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Abstract

The thesis addresses the augmentation of a conventional single frequency Elec-
trical Impedance Tomography (EIT) system to form a wideband EIT (WEIT)
system. Its contribution is to extend such systems to provide spectral infor-
mation, but with the essential capability to match process dynamics. A novel
method to achieve these aims is described in its key stages.

The underlying opportunity for this study is that process materials may show
considerable change in their electrical properties in response to an injected sig-
nal over a wide frequency range. The use of this concept to demonstrate the
construction of tomographic images for a range of frequency bands is described.
These can then provide a deeper understanding and interpretation of a process
under investigation.

The thesis presents an in-depth review of the characteristics of the various
wideband signals that could be used for simultaneous spectral measurements.
This includes an objective selection process that demonstrates that a Chirp sig-
nal form offers key advantages. It then addresses the details of the developed
method and algorithms for WEIT systems that deploy a Chirp wideband exci-
tation signal and a further aspect of the method, based on the time-frequency
analysis, particularly wavelet transform, which is used to reveal spectral data
sets. The method has been verified by simulation studies which are described.
To provide measurements over a required frequency range a linear chirp is de-
ployed as the excitation signal and corresponding peripheral measurements are
synthesised using a 2D model. The measurements are then analysed using a
wavelet transform algorithm to reveal spectral datasets which are exemplified in

the thesis.
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The thesis then examines the feasibility of the presented method through
various experimental trials; an overview of the implementation of the electronic
system is included. This provides a single-channel EIT chirp excitation im-
plementation, in essence simulating a real-time parallel data collection system,
through the use of pseudo-static tests on foodstuff materials. The experimen-
tal data were then analysed and tomographic images reconstructed using the
frequency banded data. These included results illustrate the promise of this
composite approach in exploiting sensitivity to variations over a wide frequency
range. They indicate that the described method can augment an EIT sensing

procedure to support spectroscopic analysis of the process materials.
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Chapter 1

Introduction

Tomography techniques provide information of the internal materials distribution
of a process from non-invasive measurements. Depending on the type of tomog-
raphy, appropriate measurements are taken from a number of peripheral sensors
[1). They are then analysed in order to reveal process internal characteristics,
for instance, by either reconstruction of cross-sectional images demonstrating a
special distribution; or for the estimation of process parameters. In a simple
process, one tomography technique may be able to deliver adequate information,
whereas in a complex process a multi-mode system may lead to the estimation
of key process parameters [2].

Electrical tomography is a type of tomography based on the electrical prop-
erties of materials. It was pioneered by medical scientists in the 1970’s. This
technique was then applied to process applications in the 1980’s[3]. During recent
years, electrical tomography has successfully moved from research to industrial
applications, due to its relative simplicity, high speed, and low cost. There is
growing interest in the application of electrical tomography to various industrial
processes. Typical applications are pharmaceutical crystallisers {4], mixing re-
actions [5], separation and mixing processes, slurries measurements, gas-liquid
separators, liquid-liquid flows[6], and also for real-time monitoring of pressure
filters[7]. The level of interest in the application of electrical tomography is also

evident from the latest World Congress on Industrial Process Tomography in
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Bergen, Norway, 2007, for example, in solid-liquid suspensions[8], modelling of
flow parameters [9] and study of slurry flow rate [10]. These examples show that
electrical tomography has the capability of enhancing the understanding and

interpretation of a wide range of target processes.

1.1 Motivation for this Research

A member of the electrical tomography family is electrical impedance tomogra-
phy (EIT) which is suitable for the imaging of predominataly conductive pro-
cesses, whereby various patterns of alternating current of a given frequency can
be passed through the subject. A conventional single-frequency EIT system pro-
vides an estimate of the location of materials within an application space based
upon conductivity contrast. A further major interest in many applications is the
identification and characterisation of materials. A single-frequency EIT system
can not fulfil this requirement but, in contrast, it may be realised through a
multi-frequency EIT (MFEIT). This approach assumes, however, that materi-
als may exhibit significant conductivity variation over some frequency range.
It has been exploited in medical research for the characterization of human
tissue, and also for the diagnosis of particular diseases using electrical prop-
erties, for instance, bioelectrical spectroscopy [11], multi-frequency imaging of
respiratory changes[12], imaging brain function[13, 14], and detection of breast
cancer|15, 16].

Applying the MFEIT concept may be also useful in industrial processes whose
component materials offer a significant frequency-dependant contrast, and where
the spectral information may then be employed to enhance the identification of
the materials. The key point in the spectral study is that MFEIT systems must
have the capability of data acquisition and processing to satisfy application pro-
cess dynamics. Important factors for this requirement are the speed of response
of the instrumentation, and the type of excitation signal. The current speed

and accuracy performance of general electronic devices allow the implementa-
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tion of high-speed EIT instrumentation. This allows the selection and design of
an optimal excitation signal that will include the frequency range of interest, to
excite the spectral variations; and will also allow the signal to be injected and

corresponding data to be recovered within the requisite dynamic time interval.

1.2 Objectives of this Research

This thesis describes and details research work in the maturing technology of
EIT. The key objective of this research is the augmentation of a conventional
single-frequency EIT system to form a wideband EIT (WEIT) system. The
research seeks to extend the performance of EIT systems to provide spectral
information, but with the essential ability to operate within the process dynam-
ics. This new capability for the measurement of spectral data potentially leads
to the characterisation of materials, or component identification; or the estima-
tion of the parameters of a process model. The underlying opportunity for this
study is that process materials may show considerable variation in their electri-
cal properties, in response to an injected signal over some frequency range. This
concept has been deployed in the research to demonstrate the construction of
tomographic images for a range of frequency bands that can provide a deeper
understanding and interpretation of a process under investigation.

Since the performance of such extended EIT systems will be critically depen-
dent upon the choice of excitation signal, the thesis also presents characteristics
of the various wideband excitation signals that were assessed for their feasibility
for use for simultaneous spectral measurement. It addresses the selected method
which has been developed and the associated algorithms for WEIT. This de-
ploys a Chirp wideband excitation signal and the wavelet transform to reveal
spectral data sets from the measured results. The method is verified by simu-
lation study in this research. The thesis also demonstrates the feasibility of the
presented method on experimental data collected by exploiting an implemented

single-channel EIT system designed and implemented for pseudo-static tests.
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1.3 Overview of this Thesis

This thesis is organised in 7 chapters and an overview of their content follows.
Following this introductory chapter, chapter 2 provides a brief overview of EIT
systems. It illustrates a typical framework for the EIT method including for-
ward and inverse problem aspects. It then describes an overview of typical EIT
hardware.

Chapter 3 provides a review and critical comparison of excitation signals
capable of exploitation in a WEIT system. This begins with a background review
of multi-frequency EIT(MFEIT) followed by a description of the factors that
influence the selection of the optimal form and parameters of a wideband signal.
The chapter finally presents a comparison of the presented signals and concludes
that deploying a Chirp signal in a WEIT system is advantageous compared with
the other possible signal forms.

Chapter 4 is devoted to the methods that can be deployed to extract the
required temporal parameters from the chirp signal. It provides a short review
of the time-frequency transforms including short-time Fourier transform (STFT)
and wavelet transform (WT). Based on the complex continuous wavelet trans-
form (CWT), algorithms developed to extract precise temporal values of Chirp
are described. This is carried out by using the ridge phenomenon and the deter-
mination of optimum wavelet parameters. The performance of the algorithms is
then described based upon an evaluation through simulations on a RC network
model of a process.

Chapter 5 addresses the augmentation of a conventional EIT to form a wide-
band EIT system. For this purpose a novel method using the selected Chirp
excitation is proposed and implemented. In this chapter, the method is de-
scribed and its verification is demonstrated. This begins with a brief description
of the concept of spectro-tomography. The performance of the method is ex-
amined through various simulations which are illustrated. The methods for the

analysis of the spectral tomographic data are finally presented by simulation.
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Chapter 6 describes the verification of the proposed method through an ex-
perimental feasibility study. An overview of the implementation of the electronic
system is included. This provides an brief description of the aspects of the single-
channel EIT system exploited for the experimental trials. Various experimental
tests, conducted by a resistive paper simulant and also a 16-electrode EIT rig,
are illustrated. The chapter ends with a review of the experimental data sets and
their analysis, illustrating tomography images reconstructed over the frequency
range of interest.

Finally, chapter 7 presents a summary of the achievements of the research
with an overview of the most important results. This chapter concludes with
suggestions for further development for this specific research area and also sug-

gestions for more general future work.



Chapter 2

Electrical Impedance

Tomography

2.1 Summary

Electrical impedance tomography(EIT) is a technique that produces impedance
distribution images by using a set of peripheral measurements whilst various ge-
ometrically different current patterns are passed through the subject. Figure 2.1
shows a general structure of an EIT system. The measurements are collected by
hardware and are then utilised by EIT software to produce tomography images.

The EIT software includes two separate aspects which are concerned with EIT

Tomography
Image

EIT Measurt!,mcntsI EIT
Hardware | Software

Figure 2.1: General structure of EIT system.

physical modelling( typically called forward solver) and image reconstruction( or
inverse solver). In this chapter, after a brief review on the EIT inverse solver and

its relation to the overall EIT problem, various issues related to the EIT forward
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modelling and image reconstruction are briefly presented. The remainder of the

chapter is devoted to a consideration of the necessary hardware for a EIT system.

2.2 EIT as Inverse Problem

An observation model of a general physical process can be described by:

y=F(z)+v (2.1)

where F' is an operator which maps the vector x, the cause, into the vector y,
the effect, and v the is the vector of errors. For instance, in a physical process
is unknown physical parameters which have to be estimated and y denotes ob-
servations. The problem of determination of causes from effects is called inverse
problem. Inverse problems typically are ill-posed [17, 18, 19, 20]. This means
that they don’t satisfy all or a part of Hadamard’s well-posedness conditions.

According to these conditions, a problem is called well-posed if[17]:

e For each y a solution exists;
e For each y the solution is unique;

e The solution x depends continuously on the y.

EIT is in essence an inverse problem in which the admittivity distribution
inside a medium is estimated by using a set of boundary measurements. In this
problem, small variations of boundary measurements can result in large changes
of inverse admittivity solution; and conversely large changes of interior admit-
tivity may cause small measurement changes. Thus, the EIT inverse problem is
unstable and sensitive to the measurement noise and errors [21]. According to
the Hadamard conditions, this means that in EIT there is no continuous relation
between solution and measured data and hence EIT problem is considered an

ill-posed problem[22, 18]. The procedure to find the solution to an EIT problem
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is also known as image reconstruction. The typical block diagram for this is
shown in figure 2.2. In this diagram, the forward solver, based on the process
mathematical model, results in a set of boundary voltages U(~;) for some admit-
tivity distribution «y;. These voltages together with the experimental measured
data set are utilised for the purpose of the inverse solver to estimate an approx-

imation of the unknown admittivity distribution. Incorporating prior knowledge

Forward Solver ]" =

\

]

]

]

|

]

]

[}

U ( ) Experimental Prior :'Y
Vi Measurements Knowledge 5 '

:

]

]

]

)

:

> Inverse Solver }--'

Approximation
of
Distribution

Figure 2.2: Typical block diagram for the EIT Inverse problem.

in the forward and inverse solvers has a vital role on estimating the solution. A
priori information will typically include structural information, and conductivity

values of process materials [23].

2.3 Forward Modelling

Forward modelling provides a critical contribution to the speed and accuracy

of the EIT inverse solver. The Forward modelling concerns the calculation of
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boundary measurements based on a model of the process and its conductivity
distribution. The EIT mathematical model must be a precise translation of the
physical process and in good agreement with experimental tests. The model must
consistently represent the geometry and the effects of the electrode characteristics
[24, 25, 26]. The detailed overview of forward modelling is presented in the

remainder of this section.

2.3.1 Electromagnetic Principle of EIT

To describe the electromagnetic theoretical foundation of EIT, it may be benefi-
cial to explain what it is meant by conductivity and permittivity which describe
a material in terms of its specific electrical behaviour. The conductivity, o, is a
proportional factor between current density, j, and applied electric field, E, in a

relation which is based on Ohm’s law:

j=oE (2.2)

The permittivity, €, is a factor proportional between the electric flux density, D,

to the external electric field intensity. This is given by:

D = ¢F = ¢g¢, E (2.3)

here € is permittivity of free space and ¢, is relative permittivity of the material.
In practice, permittivity is given by an experimentally measurable relative value
¢, which is dimensionless.

In a medium which contains materials with significant conductivity or permittiv-
ity or both of these properties; the relation between electric field, magnetic field,
current density and charge density are linked by Mazwell’s equations [27, 28]. In

the absence of internal current source, the time-variant forms of these equations
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are expressed by:

VXxE= —68—13 Faraday's law (2.4a)
VxH=j+ aa—lt) Ampere’s law (2.4b)
V-D=p Gauss’s law (2.4¢)
V-B=20 No magnetic monopoles (2.4d)

where B is magnetic flux density, H is magnetic field, j is conductive electric
current density in the absence of internal source and p is charge density. The

Time-harmonic versions of these equations are also given by:

V x E = —iwB (2.5a)

V x H = j + iwD (2.5b)

In these equations, w is angular frequency in radian and all vectors and scalar
quantities are phasors. Over a low frequency range, the electromagnetic field is
assumed to be negligible. As a result of this assumption V x E = 0 and for
the electric potential u the expression £ = —Vu is still valid. By substituting
this into equation (2.5b) and taking its divergence, a second-order differential

equation for the potential u is obtained:

V-4Vu=0 (2.6)

where v is called the admittivity of the medium and given by v = o + iwe at
angular frequency w. The real part of v indicates DC conductivity which is the
movements of free charges and frequency independent while the imaginary part
shows a.c. conductivity that is the effect of dielectric property and frequency
dependent. For a particular application it may be reasonable to compare the

real and imaginary parts at a certain frequency. In effect, when o > we then the
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material is more conductive whereas materials are more reactive when o < we.
Based on the values of o and €, of the materials in a particular application, an
appropriate technique may be selected[29)].

Equation (2.6) expresses the main equation for the EIT inverse problem.
This equation together with a mathematical model of the boundary conditions

are known as the electrode model which is the subject of the next section.

2.3.2 Electrode Model

To deliver a unique solution to (2.6) one needs to incorporate an appropriate
mathematical model of the boundary conditions and supply sufficient boundary
restrictions [30]. For accurate modelling it is also necessary to consider issues
including discretisation, shunting effect and contact impedance 25, 31, 21, 32|.
The discretisation is subject of the next section. The shunting effect implies
that the potential on the electrode is constant. This effect can be considered
by equation (2.7b). The contact impedance is effective impedance of interface
between the electrode and the object. This is considered in the (2.7c). The
model which includes all of these issues is usually called the electrode model.
A detailed study of the various models can be found in [25, 31, 26]. The most
accurate model is termed a complete electrode model. This model consists of

equation (2.6) in association with the following equations:

7523 =0 between electrodes (2.7a)
n
ou

y— =1 on the electrode ¢;, [ =1,2,...,L (2.7b)
o ON
ou

u+ zry% =V on the electrode ¢;, | =1,2,...,L (2.7c)

where n is outward unit normal, L is the number of electrodes, ¢; is [th electrode,
I, is injected current to the /th electrode, V} is voltage on the Ith electrode and

2 is effective contact impedance of the Ith electrode. For the existence of a
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solution, the charge conservation law must be included in equations (2.7):

(2.8)

FMh
A~
I
o

For a unique solution it is also necessary to have a common reference for the

electrodes potentials. This can be expressed by:

(-
=

I

o
—~

[N}

Ne]
g

T

In [31] it has been proved that the complete model has a unique solution. This
model is commonly used in EIT forward modelling, for instance, it has been

exploited by many researchers [25, 26, 31, 32].

