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Abstract

Unobserved heterogeneity is one of the main concerns for applied economists,

this is particularly so when modelling health and health related behaviours. This

thesis illustrates four studies on modelling unobserved heterogeneity using some

recent developments in latent class analysis. Chapter 2 examines two sources

of individual unobserved heterogeneity when subjective indicators are used to

measure health status: variations in unobservable true health and differences in

self-reporting behaviour for a given level of “true health”. These two sources

are separately identified using both objective (biomarkers) and subjective health

indicators.

Chapter 3 examines the so called positive correlation test. This test rejects

the null of absence of private information in a given insurance market when

individuals with greater coverage experience more of the insured risk. This test

is shown to lead to puzzling results where there exists multiple sources of private

information (multidimensional heterogeneity). An alternative strategy proposed

uses a finite number of heterogeneous types and extends the standard adverse and

favourable selection definitions into local and global ones. We implement a finite

mixture model to identify the unobserved types and test the multidimensionality

of private information. We apply these approaches to the US long-term care and

Medigap insurance markets.

Chapter 4 further considers the issue of the asymmetric information in

the insurance markets, by investigating how to disentangle the incentive effect,
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due to the structure of insurance contracts, from the selection effect. Alternative

econometric strategies are evaluated to empirically disentangle these two effects

when multiple dimensions of unobserved heterogeneity affect the reliability of

the standard positive correlation. The proposed application focuses on the effect

of Medigap insurance on having an inpatient hospital stay and compares the

probit and the recursive bivariate probit model with a discrete multiresponse

finite mixture model.

Finally Chapter 5 examines the relationship between unobserved risk pref-

erences and four insurance purchase decisions in the US: Medigap, long-term

insurance, life insurance and annuity. Standard economic theory assumes that

individuals take decisions over a set of risky domains according to their own risk

preferences which are stable across decision contexts. This assumption of context-

invariant risk preference has caused debate in the literature concerning its validity.

This chapter proposes an empirical strategy to test whether risk preferences are

multidimensional and whether they differ across insurance choices. This empir-

ical appraisal provides a simple way to model non-preference factors - such as

context specificity - which can play an important role in determining multiple

demand for insurance conditional on individual general risk preferences. Our

findings are largely consistent with the hypothesis of domain-general components

of risk preferences, although context specificity is important especially between

choices over insurance contracts that are “closer” in context (e.g. long-term care

and Medigap insurance).
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Chapter 1

Introduction

Many concepts that are of interest to applied social scientists cannot be observed

directly. Examples of these constructs involve individual preferences, health sta-

tus, attitudes towards risky behaviours or utilization of health care resources.

Since these dimensions are often not directly observed or only partially observed,

they introduce important sources of unobserved heterogeneity in empirical anal-

ysis of many issues relevant in economics (Heckman [69]).

Unobserved heterogeneity is one of the main concerns for applied economists

and particularly when health related issues are investigated since health status

is intrinsically multidimensional and unobservable. There are several different

strategies that applied economists exploit to overcome this issue and to model

unobserved heterogeneity. The adopted solution is usually related specifically

to the research context and depends more generally on the availability of data

(experimental or observational data) or on the econometric strategy employed to

deal with unobservables.

In the policy evaluation setting, for example, researchers focus on the

relationship between the outcome and a variable describing a policy or a pro-

gramme. Causal interpretation of this relationship can be achieved as long as

unobserved factors do not affect the programme participation decision, otherwise

model parameters are not identifiable. The endogeneity of the policy variable has

motivated the use of social experiments as offering a potential solution to iden-

tify causal effects. Experimental data are well suited to control for unobserved

factors since they make it possible to vary the particular variable of interest,

holding other covariates at controlled levels. This is possible because the ex-

perimental environment data generating process can be directly controlled. In

contrast observational data, which usually come from population surveys, are
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generated in an uncontrolled environment, leaving open the possibility that un-

observed factors affect the relationships of interest. Since experimental data are

expensive to produce (on a large scale) and their implementation may pose some

ethical concerns, most applied economic studies use survey data (sometimes with

some specific characteristics) and develop econometric techniques to deal with

unobserved factors. A common strategy is to use proxy or observable indica-

tors derived from questionnaire items designed to elicit responses related to these

unobservable dimensions. An important technique is based on latent class mod-

elling.

A latent variable model is generally constructed using a set of observable

individual characteristics, often termed “indicators” or “responses”, that are con-

sidered a manifestation of the underlying latent construct of interest. This type

of model is often non-linear and, in addition to the manifest variables, the model

includes one or more unobserved or latent variables representing the constructs of

interest. Two main assumptions define the causal mechanisms underlying the re-

sponses. First, it is assumed that the responses on the indicators are the result of

an individual’s position on the latent variable(s). The second assumption, known

as the local independence axiom, states that manifest variables have nothing in

common after controlling for the latent variable(s). Depending on the distri-

bution of the latent and manifest variables one obtains different types of latent

variable models. When both indicators and latent variables are categorical, and

therefore assumed to come from a multinomial distribution, the latent variable

model takes the specific name of latent class analysis (Bartholomew and Knott

[11]).

This thesis uses survey data and some recent developments in latent class

analysis to model individual unobserved heterogeneity in three different contexts:

health status, health care utilization and insurance coverage, and multiple de-

mand for insurance and individual risk preference stability. The first study uses

data from the Health Survey for England to disentangle the effect of individ-

ual characteristics on health production on the one hand, and its self-reporting

effect on the other. Our focus is to study unobserved heterogeneity in the self-

assessment of health after conditioning on unobserved heterogeneity in health

production. Our econometric approach relies on latent class analysis to identify

unobserved health and employs a wide set of health indicators including both ob-

jective and self-reported measures. In addition we use some recent developments

in latent class analysis which allow us to model explicitly the residual associa-
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tion between subjective indicators and self-assessed health by setting an explicit

recursive structure. This is the first contribution of the paper, which makes our

approach substantially different from those relying on the traditional MIMIC

model. The second contribution of this study is related to the indicators used as

manifestations of individual health status. In fact “true” health is constructed

using not only self-assessed health and other self-reported health measures, but

also objective indicators observed through biomarkers. Our results show the ex-

istence of two unobserved classes of individuals representing those in good health

and those in ill-health. Moreover, our findings provide further evidence of the

existence of unobserved heterogeneity in self reporting behaviour since individual

characteristics, such as socio-economic status and education, cannot be ignored as

predictors of self-assessed health even after conditioning on unobserved individual

‘true’ health-types.

The third and the fourth chapters are intrinsically related since they both

focus on the role of unobserved heterogeneity in the demand for health insurance

and health care utilization. In particular the third chapter examines the stan-

dard prediction of the well-known Rothschild-Stiglitz adverse selection model.

This model predicts that when individuals have private information about their

actual risk, the insurance contract will be adversely selected, with high risk in-

dividuals choosing higher insurance coverage. Ex post, this will cause a positive

correlation between risk and coverage. This observation has been empirically

implemented using the so called positive correlation (PC) test which rejects the

null of absence of asymmetric information in a given insurance market when,

conditional on consumers’ characteristics used by companies to price contracts,

individuals with more coverage experience more of the insured risk. Contrary

to the theoretical prediction of positive rick-coverage correlation, a number of

empirical studies of insurance markets have found a negative risk-coverage cor-

relation, a phenomenon which has been named favourable selection. This has

been justified by claiming that there are two conflicting sources of private infor-

mation, namely individual’s actual risk and risk attitudes, so that two types of

people buy insurance: high risk individuals and high risk averse individuals. Ex

post, the former are higher risk than predicted and the latter are lower risk; in

aggregate, those who buy more insurance do not have higher claims. The main

contribution of the chapter is to evaluate how the standard PC test performs in

the presence of multidimensional private information. Our claim is that under

multidimensional private information there is the possibility that the insurance

contract is both adversely and favourably selected by different individuals. Since
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the PC test relies on a single statistic to appraise the risk-coverage correlation,

multidimensional private information may cause serious problems in detecting

selection effects using observable data, since the PC test averages out selection

effects which may pull in different directions.

We provide a substantially new methodology, relying on latent class anal-

ysis, to investigate the existence of private information which has three appealing

characteristics: 1) it is possible to identify unobserved types by cross-classifying

the relevant private information variables, 2) it extends the standard adverse and

favourable selection definitions into local and global ones, 3) it is possible to test

directly for the absence of selection effects into insurance contracts and for the

multidimensionality of private information by imposing restrictions on the be-

haviour of these unobservable types. To show the validity of our approach we

study separately the Medigap and the long-term insurance markets in the US.

These two markets differ not just by the type of insurance, but also for in the

level of regulation imposed in the Medigap market. Results show that the PC test

shows an absence of significant residual risk-coverage correlation in both samples,

while our finite mixture model reveals the existence of significant residual hetero-

geneity with large selection effects, which is stronger for the regulated Medigap

market.

The fourth chapter is also focused on asymmetric information, but provides

substantially different information compared to the previous paper. In particular

it studies how Medigap affects the utilization of health care services and then

focuses on disentangling the incentive effect, induced by insurance contracts on

health care utilization, from selection effects due to the unobserved private in-

formation in insurance purchase decisions. Our main contribution is to provide

evidence on how the standard econometric strategies developed to deal with this

issue perform compared with a discrete multiresponse finite mixture model which

controls for selection. In particular we compare our results to those obtained by

the probit and the bivariate probit model, and find the residual effect of insurance

on health care is small after controlling for individual unobserved types.

The final chapter studies whether individual risk preferences are stable

across multiple insurance choices. In general there are two different points of view

regarding risk preference generality. Classical economic theory assumes that in-

dividuals have the same attitude to bear risk in different contexts, while a recent

and important literature, mostly related to behavioral economics, finds that con-

text is the main factor and poses serious concerns for the internal validity of the
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risk-preference invariance principle. This issue has motivated a growing body of

research. A subset of these studies focus on this principle by looking at multiple

demand for insurance. In particular they study whether individuals who bear

risk in one insurance domain are also willing to bear the same risk in another

insurance domain. Clearly if risk preferences are general, the risk preferences

pattern across insurance domains should be stable. To test this principle they

consider the residual correlation between insurance choices after conditioning on

predicted and realized risk. We propose an alternative framework to examine

this issue using latent class analysis to identify unobserved types which differ in

their level of risk aversion. Our approach has two appealing characteristics: 1)

it allows us to disentangle the effect of risk preference on insurance choice from

the residual correlation introduced by non-preference factors; this can be done

by modelling correlations between insurance choices conditioned on unobserved

risk preferences; 2) if risk preferences are stable across the relevant choices then

there exists a unique latent variable which affects each of these choices; this can

be tested directly by imposing restrictions on the relevant insurance behaviours.

To show the applicability of our methodology, we use data from the Health and

Retirement Study on four insurance purchase decisions: life insurance, Medicare

supplemental insurance (Medigap), log-term care insurance and annuity. Our

results show the existence of a stable pattern of individual risk preferences over

different insurance domains, which supports the idea of a domain-general com-

ponent of preferences. In addition we also provide further evidence that context

plays an important role in determining insurance choices particularly when in-

surance coverage decisions are “closer” in coverage type.
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Chapter 2

Reporting Heterogeneity in Subjective

Health Measures: an Extended Latent

Class Approach

2.1 Introduction

Self-assessed health status (SAH) is a widely employed subjective health indica-

tor in empirical research. It is based on the simple question “How is your health

in general?” with a response framed in ordered categories ranging from “very

good” or “excellent” to “poor” or “very poor”. It is often assumed that these

responses are generated by a corresponding continuous latent variable represent-

ing self-perceived health. Several studies found that SAH is a good predictor

of mortality, morbidity and subsequent use of health care (Idler and Benyamini

[77]). Furthermore Gerdtham et al. [62] showed that a continuous health mea-

sure obtained from the ordinal responses of SAH is highly correlated with other

individual health measures.

As subjective indicator SAH has caused some concern among researchers

related to the idea that individuals may link differently the same level of true

health with the SAH’s categories. The existence of these differences in self-

reporting behavior is convincingly supported by empirical findings (Crossley and

Kennedy [31], Groot [65]). For example, Crossley and Kennedy [31] exploit a

particular feature of the Australian National Survey in which SAH question was

asked to respondents and again to a random subsample. Results show that the

distribution of SAH for this subgroup of respondents changes significantly be-

tween the two questions and that this variation depends on age, income and

occupation. Bago d’Uva et al. [44] find that reporting heterogeneity may de-
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pend on the individuals’ concept of what health means, on their expectations

of their own health, their use of health care, and on their comprehension of the

the health questions asked in the survey. Etilé and Milcent [50] find evidence

that reporting heterogeneity is associated with socioeconomics status, while Lin-

deboom and van Doorslaer [90] find that age and gender, but not income or

education, affect reporting behaviour. Johnston et al. [79] studied reporting

heterogeneity in hypertension and found that the probability of false negative

reporting is significantly income graded and then self-reported health measures

might underestimate true income-related inequalities in health.

This source of measurement error in the mapping of true health into SAH

that we call - following Shmueli [107] - unobserved reporting heterogeneity, has

also been termed ‘state-dependent reporting bias’ (Kerkhofs and Lindeboom [85]),

‘scale of reference bias’ (Groot [65]), ‘response category cut-point shift’ (Sadana

et al. [105], 2000; Murray et al. [96]).

To account for self-reporting behavior a possible approach is to use an

ordered probit with cut point shift. This model allows the cut-points defining

the mapping of latent health into the SAH’s categories to depend on observable

variables (Terza [110]). Although this approach allows for both index and cut

off points shifts, it requires strong a priori restrictions on parameters to solve

identifiability problems especially when the set of covariates on latent health and

the cut-off point overlap (Lindeboom and van Doorslaer [90]).

There are many other papers that have analysed SAH. Van Doorslaer and

Jones [112] use the McMaster ‘Health Utility Index Mark’ (HUI) to scale the

intervals of SAH. They assume a stable mapping of HUI on the latent health

determining SAH. Therefore the position of an individual ranked according to

HUI should correspond to her rank according to SAH. They exploit this relation-

ship between HUI and SAH to estimate an interval regression model where the

upper (lower) bound of these intervals corresponds to the upper (lower) value

on HUI’s empirical distribution corresponding to the empirical cumulative fre-

quency of SAH. A second approach was proposed by Kerkhofs and Lindeboom

[85] and Lindeboom and van Doorslaer [90]. They stratify the population in

several groups according to some individual characteristics and then estimate an

ordered response model of SAH on HUI as proxy of true health. This estimation

approach allows differences both with respect to cut-points and index-shift. On

the same fashion Etilé and Milcent [50] use latent class analysis to construct a

synthetic measure of clinical health and estimate a generalized ordered logit to

7



investigate the effect of socio-economic status (e.g income level) on self reporting

behavior. To assess the magnitude of reporting heterogeneity related to income

they follow Kerkhofs and Lindeboom [85] and assume that all the information on

true health are captured by the synthetic measure of clinical health, that is, they

argue that individual characteristics should be ignorable to predict SAH. There-

fore reporting heterogeneity is tested considering whether these characteristics

have a significant effect after conditioning on clinical health.

Etilé and Milcent’s [50] approach follows a two steps procedure. First

they build a synthetic index of “true” health based on a set of self-reported

health conditions including SAH and then regress the SAH on this index and

other socioeconomic characteristic to test self reporting heterogeneity. However

this approach does not model endogenously the self reporting behaviour and

the heterogeneity in the health production. Thus, another possible approach

which allow to model jointly self reporting and “true” health status heterogeneity

relies on the use of multiple indicators. Shmueli [107] estimates a structural

equation model exploiting some features of multiple indicators-multiple causes

(MIMIC) modelling to shape the relationships between true health and a set of

indicators (Joreskog and Goldberger [81]). The latent class approach offer the

same advantage of the MIMIC model to undertake in a single step the estimation

of the effect of covariates on both SAH and ‘true’ health.

In this paper we use some recent developments on finite mixture mod-

els to provide an empirical assessment of reporting heterogeneity using a set of

“manifest” (objective and subjective) health indicators in a recursive model with

unobserved latent classes. In particular our aim is to investigate how to disen-

tangle the effect of individual characteristics on health production on the one

hand, and its self-reporting effect on the other hand. Further we evaluate the

magnitude of some individual characteristics on self-reporting heterogeneity con-

sidering the residual association between self-reported indicators conditioning on

true health. Our econometric approach allows us to model explicitly the resid-

ual association between indicators allowing an explicit recursive structure, which

make our approach substantially different from those relying on MIMIC (Shmueli

[107]).

Our approach also differs from the previous literature regarding the type

of indicators exploited to measure “true” health. In fact “true” health, intended

as clinical and physical health status, is constructed using both subjective (SAH

and other self reported health conditions) and objective indicators (biomarkers).
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On the one hand, this avoids the arbitrariness of excluding SAH itself from the set

of measures indicating clinical health. On the other hand, there is a great deal of

interest among researchers on biological measures for several reasons. Biomarkers

can be used not only to validate respondents’ self-reported health measures but

also to identify true health status and compare different groups of individuals

(Banks et al. [7]); using biological measures give also the possibility to take

into account the preclinical levels of disease even when the respondents may not

have been aware. Using individual biomarkers, Johnston et al. [79] provide an

important piece of evidence and show the existence of reporting heterogeneity

comparing self-reported and objective hypertension.

We identify two unobserved classes representing people in good health and

those in ill-health respectively. Our main finding provides further evidence of

heterogeneity in self reporting behavior. In fact after conditioning on unobserved

individual ‘true’ health-types personal characteristics cannot be ignored to predict

SAH. In particular for a given level of “true” health people with higher income,

better education and living in less deprived areas tend to report systematically

better health. Moreover there is evidence that individual characteristics affect

differently the reporting behaviour in each category of SAH.

The paper is organized as follows. In the next section we describe the

data we use on our analysis. The following section explains the methods and the

empirical strategy we exploit. Empirical findings are found in section 2.4. The

last section discusses the results and concludes.

2.2 Data and variable definition

We use cross-sectional data from two waves (2003 and 2004) of the Health Survey

for England (HSE). This is a large survey covering a wide range of fields related

to socioeconomic status, health and life-style. In 2003 the major focus of the

survey was cardiovascular disease (including heart attacks and strokes), which is

one of the largest causes of death in England. Even when this type of disease is

not fatal, it brings ill-health and disability which might deeply affect individuals’

life. Therefore it is extremely important to obtain objective measures of health

risk in order to measure individual “true” health, intended as absence of physical

disability or illness. For this reason HSE is very suitable for our aims because

it contains some biological measures (biomarkers) obtained from a blood sample
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and used in general as an indicator of a biological state. The same biological

measures are available for all the sample aged 16 years or over in 2003, while only

for a subgroup which represents minority ethnic groups in 2004.

The Health Survey for England is composed by two parts, an interviewer-

administered interview (Stage 1), and a visit by a nurse to carry out measurements

and take a blood sample (Stage 2). At each stage participants are asked to decide

whether to proceed with the following stage or not. Therefore someone may agree

to take part at Stage 1 but decide not to continue to Stage 2.

In the first stage an individual questionnaire is administered in order to

collect information on general health, eating habits, physical activity, smoking,

drinking, family cardiovascular disease history and socioeconomic status (e.g. in-

come, employment status, educational background). At the end of this stage

respondents are asked to proceed with stage 2 by fixing an appointment with a

qualified nurse. In this second stage nurses ask more information on health and

health care utilization. For those to older than 35 in 2003 and 16 in 2004 the

nurses also ask to provide a fasting blood sample and a blood pressure measure-

ment.

For our analysis we consider a homogeneous sample of individuals aged 30

or over excluding cases with incomplete or inconsistent information on the rel-

evant socioeconomic, demographic, health and life-style variables. The original

sample size of individuals eligible to have a nurse visit was about 10,000 obser-

vations. After cleaning for missed (or inconsistent) observations, the remaining

sample size consists of 3,381 observations. This reduction in the sample size is

mainly due to the biomarker variables which are of main interest in the analysis.

First notice that these variables are available only for an eligible subsample. Sec-

ond for each measures used to define the objective health measures, we consider

only those individuals with a valid lab test result. This derived measure is di-

rectly available in the HSE data set and excludes observation with a potentially

unreliable lab test result - for example individual has eaten or smoked before the

blood test, etc.

There are three important sets of variables relevant for our analysis (see

tables A.1 and A.2). The first set includes three binary objective health indica-

tors obtained considering only valid measures of the lab tests and excluding all

the cases in which lab test results have been affected by individual behavior (e.g.

people that have smoked or eaten before the nurse visit, etc.). The first indicator
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(BPN) takes a value 1 if individual has normal blood pressure measured by a

qualified nurse with Dinamap and Omron measures. Our second objective indi-

cator (CHL) is a binary measure derived from the total cholesterol/high density

lipoprotein ratio in the blood. This ratio is more indicative of cardiovascular dis-

ease than total cholesterol since it consider both high and low density lipoprotein

cholesterol. Then the variable CHL takes a value 1 if individual has the choles-

terol ratio below a sex-adjusted threshold indicating a low risk of cardiovascular

disease. In particular for men an acceptable ratio of total cholesterol/high den-

sity lipoprotein is 4.5 or below, and for women is 4.0 or below. Finally our last

objective indicator is based on the c-reactive protein (CRP) blood test. CRP may

be used to screen apparently healthy people for cardiovascular disease (CVD). If

the CRP level in the blood drops, it means that individual are getting better and

CVD risk factor is being reduced. The CRP indicator takes 1 if individual have a

lab test score lower 3.0 mg/L, associated to low chance of having a sudden heart

problem.

Since available biomarkers capture mainly cardiovascular risk and thus

have a limited role in capturing overall true health, we also include two ad-

ditional health indicators: SAH and self-reported limiting longstanding illness

(LLI). This latter variable is available directly from the survey and it was de-

rived considering whether individual has longstanding illness and whether daily

activities are limited due to this illness. LLI takes 1 if individual has no chronic

limitations on daily activities.

As part of the health questionnaire of the HSE, respondents were asked:

“how is your health in general?” The response categories were excellent, very

good, good, fair, bad or very bad. We combine three SAH’s categories (very bad,

bad and fair) in one category representing poor health, because only a relatively

small fraction (5.5%) of the sample reports very bad health. The SAH variable

thus consists of three ordered categories: poor, good and very good health. Notice

however that our definition of “true” health is different from the broader definition

which include individual mental and psychosocial status. In fact these indicators

refer mainly to “true” health as absence of physical pain, physical disability, or

an objective measured condition that is likely to cause illness (e.g. high blood

pressure can be interpreted as symptoms of a cardiovascular disease, etc.).1

1Notice that this definition of “true” health can be extend to include mental health using
a mental score included in the HSE dataset. However its inclusion would render slower the
estimation of the model throughout the EM algorithm, since this indicator is primarily coded
using a score defined in 12 point scale and a binary discretization would be arbitrary.
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Finally we follow Johnston et al. [79] to define the last set of variables

which provides information on socio-economic status, demographic characteristics

and life-style. Socioeconomic status is measured using the equivalised income and

an overall index of multiple deprivation (IMD2004). This is a composite index

of relative deprivation at small area level, based on seven domains of deprivation

involving for example income, employment, health deprivation and disability,

education, crime and living environment.2 This survey is also rich in information

on individual life-style. These variables offer a good opportunity to better identify

individual health. In particular there are detailed information on past and present

smoking behavior as well as physical activities, sport intensity and the daily

number of portion of fruits and vegetables. HSE provides also a three levels fat

score ranged from “low fat” to “high fat” eating habits derived considering the

consumption of cheese, fish, fried food, meat, etc. However including life-style

variables across regressors may introduce an important source of endogeneity

since individuals who are in good health may also have healthier behaviours.

2.3 The Model

Our aim is to study the association between SAH and “true” health, using re-

cent developments on latent class analysis, which allow covariates to affect latent

class membership, and possibly residual association among indicators after con-

ditioning on latent health-types (Huang and Bandeen-Roche [75], Bartolucci and

Forcina [13] and Dardanoni, Forcina and Modica [36]).

Since we are mainly interested into disentangle the effect of individual on

self-reporting behaviour, let U be a latent discrete variable with two categories

representing individuals in good (U = 0) and bad (U = 1) health. The main

problem when one wants to study the relationship between true health and self-

reported health is to disentangle the effect that some personal characteristics

have on “true” health’s variations from the effect that the same variables have

on self-reporting.

Following Kerkhofs and Lindeboom [85], Etilé and Milcent [50] suggest

the following strategy to distinguish between these two effects. They assume

2The Equivalised income variable is provided by the HSE. It is computed using the Mc-
Clement score for each household (dependent on number, age and relationships of adults and
children in the household), and then dividing the total household income by this score to get
an equivalised household income.
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that “true” health is entirely captured by a synthetic measure of clinical health

(which they denote H0) for which the following ignorability condition holds (see

Wooldridge [121], p. 63):

Pr(Ysah = i | H0,z) = Pr(Ysah = i | H0) i = 1, 2, 3 (2.1)

where H0 was obtained using a latent class model with self-reported health mea-

sures as indicators. The assumption above relies on the fact that the effect of

covariates z on “true” health is entirely captured by H0. Thus, if SAH is a reli-

able indicator of individual health, then any differences on personal characteristics

should not affect the distribution of SAH after conditioning on H0, which means

that z is ignorable to predict SAH. Therefore if the assumption above holds, a

test of self-reporting behavior can be easily performed regressing Ysah on H0 and

z and testing whether parameters of personal characteristics are still significant

conditioning on the synthetic measure of clinical health.

Our approach can be considered an extension of Etilé and Milcent’s [50]

test from two points of view. First, using a LC approach the estimation of

the effect of covariates on ‘true’ health and SAH is undertaken in a single step.

This means that we estimate endogenously individual “true” health U by taking

information both from subjective (SAH, LLI) and objective indicators (BPN,

CRP, CHL), so that all available information from health indicators, including

SAH, are used to estimate individual “true” health. This also makes clear the

effect of covariates on both unobserved U and SAH. Second we allow for residual

association between health indicators in order to capture any adaptation effect of

individuals to their own health condition. This means that the effect of subjective

health measure, such as Ylli, on SAH status is not only driven by U but it could

also affect indirectly self-reporting behavior of SAH itself - for example people may

adapt to a chronical limitation status measured by Ylli and report systematically

better health (see e.g. Groot [65]).

Let Y = (Ysah, Ylli, Ybpn, Ychl, Ycrp) be the vector of observable response

variables. As a simple starting point, consider the traditional latent class analysis

(see e.g. Goodman [63]), which implies the existence of a discrete U such that

these observables Y are independent conditionally on U . This is also named
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“local independence” and is expressed as:

Pr(Ysah, Ylli, Ybpn, Ychl, Ycrp) =
1∑

u=0

Pr(Ysah | u) · · ·Pr(Ycrp | u)Pr(u)

Clearly a U that makes these responses conditionally independent captures ele-

ments of individuals’ “true” health. However, the local independence assumption

is too restrictive for our purposes since it does not allow responses and latent

health-types to depend on covariates, and it does not allow residual association

between any response after conditioning on U .

Our model assumes that the joint distribution of responses (U,Y ) condi-

tional on the set of observable covariates z (describing demographic, socioeco-

nomic and life-style individual characteristics) is fully determined by the following

set of conditional distributions of observables, and by the marginal distribution

of U :
Pr(U = 1 | z),
P r(Ysah = i | Ylli, z, U)
Pr(Ylli = 1 | U)
Pr(Ybpn = 1 | U)
Pr(Ychl = 1 | U)
Pr(Ycrp = 1 | U)

(2.2)

which can be equivalently formulated in terms of the directed acyclic graph (see

Pearl [98]) reported in figure 2.3.

Figure 2.1: Directed Acyclic Graph of model (2.2)
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We then model these conditional probabilities as linear functions of the covariates

z using a logit link to form a multivariate regression system of logit equations:

Pr (U = 1 |z ) = Λ (αu (u) + z
′γ)

Pr (Ysah > 1 |u, ylli, z ) = Λ (α1 (u, ylli) + z
′β1)

Pr (Ysah > 2 |u, ylli, z ) = Λ (α2 (u, ylli) + z
′β2)

Pr (Ylli = 1 |u) = Λ (α3 (u))

Pr (Ybpn = 1 |u) = Λ (α4 (u))

Pr (Ycrp = 1 |u) = Λ (α5 (u))

Pr (Ychl = 1 |u) = Λ (α6 (u))

(2.3)

where Λ is a logit link function Λ = et/(1 + et). Note that αj (u, ylli), j = 1, 2,

represents all the possible combinations between U and Ylli; since U and Ylli

are binary this means we have 4 α parameters in the second and third equation

that could be alternatively expressed as aj,1 + aj,2U + aj,3Ylli + aj,4YlliU . Notice

that for sake of generality we do not assume any relationships between individual

characteristics, “true” health and self-reported health status. Thus the same

set of covariates affecting “true” unobserved health may also potentially affect

reporting behavior. The system of equations (2.3) makes clear how the effect of

individual characteristics on “true” health is separated from the effect on reported

health, since individual characteristics affect separately the unobserved latent

health status U and the SAH. In particular γ parameters capture the effect of

individual characteristics on health status, while the β’s the effect on reported

health status.

Parameters in model (2.3) are estimated by the EM algorithm.3 In the E

step the posterior probability of latent class U given the observed configuration y

is computed. The M-step maximizes a likelihood function that is further refined

in each iteration by the E-step. Details on estimation and identification of model

(2.3) can be derived by looking at the Appendix of Dardanoni, Forcina and

Modica [36] and at Bartolucci and Forcina [13].

It is well known that the EM algorithm may converge even if the model

is not identified, a crucial issue for finite mixture models. Local identification of

model (2.3) can be obtained using the numerical test described by Forcina [59],

which consists in checking that the Jacobian of the transformation between the

parameters of the observable responses and the mixture model parameters is of

full rank for a wide range of parameter values.

3We are grateful to Antonio Forcina for kindly providing the Matlab code for the estimation.
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We propose two tests of reporting heterogeneity. The first test is nothing

but the ignorability condition of z in the equation determining SAH (compare

with Etilé and Milcent’s [50] equation (1) above and Kerkhofs and Lindeboom

[85]), that is:

Pr(Ysah = i | U, Ylli,z) = Pr(Ysah = i | U, Ylli) i = 1, 2, 3 (2.4)

which can be performed by testing whether z has a significant influence on SAH in

model (2.3), that is, β1 = β2 = 0. Our second test is more specific and is focused

on whether individual characteristics affect different parts of SAH distribution

after conditioning on U and Ylli, that is, testing whether β1 = β2. Both tests are

performed by estimating a restricted model and computing a LR-test which has

a chi-square asymptotic distribution.

2.4 Results

2.4.1 Generalized ordered logit results

As benchmark of our analysis we use the results obtained by a generalized ordered

logit model of SAH on the set of indicators and individual characteristics:

Pr (Ysah > 1 |z,w ) = Λ (α1 + z
′η1 +w

′θ)

Pr (Ysah > 2 |z,w ) = Λ (α2 + z
′η2 +w

′θ)
(2.5)

(compare with the second and third equations of system (2.3)), where z is the

vector of socio-economic, demographic and life styles characteristics as above, and

w is a vector of health variables. Notice that following Etilé and Milcent [50] (and

to make the regression systems (2.3) and (2.5) directly comparable), we assume

that only the coefficients of z are allowed to vary across the categories of SAH;

while health variables are assumed to affect uniformly the SAH’s distribution.

We first tested the null hypothesis of parallel lines - called the proportional

odds assumption in the statistical literature (Agresti [4], p. 275) - by imposing

the restriction that η1 = η2; the likelihood ratio test is equal to 63.25 with 37 df

(p-value .0045). Thus, the hypothesis of parallel lines is rejected.

Table (A.4) shows the estimated coefficients from the generalized ordered
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logit. Results show that with this specification there are several individual char-

acteristics that affect SAH. Under the assumption that biomarkers fully capture

“true” health, differences in SAH should reflect heterogeneity in reporting be-

haviours, rather than genuine variation in the health status. Thus people with

higher income who live in less deprived area tend to report better health. There-

fore our results on income related differences in the probability to report better

health are close to many other papers about the existence of income-related re-

porting heterogeneity (Hernandez-Quevedo et al. [71], Etilé and Milcent [50],

Lindeboom and van Doorslaer [90]). Let consider now results on health related

life variables. One observes that sport and physical activities, also increase the

probability to report good health, while individuals who eat more portions of

fruits and vegetables per day, are more likely to report very good health than

just at least good health. Clearly it is hard in this framework to claim that the

effect of individual characteristics on the probability to report subjective health is

only due to reporting heterogeneity since it doesn’t clearly distinguish the effect of

personal characteristics on“true” health from the effect on self-reporting behavior

- for example life styles may have a positive effect on “true” health, but they may

also systemically induce individual to over(under) report individual subjective

health. For this reason we then also estimate model (2.3) where observables are

allowed to affect both individuals’ health and reporting heterogeneity.

