 2. 
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Figure 26.Scores distribution of Computer Self-efficacy in study 3. 

  

Regarding the second explanation, that students may focus more on the 

environment characteristics than on their computer skills, it is worth considering that the 

sample was composed by university-level students which use computer technology in a 

daily basis. Nowadays technology is frequently considered as “user friendly”, which 

means that is designed to be easy to use. Moreover, for the purposes of these studies the 

settings chosen were familiar for them. For all of the above, it can be suggested that 

participants felt confident using the digital environments (which explains the low 
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variability of the scores and their clustering at the high end of the scale) and for that 

reason their intention of use was determined by variables directly related to the 

characteristics of the learning environment and to the task. 

 Following the last idea, it is interesting that the effect of perceived ease of use was 

not consistent from study 2 (β=0.30 and significant) to study 3 (β=0.08, non-significant). 

The results might be related to multiple causes, such as sample-related characteristics, 

sample bias, or a research design that could have not been completely appropriate to give 

account of the effect of self-efficacy. It is worth considering these results in the design of 

a future study.  The main predictors of intention of use were perceived usefulness and 

perceived fit. Perceived usefulness was proposed in the original model and has been 

consistently reported as a direct and significant predictor of intention of use, as it has 

been observed in all the 3 studies reported so far in this thesis.  

 On the other hand, perceived fit was introduced as a new variable in the model in 

order to take into account the perceived match between the environment characteristics 

(design and features) and the task that has been given, and not the mere evaluation of the 

usefulness of the environment in general. It can be illustrated as the participant evaluating 

the digital environment but bearing in mind a specific task to be fulfilled. While it can be 

suggested that both are measuring the same, the correlation between them is not high 

enough to consider it (around 0.6). The results of the analysis show that perceived fit was 

a better predictor than perceived usefulness, and it was better not only predicting 

intention of use, it was also better at predicting behavioural planning – but this point will 

be discussed later. 
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3.10.2. Virtual learning environments characteristics. 

Study 2 evaluated the attitudes and preferences of students about two different virtual 

learning scenarios, which were labelled as “structured” and “unstructured”. The two ideas 

behind this design were to test the relationship between academic locus of control and the 

adoption parameters, and to observe the different effects on participants’ adoption 

parameters under two opposite conditions of control of the learning process by the 

instructor (reflected in the design of the learning environment). 

 The results were in some respect different to what was expected, especially 

because no significant relationship was observed between academic locus of control and 

the adoption parameters. It was expected that students with low scores in academic locus 

of control would feel more comfortable in the structured learning environment and thus 

have higher intention of using it than those with high scores in academic locus of control, 

and the opposite was expected in the unstructured scenario. Nonetheless, the relationship 

between academic locus of control and the adoption parameters was non-significant.  

3.10.3.  Predicting behavioural planning. 

One of the most relevant findings from Study 1 was the link between behavioural 

planning, actual use, and learning achievement. It was sustained that improving the 

understanding of the variables affecting people’s behavioural planning would help to 

engage them more in learning activities based on computer technology by improving the 

planning and design of them.  Following this, Study 3 was focused in that goal, including 

“how many days a week” and “how many hours a week” students planned to use the 
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learning environment in order to achieve the instructional requirements of an e-lecture (a 

lecture delivered using computer software). It was proposed that perceived usefulness 

would be a relevant predictor of behavioural planning, as observed in Study1. It was also 

proposed that the variable “perceived fit” would be another relevant predictor, and that 

deep learning approach would be directly related with all of them. 

 The results showed that when asking students to predict their amount of use of the 

learning environment, self-efficacy, perceived ease of use, and perceived usefulness did 

not predict their answers. Perceived fit was the only direct and significant predictor of the 

output variable, explaining an acceptable amount of its variance. When deep learning 

approach was included in the analysis interacting with the attitudinal variables, the main 

changes were appreciated on perceived usefulness and perceived fit. Perceived usefulness 

changed the direction of its effect from positive to negative, and perceived fit increases its 

magnitude. Moreover, the overall explained variance was importantly enhanced, almost 

trice what was observed in our first study, showing a positive progression to our main 

goal.  

 The second indicator of behavioural planning was the number of hours a week 

students were planning to use the learning environment. This time perceived usefulness 

played a more relevant role as predictor along with perceived fit, notwithstanding, when 

learning approach was introduced interacting with the attitudinal variables their effect 

changed differently in each case. Self-efficacy became significant, but its effect was 

inverse, this means that while higher the scores in self-efficacy and deep learning 
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approach, lower the amount of hours projected of work. The effect of perceived 

usefulness decreased almost a third, and the effect of perceived fit slightly increased. 

 What may be inferred from these results is that even though deep approach does 

not have a direct effect on behavioural planning, it affects it in an indirect way by 

amplifying the variability of attitudes scores according to people’s capacity of mobilising 

their resources towards a learning goal. It is important to note that the largest effect of 

this interaction between deep learning approach and perceived fit was observed when 

predicting the number of days, rather than the number of hours, that students planned to 

use the learning environment. Future research is needed to assess the accuracy of 

students’ abilities to predict their own future behaviour regarding engagement with 

learning environments. 

3.10.4. Learning styles.  

This variable did not work as expected. It was introduced in the research model with the 

goal of assessing its relationship with learning environment preferences. It was assumed 

that when the learning style of the student match with the characteristics of the learning 

environment, preference for that learning environment would be high. For instance, the 

predominance of visual learning style would match with a learning environment rich in 

visual contents, therefore it would be expected higher scores in intention of use. 

Nonetheless, as it was reported in section 3.9, none of the learning styles dimensions 

correlated with any other variable included in the model. In fact, the correlations were 

very close to zero. Additionally, one of the subscales (Global-Sequential) showed a weak 
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internal consistency (α=0.13). For all of the above it was decided to exclude this variable 

from the research model.  

With the current data it can only be said that no support was found to sustain the idea 

that learning styles might be involved in the adoption of learning technology process. 

Nonetheless, its role in the adoption-learning process cannot be discarded yet, not until its 

relationship with the variables related to actual use and learning achievement is assessed. 

3.10.5. Learning approach 

As it has been said before, a small relationship was found between learning approach and 

the adoption parameters. In particular, deep learning approach – characterising those 

more enthusiastic with learning activities – has a small but significant relationship with 

some of the attitudinal variables in both structured and unstructured environments. It 

suggests that those with high scores in deep learning approach have a base level of 

“positive attitudes” towards technology higher than those with low scores. It is interesting 

to realise that this effect does not depend of the scores obtained in surface learning 

approach, supporting the proposition that every person possess an independent amount of 

these two dispositional dimensions (Biggs et al., 2001; Kember et al., 2004). It implies 

that the behavioural drive of deep learning approach results more relevant than the one of 

surface learning approach, therefore being aware of students’ learning approach profile 

might result in relevant considerations about the selected instructional and technological 

design.  
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Even though the effect of deep learning approach over the attitudinal variables is 

small, the most noteworthy effect is when interacting with perceived fit. The interaction 

between deep learning approach and perceived fit is predictive of intention of use and 

behavioural planning. The next step will be to observe its relationship with actual use and 

learning achievement in future research. 

3.11. Limitations 

While the present research has provided much insight into the relationship between 

learning approach, attitudes and adoption, the two studies that comprise this chapter are 

not without limitation. Firstly, the sample composition (most of the participants were 

young undergraduate students) means that some biases could be present as a result of 

homogeneity. However, when comparing these results with those from study one – a 

diverse sample of Chilean teachers with average age of 39 years old – it can be noticed 

that the variables work in similar way. Another bias could be related to computer self-

efficacy, given they are accustomed users of computer technology devices and 

environments which could explain the high scores in this variable.  

 A second limitation is the sample size. A larger sample size would have enabled a 

more sophisticated and complex analysis. Indeed, the relatively small sample size may 

have affected some goodness-of-fit indexes, which was the reason to take them as a 

reference but not as a cut point to confirm or discard completely any parameter close 

enough to the suggested cut value. Future research could seek to replicate these models in 

larger, more diverse samples. 
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3.12. Conclusion 

These studies gave valuable information about the proposed paradigm. It was confirmed 

that Davis’ TAM is a strong model to predict people’ intention of using learning 

technology to support their learning, but it not good to predict their behavioural planning 

in terms of usage rates. The introduced variable Perceived Fit showed to be a significant 

input to TAM and as a predictor of the behavioural component of adoption. Learning 

approach has to be considered in future research to better understanding of its role 

shaping students attitudes and how it could be related to learning engagement and 

learning achievement. Learning styles were not supported as a component of adoption of 

learning technology, but their part in the learning process supported by digital 

environments has to be examined further.  

 The next step of the research project will be to assess these and other variables in 

a real learning situation. The research model of the first study will be modified based on 

the results so far, and the research method will be refined based on the previous 

experience and limitations.  
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4. ASSESSING A NEW FRAMEWORK FOR UNDERSTANDING THE 

LEARNING PROCESS SUPPORTED BY LEARNING 

TECHNOLOGY. 

 

4.1. Introduction 

This is the third empirical chapter of the present thesis. Chapter 2 proposed a model to 

understand the adoption and use of, and the learning achievement with, learning 

technology. The results suggested that modifications have to be made in order to improve 

the explicative power the model. Chapter 3 included two studies, one testing variables 

related to individual characteristics, and the second one testing perceptions about the 

learning environment characteristics and the task characteristics. The present chapter will 

assess a modified version of the research model presented in study 1, including those 

variables tested in studies 2 and 3 – and others from similar studies – to give account of 

the complete process of learning supported by computer-technology. 

 The following sections will describe the theoretical foundations and reflections 

about computer-supported learning, the research questions and hypotheses that guide this 

study, the method and results, and the discussion including the main findings and their 

implications. 
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4.2. Theoretical background 

The introduction of computer technology has produced changes to the conventional 

teaching-learning system, modifying the roles of instructors and learners in ways that are 

not yet completely understood. The theoretical background presented in the introductory 

chapter, focused on the interaction between attitudinal and behavioural variables, will be 

complemented with a different approach, which is centred on the variables related to the 

learning process in virtual environments instead of those related to the adoption of 

learning technology. The main reason for the inclusion of this complementary approach 

has been given by the so far consistent results linking attitudes with adoption of 

technology, and the need for a theoretical and empirical approach able to take into 

account the elements comprising the learning process supported by computer technology, 

and the relationships between them. 

 The main goal is to understand the reasons for the individual differences in the 

learning output, which could be due to individual and/or process related variables. The 

following theory, although centred on the design of computer-based instruction rather 

than in the learning process itself, is particularly useful for understanding how the 

interaction of the learner with the VLE produces individual reactions or responses that 

can reflect how the affective and cognitive resources are being deployed through the 

learning process. The theory and their elements will be presented, and the variables 

included in our research model will be linked to them, with the intention of arranging 

them into a more structured framework.  
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The theory of effective computer-based instruction for adults 

Lowe and Holton (2005) proposed a theoretical framework explaining how adults learn 

effectively using computer-technology, with the objective of providing an articulated and 

coherent background to computer-based instruction (CBI) design. 

 The theory includes variables that have been widely studied but not systematically 

interrelated, comprising aspects associated with the design of the learning environment 

and others related to the support required for the learners. Some of these elements are 

considered as inputs to the CBI instruction, others are considered as process-related 

variables, and all of them work together to achieve the learning output. Figure 27 

explains graphically the model, and the detailed explanation of the elements and 

relationships that comprise it will follow. 
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Figure 27. Conceptual model of effective computer-based instruction proposed by Lowe 

and Holton, 2005. 

As can be seen in the figure above, the variables belonging to the Input/Support 

portion of the model are related to individual characteristics previously reviewed such as 

locus of control, motivation to learn, and computer self-efficacy. In the case of 

metacognitive skills, Lowe and Holton define them as skills that facilitate the 

understanding and regulation of people’s cognitive performance, deploying the adequate 

resource in the right moment, at the same time that the behaviour is self-monitored. This 

variable might be linked to intrinsic academic locus of control, because the responsibility 
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of monitoring the behaviour is assumed by the learner itself, not waiting for external 

guidance, and mobilises learners to their own goals. 

The Input/Design portion of the model refers to learning goal level, which is 

related to Bloom’s taxonomy of educational objectives (Krathwohl, 2002). It states that 

the design of a learning environment has to be aligned with the learning goals proposed in 

order to offer contents, activities, and strategies according with them. It may be related to 

people’s perception of task-technology fit, which indicates the perceived coherence 

between the learning environment and the task or learning to be achieved. 

The Process/Design section of the model comprises the instructional strategy 

design and two aspects of CBI design, namely screen design, and practice strategy. The 

instructional strategy design refers to the methodology of instruction, which defines the 

sequence of activities, the materials, and the contents involved in the learning program. 

The election of an adequate instructional design is central to ensure the quality and 

pertinence of learning. The practice design is part of the CBI design and refers to the 

amount of time estimated to be required to accomplish the learning goals. The screen 

design refers to how the information will be displayed. These aspects have a counterpart 

on learner’s reactions when interacting with the learning approach in the form of 

satisfaction with the course, perceived instrumentality, with the deployment of different 

learning strategies related to individuals’ learning approach, and the amount of time that 

learners are engaged using the VLE. 

The Process/Support parcel of the model is composed of external support and two 

CBI design-related variables, such as instructional control and instructional support. 
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Instructional control is related to who is guiding the learning process, the instructor 

(instructor controlled, structured, less active student) or the learner (active learner, less 

structured environments, self-directedness is highly required). The instructional support 

makes reference to how the VLE supports or assists student’s learning. It comprises 

feedback, coaching, glossaries, examples, etc. The features of the VLE contain all these 

elements as part of it. On the other hand, external support refers to any assistance 

received by peers, instructors, facilitators, or support staff. The external support might be 

related to technical support and with the content-related support, according to learners’ 

needs, and must be – to be considered as it is – delivered outside the learning 

environment and it must aim to help achieving the proposed learning goals. As previous, 

these variables might be related to learner’s satisfaction, actual use, locus of control, and 

deep learning approach. 

 As has been stated before, this model allows us to focus on the mechanism that 

makes people achieve a learning goal, and it does not incorporate the variables that make 

people use and engage with the digital environment that supports the learning. 

Nonetheless, it can be seen as a good complement of what has been proposed in studies 1, 

2, and 3. Therefore, the complete landscape would incorporate a group of variables that 

explain the adoption of the learning environment, such as learning approach, academic 

locus of control, perceived fit, perceived usefulness, and the importance of the course 

according to the student’s criteria. It would incorporate as well a second group of 

variables affecting the use of the learning environment, such as the previous intentions 

and behavioural projections, the satisfaction with particular and general aspects of the 
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learning environment, motivational drivers, and the instructional design/strategy 

implemented. Finally, it is supposed that an individual’s cognitive characteristics, actual 

use, and the level of knowledge/skill on the topic would explain the final learning output. 

Figure 28 shows graphically the proposed research model. 

 

Figure 28. Conceptual research model for study 4. 

 

 

  

 



144 

 

4.3. Overview of Study 4 

The aim of the study 4 is to test a novel, integrated, computer-based learning model. The 

new proposal is composed by variables that can be organised in three interrelated 

clusters, namely adoption, engagement, and performance. The model will be assessed in a 

real learning process, utilising intensive longitudinal methodology or repeated measures, 

in which participants submitted weekly reports since the beginning of an academic 

module to its end (11 weeks). 

 The first hypothesis is that perceived ease of use and perceived fit will be 

significant and direct predictors of intention of use, based on the results of studies 1, 2 

and 3, and the wide literature on the topic. Guided by results of studies 2 and 3, and by 

their role as behavioural enhancers, the hypothesis 2 is that scores in the scales of deep 

learning approach and academic locus of control will be directly related to higher levels 

of frequency (days) and intensity (hours) of behavioural planning. According to the 

results of the previous studies, the hypothesis 3 is that the accuracy (R-square) of the 

predictive model for behavioural planning is higher than that for intention of use. 