2.3.3 FEM Discretisation

The Finite element method (FEM) is a numerical method to find an approximate
solution to a set of partial differential equations. Any complicated geometry
of is discretised into the finite number of elements. These elements can have
simple shapes such as a triangle in 2-D and hexahadron in 3-D domains. Each
element is specified by its nodes and faces [33]. In EIT, due to various geometry
and interior inhomogeneities, the FEM is employed to find the solution to the
complete electrode model illustrated in the previous section. FEM modelling for
the 2-D and 3-D EIT problem has already been conducted and can be found in
[32, 34, 35, 36].

There are two main steps to solve a problem with FEM. The first step is to derive
the variational or so-called weak form of the original problem. For this, a partial
differential equation system and all other associated conditions are reconfigured
to form a variational formulation. The next step is to exploit FEM for the

discretetisation of the weak form on a finite domain. The solution of a problem,
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u, can be approximated by FEM as:

ue) =) aidi(x) (2.10)

here N, is the number of nodes and ¢;(x) is the basis function on the i*" node.

The approximation voltage on the boundary electrodes U is described by:

where L is the number of electrodes and n; is a basis function. The basis functions
chosen n; are set to n; = [1,-1,0,...,0]T and n, = [1,0,-1,0,...,0]7 € RIx!
and so on. In the equations (2.10) and (2.11) coefficients o; and 3; are unknown
and must be determined. In [32, 35] it has been proved that by substituting the u
and U in the weak formulation results, the FEM system equations is constructed
as:

Ab=f (2.12)

where b = (a,3)T and a = [y, a0, ,an,] and 8 = (B, B2, -+ , Br_1] and also
f = (0,17 in which 0 is 1 x N,, vector and I = {L-I,,L, —I---, 1, - I},
I, is the enjectted current and [ = 1,--- | L. Therefore, the approximate solution
for the potentials on the nodes and electrodes, b, can be determined by b = A~ f.

In (2.12) the FEM system matrix A is:

B C
cT D
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where[32]

L
B(i,j) = /aAqSi -Agjdr + Z Ziz/ oip;ds (2.13a)
i 1=1 €]

i7j:1727"' 1Nn

/ ¢ids — — ¢zds) (213b)
Zi+1 Jejp
1=1,2 N, j=1,2,--- L -1
L1
Z—/ n;)ids (2.13¢)
z
=1
|€1| . .
)= ]
@ n lej+1] _
21 Zj+1

In equation (2.13a) s is a boundary measure and in equation (2.13c) |e;] is the

area of the jtPelectrode, and 4, j =1,2,---,L — 1.

2.3.4 Forward Solver

The solution to the system equation (2.12) is usually known as the forward
solution. For this, the admittivity distribution v and the injected current must
be known. In (2.12) A is a sparse, symmetric as shown in figure 2.3, as an
example. For the real admittivity distribution, A is real while it is complex for
complex admittivity. This implies the type of methods which can be exploited.
For the real case the Cholesky [34] method gives the exact solution. However, in
the complex case, since A is not positive definite, the Cholesky method cannot be
used. In this case, LU factorisation method [34]is able to provide the solution.
In this method, the matrix A is expressed by two upper and lower triangular

matrices. In this thesis the publicly available 2-D EIDORS suite [37] is selected
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Node index
8

0 50 100 150 200 250 300 350
Node index

Figure 2.3: Sparsity of the FEM system matrix A, where the number of nodes
N,,=381, L=16, the number of matrix elements: 156816 and nonzero elements:
2656.

as the base system to implement the algorithms. There are two reasons for this
selection. Firstly, many researchers report the use of the EIDORS libraries which
imply the validation of this software, for instance, the 3-D EIDORS solution
has been verified by 2-D EIDORS [38]. Secondly, the open source provision of
this package gives the possibility of its convenient adaption to fit a particular
application. In this software, existing Matlab [39] routines for the Cholesky and
LU factorisation are deployed for the real and complex admittivity distribution,
respectively.

To illustrate the solution of the forward solver a numerical example of electric
potential on a circular conductive medium containing an inclusion is considered.
In figure 2.4, which shows the potential distribution when the current is injected
through electrodes 4 and 12. Since the inclusion is more conductive, it can
clearly be seen that the equipotential lines are changed in the location of the
inclusion. This is the reason that the EIT methods are classified as soft-field
tomography. The forward simulation was also conducted for various different
values of the conductivity o and similar boundary conditions. The corresponding

boundary voltages are shown in figure 2.5. This figure shows that the large
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(a) (b)

Figure 2.4: (a) A Conductive disk with o, = .01(S/m) and an inclusion object
with ¢ = 100,, when I = 1A, and with 16 electrodes distributed evenly around
the circumferences, ( the colourbar in S/m), and (b) the potential distribution
(the colourbar in V') (b).
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Figure 2.5: A complete set of boundary voltages for different cases of the system
in figure 2.4 consisting of: the homogeneous medium, o, = .01(S/m) and with
inclusion o, = 100,, and o, = 200,,.

changes in the inclusion object conductivity appear as small potential changes

on the boundary. This is consistent with the ill-posedness of the EIT, that is
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a small error in the measurement voltages may cause a significant error in the

estimated conductivity distribution.

2.4 Measurement Methods

The specific measurement method that relates to the electrodes is an important
issue in EIT systems, since it affects the total time of data collection procedure,
hardware requirements, quality of tomography images and their reconstruction
computation time [40, 41]. There are two principal measurement methods con-
sisting of: four-electrode and multiple drive method.

In four-electrode methods, the current is applied to two eclectrodes and the
voltages are measured on all other electrodes except the so-called excitation ones.
This type of measurement has frequently been used in the form of adjacent and
opposite strategies[41]. In the adjacent strategy, current is applied through two

neighbouring electrodes and the voltage measured from successive pairs. The

L(L-3)

3 . In

number of independent measurements for a system with L electrodes is
the opposite strategy the current is applied to diametrically opposite electrodes,
and the voltages are measured with respect to the reference electrode adjacent to
the current-injecting electrode. This procedure is continued by switching to the
next current electrodes. The number of independent measurements is similar to
the adjacent strategy.

In general, the advantage of four-electrode methods is that they minimize
the errors produced by contact impedance [32]. For both four-electrode forms,
the adjacent method needs minimal implementation hardware.Since the current
density in the periphery of the process is bigger than in the central part, it
gives better sensitivity to the conductivity changes in this peripheral region.
In contrast, in the opposite method the current goes through the central part
of the process and causes larger and more even current density, resulting in

better sensitivity in this region and less sensitivity to changes in the periphery

42, 41, 40).
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The multiple drive method features multiple current sources that excite all
electrodes simultaneously and the voltages are measured on the same electrodes.
Gisser[43] introduced an approach to find an optimum current pattern that re-
sults in maximum voltage difference on the electrodes. He introduced distin-
guishability as a measure of the current patterns’ ability to distinguish between
two conductivities. For two conductivities g, and o9, the distinguishability ¢ is

defined [42, 44] by:
_ [I1R(o)I — R(a2)]]|
Il

5 (2.14)

where R is a function of conductivity, I is current pattern applied to the medium
and ||-|| is L? norm. Equation (2.14) is influenced by several factors including the
injected current, the size and number of electrodes and measurements strategy .
The optimal current pattern can be obtained by maximising the value of (2.14).
However, in practice distinguishability is related to the unknown conductivity
distribution, and hence the best current density cannot be calculated in advance.
Instead, it may be calculated by an adaptive procedure [42, 21]. The multiple
source method gives the most accurate images. Compared to the four-electrode
methods, the hardware complexity and sensitivity to contact impedance are ac-
counted as drawbacks of this method. The errors due to the multiple source

method are discussed in [45, 40].

2.5 Jacobian Calculation

The reconstruction algorithm usually involves the calculation of the Jacobian ma-
trix. This matrix expresses how a small conductivity change within the medium
contributes to the electrode voltages. Thus for its calculation the derivatives of
the electrode voltages must be calculated with respect to the conductivity of each
element. Depending on whether admittivity is real or complex, the Jacobian will
also be different for these two cases. For the real admittivity distribution [32] by

using (2.12) the derivative of voltage vector b with respect to the j** element is
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given by:
b  9A! 0A
b _0ATf _ 4104, (2.15)
Op;  Op; Op;
where
0A(l, k 1 .
—(—')':—_5/ A¢1A¢kd$ ]:L"'vNe ) lakzlv'”7N" (216)
8,0]' Pj Ja,

here N, is the number of elements, and A; denotes the element that the derivative

is calculated with respect to. The sensitivity of the boundary voltages U in

regard to the element j (ng) can then be extracted fromn (2.15). This gives the

7t column of the Jacobian matrix. To complete the Jacobian, this procedure is

repeated on all elements to form the Jacobian matrix J [32]:

U ]‘ U ]1 . ouU ll
9p1  Op2 9pn,

1 1 . 1
aU[ 6U[ dUl
dp1  Op2 pn,

J=1 + (2.17)

k k S
ouU BU] . 3Ul“
dp1 Op2 OpN,

k k K
ovp oy .. 9

[ Op1 Op2 dpn.

where k denotes the k** driving current pattern. In (2.17) each row is called a
sensitivity map, which describes the sensitivity of each element with respect to
the particular measurement. Since J is sparse and ill-conditioned the numer-
ical solution to the EIT inverse problem is unstable. The common remedy to
overcome this problem is the utilisation of regularization which will be briefly
illustrated in the next section.

In the case of complex admittivity, the measurement voltages U are also com-
plex and both conductivity and permittivity contribute to the real and imaginary

parts of the electrode voltages. Therefore, the Jacobian can be formed as (38, 46):
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Ji Jr
J = (2.18)

i Ji
where J7 and Jy are the sensitivity of real part of U in respect to the conductivity,
and permittivity, respectively, and J{ and J} are the sensitivity of the imaginary

part of U with respect to the conductivity and permittivity respectively. These

are expressed by:

Jh = %’i (2.19a)
Jp = % (2.19b)
Jj = % (2.19¢)
Jé = % (2.19d)

In the 2-D EIDORS, in order to solve forward and inverse problems, the real
and imaginary parts of admittivity of elements are formed in one vector as v =
[0 ¢ € R?Ne  and similarly for the measurement voltages as U = [Up Uj] €
R?M | By these formulations, the real and imaginary images are embedded in one

reconstruction procedure.

2.6 EIT Image Reconstruction

In this section the basics of EIT image reconstruction, and also an overview of
typical algorithms, are briefly described. The importance of image reconstruc-
tion is that the images contain information on the distribution of the constituent
parameters, and thus their correctness is of crucial importance both quantita-
tively and qualitatively. In EIT, the deterministic observation model given by

(2.1) can be rewritten for the EIT inverse problem as:

Vineas = U(7) + v (2.20)
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here Vi,cqs is the measurement potential vector on the peripheral electrodes; U is
the forward model that gives the computed boundary potential for some admit-
tivity distribution ~; and v denotes the additive noise and measurement error.
The unknown vector v must be estimated such that the potential V},..s on the
electrodes matches the ones computed by the forward model. The conventional
method for this is to find 7 such that it minimizes the least square error expressed

by [32, 47]:

E(Y) = ||Vineas — U(M)|> (2.21)

where U(7) and Vjees € RM and M is total number of measurements. Due
to the ill-posedness of EIT problems the methods of (2.21) do not lead to a
stable solution. To overcome this difficulty, regularisation techniques must be
exploited. A popular method for this is the regularised Gauss-Newton method
[48]. An alternative approach is to use the conjugate gradient method, which
inherently applies regularisation through their iterative procedures (34, 49]. In
addition to its ill-posedness, the EIT problem is also non-linear, and thus U(y)
must also be linearised.

Based on the admittivity contrast, the methods for EIT inverse problemns can
be classified into two main categories. Problems with small admittivity contrast
are usually solved by a one-step computation, while the iterative methods are
exploited where the admittivity variation is large. The solution to these two types
of problems have been widely studied in the literature and different methods have
been presented for example in [32, 23, 48, 47, 50, 51, 34, 52, 1, 21, 53, 54, 55].
A typical example, for the first category, is the one-step Newton method which
is deployed, for instance, in NOSER [47], and for the second category are non-
linear Tikhonov regularised Gauss-Newton and non-linear Conjugate gradient
methods. In this research, the non-linear Tikhonov regularised Gauss-Newton
method has been utilised for the reconstruction purpose. The reconstruction

using this method is much faster than that of non-linear Conjugate gradient
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method [34]. In the following section, the Tikhonov regularised Gauss-Newton

method is briefly illustrated.

2.6.1 Tikhonov Regularised Gauss-Newton Method

This method is one of the most common methods in the EIT inverse problem.
The main advantage of this method is the capability of incorporating a priori
information about the problem solution [18]. For large variation of admittivity,
the non-linear form of this method can be utilised to minimize the regularised

form of (2.21). This is expressed by the function E(v) as [32, 48]:

E() = |Vimeas = UMNI* + a | L(y = 70)||* (2.22)

where «a is regularisation parameter, L is the regularisation matrix, and v is
the initial prediction for the admittivity vector. The problem (2.22) is solved
iteratively. In each step the problem is linearised in the neighbourhood of the
admittivity distribution of the previous step, and the forward approximation U
and Jacobian matrix J are updated. Thereby, at the (i + 1) step U(vi41) can

be linearised by substituting its approximation around =; as:

U(vir1) = U(vi) + J(Yie1 — %) (2.23)

Here J denotes the Jacobian at the i** step. Therefore, the linearised form of

(2.22) can be written as:

~

2
E(1) = || Voneas = T || + @ L (321 = 2011 (2.24)

where V,eas = Vineas — U (i) + J7;. At each iteration the solution to the equation

(2.24) is given by:

Vit =%+ (ST +aLTL) I (Vaeas = U(m)) — aL'L(% — )] (2.25)
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The iterations are usually terminated by evaluation of Morozov’s criterion, de-
fined by ||Vineas — U(Y)||> < Er, where Er is the level of measurement noise.
In practice, to perform iteration (2.25) one also needs to estimate the initial
admittivity distribution. However, this is unknown in most applications. For a
homogeneous distribution it has been shown that -y can be determined by using
Vimeas and minimization of ||Vieas — U (’70)”2 (32].

