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"And how many a creature carries not its [own] provision.

Allah provides for it and for you. And He is the Hearing, the Knowing."

- Al Quran, 29:60



Abstract

Swarm intelligence algorithms, are among popular metaheuristic methods, developed and inspired by the col-

lective behaviour of swarms that have attracted significant attention of researchers. The works related to swarm

intelligence algorithms include the development of the algorithm itself, its modification and improvisation as

well as its application in solving global optimisation problems. This thesis presents works on swarm intel-

ligence algorithms that are inspired by real echolocation of a colony of bats and its performance evaluation

to solve optimisation problems. The aim of the research is to introduce novel form of swarm intelligence

algorithms based on real echolocation behaviour of bats. An adaptive bats sonar algorithm is proposed for

solving single objective optimisation problems. A modified adaptive bats sonar algorithm is then proposed for

solving constrained optimisation problems. Furthermore, a dual-particle swarm optimisation-modified adap-

tive bats sonar algorithm is proposed for solving multi objective optimisation problems. The algorithm is a

hybrid algorithm that operates using dual level search strategy that takes merits of a particle swarm optimisa-

tion algorithm and a modified adaptive bats sonar algorithm. The superior performances of the developed bats

echolocation-inspired algorithms are verified through rigorous tests with optimisation benchmark test func-

tions and problems. Further, the performances of the developed algorithms are assessed in solving selected

practical problems in business, mechanical/manufacturing engineering and electrical engineering fields. The

results validate the better performance of the developed algorithms in single objective optimisation, constrained

optimisation and multi objective optimisation problems of various fields.
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Chapter 1

Introduction

1.1 Introduction

This chapter introduces an overview of the research conducted. It starts with a discussion of the research

background to highlight the problem statement. Then, the aim and objectives of this research are formulated

followed by a description of the research methodology. This chapter also dedicates a section to preview the

contribution of the research to the world of knowledge at large as well as the list of publications as outcomes

of the research, and finally the overall organisation of the thesis is presented.

1.2 Research background

A quote by George Bernhard Dantzig 1 (Zeidler, 1995) :

"True optimisation is the revolutionary contribution of modern research to decision

processes".

Optimisation according to the definition of Merriam-Webster Dictionary (Merriam-Webster, 2015) is an act,

process, or methodology of making something (as a design, system, or decision) as fully perfect, functional, or

effective as possible.

In general, optimisation is the process of obtaining either the best minimum or maximum result under specific

circumstance (Rao, 2009; Yang and Deb, 2014). Bandyopadhyay and Saha (2013), Statnikov et al. (2012) and

Yang (2005) added that the optimisation process engages with defining and examining objective or fitness

function that suits some parameters and constraints. Nowadays, a vast range of business, management and

engineering applications utilise the optimisation approach to save time, cost and resources while gaining better

profit, output, performance and efficiency (Yang and Deb, 2014).

1George Bernhard Dantzig (November 8, 1914 – May 13, 2005) was a famous American mathematical scientist who made important
contributions to operations research, computer science, economics, and statistics.
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Optimisation problems can be divided into two categories: continuous and combinatorial (discrete) (Lovász,

2010). A combinatorial optimisation problem has a finite number of solutions but this is not in the case with a

continuous optimisation problem where the number of solutions is infinite. This research concentrates only on

continuous optimisation problems. So in this thesis, optimisation will refer solely to continuous optimisation

problems.

Normally, the optimisation problems can further be classified into two major types namely; single objective

optimisation and multi objective optimisation (Rao, 2009). Naturally, solving a single objective optimisation

is about finding an optimised solution to the problem at hand based on the single objective. Multi objective

optimisation, on the other hand, is multifaceted and solving the problem is to seek compromised solutions based

on a set of conflicting objectives (Castro-Gutierrez et al., 2010; Cvetkovic and Parmee, 1998; Stanimirovic,

2012; Yang, 2011). As there will be no unique solution to a multi objective optimisation problem (Ngatchou

et al., 2005), a set of ’trade-off’ solutions, referred to as Pareto optimum solutions, compromising the objectives

is produced (Coello, 2006; Zhou et al., 2011). As addition, multi objective optimisation with at least four or

more objectives are often referred to as many objective optimisation (Bingdong et al., 2015; Hughes, 2005;

Ishibuchi et al., 2008), although a few researchers specified three objectives also as many objective optimisation

(Wang et al., 2015).

Meanwhile, the single objective optimisation can be designated as either unconstrained or constrained de-

pending on whether or not the problem contains constraints (Rao, 2009). Conn et al. (1997) elaborates the un-

constrained single objective optimisation problem (or widely known as single objective optimisation problem)

as a problem that has no constraints specified on the variables and usually is less complicated. However, a con-

strained single objective optimisation problem (or widely referred as constrained optimisation problem) comes

with lack of explicit mathematical formulation but has discrete definition domains, mixed with continuous

and discrete design variables and also strong nonlinear objective functions with multiple complex constraints

(Cagnina et al., 2008; Garg, 2014; Fei et al., 2010).

According to Lee and Geem (2005) and Rao (2009), over the past forty years, many techniques have been

established to solve different optimisation problems efficiently. On the words of Coello (2006), Jones et al.

(2002) and Lee and Geem (2005); many optimisation problems work with mathematical or numerical linear

and nonlinear programming methods and use simple and ideal models to get the optimum result. However,

Lee and Geem (2005) stressed that the numerical optimisation method tends to improve the solution locally

which is different from a real world problem, often more complex and unpredictable. In addition, due to

their computational drawbacks, plus the requirement of substantial gradient information, traditional numerical

programming strategies have been incapable of solving any optimisation problem consistently (Cagnina et al.,

2008; Fei et al., 2010; Sadollah et al., 2013).
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Due to stated limitations and other downsides as listed by Coello (2006), the alternative prospect to solve an

optimisation problem is by heuristic2 or metaheuristic3 method (Coello, 2006; Gao et al., 2010; Hsieh, 2014;

Jones et al., 2002; Moore and Chapman, 1999). Even though the metaheuristic methods are computationally

laborious and give no guarantee of the quality of the results as stated by Yang (2005), the methods are still in

the top ranking of optimisation solving tools. Metaheuristic methods offer significant advantages such as; easy

to develop and implement, with a broad range of applicability, able to give a global perspective to the problem

domains that are needed to be solved (Afshar et al., 2007) and the convergence rate of the global or nearly

global optimum results are better than other optimisation approaches (Yıldız, 2009).

For the past decades, evolutionary algorithms that are part of metaheuristic methods have become popular

among the researchers to deal with the complexity of a wide variety of single and multi objective optimisa-

tion problems (Coello, 2006; Gong et al., 2014; Moore and Chapman, 1999; Wang et al., 2009; Yang, 2011;

Yang and Hossein, 2012). Evolutionary algorithms have been derived from a combination of a set of rules

or restrictions and randomness by populations in generations. Evolutionary algorithms imitate or simulate the

successful characteristics of natural phenomena of physical systems (e.g. simulated annealing algorithm) or

biological systems (e.g. animal behaviours-based algorithms) (Afshar et al., 2007; Becerra and Coello, 2006;

Coello, 2006; Lee and Geem, 2005; Sadollah et al., 2013; Yang, 2011).

Evolutionary algorithms offer some advantages. According to Banks et al. (2007), the major advantages of

evolutionary algorithms are that they are very good in general applicability that cover the vast range of problems

as well as prior knowledge of the problem considered as inessential. An evolutionary algorithms only needs an

explicit or implicit objective function to optimise the problem (Brest et al., 2006; He and Wang, 2007b). An

evolutionary algorithm kicks off with some guessed solutions, updates solutions in a synergistic manner then

navigates the search agents to balance between exploitation of good found-so-far positions and exploration

of new anonymous search positions toward the optimum global solution (Brest et al., 2006; Liu et al., 2010;

Mezura-Montes and Coello, 2005b; Zhang et al., 2008). Banks et al. (2007) divided the evolutionary algorithms

to some sub-fields. The subfields include genetic algorithm (GA) by Holland in 1975, evolutionary strategy

(ES) by Rechenberg in 1965, evolutionary programming (EP) by Fogel et al. in 1966, genetic programming

(GP) by Koza in 1992 and differential evolution (DE) by Storn and Price in 1995.

Among most popular evolutionary algorithms that have already captured the attention of researchers today

are swarm intelligence algorithms. Swarm intelligence algorithms are inspired by the collective behaviour

of swarms through a complex interaction between individuals and their neighbourhood with nature such as a

colony of ants, bacteria, bees, bats, birds and fishes (Afshar et al., 2007; Coelho and Mariani, 2008; Cuevas

and Cienfuegos, 2014; Hashmi et al., 2013; Hsieh, 2014). In general, swarms have self-organisation and decen-

tralised control features and all the swarm follows the same system where a population of swarm cooperates

2a way of trial and error to produce acceptable solutions to a complex problem in a reasonably practical time.
3meta means ’beyond’ or ’higher level’ and generally perform better than simple heuristic.
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and interacts with each other in the group and the environment under certain rules during foraging or social-

ising (Coelho and Mariani, 2008; Hashmi et al., 2013; Yang, 2005). The most remarkable features of any

swarm intelligence algorithm are that it has advantages of memory, diverse multi-characters capability, rapid

solution improvement mechanism and is adaptable to internal and external changes (Cuevas and Cienfuegos,

2014; Garg, 2014).

There are some well-known swarm intelligence algorithms developed over the past two decades. Kennedy

and Eberhart (1995) pioneered particle swarm optimisation (PSO) algorithm that simulates the social behaviour

and choreography of a bird flock. It was followed by ant colony optimisation (ACO) algorithm by Dorigo

(1999). The algorithm simulates the activity of ants while seeking a path to a food source. In micron scale

of swarm intelligence algorithms, the characteristics and behaviour of the vertebrate immune system have

led Hofmeyr and Forrest (2000) to introduce an artificial immune system (AIS) algorithm. Passino (2002)

successfully imitated the social foraging behaviour of Escherichia coli (E.− coli) for search of nutrients with

the bacterial foraging optimisation (BFO) algorithm.

In 2007, the artificial bee colony (ABC) optimisation method that was modelled from a colony of bee raised

attention of research community after explored by Karaboga and Basturk (2007b). Then, Havens et al. (2008)

initiated roach infestation optimisation (RIO) algorithm that was inspired from social characteristics of an

intrusion of cockroaches. Later, Yang (2010) introduced bat algorithm (BA) which imitated the echolocation

of bats to find prey with different levels of pulse and loudness emitted. The algorithm was the third from him

after a cuckoo search (CS) algorithm (Yang and Deb, 2009) encouraged from compellation of social parasitism

practised by a group of cuckoo and the firefly algorithm (FA) (Yang, 2009) idealised from the flashing behaviour

of fireflies a year before.

Tawfeeq (2012) also utilised the concept of echolocation of bats to find prey to design a new swarm intel-

ligence algorithm. Different from the algorithm investigated by Yang (2010) as cited before, this algorithm

models the principles of bats sonar used in echolocation to search for the optimum solution to a specific prob-

lem (Tawfeeq, 2012). It is worth mentioning, to strengthen the swarm intelligence algorithms or to cater for

a specific problem, the versions of swarm intelligence algorithms hybridised between each other or with other

conventional approaches have also existed (Yang, 2005; Yıldız, 2009).

1.3 Research problem statement

The problem with most of the swarm intelligence algorithms introduced before is that they still do not perform

well to achieve the best accuracy while maintaining good precision and fast convergence to the global optimum

solution. Besides, excellent balance between exploration and exploitation processes of the algorithm is essential

as insufficient diversification or excessive intensification results in the system falling into the local optimum

instead of the global optimum. These problems must be tackled to ensure the swarm intelligence algorithms
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are more reliable, efficient, and effective so that it would be the most prominent method to solve any single or

multi objective optimisation problems.

1.4 Research aim and objectives

This research will try to resolve the difficulties faced by the various swarm intelligence algorithms as stated

before by exploring better swarm intelligence algorithms that simulate the social characteristics of a colony

of bats. However, it is not the research aim to investigate the algorithms that outperform all other existing

algorithms in all types of problems; it is rather to introduce novel form of swarm intelligence algorithms based

on real echolocation behaviour of bats that employ an innovative problem solving approach that is not found in

any existing metaheuristic methods.

There are four objectives to perform this research. These are:

1. To research and test an effective bats echolocation-inspired algorithm to solve single objective optimisa-

tion problems.

2. To research and test an effective bats echolocation-inspired algorithm to solve constrained optimisation

problems.

3. To research and test a hybrid of an effective bats echolocation-inspired algorithm with an established

swarm intelligence algorithm to solve multi objective optimisation problems.

4. To apply the effective bats echolocation-inspired algorithms to selected practical optimisation problems.

1.5 Research methodology

Figure 1.1 shows the flow chart of the major research milestones. This research activity has five major phases.

In the first phase, an intensive literature review is conducted. This includes the study of the type of opti-

misation problems, the characteristics of a colony of bats in nature (especially during echolocation behaviour)

and existing bats echolocation-inspired algorithms. The purpose of the literature review is to acquire better

understanding of existing techniques and to explore the latest developments in the subject area.

The second phase is to research an improved adaptive bats sonar algorithm compared to one of the existing

bats echolocation-inspired algorithms for solving single objective optimisation problems. The algorithm will

be tested on several single objective optimisation benchmark test functions. The results will be compared with

other swarm intelligence algorithms. If the results have shown the superior performance of the algorithm over

the existing swarm intelligence algorithms, the research activity will move forward to the next phase. However,

if the results are not optimised, the algorithm will be experiencing some fine-tuning on its properties to achieve

the optimised results.
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During the third phase, the adaptive bats sonar algorithm will be modified and injected with new elements.

By doing this, the modified adaptive bats sonar algorithm is aimed to optimise the constrained optimisation

problems. Then, the algorithm will be tested to solve sets of constrained optimisation benchmark test functions

and engineering design optimisation problems. Next, the research activity will continue in the fourth phase

if the algorithm perform better in achieving optimised solutions as compared with other swarm intelligence

techniques. If not, the fine-tuning of the properties of developed algorithm is essential to achieve the desired

outcomes.

The fourth phase will focus on hybridisation of the modified adaptive bats sonar algorithm with one influen-

tial swarm intelligence algorithm. The potential candidate for this is the particle swarm optimisation algorithm.

The synergy between the two algorithms is expected to achieve solutions to multi objective optimisation prob-

lems. The hybrid algorithm will be tested on a platform of multi objective optimisation benchmark test func-

tions. The results will be evaluated to show the capability of the hybrid algorithm to achieve targeted optimum

solution. If so, this will lead to the final research activity phase. However, if the results are not convincing, the

properties of the hybrid algorithm will be fine-tuned appropriately.

The final phase (fifth phase) is about to test and evaluate performance of all the bats echolocation-inspired

algorithms in selected practical optimisation problems. The considered case studies will cover single objective

optimisation problems, constrained optimisation problems and multi objective optimisation problems. The

results collected will be evaluated to confirm with appropriate optimum solutions targeted. If the algorithms

perform as desired, the research activity will end. However some adjustment on the algorithm properties and/or

considered problems will be made if poor results are delivered.

The research activities including algorithms investigation stage, algorithms testing stage and algorithms per-

formance analysis and discussion stage, are conducted on similar types of computer and software platforms.

The specification of the computer is Intel R©Core
TM

i5 processor of 2400 CPU @ 3.10GHz with 4.00GB RAM

while, the MATLAB software version MAT LAB R©R2013a is used throughout.

1.6 Research contribution and publications

The main scientific contributions to knowledge of this research include the following:

1. An adaptive bats sonar algorithm (ABSA) for solving single objective optimisation problems.

2. A modified adaptive bats sonar algorithm (MABSA) for solving constrained optimisation problems.

3. A dual-particle swarm optimisation-modified adaptive bats sonar algorithm (D-PSO-MABSA) for solv-

ing multi objective optimisation problems.

However, in real terms, the ABSA, MABSA and D-PSO-MABSA algorithms may outperform other methods

in certain types of problems and may underperform in others. The choice of a suitable algorithm for any
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optimisation problem is, to a large extent, dependent on the user’s experience in solving similar problems.

Hence, the research creates another form of swarm intelligence algorithm that employs a different signature

problem-solving approach in optimisation problems which the approach is rooted in the echolocation behaviour

of a colony of bats. Then, the findings of the research will produce a set of new contribution to knowledge that

will benefit the study in solving the optimisation problems on the platform of the swarm intelligence algorithm

in a larger context.

Several publications have been produced through the course of the research. These include:

1. N.M. Yahya, M.O. Tokhi and H.A. Kasdirin. A new bats echolocation-based algorithm for single objec-

tive optimisation. Evolutionary Intelligence (Published online on 18th February 2016, DOI 10.1007/s12065-

016-0134-5).

2. N.M. Yahya and M.O. Tokhi. A modified bats echolocation-based algorithm with application to con-

strained optimisation problems. International Journal of Bio-Inspired Computation (submitted on 22th

April 2015, under review).

3. N.M. Yahya and M.O. Tokhi. Dual level searching approach for solving multi objective optimisation

problems using hybrid particle swarm optimisation and bat echolocation-inspired algorithms. Applied

Soft Computing (submitted on 15th December 2015, under review)

1.7 Organisation of the thesis

The overall thesis is organised as follows:

Chapter 1 : Introduces the research background, research problem statement, aim and objectives of the re-

search, methodology of the research, contribution and list of publications resulted from the research and

organisation of the thesis.

Chapter 2 : Introduces single objective optimisation problems, constrained optimisation problems and multi

objective optimisation problem.

Chapter 3 : Describes the colony of bats in nature, bat algorithm, variants of bat algorithm, bats sonar algo-

rithm and several problems existed in bats sonar algorithm.

Chapter 4 : Explores the investigation and computer simulation of adaptive bats sonar algorithm for solving

single objective optimisation problems.

Chapter 5 : Discusses the investigation and computer simulation of modified adaptive bats sonar algorithm

for solving constrained optimisation problems.

Chapter 6 : Deliberates the particle swarm optimisation and investigation as well as computer simulation

of a dual searching process of PSO and MABSA algorithms for solving multi objective optimisation

problems.
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Chapter 7 : Presents performance assessments of the algorithms in case studies of single objective optimisa-

tion problems, constrained optimisation problems and multi objective optimisation problems.

Chapter 8 : Highlights the overall research summary and conclusion as well as future direction of the research.

1.8 Summary

This chapter has discussed the research background, instituted the research problem statement and setting up

the research aim and objectives. Moreover, the research methodology has been formulated with statement of

contribution of the research to knowledge.

The next chapter will briefly discuss the optimisation problems. The chapter is a part of the first research

methodology phase.
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Chapter 2

Optimisation problems in brief

2.1 Introduction

This chapter briefly discusses the optimisation problems. The chapter is divided into four sections. The first

section discusses the general concept of optimisation. Then, the second section concentrates on single objective

optimisation problems as well as several research methods to solve such problems. The third section reviews

constrained optimisation problems. In this section, a penalty method as one of the constraints handling tech-

nique for solving constrained optimisation problems is also highlighted. The last section of this chapter will

explore multi objective optimisation problems. This section also gives emphasis to a weighted sum approach

as one of the ways to solve multi objective optimisation problems. Some literature review on the preceding

research on solving multi objective optimisation problems using particle swarm optimisation (PSO) algorithm

are also included in this section.

2.2 Optimisation problem

Optimisation theory is a division of mathematics about the study of techniques, methods, procedures or algo-

rithms to find the optimum solution to the problem considered (Antoniou and Lu, 2007). The optimisation

problem takes place in most disciplines. In the engineering field, optimisation problem occurs in modelling and

characterising; design of devices, circuits and systems; design of tools, instruments and equipment; design of

structures and buildings, production planning and scheduling, quality, inventory and process control as well as

maintenance and repair of equipment or systems (Antoniou and Lu, 2007).

The optimisation process starts by formulating the problem first (Antoniou and Lu, 2007). A performance

criterion F must be derived in terms of n variables x1,x2, . . . ,xn as:

Optimise F = F(x1,x2, . . . ,xn) (2.1)
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F is usually referred to the objective function or fitness function or cost function that can be assumed in numer-

ous forms. It can be the cost of a product in a manufacturing environment or the difference between the desired

performance and the actual performance in a system (Antoniou and Lu, 2007). On the other hand, the variables

x1,x2, . . . ,xn need to be adjusted in such a way to optimise F . Variables x1,x2, . . . ,xn are the parameters that

influence the product cost in the first case or the actual performance in the second case (Antoniou and Lu,

2007). They can be independent variables, decision variables, design variables or control parameters.

Antoniou and Lu (2007) and Deb (2014) agreed that the word ‘optimise’ is more specific than the word

‘improve’ in delivering the meaning to achieve an optimum. In accession to that, ‘optimum’ is a technical

term appropriately referring to quantitative measurement and is better than daily-use-word ‘best’. Subject to

circumstances, optimise is taken to mean ‘minimise’ or ‘maximise’ (Antoniou and Lu, 2007).

2.3 Single objective optimisation problem

2.3.1 Background

A single objective optimisation is an objective function of n numbers of variables (x) that tie to lower bound

and upper bound variables as:

Optimise F(x), x = (x1,x2, . . . ,xn)

where

x(L)i ≤ xi ≤ x(U)
i , i = 1,2, . . . ,n

(2.2)

Here x(L)i represent the lower bounds and x(U)
i represent the upper bounds of variable xi with n variables respec-

tively.

The purpose of an optimisation algorithm is to find a solution of variable(s), x for which the function F(x) is

optimum. According to Deb (2014), there are two categories of solutions:

1. Local optimum solution: A point or solution x∗ is said to be a local optimum solution if there exists no

point in the neighbourhood of x∗ which is better than x∗. For minimisation problem, a point x∗ is a local

minimum solution if no point in the neighbourhood had a function value smaller than F(x∗).

2. Global optimum solution: A point or solution x∗∗ is said to be a global optimum solution if there exists

no point in the entire search space which is better than the point x∗∗. Similarly, a point x∗∗ is a global

minimum solution if no point in the entire search space has a function value smaller than F(x∗∗).

Bandyopadhyay and Saha (2013) have identified three major techniques available to solve the single objective

optimisation problem. The first technique is calculus-based techniques or numerical methods. This technique

uses a set of local requisite and sufficient condition to satisfy the solution of problem (Bandyopadhyay and
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Saha, 2013). Example of algorithms that use this technique are direct search methods and indirect search

methods. According to Bandyopadhyay and Saha (2013), the technique is excellent to solve a small class of

unimodal problems but is inefficient to apply to many real life applications.

According to Bandyopadhyay and Saha (2013), enumerative techniques are the second set to solve the single

objective optimisation problem. These techniques evaluate each and every point in the search space to arrive at

the optimum solution. Most of the algorithms that apply these techniques, for example, dynamic programming,

will break the considered problem into a smaller size and lower complexity because it is difficult to search all

the points in the search space (Bandyopadhyay and Saha, 2013).

The guided random techniques are other techniques to solve single objective optimisation problems as men-

tioned by Bandyopadhyay and Saha (2013). These techniques are enumerative methods-improved where ad-

ditional information about the search space is used to lead to potential solution points. The randomly guided

techniques are further classified into single-point search and multi-point search. Swarm intelligence algorithms

as part of evolutionary algorithms utilise the multi-point search where a highly explorative searching process

with a random choice of parameters are adopted to search for several points at a time (Bandyopadhyay and Saha,

2013). These robust techniques have advantages to find acceptable near-optimum solution of the problems that

have large search space, and are multimodal and discontinuous.

2.3.2 Approaches for single objective optimisation problems

In general, the algorithms used to solve for single objective optimisation problems can be divided into two

categories, namely direct methods and gradient-based methods (Deb, 2014). Direct methods are solely depend

on the objective function values to guide the search process and do not utilise any derivative information of the

objective function (Deb, 2014). Meanwhile, according to Deb (2014), gradient-based methods utilise derivative

information (either first or second-order) to guide the search process.

Swarm intelligence algorithm which is a type of direct methods has attracted a lot of attention of the research

community. There are many swarm intelligence algorithms that have been introduced over the last decade for

solving single objective optimisation problems. Yang (2005) introduced a virtual bee algorithm (VBA) that

simulates the swarm interactions of social honey bees. The VBA follows the process of bees searching for

honey as: a bee finds a food source; brings back honey to the hive; recruits others by performing ‘waggle

dance’; recruits bee to learn the distance and direction from the dance; forages the same source and becomes

the favoured path. Yang (2005) compared the performance of VBA with genetic algorithm (GA) to optimise

De Jong’s test function and Keane’s multi-peaked bumpy test function. The results suggested that VBA works

better than GA due to the parallelism factor inside the algorithm.

Then, Yang et al. (2007) proposed a hybrid algorithm of PSO and GA to solve single objective optimisation

problems. The hybrid algorithm is a combination of the flying behaviour of particles and population diversity
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of PSO that are enhanced by the genetic mechanism of GA. The hybrid algorithm divided the searching process

into two stages. The first stage utilised the PSO procedures while the second stage adopted the GA procedures.

According to Yang et al. (2007), the hybrid algorithm can improve the performance of PSO and GA as well as it

is able to avoid premature convergence. The hybrid algorithm was tested on three single objective optimisation

benchmark test functions, namely Sphere function, Rosenbrock function and Rastrigrin function. The hybrid

algorithm recorded a better performance as compared to PSO and GA.

Karaboga and Basturk (2007b) introduced an artificial bee colony (ABC) algorithm that was also inspired

from a nectar searching process by a bee colony. The ABC algorithm divided bees into three groups; the

employed bees go to the located food source, the onlooker bees wait on the dance area to choose a food

source and the scouts bees search for food randomly. Karaboga and Basturk (2007b) compared the ABC

algorithm with GA, particle swarm optimisation (PSO) and hybridised algorithm of particle swarm-inspired

evolutionary algorithm (PS-EA) on five high dimensional multi modal single objective optimisation benchmark

test functions. The simulation results concluded that the ABC algorithm can escape from local optimum as well

as can be used to solve multivariable and multi modal function optimisation problems.

Havens et al. (2008) introduced roach infestation optimisation (RIO) algorithm motivated from the collective

and individual behaviours of cockroaches. The RIO algorithm works based on three behaviours of intrusion of

cockroaches: like the darkest location, enjoy to socialise with a company of friends and periodically become

hungry. The RIO algorithm was tested on eight single objective optimisation benchmark test functions. Ac-

cording to Havens et al. (2008), the results showed that the RIO algorithm could find global optimum as well

as perform on par with PSO.

Yang (2009) presented a firefly algorithm (FA) that was encouraged from the unique pattern of flashing light

by a swarm of fireflies. The FA was idealised from three rules; all fireflies are unisex, attractiveness is propor-

tional to their brightness and objective function landscape determines the brightness. Yang (2009) compared

the performance of FA with GA and PSO on ten single objective optimisation benchmark test functions. The

results indicated that FA outperformed both of the algorithms in terms of the efficiency and success rate.

Yang and Deb (2009) reported a cuckoo search (CS) algorithm that was based on the obligate brood parasitic

behaviour of some cuckoo species. This algorithm is also integrated with the Lévy flight behaviour of some

birds and fruit flies. The CS algorithm operates based on three rules inspired by cuckoo breeding behaviour.

The rules are: each cuckoo lays one egg in a random nest at a time, the best nest with the highest quality of

eggs will bring forward to next generations and fixed number of available host nests. The CS algorithm has

been verified and compared with GA and PSO on ten single objective optimisation benchmark test functions.

The simulation results showed that CS performed better as compared to both established algorithms especially

for multi modal objective functions (Yang and Deb, 2009).
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Kang et al. (2011) have proposed a Rosenbrock artificial bee colony (RABC) algorithm that integrates a

Rosenbrock’s rotational direction method for an exploitation phase with original ABC algorithm for explo-

ration phase. The Rosenbrock method is a classical derivative-free local search technique with adaptive search

orientation and size while the ABC algorithm is a swarm intelligence algorithm that is inspired from a colony

of bee searching for nectar. Kang et al. (2011) tested and compared RABC algorithm with other well-known

algorithms on 41 single objective optimisation benchmark test functions taken from various literatures. The nu-

merical results validated that the proposed algorithm demonstrated better performances in terms of robustness,

convergence speed, efficiency and accuracy as compared to other algorithms.

In 2012, a new swarm intelligence algorithm, the krill herd (KH) algorithm was proposed by Gandomi and

Alavi (2012). The KH algorithm is based on the herding behaviour of krill individuals. The KH algorithm

sets the minimum distances and highest density of krill herd from food as the objective function. Besides, KH

algorithm also has taken movement induced by the presence of other individuals, foraging activity and random

diffusion as three main factors to determine the time-dependent position of each krill. The KH algorithm

has been compared with other eight algorithms to solve twenty single objective optimisation benchmark test

functions. The result validated a better performance of the KH algorithm with the benchmark test functions as

well as outperform other established algorithms (Gandomi and Alavi, 2012).

Rizk-Allah et al. (2013) presented a hybrid algorithm of ant colony optimisation and firefly algorithm (ACO-

FA) for solving single objective optimisation problems. The ACO-FA combined the advantages of both swarm

intelligence algorithms where ant colony works as a global searcher and firefly colony works as a local searcher.

Rizk-Allah et al. (2013) tested the ACO-FA algorithm on a set of fifteen single objective optimisation bench-

mark test functions. The simulation results suggested that the ACO-FA algorithm demonstrated better perfor-

mance for searching the global optimum solution as compared to other prominent algorithms.

Another variant of bee colony algorithm was proposed by Kumar (2014). The algorithm was named directed

bee colony (DBC) algorithm, and modelled a group decision-making process of nest site selection by a colony

of honey bees. The ability of bees to perform tasks, the constant population of bees, environment of bees

and information exchange process among bees are the main criteria in the DBC algorithm. According to

Kumar (2014), the DBC algorithm was tested on nine single objective optimisation benchmark test functions

of unimodal and multimodal types. The simulation results show better performance in terms of robustness and

accuracy of DBC algorithm over other metaheuristic algorithms.

Askarzadeh (2014) explored an algorithm inspired by bird mating strategy during mating season. The bird

mating optimiser (BMO) algorithm is aimed to solve single objective optimisation problems. In BMO algo-

rithm, the population is called society and in each society member is called a bird that represent a feasible

solution. There are five groups of birds in the society based on the real birds mating system. The groups are

parthenogenetic, polyandrous, monogamous, polygynous and promiscuous. The BMO algorithm was tested

on three categories of single objective optimisation benchmark test functions. The categories are unimodal
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functions, multimodal functions and low-dimensional multimodal functions. The simulation results showed a

better performance of BMO algorithm to provide a good balance between global and local search effectively as

compared to other algorithms (Askarzadeh, 2014).