 Taking into account the variation over time that all the variables might suffer, and 

focused specifically on the understanding of the engagement with the learning 

environment, the fourth hypothesis is that time – or the temporal order of the events and 

activities comprising the course – has a significant effect on actual use. In the same way, 

it is expected that the mandatory or voluntary condition of the course will be related to 

higher or lower rates of usage, respectively (hypothesis 5). The hypothesis 6 is that the 

declared intention of use and behavioural planning will be directly related to actual use, 
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as has been proposed and observed in the literature on the topic, albeit their predictive 

power over time will be involved in this assessment. It is also expected that positive 

attitudes towards the VLE will be related to better rates of usage, so the hypothesis 7 is 

that the scores in the scales of satisfaction with the course, technical and functional 

evaluation, perceived fit, and the importance of the course, will be direct and significantly 

related to usage rates of the VLE. To complete the picture, it is expected that deep 

learning approach will have a positive effect on actual use (hypothesis 8). Also, it is 

expected that the perceived importance of the module, deep learning approach, and the 

satisfaction with the VLE will be directly related to the intention of continued use, or 

future use (hypothesis 9). 

 Regarding the achievement of learning goals, the hypothesis 10 proposes that 

learning style and deep learning approach will be directly related to the learning output, 

due to their role controlling the processing of the information and a proactive behaviour, 

respectively. Hypothesis 11 sustains that previous/initial knowledge on the topic will be 

significantly related to the learning output. Finally, it is expected that attitudinal 

variables, such as the functional and technical evaluation, perceived fit, and the perceived 

importance of the module, will have a small but significant effect on the learning output 

(hypothesis 12). 

 To test these hypotheses a repeated measures design has been selected, and it will 

be necessary to perform multilevel analysis techniques. The details of this and the 

description of the sample will be presented in the next section.  



146 

 

4.4. Method 

4.4.1. Participants. 

The sample was composed by 41 students2 in their first year of BSc in Computer Science 

in Greece.  They were aged from 17 to 28, with a mean age of 19.68, and a standard 

deviation of 4.6. Regarding gender, 10% of them were females.  

 The participants were studying the academic module called “Programming 

Principles and Algorithms”, which is a mandatory unit of their academic program. Even 

though the module was mandatory, the participation in the study was not. The students 

were invited to take part in the study during the introductory week of the semester, and 

their participation, personal information, and answers were anonymised.  

4.4.2. Design 

In order to answer the research questions guiding the present study the design had to have 

very specific characteristics. First, in order to assess the learning process from beginning 

to end, it had to include repeated measures along the course. Repeated measures design is 

a strong and reliable tool to assess social and personal variables capturing their 

interrelationship and the effect of time on them (Nezlek, 2012). In this case, it was 

decided to use a combination of fixed interval assessments in the form of weekly reports, 

                                                 

 

2 In a cross-sectional study, a sample n=41 indicates that the maximum number of observations will be 41. 

In a repeated measures design, several observations can be collected from each participants. In this study, 

the number of observations was 261. 
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and contingent assessments to capture information related to specific events, such as lab 

activities or evaluations. The event contingent assessments were added to the weekly 

report form when necessary. The objective was to retrieve as much information of the 

learning process as possible, maintaining the temporal context of it as constitutive part of 

the process. 

 Second, it had to be possible to capture both individual and group process-related 

variables. For this reason, the weekly reports included questions from both dimensions, 

becoming the present into a multi-level repeated measures study. 

  

 

Figure 29. Research model, Study 4. 

 

 Another relevant aspect on the design of the study was how the learning 

achievement would be measured. It was decided to adopt a dual perspective: one focused 
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on the achievement of the learning goals present in the unit’s syllabus, which were 

assessed according to students marks. The second perspective was focused on the 

development of new knowledge and skills, which is assessed by a programming test 

specially developed for this purpose, and which was completed at the beginning and at 

the end of the course. The design of the study is presented in Figure 29. 

 Finally, as the goal was to assess the learning process in virtual contexts, the 

election of the virtual learning environment was a critical one. Programming is a hands-

on activity, not merely theoretical. For that reason, it was necessary to utilise a learning 

environment that would allow students not only access to information, but one that would 

allow them to develop the required skills. The solution was the election of software 

developed specifically to assist students on developing their programming skills. The 

description of Mentor, as it is called, and its linkage with programming learning is going 

to be presented in detail in the following section.  

4.4.3. Mentor and the teaching of programming 

Probably the hardest achievement for any educator is to make the students to engage with 

the learning process. In Computer Science one of the most challenging units to teach, and 

at the same time one of the most important for the discipline, is Introductory 

Programming. The diversity of students towards their attitude and their knowledge (when 

they start their studies) regarding programming makes the challenge even greater. 

 Moreover, globalization in combination with the extensive ability to communicate 

with the use of technology over the last decades had a significant impact to higher 
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education. The inevitable mixture of students from different educational systems, life 

experiences and cultures creates a need for teaching strategies that are extremely flexible 

and employ innovative ideas that will enable a community feeling to emerge. Ignoring 

students' previous learning styles, educational cultures, and most importantly knowledge 

and skills inadequacies, results in the formation of minorities. Members of such 

minorities do not engage, are discouraged, and eventually abandon their studies. 

 Teaching diverse groups of students requires focusing to the aim and learning 

objectives of every taught unit and the curriculum in general, and rethinking ways, 

techniques and tools used to achieve them. 

 Mentor (http://www.robotseducate.us/) is a tool that simulates a software robot 

moving in a 2-dimensional tiled world, which was designed aiming to resolve many of 

the above-mentioned issues. Users of Mentor can program the robot aiming to achieve 

the required tasks in a specific map or in a group of maps. 

 Mentor allows the introduction to the programming language from the first lecture 

and disguising the awkward syntax of the language, and aims to enable any student to 

experiment and engage early. It also enables the use of understandable problems to solve 

using storytelling, fairy tales and sci-fi stories. Although not initially expected, this 

played an extremely important role towards minimizing the effects of either technological 

or cultural level diversity of students, and enabled the focus to the important computation 

skills that should be developed in the beginning of such course. 

 Mentor as an educational tool allows people that are new to the concept of 

programming a machine, to acquire and develop computational thinking skills, building a 
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sound foundation to learn programming languages (emphasis on Java) and learn how to 

program machines. The user is able to control a robot (from the generation of Automata. 

There will be other generations in future releases.) It always has the name Io (a maiden 

from the Greek mythology) and the user can choose its appearance with several 

predefined images.  

  Using the basic features of the program is quite straightforward. The toolbar with 

the large icons can guide users through it. The map button opens an existing map. The 

appearance of the robot can be changed by clicking on the button with R2D2 (a popular 

character from the movie Star Wars) and the robot will then be placed at the appropriate 

starting point in the map. Then, the behaviour for the robot can be loaded by clicking the 

battery button, and finally click on the play button to observe the behaviour of the robot 

in this map. Figure 30 shows the main commands and interface appearance of Mentor. 

 After observing the behaviour of the robot, the user can see it at the end as a log 

file. Otherwise, the user can stop observing it by pressing the stop button that stops the 

execution, where they will be able to see the logging of what it did until that point. All 

actions above can be accessed through the File menu and keyboard shortcuts. 

Additionally, the users can enable or disable the toolbar through the Settings menu if they 

feel it is intrusive, adjust the animation speed of the robot, and set their logging 

preferences.  
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Figure 30. Screen capture showing the tool bar, main action buttons and Mentor's grid. 

  

 Behaviour files must have the extension ".handler" and follow specific rules. As 

an example, let us assume that we want to create a behaviour that makes the robot move 3 

steps south, then paint 1 tile in front of it black and then follow with 2 white tiles, all that 

in the "Empty" map. Therefore, the desired map exists, but not the behaviour required.   
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The behaviour that is wanted to be created is:  

robot.south(3); 

robot.paintBlack(); 

robot.forward(1); 

robot.paintWhite(); 

robot.forward(2); 

robot.stopPainting(); 

 

 The text typed should look like:  

public void executeAlgorithm() 

{ 

 robot.south(3); 

 robot.paintBlack(); 

 robot.forward(1); 

 robot.paintWhite(); 

 robot.forward(2); 

 robot.stopPainting(); 

} 
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 All that is needed to do then is to save the file with a proper name. If we want to 

name it My First Behaviour then the full name of the file has to be 

"MyFirstBehaviour.handler". Then the user can go and open the empty map, locate the 

folder where the behaviour file is saved and load it. The default directory the program 

opens is the directory inside the folder of the program named "user". It is a good idea to 

keep all map and behaviour files there for quick access. 

 

 

Figure 31. Screen capture showing Mentor's interface while executing a task. 

  

 As Mentor aims to assist programming learning it is necessary to compare the 

features of Mentor as a learning environment with the learning goals expected at the end 

of the course. Table 155 presents the learning outcomes included in the syllabus of the 

course and the features of Mentor. This will justify the election of Mentor for the aims of 
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the present research as a suitable learning enviroment to evaluate a real learning process 

while the involved variables were assessed from the beginning to the end of it. 

Table 15. General objective and expected outcomes of the module. 

General objective: to introduce the beginning computer science student to: algorithmic 

thinking; simple problem analysis; structured design; top-down stepwise refinement. 

Expected learning outcome 

Analyse problems and break them down to smaller individual parts. 

Construct appropriate pesudocode as well as flow charts to handle analysed problems. 

Implement appropriate algorithmic techniques to solve problems. 

Evaluate possible syntactical and/or logical errors in code. 

Evaluate results obtained from code. 

Identify the various types of variables and implement them in arithmetic expressions and 

relational operations. 

Recognise the cases requiring the use of control structures (if, then, else, switch, etc.) and 

implement such structures in solving simple problems. 

Recognise the cases requiring the use of iterative structures and implement them. 

Recognise the type of user-defined methods that needs to be constructed in various cases. 

Construct appropriate user-defined methods to handle specific problems. 

Understand the importance of testing. 
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4.4.4. Instruments 

The present study comprises a considerable number of variables, which are assessed by 

instruments that have been presented and explained in previous chapters in their greater 

number. The table 16 names those instruments and the chapters where their description 

can be found: 

Table 16. List of instruments utilised in the present study and described in previous 

chapters. 

Instrument Page 

Scale for Perceived Usefulness 47 

Scale for Perceived Ease of Use 47 

Statements for behavioural planning 47 

Scale of Intention of use 47 - 83 

Perceived Satisfaction with the course 48 

Scale for Perceived Fit 82 

Computer Self-efficacy 82 

Scale of Academic Locus of Control 83 

Revised Study Process Questionnaire for Learning approaches 83 

Index of Learning Styles 104 

  

 The rest of the variables and the instruments that assess them will be explained 

bellow. 

Programming knowledge assessment: To have a measurement of the programming 

knowledge of the participants at the beginning of the course has been seen as essential in 
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this study. The instrument utilised was developed ad-hoc by Dr. George Eleftherakis, the 

instructor and designer of the academic unit that serves as context of this study. The 

instrument comprises a set of questions regarding the self-perception of programming 

knowledge (example item: “I have at least some basic knowledge about the following 

programming languages: Java/C/Scala/HTML”) and about actual knowledge on 

programming (example item: “What is the output of the following program? integer a = 

10;  while (a <= 10) print(“Hi”) ”; followed by the alternatives: a. I don’t’ know;  

b. “Hi” 10 times; c. “Hi” only once; d. It will not print “Hi”; e. “Hi” ; f. something else.). 

Both components have a summative score from 0 to 50. 

Mentor technical evaluation: An ad-hoc scale developed by Dr. Eleftherakis evaluated 

the students’ perceptions of the technical quality of Mentor (design, interface, visual 

aspect). It consists in 10 Likert-type items, anchored from 1 (Strongly disagree) to 5 

(Strongly agree) according to the level of agreement with a sentence (example item: 

“Mentor's graphical user interface is suitable for a learning system”). The general score is 

obtained by adding the score of each item. 

Mentor functional evaluation: Dr. Eleftherakis developed a third scale for the purposes 

of this study. It assesses students’ perceptions about the suitability of Mentor for helping 

them to enhance their learning. The scale has 10 Likert-type items, anchored from 1 

(Strongly disagree) to 5 (Strongly agree) according to the level of agreement with a 

sentence (example item: “I think that "Mentor" is a tool that could be used to solve these 

problems no matter the programming experience of the user.”). The general score is 

obtained by adding the score of each item. 
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4.5. Procedure 

The students were recruited the first week of the semester by the lecturer of the unit.  

The first questionnaire was completed in an introductory session, previous to the first 

class and previous to the presentation of the learning environment. This first 

questionnaire comprised the instruments to evaluate learning approach, academic locus of 

control, learning style, and the programming knowledge baseline. 

 From week 1 to week 6 the students participated in twice weekly sessions as part 

of the course, one on Wednesday and one on Friday. Every Friday at the end of the 

session they completed the weekly reports, which included the evaluation of self-efficacy, 

perceived ease of use, perceived usefulness, perceived fit, and the technical and 

functional evaluations. On week 1, the report included the scale of intention of use, and 

the questions about behavioural planning. From week 2 to week 10 the questions about 

behavioural planning were replaced by the equivalent report of actual use (how many 

hours/days did you use Mentor to assist you learning in the last week?).  

 From week 1 to week 6 the use of Mentor was included on the course sessions, so 

its use should be considered as mandatory, nonetheless its use outside practical sessions 

was just suggested as a way to enhance learning. Additionally, on week 6 contingent 

measures were included in the weekly report, such as course instrumentality and 

satisfaction with the course in order to capture students overall evaluations of the tool in 

relationship with the learning goals so far. 
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 From week 7 to week 10 the use of Mentor became not mandatory, only 

suggested. Accordingly, the weekly reports were modified, and the questions that 

remained were those asking about actual use. 

 A final questionnaire was delivered at the end of the module, before the beginning 

of the second semester. The assessment included the instruments related to course 

satisfaction, perceived ease of use, perceived usefulness, perceived fit, self-efficacy, 

technical and functional evaluation, and the programming knowledge assessment. The 

marks of all the participants were retrieved subject to previous explicit authorisation from 

them. 

4.6. Results 

The data were analysed using SPSS v.22 and MPlus v.7.31. The psychometric quality of 

the instruments will be presented in the following section. The analytic strategy and the 

assessment of the research model will continue afterwards, including a brief explanation 

of the main techniques utilised. 

4.6.1. Scales reliability 

As it has been stated before, the present study includes repeated measures of several 

variables. The instruments that have been applied once are those measuring learning 

approaches, learning styles, academic locus of control, intention of use, overall 

satisfaction with the course, and perceived instrumentality. The internal consistency of 

these instruments were assessed by Cronbach’s alpha, and the results are shown below 

(Table 177): 
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Table 17. Mean, standard deviation, and internal consistency of the variables included in 

the model (single application). 

Variable Mean SD ICR 

Learning  Approach - Deep 37.03 4.977 0.780 

Learning Approach - Surface 21.35 6.167 0.816 

Academic Locus of Control 42.39 7.442 0.866 

Intention of Use 11.32 1.681 0.730 

Satisfaction with the Course 54.76 3.195 0.850 

Perceived Instrumentality 54.63 3.63 0.928 

Marking 65.78 13.04  

Initial Knowledge 14.80 13.29  

Final Knowledge 24.48 10.40  

    Learning Styles 

   Active - Reflective 16.06 2.205 0.525 

Sensing - Intuitive 16.06 2.516 0.695 

Visual - Verbal 14.16 2.934 0.837 

Sequential - Global 16.23 1.534 -0.092 

 

 The values observed in Table 17 are consistent with what has been observed in 

the previous studies. It draws the attention that the sequential-global subscale of learning 

styles again shows a very poor reliability, therefore it was decided to exclude this 

parameter from the research model. 
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 Another group of variables were assessed several times through the length of the 

course. These variables are perceived fit, perceived ease of use, perceived usefulness, 

computer-self efficacy, and the technical and functional evaluation of Mentor. For these 

variables, longitudinal reliability was assessed using the coefficient Omega, proposed by 

Shrout and Lane (2011) to solve the problem of including event related variability to the 

consistency assessment of scales used in repeated occasions. It considers the consistency 

of the scale at within-person and at between-person levels, and can be interpreted in the 

same way than Cronbach’s alpha. The results are presented below (table 18). 