2.4.2 Results from model (2.3)

Intercepts

Since U is binary, table (A.5) shows 2∗4 + 2∗22 + 1 = 17 estimated intercepts α.

In particular there is 1 parameter to describe the class membership probability, 2

parameters for each of the 4 health indicators, and 4 parameters to describe the

effect of U and YLLI on SAH for people who report at least good or very good

health.

A glance at the table reveals that people with good health (U = 0) are

much more likely to have desirable lab test scores and no limiting longstanding

illness compared to people with ill-health (U = 1). Furthermore, it is easily

checked that people with U = 0 are also much more likely to report at least

good or very good health conditional on Ylli = 0, 1. Regarding the effect of Ylli

on SAH, it is also easily checked that the probability to report at least good or
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very good health is also increasing in Ylli conditional on U = 0, 1.4 This result

provides significant evidence on the existence of heterogeneity in self-reporting

behavior related to differences in self-perceived limiting illness.

Variations in the unobserved “true” health U .

The first column of table (A.6) reports the estimated parameters γu of both

health related variables and socioeconomic characteristics:

• the effects of demographics characteristics on unobserved “true” health have

the expected sign. In fact, ill-health is positive and statistically related

to age, but negatively with sex and ethnicity. As expected women tend

generally to have better health than men (Wingard [119]);

• socio-economic characteristics play an important role in health determina-

tion. In particular those with higher education have lower probability of

being classified with poor health than those with no qualification. Health

status is also strongly and positively correlated with income and social class

as showed by estimated coefficients of equivalised income and social class.

This results support findings obtained by Johnston et al. [79] who found

in the same data no significant income gradient for self-reported chronic

hypertension, but a clear negative gradient for objective 140/90 hyperten-

sion. This indicates that individuals living in most deprived household are

significantly more likely to have hypertension. Another important role on

determining individual health is also played by the index of multiple depri-

vation. Individuals who live in highly deprived area register a lower level of

health than those living in less deprived area, although the effect seems to

statistically vanishes as the deprivation decreases. Finally there is a small

and negative statistical significant effect on health of the number of months

individual lived in the same area;

• unobserved health is also related with individual life-style characteristics;

individual who are no smokers who practice sport regularly with a moder-

ate physical activity and follow a diet with a low fat content have a greater

probability of having good unobserved health; the opposite holds for indi-

viduals who are obese with cardiovascular conditions in the family. Finally

4Just as an example, the probability that people with U = 0 report very good health is on
average .52 if Ylli = 0 while it is .97 if Ylli = 1.

18



ill-health seems to be negatively correlated with the parents’ age and with

to the number of units drank in the heaviest day in the last seven days.

This last result is clearly unexpected, although it could be related to a sort

of measurement error in the drinking-unit variable.

Variations in reporting behaviour

The discussion above shows significant variation in unobservable health status

by personal characteristics, representing a considerable source of unobserved het-

erogeneity in health production which should be taken into account. In the

present section, we analyse the direct relationships between self-reported health

and observable characteristics conditional on true unobserved health status and

no limiting longstanding illness. Recall that for the sake of generality we have

assumed (see (2.3)) that the set of covariates z affecting “true” unobserved health

may also potentially affect reporting behavior.

We first tested the parallel line assumption by estimating a restricted

model in which individual characteristics have the same effect on different cate-

gories of the SAH distribution. The value of log-likelihood for the restricted and

unrestricted model is equal to -10979 and -10953. The value of likelihood ratio

test is 53.72 which is clearly rejected with 37 d.f (p-value = .037). Results on

unobserved heterogeneity in self-reported behavior are reported in the last four

columns of table (A.6). They differ slightly with respect of SAH classes and can

be summarized as:

• after conditioning on U and Ylli a wide set of variables (such as ethnicity,

education and individual life styles) are not anymore statistically signifi-

cant in model (2.3) in both SAH’s categories as compared with the results

obtained in the generalized order logit model discussed above. In fact only

some variables which appeared to significantly affect both SAH’categories in

model (2.5) are also significant in both at least good and very good health in

model (2.3). For example, after conditioning for unobserved health-types,

having any qualification or being an individuals from ethnic minorities has

no effect on SAH, contrary to the generalized logit model.

• individual with higher income tend to self report better health status. On

the contrary people living in the most deprived area and with low ed-

ucational attainment report systematically a worse level of health. The
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magnitude of the effect does not differ significantly among SAH’s classes.

Therefore our results support the idea that reporting heterogeneity in SAH

depends on socio-economic conditions, as suggested by [50];

• age affects self-reporting behavior. In particular elders tend to report better

health than expected. This result seems plausible with previous findings

(Lindeboom and van Doorslaer [90], Groot [65]) and confirms the appar-

ently puzzle between self reported health and age, which is related to the

existence of individual adaption to chronical ill conditions;

• individual’s life-styles tend also to affect differently reporting behavior.

Physical activities and sports increases the probability to report “very

good” health but not at least “good” health. Thus, our findings are very

similar to those obtained by Johnston et al. [79], indicating that individual

with healthy life may over estimate their health status and then tend to

over report subjective health. This effect is also increasing in the effort

required by the activity itself, but is smaller compared with those obtained

with the generalized ordered logit. However notice that these relationships

between SAH, unobserved health and individual’s health related behaviour

may also reflect a potential source of endogeneity. A possible solution which

can be addressed in the future is to include in this framework individual

behaviour in the past which should affect subsequent health status.

2.5 Discussion and final remarks

The present study explores the relationships between socio-economic, demo-

graphic and life-style personal characteristics and health. In particular we test the

existence of reporting heterogeneity on SAH implementing the approach proposed

by Etilé and Milcent [50] and Kerkhofs and Lindeboom [85]. Our empirical strat-

egy is innovative in two ways. First we use some recent developments on LCA to

disentangle the effect of personal characteristics on self-reporting behavior from

the effect on heterogeneity in health production, and we allow residual associ-

ation between self-reported indicators in order to capture differences related to

reporting heterogeneity after conditioning on latent “true” health. Second, to

identify unobserved individual latent health we use not only subjective measures,

but also objective indicators, such as biological measures, which help to validate

respondents’ self reports and to identify individual health by taking into account
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the pre-clinical levels of disease even when the respondents may not have been

aware (Banks et al. [7]).

Our results confirm the existence of systematic self-reporting bias which

has been found in many other empirical investigations. However, after condition-

ing on individual unobserved health-type, we find that several individual char-

acteristics do not have a statistically significant effect on self-reporting behavior

compared with the generalized order logit which does not distinguish explicitly

between heterogeneity in health and reporting behavior.
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Appendix A

Tables

Table A.1: Variable Definitions
Variable Definition
chl Total/high density lipoprotein cholesterol (1 = if lab test score is good, 0 otherwise)
crp C-reactive protein (1 = if lab test score is lower than 3 mg/L, 0 otherwise)
bpn Blood pressure (1 = normotensive with Dinamap and Omron readings), 0 otherwise)
lli Limiting Longstanding Illness (1 = if no Limiting Longstanding Illness, 0 otherwise)
sah Self-Assessed Health status (1 = “poor health”, 2 = “good”, 3 = “very good”)
mar 1 = if individual is married, 0 otherwise
age age of individuals
women 1 = female, 0 otherwise
black 1 = black, 0 otherwise
white 1 = white, 0 otherwise
noqual 1 = no qualification, 0 otherwise
eduh 1 = second level or higher, 0 otherwise
scl2 1 = social class for skilled non-manual and skilled manual
scl3 1 = social class professional and managerial technical
eqvinc Equivalised income
imd3 1 = third quintile of Overall Index of Multiple Deprivation
imd4 1 = fourth quintile of Overall Index of Multiple Deprivation
imd5 1 = fifth quintile of Overall Index of Multiple Deprivation (most deprived)
hse04 1 = if individual belongs to HSE 2004, 0 otherwise
bmil value of Body Mass Index if it is lower than 18.5, 0 otherwise
bmih value of Body Mass Index if it is higher than 29.9, 0 otherwise
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Table A.2: Variable Definitions
Variable Definition
drinkun # of drinking units in the heaviest day
agema age of mother
agepa age of father
demam 1 = whether the mother is dead
depa 1 = whether the father is dead
famcvd 1 = whether there are cardiovascular conditions in the family history
smacc 1 = if someone smokes in the accommodation
smkc 1 = if individual smokes currently
smkevr 1 = if individual has ever smoked
smkex 1 = if individual is an ex smoker
smkoc 1 = if individual smokes occasionally and is an ex-smoker
sportm 1 = moderate sport activity
sportr 1 = regular sport activity
hrsspt # of hours of sport per week
phy2 1 = medium physical activity level
phy3 1 = high physical activity level
veg # of portions of fruits and vegetables per day
fatt2 1 = if individual’s diet has a medium fat score
fatt3 1 = if individual’s diet has a high fat score
livehm # of months individual has lived in this local year
urban 1 = if individual lives in an urban area

Table A.3: Descriptive Statistics
Mean S.D Mean S.D

chl 0.5927 0.4913 drinkun 3.1656 2.4252
crp 0.7403 0.4385 agema 70.1709 11.9926
bpn 0.6613 0.4733 agepa 68.9665 11.5362
lli 0.5862 0.4925 demam 0.4285 0.4949
sah 2.1572 0.7579 depa 0.5894 0.4920
mar 0.7071 0.4551 famcvd 0.1230 0.3285
age 49.3688 13.0599 smacc 0.8041 0.3968
women 0.5211 0.4996 smkc 0.1736 0.3788
black 0.0337 0.1805 smkevr 0.3921 0.4883
white 0.8550 0.3520 smkex 0.2729 0.4455
noqual 0.1878 0.3906 smkoc 0.1401 0.5106
eduh 0.7749 0.4176 sportm 0.2691 0.4435
scl2 0.3620 0.4806 sportr 0.1227 0.3281
scl3 0.5034 0.5000 hrsspt 1.2022 3.0489
eqvinc 3.1720 2.7412 phy2 0.4046 0.4908
imd3 0.2037 0.4028 phy3 0.3022 0.4593
imd4 0.1768 0.3816 veg 3.8218 2.4619
imd5 0.1336 0.3403 fatt2 0.1520 0.3590
hse04 0.1685 0.3744 fatt3 0.0301 0.1710
bmil 0.5025 3.0435 livehm 160.0535 208.1209
bmih 18.8296 14.3018 urban 0.1792 0.3836
Sample Size=3,381
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Table A.4: Results for the Ordered Logit Model
β1 S.E. β2 S.E.

mar 0.198* 0.11 0.063 0.09
age 0.000 0.01 0.003 0.01
women 0.105 0.11 -0.035 0.08
black 0.313 0.28 0.405 0.25
white 0.777** 0.22 0.689** 0.17
noqual -0.862** 0.31 -0.594** 0.22
eduh -0.695 0.31 -0.281 0.21
scl2 0.066 0.14 -0.202 0.13
scl3 0.219 0.16 0.060 0.13
eqvinc 0.711** 0.26 0.397** 0.16
imd3 -0.076 0.14 -0.139 0.11
imd4 -0.254* 0.15 -0.227* 0.11
imd5 -0.798** 0.16 -0.429** 0.14
hse04 -0.058 0.18 -0.005 0.13
bmil 0.010 0.01 -0.011 0.01
bmih -0.002 0.00 -0.008** 0.01
drinkun 0.022 0.02 0.017 0.02
agema -0.004 0.00 -0.001 0.01
agepa 0.009* 0.00 0.002 0.01
demam -0.231 0.14 0.099 0.11
depa 0.014 0.14 0.101 0.10
famcvd -0.243 0.16 -0.105 0.13
smacc 0.276* 0.16 0.054 0.12
smkc -0.271 0.25 -0.237 0.18
smkevr -0.164 0.20 0.141 0.14
smkex -0.045 0.21 -0.034 0.15
smkoc 0.007 0.14 0.008 0.09
sportm 0.405** 0.15 0.230** 0.06
sportr 0.522* 0.27 0.419** 0.16
hrsspt -0.013 0.02 0.026** 0.01
phy2 0.622** 0.12 0.269** 0.10
phy3 0.715** 0.15 0.436** 0.11
veg 0.004 0.02 0.034 0.01
fatt2 0.209 0.15 0.016 0.10
fatt3 -0.032 0.28 0.084 0.23
livehm -0.000 0.01 -0.000 0.00
urban 0.201 0.14 0.073 0.11
intercept -0.426** 0.66 -2.761** 0.50

Parameters of vector w
θ S.E.

lli 1.589** .07
crp 0.162* .08
chl 0.172 .09
bpn 0.157** .07
** Significant at the 5% level;
* Significant at the 10% level.
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Table A.5: Estimated intercepts of model 2.3
α S.E. Prob.

U = 1 0.1615 0.1249 0.54
chl | U = 0 1.6278 0.0853 0.84
chl | U = 1 -0.5323 0.0596 0.37
crp | U = 0 1.8694 0.0852 0.86
crp | U = 1 0.5100 0.0539 0.62
bpn | U = 0 1.9212 0.0934 0.87
bpn | U = 1 -0.1277 0.0556 0.47
lli | U = 0 0.8031 0.0599 0.69
lli | U = 1 -0.0378 0.0521 0.49
sah > 1 | U = 0, lli = 0 -0.1717 0.1109 0.46
sah > 1 | U = 0, lli = 1 2.5915 0.1517 0.93
sah > 1 | U = 1, lli = 0 -1.6320 0.1219 0.16
sah > 1 | U = 1, lli = 1 0.6901 0.1063 0.67
sah > 2 | U = 0, lli = 0 0.0806 0.1097 0.52
sah > 2 | U = 0, lli = 1 3.4650 0.2195 0.97
sah > 2 | U = 1, lli = 0 -1.3091 0.1478 0.21
sah > 2 | U = 1, lli = 1 1.3354 0.1652 0.79
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Table A.6: Estimated covariates’ coefficients of model 2.3
γu S.E. β1 S.E. β2 S.E

mar -0.1079 0.2216 -0.0159 0.1303 0.1689 0.1172
age 0.1493** 0.0183 -0.0070 0.0103 0.0130** 0.0067
women -2.5172** 0.2734 -0.0290 0.1366 -0.0849 0.1199
black -2.2479** 0.5418 0.6449 0.3430 0.1330 0.3403
white -0.1400 0.3893 1.1140** 0.2352 0.3628 0.2324
noqual -0.2231 0.6467 -0.5668 0.3942 -0.7306** 0.2591
eduh -1.0248 0.6119 -0.3372 0.3477 -0.4912* 0.2532
scl2 -0.5605 0.3170 0.0747 0.2156 -0.2078 0.1485
scl3 -0.3788 0.3267 0.1987 0.2198 0.1065 0.1601
eqvinc -0.8082* 0.2967 0.5116** 0.2334 0.5070** 0.2174
imd3 0.3715 0.2514 -0.1228 0.1463 -0.0855 0.1373
imd4 0.4941* 0.2775 -0.0789 0.1684 -0.3462** 0.1472
imd5 1.5698** 0.3452 -0.8177** 0.2251 -0.4448** 0.1659
hse04 0.2451 0.3162 0.1559 0.1990 -0.2741 0.1878
bmil -0.0721 0.0468 0.0042 0.0134 -0.0510 0.0399
bmih 0.1355** 0.0119 -0.0083* 0.0046 0.0044 0.0057
drinkun -0.1297** 0.0456 0.0364 0.0284 0.0057 0.0236
agema -0.0137 0.0108 0.0083 0.0076 -0.0078 0.0048
agepa -0.0183* 0.0106 -0.0027 0.0069 0.0082 0.0046
demam 0.0627 0.2542 0.0705 0.1646 -0.0412 0.1427
depa -0.0534 0.2495 0.0554 0.1482 0.1146 0.1529
famcvd 0.5728* 0.3313 -0.2160 0.2311 -0.1146 0.1499
smacc -0.6574** 0.3137 -0.1505 0.1971 0.2991** 0.1556
smkc 0.8732** 0.4396 -0.7655** 0.2664 0.2281 0.2349
smkevr -0.0649 0.3346 0.1928 0.2082 -0.0301 0.1961
smkex 0.0471 0.3558 -0.0078 0.2282 -0.0309 0.1929
smkoc 0.0710 0.2354 -0.0269 0.1363 0.0546 0.1340
sportm -1.1110** 0.2469 -0.1289 0.1425 0.4725** 0.1519
sportr -1.1047** 0.3918 -0.1735 0.2262 0.8126** 0.2994
hrsspt 0.0487 0.0324 0.0706** 0.0281 -0.0432 0.0288
phy2 -0.5596** 0.2572 0.5506** 0.1708 0.3364** 0.1229
phy3 -1.3925** 0.2989 0.5664** 0.1809 0.6059** 0.1489
veg 0.0005 0.0400 0.0270 0.0245 0.0344 0.0219
fatt2 -0.0002 0.2652 -0.2242 0.1615 0.2951** 0.1393
fatt3 0.7564 0.5752 0.6370 0.4567 -0.2132 0.2617
livehm -0.0011** 0.0005 -0.0005 0.0004 -0.0001 0.0002
urban 0.3106 0.2605 0.0596 0.1620 0.1475 0.1448
** Significant at the 5% level;
* Significant at the 10% level.
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Chapter 3

Testing for Selection Effects

in Insurance Markets with

Unobservable Types

3.1 Introduction

The effects of private information on the efficient operation of insurance mar-

kets has been one of the most active research topics in economics, starting from

the classic Rothschild and Stiglitz [104] (RS) paper. The standard RS adverse

selection model predicts that when individuals have private information about

their actual risk, the insurance contract will be adversely selected, with high risk

individuals choosing higher insurance coverage; ex post, this will cause a positive

correlation between risk and coverage. This observation has inspired the seminal

contribution by Chiappori and Salanié [25], who considered the testable impli-

cations of asymmetric information in insurance markets, and proposed the so

called Positive Correlation (PC) test. The PC test rejects the null of absence of

private information in a given insurance market when, conditional on consumers’

characteristics used by companies to price contracts, individuals with more cov-

erage experience more of the insured risk. The coverage-risk correlation has been

shown to be a robust implication of competitive insurance markets under private

information in many different settings (see e.g. Chiappori et al. [24]).

The PC test has inspired a large and growing literature on empirical testing

for asymmetric information in insurance markets. A recent paper by Cohen

and Spiegelman [30] reviews almost a hundred empirical applications focusing on

automobile, annuities, life, reverse mortgages, long-term care, crop and health
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insurance markets.1

Contrary to the theoretical prediction, a number of empirical analyses of

insurance markets have found negative risk-coverage correlation, a phenomenon

which has been named favorable selection.2 For example, in their seminal paper

on favourable selection in the US long-term care insurance market, Finkelstein

and McGarry [58] find negative correlation between insurance purchase and nurs-

ing home use, both unconditionally and after conditioning on risk classification

by insurers. As an explanation of this puzzle, Finkelstein and McGarry argue

that there are two conflicting sources of private information, namely individual’s

actual risk and risk attitudes, so that two types of people buy insurance: high

risk individuals and high risk aversion individuals. Ex post, the former are higher

risk then predicted; the latter are lower risk; in aggregate, those who buy more

insurance do not have higher claims. The same puzzling negative risk-coverage

correlation has also been found in a recent paper by Fang et al. [53], who show

that, conditional on controls for Medigap prices, individuals with Medigap insur-

ance tend to spend less on medical care. This is explained again by the existence

of multiple dimensions of private information, with cognitive ability being one

of the key sources of favourable selection. The possibility that multidimensional

private information may invalidate standard insurance model predictions has also

been the subject of recent theoretical work, which has shown that the positive

risk-coverage correlation may not necessarily follow from the existence of private

information (see e.g. Chiappori et al. [24], de Meza and Webb [37], Smart [108],

Villeneuve [114], Wambach [117]).

In practice, especially when insurance companies do not use all relevant

information to price insurance contracts, either because it is unobservable or

because it cannot be used for regulatory constraints or political economy consid-

erations, it is quite likely that there are many individual characteristics which are

not used by insurance companies to price contracts but may influence insurance

coverage and actual risk occurrence. Thus, in many instances it is possible that

there is multidimensional residual heterogeneity which affects the risk-coverage

correlation, even after conditioning on variables used by insurers to price con-

tracts. Notice however that multidimensionality of private information does not

1See also Einav et al. [47] for a recent review of testing for asymmetric information in
insurance markets.

2Alternatively, some authors refer to this situation as advantageous or propitious selection.
See Hemenway [70] for an early discussion of the relevance of favourable selection in insurance
markets.
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need to be necessarily related to regulation, which can have many additional

other effects on market.

The first question addressed by this paper is then: How does the standard

PC test perform in the presence of multidimensional private information? We ar-

gue that under multidimensional private information there is the possibility that

the insurance contract is both adversely and favourably selected by different indi-

viduals. Since the PC test relies on a single statistic to appraise the risk-coverage

correlation, multidimensional private information may cause serious problems in

detecting selection effects using observable data, since the PC test averages out

selection effects which may pull in different directions.

We then show how unobserved heterogeneity can be modeled by assum-

ing a finite number of heterogeneous “types”, which result by cross-classifying

the relevant private information variables, and extend the standard adverse and

favourable selection definitions into local and global ones. Using recent advances

in finite mixture modelling, we show how risk and coverage probabilities can be

estimated for the unobserved types in order to detect selection effects in the mar-

ket. Tests for the absence of selection and the multidimensionality of private

information can be performed by imposing restrictions on the behavior of these

unobservable types.

To show the potential applicability of our approach, we look at the US

long-term care and Medigap insurance markets, which differ substantially since

the former is not heavily regulated as the latter. While the PC test shows absence

of significant residual risk-coverage correlation in both samples, our finite mixture

model shows the existence of significant residual heterogeneity with large selection

effects. Not surprisingly, we find that selection effects are stronger in the regulated

market.

3.2 The Positive Correlation test

In this section we review the main properties of the PC test in the standard

Rothschild-Stiglitz model of adverse selection. As explained by Cohen and Spiegel-

man [30], when looking at the risk-coverage correlation, there is no unique way to

define coverage and risk. When insurers offer different contracts, high risk indi-

viduals may choose contracts with more comprehensive coverage; when insurers
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offer a single product, high risk agents have a greater probability to buy insur-

ance. Similarly, risk may be defined by higher expected claims, higher payouts

in the event of a claim, or both.

To keep the analysis simple, we follow the original Chiappori and Salanié

[25] analysis and assume we observe a binary variable I ∈ {0, 1} which takes value

1 if an individual has bought an insurance contract which protects from a fixed

loss, and a binary variable O ∈ {0, 1} which takes value 1 if the individual incurs

the loss. The terms of the contract depend on a set of individual observable

characteristics x used by the insurance company. Thus, individuals with the

same x are offered the same contract. In practice conditioning on x is key in

these testing procedures. We consider first the analysis conditional on x, that is,

we consider the population of individuals who have the same characteristics x.

Let R ∈ {0, 1} be a private information variable denoting risk type. Since

R is not observed, the underlying question is what can we learn about the distri-

bution of O, I,R when we observe only O, I. An important point to notice is that

the positive risk-coverage correlation may arise, even in the absence of adverse

selection, because of moral hazard. In particular, since moral hazard implies ex

post positive correlation between risk and coverage even in the absence of adverse

selection, finding positive risk-coverage correlation in the data does not provide

concluding evidence of adverse selection, but negative or zero correlation in the

data is not compatible with adverse selection. This is a well known issue, and

an important task of current literature is disentangling the two effects. Advances

are being made exploiting exogenous variations or the panel structure of data

(see e.g. Abbring [2]-[1], Cardon and Hendel [21], Chiappori et al. [26], Dionne

et al. [41], Einav et al. [48]); the issue is discussed with references in the reviews

of Cohen and Spiegelman [30] and Einav et al. [47].

To focus on selection effects, let us assume that there is no moral hazard.

This assumption is only partially restringing. Notice, in fact, that moral hazard

effect of insurance differs between individuals. In particular some individuals

whose behaviour is more responsive to insurance may be also more likely to buy

(ex ante) insurance. Thus, we would still view this as selection, in the sense that

individuals are selecting insurance on the basis of their anticipated behavioural

response to it. Therefore the moral hazard effect we are not considered is then

net net of the moral hazard induced by the selection of a contract by different

types, who anticipate that their behavior will change after buying the contract.

In particular it could be viewed as a variation affecting each individual in the
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loss occurrence and consumption subsequent to the contract purchasing.3 Under

this assumption we have:

P (O = 1 | R, I = 0) = P (O = 1 | R, I = 1). (3.1)

The classic RS definition of adverse selection, that higher risk individuals (i.e.

those with higher loss probability) are more likely to buy insurance, can be written

as:4

Definition 1. (Adverse Selection 1): The insurance contract I is adversely se-

lected if

(
P (O = 1 | R = 1)−P (O = 1 | R = 0)

)
·
(
P (I = 1 | R = 1)−P (I = 1 | R = 0)

)
> 0.

An alternative definition of adverse selection in this context can be derived by

noting that riskier types, when compared to the population, are more likely to

experience the loss; the insurance contract I is adversely selected by them since

they are also more likely to buy insurance compared to the population. On the

other hand, less risky types, who have lower expected claims, also adversely select

I since they are less likely to buy insurance compared to the population. If we

denote by P̄O and P̄I the average loss and insurance probabilities,5 the insurance

contract I is adversely selected by type R = i if

(
P (O = 1 | R = i)− P̄O

)
·
(
P (I = 1 | R = i)− P̄I

)
> 0.

Definition 2. (Adverse Selection 2): The insurance contract I is adversely se-

lected if it is adversely selected by types R = 0, 1.

Now, Definitions 1 and 2 are not directly testable since they involve the unob-

served variable R. Consider then the following two testable conditions:

3This assumption is crucial to show simply the theoretical equivalence between the differen
definitions of the positive correlation test. However, notice that since our paper is mainly
concentrated on studying the existence of residual (multidimensional) private information in
the insurance markets, without disentangling the effect of adverse selection from moral hazard,
we follow several other studies on this issue which assume no moral hazard (see e.g. Chiappori
and Salanié [25], Cohen and Einav [29], Finkelstein and McGarry [58], Fang et al. [53], Cutler
et al. [32]).

4If we label R = 1 as the high risk individuals, Definition 1 could be written as P (O = 1 |
R = 1) > P (O = 1 | R = 0) and P (I = 1 | R = 1) > P (I = 1 | R = 0). Definition 1 is
slightly more general since it does not imply any label on R, which will be useful later when
unobservable types could reflect multidimensional characteristics.

5That is, P̄O = P (R = 0)P (O = 1 | R = 0) + P (R = 1)P (O = 1 | R = 1) and P̄I = P (R =
0)P (I = 1 | R = 0) + P (R = 1)P (I = 1 | R = 1).
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Definition 3. (Positive Correlation Test 1):

P (O = 1 | I = 1) > P (O = 1 | I = 0),

and

Definition 4. (Positive Correlation Test 2):

P (O = 1, I = 1) · P (O = 0, I = 0)

P (O = 1, I = 0) · P (O = 0, I = 1)
> 1.

Definitions 3 and 4 are two ways to implement the PC test in this context.

Definition 3 says that the expected loss for consumers who chose to insure is

greater than for consumers who did not. Definition 4 says that the odds ratio

between O and I should be greater than one, that is, O and I should be positively

correlated, and goes back to the original implementation of Chiappori and Salanié

[25]. Both alternative definitions of the PC test are discussed in the literature;

for example, the review of Einav et al. [47] privileges the first, while the review

of Cohen and Spiegelman [30] considers both. The following result clarifies the

relationship between the four definitions, and is proved in the appendix.

Proposition 1. Definitions 1, 2, 3, and 4 are equivalent under Assumption (3.1).

The proposition shows that under no moral hazard, adverse selection, which

involves the unobservable risk type R, is equivalent to the positive correlation

property which involves only observables.

In practice, since the insurance contract depends on the observable vari-

ables x, the PC test is performed conditional on x. As suggested by Chiappori

and Selanié [25], when the variables in x are discrete with a very limited number

of distinct configurations, one can define a finite number of mutually exclusive and

exhaustive configurations (strata), and test the independence of I and O in each

stratum. Since this is equivalent to imposing no restriction on how P (O, I | x)
depends on x, the analysis is nonparametric. On the other hand, if covariates are

continuous or take so many values that most strata contain too few subjects, the

nonparametric approach is not viable, and Chiappori and Selanié [25] suggest to

test the conditional correlation between O and I with a standard binary probit
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model

I = 1(x
′
βI + ϵI > 0), (3.2)

O = 1(x
′
βO + ϵO > 0) (3.3)

with ϵI and ϵO standard normal errors. In particular, since risk type R is not

observed, one can always rewrite, say, ϵI = γIR+ ηI and ϵO = γOR+ ηO, with ηI

and ηO being idiosyncratic errors and γI and γO positive constants, so that the

null of the absence of private information amounts to testing that the correlation

between ϵI and ϵO is zero. Notice that model (3.2,3.3) assumes no moral hazard

since I has no direct effect on O. In their seminal application of the PC test to the

automobile insurance market, Chiappori and Selanié [25] find that the null of the

absence of private information cannot be rejected under both the nonparametric

and parametric testing procedures.

3.2.1 The Positive Correlation test with multidimensional

private information

Suppose now there are two unobserved binary variables, R and P , so that, after

cross classification R × P , there are four unobservable “types” (L,L), (L,H),

(H,L) and (H,H). As argued in the Introduction, the existence and the effect

of multidimensional private information in insurance markets has been analyzed

both in the theoretical and the empirical literature. For example, Smart [108]

studied a competitive insurance market in which individuals differ with respect

to both accident probability and degree of risk aversion showing that multiple di-

mension of private information can change the nature of equilibrium introducing

“noise” into the problem of inferring agents’ type. However, it is important to no-

tice that both the theoretical and empirical literature use different interpretations

of “risk preference” P , which have included not only the canonical Arrow-Pratt

risk aversion specification, but also context’s specific risk perceptions which may

affect both insurance choice and loss occurrence (see Einav et al. [49] for a recent

contribution on context’s specific risk perceptions).

Suppose that insurance and loss follow a standard bivariate probit model

with

I = 1(x
′
βI + γIR + δIP + ηI > 0),

O = 1(x
′
βO + γOR + δOP + ηO > 0)
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so that, letting ϵI = γIR + δIP + ηI and ϵO = γOR + δOP + ηO, model (3.2,3.3)

above is a special case with δI = δO = 0. Consider the following four examples,

where for simplicity we assume that x has been centered and the analysis is

conditional on x = 0:

1. In the first example, suppose γI = γO = δO = 1 and δI = -1; thus, as in

the standard model, risk type has a positive effect on both the insurance

and claim probabilities, but there is an additional unobservable variable

(risk preference) which has a positive effect on claims and a negative effect

on insurance. Let R and P be independent, respectively with support

{−1, 2} with probability (2/3,1/3), and support {−2, 1} with probability

(1/3,2/3). It can be checked that there is zero correlation between ϵI and

ϵO, so that the PC test would conclude that there is no selection in this

insurance contract. However, after calculating the population probabilities

P̄O and P̄I and the insurance and outcome probabilities for the four types,

it can be seen that the while the insurance contract is adversely selected by

types (H,H), there is favourable selection by types (L,L) since, compared

with the population, types (L,L) have lower claim probability but a greater

probability of buying the insurance contract.

2. In the second example, let γI = γO = 1, δI = -1 and δO = 0. This captures a

simple extension of the standard model which assumes that risk preference

has a negative effect on insurance purchase. Let R and P be independent,

equiprobable, and with support respectively equal to {−1, 1} and {−2, 2}.
There is positive correlation between ϵI and ϵO, which is interpreted by the

PC test as evidence of adverse selection. However, after calculating the in-

surance and outcome probabilities for the four types and for the population,

it can be seen that the insurance contract is favourably selected by types

(L,L) and (H,H), and adversely selected by types (L,H) and (H,L).