Campos et al. (2014) presented a bare bones particle swarm optimisation with scale matrix adaptation (SMA-

BBPSO) aimed to solve single objective optimisation problems. This algorithm is an improved version to settle

premature convergence problem suffered by the original bare bones particle swarm optimisation (BBPSO). In

the SMA-BBPSO, each particle chooses new position in the search space using a multivariate t-distribution

with a rule for adaptation of its scale matrix. The strategy induces accumulated learning in each particle and

increases the ability of particles to escape from a local optimum. Campos et al. (2014) verified the performance

of the SMA-BBPSO on fifteen single objective optimisation benchmark test functions. Statistical test results

showed significant improvement of SMA-BBPSO to get good solutions for all test functions compared to other

swarm algorithms.

Recently, Liang et al. (2015) proposed a social network-based swarm optimisation algorithm (SNSO) tar-

geted for solving single objective optimisation problems. The SNSO algorithm adopted a social network evo-

lution model of the swarm to improve the search performance of a swarm. The SNSO introduced a dynamical

population topology, extended neighbourhood structure and divided the individuals into two groups based on

their fitness. Results from computer simulation on twelve single objective optimisation benchmark test func-

tions showed that SNSO achieved better performance as compared to seven others distinguished population-

based algorithms (Liang et al., 2015).

Swarm intelligence algorithms based on bats have also appeared in the literature, among which significant

one are bat algorithm (BA) by Yang (2010) and bats sonar algorithm (BSA) by Tawfeeq (2012). Both algorithms

are inspired from echolocation of a colony of the bats. However, both algorithm will be detailed in the next

chapter such that the BA and especially BSA will be a base for this research to research a new set of bats

echolocation-inspired algorithms.
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2.4 Constrained optimisation problem

2.4.1 Background

A constrained optimisation comprises an objective function together with some equality and inequality con-

straints subject to lower bound and upper bound of variables as:

Optimise F(x), x = (x1,x2, . . . ,xN)

subject to

g j(x)≥ 0, j = 1,2, . . . ,J

hk(x) = 0, k = 1,2, . . . ,K

where

x(L)i ≤ xi ≤ x(U)
i , i = 1,2, . . . ,n

(2.3)

Here g j(x) represents inequality constraint functions with J inequality constraint. hk(x) represents equality

constraints functions with K is equality constraints. x(L)i represents the lower bounds and x(U)
i the upper bounds

of variable xi with n variables respectively.

According to Jiao et al. (2013); Yang et al. (2006); Zahara and Kao (2009), a constrained optimisation

problem deals with interferences between multi-variable and multi-constraint features. So it is difficult to solve

the constrained optimisation problem as compared to unconstrained optimisation problem in a way that ensures

efficient, optimum and constraint-satisfying convergence condition (Antoniou and Lu, 2007). If the constraints

can be handled, it is easier to solve the constrained optimisation problem (Antoniou and Lu, 2007; Garg, 2014).

The most popular way that researchers have adopted is to convert the constrained optimisation problem to be

unconstrained optimisation problem by getting in all constraints into the objective function (Antoniou and Lu,

2007; He and Wang, 2007a).

Another challenge in a constrained optimisation problem is how to balance the search for feasible individuals

and infeasible individuals throughout the search process (Tessema and Yen, 2006; Zhang et al., 2008). Feasible

individuals are the individuals that satisfy all of the equality and inequality constraints and variables bound at

that point, while infeasible individuals are individuals that do not satisfy at least one of the constraints (Deb,

2014; Tessema and Yen, 2006). The conventional way to solve this problem is by ignoring the existence of

infeasible individuals but continue the process of discovering for optimum solution with the feasible individual

only (Tessema and Yen, 2006).

So, a better searching approach for the optimum solution in part with the correct constraint handling tech-

nique plays an important role to solve a constrained optimisation problem effectively (Wang and Li, 2010).
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2.4.2 Constraints handling technique for constrained optimisation problems: a penalty method

Constraint handling techniques will be used to direct the search for the algorithm towards feasible solution in

the search space (Cuevas and Cienfuegos, 2014). There are several major approaches reported in the literature

for handling constraints (Akay and Karaboga, 2012; Koziel and Michalewicz, 1999; Ray and Liew, 2003; Yang

et al., 2006). These include:

1. Approach based on the preference of feasible solutions over infeasible ones with some operators.

2. Approach based on penalty functions that use a penalty term to convert constrained optimisation problem

into a non-constrained optimisation problem.

3. Approach based on multi objective optimisation concept such as Pareto ranking scheme.

4. Approach that makes a clear distinction between feasible solutions and infeasible solutions.

5. Approach based on a separate treatment of objective function and the constraint violation, for instance;

stochastic ranking (SR).

6. Hybrid methods combining evolutionary computation techniques with deterministic procedures for nu-

merical optimisation.

An approach based on penalty function as constraint handling mechanism in constrained optimisation prob-

lems has gained more attention of researchers (Amirjanov, 2006; Coello, 2000; He and Wang, 2007a; Mezura-

Montes and Coello, 2005a; Wang and Cai, 2012). Besides of its simplicity and easy implementation (He and

Wang, 2007a,b; Parsopoulos and Vrahatis, 2005), the key successful factor of this approach is that an individual

in the infeasible region is penalised to move toward the feasible region and provide useful information to help

others to move in (Afshar, 2013; Mezura-Montes and Coello, 2005a; Runarsson and Yao, 2005). The penalty

function also offers as leverage balance between objective function and constraint violation (He and Wang,

2007a; Runarsson and Yao, 2000). Even though many variants of penalty functions exist such as dynamic

penalty, adaptive penalty and death penalty (Rao et al., 2011; Ray and Liew, 2003), the static penalty function

(which is the basic one) will be adopted in this research.

In the static penalty function, the original objective function F(x) is replaced by a substituted function C(x)

which considers the original objective function F(x) add a penalty function P(x) that introduces a tendency term

to penalise constraint violations produced by x. Therefore, considering the constrained optimisation problem

defined previously, the substituted function is defined as follows:

C(x) = F(x)+P(x)

where

P(x) = µ ·
J

∑
j=1

g j
2(x)+ v ·

K

∑
k=1

hk
2(x)

(2.4)

where µ and v represent the penalty coefficients which weigh the relative importance of each g j(x) (inequality

constraint) and hk(x) (equality constraint) respectively. In this work, µ and v values are problem-dependant.
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2.4.3 Approaches to solving constrained optimisation problems by previous researchers

Various research works have been reported over the past two decades on dealing with constrained optimisation

problems. This section will highlight some by dividing the approaches into four main bases, namely swarm

intelligence algorithms, other evolutionary algorithm strategies, hybridised approaches and multi objective op-

timisation methods.

There are several swarm intelligence algorithms that have been used to solve the constrained optimisation

problem. The PSO was the most favourable technique among them. Parsopoulos and Vrahatis (2005) has pro-

posed a variant of PSO scheme, a unified particle swarm optimisation (UPSO) method with a penalty function

approach. The proposed algorithm has abilities to explore and exploit the search process without needing extra

requirements of function evaluations and also preserves feasibility of the encountered solutions. Yang et al.

(2006) introduced a master-slave particle swarm optimisation (MSPSO) where master swarm and slave swarm

particles were created to fly toward better feasible and infeasible particles, updating and sharing information

between them. This approach brings better global exploration ability and keeps away from being trapped into

the local optimum.

He and Wang (2007a) reported a two-swarm groups mechanism in a co-evolutionary particle swarm opti-

misation (CPSO). Both groups were used to evolve decision solution and adapt penalty factors for solution

evaluation. Cagnina et al. (2008) investigated simple constrained particle swarm optimiser (SiC-PSO) which

was coupled with a constrained-handling technique. The algorithm was faster, more reliable and efficient after

combining local best (lbest) and global best (gbest) models to update the velocity as well as adding gbest to the

best position of the particles and in its neighbourhood. Recently, Afshar (2013) designed a fully constrained

particle swarm optimisation (FCPSO) and three versions of partially constrained PSO (PCPSO) to deal with the

real world water resources management problems. The proposed algorithms eliminated the infeasible region

in the search space before and during a search process. As compared to the original PSO, the methods are

computationally effective and less sensitive to initial swarm and swarm size.

Another popular swarm intelligence algorithm used is the artificial bee colony (ABC) algorithm. For in-

stance, Garg (2014) introduced a penalty function guided ABC algorithm to solve several structural engineering

design problems. Before that, Karaboga and Basturk (2007a) adopted Deb’s rule for the selection of mechanism

to deal with the constraints of the ABC algorithm to solve a set of constrained numerical optimisation problems

and extended previous version by adding constraint handling technique into the selection steps to solve large

scale and constrained engineering design problems (Akay and Karaboga, 2012).
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The rest of the techniques shall be categorised under swarm intelligence algorithms such as, bat algorithm

(BA) (Yang and Hossein, 2012) which is based on the level and loudness of pulse emitted in bats echolocation, a

bacterial gene recombination algorithm (BGRA) that was inspired from virus resistance process in real bacteria

(Hsieh, 2014) and the social spider optimisation (SSO-C) algorithm which is based on the cooperative behaviour

in a colony of social spiders (Cuevas and Cienfuegos, 2014).

Besides swarm intelligence algorithms, several researchers applied other evolutionary algorithms to solve

the constrained optimisation problems. Koziel and Michalewicz (1999), for instance, utilised an evolutionary

algorithm with decoder (a technique that uses a chromosome as in genetic algorithm), incorporated with a

homomorphous mapping between an n-dimensional cube and a feasible search space. According to the origi-

nators, the proposed algorithm was an alternative approach to nonlinear programming (NLP).

Differential evolution (DE) which is among the popular methods in evolutionary algorithms is also widely

applied to constrained optimisation problems. Huang et al. (2008) modified the algorithm to an archived DE

(ADE) algorithm where an archive of all the best solutions from previous evolution process will be utilised to

estimate new solutions. The algorithm also collaborated with dynamic penalty functions and fitness calculation

of individuals. Later, Li et al. (2012) proposed an improved DE with a self-adaptive strategy to determine

the control parameters paired with the dynamic constraint-handling mechanism. The approach was enhanced

with a self-adaptive parameter from its original version, DE with dynamic constraint-handling (DCDE) to seek

and improve for a feasible solution and objective function. Recently, Gong et al. (2014) studied an improved

constrained DE variant; improve mutation dynamic DE (rank-iMDDE). The improved algorithm introduced

a ranking-based mutation operator to accelerate the convergence rate of DE as well as improve the dynamic

diversity mechanism to maintain feasible and infeasible solutions in the population under the multiple trail

vectors generation technique.

Other research works on evolutionary algorithms to solve the constrained optimisation problems include the

adaptive segregational constraint handling evolutionary algorithm (ASCHEA) (Hamida and Schoenauer, 2002)

that targeted to preserve feasible and infeasible individuals and the improved α constrained simplex method by

Takahama and Sakai (2005) to control the convergence speed. To take advantage of the information hidden in

infeasible individuals efficiently, a self-adaptive penalty function-genetic algorithm (Tessema and Yen, 2006)

was introduced, while an effective global harmony search (EGHS) based on natural music performance was

applied to optimise pressure vessel design problems (Gao et al., 2010). Other techniques are teaching-learning-

based optimisation (TLBO) algorithm inspired by the real influence of a teacher on learners (Rao et al., 2011), a

novel selection evolutionary strategy (NSES) with a self-adaptive selection method (Jiao et al., 2013) and mine

blast algorithm (MBA) inspired from bomb explosion to clear the mines field (Sadollah et al., 2013).

There has also been attempts on hybridisation of two or more methods to solve constrained optimisation

problems. The combination techniques desire features of each so that the new breed algorithm is better than

the individual components. For instance, Coello (2000) and Amirjanov (2006) respectively hybridised GA with
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another strategy to improve the capabilities of GA to solve constrained optimisation problem. Coello (2000)

embedded co-evolution concepts to adapt the self-adaptive penalty factors of fitness function into GA. The co-

evolution was applied to create two populations that interact with each other and can also be used to determine

the penalty factor and optimise the objective function. The technique is easy to implement and is suitable to

use on parallelisation to improve overall performance. On the other hand, Amirjanov (2006) injected GA with

the changing range of design variable feature using a stochastic ranking method with the shifting and shrinking

mechanism (SSM). The algorithm would move and shrink the search space towards the feasible region resulting

in speedy convergence to the global optimum within reasonable precision.

PSO also became the subject of hybridisation method for producing a new strong algorithm to solve con-

strained optimisation problems. He and Wang (2007b) introduced a hybrid PSO (HPSO) after combining

feasibility based rule and simulated annealing (SA). SA acted as a means to shun premature convergence, while

the feasibility-based rule was used as an alternative to penalty function approach for the constraint-handling

mechanism. Zahara and Kao (2009) integrated the Nelder-Mead simplex method and PSO (NM-PSO) which

combine the advantage of efficient local search in Nelder-Mead method and better global search in PSO. PSO

also has been paired with DE (Liu et al., 2010), known as PSO-DE to accelerate the convergence process. DE,

which has a strong searching ability, was used to help PSO escape from stagnation condition. Deb’s feasibility-

based rule to compare the updated particle is used in this hybrid method.

Further, Runarsson and Yao (2000) introduced a µ and λ evolution strategy, (µ+λ )ES with stochastic ranking

method. The algorithm plans to balance dominance of penalty function and objective function stochastically

and it is achieved through a ranking procedure based on the stochastic bubble-sort algorithm. Runarsson and

Yao (2005) improved the algorithm by exploring an improved stochastic ranking (ISR) method to show the im-

portance of search bias in constrained optimisation. Ray and Liew (2003) introduced a society and civilisation

algorithm modelled from the intra and inter-society interactions within a formal society and the civilisation.

The algorithm combined the features of GA, machine learning model and Pareto ranking scheme. Later, Be-

cerra and Coello (2006) investigated a cultural algorithm with a differential evolution population, where the

cultural algorithm is an evolutionary computation technique that uses domain knowledge to improve process

performance. Few more examples are the dynamic stochastic selection in multi-member differential evolution

(DSS-MDE) by Zhang et al. (2008), a hybrid evolutionary algorithm and an adaptive constraint handling tech-

nique (HEA-ACT) by Wang et al. (2009) and a differential evolution with level comparison (DELC) by Wang

and Li (2010).

Another significant method by researchers to optimise the constrained optimisation problems is by imple-

menting a non-constraint handling mechanism or a multi objective optimisation method. For example, Coello

and Mezura-Montes (2002) introduced a niched-Pareto GA (NPGA) where the new constraint handling ap-

proach was introduced based on multi objective optimisation technique. This method adopts concepts from

multi objective optimisation, where it does not require penalty function or niching approach to maintain diver-
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sity in the population instead of deriving a new constraint-handling technique. Meanwhile, Mezura-Montes and

Coello (2005a) researched the non-penalty function, self-adaptive mutation of a simple multi-membered evolu-

tion strategy. This strategy involved a simple diversity mechanism to keep infeasible solution in the population,

a simple feasibility-based comparison mechanism to drive the process toward the feasible region, and a hybrid

recombination operator was used for exploitation process in the algorithm.

Mezura-Montes and Coello (2005b) proposed a (µ + λ ) evolution strategy to solve engineering design prob-

lems without using penalty function. This strategy handles the objective function and constraints separately.

The algorithm successfully guided the generation of solutions close to the boundaries of the feasible region

to achieve a better solution, regardless of its location inside or in the boundaries of the feasible set. Fei et al.

(2010) proposed a GA that use a multi objective optimisation Pareto ranking to deal with the infeasible solutions

violation constraints. Wang and Cai (2012) proposed a combined multi objective optimisation with differential

evolution (CMODE). The CMODE uses infeasible solution replacement mechanism based on multi objective

optimisation that aims to drive the population toward better solutions in the feasible region concurrently. The

comparison between individuals in CMODE is also run through multi objective optimisation method.

2.5 Multi objective optimisation problem

2.5.1 Background

The general multi objective optimisation problem with N objectives is formulated as:

Optimise F(x) = [F1(x),F2(x), . . . ,FN(x)]

subject to

g j(x)≥ 0, j = 0,1, . . . ,J

hk(x) = 0, k = 0,1, . . . ,K

where

x(L)i ≤ xi ≤ x(U)
i , i = 1,2, . . . ,n

(2.5)

Here FN(x) represents objective function N, g j(x) represents inequality constraint functions with J inequality

constraints. hk(x) represents equality constraints functions with K equality constraints. x(L)i represents the lower

bounds and x(U)
i the upper bounds of variable xi with n variables respectively.

The objectives in a multi objective optimisation are conflicting with one another. Therefore, a perfect multi

objective solution that simultaneously optimises (minimise or maximise) each objective function is almost

impossible. So, the aim is to find good compromise or trade-off solutions rather than a single solution as

in single objective optimisation. A reasonable solution to a multi objective optimisation problem is a set of

solutions each of which satisfies the objectives at an acceptable level without being dominated by any feasible
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solutions in the entire search space. The set is called Pareto optimum set and the corresponding values of the

objectives form Pareto front.

This Pareto optimum concept was originally introduced by Francis Ysidro Edgeworth in 1881 and then gen-

eralised by Vilfredo Pareto in 1896 (Coello and Cortés, 2005). In this concept, the Pareto optimum, dominated

and non-dominated points, and Pareto front are defined as:

Definition 1 Pareto optimum: Consider a point ~x in the feasible solution space, X ,~x ∈ X . The point (a set of

decision variables) is Pareto optimum if and only if there does not exist another point, x∈ X , that satisfies

F(x)< F(~x) and Fi(x)< Fi(~x) for at least one function.

Definition 2 Dominated and non-dominated points: A vector of objective functions, F(~x), is non-dominated

if and only if there does not exist another vector, F(x), that satisfies F(x) < F(~x) with at least one

Fi(x)< Fi(~x). Otherwise, F(~x) is dominated.

Definition 3 Pareto front: The set ~X = {~x1,~x2, . . . ,~xn}, which is composed of all the non-dominated Pareto

optimum solutions that comprise the Pareto front of non-dominated solutions.

Conventionally, there are numerous methods used to solve multi objective optimisation problems. The meth-

ods can be categorised into two major groups, namely non-Pareto techniques and Pareto-based techniques.

Further, the methods considered under the non-Pareto techniques are weighted sum approaches, vector evalu-

ated genetic algorithm (VEGA), lexicographic ordering, the ε-constraint method and target vector approaches.

The Pareto-based techniques consist of pure Pareto ranking, a multi objective genetic algorithm (MOGA),

non-dominated sorting genetic algorithm (NSGA), niched-Pareto genetic algorithm (NPGA), Pareto archived

evolution strategy (PAES) and strength Pareto evolutionary algorithm (SPEA).

The weighted sum approach is adopted in the algorithm proposed in this research. Thus, other approaches

and corresponding categorisations are not further discussed here, and these are well documented and discussed

by Abbass et al. (2001); Bandyopadhyay and Saha (2013); Cvetkovic and Parmee (1998); Konak et al. (2006);

Messac et al. (2000); Ngatchou et al. (2005).

2.5.2 Weighted sum approach

The weighted sum approach is considered under non-Pareto techniques of multi objective optimisation prob-

lems. The Pareto optimum concept is indirectly incorporated into the approach (Coello, 2001). The approach

is a kind of aggregating function as it associates or aggregates all the objectives to a sole objective (Bandy-

opadhyay and Saha, 2013; Coello, 2001; Karpat and Özel, 2007). Coello (2001) states that this approach was

inspired by the Kuhn-Tucker conditions for a non-dominated solution in the oldest mathematical programming

methods for solving the optimisation problem. When comparing to other ranking approaches, Coello (2001)

and Karpat and Özel (2007) agree that the weighted sum approach is better in terms of efficiency, simple and
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easy to implement. Indeed, the approach is suitable to use in any traditional or modern optimisation method

(Cvetkovic and Parmee, 1998).

In the weighted sum approach, all objectives Fk are merged into a single objective as:

F =
K

∑
k=1

wkFk

where
K

∑
k=1

wk = 1

(2.6)

The weights wk are produced randomly from a uniform distribution. According to Yang (2011) and Zitzler

et al. (2004), the weights represent the parameters and they could be varied or changed during the evolution

process as sufficient diversity will enable approximating the Pareto front to an acceptable level; in reality the

precision and accuracy are very hard to comply with (Konak et al., 2006). The weights help in finding possible

solutions in Pareto optimum sets but do not give information about the importance of the objectives studied

(Coello, 1999).

Parsopoulos and Vrahatis (2002) further divided the weighted sums approach into three types that are:

1. Conventional weighted aggregation (CWA): the weights are fixed when only one Pareto optimum point

acquired per algorithm run.

2. Bang-bang weighted aggregation (BWA): the weights can be altered abruptly during the algorithm run

but a Pareto optimum set obtained on single algorithm run.

3. Dynamic weighted aggregation (DWA): the weights can be steadily changed but able to produce a Pareto

optimum set only on single algorithm run.

In this research, a systematically monotonic weighted sum approach which was DWA-like is adopted in the

algorithm for solving multi objective optimisation problems. This approach has been successfully adopted by

Murata et al. (1996) in the multi objective genetic algorithm (MOGA) and by Yang (2011) in multi objective

bat algorithm (MOBA).

2.5.3 Approaches for solving multi objective optimisation problems using particle swarm op-

timisation algorithm by previous researchers

Nowadays, the PSO algorithm is among the most extensively used algorithms in solving multi objective opti-

misation problems (Sierra and Coello, 2006). An extensive review by Sierra and Coello (2006) shows that over

thirty different works of multi objective PSO (MOPSO) were published in the specialised literature.

Moore and Chapman (1999) claimed that they were the first to modify the PSO algorithm for solving single

objective optimisation problem version to be applied to the multi objective optimisation problem. In their work,

the p-vector was altered to a list of solutions that enabled to keep track of all non-dominated solutions to comply
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with Pareto preference. The MPSO were tested on two multi objective optimisation problem models that were

taken from specific literature and the best results acquired were highly competitive from the results presented

in the source (Moore and Chapman, 1999).

Parsopoulos and Vrahatis (2002) tested the performance of PSO to identify the Pareto optimum set and

produce an appropriate shape of Pareto front. They integrated the multi-swarm PSO with important character-

istics of a vector-evaluated genetic algorithm (VEGA) and utilised the weighted sum approach (Parsopoulos

and Vrahatis, 2002). They tested the vector evaluated PSO (VEPSO) on established non-trivial multi objective

optimisation benchmark test functions and showed promising results as the VEPSO was able to record a good

set of Pareto optimum set.

Coello and Lechuga (2002) presented MOPSO that used the concept of Pareto dominance. In this technique,

the flight direction of a particle is defined by the Pareto dominance while the non-dominated vectors are archived

and used later as guidance for other particles’ flight. They reported that the performance of the MOPSO

was outstanding in comparison to PAES and NSGA-II on several multi objective optimisation benchmark test

functions (Coello and Lechuga, 2002).

Sierra and Coello (2005) also utilised the Pareto dominance concept into the MOPSO. However, this algo-

rithm included further three elements namely; a crowding factor, different mutation operators and ε-dominance

concept. They used the crowding factor to form a second discrimination criterion, a mutation operator for

dividing the swarm into three subdivision while ε-dominance concept was applied to set the size of the final

solutions set. The proposed algorithm was reported to be able to approximate the Pareto front as compared to

other five established algorithms.

Karpat and Özel (2007) have attempted to solve multiple objectives of turning process in a manufacturing

environment using a PSO-based algorithm. First, they integrated PSO with neural network models to form a

swarm intelligent neural network system (SINNS) for the purpose of defining the objective functions and setting

up the parameters involved. Then, they introduced the dynamic neighbourhood PSO (DN-PSO) methodology

to solve the multi objective problem of turning process.

Another significant research is by Nebro et al. (2009) where they have included a velocity constriction for-

mula in the PSO resulting in speed-constrained multi objective PSO (SMPSO) and have tested the algorithm on

multi objective optimisation benchmark test functions. Abido (2009) solved environmental/economic dispatch

(EED) problem using global best and local best-redefined MOPSO. Castro-Gutierrez et al. (2010) solved the

vehicle routing problem (VRP) used the MOPSO with improved dynamic lexicographic ordering.
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2.6 Summary

This chapter elaborated concisely on the optimisation problems. The discussion was divided into four differ-

ent sections that were: general optimisation, single objective optimisation problems, constrained optimisation

problems and multi objective optimisation problems. The literature review on several approaches to solve var-

ious types of optimisation problems by previous researchers were also incorporated here. By discussing those

topics, this chapter successfully covered a part of the first research methodology phase. In the same time, this

chapter laid the fundamental knowledge for making way to achieve all the stated research objectives.

The next chapter will explore about the real echolocation of a colony of bats and existing algorithms inspired

from the bats echolocation. That chapter is another part of the first research methodology phase. By detailing

facts in that chapter, it is expected to combine them with this current chapter to cement a base to achieve all

research objectives.
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Chapter 3

Bats echolocation and existing algorithms

inspired from bats echolocation

3.1 Introduction

This chapter explores bats echolocation and existing algorithms inspired from bats echolocation. There are

seven sections in this chapter. The chapter starts with a section describing the colony of bats in nature. The

second section discusses the real echolocation behaviour of a colony of bats in search of prey. Then, investi-

gation of bat algorithm and its variants is presented in section three and section four respectively. Section five

describes bats sonar algorithm with several problems associated with the algorithm highlighted in section six.

The importance of bats sonar algorithm in this research is elaborated in section seven. Finally, the chapter is

concluded with a summary.

3.2 The colony of bats in nature

For ages, the livelihood of bats (Order Chiroptera) has attracted human interest (Airas, 2003). As one of the

diverse and most extraordinary mammalian order, bats have more than 900 species distributed all around the

world and make up almost a quarter of all mammal species (Airas, 2003; Altringham et al., 1996; Arita and

Fenton, 1997; Waters and Warren, 2003). Every bat species have their unique qualities and own preference that

make them special among all living creatures (Airas, 2003; Tuttle, 2006).

The species of bats are classified into two suborders (Figure 3.1) based on the size, namely Megachiroptera

and Microchiroptera (Arita and Fenton, 1997; Fenton et al., 1995; Waters and Warren, 2003). The smallest size

of microchiroptera (e.g. bumblebee bat) weighs only 1.5g and has wingspan of about 13cm while the biggest

megachiroptera (e.g. indian flying fox) weighs over 2kg and has 1.7m wingspan (Altringham et al., 1996;

Arita and Fenton, 1997; Waters and Warren, 2003). Figure 3.2 shows selected species under the Suborder
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Figure 3.1: Common and scientific names of bats (Arita and Fenton, 1997)

Microchiptera.

Bats habitually live in a large colony approximately up to 700 or 1000 individuals under the sharing roost

(Rivers et al., 2006; Voigt-Heucke et al., 2010). Normally, a colony of bats will occupy a vertically roosting

crevice (such as in caves or roof of abandoned buildings) that ends in a horizontal ceiling of the size of 0.75 to

1 inch wide and 16 to 24 inches deep (Airas, 2003; Tuttle, 2006). Figure 3.3 shows an example of a colony of

bats roosting.

The bats usually fly out at dusk when the surrounding started to turn dark and they rely on spatial memory

such that bats exiting from the roost in a colony concurrently (Jensen et al., 2005). According to Arita and

Fenton (1997), most of the bats are insectivorous (eat insects), but there are also species of bats that have

diversified their meals habit to fruits, nectar, small vertebrates (including fish) and also blood (vampire bats).
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Figure 3.2: Portraits of selected Suborder Microchiptera. (a) Underwood’s mastiff bat. (b) Western pipistrelle.
(c) Mexican long-eared bat. (d) Bennett’s spear-nosed bat. (e) Long-tongued bat. (f) Big-eyed bat (Arita and

Fenton, 1997)

Figure 3.3: A colony of bats roosting where the picture is taken from below with the bats hanging upside
down (Airas, 2003)

28



Figure 3.4: Sonar signal of a bat (Suga, 1990)

There are two categories of acoustic communication (or calls) used by a colony of bats. These are social calls

for socialising or communicating between bats and echolocation calls for foraging and orientation purposes

(Stebbings et al., 2007; Voigt-Heucke et al., 2010). Altringham et al. (1996) revealed a colony of bats are able

to construct good communication and share information about roost site or forage area among one another.

There are four basic information transfer mechanisms in a colony of bats, as described by Airas (2003) and

Altringham et al. (1996):

1. Intentional signalling: in the form of mating calls, territorial calls, alarm calls or food calls (advertisement

of food and also to attract bats into foraging groups as they leave their cave roosts).

2. Local enhancement: involves unintentionally directing another bat to a specific part of the habitat.

3. Social facilitation: an increase in individual foraging success brought about by group foraging behaviour.

4. Imitative learning: bats can learn foraging techniques from other bats.

3.3 Real echolocation behaviour of bats

One of the great animal life ingenuities studied by many zoologists is the echolocation (or biological sonar) of

bats (Simmons et al., 1975). There are a few other animal groups that also possess echolocation capabilities

such as birds (South American oilbird and south-east Asian swiftlets), whales, dolphins and small insectivores

(shrews and tenrecs) but this is quite rare (Airas, 2003; Fenton et al., 1995). The study of this behaviour of bats

started by Lazzaro Spallanzani in 1794 (Airas, 2003; Pye, 1960). Then the term ’echolocation’ was introduced

by Donald Griffin in 1944 to mark the ability of bat to produce sound with echoes beyond the frequency range

of human hearing and use it for general orientation in the dark and to find prey at night (Airas, 2003; Fenton,

1997).

With echolocation, a bat emits ultrasonic pulses either in frequency modulated (FM) or constant frequency

(CF) and sometimes a combination of both (Altringham et al., 1996; Ghose et al., 2006; Pye, 1960). The

tonal signals produced in the larynx (some bats use tongue) and emits in short bursts through mouth or nostrils

(Altringham et al., 1996; Pye, 1960; Waters and Warren, 2003) as shown in Figure 3.4. The sound reflects back
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as echoes bump into objects in the bat’s path (Surlykke et al., 2003). Suga (1990) described that the reflected

sounds were in compression condition or Doppler-shifted that made the echo received to be in higher frequency

than the sound previously produced. The bat can identify the object and its distance by measuring the time

of reflection of the modulated echoes (Altringham et al., 1996; Jensen et al., 2005; Suga, 1990; Waters and

Warren, 2003).

According to Altringham et al. (1996), Novick (1971) and Surlykke et al. (2003), the echolocation process of

bats that leads to the catching of prey involves three phases; search phase, approach phase and terminal phase.