 

Table 18. Mean, standard deviation and omega coefficient of the variables included in 

the model, which measured more than once. 

Perceived Usefulness   Perceived Fit 

Omega coefficient = 0.72   Omega coefficient = 0.62 

Week Responses Mean SD   Week Responses Mean SD 

1 31 12.06 1.29 

 

1 31 25.26 2.57 

2 29 12.64 1.89 

 

2 29 26.50 3.46 

3 27 12.81 1.39 

 

3 27 26.96 3.85 

4 27 12.30 2.22 

 

4 27 26.81 4.14 

5 22 12.00 2.81 

 

5 22 26.14 6.18 

6 25 12.28 2.30 

 

6 25 28.28 5.04 

7 27 12.30 2.07 

 

7 27 27.93 4.22 

8 13 12.08 2.63 

 

8 13 27.31 4.25 

9 19 12.38 1.55 

 

9 19 26.58 3.58 

10 18 12.29 1.55 

 

10 18 26.35 3.49 

11 24 12.83 1.63   11 24 26.79 3.59 
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Computer Self-efficacy   Perceived Ease of Use 

Omega coefficient = 0.72   Omega coefficient = 0.74 

Week Responses Mean SD   Week Responses Mean SD 

1 31 12.10 2.10 

 

1 31 16.48 2.19 

2 29 12.93 1.51 

 

2 29 16.39 2.27 

3 27 12.96 1.91 

 

3 27 16.35 2.19 

4 27 12.44 1.65 

 

4 27 16.19 3.37 

5 22 12.09 2.84 

 

5 22 15.91 3.62 

6 25 12.56 1.94 

 

6 25 16.64 2.63 

7 27 12.30 1.86 

 

7 27 16.37 2.22 

8 13 12.38 1.98 

 

8 13 16.54 2.44 

9 19 12.63 1.59 

 

9 19 12.38 1.55 

10 18 12.73 1.53 

 

10 18 12.29 1.55 

11 24 13.25 1.73   11 24 16.67 2.33 

Mentor - Technical Evaluation   Mentor - Functional Evaluation 

Omega coefficient = 0.72   Omega coefficient = 0.82 

Week Responses Mean SD   Week Responses Mean SD 

1 31 39.74 4.23 

 

1 31 39.61 4.43 

2 29 41.54 4.48 

 

2 29 41.14 5.11 

3 27 40.88 4.49 

 

3 27 41.12 5.05 

4 27 40.19 5.71 

 

4 27 39.52 7.19 

5 22 39.23 8.43 

 

5 22 38.50 8.86 

6 25 41.28 6.09 

 

6 25 41.40 6.50 

7 27 39.78 6.38 

 

7 27 40.44 6.51 

8 13 41.62 5.84 

 

8 13 41.62 6.80 

9 19 40.61 4.77 

 

9 19 40.50 5.18 

10 18 40.26 4.57 

 

10 18 40.05 5.17 

11 24 39.96 4.83   11 24 40.67 5.28 

 

 The omega coefficients of all the scales above are similar to the Cronbach’s alpha 

coefficients obtained in the previous studies for the same scales. Additionally, even 
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though some variability can be observed from week to week, it can be noticed that the 

variation of these attitudinal parameters is small. 

 Overall, it can be said that the scales used to assess the research variables present 

good psychometric quality. The only exception was the sequential-global subscale of the 

index of learning styles, which has been excluded from the rest of the analyses. 

4.6.2. Analytic strategy 

The research model designed for Study 4 is longitudinal. In longitudinal designs, data are 

organised in at least two hierarchical levels, with lower levels nested within a higher one, 

for instance students nested in schools, and schools nested in cities, and so on. When 

working with repeated measures, individuals represent the higher level of the structure – 

in this particular case, level-2 – and time represents the lower level – or level-1. Variables 

which are measured once, given account of the differences between individuals are 

aggregated to level-2. On the contrary, variables that were measured several times, giving 

account of the variation of individual experiences or responses, were considered as part 

of level-1. This data structure is multilevel, and therefore has to be analysed by multilevel 

techniques. 

 Multilevel modelling techniques present two main advantages over other 

techniques to analyse repeated measures data, such as repeated measures ANOVA. First, 

missing data is managed in a different way, avoiding listwise deletion. Second, multilevel 

modelling techniques can discriminate the between-person from the within-person 
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variation in a dependent variable, which is crucial assuming that individuals do not vary 

at the same rate over time. 

 Because of these reasons, and considering that it is intended to analyse the 

structure of the relationships between the variables of the model, it has been decided to 

utilise Multilevel Structural Equation Modelling (MSEM) to test the research hypotheses 

of the present study.  Being that the quality of the scales was satisfactory, and that the 

primary intention is to test the factor-level solution of the model instead of an item-level 

solution, it was decided to utilise the parcelling technique (Little et al., 2002) – as in the 

previous studies –, which suggests to work with the aggregated scores of the scales. A 

more detailed explanation of this technique was offered in section 2.6.2. 

 The results will be presented following the proposed three-cluster organisation of 

the model. First, the results of the adoption-cluster will be presented, next the 

engagement-cluster, followed by the effectiveness-cluster.  

Cluster 1 – Adoption 

The cluster is centred on the understanding of the relationships between the variables 

involved in the adoption of learning technology. Based on the results and discussions of 

the previous studies, the proposed model for the adoption of learning technology 

comprises deep learning approach, surface learning approach, academic locus of control, 

perceived fit, perceived ease of use, intention of use and behavioural planning. A 

competitor model which includes Self-efficacy and Perceived Ease of Use – aligned with 

a more traditional view of TAM – will be tested as well Figure 32.   It is important to 

recall that behavioural planning comprises a frequency component (how many days a 
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week do you plan to use Mentor?) and an intensity component (how many hours a week 

do you plan to use Mentor?), as it was presented in Study 3. 

 

 

Figure 32. Adoption research models. Above: model based on attitudes. Below: model 

based on cognitive traits. 

 



165 

 

Table 199 presents the results of three models: A, B, and C. Model A is saturated with 

variables and relationships between them, as it is a combination of Davis’ TAM and the 

cognitive traits included in studies 2 and 3. The fit indexes appear as good, with 

χ²(3)=1.909, p=0.591, RMSEA=0.000, CFI=1.000. Nonetheless, most of the analysed 

paths are non-significant. The R-square values are significant for almost all the dependent 

variables, excepting intention of use (Self-efficacy: R²=0.165, p=0.008; P. Ease of use: 

R²=0.150, p=0.030; P. Fit: R²=0.108, p=0.031; P. Usefulness: R²=0.172, p=0.009; BP-

days: R²=0.201, p=0.035; BP-hours: R²=0.225, p=0.023; Intention of  Use: R²=0.294, 

p=0.057;). 

 

Table 19. Model A. Results of the saturated model. 

Model A 

   

Observed Variable 
Estimate 

β 
Est./S.E. 

Two-tailed p-

value 

Self-Effectiveness ON       

Deep Approach 0.175 1.201 0.230 

Surface Approach -0.404 -2.421 0.015 

A. Locus of Control -0.164 -1.072 0.284 

Perceived Ease of Use ON       

Deep Approach 0.254 1.510 0.131 

Surface Approach -0.327 -1.788 0.074 

A. Locus of Control 0.188 -1.133 0.257 

Perceived Fit ON       

Deep Approach 0.116 0.679 0.497 

Surface Approach -0.114 -0.582 0.560 
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A. Locus of Control 0.152 0.687 0.492 

 

Perceived Usefulness ON 

      

Deep Approach 0.142 0.891 0.373 

Surface Approach -0.269 1.348 0.178 

A. Locus of Control 0.066 0.316 0.752 

    Intention of Use ON       

Self-Effectiveness -0.266 -2.213 0.027 

Perceived Ease of Use 0.030 0.329 0.742 

Perceived Fit 0.437 3.132 0.002 

Perceived Usefulness 0.278 2.126 0.033 

 

   Behavioural Plan-Days ON       

Deep Approach 0.335 1.955 0.051 

Surface Approach 0.031 0.114 0.909 

A. Locus of Control 0.012 0.033 0.974 

Self-Effectiveness -0.347 -3.770 0.000 

Perceived Ease of Use 0.066 0.583 0.560 

Perceived Fit 0.259 2.282 0.023 

Perceived Usefulness 0.095 0.940 0.347 

 

   Behavioural Plan-Hours ON       

Deep Approach 0.142 0.857 0.391 

Surface Approach 0.465 1.929 0.054 

A. Locus of Control 0.457 2.327 0.020 

Self-Efficacy -0.273 -3.469 0.001 

Perceived Ease of Use 0.049 0.565 0.572 

Perceived Fit 0.178 1.877 0.060 

Perceived Usefulness 0.099 1.216 0.572 
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R-SQUARE       

Self-Efficacy 0.165 2.640 0.008 

Perceived Ease of Use 0.150 2.175 0.030 

Perceived Fit 0.108 2.153 0.031 

Perceived Usefulness 0.172 2.615 0.009 

Intention of Use 0.294 1.902 0.057 

Behavioural Planning-Days 0.201 2.122 0.034 

Behavioural Planning-Hours 0.225 2.267 0.023 

 

Model B (Table 2020) includes the variables proposed in the research hypotheses, 

based on what has been observed in the results of the previous studies of this thesis. The 

fit indexes decreased, but they remain within the acceptable range. These are χ²(5)=6.681, 

p=0.245, RMSEA=0.036, CFI=0.979. Once again, most of relationships cannot be 

confirmed, and the R-square values are non-significant for the main research outputs. 

Table 20. Model B. Results of the proposed model. 

Model B 

   
Observed Variable 

Estimate 

β Est./S.E. 
Two-tailed p-

value 

Perceived Fit ON       

Deep Approach 0.109 0.669 0.503 

Surface Approach -0.073 -0.498 0.619 

A. Locus of Control 0.099 0.720 0.472 
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Perceived Usefulness ON       

Deep Approach 0.068 0.955 0.340 

Surface Approach -0.091 -1.306 0.192 

A. Locus of Control 0.019 0.321 0.748 

    Intention of Use ON       

Perceived Fit 0.160 2.638 0.008 

Perceived Usefulness 0.135 1.167 0.243 

    Behavioural Plan-Days ON       

Deep Approach 0.118 2.228 0.026 

Surface Approach 0.014 0.442 0.658 

Perceived Fit 0.075 2.059 0.040 

Perceived Usefulness -0.032 -0.377 0.706 

    Behavioural Plan-Hours ON       

Deep Approach 0.315 1.753 0.080 

Surface Approach 0.196 1.389 0.165 

Perceived Fit 0.235 1.635 0.102 

Perceived Usefulness -0.086 -0.417 0.677 

    R-SQUARE       

Perceived Fit 0.108 2.136 0.033 

Perceived Usefulness 0.172 2.586 0.010 

Intention of Use 0.260 1.843 0.065 

Behavioural Planning-Days 0.144 1.465 0.143 

Behavioural Planning-Hours 0.086 1.009 0.313 
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Finally, model C (in Table 21) is an optimised model. It was built from the results of 

model B, but with the deletion of some paths, decision based on previous results and 

theoretical criteria. The fit indexes resulted optimal, χ²(13)=16.402, p=0.228, 

RMSEA=0.033, CFI=0.958. The main highlight of this result is the central role played by 

learning approach. Specifically, surface learning approach can be observed as a 

significant predictor of perceived fit (β= -0.286, p<0.000), and of perceived usefulness (β 

= -0.403, p<0.000). On the other hand, deep approach and the perceived level of 

importance of the module are directly related to behavioural planning in its frequency 

component (deep approach: β=0.493, p<0.000; importance: -0.439, p=0.004), and to 

behavioural planning in its intensity component (deep approach: β=0.307, p=0.054; 

importance: -0.256, p=0.020). Finally, perceived fit is significantly related to intention of 

use (β=0.471, p=0.004).  

Table 21. Model C. Results of the optimised model. 

Model C 

   

Observed Variable 

Estimate 

β Est./S.E. 

Two-tailed p-

value 

Perceived Fit ON       

Surface Approach -0.286 -3.962 0.000 

    Perceived Usefulness ON       

Surface Approach -0.403 -4.882 0.000 

    Intention of Use ON       

Perceived Fit 0.471 2.880 0.004 
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Behavioural Plan-Days ON       

Deep Approach 0.493 4.056 0.000 

Perceived Importance -0.439 -2.889 0.004 

    Behavioural Plan-Hours ON       

Deep Approach 0.307 1.926 0.054 

Perceived Importance -0.256 -2.319 0.020 

    R-SQUARE       

Perceived Fit 0.082 1.981 0.048 

Perceived Usefulness 0.163 2.441 0.015 

Intention of Use 0.221 1.440 0.150 

Behavioural Planning-Days 0.436 2.198 0.028 

Behavioural Planning-Hours 0.160 1.325 0.185 

 

Model C appears as the most consistent model out of the three tested in this section, 

with optimal goodness-of-fit indexes and coherent relationships between their 

components. Nonetheless, the R² indexes show uneven level of suitability. The prediction 

of perceived fit has a low but significant R-square (R²=0.082, p=0.048), as in the case of 

the prediction of perceived usefulness (R²=0.163, p=0.015), while the frequency 

component of behavioural planning shows better results (R²=0.436, p=0.028). On the 

other hand, intention of use and the intensity component of behavioural planning show 

non-significant results (intention: R²=0.221, p=150; intensity: R²=0.160, p=0.185).  
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In summary, it can be said that the attitudinal based perspective on adoption of 

technology did not find support in this study. On the contrary, data support the 

perspective proposed by the author that the model based on learning approaches – 

accompanied by the importance assigned to the course – is better than the model based on 

attitudes to explain why people adopt learning technology, even making a rough 

prediction of how much the learning environment will be utilised. The next step is to find 

out whether that prediction is accurate or not. 

Cluster 2 - Engagement 

This section aims to understand two general aspects regarding the adoption and effective 

use of technology: the strength of the link between intention/planning and actual use, and 

the variables which can affect the use of technology over time. It was included in this 

cluster, as a secondary but not least important aim, to define which variables influence 

individuals’ decision of future use of the environment. Figure 33 offers a graphic 

description of the research proposal. 
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Figure 33. Research model to understand actual use of learning technology. 

 

 The first step was to test the relationship between intention/planning and actual 

use. This analysis considered the output or dependent variables of the cluster 1 (intention 

of use and behavioural planning) as the input or independent variables for actual use. 

Actual use was measured over time, turning this analysis into a multilevel structural 

equation modelling, with time and condition (mandatory/voluntary) as within (level-1) 

variables. The use of Mentor as learning environment was mandatory the first 6 weeks of 

the course, so the variable “condition” (mandatory, optional) was introduced to give 

account of this information at the within-level. Actual use was assessed by self-reports, 

with the same two components of behavioural planning, frequency (how many days did 

you use Mentor the last 7 days?) and intensity (how many hours did you use Mentor 

during the last 7 days?).   
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The results are displayed in Table 22  and they show at within-level that time and 

condition are significant predictors of the number of days a week (time: β=0.356, 

p=0.010; condition: β=0.569, p<0.000), and also of the amount of hours per week Mentor 

was utilised (time: β=0.442, p=0.001; condition: β=0.609, p<0.000). Nonetheless, the R-

square for both indicators was low and barely non-significant (actual use – days: 

R²=0.101, p=0.061; actual use – hours: R²=0.102, p=0.063), and the model could not be 

identified, which means that the number of parameters to be estimated bigger than the 

number of measured variables, resulting not possible to identify a better solution for the 

model. 