3. In the third example, let γI = δO = 1 and δI = γO = 0, so that insurance

choice is affected only by risk preference, and claim probability only by

risk type, and suppose R and P be independent. There is zero correlation

between ϵI and ϵO, but the insurance contract is adversely selected by types

(L,L) and (H,H), and favourably selected by types (L,H) and (H,L).

4. In the final example, let γI = γO = 0, δO = 1 and δI = -1, so that actual

risk has no effect on I and O, but risk preference has a negative effect on

insurance choice and a positive one on claim probabilities. There is negative
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correlation between ϵI and ϵO, and the insurance contract is favourably

selected by both types P = L and P = H; the interest of this example

lies in the fact that there is favourable selection in this market, but private

information is actually unidimensional.6

It is important to stress that lacking a sound and universally accepted

equilibrium insurance model under multidimensional unobserved heterogeneity,

the examples above are only suggestive and just sketch some empirically or the-

oretically relevant cases. However, these examples do point at possible problems

with the positive correlation test under multidimensional heterogeneity, which

stem from the fact that using a single statistic to calculate correlation is bound

to average out selection effects which pull in different directions.

3.3 Testing for selection effects with multidi-

mensional private information: The FMP

test

In an important stream of papers dealing with selection effects in insurance mar-

kets with multidimensional private information, Finkelstein and Poterba [57],

Finkelstein and McGarry [58] and Cutler et al. [32] suggest using variables which

are observable by the econometricians but not used by the insurance companies

as proxies of private information variables. In practice, this involves adding such

variables as covariates in the equations for the loss and insurance probabilities; if

any of these proxies is found significant, this is taken as evidence of the existence

of residual private information. As argued by Cutler et al. [32], the test can be

performed both conditionally on insurers’ risk classification x as suggested by

Chiappori and Selanié [25], or unconditionally. They argue that “the uncondi-

tional relationships may be of greater interest, since we are primarily interested

6Of course this begs the question about the relationship between this example and those
papers (e.g. Finkelstein and McGarry [58] and Fang et al. [53]) that, having found evidence
for favourable selection in some insurance market, conclude that this implies the presence of
multidimensional private information. The two views can be reconciled only if one assumes
the existence of a further unobservable, namely actual risk R, which has a positive effect on
both I and O. In other words, if one assumes that γI and γO are strictly positive, a necessary
condition for finding negative correlation between ϵI and ϵO is that there must be some other
unobservable with contrasting effect on I and O. Thus, having assumed the presence of one
dimension of private information (actual risk), one concludes that private information must be
multidimensional.
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in how preferences mediate the insurance - risk occurrence relationship” ([32], p.

160), but in practice they find that in their applications the two sets of results

are very similar. We refer to this testing procedure as the Finkelstein-McGarry-

Poterba (FMP) test.

In a seminal application of this testing procedure to the long-term care

insurance market, Finkelstein and McGarry [58] find that, after conditioning for

risk classification by insurance companies, and proxing risk preference by seat belt

use, preventive care activity, and wealth, all of these variables have a positive ef-

fect on the probability of buying insurance but a negative effect on nursing home

use, which is taken as evidence of favourable selection in this market. In another

application of the FMP test, Cutler et al. [32] consider five insurance markets

(namely life, annuity, long-term care, Medigap, acute health) and concentrate

in finding whether, extending the standard RS model of adverse selection, risk

preference is a significant determinant of insurance choices and loss occurrence.

As observable proxies for risk preference they use five variables (namely smoking,

drinking, job risk, preventive care, seat belt); if, after controlling for x, these

variables are found to have the same (opposite) effect on the insurance and loss

probabilities, this is interpreted as evidence of adverse (favourable) selection.

Cutler et al. [32] find that individuals who engage in risky behaviours are less

likely to buy insurance in all five markets considered. In addition, more risk tol-

erant individuals tend to have higher claims in life and long-term care insurance,

but lower claims for annuities, while no systematic relationship is found in the

Medigap and acute health insurance. They suggest that while in the annuity mar-

ket the standard adverse selection model cannot be rejected, there is evidence for

favourable selection in the life and long-term care insurance markets, and there

is no concluding evidence on the nature of the selection effects in the Medigap

and acute health markets.

3.4 Selection effects with multidimensional un-

observable types

Suppose there is a set V1, . . . , VK of residual heterogeneity variables which af-

fect insurance choice and outcomes after conditioning on x. We assume that

V1, . . . , VK are discrete, with Vk taking say lk levels, k = 1, . . . , K. This is a fairly

innocuous assumption since any continuous variable can be approximated arbi-

36



trarily well by a discrete one, and it implies that we can cross-classify V1, . . . , VK

into a single discrete variable which takes l1 × · · · × lK values, which identifies

the set of heterogeneous “types”. We do not make any assumption either on K

or on each lk; in practice, many different types are very close to each other and

thus are empirically undistinguishable and can be lumped together. Let then T
= {1, 2, . . . ,M} be the set of different unobserved heterogeneous types, and let

T be a random variable with support in T . Clearly since the label of the types

is arbitrary, no order is assumed on T : for example, with two binary private

information variables capturing risk type and risk preference, as shown by Smart

[108] there is no ordering of the four types since single crossing of the indifference

curves fails to hold. In this setting, different types are simply meant to capture

heterogeneous insurance and claim behaviours after conditioning on x, without

any assumption on the underlying structure; what matters here is that a suffi-

cient number of types is used to capture residual heterogeneity. Notice also that

even if we could estimate insurance and loss probabilities for each type, without

further assumptions one cannot disentangle the individual effect of each single

unobservable characteristic.

Now, how can we define selection effects and test for multidimensional

private information in the presence of a finite set of unobservable types? For the

time being, consider again the analysis conditional on x, and, to isolate selection

effects, assume again no moral hazard:

P (O | T = t, I = 1) = P (O | T = t, I = 0), t ∈ T . (3.4)

Now, when private information is multidimensional it is well possible that an

insurance contract is both adversely and favourably selected by different types.

Thus, it makes sense to have both a local and a global definition of selection effects

which naturally extends the unidimensional case:

Definition 5. (Local Selection): The insurance contract I is adversely (favourably)

selected by type t ∈ T if

(
P (O = 1 | T = t)− P̄O

)
·
(
P (I = 1 | T = t)− P̄I

)
> (<)0; (3.5)

if an insurance contract is adversely (favourably) selected by all types t ∈ T ,

since the labeling of the types is arbitrary, we have

Definition 6. (Global Selection:) There is global adverse (favourable) selection
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when there is an appropriate rearrangement of the types such that

Pr(O = 1 | x, T = 1) ≤ · · · ≤ Pr(O = 1 | x, T =M)

Pr(I = 1 | x, T = 1) ≤ (≥) · · · ≤ (≥)Pr(I = 1 | x, T =M)
(3.6)

with some inequality holding strictly.

Now, it is worth noting that if each private information variable V1, . . . , VK is

monotonic in O and I, when a contract is globally selected we cannot exclude

that private information is actually unidimensional (i.e. a globally selected con-

tract under multidimensional private information is observationally equivalent to

a unidimensional private information one). In other words, under the assumptions

of no moral hazard and that outcome and insurance probabilities are monotone in

each private information variable, we can reject the unidimensionality of private

information only when the global selection inequalities do not hold, since if each

Vk has a monotone effect, then there must be at least two unobservable charac-

teristics which pull I or O in different directions. This observation suggests an

empirical test for the unidimensionality of private information, when there are

more than two types.

3.4.1 Implementation

In practice, since individuals differ by the set of variables used by insurers to

price contracts, the analysis has to be performed conditional on x. A key point is

then the choice of x. In many insurance markets there are many observable char-

acteristics which cannot be used either by regulatory laws or political economy

concerns. Thus, a natural choice is to use as conditioning variables those which

are effectively used by insurers to price contracts so as to look at how people

behave conditional on the menu of contracts they actually face. In highly com-

petitive and unregulated markets, presumably the insurance companies’ choice

of x reflects more accurately actual insurance and loss probabilities, compared

with heavily regulated markets. Therefore, in the latter markets it is more likely

to find heterogeneous behavior of the types compared to the former (see e.g. Pol-

born et al. [99] on ‘regulatory selection effects’ ). In this sense the unobserved

heterogeneity T is implicitly captured by whatever affects O and I but is not

used by insurance companies to price contracts.

The empirical implementation of the test requires identification of the
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insurance and outcome probabilities Pr(I = 1 | x, t) and Pr(O = 1 | x, t),
and the possibility to estimate probabilities in terms of the unobserved types for

each vector x of insurance used controls. The practical implementation of the

test thus suggests the assumption that Pr(I = 1 | x, t) and Pr(O = 1 | x, t) are
linearly additively separable in x and T , for example by assuming that

Pr(I = 1 | x, t) = F (αI(t) + x
′
βI),

P r(O = 1 | x, t) = F (αO(t) + x
′
βO)

(3.7)

for some appropriate link function F . Under this assumption, to analyze selection

effects we need estimating the individual types effects αI(t) and αO(t) for t ∈ T ;

appropriate equality and inequality restrictions on αI(T ) and αO(T ) can then be

imposed to test for the absence of selection effects and the unidimensionality of

private information.

3.5 Estimation

To analyze selection effects we need to estimate the parameters α’s and β’s in the

nonlinear system (3.7), jointly with the membership probabilities P (t), t ∈ T .

This can be accomplished by use of a semiparametric finite mixture model; this

kind of models, which have become popular in economics after the seminal paper

by Heckman and Singer [68], decompose the observed conditional joint distribu-

tion of O and I into a finite number of components with mixing probabilities

P (t):

P (O, I | x) =
∑
t∈T

P (t)F (αO(t) + x
′
βO)F (αI(t) + x

′
βI).

Estimation of finite mixture models involves first a choice of an appropriate link

function F ; we use logit. Notice however that while relying on the parametric

choice of F for modeling each component probability, no parametric structure is

imposed on the unobserved heterogeneity variable T . Well known applications

of semiparametric finite mixture models are Deb and Trivedi ([38] and [39]) in

health economics and Cameron and Heckman [20] in education.

39



3.5.1 A discrete multiresponse finite mixture model

The semiparametric finite mixture model is well established and achieves non-

parametric estimation of the unobserved heterogeneity parameters α’s. However,

conditionally on x we observe only two binary variables (that is, 3 parameters),

while even with two mixture types there are 5 parameters to estimate (four α’s

and a mixture probability). Thus, it must rely on covariates’ variation to achieve

parameters’ identification. In practice, it typically achieves identification of very

few unobserved types; in many applications only two types are identified.

To achieve sharper identification of the heterogeneous types we may use a

set of observable indicators, that is, observable manifestations of the unobserved

heterogeneity which affects insurance choice and loss occurrence after condition-

ing on x. Following the logic of the FMP testing procedure, appropriate indica-

tors can be chosen as variables which are observable by the econometricians but

not used by the insurance companies. Examples of variables which can be used as

indicators include: wealth, cognitive abilities, occupational risk, risk reducing or

increasing behavior such as preventive care, seat belt use, smoking and drinking

or, if panel data are available, past insurance choices and claims. For simplicity,

we assume that chosen indicators are actually binary variables (this restriction

aims to simplify the notation, but our econometric analysis can be performed as

long as these indicators are discrete).

Having found a set Z1, . . . , ZH of suitable indicators, the main model of

interest is then augmented by an auxiliary system of conditional probabilities for

the indicators

Pr(Zh = 1 | t) = F (αZh
(t)), h = 1, . . . , H (3.8)

which is instrumental for identifying the mixture components probabilities in

(3.7), which are of primary interest. Notice that, since T defines mutually exclu-

sive and exhaustive types, the auxiliary equation system (3.8) is saturated and

the choice of the link function is purely one of convenience since no parametric

assumption is imposed.7

7In the auxiliary system (3.8) one could also condition the probability of each indicator to
the controls x, in which case the unobservable types are defined relatively to x. For example, if
Zh is the choice of wearing seat belts which acts as an indicator of risk preference, conditioning
say on age, helps identifying risk attitudes relatively to age, while if no conditioning is made, one
tends to identify unadjusted risk preferences. In our experience, for the purpose of estimating
the parameters of the main system of interest, in practice there is little difference in the results
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The discrete multiresponse finite mixture model is completed by the types

membership probabilities P (t). To force the types probabilities to lie between zero

and one and sum to one, it is convenient use a multinomial logit parameterization:

Pr(T = t) =
exp(αT (t))∑M
t=1 exp(αT (t))

, αT (M) = 0 (3.9)

so that the M − 1 logit parameters αT are simply reparametrization of the mem-

bership probabilities, and do not impose any parametric restriction on the distri-

bution of T .

The discrete multiresponse finite mixture model is defined by equations

(3.7)-(3.8)-(3.9), with α’s and β’s being the model parameters. Model (3.7)-

(3.8)-(3.9) can be seen as an instance of a discrete multivariate MIMIC (Joreskog

and Goldberger[81]) model (see Goodman [63] for the seminal paper on finite

mixture models with multivariate binary responses, and Huang and Bandeen-

Roche [75] for a recent general treatment), which uses information on x and

the observable joint distribution of the response variables [I, O, Z1, . . . , ZH ] ≡
Y to learn some relevant features of the unobservable conditional distribution

P (Y | x, T ). Contrary to the MIMIC model, the unobserved heterogeneity T

is not a continuous univariate variable on the real line, but an unstructured

nonparametric variable.8

When F is the standard binary logit link, we can rewrite the model (3.7)-

(3.8)-(3.9) in terms ofM logits for I, O and each of the indicators Zh, andM −1

multinomial logits for the type membership probabilities. Thus, under the logit

link, model (3.7)-(3.8)-(3.9) can be written more compactly as

λ(x) = B(x)ψ (3.10)

where λ is the vector which collects the (S +1)×M − 1 logits, B(x) is a design

matrix whose dependence on x reflects the dependence of the conditional distri-

obtained under the two approaches.
8For an intuitive explanation on how this can be done, let S = H + 2 denote the size of Y ,

and consider the analysis conditional on a given value of x. Conditionally on x, we observe
the joint distribution of Y , which has 2S − 1 free parameters, but (3.7)-(3.8)-(3.9) contains
(S+1)×M −1 parameters. Therefore, if a sufficient number of indicators are available, a large
number of types can in principle be identified. For example, if H = 4, there are 63 observable
parameters and 7×M − 1 parameters to estimate, so that in principle up to 9 different types
can be identified. However, this is only a necessary condition for the identification of the
unobservable parameters; there are well known pathological examples in the literature on finite
mixture models which show that this counting condition is not sufficient.
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bution of I and O on x, and ψ is the vector which collects the model parameters

α’s and β’s. Now, it can be easily seen that α’s are the only model parameters

after conditioning for a given value of x. However, since the α’s are one-to-one

and differentiable functions (i.e. reparametrizations) of the probabilities of inter-

est, model (3.10) is actually nonparametric conditional on a given value of x. It

follows that when the variables in x are discrete, take a limited number of distinct

configurations (strata), and sufficient observations are available for each stratum,

in principle one can analyze selection effects in the discrete multiresponses finite

mixture model in a nonparametric fashion, analogously to the PC test discussed

in section 3.2 above. In particular, notice that the unconditional model is non-

parametric, and that model (3.10) imposes the same parametric restriction to

the data as the PC test -namely, the choice of the link function F in the two

equations (3.7)- although nonparametric estimation of our model requires more

observations in each strata.

Estimation of the model parameters in (3.10) can be obtained by the EM

algorithm, which is the standard approach for maximum likelihood estimation of

finite mixture models, and has been shown (Dempster et al. [40]) to converge

to the maximum of the true likelihood. Given the binary nature of the response

variables, the E-step is equivalent to compute, for each subject, the posterior

probability of belonging to each unobservable type. The M-step requires maxi-

mization of a multinomial likelihood with individual covariates, with a suitable

modification to allow for linear inequality constraints.9 It is well known that

the EM algorithm may converge even if the model is not identified, a crucial

issue for finite mixture models. Conditions for parametric identification of model

(3.10) are discussed in Theorem 1 of Huang and Bandeen Roche [75]; local iden-

tification in the nonparametric model can be obtained using the the numerical

test described by Forcina [59], which consists in checking that the Jacobian of

the transformation between the parameters of the observable responses and the

mixture model parameters α’s is of full rank for a wide range of parameter values.

Within model (3.10), the absence of selection effects and the multidimen-

sionality of private information can be formally tested by imposing appropriate

restrictions on the α parameters. For example, one rejects the null of the absence

of selection effects when each of the equality constraints αI(1) = · · · = αI(M)

and αO(1) = · · · = αO(M) is rejected. On the other hand, since finite mixture

9We are grateful to Antonio Forcina for kindly providing the Matlab code for the EM
estimation.
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models are invariant to types’ permutation, the standard RS insurance model

(i.e. the null of global adverse selection) for example can be tested by setting

the inequalities αI(1) ≤ · · · ≤ αI(M) and αO(1) ≤ · · · ≤ αO(M); techniques

of order restricted inference can be used to show that the LR test statistic is

asymptotically distributed as a mixture of chi-squared distributions.10

Despite the usefulness of finite mixture models to detect underlying resid-

ual heterogeneity, one unresolved issue in their application is how to determine

the number of unobserved types M . The currently preferred approach suggests

the use of Schwartz’s Bayesian Information Criterion (BIC) to guide this choice,

which in certain conditions is known to be consistent and generally helps pre-

venting overparametrization (see McLachlan and Peel [93] for a thorough intro-

duction to finite mixture models and a review of existing criteria for the choice of

the number of types). BIC is calculated from the maximized log-likelihood L(ψ)

by penalizing parameters’ proliferation, BIC(ψ) = −2L(ψ) + υlog(n), where n

denotes sample size and υ the number of parameters; the model with the lowest

BIC is preferred.

Finally, it may be worth noticing that, since the number of typesM is not

predetermined, formal hypotheses tests performed in finite mixture models are

in fact conditional on M , and pre-testing for the number of types may invalidate

distributional results of the test statistics employed. Of course, while pre-testing

is a common problem in most applied research whenever final estimates are ob-

tained after searching for appropriate specification, this is an issue which should

be kept in mind whenever test results differ significantly when performed under

different values of M .

3.5.2 Relationship with FMP test

The multivariate discrete finite mixture model uses the same data as the FMP

test, namely the response variables of main interest I and O, the set of variables

used by insurers to price contracts x, and the set of auxiliary observable variables

Zh. The main difference is that while the variables Zh are used as proxies of resid-

ual private information by FMP, they act as indicators of the unobserved types

in our model. While FMP test can appropriately detect the existence of private

information in a simple and robust procedure, it may run into difficulties when

10See Gourieroux and Monfort [64] for a general exposition, and Dardanoni and Forcina [34]
for a discussion on how the mixing weights can be calculated by simulations.
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one tries to interpret the results in terms of selection effects and multidimensional

private information. Our procedure, on the other hand, by clearly identifying a

finite number of unobservable types, allows a precise interpretation of the nature

of selection mechanisms in the insurance contract. Notice that the finite mixture

model, while capturing relevant residual heterogeneity in a parsimonious and di-

rect way, does not come at a cost of stronger parametric assumptions imposed

on the data.11

3.5.3 Multiple outcomes

In many circumstances the insurance contract protects against multiple losses.

For example, Medigap protects against high out of pocket expenses for several

health care services, such as inpatient, outpatient and specialist visits. The frame-

work above can then be extended by simultaneously considering say J binary

outcomes Oj, j = 1, . . . , J , which take value one if the individual experiences

the loss of type j for which he is insured. Assuming again linear additive sepa-

rability (which is key for implementing the proposed approach) the conditional

probabilities of interest are

Pr(I = 1 | x, t) = F (αI(t) + x
′
βI)

Pr(Oj = 1 | I,x, t) = F (αOj
(t) + x

′
βOj

), j = 1, . . . , J
(3.11)

for a suitable link function F . For sharper identification of the mixture com-

ponents, this system of equations of main interest is integrated by the auxiliary

system, and the complete model is (3.8)-(3.9)-(3.11).

3.6 Application to the US long-term care insur-

ance market

In a recent seminal paper Finkelstein and McGarry [58] (henceforth FM) study

the long-term care insurance market in the USA. Long-term care expenditure

11In particular, the main parametric restriction imposed to the data by both approaches is the
choice of the link function F in the I and O equations. However, if the test is performed uncon-
ditionally as suggested by Cutler et al. [32], the finite mixture model does not impose paramet-
ric restrictions, contrary to the FMP test where parameters’ estimates of P (O | Z1, . . . , ZH)
and P (I | Z1, . . . , ZH) still depend on the choice of a link function, if a linear separability
assumptions is imposed to help interpretation of results.
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risk is one the greatest financial risks faced by the elderly in the US; to get

a quantitative feeling of its importance, the amount of expenditure in nursing

home care in 2004 was about 1.2% of the US GDP. Furthermore, as argued by

FM, long-term care insurance is a good market to study since it is not heavily

regulated. Their data comes from the Health and Retirement Study (HRS); the

average age of respondent is 77.

FM notice that in the sample there is negative correlation between insur-

ance purchase and nursing home use; they also perform the PC test conditioning

on risk classification by calculating, by means of a standard actuarial model,12

the probability of nursing home use as estimated by insurance companies. They

find no conditional correlation when they apply the test to the whole sample, and

slightly significant negative conditional correlation when the test is applied to a

more homogenous subsample of individuals who are likely to face the same menu

of options.

Their overall interpretation of these results is that individuals may have

private information not only on their risk type, but also on their preferences

for insurance coverage, which operate in offsetting directions. They show that

individuals who exhibit more cautious behavior - as measured either by their in-

vestment in preventive health care or by seat belt use are both more likely to have

long-term care insurance coverage and less likely to use long-term care, so they

conclude that the market is favorably selected. Since empirical evidence suggests

that demand for nursing home use is relatively price inelastic, FM suspect that

their results most likely reflect ex ante more than ex post private information.

3.6.1 Data and variables definition

We implement our testing procedure by using FM dataset as reported in table 4

of their paper (FM [58] pg. 948). This is a subsample of individuals in the top

quartile of the wealth and income distribution without any health characteristics

that might make them ineligible for long-term care insurance.13 We use as insur-

ance purchase and risk occurrence two binary variables, namely Long-Term Care

Insurance which takes value one if the individual has long-term care insurance,

12They alternatively use as controls a rich set of covariates typically used by insurance com-
panies to price contracts, but their results do not change significantly.

13FM’s dataset is available in the AER website. We thank FM, and the AEA for their policy
of providing data for published articles.
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and Nursing Home which takes value one if the individual enters a nursing home

in the following 5 years. In this sample about 17% of individuals have long-term

care insurance in 1995 and 10% enter a nursing home in the following 5 years

period. As observed characteristics used by insurance company (x) we use the

probability of entering a nursing home, which is calculated by FM from a stan-

dard actuarial model. We create 10 risk categories by considering deciles, so x is

actually a vector of 9 dummies since we exclude the 5th decile.

As indicators for the residual unobserved heterogeneity we use the follow-

ing binary variables: Seat Belt which takes value 1 if the subject always wears seat

belts; No Smoking and Drinking which takes the value 1 if the subject either cur-

rently does not smoke or has less than three drinks per day; Subjective Riskiness

which takes value 1 if the individual self-reported probability of nursing home

utilization is higher than the insurance company estimated probability; Preven-

tive Care which takes value 1 if the subject has taken more gender appropriate

preventive care procedures in the past year than the median value.14

3.6.2 Results

We first attempted estimation of a standard semiparametric finite mixture model.

However, in this sample the standard model does not robustly identify residual

heterogeneity, since even with only two types the information matrix is badly

conditioned and mixture parameters have very high standard errors. We thus

estimate the extended model using the 4 indicators to set the auxiliary system

(3.8). To choose the number of mixture types we use Schwartz’s BIC, which

achieves the minimum value with two mixture types. The model we estimate

and report has thus 31 parameters: 18 regression coefficients β, 12 α’s for the six

responses and the two types, and 1 parameter for the marginal probability of T .

For completeness, estimates of α’s and β’s and their standard errors are reported

in Appendix B, but for economy of space estimated coefficients are not discussed

in the main text. About 66% of individuals are of type 1, and 34% of type 2.

Table 3.1 below reports the conditional probabilities by types for the six

responses.15 Conditionally on x there seems to be a substantial difference in in-

14Gender appropriate preventive care is a discrete variable derived from a list of possible
preventive activities. The median individual undertakes about 80% of these activities.

15The conditional probability for nursing home use and long-term care insurance are averaged
across insurance risk classification.
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surance purchase and nursing home use between the two types; type 1 individuals

are 4 times more likely to buy a long-term care insurance, but almost 3 times less

likely to use a nursing home than types 2. Thus the table hints at the presence

of residual heterogeneity, and in particular at favourable selection.16

To understand the differences between the two types identified in this

sample, it is instructive to look again at table 3.1: there seems to be a natural

ordering of the types in terms of their cautiousness, such that, going from types

2 to types 1, there is a significant increase in the probability of using seat belts

and preventive care, of refraining from smoking and drinking, and believing that

one may need a nursing home in the near future with a higher probability than

that predicted by insurance companies.

Table 3.1: Estimated conditional probabilities

T=1 T=2
Seat Belt 0.9379 0.6361
Subjective Riskiness 0.5002 0.3523
Preventive Care 0.4567 0.2785
No Smoking and Drinking 0.9528 0.8034
Long-Term Care Insurance 0.2335 0.0568
Nursing Home 0.0667 0.1657

From the estimated joint distribution of the indicators and the unobserved

types we can also get an estimate of the so called posterior type probabilities for

some focal observable individual behaviour. Let Ỹ be a vector of observable

indicators of focal interest, then from the estimated joint distribution P (T, Ỹ ),

posterior type probabilities are obtained using

P (T = t | Ỹ = ỹ) =
P (T = t, Ỹ = ỹ)

P (Ỹ = ỹ)
.

We consider two focal behaviours: a ‘cautious’ individual who always wears a

seat belt, does not smoke and drink, has a cautious estimate of his probability of

16The question naturally arises whether these differences in insurance choice and nursing
home entry are simply due to sampling variation. The LR test statistic for the null of no
residual heterogeneity in insurance choice (that is, αLTCI(T = 1) = αLTCI(T = 2)) and loss
occurrence (αNH(T = 1) = αNH(T = 2)) are equal to 17.56 and 7.99, which are asymptotically
distributed as a χ2 with one d.f., overwhelmingly rejecting the null respectively with p-values
lower than 10−5 and .005. For comparison, in the standard PC test (see Table 4, column 2
of Finkelstein and McGarry [58]), the hypothesis of the absence of private information has a
p-value of .10.
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needing a nursing home in the future and engages in preventive care, and a ‘reck-

less’ individual with the opposite attitudes.17 Table 3.2 reports the estimated

posterior type probabilities for these two individuals. A glance at the table con-

firms the presumption that types 1 are predominantly the ‘cautious’ types, while

types 2 are the ‘reckless’ ones.

Table 3.2: Estimated posterior type probabilities

T=1 T=2
Cautious 0.8872 0.1128
Reckless 0.0439 0.9561

Overall, our analysis seems to confirm Finkelstein and McGarry’s [58] mes-

sage that the standard unidimensional RS adverse selection model does not hold

in this insurance market, with a little twist: at least in this sample, we cannot

exclude the possibility that there is a single unidimensional private information

variable (say ‘cautiousness’) which drives the favourable selection mechanism. In

other words, the data are compatible with the possibility that there is underlying

negative correlation between cautiousness and actual risk, but individuals do not

act upon (or are ignorant about) such correlation. In the end, more cautious

individuals would be taking insurance and at the same time present less risky

outcomes.

3.6.3 The unconditional model

Table 3.3 below reports the estimated probabilities by types without conditioning

on x, and shows a broad agreement with the estimated probabilities in Table 3.1.

Unconditional probabilities may be of independent interest, and are obtained in

a saturated nonparametric model, so that they help checking the robustness of

our results.18

17Thus Ỹ = [Seat Belt, No Smoking and Drinking, Subjective Riskiness, Preventive Care].
18Table B.3 in the Appendix reports estimated α coefficients and standard errors; recall that

in this saturated model the α’s are simply reparametrizations of the conditional probabilities,
so no parametric restriction is imposed.
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Table 3.3: Estimated probabilities in the unconditional model

T=1 T=2
Seat Belt 0.9369 0.6589
Subjective Riskiness 0.5138 0.3392
Preventive Care 0.4653 0.2762
No Smoking and Drinking 0.9486 0.8211
Long-Term Care Insurance 0.2462 0.0526
Nursing Home 0.0587 0.1664

3.7 Application to the US medigap insurance

market

Our second application focuses on selection effects in the “Medigap” insurance

market for elder individuals. A Medigap insurance plan is a health insurance

contract sold by a private company to fill “gaps” in coverage of the basic Medicare

plan. Medigap plans offer additional services and help beneficiaries pay health

care costs (deductibles and co-payment) that the original Medicare plan does not

cover, so that health care costs of Medigap enrollees is covered by both plans.

As a relevant example for our application, Medicare’s coinsurance or copayments

for hospital stays, physician visits or outpatient care are covered by the Medigap

plan.

The Medigap insurance market is quite interesting to study as a further

application of our methods since, contrary to the long-term care market, it is

highly regulated. In fact, Federal Law affects the Medigap market at least in

three ways. First, Medigap plans are standardized into ten plans,“A” through

“J”, and the basic plan “A” must be offered if any other more generous plan is also

offered. Second, there is a free enrolment period which lasts for six months from

the first month in which people are both 65 years old and enrolled in Medicare.

During this period Medigap cannot refuse any person even if there are pre-existing

conditions. Third, pricing criteria are mainly based on individual’s age and sex.

Therefore, insurers are not free to offer any insurance contract at any price they

choose (see e.g. Cutler et al. [32], Fang et al. [53] and Finkelstein [54], for

theoretical and applied analysis of selection in the Medigap market).

In a recent influential paper, Fang et al. [53] consider private information

in the Medigap market using data obtained by imputing HRS observations for
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year 2002 in the Medicare Current Beneficiary Survey. They find a negative corre-

lation between Medigap supplemental coverage and ex post medical expenditure,

and argue that individual cognitive ability is the main source driving favourable

selection in the Medigap market.

3.7.1 Data and variables definition

We use data from waves 4-6 of the HRS, which covers respectively the following

years: 1998, 2000 and 2002. This data set contains detailed information on indi-

vidual insurance status and sources of supplemental coverage. Our main focus is

to study selection effects in the last period (2002), but we exploit the panel nature

of the dataset using past insurance and utilization decisions to help identify resid-

ual heterogeneity. Following Fang et al. [53] we define Medigap status (Insurance

98, Insurance 00, Insurance 02 ) to be equal to one if an individual is covered by

Medicare and has deliberately purchased a supplemental plan additional to Medi-

care. Therefore we excluded from the dataset individuals who were younger than

65 years at 1998 and are also enrolled in any other public program different from

Medicare or receive Medigap insurance coverage by his/her or spouse’s former

employer. Risk occurrence is measured by the following binary variables which

take 1 if an individual: i) had any hospital stay (Hospital 98, Hospital 00, Hospi-

tal 02); ii) had more than five doctor visits (Doctor 98, Doctor 00, Doctor 02); iii)

used any outpatient service such as surgery or home care facilities in the twelve

months prior to the interview (Outpatient 98, Outpatient 00, Outpatient 02). As

additional indicators to identify unobserved types we also use Subjective Health,

which equals 1 if the individual reports good or very good health; Wealth which

equals 1 if the individual is in the top wealth quartile; Cognitive Skills which

takes value 1 if individual’s performance is equal to or greater than the median

score in the Telephone Interview for Cognitive Status (TICS); Risk Tolerance

which takes value 1 if individual is less risk adverse than the median individual.19

As observed characteristics used by insurance companies (x) we use gender and

11 age dummies. Our sample is composed of individuals aged 65 or more in 1998.

There are 1,231 observations in the sample; the median individual is 71 years old

in 2002, and there are about 45% of females.

19This indicator of financial risk tolerance is based on a set of risk aversion measures provided
by Kimball et al. [87], who estimate risk aversion for each respondent using a set of hypothetical
income gambles, and has been also used by Fang et al. [53] in their analysis of Medigap insurance
market.

50



3.7.2 Results

We first attempted estimation of the main model of interest (Medigap and the

three medical care utilization variables in 2002) by means of a standard semi-

parametric finite mixture model. In this sample the standard model does not

robustly identify residual heterogeneity, since even with only two types the in-

formation matrix is badly conditioned and mixture parameters have very high

standard errors. We then estimated the extended model using the 12 indicators

discussed above to set the auxiliary system (3.8).