When the bats start to hunt for prey in the search phase, they emit low rate pulse at around a frequency of 10Hz

(Altringham et al., 1996). During the approach phase, where the bats detect and get closer to the prey, the pulses

have to get shorter to prevent overlap (Altringham et al., 1996; Suga, 1990). The shorter pulses are cause by the

decreasing of time between the pulse and echo (Altringham et al., 1996). At this moment too, pulse emission

rate gets gradually increased up to 200 per second as the bats keep updating the location of the prey (Altringham

et al., 1996; Suga, 1990). Suga (1990) stated that the pulse emission rate upsurges because the bats need to

emit more signals to trail the prey precisely as the angular position of the prey changes more swiftly due to the

closer distance between the bats and the object. In the last phase (terminal phase), the frequency of emitted

pulses rises more than 200Hz and the pulse emission rate becomes faster at only fraction of milliseconds long

just before the prey is captured (Altringham et al., 1996).

In reality, Vogler and Neuweiler (1983) observed that a colony of bats has two exclusive approaches to avoid

from colliding with one another during echolocation. The pulse characteristics emitted by each bat differ from

one to another in terms of frequency range or time course of sweep or in sound type. Second, every bat marks

its emitting pulse with a unique time structure so that they only retrieve echoes caused by their pulses (Vogler

and Neuweiler, 1983). For generations, the echolocation was the great ability of bats that guided them to

detect, localise and capture the prey simultaneously even the tiny insects at about the same distance in complex

surroundings within splits seconds (Ghose et al., 2006; Simmons et al., 1995).

A colony of bats also embeds the concept of reciprocal altruism of food sharing during the echolocation

process (Altringham et al., 1996; DeNault and McFarlane, 1995; Wilkinson, 1988). This social behaviour of

bats’ group is based on animals returning favours for their mutual benefits (Altringham et al., 1996). The

example of this behaviour mostly applies to vampire bats species such as the regurgitation of blood-meals

by successful bats to be fed to their futile member of the colony as a response to the finely balanced energy

budget of each member of the colony (Altringham et al., 1996; DeNault and McFarlane, 1995). A research by

Wilkinson (1988) discovered the reciprocal altruism behaviour grow in the survivor such that the fitness of the

recipient is elevated relatively to a non-recipient. The reciprocal altruism also takes place during communal

nursing or coalition formation in primates and support behaviour in cetaceans (Wilkinson, 1988).
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3.4 Bat algorithm

The bat algorithm (BA) by Yang (2010) has been researched based on echolocation behaviour of bat species

to find their prey. Bat form three-dimensional of surrounding by integrating the production of the sound pulse

and echo recognition time difference, the variant intensity of the sound pulse and the time delay between ears

of the bat. In a such way, the bat can identify the type, moving speed, distance and orientation of the prey.

To simplify, the algorithm was based on the ideal rules which are (Yang, 2010):

1. All bats use echolocation to detect distance and differentiate between food, prey and obstacles.

2. Bats fly randomly with velocity vi at position xi by fixed frequency fmin with varying wavelength λ and

loudness A0 to search for prey.

3. Bats can spontaneously adjust the wavelength or frequency and the rate of sound pulse emission r ∈ [0,1]

depending on the proximity of their target.

4. Loudness of emitted sound pulse assumed varies from a large positive A0 to a minimum constant value

Amin.

5. No ray tracing is used in estimating the time delay and the three dimensional topography.

6. Wavelength (λ ) and frequency ( f ) of emitted sound pulse are related due to the fact λ f is constant, so a

range of [ fmin, fmax] is corresponds to a range of [λmin,λmax].

7. Wavelength (or frequency) range can be adjusted and the largest wavelength (or frequency) should be

selected to suit the size of the domain of the considered problem, and then toning down to smaller ranges.

8. Assume f ∈ [0,1] even though higher frequencies have short wavelengths and travel a shorter distance.

9. The rate of sound pulse emission was in the range [0,1] where 0 means no pulses at all and 1 means the

maximum rate of pulse emission.

Algorithm 1 Bat algorithm

1: Objective function F(x), x = (x1, . . . ,xd)
T

2: Initialise: bat population xi and vi where (i = 1,2, . . . ,d); pulse frequency fi at xi; pulse rate ri and
loudness Ai

3: while t ≤Maximum number of iterations do
4: Generate new solutions by adjusting frequency, and updating velocities and locations/solutions as

Equation 3.1
5: if rand ≥ ri then
6: Select a solution among the best solutions
7: Generate a local solution around the selected best solution
8: end if
9: Generate a new solution by flying randomly

10: if rand ≤ Ai & F(xi)≤ F(xi∗) then
11: Accept new solutions
12: Increase ri and reduce Ai

13: end if
14: Rank the bats and find the current best x∗

15: end while
16: Postprocess results and visualization
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The bat algorithm is pictured in pseudo code as in Algorithm 1. In this algorithm, Yang (2010) updated the

velocity vi and position xi of bats’ movement in a d-dimensional search space as:

fi = fmin +( fmax− fmin)β

vt
i = vt−1

i +(xt
i− x∗) fi

xt
i = xt−1

i + vt
i

where

xt
i is new solution of position at time step t

vt
i is new solution of velocity at time step t

β ∈ [0,1] is random value

x∗ is the recent global best solution which is derived

after examining every solutions among n bats

(3.1)

To update the velocity of the new solution, either fi or λi could be used while fixing the other factor as

velocity increment as a product of λi fi. The value of fi (or λi) is important to control the pace and range of the

movement of the bats (Yang, 2010). On the other hand, values of fmax and fmim have been fixed as fmin = 0 and

fmax = 100 where each bat has its random frequency that is allocated uniformly around the fixed values above.

However, the values have relied on the problem domain size.

According to Yang (2010), a new position for every bat is produced using random walk after a solution is

chosen among the current best positions as:

xnew = xold + εAt

where

ε ∈ [−1,1] is a random number

At =
〈
At

i
〉

is the average loudness of all the bats at this time step

(3.2)

Usually, when a bat approaches its prey, the loudness (Ai) will decrease but the rate of pulse emission ri

increases. Initially, every bat owns dissimilar random loudness values and pulse emission rate. So, as iteration

proceeds and the new solutions are better, these two parameters have to be update (Yang, 2010).
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For example, with the algorithm using A0 = 1 and assuming Amin = 0 a bat moves to the prey and momentarily

stops producing any sound. In contrast, with the algorithm using r0 = 0 and assuming rmax = 1 a bat increases

its pulse emission rate once approaching the prey. So the following equation is derived:

At+1
i = αAt

i

rt+1
i = r0

i [1− exp(−γt)]

where

α = γ = 0.9

(3.3)

The BA method has been implemented on various test functions including Rosebrock’s function, the egg

crate function, De Jong’s standard sphere function, Ackley’s function and Michalewicz’s test function. In all

implementation, the numbers of bats (n) used were 25 to 50. The BA has been compared with standard GA

and PSO algorithms in terms of the number of function evaluations for a fixed tolerance to show the better

performance of BA. The fixed tolerance was set up at ε ≤ 10−5 and ran for 100 iterations. According to the

results, the BA is more accurate and efficient compared to GA and PSO algorithms.

3.5 Variants of bat algorithm

After it was established five years ago, BA by Yang (2010) aroused intense interest in the optimisation field.

There are numerous research works that have utilised the original BA in various engineering optimisation

problems. In fact, many researchers tried to improve the original version of BA or pair it with other techniques

to make the algorithm better and effective for solving certain problems.

3.5.1 Improved version

There are some research works that have been through improving the performances and wide spreading scopes

of the solution of the original version of BA after it was introduced by Yang (2010). For instances, Yang (2011)

has tried to use BA for solving specific nonlinear problems. The proposed method achieved better optimum

solutions when compared with other existing algorithms.

Tsai et al. (2012) introduced evolved bat algorithm (EBA) which modified the original framework of BA.

The authors reanalysed and redefined corresponding operation behaviour of whole bat species. The method

improves the accuracy of finding the best solution and reduces computational time when solving a numerical

optimisation problem.
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Meanwhile, Yang (2011) extended his original technique to use in a multi objective optimisation problem.

The multi objective bat algorithm (MOBA) works when it is applied to solve multi objective of welded beam

design. Later, Gandomi et al. (2013) solved constrained optimisation problems using BA. When compared with

the various existing algorithms, the optimum solutions provided by BA are found to be better.

Lin et al. (2012a) incorporated chaotic sequence and chaotic Levy flight schemes to generate new solutions

of original BA efficiently. This work aims to enrich the searching behaviour and balance finely between inten-

sification and diversification. Lin et al. (2012a) demonstrated that the approach was reliable after adapting it

for joint estimation of parameter vector in a reconstruction of a dynamical-biological system.

Furthermore, Lin et al. (2012b) also tried to include Levy flight and chaotic dynamics mechanism for solving

parameter estimation problem in nonlinear dynamic models of biological systems. Simulation results of the

system have shown superiority of the approach (Lin et al., 2012b).

3.5.2 Hybrid version

To improve the ability of any algorithm for solving many research areas, hybrid mechanism between algorithms

become popular lately. BA is also not excluded from this cutting-edge phenomenon. Komarasamy and Wahi

(2012) for example, have combined K-means algorithm with BA for boosting efficiency in clustering large data

sets of data analysis methods. The KMBA algorithm does not only achieves higher efficiency in clustering anal-

ysis but also contributes to the minimum computational resources and the time used for it. Besides that, Khan

et al. (2012) have used the merits of BA to compensate the drawbacks of a fuzzy c-means (FCM) algorithm that

are sensitive to starting configuration and lock into local optimum only.

The BA is also hybridised with differential evolution (DE) schemes by Fister et al. (2013). This process

significantly increases the ability of original BA as well as reveals encouraging results when testing on standard

benchmark test functions. Xie et al. (2013) use the same technique to establish the hybrid BA with mutation

strategy (or called differential operator) which is a part of DE algorithm and Levy flight trajectory. This com-

bination aims to increase the convergence rate and accuracy and the results displayed that the hybrid approach

has better-quality of estimation capabilities, especially for advanced dimensional space (Xie et al., 2013).

Wang and Guo (2013) established a robust hybrid metaheuristic optimisation approach by combining the

step in harmony search (HS) algorithm into BA. To update the BA process, Wang and Guo (2013) added one of

HS attribute as an operator. By using pitch adjustment attribute, the hybrid technique showed very promising

results of speeding up convergence rate to solve global numerical optimisation problems.
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3.5.3 Direct application

Nowadays, BA proposed by Yang (2010) has become the centre of attraction among the researchers’ community

to solve various engineering problems. Khan et al. (2011) also used this popular swarm intelligence algorithm

in their research. The authors have used BA with fuzzy modification to fast screening of company workplace

with high ergonomic risk in short computational time. Another ergonomic research that adopted BA in the study

is done by (Akhtar et al., 2012). In this work, each bat denotes a possible solution of a skeletal configuration of

a human body to approximate the overall human body posture.

In the mechanical engineering field, BA is also utilised. For example, an industrial gas turbine has been

modelled by Lemma and Hashim (2011) using BA method. The BA-based model created could be used to

optimise and monitor the performance of thermal systems. Recently, Ramesh et al. (2013) estimated emissions

produced by fossil-fuelled power plant also by using BA.

Other applications that embedded BA have included manufacturing areas such as warehouse data and record

de-duplication (Faritha Banu and Chandrasekar, 2013), multistage hybrid flow shop (HFS) scheduling prob-

lems (Marichelvam and Prabaharam, 2012) and multi-stage multi-machine multi-product scheduling problems

(Musikapun and Pongcharoen, 2012). In electrical and electronics sector, a brushless DC (BLDC) motor wheel

optimisation (Bora et al., 2012) and optimal capacitor placement (OCP) problems (Reddy and Manoj, 2012)

are also solved by BA approach.

Further research that is linked with the usage of BA consist of detection of phishing websites (Damodaram

and Valarmathi, 2012), training neural network of eLearning (Khan and Sahai, 2012), classification of mi-

croarray data sets (Mishra et al., 2012), feature selection technique (Nakamura et al., 2012), path planning for

uninhabited combat air vehicle (Wang et al., 2012), shape or topology optimisation (Yang et al., 2012) and

image matching problem (Zhang and Wang, 2012).

3.6 Bats sonar algorithm

The bats sonar algorithm (BSA) by Tawfeeq (2012) is explored based on echolocation process of a colony of

bats to find food or prey. During echolocation, bats can figure out the size, distance, velocity, azimuth and

elevation of the target by using the sonar. The BSA models the principles of bat sonar used in echolocation

to search the optimum solution for a specific problem. Each point (prey location detected) in the search space

(specific confined area) represents one possible solution. A bat is labelled as one sonar unit.

Tawfeeq (2012) starts the BSA by setting the solution range or the minimum and maximum values of the

search space. Then, the beam length (L) is initialised as:

L≤ Rand× Solution range
2

(3.4)
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At every iteration, Tawfeeq (2012) has selected random starting angle (θm) as well as used one of two angle

between beams; either Fixedθ which randomly select a small fixed value θ between any two successive beams

or Randθ which randomly select a different angle θi between any two successive beams.

Tawfeeq (2012) mentioned that the sonar unit will transmit a number of sonar signals or number of beams (N)

with L length from the designated starting point (poss) to several different directions. The poss also evaluates

the value of starting point fitness function (Fs). Every beam’s end point position (posi) is calculated as:

posi = poss +Lcos(θm +(i−1))θ (3.5)

Then, the posi is evaluated for the value of end point fitness function (Fi). The values of Fi and Fs are

compared with each other to determine the optimum one. If the optimum value belongs to one of the Fi, the

sonar unit (the bat) will fly to its posi and set the point as a new poss. Then, the new number of N beams will

be transmitted from this point to search for better optimum solution. Otherwise, the bat will stay at the original

poss and retransmit the N beams to different direction. The process keeps on repeating and stops once the

algorithm arrives at the maximum iteration (or finds the best fitness function). Algorithm 2 pictures the pseudo

code of the bats sonar algorithm.

Algorithm 2 Bats sonar algorithm

1: Objective function F(x), x = (x1, . . . ,xd)
T

2: Initialise Solution range, L (Equation 3.4), N, random poss and angle between beams
3: Evaluate Fs for poss

4: while t ≤Maximum number of iterations do
5: Select random θm

6: Transmit N beams from poss with θm and angle between beams
7: Determine the coordinates of the every beams’ end point (posi) for each transmitted beam (Equation

3.5)
8: Evaluate the Fi for each posi

9: if Fi ≤ Fs then
10: Substitute the coordinates of poss with the coordinates of posi

11: Replace Fs with the optimum Fi

12: end if
13: end while
14: Declare the best Fi as optimum fitness evaluated and its posi as optimum value(s)

The algorithm is a parallel search type where several solutions are checked simultaneously. Over iterations,

only the best fitness of each bat will survive and the best fitness among the best bats’ fitness will become the

global best fitness (Tawfeeq, 2012). Using this way, the proposed algorithm will converge to the optimum best

fitness faster.

This algorithm started with the single sonar unit (SSU). Then, the investigation of the proposed algorithm

was expanded to other two efficient search approaches (Tawfeeq, 2012). If only SSU approach was being used,

the result is not guaranteed to obtain the global best fitness even it converges toward the minimum or maximum
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fitness especially in complex problems with wide state space. The two approaches mentioned were multi sonar

search unit (MSU) and single sonar unit with a momentum (SSM).

In multi sonar unit (MSU), a colony of bats will search for the optimum solution(s) at the same time where

each bat (sonar unit) will be assigned with different starting point in the same search space. Meanwhile, a single

sonar unit with a momentum (SSM) introduced a momentum term (µ) attached to the length of the transmitted

beams so that new beam length becomes as:

Lnew = Lold(1±µ)

where

0 < µ < 1

(3.6)

Nonetheless, both approaches still use SSU algorithm as the algorithm framework (Tawfeeq, 2012).

To demonstrate the performance of the algorithm, the BSA were tested and evaluated on different types of

fitness functions that are:

1. A single variable-third order polynomial for maximum value.

2. A single variable-fifth order polynomial for maximum value.

3. A polynomial with two variables for maximum value.

4. A exponential with two variables for maximum value.

5. A trigonometric or a periodic function (repeated function values in regular intervals or periods) for max-

imum value.

The initial parameters set to be the same for all tests included N = 5, Fixedθ = π/12 and 100 maximum

iterations.

The performances of BSA were measured by the degree on how much the obtained solution meets the goal

where the goal is assumed to be equal or approximately equal to the optimum solution. Comparison of the

algorithm with a genetic algorithm on the same fitness functions has been made. The comparison involves

the value of obtained fitness functions and the execution time required to attain each function. The results

concluded the bats sonar algorithm performed reasonable efficiency to achieve all the optimum values.

As a matter of fact, the algorithm is only tested on single objective optimisation problems. Till today, no

extended version of the algorithm, neither the modification to the original algorithm, hybridisation with another

technique nor application to any optimisation area has been reported.

3.7 Problems associated with bats sonar algorithm

There are some drawbacks associated with the BSA introduced by Tawfeeq (2012). There is no communication

between bats in a colony to exchange information on current location or the best locations of individual bats

during echolocation process. This makes the algorithm a parallel search technique. The number of bats used
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in the algorithm is too small and not portraying the normal population size of a colony of bats (normally in

the order of hundreds) when searching for prey. The small population does not make the exploration and

exploitation for the best fitness value optimum in the search space.

Furthermore, it is highly possible that the N beams will be transmitted in the same direction and location.

This problem happens because the main transmit angle is fixed as well as roughly set up of random values of

the angle between beams. These drawbacks will lead to premature convergence as the algorithm will diverge

from the global best position but converge to local best location. Thus, the algorithm does not perform well to

achieve the best accuracy while maintaining good precision and fast convergence to the optimum solution.

BSA also fail to capitalise on several good characteristics in the real behaviour of bats echolocation into the

algorithm. This failure makes BSA unable to operate like the real process of echolocation of a colony of bats.

BSA is not considered the issues such as there are three phases lead to catching the prey, mechanism to avoid

collision between bats as well as the reciprocal altruism model of food sharing between a colony of bats.

3.8 Importance of bats sonar algorithm for this research

The results from the literature review have shown that:

1. The BSA is easy to design and implement.

2. The BSA has a good combination of a set of rules and randomness as required by most evolutionary

algorithms.

3. The BSA does not fully consider the real echolocation behaviour of a colony of bats.

4. There is no modified or a new version of BSA since it is still relatively newly explored swarm intelligence

algorithm.

So, this research will research a set of new bats echolocation inspired algorithms based on the BSA. The new

algorithms will refine and modify the BSA with new elements and as well as fully adopt the real echolocation

behaviour of a colony of bats. Then, the new set of algorithms that will be investigated is inspired to be the most

promising in the swarm intelligence algorithms that can be applied for solving a wide range of single objective

optimisation problems, constrained optimisation problems and multi objective optimisation problems.
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3.9 Summary

This chapter discussed a real life of a colony of bats and the real bats echolocation behaviour. The original bat

algorithm, its application as well as improved and hybrid versions have also been discussed here. This chapter

also introduced bats sonar algorithm and its associated problems. The importance of the bats sonar algorithm

to this research also was clearly stated. This chapter contributed another part of the first research methodology

phase.

The next chapter will elaborate on the investigation of adaptive bats sonar algorithm to solve single objective

optimisation problems that are the second research methodology phase. The outcomes from the chapter are

expected to fulfil the first research objective that is: To research and test an effective bats echolocation-

inspired algorithm to solve single objective optimisation problems.

39



Chapter 4

Investigation of adaptive bats sonar

algorithm

4.1 Introduction

This chapter presents the investigation of an adaptive bats sonar algorithm (ABSA) which is inspired from the

bats echolocation. The chapter starts with a section that elaborates about the investigation of ABSA. The second

section discusses about computer simulation and performance results of ABSA. This section has three different

subsections. Each subsection measures the performance of ABSA from the perspectives of algorithm parame-

ters, solves black-box optimisation benchmarking 2013 functions and establishes single objective optimisation

benchmark test functions. Finally, the chapter ends with a summary.

4.2 Adaptive bats sonar algorithm

In bats sonar algorithm (BSA) by Tawfeeq (2012), some drawbacks have been detected. The BSA fail to imitate

the real behaviour of a colony of bats during echolocation process to the maximum. These includes there is no

proper communication between bats in a colony during echolocation process while the number of bats used is

too small does not make the searching process efficiently. Besides, exists the possibility of redundancy location

and direction of transmitted beam along the iteration.

An ABSA is proposed as an improved version of original BSA by Tawfeeq (2012). ABSA try to fix the

drawback of the BSA with the aim of improving accuracy, precision and convergence rate of the BSA. ABSA

altering and incorporating new characteristics into the BSA. This includes modification of the number of bats,

number of beams and their lengths, starting angle and introduction of new techniques comprising beam number

increment, four level of best solution and reciprocal altruism behaviour of real bats. The purpose of ABSA is

to solve single objective optimisation problems.
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Overall, the ABSA has more steps than the original BSA introduced by Tawfeeq (2012). However, the

number of iterations (MaxIter) or generations used in ABSA is kept at 100, same number used in the original

algorithm by Tawfeeq (2012). One hundred generations are favourably enough for the bats to explore fully the

d numbers of search space dimension (Dim) for the best prey or global best fitness, (FGB). The chosen value is

in line with maximum MaxIter which was used in the PSO algorithm when the algorithm was first introduced

by Kennedy and Eberhart (1995).

Inspired by a description of the number of bats in a colony by biologists, the number of bats (Bats) or

population in ABSA was selected in the range 700-1000 bats. The new population was higher by only three

bats than that was used in the BSA (Tawfeeq, 2012). By having a larger number of bats, a discovery of the

FGB value becomes more resourceful such that there will be a pool of solutions (prey) that can be evaluated to

obtain the best ones.

In the original BSA by Tawfeeq (2012), the beam length (L) is initialised as a random value but not more

than half of the solution range (SSsize). The solution range is the value between the upper search space (SSMax)

limit and the lower search space (SSMin) limit as:

SSsize = SSMax−SSMin (4.1)

The value of L is constant throughout the iterations. This fixation pushes every bat to search in larger perimeter

each time without the opportunity to diversify the search tactic during iterations and thus may miss the FGB that

may be near to them. To resolve such weaknesses, the ABSA sets the L in relation to SSsize as:

L≤ Rand× (
SSsize

10%×Bats
) (4.2)

The solution range is divided into micron scale, such as 10% of the overall population of bats in the search

space. The percentage is marked as possible search space size of each bat to emit sound without colliding with

one another. The value of L is different for every iteration. A momentum term (µ) is used in ABSA as:

Lnew = Lold(1±µ)

where

0 < µ < 1

(4.3)

The above has been introduced by Tawfeeq (2012) to control the risk of convergence to a local optimum.

Tawfeeq (2012) has fixed the number of beams (NBeam) emitted by each bat at each iteration to five. This

value is too small and obviously only a part of the bat’s surrounding is covered by the pulses and thus the

exploitation of local best fitness (FLB) and exploration of FGB do not occur. Such a small value also does not

illustrate the real echolocation of bats. Altringham et al. (1996) and Suga (1990) have reported that the pulse

emission rate grows bit by bit up to 200 per second as the bat keeps updating the location of the object until it

catches the prey. This phenomenon is incorporated into the ABSA approach as beam number increment (BNI).
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The BNI is defined in terms of the maximum number of beams (NBeamMax) and minimum number of beams

(NBeamMin) as:

BNI = (
NBeamMax−NBeamMin

MaxIter
)× iter

where

NBeamMax = 200

NBeamMin = 20

(4.4)

Thus, NBeam is defined as:

NBeam = NBeamMin +BNI (4.5)

The BNI method mimics the original pulse rate emitted by the bat as it increases gradually toward the end of the

search. As a result, BNI will provide a balance between global exploration and local exploitation thus requiring

less iteration on average to find a sufficiently optimum solution.

Each NBeam with L is emitted from the starting position (posSP) with specific angle location. Tawfeeq

(2012) has selected random starting angle (θm) at every iteration, see Figure 4.1. For the angle between beams,

the algorithm’s initiator uses one of the following:

1. Fixedθ : randomly select a small fixed value θ between any two successive beams.

2. Randθ : randomly select a different angle θi between any two successive beams.

In this manner, the beam transmitted will sweep at random angles at each iteration. However, the bats fail to

verify that the sounds have spread to every corner of their surroundings and it is possible that the beam will be

transmitted to the same point(s) at different iterations. As a consequence, the algorithm will get trapped at FLB

and will be unable to find the FGB. To resolve this problem, ABSA limits the first beam to have θm not more

than 45◦ from horizontal axis and the angle between beams (θi) is set as follows:

θi =
(2π−θm)

NBeam

where

θm = rand ≤ 0.7854

(4.6)

By setting θi as such, the beams will sweep at random 360◦ around the bats through iterations in such a way

that the searching process will neither be too aggressive (overlay a circle) nor too slow (underlay a circle).
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Figure 4.1: Single batch of beams transmitted by a bat (Tawfeeq, 2012)

The end point position (posi) for each transmitted beam in ABSA is calculated the same way as in Tawfeeq

(2012) as:

posi = posSP +Lcos[θm +(i−1)θ ]

where

i = 1, . . . ,NBeam; NBeam is number of beams

(4.7)

The BSA declares a fitness at that position as the optimum fitness function once the algorithm has reached

either the end of a fixed number of iterations or all solutions have converged to the same value (Tawfeeq, 2012).

The one level declaration of best solution is consistent with the nature of the algorithm as a parallel search

method where the algorithm checks for the solutions at once. Nonetheless, the level of best fitness solution

found in the algorithm has been raised up to four stages in the ABSA. The duo are mentioned before; FLB and

FGB, while another two levels are starting position fitness (FSP) and regional best fitness (FRB).

During the first iteration of ABSA, posSP of FSP for each bat to transmit the NBeam is randomly selected

within the designated search space. Next, the posi for each transmitted beam from posSP of each bat will be

evaluate to produce end point fitness (Fi) where the best Fi is declare as FLB and its position as local best position

(posLB) of each bat. Later, the FSP and FLB of each bat is compared where the best will be FRB and its position

as regional best position (posRB). Finally, the best of the FRB will be declared as FGB and its position as global

best position (posGB). According to Engelbrecht (2005), there are three levels of best solution found by the

algorithm in PSO. The levels are personal best (pb) which is the best solution for every particle, local best (lb)

which is the neighbourhoods best solution and global best (gb) is the global best solution of among the pb.

These three levels are similar to FLB, FRB and FGB of ABSA respectively.

In PSO, the lb improves the overall performance of algorithm where the individual lb influences the perfor-

mance of immediate neighbours (Kennedy, 1999; Kennedy and Mendes, 2002). Ultimately, the neighbourhoods

43



preserve swarm diversity by hindering the flow of information through the network (Peer et al., 2003). This

move prevents the particles from reaching the global best particle immediately or getting trap in a local op-

timum but allows them to explore larger search space (Kennedy and Mendes, 2002; Peer et al., 2003). This

beneficial element inspired the existence of FRB which is functioning as neighbourhoods best solution-ABSA

version. In addition, FRB also forms the main link between FLB and FGB values. So FRB acts as a leverage

instrument to balance finely between exploration (diversification) and exploitation (intensification) processes

of the algorithm and so to help the algorithm escape from premature convergence.

The initialisation of these levels will help the ABSA to refine the search for the best solution by a colony

of bats in the search space in each step and leave out bad solutions immediately. As a result, the algorithm

takes less time to converge to the optimum solution. In point of fact, Kennedy (1999) mentioned that many

types of research show that communication between individuals within a group is important where the overall

performance of the group is affected by the structure of the social network. Besides, Kennedy and Mendes

(2002) argued that the distribution of information via distant acquaintances is crucial, such that it possesses

information that a colleague might not. In conjunction to that, the four levels of the best solution created in

ABSA ideally match with the information transfer mechanisms practised by a colony of bats as explored by

Altringham et al. (1996). These are intentional signalling match to FSP, local enhancement match to FLB, social

facilitation match to FRB and imitative learning match to FGB.

The reciprocal altruism characteristic has further been incorporated into ABSA to strengthen the procedure

of colony searching for the best solution. This reciprocal altruism behaviour widely runs through a colony of

bats as reported by many researchers in bats ecology (Altringham et al., 1996; DeNault and McFarlane, 1995;

Wilkinson, 1988). By inserting this behaviour into the algorithm, a member of the colony will disseminate and

share the location of the best fitness found so far to other bats. As a result, all bats will fly to the best prey ever

found when the search process comes to an end. The adoption of this real prey hunting behaviour of the colony

of bats into the algorithm is symbolised by two levels of arithmetic mean.

For every bat, the arithmetic mean evaluates the balancing point between posSP, posLB and posRB in current

iteration (t) with posGB of the latest FGB to be appoint as a new posSP for next iteration (t+1). The first level

of arithmetic mean involves measuring of central tendency between posSP, posLB and posRB of each bat for

current iteration only. Next, the second level of arithmetic mean finds the central tendency between the position

value resulted from the first level of arithmetic mean and posGB. As a result, during new iteration, every bat

will start to transmit a set of new beams from the posSP which has been specified after considering (or sharing)

the balancing point of the positions of all four level of best fitness solutions; FSP, FLB, FRB and FGB. The two

levels of arithmetic mean is expressed as follows:

posSP(t +1) =
(

posSP(t)+ posLB(t)+ posRB(t)
3

+ posGB

)/
2 (4.8)

Based on these modifications, the basic steps of the ABSA are represented as the pseudo code in Algorithm 3.
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Algorithm 3 Adaptive bats sonar algorithm

1: Objective function F(x), x = (x1, . . . ,xd)
T

2: Initialise: Bats, MaxIter, Dim, SSSize, NBeamMAX and NBeamMIN

3: for n← 1 to Bats do
4: for d← 1 to Dim do
5: Generate random posSP

6: Evaluate FSP value for F(posSP)
7: end for
8: end for
9: Assign the most optimum value as FGB and its position as posGB

10: while t ≤MaxIter do
11: Define NBeam to transmit by using BNI (Equation 4.4 and Equation 4.5)
12: Set L and limit µ (Equation 4.2 and Equation 4.3)
13: Generate random θm and θ (Equation 4.6)
14: for n← 1 to Bats do
15: Transmit NBeam starting from posSP

16: for N← 1 to NBeam do
17: for d← 1 to Dim do
18: Determine posi for each transmitted beam (Equation 4.7)
19: end for
20: Evaluate Fi value for F(posi)
21: end for
22: Assign the optimum value of Fi as FLB and its position as posLB

23: if FLB ≤ FSP then
24: Assign FLB as FRB and posLB as posRB

25: else
26: Assign FSP as FRB and posSP as posRB

27: end if
28: end for
29: Select the optimum value among FRB as current FGB and its posRB as current posGB

30: if current FGB ≤ previous FGB then
31: Update current FGB as new FGB and current posGB as new posGB

32: else
33: Retain previous FGB and posGB

34: end if
35: for n← 1 to Bats do
36: Determine new posSP using (Equation 4.8)
37: Evaluate new FSP value for F(posSP)
38: end for
39: end while
40: Declare FGB as optimum fitness evaluated and posGB as its optimum value(s)
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4.3 Computer simulation and discussion

4.3.1 Effects of number of bats and number of iterations on performance of ABSA

Any swarm intelligence algorithm requires setting the values of several algorithm parameters correctly because

these parameter values have a significant impact on the performance and efficiency of the algorithm (Roeva

et al., 2013). The size of population and number of iterations used are the main parameters in most of the swarm

intelligence algorithms. In BSA and ABSA algorithms, the size of a population is referred to the number of

bats (Bats). However, BSA by Tawfeeq (2012) applied three bats only while in ABSA the number of bats used

are between 700 and 1000 bats, as motivated by the study reported by Rivers et al. (2006) and Voigt-Heucke

et al. (2010).

