Nitrooxides in Mechanistic Studies: Ageing of Gold Nanoparticles and Nitroxide Transformation in Acids

Yun Ma

PhD

2010
Abstract

The work described in this thesis includes the applications of nitroxide in the mechanistic studies of two very different research topics.

Chapter 2 describes the investigation of ageing of gold nanoparticles (AuNPs) and its mechanistic implications. By utilizing a customized bisnitroxide disulfide, ligand place-exchange reactions of AuNPs were studied by Electron Paramagnetic Resonance (EPR) Spectroscopy and a nitroxide spin label was introduced onto the gold surface in the process. Ageing of thiolate protected AuNPs results in reduced reactivity in the disulfide exchange. By studying the ligand and temperature dependence of this process and the effect of ageing on the maximum extent of exchange, the presence of different binding sites on the surface of AuNPs was proposed.

Chapter 3 describes the mechanistic studies of nitroxide-based polymerization inhibitors in various organic monomers. The presence of nitroxide radicals was utilized to report dissolved oxygen concentration which is essential in the inhibition of polymerization. Oxygen-related broadening was deconvoluted from the EPR spectra of nitroxide radicals using an oximetry fitting method. By adopting this method, the inhibition mechanism and associated chemistry of nitroxides in self-initiated polymerization of acrylic acid was investigated. The synergism of nitroxides with other types of inhibitors was proposed. An unusual decay of nitroxide radicals in acid at high temperature was observed.

Following Chapter 3, Chapter 4 describes the detailed mechanistic investigation of nitroxide decay in acid at high temperature. N-oxoammonium salt, a product of acid-catalyzed disproportionation of nitroxides, was found to decompose at high temperature. Mechanistic investigation of this reaction leads to identification of the important role of hydroxylamine in the mechanism of nitroxide inhibited polymerization of acidic monomers.
Declaration

This thesis is a summary of the research work carried out in the Department of Chemistry, University of York, between October 2006 and September 2010. It has not, either in part or as a whole, been submitted for a degree or diploma or other qualification at any other University.

Yun Ma
Acknowledgements

Firstly, I would like to thank my family for their support and patience during my PhD study. It was the most amazing experience that the entire family were supporting me even at the most difficult times.

I would also like to thank my supervisor, Dr Victor Chechik for the continuous help and guidance in this research work as well as proof reading this thesis. Thank my IPM, Prof. Ian J. S. Fairlamb for his help and advice. Dr Philip Helliwell and Dr Paul Elliott helped me with some analysis work. The experimental officers and technicians in the department are thanked for their support. Dr James Hopkins and Miss Shalini Punjabi are thanked for their help on the headspace analysis. Thank Gareth Moody for his help on the GC analysis.

The Nufarm R&D team in Wyke are thanked for the useful discussions and the nice lunches. Especially I’m thankful for Angela Glossop and James Hunt for the IC analysis and synthesis of oxoammonium salt.

A special thank you to Dr Marco Conte for his help, advice and encouragement during my PhD study. Present (Muhammad Warsi, James Wallace, Thomas Newby, Kazim Raza and Jamie Gould) and past (Marco Conte, Eleanor Hurst, Riccardo Garzelli, Gabriella and Petre Ionita, Brendan Garret, Xuetong Zhang and Leonie Jones) group members are thanked for the wonderful and not so wonderful days we have spent together. I’m also grateful for the many good friends I met in York, who have made the life colourful here.

Nufarm Ltd. and University of York (Wild Fund) are thanked for the financial support.

I would also like to thank Sir Timothy Berners-Lee for inventing the World Wide Web 20 years ago. I would never finish this thesis without his invention.
List of Abbreviations

Abs – absorbance
aq – aqueous solution
a.u. – arbitrary units
AuNPs – gold nanoparticles
DIS3 –

\[
\begin{align*}
\text{S} & \text{NH} & \text{N} & \text{O} \\
\text{S} & \text{H} & \text{N} & \text{O}
\end{align*}
\]

