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Abstract 

Over the last decades, the occurrence of patients with brain metastases, originating 

mostly from melanoma, lung and breast cancer, has increased. Despite some progress, 

there are still no effective therapies that target brain metastases. Due to the blood-brain 

barrier, which restricts the access of conventional therapies to the central nervous 

system, therapeutic strategies need to include novel means of drug delivery. 

Furthermore, these therapies have to target multiple lesions simultaneously, as brain 

lesions often present multifocally. 

This study aimed to develop a Haematopoietic stem cell (HSC)-based therapy that has 

the potential to overcome these limitations. In doing so, the suitability of HSCs and their 

myeloid progeny as cellular delivery vehicles for the delivery of genetically encoded 

therapeutic molecules into brain metastases was investigated. A strong infiltration of 

murine and human brain metastases tissue by the myeloid progeny of HSCs, which 

mostly consisted of macrophages, was demonstrated. Moreover, following ex vivo 

modification, the progeny of HSCs were able to deliver an expressed transgene to the 

proximity of brain metastases in preclinical models. To reduce the toxic effect of the 

delivered therapeutic molecules, an enzyme prodrug approach was developed and 

tested in the context of HSC therapy for targeting of brain metastases. 

In addition to homing to brain metastases, the progeny of HSCs also infiltrates organs. 

In the context of the cell therapy this could lead to the accumulation of therapeutic 

molecules at those sites, resulting in possible side effects of the therapy. To address this 

issue, three promoters with high specificity and activity in murine and human brain 

metastases-infiltrating myeloid cells were identified, which could be used to restrict the 

delivery of genetically encoded therapeutic agents to brain metastases. 
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1.1 Brain metastases 

Brain metastases are the most frequently occurring brain tumours in adults with an 

annual incidence in the USA and Europe in the range of 5-10 per 100,000 per year (Stark, 

2011). An estimated 20 to 35% of all cancer patients develop brain metastases 

(Gavrilovic and Posner, 2005) with most originating from primary cancers in the lung 

(40–50%), breast (15–25%), or from melanoma (5–20%) (Schouten et al., 2002, 

Barnholtz-Sloan et al., 2004). The frequency of diagnosis of metastatic brain tumours is 

increasing (Eichler et al., 2011) due to a combination of improved imaging approaches, 

earlier detection, and the longer survival of patients after primary cancer diagnosis. 

Central nervous system (CNS) metastases are a major cause of morbidity and mortality 

in patients with solid tumours affecting survival, neurocognition, speech, coordination, 

behaviour, and quality of life (Mehta et al., 2003, Chang et al., 2007). These clinical 

features might be as a result of destruction or displacement of brain tissue by the 

expanding tumour, peritumoural oedema leading to further disruption of surrounding 

white matter tracts, increased intracranial pressure, and/or vascular compromise (Eichler 

et al., 2011). Furthermore, the majority of patients exhibit multiple tumours at the time of 

diagnosis.  

 

1.1.1 Breast cancer brain metastases 

An estimated 10% to 30% of all breast cancer patients will eventually develop brain 

metastases (Lin et al., 2004). These can develop in sites in the CNS, such as the brain, 

cranial nerves, spinal cord, leptomeninges, and eyes. About 2 to 5% of breast cancer 

patients develop leptomeningeal metastases (DeAngelis et al., 2000), whereas the 

incidence of epidural spinal cord metastases in patients with breast cancer is reported to 

be 4% (Hill et al., 1993). Furthermore, breast cancer can metastasise to the eye at a 

higher rate than other primary cancers (McCormick and Abramson, 2000). 

Compared with other sites of metastatic spread, the diagnosis of breast cancer brain 

metastases (BCBMs) is associated with the shortest survival time (Kennecke et al., 

2010). The outcome in patients with BCBMs strongly correlates with the tumour subtype 

and performance status of the patient (Sperduto et al., 2012, Berghoff et al., 2012). The 

incidence of brain metastasis in patients with early-stage breast cancer are highest in 

those with human epidermal growth factor receptor 2-positive (HER2+ or ERBB2) and 

triple-negative breast cancer (TNBC: oestrogen receptor-negative (ER-), progesterone 
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receptor-negative (PR-), and HER2-negative (HER2-) disease) and lowest in ER-positive 

(ER+) disease (Kennecke et al., 2010). 

The median time interval from primary diagnosis to the development of BCBMs is the 

shortest in TNBC (27.5 months) and HER2+ disease (35.8 months), and longer in 

patients with ER+/HER2- (54.4 months), and ER+/HER2+ disease (47.4 months). These 

trends also apply to the median survival following the diagnosis of BCBMs with 

7.3 months for TNBC, 17.9 months for HER2+ disease, 10 months for ER+/HER2- and 

22.9 months for ER+/HER2+ disease, as reported by a large retrospective study of 865 

patients with BCBMs (Sperduto et al., 2013). The development of new therapeutic 

strategies for BCBMs, particularly in the TNBC and HER2+ breast cancer subtypes is 

therefore of great interest. 

With the advances in HER2-directed therapies and their routine use to treat HER2+ 

breast cancer patients, the pattern of breast cancer dissemination in this patient group 

has changed. In patients that have received adjuvant HER2-directed systemic therapies, 

relapse in the CNS is rare (2% with trastuzumab and 1% with lapatinib) (Pestalozzi et 

al., 2013, Goss et al., 2013). However, approximately 30% to 55% of patients with 

metastatic HER2+ disease will eventually develop brain metastases and up to 50% of 

these patients will die from progressive CNS disease (Bendell et al., 2003, Kennecke et 

al., 2010, Brufsky et al., 2011, Olson et al., 2013). Patients with TNBC have a high risk 

of CNS relapse (25% to 46%) (Lin et al., 2008, Kennecke et al., 2010, Lee et al., 2011). 

However, extracranial disease progression in TNBC patients is common and this mostly 

occurs in the early phase of the disease course (Lin et al., 2008, Dawood et al., 2008, 

Dawood et al., 2012) and as a result TNBC patients with BCBMs rarely die from 

progressive CNS disease alone (Lin et al., 2008). There is, therefore, an urgent need to 

develop additional systemic therapies that are effective in controlling intra- and extra-

CNS disease concurrently for TBNC patients. 

Current treatment options for breast cancer brain metastases are limited, and there are 

still no systemic regimens that have been developed for this setting. Patients with 

BCBMs were once routinely excluded from clinical trials, whereas now an increasing 

number of trials investigating novel systemic approaches specific to BCBMs are available 

to them (Lin, 2013). However, much progress remains to be made. 
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1.1.2 Brain metastasis formation 

Metastasis formation is a cascading process whereby cancer cells escape from the 

primary tumour site, invade surrounding tissue, intravasate into the bloodstream or 

lymphatics, and arrest, extravasate, survive and proliferate within a secondary site. 

Certain tumour types demonstrate an organ‑specific pattern of dissemination. The 

propensity of cancer cells to spread to specific sites was hypothesised to be influenced 

by the interaction between a tumour cell (the ‘seed’) and a congenial microenvironment 

(the ‘soil’) by Paget (1989). However, Ewing proposed that circulatory patterns between 

the primary tumour and specific secondary organs are sufficient to explain the majority 

of organ-specific metastatic spread (Ewing, 1928). Recently, it has been demonstrated 

that cancer cells can bring their own soil, e.g. stromal components from the primary site 

including activated fibroblasts, to secondary sites (Duda et al., 2010). There are at least 

three brain microenvironments implicated in metastatic colonisation: the perivascular 

niche, the brain parenchyma and the cerebrospinal fluid (CSF) or the leptomeningeal 

niche (Steeg et al., 2011). 

Brain metastases most frequently derive from lung (40–50%), breast cancer (15–25%), 

or melanoma (5–20%) (Schouten et al., 2002, Barnholtz-Sloan et al., 2004). Metastatic 

cancer cells shed from the primary cancer and invade the surrounding tissue until they 

intravasate into the bloodstream or lymphatics (Figure 1-1). These cells can enter the 

brain circulation, where they may arrest in sites of slow flow within the capillary bed at 

vascular branch points (Kienast et al., 2010). This is followed by early changes in the 

brain microenvironment (Lorger and Felding-Habermann, 2010). The arrested tumour 

cells elongate their shape along brain vascular endothelial cells. They adhere to the 

vascular basement membrane via β1 integrins, and proliferate and invade while on top 

of the vascular basement membrane (Carbonell et al., 2009). To extravasate across the 

blood-brain barrier (BBB), cancer cells first cross the endothelial cell layer to enter the 

perivascular space between endothelial cells and their supporting astrocytic end-feet. 

There, tumour cells can reside for a while and may only cross the astrocytic end-feet 

after expansion to enter the brain parenchyma. The cancer cell trans-BBB migration is 

mediated by various proteins, including heparin-binding epidermal growth factor (EGF)-

like growth factor (HBEGF), cyclooxygenase 2 (COX2), and α-2,6-sialyltransferase 

(ST6GALNAC5) (Bos et al., 2009). After tumour cell extravasation, metastatic cells can 

either stay dormant or begin colonisation in the brain parenchyma. The latter process is 

partly supported by the brain tumour microenvironment and begins with the activation of 

survival and proliferation processes of the cancer cells. 
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Figure 1-1: Steps in the formation of haematogenous metastasis to the brain (adapted from 
Eichler et al. (2011)). (A) Metastasis formation is a cascading process, whereby cancer cells 
escape from the primary tumour site (lung (40–50%), breast cancer (15–25%), or melanoma (5–
20%)), invade surrounding tissue, and intravasate into the bloodstream or lymphatics. (B) 
Metastatic cancer cells can enter the brain circulation, where they arrest within the capillary bed 
at vascular branch points. (C) Following the extravasation across the BBB, the cells enter the 
brain parenchyma. The cancer cell trans-BBB migration is mediated by different proteins. (D) After 
extravasation the colonisation of the brain starts. Survival and proliferation of the tumour cells are 
partly supported by the brain tumour microenvironment and by the recruitment of new blood 
vessels. 

 

1.1.2.1 Brain tumour microenvironment 

The brain provides a tumour environment that differs from most other organs. Once 

cancer cells infiltrate brain tissue they can encounter a number of host cell types, 

including brain endothelial cells, cells of myeloid origin (such as microglia and 

macrophages), other cells of the immune system, astrocytes as well as co‑disseminating 

stromal cells.  
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Myeloid cells  

There are different cell populations of myeloid origin including microglia, tumour-

associated macrophages (TAM), myeloid-derived suppressor cells (MDSC) and Tie2-

expressing monocytes (TEM). All these myeloid cells are characterised by the 

expression of cell surface marker CD11b, and have been shown to infiltrate malignant 

brain lesions and to play a role in brain tumour progression.  

The CNS contains two different types of macrophages, including parenchymal microglia 

and perivascular macrophages (Davis et al., 1994, Guillemin and Brew, 2004). 

Perivascular macrophages are constitutively replenished by circulating monocytes 

(Hickey and Kimura, 1988), whereas brain-resident microglia have been shown to 

originate from the umbilical vesicle (Ginhoux et al., 2010). Several studies have shown 

that monocytes can infiltrate the adult brain and differentiate into parenchymal microglia, 

although the monocyte turnover is very slow (Davis et al., 1994, Guillemin and Brew, 

2004, Hess et al., 2004, Soulas et al., 2009) and restricted to specific brain regions 

(Vallieres and Sawchenko, 2003). Moreover, infiltrating inflammatory monocytes have 

been shown to be the main source of microglia/macrophages under pathologic 

conditions such as viral encephalitis and Alzheimer’s disease (Biffi et al., 2004, Getts et 

al., 2008).  

Activated microglia and macrophages are frequently found to infiltrate primary and 

metastatic brain tumours in patients and experimental models (He et al., 2006, 

Daginakatte and Gutmann, 2007, Fitzgerald et al., 2008, Lorger and Felding-

Habermann, 2010). However, the mechanism by which the recruitment of 

macrophages/microglia by brain metastases occurs is largely unknown. However, 

primary brain tumours such as gliomas have been shown to attract monocytes via the 

production of macrophage chemoattractant protein 1 and 3 (MCP-1, MCP-3) and 

hepatocyte growth factor/scatter factor (HGF/SF) (Strik et al., 2004, Okada et al., 2009).  

The production of cytokines, growth factors, and enzymes by microglia/macrophages 

can directly or indirectly contribute to angiogenesis, tumour cell proliferation, and 

invasion of metastatic cancer cells to the brain (Davis et al., 1994, Guillemin and Brew, 

2004, Markovic et al., 2005, Hoelzinger et al., 2007, Fitzgerald et al., 2008, Markovic et 

al., 2009). Several studies using experimental glioma models have demonstrated that 

myeloid cells contribute to tumour progression (Daginakatte and Gutmann, 2007, 

Markovic et al., 2009). By contrast, anti-tumour activity of myeloid cells in the brain has 

also been demonstrated (Kanamori et al., 2006, Galarneau et al., 2007). Moreover, 

microglia exhibited potential tumour cytotoxicity towards lung cancer brain metastases 
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in an in vitro study (Murata et al., 1997). In addition, in vitro co-cultures have 

demonstrated that activated microglia create an altered brain microenvironment that 

promotes tumour growth and invasion (Fitzgerald et al., 2008). Furthermore, it has been 

shown that microglia can enhance the invasion and colonisation of brain tissue by breast 

cancer cells (Joyce and Pollard, 2009, Pukrop et al., 2010).  

TAMs can either be in a M1 (tumour-suppressive) or M2-like (tumour-supportive) state. 

Investigations have shown that TAMs mainly acquire M2-like properties in most cancers 

with potent immunosuppressive functions (Mantovani et al., 2002). Macrophages are 

activated by the Th1-type cytokines interferon-γ and lipopolysaccharide (LPS), resulting 

in up-regulation of nitric oxide synthase 2 (Nos2) and in a pro-inflammatory M1 

phenotype. The Th2-type cytokines interleukin 4 and 13 induce the tumour-supportive 

M2-like state of TAMs, resulting in the up-regulation of arginase 1 (Arg1) (Mills et al., 

2000, Mantovani and Sica, 2010). The presence of TAMs in many solid tumours is 

correlated with poor prognosis. Moreover, the development of metastases in mice 

deficient in macrophages was prevented, while the progression of the primary neoplasm 

was not hindered (Lin and Pollard, 2004). It has also been shown that macrophages are 

recruited to metastatic sites prior to metastatic cell recruitment, suggesting a role for 

macrophages in the preparation of the premetastatic niche (Mareel and Madani, 2006). 

A subset of circulating and tumour-infiltrating monocytes expressing the angiopoietin 

receptor Tie2 are called Tie-2 expressing monocytes (TEM) (De Palma et al., 2005). 

TEMs have been shown to exhibit the highest proangiogenic activity of all tumour-

infiltrating myeloid cells in glioma (De Palma et al., 2005). It has been shown that TEMs 

are derived from resident blood monocytes and are strongly polarised towards the M2-

like state (Pucci et al., 2009). Therefore, it has been suggested that resident and 

inflammatory monocytes may be differentially committed to generate tumour infiltrating 

TEMs and TAMs, respectively (Pucci et al., 2009). The M2 phenotype of TEMs seems 

to be stronger than in TAMs with an enhanced proangiogenic and reduced pro-

inflammatory activity. 

MDSCs are a mixed myeloid cell population with immunosuppressive activity (Talmadge, 

2007, Gabrilovich and Nagaraj, 2009, Greten et al., 2011). The numbers of MDSCs in 

human and murine blood increase dramatically under pathologic conditions and amass 

in pathologic lesions including tumours (Melani et al., 2003, Greten et al., 2011). 

Moreover, MDSCs have been shown to be a main source of the immunosuppressive 

molecule transforming growth factor β (TGF-β), and to inhibit T-cell activation in an 

experimental glioma model (Umemura et al., 2008).  
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In summary, different populations of myeloid-derived cells display diverse effects on 

intracranial tumour growth. However, these effects can also be influenced by the tumour 

type and its molecular background. 

 

Other immune cells 

Natural killer (NK) cells are an important part of the innate immune system, and are 

known to play a role in the apoptotic killing of tumour cells (Trinchieri and Perussia, 1984, 

Trinchieri, 1989, Yang et al., 2006). NK cell infiltration into extracranial tumours has been 

correlated with increased patient survival (Ishigami et al., 2000, Vujanovic, 2001). Brain 

metastatic lesions are frequently infiltrated by NK cells, however the proportion of these 

cells remain low (Vaquero et al., 1990). Experimental glioma studies have demonstrated 

a tumour-suppressing role for NK cells (Basse et al., 1988). Further, an anti-metastatic 

effect of NK cells has been observed in other organs (Yasumura et al., 1994, Dewan et 

al., 2005, Ksienzyk et al., 2011). However, the influence of NK cell depletion on the 

development of intracranial metastases has yet to be established.  

Another population of lymphocytes are T lymphocytes that can be further classified into 

two categories: CD4+ T helper (Th) cells and CD8+ cytotoxic T lymphocytes (CTLs). High 

levels of CD4+ Th cells are positively correlated to tumour development, whereas high 

levels of CD8+ CTLs are associated with tumour destruction (Gerloni and Zanetti, 2005). 

Moreover, a high ratio of CD8+ cells to CD4+ cells has been shown to be an indicator of 

less aggressive primary CNS tumours (Yu et al., 2003). It has been shown that the 

depletion of CD4+ or CD8+ T cell populations leads to an increase in brain metastases 

(Lu et al., 2003). Regulatory T cells (Treg) are important modulators of the immune 

system that have been shown to infiltrate experimental brain metastases and human 

metastatic brain lesions (Sugihara et al., 2009). Moreover, the presence of Tregs in 

tumours has been shown to correlate with poor clinical outcome (Curiel et al., 2004, Yu 

et al., 2005). 

The role of B cells in the development of brain metastases is poorly understood. In 

experimentally induced melanoma metastases to the lung an increase in metastatic 

burden as a result of B cell depletion could be detected. Additionally, reduced activation 

of CD4+ and CD8+ T cells could be seen, suggesting a strong interaction between B cell 

and T cell populations (DiLillo et al., 2010). Further research on the B cell contribution to 

brain metastases has to be performed to elucidate this relationship.  
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All these cell populations may be used in future immunotherapy against metastatic brain 

tumours. However, further investigations into their contribution to metastasis formation 

in the CNS need to be performed. 

 

Astrocytes 

The star-shaped astrocytes usually support glial cells in providing protection and 

maintenance of the brain environment. Histological analysis of resected human brain 

metastases revealed a close association of tumour cells with activated astrocytes (Zhang 

and Olsson, 1997, Fitzgerald et al., 2008, Seike et al., 2011). The activation of astrocytes 

is also widely observed around experimental brain metastases (Fitzgerald et al., 2008, 

Lin et al., 2010, Seike et al., 2011).  

Activated peritumoural astrocytes have been shown to express endothelin 1, a regulator 

of numerous transforming processes in 85% of metastases of the human brain (Zhang 

and Olsson, 1995). Additionally, tumour cells within brain metastases have been shown 

to produce factors, such as macrophage inhibitory factor, interleukin-8 (IL-8) and 

plasminogen activator inhibitor 1, that activate astrocytes which, in turn, produce 

proliferative factors for the tumour cells, such as IL-6, IL-1β and tumour necrosis factor 

(Seike et al., 2011). Furthermore, astrocytes have been shown to produce pro-matrix 

metalloproteinase 2 (pro-MMP2) and plasminogen activator and thereby promote glioma 

invasiveness (Le et al., 2003). Recently, it has been suggested that astrocytes may 

protect cancer cells from chemotherapy-induced apoptosis (Lin et al., 2010). Overall, 

astrocytes may contribute to cancer progression in the brain through a variety of different 

mechanisms.  

 

1.1.2.2 Molecular pathways mediating brain metastases 

To identify gene expression changes during metastasis to the brain, comparisons of 

matched and unmatched tissues blocks of primary tumour and brain metastases have 

been performed. These studies highlighted differences in the expression of stem cell 

markers, receptor tyrosine kinases, metastasis suppressor genes, hormone receptors, 

cyclooxygenase 2, proteins involved in apoptosis and DNA repair enzymes (Da Silva et 

al., 2010, Sun et al., 2009, Stark et al., 2005, Koo and Kim, 2011, Milas et al., 2003, 

Gaedcke et al., 2007, Wu et al., 2010, Gomez-Roca et al., 2009). All of these gene 
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expression changes represent potential leads for the functional modulation of brain 

metastatic formation. 

To identify additional pathways that are involved in metastasis to the brain, gene 

expression changes between experimental brain-tropic and parental tumour cell lines 

have been performed. For example, the overexpression of ERBB2 in the brain variant of 

the MDA-MB-231 breast cancer cell line had no effect on the number of 

micrometastases, but increased the number of large metastases (Palmieri et al., 2007). 

Thus, ERBB2 overexpression is a key player in the final stages of metastatic colonisation 

in the brain, but did not promote the initial steps of tumour cell arrival or growth.  

Overexpression of α-2,6-sialyltransferase (ST6GALNAC5) was identified in brain, but not 

in bone- or lung-tropic breast cancer cell lines. The inhibition of ST6GALNAC5 reduced 

tumour cell line migration across artificial BBBs in vitro and enhanced brain metastasis-

free survival in animal models (Bos et al., 2009). 

Furthermore, the expression of proteases within the parenchyma as well as by the 

invading tumour cells has been shown to contribute to brain metastasis. A reduced 

incidence of brain metastasis in mice could be detected following overexpression of 

tissue inhibitor of metalloproteinase 1 (Timp1) and reduction of plasminogen activator 

inhibitor 1 expression (Kruger et al., 1998, Maillard et al., 2008). In addition, reduced 

heparanase expression in tumour cells led to decreased experimental brain metastasis 

(Zhang et al., 2011). 

Other pathways essential for the colonisation of the brain by metastatic cells still need to 

be identified by future investigations. These pathways could be potential targets for future 

therapies. 

 

1.1.3 Management of brain metastases 

Despite the therapeutic options for brain metastases such as surgery, whole brain 

radiation therapy (WBRT), stereotactic radiosurgery (SRS), chemotherapy, growth factor 

inhibitors, or a combination of these therapies, outcomes remain poor (Eichler and 

Loeffler, 2007). The median survival time of patients with brain metastases is only 4 to 

19 months (Ahn et al., 2012). 

WBRT is the standard treatment of choice in cases of multiple brain metastases, in 

patients whose overall clinical condition is poor and rapidly deteriorating, and in patients 

for whom easy palliation is the goal. Survival for patients with brain metastases treated 
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with WBRT typically ranges from 4–6 months, but can be as long as 12–24 months for 

selected patients (Mehta et al., 2003). Strong positive prognostic factors include good 

functional status, age <65 years, no sites of metastases outside of the CNS, the 

presence of a single tumour lesion in the brain, long interval from primary diagnosis to 

brain relapse and a controlled primary tumour (Gaspar et al., 1997, Melisko et al., 2008). 

Further positive prognostic factors can also be certain cancer subtypes such as 

HER2-positive breast cancer and epidermal growth factor receptor (EGFR)-mutant 

non-small cell lung cancer (NSCLC) (Eichler et al., 2008, Eichler et al., 2010). The 

response can be predicted based on the radiosensitivity of the primary tumour. 

Brain metastases patients with large single lesions that are immediately life threatening 

are treated with surgical resection. Randomised trials have shown a prolonged survival 

in patients that underwent resection plus WBRT compared with WBRT alone, median 

survival of 10 months versus 4-6 months, respectively (Patchell et al., 1990, Vecht et al., 

1993). An improvement in neurologic functions and prolonged independence was also 

observed in patients receiving surgery plus WBRT, compared with WBRT alone.  

SRS is a non-invasive alternative to surgery and is considered in patients with tumour 

diameters ≤3.5 cm. It also offers a treatment opportunity for patients with a single lesion 

that is not surgically accessible (e.g., in the brainstem) or for patients that are unable to 

undergo surgery for medical reasons. SRS is a highly focussed radiotherapy delivering 

multiple convergent beams specifically to the tumour, leaving the surrounding normal 

brain tissue intact. The beams can be accomplished by a linear accelerator, gamma knife 

or protons produced by cyclotron (Gerrard and Franks, 2004). The median survival of 

SRS treated patients can be extended to about 10 months (Nguyen and Deangelis, 

2004). It has been shown in randomised clinical trials that surgery or SRS combined with 

WBRT improves overall survival compared with WBRT alone in patients with a single 

metastatic lesion in the brain (Patchell et al., 1990, Vecht et al., 1993). However, patients 

with four or fewer brain metastases treated with SRS demonstrated equivalent overall 

survival, but worse intracranial disease control compared with SRS plus WBRT (Andrews 

et al., 2004, Aoyama et al., 2006, Kocher et al., 2011).  

Brain metastases are not routinely treated with chemotherapy. It is only used as salvage 

therapy in patients who failed to respond to WBRT, SRS and surgery. Response rates 

to varying regimens depend largely on the primary tumour sensitivity to chemotherapy 

(reviewed in Nguyen and Deangelis (2004)). Overall, chemotherapy clinical data for brain 

metastases are unambiguously disappointing, with only a few clinical responses to 

standard cytotoxic drugs (summarised in Steeg et al. (2011)). 
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All the above mentioned treatment options for brain metastases are only able to improve 

patients life for a limited time. Therefore, novel treatment strategies specifically targeting 

brain metastases need to be developed.  

 

1.1.4 Novel strategies to improve drug delivery across the BBB 

The main reasons for the poor efficacy of standard chemotherapeutic agents in brain 

metastases are the poor BBB penetrability of many systemically active 

chemotherapeutic drugs and the resistance to chemotherapeutics that may have 

occurred in patients that have had multiple rounds of chemotherapy prior to the 

development of CNS metastatic disease. More recently, new therapies and strategies 

are increasingly being explored in an effort to enhance drug delivery to the brain.  

 

1.1.4.1 The blood-brain barrier (BBB) 

In order to provide protection to brain cells as well as preservation of brain homeostasis, 

a specialised barrier system of endothelial cells is formed within the brain. This BBB 

separates the circulating blood from the brain extracellular fluid in the CNS. It occurs 

along all capillaries and is formed by specialised endothelial cells lining the cerebral 

microvasculature, together with pericytes and astrocytic perivascular endfeet (Figure 

1-2). The endothelial cells of the BBB display tight junctions between adjacent cells and 

express an abundance of active transporter efflux pumps. Tight junctions create a 

physical barrier forcing molecules to pass through rather than between endothelial cells. 

Additionally, the efflux pumps send substances out of endothelial cells and back into the 

circulation, away from the brain parenchyma. Examples of these efflux pumps are the P-

glycoprotein (PgP) or multi-drug resistance protein (MRP), which actively remove some 

chemotherapeutic drugs from the brain (Szakacs et al., 2006, Noguchi et al., 2009). 

Small and lipophilic molecules are not recognised by the active efflux pumps and can 

pass from blood into the brain (Pajouhesh and Lenz, 2005). Other substances, such as 

glucose, amino acids, vitamins, nucleic acid precursors and some hormones, are 

transported into the brain by facilitated diffusion (Ohtsuki and Terasaki, 2007). Large 

hydrophilic molecules, including many chemotherapeutic and molecular targeted drugs, 

are excluded from the CNS.  
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Figure 1-2: Schematic diagram of the BBB with an enhanced illustration of the brain 
capillary endothelial cell (adapted from Eichler et al. (2011)). The main drug efflux transporters 
of brain capillary endothelial cells include MRPs, PgP, and ABCG2.  

 

The BBB becomes structurally and functionally compromised when brain metastases 

grow beyond 1-2 mm in diameter (Yuan et al., 1994, Hobbs et al., 1998, Monsky et al., 

1999, Deeken and Loscher, 2007). It has been shown that lesions smaller than 0.2 mm2 

had an intact BBB in an experimental brain metastases model, whereas larger 

tumour-cell clusters resulted in leakage of sodium fluorescein (Zhang et al., 1992). 

Furthermore, the growing tumour mass led to the disruption of the interaction of 

astrocytes and endothelial cells. In addition to changes in blood vessel permeability, a 

significant reduction in endothelial PgP expression to 5% and 40% of normal levels in 

brain metastases from melanoma and lung carcinoma, respectively, could be detected 

(Regina et al., 2001). However, the disruption of the BBB is not homogeneous, and the 

BBB might remain intact in parts of tumours. Pharmacokinetic studies of two 

experimental brain metastases models revealed that most metastases have some 

increased permeability compared with normal brain. However, heterogeneous uptake 

levels can occur and only 10% of the experimental brain metastases had sufficient 

permeability to show a cytotoxic response to chemotherapy (Lockman et al., 2010). 

Since undiagnosed small brain metastases lesions in patients, capable of contributing to 

CNS recurrence, and some macroscopic tumours have a relatively intact BBB (Lockman 

et al., 2010), novel therapeutic approaches have to be able to overcome these barriers 

to deliver drugs to such lesions. This can be addressed in different ways, e.g. by physical 

and pharmacological disruption of the BBB, identification and development of brain 

metastases-permeable drugs, or the use of cell vehicles that can cross the BBB (Figure 

1-3). The aim of this thesis was to develop an application of the latter strategy using 

HSCs as cellular vehicles. Other examples of this kind of approach are discussed 

separately in chapter 1.2.  
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1.1.4.2 Disruption of tight junctions 

The penetration of water-soluble compounds across the BBB is restricted by the tight 

junctions present between endothelial cells. These tight junctions can be disrupted by 

mechanical and pharmacological methods. An intra-arterial infusion of a hyperosmotic 

agent injected prior to the administration of chemotherapeutics led to an osmotic 

disruption of the BBB, and therefore to an enhanced delivery of the chemotherapeutic in 

brain tumour patients (Bellavance et al., 2008). A BBB disruption can also be achieved 

by targeted ultrasound. To this end, preformed gas bubbles were intravenously injected 

in rat brain tumour models before a targeted pulsed ultrasound was applied, leading to 

BBB disruption and an increased uptake of chemotherapeutics into the brain 

parenchyma (Liu et al., 2010). Pharmacological disruption of the BBB can be achieved 

with bradykinin analogues such as RMP-7. Various studies have shown an increased 

uptake of standard chemotherapeutic agents in brain tumours following intravenous 

delivery of RMP-7 (Gregor et al., 1999, Matsukado et al., 1996, Prados et al., 2003). 

Additionally, preclinical studies have demonstrated the ability of recombinant human 

tumour necrosis factor (TNF), a proinflammatory cytokine, to disrupt endothelial tight 

junctions in the tumour vasculature through the RhoA/Rho kinase (Seki et al., 2011). The 

vascular endothelium associated with brain metastases showed localised expression of 

TNF receptor 1 (TNFR1) (Connell et al., 2013); and administration of TNF or its 

endogenous analogue lymphotoxin (LT) permeabilised the BBB to exogenous tracers 

selectively at sites of brain metastases. 
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Figure 1-3: Modifications to improve brain drug delivery (adapted from Eichler et al. (2011)). 
(A) Tight junctions of endothelial cells of BBB can be disrupted by mechanical and 
pharmacological methods. (B) Brain metastases-permeable drugs that have demonstrated 
therapeutic efficacy. (C) Drugs can be delivered across the BBB by receptor-mediated 
transcytosis (RMT). (D) Inhibitors of main drug efflux transporters of brain capillary endothelial 
cells can facilitate delivery of brain metastases drugs across the BBB. (E) Cellular vehicles that 
can cross the BBB can be used to deliver drugs to the CNS. 

 

1.1.4.3 Brain metastases-permeable drugs 

Brain metastases-permeable drugs should have a low molecular mass (<450 Da), 

moderate lipophilicity (calculated logP<5), a limited number of hydrogen bond donors 

(less than three) and acceptors (less than seven), neutral or basic pKa (7.5–10.5), and 

limited polar surface area (<60–79 Å) (Pajouhesh and Lenz, 2005). Several BBB-

permeable drugs, such as vorinostat, lapatinib, WP1066 (signal transducer and activator 

of transcription 3 (STAT3) inhibitor), sagipilone, and pazopanib have already been tested 

in preclinical models as well as clinical trials. Vorinostat is a histone deacetylase inhibitor 

and when injected into mice with breast cancer brain metastases, it crossed the BBB, 

exhibited heterogeneous greater uptake in metastases, relative to normal brain, and led 

to reduced formation of large metastases and micrometastases (Palmieri et al., 2009). 

However, vorinostat monotherapy showed disappointing clinical activity against 

metastatic breast cancer (Luu et al., 2008), and in patients with advanced lung cancer. 

It displayed synergistic effects with carboplatinum and paclitaxel leading to increased 

response rates with a trend towards improved progression-free survival (Ramalingam et 

al., 2010). Further, the combination of vorinostat and radiation resulted in prolonged 

survival in breast cancer brain metastases models in mice (Baschnagel et al., 2009). 

Another BBB-permeable drug is lapatinib, an ERBB2 and EGFR kinase inhibitor. It has 
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been shown to cross the BBB and prevent the formation of metastases by brain-tropic 

breast cancer cells following systemic administration in tumour-bearing mice (Gril et al., 

2008). A brain-permeable STAT3 inhibitor, WP1066, has also been shown to increase 

the overall survival in mice with melanoma brain metastases (Kong et al., 2008). It could 

also be shown that WP1066 reduced tumour cell production of TGFβ, vascular 

endothelial growth factor (VEGF) and other chemokines, as well as inhibiting the 

proliferation of regulatory T (Treg) cells and increasing cytotoxic T cell responses. 

Sagipilone is a BBB-permeable microtubule-active drug with a long half-life in the brain. 

It can inhibit the intracerebral growth of breast cancer and lung cancer cells compared 

with the effects of paclitaxel or temozolomide (Hoffmann et al., 2009).  

 

1.1.4.4 Receptor-mediated transcytosis (RMT) 

Receptor-mediated transcytosis (RMT) is another approach that can be used to bypass 

the BBB for the treatment of brain metastases. This involves the design of drugs that can 

be shuttled across the BBB using receptors that are naturally expressed on the brain 

endothelial cells. One receptor that is highly expressed at the BBB and involved in the 

transport of proteins and peptides is lipoprotein receptor-related protein (LRP-1) (Lillis et 

al., 2008). The peptide angiopep2 binds LRP-1 as a ligand, resulting in facilitated 

transport across the BBB. The drug GRN1005, which is paclitaxel linked to angiopep2, 

demonstrated an increased uptake into the brain and brain metastases compared with 

paclitaxel in the MDA-MB-231-BR mouse model (Thomas et al., 2009). Furthermore, 

GRN1005 showed anti-tumour activity in preclinical models, as well as in phase I clinical 

trials (Regina et al., 2008, Kurzrock et al., 2012, Drappatz et al., 2013). The transferrin 

receptor (TfR) is highly expressed by brain capillaries and mediates the delivery of iron 

to the brain (Jefferies et al., 1984). The natural ligand is the iron binding protein, 

transferrin (Tf) (Pardridge et al., 1987). Antibody/drugs fused with Tf have shown 

increased uptake into the CNS (Shin et al., 1995, Mishra et al., 2006). However, TfR is 

nearly saturated with the endogenous Tf in the bloodstream, indicating that a Tf-targeted 

drug would have to compete with the natural ligand (Qian et al., 2002). Bispecific 

antibodies with an epitope for TfR, to increase the CNS uptake of the antibody, and an 

epitope to target disease-specific proteins have been developed for CNS diseases such 

as Alzheimer’s disease (Yu et al., 2011). 
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1.1.4.5 Inhibitors of main drug efflux transporters of brain endothelial 

cells 

Targeting the main efflux transporters of brain capillary endothelial cells, i.e. MRP, PgP 

and breast cancer resistance protein (ABCG2) is another mechanism that could increase 

the concentration of therapeutic agents in the CNS. Various different PgP inhibitors, e.g. 

HM30181A, cyclosporine A, valspodar, elacridir and zosuquidar have been shown to 

inhibit the efflux transporters leading to an increased uptake of chemotherapeutics into 

the CNS (Bauer et al., 2005, Joo et al., 2008a, Joo et al., 2008b). Probenecid - an 

inhibitor of MRP (Sun et al., 2001) and fumitremorgin C - an inhibitor of ABCG2 

(Bakhsheshian et al., 2013) have demonstrated similar effects.  

 

1.1.5 Preclinical models of brain metastases 

To study different aspects of metastasis formation in the brain or to test targeted 

therapies in brain metastases, various different rodent models have been developed. 

Orthotopically transplanted primary tumours that give rise to metastatic foci in mouse 

models have been shown to produce animals that succumb to systemic disease before 

brain metastases can be reliably studied. This represents an important obstacle to the 

development of reliable CNS mouse models. Therefore, current models either use brain-

seeking clones or directly implant tumours into the brain. The brain-seeking clones 

resulted from iterative experimental haematogenous dissemination to the brain in order 

to enrich for metastatic tumour burden in the CNS. Various experimental model systems 

for brain metastasis have been reported for multiple cancer types, including melanoma 

(Cranmer et al., 2005, Cruz-Munoz et al., 2008), lung carcinoma (Mathieu et al., 2004), 

and breast carcinoma (Price et al., 1990, Zhang et al., 1991, Price, 1996, Yoneda et al., 

2001, Monsky et al., 2002, Chen et al., 2007). There are three different preclinical rodent 

animal models of brain metastasis including direct implantation, haematogenous 

metastasis and the spontaneous metastasis model. 

Depending on the location of metastases in the CNS, two types of direct implantation 

model are distinguishable: leptomeningeal metastasis (Siegal et al., 1987, Schabet and 

Herrlinger, 1998, Izumi et al., 2002) and intraparenchymal implantation (Schackert et al., 

1989, Broder et al., 2003, Carbonell et al., 2009). To establish leptomeningeal 

metastases, tumour cells are inoculated into the subarachnoid space, or indirectly to the 

cerebrospinal fluid space (CFS). This model is routinely used for longitudinal imaging 

studies with molecular or intravital microscopic imaging. In intraparenchymal models 
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tumour cells are directly injected into the brain parenchyma by stereotactic guidance. 

This model is used to study tumour growth inside the brain and can be extended via the 

placement of a cranial window. These experimental metastases models are relatively 

simple to execute, but they inevitably miss the initial steps of the metastatic cascade, 

and thus may not reflect the full clinical manifestation of the disease. 

Haematogenous models of brain metastases can be achieved by intracardiac (Bos et 

al., 2009, Kienast et al., 2010) or intracarotid artery injection (Schackert and Fidler, 

1988a, Schackert and Fidler, 1988b, Fidler et al., 1999) of tumour cells. For the 

intracardiac injection a single-cell tumour suspension is injected into the left ventricle of 

an animal, thereby allowing the cells to bypass pulmonary arrest and retention. This 

model exhibits a decreased reproducibility as tumour cells also disseminate to sites other 

than the CNS. By contrast, the intracarotid artery injection of metastatic cells directly into 

the internal carotid artery followed by permanent arterial ligation requires well-trained 

micro-surgical skills, but predominantly produces cerebral tumours and minimal non-

cerebral metastases.  

Spontaneous brain metastases models (Alterman and Stackpole, 1989, Yang et al., 

1999, Cruz-Munoz et al., 2008) solely rely on the spontaneous formation of brain 

metastases following orthotopic implantation of cancer cells. This technique 

recapitulates all steps of the metastatic process, however, spontaneous brain 

metastases may require a longer duration to develop and can, therefore, require 

resection of primary tumours.  