Table 3.4 reports the maximized log-likelihood and the BIC for different

numbers of unobserved types. The BIC seems to indicate that four types are

adequate to represent any residual unobserved heterogeneity. The model we

estimate and report has four heterogeneous types,20 and has 115 parameters: 48

regression coefficients β’s, 64 α’s for the 16 responses and the four types, and 3

parameters for the marginal probability of T . Again, for completeness we report

estimates of α’s and β’s and their standard errors in Appendix B, but for economy

of space estimated coefficients are not discussed in the main text.

Calculating the types membership probabilities, about 35% of individuals

are of type 1, 38% of type 2, 17% of type 3 and 10% of type 4.

Table 3.4: Log-likelihood and BIC

2LC 3LC 4LC 5LC
Log-Likelihood -11563.60 -11255.03 -11144.18 -11104.86
BIC 23703.56 23207.40 23106.65 23148.99
# of parameters 81 98 115 132

Estimated coefficients are reported in Appendix B. Table 3.5 below reports

the estimated conditional probabilities by types for the four variables of interest

and the twelve auxiliary indicators. Conditionally on age and gender, there seems

to be a striking heterogeneity in Medigap purchase decisions and loss occurrence

across different types: types 3 and 4 are roughly ten times more likely to buy

supplemental insurance than types 1 and 2, while types 1 and 4 are on average

20Estimated parameters for the other cases are available from the authors. The general
picture emerging under three and five types is similar to the results discussed below. For
robustness we also estimated the model controlling for age and sex also in the auxiliary equation
system, without any significant difference in the conclusions.
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two or three times more likely to use medical resources than types 2 and 3.21

Looking at Panel B in table 3.5, which reports conditional probabilities for

the auxiliary indicators, we see that types 3 and 4 have much stronger preference

for supplementary insurance and are more likely to be wealthier and with higher

cognitive abilities; on the other hand, types 1 and 4 are much heavier users of

medical care and report lower subjective health status. Financial risk tolerance

does not seem to vary across types.22 From the estimated joint distribution of the

observed responses and T we can again calculate the posterior type probabilities

for some focal individuals. Table 3.6 below reports the conditional probability of

being a type T = t for individuals who are: i) high risk (have used all the three

types of medical care in previous periods, and reported low subjective health);

ii) low risk (have not used any of the three types of medical care in previous

periods, and reported high subjective health); iii) high risk preference (have not

bought supplementary insurance in any previous periods, and have low wealth and

cognitive skills); iv) low risk preference (have bought supplementary insurance in

both previous periods, and have high wealth and cognitive skills).

21Since the differences in behaviour across types are so dramatic, it is very unlikely they are
due to sample variations; in fact a LR tests for the equality of insurance purchase and loss
occurrence across types rejects the null in each case with p-value lower than 10−6. Regarding
the possible effect of moral hazard on our estimates, while there is some evidence that the
demand for hospital care is price inelastic (see e.g. Manning et al. [91]), there is no concluding
evidence on the effect of supplementary insurance on the other medical care uses (see e.g.
Ettner [51]). Given the magnitude of the effects we find in the data, and the similar pattern
found in all the three types of use, it is unlikely that accounting for moral hazard might change
significantly our conclusions.

22Fang et al. [53] report that cognitive ability is one of elements driving the selection into
supplemental insurance, but financial risk tolerance does not have a significant effect.
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Table 3.5: Estimated conditional probabilities

T=1 T=2 T=3 T=4

Panel A: Main Equations
Hospital 02 0.4200 0.1544 0.1975 0.5875
Doctor 02 0.7931 0.2791 0.2862 0.8729
Out. Services 02 0.3987 0.1689 0.2216 0.4318
Insurance 02 0.0634 0.0917 0.7113 0.8112

Panel B: Auxiliary Indicators
Hospital 98 0.3550 0.1103 0.1310 0.4354
Doctor 98 0.7540 0.2145 0.2957 0.8451
Out. Services 98 0.2868 0.0831 0.1514 0.3546
Insurance 98 0.1038 0.1214 0.7916 0.8271
Hospital 00 0.3757 0.0867 0.1378 0.4326
Doctor 00 0.8627 0.2333 0.2727 0.8684
Out. Services 00 0.3337 0.1276 0.2089 0.3377
Insurance 00 0.0436 0.0538 0.8526 0.8691
Sub. Health 0.2771 0.5428 0.6732 0.1677
Cog. Skills 0.5947 0.6446 0.7228 0.7177
Wealth 0.2889 0.2681 0.4291 0.4365
Risk Tolerance 0.3721 0.3388 0.3794 0.3238
Estimated probabilities in the main system are averaged out for x.

Notice that by risk preference we do not refer simply to financial risk

aversion in the usual Arrow-Pratt sense, but also to the perception of the risk

related to the specificity of the health insurance market. In a recent paper,

Einav et al. [49] study five insurance coverage decisions (health, prescription

drugs, dental, and short-term and long-term disability) to investigate how well

an individual’s willingness to bear risk in one context predicts his willingness to

bear risk in other contexts. They find that among the five contexts considered, the

magnitude of the domain-general component of preferences appears substantial;

however, they also find higher correlation in choices that are closer in context (e.g

health insurance and disability insurance), indicating the existence of non-trivial

context specificity. Einav et al. [49] results support the choice of past insurance

choices in modelling individual risk perception.

Table 3.6 suggests the existence of heterogenous types, with low and high

actual risk and low and high preference for risk, which can be cross-classified as

high,high (types t = 1), low,high (types t = 2), low,low (types t = 3) and high,low

(types t = 4), with striking differences in estimated insurance and medical care

choices.
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Table 3.6: Estimated posterior probabilities

T=1 T=2 T=3 T=4
High risk 0.6054 0.0003 0.0007 0.3937
Low risk 0.0057 0.7305 0.2634 0.0004
High risk preference 0.4996 0.4908 0.0070 0.0026
Low risk preference 0.0055 0.0085 0.5797 0.4063

The overall picture which emerges from our estimates is strongly sugges-

tive of multidimensional residual private information, with strong local selection

in the Medigap insurance market. Comparing with the average insurance and

loss probabilities, the Medigap contract seems to be favourably selected by types

1 and 3, and adversely selected by types 2 and 4;23 in other words the contract

is favourably selected by individuals who have the same (high or low) propensity

for insurance purchase and health care use, and adversely selected by individu-

als who have opposite attitudes. Thus, our results show the existence of heavy

cross subsidization of some types at the expense of others. Notice that the se-

lection effects we find should not necessarily be interpreted solely as evidence of

asymmetric information.

On the other hand, after estimating a multivariate probit model for the

four response variables of interest, the PC test in our sample shows a correla-

tion coefficient equal to -0.051 (p-value .29) between insurance and doctor visits;

0.092 (p-value .07) between insurance and hospital visits; and 0.027 (p-value .59)

between insurance and outpatient visits.24 Thus the PC test in this sample sug-

gests that there is no significant residual heterogeneity in the Medigap insurance

market, in stark contrast with our results. This suggests that the PC test may

run into serious problems in detecting selection effects when private information

is multidimensional, since it appears to simply average out local selection effects.

However, a refined version of the PC test of Fang al. [53] which compares claims

for individuals with and without Medigap insurance under different conditioning

sets, using proxies for propensity to use health care and buy insurance, paints a

23A glance at the estimated conditional probabilities in Table 3.5 suffices to realize that the
standard RS model of adverse selection clearly does not hold, since it requires that insurance
choice and medical care use probabilities have the same ordering across types. Formally, the
LR test statistic for the null of global adverse selection is equal to 124.08; the conservative 1%
critical value (Kodde and Palm ([88], page 1246) is equal to 32.196.

24The LR test statistic for conditional independence of insurance purchase and the three
medical care use variables is equal to 4.98, and is asymptotically distributed as a chi-squared
with three d.f. with p-value .17.
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broad picture which does not contradict our results, since they find both adverse

and favourable selection depending on the conditioning set used to control for un-

observables. Our finite mixture model clarifies precisely who are the types who

adversely and favourably select Medigap insurance, by simultaneously identifying

the behaviours of unobservable types in both insurance purchase and claims.25

Table 3.7: FMP’s Testing Procedure

Variables Hospital 02 Doctor 02 Out.Serv.02 Ins. 02

fem 0.0186 (0.0888) 0.0136 (0.0845) -0.0289 (0.0870) 0.189 (0.0993)
age02==69 0.225 (0.394) 0.152 (0.319) 0.245 (0.389) 0.174 (0.303)
age02==70 0.256 (0.391) 0.143 (0.316) 0.258 (0.386) 0.104 (0.301)
age02==71 0.411 (0.396) 0.184 (0.322) 0.485 (0.389) -0.105 (0.311)
age02==72 0.518 (0.414) 0.209 (0.338) 0.0903 (0.408) 0.193 (0.342)
age02==73 0.283 (0.425) 0.135 (0.354) 0.241 (0.416) 0.237 (0.339)
age02==74 0.231 (0.425) 0.110 (0.351) 0.0846 (0.419) 0.204 (0.355)
age02==75 0.577 (0.438) 0.194 (0.375) 0.211 (0.435) 0.160 (0.365)
age02==76 0.187 (0.491) 0.289 (0.410) 0.494 (0.463) -0.414 (0.449)
age02==77 0.526 (0.493) -0.459 (0.428) 0.348 (0.480) 0.197 (0.421)
age02==78 0.698 (0.534) -0.0502 (0.509) 0.558 (0.523) 0.320 (0.458)
age02>=79 0.695 (0.470) 0.433 (0.423) 0.380 (0.459) -0.287 (0.419)
Sub. Health -0.424 (0.0856) -0.541 (0.0835) -0.170 (0.0843) 0.00488 (0.0955)
Cog. Skills -0.0297 (0.0389) 0.0240 (0.0547) 0.0130 (0.0405) 0.0350 (0.0490)
Wealth -0.139 (0.0923) 0.219 (0.0853) 0.245 (0.0863) 0.106 (0.0977)
Risk Tol. -0.0915 (0.0841) 0.0999 (0.0803) 0.138 (0.0813) 0.110 (0.0934)
Hospital 98 0.186 (0.0983) 0.0319 (0.103) -0.0220 (0.0991) -0.0326 (0.111)
Doctor 98 0.00676 (0.00372) 0.0285 (0.00994) 0.00426 (0.00437) 0.00349 (0.00378)
Out.Serv.98 0.191 (0.102) 0.155 (0.103) 0.298 (0.0997) 0.0146 (0.118)
Ins. 98 0.0788 (0.105) -0.0156 (0.106) -0.0285 (0.101) 0.699 (0.103)
Hospital 00 0.486 (0.0952) 0.168 (0.0994) -0.0617 (0.0994) 0.125 (0.109)
Doctor 00 -0.000177 (0.00431) 0.0414 (0.0116) 0.0114 (0.00437) -0.00942 (0.00542)
Out.Serv.00 0.117 (0.0962) -0.201 (0.0960) 0.505 (0.0920) -0.0774 (0.106)
Ins.00 0.161 (0.108) -0.0475 (0.108) -0.00468 (0.104) 1.342 (0.105)
Constant -0.772 (0.554) -0.695 (0.602) -1.328 (0.561) -1.849 (0.562)
Standard errors in brackets.

Finally, we can compare our results with those obtained performing the

FMP test suggested by Finkelstein and Poterba [56] and applied by Finkelstein

and McGarry [58] and Cutler et al. [32], where the auxiliary indicators of unob-

servable types are used as proxies in the probit regressions for the four response

variables of main interest. The estimated coefficients of the four probits are re-

ported in Table 3.7 below. While many of the proxies used to detect residual

25Even though Fang al. [53] uses the HRS dataset, strictly speaking their results cannot be
directly compared with ours since they use a different variable for risk occurrence (in particular,
they use medical expenses rather than our three binary measures), and employ imputation
techniques to derive it.
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heterogeneity are significant in each of the four equations, which is a clear in-

dication of the existence of private information in this Medigap market, their

pattern does not give any clear indication of the nature of the selection effects;

for example, no single proxy seems to be significant in both the insurance and

the medical care equations.

3.7.3 The unconditional model

Along the same lines as the previous application, we finally estimate the uncon-

ditional (saturated) model. Table 3.8 reports the estimated conditional proba-

bilities by types, and shows a broad agreement with the estimated probabilities

in Table 3.5.26

Table 3.8: Estimated probabilities in the unconditional model

T=1 T=2 T=3 T=4

Panel A: Main Equations
Hospital 02 0.4034 0.1317 0.1701 0.5650
Doctor 02 0.8092 0.2937 0.2909 0.8806
Out. Services 02 0.4000 0.1674 0.2133 0.4294
Insurance 02 0.0725 0.1067 0.7483 0.8423

Panel B: Auxiliary Indicators
Hospital 98 0.3567 0.1101 0.1300 0.4255
Doctor 98 0.7531 0.2157 0.2924 0.8384
Out. Services 98 0.2871 0.0835 0.1504 0.3498
Insurance 98 0.1040 0.1206 0.7952 0.8287
Hospital 00 0.3784 0.0857 0.1357 0.4249
Doctor 00 0.8617 0.2349 0.2667 0.8632
Out. Services 00 0.3345 0.1278 0.2095 0.3315
Insurance 00 0.0453 0.0535 0.8544 0.8680
Sub. Health 0.2768 0.5427 0.6764 0.1765
Cog. Skills 0.5941 0.6448 0.7241 0.7174
Wealth 0.2887 0.2696 0.4263 0.4372
Risk Tolerance 0.3717 0.3397 0.3781 0.3254

26For completeness Table B.6 in the Appendix reports the estimated α coefficients and their
s.e.
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3.8 Conclusion

In this paper we study how to detect selection effects in insurance markets under

multidimensional private information. We first discuss how the standard PC

test performs in this setting. Since insurance contracts may be both adversely

and favourably selected by different individuals, the PC test -relying on a single

statistic to appraise the risk-coverage correlation- may run into serious difficulties

if there is more than one source of private information.

We show how multidimensional unobserved heterogeneity can be modeled

using a finite number of heterogeneous types, and extend the standard adverse

and favourable selection definitions into local and global ones. We propose a finite

mixture model which allows estimation of the insurance and loss probabilities of

the unobserved types, and explain how these can be used to analyze selection

effects and test for the multidimensionality of private information.

We apply our procedure to the US long-term care and Medigap insurance

markets. In both markets we find that there is significant evidence of residual

heterogeneity, and that the standard Rothschild-Stiglitz adverse selection model

is not supported by the data. In the long-term care insurance market, data are

compatible with the existence of a single private information variable, namely

cautiousness, which yields a negative risk-coverage correlation. In the Medigap

market, data are compatible with the existence of two unobservable dimensions

of private information, namely actual risk and risk preference, which yield very

strong local adverse and favourable selection of Medigap insurance by different

unobserved types. Notice that since on average these selection effects roughly

offset each other, the PC test yields insignificant risk-coverage correlation even

in the presence of huge residual heterogeneity in the data. Since the analysis is

carried conditional on variables used by insurers to price risks in the underwrit-

ing process, it is not surprising that the extent of residual heterogeneity seems

substantially larger in the Medigap market which is heavily regulated than in the

rather competitive long-term care insurance market. Notice however that our

results do not provide exhaustive evidence of the role provided by regulation in

comparing the Medigap and the long-term care insurance markets. In particular

the effect of regulation we capture is mainly due to the additional noise in private

information due to limitation in the information gathered by insurer (see Einav et

al. [47]). Clearly regulation’s effects in these two markets may also involve several

other dimensions - such as price and insurance coverage definition, etc. - that
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need further investigations. Another important source explaining the differences

on results related to asymmetric information between the long-term care and the

Medigap application is the differences in the structure of the insurance contract.

In particular Medigap offers supplemental coverage for services that are already

covered by Medicare, while long-term care insurance offers additional coverage

that it is not provided by any other insurance. Thus, while in the long-term

application risk preferences play the main role in defining the insurance purchase

decision for additional services, it is possible that the part of private information

due to adverse selection in the Medigap application is mainly related to moral

hazard. In fact it could be possible that individuals are selecting insurance on

the basis of their anticipated behavioural response to it. However this is another

possible explanation of the differences we found in the dimensionality of private

information that should be combined with the particular structure of the markets.

A couple of caveats are in order. First our approach, while providing

useful descriptive evidence on the existence and the extent of selection effects

under multidimensional private information in a given insurance market, does

not explain the structural forces which determine insurance demand and market

equilibrium, and thus is of limited direct use in appraising market efficiency

and welfare effects of policy interventions. Some recent work in this direction

is discussed by Einav et al. [47]. Second, as we discuss in the paper, moral

hazard may limit the interpretation of the empirical results, so that care should

be exercised when it is not reasonable to ignore incentive effects, or selection

effects are marginal.
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Appendix A

Proof of the Proposition

To show that 3 is equivalent to 4, rewrite 4 as P (O = 1, I = 1)·P (O = 0, I = 0) >

P (O = 1, I = 0)·P (O = 0, I = 1), substitute P (O, I) with P (O | I)P (I), then use

P (O = 1 | I) = 1−P (O = 0 | I), and simplify; to show that 1 is equivalent to 2,

substitute P̄O and P̄I = P (R = 0)P (I = 1 | R = 0) + P (R = 1)P (I = 1 | R = 1)

in 2 and simplify.

To show the equivalence between 3 and 1 under Assumption (3.1), use the

Law of Total probability

P (O | I) = P (R = 0 | I) · P (O | I, R = 0) + P (R = 1 | I) · P (O | I, R = 1)

and (3.1) to get

P (O | I) = P (R = 0 | I) · P (O | R = 0) + P (R = 1 | I) · P (O | R = 1).

Thus,

P (O = 1 | I = 1)− P (O = 1 | I = 0) =(
P (R = 1 | I = 1)− P (R = 1 | I = 0)

)
·
(
P (O = 1 | R = 1)− P (O = 1 | R = 0)

)
using P (R = 0 | I) = 1 − P (R = 1 | I). By the same argument used above to

show the equivalence of 3 and 4, it is easily seen that P (R = 1 | I = 1) > P (R =

1 | I = 0) if and only if P (I = 1 | R = 1) > P (I = 1 | R = 0).
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Appendix B

Tables

Table B.1: Long-Term Care Insurance: Estimated α parameters

α(T = 1) α(T = 2)
Seat Belt 2.7118 (0.5392) 0.5543 (0.3222)
Subjective Riskness -0.0005 (0.1074) -0.6094 (0.1946)
Preventive Care -0.1748 (0.1163) -0.9530 (0.2321)
No Smoking and Drinking 3.0033 (0.4021) 1.4048 (0.2552)
Long-term Care Insurance -1.4843 (0.2971) -3.1169 (0.7182)
Nursing Home -3.5377 (0.5043) -2.4243 (0.4787)
Standard errors in brackets.

Table B.2: Long-Term Care Insurance: Estimated β Parameters

LTCI NH
Risk Classification 1 0.2606 (0.3419) -0.7322 (0.6656)
Risk Classification 2 0.6510 (0.3318) -0.2574 (0.5958)
Risk Classification 3 0.2460 (0.3510) 0.1542 (0.5616)
Risk Classification 4 0.3489 (0.3534) 0.2120 (0.5664)
Risk Classification 6 0.0624 (0.3637) 0.6418 (0.5261)
Risk Classification 7 0.3640 (0.3447) 1.0169 (0.4987)
Risk Classification 8 0.6142 (0.3355) 0.8207 (0.5067)
Risk Classification 9 0.3231 (0.3567) 1.6761 (0.4842)
Risk Classification 10 -0.0625 (0.3717) 2.2320 (0.4728)
Standard errors in brackets.
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Table B.3: Long-Term Care Insurance: Estimated α parameters of the uncondi-
tional model

α(T = 1) α(T = 2)
Seat Belt 2.698 (0.5091) 0.6582 (0.2874)
Subjective Riskness 0.0554 (0.1194) -0.667 (0.1999)
Preventive Care -0.139 (0.1241) -0.9634 (0.2265)
No Smoking and Drinking 2.9151 (0.3535) 1.5236 (0.232)
Long-term Care Insurance -1.1189 (0.1607) -2.8907 (0.7049)
Nursing Home -2.7749 (0.2956) -1.611 (0.223)
Standard errors in brackets.

Table B.4: Medigap: Estimated α parameters

α(T = 1) α(T = 2) α(T = 3) α(T = 4)
Sub. Health -0.9589 (0.1233) 0.1718 (0.1055) 0.7226 (0.1789) -1.6019 (0.3088)
Cog. Skills 0.3834 (0.108) 0.5952 (0.1077) 0.9585 (0.1765) 0.9329 (0.2278)
Wealth -0.9007 (0.1174) -1.0044 (0.1174) -0.2853 (0.1588) -0.2555 (0.2056)
Risk Tolerance -0.5234 (0.1097) -0.6688 (0.109) -0.4923 (0.1614) -0.7363 (0.219)
Hospital 98 -0.5971 (0.1118) -2.0873 (0.1768) -1.8925 (0.2437) -0.26 (0.208)
Doctor 98 1.1202 (0.1417) -1.2979 (0.1452) -0.868 (0.1845) 1.6962 (0.3266)
Out. Services 98 -0.9111 (0.1172) -2.4008 (0.2028) -1.7239 (0.2229) -0.5988 (0.2124)
Insurance 98 -2.1555 (0.1926) -1.9794 (0.1832) 1.3346 (0.2367) 1.5653 (0.3115)
Hospital 00 -0.5078 (0.1115) -2.3542 (0.2041) -1.8336 (0.2366) -0.2711 (0.2078)
Doctor 00 1.8375 (0.1977) -1.1896 (0.1484) -0.981 (0.1935) 1.887 (0.3602)
Out. Services 00 -0.6913 (0.1127) -1.9222 (0.164) -1.3317 (0.1941) -0.6735 (0.2147)
Insurance 00 -3.0892 (0.3323) -2.8669 (0.3262) 1.755 (0.3237) 1.8919 (0.3903)
Hospital 02 -1.0278 (0.6781) -2.4702 (0.6909) -2.1611 (0.7059) -0.3128 (0.7009)
Doctor 02 1.2053 (0.6406) -1.1684 (0.6372) -1.1327 (0.6519) 1.8056 (0.7339)
Out. Services 02 -0.9376 (0.6622) -2.1448 (0.671) -1.8023 (0.6825) -0.7974 (0.685)
Insurance 02 -2.8742 (0.8632) -2.4718 (0.8518) 0.815 (0.8514) 1.3904 (0.8893)
Standard errors in brackets.
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Table B.5: Medigap: Estimated β Parameters

Hospital 02 Doctor 02 Out. Services 02 Insurance 02
age02==69 0.3875 (0.6812) 0.2801 (0.6352) 0.5392 (0.6644) 0.3020 (0.8409)
age02==70 0.4893 (0.6774) 0.2916 (0.6316) 0.5405 (0.6613) 0.1731 (0.8368)
age02==71 0.7077 (0.6842) 0.3753 (0.6407) 0.8979 (0.6669) -0.3093 (0.8522)
age02==72 0.8861 (0.7126) 0.3170 (0.6763) 0.2818 (0.7025) 0.1765 (0.8989)
age02==73 0.4409 (0.7380) 0.2221 (0.6976) 0.5020 (0.7159) 0.3500 (0.9234)
age02==74 0.3765 (0.7382) 0.0316 (0.6969) 0.2312 (0.7213) 0.3417 (0.9228)
age02==75 1.0867 (0.7472) 0.3994 (0.7220) 0.4716 (0.7376) 0.3316 (0.9590)
age02==76 0.3848 (0.8337) 0.4893 (0.7947) 0.8507 (0.7854) -0.8240 (1.0905)
age02==77 1.1896 (0.8379) -0.9171 (0.8568) 0.6003 (0.8313) 0.3634 (1.1104)
age02==78 1.4694 (0.8933) 0.0013 (0.9209) 1.0484 (0.8726) 0.7073 (1.1789)
age02>=79 1.5162 (0.8019) 0.9322 (0.7986) 0.8482 (0.7890) -0.4868 (1.0880)
fem 0.0280 (0.1528) -0.0346 (0.1575) -0.1234 (0.1451) 0.4043 (0.2117)
Standard errors in brackets.

Table B.6: Medigap: Estimated α parameters of the unconditional model

α(T = 1) α(T = 2) α(T = 3) α(T = 4)
Sub. Health -0.9603 (0.1235) 0.1712 (0.1053) 0.7371 (0.1819) -1.5402 (0.2979)
Cog. Skills 0.3809 (0.1081) 0.5964 (0.1075) 0.9648 (0.1789) 0.9315 (0.2252)
Wealth -0.9017 (0.1176) -0.9965 (0.117) -0.2968 (0.1608) -0.2524 (0.2033)
Risk Tolerance -0.5249 (0.1098) -0.6647 (0.1087) -0.4977 (0.1635) -0.7292 (0.2163)
Hospital 98 -0.5897 (0.1119) -2.0894 (0.1769) -1.9008 (0.2476) -0.3003 (0.206)
Doctor 98 1.1151 (0.1416) -1.2912 (0.1445) -0.8839 (0.1879) 1.6466 (0.3167)
Out. Services 98 -0.9093 (0.1173) -2.3955 (0.202) -1.7317 (0.2265) -0.6198 (0.2107)
Insurance 98 -2.153 (0.1928) -1.9864 (0.1839) 1.3563 (0.2425) 1.5764 (0.3103)
Hospital 00 -0.4964 (0.1116) -2.3675 (0.2055) -1.8513 (0.2414) -0.3027 (0.2059)
Doctor 00 1.8296 (0.1969) -1.1808 (0.1475) -1.0113 (0.1984) 1.8422 (0.3502)
Out. Services 00 -0.6878 (0.1128) -1.9203 (0.1637) -1.3282 (0.1962) -0.7014 (0.2134)
Insurance 00 -3.0475 (0.3244) -2.8725 (0.3276) 1.7698 (0.331) 1.883 (0.3843)
Hospital 02 -0.3912 (0.1101) -1.8862 (0.1638) -1.5852 (0.2233) 0.2613 (0.2118)
Doctor 02 1.4451 (0.1564) -0.8772 (0.1261) -0.8912 (0.1924) 1.9985 (0.3773)
Out. Services 02 -0.4054 (0.1094) -1.6045 (0.145) -1.3054 (0.1976) -0.2843 (0.2044)
Insurance 02 -2.5491 (0.2404) -2.1248 (0.1915) 1.0893 (0.2167) 1.6755 (0.3362)
Standard errors in brackets.
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Chapter 4

Incentive and selection effects of

Medigap insurance on inpatient care

4.1 Introduction

Medicare is a public program which provides health insurance for the elderly

(aged 65 or older) and some disabled non elderly. As many other standard health

insurance plans, Medicare relies deeply on mechanisms such as coinsurance, de-

ductibles and copayments to control health care expenditure for many covered

services. This insurance structure leaves beneficiaries at risk for large out-of-

pocket expenses. As a result, many beneficiaries purchase voluntary supplemen-

tal private policies, such as Medigap, to fill Medicare’s gaps in non-covered health

care services and limit cost sharing.

Medicare cost-sharing structure reflects the belief that health insurance,

by lowering the price per services, gives individuals’ an incentive to increase the

demand for health care. Although the presence of an incentive effect - usually

called ex-post moral hazard - is very well known by the theoretical literature

on contract theory (Arrow[6], Pauly [97] and Zweifel and Manning [122]), its

empirical relevance is still debated in the literature see Abbring et al. [1] - [2],

Buchmuller et al. [17], Cardon and Henderl [21], Cohen [28], Schellhorn [106],

and Cohen and Spiegelman [30] for a review. A major difficulty in estimating the

presence of moral hazard in Medigap insurance is the existence of self-selection,

since individuals who expect high health care costs may choose a more generous

coverage and then ex-post purchase more services.

In an important body of literature following the seminal paper by Chi-

appori and Salanié [25], the presence of asymmetric information in insurance
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markets is appraised using the so called “positive correlation” (PC) test (see two

recent reviews by Cohen and Spiegelman [30] and Einav et al. [47]), which re-

jects the null hypothesis of no asymmetric information when there is a positive

correlation between insurance purchases and risk occurrence, conditional on the

individual characteristics used by insurers to price contracts. The PC test, how-

ever, cannot disentangle incentive and selection effects, since finding a positive

insurance coverage-risk occurrence correlation in the data does not provide con-

clusive evidence whether there is adverse selection into insurance contracts, moral

hazard, or both.

There are different ways to distinguish empirically selection from incentive

effects. A strategy is to use experimental data such as the RAND Health Insur-

ance Experiment (RHIE), where to identify the incentive effect controlling for

self-selection individuals were randomly assigned to plans with different cover-

ages so that insurance choice becomes exogenous. Another strategy is to exploit

(quasi) natural experiments where insurance choice or the incentive structure

has been modified exogenously (Chiappori et al. [26] and Eichner [45]). In obser-

vational studies, the standard approach to evaluate incentive effects controlling

for self-selection is to model endogenously the insurance choice and estimate a

bivariate probit model with a recursive structure between insurance and health

care utilization (Holly, et al. [73], Jones et al. [80], Buchmuller et al. [17]).

The aim of this paper is to evaluate how different empirical strategies per-

form in trying to separate incentive and selection effects of Medigap supplemental

insurance on inpatient care. The econometric approach relies on a recursive bi-

variate probit model and on a multiresponse discrete finite mixture model. We

use data from the Health and Retirement Study (HRS), which contains informa-

tion on a rich set of variables concerning health status and individual preferences

for risk, Medigap purchase and hospital admissions as binary dependent variables

representing insurance purchase and health care utilization.

The paper is organized as follows. In the next section we report a brief

overview of Medicare and Medigap insurance programs; section 3 reviews the

main empirical contribution in the related literature; we then discuss the model

to be estimated (section 4) using the data described in section 5. Finally section

6 and 7 report estimation results and some concluding remarks respectively.
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4.2 Health insurance and access to care for el-

derly in US

4.2.1 Medicare

Medicare is probably the main source of health insurance for all individuals aged

65 in US and the coverage is near universal (about 97% of the elderly have

Medicare)1.

The Medicare program consists mainly of two plans in which people may

be enrolled. The first plan, named Medicare Part A, is also known as “Hospi-

tal Insurance” since it covers the basic hospital’s health care services such as

inpatient’s admissions. Most of beneficiaries, who have paid Medicare taxes for

at least 10 years, are automatically enrolled with their spouse in Part A when

they turn 65. Part A plan pays almost the entire medical expenditure (except

a deductible) for the first 60 nights of inpatient hospital staying and imposes an

increasing cost sharing structure if hospital admission lasts over this first period.

The second plan is Medicare Part B. Most of beneficiaries choose to extend

Medicare Part A insurance coverage to Part B because it covers several medicare

services such as doctors’ services, outpatient care and some preventive services.

Part B enrollment requires the payment of a monthly premium which may depend

on income. Part B’s deductible and co-payment amount respectively to $110 and

to 20% of expenses.

4.2.2 Supplemental insurance coverage and medigap pol-

icy

There are several limitations of Medicare original plans: limitation in the coverage

of health care services, high out-of-pocket expenses to beneficiaries and lack of a

catastrophic cap expenditure. These induce seniors to seek additional coverage

provided by private insurance.

There are three main sources of supplemental private insurance which pay

1Current Population Reports (2005) “Income, Poverty and Health Insurance Coverage in
the United States: 2004”
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for some additional (to Medicare) services or help pay the share of the costs of

Medicare-covered services. The first one is the employer-sponsored supplemental

insurance and it is purchased usually by a former employer or union. The sec-

ond one is represented by Tricare (available only to military personal) and the

Medicare Advantage plans (Part C) provided by private health insurance.

The third one and also the most common source of supplemental coverage

comes from Medigap-private health insurance which are specifically designed to

cover those “gaps” of coverage left by original Medicare plans. Since 1990 the

Medigap insurance market is highly regulated by Federal law. Medigap plans

are standardized into ten plans,“A” through “J”, which cover a single individual,

offer certain additional services and help beneficiaries pay health care cost (de-

ductibles and co-payment) that the original Medicare plan does not cover. This

means that if individuals are enrolled in Medicare plus a supplemental Medigap

insurance, health care cost is covered by both plans. For example the basic plan,

A, covers the entire coinsurance or copayments for hospital stays, physician visits

and outpatient care.