The above reconstruction method results in the absolute admittivity distribu-
tion. In general, any method for absolute reconstruction is known as absolute
or static imaging. This type of imaging also delivers the structural information
regarding the features inside the process.

In the linear case, where the admittivity changes are small, the absolute ad-
mittivity can be reconstructed provided that the the initial distribution is known.
Alternatively, the admittivity changes can also be reconstructed. This is known
as difference imaging, in which the tomography images are reconstructed by util-
ising two measured data sets at two different instants of time [56]. This type of
imaging is an alternative way of estimating the initial admittivity distribution.

The linear EIT inverse problem is defined as:

5V = 6U = Jbv (2.26)

In this equation 0V = Vo—V}, 8U = U(v2)—U(m) and 8y = y2—=;. One of these
two points is considered as a reference at which the Jacobian matrix must also
be calculated. The solution, 8+, for the minimization of function ||V — Jov||

is obtained by the regularisation method and expressed by:

oy =(J"J+al"L)y " JT6v (2.27)

In both linear and non-linear cases, « is very important in the performance of
the reconstruction. By setting an appropriate regularisation factor the effect of

the regularisation can be traded off for the influence of the measurement noise
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on the solution. The methods for the selection of the regularisation parameter

are discussed in [18, 35].

2.7 Quasi-static and Multi-frequency Imaging

In a similar way to difference imaging, the tomography image can be recon-
structed by taking the measurements at two different frequencies, one of which
is considered a reference image. The resulting image therefore, does not show
features that do not have frequency-dependent characteristics; and parts with
greater changes appear with higher contrast. This type of imaging was initially
introduced for medical EIT in [57] and is known as quasi-static.

In multi-frequency imaging, the frequency-dependent behaviour of process
features are investigated, but here it is necessary to perform measurements over
a range of frequencies. In principle, these measurements would be performed
within a very short time interval, such that the process features remain iden-
tical over the interval. The values of tomography images may then be used to
estimate the parameters of an appropriate model, for instance, the Cole model
[58] for liquid chemical substances, which has also been used in medical EIT to
characterise tissues in spectral terms[11, 59, 12, 60, 61]. The multi-frequency

methods will be reviewed in the next chapter.

2.8 EIT Hardware

The general block diagram of an EIT system structure is shown in figure 2.6. In
order to collect a set of measurements, the process peripheral electrodes are linked
to either the excitation or measurement circuitry by multiplexers controlled by
the control system. This is conducted according to the defined measurement
protocol as described earlier in section 2.4. Due to its relative simplicity, the
single- source approach has been widely used by researchers, for instance, in

[59, 41, 62, 63, 64]. In this method, the current waveforms are distributed to pairs
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Figure 2.6: Basic block diagram of EIT system.

of electrodes through switching multiplexers, and consequently measurements are
collected on the rest of electrodes. The measurements can be conducted either
sequentially or in parallel. The sequential system needs less hardware, but the
drawback is that its total acquisition time is much longer than that of parallel
systems.

In the multiple-source method, however, the number of sources and electrodes
are equal and each electrode can have different current value according to the
current pattern [65]. The patterns is usually designed to perform optimal experi-
ments [21]. These systems are more complex in comparison with the single-source
method. Multiple-source systems have been used in a small number of research

projects, for example, in [66, 67, 68].

2.8.1 Electrodes

Sensor electrodes in an EIT system must be in electrical contact with the medium
inside the process. The electrodes’ size and their positioning are important fac-
tors, since they affect the accuracy of measurements and in turn the reconstructed
images. In EIT systems the electrodes are usually of equal size and also the same

electrodes are utilised for excitation and measurement. Further details on the size
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of electrodes can be found in [30] and also various types of electrode structures

have been introduced in [40, 69)].

2.8.2 Signal Generation

Owing to the influence of signal quality on the performance of the current source
and consequently on the quality of the measured data set and reconstructed
images, signal generation is considered an important element in EIT systems.
The signal generator must provide a stable signal in terms of amplitude and
phase during the data acquisition time. The signal must also be spectrally pure
and preserve the required specification over its frequency range (70, 71].

The most recent EIT systems are designed by using a direct digital synthesis
(DDS) device as the main core of a highly stable and accurate signal generator.
For example [64, 16] report DDS-based signal generation controlled by a digital
signal processor (DSP). The basic block diagram of the DDS signal generator [72]

is shown in figure 2.7. As the diagram shows, the phase accumulator increments

. Angle to
Tumr}l& Word Amplitude o DAC fo
Converter

Ref. Clock ( ;)

Figure 2.7: Basic block diagram of the DDS generator.

its value by a phase step in each clock pulse. The output of this accumulator
is then translated to the amplitude information of the sine wave. This is then
converted to the analog signal by the output digital to analog converter (DAC).

The output frequency f,,: can be determined by :

(2.28)

here M is the frequency tuning word in binary, N is the length of the phase

accumulator and f, is the clock frequency.
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Available DDS devices provide the possibility of tuning to a micro-hertz res-
olution. They also offer fast in tuning of output frequency. Furthermore, ageing
and temperature drift don’t affect the output frequency. For instance, devices
such as AD9856 and AD9852 have high performance, functionality, small size
and reasonable prices [72, 73].

As discussed later in the chapter 3 the Chirp form was selected as the ex-
citation signal. To generate this signal the DDS technique has been used. The
structure of the Chirp-based system will be described in Chapter 6 where the

details of an experimental feasibility study will also be described.

2.8.3 Current Source

The current source is a circuit that theoretically is able to preserve the current
inside a load without any dependency on the load itself. This is, however, practi-
cally achievable only when its output impedance is infinity [74]. In EIT systems
for the same reasons as mentioned for the signal generator, having a current
source with high accuracy and stability over the load dynamic range and also
frequency range is highly desirable. In practice, due to non-ideal behaviour of
electronic devices and stray capacitances, it is not possible to build a current
source having an ideal infinite impedance. They are, therefore, built such that
they meet the requirements for a specific application. The typical values for
industrial applications are given in [1]. In these applications, the current source
is required to be applicable to a wide range of conductivities and also the cur-
rent amplitude is different depending on the application, for example 30 mA as
reported in [41]. In medical EIT, however, the range of conductivity of human
tissues and also patient safety are limiting factors for the design of the current
source. They are designed to supply typically 0.1 — 5 mA amplitude and have
adequate output impedance to deliver current to loads in the range of 100 Q-10

k(2 [65].
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In addition to the above specifications, the current source must be stable over
the desired frequency range. This is more important for the multi-frequency EIT
(MFEIT) systems. The MFEIT methods will be presented in the next chapter.

In general, there are two main methods to implement a current source for
EIT systems: voltage-controlled current source (VCCS); and current sense con-
trolled voltage sources (CSVS) [70]. The most commonly used category is the
VCCS, in which ideally the output current must linearly follow the input voltage
and remain stable over load and frequency range. These current sources are con-
structed using either high quality operational or transconductance amplifiers.

A variety of designs have been reported. Figure 2.8 shows some examples of

VCCS circuits.
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Figure 2.8: Examples of VCCS: (a) floating load current source, (b) supply-
current sensing current source, (¢) Howland current source and (d) dual op-amp
current source.

Floating load current source, shown in figure 2.8a, is a simple form of the

VCCS current source. The load in this current source can be coupled by using
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a transformer. In medical applications this is necessary due to safety reasons
[65). This circuit cannot be utilised for an earthed load, or where a multiple-
current-source system is needed [75]. Figure 2.8b shows a supply-current sensing
current source [76, 77]. In this current source the change in load current is
mirrored to the inverting input of the op-amp, and therefore the load current is
adjusted accordingly. The output impedance of this type of current source was
reported to be about 290 KQ at 160 kHz. Cook [67] has also reported a high
precision VCCS compensated by a network parallel to the load and controlled by
computer. Thus, the output impedance of the current source was better than 50
MQ at 30 kHz. However, its major drawback is that it has limited bandwidth.
A high bandwidth modified Howland current source for medical application was
reported by Ross [78] and is shown in outline in figure 2.8¢c. It is compensated
by using a generalized impedance converter (GIC) in parallel with the output
load. This approach results in a simulated output impedance better than 2
G$ over the discrete frequencies between 100 Hz and 1 MHz, while the biggest
experimental impedance was 143 M2 at 1 kHz. The major disadvantage of this
method is a long procedure of current adjustment. This makes it difficult to use
this current source with a multi-frequency EIT system. The modified Howland
current source was also utilised in the Sheffield MK3.5 system [79]. The current
source delivers a peak-to-peak current of approximately 850 pA for simultaneous
frequency excitation, and has a maximum output impedance of 750 k2 at 10
kHz. Dickin and Wang [41] also developed a dual op-amp current source, shown
in outline in figure 2.8d, for industrial application. Their design is able to deliver
30 mA peak-to-peak current over the discrete frequency range between 75 Hz
and 153.6 kHz and the maximum output impedance was 2.5 M) at 76.8 kHz.
Some researchers report the use of transconductance amplifiers. The advan-
tages of using transconductance amplifiers are less peripheral circuitry, stability
over frequency and load range. They have also wide bandwidth and thus the

possibility of application to both sequential and simultaneous MFEIT systems.
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Their disadvantages are the limitation of the output impedance and maximum
output current. Yerworth [13] reported a current source using CCIIO1, in UCLH
Mark 1b, which operates from 225 Hz to maximum frequency 77 kHz with out-
put impedance (537 kS || 28 pF). The operational amplifier AD844 [80] has also
been used to build the current source, for instance, in [81, 62, 64]. In this wide-
band amplifier the slewing (TZ) pin provides a high impedance node accessible
for compensation purposes. This special internal structure make possible the
use of AD844 as a VCCS. Casas [62] designed a current source by employing
the AD844 for the frequency range between between 10 kHz and 250 kHz. The
output impedance was greater than 1 M in parallel with 5 pF capacitance [81].
Wang[64] also used a AD844 in his EIT system. To achieve higher output cur-
rent a parallel structure of eight AD844s have been implemented. The output
impedance was about (750 k2 || 18 pF).

Voltage sources have also been employed for the EIT excitation. In this
approach, the electrodes are driven by a voltage source and the input current
is rapidly sensed to control the amplitude of the input voltage accordingly. For
instance, Hartov [82] achieved a bandwidth of 12.1 MHz by using AD817 as
a voltage driver. Employing a voltage source has the advantages of simpler
implementation and less sensitivity to noise [83, 84]. This method, however,

inherently cannot be used for the simultaneous multi-frequency system.

2.8.4 Data Acquisition

The data acquisition block of figure 2.6 provides the necessary measurements
with sufficient accuracy. As the figure shows, the acquisition block has two
essential parts: the voltage measurement circuitry and the demodulation part,

which are briefly given in following sections.
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2.8.4.1 Voltage measurements

The main factors influencing the design of the measurement circuitry may be
summarised as: dynamic range, common mode rejection ratio (CMRR), suffi-
cient gain and bandwidth and also noise consideration. Most EIT systems exploit
the four-electrode measurement technique, where two electrodes are utilised for
current excitation, and the others for the differential measurement. This method
may decrease the dynamic range of voltages which impacts the specifications of
the electronics, for instance, the CMRR of differential amplifier, the dynamic
range of ADC and required gain (85, 86, 41, 65]. In addition, for an MFEIT sys-

tem, it is required that the above features are stable over the desired bandwidth.

2.8.4.2 Amplitude and phase demodulation

The excitation signal in EIT is usually an ac sinusoidal current. In the mea-
suring side, the sinusoidal measurements are demodulated in order to provide
the required data sets for the reconstruction of the tomographic images. De-
pending on the purpose of the EIT system, the amplitudes, phases shift or both
can be extracted. The most commonly used method exploited in EIT is digital
synchronous demodulation. This technique is based on matched filter theory. It
may be proved that such demodulators maximize signal to noise ratio(SNR) if
the noise is Gaussian. An advantage of this technique is that it can be imple-
mented using a digital signal processor (DSP) that gives the advantage of efficient
measurement control by software. To implement this method, each measurement
is multiplied by a reference sinusoidal waveform and its quadrature counterpart,
and then averaged over a certain number of samples. This procedure results
in real and imaginary parts of measured voltages which are used to determine
the amplitudes and phase shifts. A simpler version of digital synchronous de-
modulation was implemented in [82] by direct calculation of phase shift using
simultaneous sampling of reference and measured signal. The detailed theory of

this method is illustrated in [87, 88].
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2.9 Conclusion

In this chapter an overview of EIT system has been given. It described a typical
procedure for EIT problem including forward and inverse solvers. Then, it has

briefly explained the typical EIT hardware.
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Chapter 3

Wideband Excitation Signals for
MFEIT

3.1 Summary

This chapter is devoted to the excitation signals for MFEIT. First, a review of
previous multi-frequency systems is presented. Key factors in the selection and
design of excitation signals are then addressed in terms of the characteristics
of the various wideband excitation signals that could be used for simultaneous
spectral and spatial tomography measurements. Signals investigated include:
Pulse, Sinc, Maximal length pseudo random binary sequence and Chirp forms.
Their features are presented in terms of a response simulation on an electrical

network. Finally, a concluding comparison of the wideband signals is presented.

3.2 A Review on MFEIT

A number of arrangements have been investigated and described in the literature.
Here we review comparative papers including their stated application interests.
Demonstrations of significant frequency dependent behaviour in live tissue, in
response to a sinusoidal signal, have motivated trials of multi-frequency EIT

for medical applications [57, 56, 89]. Griffiths highlighted the advantages of
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multi-frequency imaging by utilising data obtained at two frequencies to enhance
static images of an abdominal cross-section. Others report the use of MFEIT in
order to characterise and aid diagnosis of particular disease conditions. Brown
[12] has explored multi-frequency imaging of respiratory changes; Soni et al [61]
have used MFEIT for breast cancer studies; and Romsauerova et al [90] have
explored multi-frequency examination of an adult head. Few publications report
industrially based trials. The potential of multi-frequency signals for industrial
process tomography was reported by Beck et al [6]; Barlow et al [91] reported a
study of a mixed mineral suspension using four-electrode impedance spectroscopy
and concluded that it may be possible to reconstruct composition data map
subject to the availability of adequate multi-frequency data over the desired
frequency range. Zimmermann et al [92] has also reported the use of the MFEIT
for soils and sediments analysis.

Table 3.1 provides a summary of reported MFEIT systems. The highest
bandwidth features in the system reported by Hatler et al [16] while is able
to sense data from signals whose frequency can be selected continuously up to
10 MHz. Most systems in the table employ similar excitation methods which
are able to apply single source in a discrete sequential manner over the desired
frequency range. Two systems are able to deliver measurements simultaneously
at different frequencies. They have exploited compound sinusoidal signal as
excitation. The Barcelona system [59] is reported as able to simultaneously
excite and sense voltages at two selectable frequencies up to 1 MHz. The Sheffield
Mk3.5 [93] system is support measurements at 30 discrete frequency points from
2 kHz to 1.6 MHz simultaneously. As indicated in the table 3.1 most MFEIT

systems are intended for medical applications.
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Table 3.1: Summary of available multi-frequency EIT system (M: Medical, I:
Industrial, SS: Sequential Sinusoid and CS: Compound Sinusoid).