Based on the origin of implant, syngeneic and xenograft models can be distinguished. In 

syngeneic models the tumour tissue is derived from the same genetic 

background. Syngeneic animal models are reproducible and easy to handle and produce 

a transplant that is not rejected by the immune system of the host. However, these 

syngeneic tumours are not directly comparable with human tumours in terms of their 

tumour biology, and since the tumour cells are rodent, they express the mouse 

homologues of the desired targets. 

Xenograft models mainly use existing human cancer cell lines that are implanted into 

immunodeficient mice (Teicher, 2006). As a result of in vitro manipulation, these cell lines 

have undergone genetic transformations (Daniel et al., 2009), which should be 

considered when used for research. Although different aspects of the process of cancer 

formation can be investigated with xenograft models, the stromal component of the 

tumour is rodent. Therefore, it lacks a functional immune system. Moreover, these 

models are more costly to run compared with syngeneic models (Teicher, 2006).  
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To understand all of the steps involved in the process of brain metastasis formation, the 

emergence of new animal models that more closely mimic the human disease is 

required. Using patient derived xenograft models instead of established cell lines could 

be one option. Further, preclinical research is also limited to only a few spontaneous 

models. Therefore, with the development of new models and imaging techniques, 

preclinical treatment strategies can become more focused on established brain 

metastases and provide more insight into brain metastasis formation. 
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1.2 Stem cell therapy 

Stem cells can differentiate along different lineages and have the ability to self-renew 

(Potten and Loeffler, 1990). They can replenish dying cells and damaged tissues by 

multiplying via cell division and differentiating into a subset of cell types specific to its 

lineage. Therefore, they have an enormous regenerative and therapeutic potential. Cell 

therapy based on stem cells describes the process of introducing stem cells into a tissue 

to treat a disease with or without the addition of gene therapy. There are two major types 

of stem cells, embryonic stem cells and adult stem cells. So far, human embryonic stem 

cells (hESCs) were harvested from living embryos, therefore the use of hESCs involves 

stricter legal and ethical considerations (Green, 2007). However, the use of induced 

pluripotent stem cells (iPS) displays an alternative to the direct isolation of hESC 

(Takahashi and Yamanaka, 2006). The use of adult stem cells for therapy is less 

controversial and there have been advancements in clinical applications of neural, 

mesenchymal as well as haematopoietic stem cells recently. 

 

1.2.1 Mesenchymal stem cells (MSCs) 

Bone marrow-derived mesenchymal stem cells (MSCs), also called mesenchymal 

stroma cells or marrow stroma cells, can self-renew and display multi-lineage 

differentiation (Dennis et al., 2002). Friedenstein and his colleagues isolated and 

characterised these cells in a series of seminal studies in the 1960s and 1970s (reviewed 

in Friedenstein (1990)). MSCs originate from the mesoderm and exist in almost all 

tissues. Depending on specific in vitro conditions MSCs can differentiate along three 

different lineages, mesodermal, ectodermal and endodermal, into neuron, muscle, fat, 

bone, chondrocyte, islet and liver cells (Oishi et al., 2009). To identify MSCs, the 

expression of different markers can be used. These cells express α-smooth muscle actin, 

smooth muscle myosin heavy chain, nestin, Tuj-1, CD146, CD105, TGF-beta receptor, 

and various forms of integrins (reviewed in Ding et al. (2011)). The lack of surface 

markers, such as CD34, CD45, CD14, and class II major histocompatibility complex 

surface receptor (HLA-DR) is often used, to distinguish MSCs from HSCs (Pittenger et 

al., 1999). Further, Stro-1 is a surface marker specific for clonogenic MSCs (Simmons 

and Torok-Storb, 1991). A variety of tissues can be the source of MSCs, such as bone 

marrow, endometrium, adipose tissue, umbilical cord, or endometrial polyps (Ding et al., 

2011). The ease of harvesting MSCs from these sources and the quantity that can be 

obtained makes them an attractive choice for experimental and clinical applications.  
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In 2013, more than 300 registered clinical trials worldwide evaluated the potential of 

MSC-based cell therapy (Wei et al., 2013). MSC therapy has been shown to be effective 

in the treatment of immune and non-immune diseases. The reparative effects, the wide 

tissue distribution and the multipotent differentiation of MSCs in many clinical and 

preclinical models suggests a critical role of MSCs in injury healing (reviewed in Wei et 

al. (2013)). Additionally, MSCs are capable of regulating immune responses. This ability 

has been utilised by patients receiving bone marrow transplantation (BMT) and suffering 

from graft-versus-host disease (GvHD), where the effect was successfully reversed with 

MSC administration (Muller et al., 2008, Prasad et al., 2011). Further, since tumours 

continuously generate various inflammatory cytokines and are therefore regarded as 

wounds (Dvorak, 1986), therapies including MSC administration have been explored. 

MSCs have been shown to migrate to tumours and adjacent tissue sites following de 

novo mobilisation or exogenous administration (Spaeth et al., 2008). The role of MSCs 

as cellular delivery vehicles to treat different types of cancer, such as melanoma and 

Kaposi’s sarcoma has been explored by many research groups in preclinical studies 

(Studeny et al., 2002, Elzaouk et al., 2006, Khakoo et al., 2006). Moreover, the potential 

of mesenchymal stem cells as delivery vehicles to treat different CNS tumours has also 

been explored recently. MSCs have been used as cellular delivery vehicles of 

therapeutic genes to treat glioma-bearing rodents (Bexell et al., 2012, Nakamura et al., 

2004, Nakamizo et al., 2005) and as vehicles for the delivery of nanoparticles to glioma 

to enhance their tumouricidal effects (Roger et al., 2010). Following intratumoural 

injection, MSCs migrated efficiently within the tumour and did not proliferate. However, 

systemically administered MSCs exhibited only insufficient homing to the brain (Bexell 

et al., 2012). 

 

1.2.2 Neural stem cells (NSCs) 

NSCs have the potential to self-renew, the competence for in vivo regeneration and 

possess neural tripotency, i.e. the capability to give rise to all of the major neural 

lineages: neurons, astrocytes and oligodendrocytes (Conti and Cattaneo, 2010). These 

cells are immature cells present in the developing and adult CNS. NSCs also account 

for the limited regenerative potential in the adult brain. In the adult CNS, NSCs reside in 

defined regions called neurogenic niches (Casarosa et al., 2014). There they sustain 

their multipotency and regulate the balance between self-renewal and differentiation by 

symmetrical or fate-committed asymmetric divisions, respectively (Fuentealba et al., 

2012). The phenotype of NSCs has not been completely determined. Preliminary 
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characterisation studies defined potential NSC subsets via the expression CD133 and 

lack of expression of surface markers such as CD34 and CD45. However, the distinct 

subset of human foetal CNS cells with the phenotype CD133+/5E12+/CD34-/CD45-

/CD24-/lo has been shown to form neurospheres in culture, to initiate secondary 

neurosphere formation, and to differentiate into neurons and astrocytes (Reynolds and 

Rietze, 2005). Further markers, such as Nestin, Sox 1/2 and Musashi 1, have also been 

used to identify NSCs (summarised in Jandial et al. (2008)). Sources of neural cells with 

the properties of stem cells can be embryonic, neonatal, and adult rodent and human 

CNS using several different in vitro expansion methods (Conti and Cattaneo, 2010). 

Although there have been a variety of protocols described for NSC purification, 

generation and expansion over the last two decades, the identification of the best 

sources for NSCs and the optimisation of protocols to stably expand them clonally in vitro 

remains a major goal of NSC research (Casarosa et al., 2014). 

The capacity of NSCs to divide and differentiate into cells of the CNS under appropriate 

in vitro conditions demonstrates the potential for clinical application for various CNS 

diseases. On the one hand, NSC therapy could be used to treat neurodegenerative 

disorders, such as Huntington’s disease (HD), Alzheimer’s disease (AD), amyotrophic 

lateral sclerosis (ALS), and Parkinson’s disease (PD) or non-degenerative conditions, 

such as spinal cord injury and stroke. Zhu et al. (2009) demonstrated an improved 

behaviour in PD rat models following direct injection of NSC to the diseased brain area. 

NSCs were also used as delivery vehicles for glial cell line-derived neurotrophic factor 

(GDNF) in HD mouse models, which led to the prevention of degeneration and an 

improved behaviour of the mice (Pineda et al., 2007). Further preclinical experiments 

using NSC therapy could demonstrate therapeutic efficacy for different diseases such as 

AD, ALS, stroke and spinal cord injuries (Zhang et al., 2014, Zhang et al., 2015, Hwang 

et al., 2009, Sun et al., 2010, Ormond et al., 2014). 

Furthermore, several research groups have detected NSCs near tumour foci far from the 

original brain transplant site following transplantation into animal models of brain 

neoplasia (Aboody et al., 2000, Benedetti et al., 2000). Aboody et al. used NSCs as 

delivery vehicles of the enzyme cytosine deaminase, which converts a non-toxic prodrug 

into a chemotherapeutic agent. This suicide gene therapy demonstrated therapeutic 

efficacy in murine glioma models. The corresponding clinical trial recruited participants 

with recurrent brain tumours and has since been completed, but the study results are not 

yet published (ClinicalTrial.gov, 2015). Recently, it has also been shown that the tumour-

homing ability of NSCs is not limited to glioma lesions: NSCs can also target melanoma 

(Aboody et al., 2006), breast cancer brain metastases (Joo et al., 2009), as well as 
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disseminated neuroblastomas (Sims et al., 2009) and intracerebral medulloblastomas 

(Kim et al., 2006). However, intratumoural injection has additional risks for patients and 

primary autologous NSCs cannot be isolated in the quantities required for the therapy.  

 

1.2.3 Haematopoietic stem cells (HSCs) 

The mammalian blood system with more than ten distinct mature cell types derives from 

one specific cell type, haematopoietic stem cells. HSCs possess the ability of self-

renewal and multi-potency. These cells can differentiate into all types of blood cells. They 

can give rise to myeloid (monocytes and macrophages, neutrophils, basophils, 

eosinophils, erythrocytes, megakaryocytes/platelets, dendritic cells) and lymphoid 

lineage cells (T-cells, B-cells, NK-cells). Thus, they can be used to treat blood and 

immune disorders. HSCs balance self-renewal and differentiation, to maintain the HSC 

pool throughout life while continuously providing differentiated progenitors, as mature 

blood cells are typically short-lived. HSCs reside primarily in the bone marrow but also 

circulate in the periphery. The cell surface expression of the CD34 antigen was the first 

marker used to identify human HSCs, because its expression is down-regulated as cells 

differentiate into more abundant mature cells (Andrews et al., 1989). The first markers 

found to be specifically upregulated in murine HSCs were Sca-1 (Spangrude et al., 1988) 

and c-kit (Ogawa et al., 1991). However, since then more markers have been found to 

be specifically up- or down-regulated in human and murine HSCs (summarised in Figure 

1-4). In 1963, Siminovitch et al. provided the first evidence for the existence of HSC in 

bone marrow and thereby defined the hallmark properties of HSCs (Siminovitch et al., 

1963). Following administration of HSCs into lethally irradiated mice, HSCs were able to 

reconstitute the haematopoietic system. They further demonstrated the self-renewal 

capacity of HSCs by performing serial transplantations. This experiment marked the 

beginning of modern-day stem cell research. The following chapters of this thesis will 

emphasise further characteristics of these cells and advances of HSC therapies. 

 

1.2.3.1 Haematopoiesis of the mammalian blood system 

There are more than ten distinct mature haematopoietic cell types including myeloid cells 

(monocyte/macrophage and granulocytes), mast cells, T- and B- lymphocytes, natural 

killer (NK) cells, dendritic cells (DC), red blood cells (erythrocyte) and 

megakaryocytes/platelets in the mammalian blood system. These diverse mature cell 
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types are derived from a common progenitor cell, i.e. HSC. Starting with the multipotency 

of HSC, there is a hierarchical structure in haematopoietic development in which this 

multipotency is progressively restricted. Initially, HSCs give rise to multipotent 

progenitors (MPPs) that still possess full-lineage differentiation potential, but have lost 

the ability to self-renew (Morrison and Weissman, 1994, Christensen and Weissman, 

2001). This population of murine MPPs has been found to be heterogeneous (Adolfsson 

et al., 2005, Forsberg et al., 2006, Arinobu et al., 2007). MPPs progress to oligopotent 

progenitors, the common myeloid progenitor (CMP) (Akashi et al., 2000) or the common 

lymphoid progenitor (CLP) (Kondo et al., 1997, Karsunky et al., 2008, Serwold et al., 

2009). These oligopotent progenitors then give rise to all the lineage-committed effector 

cells of the hematopoietic system. CMPs can give rise to megakaryocyte/erythrocyte 

progenitors (MEPs) and granulocyte/ macrophage progenitors (GMPs) (Nakorn et al., 

2003, Pronk et al., 2007), which then differentiate to platelets, erythrocytes, granulocytes 

and macrophages. CLPs can differentiate to T- and B-lymphocytes, NK cells and 

dendritic cells (DCs). It has been shown that the three different subsets of DCs 

(CD8α+DC, CD8α−DC, and plasmacytoid DC) can be derived either from CMP and CLP 

(Traver et al., 2000, Manz et al., 2001a, Manz et al., 2001b). 

This multi-tiered hierarchy resembles mouse and human haematopoiesis (Figure 1-4). 

The hierarchical structure and the balance of the enormous production of mature white 

blood cells (Ogawa, 1993) and the precise maintenance of the stem cell homeostasis 

(Rossi et al., 2007) is characteristic of haematopoiesis. 
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Figure 1-4: Model of the haematopoietic hierarchy (adapted from Seita and Weissman 
(2010)). At the top of the hierarchy the HSC has self-renewal and multipotency capacity. A HSC 
first loses self-renewal ability, then multi-lineage potential, as it becomes a mature functional cell 
of a certain lineage throughout the differentiation process. The cell surface phenotype of each 
population is shown for the mouse and human systems. CLP: common lymphoid progenitor, CMP: 
common myeloid progenitor, DC: dendritic cell, EP: erythrocyte progenitor, GMP: 
granulocyte/macrophage progenitor, GP: granulocyte progenitor, HSC: hematopoietic stem cell, 

Lin: lineage markers; antigens specific to terminally differentiated blood cells, MacP: macrophage 
progenitor, MEP: Megakaryocyte/erythrocyte progenitor, MkP: Megakaryocyte progenitor, NK: 
natural killer. 

 

 

1.2.3.2 Sources of HSCs 

HSCs can be harvested from different sources, including bone marrow, peripheral blood 

and umbilical cord blood.  

The bone marrow consists of various different cell types, including HSCs, stromal cells, 

stromal stem cells, blood progenitor cells as well as mature, or maturing, lymphocytes. 

Typically bone marrow transplants are performed by anaesthetising the stem cell donor, 

puncturing a bone, which is normally a hipbone and drawing out the bone marrow cells 

with a syringe (Shah et al., 2015). 
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However, HSC isolation from the bone marrow is now rare in the clinical setting and 

harvesting HSCs from the peripheral, circulating blood is the preferred method (Lapierre 

et al., 2000). HSCs are mobilised from their marrow niche by injecting the cytokine 

granulocyte-colony stimulating factor (G-CSF) a few days prior to the cell harvest. CD34+ 

cells will be specifically collected from blood, whereas all CD34- cells will be re-injected 

to the donor. This method of collecting stem cells produces minimal pain, needs no 

anaesthesia and no hospital stay. It is also known that patients receiving peripherally 

harvested cells have higher survival rates than bone marrow recipients, as twice as many 

HSCs can be collected and the engraftment takes more rapidly (Negrin et al., 2000, 

Childs et al., 2000). 

Umbilical cord blood is another source of HSCs. The stem cell concentration is at least 

100-fold greater than in adult peripheral blood. This tissue can be harvested at birth and 

cryopreserved at cord blood banks. Umbilical cord blood recipients are usually children 

(Laughlin, 2001). 

Further sources of human HSCs are the foetal haematopoietic system (Labastie et al., 

1998, Gallacher et al., 2000) and embryonic stem cells (Itskovitz-Eldor et al., 2000, 

Shamblott et al., 2001, Ng et al., 2008). However, these sources have only been used 

for research and not for clinical applications. 

Murine HSCs can be isolated from bone marrow, spleen and foetal liver and are used 

for research purposes. Mature cells expressing lineage antigens (Lin) specific to 

terminally differentiated blood cells of these tissues can be removed by methods such 

as magnetic activated cell sorting (MACS). 

 

1.2.3.3 HSC transplantation (HSCT) 

HSC transplantation is a routinely performed clinical procedure, that offers a potential 

cure for haematologic cancers such as leukaemia, lymphoma as well as myeloma and 

other haematologic disorders including primary immunodeficiency, aplastic anaemia and 

myelodysplasia (Copelan, 2006). A successful engraftment reconstitutes the entire 

haematopoietic system of an individual and thereby replaces the diseased 

haematopoietic cells of the patient. There are two different graft types of HSCT, i.e. 

allogeneic and autologous. For an autologous HSCT the patient's own stem cells are 

used, whereas stem cells from a donor are used for allogeneic transplantation. To be a 

suitable donor for an allogeneic HSCT, the human leukocyte antigens (HLAs) on the 

surface of the haematopoietic cells have to match (Gluckman et al., 2004, Copelan, 
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2006). There are two categories of HLA genes, Type I and Type II. If there is mismatch 

of Type-I genes, i.e. HLA-A, HLA-B, or HLA-C the risk of graft rejection is increased. A 

mismatch of an HLA Type II gene, i.e. HLA-DR, or HLA-DQB1 can cause the risk of 

GvHD. Even small genetic disparities, such as one single DNA base pair mismatch, can 

also lead to side effects. Therefore, the exact DNA sequence of all five HLA genes has 

to be identified to find a suitable donor. 

Before the HSCT, the recipient receives a conditioning therapy to eradicate stem cells in 

the bone marrow and suppress the recipient’s immune response (Copelan, 2006). The 

conditioning regimen can either be myeloablative or non-myeloablative depending on the 

type of disease. The myeloablative regimen is often a combination of chemotherapeutic 

and radiation therapy. The non-myeloablative transplantation also uses a combination of 

chemotherapeutic and radiation therapy, but in doses too low to completely ablate all 

bone marrow cells of the recipient. This regimen lowers the risks of serious infections 

and transplant-related mortality (Alyea et al., 2006). However, the non-myeloablative 

regimen entails an increased risk of cancer relapse. 

After the HSCs have been administered, patients are given colony-stimulating factors to 

shorten duration of post-transplantation leukopenia and prophylactic anti-infective drugs 

(Shah et al., 2015). Allogeneic HSCT recipients will additionally be administered 

prophylactic immunosuppressants to prevent a donor T cell-induced GvHD. Engraftment 

typically occurs 10 to 20 days post HSCT with bone marrow stem cells, but earlier with 

peripheral blood stem cells, and is defined by an absolute neutrophil count. 

 

1.2.3.4 HSC gene therapy 

Haematopoietic stem cell gene therapy combines the capability of haematopoietic stem 

cells to replace the entire blood and immune system of an individual with the capacity for 

long-term replacement of gene copies using gene therapy vectors for integration. 

Therefore, it is an attractive treatment option for many diseases, including genetic 

disorders, haematologic conditions and immunodeficiencies. Thereby, HSC therapy 

greatly benefits from the clinical experience of standard blood and bone marrow 

transplantation. Whereas safe allogeneic HSCTs require a HLA-matched donor, 

individuals receiving HSC therapy could potentially donate their own cells. Therefore, 

there is no risk of GvHD and it has been shown that immune reconstitution occurs more 

rapidly following an autologous transplant with genetically engineered cells (Mukherjee 

and Thrasher, 2013). Current HSC gene therapies are based on ex-vivo transfer of a 



Chapter 1 

Page | 28  

therapeutic transgene via viral vectors to patient-derived autologous HSCs followed by 

transplantation back to the patient.  

Preclinical therapies 

One option to employ HSC gene therapy in cancer is to target the immunosuppressive 

tumour microenvironment. Escobar et al. (2014) developed a lentiviral vector for 

interferon-α (IFN-α) under the regulation of the Tie2 promoter, which is specifically active 

in TEMs. Type I IFNs are cytokines involved in innate and adaptive immunity that have 

been shown to promote anti-tumour immune responses (Dunn et al., 2005). Inhibition of 

tumour progression was achieved in mouse breast cancer models following 

transplantation of HSCs transduced with the Tie2/IFN-α lentiviral construct. The 

transgene expression in tumour-infiltrating monocytes/macrophages reprogrammed the 

tumour microenvironment toward more effective dendritic cell activation and immune 

effector cell cytotoxicity. 

Another approach to target the immunosuppressive tumour microenvironment has been 

developed by Shah et al. (2002). The retroviral-mediated HSC gene therapy that uses 

the transgene of the dominant-negative mutant of TGF-β receptor II (TβRIIDN) has been 

shown to efficiently suppress tumour metastasis. TGF-β is an immunosuppressive 

cytokine and the dominant-negative receptor is capable of binding all three TGF-β 

isoforms without mediating signal transduction. However, systemic expression of this 

receptor leads to multi-organ inflammation and the production of autoantibodies (Gorelik 

and Flavell, 2000). To avoid cellular dysfunctions, the gene therapy approach was 

modified. The heat-shock protein 70 (Hsp70) promoter, highly active within the tumour 

microenvironment, was used to regulate the expression of TβRIIDN. A massive anti-

tumour response was observed in glioma-bearing mice treated with the Hsp70/TβRIIDN 

HSC gene therapy (Noyan et al., 2012). 

Relaxin (Rlx) is a peptide hormone that can mediate the degradation of tumour stroma 

proteins. Li et al. (2009) developed a gene therapy for breast cancer using genetically 

modified HSCs. It was shown that the transplantation of mouse HSCs transduced with 

an Rlx-expressing lentivirus vector delayed tumour growth in a mouse model of breast 

cancer. The Rlx-mediated degradation of tumour stroma contributed to an increased 

access of infiltrating immune cells to their target tumour cells. A significant delay of 

tumour growth could be observed when this approach was combined with trastuzumab 

therapy (Beyer et al., 2011). 
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HSC gene therapy can also be used to correct mutations of genes in haematopoietic 

cells. Mutations in the Artemis gene cause a complete absence of T- and B- lymphocytes 

in patients, which can lead to a radiosensitive severe combined immunodeficiency (RS-

SCID). As matching HSCT donors might not always be available for patients, alternative 

therapeutic approaches such as gene therapy have been investigated. The Artemis-

transduced HSCs were transplanted into irradiated Artemis knockout mouse Art(-/-) 

(Benjelloun et al., 2008). This restored a stable and functional T- and B-cell repertoire 

that was comparable to that of control mice. Thereby, this therapy provides a basis for 

supporting the gene therapy approach in Artemis-deficient SCID. 

Studies have also looked at whether bone marrow toxicity from chemotherapeutic agents 

can be prevented via cytostatic drug resistance gene therapy. To this end, HSCs that 

were transduced with the multidrug resistance (MDR) 1 gene were administered into 

tumour-bearing mice (Guo and Jin, 2006), then, by increasing the proportion of bone 

marrow cells expressing the chemo-protective gene, the influence on bone marrow 

toxicity from chemotherapy was determined. The white blood cell (WBC) counts revealed 

that the mice that had received gene-transduced cells showed a significant increase in 

WBCs count compared with naïve counterparts. This cytostatic drug resistance gene 

therapy can provide some degree of chemo-protection, which could allow an increase in 

chemotherapy dose high enough to kill tumour cells. 

Another gene therapy-mediated approach was developed to inhibit tumour-induced 

neovascularisation. Murine bone marrow cells were transduced with a retroviral vector 

encoding the angiogenesis inhibitor foetal liver kinase-1 (Flk-1), which is the soluble 

truncated form of the vascular endothelial growth factor receptor-2 (Davidoff et al., 2001). 

One of the primary tumour-expressed endothelial mitogens is VEGF3 (Dvorak et al., 

1995), and the activity of this ligand can be inhibited by a soluble truncated form of one 

of its receptors, Flk-1 (Millauer et al., 1996, Lin et al., 1998). After transplantation with 

tsFlk-1-expressing bone marrow cells the tumour growth in mice was significantly 

inhibited compared with tumour growth in control-transplanted mice. Further IF analysis 

of tumour tissue revealed transgene expression in endothelial cells of the tumour-

induced neovasculature. These data show that these cells were derived, at least in part, 

from bone marrow precursors. This HSC gene therapy has demonstrated therapeutic 

efficacy by targeting tumour neovasculature, as bone marrow-derived endothelial cell 

precursors seem to be recruited in the process of tumour-induced angiogenesis. 
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Cinical Trials 

Several HSC therapies have already been clinically tested for various immune deficiency 

disorders. Initial clinical trials, using genetically engineered HSCs by retroviral 

transduction for adenosine deaminase (ADA) deficiency, have shown little clinical benefit 

(Blaese et al., 1995). The enzyme ADA catalyses the breakdown of toxic metabolites of 

purine degradation, which affects lymphocyte development and function in pathological 

state. Patients with ADA are currently treated with HSCT and enzyme replacement 

therapy (ERT). Further trials optimised the transduction efficiency of injected HSCs, 

which allowed for termination of ERT in 75% of the treated patients following the 

reconstitution of genetically corrected autologous cells (Aiuti et al., 2009, Candotti et al., 

2012, Gaspar et al., 2011b). 

Mutations in the common gamma chain, present in several cytokine receptors, can lead 

to a radical interference with immune cell development resulting in X-linked severe 

combined immunodeficiency (X-SCID). To replace the mutated gene, genetically 

engineered HSCs were given to patients and this led to successful reconstitution in 17/19 

patients. However, in five of these patients T cell acute lymphocytic leukaemia (T-ALL) 

has been diagnosed, following insertional transactivation of proto-oncogenes after 

retroviral transduction (Hacein-Bey-Abina et al., 2010, Gaspar et al., 2011a).  

There have also been HSC therapy clinical trials for patients suffering from chronic 

granulomatous disease (CGD). This disease can be caused by the mutation of one of 

five genes that are responsible for the generation of reactive oxygen species (ROS) in 

phagocytic cells. Several studies showed improved patient outcome after genetically 

engineered HSCs were administered to correct the mutation (Ott et al., 2006, Bianchi et 

al., 2009, Kang et al., 2010). However, retroviral integration site-distribution analysis 

showed activating insertions near proto-oncogenes MDS1-EVI1, PRDM16 or SETBP1 

and clonal outgrowth of gene marked cells was also observed in some patients (Ott et 

al., 2006). 

Notably, a clinical study by Cartier et al. has previously demonstrated the use of HSCs 

to deliver therapy to the brain (Cartier et al., 2009). This phase I/II clinical trial for the 

treatment of X-linked adrenoleukodystrophy (ALD) uses an autologous CD34+ HSC 

transplantation. A mutation of the X-linked peroxisomal transporter protein ABCD1 

causes the disruption of transport and subsequent breakdown of very long-chain fatty 

acids (VLCFAs), leading to abnormally high levels of these fats in the body and ultimately 

causing demyelination. The mutation responsible for ALD is corrected via gene therapy 
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using a lentiviral vector to transduce patients’ HSCs. This produces corrected microglial 

cells and a successful therapy for this CNS disease. 

Further HSC gene therapies to correct genetic mutations of immunodeficiencies have 

been shown to be successful. Following HSC gene therapy of 10 conditioned Wiskott-

Aldridge syndrome (WAS) patients there has been sustained engraftment of cells 

sufficient to correct disease manifestations. However, four patients developed leukemia 

following transactivation of proto-oncogenes (Boztug et al., 2010). A clinical trial for 

metachromatic leukodystrophy (MLD) patients showed an improved outcome following 

engraftment of genetically engineered HSCs with no evidence of vector mediated toxicity 

(Biffi et al., 2013). 

Though therapeutic efficacy could be demonstrated for all HSC gene therapy trials, 

several trials have reported side effects caused by insertional mutagenesis following 

LTR-γ-retrovirus transduction. The use of self inactivating (SIN)-retroviral and -lentiviral 

vectors can significantly reduce the risk of insertional mutagenesis. SIN vectors feature 

a deleted promoter region in the 3′ long terminal repeats (LTR), which results in 

integrated LTRs lacking the promoter activity. Several clinical studies for HSC gene 

therapy using SIN vectors are currently ongoing (summarised in Mukherjee and Thrasher 

(2013)). To date no transformation events have been reported with SIN vectors (Bigger 

and Wynn, 2014). 

 

1.3 Gene therapy against cancer 

Gene therapy also displays an alternative to current treatment options for cancer, which 

is demonstrated by various current clinical trials (Sangro et al., 2010, Kaufman and 

Bines, 2010, Nokisalmi et al., 2010, Sterman et al., 2010, Anwer et al., 2010, Guan et 

al., 2011). Moreover, gene therapy has the potential to target cancer cells while sparing 

normal tissues. This technique can be useful for recurrent cancer disease as well as in 

the adjuvant setting. 

The goal of gene therapy is to introduce a functional gene into target cells. The inserted 

genetic material can either encode a therapeutic molecule to target diseased cells or 

encode a functional gene to replace a genetic defect that caused a dysfunction. Different 

strategies can be used in cancer gene therapy including mutation correction, 

enhancement of the immune response against tumour cells, RNA interference, anti-

angiogenic and enzyme prodrug therapies (Vassaux and Martin-Duque, 2004). 
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Therapeutic transgenes have been used to correct the primary genetic defect in many 

cancer cells, i.e. p53. Restoring the p53 function in cancer cells via gene therapy 

successfully induced apoptosis in cancer cells and thus tumour regression in patients 

(Swisher et al., 2003). A gene therapy using TNF-α, a cytokine with potent anti-cancer 

properties and high systemic toxicity, demonstrated therapeutic efficacy in patients with 

pancreatic, rectal cancer and melanoma (Senzer et al., 2004, McLoughlin et al., 2005, 

Herman et al., 2013). Rexin-G is an agent that contains the cytocidal cyclin G1 

construct that accumulates preferentially in tumour cells to block the action of cyclin 

G1 and initiate cell death. Metastatic pancreatic cancer patients experienced tumour 

growth arrest following Rexin-G gene therapy treatment (Chawla et al., 2010). Another 

strategy to use gene therapy in cancer is to enhance the immune response via the 

expression of the cytokine IL-12 (Tahara and Lotze, 1995). However, in experimental 

models tumour regression was only observed when used in combination with other drugs 

(Rakhmilevich et al., 2004, Denies et al., 2014).  

Other cancer treatments involving gene therapy rely on the potential for prodrug 

activation. These enzyme prodrug therapies are the most commonly used gene therapy 

options for cancer, and are explained in more detail in the following section. 

 

1.3.1 Enzyme prodrug gene therapy systems 

In an enzyme prodrug therapy a viral or bacterial transgene is introduced into a tumour 

cell and this transgene allows the conversion of a non-toxic compound into a lethal drug. 

Enzyme prodrug therapy has been successfully used in a large number of in vitro and in 

vivo studies. Its application in cancer patients has not reached clinical significance, 

although recent reports on preclinical cancer models demonstrated the huge potential of 

this strategy when used in combination with new therapeutic approaches (Freytag et al., 

2007, Liu et al., 2007). 

It is a two-step approach, whereby a drug-activating enzyme expressed by cancer cells 

or cells of the tumour microenvironment convert the systemically administered non-toxic 

prodrug into the active drug within the tumour. The enzyme and the prodrug must meet 

certain requirements to make it a successful therapy. The prodrug converting enzyme 

should either be of non-human origin or a human enzyme only expressed at low 

concentrations in normal tissue (Rainov et al., 1998, Xu and McLeod, 2001). In addition, 

the enzyme should be expressed abundantly within the tumour and have a high catalytic 

activity (Niculescu-Duvaz et al., 1998). Furthermore, the prodrug should be a good 
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substrate for the expressed enzyme in the tumour tissue, not be activated by 

endogenous enzymes in non-tumour tissues and have minimal toxicity prior to activation. 

The activated toxic drug is expected to be highly diffusible or actively taken up by 

adjacent cells in order to kill cancer cells via a bystander killing effect (Niculescu-Duvaz 

et al., 1998). Furthermore, to induce the bystander effect, the half-life of the activated 

drug should be of a sufficient length but short enough to prevent the drug from leaking 

into the systemic circulation (Niculescu-Duvaz et al., 1998). A large number of enzyme 

prodrug systems have been developed and some of these are discussed in detail below. 

 

1.3.1.1 Cytosine deaminase/5-Fluorouracil (CD/5-FC) 

The cytosine deaminase system was first described as a negative selection system for 

experimental studies and in treatments using gene transfer techniques (Elion et al., 

1977). Cytosine deaminase is expressed by bacteria and yeast but is absent in 

mammalian cells. The enzyme normally catalyses the deamination of cytosine to uracil 

and ammonia. However, this enzyme can also convert the prodrug 5-fluorocytosine (5-

FC) to 5-Fluorouracil (5-FU), an important drug used in conventional chemotherapy. 5-

FU can act via 3 different pathways to induce cell death, including thymidylate synthase 

inhibition, formation of (5-FU) RNA and of (5-FU) DNA complexes (Niculescu-Duvaz and 

Springer, 1997). This is because it can be transformed by cellular enzymes into different 

potent pyrimidine anti-metabolites including 5-Fluoro-2’-deoxyuridine-5’-monophosphate 

(5-FdUMP), 5-Fluorouridine-diphosphate (5-FUDP) and 5-Fluorouridine-triphosphate (5-

FUTP). 5-FdUMP is an irreversible inhibitor of thymidylate synthase, resulting in 

thymidine starvation and inhibition of DNA synthesis. 5-FUDP is further processed to 5-

FdUTP which can be incorporated into DNA and lead to DNA damage and apoptosis. 5-

FUTP can also be incorporated into RNA, substituting for UTP and inhibiting RNA 

processing (Biasco et al., 2012). Therefore, this enzyme prodrug therapy minimises the 

normal systemic side effects of 5-FU therapy, and maximizes the local anti-tumour effect.  

The CD/5-FC system can be further improved by the inclusion of the uracil 

phosphoribosyltransferase (UPRT) gene which allows the conversion of 5-FU to 5-

fluorouridine monophosphate, the first step of its pathway to activation (Kanai et al., 

1998). Interestingly, this CD-UPRT/5-FC system has been shown to be effective in 5-

FU-resistant human primary cancer cells (Richard et al., 2007). 

Promising in vivo anti-tumour activity of the CD/5-FC therapy has been demonstrated in 

different preclinical models, including fibrosarcomas (Mullen et al., 1994), carcinomas 
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(Huber et al., 1993, Kanai et al., 1997, Bentires-Alj et al., 2000), gliomas (Ichikawa et al., 

2000) and metastatic tumours of different origins (Consalvo et al., 1995, Topf et al., 

1998). A number of clinical trials have been reported using the CD/5-FC system, 

although its application in the clinic has been limited (Pandha et al., 1999, Nemunaitis et 

al., 2003, Freytag et al., 2007).  

 

1.3.1.2 Herpes simplex virus thymidine kinase/ganciclovir 

(HSV TK/GCV) 

The most intensively studied enzyme prodrug system is herpes simplex virus thymidine 

kinase (HSV TK) with the prodrug ganciclovir. The enzyme HSV TK catalyses the 

phosphorylation of ganciclovir (GCV) to ganciclovir monophosphate (Fillat et al., 2003), 

which is converted by cellular kinases to di- and triphosphate derivatives. Ganciclovir 

triphosphate is an analogue of deoxyguanosine triphosphate and can be incorporated 

into DNA by cellular DNA polymerase and cause DNA chain termination and apoptosis 

(Balfour, 1999, Wang et al., 2004, Ketola et al., 2004).  

The therapeutic efficacy of the HSV TK/GCV gene therapy system has been 

demonstrated in several experimental carcinoma models, including leukaemia 

(Bondanza et al., 2011), glioma (Staquicini et al., 2011), and bladder cancer (Tang et al., 

2009). This has led to the application of the HSV TK/GCV system in a number of clinical 

trials involving different types of cancer, including glioma (Voges et al., 2003), prostate 

cancer (Nasu et al., 2007), hepatocellular carcinoma (Li et al., 2007), as well as head 

and neck cancer (Xu et al., 2009).  

The limitations of this system include the potential immunogenicity of the viral enzyme, 

and the requirement for active mitosis to induce cell death (Dong and Woraratanadharm, 

2005). Therefore, other enzyme prodrug gene therapy systems would represent better 

options with fewer limitations. 

 

1.3.1.3 Carboxyl esterase/irinotecan (CE/CPT-11) 

Another established enzyme prodrug gene therapy system combines the enzyme 

carboxyl esterase with the prodrug irinotecan. Irinotecan (CPT-11) is a chemotherapy 

prodrug which is cleaved by CE to the potent anti-tumour agent 7-ethyl-10-

hydroxycamptothecin (SN-38). SN-38 is an inhibitor of topoisomerase I activity (Kawato 

et al., 1991), which causes accumulation of double-strand DNA breaks in actively 
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dividing cancer cells that results in the inhibition of both DNA replication and 

transcription. Anti-tumour efficacy of this system in a preclinical lung cancer model was 

demonstrated (Kojima et al., 1998). However, further preclinical and clinical applications 

of this system for other types of cancer were not performed. This might also be due to 

the fact that the enzyme is found in a variety of tissues, including serum, liver and the 

intestine (Kaneda et al., 1990), which could lead to non-specific enzyme prodrug activity. 

 

1.4 Viral DNA delivery  

Because viruses have evolved natural mechanisms to deliver their genomes into cells, 

they are excellent vectors to deliver foreign DNA. Usually, a virus penetrates into the 

nucleus of the host cell, exploits the cellular machinery to express its own genetic 

material and replicate it, and then spreads to the other cells (Kay et al., 2001). A variety 

of viruses have been used to deliver therapeutic genes into cell nuclei. In order to use a 

virus as a vector to transfer a gene, it is modified by genetic engineering. The therapeutic 

gene replaces the pathogenic part of the virus (Bouard et al., 2009), while the virus 

retains its non-pathogenic structures that allow cell infection (Kay et al., 2001). The 

resulting non-pathogenic virus carrying the therapeutic gene is called a viral vector. The 

first vectors based on retroviruses were developed by Mann et al. (1983) and have been 

successfully used in gene therapy trials more than 20 years ago (Anderson et al., 1990, 

Blaese et al., 1993). Due to their high transduction efficiency in vivo, viral vectors are the 

most attractive choice to transfer genes (Munier et al., 2005). However, viral vectors also 

have major drawbacks, such as acute immune responses, the expensive and difficult 

production of the viral vectors in quantities needed and the size of the gene delivered by 

the virus is also limited (Templeton, 2002, Munier et al., 2005). The most commonly used 

viral vectors for gene therapy derive from adenoviruses, retroviruses, vaccinia virus, 

adeno-associated viruses, herpes simplex virus and lentiviruses (Ibraheem et al., 2014). 

The choice of viral vector depends on several parameters such as the characteristics of 

the cancer type and the therapeutic strategy. 

 

1.4.1 Lentivirus 

Recently, research has focussed on lentiviruses as transgene delivery vehicles. 

