
A VISUOMOTOR PERSPECTIVE ON   

DEVELOPING TEMPORAL AND SPATIAL    

REPRESENTATIONS OF NUMBER 

 

by 

 

 

Rebecca Ruth Sheridan 

 

 

 

 

 

 

Submitted in accordance with the requirements for the degree of 

Doctor of Philosophy 

 

The University of Leeds 

School of Psychology, Faculty of Medicine and Health 

October 2015 

 



ii 
 

  



iii 
 

 

 

 

 

 

 

 

 

 

When the spirits are low, when the day appears dark, when work becomes 

monotonous, when hope hardly seems worth having, just mount a bicycle and go 

out for a spin down the road, without thought on anything but the ride you are 

taking. 

 

Arthur Conan Doyle, 1896 
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Number is the within of all things. 

 

Pythagoras of Samos 
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ABSTRACT 

Despite being an abstract concept, our representation of number appears to be 

grounded in the physical realities of time and space. However, very little 

research investigates the relationship between these three concepts in children. 

Thus, this thesis investigated children’s ability to represent number temporally 

(pertaining to time) using frequency processing tasks, and their ability to 

represent number spatially using a novel adaption of a number line task. 

Firstly, two experiments (Chapters 2 & 3) revealed that children are 

remarkably accurate at recalling the frequency of both everyday events, 

specifically their intake of fruit smoothies, and of short term events, namely 

shape repetitions in a computer based task.  Secondly, it was observed that 

Western educated adults have a default preference for representing number 

spatially with small numbers on the left and large numbers on the right 

(Chapter 4). Whilst these default preferences were not observed in children 

(Chapter 5), there was some evidence that cultural background can influence 

the direction of these preferences (Chapter 6). Nevertheless, irrelevant of 

directional preferences, children became more accurate at representing 

number spatially with age; this ability was related to both mathematical 

achievement and fine motor skills.  
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CHAPTER 1 

GENERAL INTRODUCTION 

1.1  Introduction 

Our understanding of number has a rich ontological and evolutionary history 

(Dehaene, 2011); it appears that both human and non-human animals share a 

basic understanding of numerosity, that is, the ability to judge and compare 

small quantities (Dehaene, 2011; Hubbard et al., 2008). For example infants and 

non-human animals such as rats and monkeys are able to discriminate between 

numerosities with increasing precision and decreasing ratio differences, and 

are able to track small quantities (~4 items) (for review see Feigenson, 

Dehaene, & Spelke, 2004). Further, it appears that children have a non-symbolic 

numerical system which develops before language skills and is used for the 

approximate estimation of number (Feigenson et al., 2004; Hyde, 2011; 

Libertus, Feigenson, & Halberda, 2013; Mazzocco, Feigenson, & Halberda, 

2011). However, it is only humans who are able to build on these basic 

numerosity skills to gain a deeper understanding of number which allows us to, 

for example, perceive cardinality, use number words and count (Hubbard et al., 

2008). These evolutionarily developed skills can be termed early number 

knowledge, and with practice and formal education are further developed to 

underscore children’s mathematical attainment (Östergren & Träff, 2013). In 

this sense, mathematics attainment is a broad concept including, for example, 

our ability to complete complex calculations and our knowledge of shapes and 

basic algebra (Department of Education, 2013).  

As humans, we utilise numerical information every day to manage our 

time, pay bills and understand shopping discounts. As children, mathematical 

knowledge is a core part of the school curriculum, but is also utilised in games 

and activities outside of school, such as counting to 10 in hide and seek. 
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However, in 2013 20% of British children leaving primary school did not pass 

their mathematics test at the level expected by the Government and 5% didn’t 

pass at the level a seven year old should be achieving (National Numeracy, 

2014). This underperformance in mathematics is also common in the USA (see 

National Centre for Education Statistics, 2013). This is both a personal and a 

societal issue given that mathematical problems are cumulative and persist 

through life (Jordan & Kaplan, 2009), and that appropriate development in 

mathematics appears to be important for a number of factors in later life, such 

as job success and earning potential (Crawford & Crib, 2013). This thus 

suggests that children’s mathematical development during the early years is 

crucial for life success, and that any underperformance may lead to negative life 

outcomes; it is therefore important to investigate how mathematical knowledge 

develops and how it can be enhanced.  

The literature into how humans represent number has grown steadily 

since the early 90’s with research spanning cognitive, neurological, pedagogical, 

philosophical and linguistic disciplines (Cohen Kadosh, Lammertyn, & Izard, 

2008). Research has investigated topics including the development of children’s 

basic mathematical knowledge, calculation abilities, mathematical reasoning, 

the relationships between numerical skills and the interrelation between 

numerical and non-numerical skills. It has also focused on areas where skills 

appear to have developed atypically such as in developmental dyscalculia 

(Butterworth & Laurillard, 2010; Kaufmann et al., 2013; Landerl, Bevan, & 

Butterworth, 2004; Von Aster & Shalev, 2007) and mathematics anxiety (Lyons 

& Beilock, 2012; Maloney, Ansari, & Fugelsang, 2011; Vukovic, Kieffer, Bailey, & 

Harari, 2013; Wu, Barth, Amin, Malcarne, & Menon, 2012). For example, we 

now know that children with developmental dyscalculia have deficiencies in a 

number of basic numerical skills such as comparing non-symbolic numbers (e.g. 

sets of dots) and linking non-symbolic numbers to Arabic words (for review see 

Kaufmann et al., 2013). 

One area which has been relatively neglected relates to our 

representation of number in time and space, especially in children, despite the 

hypothesis that time, space and number are interconnected (Cohen Kadosh et 

al., 2008; de Hevia, Izard, Coubart, Spelke, & Streri, 2014; Walsh, 2003). The 
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most obvious example of these connections is the use of the number line which 

links number and space (e.g. Dehaene, Bossini, & Giraux, 1993), and the use of 

spatial references when discussing time (Casasanto & Boroditsky, 2008; Núñez 

& Cooperrider, 2013). Evidence for links between these three concepts is 

present in human infants, trained animals and in people living in remote 

cultures, such as Amazonian tribes, thus suggesting these associations may be 

present from birth; we are predisposed to link these concepts (de Hevia et al., 

2014). For example, eight to nine month old babies create number-space 

mappings such that longer lines are related to greater numbers (de Hevia & 

Spelke, 2010), and to longer temporal durations (Srinivasan & Carey, 2010). It 

is debated whether an underlying common magnitude system is responsible for 

these links (see Walsh, 2003), or whether they are represented by separate, but 

overlapping systems (de Hevia et al., 2014, see Cohen Kadosh et al., 2008 for 

review).  For example, a common view in the spatial-numerical cognition 

literature is that the systems share overlapping neural circuitry which results in 

the strong associations seen between space and number (Hubbard, Piazza, 

Pinel, & Dehaene, 2005). 

Thus far, much of the temporal-numerical research focuses mostly on 

very young children, non-symbolic forms of number and the processing of 

duration, whilst the spatial-numerical research is in adults. This thesis will 

build on this existing research by assessing the link between number and time 

in the form of frequency processing (the number of times an event has 

occurred), and spatial-numerical associations in the form of a novel use of the 

standard number line task. In this chapter I will start by discussing the current 

literature regarding children’s ability to make temporal judgements of real 

contextually experienced events, such as staged events in a classroom. Second, I 

will discuss children’s ability to judge the frequency of short term events, such 

as the appearance of pictures in a computer based task. I will then move on to 

consider how we represent number, specifically the links between number and 

space, how these links develop and how they might influence mathematical 

achievement. 
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1.2 The Temporal Representation of Number: Frequency Processing 

Frequency processing can be considered as a numerical skill; it involves a 

judgement of how many events have occurred within a given time period 

instead of a judgement of how many items are in a constant set at a single time 

point as is typical in counting. Frequency processing can also be studied in 

relation to real life events, or a judgement of stimuli in a short computer based 

task. Both of these types of frequency processing are important skills in life. The 

former may be important in medical and forensic settings as well as in day to 

day life such as when monitoring food intake. The latter is involved in new 

word learning in infants and adaptive functioning from an evolutionary 

perspective. These themes will be discussed further in the following two 

sections.  

1.2.1 Frequency Processing of Everyday Events 

Currently, very little is known about children’s ability to judge how many times 

an event has occurred within a given time period (Orbach & Lamb, 2007; 

Roberts et al., 2015). However, it has a number of important applications. For 

example, when visiting the doctor or dentist, they may ask about the frequency 

of certain behaviours or pains which could provide crucial information for 

diagnosis and treatment (Conrad, Brown, & Cashman, 1998). A further 

application is in forensic settings, particularly child abuse investigations, where 

frequency information can be crucial (Orbach & Lamb, 2007; Sharman, Powell, 

& Roberts, 2011; Wandrey, Lyon, Quas, & Friedman, 2012). For example, 

interviewers are expected to obtain event specific information from witnesses, 

but this may be hindered if a child cannot accurately determine the frequency 

of the alleged events (Orbach & Lamb, 2007). It also bears direct relevance to 

the Governments  ‘Five a Day’ scheme which encourages people to consume at 

least five portions of fruit and vegetables per day in order to reduce the risk of 

obesity and chronic diseases such as cancer and cerebrovascular disease (NHS, 

2011). Consuming the five pieces of fruit and vegetables per day may rely on 

being able to recall how many portions you have already consumed that day, 
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and whether you have met the target or need to consume more. In other words, 

you have to estimate, and monitor, the frequency of your daily intake.  

Much of the present literature centres on either short, computer based 

laboratory studies, or forensic settings. The former studies typically involve 

asking participants to determine how many times items (normally words or 

pictures) have been presented to them; this is discussed in full in Chapter 1.2.2.  

However, it is in the forensic literature where most of the research has been 

conducted due to the importance of frequency information in legal settings 

(Orbach & Lamb, 2007; Sharman et al., 2011; Wandrey et al., 2012). Notably, 

one forensic study analysed the transcripts of children who had alleged child 

abuse for references to temporal information (Orbach & Lamb, 2007). The 

authors found children were able to give temporal information including the 

frequency, date and duration of alleged events, however temporal information 

in general was rare compared to non-temporal information. Of particular 

relevance, frequency information was most often in non-enumerative form e.g. 

“it happened lots” and therefore lacked specificity (Orbach & Lamb, 2007). A 

further study with maltreated children also suggested children struggle with 

giving enumerative answers. Wandrey, Lyon, Quas and Friedman (2012) asked 

maltreated children aged six to ten years about their foster care placements 

and court visits in order to investigate salient life events whilst also being able 

to measure accuracy.  The authors found children’s accuracy when giving an 

exact answer to an everyday numerosity question (e.g. “how many times have 

you visited the court?”) was low (13 to 27%), and there was no improvement in 

the answers of the older children. 

In the typical population, research tends to be conducted using tightly 

controlled events which often occur in the classroom. Sharman et al (2011) 

asked children aged between four and eight years of age to participate in a 

staged event either one or six times. The event centred on a number of 

activities including doing a puzzle and getting a surprise present. Using this 

methodology, they found that 49% of children who experienced the event 

multiple times gave numerical estimates when asked how many times a staged 

event had occurred. However only 9.4% of these children gave the correct 

answer, 23% of children gave an estimate only one away from the correct 
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answer. Furthermore, younger children were less accurate than older children. 

Unsurprisingly, when the event had only happened once, 90% of children gave 

a numerical response, and 96% of those gave the correct frequency estimate; 

this was not affected by age. Further a number of children were interviewed 

after five to six days and also after five to six weeks; this had no impact on the 

accuracy of frequency recall. Finally, in four similar studies reported by Roberts 

et al (2015), only 23% of children accurately recalled that they had taken part 

in four staged events. Of the remaining children 22.9% answered either three 

or five events, 27.5% provided other inaccurate answers and 28.3% said they 

didn’t know. Consistent with Sharman et al (2011), older children (six to eight 

years) were more accurate than younger children (four to five years) (Roberts 

et al., 2015). 

1.2.2 Frequency Processing of Short Term Events 

The ability to judge the number of times something has happened can also be 

studied from a short term perspective in which frequency processing is 

considered to be a core aspect of an event and is therefore always encoded 

(Hasher & Zacks, 1979; Zacks & Hasher, 2002). In this context, frequency 

processing is important at a cognitively lower level, for example in word 

learning in early childhood; words with a frequently occurring phonetic 

structure such as ‘bat’ are learnt with more ease and earlier in development 

than words with an infrequent structure such as ‘tab’ (Gonzalez-Gomez, 

Poltrock, & Nazzi, 2013). Further, the idea that relative frequency encoding is a 

core skill is supported by research on adaptive functioning within the 

evolutionary context. The information we receive throughout life is often 

uncertain and so we utilise relative frequency information to determine the 

probability of events/outcomes in order to choose how to act (Kelly & Martin, 

1994). In the animal kingdom, the actions we choose may be life or death, thus 

those animals which are sensitive to probability information have an advantage 

and are likely to thrive (Kelly & Martin, 1994). In humans, this kind of 

probabilistic reasoning can be seen in a variety of situations from motor 

performance (Moreno-Bote, Knill, & Pouget, 2011) to word learning (Peña, 
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Bonatti, Nespor, & Mehler, 2002) and is observed in infants and adults alike 

(Denison, Reed, & Xu, 2012; Denison & Xu, 2014; Téglás et al., 2011). 

In a series of studies, Hasher & Chromiak showed that the accuracy with 

which frequency information was reported was age invariant, and that accuracy 

did not differ between participants who were given pre-task instructions 

explaining they would be required to report frequency (and therefore had the 

opportunity to engage in effortful processing) and those that were not (Hasher 

& Chromiak, 1977). These findings led Hasher and colleagues to propose that 

frequency information is encoded automatically, with age invariance and 

instructional invariance being two tenets of their theory of automaticity 

(Hasher & Chromiak, 1977; Zacks, Hasher, & Sanft, 1982). More recently, Zacks 

and Hasher (2002) have acknowledged that the term ‘automatic’ may be 

problematic, as even core information such as frequency requires that the 

person pays attention to the relevant occurrence or event. They argue that 

attending to an event is a precondition for automatic and effortful encoding 

operations, but that automatic encoding does not make any further demands on 

attentional resources (Zacks & Hasher, 2002). 

As previously stated, Hasher and Zacks (1977) argue that the automatic, 

or fundamental nature of frequency processing can be investigated by looking 

for age differences in this skill. Several studies find evidence that frequency 

information is indeed age invariant and therefore ‘automatic’ (Ellis, Palmer, & 

Reeves, 1988; Goldstein, Hasher, & Stein, 1983; Johnson, Raye, Hasher, & 

Chromiak, 1979). For example, Goldstein, Hasher and Stein (1983) found six to 

nine year olds’ accuracy at judging whether pictures occurred one, two, three or 

four times was not impacted by age. Further, no age differences were reported 

in another study with slightly older children of eight to twelve years when 

judging picture frequency (Johnson et al., 1979). Whilst Ellis et al (1988) report 

minimal age differences in frequency processing between children of 5 and 8 

years of age when judging the frequency of words, they find no reliable age 

differences when estimating picture frequency. They suggest the 

developmental effects can therefore be explained by reading ability, and not 

frequency processing per se and as such consider their data as supportive of 

Hasher and Chromiak’s (1977) hypothesis (Ellis et al., 1988).  
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However, research is far from conclusive and has found developmental 

trends irrelevant of stimuli type. For example, Lund, Hall, Wilson and 

Humphreys (1983) observed higher error rates in younger children (aged five 

to six years) than older children (seven to eleven years) when asked to make 

relative judgements about the frequency of previously presented pictures. In a 

similar study, Chalmers and Grogan (2006) found higher accuracy rates for six 

year olds than four year olds, once again suggesting a developmental 

improvement around this age. Furthermore, a study comparing five year olds to 

adults found children’s accuracy rates varied between 50 and 61% whilst the 

adults varied between 82 and 90%; this demonstrates a significant 

improvement in performance with age, though this study is unable to tell us 

much about the progression of this improvement as the age range was very 

limited (Harris, Durso, Mergler, & Jones, 1990). Finally, Mccormack and Russell 

(1997) presented children with pictures of common objects; they then had to 

determine whether these pictures had been presented once or three times. 

While error rates were similar when pictures had only been presented once, 

the four year olds were more inaccurate than five to eight year olds when they 

had been presented three times (Mccormack & Russell, 1997).  

1.3 Spatial Representation of Number 

There is a strong body of evidence supporting the notion that number 

representation is spatially organised in adults (Dehaene, Bossini, & Giraux, 

1993; Gobel, Shaki, & Fischer, 2011; Hubbard, Piazza, Pinel, & Dehaene, 2005; 

Marghetis, Núñez, & Bergen, 2014; Sullivan, Juhasz, Slattery, & Barth, 2011). 

The most commonly reported evidence supporting this idea is the phenomenon 

whereby Western educated individuals respond to smaller numbers faster with 

their left hand and vice versa, even when magnitude is irrelevant (Dehaene et 

al., 1993). This Spatial-Numerical Association of Response Codes (SNARC) effect 

is proposed to reflect the representation of numbers along a mental number 

line where numbers increase in ascending order (Dehaene, 1997; Fisher & 

Shaki, 2014, though see Nunez, 2011).  
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1.3.1 Origins of Spatial Numerical Associations 

It is generally agreed that spatial numerical associations develop over 

childhood and are a function of an individual’s cultural environment (spatial 

numerical associations in children will be discussed in Chapter 1.3.2). Whilst 

culture appears to influence the direction of spatial numerical associations, the 

capacity for these associations is universal; it is seen in multiple populations 

including Western and Asian participants, as well as indigenous Brazilian and 

Australian tribes who possess very few number words (Gobel et al., 2011). The 

pervasive nature of spatial-numerical representation is further shown by 

research which demonstrates SNARC effects when spatial (and/or numerical) 

information is implicit and task irrelevant (Gevers, Lammertyn, Notebaert et al, 

2006). For example, when numbers are presented merely as background 

objects they nonetheless impact performance in orientation  discrimination 

tasks (Fias, Lauwereyns, & Lammertyn, 2001). Likewise, small task-irrelevant 

numbers have been found to reduce detection time to items in the left visual 

field whilst large task-irrelevant numbers draw attention to the right - thereby 

demonstrating the automatic activation of number meaning in relation to space 

(Fischer, Castel, Dodd, & Pratt, 2003). This is also consistent with research 

suggesting we have the capacity to link space, time and number from birth (de 

Hevia et al., 2014). 

The tight association between number and space is thought to be due to 

these concepts sharing overlapping neural circuitry in the parietal lobes 

(Hubbard et al., 2005). As such, repetitive transcranial magnetic stimulation 

(TMS) over the left angular gyrus in healthy participants impairs performance 

on both visuo-spatial search tasks and numerical comparison tasks (Hubbard et 

al., 2005). Furthermore, induced left spatial neglect due to posterior parietal 

lobe TMS results in a rightward shift of the subjective midpoint in a number 

line bisection task (Göbel et al., 2006). This is consistent with left spatial neglect 

patients who demonstrate this rightward shift in numerical and visual line 

bisection tasks whereby the length of the line is related to the magnitude of the 

shift (Zorzi et al., 2006). Conversely, in non-numerical tasks this magnitude-

length relationship is not observed (Zorzi et al., 2006). Further neurological 
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evidence also highlights shared numerical and spatial deficits. For example, 

patients with Gerstmann’s syndrome (associated with lesions to the left angular 

gyrus) often have problems such as dyscalculia alongside problems 

distinguishing left and right (Hubbard et al., 2005). Hubbard et al (2005) 

review further lines of neurological evidence (from both humans and animals) 

suggesting that these overlapping neural mechanisms create the capacity for 

spatial-numerical representations with cultural norms for reading, writing and 

finger counting direction playing an important role in developing these circuits 

(see 1.3.4).  

1.3.2 Spatial Numerical Associations in Children 

Whilst a plethora of research suggests that adults represent number 

spatially (Dehaene, Bossini, & Giraux, 1993; Gobel, Shaki, & Fischer, 2011; 

Hubbard, Piazza, Pinel, & Dehaene, 2005; Marghetis, Núñez, & Bergen, 2014; 

Sullivan, Juhasz, Slattery, & Barth, 2011), much less research exists in the 

developmental literature despite the importance of spatial numerical 

associations for mathematical development (White, Szűcs, & Soltész, 2012). 

Whilst research has shown that very young infants can link number to space, 

this is in relation to non-symbolic number (de Hevia, Girelli, & Macchi Cassia, 

2012), and not symbolic numbers (studied in adults using methodologies such 

as the SNARC task). A review of the little literature that exists revealed that 

larger SNARC effects are observed with increasing age (Wood, Willmes, Nuerk, 

& Fischer, 2008). Notably, in parity judgement tasks where the number 

magnitude is irrelevant, SNARC effects are only observed at around nine years 

of age (Berch et al, 1999; Van Galen & Reitsma, 2008). However,  SNARC effects 

have been observed in children as young as seven years of age (Van Galen & 

Reitsma, 2008; White et al., 2012) and five years of age when they had to judge 

the colour of a number, but not its magnitude (Hoffmann, Hornung, Martin, & 

Schiltz, 2013). Further, using a non-symbolic version of the SNARC task, 

children aged four years were quicker to respond to a smaller number of dots 

when presented on the left side of the screen than on the right and vice versa 

(Patro & Haman, 2012). Western four year olds also appear to expect numbers 
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to be ordered ascending spatially from left to right in spatial search tasks and 

when counting; when they were ordered in the reverse orientation, children 

struggled to complete the task (Opfer, Thompson, & Furlong, 2010). Given that 

studies with younger children only find SNARC effects when magnitude is 

relevant to the task, it is suggested that the automatic activation of number-

space mappings occurs when children are approximately nine years old (Van 

Galen & Reitsma, 2008; White et al., 2012). 

Another useful method to study spatial-numerical associations in 

children is the number line task which requires children to map number on to 

physical space (Siegler & Opfer, 2003). Number lines are useful for assessing 

spatial-numerical associations in children as they don’t rely on such a robust 

understanding of the number system (Ebersbach, 2015), nor parity (White et 

al., 2012). Research with number lines suggests that children’s estimates of 

where numbers belong on a number line become more linear, as opposed to 

logarithmic, with continued development (Booth & Siegler, 2008; Sasanguie, De 

Smedt, Defever, & Reynvoet, 2012; Siegler & Ramani, 2008). This change 

becomes apparent in seven year olds, and appears to be relatively complete by 

eight years of age (Siegler & Booth, 2004). In turn, children’s accuracy on the 

number line is associated with enhanced mathematical skills measured by 

calculation tests, school based mathematics tests and standardised 

mathematics batteries (Booth & Siegler, 2006, 2008; Siegler & Ramani, 2008; 

Sasanguie et al., 2012). Furthermore, Ebersbach (2015) found that Western 

children’s accuracy on the number line is worse when the number line runs 

from right to left, the reverse direction of Western spatial numerical 

associations.  

This ability to represent number spatially on a line is an aspect of our 

early number knowledge, a concept defined as our knowledge of numerosity 

and our understanding of the relationships between numbers; it can include 

our ability to perceive cardinality, represent number spatially and our 

knowledge of the words and digits associated with numbers and counting 

(Östergren & Träff, 2013). It is differentiated from a complex mathematical 

understanding which is learned in school (Jordan & Kaplan, 2009), this can 

include knowledge of shapes, fractions and basic algebra (Department of 
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Education, 2013). The link between these two constructs has been studied 

using a variety of tasks all demonstrating that early number knowledge 

influences mathematical skill (Aunola, Leskinen, Lerkkanen, & Nurmi, 2004; 

Östergren & Träff, 2013; Stock, Desoete, & Roeyers, 2009). For example, a 

longitudinal study by Jordan and colleagues created an early number 

knowledge battery which assessed children’s knowledge of relative numerical 

size and their counting and calculation abilities. The authors found their battery 

could predict maths achievement in first grade (six to seven years) and third 

grade (eight to nine years) when measured at multiple time points from five 

years onwards. Furthermore, growth in early number knowledge was also 

associated with mathematical performance measured using the Calculation and 

Applied Problems subtest of the Woodcock Johnson III test battery (Jordan, 

Kaplan, Locuniak, & Ramineni, 2007; Jordan & Kaplan, 2009). However, it is 

worth noting that it has been argued that calculation skills should not be 

included in measures of early number knowledge as it is then often used as 

both a predictor and a dependent variable (Östergren & Träff, 2013); this is 

apparent in the Jordan et al (2007; 2009) studies. 

1.3.3 Spatial Numerical Associations and Fine Motor Skills 

In Western educated adults, spatial numerical associations appear in the form 

of number ascending from left to right (e.g. Dehaene et al., 1993). However, this 

directional effect is not consistent across cultures. For example, reversed 

SNARC effects (number descending from left to right) are observed in Arabic 

speaking participants who have been exposed to reading and writing systems 

that run from right to left (Zebian, 2005). In addition, the SNARC effect is 

weaker in Iranian participants who read Arabic but have moved to a left to right 

reading culture (Dehaene et al., 1993). Further, Palestinian participants who 

read right to left and Western participants who read left to right both showed 

reading direction consistent SNARC effects, but Israeli participants who read 

words from right to left, but numbers from left to right showed no SNARC effect 

(Shaki, Fischer, & Petrusic, 2009). In Chinese participants the SNARC effect is 

present for Arabic numerals when the task is horizontally aligned and for 
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Chinese numerals when vertically aligned in a manner consistent with the 

different reading and writing directions of Arabic and Chinese numerals (Hung, 

Hung, Tzeng, & Wu, 2008). 

It is presumed that these differences in directionality are due to 

perceptual-motor experience, notably the fine motor skills of reading, writing 

and finger counting (Dehaene et al., 1993; Fischer, Mills, & Shaki, 2010; Gobel, 

Shaki, & Fischer, 2011; Hubbard et al., 2005; Fischer & Shaki, 2014). This 

argument is consistent with embodied cognition where it has been proposed 

that information is stored in a manner that maps to the neural system (e.g. 

motor, visual) that originally encoded the information (e.g. Wilson, 2002). 

Recent research has begun to suggest that it is finger counting which plays the 

biggest role in the directionality of spatial numerical associations, with reading 

and writing playing a smaller role (Fischer & Brugger, 2011; Fischer, 2008). 