On the other hand, at between-level, either intention of use and behavioural planning-

days were good predictors of actual use in its frequency component (intention: β= -0.330, 

p=0.019; planning (days): β=0.727, p=0.000) and its intensity component (intention: β= -

0.485, p=0.011; planning days: β=0.686, p=0.031). The intensity component of 

behavioural planning was non-significant for actual use-days (β=0.110, p=0.607) neither 

for actual use-hours (β=0.113, p=0.590). Moreover, the R-square indicator for the 

between-level were high and significant, with actual use-days: R²=0.629, p=0.008, and 

actual use-hours: R²=0.665, p=0.039. The fit indexes of the model were good, with 

RMSEA=0.000 and CFI=1.000. 

It was proposed that other variables could affect the use of the learning environment 

over time, such as the perceived fit with the task, the importance of the course for the 

learner, the learning approach and style, and the technical and functional features of the 

tool. In the results displayed in Table 233 the first thing to be noticed is that the model 



174 

 

was non-identified due to the large number of variables, therefore it was not possible to 

obtain fit indexes, standardised estimates, nor R-square values.  

Table 22. Results of the simple model for Actual Use. 

Observed Variable 
Estimate 

β 
Est./S.E. 

Two-tailed  

p-value 

WITHIN LEVEL 

   Actual Use - Days ON       

Time 0.356 2.559 0.010 

Condition 0.569 3.500 0.000 

Actual Use - Hours ON       

Time 0.442 3.619 0.001 

Condition 0.609 3.782 0.000 

BETWEEN LEVEL 

   Actual Use - Days ON       

Intention of Use -0.330 -2.343 0.019 

Behavioural Planning - Days 0.727 3.557 0.000 

Behavioural Planning - Hours 0.110 0.515 0.607 

Actual Use - Hours ON       

Intention of Use -0.485 -2.534 0.011 

Behavioural Planning - Days 0.686 2.159 0.031 

Behavioural Planning - Hours 0.133 0.538 0.590 

R-SQUARE       

WITHIN LEVEL 

   Actual Use - Days 0.101 1.873 0.061 

Actual Use - Hours 0.102 1.860 0.063 

BETWEEN LEVEL 

   Actual Use - Days 0.629 2.661 0.008 

Actual Use - Hours 0.665 2.064 0.039 
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Table 23. Results of the saturated model for Actual Use. 

Observed Variable Estimate Est./S.E. Two-tailed p-

value 
WITHIN LEVEL 

   Actual Use - Days ON       

Time 0.091 1.296 0.195 

Condition 1.046 2.250 0.024 

Functional Evaluation 0.111 1.857 0.063 

Technical Evaluation -0.360 -0.663 0.507 

Perceived Fit 0.045 0.603 0.546 

Actual Use - Hours ON       

Time 0.428 2.532 0.011 

Condition 3.263 2.532 0.011 

Functional Evaluation 0.179 1.372 0.170 

Technical Evaluation -0.239 -1.691 0.091 

Perceived Fit 0.233 1.080 0.280 

    BETWEEN LEVEL 

   Actual Use - Days ON       

Intention of Use -0.377 -4.341 0.000 

Behavioural Planning - Days 0.549 6.804 0.000 

Functional Evaluation -0.226 -3.025 0.002 

Technical Evaluation 0.051 0.953 0.341 

Perceived Fit 0.366 4.491 0.000 

Perceived Importance -0.901 -4.531 0.000 

Deep Learning Approach 0.061 2.397 0.017 

Surface Learning Approach 0.022 0.919 0.358 

Learning Style - Active 0.065 0.401 0.688 

Learning Style - Reflective -0.065 -0.429 0.668 

Learning Style - Visual -0.038 -0.573 0.567 

Learning Style - Verbal 0.038 0.651 0.515 
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Actual Use - Hours ON       

Intention of Use -0.835 -3.686 0.000 

Behavioural Planning - Days 0.840 3.447 0.001 

Functional Evaluation 0.002 0.006 0.995 

Technical Evaluation -0.159 -0.843 0.399 

Perceived Fit 0.461 1.236 0.216 

Perceived Importance -1.320 -1.837 0.066 

Deep Learning Approach 0.035 0.370 0.711 

Surface Learning Approach 0.050 0.665 0.506 

Learning Style - Active 0.026 0.082 0.935 

Learning Style - Reflective -0.026 -0.090 0.929 

Learning Style - Visual -0.066 -0.814 0.416 

Learning Style - Verbal 0.066 0.737 0.461 

NOTE: The estimate values are not standardised. 

It was decided to remove some of the non-significant variables from the model, such 

as learning styles, surface learning approach, technical evaluation and the within 

indicators for technical evaluation. The new solution (Table 244) is more suitable, and 

possesses good indicators of fit, X²(0)=1.180, p=0.000, RMSEA=0.000, CFI=0.992. At 

the within-level, it can be observed that the functional evaluation has a significant effect 

on actual use-days (β=0.262, p=0.001) and actual use-hours (β=0.112, p=0.022). 

Nonetheless, the R-square values varied little, with actual use-days: R²=0.144, p=0.020; 

and actual use-hours: R²=0.065, p=0.133.  
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On the other hand, at the between-level can be observed some significant effects on 

actual use-days, such as perceived fit (β=0.364, p<0.036), importance of the course (β= -

0.614, p<0.000), and deep learning approach (β=0.270, p=0.036). It can be observed that 

the effect of the importance of the course is significant on actual use-hours (β= -0.490, 

p=0.019), while the effects of functional evaluation, perceived fit, and deep approach are 

non-significant. The improvement of the R-square indexes are important as well, with 

actual use–days: R²=0.933, p<0.000, and actual use–hours: R²=0.926, p<0.000.  

 

Table 24. Results of the optimised model for Actual Use. 

Observed Variable Estimate Est./S.E. Two-tailed p-

value 
WITHIN LEVEL 

   Actual Use - Days ON       

Time 0.331 2.857 0.004 

Condition 0.475 3.348 0.001 

Functional Evaluation 0.262 3.359 0.001 

Actual Use - Hours ON       

Time 0.338 2.833 0.005 

Condition 0.397 2.511 0.012 

Functional Evaluation 0.112 2.285 0.022 
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BETWEEN LEVEL 

   Actual Use - Days ON       

Intention of Use -0.565 -3.694 0.000 

Behavioural Planning - Days 0.794 6.385 0.000 

Perceived Fit 0.364 2.098 0.036 

Perceived Importance -0.614 -4.324 0.000 

Deep Learning Approach 0.270 2.436 0.036 

Actual Use - Hours ON       

Intention of Use -0.745 -3.694 0.001 

Behavioural Planning - Days 0.781 6.385 0.000 

Perceived Fit 0.527 1.860 0.063 

Perceived Importance -0.490 -2.341 0.019 

Deep Learning Approach 0.037 0.178 0.859 

R-SQUARE       

WITHIN LEVEL 

   Actual Use - Days 0.144 2.330 0.037 

Actual Use - Hours 0.065 1.501 0.133 

    BETWEEN LEVEL 

   Actual Use - Days 0.933 9.329 0.000 

Actual Use - Hours 0.926 3.661 0.000 

 

By way of summary, the results indicate that intention of use and behavioural 

planning (days) are good predictors of actual use. An interesting thing to highlight is that 

at the between-level, the effect of intention of use is negative, that is, higher levels of 

intention are related to lower levels of actual use. A similar effect can be observed with 

functional evaluation, and the attributed importance of the course. The effect of 

functional evaluation at the within-level is positive, which indicates that despite the 
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variation in mean scores between subjects, the week-to-week fluctuation in use within 

subjects is actually influenced by the good or bad impression of the features of Mentor. 

Finally, it can be noticed that deep learning approach has a small but significant effect on 

actual use, which reaffirms the role of learning approach as a determinant in the base 

level of the main variables involved in the adoption-engagement with learning 

technology. 

Another aspect to be considered in the process of adoption-engagement with 

technology is the intention of continuing its use in future. One question was introduced in 

the last weekly report, which was focused on the intention of keep using Mentor to 

improve learning. It was proposed that a deep learning approach, perceived fit, and the 

importance of the subject would be predictors of continued use. The results of the 

analysis show that deep learning approach and the importance of the module are good 

predictors of intention of continued use (deep learning approach: β=0.581, p=0.002; 

importance: -0.536, p=0.003), with good model fit (RMSEA=0.000, CFI=1.000), and 

R²=0.416, p=0.025. Once again, the effect of the importance given to the module has an 

inverse relationship with the intention of continued use, while deep learning approach has 

a direct and significant effect. When this model is compared with one based on attitudes 

such as perceived fit, satisfaction with the course, and self-perceived learning – usually 

utilised to assess computer-based learning effectiveness – the results show that the model 

based on learning approach is more effective and fits  the data better (Table 25). 
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Table 25. Results of two models (A and B) for Continued Use of VLE. 

Observed Variable Estimate Est./S.E. Two-tailed p-

value 

    Model A 

   Continued Use ON     

 Deep Learning Approach 0.581 3.094 0.002 

Perceived Importance -0.536 -3.008 0.003 

Perceived Fit 0.203 1.250 0.211 

    Model B 

   Continued Use ON     

 Perceived Fit 0.160 0.543 0.587 

Satisfaction with the Course 0.010 0.041 0.968 

Self-Perceived Learning 0.116 0.396 0.692 

    R-SQUARE     

 Continued Use (A) 0.416 2.249 0.025 

Continued Use (B) 0.065 0.586 0.558 

 

Overall, the results of these clusters of variables suggest that learning approach is a 

useful indicator of people’s adoption-engagement with technology. Both learning 

approach components – deep and surface – are related to different variables depending 

whether the action is related to the deployment of resources in an specific activity (deep 

approach) or the assessment of convenient a situation or scenario is (surface approach). 

The next section will take the analysis to the final stage of the process, being focused 

on the determinants of learning performance. 
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Cluster 3 – Effectiveness 

The assessment of the effectiveness of learning technology is not easy, due to different 

understandings of what the concept implies and how it would have to be measured. As it 

has been sustained in this thesis, the effectiveness of the learning environment will be 

associated to the achievement of the learning goals the environment was built for. In this 

particular case, to the achievement of the expected programming skills stated in the 

module syllabus. Two different approaches were utilised to attempt this: (a) an instrument 

focused on measuring the knowledge on programming the students have before they start 

the course and at the end of the course; and (b) the final mark of each student in the 

module. The proposed research model is presented in Figure 34. 

 

 

Figure 34. Research model for VLE's effectiveness. 
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 It is hypothesised that students with higher scores in a deep learning approach, 

sensing and visual learning styles, and actual usage indicators, will have better scores in 

the final knowledge programming test. The initial evaluation on programming knowledge 

and the final mark of the students will also be included as predictors. 

 The results are presented in Table 26. A deep learning approach and sensing 

learning style are the only significant predictors of knowledge on programming at the end 

of the course (deep: β=0.339, p=0.024; Sensing: β=-0.494, p=0.002). The resulting R-

square indicator should be considered as optimal (R²=0.527, p<0.000), nonetheless the 

non-identification of the model is a problem that have to be addressed.  

 

Table 26. Results of the proposed model for VLE’s effectiveness - Knowledge. 

Observed Variable Estimate Est./S.E. Two-tailed 

p-value 
Knowledge - Final ON       

Deep Learning Approach 0.339 2.262 0.024 

Performance 0.247 1.168 0.243 

Actual Use - Days -0.180 -0.445 0.656 

Actual Use - Hours 0.377 0.980 0.327 

Knowledge Initial -0.284 -1.480 0.139 

Learning Style - Active -0.073 -0.278 0.781 

Learning Style - Sensing -0.494 -3.103 0.002 

Learning Style - Visual -0.304 -0.956 0.339 

    R-SQUARE 

   Knowledge Final 0.527 3.799 0.000 
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 In order to solve the nonidentification of the model, it was decided to remove two 

of the variables with lower estimates and/or worse p-value. The variables removed from 

the model were actual use – days and learning style – active. Besides, actual use - hours 

was constrained , because by its theoretical importance for the model it cannot be deleted, 

and because from all the variables included in the model, the time that students spend in 

the learning activities could be the easiest to control.  

 The result (Table 27) follows the same pattern, with deep learning approach, 

sensing and visual learning approaches as significant predictors of programming 

knowledge at the end of the course (deep: β=0.301, p=0.013; sensing: β= -0.480, 

p=0.002; visual: β= -0.378, p=0.046). The R-square value remains almost the same 

(R²=0.518, p<0.000), and the fit indexes are good, χ²(1)=0.021, p=0.884, RMSEA=0.000, 

CFI=1.000. 

Table 27. Results of the optimised model for VLE’s effectiveness - Knowledge. 

Observed Variable Estimate Est./S.E. Two-tailed p-

value 

    Knowledge - Final ON       

Deep Learning Approach 0.301 2.485 0.013 

Performance 0.242 1.319 0.187 

Actual Use - Hours 0.232 4.847 0.000 

Knowledge Initial -0.262 -1.398 0.162 

Learning Style - Sensing -0.480 -3.158 0.002 

Learning Style - Visual -0.378 -1.992 0.046 

    R-SQUARE 

   Knowledge Final 0.518 3.741 0.000 
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These results suggest that those students disposed to have a meaningful learning 

experience and with a preference for intuitive and abstract information processing, tend to 

have better scores in a programming-related assessment. It supports partially what has 

been hypothesised, because the direction of the learning styles indicator is opposite to 

what was expected (that higher scores in sensing and visual scales of learning styles will 

affect positively the learning outcome), and because the influence of actual use was not 

significant. It is worth highlighting that the initial and final scores are not related, which 

can suggest that the progression of the students can be shaped by factors other than the 

initial knowledge on the topic. 

 The other way to assess learning effectiveness is by using the final mark as an 

indicator of learning achievement. It was hypothesised that learning approach, actual use, 

initial score in the programming assessment, and sensing-visual learning approaches will 

be predictors of final marking. The results can be observed in Table 28 and they reveal 

that the only significant predictor is the score in the visual learning style subscale 

(β=0.416, p=0.041). Overall, this model does not work well according to the R-square 

index (R²=0.349, p=0.169) and the nonidentification of the model.  
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Table 28. Results of the proposed model for VLE’s effectiveness - Performance. 

Observed Variable Estimate Est./S.E. 
Two-tailed  

p-value 

Performance - Final ON       

Deep Learning Approach -0.188 -1.603 0.109 

Actual Use - Days 0.483 1.544 0.123 

Actual Use - Hours -0.430 -1.728 0.084 

Knowledge Initial -0.219 -1.198 0.231 

Learning Style - Active -0.212 -1.145 0.252 

Learning Style - Sensing -0.196 -1.330 0.183 

Learning Style - Visual 0.416 2.048 0.041 

    R-SQUARE 

   Knowledge Final 0.349 1.374 0.169 

 

 As in the previous analysis, it was decided to remove the variables actual use – 

days and learning style – active. It was also decided to constrain the variable actual use – 

hours. The results (see Table 29) did not suffer an important variation, maintaining the 

visual learning style subscale as the only significant predictor (β=0.334, p=0.041) and a 

non-significant R-square (R²= 0.303, p=0.206), while the fit indexes are acceptable, 

χ²(1)=0.239, p=0.624, RMSEA0.000, CFI=1.000.  
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Table 29.Results of the optimised model for VLE’s effectiveness - Performance. 