Lentiviruses, such as the human immunodeficiency virus (HIV), are complex retroviruses 

and belong to the family of retroviridae, which are single-stranded RNA spherical viruses. 
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The lentiviral particle is lipid-enveloped and measures around 80 to 100 nm (Vogt and 

Simon, 1999).  

The lentiviral genome is organised in the gag, pol and env gene. The structural proteins 

are encoded by gag, whereas the pol gene encodes the enzymes that accompany the 

ssRNA, i.e. reverse transcriptase, integrase and protease. The reverse transcription of 

viral RNA to DNA is catalysed by the reverse transcriptase and the integrase mediates 

the integration of the proviral DNA into the host genome. The protease enzyme is 

involved in gag-pol cleavage and virion maturation (Katz and Skalka, 1994). The viral 

envelope glycoproteins are encoded by the env gene. Additionally, there are accessory 

genes that regulate the viral gene expression, assembly and replication (Coil and Miller, 

2004). Furthermore, there are cis-acting sequences, such as two LTRs, in the retroviral 

genome that are required for gene expression, reverse transcription and integration into 

the host chromosomes. Further, the polypurine tract (PPT) is enclosed in the viral 

genome, which is the site of the initiation of the positive strand DNA synthesis during 

reverse transcription (Charneau et al., 1992). Another important component is the 

packaging signal (psi or ψ), which is required for the specific RNA packaging into newly 

formed virions (Watanabe and Temin, 1982). 

 

1.4.2 Lentiviral vectors  

Third generation lentiviral particles are generated by the co-transfection of 4 plasmids in 

human embryonic kidney (HEK) 293T cells (Naldini et al., 1996). These plasmids are 

called packaging plasmids, the transfer plasmid and the envelope-encoding plasmid. 

Together, these plasmids only represent a fraction of the lentiviral genome, lacking all 

genes that are not critical for efficient gene transfer (Dull et al., 1998). Moreover, this 

vector system is designed to produce virus particles that are replication deficient, which 

means that after transgene delivery the particles are unable to infect their host (Escors 

and Breckpot, 2010). Additionally, these viruses are able to transduce non-dividing cells 

(Bukrinsky et al., 1993). Many gene therapy strategies target highly differentiated cells. 

Therefore, the characteristics of lentiviruses give them an advantage over other viruses. 

Currently, there are 114 clinical trials worldwide using lentiviral vectors for gene delivery 

(Wiley.com, 2015). 

The development of lentiviral vector systems is characterised by modifications of the 

packaging plasmids to improve safety (summarised in Escors and Breckpot (2010)). The 

components of the third generation lentiviral vectors are shown in Figure 1-5. 
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Figure 1-5: The third generation lentiviral vectors. The transgene sequence is located on the 
transfer plasmid and flanked by the cis-acting LTRs. The packaging plasmids contain sequences 
of structural proteins and enzymes. The envelope plasmid encodes the vesicular stomatitis virus-
glycoprotein, which is incorporated in the viral lipid envelope. Expression of these genes can be 
regulated by the cytomegalovirus (CMV) promoter. 

 

 

1.4.3 Lentiviral packaging and transduction 

Following transfection of the lentiviral plasmids, the packaging cells produce proteins 

according to the genetic information of the four lentiviral vectors to assemble the virus 

particle which is then released into the cell supernatant (Figure 1-6). The packaging 

plasmids comprise gag, pol, and rev. The latter encodes a post-transcriptional regulator 

necessary for efficient gag and pol expression. The envelope plasmid encodes a 

glycoprotein, which is incorporated in the viral lipid envelope and allows pseudotyping of 

the lentiviral particles. The most used glycoprotein is the vesicular stomatitis virus-

glycoprotein (VSV-G), which confers a very broad tropism for human and non-human 

cells (Yee et al., 1994). The transfer plasmid contains the transgene which is flanked by 

LTRs and the psi-sequence, which aids the packaging of the transgene into the virions. 

The assembled virus particles produced by the HEK293 cells are able to infect, and 

deliver the transgene to, target cells. The binding of virus particles to target cells is 

mediated by receptor-independent binding (Pizzato et al., 1999). This initial event is 

negatively influenced by strong electrostatic repulsion between the negatively charged 

cell and an approaching enveloped virus (Jensen et al., 2003, Swaney et al., 1997). The 

addition of positively-charged polycations, such as polybrene, reduces the repulsion 

forces and mediates the binding of the lentiviral particle to the cell surface resulting in a 

higher efficiency of transduction (Swaney et al., 1997, Le Doux et al., 2001). Once in the 

target cell, the transgene is imported into the nucleus and stably integrated into the host 

genome via the LTRs. 
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Figure 1-6: Lentiviral packaging and transduction. (A) The packaging cells are co-transfected 
with the four lentiviral plasmids (packaging plasmids, envelope plasmid and transfer plasmid). (B) 
This is followed by the assembly of the produced viral proteins to a virus particle. (C) The virion 
is then released into the cells supernatant. (D) The virus particles binds to the target cell by 
receptor-independent binding and infiltrates the cell. (E) The transgene is imported into the 
nucleus and stably integrated into the host genome mediated by the LTRs. 

 

 

1.5 Aims  

Brain metastases are the most frequently occurring intracranial neoplasms in adults 

(Eichler and Loeffler, 2007). However, treatment options for brain metastases are 

strongly limited by the poor access of drugs into the brain (Lockman et al., 2010). 

Therefore, novel treatments need to include strategies to overcome delivery limitations 

imposed by the BBB. Interestingly, the homing of microglia/macrophages to brain 

metastases has been demonstrated by various studies (He et al., 2006, Davoust et al., 

2008, Lorger and Felding-Habermann, 2010). Moreover, myeloid precursor cells derived 

from bone marrow (bm) have been shown to enter the brain and differentiate into 

perivascular macrophages and occasionally microglia (Hickey and Kimura, 1988; Simard 

and Rivest, 2004). Furthermore, the bm-derived myeloid precursor cells are 

preferentially recruited to sites of neuronal degeneration (Priller et al., 2001). Based on 

these findings it can be concluded that the progeny of HSCs would be ideal cellular 

delivery vehicles for therapeutic agents to target brain metastases, as these can cross 

the BBB and infiltrate tumour lesions. Therefore, the overall aim of this thesis is to 
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develop a HSC-based therapy to treat brain metastases using genetically engineered 

HSCs to express a therapeutic agent. 

 

Aim 1: Characterisation of brain metastases-infiltrating cells and their 

potential as therapeutic vehicles 

To show that HSCs and their progeny can be exploited as cellular delivery vehicles into 

brain metastases, the goal was to investigate whether the myeloid brain tumour-

infiltrating cells are of bm origin in experimental brain metastases models. The delivery 

of a transgene by the HSC progeny to brain metastases was also tested. Furthermore, 

to assess the translational potential of the cell therapy clinical brain metastases 

specimens were analysed for their proportion of infiltrating myeloid cells. 

 

Aim 2: Development of an enzyme prodrug approach as a therapeutic 

option for HSC-based therapy to treat brain metastases 

The most commonly used gene therapy approach for cancer is an enzyme prodrug 

system. The CD/5-FC therapy was developed as a therapeutic option of HSC-based cell 

therapy. The functionality of this system was assessed in vitro and in vivo following 

generation of the lentiviral transfer plasmid.  

 

Aim 3: Developing a strategy for improved specificity of HSC-based cell 

therapy targeting brain metastases 

The progeny of systemically administered HSCs can infiltrate different tissues. Following 

administration of HSCs that had been genetically engineered to express a therapeutic 

agent, an accumulation of agent would occur in brain metastases as well as in other 

tissues, and therefore potentially lead to systemic toxicities. A promoter that allows for 

specific expression of the therapeutic agent in brain metastases-infiltrating myeloid cells 

could circumvent this problem. Therefore, promoters that are specifically active in brain 

metastases-infiltrating myeloid cells were identified. Following validation of the activity of 

these promoters in murine and human brain metastases-infiltrating myeloid cells, the first 

steps towards promoter length optimisation for future application in the HSC-based cell 

therapy were performed 

 

 



 

 

 

 

 

 

 

2. Materials and methods 

  



Chapter 2 

Page | 41  

2.1 Mammalian cell culture methods 

2.1.1 Cell lines and cell culture  

EO771 cells are medullary breast adenocarcinoma cells originally isolated from a 

spontaneous tumour from C57BL/6 mouse (Sugiura and Stock, 1952) and adapted for 

anti‐cancer drug testing by Sirotnak et al. (1984). These cells were grown in Roswell 

Park Memorial Institute (RPMI)-1640 (Sigma) supplemented with 20% foetal bovine 

serum (FBS) (LabTech), 1% Glutamine (HyClone), 1% non-essential amino acids 

(Gibco), and 1% sodium pyruvate (Gibco). 

PyMT cell line was derived from mouse mammary tumour virus (MMTV)-PyMT mouse 

model (Guy et al., 1992) and kindly provided by Professor Wolfram Ruf from The Scripps 

Research Institute, La Jolla, California. The cells were cultured in L-15 (Sigma), 

10% FBS, 1% Glutamine, 10 µg/mL Insulin (Sigma).  

The murine monocyte-macrophage cell line RAW 264.7 (American Type Culture 

Collection (ATCC)) used in this study was established from ascites of a tumour induced 

in a BALB/c male mouse by intraperitoneal (ip) injection of Abelson leukaemia virus (A-

MuLV) (Raschke et al., 1978). This adherent cell line was cultured in Dulbecco's Modified 

Eagle's Medium (DMEM) (Sigma), 10% FBS and 1% Glutamine. 

HEK293 cells (ATCC) were grown in DMEM, 10% FBS and 1% Glutamine. This cell line 

has been derived from transformed human embryonic kidney cells by exposure to 

sheared fragments of adenovirus type 5 DNA (Graham et al., 1977). 

All cell lines were grown as monolayers in 25 cm2, 75 cm2 or 150 cm2 ventilated flasks 

(Corning) at 37 °C and 5% CO2 in a humidified atmosphere. Medium was changed every 

other day and at 70-90% confluency cells were sub-cultured using 0.25% trypsin 

(HyClone) treatment for 2-5 min, followed by addition to a new flask with fresh medium. 

 

2.1.2 Generation of lentiviral virus stocks  

To transduce cells with lentiviral expression constructs lentiviral virus stocks were first 

produced. To this end, 2x106 HEK293 cells were seeded in a 10 cm plate in 10 mL 

medium. The next day cells were transfected with the following reaction mixture: 
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Table 2-1: Transfection reaction mixture 

Reagent Amount for 1 plate 

0.1xTE 450 µL minus plasmids  

Gag-pol plasmid 6.5 µg 

VSV-G plasmid 3.5 µg 

Prsv-rev plasmid 2.5 µg 

Transfer plasmid 10 µg 

CaCl2 50 µL 

2xHBS 500 µL 

 

2xHBS (281 mM NaCl, 100 mM HEPES, 1.5 mM Na2HPO4) was added while the 

reaction mixture was vortexed. This mixture was added to the cells drop-wise and the 

plate was placed into 5% CO2-incubator (Sanyo) overnight. The next morning medium 

was changed (5 mL per 10 cm plate). The virus-containing medium was collected 24 

and 48 hours later, filtered through 0.45 µm pore filters and stored in aliquots at -80 °C. 

 

Table 2-2: Lentiviral vectors used in this study 
Name Reference Name Reference 

pFUGW Lois et al. (2002) pTREsCDHA Designed for this study 
(see Appendix C) 

pFUW-sCD Designed for this study (see 
Appendix C) 

pEZX 

Purchased from 
GeneCopoeia 

pFUW-sCDHA Designed for this study (see 
Appendix C) 

pEZX Dab2-mCherry 

pTREAutoR3 Markusic et al. (2005) 
Kindly provided by Professor 
André Lieber 

pEZX MMP14-mCherry 

pTREsCD Designed for this study (see 
Appendix C) 

pEZX Spp1-mCherry 

 

2.1.3 Virus concentration  

To concentrate generated lentiviral virus, the collected and filtered virus-containing 

medium (100-300 mL) was spun at 18,000 rpm at 4 °C for 2.5 h using the high speed 

centrifuge Avanti J-25 (Beckman Coulter) with the JA-18 rotor. The supernatant was 

carefully removed and the virus pellet was incubated on ice with either 100 µL 

phosphate-buffered saline (PBS)/0.1% bovine serum albumin (BSA) or StemSpan 

SFEM (Stemcell Technologies) medium to loosen it. The loosened pellet was re-

suspended and stored in aliquots at -80 °C. 
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2.1.4 Determination of virus titre 

To determine the titre of the produced and concentrated virus stocks, one of the following 

two assays was performed. 

 

2.1.4.1 Reverse transcriptase assay  

The Reverse transcriptase (RT) assay (Roche) was used to quantitatively determine the 

RT activity of an aliquot of the virus stock. A virus stock with a known concentration was 

used as the standard for correlation. The standard virus stock used in this case was a 

pFUGW virus, whose titre was determined by flow cytometry analysis of HEK293 cells 

transduced with different amounts of the virus stock. Cells that were positively 

transduced with pFUGW virus were green fluorescent. The RT assay was performed 

according to manufacturer’s instructions. The absorbance of the samples was 

determined using the plate reader Multiskan EX (Thermo Scientific) with Ascent software 

at an absorbance of 405 nm, and the readings were analysed using Microsoft Excel. 

 

2.1.4.2 Provirus integration assay  

The Lenti-X provirus quantitation kit (Clontech) was used to determine the number of 

integrated provirus copies in lentiviral transduced cells. This assay uses quantitative 

polymerase chain reaction (qPCR) with SYBR green chemistry to assess viral integration 

into genomic DNA by using primers that specifically bind to proviral insertion junctions.  

The genomic DNA was extracted from 1x106 transduced cells using the NucleoSpin 

Tissue kit (Machery&Nagel) 72 h after transduction. A calibrated provirus control 

template, supplied with the kit, was subjected to qPCR amplification alongside the 

samples and used as a control standard curve for analysis later on. The qPCR was 

performed as described in 2.2.1.3. The analysis of the qPCR results was performed 

according to the manufacturer’s specification using Microsoft Excel.  

 

2.1.5 Lentiviral transduction of cells  

To transduce cells with lentiviral expression constructs, 4x105 cancer cells were seeded 

in one well of a 6-well plate. 1 mL virus-containing media mixed with 8 µg polybrene 

(Sigma) was added and the plate incubated overnight. The next day the medium was 
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changed and protein expression analysis in transduced cells was performed after 

48 hours or later. 

In order to transduce mouse ScaI+ HSCs, 24-well plates were coated with 20 µg/mL 

retronectin (Clontech) in PBS at 4 °C overnight. After this solution was removed, the 

wells were incubated with a 2% BSA in PBS (w/v) solution at room temperature for 

30 min and washed once with PBS. Then 2x106 HSCs were plated into each well in a 

total volume of 0.5 mL StemSpan SFEM medium supplemented with murine stem cell 

factor (SCF) (100 ng/mL), murine thrombopoietin (TPO) (10 ng/mL), murine fms-related 

tyrosine kinase 3 ligand (FLT-3) (100 ng/mL) and murine IL-3 (20 ng/mL) (all growth 

factors and cytokines from Preprotech). To prepare the virus an appropriate amount of 

concentrated virus (multiplicity of infection ≥ 50) was added to HSC medium with 8 µg 

polybrene per mL medium and well mixed. The virus containing medium was added to 

the cells and left for an overnight incubation. The next morning the transduced cells were 

washed with PBS twice and then prepared for intravenous (iv) injection to complete the 

BMT. 

 

2.2 Molecular biology and cloning  

2.2.1 Polymerase chain reaction (PCR) 

2.2.1.1 Two step PCR 

In this study, a two-step PCR was used, which is a modification of PCR (Saiki et al., 

1985), to introduce new short sequences additionally to the initial template DNA. This 

method was used to generate the DNA for the 5-FC converting enzyme cytosine 

deaminase (CD), using plasmid pORFCodA (InvivoGen) as a template and to attach a 

signal peptide sequence (tissue plasminogen activator (tPA)-signal) to its 5`end and a 

tag (HA-tag) to its 3`end. To ensure accuracy, a proof-reading polymerase, the Pfu Ultra 

HF polymerase (Agilent), was used to generate sCD (secretable CD). Oligonucleotide 

primers were ordered from Sigma-Aldrich (see  

Table 2-3 for sequence) and dissolved in dH2O to a 10 µM concentration. The PCR was 

performed using the Thermal Cycler Veriti (Applied Biosystems). Programmes used in 

this study as well as the reaction mixture composition are displayed in Table 2-4. PCR 

products were analysed by agarose gel electrophoresis.  
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Table 2-3: Primers used for two step PCR. Colour coding: NdeI, CD, tPA signal, HA-tag. Tm = annealing temperature (according to Sigma Aldrich), nt 
= nucleotides. 

Primer name Primer sequence Tm (°C) 
Primer 

length (nt) 

sCD fwd 
5’-AAGCAATCATGGATGCAATGAAGAGAGGGCTCTGCTGTGTGCTGCTGCTGTGTGGAGCA 

GTCTTCGTTTCGCCCAGCCAGGAAATCCATGCCCGATTCAGAAGAATGAGCAATAACG-3’ 
66.3 117 

sCD rev 5’-GTAACCCAGTCGTTCAACGTTTG-3’ 53 23 

sCDHA rev 
5’- TCAAGCGTAGTCTGGGACGTCGTATGGGTAAGATCCAGAAGCGTAGTCTGGGACGTC 

GTATGGGTAACGTTTGTAATCGATGGC -3’ 
92.2 84 

 

tPA_NdeI fwd 5’- TGTACCATGCATATGGAAGCAATCATGGATG-3’ 75.4 31 

sCDHA 2 rev 5’- CTATCAAGCGTAATCTGGAACATCGTATGGGTAACGTTTGTAATCGATGGC-3’ 82.4 51 
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Table 2-4: PCR programme and reaction mixture for two step PCRs. 

 

PCR reaction mixture 

 PCR programme 

 

sCD 

(1388 bp) 

sCDHA 

(1451 bp) 

sCDHA2 

(1431 bp) 

DNA template 100ng  

 

Initial denaturation 

 

95 °C 

 

2 min 

 

Initial denaturation 

 

95 °C 

 

2 min 

 

Initial denaturation 

 

95 °C 

 

2 min 

Primer fwd 1 µM  
Denaturation 95 °C 30 sec Denaturation 95 °C 30 sec Denaturation 95 °C 30 sec 

Primer rev 1 µM  Annealing 34°C 30 sec Annealing 34 °C 30 sec Annealing 41 °C 30 sec 

10x Pfu pol buffer 5 µL  Elongation 72 °C 1 min Elongation 72 °C 1 min Elongation 72 °C 1 min 

dNTPs (20 mM) 1 µL  
Denaturation 95 °C 30 sec Denaturation 95 °C 30 sec Denaturation 95 °C 30 sec 

MgSO4 (50 mM) 1 µL  Annealing 72 °C 30 sec Annealing 72 °C 30 sec Annealing 67 °C 30 sec 

ddH2O up to 50 µL  Elongation 72 °C 1 min Elongation 72 °C 1 min Elongation 72 °C 1 min 

Pfu polymerase 1 µL  End- Elongation 72 °C 10 min End- Elongation 72 °C 10 min End- Elongation 72 °C 10 min 

 50 µL  Hold 4 °C ∞ Hold 4 °C ∞ Hold 4 °C ∞ 

1
0
x
 

2
0
x
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2.2.1.2 Semi-quantitative reverse transcriptase PCR (RT-PCR) 

This method was performed to detect the level of expression of mRNA in a semi-

quantitative way and thus to compare levels of transcripts in different samples. As 

comparison of the intensities of PCR product bands can only be performed during the 

logarithmic amplification phase, PCR cycle numbers for each individual gene specific 

primer set were determined first. The expression level of glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) was used to normalise gene expression in each sample. 

Gene-specific primer set (Sigma Aldrich) sequences, annealing temperatures and the 

number of cycles are given in Table2-5. All PCR reactions were performed with Pfu Ultra 

HF DNA polymerase (Agilent) in a reaction volume of 12 μL using the same amount of 

cDNA for each reaction. The PCR programme was as follows: 95 °C for 2 min, cycle 

number x (95 °C for 2 min, annealing temperature for 30 sec, and 72 °C for 30 sec) and 

72 °C for 10 min. Products were separated on a 2% agarose gel containing ethidium 

bromide. Images of PCR products were obtained and analysed using ImageJ software. 



Chapter 2 

Page | 48  

 

Table 2-5: Semiquantitative RT-PCR primer sequences 

Gene Forward primer Reverse primer Tm (°C) Cycles cDNA size (bp) 

Spp1 5’-GCTTGGCTTATGGACTGAGGTC-3’ 5’-CCTTAGACTCACCGCTCTTCATG-3’ 53 30 114 

MMP-14 5’-GATGGACACAGAGAACTTCGTG-3’ 5’-CGAGAGGTAGTTCTGGGTTGAG-3’ 53 30 117 

Trem2 5’-CTACCAGTGTCAGAGTCTCCGA -3’ 5’-CCTCGAAACTCGATGACTCCTC -3’ 53 30 134 

Dab2 5’-CTCTTCAAAGGCAATGCTCCTGC-3’ 5’-TATGGCTCCTGGGACCACAGTT-3’ 55 30 134 

Emp1 5’-TCCCTGTCCTACGGCAATGAAG-3’ 5’- CTGGAACACGAAGACCACAAGG-3’ 60 35 169 

Arg1 5’-CATTGGCTTGCGAGACGTAGAC-3’ 5’-GCTGAAGGTCTCTTCCATCACC-3’ 53 30 124 

Ccl7 5’-CAGAAGGATCACCAGTAGTCGG-3’ 5’- ATAGCCTCCTCGACCCACTTCT-3’ 55 30 108 

Cxcl10 5’-ATCATCCCTGCGAGCCTATCCT-3’ 5’-GACCTTTTTTGGCTAAACGCTTTC-3’ 55 32 134 

Cxcl16 5’-GCAGGGTACTTTGGATCACATCC-3’ 5’-AGTTCACGGACCCACTGGTCTT-3’ 57 32 126 

Ccr5 5’-GTCTACTTTCTCTTCTGGACTCC-3’ 5’-CCAAGAGTCTCTGTTGCCTGCA-3’ 54 35 131 

GAPDH 5’-GCACAGTCAAGGCCGAGAAT-3’ 5’-GCCTTCTCCATGGTGGTGAA-3’ 54 40 151 
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2.2.1.3 Quantitative real time PCR (qPCR) 

Quantification of RNA expression using synthesised cDNA was performed with two 

different fluorescent dye systems in this study. 

In the context of the Lenti-X provirus quantitation kit (Clontech), SYBR green was used 

as a fluorescent dye to determine the number of integrated provirus copies in lentiviral 

transduced cells. A calibrated provirus control template was subjected to qPCR 

amplification alongside the samples and used as a control standard curve for later 

analysis. This kit, using Lenti-X provirus forward and reverse primers, specifically 

amplified proviral insertion junctions. PCR programme and reaction mixture are 

displayed in the table below. 

 

Table 2-6: SYBR Green qPCR reaction mixture and thermal cycling conditions. 

PCR reaction mixture  Thermal cycling conditions 

cDNA (100 ng/µL) 10 µL  

 

Initial Denaturation 
(1cycle) 95 °C 30 sec 

PCR-grade H2O 6.8 µL  
qPCR (40 cycles) 95 °C 34 sec 

Lenti-X provirus primer fwd 0.4 µL  60°C 31 sec 

Lenti-X provirus primer rev 0.4 µL  
Dissociation curve 
(1cycle) 

95 °C 15 sec 

ROX Reference Dye LMP 0.4 µL  60 °C 1 min 

SYBR Advantage qPCR Premix (2x) 10 µL  95 °C 15 sec 

Volume/well 20 µL     

 

 

To determine sCD expression levels in leukocytes from mice that received BMT with 

sCD transduced HSCs, a TaqMan gene expression assay (Life technologies) was 

performed. Expression of the house keeping gene GAPDH was used as a normalisation 

control for each sample. Thermal cycling conditions as well as PCR reaction mixture for 

TaqMan qPCRs are given in Table 2-7. 
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Table 2-7: TaqMan qPCR reaction and thermal cycling conditions. 

PCR reaction mixture  Thermal cycling conditions 

cDNA (25 ng) 3 µL  Hold 50 °C 2 min 

PCR-grade H2O 3.75 µL  Hold 95 °C 10 min 

Primer (sCD/GAPDH) probe 0.75 µL  Cycle (40 cycles) 95 °C 15 sec 

TaqMan buffer 7.5 µL   60 °C 1 min 

Volume/well 15 µL     

 

All samples were analysed in triplicates using the thermal cycler ABI 7500 Real-Time 

PCR System (Applied Biosystems) and the relative expression was calculated by the 

comparative Ct method.  

 

2.2.2 Purification of PCR products  

Generated PCR products were purified from PCR reaction mixture using the QIAquick 

PCR Purification Kit (QIAGEN) according to the kit protocol. 

 

2.2.3 Blunt end filling of PCR products with Klenow fragment 

The 5´-3´polymerase activity of the Klenow fragment (Fermentas) was used to generate 

blunt ends on PCR products generated by Pfu Ultra HF polymerase. The reaction mixture 

was incubated at room temperature for 20 min and inactivated at 70 °C for 10 min. 

 

Table 2-8: Klenow fragment reaction mixture 
Reaction components Quantity 

DNA 3 µg 

dNTPs (10 mM) 0.4 µL 

10x Klenow buffer 4 µL 

Klenow enzyme 1 µL 

ddH2O up to 40 µL 

Total volume: 40 µL 
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2.2.4 Phosphorylation of PCR products 

DNA fragments generated by PCR lack 5`-P and need to be phosphorylated prior to 

ligation. In this study, T4 Polynucleotide Kinase (T4 PNK) (Fermentas) was used to 

catalyse the transfer of the γ-phosphate from ATP to the 5'-OH group of single- and 

double-stranded DNAs and RNAs or oligonucleotides. 

The reaction mixture (see Table 2-9) was incubated at 37 °C for 20 min and inactivated 

at 70 °C for 10 min.  

 

Table 2-9: T4 PNK reaction mixture 

Reaction components Quantity 

DNA (purification kit) 30 µL 

ATP (100 mM) 4 µL 

10x T4 PNK buffer 4 µL 

T4 PNK enzyme 2 µL 

ddH2O up to 40 µL 

Total volume: 40 µL 

 

2.2.5 Restriction digest  

Restriction enzymes recognise a restriction site (specific palindromic nucleotide 

sequence) at which they cut a double-stranded DNA to produce sticky or blunt ends. 

Various Fast Digest (FD) restriction endonucleases were used in this study, i.e. HpaI, 

BamHI, NdeI, PstI, AgeI (Thermo Scientific), either for cloning or for screening purposes. 

Reactions were set up according to the manufacturer’s instructions (see table below). 

Screening digests were performed for 15 min at 37 °C, and digests for cloning for 1hr at 

37 °C. Subsequently restriction digests were analysed by agarose gel electrophoresis. 
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Table 2-10: Restriction digest reaction mixture 

Reaction components Quantity 

DNA 1 to 2 µg 

10x FD restriction digest buffer 2 µL 

FD restriction enzyme  1 µL 

ddH2O up to 20 µL 

Total volume: 20 µL 

 

2.2.6 Vector DNA de-phosphorylation  

To prevent auto-ligation of the vector backbone after blunt end cutting, a de-

phosphorylation step was performed (see Table 2-11). 

The reaction mixture was incubated at 37 °C for 30 min. After addition of an additional 

1 µL calf intestine alkaline phosphatase (CIAP) (Fisher Scientific) a second incubation 

was performed at 37 °C for 30 min. Subsequently, an inactivation step was performed at 

68 °C for 10 min. 

 

Table 2-11: Dephosphorylation reaction mixture 

Reaction components Quantity 

Restriction digest reaction mixture 20 µL 

10x CIAP buffer 3 µL 

CIAP  1 µL 

ddH2O 6 µL 

Total volume: 30 µL 

 

2.2.7 Agarose gel electrophoresis  

Agarose gel electrophoresis was performed using a range of 0.8-2% (w/v) agarose gels 

(containing 0.5 µg/mL ethidium bromide (Alfa Aesar)), depending on the DNA sizes 

expected. Gels were made with and were run in 1x TBE buffer (89 mM Tris-borate, 

89 mM boric acid, 2 mM ethylenediaminetetraacetic acid (EDTA) pH 8.3). Samples were 

mixed with 6x DNA Loading Dye (Thermo Scientific), loaded and subjected to an electric 

current of 100 V. Electrophoresis was performed for 30-60 min depending on the size of 
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the expected bands. Products were visualised using ultra violet (UV) light in a GelDoc 

XR system (BioRad). 

 

2.2.8 DNA gel extraction 

To purify and isolate linearised DNA fragments from agarose gel, the Zymoclean Gel 

Recovery Kit (Zymo Research) was used according to manufacturer’s instructions. 

 

2.2.9 Ligation of DNA fragments 

To create recombinant DNA, ligases are used to join linear DNA fragments together with 

covalent bonds by generation of a phosphodiester bond between the 3'-hydroxyl of one 

nucleotide and the 5'-phosphate of another. In this study, Rapid DNA Ligation Kit (Roche) 

was used to ligate PCR products into vector. 

The reaction mixture (see Table 2-12) was incubated at room temperature for 15 min 

and subsequently transformed into E.coli cells (see 2.2.10). 

 

Table 2-12: Ligation reaction mixture 

Reaction components Quantity 

Backbone : insert ratio 1:3 / 1:5 / 1:10 

5 x ligase buffer  2 µl 

2 x ligase buffer  5 µl 

ligase 0.5 µl 

ddH2O add to 10 µl 

Total volume: 10 µl 

 

2.2.10 Heat shock transformation of plasmid DNA into E.coli 

To insert a foreign plasmid or ligation product into chemically competent bacteria, the 

heat shock method is widely used. One Shot Top10 Chemically Competent E.coli 

(Invitrogen) cells were thawed on ice for 10 min. After adding either 5 μL of a ligation 

reaction mixture or 0.1 µg of plasmid DNA to a volume of 50 µL competent cells, the 

mixture was incubated on ice for 20 min and a 90 sec heat shock followed at 42 C. The 
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tube was placed immediately back on ice for 5 min and after the addition of 500 µL 

lysogeny broth (LB) medium (10 g/L tryptone, 5 g/L yeast extract, 10 g/L NaCl), the cells 

were put in a bacterial shaker at 37 C for 45 min. The cells were then centrifuged at 

1,000 rpm for 3 min and the re-suspended pellet was spread on an LB plate, containing 

ampicillin at 100 µg/mL. After overnight cultivation at 37 or 30 C, bacterial colonies were 

picked for screening purposes. 

 

2.2.11 Isolation of plasmid DNA 

For the purpose of purifying plasmid DNA from E.coli cultures, commercial kits (QIAprep 

Spin Miniprep Kit, QIAGEN Plasmid Maxi Kit, Life Technologies HiPure Plasmid Midiprep 

Kit) were used according to the appropriate kit protocol.  

The purified DNA was quantified and analysed by NanoDrop (Thermo-Scientific) and 

agarose gel electrophoresis, respectively. 

 

2.2.12 DNA sequencing  

To verify successful cloning, the plasmid DNA was sequenced. Cloned constructs were 

sent to either Eurofins MWG Operon or Source Bioscience to be sequenced by modified 

chain termination method (Sanger et al., 1977). The obtained sequences were then 

analysed by appropriate software (ApE A plasmid editor). 

 

2.2.13 Isolation of genomic DNA (gDNA) 

Genomic DNA was isolated using the NucleoSpin tissue genomic DNA purification kit 

(Macherey-Nagel). The procedure was performed according to manufacturer’s 

instructions. The concentration of gDNA was determined by absorbance at 260 nm on a 

NanoDrop. 

 

2.2.14 Isolation of RNA 

To isolate total RNA from samples to use for downstream applications, such as qPCR, 

RT-PCR as well as GEX, the RNAqueous-Micro Kit (Life technologies) according to the 
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manufacturer’s protocol was used. The amount of total RNA isolated was quantified 

using a NanoDrop. 

 

2.2.15 Synthesis of copy DNA (cDNA) 

To perform semiquantitative RT-PCR or qPCR, isolated RNA was transcribed into cDNA 

using Superscript (SS) III First strand synthesis kit (Thermo Fisher Scientific) with the 

Thermal Cycler Veriti (Applied Biosystems). In brief, reaction mixture 1 (see Table 2-13) 

was incubated at 65 °C for 5 min. After 1 min incubation on ice reaction mixture 2 was 

added, followed by an incubation at 50 °C for 60 min and inactivation step at 70 °C for 

15 min.  

 

Table 2-13: cDNA synthesis reaction mixture 

Reaction components Quantity 

Mix 1 RNA (plus H2O to 11 µL total) 0.5 µg 

 oligo (dT)20 primer 1 µL 

 10 mM dNTPs (nucleoside triphosphate) 1 µL 

Mix 2 5x FirstStrand synthesis buffer 4 µL 

 0.1 M DTT (dithiothreitol) 1 µL 

 RNase OUT 1 µL 

 SS III reverse transcriptase 1 µL 

Total volume: 20 µL 

 

2.3 In vivo methods  

2.3.1 Mouse strains 

Female C57BL/6 mice were purchased from St James’s Biomedical Service (SBS) or 

Charles River Laboratories (CRL). Transgenic C57BL/6 UBC-GFP mice (Schaefer et al., 

2001) from Jackson laboratory were also used in this study. These animals express 

enhanced green fluorescent protein (GFP) under the control of the human ubiquitin C 

(UbC) promoter in all tissues.  
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All mice were maintained in the SBS animal care facilities at the University of Leeds. 

Animal experiments were performed under approved Home Office licence in accordance 

with the Animals (Scientific Procedures) Act 1986 and the UK National Cancer Research 

Institute Guidelines for the welfare of animals (Workman et al., 2010). 

 

2.3.2 Whole body mouse irradiation  

For bone marrow transplantation (BMT) it was first necessary to ablate the mouse 

haematopoietic system. Therefore, a whole body irradiation was performed. To this end, 

caged mice were placed into an RS-2000 irradiator (Rad Source Technologies) and 

irradiated with a single dose of 845 Rad (=8.45 Gy). Subsequently, the mice started 

receiving Baytril (Bayer) in drinking water (0.2 mL of 2.5% stock solution per 100 mL 

water) until the end of the experiment. 

 

2.3.3 Magnetic cell separation (MACS) 

To perform a BMT, ScaI+ HSCs need to be isolated from extracted bone marrow (bm) 

and then injected into irradiated mice. After culling of mice, femur and tibia were isolated. 

The bone marrow was flushed out with incubation buffer (PBS/2 mM EDTA/0.5% BSA) 

using a needle and syringe. Bone marrow cells were passed through a 70 µm pore nylon 

strainer to reduce the possibility of column clogging. ScaI+ HSCs were isolated using 

MACS separation columns (Miltenyi) with the Anti-Sca-I MicroBead Kit (FITC) (Miltenyi) 

according to the manufacturer`s protocol. The isolated ScaI+ cells were either transduced 

with a lentiviral expression construct overnight or directly injected iv at 5x105 cells per 

mouse in 100 µL PBS. 

A MACS procedure was also performed for the isolation of CD11b+ cells from bm and 

spleen samples using the CD11b MicroBeads, human and mouse kit (Miltenyi). Isolated 

RNA from these cells was subsequently used for gene expression profiling (see 2.4). 

Furthermore, the Myelin Removal Beads II kit (Miltenyi) was used to deplete myelin 

debris from single cell brain tumour samples prior to their use in flow cytometry 

experiments or in Western blotting. 
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2.3.4 Implantation of cancer cells into mouse brain  

The intracranial implantation of cancer cells into mice was used as a model to analyse 

brain metastases in this study. After induction and maintenance of anaesthesia, mice 

were restrained in a specialised stereotactic apparatus (Stoelting). Their shaved heads 

were disinfected using Hibiscrub and 70% ethanol. Metacam and Baytril were injected at 

the beginning of the surgery. A cut into disinfected skin with a scissor in the direction of 

the nose was performed. The exposed underlying membrane was left to dry followed by 

the penetration of the skull at specific coordinates (2 mm right from the midline, 2 mm 

anterior from bregma) using the Ideal Micro Drill (Roboz Surgical Store). Then a needle 

containing the cell suspension (1x105 in a total volume of 2 µL) was placed exactly over 

the hole in the skull, followed by its immersion into the brain at a depth of 4 mm and a 

needle retraction of 1 mm to create a little hole in the striatum. The cell suspension was 

injected in 1 µL aliquots, leaving 1 min in-between to allow for absorption of the injected 

fluid. The needle was then slowly withdrawn by 1 mm every 30 sec. The hole was 

immediately sealed with bone wax (Harvard Apparatus). The skin was closed with 

Vetbond Tissue Adhesive (3M) and an antibiotic gel was applied onto the wound. The 

mice were placed into a recovery chamber for at least 30 min to recover from anaesthesia.  

 

2.3.5 Blood draw from the tail vein 

To determine whether the bone marrow of mice that had undergone a BMT was 

successfully reconstituted, the blood was analysed. To this end mice were put in a 

warming chamber at 37 °C for 20 min to maximise vasodilation. The tail of a mouse was 

pinched with a 25 G needle and blood droplets were collected in a tube containing 1 mL 

red blood cell lysis buffer (150 mM NH4Cl/ 10 mM NaHCO3/1 mM EDTA) to prevent 

coagulation. After a 2 min incubation at room temperature, the isolated cells were 

washed with incubation buffer twice and were ready to be used in further applications, 

i.e. flow cytometry analysis. 

 

2.3.6 Bioluminescence imaging 

This technology was used to study the biological process of brain tumour growth in vivo 

in a non-invasive way. The cancer cells used for intracranial implantation were lentivirally 

transduced to express Firefly Luciferase (FLuc). The mice were anaesthetised prior to ip 

injection of 1.2 mg D-Luciferin potassium salt (Regis Technologies; stock 15 mg/mL in 
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PBS). To ensure complete distribution of luciferin throughout the body, the imaging was 

performed 8 min after luciferin injection. The bioluminescent light emitted by the FLuc-

Luciferin reaction was read by IVIS Spectrum (Perkin Elmer). The corresponding data 

was analysed using the LivingImage3.2 (Perkin Elmer) software. 

 

2.3.7 Isolation of splenocytes 

In this study, RNA isolated from CD11b+ splenocytes was used for gene expression 

profiling to compare gene expression between CD11b+ cells from brain, bm and spleen. 

To isolate splenocytes, mice were terminally perfused and their spleens isolated and 

kept on ice. The splenocytes were gently squeezed out of the spleen and collected into 

incubation buffer. After a centrifugation step (400 g at 4 °C for 10 min) the cells were re-

suspended and incubated in red blood cell lysis buffer at room temperature for 3-4 min. 

Thereafter, the splenocytes were washed three times with incubation buffer and were 

ready to use in subsequent applications, i.e. MACS or flow cytometry. 