Finger counting is used by children to learn numerical concepts, is universal 

and shows cultural variability consistent with the direction of spatial numerical 

associations (Fischer & Brugger, 2011). For example, there are multiple lines of 

evidence (behavioural and neuropsychological) linking finger counting habits 

with numerical processing (Domahs, Moeller, Huber, Willmes, & Nuerk, 2010; 

Fischer & Brugger, 2011; Penner-wilger et al., 2007; Sato, Cattaneo, Rizzolatti, & 

Gallese, 2007). Furthermore, research has found that Iranian individuals start 

counting on the right hand, with the little finger representing the number one 

whilst Western adults start with the left hand with the thumb representing the 

number one (Lindemann, Alipour, & Fischer, 2011). 

Further, it appears that fine motor skills are important in mathematical 

skills beyond spatial-numerical associations. It is argued that the perfecting of 

fine motor skills such as reaching and grasping objects allows us to interact 

successfully with the world and thus provides new learning experiences (Marr, 

Cermak, Cohn, & Henderson, 2003). This is consistent with Piagetian theory 

which posits that cognitive abilities stem from sensorimotor activities (Piaget & 

Inhelder, 1966). It is during Piaget’s sensorimotor stage that children begin to 

make goal directed actions and coordinate sensory input (vision, hearing etc.) 

with physical output (movement); this in turn provides potential learning 

opportunities and allows more advanced cognitive skills to develop (Piaget & 
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Inhelder, 1966). Accordingly poor motor ability can impact on later school 

outcomes; the Millennium Cohort Study found delays in fine motor and gross 

motor skills such as crawling and holding objects was associated with delays in 

cognitive achievement at age five years (Schoon, Cheng, Jones, Joshi, & Dex, 

2010). An early review of 74 studies concluded that of those studies which 

assessed motor skills (over half), most found they could predict mathematics, 

reading and general achievement (Tramontana, Hooper, & Selzer, 1988). 

However, these studies vary greatly in the type of motor skills they measure 

(e.g. gross motor, fine motor or a combination), and in their methods of 

measurement; only one study measured ‘pure’ motor skill (Tramontana et al., 

1988). More recently, research in to school readiness has observed some 

relationships between fine motor/perceptual motor skills and maths ability 

(Grissmer, Grimm, Aiyer, Murrah, & Steele, 2010; Luo, Jose, Huntsinger, & 

Pigott, 2007; Pagani, Fitzpatrick, Archambault, & Janosz, 2010; Pagani & 

Messier, 2012). Studies of children with known motor disorders such as 

Developmental Coordination Disorder (DCD) or cerebral palsy demonstrate 

significant delays in mathematical performance also suggesting that fine motor 

skills may indeed be important for mathematical development (Pieters, 

Desoete, Van Waelvelde, Vanderswalmen, & Roeyers, 2012; Van Rooijen, 

Verhoeven, & Steenbergen, 2011). Despite its importance, the contribution of 

motor skills to mathematics is often neglected (Pagani et al., 2010). 

1.3.4 Experimental Work 

As the reviewed literature demonstrates, links have been hypothesised 

between time and number, and space and number. In this thesis, I will present 

two experiments (Chapters 2 and 3) which assess temporal numerical 

associations by asking participants to determine the frequency with which 

events occur, and three experiments (Chapters 4, 5 and 6) which assess our 

ability to represent number spatially. Across all of these experiments I will also 

assess whether these temporal numerical/spatial numerical skills are related to 

other numerical skills, from basic number ability to the more complex 

mathematical skills taught and measured in schools.  
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CHAPTER 2 

EXPERIMENT 1: CHILDRENS ABILITY TO RECALL 

EVERYDAY FREQUENCY INFORMATION AND ITS 

RELATIONSHIP TO NUMERICAL PROCESSING 

2.1 Introduction 

There is very little research which investigates how well children can recall the 

frequency of past events. Nevertheless, the few forensic and controlled school 

based studies which exist suggest that children are often inaccurate and don’t 

always give enumerative (numerical) answers, preferring instead to give 

qualitative responses such as “many times” (Orbach & Lamb, 2007; Roberts et 

al., 2015; Sharman et al., 2011; Wandrey et al., 2012). However, whilst one 

forensic study suggests age (six to ten years) does not impact upon accuracy 

(Wandrey et al., 2012), two experimental studies suggest older children (six to 

eight years) are more accurate than younger children (four to five years) 

(Roberts et al., 2015; Sharman et al., 2011) (See Chapter 1.2.1). Given the 

importance of being able to recall frequency information, more research is 

warranted to determine whether age differences are present, and whether 

children give enumerative answers, the preferred type of response by adults 

(Brown, 2002; 2008).  

The ability to determine the number of times an event has occurred is 

important in a variety of settings. For example, in forensic settings there is an 

expectation on children to be able to give event specific information, determine 

how many events occurred and provide the temporal range in which they 

occurred (Roberts et al., 2015; Wandrey et al., 2012). It is also important in 

relation to the ‘5 a day’ scheme introduced by the Government to encourage 
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people to increase their intake of fruit and vegetables (NHS, 2011). Regarding 

children’s intake, frequency estimates will largely rely on the child as parents 

cannot be sure what the child is eating at school, and the school cannot be sure 

what the child is eating at home. It is therefore paramount we understand 

whether children can accurately process this kind of frequency information. To 

the author’s knowledge, there are no studies which currently investigate this.  

By their very nature, frequency judgements are numerical – but no 

research has investigated links between the frequency processing of everyday 

events and number in children.  Whilst the adult literature suggests adults 

prefer to give enumerative answers to frequency questions, children tend to 

give qualitative answers (e.g. “lots”, “many”) or inaccurate quantitative answers 

(Orbach & Lamb, 2007; Roberts et al., 2015; Sharman et al., 2011; Wandrey, 

Lyon, Quas, & Friedman, 2012). The developmental findings thus raise the 

question as to whether or not frequency processing and numerical abilities are 

related. 

In addition, frequency processing is often considered as a subset of 

temporal memory, that is, memory pertaining to time (Orbach & Lamb, 2007; 

Roberts et al., 2015). Whilst there appears to be no research investigating 

everyday frequency processing and number, in the temporal memory literature 

there are a number of studies assessing other temporal attributes such as the 

duration of an event. For example, in adults numerical processing has been 

found to interfere with duration processing in a stroop task (Dormal, Seron & 

Pesenti, 2006). In the animal cognition literature it has been demonstrated that 

animals utilise basic, non-symbolic counting mechanisms to determine 

duration (Meck, Church, & Gibbon, 1985; Meck & Church, 1983). Therefore it 

appears that there are links between the temporal construct of duration 

processing and numerical processing, but research is currently lacking with 

regard to frequency processing and numerical skills. 

Given the lack of research into children’s ability to recall frequency 

information and the possible links between numerical processing and 

frequency processing, Experiment 1 aimed to investigate (i) whether children 

are able to determine the number of times real contextually experienced events 

have occurred; (ii) whether this ability improves with age and, (iii) whether 
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this type of frequency processing is linked to numerical skills. Given the 

importance of fruit and vegetable consumption, the experiment was designed 

such that the results would provide much needed data on whether children can 

monitor their intake. Therefore, two age groups of children were provided with 

fruit based snacks each school day for one week, with the frequency of the 

snacks varying on a daily basis. Children’s numerical ability was assessed using 

a subitizing/dot enumeration task. Subitizing is our ability to rapidly and 

accurately evaluate a small number of objects (~4) whilst dot enumeration is a 

slower non-symbolic sequential counting process involving one to one mapping 

between objects and number words (Gelman & Gallistel, 1978). These are 

thought to be distinct skills which develop relatively early (Reeve, Reynolds, 

Humberstone, & Butterworth, 2012; Schleifer & Landerl, 2011) and are 

presumed to reflect the existence of two separate, but linked, numerical 

systems (Reeve et al., 2012). Subitizing reflects numerosity, our ability to judge 

quantity, whilst dot enumeration appears to reflect children’s basic counting 

skills (Gray & Reeve, 2014; Schleifer & Landerl, 2011). Thus, given suggestions 

that frequency processing may involve a counting strategy to determine the 

number of times an event has occurred, it was reasoned that dot enumeration 

performance may be related to children’s ability to recall the number of times 

an event has occurred. In contrast, the ability to subitize appears to develop in 

very young children even before they are able to count (Benoit, Lehalle, & 

Jouen, 2004; Feigenson, Carey, & Hauser, 2002) and is thought to be an 

automatic skill (Trick & Pylyshyn, 1994, though see Pincham & Szűcs, 2012). 

Nevertheless, subitizing efficiency (shorter response times and a larger 

subitizing range) increases with age (Reeve, Reynolds, Humberstone, & 

Butterworth, 2012), such that adult-like subitizing performance may only be 

present after around 11 years old (Schleifer & Landerl, 2011). Given the 

proposed automatic nature of subitizing, it may be less likely that this part of 

the task will correlate with frequency processing, however this is unknown. 

Further, the evidence that children become more efficient at subitizing with age 

(e.g. Reeve et al., 2012) may also suggest there is a link.  

In addition, children’s mathematical achievement was also assessed to 

determine whether the ability to recall everyday frequency information is 
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related to an applied mathematical understanding; there is currently no 

research which investigates this.  The inclusion of a maths achievement test 

allowed us to investigate whether mathematics skill is related to subitizing and 

dot enumeration. Previous research has found that subitizing and dot 

enumeration are related to calculation skills (Gray & Reeve, 2014; Penner-

wilger et al., 2007; Reeve et al., 2012), but to the authors knowledge nobody has 

tested whether they are also important for the wider range of mathematics 

skills that are tested in school (e.g. fractions, shapes and figures). This was 

rectified by using children’s scores on the standardised maths tests carried out 

by the school at the end of each school year. As suggested in Chapter 1.1, 

numerosity provides a basis for early number knowledge, and these two skills 

link to mathematics, thus correlations between subitizing, dot enumeration and 

mathematics would be expected.  

Finally, it was investigated whether temporal delay had any impact on 

children’s ability to recall frequency information. This is an important aspect of 

memory research, given that memory decays over time (Ebbinghaus, 1885). It 

also has direct relevance to a number of settings in which frequency processing 

is important. For example, in the forensic setting, disclosure of abuse is often 

not immediate, and can take place after lengthy delays (Wandrey et al., 2012). 

The one study which has looked at delay did not find any reduction in 

performance (Sharman et al., 2011), however, their study involved children 

being questioned after one week and after five weeks. Whilst this delay may be 

relevant to the forensic setting, this study was interested in investigating 

shorter delays given that children are unlikely to need to recall their daily 

intake of fruit and vegetables for such long periods of time. Children will need 

to be able to remember this kind of information each day, thus children were 

asked to recall their intake after one day, but also after one week to determine 

whether delay does impact children’s memory for frequency.   
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2.2 Methods 

2.2.1 Participants 

Thirty one children in Year 4 (M = 9.4 years; range = 8.9 to 9.8; 15 male) and 

twenty nine children in Year 6 (M = 11.3 years; range = 10.6 to 11.8; 16 male) of 

the English school system took part in the experiment. The children were 

mostly of White or South Asian ethnicity (28% White British; 43% Pakistani; 

29% other) and attending a primary school in the North of England. Parents 

were asked to provide information about allergies to ensure that no child 

would be allergic to the smoothies; they were also given advice about food 

allergies and how to recognise and treat them.  

2.2.2 Materials 

Smoothies: A total of 600 smoothies produced by the Organic children’s food 

supplier Ella’s Kitchen were used in this experiment. They were chosen as they 

contain no additives, only fruit purees, and come in small, ready to hand out 

containers. Each pouch contained one of the children’s five a day.  
 

Questionnaires: At the end of each day children were presented with a piece of 

paper with the question “how many smoothies were you given today?” printed 

on it. Once they had completed this, they were given a new sheet with the same 

question, but this time children were given 6 answers (0, 1, 2, 3, 4, and 5); they 

were asked to circle the one they thought was correct. 
 

Number tasks: A combined subitizing and dot enumeration task was 

completed on portable tablet computers (Toshiba Portege M700-13P, screen: 

257 x 160 mm, 1280 x 800 resolution, 100 Hz refresh rate) which recorded 

accuracy and reaction times (see Figure 2.1). It was placed at a comfortable 

position in front of the child, approximately 40-60cm away. This task was 

created using Pygame software and consisted of 48 randomised trials during 

which one to eight black dots on a white background appeared on the screen; 

this resulted in each quantity (1-8) being presented six times (half within the 

subitizing range of 1-4 and half in the dot enumeration range of 5-8). The 

arrangement of the dots was random, with the only restriction being that the 
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dots could not be too close to the outer edges of the screen (within 60mm) or 

too close to each other (within 100mm). 

 

Figure 2.1 A schematic of the subitizing task showing two trials separated by a 

fixation cross. 

2.2.3 Procedure 

At the beginning of the school week, children were introduced to the 

experimenter who told them they would be trying out some new smoothies in 

school and would be asked questions about them at the end of each day. The 

smoothies were labelled with the child’s name and given to the teacher at the 

beginning of each day; children were given between zero and four smoothies. 

Four different flavours were used to stop the children becoming bored with 

them; they were asked to rate liking on a 5 point Likert scale from “I like it a lot” 

to “I dislike it a lot”. On average, all of the smoothies were rated as being “liked 

a lot” or “liked a little bit”, none were rated as negative.   

The teacher was given a protocol explaining when each smoothie should 

be given and which flavour it should be, these were both pseudo randomised at 
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the group level. When the teacher handed out the smoothie, they told the 

children to drink as much as they wanted and then collected the pouches back. 

At the end of each day, children were asked to write down on a question sheet 

how many smoothies they were given that day. Given the low accuracy 

observed in previous studies, there was concern that children would perform 

poorly in this experiment and so they were also given a sheet which asked 

children to circle the number of smoothies they had been given that day (0-5). 

Cued recall, or recognition, has been repeatedly shown to be easier than free 

recall (Anderson & Bower, 1972), thus if children were very poor at free recall, 

they might nonetheless be able to answer the cued recall questions correctly 

and therefore improve their accuracy. To assess delay, after one week children 

were given a new free recall question sheet and asked to write down how many 

smoothies they had on each day of the previous week.  

The following week each child individually completed a combined 

subitizing and dot enumeration task. During this task between one and eight 

dots appeared on the computer screen, the children had to determine how 

many dots were presented as quickly and as accurately as possible. The dots 

remained on the screen until the child responded by pressing the space bar and 

simultaneously telling the experimenter the number of dots they thought had 

appeared. Reaction time was recorded when the space bar was pressed. A 

fixation cross was presented for 1,500ms between trials. Children were given 

three practice trials in the same format as the test trials. Finally, maths ability 

was provided by school assessments based on national norms. These 

assessments are completed by children at the end of each year and include tests 

of arithmetic and knowledge of shape and size (Department of Education, 

2013). Each child is then assigned to a certain national curriculum level of 

performance based on their results; children are expected to progress through 

these levels during schooling (Department of Education, 2013).  
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2.3 Results 

2.3.1 Frequency Recall of Smoothie Intake 

The main aim of the study was to determine how well children could recall 

their smoothie intake, after one day and after one week. Percentages of correct 

responses displayed in Table 2.1 show that children performed at or near 

ceiling in the immediate recall condition, with decreased accuracy after a delay. 
 

 

Table 2.1 Mean percent correct by age and delay [95% confidence interval] 

 Immediate Recall Delayed Recall 

Year 4 97.24 [92.94, 101.54] 73.79 [62.90, 84.69] 

Year 6  86.79 [82.41, 91.16] 56.43 [45.34, 67.52] 

 

A mixed model ANOVA revealed a significant effect of recall type, F (1, 55) = 

49.632, p < .001, η2p = .474, a non-significant interaction, F (1, 55) = .818, p = 

.370, η2p = .015 and a significant effect of age, F (1, 55) = 9.591, p < .01, η2p = 

.148. These results show that independent of age group, children were most 

accurate at recalling the smoothies immediately, rather than after a delay; 

however, this result is interpreted with caution given the ceiling effects in the 

immediate recall data. Interestingly, the effect of age was driven by Year 6 

children being less accurate than Year 4 children. This is likely to be due to 

problems during testing which resulted in these children not being given the 

smoothies at the correct time, or at all. For example, unknown to the 

researcher, children were taken out of class for a morning to complete bicycle 

competence training and thus missed their scheduled smoothies. Further, the 

regular class teacher unexpectedly became ill and was replaced by a supply 

teacher who was not informed about the research resulting in multiple errors 

in the distribution of the smoothies. Thus there were significant problems with 

testing which will have interfered with Year 6 children’s memory for the 

smoothies; notably the researcher cannot be sure how many smoothies the 

children were given and when.  
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Next, differences in accuracy depending on the frequency of children’s 

smoothie intake were analysed. A mixed model ANOVA was conducted with 

frequency as a within subjects factor (5 levels; 0, 1, 2, 3, 4) and age as a between 

subjects factor (2 levels; Year 4, Year 6). There was a significant effect of 

frequency, F (4, 152) = 5.089, p < .01, η2p = .118; the only significant difference 

between frequencies was that children were more accurate when recalling 0 

smoothies than 3 smoothies. Once again there was a significant effect of age, 

F (1, 38) = 4.921, p < .04, η2p = .115, due to the Year 4 children being more 

accurate. The interaction was non-significant, F (4, 152) = .197, p = .197 η2p = 

.041. 

A cued recall test was also administered each day after the children had 

completed their free recall sheets; once again the children performed at ceiling 

each day. Average accuracy was above 90% for each day, except on the last day 

when children were given three smoothies. On this day accuracy dropped to 

81% for Year 4 children, and 55% for Year 6 children. Whilst it is not clear why 

this drop in accuracy occurred, it is possible that the children were losing 

interest in the smoothies. As this was the fifth and final day the children were 

given the smoothies, it is also possible that the children were starting to get 

confused about how many smoothies they had been given, resulting in reduced 

accuracy for this day.  

2.3.2 Subitizing and Dot Enumeration  

Next the subitizing and dot enumeration data were prepared for analysis. Data 

were first screened for outliers; any z scores of 3 and above were removed from 

the data set (Year 4 = 1.5% of all trials, Year 6 = 1.7% of all trials). 3.8% of Year 

4 trials and 1.7% of Year 6 trials were removed as errors, as analysis is 

completed on correct responses only (Piazza et al, 2002; Reeve et al, 2012). 

Participant’s reaction times were then averaged to provide reaction times for 

each quantity. Figure 2.2 shows comparably flat slopes for dot quantities one to 

three, and steeper increases from four to eight. Based on previous literature, 

linear regression lines were fitted to the data to determine the best fit for each 

age group (Reeve et al, 2012). Figure 2.2 demonstrates that the data is best fit 

by two different linear regression lines suggesting a subitizing range of one to 
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three with children employing dot enumeration after this point. We then used a 

mixed model ANOVA to further confirm the point of discontinuity indicated by 

the regression lines (subitizing 1-3 dots, enumeration 4-8 dots). This revealed a 

significant effect of numerical processing type (subitizing or dot enumeration), 

F (1, 57) = 1281.726, p < .001, η2p = .957; subitizing was significantly quicker 

than dot enumeration. Although there was no effect of age, F (1, 57) = 3.174, p = 

.080, η2p = .053, there was an interaction, F (1, 57) = 9.025, p < .001, η2p = .137. 

This was driven by the Year 6 children being faster than the Year 4 children in 

the dot enumeration range only (p < .05).  

 

 

Figure 2.2 Average reaction times for each quantity. Error bars represent ±1 

standard error of the mean. 

2.3.3 Correlational Analysis 

To determine whether recall of event frequency was associated with subitizing, 

dot enumeration and/or mathematical skills, partial correlations (controlling 

for age) were conducted with delayed recall, mathematical achievement, 

subitizing (quantities 1 to 3) and dot enumeration (quantities 4 to 8). Separate 

correlations for Year 4 and Year 6 were conducted given that there were 

multiple problems with testing the latter group. Finally, due to the ceiling 

effects and low variability in the immediate recall data, this analysis was 

conducted in relation to delayed recall only. These results can be seen in Tables 

2.2 and 2.3. 
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Table 2.2 Partial correlation coefficients for delayed recall, mathematical 

achievement, subitizing and dot enumeration for Year 4 children (controlling for 

age) 

  1 2 3 4 

1. Delayed Recall __    

2. Maths Achievement .505* __   

3. Subitizing .261 -.295 __  

4. Dot enumeration .092 -.338 .878** __ 

Note: *p < 0.05; **p < 0.01. 

 

Table 2.3 Partial correlation coefficients for delayed recall, mathematical 

achievement, subitizing and dot enumeration for Year 6 children (controlling for 

age) 

  1 2 3 4 

1. Delayed Recall __    

2. Maths Achievement .042 __   

3. Subitizing .100 -.570* __  

4. Dot enumeration -.210 -.656* .721** __ 

Note: *p < 0.05; **p < 0.01. 

 

Notably, delayed recall correlated with maths achievement for the Year 4 

children only. Further, whilst subitizing and dot enumeration correlated for 

both age groups, these skills were only correlated with mathematical 

achievement for the older children. Given the correlation between delayed 

recall and mathematics achievement, a regression analyses was also run on the 

Year 4 data to see if it could explain unique variance in maths achievement, 

these results can be seen in Table 2.4. The model accounted for 34% of the 
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variance in mathematical achievement, (R2Adjusted = .340, F = 4.471, p < .01); 

delayed frequency recall was the only significant predictor. However, given the 

small sample size (N = 31), the results are interpreted with caution.  

 

Table 2.4 Hierarchical regression analysis predicting mathematical achievement 

  β t R2Adjusted 

    .340 

 Age .608 3.583  

 Delayed Recall -.361** -1.055  

 Subitizing -.076 -.218  

 Dot enumeration -.067 -.376  

Note: *p < 0.05; **p < 0.01. 

2.4 Discussion 

This study aimed to examine whether children can recall the number of times 

an everyday event had occurred. The high accuracy observed after a short delay 

suggests that children were able to monitor their intake on a day by day basis. 

However, their accuracy was so high that ceiling effects were observed meaning 

the immediate recall data were not fully analysed; this level of accuracy was 

much higher than expected based on previous studies (e.g. Roberts et al., 2015; 

Sharman et al., 2011; Wandrey et al., 2012). A number of teachers reported to 

the researchers that the children were very excited by the smoothies and would 

talk about them to other children, staff and supply teachers; it is possible that 

the excitement created by the novelty of the smoothies contributed to the 

observed ceiling effects. This excitement may have resulted in the children 

being able to retain and recall the information to a much greater degree of 

accuracy than they might have if the activities had been more mundane. Indeed, 

research shows we are more likely to remember distinctive (Hunt & McDaniel, 

1993) or novel items (Kishiyama & Yonelinas, 2003). Furthermore, 
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autobiographical memory research suggests emotional events are remembered 

better than non-emotional events in terms of both their vividness and 

durability (Holland & Kensinger, 2010). This suggests that the type of event 

that children experience may impact on their ability to recall frequency 

information. This level of excitement and its potential impact upon 

performance was something that was not anticipated, and is worth considering 

in future research. 

Whilst age effects were observed, they were in the opposite direction to 

the authors expectations; younger children were more accurate at frequency 

recall than the older children. However, as noted in the results, there were a 

number of issues with testing which can explain these results. The Year 6 class 

teacher was fully briefed at the beginning of the week about when to give the 

smoothies, but they were not present on a number of the days meaning a 

supply teacher who had not been briefed was in charge of giving the children 

the smoothies. On at least one day, this meant the children received no 

smoothies when they should have done, on another it meant they received 

them all at once. Therefore the age effects, and the Year 6 smoothie data in 

general, are interpreted with extreme caution. It is also possible that the 

smoothies were less salient to the Year 6 children, and thus less memorable to 

them. Testing was completed just after the Year 6 children had finished their 

final primary school exams, thus they were being rewarded with time away 

from the classroom to prepare for the end of year school play. Given this, the 

smoothies may have been less exciting to these children.  

We also found children’s accuracy decreased by 24-30% after a delay of 

just one week; though accuracy was still high at above 70% in the Year 4 

children. These results have important implications in forensic settings 

whereby children are often questioned after a delay; as yet there is no 

agreement on what level of accuracy is good enough in the court room, despite 

the importance of the child’s statement to the proceedings. Interestingly, 

Sharman et al (2011) found that delay had no impact on accuracy, but they 

questioned the children at different time points. In their study, children were 

first questioned after a week and then again after five weeks, compared to at 

the end of the day and after a week in the present study. It is therefore possible 
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that whilst decay occurs within the first week, information that is retained at 

this time point is then less susceptible to forgetting. Accordingly, whilst 

research suggests multiple theories of why we forget, the consensus appears to 

be that forgetting occurs rapidly at first and then eases off, unless conscious 

efforts (e.g. rehearsal) are made to preserve the memory trace (Ebbinghaus, 

1885). Further, the events in Sharman et al’s (2011) study took place over a 

number of weeks. Thus even when the children are first questioned, some of 

the events will have happened 4 weeks ago, possibly making it harder for 

children to recall the events. This may also contribute to the low accuracy 

Sharman et al (2011) observed.  

Due to the ceiling effects in the immediate recall data, only the delayed 

recall data was used in the correlational analysis. Delayed recall did not 

correlate with subitizing, dot enumeration or mathematical achievement in 

Year 6 children, however given that the reliability of the Year 6 data was 

compromised, these results are again interpreted with caution. A correlation 

between delayed recall and mathematics achievement was observed in the Year 

4 children’s data, but neither correlated with subitizing or dot enumeration.  In 

fact, delayed recall predicted mathematical achievement, though the sample 

size is very small. Brown (2002) suggested that: (a) frequency strategies may 

rely on some form of numerical processing, specifically counting, and, (b) that 

enumerative strategies are more likely to be used for distinctive events (which 

the smoothies could be conceived as) (Conrad et al., 1998). However, if that 

were the case, dot enumeration would be expected to correlate with frequency 

processing. One possibility is that children are relying on symbolic number 

knowledge (Arabic digits) as opposed to non-symbolic (e.g. sets of dots), thus 

explaining why it correlates with mathematics achievement but not dot 

enumeration.  It could also be that the delayed recall of frequency information 

and mathematical achievement draw upon shared skills such as working 

memory and executive function. These skills are consistently linked to 

mathematics achievement (Alloway & Alloway, 2010; Alloway & Passolunghi, 

2011; De Smedt et al., 2009; Friso-van den Bos, van der Ven, Kroesbergen, & 

van Luit, 2013; Holmes & Adams, 2006; Meyer, Salimpoor, Wu, Geary, & Menon, 

2010) and are likely involved in the processing of frequency information. For 
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example, working memory has been implicated in the processing of short term 

frequency of occurrences (Meck & Church, 1983). However, these suggestions 

would need to be tested further to determine the reason behind the correlation.  