On the other hand, the number of iterations (MaxIter) used in both algorithms has been set to 100. This value

is favourably enough for the bats to explore fully the search space for the best prey (best fitness value). The

chosen value is twice the maximum of what MaxIter used in PSO when the algorithm was first introduced in

1995 (Kennedy and Eberhart, 1995). The overall performance of ABSA is better than BSA not because of the

large difference Bats used at various number of iterations only, but due to the improvement and modifications

made to the original BSA. To demonstrate this, both BSA and ABSA are tested with two different benchmark

functions as follows:

a. McCormick function

This function as in Figure 4.2a is unimodal test function and is defined as:

F(x) = sin(x1 + x2)+(x1− x2)
2−1.5x1 +2.5x2 +1

where

x1 ∈ [−1.5,4.0]

x2 ∈ [−3.0,4.0]

(4.9)

The global minimum is F(x∗) =−1.9132 at x∗ = (−0.54719,−1.54719).

b. Rastrigin function

This function is a multimodal test function with several regularly distributed local minimum. This function

as plot in Figure 4.2b is defined as:

F(x) = 10d +
d

∑
i=1

[x2
i −10cos(2πxi)]

where

xi ∈ [−5.12,5.12], i = 1, . . . ,d

(4.10)

The global minimum at F(x∗) = 0 at x∗ = (0, . . . ,0). The test of this function used d = 3.
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In both cases, the number of Bats used were 3, 100 and 700 while the MaxIter is fixed to 25 and 100. So,

number of function evaluations (NFEs) defined as:

NFE = Bats×MaxIter (4.11)

for each BSA and ABSA are 75, 300, 2500, 10000, 17500 and 70000.

(a) McCormick function (b) Rastrigin function

Figure 4.2: Functions used to evaluate the effects of Bats and MaxIter on the performances of BSA and ABSA

Table 4.1: Best global optimum value achieved by BSA and ABSA for McCormick function with different
Bats over different MaxIter

Bats MaxIter Optimum value of F(x) BSA ABSA NFEs

3
25 -1.8464 -1.9132 75

100

-1.9132

-1.9130 -1.9127 300

100
25 -1.9130 -1.9132 2500

100 -1.9123 -1.9132 10000

700
25 -1.9126 -1.9132 17500

100 -1.9132 -1.9132 70000
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Table 4.2: Best global optimum value achieved by BSA and ABSA for Rastrigin function with different Bats
over different MaxIter

Bats MaxIter Optimum value of F(x) BSA ABSA NFEs

3
25 3.6481 0.7116 75

100

0.0000

1.2568 1.2740e−1 300

100
25 0.9951 3.8270e−6 2500

100 5.1865e−1 5.8799e−7 10000

700
25 2.1431e−1 3.2585e−8 17500

100 7.0612e−2 4.9231e−10 70000

Table 4.1 and Figure 4.3 depict the best results obtained by the BSA and ABSA in optimising the McCormick

function. It is noted that the ABSA outperformed the original BSA at various Bats used with different MaxIter

to accelerate the convergence rate to accurate known global optimum.

As evidenced in Table 4.2 and Figure 4.4, ABSA further showed promising results as compared to the original

BSA method. The obtained results in optimising the Rastrigin function suggested that the ABSA succeeded

to converge faster and near accurate to the best known global optimum at various numbers of bats used with

different numbers of iterations as compared to original BSA.

At this point, the preliminary conclusion drawn about the ABSA as compared to original BSA is that ABSA

has successfully converged faster with better accuracy to the known global optimum when compared with BSA

without it being affected by a large difference in the number of bats used at various numbers of iterations.
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Figure 4.3: McCormick functions: comparison of performance of the original BSA and the ABSA
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Figure 4.4: Rastrigin functions: comparison of performance of the original BSA and the ABSA
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4.3.2 Performance of adaptive bats sonar algorithm on black-box optimisation benchmarking

2013 functions

This section deals with performance assessment of ABSA on the black-box optimisation benchmarking (BBOB)

2013 which is taken from Finck et al. (2013). The authors established the test functions to evaluate the perfor-

mance of the algorithm on the typical difficulties that occur in continuous domain search (Finck et al., 2013).

In conjunction to that, a generic algorithm for particle swarm optimisation (PSO)1 also was tested on the

same testbed. Here, the PSO is chosen based on few good points. PSO is a metaheuristic population-based

search methods which established since 1995. The algorithm is based on the research of bird flock movement

behaviour. PSO move from a set of points (population) to another set of points in a single iteration with likely

improvement using a combination of deterministic and probabilistic rules. PSO search for the optimal solution

by updating generations. Since the ABSA and PSO are supposed to find a solution to a given objective function

but employ different strategies and computational effort, it is appropriate to compare their performance. The

comparison is also made to show that ABSA is able to be at par with this well-known swarm intelligence

algorithm type for solving any required single objective optimisation problems.

Five noiseless functions out of 24 noise-free real-parameter single objective optimisation benchmark test

functions of BBOB 2013 were selected to be the test functions for ABSA and PSO. Each one of the nominated

five functions has come from five different classes as shown in Table 4.3. The search space for all functions is

defined as [−5, 5] while the location of the majority of optimum x tabulated in [−4, 4]. Artificially, 0.0000 is

chosen as the optimum function value of all functions. The detailed discussion about all functions can be found

in Finck et al. (2013).

For the purpose of this simulation, all considered algorithms single run for 20 dimensions, 50 dimensions and

100 dimensions. The overall simulation results recorded in Table 4.4 while Figure 4.5 shows the convergence

of the algorithms towards global optimum function values.

1The detail about PSO will be discussed in Chapter 6.
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Table 4.3: Five test functions selected from BBOB 2013 functions

Function class Function Function Description
number name

Separable function f 02 Ellipsoidal Unimodal; global quadratic and
ill-conditioned function with
smooth local irregularities

Function with low
or moderate condi-
tioning

f 07 Step Ellipsoidal Unimodal; non-separable; con-
sists of many plateaus of differ-
ent sizes

Function with high
conditioning and
unimodal

f 11 Discus Globally quadratic with local
irregularities; a super-sensitive
single direction in search space

Multi-modal func-
tions with adequate
global structure

f 16 Weierstrass Highly rugged and moderately
repetitive landscape, where the
global optimum is not unique

Multi-modal func-
tions with weak
global structure

f 23 Katsuura Highly rugged and highly repet-
itive function; focus on global
search behaviour
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Figure 4.5: Comparison of convergence performances toward optimum function value between ABSA and
PSO

According to the results shown in Table 4.4, the performance of the ABSA was at least at par as compared to

PSO for all five considered test functions. Indeed, ABSA was able to achieve better global optimum function

value for all cases compared to PSO. Even though the PSO was able to record the short duration of time to finish

(in seconds) to global optimum as compared to ABSA in all dimensions of all test functions, this assessment

can be waived out. This shows that the steps in ABSA algorithm were a little bit longer than in PSO that they

make ABSA consumed much time to end the iteration.

Without a doubt, the good characteristics of bats behaviour embedded inside the ABSA make the algorithm

able to start the searching process as close as possible to the best global optimum solution as compared to the

standard PSO algorithm. These were shown from the convergence graphs as plotted in Figure 4.5a to Figure

4.5d where ABSA is able to find the global optimum solution less than 1.0000 within first 10 iterations before

it starts to moves to the best global optimum solution later. These applied to all dimensions.

In contrast, PSO approximately starts to reach a reasonable optimum solution only after 10 iterations. How-

ever, for the Katsuura function (Figure 4.5e), the fact above does not apply as in the first 10 iterations, ABSA

and PSO reached the global optimum solution theoretically far from the final global best solution. These are

due to the characteristics of the test function itself.

60



4.3.3 Performance of adaptive bats sonar algorithm on established single objective optimisa-

tion benchmark test functions

There are many benchmark test functions that can be used for testing and validating the algorithm. Ten single

objective optimisation benchmark test functions, as summarised in Table 4.5 are used to show the efficiency of

ABSA. The first three test functions (FN01, FN02 and FN03) have previously been used by Tawfeeq (2012)

to demonstrate the performance of the original BSA. All the three test functions have maximum values at their

optimum. The remaining test functions have minimum values as their optimum (Molga and Smutnicki, 2005).

In this validation, the functions FN04, FN05, FN06 and FN07 were run in three different dimensions, namely

three dimensions (FN0*a), five dimensions (FN0*b) and ten dimensions (FN0*c).

Two other algorithms are also tested on the same 10 test functions as in Table 4.5 to verify the performance

of ABSA on a comparative basis. The algorithms are bats sonar algorithm (BSA) by Tawfeeq (2012) and

bat algorithm (BA) by Yang (2010). The parameters used for the BSA are the same as originally used by

Tawfeeq (2012). These were three bats, five beams (N) in each transmitted signal and the angle between any

two successive beams was fixed at π \12. Similarly, the standard algorithm parameters are used with BA. These

were population size of 50, pulse rate (r) equal to 0.5, loudness (A) fixed at 0.25 and random number less than

1 for beta (β ).

Each algorithm was run 30 times to allow it to carry out meaningful statistical analysis. The maximum

number of iterations for each run was set to 100. All three algorithms on the ten function evaluations obtained

the result of best, mean, worst and standard deviation values. To evaluate the statistical significance of the

ABSA, one-way analysis of variance (ANOVA) with post-hoc test (Dunnett’s test type) was applied, and the

null hypothesis was rejected at the confidence level of 5%.

Figures 4.6a - 4.6d show the search patterns of 1000 bats positions using ABSA for 2 dimension De Jong

function. Its global minimum F(x) = 0 was obtainable for xi = 0, i = 1, . . . ,N. In iteration 1, 1000 bats

scattered at various locations in the designated search space. Bats started to converge to the final value of xi as

the iteration increased. At iteration 50, all 1000 bats settled to the optimum values of x1 = 0 and x2 = 0.

The results of the computer simulations for ABSA algorithm are given in Table 4.6. As noted, the algorithm

achieved the global optimum value with zero or very small standard deviation. Comparative results of the best,

worst and mean solutions with standard deviation values of the investigated algorithms are shown in Tables

4.7, 4.8, 4.9 and 4.10 respectively.
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Figure 4.6: Locations of 1000 bats using ABSA for 2 dimensional De Jong function

As seen in Table 4.7, the ABSA approach found the exact or close global optimum value of thirteen out of

the eighteen functions (FN02, FN04a-c, FN05a-c, FN06a-c and FN07a-c) through 30 runs. From one function

(FN01), ABSA produced results similar to both BA and BSA. Moreover, ABSA achieved similar best value

with BSA on FN03, with BA in three functions, namely FN08, FN09 and FN10. Overall, as noted, the ABSA
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Table 4.6: Statistical results obtained for ABSA with 10 test functions of different dimensions over 30
independent runs of 100 iterations each

Function Dim Optimum Best Mean Worst Standard
number F(x) deviation

FN01 1 15.4564 15.4564 15.4564 15.4564 0.0000
FN02 2 1.9608 1.9608 1.9608 1.9608 0.0000
FN03 2 0.4289 0.4289 0.4289 0.4289 0.0000
FN04a 3 0.0000 2.2810e−13 1.2374e−9 9.6814e−9 2.4540e−9

FN04b 5 0.0000 1.2726e−11 2.1789e−8 2.3951e−7 5.2963e−8

FN04c 10 0.0000 1.3720e−4 5.4975e−2 3.9510e−1 1.0842e−1

FN05a 3 0.0000 4.8111e−12 4.0332e−10 1.5621e−9 4.5575e−10

FN05b 5 0.0000 4.4514e−11 1.1890e−8 6.3666e−8 1.5027e−8

FN05c 10 0.0000 2.6957e−4 2.5186e−2 6.6100e−2 1.7923e−2

FN06a 3 0.0000 1.1643e−11 2.0870e−9 7.3697e−9 2.1982e−9

FN06b 5 0.0000 5.2555e−10 5.4807e−8 4.2394e−7 1.0912e−7

FN06c 10 0.0000 6.2212e−5 5.6951e−3 2.3500e−2 7.7790e−3

FN07a 3 0.0000 1.8990e−12 2.9536e−9 1.8916e−8 4.3566e−9

FN07b 5 0.0000 3.3335e−11 1.6080e−7 4.6234e−6 8.4319e−7

FN07c 10 0.0000 2.3001e−12 3.9551e−9 3.0717e−8 7.6405e−9

FN08 2 -1.0000 -1.0000 -1.0000 -1.0000 0.0000
FN09 2 3.0000 3.0000 3.0000 3.0000 0.0000
FN10 2 0.0000 0.0000 0.0000 0.0000 0.0000

best results were superior to those achieved with BSA and BA.

As noted in the worst solution results given in Table 4.8, ABSA outperformed BA and BSA in all eighteen

functions tested. Even for the worst results, ABSA successfully achieved accurate or very near accurate results

to global optimum points. Similarly, on the mean solutions as shown in Table 4.9, ABSA achieved accurate

performance as compared to BA and BSA for seventeen out of the eighteen function evaluations. Even though

for the FN04c the BA achieved better optimum solution compared to ABSA, the gap between them was small.

As far as standard deviation is concerned, the results in Table 4.10 show the best precision exhibited by

ABSA. Less variation (some functions, no variation) of optimum solution from the mean values was produced

by implementing ABSA on all test functions except FN04c. For FN04c, BA was able to achieve smaller

standard deviation value compared to that achieved with ABSA but the difference was not significant.

Table 4.11 shows a comparison of the performance of ABSA with BA and BSA using one-way analysis of

variance (ANOVA) on the mean value ± standard deviation of the global optimum. It is noted that at 95%

confident interval, ABSA was statistically significant to achieve better global optimum solution ahead of BA

and BSA. Overall, it can be concluded that ABSA outperforms BA and BSA for accuracy and precision to

search for a global optimum solution either in maximisation or minimisation problems.
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Table 4.7: The best solution obtained by BA, BSA and ABSA with 10 test functions of different dimensions
over 30 independent runs of 100 iterations each

Function Dim Optimum BA BSA ABSA
number F(x)

FN01 1 15.4564 15.4564 15.4564 15.4564
FN02 2 1.9608 1.9832 1.9606 1.9608
FN03 2 0.4289 0.4280 0.4289 0.4289
FN04a 3 0.0000 1.1985e−7 1.8211e−5 2.2810e−13

FN04b 5 0.0000 1.0854e−6 3.9700e−2 1.2726e−11

FN04c 10 0.0000 1.2000e−3 8.0770e−1 1.3720e−4

FN05a 3 0.0000 2.5850e−7 1.4324e−9 4.8111e−12

FN05b 5 0.0000 1.1000e−3 5.7284e−5 4.4514e−11

FN05c 10 0.0000 4.6000e−3 8.6000e−3 2.6957e−4

FN06a 3 0.0000 7.5661e−8 1.7246e−9 1.1643e−11

FN06b 5 0.0000 1.0000e−3 3.3504e−4 5.2555e−10

FN06c 10 0.0000 2.3800e−2 4.5000e−3 6.2212e−5

FN07a 3 0.0000 3.4954e−9 3.5720e−7 1.8990e−12

FN07b 5 0.0000 2.1000e−3 1.3993e−4 3.3335e−11

FN07c 10 0.0000 8.6000e−3 2.7000e−3 2.3001e−12

FN08 2 -1.0000 -1.0000 -0.9999 -1.0000
FN09 2 3.0000 3.0000 3.0060 3.0000
FN10 2 0.0000 0.0000 0.0001 0.0000
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Table 4.8: The worst solution obtained by BA, BSA and ABSA with 10 test functions of different dimensions
over 30 independent runs of 100 iterations each

Function Dim Optimum BA BSA ABSA
number F(x)

FN01 1 15.4564 15.3302 15.4175 15.4564
FN02 2 1.9608 1.9006 1.9032 1.9608
FN03 2 0.4289 0.4024 0.4221 0.4289
FN04a 3 0.0000 9.8722e−5 8.5000e−3 9.6814e−9

FN04b 5 0.0000 6.7300e−2 6.9350e−1 2.3951e−7

FN04c 10 0.0000 1.1070e−1 1.8506 3.9510e−1

FN05a 3 0.0000 8.6962e−4 1.4619e−5 1.5621e−9

FN05b 5 0.0000 5.1300e−2 9.5000e−3 6.3666e−8

FN05c 10 0.0000 8.8270e−1 9.8190e−1 6.6100e−2

FN06a 3 0.0000 8.2515e−4 3.9698e−5 7.3697e−9

FN06b 5 0.0000 8.9700e−2 9.4000e−2 4.2394e−7

FN06c 10 0.0000 4.9420e−1 9.0690e−1 2.3500e−2

FN07a 3 0.0000 9.4882e−4 8.5589e−4 1.8916e−8

FN07b 5 0.0000 9.9000e−2 1.4600e−2 4.6234e−6

FN07c 10 0.0000 8.7030e−1 9.3110e−1 3.0717e−8

FN08 2 -1.0000 -1.4070 -0.8110 -1.0000
FN09 2 3.0000 3.4618 3.8640 3.0000
FN10 2 0.0000 0.3314 0.1215 0.0000
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Table 4.9: The mean solution obtained by BA, BSA and ABSA with 10 test functions of different dimensions
over 30 independent runs of 100 iterations each

Function Dim Optimum BA BSA ABSA
number F(x)

FN01 1 15.4564 15.4458 15.4438 15.4564
FN02 2 1.9608 1.9308 1.9401 1.9608
FN03 2 0.4289 0.4177 0.4262 0.4289
FN04a 3 0.0000 3.6929e−5 2.6683e−3 1.2374e−9

FN04b 5 0.0000 5.1481e−3 4.1950e−1 2.1789e−8

FN04c 10 0.0000 2.6150e−2 1.4665 5.4975e−2

FN05a 3 0.0000 8.0776e−5 1.1634e−6 4.0332e−10

FN05b 5 0.0000 1.4917e−2 3.6329e−3 1.1890e−8

FN05c 10 0.0000 3.4812e−1 4.1136e−1 2.5186e−2

FN06a 3 0.0000 8.6964e−5 3.2073e−6 2.08470e−9

FN06b 5 0.0000 2.4963e−2 3.0683e−2 5.4807e−8

FN06c 10 0.0000 1.5900e−1 3.4829e−1 5.6951e−3

FN07a 3 0.0000 5.9211e−4 3.7671e−4 2.9536e−9

FN07b 5 0.0000 3.5097e−2 4.5607e−3 1.6080e−7

FN07c 10 0.0000 3.9344e−1 1.9216e−1 3.9551e−9

FN08 2 -1.0000 -1.2144 -0.9554 -1.0000
FN09 2 3.0000 3.0938 3.3215 3.0000
FN10 2 0.0000 0.0869 0.0331 0.0000
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Table 4.10: The standard deviation obtained by BA, BSA and ABSA with 10 test functions of different
dimensions over 30 independent runs of 100 iterations each

Function Dim Optimum BA BSA ABSA
number F(x)

FN01 1 15.4564 0.0278 0.0095 0.0000
FN02 2 1.9608 0.0188 0.0184 0.0000
FN03 2 0.4289 0.0081 0.0025 0.0000
FN04a 3 0.0000 3.2411e−5 2.3319e−3 2.4540e−9

FN04b 5 0.0000 1.2468e−2 1.7864e−1 5.2963e−8

FN04c 10 0.0000 2.4978e−2 3.3193e−1 1.0842e−1

FN05a 3 0.0000 1.9681e−4 2.7481e−6 4.5575e−10

FN05b 5 0.0000 1.2349e−2 3.0154e−3 1.5027e−8

FN05c 10 0.0000 2.5533e−1 3.0597e−1 1.7923e−2

FN06a 3 0.0000 1.9133e−4 8.3095e−6 2.1982e−9

FN06b 5 0.0000 1.8628e−2 3.4283e−2 1.0912e−7

FN06c 10 0.0000 1.0826e−1 2.5159e−1 7.7790e−3

FN07a 3 0.0000 2.5279e−4 2.8526e−4 4.3566e−9

FN07b 5 0.0000 3.5821e−2 4.2380e−3 8.4319e−7

FN07c 10 0.0000 2.7202e−1 2.7346e−1 7.6405e−9

FN08 2 -1.0000 0.1308 0.0438 0.0000
FN09 2 3.0000 0.2003 0.3021 0.0000
FN10 2 0.0000 0.0818 0.0356 0.0000
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Figure 4.7: Convergence to global best fitness function achieved by ABSA and BSA for selected test functions

Figure 4.7 shows convergence to global best fitness function value achieved by the ABSA as compared to

BSA for selected benchmark test functions:

• Third-order polynomial with a single variable

• Easom’s function

• Goldstein-Price’s function

However, these do not account for differing computational costs, as in reality, ABSA has taken longer time

than BSA to arrive at a maximum number of iteration. This is due to the new structure and additional steps

incorporated into the original BSA to arrive at the ABSA. The graphical results show that ABSA was able to

converge to global best fitness for each function in a smaller number of iterations compared to BSA. Moreover,

with several random approaches introduced to locate the starting positions in ABSA, the algorithm is potentially

able to start the search process at locations close to the optimum point and promptly move to the absolute global

best point.

Table 4.12 presents the results of one-way analysis of variance (ANOVA) on the mean iteration value ±

standard deviation of iteration number to arrive at a global optimum solution. The results show that at the 95%

confident interval, ABSA significantly performed better than BA and BSA to converge to the global optimum

solution faster. According to Figure 4.8, on average, in 100 iterations, the ABSA needed around 12% to 37%

iterations to reach the global optimum solution. The algorithm outperformed BA and BSA, which took 24% to

49% and 35% to 58% iterations respectively. This implies that ABSA has faster convergence ability to a global

optimum solution either for maximisation or minimisation problems as compared to BA and BSA.
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Table 4.12: Performance comparison in terms of faster convergence to global optimum in 100 iterations using
one-way analysis of variance (ANOVA) between BA, BSA and ABSA with 10 test functions of different

dimensions over 30 independent runs

FN No. BA BSA ABSA Significantly

FN01 24.70 ± 15.12 52.13 ± 29.63 21.40 ± 8.79 Yes
FN02 47.77 ± 2.60 46.80 ± 29.51 28.67 ± 13.50 Yes
FN03 31.93 ± 12.60 51.23 ± 34.23 29.43 ± 13.88 Yes
FN04a 24.87 ± 16.87 55.37 ± 29.05 33.83 ± 11.11 Yes
FN04b 23.17 ± 13.98 48.17 ± 31.09 34.83 ± 11.11 Yes
FN04c 27.53 ± 14.49 42.77 ± 30.03 37.27 ± 8.79 Yes
FN05a 33.43 ± 10.25 56.83 ± 30.30 33.47 ± 11.75 Yes
FN05b 28.57 ± 15.93 49.03 ± 32.18 36.30 ± 9.55 Yes
FN05c 25.07 ± 12.65 58.53 ± 35.15 37.43 ± 9.26 Yes
FN06a 38.47 ± 9.78 54.30 ± 28.75 30.77 ± 12.14 Yes
FN06b 37.10 ± 7.44 44.70 ± 30.50 36.43 ± 10.81 Yes
FN06c 49.33 ± 7.37 35.67 ± 29.38 34.67 ± 11.56 Yes
FN07a 26.70 ± 15.62 51.63 ± 27.50 15.17 ± 10.02 Yes
FN07b 25.70 ± 11.76 56.47 ± 29.83 12.10 ± 5.84 Yes
FN07c 29.37 ± 11.94 55.87 ± 28.33 12.03 ± 3.37 Yes
FN08 28.20 ± 13.65 50.63 ± 29.89 24.57 ± 14.07 Yes
FN09 29.67 ± 16.58 51.00 ± 27.67 26.87 ± 14.21 Yes
FN10 25.23 ± 15.02 49.33 ± 26.75 21.90 ± 14.39 Yes
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Figure 4.8: Comparison of average number of iterations to achieve global optimum solution

4.4 Summary

This chapter fits into the second phase of the research methodology. The chapter elaborated on the investigation

of adaptive bats sonar algorithm (ABSA). The algorithm has altered original bats sonar algorithm (BSA) by

Tawfeeq (2012) and also incorporated with new characteristics. The ABSA has a prudent capability to achieve

better accuracy, precision and convergence rate when solving single objective optimisation problems. The su-

perior performance of ABSA was demonstrated through sets of computer simulation on several single objective

optimisation benchmark test functions. In short, this chapter successfully achieved the first objective: To re-

search and test an effective bats echolocation-inspired algorithm to solve single objective optimisation

problems.

The next chapter will present a modified version of ABSA to solve constrained optimisation problems. This

is the third phase of research methodology. The outcomes from the chapter are expected to fulfil the second

research objective that is: To research and test an effective bats echolocation-inspired algorithm to solve

constrained optimisation problems.
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Chapter 5

Investigation of modified adaptive bats sonar

algorithm

5.1 Introduction

This chapter elaborates on the investigation of a modified adaptive bats sonar algorithm (MABSA) which is

formulated after a few refinements of an adaptive bats sonar algorithm. The chapter kicks off with a section view

of the investigation of MABSA. Next, presents computer simulation and performance results of MABSA. The

section is divided into three subsections. The first subsection discusses the performance of MABSA to solve

constrained optimisation benchmark test functions. Second subsection measures the performance of MABSA

to solve engineering design optimisation problems. Another subsection presents comparative assessment based

on statistical analyses of the results. The chapter is ends with a summary.

5.2 Modified adaptive bats sonar algorithm

ABSA was explored as an improved version of original BSA to solve unconstrained single objective optimi-

sation problems. But, to deal with constrained single objective optimisation problems, a crucial problem on

how to incorporate the inequality constraints as well as equality constraints with the objective function must

be tackled appropriately. ABSA does not well function on this kind of problem such that an algorithm is a

direct approach. A direct approach is often difficult to find the solution in the feasible regions enclosed by the

constraints.

A new algorithm named; the modified adaptive bats sonar algorithm (MABSA) is researched here by redefin-

ing some elements in ABSA as well as reformulating a main component of BSA to compensate this problem.

The MABSA will be able to generate a potential solution that satisfied all constraints. The purpose of MABSA

is to solve constrained optimisation problems.
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The MABSA is formulated after modifying three searching procedures of the original ABSA and adding a

new component to it. The three procedures are the ways to setting up the beam length (L), determining starting

angle (θm) and angle between beams (θi) and also calculating end point position (posi). On the other hand, the

bounce back strategy is a new component that has been included in the MABSA, which was not considered in

ABSA formerly. This section will elaborate solely of these three elements. The other components of MABSA

will not be further discussed here as they are similar to the ABSA as presented in the earlier chapter.

In the MABSA, the new L is set up as:

L = Rand× (
SSsize

10%×Bats
) (5.1)

where the solution range (SSSize) is the value between the upper search space (SSMax) limit and the lower search

space (SSMin) limit. Every dimension (Dim) has its specific or known as Dim constraints. The solution range is

divided into micron scale, such as 10% of the overall population of bats in the search space. The percentage is

marked as possible search space size of each bat to emit sound without colliding with one another. The random

value of L is offered to make real variation of beam lengths of each number of beams (NBeam) at every Dim

(but stay within the Dim constraints) at every iteration. This fixation pushes every bat at each dimension to

search for larger perimeter each time with the opportunity to diversify the search tactic during iterations and

thus may find the global best solution that may be near to them.

Each NBeam with L is emitted from specific angle location. In the ABSA, the θm and θi determined random

ones in every iteration. So all bats will emit the NBeam from a set of similar angle location in each iteration. To

add another randomisation character inside MABSA, θm and θi will be determined in random and separately

for every bat at every iteration. So at each iteration, every bat will emit the NBeam from a different set of angle

location. Therefore, this randomisation will also add on to diversify the searching process in MABSA.

In the MABSA, the way to calculate the posi was redefined. The posi for each transmitted beam in MABSA

is calculated as:

posi = α× posSP +β ×L(cos [θm +(i−1)θ ])ω

where

i = 1, . . . ,NBeam; NBeam is number of beams

posSP is beam’s starting position

(5.2)

In the above equation, there are two random variables and one constant. The first random variable is called

position adaptability factor (α). The value for α is chosen randomly from the range between 0 and 1. This

factor is included to make sure that every bat is able to adapt to the new posSP faster as derived from the

previous posSP, posLB, posRB and posGB. This factor has the same characteristic as random walk method. The

second random variable is collision avoidance factor (β ). The value for β also is chosen randomly from the
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range between 0 and 1. The factor is essential to avoid the beams from overlapping or incidentally colliding

with other bats’ beam as every bat has produced a number of beams from new posSP simultaneously.

The only constant in this equation is beam-tuning constant (ω) which is equal to 2. This constant also can

be considered as acceleration constant. The function of this constant is to strengthen β so that ω will divert the

angle of transmitted beam to the new angle in the designated search space. The value 2 is selected because it

will give a good balance. If a very high value is selected, it will destroy the influence of the beam angle such

that the orientation of new bat position will be catastrophic. A smaller value, on the other hand, will not make

any significant change to the angle of transmitted beam.

The MABSA is also equipped with bounce back strategy. This will confirm that every posi achieved by

each bat during the iterations is worth considering as possible optimum posGB for the algorithm. When each

beam is transmitted from every bat, it will be verified to ensure that the posi of the transmitted beam does not

fall beyond SSMax or below SSMin. If the posi reaches outside SSSize, the transmitted beam will be diverted

automatically to new location inside the labelled SSSize using one of the following equations:

posi = SSMax− τ, i = 1, . . . ,N (5.3a)

posi = SSMax + τ, i = 1, . . . ,N (5.3b)

These equations contain bounce back repositioning factor (τ) where the value is 0 < τ < 1. This factor is

to help the bats to relocate a beam transmission to a new beams’ end point from the maximum or minimum

search space. This factor will avoid overwriting other bats’ beam end points. The bounce back repositioning

factor is the fastest contingency action of bats to swing to newly transmitted beam’s end point after hitting

the designated search space boundaries. This strategy helps to reduce much time to spend to consider the

previous factors (which are: position adaptability factor, collision avoidance factor or beam-tuning constant)

as normal bats do. Algorithm 4 represented the pseudo code of MABSA. In the pseudo code, the new equations

formulated from this chapter are referred as well as unchanged equations from the previous chapter remain.