 

2.3.8 Dissociation of brain tumour tissue 

Murine brain tumours need to be dissociated into a single cell suspension in order to 

isolate distinct cell populations, prepare cell lysates or to investigate the composition cell 

populations. Firstly, mice were perfused with 0.9% saline and the brain was isolated and 

its frontal part, containing the tumour tissue, placed on ice. Then 500 µL of collagenase 

solution (3 mg/mL collagenase A (Roche), 250 U/mL hyaluronidase (Sigma) in EMEM) 

was added and the tissue was chopped up with scalpels. The mixture was incubated at 

37 °C for 10 to 20 min and dissociated by pipetting in-between. Cells were washed with 

incubation buffer and passed through a 70 µm nylon strainer to reduce the possibility of 

clogging. After myelin debris was removed using MACS (see 2.3.3), the single cell 

suspension was ready for use in subsequent applications. 

 

2.4 Gene expression profiling (GEX) 

Total RNA of bone marrow-derived myeloid cells (CD11b+GFP+) isolated from brain 

metastases (EO771 and PyMT model) and myeloid cells isolated from spleen and bone 

marrow were sent to Cambridge Genomic Services to perform whole genome gene 

expression studies using the Illumina BeadArray system. Samples were processed with 
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the TotalPrep RNA amplification kit (Ambion) and hybridised to the MouseRef-8v2 WG-

GX beadchip (Illumina) following the direct hybridisation assay. Biological replicates 

used for GEX were as follows: n=4 for PyMT brain tumour samples and spleens of PyMT 

tumour-bearing mice, n=2 for EO771 brain tumours, naïve spleens, and naïve bone 

marrow, and n=1 for the bone marrow of PyMT brain tumour-bearing mice. 

The bioinformatic analysis of the raw data was performed by Dr Alastair Droop 

(University of Leeds) using GenomeStudio version 2011.1 (Illumina), as well as 

R/Bioconductor for data processing and visualisation. To correct for background, he used 

the "normexp" algorithm (Ritchie et al., 2007), and normalisation between arrays was 

performed using A-value quantile normalisation (Yang and Thorne, 2003). Probes that 

were expressed in fewer than 3 arrays (using a detection p-value of < 0.05) were 

removed and the differential gene expression analysis between groups was performed 

using a linear model in LIMMA (FDR = 1%) (Smyth, 2004).  

 

2.5 Protein expression analysis 

2.5.1 Immunofluorescence (IF) analysis 

2.5.1.1 Human samples 

Breast cancer brain metastases tissue was obtained from the Leeds Multidisciplinary 

Research Tissue Bank. The study was approved by the Leeds (East) Research Ethics 

Committee. Obtained samples were separated into two to four equal sized parts 

depending on the sample size. One part was fixed in 4% Paraformaldehyde (PFA) 

(Sigma Aldrich) in PBS at 4 °C for 48 h and subsequently transferred into sucrose 

solution (25% sucrose (w/v)/ sodium phosphate (monobasic)/ 77 mM sodium phosphate 

(dibasic)) for 3 days. After the tissue was embedded in optimal cutting temperature 

compound (OCT) (VWR Chemicals), it was cut into 10 µm thick sections onto slides 

using CM-3050S cryostat (Leica) and stored at -20 °C. Another part of the sample was 

fixed in neutral buffered formalin (NBF) solution (37% formalin solution/ 4 g/L sodium 

phosphate (monobasic) / 6.5 g/L sodium phosphate (dibasic)) at room temperature for 

48 h, transferred into 70% ethanol before it was embedded in paraffin. The embedded 

samples were cut into 5 µm thick sections onto Superfrost plus slides (Thermo Scientific) 

using microtome and stored at room temperature. 

Donor-matched blood samples collected into EDTA-coated tubes were incubated with 

red blood cell lysis buffer (Biolegend) at room temperature for 4 min. After 2 washes with 
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HBSS the cell pellet was fixed with 500 µL NBF for 30 min. Following a centrifugation 

step at 300 g for 10 min the fixed cells were stored in 70% ethanol prior to paraffin 

embedding. The sample was cut into 5 µm thick sections and stored at room 

temperature. 

 

2.5.1.2 Murine samples 

To analyse murine brain tumour samples by IF the brains of tumour bearing mice were 

isolated after terminal perfusion with PBS. Splenocyte and bm cell pellets as well as 

whole brains were either PFA fixed OCT embedded or NBF fixed paraffin embedded 

(see section above). All embedded material was cut into 10 µm thick sections onto slides. 

 

2.5.1.3 De-paraffinisation and antigen heat retrieval 

Paraffin embedded material needed to be dewaxed to be used for IF staining. To this 

end slides were incubated with Xylene twice for 10 min. Then the sections were re-

hydrated using a decreasing ethanol row (100%, 95%, 85%, 70%, 50% and 25% EtOH 

for 2 min each) and finally were washed with dH2O twice for 5 min. 

All antibodies used in this study for IF staining required antigen retrieval of the dewaxed 

sections. For this purpose a heat-induced epitope retrieval was performed by incubating 

the slides in 1 mM EDTA at 95-100 °C for 10 min. The slides were ready for staining after 

cooling to room temperature for approximately 45 min. 

 

2.5.1.4 Immunofluorescence (IF) staining 

To determine expression and localisation of proteins in tissue samples IF staining was 

performed. Slides were washed 3x in PBS for 5 min and each section was encircled 

using a hydrophobic PAP Pen. After an hour incubation with blocking buffer (PBS / 10% 

goat serum / 0.03% Triton-X-100), the primary antibody diluted in blocking buffer was 

added for either 2 h or overnight. The slides were washed 3x with PBS for 5 min, followed 

by an incubation with the secondary antibody diluted in blocking buffer. Then 4',6-

diamidino-2-phenylindole (DAPI) (10 mg/ml stock; 1:5000 in PBS) was added for 10 min 

and washed off 3x with PBS for 5 min. Lastly, the slides were mounted with cover glasses 

(Menzel-Glaeser) using 80 µL Prolong Gold Antifade (Life Technologies) per slide. 
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Immunofluorescence signal was visualised using the fluorescence microscope ApoTome 

(Zeiss) and EVOS FL (Life Technologies) and the confocal microscope A1R (Nikon). 

 
 

Table 2-14: Antibodies used for IF stainings 
 Name Company Species Dilution 
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α-human CD68 DAKO Mouse 1/100 

α-hemagglutinin (HA) tag Covance Mouse 1/100 

α-pan-cytokeratin (C11) Santa Cruz Mouse 1/100 

α-GFP Chemicon chicken 1/100 

α-DAB2 Bioss Rabbit 1/100 

α-Emp1 Abbiotec Rabbit 1/100 

α-TREM2 Bioss Rabbit 1/100 

α-MMP14 GeneTex Rabbit 1/100 

α-SPP1 GeneTex Rabbit 1/100 
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α-mouse A488 Invitrogen Goat 1/500 

α-mouse A594 Invitrogen Goat 1/500 

α-rabbit A488 Invitrogen Goat 1/500 

α-rabbit-TRITC Jackson Donkey 1/200 

α-chicken-FITC Jackson Donkey 1/200 

 

 

2.5.2 Western blotting 

2.5.2.1 Preparation of samples 

In order to determine if cells express the protein of interest by Western blotting, cells are 

lysed first. Cell pellets were re-suspended in an appropriate amount of 

radioimmunoprecipitation assay (RIPA) lysis buffer solution (20 mM Tris, 100 mM NaCl, 

1 mM EDTA, 1% Triton-X-100, 0.5 mM DTT, 1 mM Na3VO4, 50 mM NaF, 0.5% DOC, 

0.1% sodium dodecyl sulfate (SDS), 25 mM β-Glycerophosphate, 1x cOmplete Mini 

(Roche)). After 20 min of incubation on ice, the suspension was centrifuged at 

13,000 rpm at 4 C for 15 min, the protein lysate was separated from cell residues and 

stored at -20 C. 

To verify secretion of the expressed protein sCD, the supernatant of cultured transduced 

cells was concentrated by ultrafiltration. The conditioned medium was spun at 2,000 g 

for 5 min to remove cell debris. The supernatant was transferred into an Amicon Ultra-
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15ml (Merck Millipore) device with a molecular cut off weight of 30 kDa and spun at 

4,000 g for 20 min. The concentrated media sample was stored at -20 °C. 

 

2.5.2.2 Determination of protein concentration 

The protein concentration of samples was determined by using the Pierce BCA 

(bicinchoninic acid) protein assay kit (Thermo Scientific) according to the manufacturer’s 

protocol. Sample aliquots were diluted 1:10 with dH2O prior to application. The plate 

reader Multiskan EX (Thermo Scientific) with Ascent software was used to measure 

absorbance at 562 nm and the readings were analysed using Microsoft Excel. 

 

2.5.2.3 SDS-polyacrylamide gel electrophoresis 

Protein separation to determine the relative abundance of a protein in a sample was 

performed by SDS-PAGE. The resolving and stacking gel solutions (see Table 2-15) 

were cast into a Bio-Rad device. The same amount of protein for each sample was mixed 

with 6x Laemmli sample buffer (300 mM Tris pH 6.8, 600 mM DTT, 12% SDS, 0.6% 

bromphenol blue, 60% glycerin) and denatured at 95 °C for 5 min. After filling the 

electrophoresis chamber with electrophoresis buffer solution (25 mM Tris Base, 192 mM 

glycine, 0.1% SDS(w/v)), the prepared probes and SeeBlue Plus2 Prestained Standard 

(Invitrogen) were loaded into the wells. An electric field of 100 V was applied to separate 

proteins according to their molecular mass. 
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Table 2-15: Composition of resolving and stacking gel 

 

 

 

 

 

 

 

 

 

2.5.2.4 Western blot 

Following SDS-PAGE, separated proteins were transferred from the electrophoresis gel 

to a nitrocellulose membrane and target proteins were then detected using specific 

antibodies. 

Separated proteins were transferred using a wet blot technique. The blot chamber was 

filled with transfer buffer (25 mM Tris Base, 192 mM glycine, 0.1% SDS (w/v), 20% 

methanol (v/v)) and proteins were transferred to a membrane at 0.3 A and 100 V at room 

temperature for 2 h. Subsequently, the membrane was blocked with milk protein solution 

(1 % milk powder in TBS-T) for 1 hour before being incubated with a primary antibody 

solution at room temperature overnight. Unbound primary antibodies were removed by 

washing the membrane with TBS-T (50 mM Tris pH 7.5/ 150 mM NaCl/ 1% Triton-X-100) 

3x for 10 min followed by a secondary antibody incubation for 1 hour. Unbound 

antibodies were washed off with TBS-T 3x for 10 min. The Pierce ECL western blotting 

substrate 1 and 2 (Thermo Scientific) were mixed 1:1, added to the membrane and 

incubated for 1 min. Emitted light was transferred onto an Amersham Hyperfilm ECL (GE 

Healthcare), which was developed by the X-ray developer SRX-101A (Konica). 

 

  

Resolving gel        Stacking gel  

12.5 %                    4% 

ddH2O 1.375 mL 1.423 mL 

1 M Tris 
1.875 mL 

(pH 8.8) 

0.25 mL 

(pH 6.8) 

40% Protogel (National Diagnostics) 1.67 mL 0.267 mL 

SDS (20%) 25 µL 10 µL 

APS (10%) (Sigma) 50 µL 50 µL 

TEMED (Sigma) 3 µL 3 µL 
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Table 2-16: Antibodies used for WB 
 Name Company Species Dilution 

Primary 
antibody 

α-hemagglutinin (HA) tag Covance mouse 1/10000 

α-alpha-Tubulin GeneTex mouse 1/10000 

Secondary 
antibody 

α-rabbit-HRP Invitrogen goat 1/50000 

α-mouse-HRP Invitrogen goat 1/50000 

 

 

2.5.3 Flow cytometry 

In this study, flow cytometry was used for various different analyses, e.g. to determine 

the reconstitution efficiency of bone marrow transplantations, to identify brain tumour 

infiltrating leukocyte populations, and to confirm overexpression of genes in transduced 

cells. 

 

2.5.3.1 Sample preparation 

Single cell suspensions were washed with incubation buffer once. Prior to incubation 

with murine-specific antibodies (produced in rat), cells were blocked with 10% rat serum, 

and cells undergoing incubation with human-specific antibodies (produced in mouse) 

were blocked with 10% mouse serum for 10 min. Samples were incubated with 

antibodies on ice for 30-45 min and then washed again in buffer before analysing using 

the flow cytometer BD LSRII (BD Bioscience). The data analysis was performed with BD 

FACSDiva software, a flow cytometry data analysis software. 
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Table 2-17: Antibodies used for flow cytometry 
 Name Company Species Isotype Dilution 

P
ri

m
a

ry
 a

n
ti

b
o

d
y
 

α-hemagglutinin (HA) tag Covance mouse IgG1 0.25 uL/1x105 cells 

APC α-mouse Ly-6G Biolegend rat IgG2a,κ 0.06 µg/1x106 cells 

PE α-mouse Ly-6G (Gr-1) eBioscience rat IgG2b,κ 0.03 µg/1x106 cells 

PE α-mouse Ly-6C BD Bioscience rat IgM, κ 0.50 µg/1x106 cells 

APC α-mouse CD45 Biolegend rat IgG2b,κ 0.25 µg/1x106 cells 

PE α-mouse CD45 Biolegend rat IgG2b,κ 0.25 µg/1x106 cells 

APC α-mouse CD11b Biolegend rat IgG2b,κ 0.25 µg/1x106 cells 

V450 α-mouse CD11b BD Biosciences rat IgG2b,κ 0.50 µg/1x106 cells 

APC α-mouse F4/80 AbD Serotec rat IgG2b 0.05 µg/1x106 cells 

PE α-mouse CD19 Biolegend rat IgG2a,κ 0.25 µg/1x106 cells 

APC α-CD3e eBioscience rat IgG2b,κ 0.25 µg/1x106 cells 

V450 α-B220 eBioscience rat IgG2a,κ 0.25 µg/1x106 cells 

 Name Company Dilution 

Is
o

ty
p

e
 c

o
n

tr
o

l 

APC rat (IgG2b,κ) Biolegend 

Same amount as used for staining 

APC rat IgG2a,κ eBioscience 

PE rat IgG2b,κ eBioscience 

V450 rat IgG2b,κ eBioscience 

PE rat IgM BD Bioscience 

 

2.5.3.2 Intracellular staining 

Intracellular staining of cells was performed when the epitope of interest was not 

displayed on the cell surface. Cells were fixed with 4% PFA for 10 min and washed with 

incubation buffer. The samples were then incubated with incubation buffer/0.1% Triton-

X-100 for 10 min to increase the permeability of the cell’s surface. The cells were then 

stained using the same protocol as described in 2.5.3.1. 

 

2.5.3.3 Fluorescence-activated cell sorting (FACS) 

FACS enables the isolation of a specific cell population from a heterogeneous cell 

mixture. In this study, it was used to isolate CD11b+/GFP+ cells from dissociated brain 

tumour tissue. Cells were incubated with CD11b allophycocyanin (APC) antibody (BD 

Biosciences) 0.2 µg/1x106 cells in incubation buffer for 45 min. After a wash step with 

incubation buffer, cells were sorted using MoFlo Legacy (Beckman Coulter) and 

collected into pre-chilled FACS tubes containing 1.5 mL PBS with 2% FBS. Collected 

cells were spun down at 400 g, 4 °C for 10 min, counted, aliquoted in screw top vials, 
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and washed with ice-cold PBS. Vials containing cell pellets were placed on dry ice for 

5 min and frozen down at -80 °C.  



 

 

 

 

 

 

 

3. Characterisation of brain metastases-

infiltrating cells and their potential as 

therapeutic vehicles 
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3.1 Introduction 

In recent decades the occurrence of brain metastases originating from lung cancer, 

breast cancer and melanoma has increased with 20 to 35% of all cancer patients 

developing brain metastases (Cairncross and Posner, 1983, Posner, 1995). The 

incidence of brain metastases in breast cancer patients is approximately 15% (Barnholtz-

Sloan et al., 2004) with certain breast cancer subtypes, such as HER2+ and triple 

negative, exhibiting a significantly higher likelihood of recurrence as brain metastases 

than other subtypes (Kennecke et al., 2010). Despite treatment options, such as whole 

brain radiation, surgery or stereotactic radiosurgery, and systemic chemotherapy, 

outcomes remain poor with a median survival time of 4 to 19 months (Ahn et al., 2012). 

There is, therefore, a need to develop new therapeutic strategies. Given the restrictive 

nature of the BBB to conventional therapies, new regimes need to include effective drug 

delivery mechanisms.  

Recently, stem cells have been investigated as potential delivery vehicles to treat 

different CNS diseases. MSCs have been used as cellular delivery vehicles of 

therapeutic genes to rat glioma (Bexell et al., 2012, Nakamura et al., 2004). Following 

intratumoural injection, MSCs migrated efficiently within the tumour and did not 

proliferate. However, systemically administered MSCs exhibited insufficient homing to 

the brain (Bexell et al., 2012). The role of NSCs as treatment vehicles has been explored 

for various neurological disorders such as lysosomal storage diseases and stroke (Oh 

and Choo, 2011). Furthermore, the use of NSCs in animal models of gliomas 

demonstrated promising results (Aboody et al., 2000). However, intratumoural injection 

has additional risk for patients and primary autologous NSCs cannot be isolated in the 

quantities required for the therapy. By contrast, the use of HSCs as treatment vehicles 

for brain metastases has not previously been investigated. However, recent studies have 

demonstrated homing of the differentiated progeny of HSCs to diseased brain in animal 

models as well as in patients (e.g. ALD, multiple sclerosis, Alzheimer’s disease, glioma) 

(Cartier et al., 2009, Ruckh et al., 2012, Malm et al., 2005, Tabatabai et al., 2010). 

Furthermore, lentivirally transduced human CD34+ HSCs have been used as carriers in 

a successful phase I/II clinical trial to treat ALD, a severe demyelinating brain disease 

(Cartier et al., 2009) demonstrating that the progeny of systemically administered HSCs 

can efficiently home to diseased brain in patients. Primary human HSCs can be isolated 

in large quantities from cord blood or mobilised peripheral blood. Moreover, the 

procedures for the clinical use of HSCs are well established and therefore, clinical 

translation studies using HSCs as delivery vehicles have great promise. Given these 

data, we hypothesised that the progeny of HSCs could be lentivirally transduced prior to 
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administration, successfully cross the BBB, and home to metastases in the brain where 

they could deliver a therapeutic agent. 

 

3.2 Aims of the chapter 

To test this hypothesis, the aims of this chapter are to: 

 Identify and characterise the myeloid cells infiltrating mouse and human breast 

cancer brain metastases.  

 Demonstrate that these myeloid cells originate from bone marrow HSCs.  

 Show efficient delivery of a gene of interest to brain metastases by systemically 

administered lentivirally engineered HSCs. 

 

3.3 Models of breast cancer brain metastases used in the study 

Syngeneic brain tumour mouse models were used to study the tumour microenvironment 

of breast cancer brain metastases and to explore the potential of HSCs as therapeutic 

vehicles. Firstly, the growth behaviour of two different murine breast cancer cell lines 

was analysed following intracranial injection. 1x105 EO771 or PyMT cancer cells were 

implanted into the striatum of C57BL/6J mice. Following implantation, both cell lines grew 

efficiently and formed large single lesions within two weeks (Figure 3-1A). Prior to the 

administration, both cell lines were transduced with pFUW-FLuc lentivirus to 

constitutively express Firefly luciferase (FLuc). The FLuc expression of the cancer cells 

allowed the non-invasive measurement of brain tumour growth following ip injection of 

luciferin. Luciferin is a substrate of the enzyme Firefly luciferase and is converted to a 

product oxyluciferin while emitting light. Bioluminescent images were taken for each 

mouse (Figure 3-1B) and analysed with LivingImage3.2 software. The brain tumour 

growth in these mice over time is visualised in Figure 3-1C. Both cell lines exhibited 

similar growth kinetics during the experiment. Sections of these brain tumour models 

were also used for immunofluorescence studies of the tumour microenvironment which 

revealed a strong infiltration of CD45+ cells (Figure 3-1D). We postulate that the CD45+ 

cells in brain metastases are bone marrow-derived haematopoietic cells, whereas brain-

resident microglia have recently been shown to originate from the umbilical vesicle 

(Ginhoux et al., 2010). 
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Figure 3-1: Establishment of syngeneic in vivo brain metastases models and infiltration of 
CD45+ cells into murine brain metastases. (A) Following intracranial implantation of EO771 
and PyMT breast cancer cells, tumours grew as a single lesion in the brain. (B and C) FLuc 
labelled cancer cells allowed bioluminescent measurement of brain tumour growth following ip 
injection of luciferin. Bioluminescent images were analysed with LivingImage3.2 software (n=5 
mice per group, mean+/-SEM). (D) IF analysis shows that EO771 and PyMT cancer lesions in the 
brain (day 14 post implantation) are strongly infiltrated by CD45+ cells (scale bar= 20 µm, original 
magnification 40x). 

 

 

3.4 Bone marrow-derived haematopoietic cells as cell vehicles for 

targeting of brain metastases 

The infiltration of haematopoietic cells into brain metastases led us to investigate whether 

genetically encoded molecules, introduced into HSCs via lentiviral transduction, could 

be delivered to brain metastases, following their differentiation to haematopoietic cells. 

To this end, an experiment using chimeric mice with GFP-tagged bone marrow was 

performed. The lentiviral vector pFUGW (Lois et al., 2002) was used to stably transduce 

murine HSCs (Figure 3-2A). To this end, lentiviral particles of pFUGW were first 

produced and concentrated. The virus titre was determined by flow cytometric analysis 

of HEK293 cells that have been transduced with different amounts of the virus stock 

(Figure 3-2B). Once cells were transduced by virus particles, the DNA sequence 

between the LTRs was integrated into the genome of the cell. The pFUGW lentiviral virus 

contains the sequence of GFP that is under the control of the UbC promoter (Figure 

3-2A). Therefore, the concentration of the virus stock can be measured by the emitted 

green fluorescence of the transduced cells. Following transduction of 5x105 HEK293 

cells with 0.1 µL pFUGW virus stock, flow cytometric analysis showed that 13% of the 

cells were GFP+ (Figure 3-2B). This implies that the titre of the generated pFUGW virus 

stock was 6.5x105 virus particles/µL. 

In order to generate chimeric mice, the bone marrow in five C57BL/6J mice was ablated 

by whole body irradiation and then a transplantation of HSCs, lentivirally transduced with 
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pFUGW at a multiplicity of infection (MOI) of 30 (experimental outline is shown in Figure 

3-2C), was performed. Six weeks after the BMT, peripheral blood was analysed by flow 

cytometry to determine if the bone marrow was successfully reconstituted by 

transplanted HSCs (Figure 3-2D). 25-45% of all leukocytes in chimeric mice displayed 

GFP expression, compared with naïve (0.1%) and UbC-GFP mice (92%). Two weeks 

post intracranial implantation of 1x105 EO771 cancer cells, brain tumours were 

harvested, singularised and analysed by flow cytometry (n=3) or sectioned and analysed 

by IF (n=2). The progeny of the genetically engineered HSCs were able to cross the BBB 

and infiltrate brain lesions, since GFP expressing cells could be detected in brain 

tumours by IF (Figure 3-2E). Moreover, CD45+ cells could also be detected in brain 

tumours by flow cytometry (Figure 3-3A). This experiment served as a proof-of-principle 

to demonstrate that genetically modified HSCs, administered systemically can be utilised 

as a delivery vehicle in a therapy to treat brain metastases. 
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Figure 3-2: The use of genetically modified HSCs and their progeny as cellular delivery 
vehicles for targeting brain metastases. (A) Illustration of lentiviral expression construct 
pFUGW used for the in vivo experiment (TSS=transcription start site, LTR=long terminal repeats, 
UbC=Ubiquitin C promoter). (B) The virus titre was determined by flow cytometric analysis of 
HEK293 cells transduced with different amounts of virus stock (1 µL, 0.1 µL and control=non-
transduced). (C) Experimental outline is shown. Intracranial implantation of EO771 cells was 
performed 7 weeks after mice underwent BMT with GFP transduced HSCs. (D) The blood of the 
mice was analysed by flow cytometry to confirm bone marrow reconstitution 6 weeks after BMT. 
(E) IF analysis shows that the brain lesions are strongly infiltrated by GFP+ cells (scale bar= 
50 µm, n=2 technical replicates, original magnification 20x). 

 

 

3.5 Characterisation of brain metastases-infiltrating haematopoietic 

cells in mouse model 

To characterise the brain metastases-infiltrating cells, brain tumours and their 

microenvironment were further investigated in syngeneic brain tumour models. As shown 

by IF analysis of brain metastases sections from these syngeneic tumour models, the 

brain lesions showed a strong infiltration of CD45+ cells (Figure 3-1D). CD45+ cells can 

either represent bone marrow-derived haematopoietic cells or brain-resident microglia. 

Other markers such as CD11b or F4/80 are also expressed on monocytes/macrophages 

and microglia in mice. However there is no marker that distinguishes between brain 
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resident microglia and bone marrow-derived myeloid cells via IF, as this method does 

not discriminate between the different levels of expression of these markers. To 

determine the proportion of CD45+ and CD11b+ cells in brain metastases that are bone 

marrow-derived macrophages versus brain-resident microglia, the brain tumours in 

chimeric mice that received GFP-transduced HSCs (Figure 3-2C and D) were analysed 

by flow cytometry (n=3). 

This allowed differentiation between the CD45low and CD11blow brain-resident microglia 

and the CD45high and CD11bhigh bone marrow-derived macrophages (Ford et al., 1995, 

Hickman et al., 2013). Evidently, myeloid cells of the monocyte/macrophage lineage 

were the most abundant infiltrating cells within brain lesions with 18% CD11bhigh and 20% 

CD45high compared with 7% CD11blow and 12% CD45low cells (Figure 3-3A and B). 

Moreover, GFP was almost exclusively expressed in CD45high and CD11bhigh cells and 

absent in CD45low and CD11blow cells, confirming their bone marrow and brain origin, 

respectively. 

Transplanted HSCs give rise to haematopoietic cells of myeloid 

(monocytes/macrophages, neutrophils, basophils, eosinophils, erythrocytes and 

megakaryocytes) and lymphoid (T-, B- and NK cells) lineages. To further characterise 

the bone marrow-derived cells within brain metastases, brain tumour samples were 

stained for markers of different haematopoietic cell populations and analysed by flow 

cytometry. As shown in Figure 3-3C and D, the majority of infiltrating cells were CD11b+ 

myeloid cells, F4/80+/CD11bhigh macrophages and Ly6C+ monocytes and activated 

macrophages. Whereas neutrophils (Ly6G+), granulocytes (Gr1+), T-cells (CD3e+) and 

B-cells (B220+) represented only minor sub-populations. The ratio between cancer cells 

and infiltrating CD11b+ myeloid cells was approximately 3:1, demonstrating a strong 

presence of infiltrating cells. Further quantifications of GFP+ cells within different 

haematopoietic cell populations were performed as shown in Figure 3-3C. 

Approximately, 50% of CD11b+, F4/80+ and Ly6G+ cells expressed GFP, while GFP 

expression was lower in granulocytes, T-cells and B-cells. This experiment further 

demonstrated that the genetically engineered HSC progeny homing to brain metastases 

are capable of delivering genetically expressed molecules to cancer cells within the 

brain. 

All mice underwent a BMT and to demonstrate that this process did not significantly alter 

the composition of brain tumour-infiltrating cell populations, the brain metastases lesions 

in naïve mice (i.e. those that did not receive BMT) and mice that underwent a BMT were 

analysed and compared (Figure 3-3D). Evidence has indicated that irradiation can lead 

to BBB disruption and therefore increase the permeability of the BBB (reviewed in van 
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Vulpen et al. (2002)). These microvascular disruptions are sites of inflammation and can 

therefore attract cells of the immune system. However, no apparent difference in any of 

the brain tumour infiltrating cell populations between naïve mice and mice that received 

HSC transplantation could be detected. 
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Figure 3-3: Brain metastases infiltrating haematopoietic cells originate from bone marrow 
and are mainly comprised of macrophages. (A) Brain tumour infiltrative cells were 
characterised by flow cytometry using different haematopoietic markers (CD45 and CD11b shown 
only, n=3 technical replicates, BMT= bone marrow transplantation). (B) Quantification of (A) 
shows percentages of brain resident microglia (CD45+low or CD11b+low) which do not express GFP 
and bone marrow-derived myeloid cells (CD45+high or CD11b+high). Percentages of GFP-
expressing cells are shown in green. (C) Quantification of bone marrow-derived haematopoietic 
cell sub-populations infiltrating brain metastases is shown. Percentages of GFP-expressing cells 
are depicted in green. (D) Further quantification of flow cytometry analysis was performed to 
demonstrate that the BMT did not lead to an alteration in the composition of brain metastasis-
infiltrating haematopoietic cell sub-populations (mice that received BMT: n=3; black bars and wild 
type mice that did not undergo bone marrow ablation or HSCs transplantation: n=2; grey bars). 
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3.6 Tumour-associated macrophages in human brain metastases 

The major brain tumour infiltrating cell population in the murine in vivo models were 

monocytes/macrophages. To determine to what extent these cells were present in 

patient-derived brain metastases, four different specimens of human breast cancer brain 

metastases were examined by IF analysis (Figure 3-4). The tissue sections were stained 

for CD45, a general haematopoietic cell marker, CD68, a macrophage marker and DAPI, 

a nuclei marker. Cancer cells were visualised by pan-cytokeratin staining of adjacent 

sections. This method did not allow a distinction between macrophages and microglia. 

All human brain metastases specimens were strongly infiltrated by CD45+ cells and 

elongated spindle-shaped CD45+CD68+ macrophages. These results correlated with 

those reported in the in vivo murine model experiments. 

 

 

Figure 3-4: Infiltration of TAMs in human breast cancer brain metastases. Adjacent 
tissue sections of human breast cancer brain metastases samples were stained for pan-
cytokeratin (red, upper panel), and co-stained for CD45 (green) and CD68 (red, both bottom 
panel) and DAPI (blue), (Scale bar = 100 µm, n=4 different patient samples, original 
magnification 20x). 
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3.7 Discussion 

Treatment options for brain metastases are limited by the poor access of drugs to the 

brain (Motl et al., 2006, Ohtsuki and Terasaki, 2007). New therapies need to include 

novel ways of effectively delivering drugs to the central nervous system. The results in 

this chapter show that myeloid cells originating from HSCs strongly infiltrate brain 

metastases and could be used as cell vehicles for the delivery of therapeutic agents. The 

basis of this chapter was the demonstrated strong presence of CD45+ cells in in vivo 

brain metastases models. The infiltration by CD11b+ microglia and macrophages has 

also been shown previously (Zhang and Olsson, 1995, He et al., 2006, Lorger and 

Felding-Habermann, 2010). To demonstrate that bone marrow-derived macrophages, 

and not the umbilical vesicle-derived, brain-resident microglia, were the predominant 

infiltrating cell population in brain lesions, a phenotypic analysis was performed. This 

analysis showed that the majority of myeloid cells in brain metastases express high 

levels of CD45 and CD11b, characteristic of macrophages (Sedgwick et al., 1991, Ford 

et al., 1995, Davoust et al., 2008). Other markers can also be used to distinguish between 

microglia and peripheral macrophages, e.g. the expression level of F4/80 (Perry et al., 

1985). Macrophages are known to be F4/80hi and microglia to be F4/80lo expressing 

populations (Gomez Perdiguero et al., 2015). Further markers, that are differentially 

expressed in macrophages and microglia can be used to define these two populations 

(reviewed in (Guillemin and Brew, 2004)). 

These brain metastases-infiltrating myeloid cells represented a high proportion 

(approximately 30-50%) of cells within murine brain tumours. Therefore, it can be 

reasoned that myeloid cells represent promising therapeutic cell vehicles if capable of 

delivering therapeutic molecules to cancer cells. Additionally, myeloid cells were 

uniformly distributed throughout the tumour, from the core of the lesion to the tumour 

border (Figure 3-5). This would result in a uniform distribution of therapeutic agents within 

the tumour. Taken together, these data confirm that this methodology could be a 

promising cell-based therapy approach. 
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Figure 3-5: Distribution of bm-derived haematopoietic cells within the brain of a brain 
tumour-bearing mouse. Brain sections of chimeric mice with GFP-tagged bm that received 
intracranial implantation of red fluorescent labelled EO771 cancer cells were analysed by IF. 
Nuclei are shown in blue, cancer cells in red and bm-derived cells in green. Experiment and 
analysis were performed by Mihaela Lorger, original magnification = 10x. 

 

The specificity of the homing of the progeny of HSCs was further examined. Firstly, the 

myeloid progeny of GFP-tagged HSCs in chimeric mice could not be detected in non-

affected, healthy brain tissue after intracranial implantation of cancer cells in mice. This 

was assessed by IF analysis of brain sections, where no GFP+ cells could be detected 

in the contralateral brain hemisphere (Figure 3-5). Secondly, only a minor proportion of 

the myeloid progeny of HSCs infiltrated wounded brain tissue. More precisely, flow 

cytometry analysis of brain tissue from sham-operated chimeric animals with GFP-

tagged bone marrow, intracranially injected with saline, exhibited only a minor infiltration 

of GFP+ cells, as shown in Figure 5-2A. These findings suggest that healthy or wounded 

parts of the brain would remain unaffected by the cell-based therapy approach. 

For the generation of chimeric mice with GFP-tagged bone marrow, a BMT was 

performed using HSCs that were genetically engineered to express GFP. To this end, 

HSCs were transduced using the pFUGW lentivirus at an MOI of 30. Eight weeks after 

the transplantation all animals showed haematopoietic reconstitution and demonstrated 

an average GFP expression of 44% (range: 31%-54%) in peripheral blood. However, it 

has been shown in similar experiments that higher reconstitution rates can be achieved. 

Tabatabai and colleagues could detect 80-92% GFP+ cells in peripheral blood of mice 

that underwent a bm engraftment using haematopoietic progenitor cells (HPC) that were 

lenti-GFP transduced at an MOI of 100 (Tabatabai et al., 2010). It has also been shown 

that RBCs of mice expressed 96% human βA-T87Q-globin protein on average 10 months 

after BMT with HSCs, that have been transduced with human βA-T87Q-globin lentivirus 

(Pawliuk et al., 2001). Therefore, it is possible that in order to achieve higher transduction 
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efficiency the transduction protocol could be modified, e.g. increasing the MOI, repetition 

of the transduction process or prolonging the transduction duration (Millington et al., 

2009). Further, the transduction efficiency can also be increased by performing a 

spinoculation (O'Doherty et al., 2000). Moreover, the presence of positively-charged 

polycations, such as polybrene, can reduce the electrostatic repulsion forces between a 

negatively-charged cell and an approaching enveloped lentiviral particle resulting in an 

increase in transduction efficiency (Toyoshima and Vogt, 1969). Other polycations, such 

as protamine sulfate and diethylaminoethylcellulose (DEAE)-dextran demonstrated 

superior results to polybrene in enhancing lentiviral transduction of most tested cell lines 

and primary cell cultures (Cornetta and Anderson, 1989, Denning et al., 2013). 

A major drawback of this HSC-based therapy approach is the low intracranial specificity 

of the delivery due to the accumulation of HSC progeny in organs such as the spleen, 

lungs, liver, blood and bone marrow. This issue is addressed in chapter 5 of this study. 

The bone marrow-derived myeloid cells within the brain metastases have been further 

characterised to determine which cell population they are mainly composed of. Flow 

cytometric analysis of murine brain metastases revealed F4/80+/CD11bhigh macrophages 

and Ly6C+ monocytes to be the major tumour-infiltrating myeloid cell population. In 

agreement with this, macrophages/microglia were also found to be the main infiltrating 

population in human breast cancer brain metastases. Macrophage infiltration of clinical 

and experimental brain metastases was reported more than two decades ago (Morantz 

et al., 1979, Schackert et al., 1988). However, to date it is largely unknown how 

macrophages are recruited by brain metastases (Strik et al., 2004). TAMs can either be 

in an M1 (tumour-suppressive) or M2-like state (tumour-supportive). Previous work has 

shown that TAMs mainly acquire M2-like properties in most cancers with potent 

immunosuppressive functions (Mantovani et al., 2002). A whole genome analysis of 

murine brain infiltrating myeloid cells was performed, which will be explained in more 

detail in chapter 5 of this study. This experiment revealed that murine TAMs overexpress 

a variety of M2 markers, e.g. Arg1, MMPs and chemokines like CXCL16, whereas a 

downregulation of M1 markers, e.g. IL-12, IL-23, IFN-ɣR, CD80 and CD86, could also be 

detected (according to Biswas and Mantovani (2010)). However, conclusions on the 

polarisation state of TAMs can only be made by looking at murine and human brain 

metastases. Therefore, macrophage classification analysis on human breast cancer 

brain metastases TAMs needs to be performed. However, current data indicates that the 

over-expression of several M2 markers and down-regulation of M1-markers in murine 

brain tumour TAMs and, thus, suggests an M2-like macrophage phenotype. Given the 

anti-inflammatory, pro-angiogenic and tumour-promoting properties of M2-like TAMs and 
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the large quantities of brain tumour infiltrative macrophages, it is possible that re-

polarisation or therapeutic deletion of these cells could be a possible therapeutic option 

that could be combined with the cell-based therapy. Methods to re-polarise TAMs from 

an M2 to an M1-like state have been reported in various pre-clinical studies. These 

include the use of a legumain-based DNA vaccine which induced a robust CD8+ T cell 

response against TAMs and led to reduced tumour angiogenesis, tumour growth and 

metastasis formation in breast cancer models (Luo et al., 2006). Other strategies to re-

polarise TAMs include the use of histidine-rich glycoprotein (Rolny et al., 2011), 

interferon-gamma (Duluc et al., 2009), the blockade of nuclear factor-kB signalling 

(Hagemann et al., 2008) or their exposure to anti-IL-10R antibodies combined with the 

TLR9 ligand CpG (Guiducci et al., 2005). However, further investigation into the effects 

of re-polarisation therapies on other leukocyte populations and the potential off-target 

effects still need to be addressed. 

The application of monocytes/macrophages as a cellular delivery vehicle has already 

been demonstrated in the context of other brain diseases. Afergan et al. used monocytes 

that phagocytosed nanoliposomes and thereby delivered serotonin across the BBB 

(Afergan et al., 2008), whereas Dou and colleagues demonstrated the application of 

macrophages as carriers for anti-retroviral drugs (Dou et al., 2009) to treat a HIV-

associated neurocognitive disorder. Recently, nanoparticles were successfully delivered 

to breast cancer brain metastases by monocytes/macrophages following systemic 

administration. However, the injected monocytes/macrophages showed a similar 

distribution to endogenous macrophages and resided not only in brain metastases but 

also in lungs and liver (Choi et al., 2012). Therefore, to avoid toxicity in healthy tissue, a 

therapy that specifically targets brain tumour cells or is specifically activated within the 

tumour microenvironment would need to be delivered by these nanoparticles. 