In future work it would be interesting to consider asking children how 

they arrived at their estimates in order to access more detailed information 

about strategy use, though it is important to note that children often struggle to 

express information about how they arrived at answers. Nevertheless, if it 

could be achieved this would provide information about whether children are 

using strategies, but also what kind of strategies. Brown (2002) suggests adults 

may use multiple different strategies depending on a number of factors such as 

the distinctiveness and regularity of the events. For example, they may use 

simple enumeration, i.e. just counting events, but may also add extra 

occurrences to compensate for any that may have been forgotten. This strategy 

arguably requires an understanding that memory decays. Further, adults tend 

to use rate based strategies by utilising the information of how often they go to 

something per week to make monthly estimates of event frequency (Brown, 

2002).  Future research may then be able to determine at what point children 

are able to utilise the best strategy for a given situation, for example, do they 

extrapolate when they think they may have forgotten instances of an event, or 

do they just count all the ones they can remember. 

The key focus of this study was to determine whether children could 

recall frequency information and whether this was related to other numerical 

skills. However, it also allowed us to assess the development of subitizing and 

dot enumeration and their potential relationship with mathematical skills. 

Whilst little research has assessed these skills across age groups, the results 

corroborated the current findings; reaction times decrease as a function of age 

and increase as a function of quantity (Reeve et al., 2012). We found the point of 

discontinuity, that is the change between subitizing and dot enumeration, was 3 

dots; reaction times were much faster within the subitizing range. We also 

found that the two systems were related, as evidenced by the correlation 

between subitizing and dot enumeration in the present study. Research has 

shown that subitizing and dot enumeration predict calculation abilities (e.g. 

addition and subtraction) (Gray & Reeve, 2014; Reeve et al., 2012), and that 
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poor subitizing and dot enumeration skills are associated with problems in 

mathematical development, such as those observed in dyscalculia (Landerl, 

2013). Our results provide some further support for these findings, but only in 

the Year 6 data. It is unclear why no relationship was observed in the Year 4 

data, but it does highlight the importance of more research being conducted 

into the development of these abilities, especially given that it has been 

proposed that subitizing abilities could be used as a diagnostic tool for 

mathematical learning disabilities (Desoete, Ceulemans, Roeyers, & 

Huylebroeck, 2009). 

Experiment 1 has demonstrated that children can recall the frequency of 

their intake of fruit smoothies with a high degree of accuracy. We also found 

that their ability to recall this information after a delay was linked to 

mathematical achievement. However, given the problems with the Year 6 data 

and the observed ceiling effects, it is hard to draw any firm conclusions from 

this study. We therefore decided to use a different approach in order to assess 

the possible links between frequency processing and number in the next 

chapter.  
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CHAPTER 3 

EXPERIMENT 2: THE DEVELOPMENT OF SHORT TERM 

FREQUENCY PROCESSING AND ITS RELATIONSHIP 

WITH NUMERICAL SKILLS 

3.1 Introduction 

In Chapter 2 it was found that children could process the frequency of everyday 

events; they were remarkably accurate at recalling their intake of fruit 

smoothies on a daily basis. However, given that frequency processing can be 

studied from both short term and long term perspectives, Chapter 3 moves on 

to investigate frequency processing over much shorter time frames. As with 

Chapter 2, it was assessed whether children are sensitive to frequency, and 

whether this improves with age. This is especially relevant to the short term 

frequency processing literature in which there has been an on-going debate 

about whether this kind of frequency processing is an ‘automatic’ process 

which is age invariant (e.g. Ellis, Palmer, & Reeves, 1988; Goldstein, Hasher, & 

Stein, 1983; Hasher & Chromiak, 1977), or requires more cognitively 

penetrable processing and is a skill that increases with age (e.g. Chalmers & 

Grogan, 2006; Ghatala & Levin, 1973; Lund, Hall, Wilson, & Humphreys, 1983). 

For example, Hasher & Chromiak (1977) found that neither age nor 

instructions influenced performance when judging the frequency of presented 

words. However, Ghatala & Levin (1973) found that children were more 

accurate at judging both picture and word frequency with age (see section 

1.2.2).  

Thus research to date has provided mixed evidence for the automatic 

nature of frequency encoding, at least in relation to developmental effects. 
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However, this may in part be due to differences in methodology. For example 

studies differ widely in the type and number of stimuli, and the delay at which 

frequency judgements are requested. Of note, studies differ in whether or not 

participants are asked to make absolute (how many times did you see this 

picture?) or relative judgements (which picture appeared the most). In their 

review article, Zacks & Hasher (2002) clarify that their original model was 

related to the automatic encoding of relative frequency judgements. This is then 

consistent with the evolutionary use of frequency information, where it is the 

knowledge of relative quantity which is key (Kelly & Martin, 1994), for example 

a predator will be more successful if they frequent areas where there is 

relatively more prey than another area.  

A further issue with the methodologies used to date is the potential for 

participants to use strategies to complete the task. The standard task for 

frequency judgements is to present participants with items or pairs of items at 

a rate of one presentation every few seconds: a time-frame that would enable 

participants to potentially supplement performance via the use of strategies. It 

is argued that for a task truly to measure whether or not a process is automatic, 

participants should not be able to engage in higher order cognitive strategy use 

(Sanders, Zembar, Liddle, Gonzalez, & Wise, 1989). Indeed, several studies have 

shown that both understanding the usefulness of strategies, and then being able 

to implement those strategies successfully, show clear developmental 

progression (for review see Pressley & Hilden, 2006). Thus, if participants are 

presented with a frequency processing task which enables the use of strategies, 

the differences between age groups in the ability to engage strategies 

effectively may confound the results. Sanders et al (1989) argue that even in 

studies where participants are not aware they will be asked about frequency, 

and are presented with a “cover task”, more efficient processing of the cover 

task (via strategy use) could also affect how participants engage with the 

frequency information.  

To assess this Sanders et al (1989) ran two experiments with 7-year-

olds, 11-year-olds and adults. In the first, participants were asked to detect 

patterns within a series of pictures, a task where performance could be 

improved by using strategies to remember individual pictures. They found that 
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the older children and adults were more accurate than the younger children 

when subsequently asked about the frequency of individual pictures.  The 

second experiment used a target-absent visual search methodology, where 

participants had to indicate when a given item was not present in a row of 

items, thus removing the advantage of engaging strategies during task 

completion. The second study eliminated the age effects. However, the second 

study also resulted in floor effects across all age groups, and the authors 

acknowledged that further research would be necessary to test whether or not 

tasks that prevent strategy use are able to show age invariance in relative 

frequency processing. 

Thus, in order to investigate whether this kind of frequency processing 

is truly age invariant according to Zacks and Hasher's (2002) criteria, a relative 

frequency task should be utilised which is too demanding to enable strategy 

use. Further, previous literature has generally only asked children to 

distinguish between frequencies of 0 – 4, a relatively small number for a 

supposedly automatic skill, and often use words or pictures which may require 

an extra level of processing that is not related to pure frequency processing, but 

related to the child’s familiarity with or labelling of the stimuli. Therefore, a 

much harder task was devised using simplistic stimuli whereby participants 

had to judge the relative frequency of a total of 36 shapes (consisting of three 

difference shapes) in each trial. This increased difficulty is more reflective of 

frequencies encountered in daily life, for example frequency processing in word 

learning (Gonzalez-Gomez, Poltrock, & Nazzi, 2013).  

As in Chapter 2, it was assessed whether frequency processing is related 

to numerical processing by investigating the possible links between it and 

subitizing/dot enumeration. As previously discussed, subitizing is the ability to 

process small sets of items (generally ≤4) rapidly and accurately, whilst for 

numbers greater than 4 processing is slower and more effortful, and relates to 

counting (Arp, Taranne, & Fagard, 2006; Gray & Reeve, 2014; Mandler & Shebo, 

1982; Reeve et al., 2012; Trick & Pylyshyn, 1994) (see Chapter 2.1). Some 

researchers have argued that subitizing is ‘automatic’ due to the speed with 

which participants are able to respond, and the fact that response times do not 

dramatically increase as the number of items increases (Trick & Pylyshyn, 
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1994, though see Pincham & Szűcs, 2012). The exact nature of this 

‘automaticity’ is unclear and mirrors some of the debate in the frequency 

literature on exactly what is meant by the term ‘automatic’ (see e.g. Olivers & 

Watson, 2008; Pincham & Szűcs, 2012; Railo, Koivisto, Revonsuo, & Hannula, 

2008; Trick & Pylyshyn, 1994; Vetter, Butterworth, & Bahrami, 2008).  To the 

authors knowledge, no research has investigated whether relationships exist 

between short term frequency processing and numerosity judgements. In 

relation to everyday frequency processing, it was hypothesised that dot 

enumeration may be a more relevant skill than subitizing. However, it might be 

expected that subitizing would be more relevant for short term frequency 

processing than dot enumeration. A correlation with subitizing but not dot 

enumeration would add weight to the suggestion that frequency processing is 

automatic.  

In accordance with Chapter 2, children’s scores on a school based 

mathematics achievement test were obtained. In the previous chapter, 

children’s performance on this test was related to their ability to recall 

everyday frequency information after a delay (see Chapter 2.3.3). To the 

authors’ knowledge, only one study has directly investigated the links between 

short term frequency processing and maths ability. Lund et al (1983) gave a 

relative frequency processing task to seven to eight year olds, including a group 

of children who were underachieving in maths. They did not find any 

differences between typically developing and underachieving children in 

frequency processing, suggesting that the two abilities are separate, and that 

frequency processing does not underpin mathematical ability. In contrast, 

subitizing and dot enumeration have been found to link to later mathematical 

skills in children (Feigenson et al., 2004; Gray & Reeve, 2014; Landerl, 2013; 

Penner-wilger et al., 2007; Reeve et al., 2012; Schleifer & Landerl, 2011). For 

example, Reeve et al (2012) assessed children’s numerical skills from age five 

to eleven years and found that the children could be categorised in to 

subgroups based on their enumeration abilities; notably group membership 

remained stable for the six year testing period and could predict maths ability 

when the children were tested at age nine and eleven years. These findings 

suggest that whilst quantity processing (e.g. subitizing/dot enumeration) and 
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short term frequency relate to the processing of number, they seem to have 

different links to mathematical ability; this will be further investigated in the 

present study.  

Finally, children’s working memory, that is, the ability to maintain and 

manipulate information, was assessed (Alloway, 2007). It has been suggested 

that working memory may play a role in short term frequency processing as it 

allows us to keep track of the quantity of past stimuli, whilst attending to new 

stimuli (Meck & Church, 1983). However, if frequency processing is indeed 

automatic, then these two tasks shouldn’t correlate; working memory tasks are 

cognitively effortful and may indicate that children are using more strategic 

processing than would be expected from an automatic task – the inclusion of a 

working memory task allows us to assess this. 

In sum, the present study’s aims are: (i) to determine whether there are 

developmental increases in short term frequency processing, (ii) to analyse 

whether frequency processing is related to core numerical skills and/or more 

complex mathematical skills, and, (iii) to assess whether frequency processing 

is related to working memory. To do this children and adults were asked to 

complete a frequency processing task, a subitizing/dot enumeration task, a 

working memory task.  Children’s maths performance was also obtained from 

the school.  

3.2 Method 

The frequency task was piloted on a sample of 8 adults (M = 24.6, 5 female). 

This ensured that the task was neither too hard, nor too easy for participants to 

complete.   

3.2.1 Participants 

The sample consisted of 114 children aged between 8 and 11 years. 53 children 

were in Year 4, (M = 9.4 years; range = 8.9 to 9.8); 53 were in Year 6, (M = 11.3 

years; range = 10.6 to 11.9); Half of these children also took part in the study 

described in Chapter 1. Children were mostly of White or Pakistani ethnicity 

(32% White British; 28% Pakistani; 12% Black African/Caribbean; 10% Indian; 
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6% Asian; 4% mixed race; 1% White Eastern European; 1% Bangladeshi). All 

children attended a primary school in the North of England. Parents gave their 

children consent to take part prior to the study beginning. Children gave their 

consent to participate when the study began. The adult sample consisted of 21 

participants aged between 18 and 33 years (M = 22.30, SD = 3.78) recruited at 

the University of Leeds. The gender split was roughly equal (11 females) and all 

participants were of British descent. 

3.2.2 Materials 

The subitizing and frequency tasks were completed on four identical portable 

tablet computers (Toshiba Portege M700-13P, screen: 257 x 160 mm, 1280 x 

800 resolution, 100 Hz refresh rate) which recorded accuracy (subitizing and 

frequency) and reaction times (subitizing). The computers were placed at a 

comfortable position in front of the participant, approximately 40-60cm away. 

Both tasks were created and run using Pygame software. 

3.2.3 Procedure 

All participants completed four tasks in a fixed order: forward digit span, 

subitizing/dot enumeration, backwards digit span and frequency processing. 

Both digit span tasks were presented verbally and were preceded by a practice 

trial. The forward digit span task consisted of 6 blocks of three trials each; the 

sequence of digits increased by one each time resulting in the first trial having 3 

digits and the last having 8 digits. The backwards digit span consisted of strings 

which ran from 2 digits to 6 digits to reflect the increased difficulty. 

After the forward digit span task, participants completed a combined 

subitizing and dot enumeration task (see Figure 3.1a). This consisted of 48 

randomised trials during which one to eight black dots on a white background 

appeared on the screen; this resulted in each quantity (1-8) being presented six 

times (half within the subitizing range of 1-4 and half in the dot enumeration 

range of 5-8). The arrangement of the dots was random, with the only 

restriction being that the dots could not be too close to the outer edges of the 

screen (within 60mm) or too close to each other (within 100mm).  
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Participants were asked to determine how many dots were presented as 

quickly and as accurately as possible. They responded by pressing the space bar 

and simultaneously telling the experimenter the number of dots they thought 

were presented. The dots remained on the screen until the key press. Reaction 

time was also recorded as this point. For the first stimulus presentation, and 

after each trial, a fixation cross was presented for 1500ms. Participants were 

given three practice trials in the same format as the test trials. 

The frequency task consisted of 7 trials during which three different 

shapes (a square, a cross and a triangle) repeated for varying frequencies; a 

total of 36 shapes appeared in each trial (see Figure 3.1b). The frequency series 

was pseudo-randomised so that the number of repetitions of a shape varied, for 

example a square could be the most frequent shape in trial one, but the least 

frequent in trial two. The frequency series was arranged such that the task 

became harder with each trial, this was operationalised by decreasing the 

difference in the number of repetitions of the most frequently presented shape, 

relative to the other shapes within each trial. For example, at the beginning of 

the task, the most frequent shape was presented 19 times, the next frequent 

was presented 12 times and the least frequent was presented 5 times. The 

number of shape repetitions of the most frequent shape decreased by one with 

each trial whilst the number of repetitions of the least frequent shape increased 

by one with each trial. Thus, by the final trial (trial 7), the frequency of shape 

repetitions was 13, 12 and 11. Each shape remained on the screen for 1 second 

with a 10ms gap before the next shape appeared.  

Participants were told they would see shapes on the screen, some of 

which would appear more than once. After each trial, a question screen asking 

which shape they saw the most was presented. This screen contained all three 

shapes with a number between 1 and 3 underneath. In order to respond, 

participants had to press the number on the keyboard which corresponded to 

the shape they thought had occurred the most. Participants were informed they 

would have to estimate this prior to the study beginning.  
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Figure 3.1 (a) Left is a schematic of the subitizing task with two example shape 

repetitions. (b) Right is a schematic of the frequency task with four example 

shape repetitions and the answer screen which is presented after 36 shape 

repetitions. 

3.3 Results  

3.3.1 Descriptive Analysis 

Frequency task: Firstly, data is presented to determine whether there are age 

differences in children’s and adult’s ability to process frequency information. 

The data were coded in two ways, as a span and as an error measure. Given that 

the task increased in difficulty with each trial, the span variable was calculated 

as the trial before the participant got two consecutive trials wrong. As there 

were 7 trials in the task, the maximum span is 7. The error measure is a simple 

average of the number of errors throughout the task per age group. Once again, 

the maximum score for the error variable is 7, meaning the participant got 

every trial wrong.  

No significant differences between the age groups were observed using 

either the span, F (2, 124) = .492, p = .492, η2p = .011, or error measure, F (2, 

124) = 2.543, p = .083, η2p = .039. These results demonstrate a lack of age 

differences in frequency processing and can be seen in Table 3.1.   
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Table 3.1 Average frequency span and frequency error by age group [95% 

Confidence Interval] 

 Frequency Span Frequency Errors 

Year 4 5.68 [5.22, 6.14] 2.11 [1.83, 2.39] 

Year 6 5.89 [5.43, 6.35] 2.21 [1.93, 2.49] 

Adult 6.19 [5.46, 6.92] 1.62 [1.18, 2.06] 

 

Subitizing and Dot Enumeration: Once again, linear regression lines were 

fitted to the data to determine the best fit for each age group; the data was fit 

best by two different regression lines for all age groups (see Figure 3.2). For the 

Year 4 and Year 6 children, the subitizing range was one to three, indicated by 

relatively flat slopes in this range, whilst the dot enumeration range was four to 

eight, indicated by steeper increases in this range. However, the adults could 

subitize up to four dots, leaving a dot enumeration range of five to eight.  

 

 

Figure 3.2 Average subitizing and dot enumeration reaction times by age and 

quantity. Error bars represent ±1 standard error of the mean. 
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We further explored this point of discontinuity with a mixed model ANOVA 

(processing type, subitizing and dot counting; age, Year 4, Year 6 and adults). 

Given that the regression lines revealed different points of discontinuity for 

adults and children, we used a subitizing range of one to three for children and 

one to four for adults. This revealed a significant effect of the type of processing, 

F (1, 124) = 1354.827, p < .001, ƞ2p = .916, indicating that reaction times for 

subitizing were significantly quicker than reaction times for dot counting. 

Further, there was a main effect of age, F (1, 124) = 47.611, p < .001, ƞ2p = .434 

and a significant interaction, F (1, 124) = 37.285, p < .001, ƞ2p = .376. Pairwise 

comparisons revealed this interaction was due to reaction times decreasing 

significantly by increasing age in the dot enumeration range (p < .001), whilst 

the Year 4 and Year 6 children had similar subitizing reaction times (p = .082) 

which were slower than the adults (p < .001). These effects demonstrate a 

discontinuity between subitizing and dot enumeration for all age groups. 

 

Working Memory: There was a significant difference between age groups in 

terms of forward digit span, F (1, 124) = 19.716, p < .001, ƞ2 = .241. This was 

driven by the adults performing better than both the Year 4 and Year 6 children 

(p < .001). Similarly, backwards digit span improved with age, F (1, 124) = 

15.458, p < .001, ƞ2 = .200, due to the adults performing better than the children 

(p < .001). These results can be seen in Figure 3.3. 
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Figure 3.3 Forwards and backwards digit span by age. Error bars represent ±1 

standard error of the mean, dotted lines represent the maximum score for each 

task. 

3.3.2 Correlational Analysis  

We next explored the relationships between variables in the child sample 

whilst controlling for age. Frequency span did not correlate with any of the 

other variables. However, subitizing and dot enumeration correlated with each 

other and with mathematics achievement, which in turn also correlated with 

forwards and backwards digit span. These correlations can be observed in 

Table 3.2.
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Table 3.2 Correlation coefficients for all variables  in the child sample controlling for age. 

  1 2 3 4 5 6 

1. Subitizing -      

2. Dot Enumeration .684** -     

3. Maths Achievement -.308* -.504** -    

4. Forward DS -.052 -.217* .429** -   

5. Backward DS -.088 -.319* .358** .403** -  

6. Frequency Span1 -.149 -.132 .041 -.124 -.053 - 

Note: *p < 0.05; **p < 0.01.

                                                           
1
 The results were the same when using the frequency errors measure.  
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3.4 Discussion 

The results lend support to the age invariance hypothesis as frequency 

processing performance did not differ significantly by age, even when including 

an adult sample. This is consistent with past research which also reports 

similar frequency processing abilities in different age groups (Johnson et al., 

1979; Ellis et al., 1988; Goldstein, Hasher, & Stein, 1983; Zacks et al, 1982). The 

present task could be considered as harder than tasks used in past studies; it 

involved stimulus repetitions of between 4 and 25 and a presentation rate of 1 

second compared to repetitions of between 1 and 4 and a stimulus presentation 

rate of 2-4seconds. This increased task difficulty prevents strategic processing, 

and therefore builds on past literature by demonstrating age invariance in this 

context, without the use of a cover task (Sanders et al., 1989). Furthermore, the 

lack of correlation between frequency processing and the working memory 

tasks also suggests a lack of strategic processing. It has previously been 

suggested that working memory is utilised in temporal processing to track 

numerosities (Meck & Church, 1983), the lack of correlation suggests this 

strategy is not being utilised here. It may also be considered as further evidence 

for frequency processing being a more automatic skill, given that working 

memory tasks are cognitively demanding. Nevertheless, the data is interpreted 

with some caution given that despite the task difficulty, participants performed 

near ceiling; the maximum span score for the task was 7, yet on average the 

present sample had spans of between 5 and 6. 

Unlike in Experiment 1, there was no evidence that frequency 

judgements were related to any kind of numerical processing. Given that 

subitizing and frequency processing are both  ‘automatic’ and numerically 

relevant skills, it is interesting that these two skills did not correlate; this may 

be indicative of these skills reflecting two separate early developed numerical 

systems. This is perhaps due to frequency processing being an evolutionarily 

relevant skill (Kelly & Martin, 1994). However, it could also be argued that 

subitizing has an evolutionary basis; it may serve to allow animals to quickly 

and accurately determine how many possible predators are in the current 

environment. Future research may focus further on the similarities and 
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differences between frequency processing and subitizing. Regarding dot 

enumeration, it is highly likely that it didn’t correlate with frequency processing 

due to the former relying on more effortful forms of counting which may not be 

utilised in an “automatic” task. It is also possible that neither subitizing nor dot 

enumeration correlated because the frequency processing task involved 

numbers outside of the range of the numerical estimation tasks used here. It 

may be interesting for future research to use larger numbers in the dot 

enumeration portion of the task to investigate this.  

In accordance with the one existing study, frequency processing was not 

related to level of mathematics performance (Lund et al., 1983); this is in 

contrast to the relationship with everyday frequency processing that was 

observed in Chapter 2. It is possible that the ability to monitor number within 

an everyday task is more relevant to applying number to the problems 

presented in mathematics tests. However, caution should be applied with 

regards to maths tests in general given that what is included in the exams can 

vary by school. Nevertheless, since performance on these exams is what is 

important for a child’s success, they remain an important measure. Consistent 

with past research, dot enumeration and subitizing were correlated with 

mathematical achievement  (Gray & Reeve, 2014; Hornung, Schiltz, Brunner, & 

Martin, 2014; Kroesbergen, Van Luit, Van Lieshout, Van Loosbroek, & Van de 

Rijt, 2009; Reeve et al., 2012; Schleifer & Landerl, 2011), providing further 

support for the suggestion that frequency processing and subitizing/dot 

enumeration reflect different early developed numerical systems. Alternatively 

the lack of correlations between frequency processing and subitizing, dot 

enumeration and mathematics could be due to participants not relying on 

numerical processing to make their judgements. In fact, Hintzman and Hartry 

(1990) suggest that relative judgements of frequency rely on familiarity, thus 

participants may have been utilising feelings of familiarity as opposed to 

numerical processing to make their judgements; the more familiar something 

is, the more often you will have presumed to have encountered it. Further, 

working memory is proposed to link to frequency processing when contextual 

information is stored (Mutter & Goedert, 1997), thus the lack of correlation 

between these two constructs could also suggest participants made familiarity 
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based judgements, as familiarity judgements do not require contextual 

information (Yonelinas, 2002).  

Consistent with past literature and the results in Chapter 2, subitizing 

and dot enumeration appeared to be distinct, yet intertwined skills (e.g. Reeve 

et al., 2012; Shimomura & Kumada, 2011). Specifically, the two skills were 

correlated but subitizing was characterised by fast reaction times and a flatter 

slope whilst dot enumeration was much slower and had a steeper slope. In 

addition, reaction times decreased with age for dot enumeration, but not 

consistently for subitizing; the only difference here was between the adults and 

children, though the gradient of the slopes were the same. Further, working 

memory correlated with dot enumeration but not subitizing; this is in line with 

studies which find working memory impacts upon dot enumeration only 

(Shimomura & Kumada, 2011; Tuholski, Engle, & Baylis, 2001, though see 

Barrouillet, Lépine, & Camos, 2008). In future it may be important to determine 

whether different kinds of working memory are related to different numerical 

skills. For example, subitizing is thought to reflect an object tracking system, 

thus visuospatial working memory may be the system which allows the tagging 

of object locations in memory (Shimomura & Kumada, 2011). Accordingly 

visual working memory has similar capacity limits to subitizing (3-4) items and 

the two tasks have been found to correlate (Melcher & Piazza, 2011), though 

this is not always observed (Gray & Reeve, 2014; Shimomura & Kumada, 2011). 

Finally, working memory correlated with maths achievement. This is 

consistent with a large body of research which finds links between working 

memory and mathematics skills (Alloway & Passolunghi, 2011; Alloway, 2007; 

De Smedt et al., 2009; Holmes & Adams, 2006; Li & Geary, 2013; Meyer et al., 

2010; Simmons, Willis, & Adams, 2012). A recent meta-analysis found that 

better performance in all aspects of working memory is linked to better maths 

skill, with verbal updating showing the strongest relationship (Friso-van den 

Bos et al., 2013).  