Authors System name [Application| Frequency range |Method|Image/Sec
Riu[59] Barcelona M 8 kHz-1 MHz CS n/a
Blad(75] Lund M 1 kHz-1 MHz SS n/a
Zhu[66) OXPACT-III M 10 kHz-160 kHz SS 25
Record[84] Keele M 10 kHz-3 MHz SS 4.8
Casas[62] TIE-4sys 10 kHz-250 kHz | SS 25
Dickin[41] | Manchester 8 kHz - 1 MHz SS 25
Metherall[93] | Shefield MK3b M 9.6kHz-1.2 MHz SS 33
Primrose|[63] ITS 2000 I 75 Hz- 153.6 kHz | SS 25
Hartov(82] n/a M 1 kHz-1 MHz SS n/a
Wilson[79] [Shefield MK3.5 M 2kHz-1.6 MHz CS 25
Arpinar[94] n/a M 10 kHz-100 kHz SS n/a
Yerworth [13]{UCLH Mark 1b M 225 Hz and 77 kHz| SS 3
Halter [16] n/a M 10 kHz-10 MHz SS n/a
Qiu [95] ITS M3000 I 1 kHz-15 MHz SS 25
Wang [16] ITS 28000 I 10 kHz-320 kHz SS 1000

3.3 Design and Selection of Wideband Signals

The MFEIT systems are implemented with a consideration of data acquisition
and processing, to satisfy application process dynamics. In medical applica-
tions dynamic issues may be concerned with patient motion, in the industrial
case they arise , for instance, due to motion of component materials. Thus, the
multi-frequency of any spectral study must be capable of delivering excitation
and sensing data within the desired frequency range and within an acceptable
time period so as to capture application dynamic data. The design of an optimal
excitation signal is therefore highly desirable.

The MFEIT approaches which rely upon a staggered set of discrete frequency

signals are intrinsically slow and this will inevitably limit applications to those
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which have correspondingly slow dynamic features. In contrast the speed and
accuracy of modern electronic devices and new approaches offer the possibility of
wideband signals which promise improved performance in multi-frequency sys-
tems. For optimal performance a signal must be selected and tailored to suit the
application, including known aspects of the process used and its constituent ma-
terials. The type and specification of an excitation signal will influence its spec-
tral content, the overall speed of data acquisition, the signal analysis necessary
to recover useful measured data, and the hardware and software implementation
and resulting system costs. The detailed design of the signal must address its
type, bandwidth, spectral resolution, duration and amplitude.

The bandwidth of the excitation signal can be set from the process maximum
and minimum relaxation time: 7,,,; and 7.,;,, respectively. Bandwidth Aw for

the excitation signal can then be inferred [96] from the inequality:

(87
<Aw< 2

1 Tmax Tmin

(3.1)

where a; and ay are arbitrary factors that include appropriate margins to set
the bandwidth so that it exceeds that of the process.

The spectral resolution requirement is linked to the needs of a particular ap-
plication in terms of the need to extract specific process changes or a material
identification from a spectral signature.

Figure 3.1 shows a hierarchical classification of the multi frequency methods
based on the type of excitation signal. The excitation can be applied either in
form of discrete sequential Sinusoid waveform or using the simultaneous form.
Most of the MFEIT systems reviewed above use the first approach: in which one
value from a discrete set of signal frequencies covering the selected bandwidth is
selected, and the data acquisition procedure is then repeated to cover the range,
typically in increasing order. This method is the simplest form of MFEIT. The
corresponding hardware structure can be a simple development on a conventional

single frequency EIT system, provided that the electronic subsystems are pro-
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grammable and are able to extend to the required bandwidth.

Multi-frequency methods

Discrete Sequential Simultaneous

Sinusoidal Multi sinusoidal Wideband

Pulse Sinc PRBS  Chirp

Figure 3.1: Hierarchy of multi-frequency methods.

A simple MFEIT, using the discrete sequential approach of figure 3.1, would
therefore have to offer sufficient spectral points to provide the requisite resolution.
Thus this method will be very time consuming and it is not applicable to process
with fast dynamic.

To overcome these disadvantages the simultaneous MFEIT methods of figure
3.1 may be deployed. Their common approach is to deliver measurements over
a spectral range coupled with the prospect of adequate dynamic performance.
The Multi-sinusoid method noted in figure 3.1 is implemented by summing a
number of separate sinusoidal signals at different frequencies to form either a
composite signal, or a set of composite signals which can be used in sequence.
Examples are described by [93] in their MK3a and MK3.5 systems. The wideband
signals classified in figure 3.1 have the intrinsic capability to deliver broad spectral
information. These signals include: Pulse, Sine, Pseudo random binary sequence

(PRBS) and Chirp.
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3.4 Signals for Simultaneous Multi-frequency Ex-
citation

The features of the MFEIT simultaneous methods summarised in figure 3.1, and
their advantages and disadvantages, are explored in detail in the following sec-
tions. The first sections deals with the Multi-sinusoid method and the following
sections address the four wideband methods: namely the Pulse, Sinc, PRBS, and

Chirp methods respectively.

3.4.1 Multi-sinusoid Signal

The Multi-sinusoid signal is a deterministic, periodic signal produced by the
summation of several sinusoid waveforms at desired frequencies. It can be defined
as:

N
s(t) = Z A, cos(wnt + ¢,) (3.2)

n=1
where N is the number of frequency components, A; is the amplitude, w, is
angular frequency and ¢; is phase at each sinusoidal component. The Fourier

transform of this signal is:

N
Sw) =71 Axf6(w — wn) + 6(w + wy)] (3.3)

n=1

This signal therefore delivers a flat spectrum at each of the different frequencies
provided that they have equal amplitudes. However, in the time domain, due
to frequency and phase differences between sinusoidal components, the summed
waveform contains large peaks and low amplitude points. These features can be

described for a specific waveform in terms of its crest factor, defined in [97] as:

(3.4)

CT‘ — ].OIOg (Smax - Smin)

2E1‘1718
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where E,,s = \/ Z:’:] A2/2 is RMS value and S,,,, and Sy, are the largest

positive and negative values of s(¢). From equation (3.4) the Multi-sinusoid sig-
nal has a bigger crest factor C, than that of the original components. A high
crest factor causes problems in both excitation (input) and measuring (output)
subsystems. In the excitation subsystem peak amplitudes may exceed the dy-
namic range of the input electronics. It may not always be possible to resolve this
by scaling because of the resulting degradation of the small amplitudes. In the
measurement subsystem a high crest factor degrades SNR of ADC stage which
will probably be used. Figure 3.2 shows an example input and output voltage
waveform from a simulation first order low pass RC network with a relaxation
time 7 of 107° s. The input signal was the composite signal formed by summing
20 sinusoidal waveforms with frequencies from 10 kHz to 200 kHz with zero ini-
tial phase difference in equation (3.2). In this example, the crest factor of the
Multi-sinusoid waveform increased from 3 dB for each of the original components

to 11.93 dB.
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Figure 3.2: Two periods of the input multi-sinusoid and output of RC network.

Due to these impacts, the minimization of crest factor is important. Practical
methods to minimize crest factor have been described in [98, 97, 99]. For instance

Schroeder [98] presents a simple expression to determine suitable phase values
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for such equal amplitude sinusoid components, given by:

2
o = 1 — n"N; 2<n<N (3.5)

where, ¢, is the phase of n'* component. Figure 3.3 depicts the effect of
applying the Schroeder method to the example described above whose input-
output waveform is shown in figure 3.2. As illustrated the crest factor is reduced

to 4.4 dB, a 7.53 dB reduction. In Multi-sinusoid excitation the measurement

Vin, Vout (V)

0.1 0.2
Time(ms)

Figure 3.3: Two periods of the input multi-sinusoid with Schroeder phase and
corresponding output of RC network.

duration is defined by the component with minimum frequency. To perform
demodulation with adequate SNR performance it is also necessary to inject a
minimum number of waveform cycles. The demodulation of this waveform is
usually carried out by using appropriate filtering for a particular component
followed by digital synchronous demodulation [88]. The major limitation of this
signal is that it is not possible to add arbitrary number of sinusoidal waveforms
together. A solution to this drawback was employed in [79]. In their MK3.5
system a hybrid method of simultaneous and sequential excitation was employed
to increase the number of excitation frequencies. This approach increases the
total measuring duration and the system complexity needed to implement the
staged injection. Due to limitations mentioned above, high frequency resolution

may not be achievable with this type of excitation. This disadvantage makes
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the multi-sinusoid waveform less attractive for the applications that need fine

spectral information.

3.4.2 Pulse Signal

The rectangular pulse is defined [100] by:

1. [t| < T/2
s(t) = (3.6)
0. lt| > T/2

where, T is the duration of pulse. The Fourier transform of the pulse is:

S{w) = TSz'nc(g) (3.7)
2n

Equation (3.7) implies that the frequency spectrum of the pulse becomes flat
when T is very close to zero, in essence as the pulse tends to the delta function.
In practice, implementation limitations mean that the magnitude spectrum will
decrease with frequency. Figure 3.4 shows time and frequency domain response
of a low pass network with relaxation time 7 of 1 ms to a rectangular pulse with
duration T of 1 ms. The function of equation (3.7) and the example shown in
figure 3.4 demonstrate that the Pulse signal contains all frequencies within the
range: . #] Hz. They also indicate the inverse relationship between the pulse
duration and its bandwidth. From a signal design viewpoint they demonstrate
that. to achieve a specified bandwidth, the duration of pulse must be modified,
which in turn will affect the signal energy. To improve SNR it is therefore neces-
sary to increase the amplitude of the pulse. In practice, this may not be always
possible due to hardware dynamic range limitations and possible non-linear ef-
fects: the application process also may impose amplitude limitations. A further
design disadvantage is the difficulty of adjusting the bandwidth for desired fre-

quency range. The Pulse signal also includes a non-zero DC component which
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Figure 3.4: Pulse Excitation: time-domain waveforms (a) and frequency-domain
magnitude (b).
may be undesirable. Several of these disadvantages may be avoided through the

use of a modulated form of the pulse signal described in section 3.4.5.

3.4.3 Sinc Signal

The inverse relation of time and frequency domain suggests that the Sinc function
can also be employed as an excitation in EIT system. This excitation function

can be written [100] as:
W, Wi
s(t) = -Q—ﬂ_Smc(—Qﬂ ) (3.8)
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sin(wz)

—— and W is a parameter to adjust the main lobe of s(t).

where, Sinc(z) =
Its Fourier transform is given by:
1, lw| < W/2
S(w) = (3.9)
0, lw| > W/2
Figure 3.5 shows an example of the time and frequency domain response of a
low-pass network with relaxation time 7 of 1 ms to a Sinc signal with parameter

W value of (2 x 10*). As shown the desired flat frequency response is achieved
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Figure 3.5: Sinc Excitation: time-domain waveforms (a) and frequency-domain
magnitude (b).

and this offers a major advantage over pulse excitation. Unfortunately the Sinc
signal has similar disadvantages to that of the Pulse. When W is increased (in
the limit to infinity) the amplitude of the main lobe of the Sinc signal increases,

but its width is reduced. In the frequency domain S(w) is unity for all frequencies
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in the bandwidth. As noted above, it is not possible to make W arbitrarily large.
Hence in terms of signal design it may be difficult to adjust the bandwidth and
also obtain a requisite value of SNR by increasing the amplitude of the Sinc
signal. Implementation is straightforward; for example as suggested in the design

in [101].

3.4.4 Pseudo Random Binary Signal

The pseudo random binary sequence signal (PRBS) is a well known, determin-
istic, wideband signal which has been commonly proposed for system identifi-
cation [102, 103]. PRBS Signals are typically generated from a maximal length
sequence, which includes all combinations of digits in a given modulo-2 word,
except the zero value. Such sequences can be generated using a shift register
with appropriate feedback. An example of maximum length PRBS(ML-PRBS)
is shown in figure 3.6. For n binary register elements, the sequence length L (of

modulo-n combinations) is thus given by: L = 2" — 1.
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Figure 3.6: An ML-PRBS generator block diagram for n=10.

Since all combinations, except one, are present the average amplitude of the se-
quence is close to zero. The signal also has the valuable minimum crest factor
of unity. In signal design terms the characteristics of the maximal length PRBS
(ML-PRBS) signal can therefore be controlled by n and the sampling frequency

fs as determined by Nyquist considerations. The frequency range limits, f,q,
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and f,,, can thus be calculated by:

fs

fmaI = 5 (310)
_Js
fmin = z‘ (311)

The minimum frequency is also the frequency resolution. The bandwidth of this
waveform covers a range from a very low frequency to half of f, . Thus, concen-
trating the energy of signal on the desired frequency band is not possible with
the ML-PRBS. As an example figure 3.7 shows the response of a RC network
with a relaxation time 7 of 10~°ms to a ML-PRBS signal generated with pa-
rameters of sampling frequency fs of 2 MHz generated from a maximal length

sequence of n of 10. The most important advantage of ML-PRBS is that its
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Figure 3.7: A portion of the input ML-PRBS and corresponding response of a
RC network with 7 = 107°.

autocorrelation function is a close approximation of the delta function providing
that the sequence is long. It can be shown that the cross-correlation, R,,(t) of

input with output signal can be defined as:

Ray(t) = h(t) * Ra(t) (3.12)
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where, * denotes linear convolution and R..(t) is the autocorrelation function.
For the ML-PRBS signal R,,(t) = Ad(t). By substituting this expression in
equation (3.12) the impulse response of the process can be determined {102, 104]
as:

h(t) & <~ Ruy(t) (3.13)

> =

where, X is given by : A = | Z  Rzz(t) . This is the simplest method leading
to a good estimation of the process, provided that the sequence is long. It may
be also possible to use methods based on the least square minimization [103].
Since this would be time consuming for a MFEIT system, the method based on
equations (3.12) and (3.13) may be preferred.

Since the ML-PRBS signal delivers more energy to the process during mea-
surement the method should offer a good SNR. The SNR can also be improved
by using a longer length sequence at the expense of an increase in measurement
duration. Employing a ML-PRBS signal will thus overcome the disadvantages
of the delta or short pulse function discussed above. Figure 3.8 depicts the auto-
correlation of the ML-PRBS signal shown in figure 3.7, and the cross-correlation
of output of a RC network with the input signal.

The spectral analysis, for example via a Fourier transform, can be utilized
to calculate the spectral information and the transfer function of the process.
For example figure 3.9 shows the magnitude of Fourier transform of the cross-
correlation function and provides an estimation of the process transfer function
from equations (3.12) and (3.13).