Overall, the results of this chapter provide a basis for the targeting of brain metastases 

with HSC therapy and demonstrate its potential for translation into the clinic. Firstly, 

murine brain metastases exhibited significant levels of tumour infiltration by myeloid cells 

of bone marrow origin. Secondly, it was demonstrated that the myeloid progeny of HSC, 

genetically engineered to express GFP, can efficiently deliver GFP to brain lesions 

following engraftment. Finally, patient-derived brain metastases specimens displayed a 

strong infiltration of TAMs, correlating with findings in murine models of brain 

metastases. This data demonstrates the translational potential of this therapeutic 

approach. The next chapters of this study will focus on the development of an enzyme 

prodrug approach for HSC-based cell therapy and a strategy to improve the specificity 

of this therapy. 



 

 

 

 

 

 

 

4. Development of an enzyme prodrug 

approach as a therapeutic option for HSC-

based cell therapy to treat brain metastases 
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4.1 Introduction 

The tumour-homing capability of the progeny of systemically administered HSCs 

demonstrated their suitability to act as delivery vehicles of therapeutic molecules to target 

brain metastases. To limit the toxic effect of the delivered therapeutic molecule at the 

tumour site, the therapy strategy needs to be chosen carefully. An enzyme prodrug 

therapy presents a good option. It is a two-step approach. Firstly, a drug-activating 

enzyme is expressed either by cancer cells or cells within the tumour microenvironment. 

Secondly, the non-toxic prodrug is systemically administered and is converted to the 

active drug within the tumour. To be successful, both the enzyme and the prodrug must 

meet certain requirements. The prodrug should be a good substrate for the expressed 

enzyme in the tumour tissue. In addition, it should not be activated by endogenous 

enzyme in non-tumour tissues. To exert a bystander killing effect, the activated drug is 

expected to be highly diffusible or actively taken up by adjacent cells (Niculescu-Duvaz 

et al., 1998). Furthermore, to induce the bystander effect, the half-life of the activated 

drug needs to be of an appropriate length but short enough to prevent the drug from 

leaking into the systemic circulation (Niculescu-Duvaz et al., 1998). The prodrug 

converting enzyme should either be of non-human origin or a human enzyme only 

expressed at low concentrations in normal tissue (Rainov et al., 1998, Xu and McLeod, 

2001). In addition the enzyme should have a high catalytic activity and be expressed 

extensively within the tumour (Niculescu-Duvaz et al., 1998). 

One of the most widely used enzyme prodrug approaches is cytosine deaminase (CD), 

derived from yeast or bacteria combined with 5-fluorocytosine (5-FC). Cytosine 

deaminase is not expressed in mammals but can convert the non-toxic prodrug 5-FC to 

the toxic compound 5-fluorouracil (5-FU) resulting in the inhibition of cancer cell growth. 

The use of 5-FC as an enzyme prodrug therapy for brain tumours has already been 

evaluated by others (Mullen et al., 1992, Dong et al., 1996, Ge et al., 1997, Aghi et al., 

1998, Wang et al., 1998, Aboody et al., 2006). 5-FC was found to have high bioavailability 

and could penetrate the blood-brain barrier and enter the CNS (Bourke et al., 1973, Block 

and Bennett, 1974).  

There are currently two major delivery methods for an enzyme prodrug strategy. It can 

either be delivered by genes that encode prodrug-activating enzymes or directly by 

delivering active enzymes into tumour tissues (antibody-directed enzyme prodrug 

therapy (ADEPT)). To deliver genes encoding the prodrug-activating enzymes a gene-

directed enzyme prodrug therapy (GDEPT) or a virus-directed enzyme prodrug therapy 

(VDEPT) can be used. VDEPT is the most suitable method for the HSC-based cell 
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therapy developed in this study, as GDEPT and ADEPT methods are limited by the 

properties of the BBB. VDEPT uses viral vectors to deliver a gene that encodes the 

prodrug converting enzyme. Several viruses have been used for VDEPT, including 

retrovirus, adenovirus, HSV, EBV and lentivirus (reviewed in Xu and McLeod (2001)). 

However, lentiviruses are a subclass of retrovirus that can transduce dividing and non-

dividing cells, whereas retrovirus and adenovirus can only transduce dividing cells. 

Following transduction with lentiviral particles, lentiviral vectors are stably integrated in 

the host cell genome at a random position providing long term transcription of the gene 

of interest. For safety reasons lentiviral vectors are replication deficient. To produce 

lentiviral particles, a cell line is transfected with several plasmids, containing genetic 

material encoding different virion proteins and the gene of interest. 

The use of VDEPT engineered adult stem cells as delivery vehicles for enzyme prodrug 

therapies to target cancer has been shown by others. Systemic administration of MSC 

expressing a prodrug-converting gene in combination with an appropriate prodrug was 

demonstrated in glioblastoma, melanoma, prostate, colon and hepatocellular carcinoma 

model (Altaner et al., 2014, Kucerova et al., 2008, Cavarretta et al., 2010, Niess et al., 

2011). Zhao et al. demonstrated an effective prodrug enzyme therapy that was delivered 

by NSC targeting extracranial metastatic breast cancer effectively (Zhao et al., 2012). 

Other studies have shown NSCs can deliver therapeutic gene products to tumour cells 

across the BBB, including glioma, melanoma brain metastases, and disseminated 

neuroblastoma (Aboody et al., 2000, Benedetti et al., 2000, Aboody et al., 2006, Danks 

et al., 2007).  

 

4.2 Aims of the chapter 

From the reviewed literature an enzyme prodrug approach delivered via VDEPT to 

engineer HSCs is an appropriate choice for the cell therapy targeting breast cancer brain 

metastases. This chapter shows how: 

 The CD/5-FC therapy was developed and the functionality was assessed in vitro 

and in vivo. 

 An inducible CD/5-FC therapy was developed and the functionality was 

assessed in vitro and in vivo. 
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4.3 The non-inducible enzyme prodrug approach 

4.3.1 Generation of lentiviral constructs for the expression of CD  

To establish a cell therapy approach based on an enzyme prodrug strategy, lentiviral 

expression constructs of the prodrug converting enzyme cytosine deaminase were 

generated (Figure 4-1A). A two-step PCR was used to add short sequences to the 

bacterial CD gene sequence using plasmid pORFCodA (InvivoGen) as a template. The 

forward primer sCD fwd (Table 2-3) introduced a signal peptide sequence (tissue 

plasminogen activator (tPA)-signal) at the 5´-end of the enzyme sequence. To detect the 

expression of the enzyme in vitro as well as in vivo, a HA-tag was attached to the C-

terminal end of the enzyme using the reverse primer sCDHA rev (Table 2-3). Another 

non-tagged sCD PCR product was generated using a reverse primer without the tag 

sequence. Both PCR products (sCD: 1388 bp and sCDHA: 1451 bp) are shown in Figure 

4-1B as detected by agarose gel electrophoresis. The lentiviral vector pFUW was cut 

using the restriction enzyme HpaI, which led to the linearisation of the plasmid as shown 

in Figure 4-1B. To insert the PCR products into the linearised vector pFUW, subsequent 

cloning steps were performed as described in chapter 2.2. Successful incorporation of 

sCD constructs into pFUW vector was confirmed by restriction digest using the restriction 

enzymes BamHI and NdeI. Subsequently, DNA sequences of positive clones were 

verified by sequencing. Sequencing of the HA-tagged clone revealed a presence of 

seven HA-tags at the C-terminal end of the generated construct, possibly as a result of 

the PCR annealing temperature being too low and thereby leading to unspecific binding 

of reverse primer and an unwanted prolongation. 

 

4.3.2 Analysis of sCD expression and secretion  

Following generation of lentiviral sCD expression vectors, a lentiviral virus stock was 

generated for pFUWsCD and pFUWsCDHA constructs and used to transduce HEK293 

cells. To determine the expression and secretion of the 5-FC converting enzyme CD in 

the transduced cells, Western blot analysis of the cell lysates and non-concentrated and 

concentrated cell culture supernatants was performed (Figure 4-1C). The same amount 

of protein (20 µg/well) for cell lysates and the same volume of the supernatant samples 

(30 µL) were loaded into each well of the 10% SDS polyacrylamide gel. Detection was 

performed with α-HA antibody (1:1000). Western blot analysis showed an expression of 

the HA-tagged sCD enzyme (expected size: 47.59 kDa; UniProtKB: P25524) in 
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transduced HEK293 cells. However, secretion of sCD into the medium could not be 

detected. 

 

 

 

 

 

Figure 4-1: Generation of lentiviral expression constructs for sCD and assessment of in 
vitro functionality. (A) IlIustration of cloning strategy for the generation of pFUWsCD and 
pFUWsCDHA (LTR=long terminal repeats, UbC=Ubiquitin C promoter, CD= Cytosine deaminase, 
tPA= tissue plasminogen activator signal sequence) (B) sCD PCR products (sCD: 1388 bp, 
sCDHA: 1451 bp) generated using pORFCodA vector as a template by two step PCR (lanes 4,6), 
lentiviral expression vector pFUW uncut and cut with restriction enzyme HpaI (lanes 2,3), and 
negative controls (NC) for PCR (lanes 5,7) were analysed by agarose gel electrophoresis. 
GeneRulerTM DNA Ladder Mix (Thermo Scientific) was used as a molecular weight marker (lane 
1) (C) sCD expression and secretion analysis in pFUWsCD and pFUWsCDHA-transduced 
HEK293 cells by Western blot using an α-HA antibody. 
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4.3.3 Assessment of in vitro functionality of the sCD expression 

constructs  

The pFUWsCD and pFUWsCDHA transduced HEK293 cells were used for further in vitro 

analysis. A co-culture assay was performed to test whether sCD in carrier cells could kill 

cancer cells. HEK293 cells were used as carrier cells in this in vitro assay. To this end, 

sCD and sCDHA transduced HEK293 cells were co-cultured with murine breast cancer 

cells (EO771 or PyMT) in cancer cell-specific medium for four days. The ratio of cancer 

cells to HEK293 cells was 1:1. The cancer cells constitutively expressed FLuc, which 

enabled the indirect measurement of cell viability via bioluminescence imaging following 

addition of luciferin. The medium was changed daily, followed by addition of 0.1 mM 5-

FC and 7.5 µg luciferin to the cells 10 min prior to imaging. The results of this experiment 

are displayed in Figure 4-2A and C. The cancer cells co-cultured with HEK293 cells grew 

exponentially over the course of the experiment. Furthermore, neither luciferin nor 5-FC 

were toxic to the cells. A significant difference in viability between EO771 cancer cells 

that had been co-cultured with sCD-transduced HEK293 cells and then treated with the 

prodrug 5-FC versus non-treated cancer cells was observed at day three and four of the 

experiment (Figure 4-2A). The data demonstrated that the non-toxic agent 5-FC was 

converted into the toxic 5-FU by sCD, expressed by pFUWsCD-transduced HEK293 

cells, inducing the death of cancer cells. This effect could also be seen with PyMT cells 

on day four (Figure 4-2C). This experiment proves the in vitro functionality of the lentiviral 

expression construct pFUWsCD. 

To confirm that the results of the co-culture assay were not solely due to bystander effect 

but were reliant on enzyme secretion by the producing cell, a secretion assay was 

performed. While Western blot analysis of the supernatant collected from transduced 

HEK293 cells indicated that the pFUWsCDHA-transduced cells did not secrete the 

enzyme (Figure 4-1C), the secretion of non-tagged sCD by Western blot could not be 

detected due to the lack of appropriate antibody. Therefore, this assay was used to 

indirectly test the secretion of the non-tagged sCD into medium. For this assay Fluc 

expressing cancer cells were cultured with conditioned medium (CM) collected from sCD 

and sCDHA transduced HEK293 cells (Figure 4-2B and D). The medium was changed 

daily, followed by addition of 0.1 mM 5-FC and 7.5 µg luciferin to the cells 10 min before 

bioluminescence imaging. The results of the imaging demonstrated that sCD transduced 

HEK293 cells secreted the enzyme into the medium which then converted 5-FC to the 

toxic compound 5-FU. Cell viability was significantly lower in both cancer cell lines 

cultured with CM collected from sCD-transduced HEK293 cells following addition of 5-

FC on day three and four of the assay. By contrast, sCDHA-transduced HEK293 cells 
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did express the enzyme (Figure 4-1C), but it appeared to be non-functional since no 

reduction in cancer cell viability could be detected (Figure 4-2A and C). The secretion 

assay confirmed the results of the previous Western blot, suggesting that the HA-tagged 

version of CD was expressed, but not secreted by the sCDHA-transduced HEK293 cells. 

This might be due to the length of the HA-tag (7x), which could hinder secretion and 

enzymatic activity of sCDHA via conformational changes of the protein caused by the 

length of tag at the c-terminal end of the enzyme. 

These experiments demonstrate the in vitro functionality of the generated lentiviral 

expression construct pFUWsCD. HEK293 cells produced and secreted the functional 

enzyme CD following lentiviral transduction with pFUWsCD. Therefore, this expression 

construct was subsequently applied as part of the cell therapy approach to treat in vivo 

brain metastases models.
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Figure 4-2: Assessment of in vitro functionality of lentiviral expression constructs for CD. 
(A and C) sCD and sCDHA transduced HEK293 cells were co-cultured with FLuc expressing 
cancer cells (EO771 or PyMT) for 4 days. Bioluminescence signal of cancer cells was measured 
following addition of luciferin to the medium daily. Only sCD transduced HEK293 cells expressed 
functional CD, as following daily dosage of 0.1 mM 5-FC a reduced bioluminescence intensity 
was detected (n=3 technical replicates). (B and D) FLuc expressing cancer cells (EO771 and 
PyMT) were cultured with CM from sCD or sCDHA transduced HEK293 cells for four days. 
Bioluminescence activity of cancer cells was measured following daily addition of luciferin. The 
sCD transduced HEK293 cells expressed and secreted CD into culture medium which led to a 
reduced bioluminescence signal of CM-cultured cancer cells (n=3 technical replicates, mean+/-
SEM). Two repeats of the experiment were performed, analysis of one is shown here. Statistical 
significance was determined with two-way ANOVA method, with alpha=5%. 

 

 

4.3.4 Testing the functionality of non-inducible enzyme prodrug approach 

in vivo 

To test the in vivo functionality of the generated lentiviral expression construct 

pFUWsCD, the following experiment was carried out (Figure 4-3A). A bone marrow 

transplantation was performed in six female C57BL6/J mice. To this end, ScaI+ HSCs 

were isolated via MACS from the bone marrow of transgenic UbC-GFP mice. The 
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isolated cells were transduced overnight with concentrated pFUWsCD virus at an MOI 

of 30. The viral titre of the pFUWsCD virus stock was determined using the Reverse 

Transcriptase assay (Roche). 24 hours after whole body irradiation was performed, the 

six mice received an iv injection of 1x106 sCD-transduced GFP+ HSCs. Six weeks after 

the BMT, blood was drawn from the tail vein of the mice and analysed by flow cytometry 

(Figure 4-3B). This was to determine if the bone marrow had been successfully 

reconstituted by the transplanted HSCs. Approximately 75-91% of all leukocytes in 

chimeric mice expressed GFP, compared with wild type (0.5%) and UbC-GFP mice 

(92%).  

To verify that leukocytes were also expressing sCD, RNA was extracted and a RT-PCR 

was performed (Figure 4-3C). Results showed that leukocytes of all six mice that had 

bm engraftment with sCD-transduced HSC expressed the enzyme. Based on these 

results, the experiment was continued with the implantation of 1x105 EO771/FLuc cancer 

cells into the mice brains. The FLuc expression in cancer cells enabled the non-invasive 

measurement of brain tumour growth over time. The brain tumour growth of these six 

mice is shown in Figure 4-3D. Six days post implantation the mice were grouped, based 

on similar distribution of bioluminescence tumour signal across both groups. One group 

received daily ip injections of 900 µL PBS, whereas the other mice received daily 

injections of 500 mg/kg 5-FC. There was no therapeutic effect on brain tumour growth 

after three days of treatment, so the dosage was doubled from day nine post 

implantation. After a further five days of treatment, there was still no effect on the tumour 

signals and the experiment was terminated. 

To investigate why the enzyme prodrug therapy was not successful, the expression of 

CD in TAMs and tissue resident macrophages was examined. CD11b+ macrophages 

were isolated via MACS from the brain tumours and the spleens of mice that had 

received the treatment, and macrophages from naïve mice were used as a control. The 

RNA of the macrophages was analysed for sCD expression by RT-PCR. As shown in 

Figure 4-3E, macrophages from tumour and spleen, expressed sCD, although no 

therapeutic effect could be seen.  

Because RT-PCR only allows RNA expression analysis in a qualitative way, a qPCR was 

performed to have a closer look at the expression levels of sCD in leukocytes. To this 

end a TaqMan qPCR using sCD-specific probe was performed and the expression of the 

house keeping gene GAPDH was used as a normalisation control for each sample. 

HSCs that had been freshly transduced with lentiviral sCD construct were used as a 

control for this experiment. Figure 4-3F shows that leukocytes of mice that underwent a 

BMT with pFUWsCD-transduced HSCs displayed extremely low expression levels of 
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sCD compared with freshly transduced HSCs. This may explain why sCD expression 

could be shown in TAMs and in leukocytes by RT-PCR, although no therapeutic effect 

on brain tumour growth was detectable. It is possible that the expression level of the 

enzyme in TAMs was too low to convert a sufficient amount of 5-FC into 5-FU resulting 

in no detectable cancer cell death.  

As sCD is secreted, the progeny of sCD-transduced HSCs expressing high amounts of 

the bacterial enzyme could have led to an immune reaction against sCD-expressing 

cells. If this hypothesis were true, only leukocytes expressing sCD at a low level would 

have been able to escape the immune response and remain in the mice. Therefore, it 

was reasoned that in order to circumvent the potential immune reaction against sCD-

expressing leukocytes, an inducible expression system could be used. This is addressed 

in the following chapter. 
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Figure 4-3: Testing functionality of non-inducible enzyme prodrug approach in vivo. (A) 
Schematic overview of the experiment. Mice received GFP+ HSCs from transgenic UbC-GFP. 
These HSCs were transduced with pFUWsCD lentivirus. Six weeks post-bm transplantation, 
blood was analysed to confirm reconstitution. Seven weeks after BMT, intracranial implantation 
of EO771/FLuc cancer cells was performed and the experiment was terminated two weeks later. 
(B) Reconstitution of UbC-GFP HSCs in the blood of C57BL6/J mice was analysed by flow 
cytometry. (C) RNA isolated from leukocytes of naïve mice and mice that received BMT was 
analysed by RT-PCR to check for CD expression. (D) RT-PCR using RNA obtained from CD11b+ 
cells isolated from tumour tissue and spleen was performed to test CD expression (S=spleen). 
(E) Brain tumour growth was analysed by bioluminescence imaging over time (n=3 technical 
replicates, mean+/-SEM). (F) qPCR using RNA obtained from leukocytes of mice that underwent 
HSC engraftment was performed to check for CD expression (eight biological leukocyte samples 
and two freshly sCD-transduced HSCs samples=PC, mean+SEM). Statistical significance 
determined with paired two-tailed t-test, p<0.0001. 
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4.4 Development of an inducible enzyme prodrug approach 

4.4.1 Generation of lentiviral constructs for inducible sCD expression 

To circumvent a potential immune response against CD-expressing leukocytes, 

inducible lentiviral expression constructs for sCD were generated using the vector 

pTREAutoR3 (Markusic et al., 2005) as the backbone. This doxycycline (Dox) inducible 

vector has been used in a stem cell gene therapy for breast cancer (Li et al., 2009). It 

contains a bicistronic cassette composed of GFP and the tetracycline-responsive 

transactivator (rtTA) under the control of a minimal CMV promoter linked to tetracycline-

responsive element (TRE) (Figure 4-4A). Once Dox is added to this system, it binds 

together with rtTA to the TRE and initiates transcription of the cassette. To bring sCD 

expression under the control of the Dox-inducible promoter, the GFP sequence in 

pTREAutoR3 was replaced by the sCD sequence isolated from pFUWsCD (Figure 4-4A). 

Because the HA-tagged version of sCD in pFUWsCDHA was expressed but not 

functional, a new construct for HA-tagged sCD was generated. To this end, a two-step 

PCR was performed with primers tPA_NdeI fwd and sCDHA 2 rev (Table 2-3) using 

pFUWsCD as the PCR template. To insert sCDHA the PCR product and the excised 

sCD sequence into the linearised vector pTREAutoR3, subsequent cloning steps were 

performed as described in chapter 2.2. Successful incorporation of the constructs into 

pTRE vector were identified by restriction digest using BamHI and NdeI. Subsequently, 

DNA sequences of positive clones were verified by sequencing. Figure 4-4B shows the 

successful generation of Dox-inducible lentiviral expression constructs for sCD, as 

demonstrated by the replacement of GFP with the sCD and sCDHA fragments.  

 

4.4.2 Analysis of sCD Expression and secretion using the inducible 

lentiviral constructs  

Following generation of the inducible lentiviral sCD expression vectors, a lentiviral virus 

stock was generated for pTREsCD and pTREsCDHA constructs and used to transduce 

HEK293 cells. To determine the expression and secretion of the 5-FC-converting 

enzyme CD in the transduced cells, Western blot analysis of the cell lysates and 

concentrated cell culture supernatants was performed (Figure 4-4C). The same amount 

of protein for the lysates (30 µg/well) and the same volume for supernatants (30 µL/well) 

were loaded into each well of the 10% SDS polyacrylamide gel and the detection was 

performed with α-HA antibody (1:1000). The results showed that following Dox-induction 
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the HA-tagged enzyme was expressed and secreted by the transduced cells. However, 

a low level of transcription took place even in the absence of the inducer, as a weak band 

was detected in supernatants of untreated sCDHA-transduced HEK293 cells. However, 

given that expression of the enzyme was very low, it would not be expected to lead to an 

immune response against CD. 

Furthermore, an immunofluorescence assay was used to confirm the expression of HA-

tagged sCD in pTREsCDHA-transduced HEK293 cells. Non-transduced, pTREAutoR3- 

and pTREsCD-transduced HEK293 cells were used as a control. To this end, 1x104 cells 

were seeded into wells of a 6-well plate and cultured for three days. All cell lines used 

for this experiment were cultured in the absence or presence of 2 mg/ml Dox. Cells were 

fixed and the expression of the HA-tagged protein was visualised by performing the IF 

staining protocol as described in 2.5.1. The pTREAutoR3-transduced HEK293 cells were 

used to confirm that the concentration of Dox used in this experiment was sufficient to 

induce Dox-dependent expression. As shown in Figure 4-4D, GFP expression of 

pTREAutoR3-transduced HEK293 cells was induced in the presence of Dox. 

Furthermore, the HA-tag was detected only in pTREsCDHA-transduced HEK293 cells 

following addition of Dox.  
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Figure 4-4: Generation of inducible lentiviral expression constructs for sCD and analysis 
of sCD expression/secretion. (A) IlIustration of cloning strategy for the generation of pTREsCD 
and pTREsCDHA (TRE=Tet-responsive element, IRES=internal ribosome entry site, 
rtTA=reverse transcriptional activator). (B) Lentiviral Dox-inducible expression vector 
pTREAutoR3, pTREsCD and pTREsCDHA were cut with restriction enzyme EcoRI. This 
demonstrated, that the sequence for eGFP (846 bp) was replaced by sCD (1388 bp) or sCDHA 
(1451 bp) sequence, respectively. (C and D) Analysis of sCD expression and secretion in 
pTREsCD- and pTREsCDHA-transduced HEK293 cells by Western blot (C) and IF (D) using an 
α-HA antibody. 

 

 

4.4.3 Assessment of in vitro functionality of the inducible lentiviral sCD 

expression construct  

Thus far, only the expression of sCD in pTREsCD and pTREsCDHA transduced cells 

had been tested and the functionality of the expressed enzymes still needed to be 

examined. Therefore, a secretion assay was performed in which FLuc-expressing cancer 

cells (EO771 and PyMT) were cultured with CM collected from sCD- or sCDHA-

transduced HEK293 cells that were cultured with 1 µM Dox for four days. Viability of 

cancer cells was measured indirectly via bioluminescence imaging following addition of 

luciferin. The medium was changed daily, followed by addition of 0.1 mM 5-FC and 

7.5 µg luciferin to the cells 10 min prior to imaging. The results of this experiment are 

displayed in Figure 4-5A and B. A significant reduction in bioluminescence signal and, 

thus, reduced viability was observed in EO771 and PyMT cells following the combined 

addition of CM and 5-FC. Thus, demonstrating that pTREsCD and pTREsCDHA-

transduced HEK293 cells expressed and secreted a functional enzyme into the medium 

after Dox induction. The secreted enzyme was capable of converting 5-FC to the toxic 

compound 5-FU which led to the death of cancer cells.  

Taken together these results confirm the in vitro functionality of the Dox-inducible 

lentiviral expression constructs pTREsCD and pTREsCDHA. HEK293 cells produced 
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and secreted the functional enzyme sCD, following lentiviral transduction with pTREsCD 

or pTREsCDHA. These generated constructs were then applied as part of the cell 

therapy approach to treat brain metastases in in vivo models. 

 

 

Figure 4-5: Assessment of in vitro functionality of lentiviral expression constructs for CD. 
(A and B) FLuc expressing cancer cells (EO771 and PyMT) were cultured with CM collected from 
sCD or sCDHA-transduced HEK293 cells that have been induced with 1 µM Dox for 4 days. 
Bioluminescence signal of cancer cells was measured after addition of luciferin to the medium 
daily. The sCD and sCDHA transduced HEK293 cells cultured in the presence of Dox secreted 
sCD into culture medium, which led to a reduced bioluminescence signal of CM-cultured cancer 
cells after 0.1 mM 5-FC administration (n=3 technical replicates, mean+/-SEM). Two repeats of 
the experiment were performed of which one is shown here. Statistical significance determined 
with multiple t-tests using the Holm-Sidak method, with alpha=5%. 

 

 

4.4.4 Analysis of inducible sCDHA expression in vivo  
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Figure 4-6: Analysis of inducible sCDHA expression in vivo. (A) Expression of HA-tagged 
CD in pTREsCDHA transduced cancer cell line EO771 was confirmed by flow cytometry. (B) 
Experimental outline: C57BL6/J mice received intracranial implantation of 1x105 
EO771/pTREsCDHA cells. Daily ip administration of 2 mg doxycycline was performed from day 
10 post cancer cell implantation. (C) In vivo expression of HA-tagged sCD following daily ip 
administration of 2 mg Dox was confirmed by Western Blot analysis of brain tumour lysates after 
one, two or four days of Dox administration using α-HA antibody. 

 

 

To assess the in vivo functionality of the inducible lentiviral expression construct 

pTREsCDHA, it was first tested if the expression of sCD can be induced in transduced 

tumour cells located in the murine brain following systemic administration of Dox. It is 

known that Dox can cross the BBB (Agwuh and MacGowan, 2006) and has been 

previously used in a gene therapy regime to target a CNS disease (Wilsey et al., 2002).  

Firstly, the murine breast cancer cell line EO771 was transduced with the pTREsCDHA 

virus at an MOI of 100. The titre of the virus stock was determined by using the reverse 

transcriptase assay. Three days after the transduction the cells were treated with 2 µg/ml 

Dox for two days and then analysed for sCDHA expression. The expression of the HA-

tagged protein in the cells was analysed quantitatively by flow cytometry using an 

intracellular staining using an α-HA antibody. The results of this analysis are displayed 

in Figure 4-6A. Approximately 90% of the transduced cell line expressed sCDHA 

following Dox induction. Subsequently, the cell line EO771/sCHDA was used for 

intracranial tumour implantation (Figure 4-6B). For this experiment five mice received an 

intracranial implantation of 1x105 EO771/pTREsCDHA cancer cells and two mice 

received 1x105 EO771 cancer cells. Dox (2 mg) was administered for one, two or four 

days before the endpoint by daily ip injections. At the end of the experiment, brain tumour 

tissue was isolated and prepared for Western blot analysis. This analysis showed an 

induction of expression of sCDHA within the brain tumour tissue after systemic 

administration of Dox (Figure 4-6C). Moreover, expression was observed after 1 day of 

doxycycline administration indicating a rapid response. Based on this result a further in 
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vivo experiment was performed to test the functionality of this inducible enzyme prodrug 

therapy. 

 

4.4.5 Testing the functionality of the inducible enzyme prodrug approach 

in vivo  

In order to test the in vivo functionality of the inducible lentiviral expression construct in 

a brain tumour model, a new sCDHA expressing EO771 cell line was generated. To this 

end, the cell line EO771/FLuc was transduced with the pTREsCDHA virus at MOI 10 and 

the expression of sCDHA in this transduced cell line was then analysed by flow 

cytometry. To this end, an intracellular staining of the transduced cell line, treated with 

2 µg/ml Dox for two days, was performed. This experiment revealed that approximately 

25% of the transduced cell line expressed the enzyme (Figure 4-7A). This ratio of one 

sCDHA expressing cell to three cancer cells within the brain tumour environment 

recapitulates the ratio of infiltrating bm-derived myeloid cells to cancer cells within brain 

metastases (chapter 3.5). To analyse whether this ratio was sufficient to achieve a 

therapeutic effect, this cell line was used for subsequent implantation of 1x105 cancer 

cells in the brain striatum of 16 mice (Figure 4-7B). The FLuc expression of the cancer 

cells enabled the non-invasive measurement of the brain tumour growth over time via 

bioluminescent imaging following ip injections of 1.2 mg luciferin. The brain tumour 

growth of these 16 mice is shown in Figure 4-7C. Six days after the implantation, the 

mice were split into two groups based on average distribution of bioluminescence tumour 

signals. One group received daily ip injections of 800 µL PBS, whereas the other mice 

received daily injections of 500 mg/kg 5-FC from day seven post implantation. 

Furthermore, all mice received daily ip injections of 2 mg Dox six days after the 

intracranial implantation. After three days of treatment a reduced tumour growth was 

observed in mice that had received 5-FC compared with PBS-treated mice. This 

difference in tumour growth was increased over time. However, due to neurological 

symptoms (experimental endpoint) caused by the brain tumour growth, all mice in the 

control group and half of the mice in the treatment group had to be culled on day 13. 

Only 5-FC treated mice that did not show any neurological symptoms remained and the 

treatment in these mice was continued.  

The difference in brain tumour signals between days six and 13 post implantation 

between the two treatment groups revealed a significant decrease, suggesting a 

significantly lower tumour burden in the treatment group (Figure 4-7D). Moreover, the 5-

FC treatment appeared to retard tumour growth, whereas tumours in the PBS-treated 
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group continued to increase in size. Furthermore, Kaplan-Meyer analysis of this 

experiment showed that the 5-FC treated mice had a significant survival advantage over 

the control group (Figure 4-7E). The experiment was terminated as soon as a significant 

difference in survival had been achieved with two healthy mice still remaining in the 

treatment group. The median survival time of PBS-treated mice was 13 days, compared 

with 13.5 days for 5-FC treated mice. These data show that the induction of sCDHA 

expression in cancer cells used in combination with 5-FC leads to reduced tumour growth 

when the sCD carrier cells are present at a ratio of 1:3. 
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Figure 4-7: Induction of sCDHA expression in cancer cells in combination with 5-FC results 
in reduced tumour growth in vivo. (A) Expression of HA-tagged sCD in pTREsCDHA-
transduced cancer cell line EO771/FLuc was confirmed by flow cytometry. (B) Experimental 
outline: C57BL6/J mice received intracranial implantation of 1x105 EO771/FLuc/pTREsCDHA 
cells. Daily ip administration of 2 mg doxycycline and 500 mg/kg 5-FC or PBS (control group) was 
performed from day six and seven post cancer cell implantation, respectively. (C) Brain tumour 
growth was measured by bioluminescence imaging (n=8 mice per group, mean +/-SEM). (D) 
Further analysis of bioluminescence signals was performed to show the growth difference of brain 
tumours in mice that received 5-FC versus those that received PBS between day six and 13 post 
cancer cell implantation (n=8 mice per group, ∆ for every mouse d6-d13 and mean of ∆ +/-SEM 
for both groups is shown). Statistical significance was determined using a two-tailed unpaired t-
test, p=0.0332. (E) Kaplan-Meier plot shows overall survival of 5-FC treated and non-treated mice 
(n=8 mice each), statistical significance was determined with Log-rank (Mantel-Cox) test, 
p=0.0253. 

 

 

4.5 Discussion 

After the tumour-homing capability of the progeny of systemically administered HSCs 

was established and their suitability to act as delivery vehicles of therapeutic molecules 

to target brain metastases was demonstrated in chapter 3, the choice of therapy was 

addressed next. The use of an enzyme prodrug therapy was selected to localise the toxic 

effect of the delivered therapeutic molecule at the tumour site, since the therapy would 

only be induced by the presence of the prodrug. Recent publications demonstrated the 

use of genetically engineered stem cells as cellular vehicles, thereby delivering the 

enzyme prodrug therapy CD/5-FC to treat brain tumours. An MSC-mediated CD/5-FC 

therapy showed a therapeutic effect in rat glioma (Fei et al., 2012, Kosaka et al., 2012). 

Further, the CD/5-FC therapy has also demonstrated therapeutic efficacy in melanoma 

brain metastases, medulloblastoma and glioma when delivered by NSCs (Aboody et al., 

2006, Kim et al., 2006, Aboody et al., 2013). Moreover, the chemotherapeutic agent 5-

FU is well established as a treatment option for breast cancer patients (Cameron et al., 

1994). Based on these findings, the enzyme prodrug therapy CD/5-FC was selected for 
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use in the HSC-based cell therapy regime. To this end, a lentiviral expression construct 

of the prodrug converting enzyme cytosine deaminase was generated and its in vitro 

functionality assessed. However, in the first instance the cell-based therapy exhibited no 

therapeutic effect on syngeneic brain tumours. Subsequent analysis of sCD expression 

in leukocytes isolated from the mice that have received pFUWsCD-transduced HSCs 

revealed extremely low expression levels of CD compared with freshly transduced HSCs. 

The expression level of the enzyme in TAMs was too low to convert a sufficient amount 

of 5-FC into 5-FU and therefore did not induce a detectable level of tumour cell death. 

Low sCD expression in mice leukocytes may be due to the immunogenic potential of 

HSC progeny which express high amounts of the bacterial enzyme. Therefore, it is 

possible that only leukocytes expressing low levels of sCD could avoid the immune 

response and remain in the mice. However, this effect has not been described by others 

who used the CD/5-FC approach in a cell based therapy employing cell vehicles other 

than HSCs (Aboody et al., 2006, Kim et al., 2006, Fei et al., 2012, Kosaka et al., 2012, 

Aboody et al., 2013). This difference could be due to several factors such as, lack of 

systemic administration and a shorter time period at which the stem cells were present 

in the mice. 

Another explanation could be that the transduction efficiency of the pFUWsCD in the 

HSCs was too low. The titration of the generated pFUWsCD virus stock was performed 

using the Roche reverse transcriptase assay, which detects reverse transcriptase and 

correlates this to a standard virus stock with a known concentration. The standard virus 

stock used in this case was a pFUGW virus and the titre was determined by flow 

cytometric analysis of HEK293 cells transduced with different amounts of the virus stock. 

As this method only indirectly leads to the determination of the virus titre it strongly 

depends on the standard virus at a known concentration. The pFUGW transduction 

efficiency of HSCs that were used for bm engraftment in mice was also low compared 

with published literature, as mentioned in chapter 3.6. However, a better method to 

determine the virus titre could be the Lenti-X provirus quantitation kit that detects viral 

integration sites in the genome of a lentiviral transduced cell and would be a direct 

readout for transduction efficiency. 

To circumvent the possible immunogenicity of CD expressing leukocytes, a lentiviral 

inducible expression system for CD was generated and its in vitro functionality tested. 

The efficacy of this CD/5-FC therapy was determined in a syngeneic brain metastases 

model by performing an intracranial implantation with the cell line EO771/FLuc/sCDHA. 

Only 25% of this cell line expressed the enzyme following doxycycline induction. This 

ratio of one sCDHA expressing cell to three cancer cells within the brain tumour following 
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implantation recapitulated the ratio of infiltrating bm-derived myeloid cells to cancer cells 

within brain metastases. The mice that received the 5-FC treatment exhibited a slowed 

tumour growth and a prolonged survival compared with the control-treated mice. These 

promising results need to be confirmed in an HSC-based therapy in syngeneic brain 

metastases models. 

Another way of modifying the therapy to prevent the possible immunogenic potential of 

CD expressing leukocytes is to use an alternative promoter that is specifically up-

regulated in brain metastases-infiltrating myeloid cells. This would reduce the potential 

of systemic toxicities of this HSC-based therapy, as HSC progeny naturally accumulate 

in organs like the spleen, lungs, liver, blood and bone marrow. The identification of such 

TAM-specific promoters is addressed in chapter 5 of this study. 

The genetic modification of the HSCs for this study was performed using lentiviral 

transduction. By contrast to other retroviruses (Miller et al., 1990), lentiviral vectors can 

genetically engineer non-dividing HSCs (Reiser et al., 1996). During this process, 

lentiviral vector DNA is integrated into the HSC genome at random positions which may 

cause mutagenesis (Hacein-Bey-Abina et al., 2003). However, recent findings suggest 

that the integration of viral DNA is not random but directed to specific active genes and 

related to genome organisation (Marini et al., 2015). The risk of mutagenesis by 

retrovirally mediated gene transfer has previously been considered to be very low in 

humans (Stocking et al., 1993). The transduction efficiency achieved in this study is low 

compared with published data and is a likely reason for the lack of therapeutic effect 

observed in the HSC-based therapy in experimental brain metastases models. It is 

known that an increase in MOI correlates with a higher copy number in target cells 

(Kustikova et al., 2003, Li et al., 2003). However, to minimise the risk of insertional 

mutagenesis a low MOI is favoured in HSCs for clinical trial protocols. There are 

established protocols for lentiviral transduction using a low MOI in the literature (Zielske 

and Gerson, 2002, Kurre et al., 2004). However, HSC transduction efficiencies are too 

low and given that lower MOIs are favoured in clinical trials an alternative method to 

genetically modify HSCs needs to be considered. The CRISPR/Cas9 (Jinek et al., 2012, 

Cong et al., 2013, Mali et al., 2013) system may represent a possible option in the future. 

Furthermore, the enzyme prodrug therapy CD/5-FC used in this study can be optimised 

in various ways to enhance the therapeutic effect on brain metastases. The bacterial 

enzyme (bCD) could be replaced by the yeast CD (yCD) sequence, as it has been shown 

that yeast CD is superior to its bacterial counterpart in 5-FC conversion (Kievit et al., 

1999). Kievit and colleagues demonstrated that HT29 xenograft-bearing nude mice 

showed complete tumour regression in response to yCD/5-FC treatment, whereas no 
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tumours treated with bCD/5-FC were cured. Further, the enzyme could be fused to uracil 

phosphoribosyltransferase (UPRT) which has been shown to enhance the sensitivity of 

cells to 5-FU by accelerating the ability of these cells to metabolise 5-FU to its active 

metabolites (Erbs et al., 2000). A dual suicide gene therapy could also display a possible 

option for modification to enhance the therapeutic effect of the CD/5-FC therapy. Another 

widely used enzyme prodrug approach involves herpes simplex virus thymidine kinase 

(TK) in combination with ganciclovir (GCV). Previously, the combined suicide gene 

therapy CD-TK delivered by NSCs led to a prolonged survival of mice with brain 

metastases (Wang et al., 2012). This double gene therapy mediated by NSC has also 

demonstrated therapeutic efficacy in glioblastoma models (Niu et al., 2013, Lee et al., 

2014).  