Federal regulation of the Medigap market designed a particular mechanism

favoring the insured: Medigap insurance companies must offer the basic plan “A”

if they offer any other more generous plan. In addition, there is a free enrolment

period which lasts for six months from the first month in which people are both 65

years old and enrolled in Medicare Part B. During this period Medigap cannot

refuse any insurer even if there are pre-existing conditions. Legal restrictions

involve also the pricing criteria, which are mainly based on individual’s age and

gender.

In the supplemental health insurance market the most popular Medigap

plans are C and F, because they cover major benefits and are less expensive

than other plans. For example, plan C offers coverage for skilled-nursing-facility

coinsurance, foreign-travel emergencies, deductibles that are required under tradi-

tional Medicare and other basic benefits like hospital and outpatient coinsurance.

All these plans include Medigap A, which is the basic one, the least expensive

and least comprehensive. This plan covers several losses; for example it provides

(increasing) coverage for daily medicare copayment per day for hospitals stays;

it reimburses the full cost of up to 365 additional hospitals days and the partial

cost of other services related to doctor’s (outpatient) visits, preventive health

screening and outpatient prescription drug.
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4.3 Related Literature

The empirical literature on the incentive and selection effects in health insurance

is growing at a fast pace and controversial since disentangling the two effects is

not straightforward because the unobserved nature of individual preferences and

health status pose serious endogeneity problems.

A “radical” solution is to exploit experiments or some particular features

of the data which make insurance choice exogenous. The best known study is

the RAND Health Insurance Experiment conducted in 1974. To control for self-

selection, individuals were randomly assigned to insurance plans with different

coinsurance rate. Manning et. al. [91] show that patients ensured by a plan

with first dollar coverage had 37% more physician visits than those facing co-

insurance rates of 25% suggesting strong evidence of ex-post moral hazard, but

they found no significant differences among the alternative coinsurance plans in

the use of inpatient services; individuals with free insurance plan tended to use

slightly more inpatient services than individuals with coinsurance.

In non-experimental settings most of the studies use large observational

data sets which include information on individuals, health care services and in-

surance status. There are different econometric strategies to empirically appraise

this issue. The first approach considers insurance choice as exogenous in the

health care utilization equation, and estimates health care utilization with a pro-

bit model (Hurd and McGarry [76]) or a two-parts model (Ettner [51], Khandker

and McCormack [86]) using health indicators to mitigate the presence of unob-

served heterogeneity in health status.

Another approach is to model endogenously insurance choice considering

both selection on observable and unobservable factors. In this framework many

studies conducted in the European health insurance market exploited a recursive

bivariate probit to model simultaneously the probability to have at least one

inpatient stay and purchasing supplemental insurance (Holly et al. [73], Jones

et al. [80], Buchmueller et al. [17]). In general the most common finding in

these empirical studies exploiting the bivariate probit model is to find a positive

(direct) effect of insurance on health care demand and no positive (statistically

significant) correlation between residuals of the insurance and the health risk

occurrence equations.

In general results from observational data show that Medicare enrollees
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with supplemental insurance (Medigap or employer plans) have higher levels of

total spending, though differences are small for inpatient care, and that indi-

viduals reporting better health are significantly more likely to enroll in private

supplemental plans (see e.g. Ettner [51], Cartwright et al. [22], Hurd and Mc-

Garry [76]).

These findings are arousing a great deal of interest among researchers. In

particular Finkelstein and McGarry [58] and Cutler et al. [32] take an innovative

approach based on insurance company unused variables to test the (positive)

correlation between health care utilization and insurance coverage. Using one

wave of the Health Dynamics Among Oldest (AHEAD) Cutler et al. [32] identify

two groups of individuals who purchase supplemental insurance and use health

care services: those who prefer insurance for cautionary reasons and ex-post

are less likely to use health care, and those who are subjectively riskier and

ex post have higher risk occurrence.2 Their findings show that individuals who

engage in risky behavior are systematically less likely to hold Medigap. Moreover

people with higher preferences for insurance appear to have lower expected claims,

creating offsetting advantageous selection.3

Using the the same dataset of Cutler et al. [32], Fang et al. [53] provide

strong evidence of advantageous selection in the Medigap market and find cog-

nitive ability is an important factor influencing selection. They conclude that

this reflects the idea that senior citizens may have difficulties in understanding

Medicare and Medigap rules. Therefore, the existence of multiple sources of pri-

vate information depending for example on cognitive skills (Fang et al. [53]) or

actual risk and risk preferences (Cutler et al. [32]), may seriously affect the in-

terpretation of zero correlation between insurance and health care utilization in

the bivariate probit model, since these different unobserved forces may wash each

other out (see also Dardanoni and Li Donni [35]).

A rather different approach is to control for unobserved heterogeneity using

LC analysis. Deb and Trivedi [38]-[39] develop a finite mixture negative binomial

model and estimate health care demand for several health care measures. They

2AHEAD is a cohort of the Health and Retirement Study (HRS) from which our sample is
drawn.

3The first paper to notice a negative risk/coverage correlation is Hemenway [70], which called
it propitious selection. A theoretical paper which analyzes advantageous selection is De Meza
and Webb [37]. A review of the extensive empirical literature who found advantageous selection
in insurance markets is Cohen and Spiegelman [30] and Einav et al. [47]. Evidence of positive
and statistical significant relationship between risk aversion and health attitudes have been
found in the US health insurance market by Vistnes and Banthin [8] and Landerman et al. [89]
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distinguish two unobserved groups in the population: the “healthy” and the “ill”.

After controlling for these two “types” of people, they find that individuals with

supplementary private health insurance tend to seek care from physicians and

non-physicians more often than the uninsureds, while this effect is not significant

for inpatient staying.4

Our paper could be located ideally in this framework, drawing inspiration

from the recursive bivariate probit literature, from the studies on multiple dimen-

sion of private information of Fang et. al [53], Cutler et al. [32] and Finkelstein

and McGarry [58], and the LC models of Deb and Trivedi [38]-[39].

4.4 Modeling incentive and selection effects

Suppose at time t = T we observe a binary variable ST ∈ {0, 1} which takes value

1 if an individual has bought a supplemental insurance contract which protects

from a fixed loss, and a binary variable MT ∈ {0, 1} which takes value 1 if the

individual incurs the loss. In general, ST and MT need not be binary variables,

but frequently the researcher can only observe whether the individual occurred

in the risk or whether she is covered by an insurance plan.

Standard economic theory predicts that risk occurrence and insurance

coverage are positively correlated and this relationship depends on two sources

(Rothschild and Stiglitz [104] and Arnott and Stiglitz [5]). On the one hand

when individuals have private information about their actual risk, the insurance

contract will be adversely selected, with high risk individuals choosing higher in-

surance coverage. On the other hand insurance contract may give the incentive to

increase risk occurrence by increasing the probability to incur in the risk (ex-ante

moral hazard) or by increasing utilization (ex post moral hazard). Both sources

of asymmetric information (adverse selection and moral hazard) will cause the

same observed positive correlation in the data.

The predicted positive correlation between risk and coverage has inspired

4A general limitation affecting many studies on incentive and selection effects in this context
is to leave out a third possible “health improving” effect of insurance purchase. If Medigap
increases outpatient visits or expands drugs coverage, this can increase health status and de-
crease subsequent medical care use. Some studies have investigated the effects of supplementary
insurance on the health status of the elderly (see. e.g. Doescher et al. [42] and Dor et al. [43])
supporting this possibility. In our application, we have tried to control for this effect by using
various aggregate health status measures. We thank an anonymous referee for this remark.
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the seminal contribution by Chiappori and Salanié [25], who considered the

testable implications of asymmetric information in insurance markets, and pro-

posed the so called Positive Correlation (PC) test. The PC test rejects the null

of absence of private information in a given insurance market when, conditional

on consumers’ characteristics used by insurance companies to price contracts,

individuals with more coverage experience more of the insured risk.

4.4.1 The insurer’s model

Let w denote the set of variables used by insurance companies to price a given

insurance contract. Notice that conditioning on w is crucial to properly iden-

tify selection effects, since without conditioning on w it would not be possible

to know whether a correlation arises because individuals which are offered the

same contract have different risk (adverse selection) or rather because they face

contracts at different prices (Chiappori and Salanié [25], Einav and Finkelstein

[46]).

Since individuals with the same value of w face the same insurance con-

tract, one can study incentive and selection effects using the same logic as the

PC test by considering the following recursive model:

MT = 1
(
a+ bST + c

′
w + ηM

)
(4.1)

ST = 1
(
d+ e

′
w + ηS

)
(4.2)

(with 1(.) denoting the indicator function), where the residual heterogeneity

which is induced by all variables not used by insurance companies is collected

in two random variables (ηM , ηS). Within model (4.1)–(4.2), adverse selection

implies a positive correlation between ηM and ηS, while the incentive effect implies

a positive value of the coefficient b. Model (4.1)–(4.2) can be estimated with

standard maximum likelihood methods by assuming that (ηM , ηS) are normally

distributed with standardized margins and correlation coefficient equal to, say,

ρ, in which case it is called a recursive bivariate probit model.

Estimating (4.1)–(4.2) with a recursive bivariate probit to disentangle in-

centive and selection effects has some theoretical and econometric difficulties.

From an econometric point of view, identification of model (4.1)–(4.2) relying

on the normality assumption, though theoretically feasible as long as data on w

are of full rank (see Wilde [118]), it is quite fragile in the absence of exclusion
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restrictions. On the other hand, from the theoretical perspective, the bivariate

normality assumption can be severely limiting when residual heterogeneity is ac-

tually multidimensional. For example, as explained by Dardanoni and Li Donni

[35], if there are two conflicting sources of private information (following Finkel-

stein and McGarry [58], say individual’s actual risk and risk preference), one can

observe that the insurance contract could be at the same time both adversely

and favorably selected by different types (where a type is defined as a given com-

bination of actual risk and risk preference), but these selection effects could go

undetected by using the single statistic ρ.5

A standard practice in the applied economics literature is to check the

robustness of recursive bivariate probit estimates by comparing them to the es-

timates obtained by performing separate probit regressions for the two response

variables. It is not uncommon, however, that the two sets of estimates differ sub-

stantially, even in the case when a standard LR test does not reject the null of

ρ = 0. When this happens, it can be taken as evidence of potential identification

problems in the bivariate probit model estimates.

Discrete multivariate finite mixture model

An alternative procedure to estimate equations (4.1)–(4.2) is by using a latent

class model, trying to control for residual heterogeneity by identifying a finite

number of “types” which differ with respect to their attitude to buy insurance

and to use medical care. In particular, we can assume that U is a discrete

random variable taking values in, say, {1, . . . ,m}, which define m unobservable

heterogeneous “types”; in practice, U can be seen as a cross-classification of

underlying unobservable individual characteristics, such as risk tolerance and

attitudes to use medical care. Equations (4.1)–(4.2) can be rewritten as

MT = 1
( m∑

u=1

αMT
(u)U(u) + bST + c

′
w + ϵM

)
(4.3)

ST = 1
( m∑

u=1

αST
(u)U(u) + e

′
w + ϵS

)
(4.4)

5Dardanoni and Li Donni [35] give various theoretical and empirical examples with mul-
tidimensional private information implies the presence of selection effects which are however
undetected by ρ.
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where U(1), . . . , U(m) denote the set of m dummy variables indicating “latent

type” membership, so that the coefficients αMT
(u) and αMT

(u) can be inter-

preted as random intercepts with a nonparametric discrete specification, like in

Heckman and Singer [68]. Since no underlying structure is imposed on U , it can

capture in a unrestrictive way any variable which affects medical care use and

insurance demand after conditioning on w, and thus take into account the po-

tential multidimensionality of residual heterogeneity. (ϵM , ϵS) on the other can

be seen as uncorrelated idiosyncratic errors. Estimation of equations (4.3)–(4.4)

involves first the choice of an appropriate distribution for (ϵM , ϵS); we assume a

standard logistic in order to use logit parameters for estimation. However, while

relying on the parametric choice of the distribution of the idiosyncratic errors,

no parametric structure is imposed on the residual heterogeneity variable U ; for

this reason model (4.3)–(4.4) is known in the literature as a semiparametric finite

mixture model. Well known applications are Deb and Trivedi ([38] and [39]) in

health economics and Cameron and Heckman [20] in education.

The semiparametric finite mixture model is well established and achieves

nonparametric estimation of residual heterogeneity. However, conditionally on

w we observe only two binary variables (that is, 3 parameters), while even with

two mixture types there are 5 parameters to estimate (four α’s and a mixture

probability). Thus, it must rely on covariates’ variation to achieve parameters’

identification. In practice, it typically achieves identification of very few unob-

served types; in many applications only two types are identified.

To achieve sharper identification of the heterogeneous types we may use a

set of observable indicators of the variables which affect insurance choice and loss

occurrence after conditioning on w. To identify U , we exploit the panel nature

of the dataset, and in particular lagged values of M and S, to define a set of

auxiliary equations which are used as indicators of U and help identifying the

mixture components probabilities in (4.3)–(4.4), which are of primary interest:

Pr(MT−t = 1 | u,w) = Λ(αMT−t
(u) + β

′

MT−t
w), t = 1, . . . , T − 1

Pr(ST−t = 1 | u,w) = Λ(αST−t
(u) + β

′

ST−t
w), t = 1, . . . , T − 1

(4.5)

where Λ denotes the binary logit link.6

6In the auxiliary system (4.5) one could also condition the probabilities of medical care and
insurance choice on lagged values, in which case the latent types would be defined relatively to
past choices. For example, if one conditions current insurance choice on its lagged values, one
identifies risk attitudes relatively to past choices, while if no conditioning is made, one tends
to identify unadjusted risk preferences. In our experience, for the purpose of estimating the
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Our discrete multiresponse latent class model is completed by the types’

membership probabilities P (u). To force the types probabilities to lie between

zero and one and sum to one, it is convenient use a multinomial logit parameter-

ization:

Pr(U = u) =
exp(αU(u))∑m
u=1 exp(αU(u))

, αU(m) = 0 (4.6)

so that the m− 1 logit parameters αU are simply reparametrization of the mem-

bership probabilities, and do not impose any parametric restriction on the distri-

bution of U .

The discrete multiresponse finite mixture model is defined by the main

equations (4.3)–(4.4), the auxiliary equations (4.5), and the membership probabil-

ity equation (4.6). It can be seen as an instance of a discrete multivariate MIMIC

(Joreskog and Goldberger[81]) model (see Goodman [63] for the seminal paper

on finite mixture models with multivariate binary responses, and Huang and

Bandeen-Roche [75] for a recent general treatment). Differently to the MIMIC

model, the residual heterogeneity U is not a continuous univariate variable on the

real line, but an unstructured nonparametric variable. Notice that, contrary to

the semiparametric finite mixture model which does not use the auxiliary system

of equations (4.5), the discrete multiresponse finite mixture model can achieve

identification of a considerable number of heterogeneous types without relying on

covariates variation.7

Within this model the absence of incentive and selection effects can be

tested by imposing appropriate restrictions on the model parameters: one rejects

the null of no incentive effects when b in equation (4.3) is positive, while the

null of the absence of selection effects is rejected when the equality constraints

αMT
(1) = · · · = αMT

(m) and αST
(1) = · · · = αST

(m) are rejected.

parameters of the main system of interest, in practice there is little difference in the results
obtained under the two approaches.

7For an intuitive explanation on how this can be done, notice that conditionally on w, if
for example T = 3, we observe the joint distribution of 6 response variables with 26 − 1 = 63
observable parameters, with 7×m−1 unknown parameters. Thus, in principle up to 9 different
types can be identified. However, this is only a necessary condition for the identification of the
unobservable parameters; there are well known pathological examples in the literature on finite
mixture models which show that this counting condition is not sufficient.
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4.4.2 An extended model

Following the seminal paper by Chiappori and Salanié [25], current practice on

testing for asymmetric information in insurance markets appraises the existence

of asymmetric information after conditioning on individual characteristics which

are used by insurance companies to set premiums and price contracts. For the

purpose of detecting selection effects, this approach seems by now universally

accepted (see e.g. Cohen and Spiegelman [30], Einav et al. [47]). However,

this approach contrasts with previous studies which have tried to estimate the

incentive effect of medical care insurance.

Research on moral hazard distinguishes between ex ante moral hazard,

which refers to the attitudes of insured to take reduced precautions, and ex post

moral hazard, which refers to actions engaged by insured after a loss occurs. The

main issue to measure this second source of moral hazard consists of disentan-

gling the variation of medical care consumption corresponding to a given level of

information (e.g. related to individual tastes, preferences beliefs, etc.) from the

variation of consumption due to the structure of the contract. For this reason the

standard applied approach is to include in addition to variables used to price in-

surance contracts, also additional controls devoted to capture potential variation

in consumption.

To study asymmetric information, it is not clear whether conditioning on

all the possible determinants of demand for medical care should be necessarily

preferred to conditioning only on variables used by insurers, since both moral

hazard and adverse selection directly depend on the structure of the insurance

contract and then on the variables used to price individual risk (see e.g. Gardiol et

al. [61] and Chiappori et al. [26]). Thus, for completeness we present both model

specifications by including all controls traditionally employed in the empirical

literature on insurance and demand for medical care (see e.g. Buchmuller et al.

[17], Holly et al. [73], Jones et al. [80]).

In this section we will thus extend model (4.1)–(4.2) by considering

Mt = 1
(
a+ bSt + c

′
wM + ηM

)
(4.7)

St = 1
(
d+ e

′
wS + ηS

)
(4.8)

where wM and wS denote all observable determinants of individual’s medical

care and insurance choices, and ηM and ηS collect all residual unobservable het-
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erogeneity which affects medical care use and insurance demand.

Recursive bivariate probit

In equations (4.7)-(4.8), wM , wS, ηM and ηS denote all observable and unobserv-

able determinants of individual’s medical care and insurance choices, reflecting

individuals’ preferences and constraints, and are likely to include individuals’

characteristics such as risk tolerance, attitude towards medical care use and in-

surance purchase, actual (health) riskiness and so on. Following standard models

in the literature (Ettner [51], Holly et al. [73], Buchmuller et al. [17], Jones et

al. [80]), we assume that wM and wS include demographic, socio-economic and

health status observables, which we denote xM and xS, and lagged medical care

and insurance partecipation which may act as proxies for unobservable attitudes

to buy insurance and use health care. We then rewrite equations (4.7) and (4.8)

as

MT = 1
(
a+ bST + c

′
xM +

T−1∑
t=1

dT−tMT−t +
T−1∑
t=1

eT−tST−t + ηM
)

(4.9)

ST = 1
(
f + g

′
xS +

T−1∑
t=1

hT−tMT−t +
T−1∑
t=1

kT−tST−t + ηS
)

(4.10)

Assuming that (ηM , ηS) are distributed as a bivariate normal with standard mar-

gins and correlation coefficient ρ, equations (4.9)-(4.10) define a standard recur-

sive bivariate probit.

The recursive bivariate probit model above is simple to estimate and to

interpret, allows estimation of the effect of supplementary insurance on medical

care use and testing for selection effects with standard software, and has been

much used in this context (Buchmueller et al. [17], Holly et al. [73], and Jones

et al. [80]). Furthermore, by appropriate inclusion/exclusion restriction, it can

allow a much more robust parameters’ identification compared to model (4.1)–

(4.2) above. However, it still relies on bivariate normality to achieve parameters’

identification, and, as explained above, it can still run into difficulties in detecting

selection effects when residual unobserved heterogeneity is multidimensional.
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Discrete multivariate finite mixture model

Following the same logic as above, our strategy is to control for residual unob-

served heterogeneity by identifying a finite number of “types” which differ with

respect to their attitude to buy insurance and to use medical care, by letting

again U denote a discrete random variable taking values in {1, . . . ,m}. Equa-

tions (4.7)–(4.8) can then be rewritten as

MT = 1
( m∑

u=1

αMT
(u)U(u) + bST + c

′
xM +

T−1∑
t=1

dT−tMT−t +
T−1∑
t=1

eT−tST−t + ϵM
)
(4.11)

ST = 1
( m∑

u=1

αST
(u)U(u) + g

′
xS +

T−1∑
t=1

hT−tMT−t +
T−1∑
t=1

kT−tST−t + ϵM
)
(4.12)

where again the idiosyncratic errors (ϵM , ϵS) are assumed logisticly distributed in

order to use logit parameters for estimation.

To achieve sharper identification of the heterogeneous types we define again

a set of auxiliary equations:

Pr(MT−t = 1 | u,xM) = Λ(αMT−t
(u) + β

′

MT−t
xM), t = 1, . . . , T − 1

Pr(ST−t = 1 | u,xS) = Λ(αST−t
(u) + β

′

ST−t
xS), t = 1, . . . , T − 1

(4.13)

and complete the model by modeling the types membership probabilities P (u)

as in equation (4.6).

An interesting feature of this model is that past medical care use and insur-

ance choice variables perform a ‘double duty’: they help identification of residual

heterogeneity with the system of auxiliary equations (4.13) (as in the model of

section 4.4.1 above), but they also enter directly the conditional distribution of

current medical care and insurance choice in equations (4.11) and (4.12). Ab-

sence of selection effects and moral hazard can be tested by imposing appropriate

restrictions on the α parameters.

4.4.3 Estimation of the discrete multiresponse finite mix-

ture model

Estimation of the model parameters can be obtained by the EM algorithm, which

is the standard approach for maximum likelihood estimation of finite mixture
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models, and has been shown (Dempster et al. [40]) to converge to the maximum of

the true likelihood. Given the binary nature of the response variables, the E-step

is equivalent to compute, for each subject, the posterior probability of belonging

to each unobservable type; the M-step requires maximization of a multinomial

likelihood with individual covariates. A detailed discussion of the EM algorithm

in a system of non linear structural equations with latent classes can be found in

Bergsma et al. [14].8

It is well known that the EM algorithm may converge even if the model

is not identified, which is a crucial issue for finite mixture models. Conditions

for parametric identification are discussed in Theorem 1 of Huang and Bandeen

Roche [75]; local identification can be checked using the the numerical test de-

scribed by Forcina [59], which consists in checking that the Jacobian of the trans-

formation between the parameters of the observable responses and the mixture

model parameters is of full rank for a wide range of parameter values.

Despite the usefulness of finite mixture models to detect underlying resid-

ual heterogeneity, one unresolved issue in their application is how to determine

the number of unobserved types m. The currently preferred approach suggests

the use of Schwartz’s Bayesian Information Criterion (BIC) to guide this choice,

which in certain conditions is known to be consistent and generally helps pre-

venting overparametrization (see McLachlan and Peel [93] for a thorough intro-

duction to finite mixture models and a review of existing criteria for the choice

of the number of types). BIC is calculated from the maximized log-likelihood L

by penalizing parameters’ proliferation, BIC = −2L+ υlog(n), where n denotes

sample size and υ the number of parameters; the model with the lowest BIC is

preferred.

Finally, it may be worth noticing that, since the number of types m is not

predetermined, formal hypotheses tests performed in finite mixture models are

in fact conditional on m, and pre-testing for the number of types may invalidate

distributional results of the test statistics employed. Of course, while pre-testing

is a common problem in most applied research whenever final estimates are ob-

tained after searching for appropriate specification, this is an issue which should

be kept in mind whenever test results differ significantly when performed under

different values of m.

8We are grateful to Antonio Forcina for kindly providing the Matlab code for the EM
estimation.
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4.5 Data and Descriptive Statistics

We use data from the Health and Retirement Study (HRS). Since 1992 the HRS

is a biennial survey targeting elderly Americans over the age of 50 sponsored by

the National Institute on Aging. Although the survey is not conducted on an

yearly basis, from 1998 it provides longitudinal data for an array of information,

consistently administrated, on several different fields such as health and health

care utilization, type of insurance coverage, socioeconomic condition, retirement

plans and family structure and transfers.

For our purpose we use the last available wave on 2006 (that is, T =

2006) as reference point to collect information on insurance status, health care

utilization, health and socio-economic characteristics from the previous two waves

(2002 and 2004). To evaluate more closely the effect of asymmetric information

on Medicare expenditure, we consider a sample restricted to Medicare Part A or

B enrollees over the last wave. This means that we consider only individuals older

than 65 in 2002. Information about Medicare is binary coded and it is clearly

reported in the survey as the first question asked in the insurance section.

Since we study the effect of supplemental insurance (Medigap) on health

care, we also exclude those individuals that received additional coverage through

a former employer, spouse or some other government agency. Following Fang et

al. [53] we define an individual as having additional health insurance coverage

(Medigap) if she purchased directly health insurance policy in addition to Medi-

care. The HRS asked respondents whether they are also covered by Medicaid,

CHAMPUS or CHAMPVA (Tri-care) and who payed for the supplemental in-

surance. This detailed information allows to identify any source of (additional)

coverage available to individual. Since our focus is to disentangle incentive and

selection effects at time 2006 for those individual who deliberately choose to pur-

chase additional coverage, our sample should be limited only to people who are

covered by Medicare part A or B, are not covered by additional public insurance

and pay personally the required monthly premium. Therefore we exclude those

who are enrolled in any other public program different from Medicare or that

are covered at year 2006 by Medigap insurance plan provided by own or spouse’s

former employer.

Our sample is composed by 3368 individuals and descriptive statistics are

reported in table A.1. Supplemental insurance status at 2002 (spins02), 2004

78



(spins04) and 2006 (spins06) is coded as binary variable which takes 1 if re-

spondent has any (no long-term care) supplemental private Medigap insurance

coverage. Almost 50 percent of Medicare beneficiaries in the sample has a sup-

plemental insurance, and 87 percent of them are continuously covered since they

turn 65; thus, most of Medicare beneficiaries purchase a supplemental insurance

coverage as soon as they are enrolled in Medicare Part A or B. In addition to

these variables we also use information on whether additional coverage was pro-

vided in the previous years by a former employer (iemp04) or by the spouse

(iemps04). These variables have been used in the literature to explain individual

choice to take out voluntary supplemental coverage, and can be considered as

appropriate instruments since they are likely to affect insurance choice but they

can be excluded from the inpatient care equation (Ettner [51] finds that selection

into additional coverage can be driven by employer-provided plans since high-risk

(or risk averse) workers may self-select into jobs that provide better retirement

medical benefits).

The HRS offers detailed information on health care consumption. We focus

on hospital staying over the three waves (h02, h04 and h06). Hospital admissions

account for 29% of the Medicare’s total expenditure and it is an important part of

the Medicare total expenditure (see CMS, Office of the Actuary, National Health

Expenditure Accounts, 2007). These variables are binary and take value 1 if

individual had at least one hospital admission, and 0 otherwise. In the Medigap

market insurance companies are constrained by Federal law to use only age and

gender to price contracts. Therefore as variables used by insurer to predict risk

we only use these two measures; for age we use four five-years dummies for added

flexibility.9

In the extended model we follow previous studies on health care demand

(Cameron et al. [19], Jones et al. [80], Deb and Trivedi [39] Vera-Heranandez

[113]) and insurance choice (Propper [100]-[101], Cameron and Trivedi [18]) as

guidance in selecting five groups of variables describing individual socioeconomic

characteristics, insurance status, health care consumption, health status and in-

dividual risk preferences. Health conditions, in particular, have an important

influence both on the decision to subscribe supplementary insurance as well as on

the utilization of health care services. In the HRS, health condition is measured

9Using dummy variables is a common strategy to increase the computational speed of maxi-
mization methods, such as the the EM algorithm, that tend to be slow. However for robustness
we performed all estimations using different age-band definitions and found that estimated
relationships did not vary substantially.
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along different measures. We include in the analysis the number of self-reported

doctor diagnosed longstanding or chronical diseases (DIS) - such as high blood

pressure, hypertension, cardiovascular disease, lung disease, kidney conditions,

emotional and psychiatric problems - and the index of Activities of Daily Living

(ADL), which measures difficulties in bathing, dressing, eating, getting in/out of

bed and walking across a room and is defined on a discrete scale ranging between

0-5. Both indices are averaged out over the three years period to capture the per-

sistency of need status and any preexisting condition which may affect insurance

choice over the time.

Finally the last group of variables includes socio-economic characteristics,

such as education and wealth. Education is measured using three dummy vari-

ables indicating whether individual i) is a high-school graduate, ii) has a degree

which is less than a BA, or iii) has a college degree which is a BA or greater. The

base category includes people with no qualification or lower than high-school. In-

dividual wealth is measured using four dummy variables indicating the quartile

of the total wealth (including the second home) distribution. The base category

represents the poorest.

As reported in table A.1, comparing the sub-sample averages for the two

groups of people with and without supplemental insurance, we find that people

with additional insurance tend to have higher education, to be in the top wealth

quartile, and to have a lower score of ADL, though the average number of diseases

does not vary substantially.

4.6 Results

4.6.1 Insurer’s model: single probit and bivariate probit

results

Table A.2 reports in the first two columns the estimated parameters from the two

single binary probit models for hospital admission and Medigap purchase, and in

the third and fourth columns the estimated parameters of the bivariate recursive

probit model (4.1)-(4.2). For all model specifications one observes that age has a

significant positive effect on inpatient staying and females are more likely to be

covered by Medigap.
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Estimated coefficients for the recursive bivariate probit reveal a strongly

significant incentive effect; the average marginal effect is unbelievable huge at

0.517.10 Regarding selection effects, the estimated ρ coefficient is equal to -

.880, with a s.e. equal to .137. The Wald test statistic is equal to 5.09 and is

asymptotically distributed as a χ2
1, so the null ρ = 0 is rejected with p-value

0.024. On the other hand, the likelihood ratio (LR) test statistic is equal to 1.26

and is also asymptotically distributed as a χ2
1, so the null ρ = 0 is not rejected

with p-value 0.262. Thus, the two testing procedures for the null of absence

of selection effects give very contrasting results. Monfardini and Radice [95]

show that the LR test in general performs significantly better compared to the

Wald test, and argue that when the two test give contrasting results it usually

signals identification problems. This is certainly possible in this case since no

inclusion/exclusion restrictions are exploited to identify model parameters in the

two equations.

As a robustness check, and since the LR test cannot reject the null hypoth-

esis that conditional on w insurance choice is exogenous from hospital utilization,

we may look at the results of the single equation probits. In this framework the

key variable of interest is the incentive effect. Conditioning on buyer character-

istics used by insurer to price contract, individuals with supplemental Medigap

coverage are more likely to have any hospital inpatient staying, since b is positive

and statistically significant at the 5% level. The average marginal effect is equal

to 0.0382, which can be compared with the huge estimated effect of 0.517. The

difference between these two estimates is a further indication of possible identifi-

cation problems with the bivariate probit model. Summing up, it is probably safe

to consider estimated parameters of the recursive bivariate probit with healthy

skepticism.

4.6.2 Insurer’s model: discrete multiresponse finite mix-

ture model

We start by estimating the model under different numbers of latent classes. Pa-

rameters estimates for m = 2, 3, 4, 5 are reported in tables A.3–A.7 in the Ap-

pendix.11 A glance at tables A.6-A.7 reveals that: i) the incentive effect param-

10Average marginal effects here and hereafter are computed averaging individuals marginal
effects.

11We first performed the numerical test of Forcina [59] described in Section 4.4.3 to check
model identifiability. The model passed such a test for each m = 2, 3, 4, 5 with samples of
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eter b of main interest is quite robust to the number of types m = 3, 4, 5; ii)

older individuals seem to significantly have more hospital admissions; iii) there

is a substantial amount of heterogeneity as described by the α coefficients, which

seem to vary very significantly across types.

Table 4.1 below reports the maximized log-likelihood L and Schwartz’s

Bayesian Information Criterion BIC. BIC indicates that four types are adequate

to represent residual heterogeneity. We comment on incentive and selection effects

focusing on the case m = 4.

Table 4.1: Model Selection Criteria for the insurer’s model
Number of Latent Classes

m=2 m=3 m=4 m=5
L -11591.58 -11477.28 -11400.12 -11397.15
BIC 23540.54 23368.79 23271.32 23322.237
# of parameters 44 51 58 65

Let us first focus on the incentive effect parameter b reported in table A.6.

This effect is positive and statistically significant at the 10% level. The average

marginal effect is equal to 0.0383, which is practically identical to the average

marginal effect calculated in the single equation probit model reported (0.0382).

For robustness, we also calculated the marginal effect in the linear probability

model (0.0382).

Regarding selection effects, we can derive the conditional probabilities of

hospital admission and medigap purchase for the 4 types from the estimated

coefficients α in Tables A.4 and A.5.