To sum, Chapter 3 found that children are remarkably accurate at 

processing frequency information over short time frames; this is consistent 

with the age invariance hypothesis of frequency processing which posits that it 

is such a crucial skill it is developed very early (Ellis et al., 1988; Goldstein et al., 
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1983; Hasher & Chromiak, 1977).  We did not find that frequency processing 

was related to the other numerical skills of subitizing, dot enumeration or 

mathematical achievement. This suggests frequency processing is not related to 

these types of numerical skills; it may be completely unrelated to numerical 

skills, or it may be related to a different type of numerical skill that is not 

measured here. Overall, Chapters 2 and 3 have found that children are able to 

process frequency information over both short and long time frames, though 

their relationship to other forms of numerical processing appears unclear due 

to problems with ceiling effects and reliability of the Year 6 data (Chapter 2) or 

with the lack of variability in the data (Chapter 3). The following chapters move 

on to investigate possible links between spatial and numerical processing.   
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CHAPTER 4 

EXPERIMENTS 3A AND 3B: DIRECTIONAL  

PREFERENCES IN THE SPATIAL REPRESENTATION OF 

NUMBER 

4.1 Experiment 3a 

As previously discussed in Chapter 1.1, time, number and space are argued to 

be interlinked concepts. The previous two chapters have focused on our ability 

to link number and time by determining the number of times an event has 

happened. In this Chapter I move on to investigate the links between space and 

number using a novel number line task. Given that this task has not been used 

before, we first tested it in adults to ensure that the task was measuring spatial-

numerical associations. This also allowed us to investigate one of the ongoing 

debates in the spatial-numerical literature: whether these associations are 

fleeting or inherent. 

4.1.1 Introduction 

In educated adults, number appears to be oriented in space (Dehaene, Bossini, 

& Giraux, 1993; Gobel, Shaki, & Fischer, 2011; Hubbard, Piazza, Pinel, & 

Dehaene, 2005; Marghetis, Núñez, & Bergen, 2014; Sullivan, Juhasz, Slattery, & 

Barth, 2011). The Spatial Numerical Association of Response Codes (SNARC) is 

the most widely evidenced example of this type of spatial-numerical coupling 

(e.g. Dehaene et al., 1993; Fischer, 2003; Shaki et al., 2009; Wood et al., 2008; 

Zebian, 2005). In a typical SNARC experiment, participants have to judge the 

magnitude of presented numbers by pressing a button with either their left or 
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right hand. Importantly, participants are quicker to respond to small numbers 

with the left hand, and large numbers with the right hand (Dehaene et al., 1993; 

Wood et al., 2008). As discussed in Chapter 1.3.1, this association is thought to 

derive from numerical and spatial processing sharing overlapping neural 

circuity in the brain, this is then influenced by cultural norms resulting in a very 

specific spatially directed organisation of number (Hubbard et al., 2005).  

However, this view that the SNARC effect reflects long term 

representations has recently been challenged by Fischer et al (2010) who argue 

instead that the directional spatial preferences observed in the SNARC effect 

are fleeting and reflect transient exposure to a particular relationship between 

number and spatial position. In other words, directional preferences in spatial 

numerical associations are not long lasting. Fischer et al (2010) conducted two 

standard parity judgement tasks with English speaking and Hebrew speaking 

participants but between tasks asked the participants to read a recipe which 

had small and large numbers presented either consistently with Western 

reading and writing direction (small numbers at the start of the line and large 

at the end) or inconsistently (large numbers at the start of the line, small at the 

end). In this task, they found that the inconsistent mapping reduced the SNARC 

effect in English speaking participants and reversed it in the Hebrew 

participants (Fischer et al., 2010, see also Shaki & Fischer, 2008).  Fischer et al 

(2010) interpreted the rapid impact of the inconsistent condition as reflecting 

the flexibility of the SNARC effect. In this view, the direction of the SNARC effect 

can be altered by any form of recent spatial-numerical mapping (Fischer et al., 

2010).  The idea that the SNARC phenomenon indicates a more flexible and 

transient associative learning effect is also supported by the observation that a 

reverse SNARC effect is elicited when participants are trained to represent 

numbers on a clock face with large numbers are on the left side of space 

(Bächtold et al., 1998). Finally, Lindemann et al (2008) also questioned the 

longevity of the SNARC effect finding that learning ascending, descending or 

random sequences of numbers immediately before making a parity judgement 

could modulate the effect; the SNARC effect was not present after descending 

strings of numbers had been presented, but this was only in blocked conditions 

(i.e. all ascending trials or all descending trials). 
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Therefore, it can be seen that there are two competing ideas regarding 

the nature of directional preferences observed in the spatial representation of 

number. In one account, the direction of the effect reflects a long lasting 

relationship between numbers and their common cultural spatial 

representation. In the other account, the effect is a “fleeting” association that 

can be readily reversed through temporary exposure to a different spatial-

numerical arrangement. It was therefore reasoned that it might be possible to 

dissociate these accounts by observing behaviour under conditions where 

participants are forced to rapidly select the appropriate action in response to 

an imperative stimulus. This speeded response means that participants have to 

rely on a default representation as they have no time to prepare or adapt their 

response. We therefore designed a study where participants were presented 

with an unbounded number line above which a number between 1 and 9 would 

appear. Participants were asked to move a handheld stylus to the point on the 

line which corresponded to the presented number. The line was presented both 

normally (for Western educated individuals) i.e. running from 0 to 10, and in a 

reversed manner, running from 10 to 0 with the colour of the number above the 

line indicating line direction. It was hypothesised that the neurologically intact 

adult participants would have the mental flexibility to show minimal impact on 

their reaction time when the number line is consistently reversed. This level of 

flexibility would be consistent with the findings of Fischer et al (2010). 

Nonetheless, the observation of flexibility in stable conditions is not a good test 

of whether there is a consistent directional preference for number 

representation. However, a task requiring fast action selection under unstable 

conditions would reveal the nature of the effect, thus a mixed block of trials was 

included where line direction changed randomly. This random presentation 

means that participants cannot rely on previous trials to determine which 

direction the line is running in, and therefore cannot prepare their responses. 

This means that if they are relying on a default preference, they should be 

quicker in responding to number lines consistent with this preference. 

Therefore the experimental design involved two groups of participants 

who both completed two blocked groups of trials followed by one mixed block 

of trials. The critical difference was that one group of participants completed 
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the normal block of trials first, then the reversed block of trials whilst the 

second group of participants completed it in the opposite order. If the effect is 

due to recent exposure and thus is ‘fleeting’, then the reaction times should 

differ depending on which block participants did prior to the mixed trials. 

Specifically, participants who have most recently completed a normal block of 

trials should show faster reactions to the ‘normal’ number line in the mixed 

trials, but those who have most recently completed a reversed block of trials 

should show faster reactions to the ‘reversed’ number line in the mixed trials. If 

the effect is a robust phenomenon then the Western educated adults should 

show faster reactions to the ‘normal’ number line in the mixed trials regardless 

of the direction of the preceding block. This would be consistent with the 

typically observed SNARC effect, for simplicity results consistent with this 

framework will also be operationalised as a SNARC effect (i.e. faster responses 

to the normal number line. 

4.1.2 Method 

4.1.2.1 Participants 

Thirty-nine adults (14 male, mean age 26.4 years, range 18.3 – 56.8 years) 

participated in the study, with 20 participants in condition A (8 male, mean age 

26.9 years, range 22-33 years) and 19 in condition B (6 male, mean age 25.6 

years, range 18.3 - 56.8 years). The majority of participants were right handed 

(n = 34; self-reported) and all spoke English as their first language (reading and 

writing words from left to right). Participants in the two conditions did not 

differ in age, F (1, 37) = .24, p = .627, gender, χ2(1, N = 39) = .30, p = .584, or 

handedness, χ2(1, N = 39) = .17, p = 1.00.  

4.1.2.2 Materials 

The experimental task was deployed on a touch screen tablet PC (Toshiba 

Portege M700-13P, 257 x 160 mm, 1280 x 800 resolution, 100 Hz refresh rate). 

The task was designed on the Clinical Kinematic Assessment Tool (CKAT) 

software (Culmer, Levesley, Mon-Williams, & Williams, 2009; Flatters, Hill, 

Williams, Barber, & Mon-Williams, 2014), using the LabView development 
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environment (Version 8.2.1, National Instruments, Austin, TX). The system 

allows for the presentation of visual stimuli with which the participant can 

interact using a handheld stylus, in turn providing a number of temporal and 

spatial kinematic metrics for assessment (for further details see Culmer et al., 

2009). The laptop screen was folded back to provide a horizontal surface, 

which could be interfaced using a stylus as an input device (sampled at a 120 

Hz). 

The task involved participants moving from a start location shown on 

the screen to the appropriate location on a horizontal line 110 mm from the 

start location (see Figure 4.1). The target location was indicated by a number 

shown above the line (the number was located above the centre of the line). 

Participants were told that the end of line represented the numbers 0 and 10 

and the line itself contained the numbers 1-9 equally spaced along the line. 

Participants were instructed that the number line ran left to right when the 

number was shown in red and ran right to left when the number was shown in 

blue. For the mixed trials, participants were told that line direction would 

change randomly. Participants learned the colour to line direction 

correspondence in the blocked trials and were thus primed by number colour 

in the mixed trials. All participants confirmed that they readily understood the 

instructions.  

Participants were instructed to use their preferred hand (as handedness 

has no impact on the SNARC effect (Dehaene et al, 1993)) to drag the pen across 

the screen as fast as possible after the imperative number appeared (500ms 

after the participant moved into the start box), without removing the stylus 

from the screen at any point during the movement. This allowed us to record 

reaction time (RT), movement time (MT) and accuracy when crossing the 

number line. Participants were seated at a comfortable position in front of the 

computer, approximately 400-600 mm away.
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Figure 4.1 The experimental set up of the number line task showing the procedure for each condition. Examples reflect participant 

data. 



53 
 

4.1.2.3 Procedure 

All participants undertook three blocks of trials, with the order of the first two 

blocks counterbalanced across participants. The three sets comprised one set 

where the number line always ran left to right (‘normal block’), one set where 

the number line always ran right to left (‘reversed block’) and a final set where 

the line direction randomly changed from trial to trial (‘mixed block’ containing 

both normal and reversed trials). Participants in the normal first condition 

completed the normal block first then the reversed block and then the mixed 

block. Participants in the reversed first condition completed the reversed block 

first then the normal block and then the mixed block. The normal block 

consisted of 45 trials, the reversed block consisted of 45 trials and the mixed 

block consisted of 54 trials. Participants were given two practice trials before 

the normal block and before the reversed block; no practice trials were given in 

the mixed block. Participants were told they would complete three blocks of 

trials, but not what these would entail.  

When participants were ready to begin the task, they held the stylus on 

the start button which triggered a number between 1 and 9 to appear above the 

line. The numbers were generated in a pseudorandom order; the correct 

response could not be on the same side more than three times in a row and the 

same number could not be presented consecutively. The number was red when 

the line ran from 0-10 (normal), and blue when it was from 10-0 (reversed). 

Participants used this information to determine line direction in the mixed 

block and were tasked with instructions to respond as quickly and as accurately 

as possible and to keep the stylus on the screen whilst responding..  

The CKAT software generated (i) reaction times (RTs; the time taken 

from the appearance of the imperative stimulus to the time the stylus moved 

from the start position); (ii) the distance the stylus crossed the line from the 

correct location; (iii) movement times (MTs; the time taken between the stylus 

moving from the starting location and crossing the number line). All data were 

processed using MATLAB R2010a. We removed trials where the participant 

crossed the line on the wrong side (1.53% of trials; significantly fewer errors 

were made in the blocked trials than in the mixed trials, t(38) = -5.01, p < .001, 
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but no other influences on these errors reached significance). We also excluded 

trials (5.3%) if they had negative RTs (i.e. moved before line onset) and/or had 

movement times longer than 10 seconds. Participants were removed from the 

experiment if they did not complete at least 50% of the trials correctly in the 

normal, reversed and mixed blocks. The number 5 was included in all analyses 

except when number type (small vs large) was used as a variable (when it was 

excluded - as its median position meant that it did not fit into the small or large 

category).  

4.1.3 Results 

4.1.3.1 Data Analysis 

Reaction time and movement time data were used to determine the presence of 

directional spatial numerical associations. They were analysed by condition 

(whether participants completed the normal trials or the reversed trials first), 

number type (small vs large) and by trial type. All participants completed four 

trial types; normal trials where the line ran from 0-10, reversed trials where it 

ran from 10-0 and normal and reversed trials where the line direction was 

changed randomly (mixed normal and mixed reversed). 

Average distance errors were calculated by analysing the difference 

between the actual physical location specified by the symbolic number on the 

number line, and where the participant crossed the line. This allowed us to 

examine how number was represented on the number line and was analysed by 

condition (normal first, reversed first), trial type (normal, reversed, mixed 

normal and mixed reversed) and number type (small vs large). Partial eta 

squared effect sizes are reported (Cohen, 1988) and the Greenhouse-Geisser 

correction applied where appropriate. 

4.1.3.2 Reaction Time 

We first explored the effect of Condition (2 between participant levels: normal 

first, reversed first) and trial type (4 within participant levels: normal, reversed, 

mixed normal and mixed reversed) using a mixed model ANOVA. A main effect 

of trial type was found, F (3, 111) = 81.23, p < .001, η2p = .69. Overall, mixed 
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trials showed slower reaction times than blocked trials demonstrating 

significant switch cost effects. There was no main effect of condition, F (1, 37) = 

.33, p = .571, η2p = .01, but a significant interaction, F (3, 111) = 5.32, p < .05, η2p 

= .13. These effects can be seen in Table 4.1. 

This interaction was further explored by first analysing the blocked 

trials, and then analysing the trials in the mixed block. In the blocked trials 

there was no main effect of condition, F (1, 37) = .76, p = .388, η2p = .02, but 

there was a main effect of trial type, F (1, 37) = 5.63, p = .023, η2p = .13, with 

normal trials quicker than reversed trials. There was also an interaction 

between trial type and condition, F (1, 37) = 14.64, p < .001, η2p = .28. The 

SNARC effect (i.e., normal trials quicker than reversed trials) was only found in 

the reversed first condition (see Table 4.1). This differential presence of a 

SNARC effect depending on condition can be explained parsimoniously by 

supposing that there was a small element of task learning at the start of the 

experiment. During the learning period, RTs would be expected to be 

marginally longer. When the learning period occurs during the normal block, 

this would then potentially mask any effect. 

When comparing the mixed trials, there was no main effect of condition, 

F (1, 37) = 1.73, p = .196, η2p = .05, but a main effect of trial type, F (1, 37) = 

22.80, p < .001, η2p = .38. This time the interaction was not significant, F (1, 37) 

= .00, p = .950, η2p = .00: normal trials were responded to faster than reversed 

trials, regardless of the preceding block. Therefore, under ‘unstable’ conditions 

in the mixed block, immediate prior exposure to a reversed number line did not 

alter the SNARC effect.  
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Table 4.1 Reaction times by trial type and condition in seconds [95% confidence 

interval] 

 

Next, the effect of number on reaction time was explored. Figure 4.2 shows 

reaction time as a function of target number for the different trial types.  

 

 

Figure 4.2 Average reaction time (ms) for each number by trial type. Error bars 

represent ±1 standard error of the mean.  

 

Average RTs were then collapsed across condition into small numbers (1-4) 

and large numbers (6-9) within trial types.. This resulted in a  repeated 

measures ANOVA with eight levels (normal small, normal large, reversed small, 

reversed large, mixed normal small, mixed normal large, mixed reversed small, 

mixed reversed large). The ANOVA showed a significant main effect of number 

type F (7, 266) = 54.54, p < .001, η2p =.59. Pairwise comparisons revealed small 

 
Normal First Reversed First Total 

Normal Block .83 [.73, .92] .70 [.61, .80] .77 [.70, .83] 

Reversed Block .80 [.71, .90] .81 [.71, .91] .81 [.74, .88] 

Mixed Normal 1.08 [.92, 1.24] 1.23 [1.06, 1.39] 1.15 [1.04, 1.27] 

Mixed Reversed 1.21 [1.03, 1.38] 1.36 [1.18, 1.54] 1.28 [1.16, 1.41] 
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numbers in the normal trials had shorter RTs than small numbers in the 

reversed trials (p = .047), and small numbers in the mixed normal trials had 

shorter RTs than small (p = .009)  or large numbers (p = .028) in the mixed 

reversed trials demonstrating SNARC effects in both the blocked and mixed 

trial types (see Table 4.2). However, reaction times to large numbers in the 

normal or reversed trial types were not significantly different (p > 0.05), though 

the pattern of results suggested participants were quicker to large numbers 

when presented on the right side of space in both the blocked and mixed trials. 

Thus these findings provide further support for the notion that small numbers 

are associated with the left side of space, and hint that large numbers are 

associated with the right side of space. 

 

Table 4.2 Reaction times by trial type and number type in seconds [95% 

confidence interval] 

 

4.1.3.3 Movement Time 

The results of the MT data essentially mirror those of the RT data. In particular, 

the mixed measures ANOVA revealed a significant effect of trial type, F(3, 111) = 

32.999, p < .001, η2p = .471 (due to switch costs), a significant interaction 

between trial type and condition, F(3, 111) = 12.965, p < .01, η2p = .259 and a 

non-significant effect of condition, F(1, 37) = .020, p = .888, η2p = .001. This 

interaction was again explored by separating the blocked and the mixed trial 

types. Unlike with the reaction time data, there was no effect of trial type in the 

blocked trials, F(1, 37) = 1.348, p = .253, η2p = .035, however as with the RT 

data, there was a significant interaction between trial type and condition, F(1, 

37) = 18.930, p < .001, η2p = .338. Further analysis found that reversed trials 

 

Normal Reversed Mixed Normal 

Mixed 

Reversed 

1-4 .75 [.68, .82] .83 [.76, .90] 1.17 [1.05, 1.29] 1.37 [1.22, 1.52] 

6-9 .79 [.72, .86] .81 [.73, .88] 1.22 [1.08, 1.37] 1.31 [1.17, 1.45] 
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were significantly quicker than normal trials in the normal first condition only. 

Again, this may explained by task learning; in the normal first condition 

participants start with the easiest trials, but must learn the task resulting in 

longer MTs. Although the SNARC effect in the reversed first condition is not 

significant, the means are in the expected direction (see Table 4.3). In the mixed 

trials there was no main effect of condition, F(1, 37) = .734, p = .397, η2p = .02 

but a main effect of trial type, F(1, 37) = 23.43, p < .01, η2p = .388. The 

interaction was not significant, F(1,37)  = .201, p = .657, η2p = .005: as with the 

RT data, normal trials were responded to faster than reversed trials, regardless 

of the preceding block.  

 

Table 4.3 Movement times by trial type and condition in seconds [95% 

confidence interval] 

 

Finally, a significant effect of number type was observed, F (7, 266) = 

23.387, p < .001, η2p = .381. Pairwise comparisons demonstrated significant 

switch costs (p < .05); participants generally moved quicker to small and large 

numbers in the blocked trials than in the mixed trials (see Table 4.4). There was 

a significant difference between large numbers in the mixed trial types; larger 

numbers were responded to quicker in the mixed normal trials than the mixed 

reversed trials. Whilst not significant, MTs were quicker to small numbers in 

the mixed normal than the mixed reversed trials. 

 

 
Normal First Reversed First Total 

Normal Block 1.74 [1.47, 2.01] 1.31 [1.03, 1.59] 1.53 [1.33, 1.72] 

Reversed Block 1.48 [1.25, 1.71] 1.47 [1.23, 1.70] 1.47 [1.31, 1.64] 

Mixed Normal 1.71 [1.45, 1.97] 1.86 [1.60, 2.13] 1.79 [1.60, 1.97] 

Mixed Reversed 1.86 [1.55, 2.17] 2.04 [1.73, 2.36] 1.95 [1.73, 2.17] 
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Table 4.4 Movement time by trial type and number type in seconds [95% 

confidence interval] 

 

4.1.3.4 Distance Error 

Average distance error was explored by trial type (4 within participant levels: 

normal, reversed, mixed normal and mixed reversed) and condition (2 group 

levels: normal first and reversed first) using a mixed model ANOVA. No main 

effects of either trial type, F (3, 111) = 3.04, p = .052, η2p = .08, or condition, F (1, 

37) = .32, p = .576, η2p = .01, were observed and there was no interaction, F (3, 

111) = 1.83, p = .166, η2p = .05 (see Table 4.5).  

 

Table 4.5 Average distance error by trial type and condition in millimetres [95% 

confidence interval] 

 

We next explored the effect of number on distance error. Figure 4.3 shows the 

distance error as a function of target number for the normal and mixed reverse 

trial types. 

 

Normal Reversed Mixed Normal 

Mixed 

Reversed 

1-4 
1.57  

[1.36, 1.78] 

1.53  

[1.36, 1.69] 

1.86  

[1.67, 2.05] 

2.05  

[1.80, 2.31] 

6-9 
1.51  

[1.31, 1.71] 

1.46  

[1.30, 1.69] 

1.83  

[1.62, 2.04] 

2.00  

[1.78, 2.22] 

 
Normal First Reversed First Total 

Normal Block 6.43 [5.30, 7.56] 5.36 [4.20, 6.52] 5.90 [5.09, 6.71] 

Reversed Block 6.67 [5.52, 7.83] 5.96 [4.78, 7.15] 6.32 [5.49, 7.14] 

Mixed Normal 6.95 [5.74, 8.16] 6.57 [5.33, 7.81] 6.77 [5.89, 7.63] 

Mixed Reversed 6.55 [5.19, 7.91] 7.01 [5.62, 8.41] 6.78 [5.81, 7.76] 
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Figure 4.3 Average distance error for each number by trial type. Error bars 

represent ±1 standard error of the mean. Data points are connected by lines to 

highlight the pattern of results, not due to the nature of the data. 

 

Average distance errors were collapsed into two groups within trial types; 

small (numbers 1 to 4) and large (numbers 6 to 9). A repeated measures 

ANOVA with 8 levels (normal small, normal large, reversed small, reversed 

large, mixed normal small, mixed normal large, mixed reversed small, mixed 

reversed large) revealed a significant effect of number type, F (7, 266) = 

23.02, p < .001, η2p =.38. This was due to bigger distance errors being observed 

for small numbers than large numbers in all trial types (normal, reversed, 

mixed normal and mixed reversed; all p’s < .001) as can be seen in Table 4.6.  

 

Table 4.6 Distance error by trial type and number type in millimetres [95% 

confidence interval] 

 

Normal Reversed Mixed Normal 

Mixed 

Reversed 

1-4 
8.11  

[6.88, 9.34] 

8.19  

[7.11, 9.27] 

9.31  

[8.03, 10.59] 

8.88  

[7.47, 10.30] 

6-9 
4.53  

[3.65, 5.42] 

5.12  

[4.11, 6.12] 

5.13  

[4.13, 6.14] 

5.78  

[4.75, 6.81] 
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4.1.4 Discussion 

The reaction time data in Experiment 3a demonstrate that under 

unstable conditions (as in the mixed block) adults rely on a default directional 

preference of number representation (oriented left to right in the Western 

educated participants), which is not affected by exposing adults to a reversed 

number line immediately before. This effect was also observed in the number 

analysis whereby RTs to small numbers were faster when they are associated 

with the left side of space. The data collected within Experiment 3a therefore 

suggest that the SNARC effect is not a ‘fleeting’ phenomenon but rather reflects 

a reasonably long lasting spatial representation of numbers within the 

cognitive system.  

 As well as finding the SNARC effect in the RT data, evidence of this effect 

was also observed in the mixed blocks when analysing the MT data. This is in 

line with Fischer (2003), who also found evidence for the SNARC effect 

extending into the motor execution as well as the motor planning of a task. This 

is consistent with the framework of embodied cognition, where cognition is not 

seen as a ‘closed’ system separate from perceptual input and motor output but 

rather as an ‘open’ system where perception and action are considered as 

essential elements of the system’s organisation (Wilson, 2002). In the number 

line task the cognitive processing takes longer when the required response is 

not consistent with the default organisation of numerical representation. If 

cognition were a closed system there would be no reason to suppose that there 

would be any impact of the SNARC effect once the spatial position has been 

determined. However, the results from Experiment 3a suggest that the 

cognitive processes do affect motor execution in a manner predicted by the 

theory of embodied cognition.  

 There were some differences in the results of the RT and MT analysis. 

Notably, no main effect of trial type in the blocked trials of the MT data was 

observed; participants didn’t show significantly faster responses to normal 

trials over reversed trials, however the means were in this direction in the 

Reversed First condition. Further, whilst evidence for small numbers being 

associated with the left side of space was observed in the RT data, the MT data 
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found some evidence that large numbers are associated with the right side of 

space (in the mixed trials only). 

 Given the inter-dependency between cognition and action within 

embodied cognition (Wilson, 2002), it could also be hypothesised that motor 

performance would influence performance on the number line task. As 

previously discussed, the fact that a SNARC effect was revealed in the 

movement times of the mixed trials suggests that the cognitive and motor 

systems are linked. In particular, when the cognitive demands of the task are 

increased, as in the unstable mixed block, and the cognitive-motoric system is 

put under pressure, less proficient motoric ability might have a deleterious 

effect on number line performance. Thus far, few studies have assessed the 

SNARC effect in later responses, or considered the embodied cognition 

approach. However, in the embodied literature there are numerous examples of 

cognition-motor couplings. For example, participants who are allowed to 

gesture in a memory task are able to remember more items- postulated to be 

due to the joint recruitment of both cognitive and perceptual motor systems to 

aid performance (Goldin-Meadow, Nusbaum, Kelly, & Wagner, 2001). Specific 

to numerical processing, it is argued that the sensory-motor activities involved 

in learning numerical concepts (i.e. finger counting) continue to influence our 

numerical processing throughout our lives (Tschentscher, Hauk, Fischer, & 

Pulvermüller, 2012). For example, in adults action planning can be biased by 

the processing of both symbolic and non-symbolic numbers (Chapman, 

Gallivan, & Wood, 2014) and conversely, number processing can enhance 

motor responses (Ranzini et al., 2011). Thus is it possible that adults’ level of 

motor skill proficiency may be linked to their number line performance, 

Experiment 3b sought to investigate this. Furthermore, given that the number 

line task is novel, Experiment 3b also attempted to ensure the results we 

observed are replicable, thus suggesting the findings obtained using this task 

are reliable.  
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4.2 Experiment 3b 

4.2.1 Introduction 

In Experiment 3a it was observed that Western educated adults have a default 

preference for representing small numbers on the left side of space, and large 

numbers on the right side of space. This preference was present in both the 

reaction time and movement time data and was taken as evidence for the 

inherent nature of spatial numerical associations. Experiment 3b aims to 

replicate these effects, whilst also further exploring the observed relationship 

between motoric ability and spatial numerical association, as evidenced by the 

presence of these associations in the movement time data. This relationship is 

consistent with the embodied cognition hypothesis of cognition-action inter-

dependency (see Chapter 4.1.4). In order to investigate this inter-dependency 

in the number line task, the present experiment also included measurements of 

performance on a simple aiming task where the cognitive demands were 

minimised (as the task only required movements to a physically specified target 

displayed on the tablet computer screen). The aiming task did not therefore 

require the manipulation of symbolic information or the memory of the target 

location. Performance on the aiming task (measured as the average time to 

move between presented targets) serves as a proxy for motor skill (critically, 

the relevant motor skill required in the number line task) and has been shown 

to improve with increasing age over childhood and in line with improvements 

on other motor tasks (Flatters et al., 2014a; Flatters et al, 2014b). Under stable 

conditions (blocked trials) adults’ motor skill may not play as important a role 

in completing the number line task given that the system is capable enough to 

complete the task without recruiting all of it’s resources, in this case the 

cognitive and motor systems together. However, if the embodied account of 

cognition-action interdependency is correct (e.g., Wilson, 2002), when the 

cognitive-motoric system is put under pressure (mixed blocks) motoric skill 

may become increasingly important as the system will need to recruit all of it’s 

resources to complete the task. Therefore, it was hypothesised that 

performance in the blocked trials would not be related (or only minimally 
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related) to performance on the aiming task, but that there would be a 

relationship between performance on the aiming task and the mixed block.  