Implementation of the ML-PRBS signal is straightforward. As it is periodic,
it may be possible to perform a test with a signal composed of one sequence
period. The duration of the measurement for one period T = f , varies depend-
ing on the length of the sequence and sampling frequency. The sequence length
must be long to produce the impulsive autocorrelation function upon which the
estimation process depends. This may produce a disadvantage in a long mea-

surement time. A further disadvantage is that it is not simple to adjust the
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Figure 3.8: Correlation functions: auto correlation of input (a) and auto cross
correlation of input with output of RC network (b).
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Figure 3.9: Analytical and simulated magnitude of the transfer function of the
RC network using the Fourier transform of the cross correlation shown in the

figure 3.8(b).
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bandwidth to suit a particular process frequency range. From equations (3.10)
and (3.11), since the bandwidth of this excitation starts from very low frequency
up to the maximum half a sampling frequency, it is not possible to concentrate
the energy of this signal over desired frequency range.

The advantages of the ML-PRBS signal make it an appropriate candidate for
electrical impedance spectroscopy, when simultaneous measurements are needed
over a wide frequency range. This signal has been used for electrical impedance
spectroscopy in studies of long bone features by [105]. For accurate estimation of
the transfer function for each measurement channel in an EIT imaging system,
based upon the processes defined by equations (3.12) and (3.13), it may necessary
to increase the length of sequence, or apply a number of sequence periods of the

signal to the process, leading to an increase in the measurement time.

3.4.5 Chirp Signal

The Chirp, or frequency modulation signal, is well-known in sophisticated sensing
applications such as Radar [106]. The appropriate forms of this signal for use
with EIT are linear and logarithmic Chirp. The linear form of this signal is given
by:

s(t) = Acos[2n(fot + 16t?)), 0<t<T (3.14)

where, fj is the initial frequency and S is frequency change rate given by

_BW _fi—fo

g T T

(3.15)

where BW is the bandwidth of the chirp. The equation (3.15) ensures the final
frequency f; is attained at time 7. The instantaneous frequency of the chirp is

defined by:
1 dg(t)

fi= o dt Jo+ Bt (3.16)

where ¢(t) is the phase of the chirp. The equation (3.16) indicates the linear

variation of the frequency over the Chirp duration, T', as shown in figure 3.10a.
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Figure 3.10: Time-frequency characteristics of Chirp: linear Chirp (a) and lo-

gorithmic Chirp(b).

The logarithmic form of the Chirp is given [39] by:

s(t) = Acos[f—"% -1)], 0<t<T (3.17)

where frequency change rate is: § = (%) The instantaneous frequency of the

logarithmic Chirp is defined by:
fi= fof8 (3.18)

This equation indicates the logarithmic variation of the frequency over the Chirp
duration, T, as shown in figure 3.10b.

Both Chirp forms described by equations (3.14) and (3.17) express an up-
sweep Chirp, where f; < ff, but for down-sweep Chirp fo > f;. The Chirp
parameters may thus be designed so that it continuously sweeps the desired
frequency range.

In the Chirp waveform the modulation spreads the energy over the desired
bandwidth. This eliminates the drawbacks of other waveforms in the previous
sections. The crest factor of this waveform is \/ﬁ, which is equal to that of the
sinusoidal signal. Figure 3.11a shows a linear Chirp signal having a frequency

bandwidth from 10 kHz to 510 kHz which is swept in a duration of 1 ms; and
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its response in a low pass RC network having a relaxation factor 7 of 107°s, as

shown in 3.11b. This verifies that the response Chirp directly gives the frequency
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Figure 3.11: Chirp Signal (a) and the response of RC network (b): simulated
magnitude (solid) and the magnitude of transfer function (dashed).

Expression (3.1) may effectively be used to design the Chirp bandwidth.
The maximum relaxation time of the process will provide a key factor for the
design of the maximum value of the signal duration. The Chirp signal offers
major flexibility in essence through its time-bandwidth product relationship. As
inferred in (3.14) this allows the desired bandwidth to be swept linearly which
will define a minimum value for the signal duration. Increasing 7" value enhances

spectral resolution. This effect of the modification of 7" on spectral resolution
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is illustrated in figure 3.12. This shows the Fourier transform of the response
function of a Chirp signal that sweeps through the same frequency band from

10 kHz to 510 kHz in durations of 1 ms and 0.1 ms.

12 T T T T T T T T T T
-
101 > R
o 8F ° =
g r
E gf & i
o0 " @
s &
R :
2F ’k m
0 i i i i i i i L 1 VA‘I\
50 100 150 200 250 300 350 400 450 500
Frequency (kHz)
(a)
8 T T T T T T T T T T
= T=0.1ms
6 ™ ° e 2 &
(¥}
'O .
=
g ar 1
]
2 °
2+ ) Ee sonp =
° o ey . P A N .
0 i i i i i i i i i te i
50 100 150 200 250 300 350 400 450 500
Frequency (kHz)
(b)

Figure 3.12: Fourier transform of RC response for Chirp durations of 1ms (a)
and 0.1ms (b).

Increasing the duration 7' from the minimum also results in a flatter spectrum.
For instance, figure 3.13 demonstrates this fact for three different time-bandwidth
products. All spectra of Chirp spread from f to fo + BW, but the Chirp with
greater time-bandwidth product shows flatter response.

Synthesis of a Chirp signal is straightforward using commonly available large

scale integrated devices, for example Analog Devices AD9852 digital synthesizer[107].
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Figure 3.13: Fourier transform of a Chirp sweeping with constant BW from
100 kHz to 500 kHz with three different time-bandwidth product, T.BW=20,
200, 2000.

Chirp excitation offers advantages of flexibility in speed, duration and fre-
quency content of the process measurements. This signal form allows measure-
ments in a single continuous sweep over a specified bandwidth in a selected (if
realizable) measurement interval. Since Chirp has the capability of delivering
the spectral data in short duration, it decreases the error due to the time-variant
events in the instant of the data acquisition.

As this signal is non-stationary, time-frequency analysis methods such as
short time Fourier transform (STFT) and wavelet transform (WT) may be used

for the determination of temporal amplitude and phase for the purpose of the
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reconstruction of tomographic images. Time-frequency features of Chirp and
the extraction of its temporal phase and amplitude will be presented in the next

chapter.

3.5 Comparison

Figure (3.1) offers a basic classification of EIT excitation signals into two forms:
the discrete sequential form for applications where real-time requirements are
likely to relatively unimportant; and the simultaneous form, where the dynamic
relaxation time in the process will determine the maximum duration of an excita-
tion signal. Clearly the design of an EIT system for a specific frequency range is
more challenging in EIT systems using the simultaneous signal excitation form,
than those that can use the discrete sequential form. At the system architec-
ture level all applications must support a basic sampling frequency to deliver the
spectral sensitivity of interest, but simultaneous forms will typically require fast
data acquisition modules able to comply with this sampling requirement in the
limited time duration available.

For applications requiring a simultaneous excitation form the Multi-sinusoid
signal may be the first consideration. For example, in applications where the
process is composed of a number of materials each of which has specific and
distinct a priori electrical sensitivity characteristics of a spectral nature. Hence
a Multi-sinusoid signal may be considered to estimate this information at the
corresponding number of discrete frequencies. It suffers from the disadvantage
of high crest factor. Also, although this method has the advantage of a flat
spectrum in magnitude terms across the discrete spectral lines, it cannot provide
fine spectral information over the wide frequency band which brackets these lines,
to expose other process information.

Where a simultaneous excitation form is required for an application over
a wide frequency range and with a high spectral resolution over this band, a

wideband signal must be deployed. A group of candidate excitation signals have
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been considered including: Pulse, Sinc, PRBS, and Chirp. These are all shown
intrinsically to support the wideband frequency requirement but each signal has
specific advantages and disadvantages.

The simple Pulse signal, considered as a foundation, is easily implemented in
principle but suffers from disadvantages that will limit its application in practical
EIT systems. These include the difficulty of achieving an adequate SNR, poor
bandwidth adjustability and a non-flat spectrum. The Sinc signal form does offer
a flat spectrum but with the same disadvantages as the Pulse signal.

The ML-PRBS signal is a more useful candidate for WEIT excitation. It is
easily implemented electronically and has no signal amplitude disadvantages. Its
sampling frequency is also a basic adjustable parameter. Its duration is simply
predicable from the sampling frequency and the maximal sequence length. To
gain adequate wideband properties for a given application the design process
must take the length of the sequence into account. In essence the sequence
must be relatively long to form a flat spectral characteristic. Since the sequence
length is related to the modulo-n power of 2, the control of sequence length
and hence signal duration is relatively coarse and inflexible. This may produce
an unacceptably long measurement time. As in the case of the Pulse and Sinc
signals the ML-PRBS also has the disadvantage of inflexibility in adjustinent of
bandwidth to suit the required frequency range. A key requirement, as part of
the EIT reconstruction process, is the provision of sufficient data to provide an
accurate estimation of the transfer function for each measurement channel using
(3.12) and (3.13). To fulfil this requirement it may be necessary to increase
the data obtained and this can be achieved in one of two ways. Firstly, to
further increase the sequence length, or secondly, to use multiple sequences in
each excitation signal. Both of these solutions will increase the duration of the
excitation signal. Subject to real-time constraints these steps may be acceptable

in which case a ML-PRBS signal may provide a good candidate.
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The final signal is the Chirp. As reviewed above this signal form offers major
flexibility in terms of parameter design for wideband measurement. It also has
the capability to concentrate excitation energy in a desired frequency range and
hence allows the design process to efficiently address SNR issues. Although its
implementation is more complicated than other candidates, high speed electronic
devices are available that can simply be incorporated into EIT systems. As It
will be illustrated, the chirp has the disadvantage of increasing the complexity
in the downstream analysis of measured data in order to the extraction of image
reconstruction data, but this offset by its significant advantages. The Chirp
signal thus offers major advantages for WEIT systems which target the most

demanding real-time applications which exhibit broad spectral characteristics.

3.6 Conclusion

The chapter has presented a review of excitation signals in the MFEIT systems
with a focus on the key factors of signal bandwidth, test duration and type
of excitation signal. It examines a set of signal candidates whose features are
suitable for use in MFEIT systems. Their dynamic application characteristics are
assessed using a simple RC network simulation. In a specific application several
signal forms may be useful, but it is likely that there will be an optimal selection
that enhances temporal and spectral information, and at a practical level also
offers efficient implementation. The chapter presents a concluding comparison
and demonstrates that the utilisation of an appropriate wideband signal such as
Chirp can deliver a requisite measurement speed while providing major flexibility

to tailor the measurement duration, bandwidth and frequency resolution.



Chapter 4

Chirp Signal Analysis

4.1 Summary

In the previous chapter, the chirp signal has been selected as the primary ex-
citation signal in this research. In this chapter the extraction of the required
parameters from the chirp signal in order to perform image reconstruction are
discussed. For this, two types of time-frequency analysis consisting of short-time
Fourier transform (STFT) and wavelet transform (WT) are described. The al-
gorithms developed for the purpose of the accurate extraction of temporal values

are presented and simulation results are demonstrated.

4.2 Time-frequency Analysis

In a WEIT system, a wideband signal is needed and, thus, the measured data
set is wideband and contains the spectral information over the frequency range
of interest. Figure 4.1 illustrates a typical measurement channel for a WEIT
system using a chirp as excitation signal. In this figure i;,(t) and v,,.(t) denote
the excitation and measured chirp signals, respectively. The transfer admittance

Y (jw) of the channel can also be estimated by:

Lin(jw)

Y (juw) = REY ()] + 38 ()] = 720

(4.1)
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Figure 4.1: A typical WEIT system measurement channel using a chirp signal.

here I, (jw) and V. (jw), correspond to i;,(t) and v,y (t), respectively. The
critical aspect of the use of chirp excitation is the rigorous analysis of the resulting
wideband measurements for the purpose of precise extraction of their temporal
amplitude and phase values. This gives the necessary data sets in order to
reconstruct the admittivity distribution of the process over the desired frequency
range.

The objective of this chapter is to investigate suitable methods and algorithins
for the purpose of precise extraction of chirp temporal values. Since this signal is
non-stationary, time-frequency analyses can be deployed [108]. Several different
time-frequency methods are found in the literature. The detailed theory of such
methods can be found, for instance, in [109, 108, 110, 111]. In this research, two
common techniques in time-frequency analysis consist of STFT and continuous
wavelet transform (CWT) are examined to extract the precise amplitude and
phase of the chirp signal. To investigate the time-frequency characteristics of a
signal using STFT, an analysing window with constant length is slid over the
signal. In the wavelet transform this is conducted by scaling a mother wavelet.
By this capability, wavelet transform offers a more powerful approach for the
purpose of analysing signals with rapid frequency changes [108] such as different
types of chirp signal.

In the following, these above methods are briefly described and the results of

chirp signal analyses by developed algorithms are demonstrated.
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4.3 Short-time Fourier Transform (STFT)

4.3.1 STFT

STFT (or Windowed Fourier transform) of a signal S(t) is defined [108, 110] by:

Sfbw) = / S(t)g(t — ble ™'dt (4.2)

where g(t) is a real symmetric window and S(t) € L?(R) is a finite-energy signal,
where [|S(t)]? < 400. In equation (4.2), an equal analysing window g(t) is
translated across the signal S(¢), providing time localization, and the frequency
components of the signal are analysed by means of Fourier transform in the
neighbourhood of ¢ = b, which this gives localization in the frequency domain.
By this procedure, the STFT overcomes the drawback of the Fourier transform
to provide time information. The time and frequency resolution of the STFT is

further discussed in the next section.

4.3.2 Time-frequency Resolution of STFT

To evaluate the time-frequency resolution of different types of time-frequency
methods a quantative measure is utilised in the time and frequency domains.
The time resolution, o, of a function, g(t) € L?(R), is expressed by its standard

deviation from its mean time < ¢ >, and given by [109, 112]:

+00
[ (6= < t>)|g(t) dt
o = = — (4.3)
[ lg®)? at
where <t > is N
S tlgt)dt
<te= (4.4)
I lg)| at
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Similarly, in the frequency domain the resolution o, is defined by:

+foo(w— <w>)?|G(w) dw

2 -0

o, = s (4.5)
16 d

where G(w) is the Fourier transform of g(¢) and < w > is mean frequency and

defined by:
+00
J w |GW)[ dw

o)

<w>=- (4.6)

Based on the uncertainty principle [109, 110]:

1
010, 2 > (4.7)

It states that it is not possible to obtain an arbitrarily sharp analysis in both
domains simultaneously. However, the product of o; and o, is always constant.
Therefore, having a smaller value of o, leads to degradation of frequency re-
sultion, o, or vice versa. A Gaussian window can only satisfy the equality in

equation (4.7).
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Figure 4.2: Time-frequency resolution of STFT.

The time and frequency resolution of the STFT is pictorially illustrated in figure
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4.2. The product of time and frequency resolution is independent of the size
of the window. Since the size of the analysing window remains constant, the
resolution of this transform is constant over the time or frequency domain. The
time and frequency resolution of the STFT is also demonstrated in 4.3.
1400
1200

1000

800

Frequency(Hz)

600

400
200
01 0.15 02 0.25 03
Time(Sec)
(a)
1400
1200
/g\ 1000
&
o 800
L
3
o
E 600
400
200
0.15 02 025 0.3
Time(Sec)
(b)

Figure 4.3: Spectrogram of a sinusoidal signal consisting of 500 Hz and 1 kHz
frequency components using Gaussian window with duration of W=>5 ms (a) and
80 ms (b), the colourbar shows the magnitude of spectrogram.