Table 4.2: Estimated conditional probabilities

U=1 U=2 U=3 U=4
h06 0.2391 0.2923 0.6538 0.6860
h04 0.1575 0.1474 0.8338 0.7790
h02 0.2531 0.2115 0.5862 0.5691
spins06 0.8121 0.1327 0.1050 0.8050
spins04 0.9526 0.1012 0.0977 0.9167
spins02 0.8469 0.1235 0.1618 0.8784
Estimated probabilities are averaged out for w.

10,000 draws. For robustness, we also estimated all versions of the discrete multiresponse finite
mixture model from different starting points in order to check the presence of possible local
maxima.
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The table above shows very substantial heterogeneity in hospital admission

and Medigap purchase by the four types: types 3-4 tend to have a much higher

probability of hospital admission than types 1-2, while types 1-4 have a much

higher probability of buying Medigap than types 2-3. Thus, it appears that there

are at least two different sources of residual heterogeneity: the attitude to buy

insurance (which is high for types one and four and low for types two and three),

and the propensity to use medical care (which is high for types three and four and

low for types one and two). Comparing to the average hospital admission and

Medigap purchase probabilities, it emerges that types two and four adversely

select Medigap insurance, while types one and three favorably select Medigap

insurance. Thus the overall picture which emerges from our estimates is strongly

suggestive of multidimensional residual private information, and there appears

to be both favorable and adverse selection in this market, since the contract is

favourably selected by individuals who have the same (high or low) propensity for

insurance purchase and hospital admission, and adversely selected by individuals

who have opposite attitudes.

While it is apparent that residual heterogeneity coefficients α’s (and thus

the conditional probabilities above) vary substantially across types, we can still

check whether this simply reflects sampling variation by testing the equality con-

straint αh06(1) = · · · = αh06(4) and αspins06(1) = · · · = αspins06(4). As expected,

the LR test statistic overwhelmingly rejects the null with p-values less than 10−4.

4.6.3 Extended model: binary probit and bivariate probit

results

Table A.8 shows the single equation probits and the recursive bivariate probit

estimated coefficients of insurance choice and inpatient stay for the extended

model (4.9)-(4.10).

Estimated coefficients from the recursive bivariate probit model reveal that

the probability of a hospital staying increases with age, but not with education

and wealth, and it is positively associated with low persistent health status and

past inpatient stay. On the other hand, the probability of enrolling in a supple-

mentary insurance plan increases with past insurance status, wealth and educa-

tion. In addition, having better coverage in the past (provided either individually,

spins02 and spins04, or by a former employer, iemp04 and iemps04) significantly
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increases the probability of having supplementary insurance. These results seem

to indicate that individuals with a persistent coverage over the years tend to be

more likely to purchase supplemental insurance.

Estimated coefficients for the recursive bivariate probit reveal again a large

but insignificant incentive effect; the average marginal effect is rather large at

0.183. Regarding selection effects, the estimated ρ is equal to 0.248, with a s.e.

equal to 0.281. The Wald test statistic and LR test statistics are equal to 0.71

and 0.92 and are asymptotically distributed as χ2
1. Both statistics cannot reject

the null ρ = 0 with a p-values of 0.397 and 0.336 respectively. Thus, the two

testing procedures for the null of absence of selection effects in this case give very

similar conclusions.

Although Wilde [118] shows that identification can be obtained even when

the same exogenous regressors appear in both equations (provided that regressors

satisfy an appropriate full rank condition), a more robust identification can be

obtained by appropriate exclusion/inclusion restrictions. In our model it implies

excluding variables from the outcome (hospital) equation which are correlated

with insurance choice but, conditional on exogenous variables, uncorrelated with

hospital utilization. Following Ettner [51], in our specification we have adopted

as instruments past supplemental insurance coverage provided by own (iemp04)

or spouse’s (iemps04) former employer.

To show sensitivity of the estimated coefficients to the assumed exclusion

restrictions, we estimated the bivariate probit model under different specifica-

tions of the outcome equation, analogously to Buchmuller et al. [17]. Table A.9

reports results on the two parameters of interest: the incentive effect b and the

selection effect ρ for several versions of the model. Although the point estimates

vary only slightly depending on which variables are excluded from the utilization

equation, the qualitative results are similar across the different specifications.

For all versions of the recursive bivariate probit model, the insurance coefficient

is larger than the one from the single equation probit model, and in all cases

the correlation coefficient is negative and never statistically significant. There-

fore it is plausible to conclude that insurance choice is exogenous in the hospital

utilization equation, and then single equation probit model gives a more reliable

estimate of the incentive effect parameter b, with an average marginal effect equal

to 0.0409.
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4.6.4 Extended model: discrete multiresponse finite mix-

ture model

We first estimate the model under different numbers m of latent classes. Results

for m = 2, 3, 4, 5 are reported in Appendix, while table 4.3 below reports the

maximized log-likelihood L, the BIC and the number of parameters in each LC

model specification.12 BIC seems to indicate that three LC are adequate to

represent unobserved heterogeneity. A glance at tables A.12-A.15 reveals also

that estimated coefficients do not seem to vary substantially with respect to the

number of LC specifications. We comment on parameters’ estimates focusing on

the case m = 3.

Table 4.3: Model Selection Criteria for the extended model
Number of Latent Classes

m = 2 m = 3 m = 4
L -11104.58 -11072.95 -11058.65
BIC 23037.62 23031.21 23059.47
#ofparmaters 102 109 116

Estimated coefficients reveal a very similar picture to the probit models

above; the probability of a hospital staying increases with age, but not with

education and wealth, and is positively associated with past utilization and low

persistent health status; the probability of enrolling in a supplementary insurance

plan increases with past insurance status and wealth. The variables iemp04 and

iemps04 are again very strongly significant, so that generally individuals with a

persistent coverage over the years tend to be more likely to purchase supplemental

insurance.

Regarding incentive effects, the coefficient b is positive and significant at

the 10% significance level. The average marginal effect is equal to 0.0439, which

is slightly higher than the probit marginal effect of 0.0409. Again, for robustness,

we also calculated the marginal effect in the linear probability model (0.041).

Finally, looking at the estimated α coefficients for the main system (Ta-

ble A.11), it emerges that, contrary to the model estimated in section 4.6.2,

estimated coefficients of the residual heterogeneity U do not vary significantly

12We also performed the numerical test of Forcina [59] and the model passed such a test for
each m = 2, 3, 4 with samples of 10,000 draws. For robustness, we also estimated all versions of
the discrete multiresponse finite mixture model from different starting points in order to check
the presence of possible local maxima.
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across types. Thus, we first can check whether the observed pattern of α’s in

the main equation system is simply due to sampling variation by imposing equal-

ity constraints. The LR test statistics when αh06(1) = αh06(2) = αh06(3) and

αspins06(1) = αspins06(2) = αspins06(3) are equal to 4.71 and 3.91 respectively.

These are distributed as χ2
2, so that the null hypothesis of no selection effects

cannot be rejected at 5% significance level with p-values of 0.094 and 0.141.

Our results suggest that after controlling for all relevant observable de-

terminants of inpatient staying and Medigap purchase, there seems to be no

significant residual private information.

4.7 Final remarks

In the health insurance market consumers have private information about their

health status (actual risk) and preferences. As a result, insurance contracts may

be affected by incentive and/or selection effects. A standard way to study these

effects is to measure the impact of insurance purchase on health care use and their

residual association, after conditioning on variables used by insurance companies

to price contracts. The standard econometric approach for this purpose relies on

a recursive bivariate probit model.

In this paper, we explore the extent to which supplemental health insur-

ance (Medigap) affects inpatient care in two distinct cases: using as conditioning

variables those used by insurers’ to price individual’s risk, or alternatively using

the rich set of observable characteristics which are available in the HRS data.

While in highly competitive and unregulated markets the two sets of variables

may coincide, in heavily regulated markets (such as Medigap) the two models

may give very different results.

In both cases, we estimated two alternative econometric models: a stan-

dard recursive bivariate probit, and a discrete multiresponse finite mixture model.

The main picture which emerges from our estimation is the following:

• Estimated incentive effects are quite similar across models, with average

marginal effects ranging from 0.0382 to 0.0439, which are slightly smaller

than the difference, in the sample, between the probability of hospital ad-

mission of individuals who are covered (0.36) and those who are not cov-
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ered (0.31) by Medigap. Estimated coefficients of the incentive effects are

generally significant between the 5% and 10% significance level. These re-

sults are broadly consistent with previous studies on Medigap (Ettner [51],

Cartwright et al. [22], Hurd and McGarry [76]).

• There seems to be very significant selection effects when one conditions only

on variables used by Medigap insurers, with the presence of both adversely

and favorably selected individuals. This stems from the multidimensional

nature of residual heterogeneity.

• On the other hand, when a rich set of observable variables, including past

insurance decisions and past inpatient stay, are employed for conditioning,

there seems to be no statistically significant private information in this

market. Thus, one may conclude that selection effects in Medigap are

mainly due to regulatory constraints. This suggests that future research

may fruitfully investigate the welfare implication of regulatory Medigap

constraints. A very simple intuitive explanation of the welfare loss due to

adverse and favorable selection is contained in Einav and Finkelstein [46].

• In this setting, the recursive bivariate probit model runs into theoretical

problems to detect selection effects when residual heterogeneity is multidi-

mensional. Furthermore, in this data, the model seems to run into empirical

problems probably due to identification issues.
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Appendix A

Tables

Table A.1: Sample characteristics and variables definition

Variable Definition of Binary Variables Full Sample No Ins With Ins

Insurance Status

spins06 1 = enrolled in Medigap at 2008. 0.42 0.00 1.00
spins04 1 = enrolled in Medigap at 2004. 0.45 0.21 0.80
spins02 1 = enrolled in Medigap at 2002. 0.43 0.22 0.72
iemp04 1 = additional coverage from former emp. at 2004. 0.08 0.10 0.05
iemps04 1 = additional coverage from spouse emp. at 2004. 0.04 0.05 0.04

Hospital Admission

h06 1 = entered a hospital in 2005-2006. 0.33 0.31 0.36
h04 1 = entered a hospital 2003-2004. 0.29 0.29 0.29
h02 1 = entered a hospital in 2001-2002. 0.27 0.26 0.28

Variables Used by insurer to price Medigap plan

age75 1 = aged between 76 and 80 years. 0.24 0.26 0.22
age80 1 = aged between 81 and 85 years. 0.18 0.17 0.20
age85 1 = aged between 86 and 90 years. 0.11 0.09 0.13
age90 1 = older than 90 years. 0.05 0.05 0.05
fem 1 = female. 0.61 0.59 0.63

Other Controls unused by insurer

edu3 1 = if individual is high-school graduate. 0.35 0.33 0.39
edu4 1 = if individual has a degree lower than BA. 0.19 0.17 0.20
edu5 1 = if individual has college degree or greater. 0.16 0.16 0.15
wealth2 1 = if individual is in the second wealth quartile. 0.25 0.26 0.24
wealth3 1 = if individual is in the third wealth quartile. 0.25 0.24 0.27
wealth4 1 = if individual is in the top wealth quartile. 0.25 0.23 0.28
dis 1 = average number of disease over 2002-2006. 2.23 2.24 2.21
adl 1 = average ADL over 2002-2006. 0.29 0.31 0.26
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Table A.2: Insurer’s probit models for hospital admission and insurance choice
Probit Model Bivariate Probit Model

Independent Variables Hospital 2006 Insurance 2006 Hospital 2006 Insurance 2006
spins06 0.105 . 1.435 .

(0.0456) . (0.161) .
age75 0.216 -0.0401 0.177 -0.0307

(0.0579) (0.0561) (0.0546) (0.0552)
age80 0.356 0.127 0.184 0.129

(0.0626) (0.0610) (0.0765) (0.0610)
age85 0.396 0.238 0.148 0.239

(0.0752) (0.0736) (0.0950) (0.0739)
age90 0.413 0.0743 0.256 0.0793

(0.103) (0.102) (0.105) (0.101)
fem -0.00646 0.0915 -0.0551 0.0903

(0.0463) (0.0450) (0.0424) (0.0446)
Constant -0.660 -0.312 -0.974 -0.314

(0.0490) (0.0433) (0.0462) (0.0433)
# of Obs. 3368
Log-likelihood -2111.97 -2275.96 -4387.31
Note: Robust standard errors are reported in brackets

Table A.3: Estimated Class Membership Probabilities for the insurer’s model
m = 2 m = 3 m = 4 m = 5

α(1) 0.4440 0.3872 0.2913 0.2705
α(2) 0.5560 0.1771 0.3878 0.3827
α(3) . 0.4357 0.1680 0.1419
α(4) . . 0.1530 0.0531
α(5) . . . 0.1517

Table A.4: Estimated intercepts for the insurer’s model: main equations
m = 2 m = 3 m = 4 m = 5

Coef. St. Er. Coef. St. Er. Coef. St. Er. Coef. St. Er.

Hosp. Adm. 2006
αh06(1) -0.77 0.11 -1.40 0.12 -1.62 0.22 -1.81 0.29
αh06(2) -0.78 0.05 0.31 0.17 -1.34 0.12 -1.35 0.12
αh06(3) . . -0.86 0.12 0.22 0.17 0.22 0.18
αh06(4) . . . . 0.37 0.26 -0.04 0.35
αh06(5) . . . . . . 0.30 0.26

Sup. Ins. 2006
αspins06(1) 1.37 0.08 -2.03 0.11 1.38 0.11 1.38 0.13
αspins06(2) -2.08 0.09 -2.03 0.19 -2.00 0.11 -2.10 0.15
αspins06(3) . . 1.42 0.08 -2.26 0.23 -1.84 0.16
αspins06(4) . . . . 1.34 0.18 0.79 1.92
αspins06(5) . . . . . . 1.36 0.17
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Table A.5: Estimated intercepts for the insurer’s model: auxiliary equations
m = 2 m = 3 m = 4 m = 5

Coef. St. Er. Coef. St. Er. Coef. St. Er. Coef. St. Er.

Hosp. Adm. 2002
αh02(1) -0.93 0.06 -1.78 0.14 -1.49 0.14 -1.62 0.17
αh02(2) -1.07 0.06 0.03 0.16 -1.73 0.14 -1.73 0.14
αh02(3) . . -0.95 0.06 -0.02 0.17 -0.02 0.18
αh02(4) . . . . -0.10 0.16 -0.33 0.28
αh02(5) . . . . . . -0.15 0.16

Hosp. Adm. 2004
αh04(1) -0.90 0.06 -2.39 0.35 -2.36 0.40 -2.54 0.49
αh04(2) -0.92 0.05 1.07 0.34 -2.44 0.39 -2.57 0.43
αh04(3) . . -0.95 0.06 1.13 0.40 1.25 0.46
αh04(4) . . . . 0.76 0.34 0.60 0.50
αh04(5) . . . . . . 0.39 0.27

Sup. Ins. 2002
αspins02(1) 1.59 0.09 -2.23 0.13 1.50 0.12 1.49 0.13
αspins02(2) -2.09 0.09 -1.66 0.16 -2.19 0.13 -2.21 0.15
αspins02(3) . . 1.63 0.09 -1.88 0.19 -2.01 0.60
αspins02(4) . . . . 1.77 0.21 -0.18 0.92
αspins02(5) . . . . . . 1.76 0.32

Sup. Ins. 2004
αspins04(1) 2.50 0.15 -2.48 0.16 2.75 0.25 2.84 0.34
αspins04(2) -2.54 0.14 -2.30 0.23 -2.54 0.18 -2.57 0.19
αspins04(3) . . 2.57 0.15 -2.58 0.30 -2.66 0.33
αspins04(4) . . . . 2.14 0.26 -2.09 2.58
αspins04(5) . . . . . . -1.69 0.17
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Table A.6: Estimated parameters for the insurer’s model: main equations
m = 2 m = 3 m = 4 m = 5

Coef. St. Er. Coef. St. Er. Coef. St. Er. Coef. St. Er.

Hosp. Adm. 2006
spins06 0.16 0.11 0.24 0.12 0.25 0.13 0.23 0.17
age75 0.36 0.10 0.39 0.10 0.41 0.11 0.41 0.11
age80 0.59 0.10 0.61 0.11 0.69 0.12 0.68 0.12
age85 0.65 0.12 0.65 0.13 0.74 0.15 0.73 0.15
age90 0.68 0.17 0.73 0.18 0.79 0.20 0.80 0.20
fem -0.01 0.08 0.00 0.08 -0.02 0.09 -0.01 0.09

Sup. Ins. 2006
age75 -0.23 0.14 -0.24 0.14 -0.23 0.14 -0.25 0.15
age80 0.26 0.16 0.22 0.16 0.26 0.16 0.25 0.17
age85 0.50 0.19 0.46 0.19 0.51 0.19 0.61 0.22
age90 -0.09 0.26 -0.12 0.26 -0.09 0.26 -0.19 0.27
fem 0.15 0.11 0.17 0.11 0.14 0.11 0.16 0.12

Table A.7: Estimated parameters for the insurer’s model: auxiliary equations
m = 2 m = 3 m = 4 m = 5

Coef. St. Er. Coef. St. Er. Coef. St. Er. Coef. St. Er.
Sup. Ins. 2002

age75 0.14 0.15 0.13 0.15 0.14 0.15 0.14 0.15
age80 0.28 0.17 0.23 0.16 0.28 0.17 0.25 0.16
age85 0.56 0.20 0.50 0.20 0.57 0.20 0.57 0.21
age90 0.12 0.28 0.09 0.28 0.12 0.28 0.04 0.27
fem 0.24 0.12 0.25 0.12 0.22 0.12 0.25 0.12

Sup. Ins. 2004
age75 -0.20 0.24 -0.21 0.23 -0.19 0.24 -0.25 0.32
age80 0.46 0.25 0.36 0.24 0.45 0.25 0.52 0.30
age85 0.83 0.29 0.72 0.28 0.86 0.29 1.01 0.31
age90 0.54 0.41 0.48 0.39 0.56 0.41 0.48 0.48
fem 0.18 0.19 0.21 0.18 0.16 0.19 0.32 0.23

Hosp. Adm. 2002
age75 0.27 0.10 0.29 0.11 0.29 0.11 0.29 0.11
age80 0.53 0.11 0.55 0.12 0.60 0.12 0.59 0.12
age85 0.66 0.13 0.67 0.14 0.72 0.14 0.71 0.15
age90 0.65 0.17 0.69 0.19 0.73 0.20 0.73 0.20
fem -0.05 0.08 -0.04 0.09 -0.06 0.09 -0.05 0.09

Hosp. Adm. 2004
age75 0.25 0.10 0.34 0.13 0.42 0.18 0.39 0.17
age80 0.42 0.11 0.52 0.14 0.75 0.20 0.69 0.19
age85 0.69 0.12 0.81 0.16 1.15 0.25 1.09 0.25
age90 0.77 0.17 1.00 0.22 1.34 0.32 1.34 0.32
fem -0.07 0.08 -0.08 0.10 -0.15 0.14 -0.13 0.13
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Table A.8: Extended probit models for Hospital Admission and Insurance Choice
at 2006

Probit Model Bivariate Probit Model
Independent Variables Hospital 2006 Insurance 2006 Hospital 2006 Insurance 2006
spins06 0.125 . 0.559 .

(0.0601) . (0.483) .
spins04 0.0678 1.401 -0.140 1.402

(0.0672) (0.0635) (0.217) (0.0635)
spins02 -0.0367 0.736 -0.136 0.733

(0.0613) (0.0595) (0.127) (0.0598)
h04 0.530 -0.0175 0.525 -0.0179

(0.0522) (0.0599) (0.0544) (0.0597)
h02 0.148 0.0202 0.145 0.0255

(0.0541) (0.0601) (0.0541) (0.0605)
dis 0.169 -0.0150 0.169 -0.0140

(0.0198) (0.0218) (0.0199) (0.0220)
adl 0.180 -0.0249 0.180 -0.0240

(0.0360) (0.0395) (0.0353) (0.0391)
age75 0.139 -0.0763 0.146 -0.0711

(0.0607) (0.0661) (0.0603) (0.0668)
age80 0.255 0.107 0.241 0.112

(0.0664) (0.0737) (0.0689) (0.0741)
age85 0.165 0.186 0.142 0.190

(0.0792) (0.0879) (0.0830) (0.0882)
age90 0.158 0.00672 0.156 0.0111

(0.112) (0.129) (0.112) (0.128)
fem -0.0213 0.0799 -0.0252 0.0810

(0.0512) (0.0554) (0.0514) (0.0553)
edu3 -0.0330 0.0751 -0.0401 0.0789

(0.0594) (0.0651) (0.0595) (0.0654)
edu4 -0.0498 0.0900 -0.0593 0.0943

(0.0727) (0.0803) (0.0730) (0.0806)
edu5 0.0523 0.0629 0.0443 0.0742

(0.0794) (0.0860) (0.0797) (0.0880)
wealth2 -0.0433 -0.0393 -0.0378 -0.0379

(0.0677) (0.0767) (0.0671) (0.0765)
wealth3 -0.0843 0.114 -0.0933 0.113

(0.0702) (0.0773) (0.0720) (0.0775)
wealth4 -0.0715 0.145 -0.0815 0.146

(0.0783) (0.0862) (0.0812) (0.0863)
iemp04 0.0567 0.536 . 0.535

(0.0888) (0.0957) . (.0.0951)
iemps04 0.140 0.617 . .0.627

(0.110) (0.117) . (.0.116)
Constant -1.205 -1.468 -1.213 -.1.478

(0.0914) (0.102) (0.0901) (.0.103)
# of Obs. 3368
Log-likelihood -1932.60 -1560.62 -3492.76
Note: Robust standard errors are reported in brackets
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Table A.9: Partial results for alternative bivariate probit specifications
Variables excluded in the utilization equation Insurance Coefficient ρ Likelihood Ratio

Probit Model 0.125 - -
(0.0601)

iemps04 0.579 -0.266 0.69
(0.581) (0.362)

iemp04 0.307 -0.103 0.09
(0.769) (0.449)

iemp04+iemps04 0.559 -0.254 0.92
(0.483) (0.300)

Note: Robust standard errors are reported in brackets.
The sample size for all models is 3368

Table A.10: Estimated Class Membership Probabilities for the extended model
m = 2 m = 3 m = 4

α(1) 0.4806 0.1412 0.2961
α(2) 0.5194 0.3701 0.2150
α(3) . 0.4887 0.2762
α(4) . . 0.2127

Table A.11: Estimated intercepts for the extended model: main equations
m = 2 m = 3 m = 4

Coef. St. Er. Coef. St. Er. Coef. St. Er.

Hosp. Adm. 2006
αh06(1) -1.07 0.40 -1.81 0.30 -1.05 0.15
αh06(2) -1.20 0.07 -1.07 0.10 -1.54 0.45
αh06(3) . . -1.13 0.39 -0.90 0.51
αh06(4) . . . . -1.01 0.48

Sup. Ins. 2006
αspins06(1) -1.40 0.42 -2.48 0.41 -2.57 0.37
αspins06(2) -2.19 0.10 -2.16 0.13 -1.45 0.42
αspins06(3) . . -1.28 0.39 -2.89 0.79
αspins06(4) . . . . -1.09 0.52
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Table A.12: Estimated intercepts for the extended model: auxiliary equations
m = 2 m = 3 m = 4

Coef. St. Er. Coef. St. Er. Coef. St. Er.

Hosp. Adm. 2002
αh02(1) -0.99 0.06 0.14 0.37 -2.67 0.56
αh02(2) -1.15 0.06 -1.94 0.29 -0.26 0.27
αh02(3) . . -0.98 0.06 -1.88 0.36
αh02(4) . . . . 0.04 0.32

Hosp. Adm. 2004
αh04(1) -0.94 0.06 0.39 0.41 -2.13 0.40
αh04(2) -1.02 0.06 -1.81 0.29 -0.15 0.23
αh04(3) . . -0.95 0.06 -1.44 0.21
αh04(4) . . . . -0.31 0.21

Sup. Ins. 2002
αspins02(1) 1.73 0.34 -2.62 0.47 -2.71 0.42
αspins02(2) -2.98 0.57 -2.83 0.41 -2.74 0.57
αspins02(3) . . 1.54 0.19 2.24 0.50
αspins02(4) . . . . 0.87 0.24

Sup. Ins. 2004
αspins04(1) 1.77 0.27 -4.07 1.45 -2.09 0.35
αspins04(2) -2.45 0.45 -2.49 0.37 1.11 0.28
αspins04(3) . . 1.87 0.24 2.34 0.43
αspins04(4) . . . . 1.42 0.36
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Table A.13: Estimated parameters for the extended model: main equations
m = 2 m = 3 m = 4

Coef. St. Er. Coef. St. Er. Coef. St. Er.

Hosp. Adm. 2006
spins06 0.22 0.11 0.21 0.11 0.27 0.18
spins04 0.03 0.21 -0.02 0.22 -0.15 0.30
spins02 -0.14 0.24 -0.12 0.20 -0.21 0.25
h04 0.87 0.08 1.02 0.12 0.97 0.19
h02 0.24 0.09 0.37 0.11 0.35 0.26
dis 0.29 0.03 0.27 0.04 0.28 0.04
adl 0.29 0.06 0.28 0.06 0.28 0.06
age75 0.24 0.10 0.24 0.10 0.25 0.10
age80 0.43 0.11 0.43 0.11 0.43 0.11
age85 0.29 0.14 0.28 0.14 0.30 0.14
age90 0.28 0.19 0.28 0.19 0.30 0.19
fem -0.01 0.09 -0.01 0.09 0.00 0.09
edu3 -0.04 0.10 -0.04 0.10 -0.03 0.10
edu4 -0.08 0.12 -0.10 0.12 -0.09 0.12
edu5 0.08 0.13 0.08 0.13 0.08 0.13
wealth2 -0.05 0.12 -0.05 0.12 -0.03 0.12
wealth3 -0.10 0.12 -0.09 0.12 -0.08 0.13
wealth4 -0.07 0.13 -0.05 0.14 -0.04 0.14

Sup. Ins. 2006
spins04 2.02 0.23 1.87 0.24 2.66 0.45
spins02 0.84 0.28 0.84 0.23 1.49 0.34
h04 -0.03 0.11 0.01 0.13 -0.42 0.24
h02 0.02 0.11 0.05 0.13 -0.60 0.32
dis -0.01 0.04 -0.01 0.04 0.04 0.05
adl -0.07 0.07 -0.07 0.07 0.01 0.08
age75 -0.12 0.12 -0.12 0.12 -0.12 0.13
age80 0.21 0.14 0.22 0.14 0.24 0.15
age85 0.38 0.17 0.39 0.17 0.38 0.18
age90 0.06 0.23 0.08 0.23 0.08 0.25
fem 0.17 0.11 0.17 0.11 0.10 0.11
edu3 0.21 0.13 0.22 0.13 0.16 0.14
edu4 0.20 0.15 0.21 0.15 0.22 0.16
edu5 0.09 0.16 0.09 0.16 0.14 0.17
wealth2 0.03 0.15 0.04 0.15 -0.10 0.16
wealth3 0.31 0.15 0.34 0.15 0.20 0.16
wealth4 0.35 0.17 0.37 0.17 0.22 0.18
iemp04 0.97 0.17 0.99 0.17 1.02 0.18
iemps04 1.11 0.21 1.13 0.22 1.19 0.23
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Table A.14: Estimated parameters for the extended model: auxiliary equations,
insurance choice

m = 2 m = 3 m = 4
Coef. St. Er. Coef. St. Er. Coef. St. Er.

Sup. Ins. 2002
dis 0.23 0.08 0.20 0.06 0.21 0.07
adl -0.28 0.13 -0.25 0.10 -0.27 0.11
age75 0.28 0.21 0.29 0.19 0.34 0.20
age80 0.39 0.25 0.35 0.21 0.28 0.21
age85 0.80 0.36 0.69 0.28 0.86 0.30
age90 0.53 0.41 0.52 0.36 0.67 0.38
fem 0.45 0.20 0.35 0.16 0.41 0.17
edu3 0.77 0.31 0.65 0.22 0.69 0.23
edu4 0.40 0.28 0.38 0.23 0.43 0.24
edu5 -0.55 0.26 -0.45 0.23 -0.40 0.24
wealth2 0.84 0.31 0.74 0.23 0.86 0.26
wealth3 0.76 0.31 0.68 0.24 0.76 0.26
wealth4 0.79 0.32 0.69 0.25 0.73 0.27

Sup. Ins. 2004
dis 0.12 0.06 0.14 0.07 0.14 0.07
adl -0.20 0.11 -0.22 0.12 -0.25 0.12
age75 0.03 0.18 0.08 0.20 0.15 0.21
age80 0.46 0.23 0.51 0.24 0.45 0.24
age85 0.82 0.30 0.89 0.32 1.14 0.35
age90 0.89 0.39 1.08 0.43 1.44 0.48
fem 0.39 0.18 0.38 0.18 0.45 0.19
edu3 0.81 0.25 0.89 0.25 0.95 0.27
edu4 0.56 0.25 0.64 0.27 0.69 0.28
edu5 -0.13 0.24 -0.10 0.26 -0.01 0.27
wealth2 0.89 0.27 0.98 0.26 1.11 0.29
wealth3 1.13 0.30 1.31 0.31 1.41 0.34
wealth4 1.07 0.31 1.17 0.30 1.21 0.32
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Table A.15: Estimated parameters for the extended model: auxiliary equations,
hospital utilization

m = 2 m = 3 m = 4
Coef. St. Er. Coef. St. Er. Coef. St. Er.

Hosp. Adm. 2002
dis 0.39 0.03 0.42 0.04 0.49 0.06
adl 0.21 0.05 0.24 0.06 0.27 0.08
age75 0.16 0.11 0.16 0.12 0.18 0.13
age80 0.42 0.11 0.42 0.12 0.47 0.14
age85 0.39 0.14 0.40 0.15 0.45 0.17
age90 0.42 0.19 0.39 0.20 0.47 0.24
fem -0.13 0.09 -0.14 0.10 -0.17 0.11
edu3 0.21 0.10 0.23 0.11 0.24 0.13
edu4 0.33 0.12 0.35 0.13 0.40 0.15
edu5 0.02 0.14 0.03 0.15 0.04 0.17
wealth2 -0.07 0.12 -0.07 0.13 -0.10 0.14
wealth3 0.05 0.12 0.06 0.13 0.05 0.15
wealth4 -0.20 0.13 -0.22 0.15 -0.26 0.16

Hosp. Adm. 2004
dis 0.42 0.03 0.47 0.04 0.48 0.04
adl 0.23 0.05 0.27 0.06 0.27 0.06
age75 0.15 0.10 0.15 0.11 0.15 0.12
age80 0.31 0.11 0.31 0.12 0.32 0.13
age85 0.43 0.13 0.45 0.15 0.46 0.15
age90 0.56 0.18 0.55 0.20 0.59 0.21
fem -0.12 0.09 -0.14 0.09 -0.15 0.10
edu3 0.03 0.10 0.04 0.11 0.02 0.11
edu4 0.22 0.12 0.24 0.13 0.24 0.14
edu5 -0.04 0.14 -0.03 0.15 -0.03 0.15
wealth2 0.02 0.11 0.03 0.13 0.02 0.13
wealth3 0.05 0.12 0.06 0.13 0.06 0.13
wealth4 -0.05 0.13 -0.06 0.14 -0.07 0.15
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Chapter 5

Risk preference heterogeneity and

multiple demand for insurance

5.1 Introduction

There is an emerging economic literature which examines the relationship between

risk tolerance, insurance demand and attitude to risky behaviours (see Cutler et

al. [32], Einav et al. [49], Barseghyany et al. [9]). Importantly, there is little

consensus among these studies on how general are individual’s financial and non-

financial risk preferences to predict insurance demand.

Classical economic theory assumes that individuals have the same attitude

to bear risk in different contexts, and then models all risky individual decisions

using the same value (utility) function over wealth.

This implies that multiple choices over different risk dimensions (such as

different insurance markets) taken by the same individual should reflect the same

degree of risk aversion even if the contexts of decisions are different. Although

there are evidence of positive correlation between financial and no financial risk

aversion which may support the domain-general component of risk preference

hypothesis (DGC), there is a large and important literature mostly related to

behavioral economics which poses serious concerns on the internal validity of

this assumption (Rabin [102] and Rabin and Thaler [103]). They argue that

individuals’ decision to take risk is influenced by the context of choice. This idea

is supported by several findings obtained by exploiting lab experiments which

show little or even no significant commonality between risky choice in different

domains. As a result one would need to impose more theoretical assumptions to

extend risk preference parameter estimated for one market to another one (Cohen
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and Einav [29]). The existence of this debate does not pose a clear view on where

the reality lies especially when survey data, mainly employed in empirical research

in economics, are used.