4.2.2 Method 

4.2.2.1 Participants 

Forty-eight adults took part in this study (23 female, mean age 22.3 years, 

range 20.5 - 47.7 years). Consistent with Experiment 3a, the order in which 

participants completed the task was counterbalanced with 26 participants in 

the normal first condition and 21 participants in the reversed first condition. 

Thirty-six participants were right handed and all spoke English as their first 

language. Participants in the two conditions did not differ by age, F (1, 46) = 

1.67, p = .203, η2p = .04, gender, χ2(1, N = 48) = .03, p = .858, or handedness, 

χ2(1, N = 48) = .15, p = .696.  

4.2.2.2 Materials 

Materials for the number line task were identical to those used in Experiment 

3a. For the aiming task, the same tablet computers were used.  

4.2.2.3 Procedure 

Participants first completed an aiming task with their preferred hand. The task 

began by participants holding the stylus over a start position marker for 500 

ms. This resulted in a green dot appearing; participants were instructed to 

move the stylus to this dot as quickly and as accurately as possible without 

lifting the stylus from the screen. Arrival at the target caused the dot to 

disappear and be replaced by another green dot in a different location- to which 

participants then aimed towards (see Figure 4.4) The different target locations 

of the dot was held constant for all participants. This was repeated for a total of 

75 trials after which a finish position marker appeared which terminated the 

task when contacted. 



65 
 

 

Figure 4.4 Illustration of the aiming task with dotted arrows to demonstrate 

the movements made by participants during the task. Figure adapted from 

Flatters et al (2014). 

 

Participants then completed the number line task, the procedure of which was 

identical to Experiment 3a (see Figure 4.1). Movement time (MT) was 

computed for the aiming task and RT, MT and accuracy (distance from the 

correct location) scores were calculated for the number line task. The same 

exclusion criteria applied in Experiment 3a resulted in the removal of 8.49% 

trials. The number 5 was included in all analyses except when number type 

(small vs. large) was used as a variable. 

4.2.3 Results 

4.2.3.1 Data Analysis 

Data analysis in Experiment 3b replicated that of Experiment 3a in order to 

examine the reproducibility of the SNARC effects observed. One participant was 

removed from the data set due to being an outlier, resulting in a final sample of 

47 adults. 

4.2.3.2 Number Line Task – Reaction Time   

A mixed model ANOVA with four trial types (normal, reversed, mixed normal 

and mixed reversed) and two conditions (normal first, reversed first) was 
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conducted. The results replicated Experiment 3a. A main effect of trial type was 

found, F (3, 135) = 117.48, p < .001, η2p = .72; mixed trial types showed slower 

reaction times than non-mixed trial types demonstrating significant switch cost 

effects. There was also no effect of condition, F (1, 45) = .29, p = .593, η2p = .01. 

However, this time there was no interaction between trial type and condition, 

F (3, 135) = .747, p = .505, η2p = .02; for both the blocked and mixed trials, 

normal trials were responded to quicker than reversed trials (p < .001). 

Although, the effect size for the SNARC effect was larger in the mixed trials (η2p 

=.453) than the blocked trials (η2p = .364). These effects can be seen in Table 

4.7.  

 

Table 4.7 Average reaction time by trial type and condition in seconds [95% 

confidence interval] 

 

We next looked at the effect of number (see Table 4.8). We found a significant 

effect of number on RT, F (7, 315) = 72.724, p < .001, η2p = .618 (see table 8). 

Small numbers were responded to faster in the normal than reversed trials in 

both the blocked and mixed trials (p < .05) providing further evidence for 

SNARC effects. We also found some evidence that large numbers are associated 

with the right side of space; large numbers were responded to quicker in the 

normal trials than reversed trials in blocked trials only (p < .001), though this 

pattern was present in the mixed trials too. 

 

 

 
Normal First Reversed First Total 

Normal Block .71 [.64, .77] .65 [.58, .73] .68 [.63, .73] 

Reversed Block .82 [.72, .93] .79 [.67, .92] .81 [.73, .89] 

Mixed Normal 1.03 [.93, 1.14] 1.05 [.93, 1.17] 1.04 [.96, 1.12] 

Mixed Reversed 1.26 [1.14, 1.38] 1.18 [1.04, 1.33] 1.22 [1.13, 1.32] 
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Table 4.8 Reaction time by trial type and number type in seconds [95% 

confidence interval] 

 

4.2.3.3 Number Line Task – Movement Time 

We found a significant effect of trial type on movement time (MT), F (3, 135) = 

35.905, p < .001, η2p = .444, this effect was due to switch costs reflecting the 

increased difficulty of the mixed block. There was also a significant interaction 

between trial type and condition, F (3, 135) = 3.916, p < .05, η2p = .080, but no 

main effect of condition, F (1, 45) = 2.195, p = .145, η2p = .047. Once again the 

interaction was explored by analysing blocked and mixed trial types separately. 

In the blocked trials there was a significant effect of trial type, F (1, 45) = 

7.789, p < .01, η2p = .148, a significant interaction, F (1, 45) = 8.182, p < .01, η2p = 

.154, and no main effect of condition, F (1, 45) = 2.567, p = .116, η2p = .054. The 

interaction was due to the SNARC effect being present in the reversed first 

condition only; this is consistent with the RT data in Experiment 3a. In the 

mixed trials, there was a significant effect of trial type, F (1, 45) = 37.256, p < 

.001, η2p = .453, a non-significant interaction, F (1, 45) = 3.358, p = .066, η2p = 

.073, and a non-significant effect of condition, F (1, 45) = 1.420, p = .240, η2p = 

.031; a SNARC effect was observed irrelevant of which trial type was 

undertaken first. These effects are consistent with those observed in 

Experiment 3a and can be observed in Table 4.9. 

 

 

 

 

Normal Reversed Mixed Normal 

Mixed 

Reversed 

1-4 .69 [.63, .74] .84 [.73, .95] 1.06 [.98, 1.15] 1.33 [1.21, 1.44] 

6-9 .70 [.64, .75] .80 [.73, .88] 1.10 [.99, 1.20] 1.25 [1.15, 1.36] 
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Table 4.9 Average movement time by trial type and condition in seconds [95% 

confidence interval] 

 

As with the RT data, there was a significant effect of number on MT, F (7, 315) = 

25.709, p < .001, η2p = .364. Once again there were no significant differences 

regarding movement times to small numbers, but the pattern of results are in 

the expected direction. However, there is evidence that large numbers are 

responded to quicker in these trials in both the blocked and mixed trial types (p 

< .05). These results are presented in Table 4.10. 

 

Table 4.10 Movement time by trial type and number type in seconds [95% 

confidence interval] 

 

4.2.3.4 Number Line Task – Distance Error 

In contrast to Experiment 3a, a significant effect of trial type was observed, F (3, 

135) = 4.550, p < .05, η2p = .092. Pairwise comparisons revealed this was due to 

larger distance errors occurring during the normal mixed trials relative to 

 
Normal First Reversed First Total 

Normal Block 1.42 [1.28, 1.56] 1.09 [.93, 1.25] 1.26 [1.15, 1.36] 

Reversed Block 1.42 [1.25, 1.58] 1.42 [1.22, 1.61] 1.42 [1.29, 1.55] 

Mixed Normal 1.60 [1.46, 1.76] 1.52 [1.34, 1.71] 1.56 [1.44, 1.69] 

Mixed Reversed 1.88 [1.70, 2.05] 1.67 [1.47, 1.87] 1.77 [1.64, 1.91] 

 

Normal Reversed Mixed Normal 

Mixed 

Reversed 

1-4 
1.33  

[1.22, 1.44] 

1.51 

 [1.35, 1.67] 

1.64  

[1.51, 1.77] 

1.91  

[1.76, 2.06] 

6-9 
1.29  

[1.15, 1.43] 

1.42  

[1.29, 1.55] 

1.63  

[1.48, 1.77] 

1.84  

[1.69, 2.00] 
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either the normal or reversed trials (p < .05) (see Table 4.11). Larger errors 

were also made in the mixed reversed trials, but this did not reach significance. 

These effects demonstrate that the increased cognitive load in the mixed blocks 

had some effect on accuracy within the number line task. There was no effect of 

condition, F (1, 45) = .002, p = .96, η2p = .000, and no interaction, F (3, 135) = 

.383, p = .766, η2p = .008. 

 

Table 4.11 Average distance error by trial type and condition in millimetres 

[95% confidence interval] 

 

Consistent with Experiment 3a, a repeated measures ANOVA showed a 

significant effect of number type, F (7, 315) = 25.334, p < .001, η2p = .360. Small 

numbers were associated with bigger distance errors than large numbers in all 

trial types (p < .05), see Table 4.12. 

 

Table 4.12 Distance error by trial type and number type in milliseconds [95% 

confidence interval] 

 
Normal First Reversed First Total 

Normal Block 6.30 [5.59, 7.00] 6.48 [5.67, 7.30] 6.39 [5.85, 6.93] 

Reversed Block 6.28 [5.47, 7.09] 6.54 [5.60, 7.49] 6.41 [5.79, 7.03] 

Mixed Normal 7.25 [6.33, 8.16] 7.06 [6.00, 8.13] 7.15 [6.45, 7.86] 

Mixed Reversed 7.10 [6.24, 7.97] 6.94 [5.93, 7.94] 7.02 [6.36, 7.68] 

 

Normal Reversed Mixed Normal 

Mixed 

Reversed 

1-4 
8.69 [7.67, 

9.71] 

7.80 [6.81, 

8.79] 

10.32 [9.00, 

11.65] 

8.56 [7.50, 

9.62] 

6-9 
5.01 [4.47, 

5.56] 

5.97 [5.21, 

6.73] 

5.24 [4.62, 

5.85] 

6.58 [5.82, 

7.33] 
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4.2.3.5 Number Line Task Performance and Motor Skill Level 

 We next explored whether a reliable relationship existed between the number 

line task metrics and the aiming task measures (used as a proxy for motoric 

ability). The results showed no significant correlations between motor skill 

level and the blocked trial types for reaction times (normal, r(47) = .223, p = 

.131; reversed, r(47) = .174, p = .243) and movement times (normal, r(47) = 

.201, p = .176; reversed, r(47) = .163, p = .275).  

However, motor skill level correlated significantly with reaction times to 

mixed normal trials, r(47) = .446, p < .01 and mixed reversed trials, r(47) = 

.311, p < .05. Furthermore, aiming correlated with movement times to mixed 

normal trials, r(47) = .439, p < .001 and mixed reversed trials, r(47) = .326, p < 

.05. Thus, participants with lower motor ability showed increased RTs and MT s 

within the mixed but not blocked trials. 

4.2.4 Discussion 

Experiment 3b replicated the effects of Experiment 3a; evidence of directional 

spatial numerical associations irrelevant of prior exposure was observed. Once 

again, this was evident in both the participants’ reaction times and movement 

times when analysed by both trial type and number type. As with Experiment 

3a, the kinematic data is interpreted as suggesting that the SNARC effect 

represents a default preference for a left to right orientation of number in 

Western adults which is present in both movement planning (RT) and 

execution (MT). 

There was a subtle difference in the results of the two experiments – 

notably in the blocked trials. In the reaction time data there was no interaction 

between condition and trial type in the blocked trials of Experiment 3b; 

irrelevant of whether participants started with the normal or reversed trials, a 

SNARC effect was still evident. Experiments 3a and 3b were identical, except 

that in the latter participants completed the aiming task before the number line 

task. It is therefore possible that this resulted in practice effects. Participants in 

Experiment 3b also have some task specific learning to do in the normal first 
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condition, but they are already familiar with the tablet and moving the stylus 

across the screen in response to stimuli, thus the learning demands are 

minimised. It is possible that the reduction in learning in these trials enabled 

the SNARC effect to be seen irrelevant of condition.  

The inclusion of the aiming task in Experiment 3b allowed us to 

determine the nature of the proposed interdependency between cognition and 

action. In line with expectations, there was no relationship between the aiming 

task and the blocked trials, but performance on the aiming task was related to 

reaction times and movement times in the mixed trials of the number line task. 

These results demonstrate that when the cognitive-motor system is loaded (as 

is the case in the mixed block), the capabilities of the motor system become 

increasingly important. This suggestion is consistent with the movement time 

data and embodied cognition theory (see General Discussion).   

4.3 General Discussion of Experiments 3a and 3b 

The results from Experiments 3a and 3b suggest that preferences in the spatial 

representation of number are a robust phenomenon, with adults showing a 

preferred default representation under unstable conditions in a variety of tasks. 

If spatial numerical associations were primarily driven by recent exposure to a 

particular number-space relationship, then differences should have been found 

between participants who completed the normal block first and those who 

completed the reversed block first when they make fast action selections during 

the mixed trials. However, across two experiments, there were no differences 

between these groups indicating that the preceding block of trials had no 

influence on the response time asymmetry. These results are inconsistent with 

Fischer et al (2010) who were able to influence the SNARC effect in adults. In 

the Fischer et al (2010) study, adults completed parity judgement tasks under 

relatively stable conditions, showing that adults can adapt their spatial number 

representation. However, the alteration of representation under stable 

conditions is not necessarily a robust enough test to reveal default preferences. 

Unstable, pressured conditions are more likely to show if adults do default to a 

preferred representation, and whether or not this can be influenced by recent 
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exposure. Across two experiments, the results support the argument that 

directional preferences in number-space representations are long lasting in 

adults and therefore not primarily driven by recent visuo-spatial mappings.   

Reaction time and movement time by number type (small or large) were 

also analysed. Notably, across the reaction time data in both experiments, small 

numbers were associated with the left side of space, but only superficial 

evidence indicated that large numbers are associated with the right side of 

space. This is consistent with Fischer’s (2003) pointing experiment - people 

were quicker to initiate responses to small numbers on the left, but not to large 

numbers on the right. Whilst this finding is not explained by Fischer, it is 

possible that the strong results for small numbers are due to small numbers 

being linked to a constant bound of zero. However, 10 is not a constant bound – 

number lines can go on indefinitely and, as such, representations of these 

numbers on a number line need to be more flexible, and thus less concrete.  

Further, the movement time data provided strong evidence that large 

numbers are represented on the right, but nothing regarding small numbers. 

The majority of participants across the two experiments were right handed 

(80%), therefore dragging the pen across to the right side of the screen will be 

easier (it is easier to push than pull). Thus when large numbers are presented 

on the right, participants have a double advantage as not only is this consistent 

with Western spatial numerical associations, it is also the easier movement. 

This may explain why evidence for large numbers was only in the movement 

times, and why no effects were observed with small numbers; whilst the left 

side of the line would be consistent with spatial numerical associations, it is a 

harder movement for a large portion of participants. 

Overall, these results support the idea that the default number 

representation for Western educated adults is in the spatial direction predicted 

by the predominant cultural organisation of numerical information, and are 

thus consistent with the mental number line hypothesis of spatial numerical 

associations. Further, the fact that evidence of directional preferences was 

observed in the movement times as well as the reaction times is consistent with 

the embodied cognition framework, where an understanding of human 

behaviour requires a consideration of how cognitive and motor processes 
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interact to achieve a behavioural goal. The fact that MTs were slower in 

reversed trials shows that this phenomenon extends into the motor execution 

of a task, and is not limited to the motor planning (something also found by 

Fischer (2003)). This interdependency between cognition and action was 

further explored in Experiment 3b by investigating the relationship between 

participants’ motor ability and their performance on the number line task. 

Embodied cognition theorists have suggested that the rooting of cognitive 

processes in motoric interactions with the world means that cognitive and 

motor capabilities must be mutually dependent (e.g. Van Rooijen et al., 2011). 

This interdependency between cognition and action would be particularly 

highlighted under unstable conditions where task performance would be more 

influenced by the underlying capability of the system. We explored this claim by 

measuring the relevant motor ability (using a simple aiming task) and relating 

this ability to performance on the number line task. The results showed that 

there was no reliable relationship between performance on the aiming task and 

performance on the blocked trials of the number line task. However, under 

unstable conditions level of motor skill was related to number line 

performance. This provides further evidence that cognitive and motor 

processes are intrinsically linked. 

 These results are consistent with a body of neurophysiological evidence 

which demonstrates joint recruitment of neural structures for motor and 

cognitive tasks. For example, the dorsolateral prefrontal cortex (primarily 

thought of as a cognitive structure) and the neocerebellum (primarily a motor 

structure) both show increased activation during cognitive tasks and decreased 

activation during well learned motor tasks (see Diamond, 2000, for review). 

Furthermore, motor and cognitive deficits frequently co-occur in children. For 

example, developmental coordination disorder is often coupled with learning 

difficulties in tasks such as reading and mathematics (Pieters et al., 2012).  

Finally, the task created allowed for a consideration of how the number 

is mapped to the line. There were differences in the size of the distance error 

depending on whether the presented number was small or large – generally, 

larger errors were observed for small numbers. This can be understood in 

terms of the numerical size effect where discriminating between two numbers 
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becomes harder as numerical magnitude increases causing a compressed 

number line as larger numbers appear closer together  (Cohen & Blanc-

Goldhammer, 2011; Longo & Lourenco, 2007; Siegler & Booth, 2004; Siegler & 

Ramani, 2008). This is consistent with a body of research showing that the 

perceived difference between two successive numbers decreases as target 

number increases (Cohen & Blanc-Goldhammer, 2011). Whether this overlap is 

due to numbers being logarithmically spaced with fixed variance or linearly 

spaced with scalar variance (increasing variance) is currently under debate 

(Cohen & Blanc-Goldhammer, 2011; Huber, Moeller, & Nuerk, 2013). 

In conclusion, the results demonstrate that directional preferences in 

spatial-numerical associations are robust and support the idea that associations 

reflect a long term exposure to culturally determined directional numerical 

organisation. In the following experiments, it is investigated whether these 

preferences are also observed in children, something which is relatively 

neglected in the literature (White et al., 2012). Whilst number line studies 

suggest that children’s ability to represent number spatially appears to improve 

with age (Booth & Siegler, 2008; Sasanguie, De Smedt, Defever, & Reynvoet, 

2012; Siegler & Ramani, 2008), it is not known if and when directional 

preferences are observed. Children’s spatial representation of number is of 

particular importance given that this ability is linked to later mathematical 

achievement (Booth & Siegler, 2006, 2008; Siegler & Ramani, 2008; Sasanguie 

et al., 2012). 
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CHAPTER 5 

SPATIAL NUMERICAL ASSOCIATIONS, FINE MOTOR 

SKILLS AND NUMERICAL ABILITIES IN CHILDREN 

5.1 Introduction 

A number of research studies have demonstrated that number is spatially 

oriented in adults (see General Introduction 1.3). In Chapter 4 it was found that 

whilst Western Educated adults can adapt the direction of this spatial 

orientation of number, they have a preference for representing number as 

ascending from left to right. However, there is very little research on this topic 

involving children (White et al., 2012). The SNARC effect, which is the most 

widely reported evidence of spatial-numerical associations in adults, has been 

observed in children from age five years (Hoffmann, Hornung, Martin, & Schiltz, 

2013), but only under certain conditions - leading to suggestions that these 

associations are not fully developed until around nine years of age (White et al., 

2012). Further, it has been suggested that standard SNARC tasks may not be 

sensitive to assessing spatial-numerical associations in children given their 

reliance on a full understanding of the number system and parity (Ebersbach, 

2015; White et al., 2012). For example, to complete a standard SNARC task 

children have to understand the meaning of odd and even (parity).   

A promising way to assess spatial numerical associations in children is 

to use a number line task whereby children are asked to place presented 

numbers where they think they belong on a line and don’t need to understand 

parity. Using this methodology researchers have found that children’s accuracy 

in mapping number spatially improves with age (Booth & Siegler, 2008; 

Sasanguie, De Smedt, Defever, & Reynvoet, 2012; Siegler & Ramani, 2008). 
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Whilst these studies are informative, they have two major differences to the 

SNARC task normally utilised with adults. Firstly, they don’t assess directional 

preferences in spatial numerical associations, this is important given that much 

of the adult literature focuses on this directional effect. For example, the SNARC 

effect is a bias to responding faster to small numbers on the left side of space 

and vice versa in Western populations (Dehaene et al., 1993; Viarouge, 

Hubbard, & Dehaene, 2014). As yet, number line studies only tell us that 

children can represent small numbers on the left side of space and large 

numbers on the right, but not whether this is their preferred representation as 

they only test children using one directional arrangement (e.g. 0-10).  Secondly, 

these types of tasks only assess the accuracy with which children place 

numbers on the line using a pen and paper (e.g. Booth & Siegler, 2006, 2008; 

Ebersbach, 2015; Sasanguie, De Smedt, Defever, & Reynvoet, 2012; Siegler & 

Ramani, 2008) meaning any motor aspects of the task are not measured. This is 

in contrast to the SNARC effect in adults which is based on reaction times, with 

quicker responses indicating a preference for a specific spatio-numerical 

arrangement. Thus the mental number line task introduced in Chapter 4 was 

used as a test for directional preferences in spatial numerical associations in 

children by using both normal (0-10) and reversed (10-0) number lines, 

allowing us to analyse both accuracy and movement kinematics. The use of this 

computer based task also improves the sensitivity of the accuracy measures in 

that the computer can provide a more accurate and objective measure, whereas 

previous studies measured accuracy using a ruler.  

A second focus of the present experiment will be to investigate whether 

the spatial organisation of number is important in the development of other 

numerical skills, and the importance of motor skills to numerical development. 

To do this two types of numerical skills will be assessed: (i) early number 

knowledge, and, (ii) mathematical attainment. The numerical literature 

acknowledges a divide between these two numerical skills, with the former 

being associated with our understanding of quantity (sets of items), how 

numbers are related (e.g. 5 is bigger than 4), and the words and digits 

associated with these numbers (Östergren & Träff, 2013), whilst the latter is a 

more complex mathematical understanding which is learned and tested in 



77 
 

school (Jordan & Kaplan, 2009), for example understanding shapes, charts and 

fractions (Department of Education, 2013). To the authors knowledge, no 

studies exist which link spatial numerical skills to early number knowledge. 

Nevertheless, research using number lines has demonstrated a link between 

mathematical skills and the spatial representation of number in children (Booth 

& Siegler, 2006, 2008; Siegler & Ramani, 2008; Sasanguie et al., 2012). 

However, those studies tend to only assess arithmetic skills (e.g. addition and 

subtraction) as their outcome variable (e.g. Booth & Siegler, 2008), or only 

utilise correlational analyses (e.g. Siegler & Booth, 2004). Whilst an important 

aspect of mathematics, successfully achieving the required school grades relies 

upon much more than just arithmetic, for example children are also expected to 

be able to count, recite and compare numbers, recognise patterns in objects and 

shapes, solve word problems etc. (Department of Education, 2013). 

Furthermore, the mathematical knowledge expected of children changes with 

age, for example children in Year three are expected to be able to count, read 

and write numbers up to 1000, whilst Year one children are expected to count, 

read and write numbers up to 100 (Department of Education, 2013). 

As previously stated, current number line studies tell us nothing about 

directional preferences. Thus, whilst a few studies linking maths and spatial-

numerical associations in children exist, only one reports this in relation to 

directional preferences (Hoffmann et al., 2013). One might presume that 

showing a directional preference indicates that you have developed a solidified 

directional representation of number, but this may not be beneficial. It may 

mean that children find it easier to interact with number lines when used as a 

pedagogical tool which is especially important given that schools now routinely 

use number lines in maths lessons. However, numerical reasoning is often very 

abstract, perhaps it is better to be able to represent numbers on both sides of 

space (e.g. small on the left and small on the right) and thus demonstrate a 

more flexible representation of number (Ebersbach, 2015). Nevertheless, it has 

been suggested that whilst we may all represent number in space, it is the 

strength of directional preferences which are important in success/failure 

(Cipora et al., 2015). Thus the influence of directional preferences on 

mathematics achievement is something which will also be studied here.  
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Finally the contribution of fine motor skills to spatial numerical 

associations and numerical skills was assessed. A number of studies have 

shown that the directional preferences observed in spatial numerical 

associations are consistent with the cultural direction of fine motor skills such 

as writing and finger counting (Dehaene et al., 1993; Fischer, Mills, & Shaki, 

2010; Gobel, Shaki, & Fischer, 2011; Hubbard et al., 2005; Fischer & Shaki, 

2014). In particular, finger counting is thought to be the prime factor, for 

example, people are quicker to respond when the mapping between magnitude 

and the finger agrees with the direction of finger counting (for review see 

Fischer & Brugger, 2011). Nevertheless, despite the consistent predictions of an 

influence of these fine motor skills on spatial numerical pairings, to the authors’ 

knowledge there is no research which assesses this, except our own in Chapter 

4 which found some evidence that motor skills and number line performance 

are related.  