EI – electron impact ionization
EPR – Electron Paramagnetic Resonance
ESI – electrospray ionization
EXP – experimental
FID – flame ionization detector
g – gram(s)
GC – Gas Chromatography
gem – germinal
GPC – Gel Permeation Chromatography
HR – high resolution
hrs – hour(s)
4HT – 4-hydroxy-TEMPO
IR – infrared
M – molar
MEHQ – monomethyl ether of hydroquinone (4-Methoxyphenol)
Me – methyl, CH₃
mg – milligram(s)
Mhz – megahertz
min – minute(s)
ml – millilitre(s)
µl – microlitre
MS – Mass Spectrometry
m/z – charge to mass ratio
n – normal
Na-ASC – sodium L-ascorbate
nm – nanometre(s)
NMR – Nuclear Magnetic Resonance
ns – nanosecond(s)
4OT – 4-oxo-TEMPO
p – para-
PhNHNH₂ – phenylhydrazine
PPh₃ – triphenylphosphine
ppm – part(s) per million
ppt – part(s) per trillion
PTZ – phenothiazine
R.T. – room temperature
s – second(s)
SOMO – singly occupied molecular orbital
TEM – Transmission Electron Microscopy
TEMPO(T) – 2,2,6,6-tetramethyl-1-piperidinyloxyl
TEMPOH(TOH) – TEMPO hydroxylamine
TGA – Thermogravimetric
TH⁺ – protonated TEMPO
TLC – Thin Layer Chromatography
T=O⁺ – oxoammonium salt from TEMPO
TOAB – tetraoctylammonium bromide
TOH₂⁺ – protonated TEMPOH
UV-vis – Ultraviolet-visible
v/v – volume to volume ratio
w/w – weight to weight ratio
Table of Contents

CHAPTER 1 INTRODUCTION

1.1. ‘YOU CANNOT CONNECT THE DOTS LOOKING FORWARDS, YOU CAN ONLY CONNECT THEM LOOKING BACKWARDS.’ ... 1

1.2. ELECTRON PARAMAGNETIC RESONANCE SPECTROSCOPY 2

1.2.1. BASIC PRINCIPLES OF ELECTRON PARAMAGNETIC RESONANCE ... 2
1.2.2. DETECTION OF RESONANCE ... 4
1.2.3. EPR INSTRUMENTATION .. 5
 1.2.3.1. Microwave bridge .. 6
 1.2.3.2. Magnetic field modulation ... 7
 1.2.3.3. Variable temperature measurements ... 7
1.2.4. EPR SPECTRAL PARAMETERS .. 8
 1.2.4.1. g-factor ... 8
 1.2.4.2. Hyperfine interaction ... 9
 1.2.4.3. Spectral linewidth and intensity .. 13
 1.2.4.4. Intensity of EPR spectra ... 18
 1.2.4.5. Dynamics and diffusion ... 18
1.2.5. BIRADICALS .. 20
1.2.6. APPLICATIONS OF CW-EPR SPECTROSCOPY 22
 1.2.6.1. Direct detection ... 22
 1.2.6.2. Spin labelling ... 22

CHAPTER 2 REDUCED REACTIVITY OF AGED GOLD NANOPIRATES

2.1. INTRODUCTION .. 27

2.1.1. GOLD NANOPIRATES .. 27
2.1.2. APPLICATIONS OF AUNPs .. 28
 2.1.2.1. Catalysis ... 28
 2.1.2.2. Bio-medical applications ... 28
2.1.3. SYNTHESIS OF AUNPs ... 29
 2.1.3.1. Citrate reduction method .. 29
 2.1.3.2. Brust-Schiffrin method ... 30
 2.1.3.3. AuNPs protected by phosphane .. 31
2.1.4. PARTICLE SIZE CONTROL ... 32
 2.1.4.1. Size control by adjusting synthetic conditions 32
 2.1.4.2. Post-synthesis modification .. 33
 2.1.4.3. Structure and morphology of AuNPs ... 34
 2.1.4.4. Functionalization of AuNPs .. 35
 2.1.4.5. Mechanism of ligand exchange reaction 36
 2.1.4.6. Packing, migration and dynamics of the ligands on AuNPs 40
 2.1.4.7. Ageing of AuNPs ... 41
2.1.5. AIM AND OBJECTIVES ... 42

2.2. INVESTIGATION METHODOLOGY ... 42

2.2.1. TARGET AUNPs ... 42
2.2.2. ANALYTICAL METHOD SURVEY .. 43
2.2.3. MODEL SYSTEM ... 44

2.3. GENERAL SYNTHESIS AND CHARACTERIZATION OF AUNPs 45
CHAPTER 3 MECHANISTIC STUDY OF NITROXIDE-BASED POLYMERIZATION INHIBITORS

3.1. INTRODUCTION .. 77

3.1.1. NITROXIDE RADICALS ... 77
 3.1.1.1. Synthesis of nitroxide radicals .. 78
 3.1.1.2. General chemistry of nitroxide radicals .. 79
 3.1.1.3. Applications of TEMPO derivatives ... 86
3.1.2. FREE RADICAL POLYMERIZATION AND INHIBITION .. 89
 3.1.2.1. Initiation, propagation and termination steps ... 90
 3.1.2.2. Self-initiation mechanism .. 91
 3.1.2.3. Inhibition and retardation mechanism .. 94
3.1.3. AIMS AND OBJECTIVES .. 99