For this, the square of the STFT (or spectrogram) of a signal consists of two
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non-overlapping sinusoids of frequencies 500 Hz and 1000 Hz was calculated.
In this simulation, a Gaussian window [112], g(¢) = ﬁe_%, with bandwidth
parameter f, = 2 Hz™? and duration of 5 ms and 80 ms were examined on the
composite signal. The spectrogram in figure 4.3a illustrates that for the narrower
window the time resolution is better than that of frequency. The figure shows
clearly the frequency jump at the time ¢ = 0.2 s, but there is no such sharp
resolution for the frequency components in the frequency domain. By increasing

the size of window to the 80 ms, the frequency resolution is improved in the cost

of deterioration of the time resolution, as shown in figure 4.3b.

4.3.3 Extraction of Temporal Values by STFT

STFT with its time-frequency localisation features can be deployed for the ex-
traction of temporal values of time varying signals such as chirp form signals.
This approach has been reported for the impedance spectroscopy using a chirp
[113].

To examine the STFT method an algorithm was performed with a FFT routine
available in MATLAB(39]. In this implementation, the Gaussian window, as
described in the previous section, was exploited. To have accurate extraction,
the window bandwidth must be small such that Aw < ¢/(t), where ¢/(t) denotes
the instantaneous frequency of the signal [108, 114]. To satisfy this, since the
frequency of the chirp varies over time. the length of window is determined using
the minimum frequency component in the chirp. Therefore, it can be proved

that L satisfies following constraint:

(4.8)

where f,in is the minimum frequency in the chirp and T is the sampling time.

The STFT algorithm was designed as following steps:

1. The appropriate window size, L, is selected such that it satisfies (4.8).
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2. Using L and knowledge of the frequency variation of the excitation chirp,
the signal is divided into the appropriate segments such that they contain
the desired frequency points. These segments are then arranged as columns
of the matrix S = [sy,---,sn], where N is the number of the discrete

frequency points.
3. Each column of the matrix S is multiplied by the window.
4. The FFT is applied to each column of §.
5. The magnitude and phase of the elements of S are determined.

6. The maximum magnitude of each column and its corresponding phase are

selected as the magnitude and phase at each frequency points.

To determine the spectral characteristics of a transfer function, for instance (4.1),
the input excitation signal and the output signal must be separately analysed by

the above procedure and then the magnitude and phase of Y are determined by:

_ |Im(]w)|

Y (jw)| = VoGl

LY (jw) = LIin(jw) — LVou(jw) (4.9)

Frequency Analysis of RC Network

The performance of the above procedure was evaluated through the frequency
analysis of a RC network. The advantage of using this is that it can be analyti-

cally analysed and compared with the simulation results. The schematic of the

Figure 4.4: RC network circuit.

RC network is shown by figure 4.4. The transfer function of this network, H(w),
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is:
‘/out 1+ ZW/CUZ
H(w) = =k - 4.10
(W) Vi (1 + zw/w,,) ( )
where k = —T2-w, = % and wp, = J:C;Zmz). By substituting suitable com-

ponent values, a low-pass or high-pass circuit can be simulated. This network
was simulated by solving its differential equation numerically. The magnitude
and phase of transfer function (4.10) at various frequency points were then de-
termined using the algorithm presented above. The input signal was a linear
chirp with amplitude 1 V that sweeps linearly over the frequency range from
10 kHz to 510 kHz within 5ms. It was applied to a low-pass network as defined
in table 4.1. The table illustrates the numerical results and also analytical val-
ues for the network at the discrete frequency points. As a measure of accuracy,
relative errors were calculated for the analytical and simulated values. This can

be expressed by:
Vs = V4|

E = 4.11
Vil (4.11)

where V), is the analytical value and Vg is the simulated value. The simulations

Table 4.1: Comparison of simulated and analytical solution for the low-pass
network with component values: r; = 1M$Q, ry = 1IMQQ, ¢; = 1pF and ¢, = 20pF,
and when the input signal was linear chirp.

Magnitude Phase(D) Relative Error(%)

Frequency
(kHz) Analytical L=0.1ms L=0.5ms Analytical L=0.1ms L=0.5ms Magnitude Phase

20 0.3044 0.3177 0.3164 45.68 47.93 55.08 4.38 4.91
30 0.2295 0.2354 0.3130 52.52 54.65 10.10 2.61 4.05
50 0.1520 0.1535 0.2151 55.69 57.57 20.38 0.93 3.37
150 0.0691 0.0686 .0732 40.92 42.18 49.81 0.69 3.06
250 0.0564 0.0567  0.0570 29.01 28.46 25.88 0.60 1.90
500 0.0499 0.0499  0.0500 15.92 15.96 15.96 0.08 0.26

were repeated for the various window sizes. The simulation results have indicated
that the accuracy of the magnitudes have closely the corresponding levels, but

there is significant discrepancy in most detected phase values. For instance, the
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table shows the results at two window sizes of 0.1ms and 0.5ms. The relative
errors in the table 4.1 were calculated for the narrower window.

The above simulation was also conducted using a logarithmic chirp described in
section 3.4.5, as input excitation, for a similar Network to that described above.
The simulations were also repeated for the various window sizes. The simulations
resulted in similar variations as that of linear chirp. Table 4.2 shows the results
for the window size of 0.1ms and 0.5ms at different frequency.

Table 4.2: Comparison of simulated and analytical solution for the low-pass
network when the input signal was logarithmic chirp.

Magnitude Phase(D) Relative Error(%)

Frequency
(kHz) Analytical L=0.1ms L=0.5ms Analytical L=0.1ms L=0.5ms Magnitude Phase

20 0.3044 0.3004 0.3208 45.68 45.42 46.42 1.30 0.58
30 0.2295 0.2343  0.2432 52.52 52.68 51.27 2.11 0.30
50 0.152 0.1541  0.1590 55.69 55.34 55.22 1.37 0.65
150 0.0691 0.0680 0.0743 40.92 41.97 20.43 1.49 2.55
250 0.0564 0.0562  0.0592 29.01 28.85 32.30 0.29 0.54
500 0.0499 0.0501  0.0510 15.92 15.95 18.39 0.36 0.19

4.4 Continuous Wavelet Transform
44.1 CWT
CWT of a signal S(t) using wavelet 1 (t) is defined by [108, 115]:

+00
CWT, = / S(E)wr o (t)dt (4.12)

where, a and b are scale and translation parameters, respectively, and * denotes
complex conjugation. Wavelet 1(t) is called the mother wavelet and is a function

with zero average and finite energy. The scaled and translation form of the
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Figure 4.5: Time-frequency resolution of CWT.
mother wavelet, v, 4(t), is given by:

Lyt (4.13)

"/)ab( ) \/a a

By scaling the mother wavelet, time resolution can be exchanged for frequency
resolution, and vice versa, hence providing variable time-frequency resolution for
the WT. This makes the wavelet transform an efficient tool to analyse time-
varying signals.

In the WT, in contrast to the STFT, the width and the height of the window
are modified such that they can match to the specific frequency component.
Thus the time and frequency resolution are also modified. This scaling capability
overcomes the drawback of the fixed window in the STFT. The product of time
and frequency resolution is independent from scale and translation parameters.
This is illustrated in figure 4.5.

By using (4.3) and (4.5), the time resolution 0;, and frequency resolution

0..q Of the scaled wavelet (4.13), are given by:

Ota = A0y (4.14)
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4.4.2 Extraction of Temporal Values using CWT Ridge

The energy density of a signal can be represented by the square of the modulus
of the CWT ( or scalogram). The distribution of energy shows its concentration
around a particular curve which is called the ridge of the CWT. This phenomenon
is illustrated in figure 4.6. The figure shows the ridge of the CWT of the sinu-

soidal signal described in section 4.3.2. This indicates that the scalogram has
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Figure 4.6: Ridge of CWT of sinusoidal signal consisting of 500 kHz and 1 kHz
frequency components, |CWT(a,b)|?.

local maximum values for the frequency components of the signal in each instant

of time.

As described later in this chapter, extraction of the ridge reveals information re-

garding the instantaneous frequency of the signal and also its temporal values[116].
Delprat [116] proposed an algorithm for the ridge extraction using a Gaussian

function as the analysing wavelet. Mallat [108] also achieves the same results by

using an analytic wavelet transform.
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The properties of the CWT ridge are exploited for the accurate extraction of
necessary values from the chirp signal. For this, the method presented in {108]
is deployed. This method is briefly described as follows.

An analytic wavelet ¥(t) can be constructed using frequency modulation of
window ¢(t):

Y(t) = g(t)e’ (4.16)

where w, is the modulation frequency and g(t) is a real symmetric and normalised

window and bandlimited with bandwidth Aw. The Fourier transform of ¥ (t) is:

V(w) = Glw — w,) (4.17)

It is obvious that ¥(w) << 1 for w < 0, if G(w) << 1 for w. > Aw. The scaled

and translated wavelet ¢(t) is defined by:

1 —b
Yup = —=u("

7a - ) = e_""bga,b,,g(t) (4.18)

where g, p(t) = \/Zz_g(?)ei"‘ with k = w./a. Equation (4.18) also shows that
the scaling moves the centre frequency of ¢(t) from w, to kK = w./a.

The signal S(t) that is analysed is real and defined as:
S(t) = A(t) cos ¢(t) (4.19)

where A(t) and ¢(t) are amplitude and phase, respectively. The instantaneous

frequency of this signal, ¢'(¢) of S(t) is given by:

P (t) = i (4.20)

In [108], it is proved that the wavelet transform of signal S(t) using the

analytic wavelet ¥(t) , described by (4.16), can be expressed by:

CWTs(a,b) =< S,¥up >= —‘Qf‘fA(b)eiW’)(G(a[x —¢'(b)]) +e(b k) (4.21)
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The corrective term €(b, k) can be ignored by satisfying the following conditions:

W2 A"D)
OO

<1 (4.22)

2 ¥"(b)
Wy, PO <<1 (4.23)
o) > = (4.24)

The above equations express that to ignore €(b,x) in (4.21), the variation of
A(t) and ¢'(t) over the wavelet ¥, ;, must be slow, and also the bandwidth of
the scaled wavelet , Aw/a, must be smaller than ¢'(b). By neglecting ¢(b, k), the
ridge of the CWT is calculated by maximisation of (4.21). This expression is at

its maximuin when:

(4.25)

This means that at the ridge, the centre frequency of the scaled wavelet gives the
instantaneous frequency of the signal. On the ridge, therefore, by substituting

(4.25) into (4.21), the temporal amplitude A(b) of the signal is determined by:

2 CWTs(ar(b),b)
A = = 1G]

where a, denotes the scale on the ridge. The phase of signal is also equal to the

(4.26)

phase of wavelet transform on the ridge:

é(b) = LCWTs(a,(b), b) (4.27)

Equations (4.26) and (4.27) result in analytic values of the real signal S(t).
The presented theory implies that it is possible to build an algorithm to determine
an accurate estimation of the temporal characteristics of the signal, provided that

the stated conditions are satisfied.
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4.4.3 Complex Morlet Wavelet

The use of a complex form of the wavelet, as mentioned in the previous section,
allows the estimation of the temporal specifications separately. The complex
wavelet can be constructed using various real windows, for instance, Gaussian,
Hamming and Hanning windows [108]. In this research, the complex Morlet
wavelet was utilised as the mother wavelet (). The reason for this selection is
that this wavelet is essentially constructed by modulation of a Gaussian window,
which is able to provide maximum localization in time and frequency plane. It is
shown later in this section that the Morlet wavelet retains the time and frequency
resolution equal to that of Gaussian window. A normalised form of the complex

Morlet wavelet is expressed by [117, 118]:

1 .
w(t) = (ewct _ e—fbw?/4)e‘t2/fb (4.28)

ES)
g

where w, = 2nf,, f. is centre frequency and f, is bandwidth parameter. The

Fourier transform of Morlet wavelet is:

U(w) = e Blowd? _ o= reud) (4.29)

Using (4.3) and (4.5), the time and frequency resolution of Morlet wavelet, o,

and o, can be obtained by:

1
o= = (4.30)

It is obvious that the multiplication of (4.30) and (4.31) retains the equality in
equation (4.7), verifying that the Morlet wavelet provides the ultimate possible
time-frequency localisation. An example of the time and frequency domain wave-

forms of the Morlet wavelet for two sets of scale and translation values is shown
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in figure 4.7. This figure also demonstrates that the time support of the wavelet
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Figure 4.7: Scaled and translated Morlet wavelet, f. = 1 Hzand f, = 1 Hz 2 real
part of 1,4(t) (a)and magnitude of Fourier transform |¥(w)| (b).

increases in direct proportion to the scale parameter a, but in the frequency
domain it is focused on frequency f = f./a with bandwidth inversely propor-

tional to scale. Using expressions (4.15), (4.30) and the relation o; = 0,,/27, the
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frequency resolution at frequency f; can be calculated by:

fi
of = —— 4.32
! 27rfcv fb ( )
Similarly, the time resolution of the Morlet wavelet is:
oy, = fevfe (4.33)

2fi

Equations (4.32) and (4.33) imply that the frequency resolution is increased
when the frequency decreases, while the time resolution decreases and vice versa.
Further, these expressions also imply that the two wavelet parameters consisting
of f. and f, can be adjusted to achieve a required resolution at a certain frequency.

The term e~f<¢/4 in (4.28) ensures that the average value of ¥(t) is zero
and also that ¥(0) = 0 [118, 108]. However, it must be emphasised that the
envelope [¢(t)| of the Morlet wavelet, given by (4.28), does not retain its single
lobe for any arbitrary value of f. and f,. The envelope of this wavelet splits
into the two lobes for some values[119]. Figure 4.8 shows the Morlet wavelet for
bandwidth parameter f, = 1 Hz™? and different values of f.. It shows that the
Morlet wavelet begins to be degraded at about f. = 0.5 Hz and split into two
equal lobes at about f. = 0.38 Hz . Examining (4.28) with different values of f,
indicates that to avoid the degradation of this wavelet, f. and f, can be selected

such that:

fo/fo 2 0.5 (4.34)

It can be verified that the degrading wavelet (4.28) is related to the corrective
term. This term can be eliminated by appropriate selection of f, and f.. How-
ever, as explained in the next section, this results in a smaller range for selection

of the wavelet parameters.
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Figure 4.8: Envelope [¢(t)| of Morlet wavelet for f, = 1 Hz 2: 3D view for
0 < f. <2 Hz (a), 2D profile at some value of f. (b).

4.4.4 Selection of Wavelet Parameters

In section 4.4.2 it was mentioned that the temporal values can be determined on

the ridge of the scalogram if some restrictions are satisfied. The satisfaction of
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these conditions is dependent on the wavelet parameters, and the signal charac-
teristics. In this research, the wavelet parameters are f. and f, and the signal is
a chirp. To derive practical constraints, the conditions given by (4.22)-(4.24) are

simplified in an appropriate form as:

: |A(b)]
we << |¢'(b)] A7) (4.35)
|¢'(b)]
We << 7 0) (4.36)
we > Aw (4.37)

Equation (4.37) is obtained by substituting instantaneous frequency on the ridge
given by (4.25) into (4.24).