Observed Variable Estimate Est./S.E. 

Two-tailed  

p-value 

Performance - Final ON       

Deep Learning Approach -0.185 -1.512 0.131 

Actual Use - Hours 0.040 2.257 0.024 

Knowledge Initial -0.288 -1.515 0.130 

Learning Style - Sensing -0.220 -1.776 0.076 

Learning Style - Visual 0.344 2.045 0.041 

    R-SQUARE 

   Knowledge Final 0.303 1.264 0.206 

 

 In summary, these results suggest that the knowledge on programming at the end 

of the course is related to learning approach and learning styles, partially supporting the 

hypothesis proposed. Besides, the analyses show that the selected set of variables is not a 

good predictor of the final mark of the course, rejecting the proposed hypothesis. The 

implications of this will be discussed in the next section 

4.7.  Discussion and implications 

The present study proposed a model that integrates the key elements of the utilisation of 

learning technology: its adoption, its use, and its effectiveness. These were considered as 

interrelated process, parts of a complex model that starts with the first approximation to 

the learning environment and ends with the achievement of the learning goals this 
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environment was focused on. In order to present the results of the analyses in a neat way, 

they have been grouped into three clusters, named after the three sub-process mentioned 

above.  

 The first cluster centres on the adoption of technology, where learning approach 

plays a fundamental role, confirming what has been observed in Studies 2 and 3. It is 

important to remember that learning approach has two dimensions. One dimension is 

called deep learning approach and it is associated to behavioural and cognitive drivers 

that aim to obtain the best results of a learning experience, even though it involves more 

effort. This is why it makes sense to find that deep learning approach is associated to 

behavioural planning; involving that higher scores in the deep learning approach scale is 

associated with people projecting a more frequent and intense use of the learning 

environment than those with lower scores.  

 The second dimension is called surface learning approach, and it gives account of 

what can be understood as people’s evaluation of cost-benefit when they are in a learning 

situation, so that they can fulfil the requirements to pass or approve the learning module, 

but with maximising their resource deployment or effort. It was observed that the scores 

in the surface learning approach scale were negatively associated with those observed in 

the perceived fit and perceived usefulness scales. This indicates that people with high 

scores in the surface learning approach scale have a worse valuation of the characteristics 

of the virtual learning environment, or tend to consider learning technology as less useful 

to make them succeed straightforward. Nonetheless, such association was low because 
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perceived fit and perceived usefulness scores should be more associated to the actual 

characteristics of the learning environment. 

 The proposition that attitudes are good predictors of intention of use found low 

support in this research model, basically because when variables (such as perceived 

usefulness and perceived ease of use) were included in the analysis competing with 

perceived fit and learning approaches, they were non-significant. On the other hand, the 

declared intention of use towards the learning environment was highly related to 

perceived fit, but the explained variance was less than that explained for behavioural 

intention ( intention: R²= 0.221; behavioural planning: R²=0.436). In other words, the 

model based on learning approach was more effective than the one based on attitudes. 

 The inclusion of students’ evaluation about the importance of the learning module 

as a predictor of behavioural planning had a significant effect, but the direction of the 

relationship is negative – counter intuitively –, which indicates that while more perceived 

importance of the learning module is declared, lower is the projected utilisation of the 

virtual environment. This result can be explained by two reasons. One is that the question 

was not an appropriate measurement, and thus it has to be improved or replaced for a 

more suitable indicator. The other one is that declared attitudes are not a reliable source 

of information on what people are actually thinking. Perhaps social desirability biased 

participants’ answers on the importance of the module because the instrument comprising 

that question was delivered within the context of the introduction lecture to the module, 

with the fresh impression of its lecturer still in their memory. Nonetheless, the responses 

for behavioural planning were collected in the same questionnaire, and its relationship 
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with actual use is positive and significant. Certainly, this result is striking, but no 

conclusion can be derived from this sole observation.  

 The second cluster was focused on the understanding of actual use, and the factors 

that might influence people’s engagement with the learning environment. This is a crucial 

stage in the computer-based learning process, because utilisation is a necessary condition 

for learning, as the virtual environment delivers information and stimulates the 

development of new skills by the interaction with the learner. In the previous stage, three 

variables were considered as outputs of the adoption model: intention of use, behavioural 

planning-days, and behavioural planning-hours. The first goal of the proposed research 

model was to discriminate which of them is the best predictor of actual use. Besides, the 

proposed model included a temporal setting, assessed by repeated measures week after 

week for three months. The goal was to understand the individual variation over time of 

the “actual use” indicator and its associated variables, hence a two-level analysis (within-

between person) was adopted.  

 At the within-level the results showed that time was a significant predictor of 

actual use, even though its effect is low. It is important to notice that this does not 

necessarily mean that a longer course will involve higher rates of use. The variable time 

indicates a temporal order, so it is more related to the design of the course and the events 

associated to it, so it can be said that time should be associated to the temporal order of 

the events that can enhance usage rather than to an amount of time (days, weeks, 

months). Concretely, it can be said that time was associated to activities and events – as 

laboratory activities in week 1-6, or marked assessments in week 6 and 11). Another 
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significant predictor of actual use was the mandatory utilisation of the learning 

environment. The use of the tool was mandatory from week-1 until week-6, but the 

amount of hours was not fixed and it depended of each student. Considering these two 

conditions, it is possible to understand the variation in the actual use of Mentor through 

the length of the course (Figure 35). For instance, from week-1 to week-6 the average use 

was considerably higher than the average use from week-7 to week-11. Although, it can 

be observed a peak on week-6 and another one in week-11, which matches with the date 

of two assessments related to Mentor-based activities.  

 

 

Figure 35. Graphic representation of Mentor actual hours of use (grand mean). 

  

0

1

2

3

4

5

6

7

8

9

W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11

H
o

u
rs

 p
e

r 
w

e
e

k

Weeks

Actual Use - Hours



191 

 

 Nonetheless, the variables time and condition (mandatory/voluntary) can explain 

just a small amount of actual use. The fact that the within-person variation over time is 

small indicates that the main difference is at the between-person level. In other words, it 

can be said that each person have a “base level” of actual use and of all the associated 

variables, which will differentiate them from each other, and that the individual variation 

over time is smaller than the variation between individuals. 

 At the between-level, intention of use and behavioural planning-days were the 

main predictors of both days and hours of actual use. Other variables were associated to 

actual use as well, such as deep learning approach, perceived fit, the functional 

evaluation, and the perceived importance of the module. What is remarkable about this is 

that intention of use, perceived fit, functional evaluation, and the perceived importance of 

the module are all negatively related to actual use. It is counter-intuitive that the 

perceived utility of a learning environment, the importance of the contents, and intentions 

to use it often, would predict low actual use. Two possible explanations exist. Firstly, the 

instruments may not be reliable, and secondly, a response bias may be responsible for the 

results. However, in the first case, the psychometric quality of the instruments has been 

assessed appropriately and it was satisfactory. Besides, most of the instruments have been 

utilised in other studies successfully.  The alternative of biased responses seems more 

plausible considering the small sample size to which we have access, which makes it 

more sensible to cultural, effective, or context related biases.  

 It is possible that the response biases could be related to some personal 

characteristic that shape the response of the participants in one way, and their behaviour 
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in an opposite one. For instance, considering that behavioural planning has a positive 

effect on actual use, and that behavioural planning is related to deep learning approach – 

and moreover, deep learning approach has a small direct effect on actual use – it might be 

that attitudes give inaccurate information about the real perceptions of the learners about 

the importance and usefulness of the learning environment. They might be considering 

other aspects as relevant to shape their behaviour (motivations, long term goals, etc.) and 

reacting to the attitudinal stimuli in a selective way, e.g., answering the scales too 

positively, and thus producing the observed negative relationship with actual use. It is 

hard to clarify the real reason of this bias, but certainly these guesses have to be tested in 

future studies. 

 Finally, the learning achievement was assessed utilising two indicators. One 

indicator was the final score of each student, which was related to the score in the visual 

learning style subscale. Nonetheless, the explained variance was relatively small and not 

significant. The other indicator was the score in an assessment of knowledge on 

programming learning, which was more consistent. The variables explaining the result 

are deep learning approach and two learning styles: visual-verbal and sensing-intuitive. 

What these variables are suggesting is that more committed students achieve more 

academically, and that a combination of visual stimuli with a balanced amount of 

concrete applications for abstract concepts contributes to better performance in 

programming learning.  

 It has to be noticed that the initial knowledge on programming was not a predictor 

of knowledge at the end of the course nor final mark. This results might be considered as 
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positives, because indicates that all students, despite their initial level of skills in 

programming can achieve the proposed learning goals with commitment and a learning 

design that allows them to deploy their learning strategies accordingly. 

  It has been stated that the main goal of this study was to test a single model that 

allows us to explain the learning process supported by computer technology from its 

beginning to its end. This single model was split and then presented using a three-cluster 

structure, which represents the flow or sequence of its stages. It starts with the adoption 

of learning technology, followed by the engagement with the learning environment, and 

finishes with the learning output. The graphical representation can be observed in the 

figure below.  

  

 

Figure 36. Integrated model of Computer-based Learning. 
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 It can be observed that learning approach intervenes in all the three stages of the 

process, becoming a central and fundamental element in the design of the learning 

environment and learning strategy, and the monitoring of the learning process. It seems 

that learning approach is the machinery that enables the movement of all the process: it 

promotes the adoption, enhances engagement, and boosts the learning achievement by 

managing the cognitive resources to processing effectively the information.  

 The main conclusion of this study is that technology is important, that the features 

and the attractiveness of the technology supporting learning are important in generating 

interest and a positive attitude towards its use. However, what is most important is the 

learner’s cognitive and affective resources. If practitioners do not have an accurate 

understanding of the end user of the learning technology, neither the potential of the 

technology nor the learner can be maximised.  
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5. CHAPTER FIVE: GENERAL DISCUSSION 

 

5.1. A general summary of the research process. 

Four chapters have been presented. The first chapter explained the rationale of the 

research, arguing that the current approach to understanding how people interact with 

learning technology is failing to explain the inconsistencies between the adoption 

process, effective use, and effective achievement of learning goals. The main issues are 

related to low rates of use and high rates of dropout, which affect the quality of the 

learning output and put the sustainability of computer-based learning strategies in higher 

education and life-long learning schemes at risk. A theoretical problem that underlies to 

this situation is the lack of an integrated model to account of the complete process.

 The second chapter proposed a first solution, as a starting point to be refined in 

subsequent studies. It was based on the mainstream approaches to adoption and 

effectiveness of computer-based learning. It comprised an adoption solution based on 

Davis’ Technology Acceptance Model (TAM) with the addition of behavioural planning 

indicators, with a learning achievement solution based on the more utilised and tested 

variables on the available literature. The model was tested using a two-stage follow up 

design, in order to capture information at the beginning of the course – measuring the 

adoption parameters – and at the end of the course – assessing the effectiveness 

parameters. The results provided insight for future development. For instance, the TAM 

explained individuals’ intention of use, but it was clear that intention of use was not a 

reliable indicator of actual use, neither was it associated with the variables involved in 
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learning achievement. In turn, learning achievement was not related to the learner 

perceptions and attitudes towards the course, nor the virtual environment. In fact, the only 

predictor of learning achievement was actual use, a behavioural indicator that says little 

about the learning process or the individual characteristics.  

 On the other hand, behavioural planning was related to actual use, creating a path 

from adoption to achievement that indicated two things: i) that it was feasible to link both 

processes while being focused in the learner rather than in the technology; and ii) that an 

attitudinal based approach was not enough, that other variables should be included in 

order to improve the explained variance of the model. It opened the door to questioning 

not only the current theoretical perspective on the subject, but also to realising the need to 

include more complex designs, in order to capture the dynamic of the learning process. 

 As a real learning process takes time, it was clear that the model should be refined 

previously to be tested in a real setting. It was decided to broaden the theoretical 

perspective, incorporating a group of variables from learning and instructional theory to 

be included and tested in more simple studies before running a complex study involving 

more time and human resources.  

 Chapter 3 addressed that challenge. In two cross-sectional studies, a group of 

cognitive, affective, and context-dependent indicators were included in our basic model. 

The inclusion of cognitive variables was consequence of the understanding that attitudes, 

which are context dependents and can be distorted by many situational factors, were not 

enough to understand learning behaviour. Therefore, the attention was placed on 



197 

 

behavioural drivers and information processing profiles. Specifically learning approach, 

academic locus of control, learning styles, and perceived task-technology fit. 

 Studies 2 and 3 tested the role of these variables on the emergence of intention of 

use and behavioural planning, and their relationship with the attitudes towards 

technology. The role of learning styles was not confirmed, which may be due to their 

nature as information processing profiles rather than a shaper of motivational drivers. 

However, there was evidence linking learning styles and preference for certain virtual 

learning environment characteristics. The role of academic locus of control was also not 

confirmed, but its relationship with learning approach was interesting and thus it would 

be worth including it in future studies. The main finding was the role of learning 

approach, being related to intention of use, to behavioural planning, and to attitudes. It 

seemed that learning approach fixed a base level for subsequent behaviour. Learning 

approach might therefore underpin the whole process, if its effect could be observed on 

learning achievement. 

 With a more clear idea of the complete landscape, the fourth chapter was the final 

study of this research programme. A valuable input to set all the pieces in a consistent 

framework came from instructional theory, with Lowe & Holton model for the design of 

effective computer-based instruction (Lowe & Holton, 2005). Their approach is very 

similar to what has been proposed in the previous chapters, splitting the process in three 

parts (Input, Process, Output), and two levels (Design, Support). This model is focused 

on the technology, while our proposal is focused on the learner (interacting with the 

technology). Nonetheless, both coincide in the relevance of learner’s cognitive profile, 
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the role of technology as a facilitator of the learning process, and the importance of 

learning achievement as an indicator of success.  

 With this new perspective, Study 4 was designed to assess all the elements of the 

model and to capture the dynamic of the learning process in a real setting. The study was 

3 months long and involved 41 first-year students enrolled in a Programming module. 

The selected design included repeated measures, self-reports, objective assessments, and 

marking scores. The analysis of the data included multilevel structural equation 

modelling, among other techniques. The results were interesting and supportive of some 

of the main hypotheses. 

For instance, it was found that individuals’ cognitive learning profile is more predictive 

than their attitudes in explaining their learning behaviour, including both the adoption and 

actual use of the learning environment. A relationship between learning styles and the 

learning output was also observed, indicating that it is important to understand how the 

end user processes information in order to design learning materials that match their 

cognitive profile. Nonetheless, it was also observed that most of the participants have 

balanced profiles, which means that they are flexible enough to adapt to different modes 

of informative media input.  

 The most remarkable finding was the effect of learning approach on the whole 

process. In the adoption cluster, surface learning approach affects the attitudes towards 

technology, while deep learning approach is related to behavioural planning. In the 

engagement cluster, deep learning approach has a significant effect on actual use and 

intention of continued use. In the effectiveness cluster, deep learning approach affects the 
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learning output. The deep learning approach subscale appears as fundamental to 

understanding the computer-based learning process, and to articulate a coherent 

framework. 

 These results – while not conclusive – give solid foundations to improve our 

understanding of the subject, and useful inputs for practitioners. Nonetheless, there are 

various aspects to be rectified. The following sections will discuss the theoretical and 

methodological issues of the present research, concluding with practical implications and 

some ideas for future research. 