3.2. METHODOLOGY DEVELOPMENT FOR MONITORING NITROXIDE INHIBITED POLYMERIZATION .. 100

3.2.1. MONITORING O₂ CONCENTRATION .. 100
 3.2.1.1. Analytical method survey .. 100
 3.2.1.2. EPR oximetry ... 101
3.2.2. METHODOLOGY DEVELOPMENT FOR EPR OXIMETRY 102
 3.2.2.1. Fitting method ... 102
 3.2.2.2. EPR oximetry via convolution-based fitting method 103
3.2.3. OXIMETRY FITTING METHOD IN NITROXIDE INHIBITED METHYL METHACRYLATE AND ACRYLONITRILE .. 105
 3.2.3.1. 4HT inhibited spontaneous polymerization of methyl methacrylate and acrylonitrile .. 106
3.2.4. METHODOLOGY LIMITATIONS .. 108

4.1. Typical Synthesis Protocol .. 45
4.2. Characterization of AUNPs .. 45

4.2.1. REACTION ORDER ... 46
 4.2.1.1. General data collection and treatment procedure .. 47
 4.2.1.2. Ligand exchange of C₆S-AuNPs: reaction order .. 48
 4.2.1.3. Ligand exchange of C₈S- and C₁₀S-AuNPs: reaction order 50
4.2.2. REDUCED REACTIVITY OF AGED AUNPS IN LIGAND EXCHANGE REACTIONS 52
 4.2.2.1. Ageing effect on C₆S-AuNPs ... 52
 4.2.2.2. Effect of reaction temperature on ageing effect ... 53
 4.2.2.3. Outgoing ligand dependence of ageing effect .. 56
4.2.3. AGEING AND CONCURRENT SIZE VARIATION OF AUNPS 58
4.2.4. REDUCED REACTIVITY OF AGED AUNPS IN CYANIDE INDUCED DECOMPOSITION ... 60
 4.2.4.1. General data collection and treatment procedure .. 60
 4.2.4.2. Ligand exchange of C₆S-AuNPs ... 61
 4.2.4.3. Reaction order ... 61
 4.2.4.4. Effect of reaction temperature on ageing effect ... 62
 4.2.4.5. Outgoing ligand dependence of ageing effect ... 62
4.2.5. CONCLUSIONS ON AGEING EFFECT OF AUNPs ... 62

5.5. EXTENT OF LIGAND EXCHANGE REACTIONS OF AUNPS WITH DISULFIDES .. 64

5.5.1. DOES MAXIMUM EXTENT OF LIGAND EXCHANGE REACTION CHANGE WITH AGEING? ... 64
5.5.2. AUNP/DISULFIDE RATIO DEPENDENCE ON THE MAXIMUM EXTENT OF LIGAND EXCHANGE REACTIONS ... 66
5.5.3. THE EXTENT OF LIGAND EXCHANGE REACTION AT DIFFERENT TEMPERATURE 67
5.5.4. CONCLUSIONS ON EXTENT OF LIGAND EXCHANGE 68

5.6. CONCLUSIONS .. 70
3.3. INVESTIGATION OF SPONTANEOUS POLYMERIZATION OF ACRYLIC ACID INHIBITED BY NITROXIDE RADICALS 109
3.3.1. INTRODUCTION ... 109
3.3.2. INVESTIGATION OF SYNERGISTIC INHIBITION OF SELF-INITIATED ACRYLIC ACID POLYMERIZATION .. 110
 3.3.2.1. Inhibition of self-polymerization of acrylic acid by 4HT/MEHQ and 4HT/PTZ mixtures ... 110
 3.3.2.2. The effect of hydroxylamine on the inhibition mechanism of 4HT in self-polymerization of acrylic acid .. 110
3.3.3. MECHANISTIC STUDY ON 4HT IN SELF-POLYMERIZATION OF ACRYLIC ACID 117
3.3.4. CONCLUSIONS ON MECHANISTIC INVESTIGATION OF INHIBITED SPONTANEOUS POLYMERIZATION OF ACRYLIC ACID 120

3.4. KINETIC AND MECHANISTIC INVESTIGATIONS OF ACID-CATALYZED TEMPO DISPROPORTIONATION .. 121
3.4.1. INTRODUCTION ... 121
3.4.2. KINETIC STUDY OF ACID-CATALYZED TEMPO DISPROPORTIONATION 121
 3.4.2.1. The role of substituent in the 4-position .. 122
 3.4.2.2. TEMPO disproportionation in acrylic acid .. 123
 3.4.2.3. Nitrooxide radical disproportionation in acetic and propionic acid 125
 3.4.2.4. TEMPO disproportionation in sulphuric acid ... 126
3.4.3. TEMPERATURE DEPENDENT KINETIC MODEL OF TEMPO DISPROPORTIONATION . 130
 3.4.3.1. Kinetic model of TEMPO disproportionation reaction 130
 3.4.3.2. Fitting experimental data to the kinetic model .. 133
3.4.4. COMPROPORTIONATION OF TEMPOH AND N-OXOAMMONIUM SALT 134
3.4.5. CONCLUSIONS OF ACID-CATALYZED TEMPO DISPROPORTIONATION 136