In the meantime, Figure 5.1 shown the orthogonal and plan view of a sample on how the bats in MABSA

move to search for the FGB. This sample search is for 2-dimensional optimum points. The ranges of the solution

search space are taken as 0≤ Dim1,Dim2≤ 2.

During the first iteration, three Bats are introduced at random posSP (are evaluate to produce three FSP) and

are labelled as B1a, B2a and B3a respectively. Each bat transmits three NBeam (Equation 4.4 and Equation

4.5) in different lengths (Equation 5.1 and Equation 4.3) to various directions (Equation 4.6). Then, every posi

at each bat is evaluated (Equation 5.2). At each bat, the Fi from every posi are compared among them and the

fittest ones are recognized as FLB. Later, the FLB will be compared with its FSP and the best between the two

will be FRB. This means that, there are three FRB all together and the best of them is declared as FGB. After that,

new posSP for the bats are identified (Equation 4.8) and tagged as B1b, B2b and B3b respectively.
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Algorithm 4 Modified adaptive bats sonar algorithm

1: Objective function F(x), x = (x1, . . . ,xd)
T

2: Initialise: Bats, MaxIter, Dim, SSSize, NBeamMAX and NBeamMIN

3: for n← 1 to Bats do
4: for d← 1 to Dim do
5: Generate random posSP

6: Evaluate FSP value for F(posSP)
7: end for
8: end for
9: Assign the most optimum value as FGB and its position as posGB

10: while t ≤MaxIter do
11: Define NBeam to transmit by using BNI (Equation 4.4 and Equation 4.5)
12: for n← 1 to Bats do
13: for N← 1 to NBeam do
14: for d← 1 to Dim do
15: Set L and limit µ (Equation 5.1 and Equation 4.3)
16: end for
17: end for
18: Generate random θm and θ (Equation 4.6)
19: Transmit NBeam starting from posSP

20: for N← 1 to NBeam do
21: for d← 1 to Dim do
22: Determine posi for each transmitted beam (Equation 5.2)
23: Verify posi for each transmitted beam within SSSize

24: if posi ≥ SSMax then
25: Update posi (Equation 5.3a)
26: end if
27: if posi ≤ SSMin then
28: Update posi (Equation 5.3b)
29: end if
30: end for
31: Evaluate Fi value for F(posi)
32: Assign the optimum value of Fi as FLB and its position as posLB

33: if FLB ≤ FSP then
34: Assign FLB as FRB and posLB as posRB

35: else
36: Assign FSP as FRB and posSP as posRB

37: end if
38: end for
39: end for
40: Select the optimum value among FRB as current FGB and its posRB as current posGB

41: if current FGB ≤ previous FGB then
42: Update current FGB as new FGB and current posGB as new posGB

43: else
44: Retain previous FGB and posGB

45: end if
46: for n← 1 to Bats do
47: Determine new posSP using (Equation 4.8)
48: Evaluate new FSP value for F(posSP)
49: end for
50: end while
51: Declare FGB as optimum fitness evaluated and posGB as its optimum value(s)
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The second iteration starts from B1b, B2b and B3b locations and similar processes are repeated as in the

first iteration. In this iteration, the NBeam is increased to four. If the transmitted beam goes beyond the search

space, it will be deflected back to new direction within the solution range area (Equation 5.3a or Equation 5.3b).

However, the FRB in this iteration will be less than the FGB value in the first iteration. Due to that, the FGB value

at this iteration will still be carried from the previous iteration.
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Figure 5.1: Bats movement in MABSA approach
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In the last iteration, the processes are still continued the same as in the previous iterations but NBeam is

increased to five transmitted from B1c, B2c and B3c respectively. The final FGB value was detected at the

position posGB; Dim1=1 and Dim2=1 which were the source initially from B1c.

5.3 Computer simulation and discussion

5.3.1 Performance of modified adaptive bats sonar algorithm on constrained optimisation

benchmark test functions

In order to show the superiority of the MABSA to solve constrained optimisation problems, four constrained

benchmark test functions from CEC 2006 by Liang et al. (2006) were examined and tested. The results are com-

pared against other established algorithms based on results recorded in the specific literature (no re-simulation

exercises using the established algorithms were conducted).

The algorithms are; changing range genetic algorithm (CRGA) (Amirjanov, 2006), self adaptive penalty

function (SAPF) (Tessema and Yen, 2006), cultured differential evolution (CULDE) (Becerra and Coello,

2006), simple multimembered evolution strategy (SMES) (Mezura-Montes and Coello, 2005a), adaptive seg-

regational constraint handling evolutionary algorithm (ASCHEA) (Hamida and Schoenauer, 2002), particle

swarm optimisation with diferential evolution (PSO-DE) (Liu et al., 2010), stochastic ranking (SR) (Runarsson

and Yao, 2000), differential evolution with level comparison (DELC) (Wang and Li, 2010), differential evolu-

tion with dynamic stochastic selection (DEDS) (Zhang et al., 2008), hybrid evolutionary algorithm and adaptive

constraint handling technique (HEA-ACT) (Wang et al., 2009), improved stochastic ranking (ISR) (Runarsson

and Yao, 2005), α constrained with nonlinear simplex method with mutation (α Simplex) (Takahama and Sakai,

2005), Nelder-Mead simplex method and particle swarm optimisation (NM-PSO) (Zahara and Kao, 2009), ar-

tificial bee colony 2 (ABC2) (Karaboga and Basturk, 2007a) and mine blast algorithm (MBA) (Sadollah et al.,

2013). All established algorithms from specific literature provided the results for all constrained optimisation

benchmark test functions but NM-PSO algorithm which has the results for constrained test function 1 only.

The quality of obtained optimisation results are compared in terms of statistical results (better best, mean,

median and worst solution found), the robustness of the MABSA (the standard deviation values) and the

number of function evaluations (NFEs). However, there are few cases where the results for median and worst

solutions found as well as the standard deviation values are not available in certain established algorithms from

the specific literature. Here, the notation "n/a" means not available are given.

The results of the best solution obtained from MABSA for constrained optimisation benchmark test functions

are summarised in Table 5.1. The MABSA is capable of finding the best solution (minimum value) which was

better than the optimum value as suggested from CEC 2006 for all constrained test functions. The time to

converge to the best solution was recorded under 22 seconds for all four test functions shows that the algorithm
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is able to reach to the best solution faster than ordinary methods. So it is worth mentioning that MABSA is

very effective and efficient to solve the constrained optimisation problems.

Table 5.1: Results of the best solution obtained from MABSA for constrained benchmark test functions

Items Constrained Constrained Constrained Constrained
test function 1 test function 2 test function 3 test function 4

Run No. 23 2 21 5
No. of Bats 1000 700 1000 700
NFEs 100000 70000 100000 70000
Time to converge (seconds) 9.7244 20.9769 14.2320 0.3656
Iteration to converge 31 89 34 3
F(x) -30994.6595 -7091.3568 662.4557 0.7500
Optimum value of F(x) -30665.5390 -6961.8139 680.6301 0.7500

MABSA also performed well to converge faster to the optimum solution. In all four constrained benchmark

test functions, MABSA had reached the optimum solutions in less than 25 seconds. In term of NFEs, MABSA

had shown good potential to be popular algorithm in future as it converges fast to the optimum solution. For

instance, by considering the NFEs from the best solution obtained in all constrained benchmark test functions

tested, MABSA started to settle down to the optimum solution after approximately 2000 to 4000 NFEs as

shown in Figure 5.2.

Figure 5.3 compares the average NFEs used by all algorithms to solve four constrained benchmark test

functions. When comparing the average NFEs used by MABSA on all constrained benchmark test functions

with other established algorithms, the value between 70000 and 100000 is reasonable and more productive.

The small value of NFEs will force the algorithm to settle down earlier as possible without a chance to explore

more but may end up with the algorithm trapped in local optimum such as in CRGA, NM-PSO or DELC. On

the other hand, if too many NFEs used such as in ASCHEA or even SAPF, the algorithm may waste the time

to find the good solution but the solution which was already encountered earlier than the last set of NFEs is

examined.
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Figure 5.2: Convergence graphs of the best solution of MABSA for four constrained benchmark problems
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Figure 5.3: Comparison of NFEs used by considered algorithms for all constrained benchmark problems

Constrained optimisation benchmark test function 1

The constrained test function 1 is defined as:

Minimise F(x) = 5.3578547x3
3 +0.8356891x1x5 +37.293239x1 +40729.141

subject to

g1(x) = 85.334407+0.0056858x2x5 +0.0006262x1x4−0.0022053x3x5−92≤ 0

g2(x) =−85.334407−0.0056858x2x5−0.0006262x1x4−0.0022053x3x5 ≤ 0

g3(x) = 80.51249+0.0071317x2x5 +0.0029955x1x2 +0.0021813x2
3−110≤ 0

g4(x) =−80.51249−0.0071317x2x5−0.0029955x1x2−0.0021813x2
3 +90≤ 0

g5(x) = 9.300961+0.0047026x3x5 +0.0012547x1x3 +0.0019085x3x4−25≤ 0

g6(x) =−9.300961−0.0047026x3x5−0.0012547x1x3−0.0019085x3x4 +20≤ 0

where

78.0≤ x1 ≤ 102.0

33.0≤ x2 ≤ 45.0

27.0≤ xi ≤ 45.0, i = 3,4,5

(5.4)

For constrained test function 1, there are 15 different algorithms from literature that have been chosen to

compare with the MABSA. These included CRGA, SAPF, CULDE, SMES, ASCHEA, PSO-DE, SR, DELC,

DEDS, HEA-ACT, ISR, α Simplex, NM-PSO, ABC2 and MBA. Table 5.2 shows the comparison between

MABSA and other algorithms in term of statistical results obtained for solving constrained test function 1.
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Table 5.2: Comparison of statistical results obtained using different algorithms for constrained test function 1.
("n/a" means not available)

Method Worst Median Mean Best Standard NFEs
deviation

CRGA -30660.3130 -30665.2520 -30664.3980 -30665.5200 1.6000 54400
SAPF -30656.4710 -30663.9210 -30659.2210 -30665.4010 2.0430 500000
CULDE -30665.5387 n/a -30665.5387 -30665.5387 0.0000 100100
SMES -30665.5390 -30665.5390 -30665.5390 -30665.5390 0.0000 240000
ASCHEA n/a -30665.5000 -30665.5000 -30665.5000 n/a 1500000
PSO-DE -30665.5387 -30665.5387 -30665.5387 -30665.5387 8.3000e−10 70100
SR -30665.5390 -30665.5390 -30665.5390 -30665.5390 2.0000e−05 350000
DELC -30665.5390 -30665.5390 -30665.5390 -30665.5390 1.0000e−11 50000
DEDS -30665.5390 n/a -30665.5390 -30665.5390 2.7000e−11 350000
HEA-ACT -30665.5390 -30665.5390 -30665.5390 -30665.5390 7.4000e−12 200000
ISR -30665.5390 -30665.5390 -30665.5390 -30665.5390 1.1000e−11 192000
α Simplex -30665.5387 -30665.5387 -30665.5387 -30665.5387 4.2000e−11 305343
NM-PSO -30665.5390 n/a -30665.5390 -30665.5390 1.4000e−05 19658
ABC2 -30665.5390 n/a -30665.5390 -30665.5390 0.0000 240000
MBA -30665.3300 n/a -30665.5182 -30665.5386 5.0800e−02 41750
MABSA -30700.2654 -30793.4331 -30829.8768 -30994.6595 110.3421 82090

Overall, MABSA lead other algorithms to all criteria (worst, median, mean and best value) which demon-

strate the quality of algorithm to achieve the optimum solution for constrained test function 1. This statement

was strengthened by the bar plot pictured in Figure 5.4 where MABSA was significantly better to achieve the

optimum solution as compared to optimum value compiled in CEC 2006 or other algorithms. Indeed, the worst

result from the MABSA; −30700.2654 is still a better result than the optimum value or the best result from

other established algorithms. However, MABSA is less robust to solve the problem as shown by the higher

value of standard deviation when compared to other listed algorithms.
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Figure 5.4: Bar plot of statistical results obtained using different algorithms for constrained test function 1

Contrained optimisation benchmark test function 2

The constrained test function 2 is defined as:

Minimise F(x) = (x1−10)3 +(x2−20)3

subject to

g1(x) =−(x1−5)2− (x2−5)2 +100≤ 0

g2(x) = (x1−6)2 +(x2−5)2−82.85≤ 0

where

13.0≤ x1 ≤ 100.0

0.0≤ x2 ≤ 100.0, i = 3,4,5

(5.5)

In constrained test function 2, the performance of MABSA was also compared with the 14 established al-

gorithms. The algorithms are CRGA, SAPF, CULDE, SMES, ASCHEA, PSO-DE, SR, DELC, DEDS, HEA-

ACT, ISR, α Simplex, ABC2 and MBA. The statistical results obtained by all algorithms including MABSA

are shown in Table 5.3 while the worst, median, mean and best results for each considered algorithms plot are

shown on bar plot as in Figure 5.5.

The outstanding performance of the MABSA to solve the constrained test function 2 can be seen in both

table and bar plot. The fitness function value achieved by the MABSA for every statistical criterion was the

optimum as compared to other 14 established algorithms as well as the optimum value from CEC 2006. In

addition to that, the MABSA method was the only algorithm passing the -7000.0000 value in median, mean
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Table 5.3: Comparison of statistical results obtained using different algorithms for constrained test function 2.
("n/a" means not available)

Method Worst Median Mean Best Standard NFEs
deviation

CRGA -6077.1230 -6867.4610 -6740.2880 -6956.2510 270.0000 3700
SAPF -6943.3040 -6953.8230 -6953.0610 -6961.0460 5.8760 500000
CULDE -6961.8139 n/a -6961.8139 -6961.8139 0.0000 100100
SMES -6952.4820 -6961.8140 -6961.2840 -6961.8140 1.8500 240000
ASCHEA n/a -6961.8100 -6961.8100 -6961.8100 n/a 1500000
PSO-DE -6961.8139 -6961.8139 -6961.8139 -6961.8139 2.3000e−09 140100
SR -6350.2620 -6961.8140 -6875.9400 -6961.8140 160.0000 350000
DELC -6961.8140 -6961.8140 -6961.8140 -6961.8140 7.3000e−10 20000
DEDS -6961.8140 n/a -6961.8140 -6961.8140 0.0000 350000
HEA-ACT -6961.8140 -6961.8140 -6961.8140 -6961.8140 4.6000e−12 200000
ISR -6961.8140 -6961.8140 -6961.8140 -6961.8140 1.9000e−12 168800
α Simplex -6961.8139 -6961.8139 -6961.8139 -6961.8139 1.3000e−10 293367
ABC2 -6961.8050 n/a -6961.8130 -6961.8140 2.0000e−03 240000
MBA -6961.8139 n/a -6961.8139 -6961.8139 0.0000 2835
MABSA -6973.2374 -7047.2779 -7043.7395 -7091.3568 34.227384 91530
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Figure 5.5: Bar plot of statistical results obtained using different algorithms for constrained test function 2

and best which was not able to be done by other algorithms. Nevertheless, the higher standard deviation value

achieved by MABSA shows that the algorithm was less robust to solve the constrained test function 2 compared

to other algorithms. However, the level of robustness for MABSA to solve this problem was better than the

previous problem.
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Contrained optimisation benchmark test function 3

The constrained test function 3 is defined as:

Minimise F(x) = (x1−10)2 +5(x2−12)2 + x4
3 +3(x4−11)2 +10x6

5 +7x2
6 + x4

7−4x6x7−10x6−8x7

subject to

g1(x) = 127−2x2
1−3x4

2− x3−4x2
4−5x5 ≥ 0

g2(x) = 282−7x1−3x2−10x2
3− x4 + x5 ≥ 0

g3(x) = 196−23x1− x2
2−6x2

6 +8x7 ≥ 0

g4(x) =−4x2
1− x2

2 +3x1x2−2x2
3−5x6 +11x7 ≥ 0

where

−10.0≤ xi ≤ 10.0, i = 1,2,3,4,5,6,7

(5.6)

In constrained test function 3, the statistical results between MABSA and 14 other algorithms that are taken

from previous literature are compared. The algorithms are CRGA, SAPF, CULDE, MES, ASCHEA, PSO-

DE, SR, DELC, DEDS, HEA-ACT, ISR, α Simplex, ABC2 and MBA. The comparison of statistical results

obtained by all algorithms are provided in Table 5.4. Figure 5.6 visualized the bar plot of worst, median, mean

and best solution of all algorithms with a benchmark of the optimum value from CEC 2006.

The performance of MABSA was exceptional when compared to other established algorithms to find the op-

timum fitness function value for constrained test function 3. The MABSA was the sole algorithm that recorded

the minimum solution under 680.0000 for all statistical criterion with the best solution 662.4557 which was far

better than the optimum value from CEC 2006. For this constrained test function 3, MABSA was well thought-

out to be more robust when compared to the performances of the constrained test function 1 or constrained test

function 2. Despite the fact that the standard deviation for MABSA was still larger than 1.0000, the value was

acceptable to compromise with the range of worst, median, mean and best solution found which was better

amongst considered algorithms.
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Table 5.4: Comparison of statistical results obtained using different algorithms for constrained test function 3.
("n/a" means not available)

Method Worst Median Mean Best Standard NFEs
deviation

CRGA 682.9650 681.2040 681.3470 680.7260 5.7000e−01 50000
SAPF 682.0810 681.2350 681.2460 680.7730 3.2200e−01 500000
CULDE 680.6301 n/a 680.6301 680.6301 0.0000 100100
SMES 680.7190 680.6420 680.6430 680.6320 1.5500e−02 240000
ASCHEA n/a 680.6350 680.6410 680.6300 n/a 1500000
PSO-DE 680.6301 680.6301 680.6301 680.6301 4.6000e−13 140100
SR 680.7630 680.6410 680.6560 680.6300 3.4000e−02 350000
DELC 680.6300 680.6300 680.6300 680.6300 3.2000e−12 80000
DEDS 680.6300 n/a 680.6300 680.6300 2.5000e−13 350000
HEA-ACT 680.6300 680.6300 680.6300 680.6300 5.8000e−13 200000
ISR 680.6300 680.6300 680.6300 680.6300 3.2000e−13 271200
α Simplex 680.6301 680.6301 680.6301 680.6301 2.9000e−10 323427
ABC2 680.6530 n/a 680.6400 680.6340 4.0000e−03 240000
MBA 680.7882 n/a 680.6620 680.6322 3.3000e−02 71750
MABSA 678.7398 672.6514 671.4536 662.4557 4.6726 88303
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Figure 5.6: Bar plot of statistical results obtained using different algorithms for constrained test function 3
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Contrained optimisation benchmark test function 4

The constrained test function 4 is defined as:

Minimise F(x) = x2
1 +(x2−1)2

subject to

h(x) = x2− x2
1 = 0

where

−1.0≤ xi ≤ 1.0, i = 1,2

(5.7)

A set of 14 established algorithms is compared with MABSA in term of the statistical results obtained for

constrained test function 4. These included CRGA, SAPF, CULDE, SMES, ASCHEA, PSO-DE, SR, DELC,

DEDS, HEA-ACT, ISR, α Simplex, ABC2 and MBA. Table 5.5 listed the comparison results, while the bar

plot of worst, median, mean and best solution acquired from all the algorithms with the optimum value from

CEC 2006 is shown in Figure 5.7.

Table 5.5: Comparison of statistical results obtained using different algorithms for constrained test function 4.
("n/a" means not available)

Method Worst Median Mean Best Standard NFEs
deviation

CRGA 0.7570 0.7510 0.7520 0.7500 2.5000e−03 3000
SAPF 0.7570 0.7500 0.7510 0.7490 2.0000e−03 500000
CULDE 0.7965 n/a 0.7580 0.7499 1.7138e−02 100100
SMES 0.7500 0.7500 0.7500 0.7500 1.5200e−04 240000
ASCHEA n/a 0.7500 0.7500 0.7500 n/a 1500000
PSO-DE 0.7500 0.7499 0.7499 0.7499 2.5000e−07 70100
SR 0.7500 0.7500 0.7500 0.7500 8.0000e−05 350000
DELC 0.7500 0.7500 0.7500 0.7500 0.0000 50000
DEDS 0.7499 n/a 0.7499 0.7499 0.0000 350000
HEA-ACT 0.7500 0.7500 0.7500 0.7500 3.4000e−16 200000
ISR 0.7500 0.7500 0.7500 0.7500 1.1000e−16 137200
α Simplex 0.7499 0.7499 0.7499 0.7499 4.9000e−16 308125
ABC2 0.7500 n/a 0.7500 0.7500 0.0000 240000
MBA 0.7500 n/a 0.7500 0.7500 3.2900e−06 6405
MABSA 0.7500 0.7500 0.7500 0.7500 0.0000 89724

For constrained test function 4, MABSA successfully printed out results which have the same performance

or better than other considered algorithms for all criteria. Indeed, the median, mean and best solution values

achieved by MABSA method managed to achieve better than that CEC 2006 benchmark value; 0.7500. The
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Figure 5.7: Bar plot of statistical results obtained using different algorithms for constrained test function 4

MABSA recorded 0.7500, 0.7500 and 0.7500 for median, mean and best criteria respectively. According to

the results, MABSA is also considered to be more robust to solve the constrained test function 4 as its standard

deviation value recorded was 0.000000. The robustness ability of MABSA to solve the problem was at par with

other considered algorithms and better than CGRA, SAPF, CULDE and SMES.

5.3.2 Performance of modified adaptive bats sonar algorithm in engineering design optimisa-

tion problems

The MABSA also was tested to solve six engineering design optimisation problems. The problems considered

are pressure vessel design optimisation problem, three-truss bar design optimisation problem, gear train design

optimisation problem, speed reducer design optimisation problem, welded beam design optimisation problem

and tension/compression spring design optimisation problem. All six engineering design optimisation problems

are established problems and broadly used in the literature.

The results produced by MABSA to solve all nominated engineering design optimisation problems have

been compared against other established algorithms based on results recorded in the specific literature in a way

to show the superior performance of the algorithm. Noteworthy to mention, no re-simulation exercises using

the established algorithms were conducted. The considered algorithms are; co-evolutionary particle swarm op-

timisation (CPSO) (He and Wang, 2007a), hybrid particle swarm optimisation (HPSO) (He and Wang, 2007b),

teaching-learning-based optimisation (TLBO) (Rao et al., 2011), society and civilization algorithm (SC) (Ray

and Liew, 2003), particle swarm optimisation with diferential evolution (PSO-DE) (Liu et al., 2010), dif-

ferential evolution with level comparison (DELC) (Wang and Li, 2010), differential evolution with dynamic
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Figure 5.8: Comparison of NFEs used by considered algorithms for all engineering design optimisation
problems

stochastic selection (DEDS) (Zhang et al., 2008), hybrid evolutionary algorithm and adaptive constraint han-

dling technique (HEA-ACT) (Wang et al., 2009), artificial bee colony 1 (ABC1) (Akay and Karaboga, 2012),

Nelder-Mead simplex method and particle swarm optimisation (NM-PSO) (Zahara and Kao, 2009), genetic

algorithm 1 (GA1) (Coello, 2000), genetic algorithm 2 (GA2) (Coello and Mezura-Montes, 2002), unified par-

ticle swarm optimisation (UPSO) (Parsopoulos and Vrahatis, 2005), µ and λ evolution strategy ((µ + λ )ES)

(Mezura-Montes and Coello, 2005b) and mine blast algorithm (MBA) (Sadollah et al., 2013). However, not

all established algorithms from specific literature provided the results for all nominated engineering design

optimisation problems.

In overall, Figure 5.8 compared the average NFEs used by all considered algorithms to solve six engineering

design optimisation problems. The NFEs used by the MABSA were in the acceptable range that was between

70000 and 100000. If the small number of NFEs which is less than 50000 is used like in TLBO, DELC or

DEDS; the tendency of the premature convergence to the optimum solution to occur is higher. The premature

convergence happened because the algorithm has to end the searching process earlier without having much time

to explore every corner of the designated search space.

However, too large NFEs setup (200000 and above) as in GA1 or CPSO was an unproductive and compu-

tational burden as the algorithm will still search for the solution even though the optimum solution has already

appeared in the early searching move. Too large NFEs also may contribute to an inconstant global best solution

as the solution keeps changing until the searching process finished.

92



Pressure vessel design optimisation problem

The pressure vessel design optimisation problem is defined as:

Minimise F(x) = 0.6224x1x3x4 +1.7781x2x2
3 +3.1661x2

1x4 +19.84x2
1x3

subject to

g1(x) =−x1 +0.0193x3 ≤ 0

g2(x) =−x2 +0.00954x3 ≤ 0

g3(x) =−πx2
3x4− (4/3)πx3

3 +1296000≤ 0

g4(x) = x4−240≤ 0

where

0.0≤ xi ≤ 100.0, i = 1,2

10.0≤ xi ≤ 200.0, i = 3,4

(5.8)

The best solution acquired using MABSA for solving pressure vessel design optimisation problem is tabled

in Table 5.6. The MABSA needed only 22 seconds to converge to the best solution which is 5167.3330. To

illustrate the convergence rate of the MABSA, Figure 5.9 showed the convergence to the best solution in term

of NFEs. The MABSA efficiently reached the best solution after 60000 NFEs out of 70000 NFEs.

Table 5.6: Results of the best solution obtained from MABSA for pressure vessel optimisation design problem

Items Value

Run No. 14
No. of Bats 700
NFEs 70000
Time to converge (seconds) 22.0172
Iteration to converge 83
F(x) 5167.3330
Optimum value of F(x) 6059.7140

To further investigate the performance of MABSA to solve the pressure vessel design optimisation problem,

the algorithm has been compared to 12 established techniques taken from literatures. The algorithms involved

are CPSO, HPSO, TLBO, PSO-DE, DELC, ABC1, NM-PSO, GA1, GA2, UPSO, (µ + λ )ES and MBA. The

comparison was done on statistical results obtained by all algorithms discussed which is exhibited in Table 5.7

and plot on bar plot as in Figure 5.10.

According to the results, MABSA performed the best compared to other algorithms as the optimum solutions

found by MABSA were under 6000.0000 for all statistical criteria except for the worst value. Indeed, the worst

93



solution of MABSA was still better than the best solution achieved by GA1 or UPSO. Meanwhile, the MABSA

was not so robust to solve the pressure vessel design optimisation problem as interpreted by the large value of

standard deviation obtained by the algorithm. But, the level of robustness of MABSA is considered better as

compared to UPSO alone.
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Figure 5.9: Convergence graph of the best solution of MABSA for pressure vessel design optimisation
problem
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Figure 5.10: Bar plot of statistical results obtained using different algorithms for pressure vessel design
optimisation problem
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Table 5.7: Comparison of statistical results obtained using different algorithms for pressure vessel design
optimisation problem. ("n/a" means not available)

Method Worst Median Mean Best Standard NFEs
deviation

CPSO 6363.8041 n/a 6147.1332 6061.0777 86.4545 200000
HPSO 6288.6770 n/a 6099.9323 6059.7143 86.2022 81000
TLBO n/a n/a 6059.7143 6059.7143 n/a 10000
PSO-DE 6059.7143 n/a 6059.7143 6059.7143 1.0000e−10 42100
DELC 6059.7143 6059.7143 6059.7143 6059.7143 2.1000e−11 30000
ABC1 n/a n/a 6245.3081 6059.7147 205.0000 30000
NM-PSO 5960.0557 n/a 5946.7901 5930.3137 9.1614 80000
GA1 6308.1497 6290.0187 6293.8432 6288.7445 7.4133 900000
GA2 6469.3220 n/a 6177.2533 6059.9463 130.9297 80000
UPSO 11638.2000 n/a 9032.5500 6544.2700 995.5730 100000
(µ+λ )ES 6820.3975 n/a 6379.9380 6059.7016 210.0000 30000
MBA 6392.5062 n/a 6200.6477 5889.3216 160.3400 70650
MABSA 6092.8908 5618.6387 5607.7972 5167.3330 252.3335 80227

Three-truss bar design optimisation problem

The three-truss bar design optimisation problem is defined as:

Minimise F(x) = (2
√

2x1 + x2)× l

subject to

g1(x) =
√

2x1 + x2√
2x2

1 +2x1x2

P−σ ≤ 0

g2(x) =
x2√

2x2
1 +2x1x2

P−σ ≤ 0

g3(x) =
1√

2x1 + x1
P−σ ≤ 0

where

0.0≤ xi ≤ 1.0, i = 1,2

l = 100cm, P = 2kN/cm2, σ = 2kN/cm2

(5.9)

The best solution of MABSA for solving three-truss bar design optimisation problem is listed in the Table

5.8. By using only 700 bats, MABSA is able to reach the global optimum solution without trapping into a local

optimum. In conjunction with that, as in Figure 5.11, MABSA starts to converge swiftly to the best solution

just after 400 NFEs or within 7.8000 seconds.
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The performance of MABSA has been compared with six established algorithms taken from literatures to

solve this problem. These include SC, PSO-DE, DELC, DEDS, HEA-ACT and MBA. Definitely, the algorithm

shows significant improvement of fitness function value obtained for the three-truss bar design optimisation

problem.

As tabled in Table 5.9 and plot in bar plot as in Figure 5.12, MABSA has found the value that was better com-

pared to other algorithms. For all statistical criteria considered, MABSA positively maintains its performance.

Without a doubt, the smaller standard deviation existed after MABSA completing 30 runs demonstrated that

the algorithm is more robust when solving the three-truss bar design optimisation problem. In this case, the

MABSA is in third ranking of algorithm robustness behind DELC and PSO-DE from all algorithms evaluated.

Table 5.8: Results of the best solution obtained from MABSA for three-truss bar design optimisation problem

Items Value

Run No. 18
No. of Bats 700
NFEs 70000
Time to converge (seconds) 7.7837
Iteration to converge 33
F(x) 263.8955
Optimum value of F(x) 263.9000

Table 5.9: Comparison of statistical results obtained using different algorithms for three-truss bar design
optimisation problem. ("n/a" means not available)

Method Worst Median Mean Best Standard NFEs
deviation

SC 263.9698 263.8989 263.9033 263.8958 1.2580e−02 17610
PSO-DE 263.8958 n/a 263.8958 263.8958 1.2000e−10 17600
DELC 263.8958 263.8958 263.8958 263.8958 4.3000e−14 10000
DEDS 263.8959 263.8958 263.8958 263.8958 9.7200e−07 15000
HEA-ACT 263.8961 263.8959 263.8959 263.8958 4.9000e−05 15000
MBA 263.9160 n/a 263.8980 263.8959 3.9300e−03 13280
MABSA 263.8955 263.8955 263.8955 263.8955 3.775720e−08 87650
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Figure 5.11: Convergence graph of the best solution of MABSA for three-truss bar design optimisation
problems
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Figure 5.12: Bar plot of statistical results obtained using different algorithms for three-truss bar design
optimisation problem
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Gear train design optimisation problem

The gear train design optimisation problem is defined as:

Minimise F(x) = ((1/1.6931)− (x3x2/x1x4))
2

where

12≤ xi ≤ 60, i = 1,2,3,4

(5.10)

Table 5.10 depicts the information of the best solution achieved by MABSA for gear train design optimi-

sation problem. The total NFEs used by MABSA to obtain the best solution were 89000 but it only needed

approximately 1200 NFEs (as in Figure 5.13) or 18.0059 seconds to converge to the best fitness function value

of 2.7473e−16.