For the HSC-based cell therapy, the HSCs can be engineered to deliver a variety of anti-

cancer agents, including prodrug-activating enzymes, apoptosis-inducing agents, 

interleukins, and antibodies. The sensitivity of the breast cancer cell lines PyMT and 

EO771 to other enzyme prodrug therapies, i.e. thymidine kinase/ganciclovir or 

carboxylesterase/irinotecan, could also be tested. Another therapeutic molecule that 

could be delivered by HSCs and their progeny to target brain metastases is tumour 

necrosis factor-related apoptosis-inducing ligand (TRAIL). TRAIL induces apoptosis in 

tumour cells (Pitti et al., 1996), whilst sparing most normal cells (Ashkenazi et al., 1999). 

Engineered NSCs expressing TRAIL have shown efficacy in rodent glioma models, 

demonstrating an increase in apoptotic cells in these tumours, and a significant inhibition 

in the rate of tumour progression (Ehtesham et al., 2002a). A different therapeutic 

approach that could be applied in HSC-based cell therapy is the use of interleukins. Most 

interleukins mediate cell signalling between various cells of the immune system. To 

restrict HSC-delivered interleukin signalling to the brain metastases region, the 

expression of the interleukins would have to be regulated by specific promoters that 

induce expression only in the brain metastases-infiltrating myeloid cells. Benedetti and 

colleagues showed the therapeutic efficacy of a neural progenitor cell-based delivery of 

IL-4 to syngeneic mouse glioma models (Benedetti et al., 2000), thereby utilising the IL-

4 initiated T-cell mediated immune response to cancer cells. The anti-tumour potential 

of IL-12 (Tugues et al., 2015) has also been explored amongst others in a NSC-based 

therapy to treat glioma (Ehtesham et al., 2002b) and in a MSC-based therapy to treat 

breast cancer (Eliopoulos et al., 2008).  

Overall, HSCs can be engineered to express various anti-tumour gene products to target 

brain metastases. However, many factors need to be considered when choosing a 

therapeutic gene product: the level and duration of expression of the therapeutic gene at 
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tumour site, the appropriateness of the molecular target, and the ability of the therapeutic 

entities to interact with the cancer cells. 



 

 

 

 

 

 

 

5. Developing a strategy for improved 

specificity of HSC-based cell therapy 

targeting brain metastases 
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5.1 Introduction 

HSC therapies have been successfully used in the treatment of malignant haematologic 

diseases. Additionally, genetic diseases of the blood, such as immunodeficiencies, 

thalassemia (Cavazzana-Calvo et al., 2010) or sickle cell anaemia (Shenoy, 2011), have 

been corrected by HSC therapies. Further, HSC therapy can also correct some genetic 

diseases where a secreted enzyme, normally expressed in haematopoietic lineages, can 

be taken up by surrounding affected cells, which includes the neurodegenerative 

lysosomal storage disease (LSD) Mucopolysaccharidosis (MPS) I Hurler (Wynn et al., 

2009). So far, only one preclinical study in breast cancer has demonstrated therapeutic 

efficacy of HSC gene therapy (Li et al., 2009). In order to develop an HSC-based cell 

therapy to treat brain metastases the biodistribution of injected HSCs and their progeny 

needed to be considered. HSCs give rise to haematopoietic cells of myeloid and 

lymphoid lineages and these are known to home to different organs, sites of inflammation 

and tumours. Therefore, once genetically engineered HSCs expressing a therapeutic 

agent are used in this cell-based therapy, the agent could also accumulate in other 

organs and therefore potentially lead to systemic toxicities. To circumvent this issue, a 

goal of this study was to identify promoters of genes that are specifically up-regulated in 

brain metastases-infiltrating myeloid cells. These could then be used to drive the brain 

metastases-specific expression of therapeutic molecules within myeloid cells and restrict 

the delivery of therapeutic agents to brain lesions. 

The use of cell type or tissue-specific promoters for gene therapy has already been 

explored by other research groups. Hatzoglou et al. demonstrated liver-specific 

expression of different genes under the control of the phosphoenolpyruvate 

carboxykinase promoter (Hatzoglou et al., 1990). Directing toxicity toward B-cells was 

achieved by the transcriptional expression of diphtheria toxin A-fragment controlled by 

immunoglobulin-kappa promoter and enhancer (Maxwell et al., 1991). Vile and Hart 

(1993) explored the use of the tyrosinase promoter to direct gene expression to 

melanoma cells. Hepatoma cell-specific expression for gene therapy was achieved by 

utilising the alpha-fetoprotein promoter (Arbuthnot et al., 1996). Further cell and tissue-

specific promoters have been explored for gene therapy: the mucin-1 promoter for 

mammary carcinoma (Chen et al., 1995), the prostate-specific antigen promoter for 

prostate carcinoma (Lee et al., 1996), or the neuron-specific enolase promoter for 

neuronal cells (Abdallah et al., 1996). Other studies have used transcriptional control 

elements, that can stimulate transcription in response to disease-specific alterations, 

such as hypoxic conditions (Dachs et al., 1997) or loss of cell cycle checkpoints in 

tumours (Parr et al., 1997). 
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Interestingly, a transgenic mouse model has been developed that uses the myeloid 

specific CD11b promoter to drive the expression of thymidine kinase (Gowing et al., 

2006). Thereby, myeloid cells can be depleted following administration of the prodrug 

ganciclovir. However, this promoter does not allow differentiation between macrophages 

and myeloid cells and is therefore not appropriate for this study. 

 

5.2 Aims of this chapter 

In order to circumvent potential side effects of the HSC-based therapy, promoters 

specifically active in brain metastases-infiltrating myeloid cells can be used to drive the 

expression of therapeutic agents. Therefore, the aims of this chapter are: 

 To identify genes specifically up-regulated in brain metastases-infiltrating myeloid 

cells by genome-wide gene expression analysis of CD11b+ cells isolated from 

brain metastases, bone marrow and the spleen of chimeric mice with GFP+ bone 

marrow. 

 To validate the specific expression patterns of identified genes in human and 

murine brain metastases samples. 

 To validate promoter-reporter constructs in vitro and in vivo using promoters of 

specifically up-regulated genes in brain metastases-infiltrating TAMs.  

 

5.3 Biodistribution of systemically administered HSCs and their 

progeny in mice 

HSCs give rise to haematopoietic cells of myeloid and lymphoid lineages and these cells 

can home to different organs, sites of inflammation and tumours. Thus, the therapeutic 

agents introduced by HSCs in the cell based therapy approach would home to brain 

metastases and other tissues. To determine the extent of this potential non-specific 

therapeutic delivery, the amount of the GFP+ HSC progeny in different organs of brain 

metastases-bearing chimeric mice with GFP-tagged bone marrow was determined. To 

generate chimeric mice, the bone marrow in C57BL/6J mice (n=3) was ablated by whole 

body irradiation, followed by the transplantation of HSCs that have been lentivirally 

transduced with pFUGW at an MOI of 30 (experimental outline is shown in Figure 5-1A). 

Six weeks after the BMT, the blood was analysed by flow cytometry to determine if the 

bone marrow was successfully reconstituted by transplanted HSCs (Figure 5-1B). About 
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35-60% of all leukocytes in chimeric mice displayed GFP expression, compared with 

naïve (0.1%) and UbC-GFP mice (91%). Subsequently, different organs were 

dissociated and analysed by flow cytometry (Figure 5-1C). Up to 30% of CD45+ 

haematopoietic cells in these organs expressed GFP. The presence of GFP+ cells could 

be detected in blood (45%), bone marrow (25%), spleen (20%), lungs (20%) and liver 

(10%) as shown in Figure 5-1D. These findings confirmed that the progeny of GFP-

tagged HSCs infiltrate brain metastases (as shown in chapter 3), as well as other tissues 

including the bone marrow, spleen, lungs and liver.  
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Figure 5-1: Distribution of bone marrow progeny in mice that received engraftment of GFP transduced HSCs. (A) Mice underwent bone 
marrow engraftment with GFP transduced HSCs. (B) The blood of the mice was analysed by flow cytometry to check reconstitution six weeks after 
BMT. (C) The progeny of GFP transduced HSCs in different tissues of mice six weeks after BMT was analysed by flow cytometry. (D) The 
quantification of the flow cytometry analysis of different organs shows the percentage of GFP+ cells of the mice that received the engraftment (n=3 
technical replicates, mean+SEM is shown). 
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5.4 Comparative gene expression analysis of myeloid cells isolated 

from different tissues: Identifying TAM-specific genes 

To restrict the delivery of therapeutic agents exclusively to brain metastases, and thereby 

limit potential systemic toxicities, gene promoters specifically up-regulated in brain 

metastases-infiltrating myeloid cells could be used to drive the brain metastases-specific 

expression of therapeutic molecules. To identify such gene promoters, the following in 

vivo experiment was performed (Figure 5-2A). Firstly, chimeric mice with GFP-tagged 

bone marrow were generated. To this end, the bone marrow in C57BL/6J mice was 

ablated by whole body irradiation, followed by the transplantation of HSCs isolated from 

transgenic C57BL/6J UBC-GFP mice which express GFP under the control of the human 

ubiquitin C promoter in all tissues. Six weeks after the BMT, blood was drawn from the 

tail vein of the mice and analysed by flow cytometry (Figure 5-2B). This was done to 

determine if the bone marrow was successfully reconstituted by the transplanted HSCs. 

About 78-92% of all leukocytes in chimeric mice expressed GFP, compared with wild 

type (0.24%) and UbC-GFP mice (92%). These chimeric mice received intracranial 

injections of either 1x105 EO771 breast cancer cells or 1x105 PyMT breast cancer cells 

or PBS alone. After the injected cancer cells have formed large brain lesions, 

GFP+CD11b+ cells were isolated from brain metastases by FACS (Figure 5-2C) and 

CD11b+ cells from the bone marrow and spleen by MACS. The total RNA of the isolated 

myeloid cells was extracted and subjected to genome-wide gene expression analysis 

using the Illumina BeadArray system.  

To identify genes up-regulated in brain metastases across both cancer cell models, the 

gene expression data was divided into two groups: the spleen/bone marrow group and 

the brain metastases group. A total of 5972 probes were identified as being significantly 

differentially expressed (FDR < 1%) between these two groups. The heatmap shown in 

Figure 5-2D displays the top 150 differentially expressed probes that have been 

subjected to hierarchical clustering. The fold changes of probes that were up-regulated 

in brain metastases were larger than 10 for 119 probes and even larger than 100 for 9 

probes. Among the top up-regulated genes were matrix metalloproteinases (MMP13, 

MMP14), chemokines and their receptors (CCL7, CXCL10, CCL2, CCR5) and genes 

associated with anti-inflammatory phenotype (Arg1) as well as macrophage 

differentiation/activation (disabled homologue 2 (Dab2), Trem2). To find probes that 

were up-regulated in brain metastases samples compared with spleen/bone marrow 

samples across both cancer models individually, differential gene expression analysis 

was performed (Figure 5-2E). Some up-regulated probes varied strongly between 
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EO771 and PyMT model, while other probes displayed comparable fold changes. For 

the identification of robustly activated gene promoters further analysis focussed on 12 

genes that were highly up-regulated across different cancer cell models. Other criteria 

used to select the candidate gene promoters included the existence of the human 

homologue and the specific expression patterns of the human homologue.  

For example, the murine Ms4a6d gene was strongly up-regulated in bm-derived myeloid 

cells that were infiltrating brain metastases. This gene is predicted to be the homologue 

of the human MS4A6A and MS4A6E genes. These human genes are reciprocally 

homologous to the other members of the murine Ms4s6 family (Ms4a6b, Ms4a6c and 

Ms4a6d) according to HUGO gene nomenclature committee (HGNC) (genenames.org, 

2015). However, the other members of the murine Ms4s6 family were not found to be 

strongly up-regulated within the brain tumour-infiltrating myeloid cell population. Further, 

the human gene MS4A6A exhibits a basal expression level in spleen, bone marrow, liver, 

monocytes and B-cells (Genatlas, 2004). Based on the imprecise orthology of this murine 

gene and the non-specific expression of its predicted human homologue, this candidate 

gene was excluded from further validation analysis. Based on high fold changes in the 

EO771 and PyMT model, another interesting gene candidate was Fcrls. However, this 

candidate was also excluded from further analysis, as there is no human orthologue 

(genenames.org, 2015). Additional candidates, i.e. Olfml3, Slamf9, Rgs, MMP13, Ccl3 

and Gp38, that were specifically up-regulated in CD11b+GFP+ cells in brain tumours 

versus spleen/bone marrow across both models, were also removed from further 

analysis because their fold changes were either too low or differed strongly between the 

two models. 
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Figure 5-2: Identification of potential gene promoters for brain metastases-specific 
expression of therapeutic molecules in infiltrating myeloid cells. (A) After whole body 
irradiation the bone marrow of C57BL6/J mice was reconstituted by HSCs from UbC-GFP mice. 
(B) Reconstitution was confirmed by flow cytometry analysis of mice leukocytes. (C) Gating 
strategy for the isolation of GFP+CD11b+ cells from brain metastases by FACS. Purple gate shows 
GFP+CD11b+ population that was isolated from brain tumour samples by FACS. (D) A heatmap 
of top 150 probes differentially expressed between bone marrow-derived myeloid cells 
(CD11b+GFP+) isolated from brain metastases (Br) and myeloid cells isolated from the spleen (S) 
or bone marrow (BM) (magnification is shown in Appendix A). (E) Fold changes in gene 
expression levels for the top 20 genes that are highly up-regulated in brain tumour infiltrating 
myeloid cells compared with myeloid cells in spleens and bone marrow across both tumour 
models (grey= top candidates for further analysis).  

 

 

5.5 Validation of gene expression profiling in myeloid cells  

Gene expression analysis revealed that some genes are strongly up-regulated in 

CD11b+GFP+ cells in brain metastases compared with CD11b+ cells in spleen and bm in 

both tumour models. Promoters of these genes could be used to control the specific 

expression of therapeutic molecules in a HSC-based cell therapy that could treat brain 

metastases. Based on different selection criteria 12 gene candidates were selected for 

further analysis. To validate the results of the gene expression analysis for these 

candidates a semi-quantitative PCR was performed. Expression levels were analysed in 

CD11b+ cells isolated from brain metastases, bone marrow and the spleen, as well as in 

total spleen, total bone marrow and total blood cells. Some of the genes showed specific 
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expression in brain metastases-infiltrating CD11b+ cells (e.g. osteopontin (Spp1), 

MMP14), while some of them also expressed in other tissues (e.g. Cxcl16, Ccr5; Figure 

5-3A). The band intensities of the gel pictures were analysed with ImageJ and 

normalised to GAPDH band intensities (see Appendix B). Some genes were excluded 

from further analysis, since expression could be detected in other tissues (Gpnmb, Arg1, 

Ccl7, Cxcl16, Cxcl10, Ecm1). Spp1, MMP14, Trem2, Dab2 and Emp1 were genes that 

showed the highest specificity in brain metastases-infiltrating CD11b+ cells by semi-

quantitative PCR. Those five candidates were, therefore, chosen for further validation by 

immunofluorescence. 

Brain metastases tissue isolated from the intracranial EO771 model in mice that have 

received GFP-transduced HSCs was analysed by IF for the expression of Spp1, MMP14, 

Trem2, Dab2 and Emp1 (Figure 5-3C). The GFP+ brain metastases-infiltrating cells 

clearly expressed Dab2, MMP14 and Spp1, whereas the expression of Trem2 and Emp1 

was restricted to cancer cells and there was no co-localisation with GFP. Based on these 

results, the expression of Dab2, MMP14 and Spp1 was further analysed in the murine 

spleen and bone marrow (Figure 5-3D). By contrast to the GFP+ cells infiltrating brain 

metastases, the GFP+ cells within the spleen and bone marrow exhibited no expression 

of Dab2, MMP14 or Spp1. Since the data indicated specific expression in the brain 

metastases-infiltrating HSC progeny, these three gene promoters were potential 

candidates that could be used to drive brain-metastases specific expression of 

therapeutic agents in a cell-based therapy. 

Moreover, as expression of these three genes was shown to be specific in bone marrow-

derived brain tumour-infiltrating cells we can postulate this expression is specific to bm-

derived TAMs rather than brain-resident microglia. Therefore, the expression of these 

genes is assumed to be TAM-specific. 
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Figure 5-3: Validation of potential TAM-specific gene promoters in mice. (A) Semi-
quantitative RT-PCR was used to validate the expression of the top 12 genes up-regulated in 
brain tumour TAMs (samples of GEX experiment and further blood, spleen and bm samples of 
naïve mice were used). (B) IF analysis of top five TAM-specific promoter candidates on protein 
level was performed on EO771 brain metastases tissue of mice that received GFP+ HSCs. Co-
staining for DAPI (blue), GFP (green) and Emp1, Trem2, Dab2, MMP14 or Spp1 (red) is shown. 
(Scale bar = 50 µm, original magnification 60x, representative images of two independent 
experimental replicates are shown). Larger magnifications of images stained for Dab2, MMP14 
and Spp1 (white rectangles) are shown in (C), top row. (C) GFP+ bone marrow-derived TAMs 
express Dab2, MMP14 and Spp1 whereas GFP+ cells in the spleen and bone marrow display no 
expression of these three proteins. (Scale bar = 50 µm, original magnification 60x, representative 
images of two independent experimental replicates are shown). 

 

 

To validate the translational potential of the cell-based therapy using the identified gene 

promoters, it was determined whether the three genes were specifically activated in 

macrophages infiltrating human brain metastases. To this end, four different specimens 

of patient-derived human brain metastases tissue and donor-matched blood were co-

stained for CD68 and for Dab2, MMP14 or Spp1 (Figure 5-4). The CD68+ 

microglia/macrophages in the four brain metastases specimens expressed all three 

proteins, while no co-expression could be detected in the donor-matched blood. This 

demonstrated a potential for the application of Dab2, MMP14 and Spp1 gene promoters 

in cell-based therapy in patients. 
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Figure 5-4: Validation of potential TAM-specific gene promoters in patient brain 
metastases samples. (A) IF co-staining for the macrophage marker CD68 (green) and Dab2, 
MMP14 or Spp1 (red) was performed on human brain metastases tissue and donor-matched 
blood. TAMs display expression of these three proteins, whereas blood macrophages do not. IF 
analysis of three further brain metastases specimens with donor-matched blood samples are 
shown in (B). (Scale bar = 20 µm, original magnification 20x). 

 

 

5.6 Analysis of TAM-specific promoter-reporter constructs 

5.6.1 Analysis of promoter regions sequences 

This study identified three genes specifically up-regulated in murine and human brain 

metastases-infiltrating HSC progeny whose promoters could be used to drive brain-

metastases specific expression of therapeutic agents. To further functionally validate the 
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identified gene promoter candidates, lentiviral promoter-reporter constructs (lentiviral 

backbone: pEZX-LvPM02) of Dab2, MMP14 and Spp1 were purchased from 

GeneCopoeia.  

To test the suitability of these promoter constructs, an analysis of the promoter regions 

of the purchased constructs was performed. Promoters are highly structured regulatory 

DNA elements that direct complex expression patterns in many different cell types 

specifically to each gene. Many genes contain binding sites for transcription factors 

located just 5′ from the core promoter, although additional regulatory DNA elements, 

such as enhancers, silencers and insulators, can be scattered over a distance of 100 kb. 

To identify consensus binding sequences for transcription factors and core promoter 

features in the promoter clones, a sequence analysis based on published sequences of 

murine promoter regions of the three genes Dab2, MMP14 and Spp1 was performed 

(Figure 5-5). The GeneCopoeia Dab2-promoter clone comprises a 1338 bp sequence of 

the mouse Dab2 promoter region from -1155 to +183 (Figure 5-5A). This sequence 

entails several putative cis-regulatory elements, which are binding sites for 

transcriptional activators, such as nuclear factor-I (NF-I), specificity protein 1 (Sp1), the 

octamer transcription factor 1 (OCT1), GATA-1 and GATA-3 as well as for the activator 

protein 1 (AP-1). Furthermore, this sequence contains a binding site for the basic helix-

loop-helix protein (HEB), a binding site of POU-homeodomain factor and a 

glucocorticoid-responsive element (GR). The 5’-flanking sequence of the murine MMP14 

gene is covered in the GeneCopoeia MMP14 promoter clone from position -1437 to -194 

(Figure 5-5B). MMP14 has multiple transcription start sites (TSSs) and 3 of these are 

covered in the promoter clone sequence. Further, the promoter sequence entails several 

binding sites for transcription factors, such as Sp1, early growth response 1 (Egr-1), AP4, 

Nkx-2 as well as a CArG-box, which is a core binding site for the serum response factor 

(SRF) and other DNA-binding proteins. The Spp1-promoter clone comprises the 5’-

flanking sequence from position -1044 to +239 of the murine Spp1 gene (Figure 5-5C). 

Many transcription factors can bind to the Spp1 clone, e.g. cAMP-response element 

(CRE), AP-1, 3, 4 and 5, PEA2 and 3. A positive regulatory 24 bp Vitamin D response 

element (Noda et al., 1990) located 761 bp upstream of the TSS is also included in this 

promoter sequence. Ras-activated enhancer (RAE) have been reported to increase 

Spp1 expression (Guo et al., 1995) following binding to the RAE sequence, which is also 

included in the reporter clone sequence. 

All three promoter-reporter clones used in this study contain promoter elements crucial 

for the initiation of transcription, such as transcription start site and binding sites for 

putative cis-regulatory transcription factors.  
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Figure 5-5: Illustration of the murine promoters and putative cis-regulatory elements of the 
promoter-reporter constructs of GeneCopoeia. (A) The Dab2-promoter clone entails the 5’-
flanking sequence from -1155 to +183 of the murine Dab2 gene. Annotations are based on Cho 
and Park (2000) and Sheng et al. (2001). (B) The 5’-flanking sequence from -1437 to -194 of the 
murine MMP14 gene is covered in the GeneCopoeia MMP14-promoter clone. Locations of 
transcription factor binding sites and multiple transcription start sites (indicated by arrows) are 
based on Haas et al. (1999) (C) The Spp1-promoter clone comprises the 5’-flanking sequence 
from -1044 to +239 of the murine Spp1 gene. Annotations are based on Guo et al. (1995). The 
location of the Dab2 and Spp1 gene transcription start sites (TSS) is labelled by an arrow together 
with TSS. The putative binding sites for transcription activators are boxed.  

 

 

5.6.2 In vitro analysis of TAM-specific promoter-reporter constructs 

As shown in Figure 5-6A, following transduction of cells with lentiviral virus particles of 

the three purchased promoter-reporter constructs, the DNA sequence, which is 

integrated into the genome contains the specific murine promoter controlling the 

expression of the reporter gene mCherry. To test these promoter clones in vitro, lentiviral 

particles were produced and the virus titre was determined using the reverse 

transcriptase assay. 

HEK293 cells transduced with the promoter clones (Dab2-mCherry, MMP14-mCherry 

and Spp1-mCherry) were examined by fluorescence microscopy (data not shown). This 

analysis indicated that murine promoters were not activated in this human cell line of 
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non-haematopoietic origin. To test whether the murine promoters were active in a murine 

cell line of haematopoietic origin, the murine monocyte-macrophage cell line RAW 264.7 

was transduced with the promoter clones (Figure 5-6B). To establish a transduction 

protocol for this cell line, RAW 264.7 cells were also transduced with pFUGW at an 

MOI30. The efficiency of this transduction was approximately 90% (Figure 5-6B) and this 

MOI was used for the transduction of this cell line with the promoter-reporter constructs 

and the empty vector control (pEZX). Analysis of the transduced RAW 264.7 cells by 

fluorescence microscopy revealed that only the Spp1 promoter was activated in RAW 

264.7 cells (approximately 10%).  

To further test the in vitro functionality of the remaining promoter-reporter constructs, 

induction tests were performed (Figure 5-6C). Despite the known induction of the murine 

Dab2 promoter by retinoic acid (Cho and Park, 2000, Smith et al., 2001), the Dab2-

mCherry transduced RAW 264.7 cells did not show any expression of mCherry following 

addition of retinoic acid. Furthermore, published data has shown that the MMP14 

promoter activity can be enhanced following exposure to EGF and TNF-α (Zhang et al., 

2009, Han et al., 2001), but addition of the latter to transduced RAW 264.7 cells did not 

activate our MMP14 promoter. The enhanced Spp1 promoter activation following TNF-α 

stimulation, as published by Nakama et al. (1998), was also not detectable for the Spp1-

mCherry transduced cells in our system. Lastly, the in vitro functionality of the promoter 

clones was tested by activation of macrophages with LPS (Meng and Lowell, 1997), 

which also failed to activate the promoters. 
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Figure 5-6: In vitro analysis of TAM-specific promoter-reporter constructs. (A) Illustration of 
promoter-reporter clones purchased from GeneCopoeia. (B) Fluorescence microscopy analysis 
of RAW 264.7 cells transduced with promoter-reporter constructs (Dab2-, MMP14- and Spp1-
mCherry), pFUGW and pEZX (original magnification 20x, scalebar: 200 µm). (C) RAW 264.7 cells 
transduced with promoter-reporter constructs were treated with different transcriptional activators 
for three days (2 µM Retinoic acid, 100 ng/mL EGF, 10 µg/mL TNF-α and 0.25 µg/mL LPS) and 
subsequently analysed by fluorescence microscopy (original magnification 20x, scalebar: 
200 µm, representative images of three independent experiments are shown). 

 

 

5.6.3 In vivo analysis of TAM-specific promoter-reporter constructs 

In vitro analysis did not demonstrate functionality of the three promoter clones. This could 

be due to missing factors of the tumour microenvironment. Therefore, in vivo functionality 

of the three promoter clones was tested next. The outline of this experiment is shown in 

Figure 5-7A. Firstly, a bone marrow transplantation was performed for eight female 

C57BL6/J mice. To this end, ScaI+ HSCs were isolated via MACS from the bone marrow 

of transgenic UbC-GFP mice. The isolated cells were transduced with a concentrated 

virus of promoter clones (Dab2-mCherry, MMP14-mCherry, Spp1-mCherry and pEZX) 

at MOI 30 overnight. One day after the whole body irradiation was performed, the eight 

mice received an iv injection of 1x106 promoter clone-transduced GFP+ HSCs (Dab2: 
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n=2, MPP14: n=2, Spp1: n=2, pEZX: n=2). Six weeks after the BMT, blood was drawn 

from the tail vein of the mice and analysed by flow cytometry (Figure 5-7B). This was 

performed to determine if the bone marrow was successfully reconstituted by the 

transplanted HSCs. About 65-86% of all leukocytes in chimeric mice were GFP+, 

compared with wild type (0.3%) and UbC-GFP mice (89%). The mCherry expression in 

leukocytes of these chimeric mice was also analysed by flow cytometry (Figure 5-7C). 

The mice that received HSCs transduced with Dab2 or MMP14 promoter constructs did 

not show any mCherry expression in their leukocytes, whereas a small mCherry+ cell 

population (2.4% and 4.3%) could be detected in the leukocytes of mice that received 

Spp1-mCherry-transduced HSCs. 

Subsequently, 1x105 EO771 cancer cells were implanted into the mice brains. After the 

injected cancer cells formed large tumours, the tumour and a variety of different organs 

(brain tumour, bone marrow, lungs and spleen) were dissociated and analysed by flow 

cytometry (Figure 5-7D). To analyse the mCherry expression in the progeny of engrafted 

HSCs, the samples were stained for the marker of haematopoietic cells, CD45. The HSC 

progeny infiltrating brain tumours were negative for mCherry expression for all promoter 

clones, suggesting that tumour microenvironment did not activate Dab2, MMP14 or Spp1 

promoters. The small percentage of mCherry+ cells, detectable in the blood of mice that 

received Spp1-mCherry transduced HSCs, were not visible in the HSC progeny 

infiltrating brain metastases. Furthermore, no mCherry expression could be detected in 

the CD45+ cells within other analysed tissues. 

 

 

 



Chapter 5 

Page | 125  

 

 

Figure 5-7: In vivo analysis of TAM-specific promoter-reporter constructs. (A) Experimental 
outline: intracranial implantation of EO771 cells was performed seven weeks after mice 
underwent BMT with GFP+HSCs transduced with promoter-mCherry constructs. (B) The blood of 
experimental mice was analysed by flow cytometry to check bm reconstitution six weeks after 
BMT. (C) Further flow cytometry analysis of blood was done to check for mCherry expression in 
leukocytes (n=2 for each group (Dab2, MPP14, Spp1 and pEZX)). (D) Flow cytometry of HSC 
progeny in different tissues was performed (brain tumour, lungs, liver, spleen and bone marrow) 
to analyse its mCherry expression (n=2 mice for each group (Dab2, MPP14, Spp1 and pEZX)). 
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5.6.4 Troubleshooting the transduction efficiency  

No mCherry expression could be detected in RAW 264.7 cells that were transduced with 

lentiviral reporter promoter constructs except in the Spp1-promoter clone. Furthermore, 

the incubation of the transduced cells with promoter-specific inducers did not lead to 

induction of mCherry expression. Additionally, no mCherry expression was detectable in 

brain tumours of mice that had received HSCs transduced with promoter-reporter 

constructs. Therefore, an investigation into why the expression of mCherry was not 

induced in vitro or in vivo was performed.  

It was determined how well the promoter-reporter constructs were integrated into the 

genome of cells following transduction with the lentivirus, as low transduction efficiency 

has been a problem in previous experiments (4.3.4 and 3.5). To this end, HEK293 cells 

were transduced with lentiviral stocks of the promoter constructs at MOI 30. For this 

experiment the same virus stocks were used as in chapter 5.6.2 and 5.6.3. Three days 

later, genomic DNA was isolated from 1x106 cells per sample. The number of viral 

integration sites per cell was determined by qPCR using primers that bind specifically to 

proviral insertion junctions (Table 5-1).  

Table 5-1: Number of provirus integrations sites per cell for each sample determined by 
perfoming the Lenti-X provirus quantitation kit. 

Cell line Virus 
Provirus copy 
number/cell 

HEK293 - 0.29 

HEK293 pEZX 22.60 

HEK293 pEZX Dab2-mCherry 6.13 

HEK293 pEZX MMP14-mCherry 3.64 

HEK293 pEZX Spp1-mCherry 86.15 

EO771 pFUW Fluc 17.10 

 

Non-transduced HEK293 cells served as a negative control for this experiment. 0.29 

virus integration sites per cell could be detected for this sample. The established cell line 

EO771/FLuc, routinely used by the work group and known for consistent and strong 

expression of the transgene FLuc, was used for this experiment as a positive control. 

Approximately 17 virus copies per cell were determined for this sample. The provirus 

copy numbers for the promoter clone samples ranged from 3.64 to 86.15. This result 

indicated that promoter construct-transduced cells should have a sufficient amount of 

transgene sequences integrated into the genome to perform reporter expression 

analysis. 
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5.7 Discussion 

The major drawback of the HSC-based therapy approach presented in this study is the 

low intracranial specificity of the delivery due to the naturally occurring accumulation of 

the HSC progeny in organs such as the spleen, lungs, liver, blood and bone marrow. An 

infiltration of GFP+ cells in blood (45%), bone marrow (25%), spleen (20%), lungs (20%) 

and liver (10%) could be detected in mice 6 weeks after a bone marrow engraftment with 

pFUGW transduced HSCs. Thus, once genetically engineered HSCs expressing a 

therapeutic agent are used in this cell-based therapy approach, the agent would 

accumulate in brain metastases as well as other organs, potentially leading to systemic 

toxicities.  

Gene promoters specifically up-regulated in TAMs infiltrating brain metastases could be 

used to drive the brain metastases-specific expression of therapeutic molecules within 

TAMs and thereby limit the delivery of therapeutic agents exclusively to brain lesions. 

Moreover, these cell-specific promoters may provide a level of expression better adapted 

to cellular metabolism, facilitating a longer-term expression of the therapeutic molecule. 

Restricting gene expression to a specific cell population through the use of a cellular-

specific promoter is also expected to reduce a potential immunogenicity of the cell-based 

therapy. 

To identify such cell-specific gene promoters for the cell-based gene therapy, a genome-

wide gene expression analysis of bm-derived CD11b+ cells isolated from brain 

metastases, bone marrow and the spleen of chimeric mice with GFP+ bone marrow was 

performed. Genes were identified that were specifically up-regulated in the brain 

metastases-infiltrating myeloid cells and subsequently their specific expression patterns 

were validated on murine and human tissue samples.  

Expression patterns of candidate genes that have been identified to be specifically up-

regulated in brain metastases-infiltrating TAMs were analysed and confirmed on murine 

and human tissue samples. Thus, three genes were identified whose promoters could 

be used to drive brain-metastases specific expression of therapeutic agents. To test the 

functionality of the corresponding promoter constructs, lentiviral promoter-reporter 

clones of Dab2, MMP14 and Spp1 were purchased from GeneCopoeia. Subsequently, 

mCherry reporter expression analysis failed to detect the expression of mCherry in vivo 

in murine brain metastases after the engraftment of promoter clone-transduced HSCs, 

as well as in transduced murine RAW 264.7 cells following stimulation with known 

promoter activators. A mCherry expression was only detected in Spp1-reporter clone 

transduced RAW 264.7 cells. Further, whereas a small mCherry+ leukocyte population 
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could be detected in the blood of mice that have received Spp1-mCherry-transduced 

HSCs (2.4% and 4.3%), mCherry expression was undetectable in the brain tumours of 

these mice. The fact that mCherry expression was only detectable in Spp1 clone-

transduced cells and not in Dab2 or MMP14 clone-transduced cells could be explained 

by the number of viral integration sites per transduced cell. This number, determined by 

using the Lenti-X provirus quantitation kit on transduced cells with the same MOI was 

more than ten times higher for Spp1 (86.15) than for Dab2 (6.13) and MMP14 (3.64). An 

integration of the promoter-reporter sequence into the genome of three to six times per 

cell should be sufficient to perform reporter expression analysis. However, the results of 

the integration site quantification analysis also revealed that although all samples were 

transduced at the same MOI under the same experimental conditions (same backbone 

and similar promoter lengths), the transduction efficiency varied between the samples. 

Therefore, it is evident that an alternative method should be considered to determine the 

initial virus titre.  

Promoter sequence analysis revealed that all promoter clones contained crucial 

elements to initiate transcription of the reporter gene, although no expression was 

detectable. The Dab2 promoter clone contains the 5’-flanking sequence of the murine 

Dab2 gene from position -1155 to +183 to regulate the expression of the reporter gene 

mCherry. This sequence contains several positive-regulatory binding sites for 

transcription factors including GATA binding sites. The binding of GATA factors is known 

to induce Dab2 expression, and GATA-dependent Dab2 expression can be induced by 

the presence of retinoic acid (Smith et al., 2001). Capo-Chichi et al. (2010) identified and 

tested four GATA binding sites located upstream of the ATG site of the mouse Dab2 

gene (−1904, −1926, −3943, −3894 bp). The two most potent of these GATA-binding 

sites −1904 and −1926 for GATA complex formation are not included in the promoter 

sequence from GeneCopoeia. Further, Rosenbauer et al. (2002) used for his study a 

Dab2 promoter-reporter clone, which contained a 2 kb insert of the 5’-genomic region of 

the murine Dab2 gene that also included the two most potent GATA-binding sites. With 

this study a novel role of Dab2 as an inducer of cell adhesion and spreading of 

macrophages was identified, suggesting a crucial role for these included GATA-binding 

sites (−1904 and −1926) in the Dab2 promoter activation. Therefore, the promoter 

sequence of the Dab2 clone should be reviewed and most probably extended to include 

the GATA-binding sites at position −1904 and −1926.  

According to Haas et al. (1999), the murine MMP14 promoter clone (length -1437 to -

194) lacks one of the 4 TSS, as well as binding sites for transcription factors such as NF-

kB, c-myc, PEA-3,c-ETS1. Another study on cis-acting promoter elements of the murine 
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MMP14 gene by Cha et al. (2000) has shown that the strongest induction of reporter 

expression could be achieved with a promoter length from position -3000 to -99. Zhang 

and Brodt used a murine MMP14-reporter construct, which included the promoter 

sequences from the nucleotide position -1297 to –97 for their study in 2003. This 

promoter sequence included the binding sequence for type 1 insulin growth factor (IGF-

1) leading to an increased reporter activity after IGF-1 treatment. With this study the 

influence of IGF-1 on MMP14 synthesis in the context of tumour invasion was 

demonstrated. Additionally, Ray et al. (2004) identified a binding region for positive-

regulatory cis-acting elements mediating the presence of oxidised low-density 

lipoproteins within the position -213 and -1 of the 5’-flanking region of the murine MMP14 

gene. All these studies used MMP14-reporter constructs that were different in promoter 

length but the sequence of the fourth TSS was included in all of them. Therefore, to 

optimise MMP14 promoter analysis for the cell-based therapy, editing of the purchased 

promoter clone to include this sequence should be considered.  

The promoter of the Spp1 clone contains various binding sites for positive regulatory 

transcription factors and cells transduced with this promoter clone do express mCherry. 

However, this low expression could not be enhanced by known transcription inducers 

and is not stable in vivo. Therefore, to improve the Spp1 promoter performance, the 

promoter sequence of the purchased Spp1 clone should be altered. According to Guo et 

al. (1995), the GeneCopoeia Spp1 promoter clone (-1044 to +239) does not entail 

binding sites for nuclear factor ets-like (NF-E), CRE and PEA3, which are located further 

upstream of the TSS of Spp1. However, even shorter Spp1 promoter lengths have been 

successfully used for promoter studies. Zhao et al. (2010) used the murine promoter 

sequence from position -882 to +79 for their study on osteopontin expression in 

macrophages, whereas Guo et al. (2001) used the sequence -777 to +79 of the murine 

Spp1 gene for promoter analysis for their study on nitric oxide synthesis in macrophages. 

Interestingly, the promoter sequences in both the above mentioned studies ended at 

position +79, while the promoter sequence of the GeneCopoeia clone ends at position 

+239. The possibility of a negative-regulatory binding site present in the sequence 

between +79 and +239 should be explored by performing promoter studies with a 

shortened Spp1-reporter clone. 