Equations (4.35) and (4.36) relate the time specifications of the signal to the

parameter of analysing wavelet, w,, therefore, the restrictions have to be fulfilled
in respect of the particular signal under investigation.
The verification of equation (4.35) is dependent upon A(t) and ¢’(t). Since A(t)
is unknown, it is difficult to verify this equation. However, in process measure-
ment, it is reasonable to assume that A(t) is slowly changing in comparison to
the instantaneous frequency of the excitation signal at a certain time and thus
equation (4.35) is valid. Therefore, the wavelet parameters are selected using
equations (4.36) and (4.37).

If the chirp signal is linear, as expressed by equation S(t) = A cos[2n(fot +
18 2)] in the previous chapter, by substituting the first and second derivatives

of its phase, equation (4.36) can be rewritten as:

fi
V2ns

fo K (4.38)
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where f; denotes instantaneous frequency of linear chirp.
In (4.37) the bandwidth of the analysing wavelet can be replaced by \/Lﬁ, and

thus it can be rewritten as:
1

V fo

Connection of equations (4.38) and (4.39) gives the appropriate range for f.:

fe 2 (4.39)

fi
Vn(

< fe K

—y (4.40)

Therefore, for a linear chirp the parameters f. and f, must be adjusted such
that the equation (4.40) is fulfilled. These parameters are also linked to the
time duration, o,,,and frequency bandwidth, o, of the analysing wavelet, Morlet
wavelet, at a particular frequency given by (4.33) and (4.32), respectively. That
is, the condition (4.40) can also be fulfilled by adjusting f.\/f,. Hence, by rear-
ranging the inequality (4.40) and incorporating the condition (4.34), it can be

proved that:

05< fFo < f éfr—”ﬁ- (4.41)

This form also implies the relation with time and frequency resolution, o;, and
ay,.
An example of the use of this expression is shown in figure 4.9 for two chirp signals
sweeping the bandwidth of 500 kHz with two different rates and also f, = 1 Hz™2.
The arrows in the figure present the regions for the selection of the appropriate
parameters. This figure demonstrates that, in general, the slower chirp signal
provides more freedom for choosing the appropriate parameters especially in
lower frequencies. The region for the selection is also different for each chirp.
This region is wider for the chirp with rate 3, while this becomes smaller for
the faster one, ;. In addition, for each chirp the area in the lower frequency is

more limited while it becomes wider at higher frequency. Thus, in general, there

is less flexibility at low frequencies for selection of the appropriate parameters.
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Figure 4.9: Selection region of wavelet parameters for two chirp signals with
500 kHz bandwidth at two different rates 3, and /3, left and right side of (4.41)
are shown for f, =1 Hz 2.

In addition, in equation (4.41), by modification of f,, the permissible range
for choosing the wavelet parameters is also modified accordingly. Thus, this
increases the flexibility for choosing appropriate parameters.

For example, the behaviour of expression (4.41) at two frequencies consisting
of 10 kHz and 500 kHz, versus f. and f, are shown in figure 4.10. The comparison
of figures 4.10a and b demonstrates that the appropriate range for the wavelet
parameters varies over the frequency range.

In the above discussion the complete form of the Morlet wavelet given by
(4.28), was considered. However, if the brief form of the Morlet wavelet is utilised,
it is necessary to meet the condition: fyw?/4 > 1. This restriction can be taken
into account by modification of equation (4.41). This is, however, a restrictive
factor for selection of wavelet parameters. For this reason, it was preferred to

exploit the complete form of the Morlet wavelet.
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Figure 4.10: Variation of the expression (4.41) versus f. and f, for a chirp with
500 kHz bandwidth and 3 =1 x 10* at 10 kHz (a) and 500 kHz (b).
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4.4.5 Extraction of Chirp Temporal Characteristics by
CWT

To extract the precise envelope and phase over the frequency band an algorithm
has been designed based on the theory described in section 4.4.2, and also the
constraint expressed by equation (4.41) in the previous section regarding the
selection of wavelet parameters. The algorithm has been implemented in MAT-
LAB using functions available in the Wavelet toolbox[120]. The algorithm is

designed as follows:
1. Specifying the chirp: fo, ff and B.

2. Selection of wavelet parameters f. and f,: For this purpose, the proce-
dure described in the previous section is employed to satisfy the conditions

stated by (4.41).

3. Determination of the wavelet scaling grid: the scaling grid must be deter-
mined appropriately according to the selected chirp characteristics. For
this, first the scaling range [@min Amaz) is determined. The minimum scale

Amin and maximum scale amq, are calculated by [120]:

Amin = % (442)
Amar = fof}s (443)

where T, is sampling time. It is then necessary to determine an adequate

grid. This will be described further in the next section.

4. Ridge Extraction: the CWT is calculated over the specified scaling grid.

Then, the ridge data are extracted by:

a.(b) = max |ICWTs(a, b)) (4.44)
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This expression is used to determine the scales that maximize the scalo-

gram.

5. Calculation of the envelope and phase: the temporal amplitude and phase

on the ridge are calculated using:

A,(p) = 2ICW (e (0), b) (4.45)

Var(b) |G(0)]

¢r(b) = ZOWTs(a,(b), b) (4.46)

6. Determination of the precise temporal values: Performing the procedure
illustrated results in an output with ripple components which disturb pre-
cise determination of temporal values. This ripple arises from calculating
the CWT on the coarser grid. They change more rapidly than the tempo-
ral values. These ripples can be cancelled in a similar way to a denoising
procedure by discrete wavelet transform. The basic principle of denois-
ing is the decomposition of the signal into wavelet coefficients, followed
by reconstruction using those coefficients that contain zero or lower noise
components [121]. Thus, the estimated values in step 6 are decomposed
into the corresponding wavelet coefficients by certain level. Since the rip-
ples appear in the details coeflicients, they can efficiently be removed by
performing the reconstruction using only approximation coefficients. As
verified latter in this section, this results in an accurate estimation of the
temporal envelop and phase over frequency range. The level of the decom-
position can be determined by performing a test simulation over a scaling

grid on the selected chirp.

Scaling Grid

To determine the scaling grid, first the range of scaling is calculated according

to the minimum and maximum frequency of the signal. One solution is to cre-
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ate an equally spaced grid within the range [@min  @mar), and using a = 7%,
where f is frequency. However, this does not give adequate grid for wide band-
width. The reason for this is that the wide bandwidth results in a wide scaling
range, thus, performing the CWT on the fine grid requires considerable compu-
tation time and memory. Using the above approach on a coarser grid results in
coarse spectral data at high frequency and fine data at lower frequency. To avoid
this; logarithmic grid can be exploited. Thus it can be proved that the scaling
grid with N points on the above range can be defined by:

an = amin(a_nm)n/N n=01:+-,N (447)

Amin

The grid can be adjusted via N. Figure 4.11 shows an example of the two

methods described . The top figure, using the first method, indicates coarse
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Figure 4.11: Scaling grid for a chirp sweeping from 10 kHz up to 510 kHz within
duration T = 0.005 Sec, f, = 5 x 10° Hz and f. = 1 Hz: using equally spaced
grid (a), and logarithmic grid using (4.47) (b), where N = 1000.
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grid at high frequency. In this grid, the difference between two consequative
frequencies at the beginning of the frequency range is 9.8135 Hz, whereas this
rises to 24.286 kHz at the end. The bottom figure shows the result of using
the logarithmic method. Here, it was verified that the difference between two
consequative frequencies at the beginning of the frequency range is 39.3957 Hz

which rises to 2.0013 kHz at the end.

Frequency Analysis of RC Network

The performance of the described algorithm evaluated through the frequency
analysis of RC network. The schematic diagram of the network and its transfer
function were shown in pages 62 and 63, respectively. The frequency response of
this network determined using the algorithm presented in this section. The input
chirp signal, as in described in section 4.3.3, was applied to two low and high pass
networks, as defined in tables 4.3 and 4.4. Figure 4.12 shows the response of the

low pass network, and the corresponding envelope using the proposed algorithm.
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Figure 4.12: Output signal and extracted Magnitude.

Figure 4.13 also shows the analytical and simulated results for this network.
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Figure 4.13: Magnitude and phase of transfer function: (a and b) analytical, (c
and d) simulated and (e and f) relative errors (%)of magnitude, E,,, and phase

E,.

Tables 4.3 and 4.4 give comprehensive numerical results for the low and high

pass RC networks, respectively.

They indicate the precise extraction of the amplitude and phase of the signal.

In this example the maximum errors for the extraction of the amplitude and

phase were less than 3% and 4%, respectively.
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Table 4.3: Comparison of simulated and analytical solution for the low-pass
network with component values: r, = IMQ, r, = IMQ, ¢; = 1pF and ¢, = 20pF.

Frequency
(kHz)

Magnitude

Phase(D)

Relative Error(%)

Analytical Simulation Analytical Simulation Magnitude Phase

20

30

50

150

250

500

0.3044

0.2295

0.1520

0.0691

0.0564

0.0499

0.3082

0.2319

0.1524

0.0691

0.0563

0.0499

45.68

52.52

55.69

40.92

29.01

15.92

45.39

53

56.1

40.95

29.02

16.06

1.256

1.046

0.2364

0.0111

0.0114

0.0020

0.6234

0.9094

0.7348

0.0854

0.0263

0.885

Table 4.4: Comparison of simulated and analytical solution for the high-pass
network with component values: r; = 1K ro = 5012, ¢; = 10nF and ¢, = 20pF.

Frequency
(kHz)

Magnitude

Phase(D)

Relative Error(%)

Analytical Simulation Analytical Simulation Magnitude Phase

20

30

50

150

250

500

0.0763

0.1012

0.1553

0.4118

0.6001

0.8317

0.782

0.1014

0.1551

0.4117

0.6002

0.8317

-48.06

-56.92

-63.83

-59.77

-49.56

-31.93

-46.15

-56.55

-63.96

-59.8

-49.57

-32.2

2.456

0.2111

0.0799

0.0182

0.00316

0.0013

3.977

0.6495

0.1919

0.0457

0.0244

0.8123

4.4.6 Algorithm for Extraction of Chirp Temporal Values

for EIT system

Since the algorithm described in the section 4.4.5 operates over the entire band-

width. It will thus be time consuming in terms of processing when applied to

multi-electrode impedance tomography. To avoid this problem a new algorithm

has been designed which considers specified frequencies instead of the whole

band. This exploits the linearity of the wavelet transform and the fact that the

frequency rule of the chirp is known. Hence the wavelet parameters can be de-

termined for a training waveform and are then applicable to the measured chirp

waveforms. The algorithm thus has two parts. In the first part the optimal
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wavelet parameters are calculated for the desired frequencies, and are deter-
mined only once for a certain chirp and frequency set. In the second part these
parameters are used to extract the temporal amplitude and phase of signal to be
analysed.

The optimum wavelet parameters are determined through an error minimiza-
tion procedure at a set of frequencies given by F' = [f, ..., fu, ..., fn]. For this the
procedure described in section 4.4.4 is employed to satisfy the conditions stated
by (4.41). This leads to the calculation of a wavelet set: W), = [wy, ..., Wy, ..., wnN]

at frequencies f, € F. Each Morlet wavelet w, is identified by two parameters

fo and fe.

f1 =20 KHz, fb=0.3 ,f°=1.0 Hz f2=30 KHz, fb=0.3, f°=1.1 Hz
1 1
p— o~
2 05 Z 05
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2 = -
£z 05 = 05 /\
&
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1 1
w o
=" 05 Z 05 A
0 0
0 1 2 3 4 5 0 1 2 3 4 b
Frequency(Hz) Frequency(Hz)

Figure 4.14: Fourier transform of selected wavelets for some frequencies.

For simulation, a linear chirp similar to that described in the previous section
was exploited. The optimum wavelet parameters were then determined by the

described procedure at certain frequencies. The frequencies were arbitrarily se-
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lected within the range 20 to 500 kHz. Figure 4.14 shows the Fourier transform
of the resulting wavelets.

In the second part of the algorithm the chirp temporal characteristic is pre-
cisely computed by applying the algorithm at each frequency f, € F using
corresponding wavelet w,. This is calculated using equations (4.26) and (4.27).
For verification of the proposed method the output of the same low-pass filter
described in section 4.3.3 was exploited here. The analytical and simulated tem-
poral characteristic values are shown in figure 4.15 and table 4.5. As a measure
of algorithm performance, the absolute values of relative error between analytical
and simulated values indicate that the presented method can successfully extract

the phase and amplitude of the signal.

Amplitude(v)

-0.4 . ' '
0 1 2 3 4 5

Time(ms)

Figure 4.15: Output of low pass filter, circles show the extracted values.

The proposed algorithm in this section can be applied to any type of chirp sig-
nal. For example, the performance of the method was examined on a logarithmic
chirp with the same parameters as the linear chirp described above. Since the
frequency variation rule of chirp is logarithmic, the new set of optimum wavelet
parameters were determined at the frequency points of interest. Table 5.1 gives

the resulting wavelets parameters.
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Table 4.5: Comparison of analytical and simulated results for linear chirp

Magnitude Phase(D) Relative Error(%)
Frequency

(kHz) Analytical Simulation Analytical Simulation Magnitude Phase
20 0.3044 0.3131 45.68 45.96 2.8600 0.6100

30 0.2295 0.2320 52.52 53.01 1.1000  0.9300

50 0.1520 0.1523 55.69 55.97 0.2000  0.5000

150 0.0691 0.0691 40.92 40.94 0.0000  0.1000
250 0.0564 0.0563 29.01 29.01 0.1800  0.0030
500 0.0499 0.0499 15.92 15.90 0.0200 0.1300

Table 4.6: Wavelet parameters for logarithmic chirp swept from 10-510 kHz
within Hms.

Frequency(kHz)
el s 30 30 50 150 250 500
7 09 1 1 11 06 19
A 05 05 04 05 12 04

The analytical and simulated temporal characteristic values were then deter-
mined for the same low-pass filter described in section 4.3.3. Figure 4.16 shows

the logarithmic chirp and the extracted magnitudes at the six frequency points.

Magnitude

-

-0.5 .
0 1 2 3 4 5

Time(ms)

Figure 4.16: Output of low pass filter, circles show the extracted values.
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Table 4.7 demonstrates analytical and simulated results, and also the absolute
value of their relative difference. It can be seen that the presented method pro-

vides good estimation of temporal values on the logarithmic chirp.

Table 4.7: Comparison of simulated and analytical results for logarithmic chirp.