The MABSA has been evaluated beside three other established algorithms found from literature which are

ABC1, UPSO and MBA. The MABSA performed better than the three other algorithms evaluated for solving

this task. As recorded in Table 5.11 and illustrated in Figure 5.14, MABSA was very excellent in finding the

minimum fitness function for the problem considered compared to the ABC1, UPSO or MBA. In fact, the

worst solution acquired by MABSA which is 1.8761e−12 was almost equal to the best solution of the other

algorithms.

When discussing the algorithm robustness, the outstanding performance of the MABSA continues as com-

pared to three established algorithms. The statement is present by the standard deviation value of 5.3938e−13

recorded by MABSA which was mathematically smaller than ABC1 (5.5258e−10), UPSO (1.0963e−07) or

MBA (3.9400e−09).

Table 5.10: Results of the best solution obtained from MABSA for gear train design optimisation problem
problem

Items Value

Run No. 13
No. of Bats 891
NFEs 89100
Time to converge (seconds) 18.0059
Iteration to converge 79
F(x) 2.7473e−16

Optimum value of F(x) 2.3500e−9
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Figure 5.13: Convergence graph of the best solution of MABSA for gear train design optimisation problem

Table 5.11: Comparison of statistical results obtained using different algorithms for gear train design
optimisation problem. ("n/a" means not available)

Method Worst Median Mean Best Standard NFEs
deviation

ABC1 n/a n/a 3.6413e−10 2.7009e−12 5.5258e−10 30000
UPSO 8.9490e−07 n/a 3.8059e−08 2.7085e−12 1.0963e−07 100000
MBA 2.0629e−08 n/a 2.4716e−09 2.7009e−12 3.9400e−09 1120
MABSA 1.8761e−12 3.4364e−13 4.7837e−13 2.7473e−16 5.3938e−13 91007
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Speed reducer design optimisation problem

The speed reducer design optimisation problem is defined as:

Minimise F(x) = 0.7854x1x2
2(3.3333x2

3 +14.9334x3−43.0934)−1.508x1(x2
6 + x2

7)

+7.4777(x3
6 + x3

7)+0.7854(x4x62 + x5x2
7)

subject to

g1(x) =
27

x1x2
2x3
−1≤ 0

g2(x) =
397.5
x1x2

2x2
3
−1≤ 0

g3(x) =
1.93x3

4

x2x4
6x3
−1≤ 0

g4(x) =
1.93x3

5

x2x4
7x3
−1≤ 0

g5(x) =
[(745(x4/x2x3)

2 +16.9×106]1/2

110x3
6

−1≤ 0

g6(x) =
[(745(x5/x2x3)

2 +157.5×106]1/2

85x3
7

−1≤ 0

g7(x) =
x2x3

40
−1≤ 0

g8(x) =
5x2

x1
−1≤ 0

g9(x) =
x1

12x2
−1≤ 0

g10(x) =
1.5x6 +1.9

x4
−1≤ 0

g11(x) =
1.1x7 +1.9

x5
−1≤ 0

where

2.6≤ x1 ≤ 3.6

0.7≤ x2 ≤ 0.8

17.0≤ x3 ≤ 28.0

7.3≤ x4,x5 ≤ 8.3

2.9≤ x6 ≤ 3.9

5.0≤ x7 ≤ 5.5

(5.11)

The results of the best solution by MABSA solved speed reducer design optimisation problem are docu-

mented in Table 5.12. MABSA magnificently achieved the best fitness function for the problem, 2903.4328 in

1.9065 seconds. In term of NFEs, the MABSA started to converge to the best solution after approximately 400

NFEs (out of total 100000 NFEs analysed) as in Figure 5.15.
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Table 5.12: Results of the best solution obtained from MABSA for speed reducer design optimisation problem

Items Value

Run No. 12
No. of Bats 1000
NFEs 100000
Time to converge (seconds) 1.9065
Iteration to converge 5
F(x) 2903.4328
Optimum value of F(x) 2996.3480
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Figure 5.15: Convergence graph of the best solution of MABSA for speed reducer design optimisation
problem

Besides, MABSA is evaluated alongside other eight methods taken from established literature to solve the

speed reducer design optimisation problem. There are SC, PSO-DE, DELC, DEDS, HEA-ACT, ABC1, (µ +

λ )ES and MBA.

When the comparison between statistical results obtained by all algorithms as in Table 5.13 and plotted on

bar plot in Figure 5.16 is made, MABSA had shown more shining results. The statistical results by MABSA

are better for all the criteria evaluated which are worst, median, mean and best. For instances, the mean value;

2939.3242 and best value; 2903.4328 recorded in MABSA were the most optimum solution found on each

respective criteria to solve the discussed problem.
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Unfortunately, the robustness of MABSA to solve the problem was the worst compared to other established

algorithms. The standard deviation acquired from 30 runs of MABSA only noted 29.2630. For the record, the

DEDS and DELC are top two robust algorithms to solve the speed reducer design problem as each algorithm

logged the standard deviation values of 3.5800e−12 and 1.9000e−12 respectively.

Table 5.13: Comparison of statistical results obtained using different algorithms for speed reducer design
optimisation problem. ("n/a" means not available)

Method Worst Median Mean Best Standard NFEs
deviation

SC 3009.9647 3001.7583 3001.7583 2994.7442 4.0091 54456
PSO-DE 2996.3482 n/a 2996.3482 2996.3482 1.0000e−07 70100
DELC 2994.4711 2994.4711 2994.4711 2994.4711 1.9000e−12 30000
DEDS 2994.4711 2994.4711 2994.4711 2994.4711 3.5800e−12 30000
HEA-ACT 2994.7523 2994.5998 2994.6134 2994.4991 7.0000e−02 40000
ABC1 n/a n/a 2997.0584 2997.0584 0.0000 30000
(µ+λ )ES 2996.3481 n/a 2996.3481 2996.3481 0.0000 30000
MBA 2999.6524 n/a 2996.7690 2994.4825 1.5600 6300
MABSA 2992.6411 2932.6487 2939.3242 2903.4328 29.2630 90433
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Figure 5.16: Bar plot of statistical results obtained using different algorithms for speed reducer design
optimisation problem
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Welded beam design optimisation problem

The welded beam design optimisation problem is defined as:

Minimise F(x) = 1.10471x2
1x2 +0.04811x3x4(14+ x2)

subject to

g1(x) = τ(x)− τmax ≤ 0

g2(x) = σ(x)−σmax ≤ 0

g3(x) = x1− x4 ≤ 0

g4(x) = 0.10471x2
1 +0.04811x3x4(14+ x2)−5≤ 0

g5(x) = 0.125− x1 ≤ 0

g6(x) = δ (x)−δmax ≤ 0

g7(x) = P−Pc ≤ 0

where

0.1≤ xi ≤ 2.0, i = 1,4

0.1≤ xi ≤ 10.0, i = 2,3

τ(x) =
√
(τ
′
)2 +2τ

′
τ
′′ x2

2R
+(τ

′′
)2

τ
′
=

P√
2x1x2

, τ
′′
=

MR
J

, M = P(L+
x2

2
)

R =

√
x2

2
4
+(

x1 + x3

2
)2

J = 2

{
√

2x1x2

[
x2

2
12

+

(
x1 + x3

2

)2
]}

σ(x) =
6PL
x4x2

3
, δ (x) =

4PL3

Ex3
3x4

,

Pc(x) =
4.013E

√
x2

3x6
4

36

L2 ×

(
1− x3

2L

√
E

4G

)
P = 6000lb, E = 30×106 psi,

L = 4in, G = 12×106 psi,

τmax = 13600psi, σmax = 30000psi, δmax = 0.25in

(5.12)

The data of the best fitness function found by MABSA for welded beam design optimisation problem is

tabled in Table 5.14. The best solution for the problem; 1.6308 is found on the sixth run of MABSA. On the

other hand, Figure 5.17 shows the convergence graph for the best solution of MABSA. As seen from the figure,

the MABSA started to reach the best fitness function value of welded beam design problem after 2000 NFEs

out of 10000 NFEs used.

104



Table 5.14: Results of the best solution obtained from MABSA for welded beam design optimisation problem

Items Value

Run No. 6
No. of Bats 1000
NFEs 100000
Time to converge (seconds) 86.3057
Iteration to converge 84
F(x) 1.6308
Optimum value of F(x) 1.7249
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Figure 5.17: Convergence graph of the best solution of MABSA for welded beam design optimisation problem

The results of other algorithms solving the welded beam design optimisation problem taken from the litera-

ture are also used to compare with the performance of MABSA. The algorithms included CPSO, HPSO, TLBO,

PSO-DE, DELC, ABC1, NM-PSO, GA1, GA2, UPSO, (µ + λ )ES and MBA.

The MABSA also outperform as compared to other algorithms considered for this problem. This statement

was demonstrated from the statistical results as tabled in Table 5.15 and depicted in bar plot of Figure 5.18.

The back to back of outstanding results are achieved by MABSA as compared to all twelve algorithms in every

statistical criterion. Except for the worst criteria; median, mean and best fitness function values acquired by

MABSA were under 1.7000 which become the only algorithm to break that line.
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As the standard deviation values presented in Table 5.15, the robustness of MABSA to solve the welded

beam design optimisation problem also is on a par with most of the established algorithms studied. Although the

MBA, PSO-DE and DELC managed to put their robustness ability in a class by itself, the value of 2.8858e−02

achieved by MABSA is still within the adequate range of robustness as it is approaching 0.0000.

Table 5.15: Comparison of statistical results obtained using different algorithms for welded beam design
optimisation problem. ("n/a" means not available)

Method Worst Median Mean Best Standard NFEs
deviation

CPSO 1.7821 n/a 1.7488 1.7280 1.2926e−02 200000
HPSO 1.8143 n/a 1.7490 1.7249 4.0049e−02 81000
TLBO n/a n/a 1.7284 1.7249 n/a 10000
PSO-DE 1.7249 n/a 1.7249 1.7249 6.7000e−16 66600
DELC 1.7249 1.7249 1.7249 1.7249 4.1000e−13 20000
ABC1 n/a n/a 1.7419 1.7249 3.1000e−02 30000
NM-PSO 1.7334 n/a 1.7264 1.7247 3.4970e−03 80000
GA1 1.7858 1.7736 1.7720 1.7483 1.1223e−02 900000
GA2 1.9934 n/a 1.7927 1.7283 7.4713e−02 80000
UPSO 2.8441 n/a 1.9682 1.7656 1.5542e−01 100000
(µ+λ )ES 2.0746 n/a 1.7769 1.7249 8.8000e−02 30000
MBA 1.7249 n/a 1.7249 1.7249 6.9400e−19 47340
MABSA 1.7241 1.6800 1.6776 1.6308 2.8858e−02 86113
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Figure 5.18: Bar plot of statistical results obtained using different algorithms for welded beam design
optimisation problem
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Tension/compression spring design optimisation problem

The tension/compression spring design optimisation problem is defined as:

Minimise F(x) = (x3 +2)x2x2
1

subject to

g1(x) = 1− (x3
2x3/71785x4

1)≤ 0

g2(x) = (4x2
2− x1x2/12566(x2x3

1− x4
1))+(1/5108x2

1)≤ 0

g3(x) = 1− (140.45x1/x2
2x3)≤ 0

g4(x) = (x2 + x1)/1.5−1≤ 0

where

0.05≤ x1 ≤ 2.00

0.25≤ x2 ≤ 1.30

2.00≤ x3 ≤ 15.00

(5.13)

The data of best solution achieved by MABSA solving tension/compression spring design optimisation prob-

lem is depicted in Table 5.16. MABSA managed to reach at the best fitness function value of the problem;

0.0123 just after sixteenth iterations. Or in NFEs, the problem started to get the best solution provided by

MABSA after 1800 NFEs (as in Figure 5.19) out of 100000 total NFEs used. These have demonstrated that

MABSA has capability to converge faster to the optimum solution of the problem studied.

Table 5.16: Results of the best solution obtained from MABSA for tension/compression spring design
optimisation problem

Items Value

Run No. 24
No. of Bats 1000
NFEs 100000
Time to converge (seconds) 4.7440
Iteration to converge 16
F(x) 0.0123
Optimum value of F(x) 0.0127
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To further demonstrate the capability of MABSA to solve the tension/compression spring design optimisation

problem, the statistical results of MABSA have been compared with another set of established algorithms. The

statistical results from selected algorithms to solve the problem that appeared in literature are considered as a

comparison and are shown in Table 5.17 and also the bar plotted as in Figure 5.20. The algorithms involved

are CPSO, HPSO, TLBO, SC, PSO-DE, DELC, DEDS, HEA-ACT, ABC1, NMPSO, GA1, GA2, UPSO, (µ +

λ )ES and MBA.

Again, the MABSA is able to perform well in all statistical aspects compared to the fifteen other methods.

For instance, MABSA is able to chart 0.0123 in the best criteria but a majority of algorithms are able to achieve

only 0.0127. In MABSA, the mean value for the problem was 0.0125 while other considered algorithms have

produced the mean value in the range of 0.0126 to 0.0230 which was not the minimum fitness function value

as targeted. The standard deviation achieved by MABSA; 1.4195e−04 which was approaching zero indicates

that the MABSA is a reliable and robust algorithm to solve the tension/compression spring design optimisation

problem. As well as MABSA, other algorithms considered also managed to be a robust algorithm to solve the

problem.
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Figure 5.19: Convergence graph of the best solution of MABSA for tension/compression design optimisation
problem
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Table 5.17: Comparison of statistical results obtained using different algorithms for tension/compression
spring design optimisation problem. ("n/a" means not available)

Method Worst Median Mean Best Standard NFEs
deviation

CPSO 0.0129 n/a 0.0127 0.0127 5.1985e−05 200000
HPSO 0.0127 n/a 0.0127 0.0127 1.5824e−05 81000
TLBO n/a n/a 0.0127 0.0127 n/a 10000
SC 0.0167 0.0129 0.0129 0.0127 5.9200e−04 25167
PSO-DE 0.0127 n/a 0.0127 0.0127 4.9000e−12 42100
DELC 0.0127 0.0127 0.0127 0.0127 1.3000e−07 20000
DEDS 0.0127 0.0127 0.0127 0.0127 1.2000e−05 24000
HEA-ACT 0.0127 0.0127 0.0127 0.0127 1.4000e−09 24000
ABC1 n/a n/a 0.0127 0.0127 1.2813e−02 30000
NM-PSO 0.0126 n/a 0.0126 0.0126 8.7375e−07 80000
GA1 0.0128 0.0128 0.0128 0.0127 3.9390e−05 900000
GA2 0.0130 n/a 0.0127 0.0127 5.9000e−05 80000
UPSO 0.0504 n/a 0.0230 0.0131 7.2057e−03 100000
(µ+λ )ES 0.0141 n/a 0.0132 0.0127 3.9000e−04 30000
MBA 0.0129 n/a 0.0127 0.0127 6.3000e−05 7650
MABSA 0.0127 0.012480 0.0125 0.0123 1.4195e−04 89680

CPSO HPSO TLBO SC PSO−DE DELC DEDS HEA−ACT ABC1 NM−PSO GA1 GA2 UPSO (�+�)ES MBA MABSA
0.005

0.01

0.015

0.05

0.055

f(
x
)

 

 

WORST

MEDIAN

MEAN

BEST

Figure 5.20: Bar plot of statistical results obtained using different algorithms for tension/compression design
optimisation problem
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5.3.3 Overall comparison of all considered algorithms

The mean absolute error (MAE) of all algorithms are computed to rank all considered algorithms. MAE is a

statistical criterion that indicates how far the results are from the actual values as:

MAE =
∑

i=1
z |mi−hi|

z

where

mi = mean of optimum achieved results

hi = global optimum value

z = number of test functions

(5.14)

All considered algorithms for constrained optimisation benchmark test functions are ranked in Table 5.18

based on their corresponding MAE’s. The table showed that MABSA is at the highest ranking from 15 consid-

ered algorithms.

For engineering design optimisation problems, all considered algorithms are ranked as in Table 5.19. How-

ever, only MABSA and MBA were compared for all 6 (z = 6) engineering design optimisation problems, while

other considered algorithms were compared on three to five (z = 3 or 4 or 5) problems. The MABSA was at the

peak of ranking for all 16 considered algorithms without reflecting on the value of z.

Table 5.18: Rank of algorithms for constrained optimisation benchmark test functions

Algorithm MAE Ranking

MABSA -66.1095 1
DEDS -6.9250e−5 2
DELC -4.4250e−5 3

HEA-ACT -4.4250e−5 4
ISR -4.4250e−5 4

α Simplex 5.8500e−5 6
PSO-DE 7.4750e−5 7
ABC2 1.2058e−3 8

CULDE 2.0820e−3 9
MBA 5.737e−3 10

ASCHEA 0.0135 11
SMES 0.1357 12
SAPF 3.9220 13

SR 21.4750 14
CRGA 55.8464 15
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Table 5.19: Rank of algorithms for engineering design optimisation problems

Algorithm z MAE Ranking

MABSA 6 -84.8000 1
NM-PSO 3 -37.6408 2

DEDS 3 -0.6271 3
HEA-ACT 3 -0.5797 4

DELC 5 -0.3762 5
PSO-DE 5 -0.0008 6
TBLO 3 0.0013 7

SC 3 1.80454 8
HPSO 3 13.4142 9
MBA 6 23.5588 10
CPSO 3 29.1478 11
ABC1 5 37.2643 12
GA2 3 39.2024 13
GA1 3 78.0588 14

(µ+λ )ES 4 80.0692 15
UPSO 4 743.2724 16

5.4 Summary

This chapter is the third phase of the research methodology. The chapter discussed the investigation of MABSA.

The algorithm has refined the status of several parameters in the ABSA and also embedded a new searching

strategy. The MABSA has the far-sighted potential to produce better results when solving constrained objective

problems. The high-quality performance of MABSA was demonstrated through sets of computer simulation on

four constrained optimisation benchmark test functions and six engineering design optimisation problems. In

summary, this chapter has successfully attained the second objective: To research and test an effective bats

echolocation-inspired algorithm to solve constrained optimisation problems.

The next chapter will present the hybridisation process between MABSA and PSO to solve multi objective

optimisation problems, and this will comprise the fourth phase of the research methodology. The end results

from the chapter are expected to attain the third research objective that is: To research and test a hybrid of an

effective bats echolocation-inspired algorithm with an established swarm intelligence algorithm to solve

multi objective optimisation problems.
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Chapter 6

Hybrid modified adaptive bats sonar

algorithm and particle swarm optimisation

algorithm

6.1 Introduction

This chapter discusses the investigation of hybridisation of PSO with MABSA. The chapter begins with a

section discuss about the necessary to hybrid the algorithms. In the section section, a detail about the PSO

algorithm is presented. In the third section, the investigation of a dual-particle swarm optimisation-modified

adaptive bats sonar algorithm is elaborated. The fourth section is divided into two subsections to present com-

puter simulation and performance results of the hybrid algorithm. The subsections are about the performance

of the algorithm and the reflection of algorithm parameters on multi objective optimisation benchmark test

functions, as well as the capability of the algorithm to solve an engineering design problem. The chapter ends

with a summary.

6.2 A necessity to hybrid algorithm

For several optimisation problems, a swarm intelligence algorithm might be good enough to find the desired

solution. But the challenge is in the case of multi objective optimisation problems, where the objectives are

conflicting between each other. A rugged and efficient swarm intelligence algorithm is needed to acquire a set

of Pareto optimum solutions that compromise all objectives considered.

The need has paved way to the need for hybridisation of swarm intelligence algorithms with other algorithms.

The hybrid algorithm can make good use of the characteristics of different algorithms to achieve complementary
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advantages to improve the algorithm optimum performance and efficiency as well as the quality of the solution

obtained by the algorithm.

There are lots of opportunities to a hybrid between the swarm intelligence algorithms. For instance, an

algorithm population may be initialised by incorporating known solutions of another algorithm or the local

search method of one algorithm may be hybridised with the new generations of another algorithm.

6.3 Particle swarm optimisation algorithm

6.3.1 The PSO algorithm in brief

Particle swarm optimisation is an evolutionary computation technique introduced by a psychologist, James

Kennedy and an electrical engineer, Russell Eberhart in 1995. This algorithm has been inspired by the social

behaviour of a swarm of birds and fishes (Kennedy and Eberhart, 1995). PSO has characteristics that are

more attractive than the existing evolutionary computation. The characteristics include memory that can be

maintained by any individual in the algorithm, build cooperation between the individuals and share information

between the individuals (Kennedy and Eberhart, 1995). The algorithm has a simple theoretical framework,

which is easy to code into a computer programme, and can generate high quality and focused solutions in

relatively shorter computation times (Kao et al., 2006) than other metaheuristic methods.

The term particles is used in the PSO algorithm for referring to individuals (Engelbrecht, 2005) because each

is associated with the velocity and acceleration though the particles do not have mass and volume. Meanwhile,

the term swarm used in PSO is in accordance with the main principles of swarm intelligence that are proximity,

quality, diversity of responsiveness, stability and adaptability (Engelbrecht, 2005).

The principle of proximity is represented in the PSO algorithm as a multi dimensional calculation in each

iteration while the swarm of particles respond to quality criteria of personal and neighbourhood best positions

(Engelbrecht, 2005). Besides, the principle of diversity of responsiveness in the PSO algorithm is also well

represented by the provisions of reactions between personal best position and neighbourhood best position.

Engelbrecht (2005) also stated that the principle of stability is the ability of swarms to change their positions

if and only if there is a change in the position of the personal best and global best position that also meets the

principle of adaptability of the PSO algorithm.

6.3.2 The standard PSO algorithm

In PSO, all particles are treated as valueless particles of g-dimensional search space (Kennedy and Eberhart,

1995). Each particle will record its current coordinate in the problem space associated with its personal best

solution, pbest. Meanwhile, the overall best solution and the location obtained so far by any particle in the
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swarm is labelled as gbest.

The concept of PSO involves changing the velocity of every particle toward the pbest and gbest. For instance,

the position of jth particle is represented as:

x j = x j,1,x j,2, . . . ,x j,g

where

g total dimension of the space

(6.1)

The jth best previous position represented as:

pbest j = pbest j,1, pbest j,2, . . . , pbest j,g (6.2)

where the best pbest j among all particles in the swarm is denoted as gbest. The velocity of jth particle is

represented as:

v j = v j,1,v j,2, . . . ,v j,g (6.3)

The new velocity and position of each particle at each iteration can be calculated as:

v(t+1)
j,g = w.v(t)j,g + c1 ∗ rand()∗ (pbest j,g− x(t)j,g)+ c2 ∗ rand()∗ (gbestg− x(t)j,g)

and

x(t+1)
j,g = x(t)j,g + v(t+1)

j,g , j = 1,2, . . . ,n and g = 1,2, . . . ,m

where

−Vmax ≤ v(t)j,g ≤V max

n number of particles in a group

m number of members in a particle

t pointer of iterations (generations)

v(t)j,g velocity of particle j at iteration t

Vmax maximum velocity

c1,c2 acceleration constant

rand() random number between 0 and 1

pbest j pbest of particle j

gbest gbest of the swarm

(6.4)

Here, the parameter maximum velocity (Vmax) determines the resolution (or fineness) in the search space

between the current velocity and target velocity (Eberhart and Shi, 2001). Vmax is applied to provide damping

the particles velocity to avoid the swarm system from exploding when the particles’ searching process increase
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with time (Kennedy et al., 2001). So each particle’s velocity in every dimension is tied to the Vmax value

(Eberhart and Shi, 2001). Vmax value is set at the start of the iteration process and remains constant till iterations

end (Kennedy et al., 2001). Critically, Vmax value should not be either too high or too low. The particle will pass

the good solution if the value is too high. In another way, the particle will be unable to explore beyond local

solution sufficiently if Vmax is too small (Eberhart and Shi, 2001). Instead, Eberhart and Shi (2001) suggested

that Vmax is limit to xmax, the dynamic range of each variable range in every dimension.

Acceleration constants (c1) and (c2) are important in determining the motion trajectory of particles (Kennedy

et al., 2001) and controlling the influence of stochastic components of social and cognitive on overall particle’s

velocity (Engelbrecht, 2005). Engelbrecht (2005) divided the constant c1 as self-confidence factor to represent

confidence level in every particle while c2 is a swarm-confidence factor that represents the confidence level

of particles to their neighbourhood. Engelbrecht (2005) and Kennedy and Eberhart (1995) had set the value

of c1 and c2 to 2.0 so that the particles will be attracted to the pbest and gbest positions equally. Setting to

this value also enables smooth particles trajectory and permits particles to explore far from the target location

before being tugged back to the appropriate region.

In general, inertia weight (w) is set in iteration decreasing mode as follows:

w =
wmax−wmin

itermax
× iter (6.5)

Here, iter is current iteration while itermax is total number of iteration used. A suitable value of wmax is 0.9

while wmin is 0.4 (Eberhart and Shi, 2001; Kennedy et al., 2001). This w as suggested by Shi and Eberhart

(1998) is a mechanism to control the exploration and exploitation abilities in the swarm. The w value will drive

the momentum of particles on current velocity influencing a new velocity (Engelbrecht, 2005). The wmax value

diversifies the global exploration process while the wmin will concentrate on local exploitation (Engelbrecht,

2005). So, this parameter will be balanced between local and global search (Eberhart and Shi, 2001), besides it

encourages the algorithm to shift from exploration mode to exploitation mode in order to find optimum solution

(Kennedy et al., 2001). Algorithm 5 shows the PSO pseudo code.

6.4 A dual-particle swarm optimisation-modified adaptive bats sonar algo-

rithm

MABSA was researched in chapter 5 as a combination of ABSA and a reformulated version of the original

BSA of Tawfeeq (2012) to solve constrained optimisation problems. A hybridisation between the MABSA and

PSO algorithm is considered in this section. The purpose of the hybrid algorithm is to solve multi objective

optimisation problems.
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Algorithm 5 Particle swarm optimisation algorithm

1: Objective function F(x), x = (x1, . . . ,xd)
T

2: Initialise: number of iteration (MaxIter), number of particles (n), dimension (d) and maximum velocity
(Vmax)

3: for s← 1 to n do
4: Generate random position (xd) and velocity (vd)
5: Evaluate the f itness (F(x)) for each particle xd and vd
6: end for
7: Set the F(x) as pbest for each particle
8: Set the min F(x) as gbest for the swarm
9: while t ≤MaxIter do

10: Define the inertia weight (w) (Equation 6.5)
11: Generate new vd and xd of each particles (Equation 6.4)
12: Evaluate the F(x) for each particle vd and xd
13: if F(x)≤ pbest then
14: Assign F(x) as new pbest and its position as new pbest position
15: else
16: Remain the previous pbest and its position
17: end if
18: if min (F(x))≤ gbest then
19: Assign min (F(x)) as new gbest and its position as new gbest position
20: else
21: Remain the previous gbest and its position
22: end if
23: end while
24: Declare the gbest as optimum fitness evaluated and its position as optimum value(s)

A dual level search strategy is adopted through integration of the two algorithms for getting the Pareto

optimum set of the problem considered. A pseudo-code of the algorithm is shown as Algorithm 6. This

hybrid algorithm is named dual-particle swarm optimisation-modified adaptive bats sonar algorithm (D-PSO-

MABSA). The D-PSO-MABSA algorithm uses the weighted sum approach to combine all objectives into a

single objective. The weights are generated randomly from a uniform distribution. By doing so, the Pareto

optimum set can be acquired efficiently as well as the Pareto front would be estimated appropriately.

Here, the dual level searching process means that at every time to obtain one Pareto optimum point, there are

always two levels of search. During the first level, PSO acts as a global search agent of the algorithm with its

embedded global (exploration) and local (exploitation) search components. As an explorer, the PSO is first to

discover and mark a potential location of a solution in the compound of designated search space. The PSO will

run according to its standard algorithmic procedures such as locating new velocity and position to obtain the

pbest and gbest.
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Algorithm 6 Dual-particle swarm optimisation-modified adaptive bats sonar algorithm

1: Objective function F(x) = [F1(x),F2(x) . . . ,FN(x)]T , x = (x1, . . . ,xd)
T

2: Initialise: Bats, MaxIter, Dim, SSSize, NBeamMAX , NBeamMIN , n, Vmax and d
3: for j← 1 to N (points on Pareto set) do
4: Generate K weights (wk ≥ 0) to form (Equation 2.6)
5: for s← 1 to n do
6: Generate random position (xd) and velocity (vd)
7: Evaluate the f itness (F(x)) for each particle xd and vd
8: end for
9: Set the F(x) as pbest for each particle

10: Set the min F(x) as gbest for the swarm
11: while t ≤MaxIter do
12: Define the inertia weight (w) (Equation 6.5)
13: Generate new vd and xd of each particles (Equation 6.4)
14: Evaluate the F(x) for each particle vd and xd
15: if F(x)≤ pbest then
16: Assign F(x) as new pbest and its position as new pbest position
17: else
18: Remain the previous pbest and its position
19: end if
20: if min (F(x))≤ gbest then
21: Assign min (F(x)) as new gbest and its position as new gbest position
22: else
23: Remain the previous gbest and its position
24: end if
25: end while
26: Assign pbest as FSP; its position as posSP and gbest as FGB; its position as posGB

27: while t ≤MaxIter do
28: Define NBeam to transmit by using BNI (Equation 4.4 and Equation 4.5)
29: for n← 1 to Bats do
30: for N← 1 to NBeam do
31: for d← 1 to Dim do
32: Set L and limit µ (Equation 5.1 and Equation 4.3)
33: end for
34: end for
35: Generate random θm and θ (Equation 4.6)
36: Transmit NBeam starting from posSP

37: for N← 1 to NBeam do
38: for d← 1 to Dim do
39: Determine posi for each transmitted beam (Equation 5.2)
40: Verify posi for each transmitted beam within SSSize

41: if posi ≥ SSMax then
42: Update posi (Equation 5.3a)
43: end if
44: if posi ≤ SSMin then
45: Update posi (Equation 5.3b)
46: end if
47: end for
48: Evaluate Fi value for F(posi)
49: Assign the optimum value of Fi as FLB and its position as posLB
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Algorithm 6 Dual-particle swarm optimisation-modified adaptive bats sonar algorithm - cont.