3.5. CONCLUSIONS .. 137

CHAPTER 4 TEMPO DECAY IN ACID AT HIGH TEMPERATURE

4.1. INTRODUCTION .. 144
4.2. AIMS AND OBJECTIVES ... 146
4.3. THERMAL DECOMPOSITION OF TEMPO IN ACID: DECOMPOSITION OF N-OXOAMMONIUM SALT .. 146
 4.3.1. IRREVERSIBLE TEMPO DECAY IN ACID AT HIGH TEMPERATURE 146
 4.3.2. THERMAL DECOMPOSITION OF N-OXOAMMONIUM SALT 148
 4.3.2.1. The effect of acidity on thermal decomposition of oxoammonium salt 149
 4.3.2.2. The effect of O₂ on thermal decomposition of oxoammonium salt 151
 4.3.2.3. Light dependence of thermal decomposition of oxoammonium salt 151
 4.3.2.4. Kinetic model for thermal decomposition of oxoammonium salt 152
 4.3.3. THERMAL DECOMPOSITION OF TEMPO IN H₂O 153
 4.3.4. FORMATION OF A UV-ACTIVE COMPOUND IN THERMAL DECOMPOSITION OF OXOAMMONIUM SALT ... 155

4.4. PRODUCT ANALYSIS OF THERMAL DECOMPOSITION OF OXOAMMONIUM SALT ... 156
 4.4.1. IDENTIFICATION OF THE MAJOR REACTION PRODUCT 156
 4.4.1.1. Fast electron transfer between TEMPO and oxoammonium cation 156
 4.4.1.2. Identification of hydroxylamine as the major reaction product of thermal decomposition of oxoammonium salt 158
 4.4.2. QUANTIFICATION OF THE YIELD OF HYDROXYLAMINE 161
4.5. THE MECHANISM OXOAMMONIUM SALT DECOMPOSITION165
 4.5.1. HYDROLYSIS MECHANISM .. 165
 4.5.2. RING OPENING MECHANISM ... 166
 4.5.2.1. Detection of possible ring opening product by EPR spectroscopy ……… 166
 4.5.2.2. Detection of NO₃⁻ in the reaction product 167
 4.5.2.3. Ring-opening decomposition of 4-oxo-TEMPO 168

4.6. OXOAMMONIUM SALT DECOMPOSITION CARRIED OUT ON A LARGE
 SCALE .. 170
 4.6.1. AQUEOUS PHASE .. 171
 4.6.1.1. Analysis of the aqueous phase product by NMR spectroscopy 171
 4.6.1.2. Titration of the aqueous phase product 172
 4.6.2. ANALYSIS OF ORGANIC PHASE .. 176
 4.6.2.1. UV-vis analysis .. 176
 4.6.2.2. TLC ... 177
 4.6.2.3. GC-MS .. 177
 4.6.2.4. MS: ESI ... 186
 4.6.2.5. NMR spectroscopy ... 190
 4.6.3. ANALYSIS OF GAS PHASE PRODUCT 191
 4.6.3.1. Analysis by GC-FID .. 192
 4.6.3.2. Analysis by gas phase IR ... 192

4.7. CONCLUSIONS ... 195
 4.7.1. MECHANISM OF THERMAL DECOMPOSITION OF OXOAMMONIUM
 SALT ... 196
 4.7.2. YIELD CALCULATIONS AND MASS BALANCE 198
 4.7.3. MECHANISM OF TEMPO DECAY IN ACID AT HIGH TEMPERATURE 199
 4.7.4. PERSPECTIVES AND FUTURE WORK 200

CHAPTER 5 EXPERIMENTAL

5.1. CHEMICALS AND ANALYSIS TECHNIQUES 203

5.2. GENERAL PROCEDURES OF EPR EXPERIMENTS 206
 5.2.1. PREPARING EPR SAMPLES .. 206
 5.2.2. DEGASSING EPR SAMPLES .. 207
 5.2.3. EPR KINETICS .. 207

5.3. DATA PROCESSING PROCEDURES ... 208
 5.3.1. KINETIC STUDIES ... 208
 5.3.2. OXIMETRY FITTING .. 208

5.4. SYNTHESIS ... 209