The use of cell type or tissue-specific promoters for gene therapy has already been 

explored by other research groups (Hatzoglou et al., 1990, Maxwell et al., 1991, Vile and 

Hart, 1993, Chen et al., 1995, Arbuthnot et al., 1996, Lee et al., 1996, Abdallah et al., 

1996). Even though cellular-specific promoter driven suicide gene therapy showed 

promising results, leaky expression of the tissue specific promoters in non-targeted cells 
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has been reported (Gommans et al., 2006). Therefore, alternative strategies may be 

essential in addition to the cell-type specific promoter regulation of the gene therapy. The 

use of microRNA (miRNA) regulation, adjacent to the use of the cell type-specific 

promoter, could provide another layer of control by which transgene expression can be 

restricted to brain metastases TAMs in contrast to other M2-like macrophages at other 

sites. MiRNAs are small, non-coding RNAs, that regulate various cellular functions and 

are known to mediate RNA interference (RNAi) to posttranscriptionally regulate gene 

expression is well known (Wang and Lee, 2009). Binding of endogenous miRNAs to 

complementary miRNA-targeting elements (miRTs) promotes translational inactivation 

and/or RNA degradation. Each cell contains a diverse population of miRNAs, and the 

abundance of individual miRNA varies greatly between different cell lineages and 

different tissues. Introducing miRTs that are recognised by a cell type-specific miRNA, 

into the 3’UTR (untranslated region) of the transgene of the gene therapy vector could 

be an effective way to knock down the expression of a therapeutic gene in undesired cell 

types. Recently, an approach allowed the transgene expression only in targeted 

glioblastoma cancer cells without any expression in normal astrocytic cells of the same 

lineage. To this end, Wu et al. (2009) engineered the glial fibrillary acidic protein (GFAP) 

promoter driven tissue specific gene expression vector along with the target sequences 

for several deregulated miRNAs that were introduced into the 3’UTR of the transgene. 

Another tissue-specific, miRNA-regulated dual control suicide gene therapy vector was 

engineered by Danda et al. (2013) to selectively express the suicide gene in EpCAM 

overexpressing cells. Normal retinal glial cells overexpress let-7 miRNAs and let-7b 

expression was found to be down regulated in retinoblastoma tumours. Therefore, let-7b 

miRNA target sequences were cloned into the 3’UTR of HSV TK suicide gene driven by 

EpCAM promoter. 

The use of cell-specific promoters in gene therapy ensures therapeutic effects in desired 

cells or tissues, and limits side effects caused by gene expression in non-target cells. 

However, cellular promoters in gene therapy have demonstrated relatively weak 

transcriptional activity compared with viral promoters (Nicklin et al., 2001, Liu et al., 

2008). One strategy of enhancing the expression of transgenes is to combine the cell-

specific promoter with a viral transcriptional regulatory element. Several studies added 

a CMV enhancer region 5’ to a cell-specific promoter to increase its transcriptional 

activity (Robinson et al., 1995, Yew et al., 1997, Sawicki et al., 1998, Yew et al., 2001, 

Liu et al., 2004). Another strategy to enhance the activity of cell-specific promoters 

without the loss of the cell type specificity is transcriptional amplification strategy (TAS). 

This strategy uses the cell-specific promoter to drive simultaneous expression of the 
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desired transgene and a strong artificial transcriptional activator to potentiate 

transcription by binding to the specific binding sites introduced into the promoter. This 

strategy has been implemented successfully in gene therapies to enhance transgene 

expression from weak cell-specific promoters (Nettelbeck et al., 1998, Iyer et al., 2001, 

Liu et al., 2006). However, lentiviral vectors have a modest packaging capacity of 

approximately 8 kb (Davidson and Breakefield, 2003), which limits this dual promoter 

system when longer promoters (e.g. > 2 kb) have to be used. 

Further investigations are needed to find suitable promoter candidates to drive the tissue-

specific expression of therapeutic molecules in the cell-based therapy to treat brain 

metastases, including promoter studies with altered promoter clones as discussed. 

Furthermore, additional regulatory DNA elements, such as enhancers, silencers and 

insulators that can be scattered over a distance of 100 kb for each gene should be 

investigated and their possible incorporation into the expression vectors considered. 

 

 



 

 

 

 

 

 

 

6. Discussion and future work 
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Treatment options for brain metastases are strongly limited by the poor access of drugs 

into the brain (Lockman et al., 2010). This study demonstrated the development of an 

HSC-based therapy that has the potential to overcome these limitations. To this end, 

HSCs and their progeny were exploited as cellular delivery vehicles for the delivery of 

genetically encoded therapeutic molecules into brain metastases. 

First, brain metastases-infiltrating cell populations in preclinical brain metastases models 

were investigated. The homing of microglia/macrophages to brain metastases has 

already been demonstrated by various studies (He et al., 2006, Davoust et al., 2008, 

Lorger and Felding-Habermann, 2010). To elucidate the contribution of the two myeloid 

cell populations in brain metastases individually, a flow cytometry analysis of murine 

brain metastases tissue was performed. This allowed us to distinguish between 

macrophages and microglia. The analysis revealed that brain metastases were 

predominantly infiltrated by myeloid cells and the majority of these cells expressed high 

levels of CD45 and CD11b, characteristic of macrophages (Davoust et al., 2008, 

Sedgwick et al., 1991). Analysis of patient-derived brain metastases tissue also indicated 

strong presence of macrophages. Notably, although immunofluorescence analysis does 

not allow a clear distinction between macrophages and microglia, the majority of CD68+ 

cells in human brain metastases tissue showed elongated spindle-shape morphology, 

which has been shown to be characteristic of macrophages (Yamasaki et al., 2014). 

Phenotypic analysis of brain metastases in chimeric mice with GFP-tagged bm 

demonstrated that the dominant infiltrating myeloid cell population originates from the 

bone marrow. Moreover, this demonstrated the efficient delivery of GFP to brain lesions 

by the myeloid progeny of HSCs that have been genetically engineered to express GFP. 

Therefore this experiment served as a proof-of-principle for the HSC-based cell therapy 

targeting brain metastases. 

Following the demonstration of GFP delivery to brain lesion by the HSC progeny, it was 

further investigated whether an enzyme prodrug approach had a therapeutic effect on 

experimental brain metastases. However, constitutive expression of the bacterial 

enzyme by the HSC progeny, in combination with prodrug administration, showed no 

detectable therapeutic effect in brain metastases-bearing mice. This may have been due 

to the possible immunogenic potential of constitutively expressed enzyme. Therefore, 

the constitutively active UbC promoter was replaced by a Dox-inducible promoter. The 

functionality of the inducible enzyme prodrug system was successfully demonstrated in 

vitro and in vivo. However, this approach still needs to be tested in the in vivo HSC-based 

therapy setting. 
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In addition to homing to brain metastases, the progeny of HSCs have also been shown 

to infiltrate other organs. In the context of the cell therapy this could lead to the 

accumulation of therapeutic molecules at those sites, resulting in possible side effects of 

the therapy. To address this issue, three promoters with high specificity and activity in 

brain metastases-infiltrating TAMs were identified. These promoters could be used to 

restrict the delivery of genetically encoded therapeutic agents to brain metastases. So 

far, only one of the tested promoter-reporter constructs showed activity in vitro and in 

vivo. Therefore, promoter sequences need to be further optimised to identify optimal 

promoter constructs for the HSC-based therapy. Notably, all three promoter candidates 

also showed specific activity in macrophages infiltrating human brain metastases as 

opposed to the donor-matched blood. 

To conclude, this study demonstrated the feasibility of experimental HSC-based therapy 

to treat brain metastases and a potential for its translation into the clinic. The latter was 

substantiated by strong infiltration of macrophages into human brain metastases, as well 

as by the translatability of identified brain metastases-specific promoter candidates into 

human setting. 

 

6.1 Future work 

In various ways, the results of this thesis could potentially be used for further 

development of the cell-based therapy.  

The developed inducible CD/5-FC approach still needs to be tested in the in vivo HSC-

based therapy setting. Once therapeutic efficacy in brain metastases is demonstrated, 

this therapeutic approach could be investigated in a cell-based therapy to treat brain 

metastases using human HSCs in immunocompromised mice, such as 

NOD/SCID/IL2rγKO.  

Further, as brain tumour specificity of this cell therapy could be demonstrated, a large 

spectrum of other therapeutic molecules can be delivered to target brain metastases. 

Examples for possible therapeutic options include cytokines or chemokines for 

immunomodulation, monoclonal antibodies, or receptor-targeting secreted peptides. The 

therapeutic effect of these on experimental brain metastases has to be analysed first. 

Throughout this study low lentiviral transduction efficiency was a problem. Higher 

reconstitution rates, as demonstrated by others (Pawliuk et al., 2001, Tabatabai et al., 

2010), could not be achieved. It has already been discussed that the Lenti-X provirus 
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quantitation kit represents a better method to determine virus titre. Moreover, to achieve 

higher transduction efficiency different steps of the lentiviral transduction protocol can be 

modified, which has been discussed in chapter 3.7.  

Additionally, the tumorigenic potential of transduced HSCs should also be investigated. 

To this end, the insertion sites of the transgene should be analysed towards their 

proximity to proto-oncogenes or tumour suppressors. 

Sequences of promoters that have been demonstrated to be specifically active in brain 

metastases-infiltrating TAMs have to be optimised to ensure activity as well as cell type-

specific expression in vitro and in vivo. These sequences can then be used to establish 

the cell-based therapy with increased specificity. Thereby, these promoters could drive 

tissue-specific expression of therapeutic molecules in the brain tumour-infiltrating 

progeny of the administered HSCs.  

The TAM-specific promoters could also be used for other investigations. For example, 

the contribution of macrophages and microglia to brain tumours could be investigated 

individually. There are two studies where depletion of myeloid cells had opposing effects 

on experimental glioma growth (Galarneau et al., 2007, Markovic et al., 2009). Both 

studies used the same transgenic mouse model. In those studies the thymidine kinase 

gene was under the control of the myeloid-specific CD11b promoter, which allows 

depletion of myeloid cells following the administration of the prodrug ganciclovir (Gowing 

et al., 2006). The discrepancy in results could be due to different routes of ganciclovir 

administration, which could have caused the depletion of different cell types. However, 

these studies could be improved by the use of promoters that are specific to the individual 

myeloid cell populations, macrophages and microglia. In this thesis, brain metastases 

TAM-specific promoters (Dab2, MMP14 and Spp1) have been identified. If it can be 

demonstrated that these promoters are not active in microglia, they could be used for 

this purpose.  

Moreover, with this study TAMs have been identified to be the largest bm-derived brain 

metastases-infiltrating population and their M2 phenotype (anti-inflammatory, pro-

angiogenic and tumour-promoting properties) was assessed. Different strategies in 

regard to these findings can be applied in a cell-based therapy to treat brain metastases. 

For example, macrophages rather than HSCs could be directly used as cellular delivery 

vehicles. Thereby, the cell-based therapy would be more time efficient, as the process 

of a BMT is not required. To this end, in vivo studies of tumour-tropism, half-life, best site 

of administration and amount of injected and genetically engineered macrophages has 

to be investigated. 
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Further, the HSC-based cell therapy could also be combined with a strategy to re-

polarise M2-like TAMs into tumour-suppressive M1 TAMs or to therapeutically delete the 

M2-like TAMs. Various options for each of these strategies have been discussed in 

chapter 3.7. These therapeutic strategies have to be tested in vitro first before their 

therapeutic efficacy in combination with the HSC-based cell therapy in preclinical brain 

metastasis models can be established. To avoid any potential effects on other leukocyte 

populations caused by TAM-targeted HSC-based therapies, target specificity would also 

need to be addressed. Target specificity could be achieved with brain metastases TAM-

specific promoters. 

In conclusion, there are many further avenues of investigation that can be pursued from 

this study. This work, if continued, may lead to a clinical therapy to treat brain 

metastases. 
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Appendix A 

The top 150 differentially expressed probes 

between myeloid cells of different tissues 
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Supplemental Figure S 1: List of the top 150 probes differentially expressed between bone 
marrow-derived myeloid cells isolated from brain metastases and myeloid cells isolated 
from the spleen or bone marrow (magnification of heatmap of Figure 5-2D). 
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Appendix B 

Quantification of semiquantitative RT-PCR 
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Supplemental Figure S 2: Quantification of semi-quantitative RT-PCR (Figure 5.3A). The 
band intensities of the gel pictures were analysed with ImageJ and normalised to GAPDH band 
intensities. Statistical significance determined with one-way ANOVA using the Dunnett's multiple 
comparisons method, with alpha=5% (ns: not significant, *: P<0.05, **: P<0.01, ***: P<0.001, ****: 
P<0.0001). 
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Appendix C 

Sequences of plasmids 

pFUW-sCD 

GTCGACGGATCGGGAGATCTCCCGATCCCCTATGGTGCACTCTCAGTACAATCTGCTCTG
ATGCCGCATAGTTAAGCCAGTATCTGCTCCCTGCTTGTGTGTTGGAGGTCGCTGAGTAGTG
CGCGAGCAAAATTTAAGCTACAACAAGGCAAGGCTTGACCGACAATTGCATGAAGAATCTG
CTTAGGGTTAGGCGTTTTGCGCTGCTTCGCGATGTACGGGCCAGATATACGCGTTGACATT
GATTATTGACTAGTTATTAATAGTAATCAATTACGGGGTCATTAGTTCATAGCCCATATATGG
AGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCC
GCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTG
ACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCAT
ATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCC
CAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTAT
TACCATGGTGATGCGGTTTTGGCAGTACATCAATGGGCGTGGATAGCGGTTTGACTCACG
GGGATTTCCAAGTCTCCACCCCATTGACGTCAATGGGAGTTTGTTTTGGCACCAAAATCAA
CGGGACTTTCCAAAATGTCGTAACAACTCCGCCCCATTGACGCAAATGGGCGGTAGGCGT
GTACGGTGGGAGGTCTATATAAGCAGCGCGTTTTGCCTGTACTGGGTCTCTCTGGTTAGAC
CAGATCTGAGCCTGGGAGCTCTCTGGCTAACTAGGGAACCCACTGCTTAAGCCTCAATAAA
GCTTGCCTTGAGTGCTTCAAGTAGTGTGTGCCCGTCTGTTGTGTGACTCTGGTAACTAGAG
ATCCCTCAGACCCTTTTAGTCAGTGTGGAAAATCTCTAGCAGTGGCGCCCGAACAGGGACT
TGAAAGCGAAAGGGAAACCAGAGGAGCTCTCTCGACGCAGGACTCGGCTTGCTGAAGCG
CGCACGGCAAGAGGCGAGGGGCGGCGACTGGTGAGTACGCCAAAAATTTTGACTAGCGG
AGGCTAGAAGGAGAGAGATGGGTGCGAGAGCGTCAGTATTAAGCGGGGGAGAATTAGAT
CGCGATGGGAAAAAATTCGGTTAAGGCCAGGGGGAAAGAAAAAATATAAATTAAAACATAT
AGTATGGGCAAGCAGGGAGCTAGAACGATTCGCAGTTAATCCTGGCCTGTTAGAAACATCA
GAAGGCTGTAGACAAATACTGGGACAGCTACAACCATCCCTTCAGACAGGATCAGAAGAA
CTTAGATCATTATATAATACAGTAGCAACCCTCTATTGTGTGCATCAAAGGATAGAGATAAA
AGACACCAAGGAAGCTTTAGACAAGATAGAGGAAGAGCAAAACAAAAGTAAGACCACCGC
ACAGCAAGCGGCCGCTGATCTTCAGACCTGGAGGAGGAGATATGAGGGACAATTGGAGAA
GTGAATTATATAAATATAAAGTAGTAAAAATTGAACCATTAGGAGTAGCACCCACCAAGGCA
AAGAGAAGAGTGGTGCAGAGAGAAAAAAGAGCAGTGGGAATAGGAGCTTTGTTCCTTGGG
TTCTTGGGAGCAGCAGGAAGCACTATGGGCGCAGCGTCAATGACGCTGACGGTACAGGC
CAGACAATTATTGTCTGGTATAGTGCAGCAGCAGAACAATTTGCTGAGGGCTATTGAGGCG
CAACAGCATCTGTTGCAACTCACAGTCTGGGGCATCAAGCAGCTCCAGGCAAGAATCCTG
GCTGTGGAAAGATACCTAAAGGATCAACAGCTCCTGGGGATTTGGGGTTGCTCTGGAAAA
CTCATTTGCACCACTGCTGTGCCTTGGAATGCTAGTTGGAGTAATAAATCTCTGGAACAGA
TTTGGAATCACACGACCTGGATGGAGTGGGACAGAGAAATTAACAATTACACAAGCTTAAT
ACACTCCTTAATTGAAGAATCGCAAAACCAGCAAGAAAAGAATGAACAAGAATTATTGGAAT
TAGATAAATGGGCAAGTTTGTGGAATTGGTTTAACATAACAAATTGGCTGTGGTATATAAAA
TTATTCATAATGATAGTAGGAGGCTTGGTAGGTTTAAGAATAGTTTTTGCTGTACTTTCTATA
GTGAATAGAGTTAGGCAGGGATATTCACCATTATCGTTTCAGACCCACCTCCCAACCCCGA
GGGGACCCGACAGGCCCGAAGGAATAGAAGAAGAAGGTGGAGAGAGAGACAGAGACAGA
TCCATTCGATTAGTGAACGGATCGGCACTGCGTGCGCCAATTCTGCAGACAAATGGCAGTA
TTCATCCACAATTTTAAAAGAAAAGGGGGGATTGGGGGGTACAGTGCAGGGGAAAGAATA
GTAGACATAATAGCAACAGACATACAAACTAAAGAATTACAAAAACAAATTACAAAAATTCAA
AATTTTCGGGTTTATTACAGGGACAGCAGAGATCCAGTTTGGTTAATTAACCCGTGTCGGC
TCCAGATCTGGCCTCCGCGCCGGGTTTTGGCGCCTCCCGCGGGCGCCCCCCTCCTCACG
GCGAGCGCTGCCACGTCAGACGAAGGGCGCAGCGAGCGTCCTGATCCTTCCGCCCGGAC
GCTCAGGACAGCGGCCCGCTGCTCATAAGACTCGGCCTTAGAACCCCAGTATCAGCAGAA
GGACATTTTAGGACGGGACTTGGGTGACTCTAGGGCACTGGTTTTCTTTCCAGAGAGCGG
AACAGGCGAGGAAAAGTAGTCCCTTCTCGGCGATTCTGCGGAGGGATCTCCGTGGGGCG
GTGAACGCCGATGATTATATAAGGACGCGCCGGGTGTGGCACAGCTAGTTCCGTCGCAGC
CGGGATTTGGGTCGCGGTTCTTGTTTGTGGATCGCTGTGATCGTCACTTGGTGAGTAGCG
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GGCTGCTGGGCTGGCCGGGGCTTTCGTGGCCGCCGGGCCGCTCGGTGGGACGGAAGCG
TGTGGAGAGACCGCCAAGGGCTGTAGTCTGGGTCCGCGAGCAAGGTTGCCCTGAACTGG
GGGTTGGGGGGAGCGCAGCAAAATGGCGGCTGTTCCCGAGTCTTGAATGGAAGACGCTT
GTGAGGCGGGCTGTGAGGTCGTTGAAACAAGGTGGGGGGCATGGTGGGCGGCAAGAAC
CCAAGGTCTTGAGGCCTTCGCTAATGCGGGAAAGCTCTTATTCGGGTGAGATGGGCTGGG
GCACCATCTGGGGACCCTGACGTGAAGTTTGTCACTGACTGGAGAACTCGGTTTGTCGTC
TGTTGCGGGGGCGGCAGTTATGGCGGTGCCGTTGGGCAGTGCACCCGTACCTTTGGGAG
CGCGCGCCCTCGTCGTGTCGTGACGTCACCCGTTCTGTTGGCTTATAATGCAGGGTGGGG
CCACCTGCCGGTAGGTGTGCGGTAGGCTTTTCTCCGTCGCAGGACGCAGGGTTCGGGCC
TAGGGTAGGCTCTCCTGAATCGACAGGCGCCGGACCTCTGGTGAGGGGAGGGATAAGTG
AGGCGTCAGTTTCTTTGGTCGGTTTTATGTACCTATCTTCTTAAGTAGCTGAAGCTCCGGTT
TTGAACTATGCGCTCGGGGTTGGCGAGTGTGTTTTGTGAAGTTTTTTAGGCACCTTTTGAA
ATGTAATCATTTGGGTCAATATGTAATTTTCAGTGTTAGACTAGTAAATTGTCCGCTAAATTC
TGGCCGTTTTTGGCTTTTTTGTTAGACGAAGCTTGGGCTGCAGGTCGACTCTAGAGGATCC
GTTaagcaatcatggatgcaatgaagagagggctctgctgtgtgctgctgctgtgtggagcagtcttcgtttcgcccagccaggaaat
ccatgcccgattcagaagaatgagcaataacgctttacaaacaattattaacgcccggttaccaggcgaagaggggctgtggcaga
ttcatctgcaggacggaaaaatcagcgccattgatgcgcaatccggcgtgatgcccataactgaaaacagcctggatgccgaacaa
ggtttagttataccgccgtttgtggagccacatattcacctggacaccacgcaaaccgccggacaaccgaactggaatcagtccggc
acgctgtttgaaggcattgaacgctgggccgagcgcaaagcgttattaacccatgacgatgtgaaacaacgcgcatggcaaacgct
gaaatggcagattgccaacggcattcagcatgtgcgtacccatgtcgatgtttcggatgcaacgctaactgcgctgaaagcaatgctg
gaagtgaagcaggaagtcgcgccgtggattgatctgcaaatcgtcgccttccctcaggaagggattttgtcgtatcccaacggtgaag
cgttgctggaagaggcgttacgcttaggggcagatgtagtgggggcgattccgcattttgaatttacccgtgaatacggcgtggagtcg
ctgcataaaaccttcgccctggcgcaaaaatacgaccgtctcatcgacgttcactgtgatgagatcgatgacgagcagtcgcgctttgt
cgaaaccgttgctgccctggcgcaccatgaaggcatgggcgcgcgagtcaccgccagccacaccacggcaatgcactcctataac
ggggcgtatacctcacgcctgttccgcttgctgaaaatgtccggtattaactttgtcgccaacccgctggtcaatattcatctgcaaggac
gtttcgatacgtatccaaaacgtcgcggcatcacgcgcgttaaagagatgctggagtccggcattaacgtctgctttggtcacgatgatg
tcttcgatccgtggtatccgctgggaacggcgaatatgctgcaagtgctgcatatggggctgcatgtttgccagttgatgggctacgggc
agattaacgatggcctgaatttaatcacccaccacagcgcaaggacgttgaatttgcaggattacggcattgccgccggaaacagcg
ccaacctgattatcctgccggctgaaaatgggtttgatgcgctgcgccgtcaggttccggtacgttattcggtacgtggcggcaaggtga
ttgccagcacacaaccggcacaaaccaccgtatatctggagcagccagaagccatcgattacaaacgttgaAACCCTCGAG
GGCGCGCCGAATTCGATATCAAGCTTATCGATAATCAACCTCTGGATTACAAAATTTGTGAA
AGATTGACTGGTATTCTTAACTATGTTGCTCCTTTTACGCTATGTGGATACGCTGCTTTAAT
GCCTTTGTATCATGCTATTGCTTCCCGTATGGCTTTCATTTTCTCCTCCTTGTATAAATCCTG
GTTGCTGTCTCTTTATGAGGAGTTGTGGCCCGTTGTCAGGCAACGTGGCGTGGTGTGCAC
TGTGTTTGCTGACGCAACCCCCACTGGTTGGGGCATTGCCACCACCTGTCAGCTCCTTTCC
GGGACTTTCGCTTTCCCCCTCCCTATTGCCACGGCGGAACTCATCGCCGCCTGCCTTGCC
CGCTGCTGGACAGGGGCTCGGCTGTTGGGCACTGACAATTCCGTGGTGTTGTCGGGGAA
ATCATCGTCCTTTCCTTGGCTGCTCGCCTGTGTTGCCACCTGGATTCTGCGCGGGACGTC
CTTCTGCTACGTCCCTTCGGCCCTCAATCCAGCGGACCTTCCTTCCCGCGGCCTGCTGCC
GGCTCTGCGGCCTCTTCCGCGTCTTCGCCTTCGCCCTCAGACGAGTCGGATCTCCCTTTG
GGCCGCCTCCCCGCATCGATACCGTCGACCTCGAGACCTAGAAAAACATGGAGCAATCAC
AAGTAGCAATACAGCAGCTACCAATGCTGATTGTGCCTGGCTAGAAGCACAAGAGGAGGA
GGAGGTGGGTTTTCCAGTCACACCTCAGGTACCTTTAAGACCAATGACTTACAAGGCAGCT
GTAGATCTTAGCCACTTTTTAAAAGAAAAGGGGGGACTGGAAGGGCTAATTCACTCCCAAC
GAAGACAAGATATCCTTGATCTGTGGATCTACCACACACAAGGCTACTTCCCTGATTGGCA
GAACTACACACCAGGGCCAGGGATCAGATATCCACTGACCTTTGGATGGTGCTACAAGCT
AGTACCAGTTGAGCAAGAGAAGGTAGAAGAAGCCAATGAAGGAGAGAACACCCGCTTGTT
ACACCCTGTGAGCCTGCATGGGATGGATGACCCGGAGAGAGAAGTATTAGAGTGGAGGTT
TGACAGCCGCCTAGCATTTCATCACATGGCCCGAGAGCTGCATCCGGACTGTACTGGGTC
TCTCTGGTTAGACCAGATCTGAGCCTGGGAGCTCTCTGGCTAACTAGGGAACCCACTGCTT
AAGCCTCAATAAAGCTTGCCTTGAGTGCTTCAAGTAGTGTGTGCCCGTCTGTTGTGTGACT
CTGGTAACTAGAGATCCCTCAGACCCTTTTAGTCAGTGTGGAAAATCTCTAGCAGGGCCCG
TTTAAACCCGCTGATCAGCCTCGACTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCC
CTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAAT
GAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGTGGGG
CAGGACAGCAAGGGGGAGGATTGGGAAGACAATAGCAGGCATGCTGGGGATGCGGTGGG
CTCTATGGCTTCTGAGGCGGAAAGAACCAGCTGGGGCTCTAGGGGGTATCCCCACGCGC
CCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACA
CTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCG
CCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTT
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ACGGCACCTCGACCCCAAAAAACTTGATTAGGGTGATGGTTCACGTAGTGGGCCATCGCC
CTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGT
TCCAAACTGGAACAACACTCAACCCTATCTCGGTCTATTCTTTTGATTTATAAGGGATTTTG
CCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATTAATT
CTGTGGAATGTGTGTCAGTTAGGGTGTGGAAAGTCCCCAGGCTCCCCAGCAGGCAGAAGT
ATGCAAAGCATGCATCTCAATTAGTCAGCAACCAGGTGTGGAAAGTCCCCAGGCTCCCCA
GCAGGCAGAAGTATGCAAAGCATGCATCTCAATTAGTCAGCAACCATAGTCCCGCCCCTAA
CTCCGCCCATCCCGCCCCTAACTCCGCCCAGTTCCGCCCATTCTCCGCCCCATGGCTGAC
TAATTTTTTTTATTTATGCAGAGGCCGAGGCCGCCTCTGCCTCTGAGCTATTCCAGAAGTAG
TGAGGAGGCTTTTTTGGAGGCCTAGGCTTTTGCAAAAAGCTCCCGGGAGCTTGTATATCCA
TTTTCGGATCTGATCAGCACGTGTTGACAATTAATCATCGGCATAGTATATCGGCATAGTAT
AATACGACAAGGTGAGGAACTAAACCATGGCCAAGTTGACCAGTGCCGTTCCGGTGCTCA
CCGCGCGCGACGTCGCCGGAGCGGTCGAGTTCTGGACCGACCGGCTCGGGTTCTCCCG
GGACTTCGTGGAGGACGACTTCGCCGGTGTGGTCCGGGACGACGTGACCCTGTTCATCA
GCGCGGTCCAGGACCAGGTGGTGCCGGACAACACCCTGGCCTGGGTGTGGGTGCGCGG
CCTGGACGAGCTGTACGCCGAGTGGTCGGAGGTCGTGTCCACGAACTTCCGGGACGCCT
CCGGGCCGGCCATGACCGAGATCGGCGAGCAGCCGTGGGGGCGGGAGTTCGCCCTGCG
CGACCCGGCCGGCAACTGCGTGCACTTCGTGGCCGAGGAGCAGGACTGACACGTGCTAC
GAGATTTCGATTCCACCGCCGCCTTCTATGAAAGGTTGGGCTTCGGAATCGTTTTCCGGGA
CGCCGGCTGGATGATCCTCCAGCGCGGGGATCTCATGCTGGAGTTCTTCGCCCACCCCAA
CTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCACAAATAA
AGCATTTTTTTCACTGCATTCTAGTTGTGGTTTGTCCAAACTCATCAATGTATCTTATCATGT
CTGTATACCGTCGACCTCTAGCTAGAGCTTGGCGTAATCATGGTCATAGCTGTTTCCTGTG
TGAAATTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAG
CCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTT
CCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAG
GCGGTTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCG
TTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAAT
CAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGT
AAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAA
AATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTT
CCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTG
TCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCA
GTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCG
ACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATC
GCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTA
CAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCTG
CGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAA
ACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAG
GATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTC
ACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTA
AAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATG
CTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGAC
TCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAA
TGATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCG
GAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTG
TTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATT
GCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCC
AACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGG
TCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCA
CTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTC
AACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAATA
CGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTT
CGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCG
TGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAG
GAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACT
CTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATT
TGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCA
CCTGAC 

Cytosine deaminase   tPA  
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pFUW-sCDHA 

GTCGACGGATCGGGAGATCTCCCGATCCCCTATGGTGCACTCTCAGTACAATCTGCTCTG
ATGCCGCATAGTTAAGCCAGTATCTGCTCCCTGCTTGTGTGTTGGAGGTCGCTGAGTAGTG
CGCGAGCAAAATTTAAGCTACAACAAGGCAAGGCTTGACCGACAATTGCATGAAGAATCTG
CTTAGGGTTAGGCGTTTTGCGCTGCTTCGCGATGTACGGGCCAGATATACGCGTTGACATT
GATTATTGACTAGTTATTAATAGTAATCAATTACGGGGTCATTAGTTCATAGCCCATATATGG
AGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCC
GCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTG
ACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCAT
ATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCC
CAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTAT
TACCATGGTGATGCGGTTTTGGCAGTACATCAATGGGCGTGGATAGCGGTTTGACTCACG
GGGATTTCCAAGTCTCCACCCCATTGACGTCAATGGGAGTTTGTTTTGGCACCAAAATCAA
CGGGACTTTCCAAAATGTCGTAACAACTCCGCCCCATTGACGCAAATGGGCGGTAGGCGT
GTACGGTGGGAGGTCTATATAAGCAGCGCGTTTTGCCTGTACTGGGTCTCTCTGGTTAGAC
CAGATCTGAGCCTGGGAGCTCTCTGGCTAACTAGGGAACCCACTGCTTAAGCCTCAATAAA
GCTTGCCTTGAGTGCTTCAAGTAGTGTGTGCCCGTCTGTTGTGTGACTCTGGTAACTAGAG
ATCCCTCAGACCCTTTTAGTCAGTGTGGAAAATCTCTAGCAGTGGCGCCCGAACAGGGACT
TGAAAGCGAAAGGGAAACCAGAGGAGCTCTCTCGACGCAGGACTCGGCTTGCTGAAGCG
CGCACGGCAAGAGGCGAGGGGCGGCGACTGGTGAGTACGCCAAAAATTTTGACTAGCGG
AGGCTAGAAGGAGAGAGATGGGTGCGAGAGCGTCAGTATTAAGCGGGGGAGAATTAGAT
CGCGATGGGAAAAAATTCGGTTAAGGCCAGGGGGAAAGAAAAAATATAAATTAAAACATAT
AGTATGGGCAAGCAGGGAGCTAGAACGATTCGCAGTTAATCCTGGCCTGTTAGAAACATCA
GAAGGCTGTAGACAAATACTGGGACAGCTACAACCATCCCTTCAGACAGGATCAGAAGAA
CTTAGATCATTATATAATACAGTAGCAACCCTCTATTGTGTGCATCAAAGGATAGAGATAAA
AGACACCAAGGAAGCTTTAGACAAGATAGAGGAAGAGCAAAACAAAAGTAAGACCACCGC
ACAGCAAGCGGCCGCTGATCTTCAGACCTGGAGGAGGAGATATGAGGGACAATTGGAGAA
GTGAATTATATAAATATAAAGTAGTAAAAATTGAACCATTAGGAGTAGCACCCACCAAGGCA
AAGAGAAGAGTGGTGCAGAGAGAAAAAAGAGCAGTGGGAATAGGAGCTTTGTTCCTTGGG
TTCTTGGGAGCAGCAGGAAGCACTATGGGCGCAGCGTCAATGACGCTGACGGTACAGGC
CAGACAATTATTGTCTGGTATAGTGCAGCAGCAGAACAATTTGCTGAGGGCTATTGAGGCG
CAACAGCATCTGTTGCAACTCACAGTCTGGGGCATCAAGCAGCTCCAGGCAAGAATCCTG
GCTGTGGAAAGATACCTAAAGGATCAACAGCTCCTGGGGATTTGGGGTTGCTCTGGAAAA
CTCATTTGCACCACTGCTGTGCCTTGGAATGCTAGTTGGAGTAATAAATCTCTGGAACAGA
TTTGGAATCACACGACCTGGATGGAGTGGGACAGAGAAATTAACAATTACACAAGCTTAAT
ACACTCCTTAATTGAAGAATCGCAAAACCAGCAAGAAAAGAATGAACAAGAATTATTGGAAT
TAGATAAATGGGCAAGTTTGTGGAATTGGTTTAACATAACAAATTGGCTGTGGTATATAAAA
TTATTCATAATGATAGTAGGAGGCTTGGTAGGTTTAAGAATAGTTTTTGCTGTACTTTCTATA
GTGAATAGAGTTAGGCAGGGATATTCACCATTATCGTTTCAGACCCACCTCCCAACCCCGA
GGGGACCCGACAGGCCCGAAGGAATAGAAGAAGAAGGTGGAGAGAGAGACAGAGACAGA
TCCATTCGATTAGTGAACGGATCGGCACTGCGTGCGCCAATTCTGCAGACAAATGGCAGTA
TTCATCCACAATTTTAAAAGAAAAGGGGGGATTGGGGGGTACAGTGCAGGGGAAAGAATA
GTAGACATAATAGCAACAGACATACAAACTAAAGAATTACAAAAACAAATTACAAAAATTCAA
AATTTTCGGGTTTATTACAGGGACAGCAGAGATCCAGTTTGGTTAATTAACCCGTGTCGGC
TCCAGATCTGGCCTCCGCGCCGGGTTTTGGCGCCTCCCGCGGGCGCCCCCCTCCTCACG
GCGAGCGCTGCCACGTCAGACGAAGGGCGCAGCGAGCGTCCTGATCCTTCCGCCCGGAC
GCTCAGGACAGCGGCCCGCTGCTCATAAGACTCGGCCTTAGAACCCCAGTATCAGCAGAA
GGACATTTTAGGACGGGACTTGGGTGACTCTAGGGCACTGGTTTTCTTTCCAGAGAGCGG
AACAGGCGAGGAAAAGTAGTCCCTTCTCGGCGATTCTGCGGAGGGATCTCCGTGGGGCG
GTGAACGCCGATGATTATATAAGGACGCGCCGGGTGTGGCACAGCTAGTTCCGTCGCAGC
CGGGATTTGGGTCGCGGTTCTTGTTTGTGGATCGCTGTGATCGTCACTTGGTGAGTAGCG
GGCTGCTGGGCTGGCCGGGGCTTTCGTGGCCGCCGGGCCGCTCGGTGGGACGGAAGCG
TGTGGAGAGACCGCCAAGGGCTGTAGTCTGGGTCCGCGAGCAAGGTTGCCCTGAACTGG
GGGTTGGGGGGAGCGCAGCAAAATGGCGGCTGTTCCCGAGTCTTGAATGGAAGACGCTT
GTGAGGCGGGCTGTGAGGTCGTTGAAACAAGGTGGGGGGCATGGTGGGCGGCAAGAAC
CCAAGGTCTTGAGGCCTTCGCTAATGCGGGAAAGCTCTTATTCGGGTGAGATGGGCTGGG
GCACCATCTGGGGACCCTGACGTGAAGTTTGTCACTGACTGGAGAACTCGGTTTGTCGTC
TGTTGCGGGGGCGGCAGTTATGGCGGTGCCGTTGGGCAGTGCACCCGTACCTTTGGGAG
CGCGCGCCCTCGTCGTGTCGTGACGTCACCCGTTCTGTTGGCTTATAATGCAGGGTGGGG
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CCACCTGCCGGTAGGTGTGCGGTAGGCTTTTCTCCGTCGCAGGACGCAGGGTTCGGGCC
TAGGGTAGGCTCTCCTGAATCGACAGGCGCCGGACCTCTGGTGAGGGGAGGGATAAGTG
AGGCGTCAGTTTCTTTGGTCGGTTTTATGTACCTATCTTCTTAAGTAGCTGAAGCTCCGGTT
TTGAACTATGCGCTCGGGGTTGGCGAGTGTGTTTTGTGAAGTTTTTTAGGCACCTTTTGAA
ATGTAATCATTTGGGTCAATATGTAATTTTCAGTGTTAGACTAGTAAATTGTCCGCTAAATTC
TGGCCGTTTTTGGCTTTTTTGTTAGACGAAGCTTGGGCTGCAGGTCGACTCTAGAGGATCC
GTTaagcaatcatggatgcaatgaagagagggctctgctgtgtgctgctgctgtgtggagcagtcttcgtttcgcccagccaggaaat
ccatgcccgattcagaagaatgagcaataacgctttacaaacaattattaacgcccggttaccaggcgaagaggggctgtggcaga
ttcatctgcaggacggaaaaatcagcgccattgatgcgcaatccggcgtgatgcccataactgaaaacagcctggatgccgaacaa
ggtttagttataccgccgtttgtggagccacatattcacctggacaccacgcaaaccgccggacaaccgaactggaatcagtccggc
acgctgtttgaaggcattgaacgctgggccgagcgcaaagcgttattaacccatgacgatgtgaaacaacgcgcatggcaaacgct
gaaatggcagattgccaacggcattcagcatgtgcgtacccatgtcgatgtttcggatgcaacgctaactgcgctgaaagcaatgctg
gaagtgaagcaggaagtcgcgccgtggattgatctgcaaatcgtcgccttccctcaggaagggattttgtcgtatcccaacggtgaag
cgttgctggaagaggcgttacgcttaggggcagatgtagtgggggcgattccgcattttgaatttacccgtgaatacggcgtggagtcg
ctgcataaaaccttcgccctggcgcaaaaatacgaccgtctcatcgacgttcactgtgatgagatcgatgacgagcagtcgcgctttgt
cgaaaccgttgctgccctggcgcaccatgaaggcatgggcgcgcgagtcaccgccagccacaccacggcaatgcactcctataac
ggggcgtatacctcacgcctgttccgcttgctgaaaatgtccggtattaactttgtcgccaacccgctggtcaatattcatctgcaaggac
gtttcgatacgtatccaaaacgtcgcggcatcacgcgcgttaaagagatgctggagtccggcattaacgtctgctttggtcacgatgatg
tcttcgatccgtggtatccgctgggaacggcgaatatgctgcaagtgctgcatatggggctgcatgtttgccagttgatgggctacgggc
agattaacgatggcctgaatttaatcacccaccacagcgcaaggacgttgaatttgcaggattacggcattgccgccggaaacagcg
ccaacctgattatcctgccggctgaaaatgggtttgatgcgctgcgccgtcaggttccggtacgttattcggtacgtggcggcaaggtga
ttgccagcacacaaccggcacaaaccaccgtatatctggagcagccagaagccatcgattacaaacgttacccatacgacgtccc
agactacgcttctggatcttacccatacgacgtcccagactacgcttctggatcttacccatacgacgtcccagactacgcttctggatctt
acccatacgacgtcccagactacgcttctggatcttacccatacgacgtcccagactacgcttctggatcttacccatacgacgtccca
gactacgcttctggatcttacccatacgacgtcccagactacgcttgaAACCCTCGAGGGCGCGCCGAATTCGATA
TCAAGCTTATCGATAATCAACCTCTGGATTACAAAATTTGTGAAAGATTGACTGGTATTCTTA
ACTATGTTGCTCCTTTTACGCTATGTGGATACGCTGCTTTAATGCCTTTGTATCATGCTATT
GCTTCCCGTATGGCTTTCATTTTCTCCTCCTTGTATAAATCCTGGTTGCTGTCTCTTTATGA
GGAGTTGTGGCCCGTTGTCAGGCAACGTGGCGTGGTGTGCACTGTGTTTGCTGACGCAAC
CCCCACTGGTTGGGGCATTGCCACCACCTGTCAGCTCCTTTCCGGGACTTTCGCTTTCCC
CCTCCCTATTGCCACGGCGGAACTCATCGCCGCCTGCCTTGCCCGCTGCTGGACAGGGG
CTCGGCTGTTGGGCACTGACAATTCCGTGGTGTTGTCGGGGAAATCATCGTCCTTTCCTTG
GCTGCTCGCCTGTGTTGCCACCTGGATTCTGCGCGGGACGTCCTTCTGCTACGTCCCTTC
GGCCCTCAATCCAGCGGACCTTCCTTCCCGCGGCCTGCTGCCGGCTCTGCGGCCTCTTCC
GCGTCTTCGCCTTCGCCCTCAGACGAGTCGGATCTCCCTTTGGGCCGCCTCCCCGCATCG
ATACCGTCGACCTCGAGACCTAGAAAAACATGGAGCAATCACAAGTAGCAATACAGCAGCT
ACCAATGCTGATTGTGCCTGGCTAGAAGCACAAGAGGAGGAGGAGGTGGGTTTTCCAGTC
ACACCTCAGGTACCTTTAAGACCAATGACTTACAAGGCAGCTGTAGATCTTAGCCACTTTTT
AAAAGAAAAGGGGGGACTGGAAGGGCTAATTCACTCCCAACGAAGACAAGATATCCTTGAT
CTGTGGATCTACCACACACAAGGCTACTTCCCTGATTGGCAGAACTACACACCAGGGCCA
GGGATCAGATATCCACTGACCTTTGGATGGTGCTACAAGCTAGTACCAGTTGAGCAAGAGA
AGGTAGAAGAAGCCAATGAAGGAGAGAACACCCGCTTGTTACACCCTGTGAGCCTGCATG
GGATGGATGACCCGGAGAGAGAAGTATTAGAGTGGAGGTTTGACAGCCGCCTAGCATTTC
ATCACATGGCCCGAGAGCTGCATCCGGACTGTACTGGGTCTCTCTGGTTAGACCAGATCT
GAGCCTGGGAGCTCTCTGGCTAACTAGGGAACCCACTGCTTAAGCCTCAATAAAGCTTGC
CTTGAGTGCTTCAAGTAGTGTGTGCCCGTCTGTTGTGTGACTCTGGTAACTAGAGATCCCT
CAGACCCTTTTAGTCAGTGTGGAAAATCTCTAGCAGGGCCCGTTTAAACCCGCTGATCAGC
CTCGACTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTG
ACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATT
GTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAGGGGGAG
GATTGGGAAGACAATAGCAGGCATGCTGGGGATGCGGTGGGCTCTATGGCTTCTGAGGC
GGAAAGAACCAGCTGGGGCTCTAGGGGGTATCCCCACGCGCCCTGTAGCGGCGCATTAA
GCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCG
CCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAG
CTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAA
AAAACTTGATTAGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGC
CCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACT
CAACCCTATCTCGGTCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGCCTATTGGT
TAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATTAATTCTGTGGAATGTGTGTCAGTT
AGGGTGTGGAAAGTCCCCAGGCTCCCCAGCAGGCAGAAGTATGCAAAGCATGCATCTCAA
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TTAGTCAGCAACCAGGTGTGGAAAGTCCCCAGGCTCCCCAGCAGGCAGAAGTATGCAAAG
CATGCATCTCAATTAGTCAGCAACCATAGTCCCGCCCCTAACTCCGCCCATCCCGCCCCTA
ACTCCGCCCAGTTCCGCCCATTCTCCGCCCCATGGCTGACTAATTTTTTTTATTTATGCAGA
GGCCGAGGCCGCCTCTGCCTCTGAGCTATTCCAGAAGTAGTGAGGAGGCTTTTTTGGAGG
CCTAGGCTTTTGCAAAAAGCTCCCGGGAGCTTGTATATCCATTTTCGGATCTGATCAGCAC
GTGTTGACAATTAATCATCGGCATAGTATATCGGCATAGTATAATACGACAAGGTGAGGAA
CTAAACCATGGCCAAGTTGACCAGTGCCGTTCCGGTGCTCACCGCGCGCGACGTCGCCG
GAGCGGTCGAGTTCTGGACCGACCGGCTCGGGTTCTCCCGGGACTTCGTGGAGGACGAC
TTCGCCGGTGTGGTCCGGGACGACGTGACCCTGTTCATCAGCGCGGTCCAGGACCAGGT
GGTGCCGGACAACACCCTGGCCTGGGTGTGGGTGCGCGGCCTGGACGAGCTGTACGCC
GAGTGGTCGGAGGTCGTGTCCACGAACTTCCGGGACGCCTCCGGGCCGGCCATGACCGA
GATCGGCGAGCAGCCGTGGGGGCGGGAGTTCGCCCTGCGCGACCCGGCCGGCAACTGC
GTGCACTTCGTGGCCGAGGAGCAGGACTGACACGTGCTACGAGATTTCGATTCCACCGCC
GCCTTCTATGAAAGGTTGGGCTTCGGAATCGTTTTCCGGGACGCCGGCTGGATGATCCTC
CAGCGCGGGGATCTCATGCTGGAGTTCTTCGCCCACCCCAACTTGTTTATTGCAGCTTATA
ATGGTTACAAATAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTTTTTCACTGCATT
CTAGTTGTGGTTTGTCCAAACTCATCAATGTATCTTATCATGTCTGTATACCGTCGACCTCT
AGCTAGAGCTTGGCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCA
CAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGT
GAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCG
TGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCG
CTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGT
ATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAA
GAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGG
CGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAG
GTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGT
GCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGG
AAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGC
TCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGT
AACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACT
GGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGG
CCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTA
CCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTG
GTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTG
ATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCA
TGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAA
TCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCT
ATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAAC
TACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACG
CTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAG
TGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTA
AGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGT
CACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTAC
ATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGA
AGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGT
CATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAAT
AGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAATACGGGATAATACCGCGCCAC
ATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAG
GATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCA
GCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAA
AAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTAT
TGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAAT
AAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGAC 