50: if FLB ≤ FSP then
51: Assign FLB as FRB and posLB as posRB

52: else
53: Assign FSP as FRB and posSP as posRB

54: end if
55: end for
56: end for
57: Select the optimum value among FRB as current FGB and its posRB as current posGB

58: if current FGB ≤ previous FGB then
59: Update current FGB as new FGB and current posGB as new posGB

60: else
61: Retain previous FGB and posGB

62: end if
63: for n← 1 to Bats do
64: Determine new posSP using (Equation 4.8)
65: Evaluate new FSP value for F(posSP)
66: end for
67: end while
68: end for
69: Declare FGB as optimum fitness evaluated and posGB as its optimum value(s)

In the second level search process, the optimum solutions obtained by the PSO are used to initialise the

starting positions of the population in the MABSA. The MABSA is considered as a local search agent of the

algorithm and also has its global search (diversification component) and local search (intensification compo-

nent). Here, MABSA works as a follower to find the optimum solutions starting from the prospective location

previously marked by the PSO within the designated search space.

The MABSA first sets the number of individuals in the population randomly between 700-1000 bats at every

iteration. The value has been inspired from the real population of bats in a colony. Then, PSO will follow suit

although the standard PSO algorithm has 100-200 number of particles only. The equivalence of population size

between PSO and MABSA is crucial to a smooth phase transition of the final solution found by the PSO and

inherited by MABSA during the algorithm runs. Thus, the population size criterion will act as a look-alike

handshaking or acknowledgement procedure of the dual level search process.

MABSA proceeds through its normal search procedure in transmitting the sound beams by bats into the

dedicated search space to get posLB and FLB and finally posRB and FRB. This operation runs until the specified

maximum iterations. As in the original MABSA, the posGB with its FGB resulting from the overall iterations

will be declared as the best optimum solution to the problem studied. Thus, the optimum solution obtained is

considered as one Pareto optimum point. The algorithm will repeatedly run until the total number of Pareto

optimum points are obtained to get a complete set of Pareto.

There are two factors to be considered to set PSO as global search agent and MABSA as local search agent.

These factors are inspired by the real behaviour of both swarm groups. As noted, PSO is represented based on

a swarm of birds flying in search of food while MABSA is based on a colony of bats flying for capturing preys.
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The factors are swarm flight attitude and swarm searching strategy.

The first factor is the flight attitude of the swarm. A good global search agent has a capability of viewing and

monitoring the search space from the highest position. The broad perspective from the higher ground makes it

easier for the agent to mark possible areas within the search space containing potential solutions that would be

a true exploration process in swarm intelligence. A local search agent is, on the other hand, needed to verify

the location of potential solutions found by a global search agent. To be a good local search agent, the agent

must have the ability to observe and inspect the solutions from a close view. This exploitation process should

be put after the exploration process so that the solutions explored by a global agent could be validated properly

by the local search agent. In reality, the bar-headed goose that is a family of birds can fly to the highest point

up to 6437m (Than, 2011). Meanwhile, according to research by Ahlén et al. (2009), bats only fly less than

10m above the sea level. These facts have enthused PSO to be defined as global search agent while MABSA as

local search agent.

Looking at the proposed swarm searching strategy, there is a distinct line between the searching strategy

of PSO and MABSA. In the PSO, the algorithm utilises the velocity and positioning of particles to evaluate

the obtained solution whereas MABSA depends on the transmission and positioning of sound beams. In the

real world, birds can fly with a velocity between 20 to 30 mph (Ehrlich et al., 1988). With this fast speed, the

searching process of PSO may miss the locations of good solutions on their way towards other possible target

solutions. Moreover, the velocity of particles in PSO itself makes the particle or bird to move in a single line

thus not covering a broad search area at one time. The sound beams transmitted in MABSA are multi line that

are able to disperse and sweep a large search envelope. Thus, the issue of missing good solutions in a smaller

area of designated search space does not arise. Hence, the sequence of searching process as applied in any

good swarm intelligence method is followed here where coarse searching (diversification) is done first by PSO

followed by fine searching (intensification) by MABSA. In this context, labelling PSO as global search agent

and MABSA as local search agent in the proposed hybrid algorithm D-PSO-MABSA is a reasonable choice

given their characteristics.

6.5 Computer simulation and discussion

6.5.1 Introduction

The computer simulation is divided into two parts. The first part is to demonstrate the performance of the

D-PSO-MABSA on eight established multi objective benchmark test functions. The test functions are Zitzler-

Deb-Thiele’s function (ZDT) 1, Scheffer function 1, Binh and Korn function, Chankong and Haimes function,

Kursawe function, Osyczka and Kundu function, Constr-Ex function as well as CTP1 function. Some of the

test functions have constraints inside.
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However, with exception to Zitzler-Deb-Thiele’s function (ZDT) 1 and Scheffer function 1, the computer

simulation for other six benchmark test functions have been extended to study the parameters used in D-PSO-

MABSA. Variable values of position adaptability factor (α) and collision factor (β ) of MABSA component of

D-PSO-MABSA are used (including theoretical values from the prior chapter) in this test. Other parameters

remain the same, and the standard parameters discussed in the earlier section are adopted in the PSO component.

Both α and β parameters are chosen because they have a major influence on the search process of bats in a

colony. If both factors are properly controlled, the overall algorithm will be able to produce significant results

for any problem handled. However, the sample study presented in this work is aimed to demonstrate that the

theoretical MABSA parameter values as elaborated in the previous chapter are the best choices to be used in

the D-PSO-MABSA algorithm.

The second part is to test the performance of the D-PSO-MABSA algorithm on an engineering design prob-

lem. A four bar plane truss problem is selected as a platform for the algorithm. The problem is run for several

different suit of Pareto points.

The computer simulation involved the multi objective optimisation benchmark test functions and an engineer-

ing problem that consist of only two objective functions but all these test functions have various difficulties.

However, these test functions could simply be used to investigate and monitor the performance of the D-PSO-

MABSA to form Pareto front of the well-represented set of Pareto optimum solutions. If the performance of

D-PSO-MABSA going to suffer, it gets easy to analyse and launch the algorithm improvement plan. By using

a bottom-up approach, the D-PSO-MABSA also expected to perform on the multi objective optimisation prob-

lem with more than two objective functions or on many objective optimisation. The reason is the algorithm

procedure remain similar but only the number of objective functions involved will increase. A validation work

toward this is allocated for the future research work.
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6.5.2 Performance of D-PSO-MABSA on established multi objective benchmark test functions

Zitzler-Deb-Thiele’s function (ZDT 1)

This function was among the well-known benchmark test functions used to evaluate an algorithm for solving

the multi objective optimisation problem. The function constitutes an unconstrained problem and has a convex

Pareto front (Zitzler et al., 2000). The function is defined as:

Minimise

F1(x) = x1

and

F2(x) =

(
1+

9
n−1

n

∑
i=2

xi

)1−
√√√√√ F1(

1+ 9
n−1

n
∑

i=2
xi

)


where

0≤ xi ≤ 1

1≤ i≤ 20

(6.6)

Table 6.1 shows 15 Pareto optimum point tabulated in terms of F1 and F2. The values of w1 and w2 are

recorded to show linear increasing and decreasing in weighted sum values respectively. The search for each

single Pareto optimum point was conducted over 100 iterations of D-PSO-MABSA algorithm. Figure 6.1

shows the Pareto optimum set of ZDT 1 function. It is noted that the proposed algorithm achieved a set

of Pareto optimum points each comprising a non-dominated solution. Moreover, the set of non-dominated

solutions successfully formed convex Pareto front as expected with the result obtained by Zitzler et al. (2000).
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Table 6.1: ZDT 1 function test results

w1 w2 F1 F2

0.0667 0.9333 1.0000 0.0000
0.1333 0.8667 0.9999 0.0000
0.2000 0.8000 0.9999 0.0000
0.2667 0.7333 1.0000 0.0000
0.3333 0.6667 1.0000 0.0000
0.4000 0.6000 0.5625 0.2500
0.4667 0.5333 0.3265 0.4286
0.5333 0.4667 0.1914 0.5625
0.6000 0.4000 0.1110 0.6668
0.6667 0.3333 0.0625 0.7500
0.7333 0.2667 0.0330 0.8183
0.8000 0.2000 0.0156 0.8750
0.8667 0.1333 0.0059 0.9229
0.9333 0.0667 0.0012 0.9652
1.0000 0.0000 0.0003 0.9838
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Figure 6.1: Pareto front for ZDT 1 function
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Schaffer function 1

This function has been used by Knowles and Corne (1999) to evaluate their algorithm; Pareto archived evalu-

ation strategy (PAES) in solving the multi objective optimisation problem. The function constitutes an uncon-

strained problem, has a convex Pareto front and is defined as:

Minimise

F1(x) = x2

and

F2(x) = (x−2)2

where

−10≤ xi ≤ 10

1≤ i≤ 20

(6.7)

In this case study, the D-PSO-MABSA is applied to find 30 Pareto optimum points. Table 6.2 shows the

results of F1 and F2 after using the values of w1 and w2 accordingly. The algorithm was run over 100 iterations

for the search of each Pareto optimum point.

As noted in Figure 6.2, the algorithm performed well with the Scheffer function 1; the Pareto optimum points

obtained were non-dominated solutions and formed a smooth Pareto front. Thus, the results thus obtained

match those reported by Knowles and Corne (1999) particularly when considering the values of both objective

functions F1 and F2 as shown in Figure 6.3.
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Table 6.2: Schaffer function 1 function test results

w1 w2 F1 F2 w1 w2 F1 F2

0.0333 0.9667 3.7357 0.0045 0.5333 0.4667 0.8709 1.1380
0.0667 0.9333 3.4837 0.0178 0.5667 0.4333 0.7511 1.2845
0.1000 0.9000 3.2401 0.0400 0.6000 0.4000 0.6402 1.4397
0.1333 0.8667 3.0054 0.0710 0.6333 0.3667 0.5361 1.6074
0.1667 0.8333 2.7762 0.1114 0.6667 0.3333 0.4454 1.7759
0.2000 0.8000 2.5624 0.1594 0.7000 0.3000 0.3592 1.9618
0.2333 0.7667 2.3514 0.2177 0.7333 0.2667 0.2847 2.1505
0.2667 0.7333 2.1495 0.2850 0.7667 0.2333 0.2154 2.3589
0.3000 0.7000 1.9604 0.3598 0.8000 0.2000 0.1603 2.5588
0.3333 0.6667 1.7755 0.4456 0.8333 0.1667 0.1130 2.7685
0.3667 0.6333 1.6085 0.5355 0.8667 0.1333 0.0712 3.0042
0.4000 0.6000 1.4365 0.6423 0.9000 0.1000 0.0407 3.2338
0.4333 0.5667 1.2856 0.7502 0.9333 0.0667 0.0183 3.4771
0.4667 0.5333 1.1383 0.8706 0.9667 0.0333 0.0046 3.7341
0.5000 0.5000 1.0000 1.0000 1.0000 0.0000 0.0000 3.9985
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Figure 6.2: Pareto front for Schaffer function 1
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Figure 6.3: Plot of separated F1 and F2 of Schaffer function 1

Binh and Korn function

This is the function presented by Binh and Korn (1997) to test their multi objective evolutionary strategy

(MOBES) for multi objective optimisation problem with constraints. The function constitutes a constrained

problem and has a convex Pareto front. The function is defined as:

Minimise

F1(x) = 4x2
1 +4x2

2

and

F2(x) = (x1−5)2 +(x2−5)2

subject to

g1(x) = (x1−5)2 + x2
2 ≤ 25

g2(x) = (x1−8)2 +(x2 +3)2 ≥ 7.7

where

0≤ x1 ≤ 5

0≤ x2 ≤ 3

(6.8)
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The D-PSO-MABSA algorithm will determine sets of 50 Pareto optimum points for this test function by

using four different combinations of α and β values respectively. The values are: α = 0.00; β = 3.50, α = 0.00;

β = 0.00, α = 2.50; β = 0.00, along with the theoretical values α = α1; β = β1 (here α1 and β1 are two

numbers between 0 and 1).

Figure 6.4 shows results of Pareto optimum points recorded of Binh and Korn function using four different

settings of α and β of the D-PSO-MABSA algorithm. As noted, the algorithm was able to converge with each

setting to a Pareto front of the test function that was similar to the results recorded by Binh and Korn (1997).

However, in general, by using theoretical values; α = α1 and β = β1, all the points of the Pareto optimum set

attained are non-dominated vectors. Thus, these solutions perfectly formed a recognisable Pareto front. The

stability of final location of non-dominated solutions acquired by D-PSO-MABSA algorithm through theoret-

ical α and β settings show a high prospect of the D-PSO-MABSA to solve any multi objective optimisation

problem.
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Figure 6.4: Pareto optimum solutions for Binh and Korn function with different values of α and β
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Chankong and Haimes function

This function was adopted from Babu and Gujarathi (2007). The function was introduced by Chankong and

Haimes in 1983 and was named after them. The function constitutes a constrained problem and has a convex

Pareto front. The function is defined as:

Minimise

F1(x) = 2+(x1−2)2 +(x2−1)2

and

F2(x) = 9x1− (x2−1)2

subject to

g1(x) = x2
1 + x2

2 ≤ 225

g2(x) = x1−3x2 +10≤ 0

where

−20≤ x1,x2 ≤ 20

(6.9)

For this test function, four set of 50 Pareto optimum points are searched. The D-PSO-MABSA algorithm

operated on three different sets of α and β values in conjunction with the theoretical values; α = α2; β = β2

(here α2 and β2 are two numbers between 0 and 1). These three sets considered were: α = 0.00; β = 3.50,

α = 0.00; β = 0.00, α = 2.50; β = 0.00.

Figure 6.5 shows the Pareto optimum sets with different values of α and β . A Pareto front is properly drawn

by a set of non-dominated solutions acquired by the theoretical value of α = α2 and β = β2. The result is

comparable to the result acquired by Babu and Gujarathi (2007). Even the remaining sets of α and β managed

to search the points that settle on the Pareto front, but there were still, few dominated solutions scattered far

from the true front. Thus, it is shown that the D-PSO-MABSA algorithm with theoretical parameter values was

able to achieve a perfect Pareto front with this test function from the set of Pareto optimum points attained. This

performance makes the D-PSO-MABSA algorithm at par with other multi objective optimisation algorithms

and may be used widely to solve any multi objective optimisation problems.
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Figure 6.5: Pareto optimum solutions for Chankong and Haimes function with different values of α and β

Kursawe function

This function is a multimodal function in one component and has pair-wise interactions among the variables in

the other component (Kursawe, 1991). The function constitutes an unconstrained problem and has a discrete

convex Pareto front. The function is defined as:

Minimise

F1(x) =
2

∑
i=1

[
−10e−0.2

√
x2

i +x2
i+1

]
and

F2(x) =
3

∑
i=1

[
|xi|0.8 +5sinx3

i
]

where

−5≤ x1 ≤ 5

1≤ x2 ≤ 3

(6.10)
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This test function involved searching of four sets of 200 Pareto optimum solutions with the D-PSO-MABSA

algorithm. The theoretical values of α = α3; β = β3 (here α3 and β3 are two numbers between 0 and 1) were

adopted along with another three sets of α and β for performance comparison purpose. The three sets used

were: α = 2.00; β = 4.00, α = 3.00; β = 2.00, α =−2.00; β =−2.00.

Figure 6.6 shows the Pareto optimum sets obtained for Kursawe function using D-PSO-MABSA approach.

As noted, the algorithm with theoretical values of α = α3 and β = β3 achieved the best performance compared

to when the other three sets of α and β were used. Most of the points in the Pareto optimum set were non-

dominated solutions, successfully exhibiting a Pareto front of the test function. The pattern of Pareto front with

the three discontinuous regions also developed nearly a matched result that was obtained by Deb et al. (2002).

With the remaining three sets of α and β the algorithm could not form a Pareto front of this test function, and

only a few of the solutions were non-dominated. The Pareto optimum point generated from the set α = 3.00;

β = 2.00 is likely to work, but most of the points with this set are dominated solutions and scattered far from

the true front. As far as the values of α and β are concerned, negative values do not lead to a Pareto front.

When set of α =−2.00 and β =−2.00 was applied, no non-dominated solutions were achieved. Nonetheless,

the D-PSO-MABSA algorithm with the right setting of its parameters would be good alternative multi objective

algorithm for solving discrete convex Pareto front-type multi objective optimisation problems.
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Figure 6.6: Pareto optimum solutions for Kursawe function with different values of α and β
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Osyczka and Kundu function

This function was initialised by Osyczka and Kundu (1995). The function constitutes a constrained problem

and has a convex Pareto front. The function is defined as:

Minimise

F1(x) =−25(x1−2)2 +(x2−2)2− (x3−1)2− (x4−4)2− (x5−1)2

and

F2(x) =
6

∑
i=1

x2
i

subject to

g1(x) = x1 + x2−2≥ 0

g2(x) = 6− x1− x2 ≥ 0

g3(x) = 2− x2 + x1 ≥ 0

g4(x) = 2− x1 +3x2 ≥ 0

g5(x) = 4− (x3−3)2− x4 ≥ 0

g6(x) = (x5−3)2 + x6−4≥ 0

where

0≤ x1,x2,x6 ≤ 10

1≤ x3,x5 ≤ 5

0≤ x4 ≤ 6

(6.11)

For this test function, four sets of 500 Pareto optimum points are searched by using the D-PSO-MABSA

algorithm. Each set is examined by different value of α and β . The theoretical values α = α4; β = β4 (here

α4 and β4 are two numbers between 0 and 1) were applied along with the three sets α = 3.10; β = 1.50,

α =−1.70; β = 5.00, α = 2.80; β =−0.50.

Figure 6.7 shows the effect of different values of α and β on the Pareto optimum solutions of Osyczka and

Kundu function. When the theoretical values of α = α4 and β = β4 were used, all the Pareto optimum points

were non-dominated vectors. Although the ranges for F1 and F2 recorded were wider than the result reported

by Osyczka and Kundu (1995), the shapes of the Pareto front were nearly similar as all the Pareto optimum

points contributed to form that front.

In the meantime, the three sets of α and β produced many dominated vectors of Pareto optimum sets thus

unable to form a viable Pareto front. Indeed, the Pareto optimum set gathered by α = 2.80; β = −0.50 was

more obvious as the points were scattered outlying from the true front. However, if the theoretical values of

α and β are retained by the D-PSO-MABSA, the algorithm will be able to perform well in comparison to
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available algorithms in solving multi objective optimisation problems.
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Figure 6.7: Pareto optimum solutions for Osyczka and Kundu function with different values of α and β

Constr-Ex function

This function was used by Wong et al. (2010) after it was designed by Deb in 2001 as a multi objective bench-

mark test function. The function constitutes a constrained problem and has a convex Pareto front. The function

is defined as:

Minimise

F1(x) = x1

and

F2(x) =
1+ x2

x1

subject to

g1(x1,x2) = x2 +9x1 ≥ 6

g2(x1,x2) =−x2 +9x1 ≥ 1

where

0.1≤ x1 ≤ 1

0≤ x2 ≤ 5

(6.12)
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The D-PSO-MABSA algorithm was evaluated with this function by searching four sets of 50 Pareto optimum

solutions. Here, four sets of different values of α and β were used. These included the theoretical values

α = α5; β = β5 (here α5 and β5 are two numbers between 0 and 1), α = −4.00; β = 3.00, α = 0.00;

β =−1.70, α = 3.50; β = 3.50.

As noted in Figure 6.8, all four sets of 50 Pareto optimum solutions generated from four different values of

α and β of D-PSO-MABSA were non-dominated vectors. So, the entire sets produced a Pareto front similar

to that reported by Wong et al. (2010). It was noted that the convex shape of Pareto fronts produced by the

D-PSO-MABSA algorithm was smoother than that reported by Wong et al. (2010). It is clear that the D-PSO-

MABSA algorithm generates distinctly better Pareto optimum points in solving multi objective optimisation

problems.
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Figure 6.8: Pareto optimum solutions for Constr-Ex function with different values of α and β
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Figure 6.9: Pareto optimum solutions for CTP1 function with different values of α and β

CTP1 function

This function was proposed by Deb et al. (2001). The function constitutes a constrained problem and has a

convex Pareto front. The function is defined as:

Minimise

F1(x) = x1

and

F2(x) = (1+ x2)e
(
− x1

1+x2

)

subject to

g1(x) =
F2(x1,x2)

0.858e(−0.541F1(x1,x2))
≥ 1

g2(x) =
F2(x1,x2)

0.728e(−0.295F1(x1,x2))
≥ 1

where

0≤ x1,x2 ≤ 1

(6.13)

Here, four sets of 50 Pareto optimum solutions are searched for CTP1 function using the D-PSO-MABSA

algorithm. These were the theoretical values α = α6; β = β6 (here α6 and β6 are two numbers between 0 and
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1), α = 0.50; β = 4.00, α =−2.00; β = 0.75, α = 5.00; β = 1.00.

The results of Pareto optimum solution for the CTP1 are shown in Figure 6.9. It is noted that all the solutions

generated using D-PSO-MABSA algorithm with four different sets of α and β values were non-dominated

vectors. The Pareto fronts formed from the solutions were identical to the result reported by Deb et al. (2001).

Furthermore, these also reflected the real advantage when using the set of theoretical values; α = α6 and

β = β6 as the non-dominated solutions produced were uniformly distributed along the front. Hence, the out-

comes resulted from a good leverage of minimising both F1 and F2 and none was extremely good while other

suffered. The performances shown with the test functions demonstrate the strong ability of the D-PSO-MABSA

algorithm in producing good trade-off solutions for multi objective optimisation problems.

6.5.3 Performance of D-PSO-MABSA in engineering design problem

A four bar plane truss problem

This multi objective engineering design problem was considered by Coello (2001) after it was introduced by

Stadler and Dauer in 1992. The problem is to design a four bar plane truss as shown in Figure 6.10. The design

has two objectives, namely to minimise the volume of the truss (F1) and at the same time to minimise its joint

displacement (F2). This can be expressed as:

Minimise

F1(x) = L
(

2x1 +
√

2x2 +
√

x3 + x4

)
and

F2(x) =
FL
E

(
2
x1

+
2
√

2
x2
− 2
√

2
x3

+
2
x4

)
subject to

(
F
σ
)≤ x1 ≤ 3(

F
σ
)

√
2(

F
σ
)≤ x2 ≤ 3(

F
σ
)

√
2(

F
σ
)≤ x3 ≤ 3(

F
σ
)

(
F
σ
)≤ x4 ≤ 3(

F
σ
)

where

F = 10kN

E = 2× 105kN
cm2

L = 200cm

σ =
10kN
cm2

(6.14)
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It is expected that the non-dominated solutions forming the Pareto front will be as shown in Figure 6.11.

Figure 6.10: A four bar plane truss (Coello, 2001)
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Figure 6.11: The true (or global) Pareto front of a four bar plane truss problem (Coello, 2001)

To show the ability of the D-PSO-MABSA algorithm to find the trade-off solutions of the problem, five

dissimilar number of Pareto optimum sets were used. The sets adopted were 40, 100, 500, 1000 and 4000.

Figure 6.12, Figure 6.13, Figure 6.14, Figure 6.15 and Figure 6.16 show the results for the different number of

Pareto optimum sets respectively.

Referring to the Figure 6.12, when a set of 40 Pareto points is used, there were four non-dominated solutions

produced by the algorithm. These four points were non-dominated solutions that formed a Pareto front as a

basis to relate to the two objectives studied. With the number of Pareto points increased to 100, as shown in

Figure 6.13, there were seven non-dominated solutions forming the Pareto front approximately similar to that

reported by Coello (2001).

After the number of Pareto points had been increased to 500 and 1000 as in Figure 6.14 and Figure 6.15

respectively, both cases resulted in a few of non-dominated vectors besides the huge amount of dominated
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vectors. Nevertheless, these small groups of non-dominated vectors successfully resulted in a Pareto front that

connected the true relationship between both objectives to minimise the volume and minimise joint displace-

ment of the truss.

However, when 4000 Pareto points were considered as shown in Figure 6.16 the solutions concentrated

more toward the centre of the designated search space. Here also, the non-dominated solutions appear to be

significantly clearer. These non-dominated solutions formed a Pareto front similar to that reported by Coello

(2001). Indeed, the value of F1 here was smaller as compared to the reference figure while the value of F2

remained similar.

To conclude, the D-PSO-MABSA algorithm performed well to optimise the design of a four bar plane truss.

The performance was shown by the ability of the D-PSO-MABSA algorithm to result in a Pareto front from

non-dominated solutions with any number of Pareto optimum solution considered. These Pareto fronts provided

good compromise solutions of minimising two different objectives named the volume and the joint displace-

ment of the truss.
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Figure 6.12: A four bar plane truss problem with 40 Pareto optimum solutions
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Figure 6.13: A four bar plane truss problem with 100 Pareto optimum solutions
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Figure 6.14: A four bar plane truss problem with 500 Pareto optimum solutions
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Figure 6.15: A four bar plane truss problem with 1000 Pareto optimum solutions
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Figure 6.16: A four bar plane truss problem with 4000 Pareto optimum solutions
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6.6 Summary

This chapter is the fourth phase of the research methodology. The chapter discussed the investigation of a hy-

bridisation of PSO with MABSA. The hybrid algorithm integrated good features of both algorithms. The hybrid

algorithm demonstrated good performance through sets of computer simulation on several multi objective opti-

misation benchmark test functions as well as an engineering design problem. The results have demonstrated the

ability of the hybrid algorithm to solve a variety of multi objective optimisation problems. In short, this chapter

successfully achieved the third objective: To research and test a hybrid of an effective bats echolocation-

inspired algorithm with an established swarm intelligence algorithm to solve multi objective optimisation

problems.

The next chapter will highlight application of the bats echolocation-inspired algorithms in selected practical

problems. The chapter is the final (fifth) phase of the research methodology. The end results from the chapter

are expected to achieve the fourth research objective that is: To apply the effective bats echolocation-inspired

algorithms to selected practical optimisation problems.
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Chapter 7

Application of bats echolocation-inspired

algorithms in selected practical problems

7.1 Introduction

This chapter elaborates on the application of the bats echolocation-inspired algorithms to selected practical

problems. The chapter is divided into three sections. The first section is about the application of ABSA to

solve two practical single objective optimisation problems. The second section focuses on the application of

MABSA to find solutions to two practical constrained optimisation problems. A further section discusses the

application of D-PSO-MABSA to solve two practical multi objective optimisation problems. The chapter ends

with a summary.

7.2 Application of adaptive bats sonar algorithm to solve single objective op-

timisation problems

Cost optimisation of shipping refined oil

This single objective optimisation problem is taken from Edgar et al. (2001). The problem is about finding the

minimum cost of refined oil (F) when shipped via the Malacca Straits to Japan in dollar per kiloliter ($/kL). The

optimum tanker size (x1) in dwt and optimum refinery capacity (x2) in bbl/day are variables of the problem.
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The problem has to include the crude oil cost, insurance cost, customs cost, freight cost for the oil, loading

and unloading cost, sea berth cost, submarine pipe cost, storage cost, tank area cost, refining cost and freight

cost of products in the linear sum as (note that 1 kL = 6.29bbl):

Minimise F(x) = cc + ci + cx +
2.09e4(x1)

−0.3017

360
+

1.064e6a(x1)
0.4925

52.47(x2)(360)
+

0.1049(x1)
0.671

360

+
4.242e4a(x1)

0.7952 +1.813ip(n(x1)+1.2(x2))
0.861

52.47(x2)(360)
+

5.042e3(x2)
−0.1899

360

+
4.25e3a(n(x1)+1.2(x2))

52.47(x2)(360)

where

a = annual fixed charges, f raction (0.20)

cc = crude oil price,$/kL (12.50)

ci = insurance cost,$/kL (0.50)

cx = customs cost,$/kL (0.90)

i = interest rate (0.10)

n = number of ports (2)

p = land price,$/m2 (700)

x1 ≥ 0 and x2 ≥ 0

(7.1)

The ABSA is applied to find the optimum cost for this problem. The ABSA is capable of finding the

minimum cost of refined oil (F) in dollar per kiloliter ($/kL). The results of 30 independent runs by the ABSA

to solve this problem are shown in Table 7.1. According to the results, the minimum cost achieved by using

ABSA is $17.8849/kL. The value was similar for all 30 independent runs, so the best, worst or mean are equal

as well as standard deviation is zero.

The results also recorded that 53.33% out of 30 ABSA independent runs successfully finished in less than 10

seconds. 23th run of the algorithm as shown in Figure 7.1a appeared as the fastest among runs that are 5.0343

seconds where the ABSA started to converge to optimum value during 19th iteration. Meanwhile, the 16th of

the ABSA as shown in Figure 7.1b finished the slowest among runs; 99.9512 seconds where the convergence

only occurred during the 100th iteration. Figure 7.1c shows the 8th runs of ABSA where the algorithm started

to converge to the optimum value in the shortest iteration among the all 30 independent runs, which was during

18th iteration. Finally, Figure 7.2 shows the quality of the obtained variables where small ranges of variation

for the tanker size and refinery capacity were achieved in all 30 independent runs of the ABSA.
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Table 7.1: Result for 30 runs of ABSA to optimise the cost of shipping refined oil problem

Run Cost of Variables Time Numbers Iteration Number
no. shipping Tanker Refinery to of to of function

refined oil, F size, x1 capacity, x2 finish bats converge evaluation
($/kL) (dwt) (bbl/day) (seconds) used (NFEs)

1 17.8849 446967.4908 179845.3736 5.8591 700 21 70000
2 17.8849 446967.5156 179845.3803 5.4619 700 20 70000
3 17.8849 446967.5103 179845.3674 5.7946 700 21 70000
4 17.8849 446967.4991 179845.3667 13.5368 700 37 70000
5 17.8849 446967.5089 179845.3761 39.3762 1000 58 100000
6 17.8849 446967.5251 179845.3873 5.4673 700 20 70000
7 17.8849 446967.4977 179845.3759 11.4670 1000 26 100000
8 17.8849 446967.5080 179845.3874 17.8500 700 18 70000
9 17.8849 446967.5210 179845.3825 6.8512 856 20 85600
10 17.8849 446967.5104 179845.3894 5.4480 700 20 70000
11 17.8849 446967.5057 179845.3770 35.6761 983 55 98300
12 17.8849 446967.5036 179845.3764 38.2098 1000 57 100000
13 17.8849 446967.4864 179845.3696 7.1871 1000 19 100000
14 17.8849 446967.5182 179845.3793 11.3154 1000 26 100000
15 17.8849 446967.5110 179845.3752 28.1802 700 59 70000
16 17.8849 446967.5138 179845.3800 99.9512 1000 100 100000
17 17.8849 446967.5593 179845.3855 16.5342 876 36 87600
18 17.8849 446967.5286 179845.3780 27.1227 1000 46 100000
19 17.8849 446967.5190 179845.3755 8.2677 1000 21 100000
20 17.8849 446967.5027 179845.3721 5.4758 700 20 70000
21 17.8849 446967.4913 179845.3769 7.8470 1000 20 100000
22 17.8849 446967.5320 179845.3843 5.7775 700 21 70000
23 17.8849 446967.4972 179845.3779 5.0343 700 19 70000
24 17.8849 446967.4928 179845.3691 7.1951 1000 19 100000
25 17.8849 446967.5162 179845.3848 5.4591 700 20 70000
26 17.8849 446967.4817 179845.3711 5.4330 700 20 70000
27 17.8849 446967.5156 179845.3781 29.7657 1000 49 100000
28 17.8849 446967.5118 179845.3763 43.6045 898 65 89800
29 17.8849 446967.5176 179845.3795 16.4321 700 42 70000
30 17.8849 446967.5428 179845.3875 7.0305 884 20 88400
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Figure 7.1: Convergence performances toward optimum fitness function of optimising the cost of shipping
refined oil problem
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Profit optimisation of selling television sets

This single objective optimisation problem is adopted from De Leon (2012). The problem is to estimate the

maximum yearly profit (F) in $/year will be gained by the manufacturer of colour television (TV) sets when

two types of TV sets are sold. There are two variables for this problem that are a number of 19" flat screen TV

sets sell per year (x1) and a number of 22" flat screen TV sets sell per year (x2).