Some recent papers consider this issue in insurance markets and evaluate

whether risk preferences are general. Cohen and Einav [29] and Barseghyan et al.

[9] model individual choice following the standard expected utility theory and use

insurance data on deductible choices to estimate risk aversion parameters in the

sample by comparing the variation in the deductible menus across individuals and

their choices from these menus. Their results show the existence of substantial

heterogeneity in risk preferences and in general data do not support the context-

invariant risk preferences hypothesis. Clearly since this approach estimates the

distribution of risk aversion in the sample from individuals’ deductible choices and

claims, it requires a domain-specific model of ex-ante heterogeneity in risk. Einav

et al. [49] propose another approach which focuses on within-person correlation

between risky choices an individual makes across different domains. The idea is

that under the no DGC hypothesis, individuals have different attitudes to bear

risk among domains and then insurance decisions should not be inter-related after

conditioning on individual characteristics. They reject the null that there is no

domain-general component of preferences and find that the common element of

an individual’s preferences may be stronger among domains that are “closer” in

context.

In this paper we propose an alternative framework to examine how gen-

eral are risk preferences in the multiple demand of insurance using survey data.

Specifically we extend previous setting focused on residual correlation across in-

surance (Einav et al. [49]) by identifying unobserved “types” with different risk

preferences and examining the effect of these “types” on insurance purchase deci-

sion. We use data from the Health and Retirement Study (HRS) on four insurance

purchase decisions: life insurance, Medicare supplemental insurance (Medigap),

long-term care insurance and annuity. Using these data we investigate the stabil-

ity of unobserved individual risk preferences across insurance choices and whether

the context-specific differences are relevant. Our results show the existence of a

stable pattern of individual risk preferences over different insurance domains,

which supports the idea of domain-general component of preference. In addition

we also provide further evidence, as found by Einav et al. [49], that context plays

an important role in determining insurance choices particularly when insurance

coverage decisions involve similar specific contexts.
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The paper is organized as follows. The next section reviews the main

empirical literature; section 3 reports a brief overview of insurance markets we

are analysing and describes the data; we then discuss the model to be estimated

(section 4). Section 5 and 6 report respectively the main findings and some

concluding remarks.

5.2 Literature Review

The paper is related to three literatures that cut across insurance economics,

health economics and experimental economics. The first stream of literature

studies the determinants of the demand for insurance and has been mainly de-

veloped in the context of the analysis of asymmetric information. Friedman and

Warshawsky [60] study the selection effect in the annuity market, which is mainly

related to the existence of unobserved heterogeneity in risk preferences and risk

aversion. In a more recent series of papers Finkelstein and Poterba [55]-[56] and

McCarthy and Mitchell [92] using data from different countries provide more ev-

idence of the existence of unobservables in the decision to purchase annuity and

suggest the possible existence of risk preference-based selection effect.

In contrast to the papers on the demand for annuity, those studying se-

lection in life insurance markets reach generally puzzling conclusions, since data

do not show clear conclusion on how heterogenous private information affects the

purchase decision (see Cawly and [23]). Browne and Kim [16] study the demand

for life insurance across different countries and find the religion being an impor-

tant determinant. They claim that the degree of risk aversion in a country could

be related to the predominant religion, and therefore, religion affects the demand

for life insurance.

Long-term insurance combines elements of both annuity and life insurance.

Finkelstein and McGarry [58] study the US market using data from the Asset and

Health Dynamics (AHEAD) that is part of the HRS. They find that demand for

coverage is substantially related to risk aversion. In particular they use as proxy

of risk preferences the share of preventive care activities undertaken by a subject

and whether individual always wear seat belt, and assume that who take more

of these actions are more risk-averse. Their results show that insurance purchase

decision is positively associated with preventive care and the use of seat belts

suggesting that risk aversion is an important factor affecting insurance demand.
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In another paper Cutler et al. [32] use data from the HRS and examine the

relationship between risk reducing behaviours (such as smoking, drinking, job-

mortality risk, etc.), risk occurrence and five insurance purchase decisions in the

Unites States. They consider each market separately and find that people who

engage in risky behavior, and then who are more risk tolerant, are systematically

less likely to hold life insurance, acute private health insurance, annuities, long-

term care insurance, and Medigap. Moreover, they show that this preference

effect has different sign across markets, suggesting that heterogeneity in risk

preference may be important in explaining the differential patterns of insurance

coverage in various insurance markets.

The second related literature focuses on estimating risk preferences from

observed choices. This is a vast and constantly growing literature which is hard

to fully summarize here - for a review see Blavatskyy and Pogrebna [15]. In

general these studies use individual observed choice obtained from survey data -

sometimes with experimental module (e.g., Viscusi and Evans [116]; Evans and

Viscusi [52]; Barksy et al. [10]; Dohmen et al. [111]) or laboratory or natural

experiment experiment (Holt and Laury [74], Jullien and Salanié [82], Guiso and

Paiella [67]) to estimate risk preference.

Barsky et al. [10] use survey responses to hypothetical situations from the

HRS to construct a measure of risk preferences. They compare the measured risk

tolerance with a set of risky behaviours and find that smoking, drinking, failing

to have insurance, and holding stocks rather than Treasury bills are positively

related with risk tolerance. Dohmen et al. [111] also find statistically significant

evidence of relationship between financial and non-financial risk aversion on the

basis of survey data. Guiso and Paiella [66] use household survey data to con-

struct a direct measure of absolute risk aversion and find individual risk aversion

having a considerable predictive power for a number of key household decisions

such as choice of occupation, portfolio selection, moving decisions and exposure

to chronic disease. Cutler and Glaeser [33] used a similar approach to investigate

what the extent health-related behaviours are correlated and find that those in-

dividuals who choose to follow an healthy life style are also more likely to behave

healthier in another context.

Another group of studies use data on insurance choice to analyse individ-

ual risk aversion (Cicchetti and Dubin [27], Sydnor [109]). In a recent paper

Cohen and Einav [29] develop a structural econometric model to estimate risk

preferences from data on deductible choices in auto insurance contracts. Their
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empirical strategy relies on modelling individual insurance purchase decision fol-

lowing the expected utility theory in which risk aversion parameter depends on

unobserved characteristics and then compare variation in the deductible menus

across individuals and their choices from these menus to estimate risk aversion in

the sample. They find the existence of heterogeneity in risk preferences and that

risk aversion is also related to sex and age. Each of these studies, however, ex-

amine risk aversion in a single insurance context. More recently another group of

studies examined the insurance multicontext choice and focused on the stability

of risk preferences across contexts.

This is the third stream of literature which studies multiple demand for in-

surance and whether risk preferences are invariant across risk domains. In general

the principle of general component of risk preference has received considerable

attention in the economic literature and in particular in behavioral economic

studies, which mainly involve laboratory or natural experiments (for reviews,

Kahneman [83]-[84]). Standard economic theory predicts that individual risk

preferences are stable across decision contexts. This principle of invariance of

risk preferences implies that multiple risky choices by the same economic agent

should reflect the same degree of risk aversion even when decision is taken in

different contexts. This principle has motivated a vast empirical research. Many

studies found the existence of a common, but small, element of domain-general

risk preferences (see for example Barsky et al. [10], Dohmen et al. [111], Kimball

et al. [87]), while several other studies based on laboratory experiments and hy-

pothetical money gables showed that context is the most important factor (Wolf

and Pohlman [120]) or even that choice depends on whether questions are framed

as a “gamble” or as “insurance” (Hershey et al. [72], Johnson et al. [78]).

Recently Barseghyan et al. [9] take an innovative approach to test gen-

erality of individual risk preference. Following Cohen and Einav [29] they use

insurance company data to examine whether risk preferences are stable over a

set of multiple insurance choices. In particular they test whether individuals’

deductible choices in automobile and home insurance are consistent with the

context-invariant risk preferences hypothesis. They find that some individuals

are more risk averse in their home deductible choices than their auto deductible

choices. Therefore, the hypothesis of stable risk preferences across domain is

rejected by their data.

Einav et al. [49] focus on within-person correlation in the ordinal rank-

ing of the riskiness of the choice an individual makes across different domains.
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They use data on employee benefit choices for the U.S. workers at Alcoa.Inc re-

garding the 401(k) asset allocation and five different employer-provided insurance

domains, that include health and disability insurance. Since they are mainly in-

terested on the rank correlation within individuals across domains in their choice

among options in a domain, their econometric strategy relies on a multivariate

regression to estimate residual correlation between domains conditional on indi-

vidual characteristics. Since they are mainly focused on risk preferences across

domains, they use observable characteristics capturing individual predicted (by

insurer) and ex-post risk to control whether conditional on these variables there is

no residual correlation between insurance choices. However proxies may not cap-

ture perfectly individual risk and then the residual correlation could also indicate

correlation in the unobserved risk rather than commonality of risk preferences.

To address this issue they focus not only on residual correlations between insur-

ance choices, but also on the correlation between insurance coverage and 401(k)

portfolio allocation, which they claim to be uncorrelated with individual risk.

They found a small effect of individual risk controls on the correlation pattern as

well as a statistically significant residual correlation between 401(k) and insur-

ance. Thus, they conclude that correlations are more likely to capture correlation

in underlying risk aversion and that risk preferences are likely to be stable across

domains.

Although our paper is closer in spirit with those of Barseghyan et al. [9]

and Einav et al. [49], since we model multiple insurance purchase decisions and

estimate how stable are risk preferences across these contexts, our approach dif-

fers substantially from two perspectives. First we study risk preference stability

using survey data on insurance choices. Although information on insurance plans

are more detailed in insurance company data, survey data offer a wide set of in-

formation over individual risk attitudes to bear risk in several contexts. Moreover

survey data are more often employed by applied economists and it could be inter-

esting to examine how an empirical appraisal based on residual correlation across

insurance choices perform to study the stability of risk preferences. Second we

exploit latent variable techniques, which allow to interpret and identify directly

the residual correlation related to individual risk preference and that one poten-

tially introduced by non-preference factors (such as context specificity, unpriced

risk, etc.).
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5.3 Data and Institutional background

Our analysis uses individual-level data from the fifth wave of the Health and

Retirement Study (HRS). The HRS is a biennial survey targeting elderly Amer-

icans over the age of 50 and provide detailed information on insurance coverage,

health status, life style and financial and socioeconomic status. We use these

data to study four insurance purchase decisions among people older than 65 in

2002: in particular we study whether the individual has: a term life insurance,

a Medicare supplemental coverage (Medigap), a long-term care insurance and

an annuity. Previous theoretical and empirical studies model the demand for

insurance as a function of individual risk aversion and individual risk. Since our

main focus is to study how risk tolerance is related to the decision of holding

any of these insurance plans and whether there exists an heterogenous patter of

risk preferences across domains, we need to control for both predicted (by in-

surer) and unobserved heterogeneity in risk (adverse selection). Conditioning on

the characteristics used in pricing insurance, which is the risk classification of

insurer, and on the ex-post risk is crucial to identify the effect of risk aversion

on the decision to purchase an insurance. For this purpose we follow previous

studies on demand for insurance (see Cutler et al. [32], Finklstein and McGarry

[58]) and exploit the dynamic structure of the data to track both predicted and

actual individual riskiness in each domains (such as mortality, subsequent health

care utilization, etc.). In addition since risk tolerance is not directly observed, we

use a rich set of indicators on individual’s characteristics and behaviours that has

been shown being likely to capture individual risk aversion (see Barsky et al. [10],

Kimball et al. [87]). After cleaning for missed (or inconsistent) observation and

considering only those individuals who are at least 65 years old, the remaining

sample size consists of 2488 observations. Descriptive statistics of the sample and

variables’ definition are reported in table A.1, while in the following subsections

we describe the variables used to measure insurance coverage, individual risk and

risk preferences.

5.3.1 Insurance

The first measure of insurance refers to whether an individual has a Medicare sup-

plemental health insurance in 2002. This supplemental insurance is often named

Medigap, since it is specifically designed to cover “gaps” of coverage left by Medi-
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care public plans. These gaps include for example limitations in the coverage of

health care services, high out-of-pocket expenses to Medicare beneficiaries and

lack of a catastrophic cap expenditure. Since Medigap-private health insurance

plan offer coverage only when people turn elder, we exclude from the sample all

individuals who are younger than 65 in 2002. In addition we focus on individ-

ual who have deliberately purchased supplemental insurance as our interest is

mainly on the demand for insurance (see Fang et al. [53]). Therefore we define

an individual as having additional health insurance coverage (Medigap) if they

purchased directly health insurance policy in addition to Medicare. As result we

exclude those who received coverage by a former employer or spouse and who

have free access by other public founded program such as Medicaid, CHAMPUS

or CHAMPVA (Tri-care).

The second measure of insurance purchase decision we consider is the long-

term insurance. Long-term care expenditure risk is one the greatest financial risks

faced by the elderly in the US. This markets, differently from the Medigap insur-

ance markets, is not subject to heavy regulation and then insurance companies

are free to price contracts according to individual riskiness. We define an indi-

vidual as having long-term insurance if the declare to be covered by long-term

insurance during the year 2002.

Finally ours third and fourth insurance purchase decision are life insurance

and annuity. We define an individual as having a life insurance or an annuity in

the 2002 HRS if they answer positively to the question about these two coverage

options. In the sample there is about 52% holding a supplemental health insur-

ance, about 15% is covered by a long-term insurance, about 63% and 46% has

respectively a life insurance and an annuity.

5.3.2 Risk Occurrence

The corresponding measures to control for predicted and ex-post risk occurrence

change according to the insurance risk domain one considers.

Consider first our measures of predicted (by insurer) risk. These are con-

trols for risk that we use in each insurance market. Which factors to include

depends on the information insurers collect and use in pricing premiums. Clearly

the insurance company defines the premium according to the predicted risk. We

follow previous studies on demand for insurance to better define which variables
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to use as controls (see for example Cutler et al. [32], Cohen and Einav [29], Cohen

and Spiegelman [30]).

In the supplemental health insurance market, Medigap companies use only

individual age and sex to price contracts. This is so because by law there is a free

enrolment period which lasts for six months from the first month in which people

are both 65 years old and enrolled in Medicare. During this period Medigap

cannot refuse any person even if there are pre-existing conditions and pricing is

allowed only on the basis of age and sex. We therefore include only individual

gender and age as dummy variables to control for predicted risk. In particular

gender is measured by fem which takes 1 if individual is a female, while age is

decomposed in four dummies, one for each five-years age band from 65 to 80. In

the sample there is about 50% of female and on average individuals are 72 years

old.

In the long-term care insurance market insurers collect with age and sex

also many information on health status. Using a rich set of health related vari-

ables such as the number of diseases, the total number of limitations in the

activities of daily living (ADL), the number of limitations with respect to in-

strumental activities of daily living (IADL) and a mental health index which

measure any cognitive impairments,1we construct a synthetic binary indicators

(health status) which takes 1 if individual has both a number of disease, ADL,

IADL and impairments greater then the median individual.

In the life insurance market the premium depends mainly on age, gender

and health status and on the size of policy the applicant is considering. Unfor-

tunately we cannot observe the size of the policy and we include as control in

addition to age and sex dummies mentioned above, a binary indicator of health

status. Finally annuity classification risk is based solely on age and sex and

therefore only these two variables are included as controls.

Let consider now our measures of ex-post risk. These measures should

capture the residual unobserved heterogeneity which remains after conditioning

on risk classification made by insurer. This residual association between risk oc-

1This mental health index is based on a score developed by the Center for Epidemiologic
Studies Depression (CESD) and it is given by the differences between five “negative” indica-
tors and two “positive” indicators. The negative indicators measure whether the respondent
experienced depression or other mental impairments status. The positive indicators measure
whether the respondent felt happy and enjoyed life, all or most of the time. Mehta et al. [94])
showed that this measure is associated with the existence of psychiatric problems.
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currence and insurance purchase decision is often mentioned as source of adverse

selection (Cohen and Spiegelman [30] and Einav et al. [47]). A standard mea-

sure of risk occurrence in the analysis of health insurance market is health care

utilization. We employs the subsequent two waves (from 2004 and 2006) to track

utilization. This is measured as the average number of hospital inpatients stay-

ing, doctor visits and outpatient services an individual used during the periods

2003-2006. Since the sample is based on elders, which are expected to register

high level of health care utilization, and we want to capture the relative individ-

ual riskiness as compared with the sample, we construct a binary variable (health

care) which takes 1 if the average number of services used by the individual is

greater than the number of services used by the median. Clearly ex-post moral

hazard can affect this measure, however it should be less effective when one con-

siders subsequent utilization over a longer period and use it to model previous

individuals’ insurance choice decisions (see Cohen and Einav [29]).

For the life insurance market we use whether an individual is still alive

in the subsequent two waves. The variable mortality equals 1 if the individual

is deceased in the following waves, 0 otherwise. The ex-post risk measure for

the annuity is clearly the opposite of that for life insurance, specifically whether

the individual survives in the subsequent years. In the sample 6% of individual

died in the subsequent years. Finally for the long-term insurance our measure is

whether the individual had any nursing home entry in the following waves. The

variable nursing home takes 1 if individual entered a nursing home, 0 otherwise.

In the sample about 26% had a health care utilization greater than the median,

about 8% of people used a nursing home and about 6% of individual died between

years 2002 and 2006.

5.3.3 Risk Tolerance Indicators

Since individual risk tolerance is not directly observable, it is also not easy to

measure. A standard strategy is to use proxy based on individual characteristics

and behaviours which are likely to capture risk aversion. Thus we use the follow-

ing set of indicators: job-based mortality risk, receipt of preventive health care,

no risky portfolio choice, number of jobs the respondent reports having through

job history, the subjective probability to leave over a certain age, wealth and a

composite indicator of health related behaviours based on drinking, smoking and

the body mass index. Barsky et al. [10] and Cutler and Glaeser [33] showed
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that most of these variables are significantly associated with individual risk aver-

sion and then they can be effective to identify unobserved heterogeneity in risk

preferences.

The first indicator is the job-based mortality risk. Following Cutler et al.

[32] we derive the mortality rates from Viscusi [115]. He used data from the U.S.

Bureau of Labor Statistics Census of Fatal Occupational Injuries to estimate job

mortality rates by industry. We assign mortality rates in our HRS sample using

industry-occupation cells (or occupation alone) and current job (if any), including

self employment. If the respondent is not employed in the 2002 HRS, we then use

the last available job information. Missing values for this variable are assigned if

the individual has never held a job or if it is not possible to identify either job or

industry code. Job mortality (job-mort) is then set equal to 1 if individual has

job-mortality rate lower than the median.

Portfolio decision and the demand for risky assets are important dimen-

sions of risk aversion. We define an individual as holding less risky assets if

he/she has a total positive financial assets and the share of portfolios invested

in Treasury bills and savings accounts is greater than those invested in stock.

Therefore we set norass equal to 1 if individual has no risky assets, 0 otherwise.

Notice that, since information on financial assets are collect at the household level

and no information on asset ownership within the household are available, this

measure could reflect risk preferences of the household rather than the individual.

Although Barsky et al. [10] show that risk tolerance measure is positively, but not

strongly, correlated within couples. In particular when the most knowledgable

respondents is less risk averse than the second respondent in the couple, the

share of portfolio in risky asset is lower, but the differences are not statistically

significant.

Our third risk aversion indicator is derived by looking at the individual job

history. Guiso and Paiella [66]-[67] show the existence of a negative relationsihip

between the decision to leave a job and risk aversion. They argue that leaving a

sure and known prospect for a new one unknown could imply incurring in new

risks. Therefore we define our variable (job-num) equal to 1 if individual had a

number of jobs lower than the median during his/her job history.

The fourth indicator refers to the self-reported probability of leaving to a

given age. In the HRS the question varies according with the individual age. If

the respondent is 75 or younger, than s/he is asked to report the probability to
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live to 75, while if he is older than 75, he/she is asked to report the probability

of leaving to 100. Our indicator (prlife) is a binary variable which equals 1 if

individual reports a probability greater than the median. Risk aversion could also

be related with individual wealth since being more risk-averse can be translated

into lower expected labour income (see for example Guiso and Paiella [66]-[67]).

Individual wealth indicator is defined as a binary variable (wealth) which takes 1

if individual is in the top wealth quartile.

Finally we construct two binary indicators of individual health behaviours.

The first one measures individual attitudes to health-related life styles. This in-

dicator (healthb) takes 1 if the respondent has a normal body mass index (namely

the BMI should have a score between 30 and 18), has less than three drinks per

day and does not smoke. The second indicator which has been used in many

other studies on risk and insurance (see Cutleret al. [32] and Finkelstein and Mc-

Garry [58]) refers to the fraction of gender-appropriate preventive health activity

undertaken by individual. Preventive activities include: a flu shot, a blood test

for cholesterol, a check of her breasts for lumps, a mammogram or breast x-ray, a

Pap smear and a prostate screen. Our binary indicator (preventive) takes one if

individual undertakes a fraction of gender-appropriate preventive health activity

greater than the median. In the sample there are about 52% who does not smoke,

drink and have a normal BMI; about 55% received sex-adjusted preventive care;

about 54% has a job-based mortality risk lower than the median; 63% changed

jobs less often than the median during the job history; 31% holds a share of no

risk asset greater than the share of portfolio in stock; about 30% is in the top

wealth quartile and 46% reports a subjective probability of leaving to a certain

age greater than the median.

5.4 The Model

Our aim is to study the extent to which choices across insurance domains display

a common risk aversion and test whether there is a residual correlation across

domains related to non-preference factors. To this aim we use some recent devel-

opments in latent class analysis to model multiple choices, and test the residual

association among choices after conditioning on covariates and latent variable

(Huang and Bandeen-Roche [75], Bartolucci and Forcina [13] and Dardanoni,

Forcina and Modica [36]).
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Let Ij denote a binary variable which takes value 1 if an individual has

purchased insurance in the risk domain j, with j = 1, . . . , J . We want to study

the following conditional expectations:

Pr(I1 = 1 | w1, P )
...

Pr(IJ = 1 | wJ , P )

(5.1)

where w1, . . . ,wJ are vectors of individual observable and unobservable charac-

teristics (such as individual risk) which affect insurance purchase decision in each

of the J domains; while P represents individual risk preferences.

Clearly if one would control properly for wj and P would be directly ob-

servable, then one could test directly the hypothesis of domain-general component

(DGC) of risk preferences by examining any variations in the direct effect of P

on the insurance purchase decision across domains. Suppose now that individual

risk may be captured relatively well by observables proxy (e.g. insurer risk clas-

sification, subsequent risk occurrence rate, etc.). Since P is not observable, how

can we detect whether individual risk preferences are general?

Consider that if risk preferences are specific and then depends mainly on

the insurance context involved in the decision, then there is no unique underlying

unobservable P affecting choices across domains. Thus P varies across domains

and the system of equations (5.1) can be written as:

Pr(I1 = 1 | w1, P1)
...

Pr(IJ = 1 | wJ , PJ)

(5.2)

This means that individual’s willingness to bear risk in one insurance domain is

different from his/her willingness to bear risk in another contexts. Einav et al.

[49] propose to test the null of DGC of preferences by looking at the residual

correlation between risk domains conditional on observables. Following this ap-

proach if the null of no correlation is reject then there are evidence of a sort of

common element in the unobserved risk preferences.

An alternative is to assume that P1, . . . , PJ are discrete, with Pj taking say

mk levels, k = 1, . . . , K. This is a fairly innocuous assumption since any contin-

uous variable can be approximated arbitrarily well by a discrete one. It implies

that we can cross-classify P1, . . . , PK into a single discrete unobservable variable
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U which takes say m = m1 × · · · ×mK values, which identifies m heterogeneous

“types”. Differences among “types” are driven by different attitudes to bear risk

across contexts.

To test then the DGC hypothesis suppose that for some arrangement of

the M types U we have

Pr(I1 = 1 | w1, U = 1) ≤ · · · ≤ Pr(I1 = 1 | w1, U = m)
...

Pr(IJ = 1 | wJ , U = 1) ≤ · · · ≤ Pr(IJ = 1 | wJ , U = m)

(5.3)

This means that each variable Pj, with (j = 1, . . . , J), has a monotonic effect on

the insurance purchase decision across domains. Note that if equalities do not

hold for some unobserved “types”, say for example that Pr(I1 = 1 | w1, U =

1) ≤ · · · ≥ Pr(I1 = 1 | w1, U = M)), then individual has different attitude

to bear risk in a context as compared with his/her peer in another context.

The simple idea is the following. If risk preferences are general then there is

a one-dimensional latent variable, representing unobserved types with different

attitudes toward risk, which affect each insurance purchase decisions. Note in

fact that types represent different attitudes to buy insurance and then different

risk preferences. Under the null of DGC each type should always buy the same

amount of insurance in each context as compared with another type, and then

the same pattern on insurance purchase decision should be observed. Suppose

for example three unobserved types with type one buying more health insurance

than type two and the same between type two and three. Suppose also that this

pattern holds also for the life insurance. If it so then there is an unidimensional

latent variable, representing the order between types, having a monotonic effect

on the two insurance purchase decisions.2 Let to analyse how this procedure can

be implemented empirically.

2This strategy relies on the idea that proxy variables of risk capture relatively well insur-
ance purchase attitudes related to individual risk. To the extent that unobserved risk is not
captured, abstracting from it will likely introduce bias in the identification of P that needs to
be controlled. However applied economic literature studying domain-generality of an individ-
ual’s risk preferences and insurance markets (see Cutler et al. [32], Cohen and Einav [29] and
Einav et al. [49]) showed that using individual predict (by insurer) risk and subsequent risk
occurrence are effective in capturing unobserved individual risk. However a possible solution in
our framework, which still needs to be further investigated, is to set a model with two distinct
unobservables, say U1 and U2, capturing individual risk preferences and the residual unobserved
heterogeneity in risk occurrence.
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5.4.1 Empirical strategy

Following standard models in the literature on insurance demand (Cohen and

Einav [29], Cutler et al. [32], Einav et al. [49]), w1, . . . ,wJ include observable

characteristics designed to capture the risk classification used by insurers, which

we denote with xj, and a set of variables (rj) which proxy individual subsequent

risk. This set of covariates is an important confounding factor, since insurance

demand is usually driven by both risk and risk aversion and then actual risk may

cause potential residual correlation across domains. Assuming additive separa-

bility we can rewrite the equation system (5.1) as:

Pr(I1 = 1 | w1, P ) = F (x
′
1β1 + r

′
1γ1 + v

′
1δ1)

...

Pr(IJ = 1 | w1, P ) = F (x
′
JβJ + r

′
JγJ + v

′
JδJ)

(5.4)

where F denotes the appropriate link function and v1, . . . ,vJ are vectors of un-

observables capturing residual heterogeneity in risk preferences. To estimate the

equation system (5.4) and test the hypothesis of DGC which is the focus of the

analysis, we consider two possible models: a multivariate regression model as

proposed by Einav et al. [49] and extended LCA model.

5.4.2 Multivariate probit regression

In a recent paper Einav et al. [49] study the DGC hypothesis examining the

correlation structure of the error terms in a multivariate regression. Following this

approach, let the link function F be standard normal, so that we can equivalently

rewrite the system (5.4) as:

I1 = 1
(
x

′
1β1 + r

′
1γ1 + v

′
1δ1 + ϵ1

)
...

IJ = 1
(
x

′
JβJ + r

′
JγJ + v

′
JδJ + ϵJ

) (5.5)

where ϵ1, . . . , ϵJ are independent standard normal errors. If we let ηj = v
′
jδj + ϵj

in each domain and assume that (η1, . . . , ηJ) are distributed as a multivariate

normal with standard margins and correlation coefficient equal to ρ, we get the
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multivariate probit:

I1 = 1
(
x

′
1β1 + r

′
1γ1 + η1

)
...

IJ = 1
(
x

′
JβJ + r

′
JγJ + ηJ

) (5.6)

The multivariate probit is relatively easy to estimate and provide the baseline cor-

relations to evaluate how general are risk preferences across insurance purchase

decisions. However it does rely on multivariate normality to achieve parame-

ters’ identification, and does not allow to control directly whether conditional

on individual risk preferences there exists a residual correlation between choices

indicating the residual role played by the specific context.

5.4.3 Extended LCA

As mentioned above an alternative way to control for the residual unobserved

heterogeneity in risk preference U is by identifying a finite number of unobservable

“types”M , which differ in their attitudes to bear risk in different contexts. Thus,

the equation system (5.4), which account for the unobserved U can be written

as:
I1 =

∑m
u=1 α

I1
u Uu + x

′
1β1 + r

′
1γ1 + η1

...

IJ =
∑m

u=1 α
IJ
u Uu + x

′
JβJ + r

′
JγJ + ηJ

(5.7)

where U1, . . . , Um denote the set of m dummy variables indicating “latent type”

membership. Thus, the coefficients α
Ij
u in each equations can be interpreted as

random intercepts with a nonparametric discrete specification.

To identify unobserved risk preferences U , we exploit in addition to ob-

served individual purchase decisions, which are of main interest in our framework,

a set of auxiliary equations that are used as indicators of U and then capture

individual attitudes to bear risk. Using a standard logit link in equations (5.7),

we estimate the model:

λI1 =
∑m

u=1 α
I1
u Uu + x

′
1β1 + r

′
1γ1

...

λIJ =
∑m

u=1 α
IJ
u Uu + x

′
JβJ + r

′
JγJ

(5.8)

together with the class membership probabilities Pr(U = u) which can be written
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in terms of adjacent logits as

log
(Pr(U=u+1)

Pr(U=u)

)
= λUu = αU

u u = 1, . . . ,m− 1 (5.9)

and the following system which can be considered instrumental for identifying U :

λH1 =
∑m

u=1 α
H1
u Uu

...

λHT =
∑m

u=1 α
HT
u Uu

(5.10)

Note that the the system of equations (5.10) is used to capture and identify

individual unobserved types which differ in terms of risk preferences. Thus it can

be considered auxiliary to the simultaneous equation system (5.8).

In addition to equations (5.8-5.10) we also allow residual correlation among

insurance purchase decisions to capture conditional on U potential non-preference

factors - such as context-specificity - which may introduce correlation between

choices. This can be written as:

log
(

Pr(Ij=0,Ik=0)Pr(Ij=1,Ik=1)

Pr(Ij=1,Ik=0)Pr(Ij=0,Ik=1)

)
= λIj ,Ik = αIj ,Ik (5.11)

with j ̸= k and j, k = 1, . . . , J . This means to estimate one parameter for each

of the (J
2
) combinations of insurance purchase decision. Thus (5.11) allows to

control for residual correlation among risk domains introduced by non-preference

factors - for example some choices may be“closer” in context, such as health and

disability insurance purchase decision (Einav et al. [49]). Note that U is of main

focus to test the DGC hypothesis since it represents individual risk preference.

On the contrary λ is only included to capture any residual association unrelated

with U .

Within the model defined by equations ((5.8)-(5.11)),

• the null hypothesis of DGC of individual risk preferences (that is equation

(5.3)) can be viewed as testing the null hypothesis that there is a underlying

unidimensional unobservable variable U such that choices are monotonically

dependent on it. This can be implemented by setting a system of linear

inequalities as explained for example in Bartolucci and Forcina [12]. Tech-

niques of order restricted inference can be used to show that the likelihood

ratio test statistic for the monotonicity null is asymptotically distributed

as a mixture of chi-squared distributions (see Gourieroux and Monfort [64]
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for a general exposition, Dardanoni and Forcina [34] for an explanation of

how the mixing weights can be calculated by simulations, and Kodde and

Palm [88] for bounds on the test distribution).

• the null hypothesis of absence of residual heterogeneity related to potential

non-preference factors (since they are unrelated to U) can be tested by

imposing for each of the (J
2
) α parameters the restriction that αIj ,Ik is not

statistically different from zero. This can be implemented with a standard

t-test statistic.

5.5 Results

In this section we first examine results from a multivariate binary probit model

for the probability of purchase Medicare supplemental health insurance, life insur-

ance, long-term care insurance and annuity. We then analyse in the subsequent

section result from the extend LCA which both identifies unobserved types with

different attitudes to bear risk across domains and allow residual correlation be-

tween insurance choices to capture non-preference factors.