5.2. Theoretical limitations. 

The intention of building an integrated framework to understand the learning process in 

virtual environments born from the need to have one when facing the challenge of 

improving the engagement with learning technology and the achievement of learning 

goals. The importance of computer-based instruction is growing in different social and 

geographical contexts, but there are obstacles to improving its effectiveness. This 

research solves one of them: how can we design a virtual environment that fits with 

learners’ profiles, enhancing their strengths and overcoming their weaknesses? The first 

step is to have a clear understanding of the phenomena, but with several approaches 

doing it, it is hard to reach a consensual approach. Despite the large amount of literature 

on the subject, concepts are defined in many different ways (for instance, effectiveness), 

that some variables are measured with different indicators (for instance, actual use), and 

that depending on the field of expertise, there is an unbalanced focus on the variables 

studied. 
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 Some results are difficult to explain satisfactorily. For example, the negative 

effect of intention of use, or from perceived importance of the course, on actual use. This 

is a counter-intuitive result, because most of the research has found the opposite result. It 

was proposed that the effect might be due to a response bias, or to a flaw in the 

instruments. Maybe it is a genuine effect, telling us not to trust in over optimistic self-

projections that cannot be accomplished in the medium or long term. Certainly it is 

necessary to conduct more research to resolve this issue, because even though the effect 

was observed in studies 1 and 4 consistently supported by data, the comprehension of its 

rationale must be consistent as well. 

 Another theoretical issue is the general agreement on which indicators are going 

to be selected for outcome variables such as effectiveness. This research utilised a dual 

approach, considering the final mark and the score in a specific test on the subject, as 

possible indicators of learning effectiveness. Empirically, the score on the test worked 

better than the final mark, but if we think about what is considered as a valid outcome for 

the educational institutions, the picture changes. Maybe a serious reflection of our 

learning indicators is necessary, or maybe other variables must be included in the model 

that can explain the final mark of the students. It is an open discussion, and one that 

cannot be solved only based on the results of this research. For the purposes of this study 

the inclusion of both indicators seemed to be the best alternative, but it has to be taken 

into account that what can be considered as correct in theory (assessing learning 

achievement with a test of maximum performance) cannot find a correlate in the 

instructional design utilised by instructors and institutions. 
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 As can be seen, the findings of this research are not taken as conclusive, since 

theoretical discussions and decisions must be addressed. Nonetheless, it can be said that a 

good starting point has been achieved, and that an integrated and coherent framework is 

closer. 

5.3. Methodological limitations. 

There is no doubt that methodological issues were a challenge in the current research 

programme. As it was mentioned above, some variables have been measured and 

assessed by different indicators, which poses the problem of choosing which of them to 

use. In some cases, the election was easy, especially if one of the instruments has been 

used previously with good and reliable results. However, in others, that was not the case. 

In some cases, the election was based on theoretical criteria, as the utilisation of Felder-

Soloman’s Index of Learning Styles (It is worth to mentioning that there are more than 70 

instruments focused on learning style assessment). Nevertheless, for a couple of variables 

the strategy was to use a new indicator or to develop a new instrument.  

 That was the case of behavioural planning, a variable which has been measured in 

similar ways to intention of use, or with items that theoretically did not fit with the 

proposed approach. It was decided to ask directly how many days and hours it was 

planned to use the VLE involved in the study. The alternative of developing a new scale 

was discussed, but a straightforward question seemed more adequate. The same decision 

was taken to perceived importance of the course. 

 A different scenario was faced at the time to assess the satisfaction of the users 

with the VLE utilised in Study 4. The functional and technical performance of Mentor 
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were very specific, so it was decided to develop a scale to collect students’ opinions 

about it. In the case of programming knowledge, the decision was based in the absence of 

a consensual instrument. In both cases, the developing of the instruments relied on the 

designer of Mentor and lecturer of the module, Dr. Eleftherakis. The convenience of this 

decision can be discussed, but the psychometric quality of the scales was optimal 

according to our analyses. Definitively it is an issue that can be discussed and improved 

for future studies, but for the present research seemed as the more suitable solution under 

these circumstances. 

 The main methodological issue of the research was the sample size, especially for 

studies 1 and 4. The difficulty in recruiting participants for these studies was caused by 

the study design involving multiple time points.  In Study 1, the participation only 

involved two questionnaires with a 5 week interval between the first and the second 

questionnaire. In total, 168 volunteers took part in the study, but less than 60 completed 

both questionnaires. Study 4 involved weekly reports over three months. 41 students were 

enrolled, but around 20 completed more than 9 reports. Besides, 10 of them missed the 

first questionnaire, which was focused on the learning profile. Even though multilevel 

techniques can handle a data set with missing values better than others techniques (it is 

important to highlight that the number of participants is not equal to the number of 

observations in a repeated measures design), when a complex model is being analysed, 

sample size is fundamental to support the number of parameters to be estimated. In Study 

4, the assessment of learning achievement was particularly complex because of the 

number of parameters involved and the number of valid observations, which leads to a 
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nonidentification of the model in first instance. To improve the rate of participation was 

one of the objectives, and different measures were addressed to do it, but unfortunately, 

the challenge is double: first, to have access to a satisfactory sample; and second, to 

engage them to participate consistently. In future research, this is an issue to keep in 

mind.  

5.4. Final reflections. 

The goal of this research was ambitious. The idea of studying the use of learning 

technology was not new– this had been done for at least two decades. The contribution of 

the present thesis was to build a theoretical framework able to explain the utilisation of 

virtual environments to support the learning, describing a complex process of three 

distinguishable stages (adoption, engagement, and achievement), and identifying its main 

components (deep learning approach, actual use, perceived fit, course design), which can 

lead us to attain our highest goal: to enhance the learning process by utilising computer 

technology. A wide literature review revealed that the perspectives on the study of 

technology related phenomena had changed little in two decades. The characteristics of 

the learners of 21st century were discussed in depth, but not included in the research 

models, nor our instruments updated. It seems that the inertia of the traditional 

approaches make them available to some modifications, but not to questioning their 

rationale. For instance, perceived ease of use is included in almost all the models of 

adoption of technology, in different contexts. Two decades ago it was a fundamental 

criterion to adopt technology, because the software in those days was less easy to use 

than todays, and the users were not accustomed to use technology in their daily activities. 
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Nowadays, a significant percentage of the population in the western countries and 

developing economies have access to smart phones, laptops, tablets, and internet 

connection. The software and mobile applications are very easy to use, and most of them 

share interface features that make people get use to new technologies easily. In this 

scenario, is not surprising that perceived ease of use was found as a non-significant 

variable in almost all the analysis of this research. It is just an example, but it shows the 

need to rethink our understanding on human-technology interaction.  

 On the other hand, the role of learning profile, especially learning approach, has 

been set as central for the engagement with learning technology and the achievement of 

learning goals. It might be a very useful input for designers and practitioners, allowing 

them to adjust the instructional strategy based on the results of a 20-item test that can be 

completed in less than 15 minutes. The results of the research suggest that people with 

high levels of deep learning approach are more self-regulated and engage more easily 

with the VLE and the learning activities, so the focus should be on those with low levels 

of deep learning approach. Obtaining a learning approach profile of the course might be 

useful to have an idea of the proportion of students than might need more attention and 

reinforcement to engage with the learning activities, or to modify the instructional 

strategy in case of a high risk of dropouts, and so on. 

 Future studies have to be focused on answering the questions that remain open, 

and to solve the problems that could not be fixed in this research. For instance, the role of 

attitudes and the counter-intuitive results observed in Study 4. If the present results are 

due to a response bias, then all the results should be verified. But, on the contrary, if the 
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results are associated to attitudes misinforming of the real behavioural projections of the 

participants, then the attitudinal models applied in the field of adoption and utilisation of 

learning technology should be reviewed. In Study 4 the variation of the attitudinal 

indicators was disaggregated into a between and a within component, finding that the 

situation related fluctuation of these variables was small in comparison to the variation 

between subjects, which might indicate that the base level of the attitudinal response 

depends more on personal characteristics than on situation or interactions. Nonetheless, 

more research is required to clarify this issue. 

 Three valuable aspects of the current work should be highlighted. Firstly, the 

main objective of building an integrated framework to understand the learning process in 

virtual environments was achieved. It is neither definitive nor immutable, but at least set 

the basis for future improvement. It can explain the process from beginning to end, 

following a clear path; its elements are linked by theoretical and empirical support; and it 

comprises elements related to the user, to the VLE, and those that emerge from their 

interaction. 

 Secondly, the work has practical implications. Since some elements have been 

identified as predictors of engagement and achievement, an adequate assessment of those 

indicators might help practitioners to enhance the potential of the VLE and the potential 

of the learners, turning the technology into a tool for life improvement, rather than a tool 

for task fulfilment. 
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 Finally, the research answered some questions, but at the same time, it opened 

many more, such as the role of certain variables, the improvement of the methodology, 

potential new uses, or even the application of a similar framework in a different field. As 

the technology changes, our relationship with it changes as well. Our understanding of 

these changes must follow the pace in order to both face the challenges that emerge, and 

to propose new pathways.  

 

“The important thing is not to stop questioning” 

 (Albert Einstein). 

 

  



207 

 

REFERENCES 

 

Ajzen, I. (1985). From intentions to actions: A theory of planned behavior. Springer. 

Ajzen, I., & Fishbein, M. (1977). Attitude-behavior relations: A theoretical analysis and 

review of empirical research. Psychological Bulletin, 84(5), 888. 

Akkoyunlu, B., & Soylu, M. Y. (2008). A study of student’s perceptions in a blended 

learning environment based on different learning styles. Journal of Educational 

Technology & Society, 11(1), 183–193. 

Alavi, M., Yoo, Y., & Vogel, D. R. (1997). Using information technology to add value to 

management education. Academy of Management Journal, 40(6), 1310–1333. 

Arbaugh, J. Ben, & Duray, R. (2002). Technological and structural characteristics, 

student learning and satisfaction with web-based courses an exploratory study of two 

on-line MBA programs. Management Learning, 33(3), 331–347. 

Arlin, M., & Whitley, T. W. (1978). Perceptions of self-managed learning opportunities 

and academic locus of control: A causal interpretation. Journal of Educational 

Psychology, 70(6), 988. 

Bandura, A. (1977). Social Learning Theory. London: Prentice-Hall. 

Bangertdrowns, R. L. (1993). THE WORD-PROCESSOR AS AN INSTRUCTIONAL 

TOOL - A METAANALYSIS OF WORD-PROCESSING IN WRITING 

INSTRUCTION. Review of Educational Research, 63(1), 69–93. 

doi:10.3102/00346543063001069 

Barab, S. A., Bowdish, B. E., Young, M. F., & Owen, S. V. (1996). Understanding kiosk 

navigation: Using log files to capture hypermedia searches. Instructional Science, 

24(5), 377–395. doi:10.1007/bf00118114 

Beach, L. R., & Mitchell, T. R. (1978). A Contingency Model for the Selection of 

Decision Strategies. The Academy of Management Review, 3(3), 439–449. 

doi:10.2307/257535 

Bhuasiri, W., Xaymoungkhoun, O., Zo, H., Rho, J. J., & Ciganek, A. P. (2012). Critical 

success factors for e-learning in developing countries: A comparative analysis 

between ICT experts and faculty. Computers & Education, 58(2), 843–855. 

Biggs, J. B. (1990). Effects of language medium of instruction on approaches to learning. 

Educational Research Journal, 5, 18–28. 

Biggs, J., Kember, D., & Leung, D. Y. P. (2001). The revised two-factor Study Process 

Questionnaire: R-SPQ-2F. British Journal of Educational Psychology, 71, 133–149. 

doi:10.1348/000709901158433 

Broos, A., & Roe, K. (2006). The digital divide in the playstation generation: Self-

efficacy, locus of control and ICT adoption among adolescents. Poetics, 34(4-5), 



208 

 

306–317. doi:10.1016/j.poetic.2006.05.002 

Brown, E., Brailsford, T., Fisher, T., Moore, A., & Ashman, H. (2006). Reappraising 

cognitive styles in adaptive web applications. In Proceedings of the 15th 

international conference on World Wide Web (pp. 327–335). ACM. 

Buzzetto-More, N., & Mitchell, B. (2009). Student performance and perceptions in a 

web-based competitive computer simulation. Interdisciplinary Journal of E-

Learning and Learning Objects, 5(1), 73–90. 

Chang, S., & Tung, F. (2008). An empirical investigation of students’ behavioural 

intentions to use the online learning course websites. British Journal of Educational 

Technology, 39(1), 71–83. 

Chang, Y. J., Chen, C. H., Huang, W. T., & Huang, W. S. (2011). Investigationg 

student’s perceived satisfaction, behavioral intention, and effectiveness of English 

learning using augmented reality. In 2011 Ieee International Conference on 

Multimedia and Expo. New York: Ieee. Retrieved from <Go to 

ISI>://WOS:000304354700175 

Clark, R. E. (1983). Reconsidering Research on Learning from Media. Review of 

Educational Research, 53(4), 445–459. doi:Doi 10.3102/00346543053004445 

Clark, R. E. (1985). EVIDENCE FOR CONFOUNDING IN COMPUTER-BASED 

INSTRUCTION STUDIES - ANALYZING THE META-ANALYSES. Ectj-

Educational Communication and Technology Journal, 33(4), 249–262. Retrieved 

from <Go to ISI>://WOS:A1985C259400002 

Clark, R. E. (1994). MEDIA AND METHOD. Etr&D-Educational Technology Research 

and Development, 42(3), 7–10. doi:10.1007/bf02298090 

Coffield, F., Moseley, D., Hall, E., & Ecclestone, K. (2004). Learning styles and 

pedagogy in post-16 learning: A systematic and critical review. 

Connolly, T. M., MacArthur, E., Stansfield, M., & McLellan, E. (2007). A quasi-

experimental study of three online learning courses in computing. Computers & 

Education, 49(2), 345–359. doi:10.1016/j.compedu.2005.09.001 

Coovert, M. D., & Goldstein, M. (1980). Locus of control as predictor of users attitude 

towards computers. Psychological Reports, 47(3), 1167–1173. Retrieved from <Go 

to ISI>://WOS:A1980LF70900034 

Dağ, F., & Geçer, A. (2009). Relations between online learning and learning styles. 

Procedia - Social and Behavioral Sciences, 1(1), 862–871. 

doi:10.1016/j.sbspro.2009.01.155 

Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance 

of Information Technology. Mis Quarterly, 13(3), 319–340. doi:10.2307/249008 

DeBourgh, G. A. (1999). Technology Is the Tool, Teaching Is the Task: Student 

Satisfaction in Distance Learning. 

Delialioglu, O., & Yildirim, Z. (2007). Students’ perceptions on effective dimensions of 



209 

 

interactive learning in a blended learning environment. Educational Technology & 

Society, 10(2), 133–146. Retrieved from <Go to ISI>://WOS:000246947900012 

Djamasbi, S., Strong, D. M., & Dishaw, M. (2010). Affect and acceptance: Examining 

the effects of positive mood on the technology acceptance model. Decision Support 

Systems, 48(2), 383–394. 

Docebo. (2014). E-Learning Market Trends & Forecast 2014 - 2016 Report. Retrieved 

from https://www.docebo.com/landing/contactform/elearning-market-trends-and-

forecast-2014-2016-docebo-report.pdf 

Drennan, J., Kennedy, J., & Pisarski, A. (2005). Factors affecting student attitudes toward 

flexible online learning in management education. Journal of Educational Research, 

98(6), 331–338. doi:10.3200/joer.98.6.331-338 

Ellis, R., Weyers, M., & Hughes, J. (2013). Campus-based student experiences of 

learning technologies in a first-year science course. British Journal of Educational 

Technology, 44(5), 745–757. doi:10.1111/j.1467-8535.2012.01354.x 

Eom, S. B., Wen, H. J., & Ashill, N. (2006). The Determinants of Students’ Perceived 

Learning Outcomes and Satisfaction in University Online Education: An Empirical 

Investigation*. Decision Sciences Journal of Innovative Education, 4(2), 215–235. 