Further, fine motor skills are thought to influence our learning 

experiences such that children with poor motor skills tend to show delays in 

cognitive performance ( Pieters, Desoete, Roeyers, Vanderswalmen, & Van 

Waelvelde, 2012; Schoon et al., 2010; Van Rooijen et al., 2011). In particular 

fine motor skills can predict mathematics performance in typically developing 

children (e.g. Tramontana, Hooper, & Selzer, 1988) (see Chapter 1.3.3 for 

further discussion). However, little research exists and most existing studies 

use very subjective measures of motor control. For example, they use paper and 

pencil tests (Grissmer et al., 2010) or short teacher/parent questionnaires 

where fine motor skills may be assessed with just two questions (e.g. “can the 

child hold a pen appropriately”) (e.g. Pagani et al., 2010; Pagani & Messier, 

2012). This kind of subjectivity is a flaw which has been criticised in the study 

of other, related motor assessments of hand-eye coordination (Lee, Junghans, 

Ryan,  Khuu, & Suttle, 2014). Further, it has been suggested that the sensitivity 

of these types of tests varies depending on the participant sample in question, 

and who fills out the questionnaire; teacher questionnaires can lack validity in 

comparison to those filled out by parents (Blank, Smits-engelsman, Polatajko, & 

Wilson, 2012). For example, teachers’ perceptions of motor behaviour are more 

influenced by factors beyond the skills in question (e.g. gender and classroom 
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behaviour) (Rivard, Missiuna, Hanna, & Wishart, 2007). In addition, some 

studies (e.g. Luo et al, 2007) use tasks involving drawing from memory which 

arguably require much more than fine motor skills; drawing a person requires 

the child to know what features make up a person and what to include – 

therefore a child may lose points simply by forgetting to draw one aspect of a 

person (often the neck) (Luo et al., 2007). More importantly, these tests may 

actually be measuring aspects of functioning beyond motor skills making it 

hard to be sure of the nature of the relationship between motor skill and 

mathematical ability. Thus, these tests may not be sensitive enough to truly 

capture differences in motor control, especially where these are subtle – as they 

are likely to be in the general population (Culmer et al., 2009). 

There is an obvious need for more objective and systematic assessment 

of motor skills when studying their relationship to mathematics. Standardised 

assessment batteries such as the Movement ABC (M-ABC) (Henderson & 

Sugden, 1992) are useful given that they can easily be conducted in a school 

environment, however they are still flawed in the nature and depth of the 

information they can provide given that they are pencil and paper tests (Culmer 

et al., 2009). A promising way to truly capture the complexities of fine motor 

control is to use digital tablets to record movements as it allows for the 

assessment of both the speed and quality of movements (Flatters, Hill, et al., 

2014). The previously discussed CKAT system (described in Chapter 4.1.2) is 

run on portable tablets meaning assessments can be carried out quickly and 

easily in a range of environments. Furthermore, a standardised motor battery 

run using the CKAT system has previously been shown to be effective in 

characterising children’s performance throughout the school years (Flatters, 

Hill, et al., 2014). 

In sum, it remains to be seen whether spatial numerical associations and 

the directional preferences within these associations are observed in children, 

and how these develop with age. We utilised the number line task introduced in 

Chapter 4 in order to answer these questions. If children show directional 

preferences, then there should be differences in reaction times depending on 

which number line they are responding to (normal, 0-10; reversed, 10-0). For 

directional effects, kinematic data will be of primary interest given that most of 
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the relevant past research focuses on reaction times (e.g. Dehaene et al., 1993; 

Fischer et al., 2010), however, error data will also be analysed. Furthermore, 

regardless of directional preferences, based on past research children should 

become more accurate at placing numbers on the number line with age. This 

demonstrates an improving ability to represent number spatially, thus 

(consistent with past studies) error on the number line will be the primary 

measure for spatial numerical associations irrelevant of directional 

preferences. It is also explored whether spatial numerical associations are 

related to two types of numerical skills, early number knowledge and 

mathematics achievement, both when considering directional preferences and 

when focusing on accuracy, irrelevant of direction. Finally, CKAT was used to 

assess children’s fine motor skills to determine whether these are related to 

spatial numerical associations and/or numerical skills.  

5.2 Method 

5.2.1 Participants 

Participants were 91 children recruited from a primary school in the North of 

England. Eight of these children were either absent on the day of testing, or did 

not complete all measures leaving a final sample of 83 children. Of these, 27 

were in Year 1 (M =6.5 years, range = 6.1 – 6.9, 15 male), 28 were in Year 3 (M 

=8.3 years, range = 7.9. – 8.8, 13 male) and 27 were in Year 5 (M =10.5 years, 

range = 9.9 – 10.9, 12 male). Seventy-eight percent of children were right 

handed. Informed consent was obtained in advance from the schools’ Head-

teacher and children’s parents or guardians; children gave their informed 

consent verbally on the day of testing. 

5.2.2 Spatial-Numerical Associations – Number Line Task 

This task was deployed using the Clinical Kinematic Assessment Tool (see 

Chapter 4.1.2). All tasks were completed on a touch screen tablet PC with the 

screen folded back to create a horizontal surface (Toshiba Portege M700-13P, 

257 x 160 mm, 1280 x 800 resolution, 100 Hz refresh rate). 
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For this task, children were asked to hold their stylus on a start location 

at the bottom of the screen; this triggered an unbounded number line to appear 

near the top of the screen, above which a number between 1 and 9 would 

appear. Children were required to slide their stylus from the start location to 

cross the number line where they thought the number belonged, as quickly and 

as accurately as possible (see figure 5.1). They were told that the number line 

represented numbers 1 to 9, equally spaced along the line. The task consisted of 

three blocks of trials; a ‘normal’ block where the line ran from 0 – 10 and the 

target numbers were presented in red, a ‘reversed block’ where the line ran 

from 10 – 0 and the target numbers were blue, and finally a ‘mixed’ block where 

line direction changed randomly. Participants used the colour of the number to 

determine line direction in the mixed block. Children completed 18 trials (2 of 

each number) in each of the consistent blocks (normal and reversed) and 36 

trials in the mixed block (2 trials per number per line direction). Children were 

separated into two conditions: they either completed the normal block first or 

the reversed block first with the mixed block always being completed last. For 

further methodological information, see Chapter 4. This task provides data on a 

number of kinematic variables including reaction time (RT) and movement 

time (MT), as well as accuracy information about where children crossed the 

line. 
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Figure 5.1 The experimental set up of the number line task showing the procedure for each condition. Examples reflect participant 

data. 
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5.2.3 Fine Motor Skills Assessment - CKAT 

Fine motor skills were also assessed using the Clinical Kinematic Assessment 

Tool (CKAT). Using this software, children completed a test battery consisting 

of three tasks: tracking, aiming and tracing. These tasks can be seen in Figures 

5.2a, 5.2b and 5.2c respectively. The task procedures will be described below, 

further details of the tasks are published elsewhere (see Flatters et al., 2014).  
 

Tracking: This task consisted of two parts. First children were asked to track a 

moving green dot on the screen without a spatial guide, and then with a spatial 

guide. At the start of both parts, participants were asked to hold the stylus on a 

stationary green dot, after a delay of 1 second this dot began to move in the 

shape of a figure 8, repeating 9 times in total (see figure 5.2a). After each three 

repeats the dot sped up such that all children completed slow (average velocity 

41mm/s), medium (average velocity (83.8mm/s) and fast paced trials (average 

velocity 167mm/s). In the spatial-guide trial, the figure 8 pattern was provided 

to the child in the form of a black guideline on the screen. A mean value of the 

root mean square error (RMSE) for all trials (with and without a guide; slow, 

medium and fast) was calculated for statistical analysis.  
 

Aiming: Participants started this task by placing their stylus on the start 

position after which a dot appeared at location one, participants had to hit this 

dot as quickly and accurately as possible by sliding their stylus across the 

screen. Hitting this dot made it disappear and a new dot appear at location 2. 

This was repeated for a total of 75 aiming movements including 5 different 

target locations, the task ended when participants hit the finish position which 

appeared after the 75th dot had been hit. Of these aiming movements, 50 

represent a ‘baseline’ condition where children completed 10 sequences of 

aiming to locations 1-5 (resulting in a star shape unknown to participants). The 

other 25 make up the ‘online correction condition’ whereby the target (dot) 

would randomly jump to a new location when the participant was within 40mm 

of the target, thus requiring online movement correction. Total movement 

times (MT) for each of the 75 aiming movements were then averaged using the 

median value. This task was also used in Experiment 3b. 
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Tracing: Once again, participants started this task by placing their stylus on a 

start position that triggered a tracing guide path to appear, which led to a finish 

position at the other end of the screen. The tracing guide path consisted of two 

black lines separated by a white path which participants followed to complete 

the tracing task. Participants must try to stay within the black lines of the 

tracing guide path whilst tracing along the path; feedback was provided in the 

form of an ‘ink trail’ produced by the stylus. Children completed six trials, 

alternating between path A and path B. These paths are geometrically identical, 

but mirrored vertically. All trials contained a ‘pacing’ box which was a black 

transparent box which moved along the tracing path at 5 second intervals; 

children were asked to try and stay within the box to minimise the impact of 

variation in the speed/accuracy prioritisation. Average path accuracy adjusted 

for temporal accuracy (adPA) for all trial types was calculated for analysis. 

Consistent with Flatters et al (2014) the path accuracy on each trial was 

inflated by the percentage that participants’ movement time deviated from the 

ideal movement time for the trial, this was set at 36 seconds.  
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Figure 5.2 (a) Left is a demonstration of a tracking trial without a guideline, 

right is a demonstration of a tracking trial with a guideline. The dotted line 

indicates the trajectory of the moving dot. (b) A schematic of the aiming task 

with dotted lines indicating the trajectory of participants’ movements and the 

dot positioning. (c) A schematic of the tracing task with path A (left) and path B 

(right). Black lines reflect participant trajectories which are printed to the 

screen. Figure reproduced from Flatters et al (2014). 
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5.2.4 Early Number Knowledge 

We created an Early Number Knowledge variable made up of 4 tasks; counting 

forwards, counting backwards, naming the following number and naming the 

preceding number. These counting and naming skills are thought to represent 

Early Number Knowledge and have been used in previous research (e.g. 

Östergren & Träff, 2013). First, children were asked to count forwards from 

specific numbers said aloud by the experimenter. These numbers were 8, 24, 63 

and 85; children were stopped when they had counted forwards by five. 

Children were then asked to name the number immediately following a specific 

number (6, 15, 53, 69, and 99). For the counting backwards task children 

counted backwards by five starting from numbers 10, 15 and 23. Finally, they 

were asked to name the number prior to a specific number (9, 17, 28, 40, and 

80). 

5.2.5 Mathematics Achievement 

Achievement was measured using standardised tests of mathematics provided 

by the school.  Children complete a number of tests during the school year in 

order to measure individual progress and to compare the school’s progress 

with others in the UK. The scores used here are those obtained from the most 

recent assessment the children completed at the time of testing. 

5.2.6 Working Memory 

Two measures of working memory were obtained; children completed both 

forwards and backwards digit span tasks. In both tasks, the experimenter read 

aloud a string of numbers (e.g. 1, 5, 7) which the child had to repeat back to 

them in the forwards task (1, 5, 7), and repeat backwards to them in the 

backwards task (7, 5, 1). Both tasks consisted of blocks of 3 trials with the 

sequence of digits increasing by one for each new block. In the forwards task 

there were six blocks with trial lengths running from 3 to 8 digits, the 

backwards task had five blocks where trials ran from 2 to 6 digits.  
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5.2.7 Procedure 

Children were assessed on a number of tests over the course of two sessions. In 

the first session children completed a motor skills assessment, in the second 

session they completed the number line task, counting and naming tasks and 

the working memory tasks. Each session lasted approximately 25 minutes and 

was completed in a quiet room in the school building where testing stations 

were set up to allow for simultaneous testing. Children were sat apart from 

each other, each with an experimenter and faced the walls of the room to 

reduce disruption. 

5.3 Results 

5.3.1 Directional Preferences in Spatial Numerical Associations 

Trials were excluded if they had a negative reaction time (RT) meaning they 

responded before stimulus onset, or if they had movement times longer than 10 

seconds. This resulted in the loss of 9.73% of trials in total (Year 1 = 16.56%; 

Year 3 = 10.37%; Year 5 = 4.53%). Trials where participants went to the wrong 

side of the line (i.e. to the left when the target number was on the right) were 

excluded from the kinematic and distance error analyses and studied 

separately, hereafter these are referred to as ‘binary errors’. Further, in the 

kinematic and distance error analyses, we collapsed across all numbers except 

number 5, due to its median position on the number line. 

To examine spatial numerical associations a number of variables were 

calculated; reaction times (RT’s), movement times (MT) and two error 

variables, i) average distance error which reflects the distance between the 

numbers ideal location on the line, and the point at which the child crossed it, 

and ii) total binary error which refers to how many times the child crossed the 

line on the wrong side (i.e. crossing the line on the right when the number 1 

appeared in the Normal condition). There were no main effects of condition in 

any of these analyses; therefore the data was collapsed across condition.  

In order to assess whether directional preferences were present in these 

variables, the data was analysed with trial type (normal, reversed, mixed 
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normal, mixed reversed) as a within subject factor, in the same way the data 

were explored in Chapter 4. The hypothesis is that if Western directional 

preferences are present then children should be quicker in the normal and 

mixed normal trial types. Much of the past research on directional preferences 

is based on kinematics, thus the RT and MT data are the main analyses, 

however error is also reported within this section.  

First directional preferences with reaction times (RT) as a function of 

age (3 group levels; Year 1, Year 3 and Year 5) and trial type (4 within 

participant levels: normal, reversed, mixed normal and mixed reversed) were 

analysed (see Figure 5.3). The effect of trial type in the mixed model ANOVA 

was significant, F (3, 237) = 16.929, p < .001, η2p = .176; this was due to switch 

costs as children were slower to respond in the mixed trials.  There was a non-

significant effect of age, F (2, 79) = .561, p = .573, η2p = .014, but a significant 

interaction between age and trial type, F (6, 237) = 3.471, p < .01, η2p = .081; 

this was due to switch costs (quicker responses to blocked than mixed trials) 

being present for children in Year 3 and 5, but not Year 1 children. This is 

possibly due to the Year 1 children struggling somewhat with understanding 

the task and thus just setting off very quickly without focusing too much on 

which direction the line is going in.  

 

 

Figure 5.3 Average RTs by trial type and age. Error bars represent ±1 standard 

error of the mean. 
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We conducted the same analyses on movement times (MT). Once again there 

was a significant effect of trial type which was driven by switch costs, F (3, 237) 

= 17.617, p < .001, η2p = .182, and a significant effect of age, F (2, 79) = 5.320, p < 

.05, η2p = .119; Year 5 children had quicker MTs compared to the Year 1 

children. The interaction was non-significant, F (6, 237) = 1.401, p = .215, η2p = 

.034. The results can be seen in Figure 5.4. 

 

 

Figure 5.4 Average MTs by trial type and age. Error bars represent ±1 standard 

error of the mean. 

 

Next average distance error was analysed (see Figure 5.5). The mixed ANOVA 

revealed a significant effect of trial type, F (3, 237) = 8.920, p < .001, η2p = .101; 

distance error was smaller in the normal trials than either of the mixed trial 

types (p < .01), reversed trials had smaller error than the mixed reversed trials 

(p < .05). A significant effect of age was also observed, F (2, 79) = 15.465, p < 

.001, η2p = .281, signifying that distance error reduces by age group (p < .05); 

the interaction was non-significant, F (6, 237) = .980, p = .439, η2p = .024.  
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Figure 5.5 Average distance error by trial type and age. Error bars represent 

±1 standard error of the mean.  

 

We also analysed average total binary errors; the total number of errors which 

could be made was 18, thus many children are responding at chance in the 

mixed trials (see Figure 5.6).  A mixed model ANOVA revealed a significant 

effect of trial type, F (3, 237) = 41.426, p < .001, η2p = .344; once again this was 

due to switch costs. There was also a main effect of age, F (2, 79), 14.718, p < 

.001, η2p = .271, due to Year 5 children making fewer binary errors than the 

Year 1 or Year 3 children. The interaction was non-significant, F (6, 237) = 

1.132, p = .345, η2p = .028. 
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Figure 5.6 Average binary error by trial type and age. Error bars represent ±1 

standard error of the mean.  

 

Unlike in adults (see Chapter 4), there was no evidence of a directional 

preference in spatial numerical associations. However, when looking at the data 

large individual differences were observed; some children were actually 

showing a reversed preference, i.e. they were faster to respond and move (total 

time taken, TT) to the reversed trials than the normal trials. To investigate this, 

the directional preference of each child was determined by taking away their 

TT to the reversed trials from their TT to the normal trials (difference score) 

and then seeing what percentage of children per year was showing a normal or 

reversed preference (see Table 5.1). Between 35-60% of children were actually 

showing a reversed preference thus dampening any overall group effects which 

may be present. Whilst we do not have individual ethnicity data in this study, 

the school had a large population of Pakistani students. Importantly, Urdu is the 

national language of Pakistan and is written from right to left; given that past 

research suggests culture is important in determining the direction of spatial 

numerical associations, this may be affecting the results observed here. This is 

further explored in Chapter 6. 
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Table 5.1 Percentage of children with normal or reversed directional preferences 

in the blocked and mixed trials.  

 Blocked Trials Mixed Trials 

 Normal Reversed Normal Reversed 

Year 1 66.7% 33.3% 40.7% 59.3% 

Year 3 62.1% 37.9% 46.4% 53.6% 

Year 5 44.4% 55.6% 51.9% 48.2% 

 

Whilst Table 5.1 demonstrates variability in the number of children showing 

each directional preference, it does not tell us about the strength of these 

preferences. For example, a child may have a strong normal preference or they 

may have a very weak normal preference. Therefore the average difference 

score between the normal and reversed trial types was assessed, thus a 

negative score indicates a normal preference and a positive score indicates a 

reversed preference. The means in Table 5.2 demonstrate that irrelevant of the 

direction of preference, children’s preferences weaken with increasing age 

(except in the Mixed Normal trials). 

 

Table 5.2 Mean difference in TT between normal and reversed trial types in the 

blocked and mixed trials [95% confidence interval] 

 Blocked Mixed 

 Normal Reversed Normal Reversed 

Year 1 
-1.47  

[-1.90, -1.04] 

1.15  

[.23, 2.07] 

-1.47  

[-2.28, -.66] 

1.37  

[.84, 1.90] 

Year 3 
-1.21  

[-1.65, -.76] 

1.82  

[.99, 2.65] 

-.82  

[-1.57, -.08] 

.85  

[.33, 1.38] 

Year 5 
-.68  

[-1.21, -.15] 

.46  

[-.25, 1.17] 

-1.05  

[-1.77, -.33] 

.73  

[.16, 1.30] 
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5.3.2 Spatial Numerical Associations, Numerical Skills and Fine Motor 

Skills 

The second focus of this chapter was to assess whether improvements in 

children’s ability to represent number spatially (both directional and non-

directional spatial numerical associations) is associated with early number 

knowledge and/or mathematical achievement, and whether motor skills can 

predict spatial numerical associations, early number knowledge and 

mathematical achievement. Given the individual differences in directional 

preference, it was decided to analyse absolute scores which ignore the direction 

of preference, focusing only on the strength of it. Further, as the pattern of 

results for RTs and MTs were very similar in the sample, RT and MT were 

collapsed across to analyse total time taken (TT). This was also due to 

researchers noticing children using different strategies to complete the task; 

some children would set off very quickly and decide where the number 

belonged whilst on the move, whilst other children would decide before they 

set off and then move very quickly. In the adult sample in Chapter 4 it was 

useful to separate RT and MT as these appeared to reflect planning and 

movement separately, however the children do not seem to show this 

distinction. Creating a composite TT score for the children accounted for these 

differences in how they approached the task. 

5.3.2.1 Developmental Trends 

Whilst not the main focus of the study, the following section looks at the 

developmental trends within the variables. Table 5.3 provides a descriptive 

summary of the variables included in the following analyses (spatial numerical 

associations [SNAs], fine motor skills, early number knowledge, working 

memory and mathematical achievement).
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Table 5.3 Average score for each measure by age [95% confidence interval] 

 Year 1 Year 3 Year 5 

SNAs –Distance Error 26.00 [23.04, 28.97] 20.10 [17.19, 23.01] 14. 21 [11.24, 17.17] 

SNA’s –Binary Error 4.52 [3.84, 5.20] 3.82 [3.16, 4.49] 1.99 [1.31, 2.67] 

SNAs -TT 5.76 [5.10, 6.41] 5.45 [4.80, 6.09] 4.82 [4.17, 5.48] 

SNAs – Strength score .97 [.65, 1.28] .98 [.65, 1.28] .56 [.24, .88] 

CKAT Score .69 [.443, .940] -.08 [-.326, .162] -.60 [-.852, -.355] 

Early Number Knowledge 12.07 [10.92, 13.23] 15.11 [13.97, 16.24] 16.52 [15.36, 17.68] 

Working Memory 5.74 [4.96, 6.52] 7.89 [8.74, 10.30] 9.51 [8.74, 10.30] 

Mathematics Achievement 2.82 [9.09, 3.54] 5.86 [5.15, 6.57] 10.00 [9.28, 10.72] 
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Spatial Numerical Associations:  Past research using number line tasks as a 

measure of the spatial representation of number uses a distance error measure 

of performance, thus this measure is also utilised here. Given that no directional 

preferences were observed, an average was taken across all trial types (normal, 

reversed, mixed normal, mixed reversed). Using this variable, there was a 

significant effect of age, F (2, 79) = 15.672, p < .001, η2p = .284; as children got 

older, they became more accurate at placing numbers on the number line (p < 

.05).  

Given the nature of the task, binary error and kinematic data were also 

available and thus explored. There was a non-significant effect of age on TT, 

F (2, 79) = 2.072, p = .133, η2p = .05, but a significant effect of age on binary 

errors, F (2, 79) = 14.718, p < .001, η2p = .271. This was due to Year 5 children 

making fewer binary errors than the Year 1 or Year 3 children (p < .01); the 

difference between Year 1 and Year 3 children was not significant (p = .444).  

The TT data also then allowed us to assess whether the strength of 

children’s preference (irrelevant of direction) varied by age. There was a non-

significant effect of age, F (2, 79) = 2.166, p = .121, η2p = .052; the strength of 

children’s preferences did not vary by age.  
 

CKAT: Children’s scores on each of the three CKAT tasks were converted into z 

scores and averaged to create a CKAT composite score. Univariate analysis 

confirmed that children’s motor skills (as measured by CKAT) improve with 

age, F (2, 79) = 27.212, p < .001, η2p = .408, with all age groups differing 

significantly (p < .05). 
 

Early Number Knowledge: Children’s scores on the forwards and backwards 

counting and naming tasks were added together to produce a total counting 

score. Once again, developmental increases in performance were observed, 

F (2, 79) = 15.268, p < .001, η2p = .279, but this difference was not significant for 

the Year 3 and 5 children who performed similarly on these tasks (p = .262). 
 

Working Memory: Children’s scores on the forwards and backwards digit span 

task were added together to give a combined score. A significant effect of age 

was observed, F (2, 79) = 23.456, p < .001, η2p = .373; Year 1 children had lower 
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scores than either the Year 3 or 5 children (p < .01), and Year 3 children’s 

scores were lower than the Year 5 children’s (p < .05). 
 

Mathematics Achievement: Children’s mathematics achievement significantly 

improved with age, F (2, 79) = 98.580, p < .001, η2p = .714; all year groups were 

significantly different from each other in (p < .001). 

5.3.2.2 Relationships between Spatial Numerical Associations, Motor 

Skills and Mathematics  

In this section the aims were to determine i) whether fine motor skills predict 

spatial numerical associations, and ii) whether spatial numerical associations 

(SNAs) and/or fine motor skills can predict the numerical skills of a) early 

number knowledge and b) mathematical achievement. Firstly, Pearson 

correlation coefficients were calculated (see Table 5.4). These analyses 

revealed that fine motor skills correlate with the distance error measure of 

spatial numerical associations but not the kinematic variables. Further, fine 

motor skills and the error measure of spatial numerical associations also 

correlated with early number knowledge and mathematical achievement.
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Table 5.4 Partial correlations between variables (controlling for age) 

 1 2 3 4 5 6 7 8 

1. SNAs – Distance Error -        

2. SNAs – Binary Error .345** -       

3. SNAs - TT -.105 -.480** -      

4. SNAs – Strength Score .095 .078 .264* -     

5. CKAT .416** .212 -.131 -.043 -    

6. Early Number 

Knowledge -.346** -.193 .142 .032 -.619** -   

7. Working Memory -.221 -.180 .057 .005 -.376* .304* -  

8. Mathematics 

Achievement  -.441** -.133 -.126 -.015 -.398** .380* .538** - 

Note: *p < 0.05; **p < 0.01.
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Based on the correlational analyses, a number of regression analyses were 

conducted to assess the study predictions. The ‘enter’ method was used where 

age was always entered in step 1 and the predictors entered in step 2. Given 

that the distance error variable is the one used in the current literature, and 

that it correlated with the other main variables whilst the kinematic data did 

not, this is the spatial numerical variable included in the regressions.  

 

Predicting Spatial Numerical Associations: The correlation between fine 

motor skills and spatial numerical associations (distance error) allowed us to 

assess whether fine motor skills can actually predict children’s performance on 

the number line task; Table 5.5 summarises the results of the regression 

analysis. The first model accounted for 30% of the variance in number line 

ability (R2Adjusted = .30, F = 35.236, p < .001). The second model accounted for 

41% of the variance (R2Adjusted = .41, F = 29.336, p < .001); children’s CKAT scores 

predicted their ability to represent number spatially.   

 

Table 5.5 Hierarchical regression analysis predicting spatial numerical 

associations 

  β T R2Adjusted 

1    .297 

 Age -.55** -5.936  

2    .409 

 Age -.25* -2.237  

 CKAT .46** 4.017  

Note: *p < 0.05; **p < 0.01. 

 

Predicting Early Number Knowledge: This regression aimed to determine 

whether early number knowledge could be predicted by spatial numerical 

associations (SNAs) and/or fine motor skills. Working memory was also 

included as a predictor as it correlated with early number knowledge. Once 
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again, age was a significant predictor in the first step, (standardised β = .52, p < 

.001); this first model accounts for 26% of the variance in counting (R2Adjusted = 

.26, F = 29.083, p < .001). The second model accounts for 52% of the variance 

(R2Adjusted = .52, F = 22.519, p < .001). This analysis revealed that only CKAT 

explained unique variance in children’s early number knowledge (see Table 

5.6).  

 

Table 5.6 Hierarchical regression analysis predicting Early Number Knowledge 

  Β t R2Adjusted 

1    .257 

 Age .52** 5.393  

2    .515 

 Age .00 .017  

 SNAs -.08 -.732  

 CKAT -.58** -4.898  

 Working Memory .15 1.456  

Note: *p < 0.05; **p < 0.01. 