5.5.1 Multivariate Regression

Tables A.2 and A.3 present respectively the estimated coefficients of controls and

correlation terms from the baseline multivariate probit regression suggested by

Einav et al. [49] and described above in equation (5.6). Let consider first the de-

terminants of supplemental health insurance purchase decision. Table A.2 reveals

that the probability of enrolling in a supplementary insurance plan increases with

age and sex. Not surprisingly people who are more risky and then tend to use

more health care resources - for example hospital inpatient stays, doctor visits

and outpatient services - are also significantly more likely to buy additional cov-

erage. Therefore our result on ex-post risk occurrence confirms previous analysis,

which found the existence selection effect in the Medigap market related also to

private information on individual actual risk (see for example Fang et al. [53],

Ettner [51]).

The probability to purchase a long-term care insurance is also increasing

with individual age, but the effect is not statistically significant, and with health
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status. In particular those who report having more diseases and physical impair-

ments in the daily living activities (measured by ADL and IADL) are also more

likely to hold a long-term insurance plan. As expected ex-post utilization of any

nursing home in the two waves following 2002 HRS increases the probability to

buy insurance, but surprisingly this effect is not statistically significant.

Taking a glance at life insurance results, table A.2 shows that people who

are female and married are also more likely to purchase this type of insurance. On

the contrary ex-post measured risk does not seem to have a statistically significant

effect although the estimated coefficient has the expected sing.

Finally annuity purchase decision is positively related with age, but nega-

tively with individual gender. Although there is not a clear effect between gender

and the probability of having an annuity, in a recent paper Agnew et al. [3] find

that women are more likely to buy annuity than man, since gender differences

may indicate also differences in risk aversion. However, if risk aversion and pre-

dicted risk are driving the decision to choose annuities, after controlling for these

two factors, gender differences should not affect the annuity decision. Ex-post

measured risk in this market has a negative and statistically significant effect. In

particular those who are more likely to live longer are also more likely to hold

an annuity, suggesting that individual private information on mortality risk is an

important sources of asymmetric information in this market after conditioning

on predicted (by insurer) individual risk (Cohen and Spiegelman [30]).

Consider now the estimated correlations between insurance purchase de-

cisions. In all of the pairs reported in table A.3, we can reject - at least at 10%

statistical significance level - the null hypothesis of correlation being zero, except

for correlations between health and long-term care insurance with life insurance.

Following Einav et al. [49], this result can be interpreted as evidence that we can

reject the null of no domain general component of choice. Viewed alternatively,

this means that one’s coverage choice in any of the other domains is predictive

of individual choice in a given domain. In particular the magnitude of the corre-

lations generally seems to be higher for those insurance purchase decision which

seems to be “closer”, for example long-term care is more correlated with Medi-

care supplemental health insurance rather than annuity, and on the contrary life

insurance is correlated with annuity. A possible limitation of this approach when

only insurance choices are considered is that correlations across domains could

reflect not just unobserved risk preference, but also unobserved correlation intro-

duced by unpriced risk. Note that predicted and realized (ex-post) risk may not
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perfectly capture heterogenous individual actual risk and then it could be hard

to interpret whether these correlation between insurance (risk) domains reflect

systematic differences in each of these domains or rather unobserved preferences.

5.5.2 Results from the Extended LCA Model

We start by estimating the system of equations (5.8)-(5.11) under different num-

bers m of latent classes. Maximum likelihood estimation is performed by a EM

algorithm. In particular while in the E step the posterior probability of latent

class M given the observed configuration of insurance choices and auxiliary indi-

cators is computed, in the M-step the likelihood function is maximized and further

refined in each iteration by the E-step. More details on estimation procedure of

parameters α and β can be derived by looking at Dardanoni, Forcina and Modica

[36] and at Bartolucci and Forcina [13].3 For completeness we report in tables

A.4-A.10 model’s estimated parameters under different number of latent classes,

namely m = 2, 3, 4. Table A.4 reports the maximized log-likelihood L(ψ), the

Schwartz’s Bayesian Information Criterion BIC(ψ) = −2L(ψ) + υlog(n), where

n denotes sample size and υ is the number of parameters. BIC seems to indi-

cate that three LC are adequate to represent the unobserved heterogeneity U . A

glance at all tables reveals also that estimated α, β and correlation coefficients

do not seem to vary substantially with respect to the number m of latent classes

specifications. For sake of brevity we will discuss mainly results obtained under

m = 3 latent classes. Calculating the types membership probabilities reported

in table A.5, about 50% of individuals are of type 1, while 30% and 20% are of

type 2 and 3 respectively.

To understand what these types indicate, let consider the estimated prob-

abilities reported in table A.6, obtained using the α parameters of tables A.7 and

A.8. Type 3 individuals are those who are on average about three times more

likely to buy any Medicare supplemental health insurance, long-term insurance,

life insurance and annuity than type 1. The picture does not change substan-

tially comparing type 3 with type 2, although the latter seems to be more likely

to hold long-term insurance and annuity than type 3 individuals. Therefore a

first glance at Panel A of table A.6 shows that types differ in the attitudes to

purchase insurance. In particular conditional on predicted and ex-post realized

risk, type 3 individuals are more risk averse that type 1 since they are always less

3We are grateful to Antonio Forcina for kindly providing the Matlab code for the estimation.
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prone than type 1 individuals to bear risk in any of the four insurance domains.

This result is also supported by looking at Panel B of table A.6, which re-

ports the relationships between no risky behaviours and unobserved types. The

table reveals that estimated probabilities to perform risky behaviours or charac-

teristics increase with m. In particular people who hold T-bills rather than stock

in their own financial portfolio, who change job less frequently, have a mortality

rate of the individual’s industry-occupation cell lower than the median rate, who

have a normal body mass index and do not smoke and drink, who invest into

health risk prevention activities and have a life expectation greater than the me-

dian are more likely to be of type 3 rather than any other unobserved types. Not

surprisingly type 3 individuals are less “wealthy” than type 2, which is in line

with the idea that more risk averse individuals are relatively less wealthy than

others (see for example Barsky et al. [10] Guiso and Paiella [67]). The pattern

we find is consistent with other studies, such as Barsky et al. [10], who checked

the external validity of some risk tolerance measures using risky behaviours indi-

cators. Therefore results indicate two main conclusions. First, the picture which

emerges from the estimated probabilities is that, after conditioning on individual

predicted and ex-post realized risk there exists an important source of hetero-

geneity in the underlying risk preferences represented by the latent types, which

plays an important role in the insurance purchase decisions. This result is consis-

tent with recent studies (Cohen and Einav [29], Barseghyan et al. [9]and Einav

et al. [49]), which found heterogeneity in risk preferences being more important

than heterogeneity in risk to explain how heterogenous are insurance coverage

choices.

Second the three unobserved types which differ in their attitudes to bear

risk, and then in how individual are risk adverse seem to follow the same pattern

across domains. In particular those individuals who are less risk averse in one

domain are also more likely to bear risk in any other domains. For example, type

1 is on average less likely to perform risk reducing behaviours than type 2, who

is at the same time less likely than type 3 individuals. This pattern between no

risky behaviours and unobserved types seems to hold also for insurance choice,

providing evidence against the hypotheses of no domain-general component if the

insurance choices. In other words, after conditioning on predicted and realized

risk, it seems there is a single latent variable which is common to each insurance

choice domains.

The question naturally arises then whether this pattern in insurance choices
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is due to sampling variations, or rather to the presence of a single latent variable

that conditional on predicted and realized risk has a common effect on insurance

choice domains. The testing procedures described by equation (5.3) can however

be employed to formally test the unidimensionality of latent variable. The LR

test statistic for the model under the null that αI1
1 ≤ αI1

2 ≤ αI1
3 is equals to 9.15.

Since U has three levels (m = 3) and the insurance choices we consider are four,

the conservative 1% critical value with 8 df is equal to 25.370 (Kodde and Palm

([88], page 1246); thus, the null of domain general component cannot be rejected

indicating the existence of a single underlying unobservable variables which each

insurance purchase decisions.

Although the existence of a general commonality of domain risk prefer-

ences is not really surprisingly, it is interesting to note that after conditioning on

individual unobserved types and individual risk, there still exists a sort of non-

preference based correlation (related for example to context specificity), which

renders some insurance choices more related than others. In fact taking a quick

glance at table A.10 reveals that correlations are statistically different from zero

in most of the cases and that are greater in magnitude when choices are “closer”

- for example long-term insurance is more correlated to Medicare supplemental

insurance rather than annuity, while life insurance is mainly correlated with an-

nuity. This result has also been found by Einav et al. [49] and support the

idea that choice is driven both by context and by how individuals are risk averse

in general. However the existence of this residual correlation between responses

can also indicate the existence of unpriced risk not captured by risk occurrence

proxies. The simple idea is that if risk proxies do not fully capture individual

risk then individuals, say, with higher health risk tend to purchase more health

related insurance coverage. Notice that these findings are compatible with the

DGC, since risk preferences can be common across domains, but some choices can

be more correlated each other due to the presence of non risk preference factors

(e.g. similarity in the decision context, unpriced risk factors, etc.).

Finally let us to consider the effect of predicted (by insurer) and realized

ex-post risk in each insurance equation. Table A.9 shows a similar pattern of

the effects of risk controls on insurance purchase decisions. In particular age

and gender have a positive and statistically significant effect on the decision

to buy Medicare additional coverage and annuity. Ex-post risk has always the

expected sign. Interestingly if compared with the multivariate probit the dummy

variable indicating whether an individual died in the succeeding two waves has
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positive and now statistically significant effect in the decision to purchase life

insurance and negative for annuity. Therefore conditional on risk preferences,

ex-post realized risk proxies indicate how important could be the role of private

information on individual risk to determine the insurance choices which as been

documented in several other studies (see for a review Cohen and Spiegelman [30]

and Einav et al. [47]).

5.6 Conclusion

In this paper we examined the relationship between unobserved risk preferences

and insurance purchase decision and in particular how general are preferences

for risk across domains. Standard economic theory generally assumes that in-

dividuals take decisions over a set of risky domains according to their own risk

preference which is stable across decision contexts. This assumption of context-

invariant risk preference has motivated a large literature in microeconometrics

and has caused debate in the literature concerning its validity. There is a large

literature in psychology and behavioral economics which uses experimental lab

test to claim that risk preferences are mainly related to context, and that deci-

sions are not related to each other by any general risk domain components. To

study this issue in the framework of multiple demand for insurance, we follow

a recent stream of papers by Cohen and Einav [29], Barseghyan et al. [9] and

Einav et al. [49] which focus on how general are risk individual preferences.

In particular we start following an innovative approach proposed by Einav

et al. [49] that used residual correlation across insurance domains. Conditioning

on predicted (by insurer) and ex-post risk to test whether individuals show the

same willingness to bear risk across domains.

In our setting we model the correlations between insurance choices using a

latent class analysis. Conditioning on predicted and realized risk we exploit LCA

to identify individual risk aversion throughout a set of auxiliary variables which

are likely to capture individual risk preferences. In addition we also allow for

residual correlation between insurance choices in order to capture any residual

correlation related to non-preference factors.

Using data from the Health and Retirement Study and a rich set of infor-

mation on individual about risk and life-style behaviours, we study four insurance
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purchase decision: Medicare supplemental health insurance, long-term insurance,

life insurance and annuity. In our data we identify three unobserved types which

differ in terms of risk aversion. We find that individual who tend to buy a certain

type a of insurance, say health insurance, are also more likely to buy insurance

in another context, for example long-term care insurance. This can be inter-

preted as source of commonality in how individuals bear risk across domains.

Thus our results provide an additional piece of evidence against the absence of

domain general component of risk preferences, although context plays an impor-

tant role in risky decision since insurance choices who are “closer” in context

are also more correlated conditional on unobserved risk preferences. Therefore

heterogeneity in risk preferences is also an important factor to consider in addi-

tion to heterogeneity in risk when individual choices on insurance coverage are

examined. The question of what drives this heterogeneity and why the residual

domain-specificity correlation still plays an substantial role remains an interesting

question for further exploration.
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Appendix A

Tables

Table A.1: Sample Characteristics and Variable Definition
Variable Definition of Binary Variables Mean

Insurance Status
Sup. Health Ins. 1 = enrolled in any health insurance (Medigap). 0.520
long-term Ins. 1 = enrolled in any long-term insurance. 0.148
Life Ins 1 = covered by life insurance. 0.636
Annuity 1 = has an annuity. 0.459

Controls used by insurer to assess risk
age65 1 = aged between 66 and 70 years. 0.387
age70 1 = aged between 71 and 75 years. 0.277
age75 1 = aged between 76 and 80 years. 0.158
age80 1 = older than 80 years. 0.073
fem 1 = female. 0.553
mar 1 = married. 0.610
health status 1 = # of disease, ADL and IADL 0.493

Ex-post Risk Indicators
mortality 1 = died in the subsequent years 2004-2006. 0.063
health care 1 = used health care service during years 2004-

2006.
0.262

nursing home 1 = entered in any nursing home in the years 2004-
2006.

0.078

Risk Preference Indicators
healthb 1 = does not smoke, has a normal weight and no

drinking problems.
0.518

preventive 1 = received sex-adjusted preventive care. 0.551
job-mort 1 = has a job-based mortality risk lower than the

median.
0.531

job-num 1 = has a number of jobs lower than the median. 0.632
norass 1 = holds no risk asset such as T-bills. 0.312
weatlh 1 = in the top wealth quartile. 0.301
prlife 1 = subjective life expectation grater than the me-

dian.
0.464
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Table A.2: Multivariate Probit Model’s Estimated Parameters of predicted and
realized risk

Variables Sup. Health Ins. Long-term Ins. Life Ins. Annuity
Coef. St.Er. Coef. St.Er. Coef. St.Er. Coef. St.Er.

fem 0.1941 (0.0509) 0.0401 (0.0642) -0.2140 (0.0553) -0.1470 (0.0510)
age65 0.1012 (0.0883) 0.1630 (0.1110) 0.1240 (0.0900) 0.1970 (0.0888)
age70 0.1740 (0.0920) 0.0871 (0.1160) -0.0487 (0.0934) 0.2090 (0.0925)
age75 0.2265 (0.1010) 0.2100 (0.1250) 0.0787 (0.1030) 0.0385 (0.1010)
age80 0.5253 (0.1230) 0.0601 (0.1570) -0.1020 (0.1240) -0.3150 (0.1240)
mard02 0.1520 (0.0665) 0.1390 (0.0568)
health 0.1210 (0.0609) 0.1090 (0.0521)
nursing home 0.1540 (0.1130)
health care 0.5320 (0.1880)
mortality -0.1110 (0.1060) -0.2748 (0.1041)
constant -0.2370 (0.0850) -1.3650 (0.1220) 0.3011 (0.1000) -0.1410 (0.0845)
Robust standard errors in brackets.

Table A.3: Multivariate Probit Model’s Estimated Correlation Terms Controlling
for Predicted and Realized Risk

Variables Sup. Health Ins. Long-Term Ins. Life Ins.
Long-Term Ins. 0.3121 (0.0392)
Life Ins. 0.0458 (0.0320) 0.0611 (0.0384)
Annuity 0.2180 (0.0318) 0.2810 (0.0393) 0.0572 (0.0323)
Robust standard errors in brackets.

Table A.4: Model Selection Criteria for System of Equations (5.8)-(5.11)

Number of Latent Classes
2LC 3LC 4LC

L(ψ) -17166.44 -17110.02 -17092.10
BIC(ψ) 34778.580 34759.58 34817.57
#ofparmaters 57 69 81

Table A.5: Estimated Class Membership Probabilities
2LC 3LC 4LC

αU
1 0.5051 0.4985 0.2242
αU
2 0.4949 0.2970 0.2585
αU
3 . 0.2045 0.2306
αU
4 . . 0.2867
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Table A.6: Estimated Probabilities of Extended LC Model

2LC 3LC 4LC
M=1 M=2 M=1 M=2 M=3 M=1 M=2 M=3 M=4

Panel A: Main Eq.
Sup. Health Ins. 0.2464 0.5297 0.2625 0.5167 0.6437 0.7439 0.2181 0.9027 0.7434
Long-Term Ins. 0.0285 0.1411 0.0274 0.1588 0.0992 0.6379 0.5433 0.4501 0.5948
Life Ins. 0.6875 0.6627 0.7021 0.6269 0.7439 0.4851 0.6129 0.5675 0.5358
Annuity 0.1911 0.8681 0.2181 0.9027 0.7434 0.5371 0.6184 0.5991 0.5327

Panel B: Aux. Ind.
norass 0.1682 0.4383 0.1542 0.3879 0.5368 0.3879 0.5368 0.4934 0.6151
job-mort 0.4901 0.5727 0.4934 0.5015 0.6150 0.5005 0.5974 0.5946 0.7699
job-num 0.6131 0.6511 0.5974 0.5946 0.7699 0.0438 0.6928 0.3573 0.5029
weatlh 0.0431 0.5637 0.0438 0.6928 0.3573 0.4052 0.7171 0.4581 0.6196
healthb 0.5236 0.5116 0.4052 0.5029 0.717 0.6781 0.3887 0.3061 0.8782
preventive 0.4627 0.6412 0.4581 0.6196 0.678 0.2625 0.5167 0.6437 0.0274
prlife 0.4287 0.5005 0.3887 0.3060 0.8782 0.1588 0.0992 0.7021 0.6269

Table A.7: Estimated Intercepts α of Equation System (5.8)

Insurance 2LC 3LC 4LC
Choice Coef. St.Er. Coef. St.Er. Coef. St.Er.
Sup. Health Ins.

αI1
1 -1.1177 (0.1811) -1.0333 (0.1828) -1.0398 (0.231)

αI1
2 0.119 (0.1757) 0.0668 (0.1930) -1.0457 (0.223)

αI1
3 0.5913 (0.2390) 0.0211 (0.206)

αI1
4 0.4525 (0.218)

Long-Term Ins.

αI2
1 -3.5288 (0.3319) -3.5690 (0.3350) -3.5873 (0.494)

αI2
2 -1.8071 (0.2828) -1.6670 (0.2966) -3.4400 (0.417)

αI2
3 -2.2066 (0.3295) -1.5152 (0.306)

αI2
4 -2.2834 (0.322)

Life Ins.

αI3
1 0.7884 (0.1945) 0.8573 (0.1973) 0.5276 (0.267)

αI3
2 0.6754 (0.1942) 0.5188 (0.2103) 1.3667 (0.276)

αI3
3 1.0662 (0.2409) 0.4733 (0.230)

αI3
4 1.2790 (0.238)

Annuity

αI4
1 -1.4429 (0.2878) -1.2770 (0.2582) -0.6759 (0.354)

αI4
2 1.8836 (0.2937) 2.2273 (0.3295) -3.0203 (1.496)

αI4
3 1.0637 (0.2853) 2.6705 (0.485)

αI4
4 0.7443 (0.295)
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Table A.8: Estimated Intercepts α of Equation System (5.10)

Indicators 2LC 3LC 4LC
Coef. St.Er. Coef. St.Er. Coef. St.Er.

norass

αH1
1 -1.5986 (0.0955) -1.7019 (0.1068) -1.6185 (0.222)

αH1
2 -0.2481 (0.0685) -0.4563 (0.1041) -2.0098 (0.286)

αH1
3 0.1475 (0.1529) -0.5861 (0.13)

αH1
4 0.1173 (0.147)

job-mort

αH2
1 -0.0397 (0.0634) -0.0265 (0.0645) -0.1626 (0.148)

αH2
2 0.2928 (0.065) 0.0021 (0.1340) 0.0952 (0.123)

αH2
3 0.4682 (0.1013) 0.6369 (0.131)

αH2
4 -0.0227 (0.114)

job-num

αH3
1 0.4603 (0.0647) 0.3945 (0.0664) -0.0041 (0.179)

αH3
2 0.6233 (0.0672) 0.3831 (0.1033) 0.7116 (0.158)

αH3
3 1.208 (0.1847) 0.4427 (0.119)

αH3
4 0.9398 (0.131)

weatlh

αH4
1 -3.1034 (0.3334) -3.0839 (0.3201) -2.2608 (0.375)

αH4
2 0.2561 (0.0883) 0.813 (0.1782) -4.3692 (1.934)

αH4
3 -0.5871 (0.1761) 1.0669 (0.251)

αH5
4 -0.5535 (0.163)

healthb

αH5
1 0.0945 (0.0632) -0.3837 (0.1213) -0.3529 (0.174)

αH5
2 0.0465 (0.0639) 0.0117 (0.0663) 0.2317 (0.139)

αH5
3 0.9297 (0.2011) -0.4121 (0.136)

αH5
4 0.6618 (0.14)

preventive

αH6
1 -0.1493 (0.0649) -0.1679 (0.0666) -0.5144 (0.184)

αH6
2 0.5805 (0.0689) 0.4879 (0.0988) 0.0425 (0.136)

αH6
3 0.7446 (0.1486) 0.5798 (0.122)

αH6
4 0.634 (0.12)

prlife

αH7
1 -0.2872 (0.0641) -0.4527 (0.0763) -1.9279 (0.809)

αH7
2 0.002 (0.0641) -0.8191 (0.1881) 0.2918 (0.268)

αH7
3 1.9757 (0.6201) -0.8432 (0.194)

αH7
4 1.1622 (0.255)
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Table A.9: Extend LC Model Estimated β Parameters of Predicted and Realized
Risk

Variables 2LC 3LC 4LC
Coef. St.Er. Coef. St.Er. Coef. St.Er.

Sup. Health Ins.
age65 0.2783 (0.1683) 0.2718 (0.1701) 0.2746 (0.169)
age70 0.3302 (0.1743) 0.1436 (0.176) 0.1306 (0.175)
age75 0.3984 (0.1885) 0.1485 (0.1904) 0.1354 (0.189)
age80 0.7782 (0.2099) 0.4828 (0.2105) 0.478 ( 0.210)
fem 0.4053 (0.0878) 0.4018 (0.0888) 0.3921 (0.088)
health care 0.1334 (0.0984) 0.1309 (0.0994) 0.1357 (0.099)

Long-Term Ins.
age65 0.4264 (0.2495) 0.4284 (0.2546) 0.4385 (0.255)
age70 0.2059 (0.2595) 0.2858 (0.2637) 0.2728 (0.264)
age75 0.3747 (0.2770) 0.5004 (0.2800) 0.4957 (0.281)
age80 0.1070 (0.3145) 0.2152 (0.3163) 0.2289 (0.316)
fem 0.1384 (0.1279) 0.1409 (0.1285) 0.1173 (0.128)
mard02 0.2297 (0.1328) 0.2179 (0.1334) 0.2219 (0.133)
health 0.2387 (0.1197) 0.2367 (0.1203) 0.2323 (0.120)
nursing home 0.3454 (0.2128) 0.3400 (0.2126) 0.3385 (0.213)

Life Ins.
age65 -0.0446 (0.1672) -0.0457 (0.1702) -0.0535 (0.177)
age70 -0.3185 (0.1719) -0.4209 (0.1745) -0.6164 (0.181)
age75 -0.1118 (0.1874) -0.2561 (0.1894) -0.5060 (0.195)
age80 -0.5510 (0.2038) -0.7161 (0.2064) -0.9822 (0.214)
fem -0.3621 (0.0903) -0.3693 (0.0912) -0.4011 (0.094)
mard02 0.2206 (0.0917) 0.2314 (0.0924) 0.2370 (0.095)
mort 0.1830 (0.0849) 0.1874 (0.0856) 0.1940 (0.088)
health -0.1512 (0.1727) -0.1462 (0.1739) -0.1611 (0.178)

Annuity
age65 0.0373 (0.2544) 0.0223 (0.2317) 0.0467 (0.246)
age70 -0.1736 (0.2640) -0.1568 (0.2406) 0.1348 (0.255)
age75 -0.7565 (0.2874) -0.584 (0.2632) -0.2740 (0.275)
age80 -1.8209 (0.3164) -1.5793 (0.3007) -1.3150 (0.319)
fem -0.2405 (0.1308) -0.2362 (0.1215) -0.2281 (0.129)
mort -0.4118 (0.2608) -0.4354 (0.2509) -0.4471 (0.265)
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Table A.10: Extend LC Model’s Estimated Parameters of Equation System (5.11)

Sup. Health Ins. Long-Term Ins. Life Ins.
2LC
Long-Term Ins. 0.5284 (0.1399)
Life Ins. 0.1904 (0.0936) 0.3202 (0.1318)
Annuity -0.3966 (0.2206) -0.0977 (0.2189) 0.3784 (0.1567)
3LC
Long-Term Ins. 0.5661 (0.1423)
Life Ins. 0.1735 (0.0962) 0.3840 (0.1354)
Annuity -0.2008 (0.1815) -0.0601 (0.2141) 0.4594 (0.1515)
4LC
Long-Term Ins. 0.6192 (0.1433)
Life Ins. 0.1616 (0.1017) 0.4306 (0.1436)
Annuity -0.1669 (0.1947) -0.0785 (0.2404) 0.7033 (0.1834)
Standard errors are reported in brackets.
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Chapter 6

Conclusion

This thesis presents four studies that make use of latent class analysis to model

unobserved heterogeneity in different empirical contexts applied to health and

health care. The latent classes analysis is a particular way to model unobserved

heterogeneity and it is exploited when both manifest dependent variables and la-

tent variable are dichotomous and/or categorical. Therefore, latent class analysis

requires computationally that the dependent variables are discrete. 1 Although

this approach is extremely suitable to model multiple sources of unobserved het-

erogeneity for some particular economic context where the dependent is binary

(e.g. having or not supplemental insurance, having any doctor visits or hospital

admissions, etc.), there could be a loss of information when additional (contin-

uous) indicators are discretized in order to be include in the model to identify

unobserved heterogeneity. However as long as discretizations of continuous vari-

ables are reasonable results should no be affected.

In the previous chapters unobserved private information is examined in re-

lation to 1) health production and self-reporting health behaviour, 2) the role of

asymmetric information in health insurance markets and health care utilization,

and 3) the generality of risk preferences in multiple demand for insurance. The

work presented in the thesis provides a useful basis to develop new methodology

and empirically evaluate policies in all of these contexts. The empirical appraisal

of the effect of individual characteristics on health production and self-reporting

behaviour introduced in Chapter 2 could be extended by modelling additional

relationships between biomarkers in order to capture the effect of pre-existing

health conditions on subjective health status. In addition, results provide evi-

dence of the importance of using biomarkers in measuring health status. However,

1Note that in many cases binary variables are preferred to categorical variables in order to
reduce the amount of time the model needs to converge throughout the EM algorithm (see.
Forcina [59]).
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more studies are required to determine the extent to which biomarkers are related

to dimensions of health which differ from physical health.

The analysis of asymmetric information proposed in Chapters 3 and 4 sug-

gests that multidimensionality of private information is an important issue when

evaluating adverse selection in insurance markets. Extending the framework used

in this thesis it would be interesting to understand whether there are other sources

of multiple private information in addition to risk preferences and actual risk and

their role in the selection effect. Moreover, a further stream of research might fo-

cus on understanding, both theoretically and empirically, the welfare implications

of multidimensionality. For example, in the Medigap market the welfare effect of

heavy cross subsidization of some types (who are high risk and risk averse) at the

expense of others (who are low risk, but with low preferences for risk) has not

been studied in detail. Finally, the analysis of the generality of risk preferences in

Chapter 5 shows not only the existence of a common general component of risk

preferences, but also the existence of residual specific heterogeneity related to the

insurance choice context that are similar (e.g Medigap and long-term care insur-

ance). Further research might extend several issues. From an econometric point

of view it would be interesting to extend the estimation procedure to two or more

latent variables in order to capture separately residual heterogeneity in risk and

risk aversion. In addition it would be interesting to understand the drivers of this

heterogeneity, what types of individuals domain-specificity are more relevant (e.g

is context more important in the health insurance market than in the life insur-

ance market?) and why should context still remain important after conditioning

on individual risk and risk preferences.
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[2] Abbring, Jaap H., Pierre-Andrè Chiappori, James J. Heckman, and Jean

Pinquet (2003b) ‘Adverse selection and moral hazard in insurance: Can

dynamic data help to distinguish?’ Journal of the European Economic As-

sociation 1(2/3), 512–521

[3] Agnew, Julie R., Lisa R. Anderson, Jeffrey R. Gerlach, and Lisa R. Szykman

(2008) ‘Who chooses annuities? an experimental investigation of the role of

gender, framing, and defaults.’ American Economic Review 98(2), 418–22

[4] Agresti, A. (2002) Categorical data analysis (Wiley-Interscience)

[5] Arnott, Richard J., and Joseph E. Stiglitz (1990) ‘The basic analytics of

moral hazard.’ NBER Working Papers 2484, National Bureau of Economic

Research, Inc, February

[6] Arrow, Kenneth J. (1963) ‘Uncertainty and the welfare economics of medical

care.’ The American Economic Review 53(5), 941–973

[7] Banks, James, Michael Marmot, Zoe Oldfield, and James P. Smith (2006)

‘Disease and Disadvantage in the United States and in England.’ JAMA

295(17), 2037–2045

[8] Banthin, Jessica S., and Jessica P. Vistnes (1997) ‘The demand for Medicare

supplemental insurance benefits: the role of attitudes toward medical care

and risk.’ Inquiry: a journal of medical care organization, provision and

financing 34(4), 311

130



[9] Barseghyany, Levon, Jeffrey Princez, and Joshua C. Teitelbaum (forthcom-

ing) ‘Are risk preferences stable across contexts? evidence from insurance

data.’ American Economic Review

[10] Barsky, Robert B., F. Thomas Juster, Miles S. Kimball, and Matthew D.

Shapiro (1997) ‘Preference parameters and behavioral heterogeneity: An ex-

perimental approach in the health and retirement study*.’ Quarterly Journal

of Economics 112(2), 537–579

[11] Bartholomew, David J., and Martin Knott (1999) Latent variable models

and factor analysis (A Hodder Arnold Publication)

[12] Bartolucci, Francesco, and Antonio Forcina (2005) ‘Likelihood inference on

the underlying structure of irt models.’ Psychometrika 70(1), 31–43

[13] Bartolucci, Francesco, and Antonio Forcina (2006) ‘A class of latent marginal

models for capture-recapture data with continuous covariates.’ Journal of the

American Statistical Association 101, 786–794

[14] Bergsma, Wicher, Marcel Croon, and Jacques A. Hagenaars (2009)Marginal

Models: For Dependent, Clustered, and Longitudinal Categorial Data

(Springer Verlag)

[15] Blavatskyy, Pavlo, and Ganna Pogrebna (2008) ‘Risk aversion when gains are

likely and unlikely: Evidence from a natural experiment with large stakes.’

Theory and Decision 64(2), 395–420

[16] Browne, Mark J., and Kihong Kim (1993) ‘An international analysis of life

insurance demand.’ The Journal of Risk and Insurance 60(4), 616–634

[17] Buchmueller, Thomas C., Agnès Couffinhal, Michel Grignon, and Marc Per-

ronnin (2004) ‘Access to physician services: does supplemental insurance

matter? evidence from france.’ Health Economics 13(7), 669–687

[18] Cameron, A. Colin, and Pravin K. Trivedi (1991) ‘The role of income and

health risk in the choice of health insurance : Evidence from australia.’

Journal of Public Economics 45(1), 1 – 28

[19] Cameron, A. Colin, Pravin K. Trivedi, Frank Milne, and John Piggott (1988)

‘A microeconometric model of the demand for health care and health insur-

ance in australia.’ The Review of Economic Studies 55(1), 85–106

131



[20] Cameron, Stephen V., and James J. Heckman (1998) ‘Life cycle schooling

and dynamic selection bias: Models and evidence for five cohorts of american

males.’ The Journal of Political Economy 106(2), 262–333

[21] Cardon, James H., and Igal Hendel (2001) ‘Asymmetric information in

health insurance: Evidence from the national medical expenditure survey.’

The RAND Journal of Economics 32(3), 408–427

[22] Cartwright, William S., Teh-Wei Hu, and Lien-Fu Huang (1992) ‘Impact of

varying medigap insurance coverage on the use of medical services of the

elderly.’ Applied Economics 24(5), 529–39

[23] Cawley, John, and Tomas Philipson (1999) ‘An empirical examination of

information barriers to trade in insurance.’ The American Economic Review

89(4), 827–846

[24] Chiappori, Pierre-André, Bruno Jullien, Bernard Salanié, and Francois
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