Eom, W., & Reiser, R. A. (2000). The effects of self-regulation and instructional control 

on performance and motivation in computer-based instruction. International Journal 

of Instructional Media, 27(3), 247. Retrieved from 

http://search.proquest.com/docview/204260947?accountid=13828 

Felder, R. M., & Silverman, L. K. (1988). Learning and teaching styles in engineering 

education. Engineering Education, 78(7), 674–681. 

Felder, R. M., & Soloman, B. A. (n.d.). Index of Learning Styles. Retrieved from 

http://www.ncsu.edu/felder-public/ILSdir/styles.htm 

Felder, R. M., & Spurlin, J. (2005). Applications, reliability and validity of the index of 

learning styles. International Journal of Engineering Education, 21(1), 103–112. 

Fletcherflinn, C. M., & Gravatt, B. (1995). THE EFFICACY OF COMPUTER-

ASSISTED-INSTRUCTION (CAI) - A METAANALYSIS. Journal of Educational 

Computing Research, 12(3), 219–242. Retrieved from <Go to 

ISI>://WOS:A1995RE85400002 

Gee-Woo, B., Sang Cheol, P., & Yanchun, Z. (2010). WHY EMPLOYEES DO NON-

WORK-RELATED COMPUTING IN THE WORKPLACE. Journal of Computer 

Information Systems, 50(3), 150–163. Retrieved from 

http://search.ebscohost.com/login.aspx?direct=true&db=buh&AN=49548288&site=

ehost-live 

Gillespie, H., Boulton, H., Hramiak, A. J., & Williamson, R. (2007). Learning and 

teaching with virtual learning enviroments (First.). Exeter, United Kingdom: 

Learning Matters Ltd. 

Goodhue, D. L., & Thompson, R. L. (1995). Task-technology fit and individual 



210 

 

performance. MIS Quarterly: Management Information Systems, 19(2), 213–233. 

Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-

0001019104&partnerID=40&md5=8a1547185e04ecec50c084f9c20f4b43 

Graf, S., Viola, S. R., & Kinshuk, T. L. (2006). Representative characteristics of Felder-

Silverman learning styles: An empirical model. In Proceedings of the IADIS 

International Conference on Cognition and Exploratory Learning in Digital Age 

(CELDA 2006), Barcelona, Spain (pp. 235–242). 

Graf, S., Viola, S. R., Leo, T., & Kinshuk. (2007). In-depth analysis of the Felder-

Silverman learning style dimensions. Journal of Research on Technology in 

Education, 40(1), 79–93. 

Gurpinar, E., Kulac, E., Tetik, C., Akdogan, I., & Mamakli, S. (2013). Do learning 

approaches of medical students affect their satisfaction with problem-based 

learning? Advances in Physiology Education, 37(1), 85–88. 

doi:10.1152/advan.00119.2012 

Halachev, P. M. (2009). E-learning effectiveness. Interactive Computer Aided Learning 

(ICL) - International Conference. Austria. 

Hassanzadeh, A., Kanaani, F., & Elahi, S. (2012). A model for measuring e-learning 

systems success in universities. Expert Systems with Applications, 39(12), 10959–

10966. doi:10.1016/j.eswa.2012.03.028 

Heath, N. L. (1995). Distortion and deficit: Self-perceived versus actual academic 

competence in depressed and nondepressed children with and without learning 

disabilities. Learning Disabilities Research & Practice. 

Higgins, E. T. (1987). Self-discrepancy: a theory relating self and affect. Psychological 

Review, 94(3), 319–. 

Higgins, E. T. (2006). Value from hedonic experience< em> and</em> engagement. 

Psychological Review, 113(3), 439. 

Horton, R. P., Buck, T., Waterson, P. E., & Clegg, C. W. (2001). Explaining intranet use 

with the technology acceptance model. Journal of Information Technology, 16(4), 

237–249. 

Igbaria, M., Schiffman, S. J., & Wieckowski, T. J. (1994). The respective roles of 

perceived usefulness and perceived fun in the acceptance of microcomputer 

technology. Behaviour & Information Technology, 13(6), 349–361. 

Jackson, B. (1998). Evaluation of learning technology implementation. Evaluation 

Studies, 22–25. 

James, W. B., & Blank, W. E. (1993). Review and critique of available learning‐style 

instruments for adults. New Directions for Adult and Continuing Education, 

1993(59), 47–57. 

Jarvis, M. (2014). The psychology of effective learning and teaching (First ed.). Oxford: 

Oxford University Press. 



211 

 

Johnson, D. W., Johnson, R. T., & Stanne, M. B. (2000). Cooperative learning methods: 

A meta-analysis. 

Johnson, R. D., Hornik, S., & Salas, E. (2008). An empirical examination of factors 

contributing to the creation of successful e-learning environments. International 

Journal of Human-Computer Studies, 66(5), 356–369. 

doi:10.1016/j.ijhcs.2007.11.003 

Joo, Y. J., Joung, S., & Sim, W. J. (2011). Structural relationships among internal locus 

of control, institutional support, flow, and learner persistence in cyber universities. 

Computers in Human Behavior, 27(2), 714–722. doi:10.1016/j.chb.2010.09.007 

Junco, R. (2013). Comparing actual and self-reported measures of Facebook use. 

Computers in Human Behavior, 29(3), 626–631. 

Jung, I., Choi, S., Lim, C., & Leem, J. (2002). Effects of different types of interaction on 

learning achievement, satisfaction and participation in web-based instruction. 

Innovations in Education and Teaching International, 39(2), 153–162. 

Kankanhalli, A., Pee, L. G., Tan, G. W., & Chhatwal, S. (2012). Interaction of Individual 

and Social Antecedents of Learning Effectiveness: A Study in the IT Research 

Context. Ieee Transactions on Engineering Management, 59(1), 115–128. 

doi:10.1109/tem.2011.2144988 

Kekkonen-Moneta, S., & Moneta, G. B. (2002). E-Learning in Hong Kong comparing 

learning outcomes in online multimedia and lecture versions of an introductory 

computing course. British Journal of Educational Technology, 33(4), 423–433. 

doi:10.1111/1467-8535.00279 

Kember, D., Biggs, J., & Leung, D. Y. P. (2004). Examining the multidimensionality of 

approaches to learning through the development of a revised version of the Learning 

Process Questionnaire. British Journal of Educational Psychology, 74(2), 261–279. 

doi:10.1348/000709904773839879 

Klopping, I. M., & McKinney, E. (2004). Extending the technology acceptance model 

and the task-technology fit model to consumer e-commerce. Information Technology 

Learning and Performance Journal, 22, 35–48. 

Kormanik, M., & Rocco, T. (2009). Internal versus external control of reinforcement: A 

review of the locus of control construct. Human Resource Development Review. 

Kozma, R. (2003). The material features of multiple representations and their cognitive 

and social affordances for science understanding. Learning and Instruction, 13(2), 

205–226. doi:10.1016/s0959-4752(02)00021-x 

Kozma, R. B. (1991). Learning with Media. Review of Educational Research, 61(2), 179–

211. doi:Doi 10.3102/00346543061002179 

Krathwohl, D. R. (2002). A revision of Bloom’s taxonomy: An overview. Theory into 

Practice, 41(4), 212–218. 

Lane, S. P., & Shrout, P. E. (2011). Measuring the Reliability of Within-Person Change 

over Time: A Dynamic Factor Analysis Approach. Retrieved from 



212 

 

http://www.psych.nyu.edu/couples/Reports/11.01_Lane_&_Shrout.pdf 

Larsen, T. J., Sørebø, A. M., & Sørebø, Ø. (2009). The role of task-technology fit as 

users’ motivation to continue information system use. Computers in Human 

Behavior, 25(3), 778–784. 

Lau, S., & Woods, P. C. (2008). An investigation of user perceptions and attitudes 

towards learning objects. British Journal of Educational Technology, 39(4), 685–

699. 

Lau, S., & Woods, P. C. (2009). Understanding learner acceptance of learning objects: 

The roles of learning object characteristics and individual differences. British 

Journal of Educational Technology, 40(6), 1059–1075. 

Lee, B.-C., Yoon, J.-O., & Lee, I. (2009). Learners’ acceptance of e-learning in South 

Korea: Theories and results. Computers & Education, 53(4), 1320–1329. 

Lee, M. K. O., Cheung, C. M. K., & Chen, Z. H. (2005). Acceptance of Internet-based 

learning medium: the role of extrinsic and intrinsic motivation. Information & 

Management, 42(8), 1095–1104. doi:10.1016/j.im.2003.10.007 

Lefcourt, H. M. (1966). Internal versus external control of reinforcement: a review. 

Psychological Bulletin, 65(4), 206. 

Levy, Y. (2007). Comparing dropouts and persistence in e-learning courses. Computers 

& Education, 48(2), 185–204. doi:10.1016/j.compedu.2004.12.004 

Liaw, S.-S. S. (2008). Investigating students’ perceived satisfaction, behavioral intention, 

and effectiveness of e-learning: A case study of the Blackboard system. Computers 

& Education, 51(2), 864–873. doi:10.1016/j.compedu.2007.09.005 

Lim, H., Lee, S.-G. G., & Nam, K. (2007). Validating E-learning factors affecting 

training effectiveness. International Journal of Information Management, 27(1), 22–

35. doi:10.1016/j.ijinfomgt.2006.08.002 

Lin, W.-S. S. (2012). Perceived fit and satisfaction on web learning performance: IS 

continuance intention and task-technology fit perspectives. International Journal of 

Human-Computer Studies, 70(7), 498–507. doi:10.1016/j.ijhcs.2012.01.006 

Lin, W.-S., & Wang, C.-H. (2012). Antecedences to continued intentions of adopting e-

learning system in blended learning instruction: A contingency framework based on 

models of information system success and task-technology fit. Computers & 

Education, 58(1), 88–99. 

Little, T. D., Cunningham, W. A., Shahar, G., & Widaman, K. F. (2002). To parcel or not 

to parcel: Exploring the question, weighing the merits. Structural Equation 

Modeling, 9(2), 151–173. 

Litzinger, T. A., Lee, S. H., & Wise, J. C. (2005). A study of the reliability and validity of 

the Felder-Soloman Index of Learning Styles. Education, 113, 77. 

Litzinger, T. A., Lee, S. H., Wise, J. C., & Felder, R. M. (2007). A psychometric study of 

the index of learning styles©. Journal of Engineering Education, 96(4), 309–319. 



213 

 

Lou, Y. P., Bernard, R. M., & Abrami, P. C. (2006). Media and pedagogy in 

undergraduate distance education: A theory-based meta-analysis of empirical 

literature. Etr&D-Educational Technology Research and Development, 54(2), 141–

176. doi:10.1007/s11423-006-8252-x 

Lowe, J. S., & Holton, E. F. (2005). A theory of effective computer-based instruction for 

adults. Human Resource Development Review, 4(2), 159–188. 

Mathieson, K. (1991). Predicting user intentions: comparing the technology acceptance 

model with the theory of planned behavior. Information Systems Research, 2(3), 

173–191. 

Moreno, R., & Mayer, R. E. (1999). Cognitive principles of multimedia learning: The 

role of modality and contiguity. Journal of Educational Psychology, 91(2), 358–368. 

doi:10.1037//0022-0663.91.2.358 

Mueller, R. O., & Hancock, G. R. (2008). Best practices in structural equation modeling. 

Best Practices in Quantitative Methods, 488–508. 

Nezlek, J. B. (2012). Diary Methods for Social and Personality Psychology. Sage 

publications. 

Pintrich, P. R., Cross, D. R., Kozma, R. B., & McKeachie, W. J. (1986). Instructional 

psychology. Annual Review of Psychology, 37(1), 611–651. 

Pituch, K. A., & Lee, Y. K. (2006). The influence of system characteristics on e-learning 

use. Computers & Education, 47(2), 222–244. doi:10.1016/j.compedu.2004.10.007 

Pritchard, A. (2013). Ways of learning : Learning theories and learning styles in the 

classroom (Third ed.). 

Reiser, R. A. (1994). Clark invitation to the dance - An instructional designers response. 

Etr&D-Educational Technology Research and Development, 42(2), 45–48. 

doi:10.1007/bf02299091 

Reiser, R. A. (2001). A history of instructional design and technology: Part I: A history of 

instructional media. Etr&D-Educational Technology Research and Development, 

49(1), 53–64. doi:10.1007/bf02504506 

Rezaei, M., Mohammadi, H. M., Asadi, A., & Kalantary, K. (2008). Predicting e-learning 

application in agricultural higher education using technology acceptance model. 

Turkish Online Journal of Distance Education, 98(1), 85–95. 

Rivard, R. (2013). Measuring the MOOC dropout rate. Inside Higher Ed, 8. 

Roberts, P., & Henderson, R. (2000). Information technology acceptance in a sample of 

government employees: a test of the technology acceptance model. Interacting with 

Computers, 12(5), 427–443. 

Roca, J., Chiu, C., & Martínez, F. (2006). Understanding e-learning continuance 

intention: An extension of the Technology Acceptance Model. International Journal 

of Human-Computer …, 64(8), 683–696. Retrieved from 

http://www.sciencedirect.com/science/article/pii/S107158190600005X 



214 

 

Saade, R., & Bahli, B. (2005). The impact of cognitive absorption on perceived 

usefulness and perceived ease of use in on-line learning: an extension of the 

technology acceptance model. Information & Management, 42(2), 317–327. 

doi:10.1016/j.im.2003.12.013 

Saade, R. G., & Kira, D. (2007). Mediating the impact of technology usage on perceived 

ease of use by anxiety. Computers & Education, 49(4), 1189–1204. 

doi:10.1016/j.compedu.2006.01.009 

Saeed, N., Yang, Y., & Sinnappan, S. (2009). Emerging web technologies in higher 

education: A case of incorporating blogs, podcasts and social bookmarks in a web 

programming course based on students’ learning styles and technology preferences. 

Journal of Educational Technology & Society, 12(4), 98–109. 

Sanchez, R. A., & Hueros, A. D. (2010). Motivational factors that influence the 

acceptance of Moodle using TAM. Computers in Human Behavior, 26(6), 1632–

1640. 

Shinkareva, O. N., & Benson, A. (2007). The Relationship between Adult Students’ 

Instructional Technology Competency and Self-Directed Learning Ability in an 

Online Course. Human Resource Development International, 10(4), 417–435. 

doi:10.1080/13678860701723737 

Sitzmann, T., Kraiger, K., Stewart, D., & Wisher, R. (2006). The comparative 

effectiveness of web-based and classroom instruction: A meta-analysis. Personnel 

Psychology, 59(3), 623–664. doi:10.1111/j.1744-6570.2006.00049.x 

Stanley, M., & Burrow, A. L. (2015). The Distance Between Selves: The Influence of 

Self-Discrepancy on Purpose in Life. Self and Identity, 1–12. 

doi:10.1080/15298868.2015.1008564 

Stonebraker, P. W., & Hazeltine, J. E. (2004). Virtual learning effectiveness: an 

examination of the process. Learning Organization, The, 11(3), 209–225. 

Sun, K., Lin, Y., & Yu, C. (2008). A study on learning effect among different learning 

styles in a Web-based lab of science for elementary school students. Computers & 

Education, 50(4), 1411–1422. 

Sun, P.-C., Tsai, R. J., Finger, G., Chen, Y.-Y., & Yeh, D. (2008). What drives a 

successful e-Learning? An empirical investigation of the critical factors influencing 

learner satisfaction. Computers & Education, 50(4), 1183–1202. 

doi:http://dx.doi.org/10.1016/j.compedu.2006.11.007 

Tan, M., & Teo, T. S. H. (2000). Factors influencing the adoption of Internet banking. 

Journal of the AIS, 1(1es), 5. 

Tuckman, B. W., & Harper, B. E. (2012). Conducting educational research. Rowman & 

Littlefield Publishers. 

Tulbure, C. (2011). Do different learning styles require differentiated teaching strategies? 