 

Predicting Maths Performance: Finally, it was assessed whether fine motor 

skills and/or spatial numerical associations could predict mathematics 

performance; working memory and early number knowledge were also 

included due to their correlation with mathematics achievement. The first 

model accounts for 75% of the variance in mathematics ability (R2Adjusted = .75, F 

= 243.270, p < .001). Even after controlling for age, the second model explained 

85% of the variance (R2Adjusted = .85, F = 92.029, p < .001); age, working memory 

and spatial numerical associations all explained unique variance in 

mathematics achievement (see Table 5.7).  

 



100 
 

Table 5.7 Hierarchical regression analysis predicting mathematical achievement 

  β T R2Adjusted 

1    .749 

 Age .87** 15.597  

2    .849 

 Age .56** 9.024  

 SNAs -.16** -2.842  

 

Early Number 

Knowledge .10 1.518  

 CKAT .01 .132  

 Working Memory .28** 4.800  

Note: *p < 0.05; **p < 0.01. 

5.4 Discussion 

This study aimed to investigate the development of spatial numerical 

associations in children and whether directional preferences (e.g. smaller 

numbers associated with the left side of space and large with the right) exist 

within these associations. We found that accuracy (both binary and absolute 

measures) improved with age suggesting that children’s ability to represent 

number spatially improves with age. However, unlike the adults in Chapter 4, 

there was no evidence of a directional preference in the total time taken for 

children on the number line task; they were just as quick to respond to the 

number line in its normal direction (0-10) as they were in its reversed direction 

(10-0). We also found no evidence of a directional preference in the accuracy 

data. The only other study which utilises a normal vs reversed number line 

method to assess spatial numerical associations did find some evidence that 

children were more accurate in the normal trials (Ebersbach, 2015). However, 

whilst the overall effect of line direction in the mixed model ANOVA 
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(orientation, task order and age) is significant, the alpha value of the t-test was 

at the six percent level meaning it is non-significant. Further, the impact of line 

direction was only present in the youngest children when they started with the 

right to left orientation. It is possible therefore that this effect is mostly driven 

by practice effects, as observed in the adult data (see Chapter 4). Children start 

with the harder trials and are learning the task, thus they gain a double 

advantage when they complete the easiest trials second. There are also a 

number of other methodological differences between our study and the 

Ebersbach (2015) study which likely account for the differences, for example 

they use a non-symbolic bounded 1-100 number line, as opposed to the 

symbolic unbounded 0-10 number line used in the present study. Whilst 

previous studies have found directional spatial-numerical associations, these 

are normally in non-symbolic tasks (de Hevia & Spelke, 2009; Ebersbach, 2015; 

Opfer et al., 2010). This could suggest a non-symbolic preference develops prior 

to a symbolic preference – this is consistent with non-symbolic number 

representation developing much earlier than symbolic representation 

(Ebersbach, 2015).  

In this study it is possible that no directional effects were observed 

because a number of children were actually showing a reversed preference, 

thus it is possible that the diversity of directional preferences cancelled out any 

effects which may have been present in the kinematic data. Why might different 

preferences have been present? Whilst the data are not clear cut, the sample is 

from a very mixed ethnicity school with a higher than average number of pupils 

of Pakistani heritage. Importantly, Urdu is the national language of Pakistan and 

is written from right to left. Given the proposed cultural influences on spatial 

numerical associations (see Chapter 1.3.3), it may be expected that these 

children would show a reversed preference. In fact, this has previously been 

suggested, but remains to be tested (Ebersbach, 2015). Furthermore, the school 

has a higher than average percentage of children whose first language is not 

English. It is therefore possible that they are exposed to different spatial-

numerical patterns at home and at school which could reduce any overall 

effects. Accordingly, past research has found that exposure to different 
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directions in spatial numerical association’s results in weaker or non-existent 

SNARC effects (Shaki & Fischer, 2008; Zebian, 2005). 

Whilst no group directional preferences were observed in the data, it 

was analysed whether the overall strength of preferences (irrelevant of 

direction) was related to the numerical skills of early number knowledge or 

mathematical achievement. There was no evidence that the strength of 

preferences changed with age and this preference was not related to any other 

variables, suggesting that the strength of directional spatial numerical 

associations is not important for mathematical achievement. However, to the 

author’s knowledge this is the only study to directly test this in children and 

follow up work is warranted given findings in the adult literature. For example, 

research investigating the strength of preferences in adults has tended to use 

expert mathematicians against a control group. In Dehaene’s seminal study, 

they found a trend for adults with high maths skills to show a smaller SNARC 

effect (though this was not significant the number of participants in each group 

was very small (n = 10)) (Dehaene et al., 1993). Using a much larger participant 

sample, a further study observed that expert mathematicians do not show a 

SNARC effect at all (Cipora et al., 2015), and weaker SNARC effects have been 

found in students studying mathematically heavy subjects such as engineering, 

compared to students studying arts subjects (Hoffmann, Mussolin, Martin, & 

Schiltz, 2014). It will be important to continue investigating the impact of maths 

proficiency in the general population as it is possible that differences in 

representation are only apparent in groups whose mathematical skills vary 

widely. 

There were no significant effects regarding directional preferences, 

however, consistent with previous findings children’s ability to represent 

number spatially (operationalised as distance error) did predict mathematical 

achievement (Booth & Siegler, 2006, 2008; Sasanguie et al., 2012; Siegler & 

Ramani, 2008). The fact that multiple populations appear to represent number 

spatially in some format could suggest that it is beneficial to us somehow. It is 

possible that being able to represent number spatially allows children to rely 

on the mental number line when they are solving complex mathematical 

problems; they may rely on their spatial representation to cope with task 
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demands. For example, when presented with two addition calculations and 

asked to determine which calculation produces a bigger sum, they may use 

knowledge of where the numbers are represented in space to quickly 

determine that the calculation with more numbers on the right side of space 

will produce a bigger total. The fact that there was no link between spatial 

numerical associations and early number knowledge could suggest that for easy 

problems, the mental number line is not utilised. The counting tasks used in 

this study were relatively easy and all children were familiar with the number 

range tested, it is therefore possible that they relied on more semantic 

knowledge.  

Interestingly, there was no evidence that early number knowledge 

predicted mathematics which is in contrast to some previous studies (Jordan et 

al., 2007; Jordan & Kaplan, 2009; Östergren & Träff, 2013). However, there are 

a number of issues with the measurements used in these studies which may 

explain the differences. Firstly, both studies by Jordan and colleagues included 

calculation in their early number knowledge measures, even though calculation 

skills then feature in the mathematics assessment (Jordan et al., 2007; Jordan & 

Kaplan, 2009). Meanwhile, Östergren and Träff (2013) only used arithmetic 

skill, not mathematical achievement which is a more general factor consisting 

of a number of skills, including but not limited to, arithmetic knowledge. 

Furthermore, they also included a number line task in their early number 

knowledge measure alongside counting, thus it is possible that the number line 

task is driving the effect – this is consistent with the finding that number line 

performance does predict mathematics achievement. Together, these findings 

suggest that the ability to represent number spatially is important in 

developing the mathematical knowledge which is required to be successful in 

school.  

Consistent with the study’s predictions, fine motor skills predicted 

spatial numerical associations when measured using the distance error 

variable. One possibility is that it is due to fine motor skills influencing our early 

learning experiences (Marr et al., 2003; Piaget & Inhelder, 1966). For example, 

children often learn about quantities by playing with objects and sorting them 

in to piles thus creating a link between number and space. Furthermore, it has 
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been proposed that the fine motor skills of reading, writing and finger counting 

particularly, drive the association between number and space (Dehaene et al., 

1993; Fischer, Mills, & Shaki, 2010; Gobel, Shaki, & Fischer, 2011; Hubbard et 

al., 2005; Fischer & Shaki, 2014). However, it could also be argued that the 

distance error measure we used actually reflects fine motor skills. Accordingly, 

motor skills assessments, including the CKAT system used here, often utilise 

movement error on a given task to determine a person’s motor proficiency. In 

this instance, children who have bigger distance errors may be able to 

represent number spatially, but have worse motor control. Thus the 

relationship may be due to the distance error variable and CKAT both assessing 

motor skill, irrelevant of a child’s ability to represent number spatially. Future 

research should consider this when designing tasks to assess spatial numerical 

associations in order to ensure motor skill does not confound the results. 

Nevertheless, it will be interesting for future developmental research to 

determine how much of an impact the relevant perceptual motor skills (e.g. 

finger counting, reading, and writing) have on the development of directional 

effects, as most research to date has been theoretical or correlational. For 

example, a recent online survey found that Western individuals start counting 

with their left hand, whilst Middle Eastern individuals start counting with their 

right hand (Lindemann et al., 2011), but it is not yet known whether these 

biases form the basis for directional preferences in number representation.  

Finally, whilst motor skills correlated with mathematical achievement, 

they did not predict it. This is inconsistent with some past studies (e.g. Grissmer 

et al., 2010; Luo et al., 2007; Pagani & Messier, 2012). However, evaluations of 

mathematics achievement in previous studies often involved aspects of early 

number knowledge such as counting and reading two digit numerals. Thus it 

may be fine motor skills relationship with early number knowledge which is 

driving this effect in the younger children. Further, as fine motor skills are 

thought to influence mathematical knowledge through the early manipulation 

of objects e.g. putting blocks in to piles, it is possible that fine motor skills are 

important early on in development and for more basic numerical abilities, but 

that other factors are more important later on. Accordingly, Martzog and 

Stoeger (2011) found the link between fine motor skill and cognition was 
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strongest in young children, with the association weakening with age. 

Furthermore, in the present study motor skills predicted counting skills, 

consistent with past research which finds that motor skills predict early 

number knowledge in both longitudinal (Grissmer et al., 2010; Pagani et al., 

2010) and cross sectional studies (Pagani & Messier, 2012). It is also consistent 

with the theoretical work of Piaget and Inhelder (1966) which posits that fine 

motor skills enable us to interact with the world in new and varied ways thus 

allowing us to learn both in the motor and cognitive domains. More specifically, 

it follows from suggestions that fine motor skills are important in the 

understanding of number concepts (Luo et al., 2007). Thus, it may be that fine 

motor skills are a building block for early number knowledge. Previous studies 

have not always separated early number knowledge from mathematics well 

enough (see above), therefore perhaps these studies would not have found that 

fine motor skills predict maths if they were measuring more disparate 

numerical skills (early number knowledge and mathematics achievement 

separately).  

In sum, Chapter 5 has demonstrated that children’s improvements in 

representing number spatially can predict children’s mathematics achievement. 

Further, we found that spatial numerical associations predicted fine motor 

skills. However, we note that this link warrants further investigation, given that 

our distance error variable could actually be measuring fine motor skill. We 

also found that fine motor skills predict early number knowledge, but not 

mathematical achievement. In contrast to the adults studied in Chapter 4, there 

were no directional preferences in spatial numerical associations in children. It 

was speculated that this may be due to the culturally diverse sample tested. 

This conjecture will be examined in Chapter 6.  
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CHAPTER 6 

THE IMPACT OF CULTURAL BACKGROUND ON THE 

DEVELOPMENT OF SPATIAL NUMERICAL 

ASSOCIATIONS  

6.1 Introduction 

Few studies have investigated whether spatial numerical associations are 

present in children, and whether children show directional preferences in these 

spatial numerical associations (White et al., 2012). For example, do children, 

like adults, represent number on a mental number line running left to right? In 

adults, past literature mostly focuses on directional preferences in spatial 

numerical associations (e.g. Dehaene et al., 1993; Shaki & Fischer, 2008; 

Treccani & Umiltà, 2011), whilst in children, research tends to just investigate 

whether they exist, irrelevant of directional preferences (e.g. Booth & Siegler, 

2006; Siegler & Ramani, 2008). Whilst both of these are useful, it is important 

to acknowledge that these are subtly, but importantly, different things. Chapter 

5 attempted to investigate both of these issues. Whilst evidence of spatial 

numerical representations was found, there was no evidence of directional 

preferences at the group level. This was hypothesised to be due to the mixed 

ethnicity of the sample; a larger than average number of the pupils were of 

Pakistani heritage meaning that in their home language they likely read and 

write from right to left.  

As previously discussed in section 1.3.3, one of the main hypotheses of 

the origin of directional preferences in spatial numerical associations is the 

influence of cultural background, specifically reading, writing and finger 

counting experience (Dehaene et al., 1993; Fischer, Mills, & Shaki, 2010; Gobel, 
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Shaki, & Fischer, 2011; Hubbard et al., 2005; Fischer & Shaki, 2014). 

Accordingly, in adult participants research has found that the direction or 

existence of the SNARC effect is associated with these perceptual motor skills 

(Fischer & Brugger, 2011; Fischer, 2008). For example, weaker SNARC effects 

are observed in participants who have moved from a right to left reading and 

writing culture, to a left to right reading and writing culture (Zebian, 2005). 

Given that a large percentage of children in the sample spoke English as an 

additional language, it is likely that they are being exposed to different 

directional spatial numerical associations on a daily basis; left to right when at 

school, and right to left when at home. However, thus far the effect of cultural 

background on spatial numerical associations in children has been neglected; to 

the authors knowledge there are no studies which investigate this.  

As part of a larger study, the opportunity arose to test in two different 

schools, one where almost all the pupils were from South Asian backgrounds 

(predominantly Pakistani) and one where the majority of pupils were from 

Western backgrounds (predominantly British or Eastern European). Thus these 

two groups of students were compared to determine whether differences exist 

in the nature of their spatial representation of number. Further, in the South 

Asian school, there was also the opportunity to replicate some of the other 

findings from Chapter 5 as measures of fine motor skills, working memory and 

mathematical achievement were obtained. Due to time pressures in testing as 

part of this larger study, an early number knowledge measure was not used. 

Nevertheless, the tests undertaken allow for the investigation of whether fine 

motor skills predict spatial numerical associations and whether fine motor 

skills and/or spatial numerical associations can predict mathematics 

achievement in a much larger sample. 

6.2 Method 

6.2.1 Participants 

A total of 404 children were included in this study; 230 (55% female) were 

attending a predominantly Western school, 174 were attending a 

predominantly South Asian school (53% male). There was a total of 88 children 
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in Year 2 (Western, M = 6.76, range = 6.3 – 7.2; South Asian, M =7.3, range = 6.9 

– 7.8), 83 children in Year 3 (Western, M = 7.8, range = 7.2 – 8.2; South Asian, M 

=8.3, range = 7.7 – 8.9), 102 children in Year 4 (Western, M = 8.8, range = 8.3 – 

9.2 ; South Asian, M =9.3, range = 8.9 – 9.8) and 131 children in Year 5 

(Western, M = 9.8, range = 9.2 – 10.2; South Asian, M = 10.3, range = 9.9 – 10.8). 

Both schools are located in areas of similar socio-economic status.  

6.2.2 Materials 

The number line task and the fine motor skills assessment was completed on 

the same CKAT software that was used in Chapter  5 using the same touch 

screen tablet laptops (Toshiba Portege M700-13P, 257 x 160 mm, 1280 x 800 

resolution, 100 Hz refresh rate). 

6.2.3 Procedure 

Participants in both schools completed a similar number line task to that used 

in Chapters 4 and 5 (see Figure 6.1). For consistency, ‘normal’ will always refer 

to the typical Western spatial numerical preference (e.g. 0-10) and reversed 

will always refer to the opposite of this preference (e.g. 10-0). Children were 

instructed to press and hold their pen on a start location at the bottom of the 

screen to begin each trial; this caused an unbounded number line to appear at 

the top of the screen. When a number between 1 and 9 appeared above this line 

children were required to drag the pen from the start location to where they 

thought the number should be on the line as quickly and as accurately as 

possible. The number line either ran from 0-10 (normal) or 10-0 (reversed). 

Children completed three blocks of trials; a ‘normal’ block (0-10), a ‘reversed’ 

block (10-0) and finally a mixed block where line direction changed randomly 

from normal to reversed.  

Due to time pressures on testing within the school, and children’s 

boredom with the task, a number of adjustments were made. Firstly, the 

number of trials in the task was reduced such that the testing session lasted 

between 10 and 15 minutes. Thus the normal and reversed blocks contained 12 

trials each and the mixed block was reduced to 24 trials. There were no trials of 

number 5, given that this represents the middle of the line and is never 
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included in the analysis. Secondly, the task was not counterbalanced. All 

children completed the block, followed by the reversed block and finally the 

mixed block. This was due to there being a lack of effect of condition in the 

children tested in Chapter 5, and due to the constraints placed upon on us 

during testing.  

Children from the South Asian school also took part in a number of other 

tests as part of the wider study; this included the CKAT fine motor skills 

assessment and working memory assessments. Once again, the CKAT battery 

consisted of tracking, aiming and tracing subtests and the working memory 

assessment consisted of forwards and backwards digit span tasks (see sections 

5.2.3 and 5.2.6). Mathematics achievement was again measured using the 

child’s most recent score on the schools standardised mathematics. As before, 

testing sessions were set up to allow testing of four children at a time.  
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Figure 6.1 The experimental set up for the number line task. Examples reflect participant data.
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6.3 Results 

First, the results from the South Asian school will be presented to determine 

whether the spatial numerical effects and/or the predictive relationships 

observed in Chapter 5 can be replicated. Then there will be a comparison 

between the South Asian and Western children on the number line task. 

6.3.1 Replication of Chapter 5 
 

6.3.1.1 Spatial Numerical Associations 

Trials were excluded if they had negative reaction times (RT) or movement 

times (MT) longer than 10 seconds. Binary errors (trials where participants 

crossed on the wrong side of the line) were removed from the kinematic and 

distance error analyses.  

Given the observation in Chapter 5 that it was not useful to consider RT 

and MT separately, they were collapsed across to produce an overall total time 

(TT) variable. Thus TT, distance errors (the difference between a numbers 

actual location, and where the child placed the number) and binary errors 

(where a child crossed the line on the wrong side) were analysed for evidence 

of spatial numerical associations. In all analyses trial type was assessed as a 

within subject factor with four levels (normal, reversed, mixed normal, mixed 

reversed) and age as a between subjects factor with four levels (Year 2, Year 3, 

Year 4, Year 5) in mixed model ANOVAs.  

Finally, as previously stated, normal will refer to a 0-10 number line 

preference, and reversed will refer to a 10-0 number line preference, irrelevant 

of participant ethnicity.  
 

Total Time Taken: First, TT was assessed finding a significant effect of trial 

type, F (3, 513) = 38.265, p < .001, η2p = .138, this was due to switch costs in that 

children were quicker to the blocked trial types than the mixed trial types (see 

Figure 6.2). Furthermore, children were quicker to respond and move to the 

reversed trials than the normal trials (p < .05). We also found a significant effect 

of age, F (3, 171) = 7.997, p < .001, η2p = .123 as the Year 5 children were 
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quicker than all the other children (p < .05). There was no interaction between 

age and trial type, F (9, 513) = .481, p = .887, η2p = .008. 

 

 

Figure 6.2 Average TT by trial type and age. Error bars represent ±1 standard 

error of the mean. 

 

Distance Error: For the accuracy data, distance error was first assessed (see 

Figure 6.3). This revealed a significant effect of trial type, F (3, 513) = 

17.825, p < .001, η2p = .094 and a significant effect of age, F (3, 171) = 

10.272, p < .001, η2p = .153; there was evidence of switch costs and the Year 5 

children were more accurate than all other groups (p < .05). The switch costs 

suggest that the difficulty of the mixed trials had an impact on children’s 

accuracy. Once again the interaction was non-significant, F (3, 513) = .915, p < 

.499, η2p = .016. 
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Figure 6.3 Average distance error by trial type and age. Error bars represent 

±1 standard error of the mean. 

 

Binary Error: Finally we analysed binary errors. We again found evidence of 

switch costs, F (3, 678) = 82.080, p < .001, η2p = .266 and also found that 

children made fewer errors to the normal than reversed trial types in the 

blocked trials (p < .05) (see Figure 6.4). The effect of age was significant, F (3, 

226) = 3.295, p < .05, η2p = .042 but the interaction was not, F (9, 678) = 

1.355, p = .205, η2p = .018. Overall the Year 5 children made fewer binary errors 

than the Year 2 children (p < .05).  

 

Figure 6.4 Total binary error by trial type and age. Error bars represent ±1 

standard error of the mean. 
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Strength of Associations: Once again total time taken was used to analyse the 

strength of children’s preferences irrelevant of direction by using an absolute 

difference score (TT to normal trials – TT to reversed trials). This revealed a 

non-significant effect of age, F (3, 226) = 1.070, p = .363, η2p = .014. 

 

Overall, the pattern of results is similar to the pattern observed in Chapter 5. 

Notably, there was evidence of age related improvements in all variables except 

with regard to the strength of spatial numerical associations. However, we also 

found that children were quicker to respond and move to the reversed trials, 

possibly suggesting a reversed preference in the South Asian children, though 

this was not observed in the error data. As in Chapter 5 we observed large 

individual differences with the percentage of children showing a normal 

preference varying between 29% and 59% depending on age group (see Table 

6.1).  Notably, in the blocked trials children from the South Asian school tended 

to show a reversed preference which would be expected if cultural differences 

do indeed drive the direction of spatial numerical associations. However, the 

binary error data suggested a normal preference which may be indicative of a 

speed/accuracy trade off. In the mixed trials, the percentages are more even 

between the two preferences, this is possibly due to children finding the mixed 

blocks harder and so moving without fully considering the line direction. The 

influence of the mixed trials will be discussed in more depth in section 6.4. 
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Table 6.1 Percentage of children with normal or reversed directional preferences 

in the blocked and mixed trials.  

 Blocked Trials Mixed Trials 

 Normal Reversed Normal Reversed 

Year 2 29.27 70.73 45 45 

Year 3 40.54 59.46 40.54 59.46 

Year 4 35.42 64.58 52.83 47.17 

Year 5 28.17 71.83 51.28 48.72 

 

6.3.1.2 Spatial Numerical Associations, Fine Motor Skills and 

Mathematics 

We were also able to see if we could replicate the findings from Chapter 5. 

Specifically, we hypothesised that i) fine motor skills would predict spatial 

numerical associations and ii) spatial numerical associations (SNAs) would 

predict mathematics. Past literature would lead us to suggest that fine motor 

skills may predict mathematics, but this was not observed in Chapter 5 thus we 

again explored this.  Firstly, we ran a partial correlation controlling for age. As 

in Chapter 5 we observed that fine motor skills correlated with the distance 

error measure of spatial numerical associations and with mathematics 

achievement. We also found the error measure correlated with mathematics 

achievement, however this time the kinematic and binary error variable of 

spatial numerical associations also correlated with mathematics (see Table 

6.2).  
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Table 6.2 Partial correlations between all variables controlling for age 

 1 2 3 4 5 6 7 

1. SNAs – Distance Error -       

2. SNAs – Binary Error .545** -      

3. SNAs - TT .386** .080 -     

4. SNAs – Strength Score .021 .079 -.092 -    

5. CKAT .155* .096 -.029 .011 -   

6. Working Memory -.092 -.172* .075 .007 -.131* -  

7. Mathematics 

Achievement -.216** -.336** .181** -.080 -.308* .420**  

Note: *p < 0.05; **p < 0.01.
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Predicting Spatial Numerical Associations: Given that the error measure of 

spatial numerical associations correlated with fine motor skills but neither the 

kinematic nor binary error variable did, we again we used the distance error 

measure of the number line task. Consistent with Chapter 5 we found that 

accuracy was predicted by age and fine motor skills (see Table 6.3). However, 

this time the variance explained was much lower; the first model accounted for 

5% of the variance (R2Adjusted = .054, F = 14.037, p < .001), the second accounted 

for 7% of the variance (R2Adjusted = .072, F = 9.943, p < .001).  

 

Table 6.3 Hierarchical regression analysis predicting spatial numerical 

associations 

  β t R2Adjusted 

1 
 

  .054 

 
Age 

-.24** -3.747  

2 
 

  .072 

 
Age 

-.18* -2.633  

 
CKAT 

.16* 2.360  

Note: *p < 0.05; **p < 0.01. 

 

Predicting Mathematics Achievement: As in Chapter 5, we used distance 

error, CKAT and working memory to predict mathematics. However, since we 

also found that binary error and total time taken on the number line task was 

correlated with mathematics in this experiment, these variables were also 

included here as measures of spatial numerical associations (SNAs) The first 

model with only age included accounted for 47% of the variance (R2Adjusted = 

.468, F = 198.821, p < .001), the second model accounted for 64% of the variance 

(R2Adjusted = .641, F = 68.013, p < .001). Once again, we observed that age and 

working memory could predict mathematics achievement. Unlike the previous 

chapter, we did not find that distance error on the number line task explained 

unique variance in mathematics, but the kinematic and binary error variables 
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did. Furthermore, fine motor skills also contributed to mathematics 

performance (see Table 6.4) 

 

Table 6.4 Hierarchical regression analysis predicting mathematics achievement 

  β t R2Adjusted 

1 
 

  .468 

 
Age 

.69** 14.100  

2 
 

  .641 

 
Age 

.50 11.371  

 
SNAs – Distance Error 

-.090 -1.649  

 
SNAs – Binary Error 

-.157* -3.147  

 
SNAs - TT 

.155* 3.503  

 
CKAT 

-.173** -3.927  

 
Working Memory 

.25** 5.819  

* p < .05, ** p < .01 

 

6.3.2 Spatial Numerical Associations in a Predominantly Western School 

Total Time Taken: As with the children from the South Asian school we also 

found a significant effect of trial type due to switch costs, F (3, 432) = 

54.741, p < .001, η2p = .275. Unlike the South Asian school, we did not find any 

evidence of directional preferences (see Figure 6.5). The effect of age was non-

significant, F (3, 144) = 2.339, p = .076, η2p = .046 as was the interaction, F (9, 

432) = .945, p = .472, η2p = .019. 
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Figure 6.5 Average TT by trial type and age. Error bars represent ±1 standard 

error of the mean. 

 

Distance Error: Once again there was a significant effect of trial type, F (3, 432) 

= 8.011, p < .001, η2p = .053. This time this was due to children being more 

accurate in the normal trials than the reversed trials in the blocked trials (p < 

.05) (see Figure 6.6). As with the South Asian school, there was a significant 

effect of age, F (3, 144) = 6.982, p < .001, η2p = .127; the Year 5 children were 

more accurate than the other year groups. The interaction was non-significant, 

F (3, 432) = .859, p = .549, η2p = .018.  