Cytosine deaminase  

tPA 

HA-tag 

  



 

Page | 182  

pTREsCD 

aaccctcactaaagggaacaaaagctggagctgcaagcttaatgtagtcttatgcaatactcttgtagtcttgcaacatggtaacgatg
agttagcaacatgccttacaaggagagaaaaagcaccgtgcatgccgattggtggaagtaaggtggtacgatcgtgccttattagga
aggcaacagacgggtctgacatggattggacgaaccactgaattggaggcgtggcctgggcgggactggggagtggcgagccct
cagatcctgcatataagcagctgctttttgcctgtactgggtctctctggttagaccagatctgagcctgggagctctctggctaactaggg
aacccactgcttaagcctcaataaagcttgccttgagtgcttcaagtagtgtgtgcccgtctgttgtgtgactctggtaactagagatccct
cagacccttttagtcagtgtggaaaatctctagcagtggcgcccgaacagggacctgaaagcgaaagggaaaccagagctctctcg
acgcaggactcggcttgctgaagcgcgcacggcaagaggcgaggggcggcgactggtgagtacgccaaaaattttgactagcgg
aggctagaaggagagagatgggtgcgagagcgtcagtattaagcgggggagaattagatcgcgatgggaaaaaattcggttaag
gccagggggaaagaaaaaatataaattaaaacatatagtatgggcaagcagggagctagaacgattcgcagttaatcctggcctgt
tagaaacatcagaaggctgtagacaaatactgggacagctacaaccatcccttcagacaggatcagaagaacttagatcattatata
atacagtagcaaccctctattgtgtgcatcaaaggatagagataaaagacaccaaggaagctttagacaagatagaggaagagca
aaacaaaagtaagaccaccgcacagcaagcggccgctgatcttcagacctggaggaggagatatgagggacaattggagaagt
gaattatataaatataaagtagtaaaaattgaaccattaggagtagcacccaccaaggcaaagagaagagtggtgcagagagaa
aaaagagcagtgggaataggagctttgttccttgggttcttgggagcagcaggaagcactatgggcgcagcctcaatgacgctgacg
gtacaggccagacaattattgtctggtatagtgcagcagcagaacaatttgctgagggctattgaggcgcaacagcatctgttgcaact
cacagtctggggcatcaagcagctccaggcaagaatcctggctgtggaaagatacctaaaggatcaacagctcctggggatttggg
gttgctctggaaaactcatttgcaccactgctgtgccttggaatgctagttggagtaataaatctctggaacagattggaatcacacgac
ctggatggagtgggacagagaaattaacaattacacaagcttaatacactccttaattgaagaatcgcaaaaccagcaagaaaag
aatgaacaagaattattggaattagataaatgggcaagtttgtggaattggtttaacataacaaattggctgtggtatataaaattattcat
aatgatagtaggaggcttggtaggtttaagaatagtttttgctgtactttctatagtgaatagagttaggcagggatattcaccattatcgttt
cagacccacctcccaaccccgaggggacccgacaggcccgaaggaatagaagaagaaggtggagagagagacagagacag
atccattcgattagtgaacggatctcgacggtatcggttttaaaagaaaaggggggattggggggtacagtgcaggggaaagaata
gtagacataatagcaacagacatacaaactaaagaattacaaaaacaaattacaaaaattcaaaattttatcgattgactcgattttac
cactccctatcagtgacagagaaaagtgaaagtcgagtttaccactccctatcagtgacagagaaaagtgaaagtcgagtttaccac
tccctatcagtgacagagaaaagtgaaagtcgagtttaccactccctatcagtgacagagaaaagtgaaagtcgagtttaccactccc
tatcagtgacagagaaaagtgaaagtcgagtttaccactccctatcagtgacagagaaaagtgaaagtcgagtttaccactccctatc
agtgacagagaaaagtgaaagtcgagctcggtacccgggtcgagtaggcgtgtacggtgggaggcctatataagcagagctcgttt
agtgaaccgtcagatcgcctggagacgccatccacgctgttttgacctccatagaagacaccgggaccgatccagcctccgcggcc
ccgaattcgagctcggtacccggggatccaCTAGAGGATCCGTTaagcaatcatggatgcaatgaagagagggctctgct
gtgtgctgctgctgtgtggagcagtcttcgtttcgcccagccaggaaatccatgcccgattcagaagaatgagcaataacgctttacaa
acaattattaacgcccggttaccaggcgaagaggggctgtggcagattcatctgcaggacggaaaaatcagcgccattgatgcgca
atccggcgtgatgcccataactgaaaacagcctggatgccgaacaaggtttagttataccgccgtttgtggagccacatattcacctgg
acaccacgcaaaccgccggacaaccgaactggaatcagtccggcacgctgtttgaaggcattgaacgctgggccgagcgcaaag
cgttattaacccatgacgatgtgaaacaacgcgcatggcaaacgctgaaatggcagattgccaacggcattcagcatgtgcgtaccc
atgtcgatgtttcggatgcaacgctaactgcgctgaaagcaatgctggaagtgaagcaggaagtcgcgccgtggattgatctgcaaat
cgtcgccttccctcaggaagggattttgtcgtatcccaacggtgaagcgttgctggaagaggcgttacgcttaggggcagatgtagtgg
gggcgattccgcattttgaatttacccgtgaatacggcgtggagtcgctgcataaaaccttcgccctggcgcaaaaatacgaccgtctc
atcgacgttcactgtgatgagatcgatgacgagcagtcgcgctttgtcgaaaccgttgctgccctggcgcaccatgaaggcatgggcg
cgcgagtcaccgccagccacaccacggcaatgcactcctataacggggcgtatacctcacgcctgttccgcttgctgaaaatgtccg
gtattaactttgtcgccaacccgctggtcaatattcatctgcaaggacgtttcgatacgtatccaaaacgtcgcggcatcacgcgcgtta
aagagatgctggagtccggcattaacgtctgctttggtcacgatgatgtcttcgatccgtggtatccgctgggaacggcgaatatgctgc
aagtgctgcatatggggctgcatgtttgccagttgatgggctacgggcagattaacgatggcctgaatttaatcacccaccacagcgca
aggacgttgaatttgcaggattacggcattgccgccggaaacagcgccaacctgattatcctgccggctgaaaatgggtttgatgcgct
gcgccgtcaggttccggtacgttattcggtacgtggcggcaaggtgattgccagcacacaaccggcacaaaccaccgtatatctgga
gcagccagaagccatcgattacaaacgttgaAACCCTCGAGGGCGCGCCGAATTgcctgtgcttctgctaggatcaa
tgtgtagatgcggccgcgactctagaattccgcccctctccctcccccccccctaacgttactggccgaagccgcttggaataaggcc
ggtgtgcgtttgtctatatgttattttccaccatattgccgtcttttggcaatgtgagggcccggaaacctggccctgtcttcttgacgagcatt
cctaggggtctttcccctctcgccaaaggaatgcaaggtctgttgaatgtcgtgaaggaagcagttcctctggaagcttcttgaagacaa
acaacgtctgtagcgaccctttgcaggcagcggaaccccccacctggcgacaggtgcctctgcggccaaaagccacgtgtataag
atacacctgcaaaggcggcacaaccccagtgccacgttgtgagttggatagttgtggaaagagtcaaatggctctcctcaagcgtatt
caacaaggggctgaaggatgcccagaaggtaccccattgtatgggatctgatctggggcctcggtgcacatgctttacatgtgtttagt
cgaggttaaaaaacgtctaggccccccgaaccacggggacgtggttttcctttgaaaaacacgatgataatatggccacaaccatgt
ctagactggacaagagcaaagtcataaacggtgctctggaattactcaatggagtcggtatcgaaggcctgacgacaaggaaactc
gctcaaaagctgggagttgagcagcctaccctgtactggcacgtgaagaacaagcgggccctgctcgatgccctgccaatcgagat
gctggacaggcatcatacccacttctgccccctggaaggcgagtcatggcaagactttctgcggaacaacgccaagtcataccgctg
tgctctcctctcacatcgcgacggggctaaagtgcatctcggcacccgcccaacagagaaacagtacgaaaccctggaaaatcag
ctcgcgttcctgtgtcagcaaggcttctccctggagaacgcactgtacgctctgtccgccgtgggccactttacactgggctgcgtattgg
aggaacaggagcatcaagtagcaaaagaggaaagagagacacctaccaccgattctatgcccccacttctgagacaagcaattg
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agctgttcgaccggcagggagccgaacctgccttccttttcggcctggaactaatcatatgtggcctggagaaacagctaaagtgcga
aagcggcgggccgaccgacgcccttgacgattttgacttagacatgctcccagccgatgcccttgacgactttgaccttgatatgctgc
ctgctgacgctcttgacgattttgaccttgacatgctccccgggtaactaagtaaggatcttagccactttttaaaagaaaaggggggac
tggaagggctaattcactcccaacgaagacaagatcgcgccacgcgtccgcggactagtctcgagttaattaagctagcctagtgcc
atttgttcagtggttcgtagggctttcccccactgtttggctttcagttatatggatgatgtggtattgggggccaagtctgtacagcatcttga
gtccctttttaccgctgttaccaattttcttttgtctttgggtatacatttaaaccctaacaaaacaaagagatggggttactctctaaattttatg
ggttatgtcattggatgttatgggtccttgccacaagaacacatcatacaaaaaatcaaagaatgttttagaaaacttcctattaacaggc
ctattgattggaaagtatgtcaacgaattgtgggtcttttgggttttgctgccccttttacacaatgtggttatcctgcgttgatgcctttgtatgc
atgtattcaatctaagcaggctttcactttctcgccaacttacaaggcctttctgtgtaaacaatacctgaacctttaccccgttgcccggca
acggccacctctgtgccaagtgtttgctgacgcaacccccactggctggggcttggtcatgggccatcagcgcatgcgtggaacctttt
cggctcctctgccgatccatactgcggaactcctagccgcttgttttgctcgcagcaggtctggagcaaacattatcgggactgataact
ctgttgtcctatcccgcaaatatacatcgtttccatggctgctaggctgtgctgccaactggatcctgcgcgggacgtcctttgtttacgtcc
cgtcggcgctgaatcctgcggacgacccttctcggggtcgcttgggactctctcgtccccttctccgtctgccgttccgaccgaccacgg
ggcgcacctctctttacgcggactccccgtctgtgccttctcatctgccggaccgtgtgcacttcgcttcacctctgcacgtcgcatggag
accaccgtgaacgcccaccaaatattgcccaaggtcttacataagaggactcttggactctcagcaatgtcaacgaccgaccttgag
gcatacttcaaagactgtttgtttaaagactgggaggagttgggggaggagattaggttaaaggtctttgtactaggaggctgtaggcat
aaattggtctgcgcaccagcaccatgtatcactagagcggggtacctttaagaccaatgacttacaaggcagctgtagatcttagcca
ctttttaaaagaaaaggggggacttggaagggctaattcactcccaacgaagacaagatctgctttttgcttgtactgggtctctctggtta
gaccagatctgagcctgggagctctctggctaactagggaacccactgcttaagcctcaataaagcttgccttgagtgcttcaagtagt
gtgtgcccgtctgttgtgtgactctggtaactagagatccctcagacccttttagtcagtgtggaaaatctctagcagtagtagttcatgtca
tcttattattcangtatttataacttgcaaagaaatgaatatcagagagtgagaggaacttgtttattgcagcttataatggttacaaataaa
gcaatagcatcacaaatttcacaaataaagcatttttttcactgcattctagttgtggtttgtccaaactcatcaatgtatcttatcatgtctgg
ctctagctatcccgcccctaactccgcccagttccgcccattctccgccccatggctgactaattttttttatttatgcagaggccgaggcc
gcctcggcctctgagctattccagaagtagtgaggaggcttttttggaggcctaggcttttgcgtcgagacgtacccaattcgccctatag
tgagtcgtattacgcgcgctcactggccgtcgttttacaacgtcgtgactgggaaaaccctggcgttacccaacttaatcgccttgcagc
acatccccctttcgccagctggcgtaatagcgaagaggcccgcaccgatcgcccttcccaacagttgcgcagcctgaatggcgaatg
gcgcgacgcgccctgtagcggcgcattaagcgcggcgggtgtggtggttacgcgcagcgtgaccgctacacttgccagcgccctag
cgcccgctcctttcgctttcttcccttcctttctcgccacgttcgccggctttccccgtcaagctctaaatcgggggctccctttagggttccga
tttagtgctttacggcacctcgaccccaaaaaacttgattagggtgatggttcacgtagtgggccatcgccctgatagacggtttttcgcc
ctttgacgttggagtccacgttctttaatagtggactcttgttccaaactggaacaacactcaaccctatctcggtctattcttttgatttataag
ggattttgccgatttcggcctattggttaaaaaatgagctgatttaacaaaaatttaacgcgaattttaacaaaatattaacgtttacaatttc
ccaggtggcacttttcggggaaatgtgcgcggaacccctatttgtttatttttctaaatacattcaaatatgtatccgctcatgagacaataa
ccctgataaatgcttcaataatattgaaaaaggaagagtatgagtattcaacatttccgtgtcgcccttattcccttttttgcggcattttgcct
tcctgtttttgctcacccagaaacgctggtgaaagtaaaagatgctgaagatcagttgggtgcacgagtgggttacatcgaactggatct
caacagcggtaagatccttgagagttttcgccccgaagaacgttttccaatgatgagcacttttaaagttctgctatgtggcgcggtattat
cccgtattgacgccgggcaagagcaactcggtcgccgcatacactattctcagaatgacttggttgagtactcaccagtcacagaaa
agcatcttacggatggcatgacagtaagagaattatgcagtgctgccataaccatgagtgataacactgcggccaacttacttctgac
aacgatcggaggaccgaaggagctaaccgcttttttgcacaacatgggggatcatgtaactcgccttgatcgttgggaaccggagct
gaatgaagccataccaaacgacgagcgtgacaccacgatgcctgtagcaatggcaacaacgttgcgcaaactattaactggcgaa
ctacttactctagcttcccggcaacaattaatagactggatggaggcggataaagttgcaggaccacttctgcgctcggcccttccggct
ggctggtttattgctgataaatctggagccggtgagcgtgggtctcgcggtatcattgcagcactggggccagatggtaagccctcccgt
atcgtagttatctacacgacggggagtcaggcaactatggatgaacgaaatagacagatcgctgagataggtgcctcactgattaag
cattggtaactgtcagaccaagtttactcatatatactttagattgatttaaaacttcatttttaatttaaaaggatctaggtgaagatcctttttg
ataatctcatgaccaaaatcccttaacgtgagttttcgttccactgagcgtcagaccccgtagaaaagatcaaaggatcttcttgagatc
ctttttttctgcgcgtaatctgctgcttgcaaacaaaaaaaccaccgctaccagcggtggtttgtttgccggatcaagagctaccaactctt
tttccgaaggtaactggcttcagcagagcgcagataccaaatactgtccttctagtgtagccgtagttaggccaccacttcaagaactct
gtagcaccgcctacatacctcgctctgctaatcctgttaccagtggctgctgccagtggcgataagtcgtgtcttaccgggttggactcaa
gacgatagttaccggataaggcgcagcggtcgggctgaacggggggttcgtgcacacagcccagcttggagcgaacgacctaca
ccgaactgagatacctacagcgtgagctatgagaaagcgccacgcttcccgaagggagaaaggcggacaggtatccggtaagcg
gcagggtcggaacaggagagcgcacgagggagcttccagggggaaacgcctggtatctttatagtcctgtcgggtttcgccacctct
gacttgagcgtcgatttttgtgatgctcgtcaggggggcggagcctatggaaaaacgccagcaacgcggcctttttacggttcctggcct
tttgctggccttttgctcacatgttctttcctgcgttatcccctgattctgtggataaccgtattaccgcctttgagtgagctgataccgctcgcc
gcagccgaacgaccgagcgcagcgagtcagtgagcgaggaagcggaagagcgcccaatacgcaaaccgcctctccccgcgc
gttggccgattcattaatgcagctggcacgacaggtttcccgactggaaagcgggcagtgagcgcaacgcaattaatgtgagttagct
cactcattaggcaccccaggctttacactttatgcttccggctcgtatgttgtgtggaattgtgagcggataacaatttcacacaggaaac
agctatgaccatgattacgccaagcgcgcaatt 
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pTREsCDHA 

aaccctcactaaagggaacaaaagctggagctgcaagcttaatgtagtcttatgcaatactcttgtagtcttgcaacatggtaacgatg
agttagcaacatgccttacaaggagagaaaaagcaccgtgcatgccgattggtggaagtaaggtggtacgatcgtgccttattagga
aggcaacagacgggtctgacatggattggacgaaccactgaattggaggcgtggcctgggcgggactggggagtggcgagccct
cagatcctgcatataagcagctgctttttgcctgtactgggtctctctggttagaccagatctgagcctgggagctctctggctaactaggg
aacccactgcttaagcctcaataaagcttgccttgagtgcttcaagtagtgtgtgcccgtctgttgtgtgactctggtaactagagatccct
cagacccttttagtcagtgtggaaaatctctagcagtggcgcccgaacagggacctgaaagcgaaagggaaaccagagctctctcg
acgcaggactcggcttgctgaagcgcgcacggcaagaggcgaggggcggcgactggtgagtacgccaaaaattttgactagcgg
aggctagaaggagagagatgggtgcgagagcgtcagtattaagcgggggagaattagatcgcgatgggaaaaaattcggttaag
gccagggggaaagaaaaaatataaattaaaacatatagtatgggcaagcagggagctagaacgattcgcagttaatcctggcctgt
tagaaacatcagaaggctgtagacaaatactgggacagctacaaccatcccttcagacaggatcagaagaacttagatcattatata
atacagtagcaaccctctattgtgtgcatcaaaggatagagataaaagacaccaaggaagctttagacaagatagaggaagagca
aaacaaaagtaagaccaccgcacagcaagcggccgctgatcttcagacctggaggaggagatatgagggacaattggagaagt
gaattatataaatataaagtagtaaaaattgaaccattaggagtagcacccaccaaggcaaagagaagagtggtgcagagagaa
aaaagagcagtgggaataggagctttgttccttgggttcttgggagcagcaggaagcactatgggcgcagcctcaatgacgctgacg
gtacaggccagacaattattgtctggtatagtgcagcagcagaacaatttgctgagggctattgaggcgcaacagcatctgttgcaact
cacagtctggggcatcaagcagctccaggcaagaatcctggctgtggaaagatacctaaaggatcaacagctcctggggatttggg
gttgctctggaaaactcatttgcaccactgctgtgccttggaatgctagttggagtaataaatctctggaacagattggaatcacacgac
ctggatggagtgggacagagaaattaacaattacacaagcttaatacactccttaattgaagaatcgcaaaaccagcaagaaaag
aatgaacaagaattattggaattagataaatgggcaagtttgtggaattggtttaacataacaaattggctgtggtatataaaattattcat
aatgatagtaggaggcttggtaggtttaagaatagtttttgctgtactttctatagtgaatagagttaggcagggatattcaccattatcgttt
cagacccacctcccaaccccgaggggacccgacaggcccgaaggaatagaagaagaaggtggagagagagacagagacag
atccattcgattagtgaacggatctcgacggtatcggttttaaaagaaaaggggggattggggggtacagtgcaggggaaagaata
gtagacataatagcaacagacatacaaactaaagaattacaaaaacaaattacaaaaattcaaaattttatcgattgactcgattttac
cactccctatcagtgacagagaaaagtgaaagtcgagtttaccactccctatcagtgacagagaaaagtgaaagtcgagtttaccac
tccctatcagtgacagagaaaagtgaaagtcgagtttaccactccctatcagtgacagagaaaagtgaaagtcgagtttaccactccc
tatcagtgacagagaaaagtgaaagtcgagtttaccactccctatcagtgacagagaaaagtgaaagtcgagtttaccactccctatc
agtgacagagaaaagtgaaagtcgagctcggtacccgggtcgagtaggcgtgtacggtgggaggcctatataagcagagctcgttt
agtgaaccgtcagatcgcctggagacgccatccacgctgttttgacctccatagaagacaccgggaccgatccagcctccgcggcc
ccgaattcgagctcggtacccggggatccaTGTACCATGCATATGGaagcaatcatggatgcaatgaagagagggctct
gctgtgtgctgctgctgtgtggagcagtcttcgtttcgcccagccaggaaatccatgcccgattcagaagaatgagcaataacgctttac
aaacaattattaacgcccggttaccaggcgaagaggggctgtggcagattcatctgcaggacggaaaaatcagcgccattgatgcg
caatccggcgtgatgcccataactgaaaacagcctggatgccgaacaaggtttagttataccgccgtttgtggagccacatattcacct
ggacaccacgcaaaccgccggacaaccgaactggaatcagtccggcacgctgtttgaaggcattgaacgctgggccgagcgcaa
agcgttattaacccatgacgatgtgaaacaacgcgcatggcaaacgctgaaatggcagattgccaacggcattcagcatgtgcgtac
ccatgtcgatgtttcggatgcaacgctaactgcgctgaaagcaatgctggaagtgaagcaggaagtcgcgccgtggattgatctgca
aatcgtcgccttccctcaggaagggattttgtcgtatcccaacggtgaagcgttgctggaagaggcgttacgcttaggggcagatgtag
tgggggcgattccgcattttgaatttacccgtgaatacggcgtggagtcgctgcataaaaccttcgccctggcgcaaaaatacgaccgt
ctcatcgacgttcactgtgatgagatcgatgacgagcagtcgcgctttgtcgaaaccgttgctgccctggcgcaccatgaaggcatgg
gcgcgcgagtcaccgccagccacaccacggcaatgcactcctataacggggcgtatacctcacgcctgttccgcttgctgaaaatgt
ccggtattaactttgtcgccaacccgctggtcaatattcatctgcaaggacgtttcgatacgtatccaaaacgtcgcggcatcacgcgcg
ttaaagagatgctggagtccggcattaacgtctgctttggtcacgatgatgtcttcgatccgtggtatccgctgggaacggcgaatatgct
gcaagtgctgcatatggggctgcatgtttgccagttgatgggctacgggcagattaacgatggcctgaatttaatcacccaccacagcg
caaggacgttgaatttgcaggattacggcattgccgccggaaacagcgccaacctgattatcctgccggctgaaaatgggtttgatgc
gctgcgccgtcaggttccggtacgttattcggtacgtggcggcaaggtgattgccagcacacaaccggcacaaaccaccgtatatctg
gagcagccagaagccatcgattacaaacgttacccatacgatgttccagattacgcttgagcctgtgcttctgctaggatcaatgtgtag
atgcggccgcgactctagaattccgcccctctccctcccccccccctaacgttactggccgaagccgcttggaataaggccggtgtgc
gtttgtctatatgttattttccaccatattgccgtcttttggcaatgtgagggcccggaaacctggccctgtcttcttgacgagcattcctaggg
gtctttcccctctcgccaaaggaatgcaaggtctgttgaatgtcgtgaaggaagcagttcctctggaagcttcttgaagacaaacaacgt
ctgtagcgaccctttgcaggcagcggaaccccccacctggcgacaggtgcctctgcggccaaaagccacgtgtataagatacacct
gcaaaggcggcacaaccccagtgccacgttgtgagttggatagttgtggaaagagtcaaatggctctcctcaagcgtattcaacaag
gggctgaaggatgcccagaaggtaccccattgtatgggatctgatctggggcctcggtgcacatgctttacatgtgtttagtcgaggtta
aaaaacgtctaggccccccgaaccacggggacgtggttttcctttgaaaaacacgatgataatatggccacaaccatgtctagactg
gacaagagcaaagtcataaacggtgctctggaattactcaatggagtcggtatcgaaggcctgacgacaaggaaactcgctcaaa
agctgggagttgagcagcctaccctgtactggcacgtgaagaacaagcgggccctgctcgatgccctgccaatcgagatgctggac
aggcatcatacccacttctgccccctggaaggcgagtcatggcaagactttctgcggaacaacgccaagtcataccgctgtgctctcc
tctcacatcgcgacggggctaaagtgcatctcggcacccgcccaacagagaaacagtacgaaaccctggaaaatcagctcgcgtt
cctgtgtcagcaaggcttctccctggagaacgcactgtacgctctgtccgccgtgggccactttacactgggctgcgtattggaggaac
aggagcatcaagtagcaaaagaggaaagagagacacctaccaccgattctatgcccccacttctgagacaagcaattgagctgttc
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gaccggcagggagccgaacctgccttccttttcggcctggaactaatcatatgtggcctggagaaacagctaaagtgcgaaagcgg
cgggccgaccgacgcccttgacgattttgacttagacatgctcccagccgatgcccttgacgactttgaccttgatatgctgcctgctga
cgctcttgacgattttgaccttgacatgctccccgggtaactaagtaaggatcttagccactttttaaaagaaaaggggggactggaag
ggctaattcactcccaacgaagacaagatcgcgccacgcgtccgcggactagtctcgagttaattaagctagcctagtgccatttgttc
agtggttcgtagggctttcccccactgtttggctttcagttatatggatgatgtggtattgggggccaagtctgtacagcatcttgagtcccttt
ttaccgctgttaccaattttcttttgtctttgggtatacatttaaaccctaacaaaacaaagagatggggttactctctaaattttatgggttatgt
cattggatgttatgggtccttgccacaagaacacatcatacaaaaaatcaaagaatgttttagaaaacttcctattaacaggcctattgat
tggaaagtatgtcaacgaattgtgggtcttttgggttttgctgccccttttacacaatgtggttatcctgcgttgatgcctttgtatgcatgtattc
aatctaagcaggctttcactttctcgccaacttacaaggcctttctgtgtaaacaatacctgaacctttaccccgttgcccggcaacggcc
acctctgtgccaagtgtttgctgacgcaacccccactggctggggcttggtcatgggccatcagcgcatgcgtggaaccttttcggctcc
tctgccgatccatactgcggaactcctagccgcttgttttgctcgcagcaggtctggagcaaacattatcgggactgataactctgttgtcc
tatcccgcaaatatacatcgtttccatggctgctaggctgtgctgccaactggatcctgcgcgggacgtcctttgtttacgtcccgtcggcg
ctgaatcctgcggacgacccttctcggggtcgcttgggactctctcgtccccttctccgtctgccgttccgaccgaccacggggcgcacc
tctctttacgcggactccccgtctgtgccttctcatctgccggaccgtgtgcacttcgcttcacctctgcacgtcgcatggagaccaccgtg
aacgcccaccaaatattgcccaaggtcttacataagaggactcttggactctcagcaatgtcaacgaccgaccttgaggcatacttca
aagactgtttgtttaaagactgggaggagttgggggaggagattaggttaaaggtctttgtactaggaggctgtaggcataaattggtct
gcgcaccagcaccatgtatcactagagcggggtacctttaagaccaatgacttacaaggcagctgtagatcttagccactttttaaaag
aaaaggggggacttggaagggctaattcactcccaacgaagacaagatctgctttttgcttgtactgggtctctctggttagaccagatc
tgagcctgggagctctctggctaactagggaacccactgcttaagcctcaataaagcttgccttgagtgcttcaagtagtgtgtgcccgt
ctgttgtgtgactctggtaactagagatccctcagacccttttagtcagtgtggaaaatctctagcagtagtagttcatgtcatcttattattca
ngtatttataacttgcaaagaaatgaatatcagagagtgagaggaacttgtttattgcagcttataatggttacaaataaagcaatagca
tcacaaatttcacaaataaagcatttttttcactgcattctagttgtggtttgtccaaactcatcaatgtatcttatcatgtctggctctagctatc
ccgcccctaactccgcccagttccgcccattctccgccccatggctgactaattttttttatttatgcagaggccgaggccgcctcggcctc
tgagctattccagaagtagtgaggaggcttttttggaggcctaggcttttgcgtcgagacgtacccaattcgccctatagtgagtcgtatta
cgcgcgctcactggccgtcgttttacaacgtcgtgactgggaaaaccctggcgttacccaacttaatcgccttgcagcacatcccccttt
cgccagctggcgtaatagcgaagaggcccgcaccgatcgcccttcccaacagttgcgcagcctgaatggcgaatggcgcgacgc
gccctgtagcggcgcattaagcgcggcgggtgtggtggttacgcgcagcgtgaccgctacacttgccagcgccctagcgcccgctcc
tttcgctttcttcccttcctttctcgccacgttcgccggctttccccgtcaagctctaaatcgggggctccctttagggttccgatttagtgcttta
cggcacctcgaccccaaaaaacttgattagggtgatggttcacgtagtgggccatcgccctgatagacggtttttcgccctttgacgttg
gagtccacgttctttaatagtggactcttgttccaaactggaacaacactcaaccctatctcggtctattcttttgatttataagggattttgcc
gatttcggcctattggttaaaaaatgagctgatttaacaaaaatttaacgcgaattttaacaaaatattaacgtttacaatttcccaggtgg
cacttttcggggaaatgtgcgcggaacccctatttgtttatttttctaaatacattcaaatatgtatccgctcatgagacaataaccctgata
aatgcttcaataatattgaaaaaggaagagtatgagtattcaacatttccgtgtcgcccttattcccttttttgcggcattttgccttcctgttttt
gctcacccagaaacgctggtgaaagtaaaagatgctgaagatcagttgggtgcacgagtgggttacatcgaactggatctcaacag
cggtaagatccttgagagttttcgccccgaagaacgttttccaatgatgagcacttttaaagttctgctatgtggcgcggtattatcccgtat
tgacgccgggcaagagcaactcggtcgccgcatacactattctcagaatgacttggttgagtactcaccagtcacagaaaagcatctt
acggatggcatgacagtaagagaattatgcagtgctgccataaccatgagtgataacactgcggccaacttacttctgacaacgatc
ggaggaccgaaggagctaaccgcttttttgcacaacatgggggatcatgtaactcgccttgatcgttgggaaccggagctgaatgaa
gccataccaaacgacgagcgtgacaccacgatgcctgtagcaatggcaacaacgttgcgcaaactattaactggcgaactacttac
tctagcttcccggcaacaattaatagactggatggaggcggataaagttgcaggaccacttctgcgctcggcccttccggctggctggt
ttattgctgataaatctggagccggtgagcgtgggtctcgcggtatcattgcagcactggggccagatggtaagccctcccgtatcgtag
ttatctacacgacggggagtcaggcaactatggatgaacgaaatagacagatcgctgagataggtgcctcactgattaagcattggta
actgtcagaccaagtttactcatatatactttagattgatttaaaacttcatttttaatttaaaaggatctaggtgaagatcctttttgataatctc
atgaccaaaatcccttaacgtgagttttcgttccactgagcgtcagaccccgtagaaaagatcaaaggatcttcttgagatcctttttttctg
cgcgtaatctgctgcttgcaaacaaaaaaaccaccgctaccagcggtggtttgtttgccggatcaagagctaccaactctttttccgaa
ggtaactggcttcagcagagcgcagataccaaatactgtccttctagtgtagccgtagttaggccaccacttcaagaactctgtagcac
cgcctacatacctcgctctgctaatcctgttaccagtggctgctgccagtggcgataagtcgtgtcttaccgggttggactcaagacgata
gttaccggataaggcgcagcggtcgggctgaacggggggttcgtgcacacagcccagcttggagcgaacgacctacaccgaact
gagatacctacagcgtgagctatgagaaagcgccacgcttcccgaagggagaaaggcggacaggtatccggtaagcggcaggg
tcggaacaggagagcgcacgagggagcttccagggggaaacgcctggtatctttatagtcctgtcgggtttcgccacctctgacttga
gcgtcgatttttgtgatgctcgtcaggggggcggagcctatggaaaaacgccagcaacgcggcctttttacggttcctggccttttgctgg
ccttttgctcacatgttctttcctgcgttatcccctgattctgtggataaccgtattaccgcctttgagtgagctgataccgctcgccgcagcc
gaacgaccgagcgcagcgagtcagtgagcgaggaagcggaagagcgcccaatacgcaaaccgcctctccccgcgcgttggcc
gattcattaatgcagctggcacgacaggtttcccgactggaaagcgggcagtgagcgcaacgcaattaatgtgagttagctcactcat
taggcaccccaggctttacactttatgcttccggctcgtatgttgtgtggaattgtgagcggataacaatttcacacaggaaacagctatg
accatgattacgccaagcgcgcaatt 
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