The problem has to consider the information such as:

• A manufacturer’s suggested retail price (MSRP) of a 19" flat screen TV and a 21" flat screen TV are

$339 and $399 respectively.

• A company cost to produce a 19" flat screen TV and a 21" flat screen TV are $195 and $225 respectively.

• A fixed cost of $400000.

• An estimation that for each type of TV set, the average selling price drops by $0.01 for each additional

unit sold.

• An estimation that average selling price of the 19" flat screen TV will be reduced by an additional $0.003

for each 21" flat screen TV and the price of the 21" flat screen TV will be reduced by an additional $0.004

for each 19" flat screen TV sold.

The problem is formulated as:

Maximise F(x) = R(x)−C(x)

where

C(x) = 400000+195(x1)+225(x2)

R(x) = p(x)(x1)+q(x)(x2)

p(x) = 339−0.01(x1)−0.003(x2)

q(x) = 399−0.004(x1)−0.01(x2)

p = selling price for one 19" flat screen TV,$

q = selling price for one 21" flat screen TV,$

C = cost of manufacturing flat screen TV sets,$/year

R = revenue from sale of flat screen TV sets,$/year

x1 ≥ 0 and x2 ≥ 0

(7.2)
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The ABSA is adopted to find the optimum profit for this problem. The ABSA is capable of estimating the

maximum yearly profit (F) in $/year will be gained by a manufacturer of colour TV sets. Table 7.2 shows the

results of 30 independent runs by the ABSA to solve this problem. All 30 independent runs of ABSA achieved

a similar maximum profit of $553641.0256 by selling 4735 sets of 19" flat screen TV and 7043 sets of 21" flat

screen. This mean that the best, worst or mean maximum profits are equal as well as standard deviation is zero.

Table 7.2: Result for 30 runs of ABSA to optimise the profit of selling television sets problem

Run Best Variables Time Numbers Iteration Number
no. fitness, 19" TV sets, 21" TV sets, to of to of function

F x1 x2 finish bats converge evaluation
($/year) (unit sold / year) (unit sold / year) (seconds) used (NFEs)

1 553641.0256 4735 7043 5.8904 700 35 70000
2 553641.0256 4735 7043 3.8427 1000 20 100000
3 553641.0256 4735 7043 10.8029 854 44 85400
4 553641.0256 4735 7043 44.5163 1000 96 100000
5 553641.0256 4735 7043 15.5226 700 65 70000
6 553641.0256 4735 7043 6.7420 1000 30 100000
7 553641.0256 4735 7043 5.1212 1000 25 100000
8 553641.0256 4735 7043 4.5473 1000 23 100000
9 553641.0256 4735 7043 6.7754 1000 30 100000
10 553641.0256 4735 7043 3.8550 700 26 70000
11 553641.0256 4735 7043 4.3521 1000 22 100000
12 553641.0256 4735 7043 2.1589 700 17 70000
13 553641.0256 4735 7043 13.8235 1000 49 100000
14 553641.0256 4735 7043 5.3774 700 33 70000
15 553641.0256 4735 7043 22.2577 837 70 83700
16 553641.0256 4735 7043 20.6073 1000 63 100000
17 553641.0256 4735 7043 7.0210 1000 31 100000
18 553641.0256 4735 7043 6.3223 1000 29 100000
19 553641.0256 4735 7043 3.8573 700 26 70000
20 553641.0256 4735 7043 3.3606 762 21 76200
21 553641.0256 4735 7043 17.3687 1000 56 100000
22 553641.0256 4735 7043 28.7085 700 95 100000
23 553641.0256 4735 7043 4.0104 700 27 70000
24 553641.0256 4735 7043 3.478418 700 24 70000
25 553641.0256 4735 7043 39.5317 878 97 87800
26 553641.0256 4735 7043 12.7783 819 50 81900
27 553641.0256 4735 7043 6.1315 1000 28 100000
28 553641.0256 4735 7043 11.0377 1000 42 100000
29 553641.0256 4735 7043 7.7467 700 42 70000
30 553641.0256 4735 7043 29.7764 700 97 70000
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Figure 7.3: Convergence performances toward optimum fitness function of optimising the profit of selling
television sets problem
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In term of time for the algorithm to finish, the mean time taken by all 30 independent runs of ABSA to solve

this problem is 11.910748 seconds. From 30 independent runs, 12th run recorded the fastest time, 2.158887

seconds and 4th run recorded the slowest time, 44.516322 seconds where the results are shown in Figure 7.3a

and Figure 7.3b respectively. In addition, the 12th also ran the fastest it started to converge to the optimum

value during 17th iteration out of 100 total iterations. 25th and 30th runs recorded the slowest and they started

to converge to the optimum value where both only began during 97th iteration respectively.

To solve this problem, the ABSA randomly used 70000 to 100000 number of function evaluations (NFEs).

As shown in Figure 7.4, the considered range of NFEs did not much affect the time for the algorithm to

finish for all 30 independent runs. Except for 4th, 22th, 25th and 30th runs, other independent runs of ABSA

consistently recorded time below 25 seconds.
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Figure 7.4: Number of function evaluations and time to finish recorded in 30 independent runs of the ABSA to
optimise the profit of selling television sets problem
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7.3 Application of modified adaptive bats sonar algorithm to solve constrained

optimisation problems

Weight optimisation of the car side impact design

This constrained optimisation problem is according to Zhang et al. (2015). The problem is to find the minimum

total weight (F) in kg of the car side impact design (as shown in Figure 7.5) that consists of eleven design

variables and is subject to ten design constraints.

Figure 7.5: A finite element method (FEM) model of car side impact (Zhang et al., 2015)

The design variables are thickness of B-pillar inner (x1), thickness of B-pillar reinforcement (x2), thickness

of floor side inner (x3), thickness of cross member (x4), thickness of door beam (x5), thickness of door beltline

reinforcement (x6), thickness of roof rail (x7), materials of B-pillar inner (x8), materials of floor side inner (x9),

barrier height (x10) and hitting position (x11).

The ten design constraints include: load in abdomen (Fa), dummy upper chest (VCu), dummy middle chest

(VCm), dummy lower chest (VCl), upper rib deflection (∆ur), middle rib deflection (∆mr), lower rib deflection

(∆lr), pubic force (Fp), velocity of V-pillar at middle point (VMBP) and velocity of front door at V-pillar (VFD).
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The problem is formulated as:

Minimise F(x) = 1.98+4.90x1 +6.67x2 +6.98x3 +4.01x4 +1.78x5 +2.73x7

subject to

Fa = 1.16−0.3717x2x4−0.00931x2x10−0.484x3x9 +0.01343x6x10 ≤ 1

VCu = 0.261−0.0159x1x2−0.188x1x8−0.019x2x7 +0.0144x3x5 +0.0008757x5x10

+0.080405x6x9 +0.00139x8x11 +0.00001575x10x11 ≤ 0.32

VCm = 0.214+0.00817x5−0.131x1x8−0.0704x1x9 +0.03099x2x6−0.018x2x7

+0.0208x3x8 +0.121x3x9−0.00364x5x6 +0.0007715x5x10

−0.0005354x6x10 +0.00121x8x11 ≤ 0.32

VCl = 0.074+0.061x2−0.163x3x8 +0.001232x3x10−0.166x7x9 +0.227x2
2 ≤ 0.32

∆ur = 28.98+3.818x3−4.2x1x2 +0.0207x5x10 +6.63x6x9−7.7x7x8 +0.32x9x10 ≤ 32

∆mr = 33.86+2.95x3 +0.1792x10−5.057x1x2−11.0x2x8−0.0215x5x10

−9.98x7x8 +22.0x8x9 ≤ 32

∆lr = 46.36−9.9x2−12.9x1x8 +0.1107x3x10 ≤ 32

Fp = 4.72−0.5x4−0.19x2x3−0.0122x4x10 +0.009325x6x10 +0.000191x2
11 ≤ 4

VMBP = 10.58−0.674x1x2−1.95x2x8 +0.02054x3x10−0.0198x4x10 +0.028x6x10 ≤ 9.9

VFD = 16.45−0.489x3x7−0.843x5x6 +0.0432x9x10−0.0556x9x11−0.000786x2
11 ≤ 15.7

where

0.5≤ x1,x2,x3,x4,x5,x6,x7 ≤ 1.5

x8,x9 ∈ {0.192,0.345}

−30≤ x10,x11 ≤ 30

(7.3)

The MABSA is used by 30 independent runs to find the optimum weight of the problem. The MABSA is

capable to find the minimum total weight (F) of the car side impact design. Figure 7.6 plotted the optimum fit-

ness function obtained for every independent run. Table 7.3 shows the results of solution obtained by MABSA.

The best weight recorded using MABSA is 19.29614 kg while the worst value is 23.05891 kg. The standard

deviation value, 0.805949 reflected the distribution of solutions in 30 independent runs located near to the mean

value 21.63737 kg.
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Table 7.3: Performance results of MABSA to optimise the weight of the car side impact design

Item Value

Best minimum weight (F) 19.2961
Thickness of B-pillar inner (x1) 0.5237

Thickness of B-pillar reinforcement (x2) 0.5108
Thickness of floor side inner (x3) 0.5721
Thickness of cross member (x4) 0.7122

Thickness of door beam (x5) 0.6153
Thickness of door beltline reinforcement (x6) 1.3011

Thickness of roof rail (x7) 0.7199
Materials of B-pillar inner (x8) 0.3450

Materials of floor side inner (x9) 0.1920
Barrier height (x10) 0.7828

Hitting position (x11) 0.5977

Load in abdomen (Fa) 2.0174
Dummy upper chest (VCu) 0.5617

Dummy middle chest (VCm) 0.5368
Dummy lower chest (VCl) 0.3142
Upper rib deflection (∆ur) 61.8428

Middle rib deflection (∆mr) 63.3651
Lower rib deflection (∆lr) 71.0220

Pubic force (Fp) 8.3112
Velocity of V-pillar at middle point (VMBP) 19.98274768

Velocity of front door at V-pillar (VFD) 31.27357581

Worst minimum weight 23.0589
Median minimum weight 21.7190
Mean minimum weight 21.6374

Standard deviation minimum weight 0.805949
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Figure 7.6: Optimum fitness function of car side impact design problem obtained by 30 independent runs

Efficiency optimisation of brushless wheel DC motor

This constrained optimisation problem is taken from Bora et al. (2012). The problem is to maximise the

efficiency (η) of brushless wheel DC motor that consist of five variables and subject to six constraints. The five

variables are: bore stator diameter (Ds), magnetic induction in the air gap (Be), current density in the conductor

(δ ), magnetic induction both in the teeth (Bd) and back iron (Bcs). The constraints to be consider are: total mass

(Mtot), internal diameter (Dint), external diameter (Dext), magnetics maximum current (Imax), temperature (Ta)

and determinant used in the slot height calculation (Discr).
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The problem can be briefly defined as in:

Maximise F(x) = η(x)

subject to

Mtot ≤ 15 kg

Dext ≤ 0.340 m

Dint ≥ 0.076 m

Imax ≥ 125 A

Ta < 120 ◦C

Discr(Ds,δ ,Bd ,Be)≥ 0

where

0.150 m≤ Ds ≤ 0.330 m

0.9 T ≤ Bd ≤ 1.8 T

2.0 A/mm2 ≤ δ ≤ 5.0 A/mm2

0.5 T ≤ Be ≤ 0.76 T

0.6 T ≤ Bcs ≤ 1.6 T

(7.4)

The MABSA was used by 30 independent runs to find the optimum efficiency of the problem, and was

capable of maximising the efficiency (η) of brushless wheel DC motor. Figure 7.7 plotted the optimum fitness

function obtained for every independent run. The performance results of MABSA are shown in Table 7.4. The

best efficiency of the problem achieved by MABSA is 98.2517% while the worst efficiency is 94.4931%. The

mean efficiency is 95.8900% while the standard deviation value of 0.8813 showed that the solutions from 30

independent runs are distributed not far from the mean.
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Table 7.4: Performance results of MABSA to optimise the efficiency of brushless wheel DC motor

Item Value

Best maximum efficiency (η) 98.2517
Bore stator diameter (Ds) 0.1507

Magnetic induction in the air gap (Be) 0.6913
Current density in the conductors (δ ) 2.4675

Magnetic induction both in the teeth (Bd) 1.0835
Back iron (Bcs) 1.5102

Total mass (Mtot) 8.2476
Internal diameter (Dint) 0.1704
External diameter (Dext) 0.51831

Magnetic maximum current (Imax) 130.0214
Temperature (Ta) 67.7746

Determinant (Discr) 0.1026

Worst maximum efficiency 94.4931
Median maximum efficiency 95.6494
Mean maximum efficiency 95.8900

Standard deviation maximum efficiency 0.8813
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Figure 7.7: Optimum fitness function of brushless wheel DC motor problem obtained by 30 independent runs
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7.4 Application of dual-particle swarm optimisation-modified adaptive bats

sonar algorithm to solve multi objective optimisation problems

Optimisation of the metal cutting process problem

This multi objective optimisation problem is adopted from Sardiñas et al. (2006). The problem is to minimise

operation time (τ) in minute and used tool life (ζ ) in % during cutting process of a steel bar. There are three

variables bound to the problem that are; depth of cut (x1), feed rate (x2) and cutting speed (x3). Other parameters

included in the problem are tool life (T ), cutting force (Fc), maximum cutting power (P), material removal rate

(MRR) and surface roughness (R). The problem formulation is given as:

Minimise

F1(x) = τ(x)

and

F2(x) = ζ (x)

subject to

g1(x)≡ 1− P(x)
(0.75)(10000)

≥ 0

g2(x)≡ 1− Fc(x)
5000

≥ 0

g3(x)≡ 1− R(x)
50e−6 ≥ 0

where

τ(x) = 0.15+219912

(
1+ 0.20

T (x)

MRR(x)

)
+0.05

ζ (x) =
219912

MRR(x)T (x)
×100

T (x) =
5.48e9

(x1)0.460(x2)0.696(x3)3.46

Fc(x) =
6.56e3(x1)

1.10(x2)
0.917

(x3)0.286

P(x) =
x3Fc(x)
60000

MRR(x) = 1000x1x2x3

R(x) =
125(x2)

2

0.0008

0.5 mm≤ x1 ≤ 6 mm

0.15 mm/rev≤ x2 ≤ 0.55 mm/rev

250 m/min≤ x3 ≤ 400 m/min

(7.5)
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The D-PSO-MABSA is applied to solve this problem. 10 Pareto optimum points are considered for this prob-

lem. The D-PSO-MABSA was capable of minimising both operation time and used tool life objectives. Figure

7.8 shown the 10 Pareto optimum points achieved using D-PSO-MABSA. All 10 points are non-dominated

solutions that formed a smooth Pareto front. According to the figure, the 3rd Pareto optimum solution was the

best compromise solution acquired by the D-PSO-MABSA where operation time is 0.4584 minutes at 1.8235%

of used tool life. The detailed results are shown in Table 7.5.
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Figure 7.8: Pareto front of the metal cutting process problem

156



Ta
bl

e
7.

5:
R

es
ul

ts
of

D
-P

SO
-M

A
B

SA
to

op
tim

is
e

th
e

m
et

al
cu

tti
ng

pr
oc

es
s

pr
ob

le
m

N
um

be
r

D
ep

th
Fe

ed
C

ut
tin

g
To

ol
C

ut
tin

g
M

ax
im

um
M

at
er

ia
l

Su
rf

ac
e

O
pe

ra
tio

n
U

se
d

of
of

ra
te

sp
ee

d
lif

e
fo

rc
e

cu
tti

ng
re

m
ov

al
ro

ug
hn

es
s

tim
e

to
ol

Pa
re

to
cu

t
(x

2)
(x

3)
(T

)
(F

c)
po

w
er

ra
te

(R
)

(τ
)

lif
e

(x
1)

(P
)

(M
R

R
)

(ζ
)

1
5.

82
68

0.
54

26
36

9.
93

20
4.

85
05

47
96

.3
63

2
29

.5
72

1
11

69
58

5.
03

13
0.

04
60

0.
39

58
3.

87
64

2
5.

98
82

0.
54

61
32

7.
87

71
7.

23
95

51
46

.7
94

9
28

.1
25

3
10

72
26

8.
17

42
0.

04
66

0.
41

08
2.

83
30

3
5.

97
58

0.
52

93
27

2.
93

03
13

.9
71

1
52

58
.0

62
1

23
.9

18
1

86
31

94
.5

17
3

0.
04

38
0.

45
84

1.
82

35
4

5.
88

23
0.

51
22

26
2.

92
78

16
.3

82
9

50
68

.5
15

7
22

.2
10

9
79

21
63

.3
99

2
0.

04
10

0.
48

10
1.

69
45

5
5.

43
09

0.
53

42
25

5.
35

13
18

.2
63

2
48

65
.2

30
6

20
.7

05
7

74
07

80
.2

12
2

0.
04

46
0.

50
01

1.
62

55
6

5.
89

35
0.

47
25

25
6.

64
05

18
.8

25
5

47
49

.9
68

9
20

.3
17

2
71

46
91

.5
97

0
0.

03
49

0.
51

10
1.

63
45

7
5.

71
35

0.
48

10
25

4.
59

11
19

.3
91

9
46

76
.7

47
1

19
.8

44
3

69
96

51
.0

60
1

0.
03

61
0.

51
76

1.
62

09
8

5.
25

49
0.

52
11

25
2.

27
44

19
.6

72
9

46
02

.5
44

5
19

.3
51

7
69

07
96

.8
94

8
0.

04
24

0.
52

16
1.

61
82

9
5.

71
91

0.
46

55
25

3.
88

25
20

.0
22

0
45

46
.9

65
7

19
.2

39
9

67
58

96
.4

13
4

0.
03

39
0.

52
86

1.
62

50
10

5.
60

24
0.

45
27

25
3.

23
17

20
.7

91
5

43
36

.3
32

8
18

.3
01

6
64

23
04

.6
26

7
0.

03
20

0.
54

57
1.

64
67

157



Optimisation of environmental/economic power dispatch of IEEE 30-bus 6-generator unit elec-

trical network problem

This multi objective optimisation problem is referred to Ghasemi (2013). The problem is to minimise fuel cost

(F1) in ($/h) and amount of pollutant emission (F2) in (ton/h) in order to set the real power of 6 generator unit

(PGi , i = 1,2, . . . ,6). The problem is formulated as:

Minimise

F1(PG) =
6

∑
i=1

ai +biPGi + ciP2
Gi

and

F2(PG) =
6

∑
i=1

10−2(αi +βiPGi + γiP2
Gi
)+ξi exp(λiPGi)

where

ai,bi,ci = coefficients of the ith generator cost

αi,βi,γi,ξi,λi = coefficients of the ith generator emission characteristics

0≤ PG1 ,PG2 ,PG3 ,PG4 ,PG5 ,PG6 ≤ 1

(7.6)

Figure 7.9 shows the network configuration of 6-generator unit electrical network. The coefficients of cost

and emission characteristics for 6 generators are given in Table 7.6 respectively.

Figure 7.9: The IEEE 30-bus 6-generator electrical network configuration (Ghasemi, 2013)
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Table 7.6: Generator cost and emission coefficients of the IEEE 30-bus 6-generator unit electrical network

Item a b c α β γ ξ λ

PG1 10 200 100 4.091 -5.543 6.490 2.0e−4 2.857
PG2 10 150 120 2.543 -6.047 5.638 5.0e−4 3.333
PG3 20 180 40 4.258 -5.094 4.586 1.0e−6 8.000
PG4 10 100 60 5.326 -3.550 3.380 2.0e−3 2.000
PG5 20 180 40 4.258 -5.094 4.586 1.0e−6 8.000
PG6 10 150 100 6.131 -5.555 5.151 1.0e−5 6.667

The D-PSO-MABSA was applied to solve this problem. 200 Pareto optimum points were considered for this

problem. The D-PSO-MABSA was capable of determining the optimum real power setting of 6-generator unit

by minimising fuel cost and pollutant emission objectives. The location of 200 Pareto optimum solutions ac-

quired using D-PSO-MABSA is shown in Figure 7.10. As referred to the figure, there were five non-dominated

solutions that formed a Pareto front. One of them is the best compromise solution between the two objectives

studied.
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Figure 7.10: Pareto optimum solutions with Pareto front of the IEEE 30-bus 6-generator unit electrical
network problem
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Table 7.7 shows the best compromise solution for the problem achieved by using D-PSO-MABSA. Accord-

ing to the table, the cost of $403.5647 / hour and the emission of 0.2170 ton / hour will be the best trade-off

solution between fuel cost and pollutant emission objectives of the problem. Meanwhile, the 5th generator unit

which obtained 0.628052 MW was the highest real power but recorded $158.8273 / hour which is the highest

fuel cost among other generator units. On the other hand, the 2nd generator unit recorded 0.0240 ton / hour

of emission individually which was the minimum amount of emission of all, that was only 11 % from overall

amount of pollutant emission by the system.

Table 7.7: Best simulation result of the IEEE 30-bus 6-generator unit electrical network

Generator Real power obtained Individual best fuel cost Individual best pollutant emission
MW $/h ton/h

PG1 0.1601 44.5913 0.0340
PG2 0.0338 15.2008 0.0240
PG3 0.2448 66.4623 0.0329
PG4 0.3624 54.1182 0.0490
PG5 0.6281 158.8273 0.0288
PG6 0.3482 75.1681 0.0483

Best compromise solution
Fuel cost ($/h) Pollutant emission (ton/h)

403.5647 0.2170

7.5 Summary

This chapter is the final phase of the research methodology. The chapter has discussed the application of bats

echolocation-inspired algorithms to solve selected practical problems. The problems considered in this chapter

were cost optimisation of shipping refined oil, profit optimisation of selling television sets, weight optimisation

of the car side impact design, efficiency optimisation of brushless wheel DC motor, optimisation of the metal

cutting process problem and optimisation of environmental/economic power dispatch (EED) of IEEE 30-bus 6-

generator unit electrical network problem. The results indicated that the bats echolocation-inspired algorithms

show good capability and promising performance to handle single objective optimisation, constrained optimi-

sation and multi objective optimisation real problems. In short, this chapter successfully achieved the fourth

objective: To apply the effective bats echolocation-inspired algorithms to selected practical optimisation

problems.

The next chapter is the thesis conclusion. The chapter will summarise and conclude the overall research

conducted as well as draw future directions of the research.
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Chapter 8

Conclusion

8.1 Research summary and conclusion

A study of the investigation of bats echolocation-inspired algorithms for solving continuous optimisation prob-

lems has been presented. The work has focused on the modification of bats sonar algorithm (BSA) that was

previously introduced by Tawfeeq (2012) to produce a new set of algorithms. The newly bats echolocation-

inspired algorithms have the ability to balance between exploration and exploitation processes of the algorithm

to find the global optimum. Moreover, the bats-echolocation-inspired algorithms perform well to achieve bet-

ter accuracy while maintaining good precision and fast convergence to the optimum solution of continuous

optimisation problems considered.

The bats echolocation-inspired algorithms similar to particle swarm optimisation (PSO), artificial bee colony

(ABC) or ant colony optimisation (ACO) are categorised under swarm intelligence algorithms. In a wide per-

spective, swarm intelligence algorithms fall under evolutionary algorithms as they are similar to genetic algo-

rithm, evolutionary strategy and differential evolution. The evolutionary algorithms are a part of metaheuristic

methods that work based on a combination of a set of rules and randomness.

In brief, the continuous optimisation problem type can be divided into three major categories; single objective

optimisation problem, constrained optimisation problem and multi objective optimisation problem. Solving a

single objective optimisation problem is about finding an optimised solution to a no constraint problem based

on a single objective. Constrained optimisation problem on the other hand is dealing with problems with one

or more constraint(s) based on single objective. The multi objective optimisation problem is more complicated

where the problem is either with or without constraint(s), solving the problem is to seek compromised solutions

based on a set of conflicting two and more objectives.

There are two major algorithms found in the literature that are inspired from the bats echolocation. First is a

bat algorithm (BA) by Yang (2010) that is based on the loudness, frequency and rate of pulse emitted. Second is

BSA by Tawfeeq (2012) which models the principles of bats sonar used in echolocation. The research carried
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out in this thesis has focused on the investigation of modified and enhanced versions of bats echolocation-

inspired algorithms based on BSA.

An adaptive bats sonar algorithm (ABSA) has been proposed for solving single objective optimisation prob-

lems. The ABSA has been researched as an improved version of BSA by altering and incorporating new bats

echolocation characteristics into it. The reciprocal altruism characteristic of a colony of bats has further been

incorporated into ABSA to strengthen the procedure of algorithm searching for the best solution. A series of

computer simulations has been carried out to evaluate the performance of the ABSA. The simulation is used to

study the effects of number of bats and number of iterations in ABSA, to investigate the performance of ABSA

to solve black-box optimisation benchmarking 2013 as compared to PSO, and to analyse the performance of

ABSA to solve established single objective optimisation benchmark test functions as compared to BSA and BA.

The obtained results have demonstrated the superior performance of ABSA to achieve better accuracy while

maintaining good precision and fast convergence to the optimum solution.

A modified adaptive bats sonar algorithm (MABSA) has been proposed for solving constrained optimisa-

tion problems. The MABSA has been formulated as an improved version of ABSA and BSA. In addition to

redefining ABSA parameters, a new strategy, namely the bounce back strategy as a mechanism to control the

transmitted beam to fall only within the designated search space, has been incorporated into MABSA. The

MABSA hsa achieved competitive results on four constrained optimisation benchmark test functions adopted

from CEC 2006 and six well-known engineering design optimisation problems at a relatively better optimum

solution value with a low computational cost. From the comparative study, MABSA has shown its ability to

handle various constrained optimisation, and its outstanding performance is much better, in terms of statistical

metrics, than the established set of algorithms selected from various literatures.

A dual-particle swarm optimisation-modified adaptive bats sonar algorithm (D-PSO-MABSA) has been pro-

posed for solving multi objective optimisation problems. The D-PSO-MABSA is a hybrid algorithm integrat-

ing PSO and MABSA. This dual level search strategy works where at every time to obtain one Pareto optimum

point, there are always two levels of the search process. PSO acts as a global search agent in the first level

while in the second level, MABSA works as a local search agent and utilises the optimum solutions obtained

by the PSO to initialise the bats in the MABSA. Swarm flight attitude and swarm searching strategy are two

factors taken into consideration in setting PSO as a global search agent and MABSA as a local search agent.

The proficiency of the D-PSO-MABSA to solve the multi objective optimisation problems has been examined

through two different sets of computer simulation tests. The first test was about the performance and the re-

flection of algorithm parameters on the established multi objective optimisation benchmark test functions. The

second test was to show the capability of the D-PSO-MABSA to solve an engineering design problem. The

computer simulation results have demonstrated the potential of the D-PSO-MABSA to solve a variety of multi

objective optimisation problems.
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The performances of bats echolocation-inspired algorithms have been assessed to selected practical prob-

lems in business, mechanical/manufacturing engineering and electrical engineering fields. First, the ABSA

was applied to solve two single objective optimisation problems named cost optimisation of shipping refined

oil and profit optimisation of selling television sets. Next, the MABSA was utilised to solve two constrained

optimisation problems; weight optimisation of the car side impact design and efficiency optimisation of brush-

less wheel DC motor. Lastly, the D-PSO-MABSA was used to solve two multi objective optimisation prob-

lems that are: optimisation of the metal cutting process problem and optimisation of environmental/economic

power dispatch of IEEE 30-bus 6-generator unit electrical network problem. The results indicated that the

bats echolocation-inspired algorithms demonstrated good capability and promising performance to handle sin-

gle objective optimisation, constrained optimisation and multi objective optimisation real problems in various

areas.

8.2 Future direction of the research

In light of the present work, the potential research to be explored in the future includes the following:

1. Include other bats echolocation behaviour into the researched algorithms

The performance of bats echolocation-inspired algorithms shall further improve if embedded with other

significant characteristics of the real echolocation behaviour of a colony of bats. For instance, the element

of Doppler-shifted or compression condition from reflected beam sound, as well as the exploitation of

time difference between pulse emission and echo to bounce back, can be taken into consideration.

2. Use the researched algorithm to solve multi objective optimisation problem with more than two

objective functions

In real world, the multi objective optimisation problems deal with more than two objective functions. The

investigation of bats echolocation-inspired algorithm in this research only considered the multi objective

optimisation problem with two objective functions only. Due to course that the algorithm procedure

remain the same but the number of objective functions will increase, the good promising performance of

the algorithm may also can be expected when the algorithm is apply on the multi objective optimisation

problem consists of three or more objective functions (or called many objective optimisation).

3. Use the researched algorithms to solve combinatorial optimisation problems

There are two types of optimisation problem; continuous optimisation problem and combinatorial (dis-

crete) optimisation problem. The investigation of bats echolocation-inspired algorithms in this research

only considered the continuous optimisation problem type. Based on the superb performance of the al-

gorithms in this research, promising results may also can be expected if the algorithms are adopted to

solve combinatorial optimisation problems.
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4. Utilise the researched algorithms in a wide scope of a real application

In this research, the bats echolocation-inspired algorithms have only been applied to optimise the prob-

lems taken from existing literature. Further investigation should be considered to extend the usage of

the developed algorithms in real applications such as to model, control and optimise the overhead crane

system in a manufacturing area.

By exploring all listed future works, it will drive the bats echolocation-inspired algorithms to become the

prominent and versatile algorithms in diverse areas.
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