 

 

Figure 6.6 Average distance error by trial type and age. Error bars represent 

±1 standard error of the mean. 
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Binary Error: Consistent with the South Asian school, we found a significant 

effect of trial type, F (3, 510) = 89.244, p < .001, η2p = .344; once again this was 

due to both switch costs and children making fewer errors to the normal 

(blocked) trials than reversed (blocked) trials (see Table 6.12). This time the 

effect of age was non-significant, F (3, 170) = .997, p = .396, η2p = .017, but there 

was an interaction, F (9, 510) = 2.284, p < .05, η2p = .039. All groups 

demonstrated switch costs, but the Year 3 and 4 children made fewer errors to 

the normal than reversed trials (p < .05), and the Year 5 children made fewer 

errors to the mixed reversed than the mixed normal trial types (p < .05).   

 

 

Figure 6.7 Total binary error by trial type and age. Error bars represent ±1 

standard error of the mean. 

 

Overall, children from the Western school were just as quick to respond and 

move to the reversed trials as the normal trials, however in general they made 

smaller distance errors and fewer binary errors to the normal than reversed 

trials. Once again, we also looked at the percentage of children in each year 

group who show either a normal or reversed preference (see Table 6.5). Unlike 

the children from the South Asian school, the children from the Western school 

were split relatively evenly in terms of whether they showed a normal or 

reversed preference. 
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Table 6.5 Percentage of children with normal or reversed directional preferences 

in the blocked and mixed trials.  

 Blocked Trials Mixed Trials 

 Normal Reversed Normal Reversed 

Year 2 47.06 52.94 43.75 56.25 

Year 3 38.89 61.11 33.33 66.67 

Year 4 52.27 47.73 37.78 62.22 

Year 5 48.89 51.11 50 50 

 

6.3.3 Comparison between the South Asian and the Western Schoo l 

We collapsed across age and compared TT to each trial type (normal, reversed, 

mixed normal, mixed reversed) between the two schools (South Asian, 

Western). We observed a significant effect of trial type, F (3, 963) = 103.426, p < 

.001, η2p = .244; this was due to switch costs (see Figure 6.8). The effect of 

school was non-significant, F (1, 321) = 7.216, p < .01, η2p = .022 as was the 

interaction, F (1, 321) = 1.879, p = .171, η2p = .006.  

 

Figure 6.8 Average TT by trial type and school. Error bars represent ±1 

standard error of the mean. 
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We also analysed distance errors by trial type and school type. There was a 

significant effect of trial type, F (3, 963) = 21.121, p < .001, η2p = .062, a 

significant effect of school, F (1, 321) = 7.216, p < .01, η2p = .022, and a 

significant interaction, F (3, 963) = 7.227, p < .001, η2p = .022. Overall children 

were more accurate on the normal trials than any of the other trial types (p < 

.05), and more accurate on the reversed trials than the mixed reversed trials (p 

< .05). The effect of school was due to the children from the Western school 

being more accurate than those from the South Asian school. Pairwise 

comparisons revealed that children from both schools were more accurate in 

the normal trials than the reversed trials in the blocked trials, but children from 

the South Asian school also showed switch costs whereas the children from the 

Western school did not. These results can be seen in Figure 6.9. 

 

 

Figure 6.9 Average distance error by trial type and school. Error bars 

represent ±1 standard error of the mean. 

 

The binary error analysis revealed a significant effect of trial type, F (3, 1206) = 

172.011, p < .001, η2p = .300. Neither the effect of school, F (1, 402) = .373, p = 

.542, η2p = .001, nor the interaction was significant, F (3, 1206) = 2.047, p = .124, 

η2p = .005. Overall, children made fewer errors in the blocked trials than the 

mixed trials (see Figure 6.10). They also made fewer errors to the normal trials 

than the reversed trials, but fewer errors to the mixed reversed trials than the 

mixed normal trials (p < .05).  
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Figure 6.10 Total binary errors per trial type and school. Error bars represent 

±1 standard error of the mean. 

 

Finally, children were separated by whether they showed a normal or reversed 

preference by taking their total time taken to the reversed trials away from 

their total time taken to the normal trials; the percentage of children showing 

each preference can be seen in Table 6.1 (South Asian children) and Table 6.5 

(Western children). This also allowed us to look at the strength of children’s 

preferences as it could be that children are showing a weak preference towards 

the reversed trials but a strong preference to the normal trials or vice versa. We 

looked at these preferences by age group and school; a negative score suggests 

a normal preference and a positive score suggests a reversed preference (see 

Table 6.6). Interestingly, in the blocked trials, the strength of the normal 

preference appears to be similar for both schools, but in both the blocked and 

mixed trials the strength of the reversed preference appears to be smaller in 

the children from the Western school. This appears most apparent in the 

younger age groups. We analysed these differences statistically, but there were 

no significant effects of age, F (3, 195) = 1.592, p = .193, η2p = .024 or school, 

F (1, 195) = 2.534, p = .113, η2p = .013 and there was no interaction, F (3, 195) = 

.320, p = .811, η2p = .005. 

In the mixed trials, the strength of the normal preference appears 

stronger in the Western children in Years 2 and 3, but is then stronger in the 

South Asian children in Years 4 and 5. However, once again when we analysed 
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this statistically there were no significant effects of age, F (3, 156) = .937, p = 

.424, η2p = .018 or school, F (1, 156) = .018, p = .892, η2p = .000 and there was no 

interaction, F (3,156) = .861, p = .463, η2p = .016. We also analysed for 

differences between children showing a reversed preference in the mixed 

blocks by age and school, but again there were no significant effects of age, F (3, 

196) = 1.465, p = .225, η2p = .022 or school, F (1, 196) = 1.884, p = .171, η2p = 

.010 and there was no interaction, F (3,196) = .502, p = .681, η2p = .008.



125 
 

 

Table 6.6 Mean difference in TT between trial types in the blocked and mixed conditions by age group and SNA direction [95% 

confidence interval] 

 Blocked Mixed 

 Normal Reversed Normal Reversed 

 Asian Western Asian Western Asian Western Asian Western 

Year 2 

-.61 [-.97, -

.24] 

-.61 [-.96, -

.26] 

1.17 [.83, 

1.50] 

.99 [.62, 

1.36] 

-.11 [-1.55, -

.58] 

-.99 [-1.48, -

.49] 

1.63 [1.20, 

2.05] 

1.15 [.72, 

1.58] 

Year 3 

-.80 [1.09, -

.51] 

-.84 [-1.21, -

.46] 

1.18 [.75, 

1.60] 

.80 [.46, 

1.13] 

-.87 [-1.39, -

.36] 

-1.39 [-1.92, 

-.86] 

1.24 [.80, 

1.67] 

1.10 [.73, 

1.47] 

Year 4 

-.62 [-.90, -

.35] 

-.67 [-.97, -

.38] 

.93 [.59, 

1.28] 

.72 [.38, 

1.07] 

-.84 [-1.26, -

.41] 

-.67 [-1.12, -

.23] 

1.18 [.80, 

1.55]  

1.05 [.70, 

1.39] 

Year 5 

-.68 [-.92, -

.44] 

-.73 [-1.10, -

.49] 

.75 [.48, 

1.02] 

.71 [.39, 

1.05] 

-1.11 [-1.47, 

-.76] 

-.93 [-1.30, -

.55] 

.99 [.69, 

1.29] 

.98 [.72, 

1.57] 
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6.4 Discussion 

Chapter 6 aimed to replicate the results of Chapter 5, and test whether 

directional preferences in spatial numerical associations differ depending on a 

child’s cultural background. Firstly, with regard to the replication, the pattern 

of results in the South Asian school was similar to the pattern of results 

observed in Chapter 5; children did improve with age. However, this time we 

also found that the children from the South Asian school were quicker to 

respond and move to the reversed trials than the normal trials, though they 

made fewer binary errors to the normal trials. Once again, there were high 

levels of individual variability. One possible explanation for this is that the 

children in the South Asian school may be being exposed to differing spatial-

numerical relationships (e.g. reading, writing and finger counting) given the 

high percentage of children for whom English is an additional language. For 

example, children may be exposed to a normal number line at school and a 

reversed number line at home. The extent of these experiences may also differ 

greatly depending on the family background or when the family moved to the 

UK; a child who has moved recently will have much less experience with a 

normal number line compared to a child who has lived here for many years. It is 

also highly likely that some parents do not speak English at home, whilst others 

may speak only English and others may have a mix of English and Urdu.   

Nevertheless, consistent with Chapter 5 it was observed that children’s 

spatial numerical representations could be predicted by age and fine motor 

skills, thus providing evidence (and in a much larger sample size) that fine 

motor skills are important in the development of these representations. Once 

again, this is interpreted to reflect the suggestion that the involvement of fine 

motor skills during play may help develop the link between number and space. 

This is further consistent with suggestions that fine motor skills drive the 

direction of spatial numerical associations (Dehaene et al., 1993; Fischer, Mills, 

& Shaki, 2010; Gobel, Shaki, & Fischer, 2011; Hubbard et al., 2005; Fischer & 

Shaki, 2014). Nevertheless, we also acknowledge there is an alternative 

interpretation; that spatial numerical associations and fine motor skills 

correlate because the distance error variable may actually be measuring motor 
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control, a skill which we would expect to correlate with a fine motor skill 

assessment (see Chapter 5.4). 

However, in contrast to Chapter 5, we did not observe that spatial 

numerical associations predicted mathematics achievement when using the 

distance error variable which is often used in the literature. This time the total 

time taken and binary error measures of spatial numerical associations both 

explained unique variance in mathematics achievement. At present we are 

unsure why distance error was the important variable in Chapter 5 whilst total 

time taken and binary error were the most important in the present chapter. 

The task does appear to be useful at tapping in to spatial numerical 

associations, but this is coming out in different ways. This may be related to 

speed accuracy trade-offs (Fitts, 1954); some children may prioritise moving 

quickly over accuracy, whilst others may prioritise accuracy over speed. This 

may mean that spatial numerical associations are evident in kinematic 

variables for some children, and error variables for others. Finally, whilst fine 

motor skills correlated with mathematics attainment in Chapter 5, they did not 

predict it – but they do in Chapter 6. In Chapter 5 it was hypothesised that the 

lack of predictive relationship was due to fine motor skills being a building 

block for early number knowledge, rather than a direct contributor to 

mathematical attainment. The relationship here might suggest that actually 

there is a need for a larger sample size to detect this relationship. 

In the comparison between the South Asian and Western school, there was 

some evidence of a reversed preference in spatial numerical associations in the 

South Asian school in the kinematic data, but evidence of a normal preference 

in the binary error data. Once again we observed large individual variability 

and suggested this could be due to the South Asian children being exposed to 

differing spatial numerical mappings (South Asian at home, Western at school). 

However, we also found large variability in the directional preferences in the 

children from the Western school; whilst some of these children do speak 

English as an additional language, these are mostly European languages and 

thus written left to right (meaning the number to space mappings are not 

mixed). Nevertheless, there was some evidence of a directional preference for 

the normal number line in the predominantly Western school; children made 
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less binary errors and were more accurate on the normal number line than the 

reversed number line in the blocked trials. With regard to the mixed trials, the 

only real effect in both schools was the evidence of switch costs demonstrating 

that overall children found these trials harder. In adults, the mixed trials allow 

us to observe default preferences in spatial-numerical representation (see 

Chapter 4), however in children it is possible that these trials are too hard as 

they rely on the children remembering which direction the line goes in and the 

colour associated with the specific line orientation. Together these two factors 

increase the cognitive load of the task, meaning children have to focus very 

hard on the task, or decide it is too hard and thus pay little attention to line 

direction, thus meaning default preferences cannot be observed. Thus task 

difficulty may also be contributing to a lack of strong conclusions regarding 

directional preferences. One way to reduce this load would be to bound the 

number line such that children know which way the line is going. However, it is 

thought that bounded number lines makes participants use proportion 

estimation strategies, rather than being a measure of spatial numerical 

associations per se (Barth & Paladino, 2011; Cohen & Blanc-Goldhammer, 

2011).  

Despite the differences observed in the separate school analyses, no 

differences in directional spatial numerical associations were observed when 

statistically comparing the two schools; overall all children were more accurate 

in the normal than reversed trials in that they made fewer binary errors and 

had smaller distance errors. It is possible that children have just not yet 

developed a strong enough preference, perhaps this preference develops later; 

studies have shown that larger SNARC effects are observed with increasing age 

(Wood et al., 2008). Research into this is sparse and thus there are differential 

findings regarding the development of spatial numerical associations. For 

example, some developmental studies demonstrate SNARC effects in children 

as young as 4 or 5 years old (Hoffmann et al., 2013; Patro & Haman, 2012), 

whilst others have not observed effects in children younger than 7 years (Van 

Galen & Reitsma, 2008; White et al., 2012). However, these studies tend to 

differ in methodology with regards to the nature of the stimuli (e.g. symbolic or 

non-symbolic) and the to-be-made judgement (e.g. parity or colour judgement), 
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thus suggesting that the task employed may have large impacts on whether or 

not SNARC effects are observed. Nevertheless, it is again noted that there was 

some evidence of different preferences was observed in the individual school 

analyses, therefore a number of other possible explanations for the lack of 

group differences arise. It is possible that the South Asian children’s exposure 

to the normal number line through formal schooling has reduced the cultural 

effects such that their representation is now much closer to that of the Western 

children, but has not yet fully changed to reflect a 0-10 number line. It would 

therefore be interesting to develop a test simple enough for younger children to 

complete to determine if culturally biased directional effects are present before 

formal schooling. It will also be important for future studies to attain individual 

information about both ethnicity and the language spoken at home. Whilst 

group ethnicity was used as a proxy, this provides no specific information about 

the child’s cultural background. It is entirely possible that some of the South 

Asian children experience much stronger culturally influenced preferences than 

others. In future work it may also be possible to assess spatial numerical 

associations in Western children living in the UK and South Asian children 

living in their home country (e.g. Pakistan) in order to determine how much 

enculturation influences these associations. This has been tested in adults 

(Shaki & Fischer, 2008; Zebian, 2005), but not children.  
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CHAPTER 7 

DISCUSSION AND CONCLUSIONS 

7.1 Introduction  

Time and space are physical realities whilst number is an abstract concept. 

Nevertheless, there appears to be a causal link between human interactions 

with the physical world and the development of abstract mathematical 

concepts including the representation of quantity and time (Cohen Kadosh et 

al., 2008; de Hevia et al., 2014). However, there is a dearth of research that 

investigates the relationship between quantity, time and space in children. To 

date, much of the temporal-numerical research involves very young children, 

focusing mostly on duration estimates rather than other temporal constructs 

(e.g. Srinivasan & Carey, 2010). Further, spatial-numerical research mostly 

focuses on adults (e.g. Dehaene, Bossini, & Giraux, 1993; Fischer, Mills, & Shaki, 

2010; Shaki & Fischer, 2008; Zebian, 2005). Thus, this thesis sought to assess: 

(i) the development of children’s ability to link time and number using 

frequency processing tasks, and (ii) children’s ability to link space and number. 

In this chapter I provide an overview of the main findings and discuss the 

theoretical and applied implications of these. 

7.2 Review of Findings   

7.2.1 Temporal Representation of Number  

The thesis assessed the temporal representation of number by analysing 

whether children could recall the frequency of both everyday events (Chapter 

2) and short term events (Chapter 3), and whether these skills were related to 
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numerical processing. Firstly, in Chapter 2 it was observed that children aged 

between eight and eleven years of age could recall their daily intake of fruit 

smoothies with a high degree of accuracy. Furthermore, their ability to recall 

their intake after a delay of one week was related to their mathematical 

achievement, but not the more basic numerical skills of subitizing and dot 

enumeration. Secondly, Chapter 3 revealed that children (and adults) are also 

remarkably accurate at recalling the frequency of short term events, namely 

multiple presentations of different shapes. This is consistent with past 

literature investigating short term frequency processing (Ellis et al., 1988; 

Goldstein et al., 1983; Hasher & Chromiak, 1977). However, in contrast to 

everyday frequency recall, short term frequency processing was not related to 

any type of numerical skill. In addition, across both experiments, subitizing and 

dot enumeration were related to mathematical achievement, which is 

consistent with the few existing studies that have investigated this issue (Gray 

& Reeve, 2014; Reeve et al., 2012).  

7.2.2 Spatial Representation of Number  

In Chapter 4, a novel number line task was introduced to assess spatial 

numerical associations. This task demonstrated that Western educated adults 

have a default preference for representing number in a left to right direction 

with small numbers on the left side of space, and large numbers on the right. 

This preference was observed in both reaction times and movement times, 

suggesting that the impact of space on numerical processing lasts beyond the 

movement planning stage. This was discussed within the embodied cognition 

framework which posits that cognitive and motor systems interact with each 

other and the environment. In this way cognition is conceptualised as an open 

system (Wilson, 2002). Further support of this was evidenced by finding a 

correlation between adults’ motor skills and their reaction times on the number 

line task.  

In Chapter 5 it was observed that whilst children became more accurate 

on the number line, there was no evidence of the default directional 

preferences in spatial numerical associations that were present in the adult 

data. However, there was a large amount of individual variability which was 
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hypothesised to be due to the diversity of the sample; a large number of 

children were from South Asian backgrounds and thus may have been exposed 

to right to left spatial-numerical associations given that the national language 

(Urdu) is written and read in this direction. Chapter 6 investigated whether 

cultural background influenced spatial numerical associations by comparing 

number line performance between children in a predominantly South Asian 

school and children in a predominantly Western school. Whilst there were no 

significant group differences, there was some evidence of a reversed preference 

(right to left) in the South Asian children, and a normal preference (left to right) 

in the Western children. Finally, across Chapters 5 and 6, there was evidence 

that fine motor skills predicted spatial numerical associations, and that both of 

these factors predicted mathematical achievement.  

7.3. Future Directions 

7.3.1 Temporal Representation of Number 

To the author’s knowledge, this is the first study to demonstrate that children 

can accurately recall their fruit intake, and that this ability is related to 

mathematical competence. This ability is crucial in a number of settings, but 

particularly in health and legal environments. The current work can further 

inform researchers and professionals working in these fields about the 

accuracy with which they can expect children to be able to recall everyday 

frequency information. However, it is noted that the ‘to-be-recalled’ event may 

have a large impact on accuracy, thus it is important to consider this in future 

work and in applied settings. For example, whilst children are able to monitor 

their fruit intake (an important skill given the emphasis on the Government’s ‘5 

a day’ scheme), it is likely that the novelty of the fruit smoothies increased 

accuracy. Furthermore, this study is not able to tell us anything about children’s 

actual intake, since fruit smoothies were provided. In future research it will be 

important to consider monitoring children’s normal intake, and then assessing 

whether they can recall the frequency of this, though this will involve the 

consideration of a number of methodological issues (e.g. how to accurately 

measure children’s normal intake in the first place). It will also be interesting to 
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try and replicate the relationship between frequency recall and mathematical 

achievements in future studies, and further consider why this relationship 

might exist.  

Chapter 3 added to the debate of whether short term frequency 

processing is an age invariant skill as proposed by Hasher & Chromiak, (1977). 

Children were as accurate as adults despite the use of a much harder task 

consisting of more shape repetitions than previous studies. Whilst it not argued 

that frequency processing is necessarily ‘automatic’, performance wasn’t 

related to working memory suggesting that it may be a low level, and non-

strategic skill. It will therefore be important for research to move towards 

investigating how we determine frequency. Whilst working memory may not 

play a role, this is the first study to investigate this issue. Further, even if it is 

not related, it may be that other strategies are used. Investigating variables 

which may impact our frequency accuracy (e.g. attention), and variables which 

may or may not link to it (e.g. strategic processing) will further our 

understanding of just how ‘automatic’ frequency processing may be. 

7.3.2 Spatial Representation of Number  

In Chapter 4, the novel number line task demonstrated that adults have a 

default preference to represent number from left (small numbers) to right 

(large numbers). This evidence was also observed in movement times, 

something which has remained relatively unexplored in the current literature 

despite the implications for numerical processing, and the insights it can give us 

to embodied cognition (see Chapter 7.4.2). In future research more attention 

should be paid to the relationship between spatial numerical associations on 

motor performance. In fact, recent research has begun to consider how to 

measure movement in numerical processing (Fischer & Hartmann, 2014) and 

how spatial numerical associations are an embodied phenomenon (Fischer, 

2012). 

Unlike the adults, there was no evidence that children had any 

directional preferences in their spatial representation of number, though they 

did become more accurate at representing number on a number line with a 

Western direction (left to right). At present there is very little research 
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investigating directional preferences in spatial numerical associations in 

children. Future work should aim to address this especially given that research 

with adults has suggested that successful mathematicians may have a more 

flexible or abstract representation of number, as indicated by a weaker SNARC 

effect (Cipora et al., 2015; Dehaene et al., 1993; Hoffmann et al., 2014). If this is 

the case, it may be beneficial to try and encourage flexible representation in 

children. Currently schools use number lines as a pedagogical tool, but only in 

the typically Western direction (0-10). It might be useful to also use reversed 

number lines during teaching (10-0).  

This thesis has also provided some evidence that cultural background 

influences the direction of spatial numerical associations (Chapter 6). Given the 

suggested importance of culture in the development of these associations (see 

Chapter 1.3.3); future work should try and further explore the impact of 

culture. The only cultural information available for this study was school based 

ethnicity data. Whilst this is informative, future work should improve on this by 

gaining measures which takes in to account the level of exposure children have 

had to cultural norms of spatial-numerical relationships. This may be especially 

important for those children who exhibit a reversed preference as it may then 

be harder for them to adapt to the normal number lines utilised in the 

classroom if they are still experiencing reversed associations at home.  

7.4 Further Considerations 

7.4.1 Number in Time 

Overall, children appear to be remarkably accurate at recalling the frequency of 

both an everyday event occurring multiple times during the day, and a 

computer based event occurring multiple times within a 10-15 minute period. 

Interestingly, whilst both types of frequency processing involve a certain 

understanding of quantity, only children’s recall of the frequency of an 

everyday event was related to any of the other numerical skills we tested. 

Specifically frequency recall correlated with, and even predicted, mathematical 

attainment. It could be argued that both everyday frequency processing and the 

mathematical achievement measured by school tests require a more applied 
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understanding of number. In contrast, subitizing and dot enumeration appear 

to rely on more basic skills. For example, the ability to subitize is thought to 

reflect our innate sensitivity to numerosity, and both subitizing and dot 

enumeration are thought to reflect a non-symbolic number system which is 

present before language skills develop (Feigenson et al., 2004; Hyde, 2011). 

Thus, whilst these skills predict mathematical achievement, it is possible that 

they reflect too basic a representation of number to be useful for everyday 

frequency processing.  

It has been argued that the kind of short term frequency processing 

assessed in Chapter 3 is an age invariant, evolutionarily relevant skill which is 

thus developed early in life  (Kelly & Martin, 1994; Zacks & Hasher, 2002), and 

as such it can be considered a basic numerical skill. Therefore the lack of 

correlation with either subitizing or dot enumeration suggests that it reflects a 

different kind of early developed sensitivity to numerosity. Specifically, short 

term frequency processing reflects our ability to remember the quantity of a set 

of items over time, whilst subitizing and dot enumeration both involve 

determining quantity when a set of constant items are present. The suggestion 

that frequency processing and subitizing/dot enumeration reflect different 

types of early developed numerical systems is further supported by the lack of 

correlation between frequency processing and mathematics achievement.  

7.4.2 Number in Space 

The ability to represent number along a number line can be considered as one 

aspect of early number knowledge, more broadly defined as a variety of 

relatively simple numerical skills which develop through childhood with 

practice and formal instruction (Östergren & Träff, 2013). This ability predicted 

mathematical achievement, but was not related to children’s ability to count, 

another type of early number knowledge. Given that counting is relatively easy 

for the children in the age range tested (six to eleven years), whilst 

mathematics tests are designed to be a hard test of children’s skills, this could 

suggest that the number line is only utilised for complex problems.  

A further consideration raised by the investigation of spatial numerical 

associations relates to the theory of embodiment. Traditionally cognition and 
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action have been considered as two separate entities. However, recent work 

has begun to consider both brain and body as influencing each other, whilst 

also considering the impact an individual’s environment can have on 

functioning (Anderson, 2003; Smith & Gasser, 2005; Wilson, 2002). The 

findings in Chapter 4 are a prime example of such research; spatial numerical 

associations are seen not only in the motor planning stage (the “cognitive” 

stage) but also in the movement phase (the “motor” stage), and performance in 

both stages is related to adults’ general motor performance. Furthermore, in 

Chapters 5 and 6, there was evidence that fine motor skills could predict spatial 

numerical associations. Perceptual motor skills are normally considered to 

influence spatial numerical associations in terms of directionality, i.e. reading, 

writing and finger counting experience is thought to determine whether small 

numbers are associated with the left side of space and large with the right, or 

vice versa (e.g. Dehaene et al., 1993; Gobel, Shaki, & Fischer, 2011). Even though 

there was no evidence of group directional effects, it still appears that fine 

motor skills were influential in individual directional preferences and spatial 

numerical associations more generally. These findings are consistent with a 

body of work which has begun to find further evidence of the embodiment of 

spatial numerical associations (Domahs, Moeller, Huber, Willmes, & Nuerk, 

2010; Fischer, 2012; Sato et al., 2007). Additionally, it was observed that fine 

motor skills can predict early number knowledge in the form of counting. It is 

thought that playing with and counting objects physically (for example, 

organising toy blocks in piles) may help children develop an early knowledge of 

number (Pagani & Messier, 2012). This further demonstrates the importance of 

children’s motoric and environmental surroundings to the development of 

numerical concepts. Finally, in Chapter 6 it was observed that fine motor skills 

predicted mathematical achievement (although these factors only correlated in 

Chapter 5), once again demonstrating a tight link between cognition and action.  

7.5 Concluding Remarks 

The overarching theme of this thesis was primary school children’s 

representation of number in both time and space. This investigation of number 
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representation has furthered our understanding of the extent to which different 

numerical concepts interact, from the basic understanding of number that we 

share with non-human animals, to the uniquely human understanding of early 

number knowledge and mathematics. Whilst the field of numerical cognition is 

still in its infancy, the enormous contribution of numerical understanding to 

society is without question. It is therefore hoped that the insights and questions 

raised in this thesis will influence further research, so that we may fully 

understand how we represent and make sense of something so abstract as 

number.  
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