Procedia - Social and Behavioral Sciences, 11, 155–159. 

doi:10.1016/j.sbspro.2011.01.052 



215 

 

Tulbure, C. (2012). Learning styles, teaching strategies and academic achievement in 

higher education: A cross-sectional investigation. Procedia - Social and Behavioral 

Sciences, 33, 398–402. doi:10.1016/j.sbspro.2012.01.151 

Tung, F. C., & Chang, S. C. (2007). Exploring adolescents’ intentions regarding the 

online learning courses in Taiwan. Cyberpsychology & Behavior, 10(5), 729–730. 

doi:10.1089/cpb.2007.9960 

Turner, M., Kitchenham, B., Brereton, P., Charters, S., & Budgen, D. (2010). Does the 

technology acceptance model predict actual use? A systematic literature review. 

Information and Software Technology, 52(5), 463–479. 

doi:10.1016/j.infsof.2009.11.005 

Viola, S. R., Graf, S., & Leo, T. (2006). Analysis of Felder-Silverman index of learning 

styles by a data-driven statistical approach. In Multimedia, 2006. ISM’06. Eighth 

IEEE International Symposium on (pp. 959–964). IEEE. 

Welsh, E. T., Wanberg, C. R., Brown, K. G., & Simmering, M. J. (2003). E-learning: 

emerging uses, empirical results and future directions. International Journal of 

Training and Development, 7(4), 245–258. doi:10.1046/j.1360-3736.2003.00184.x 

Yang, D., Sinha, T., Adamson, D., & Rosé, C. P. (2013). Turn on, tune in, drop out: 

Anticipating student dropouts in massive open online courses. In Proceedings of the 

2013 NIPS Data-Driven Education Workshop. 

Yu, T., & Yu, T. (2010). Modelling the factors that affect individuals’ utilisation of 

online learning systems: An empirical study combining the task technology fit 

model with the theory of planned behaviour. British Journal of Educational 

Technology, 41(6), 1003–1017. 

 

  



216 

 

 APENDIX 

 

Instruments utilized in the present thesis. 

Perceived Fit (Adapted from Lin, 2012) 

1. By using "Mentor", it fits well the way I like to improve my learning. 

2. By using "Mentor", it fits well the way that I can upgrade the efficiency of my study. 

3. "Mentor" provides good assistance to help me complete my learning activities. 

4. "Mentor" is compatible with all aspects of my study. 

5. By utilizing "Mentor", I can concentrate more on my other studies. 

6. For me, using "Mentor" to prepare my study is not efficient. 

7. I learn better with "Mentor" than without it. 

 

Perceived Usefulness (Adapted from Davis, 1989) 

1. I believe "Mentor" contents are informative. 

2. I believe "Mentor" is a useful learning tool. 

3. I believe "Mentor" activities are useful. 

 

Perceived Ease of Use (Adapted from Davis, 1989) 

1. It would be easy for me to become skillful at using “Mentor". 

2. Learning to operate "Mentor" would be easy for me. 

3. I would find it easy to get “Mentor" to do what a want it to do. 

 

Intention of Use – study 1 (Adapted from Davis, 1989) 

 

I will try to use the learning platform in as many occasions as possible, within the length 

of the course. 
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Intention of Use – studies 2, 3, 4 (Adapted from Liaw, 2008) 

 

1. I intend to use "Mentor" to assist my learning. 

2. I intend to use "Mentor" activities to assist my learning. 

3. I intend to use "Mentor" as an autonomous learning tool. 

 

Perceived Self-Efficacy (Adapted from Liaw, 2008) 

1. I feel confident using "Mentor" system. 

2. I feel confident operating "Mentor" functions. 

3. I feel confident performing "Mentor" activities. 

 

Satisfaction with the course (Adapted from Johnson et al, 2008) 

1. I am satisfied with the clarity with which the class assignments were communicated. 

2. I am satisfied with the degree to which the types of instructional techniques that were 

used to teach the class helped me gain a better understanding of the class material. 

3. I am satisfied with the extent to which the instructor made the students feel that they 

were part of the class and ‘‘belonged’’. 

4. I am satisfied with the instructor’s communication skills. 

5. I am satisfied with the accessibility of the instructor outside of class. 

6. I am satisfied with the present means of material exchange between you and the 

course instructor. 

 

Self-perceived learning [Course instrumentality] (Adapted from Johnson, 2008) 

1. I feel more confident in expressing ideas related to [Information Technology]. 

2. I improved my ability to critically think about Information Technology. 

3. I improved my ability to integrate facts and develop generalizations from the course 

material. 

4. I increased my ability to critically analyze issues. 

5. I learned to interrelate the important issues in the course material. 

6. I learned to value other points of view. 
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Academic Locus of Control (Levy, 2007) 

1. Some of the times that I have gotten a good grade in a course, it was due to the 

teacher's easy grading scheme. 

2. Sometimes, my success on exams depends on some luck. 

3. In my case, the good grades I receive are always the direct results of my efforts. 

4. The most important ingredient in getting a good grade is my academic ability. 

5. Some of my good grades may simply reflect that these were easier courses than most. 

6. I feel that some of my good grades depend, to a considerable extent, on chance 

factors such as having the right questions show up on an exam. 

7. Whenever I receive good grades, it is always because I have studied hard for that 

course. 

8. I feel that my good grades reflect directly on my academic ability. 

9. Sometimes, I get good grades only because the course material was easy to learn. 

10. Sometimes, I feel that I have to consider myself lucky for good grades I get. 

11. I can overcome all obstacles in the path of academic success if I work hard enough. 

12. When I get good grades, it is because of my academic competence. 

 

Revised Study Process Questionnaire (J. Biggs et al., 2001) 

 

1. I find that at times studying gives me a feeling of deep personal satisfaction. 

2. I find that I have to do enough work on a topic so that I can form my own 

conclusions before I am satisfied. 

3. My aim is to pass the course while doing as little work as possible. 

4. I only study seriously what’s given out in class or in the course outlines. 

5. I feel that virtually any topic can be highly interesting once I get into it. 

6. I find most new topics interesting and often spend extra time trying to obtain more 

information about them. 

7. I do not find my course very interesting so I keep my work to the minimum. 

8. I learn some things by rote, going over and over them until I know them by heart 

even if I do not understand them. 

9. I find that studying academic topics can at times be as exciting as a good novel or 

movie. 

10. I test myself on important topics until I understand them completely. 

11. I find I can get by in most assessments by memorising key sections rather than trying 

to understand them. 
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12. I generally restrict my study to what is specifically set as I think it is unnecessary to 

do anything extra. 

13. I work hard at my studies because I find the material interesting. 

14. I spend a lot of my free time finding out more about interesting topics which have 

been discussed in different classes. 

15. I find it is not helpful to study topics in depth. It confuses and wastes time, when all 

you need is a passing acquaintance with topics. 

16. I believe that lecturers shouldn’t expect students to spend significant amounts of time 

studying material everyone knows won’t be examined. 

17. I come to most classes with questions in mind that I want answering. 

18. I make a point of looking at most of the suggested readings that go with the lectures. 

19. I see no point in learning material which is not likely to be in the examination. 

20. I find the best way to pass examinations is to try to remember answers to likely 

questions. 

 

Index of Learning Styles (Felder & Soloman, n.d.) 

 

1. I understand something better after I 

(a) try it out. 

(b) think it through. 

 

2. I would rather be considered 

(a) realistic. 

(b) innovative. 

 

3. When I think about what I did yesterday, I am most likely to get 

(a) a picture. 

(b) words. 

 

4. I tend to 

(a) understand details of a subject but may be fuzzy about its overall structure. 

(b) understand the overall structure but may be fuzzy about details. 

 

5. When I am learning something new, it helps me to 

(a) talk about it. 

(b) think about it. 
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6. If I were a teacher, I would rather teach a course 

(a) that deals with facts and real life situations. 

(b) that deals with ideas and theories. 

 

7. I prefer to get new information in 

(a) pictures, diagrams, graphs, or maps. 

(b) written directions or verbal information. 

 

8. Once I understand 

(a) all the parts, I understand the whole thing. 

(b) the whole thing, I see how the parts fit. 

 

9. In a study group working on difficult material, I am more likely to 

(a) jump in and contribute ideas. 

(b) sit back and listen. 

 

10. I find it easier 

(a) to learn facts. 

(b) to learn concepts. 

 

11. In a book with lots of pictures and charts, I am likely to 

(a) look over the pictures and charts carefully. 

(b) focus on the written text. 

 

12. When I solve math problems 

(a) I usually work my way to the solutions one step at a time. 

(b) I often just see the solutions but then have to struggle to figure out the steps to get to 

them. 

 

13. In classes I have taken 

(a) I have usually gotten to know many of the students. 

(b) I have rarely gotten to know many of the students. 

 

14. In reading nonfiction, I prefer 

(a) something that teaches me new facts or tells me how to do something. 

(b) something that gives me new ideas to think about. 

 

15. I like teachers 

(a) who put a lot of diagrams on the board. 
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(b) who spend a lot of time explaining. 

 

16. When I'm analyzing a story or a novel 

(a) I think of the incidents and try to put them together to figure out the themes. 

(b) I just know what the themes are when I finish reading and then I have to go back and 

find the incidents that demonstrate them. 

 

17. When I start a homework problem, I am more likely to 

(a) start working on the solution immediately. 

(b) try to fully understand the problem first. 

 

18. I prefer the idea of 

(a) certainty. 

(b) theory. 

 

19. I remember best 

(a) what I see. 

(b) what I hear. 

 

20. It is more important to me that an instructor 

(a) lay out the material in clear sequential steps. 

(b) give me an overall picture and relate the material to other subjects. 

 

21. I prefer to study 

(a) in a study group. 

(b) alone. 

 

22. I am more likely to be considered 

(a) careful about the details of my work. 

(b) creative about how to do my work. 

 

23. When I get directions to a new place, I prefer 

(a) a map. 

(b) written instructions. 

 

24. I learn 

(a) at a fairly regular pace. If I study hard, I'll "get it." 

(b) in fits and starts. I'll be totally confused and then suddenly it all "clicks." 

 



222 

 

25. I would rather first 

(a) try things out. 

(b) think about how I'm going to do it. 

 

26. When I am reading for enjoyment, I like writers to 

(a) clearly say what they mean. 

(b) say things in creative, interesting ways. 

 

27. When I see a diagram or sketch in class, I am most likely to remember 

(a) the picture. 

(b) what the instructor said about it. 

 

28. When considering a body of information, I am more likely to 

(a) focus on details and miss the big picture. 

(b) try to understand the big picture before getting into the details. 

 

29. I more easily remember 

(a) something I have done. 

(b) something I have thought a lot about. 

 

30. When I have to perform a task, I prefer to 

(a) master one way of doing it. 

(b) come up with new ways of doing it. 

 

31. When someone is showing me data, I prefer 

(a) charts or graphs. 

(b) text summarizing the results. 

 

32. When writing a paper, I am more likely to 

(a) work on (think about or write) the beginning of the paper and progress forward. 

(b) work on (think about or write) different parts of the paper and then order them. 

 

33. When I have to work on a group project, I first want to 

(a) have "group brainstorming" where everyone contributes ideas. 

(b) brainstorm individually and then come together as a group to compare ideas. 

 

34. I consider it higher praise to call someone 

(a) sensible. 

(b) imaginative. 
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35. When I meet people at a party, I am more likely to remember 

(a) what they looked like. 

(b) what they said about themselves. 

 

36. When I am learning a new subject, I prefer to 

(a) stay focused on that subject, learning as much about it as I can. 

(b) try to make connections between that subject and related subjects. 

 

37. I am more likely to be considered 

(a) outgoing. 

(b) reserved. 

 

38. I prefer courses that emphasize 

(a) concrete material (facts, dat(a). 

(b) abstract material (concepts, theories). 

 

39. For entertainment, I would rather 

(a) watch television. 

(b) read a book. 

 

40. Some teachers start their lectures with an outline of what they will cover. Such 

outlines are 

(a) somewhat helpful to me. 

(b) very helpful to me. 

 

41. The idea of doing homework in groups, with one grade for the entire group, 

(a) appeals to me. 

(b) does not appeal to me. 

 

42. When I am doing long calculations, 

(a) I tend to repeat all my steps and check my work carefully. 

(b) I find checking my work tiresome and have to force myself to do it. 

 

43. I tend to picture places I have been 

(a) easily and fairly accurately. 

(b) with difficulty and without much detail. 

 

44. When solving problems in a group, I would be more likely to 
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(a) think of the steps in the solution process. 

(b) think of possible consequences or applications of the solution in a wide range of 

areas. 

 

Knowledge on Programming (Eleftherakis, George) 

 

1. Write the “Hello World” program in any language you prefer 

(text)  

 

2.  Provide a solution using pseudo-code to the problem “I want to go to school in the  

morning” 

(text)  

 

3. What is the output of the following program? 

integer a = 10;     

if (a >= 10*5) 

a = a + 5; 

a = a - 5; 

print (“a”); 

 

a. I have no idea 

b. 10 

c. 5 

d. 15 

e. something else 

f. not sure 

 

4. What is the output of the following program? 

integer a = 10;     

while (a <= 10) 

print(“Hi”); 

 

a. I have no idea 
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b. It will print “Hi” 10 times 

c. It will print “Hi” only once 

d. It will never print “Hi”  

e. It will infinitely print “Hi”  

f. It will do something else 

 

5. What is the output of the following program? 

integer a = 10;     

integer b = 2; 

if (b > 2 && a == 10) 

a = 4; 

print(a*b); 

 

a. I have no idea 

b. a*b 

c. 20 

d. 8 

e. Something else 

 

6. What is the output of the following program? 

  integer a = 1; 

  integer b = 1; 

  while ( b < 11) 

  { 

   if (b == a && a <= 1) 

   { 

    a = a*2; 

   } 

   b = b + 1; 

   print( a + " * " + (b - 1) + " = " + a*(b-1)); 

  } 
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a. I have no idea 

b. It will print the multiplication table of all 10 first numbers 

c. It will print the multiplication table of 1 

d. It will print the multiplication table of 2 

e. It will print something else 

 

7. What is the result a computer will provide in the following operation? 

 1 + 1 = ? 

a. I have no idea 

b. 2 

c. 10 

d. 11 

e. Something else 

f. A computer is not capable to respond to this without further info 

 

Mentor Functional Evaluation (Eleftherakis, George) 

1. I think that "Mentor" will allow me to focus to the aim and learning objectives of the 

unit. 

2. I think "Mentor" will bolster my skills. 

3. I like that "Mentor" enables visual and immediate output of my efforts. 

4. I think "Mentor" is really easy to use with few minutes training. 

5. I think "Mentor" has a fun factor. 

6. I think "Mentor" will boost my creativity 

7. I think "Mentor" will help me to achieve deeper understanding of the fundamentals of 

computer programming. 

8. I think that the problems we have to solve with "Mentor" are easily understandable. 

9. I think that "Mentor" is a tool that could be used to solve these problems no matter the 

programming experience of the user. 

10. I think that Mentor allowed the introduction to the programming language in the first 

lecture and disguised the awkward syntax of the language, enabling me to experiment 

and engage early. 
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Mentor Technical Evaluation (Eleftherakis, George) 

1. Mentor's graphical user interface is suitable for a learning system. 

2. The program directions are clear. 

3. Mentor supports interactivity between learners and system by the immediate feedback 

it provides through its visual output. 

4. I have not faced any system errors on Mentor. 

5. When I counter an error in the system, I can get immediate feedback my e-mail. 

6. When I have errors in my code, Mentor's feedback helps me to identify were they are. 

7. Navigation is very easy on Mentor. 

8. I can find required information very easily on Mentor. 

9. "Help" option is available on the system. 

10. Mentor is a good educational tool and improves my learning 