Magnitude Phase(D) Relative Error(%)

Frequency
(kHz) Analytical Simulation Analytical Simulation Magnitude Phase

20 0.3044 0.3052 45.68 45.75 0.2809  0.1454
30 0.2295 0.2299 52.52 52.64 0.2065 0.2203
50 0.1520 0.1522 55.69 55.77 0.0840 0.1377
150 0.0691 0.0691 40.92 40.95 0.0339  0.0655
250 0.0564 0.0563 20.01 29.01 0.0352 0.0184
500 0.0499 0.0500 15.92 15.91 0.0239  0.0894

4.5 Conclusion

This chapter has demonstrated the algorithms developed to determine the re-
quired values from the chirp signal, in order to perform image reconstruction.
For this purpose, STFT and CWT were examined. The simulation results have
indicated that an algorithm based on the CWT provides better accuracy for the
extracted temporal amplitude and phase of simulated chirp waveformns. These
algorithms are developed based on the ridge phenomenon and using CWT. It
has been demonstrated that accurate extraction of the temporal values is depen-
dent upon the characteristics of the chirp signal and of the wavelet parameters
utilised. For this, based on the conditions stated by Mallat in [108], the appropri-
ate constraints has been derived. Hence determination of the optimum wavelet
parameters for a particular chirp and the algorithm for the accurate estimation
of temporal values has been achieved. The results in this chapter demonstrate
the precise estimation of the temporal values, but they also show that there is

an absolute relative error between analytical and estimated values.
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Chapter 5

WEIT Simulation Study

5.1 Summary

This chapter addresses the augmentation of a single frequency EIT to form a
wideband EIT system in order to provide spectral information. To achieve this
requires a fast and efficient method to obtain the sensed data. For this pur-
pose a novel method using chirp excitation is proposed and implemented. In
this chapter, description of the proposed method is given and its verification is
demonstrated. Firstly, a brief introduction gives the requirements of EIT systems
and the essential underlying concepts. The performance of the method has been
assessed through various simulations. The chapter finally describes methods for

the analysis of the spectral tomographic data.

5.2 The Concept of Spectro-Tomography

The conventional requirement in EIT is to create a sequence of images of the
process conductivity distribution using peripheral measurements, such that the
data is obtained within a time scale that can track the process dynamics. The
image set then provides an estimate of the evolving distribution of component
materials within the process. In general these investigations reveal qualitative

data which, with suitable calibration, may be analysed to offer relative quantita-
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tive measurement. However, the information usually is not enough either for the
interpretation of process events, or for material identification. These drawbacks
limit the application of single-frequency EIT systems.

A further requirement in many processes is the identification of materials,
often from a known set of primary materials, or reagents, that may be loaded
into a process vessel; and secondary materials, or products, that may be created
through a physical and/or chemical reaction. The former requirement may be
realised through single-frequency EIT but this typically cannot provide data to
achieve the second requirement of material identification. In all cases additional
data may be used to enhance a spatial distribution estimate. As introduced in
Section 1.2 as a key motivation for this study, it appears feasible that this latter
requirement can be accomplished using multi-frequency EIT. The underlying
opportunity for this study is that process materials exhibit considerable change
in their electrical properties in response to an injected signal over a frequency
range arising from the properties of the material(s) of interest.

There is supporting evidence for example in medical research, for the charac-
terisation of human tissue, and also for the diagnosis of particular clinical condi-
tions based upon electrical properties [12, 11, 122, 89]. Empirical mathematical
models of materials also indicate this behaviour [58].

Hence applying this concept promises to be useful in the investigation of an
industrial process in which materials offer frequency dependent contrast. For
instance pharmaceutical materials show various frequency-dependent behaviour
over a frequency range[123]. For such a process, the construction of tomography
images for a range of frequency bands can hence provide spectral data which
would facilitate the interpretation of the process events; or the identification
of materials which are an essential requirements in many processes. This is
described further through a process where the initial materials A and B have
frequency dependent behavior and the their composition results in product C

which also exhibits different frequency dependent response, figure 5.1.
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)

Figure 5.1: Example: spectral characteristics of initial materials A and B and
product C.

Figure 5.2 shows this simple batch process, (top), and the conventional single-

frequency EIT tomograph at 50 kHz, for example. Here the product C' appears

Actual process

Mid-state End-point

>
»

Tomograph (f:50kHz)

Figure 5.2: Example: batch process trajectory: actual process (top) and tomog-
raphy images using single-frequency EIT at 50 kHz (bottom).

a different contrast value but in similar colour as the material B. Therefore
this tomographic image can not provide information to assess the correct be-
haviour of the process. If the tomography images are reconstructed at various
frequencies, they can provide local spectral conductivity, as illustrated in figure
5.3a. This spectral information may then be analysed or interpreted in order to
either analysing the process events or material identification at various states.

For instance, in this example the end product C' may be identified, figure 5.3b.



5.3. Method 90

The analyses can be accomplished by exploiting methods such as parametrised

1 (Hz)
80

50

Spectro-tomograph

N
o

Final result

(®)

Figure 5.3: Example: simplistic spectro-tomograph at three discrete frequencies

(a) and the fused result (b).

model, or a look-up table method as described later in this chapter.

5.3 Method

To meet dynamic process estimation needs the realisation of the WEIT method
requires a fast and efficient procedure to obtain the sensed data. For this, a novel
approach is proposed in which Chirp signal is used as excitation. As discussed in
chapter 3, utilising Chirp excitation extends the conventional EIT system to pro-
vide spectral information and offers advantages of flexibility in speed, duration

and frequency content of the peripheral process measurements. These capabili-
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ties enable high speed data acquisition that includes spectral information. This
signal also decreases the error arising from time-variant events at the instant
of data acquisition. In addition to these advantages, due to the availability of
the spectral information the tomographic image can be reconstructed at any
frequency of interest from one set of experimental data.

The method is illustrated in block diagram form in figure 5.4. The critical

Chirp Generat
! lrp ﬁen\er:x or <___ Chirp Parameters

\ / \\ NNAN

/ \/\/\/
\/ V/ V V VvV

|

A—— Sensors <:> Data Aqu. Sys

'I }
1 !
|

- _P_ - - —I, lmage
rocess " ~ 7| Reconstruction & (: Wavelet Analysis
Control '~ .
N i g i Interpretation

Figure 5.4: Basic block diagram of the proposed method for a Wideband To-
mography.

aspect of the use of chirp excitation is the precise extraction of the resulting
temporal values. The reason for this is that the accuracy of reconstructed ad-
mittivity profile is affected by the accuracy of measured data. The extraction of
these values from peripheral measured data set has been discussed in the previous
chapter and an algorithm based on the wavelet transform was presented.

The WEIT numerical simulation study was carried out using an adapted
EIDORS 2D package [37]. The simulated process peripheral measurements were
numerically generated using the mesh model described in the next section. The
tomography measurement data sets are then demodulated and analysed by the

proposed algorithm .
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5.4 Simulated Data Set

The simulated wideband data sets were produced using a mesh model. The
admittivity of elements within inhomogeneous regions were updated at the in-
stantaneous frequency f; of the excitation chirp. The simulation was based upon
the analogy of a finite element model to a linear electrical network, as reported
in [124] and illustrated in figure 5.5. This offers the possibility of updating the
admittivity of the elements in some parts of the mesh in order to create a par-

ticular frequency dependent behaviour over the required frequency range. In the

3 (X3)y3) 3
A A
1 2
1 2
(11 -}'1) (Xz-}'z)
712

Figure 5.5: Triangular finite elements and its electrical circuit equivalent.

equivalent circuit the entries of the element admittance matrix Y;,, at frequency

f; are expressed by:

Yin(fi) = 7§f4f:)(bmbn +cemen) mn=12,...N, m#n (5.1)

where,v.(f;) is the admittance of each element at each frequency, A, is the area
of the element, and the values of b,, and ¢, are calculated using node coordina-
tion expression[124]. Then, analogous to an electrical network, each element is
described by a system of linear equations. These allow the construction of mesh

node equations at each frequency point, as expressed by:

Y(£).V(fi) = I1(f) (5.2)

where, Y is the total admittance matrix, V' is the node voltage and I is the node
current matrix. The solution to equation (5.2) gives complex voltages V on the

nodes at frequency f; .
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The admittance of each element, 7, within inhomogeneous regions can be
defined by using any appropriate function such as the Cole model[58] which is

described by:

- i E Go=Gu 5
v(fi) = G(f) +iB(f) = Goo + T+ GL) (5.3)

where G(f) is the conductivity, B(f) is the susceptivity, Gy is the conductivity
at low frequency, G is the conductivity at high frequency, f, is the relaxation
frequency and A is shape factor. Figure 5.6 shows an example of this model

which was also utilised in simulation.

Cemiy
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Go=128/m, Gx =0.8S/m, fr =200 kHz, A\ =1
= =G =128/mGx =08 S/m, frp =50 kHz, Ay =0.8

(b)

Figure 5.6: Example: real part(a) and imaginary part (b) of 7.(f) for two sets
of parameters.
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For these studies a fine circular mesh with the diameter of 1.5 cm was em-
ployed. This mesh consisted of 1952 first-order triangular elements, 1025 vertices
and 16 peripheral electrodes. The background admittivity was set to (1-i0.1). To
provide measurements over the required frequency range a Chirp is used as the
excitation signal. Figure 5.7, for example, shows the true distribution at eight

different frequencies. The simulation was performed by solving the system equa-

-0.04
skt <l - 3 -0.06
350kHz RN - ke -0.08
— | me—
ok < o
e — -0.12
okt < S
30kHz N A i i - -0.16
(a) (b)

Figure 5.7: True admittivity distribution 7: real part(a) and imaginary part (b),
the left and right colour bars shows the scale of the real and imaginary parts of
true admittivity in S/m, respectively.

tion (5.2) using the above 2D model in association with the adapted EIDORS
forward solver. This was based upon a set of measured chirp values from the

peripheral electrodes. Figure 5.8 shows a part of a simulated measurement.

10 T T T T T T T T T

V(mV)
o

Time(ms)

Figure 5.8: A part of a simulated measurement, the excitation chirp was a sweep
from 10 kHz to 510 kHz within 7" = 5 ms.
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5.4.1 Wavelet Analysis

The complete set of the measurements generated by the above procedure were
analysed using the algorithm based on the wavelet transform illustrated in the
previous chapter to reveal spectral band data sets. To perform this, first the
appropriate wavelet parameters must be selected, for instance, table 5.1 gives
these parameters for a chirp with a sweep from 10 kHz to 510 kHz over a period

of 5 ms at eight frequency points.

Table 5.1: Wavelet parameters for a chirp swept from 10-510 kHz within 5ms.

Wavelet Frequency(kHz)
parameters 20 30 50 100 150 250 350 500
fe 1 06 06 09 1 19 15 19
fo 03 1 13 06 06 01 04 03

Analysing the simulated Chirp signals by utilising the optimum parameters yields
the complete set of potentials at each frequency. Figure 5.9 shows the simulated
measurements at 50 kHz. These values were then used for the reconstruction of

admittivity distribution.

Voltage(v)
o

1

0 100 200 300 400 500
Measurement Number

Figure 5.9: Complete set of simulated measurements using the proposed method
at 50 kHz.

5.5 Reconstruction of Tomographic Image

The inverse solver available in the EIDORS suite was adapted for the use in

this research. The nonlinear regularised Gauss-Newton algorithm described by
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equation (2.25) in chapter two was deployed. The termination criterion for all
reconstruction conducted in this chapter was Morozov’s criterion and the regu-
larisation parameter was selected by visual inspection. Both error criterion and
a were set to (1 x 107°%) unless other values are stated. The potential on the
excitation electrodes are ignored and the Jacobian matrix was also modified ac-
cordingly. The initial values for admittivity distribution 9 were calculated by
using the approach mentioned in section 2.6.1.

The reconstruction was carried out by using a coarser finite elemnent mesh
in order to avoid the ’inverse problem crime’ [125] of over-estimation from ill-
posed and sparse data. The mesh model consisted of 488 first-order triangular

elements, and 269 vertices, as shown in figure 5.10.

0.8 5 4
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-0.6}
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Figure 5.10: Finite element mesh consists of 488 triangular elements, 269 vertices
and 16 peripheral electrodes.

Various types of tomography images can be reconstructed for real and complex
admittivity problems. In the real case, the image can only be reconstructed
for the conductivity, whereas in complex case the tomography images can be
reconstructed for the real and imaginary parts and also for the magnitude of
the admittivity distribution. Since, in the second case the reconstruction of the

tomographic images may lead to reveal more information about the process,
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this type of image may be preferable. In this chapter, the WEIT simulation
study are presented using an example of a complex admittivity distribution with
inclusions illustrated by the model shown in figure 5.6. Tomographic images
were reconstructed for the real and imaginary parts at frequencies given in table

5.1. They are shown in figures 5.11 and 5.12.
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Real part Imaginary part
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Figure 5.11: True and reconstructed tomographic images at frequencies: 20,
30, 50 and 100 kHz, the left and right colour bars show the scale of real and
imaginary parts of admittivity (in S/m), respectively.
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Figure 5.12: The continue of figure 5.11 at frequencies 150, 250, 350 and 500 kHz.
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In above figures, the colour bars are similar and the left and right bars show
the scale of the real and imaginary parts of the admittivity distribution, respec-
tively.

Similar simulation were also performed by using another chirp with same band-
width but duration of 7= 1 ms. Figure 5.13 shows the reconstructed images at
20 kHz and 500 kHz. It must be emphasis that to perform these simulations the

wavelet parameters were updated for the new chirp.

Real part Imaginary part

JA*‘! 2. L’ =
.

OB X

Figure 5.13: Real and imaginary part of reconstructed images at 20 kHz (top)
and 500 kHz (bottom), the left and right colour bars show the scale of real
and imaginary parts of admittivity (in S/m) and the simulated data set were
generated using a chirp with 7" = 1 ms.

The results of above simulations show clearly the variation of the frequency-
dependent inclusions over frequency range. These images, in fact, give the spec-

tral information besides the spatial distribution. Thus the tomography images.
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based upon frequency banding of the excitation signal, are able to reflect the
frequency-dependent characteristics in the process. These simulations also ver-
ify that the proposed method has the flexibility of adapting the characteristics

of the excitation chirp to meet the process requirements.

5.6 Error Impact on Tomographic Images

The performance of the method is demonstrated through a comparison of to-
mography images, reconstructed by the proposed method, conventional single
frequency approach and also true admittivity distribution. To measure the error
at each frequency, the mean value of relative errors (MRE) was calculated from
the tomographic images data. This can be expressed by :
~ oy L RO O] - Riv D)

MREG; 0 = 7, 2 iy ]

i=1,-+,N., k=1,--- N

x 100 (5.4)

where N is the number of frequency points, N, is the number of elements, 7, is
reconstructed admittivity distribution using proposed method at frequency f, v¢
is reference admittivity distribution, true or reconstructed by another method.
Figure 5.14 indicates the error impact of the proposed algorithin. Similar nea-
sures to equation (5.4) have also been exploited for the comparison of errors on
the imaginary part, the synthetic measured data sets and also the noise analysis
in the rest of this chapter.

To study the error impact, the M RE values were calculated on the reconstructed
real and imaginary parts using WEIT in respect to the true distributions and
those reconstructed using SFEIT at eight frequencies. The corresponding results
are shown in figure 5.14.

These figures demonstrate that, except the error at 20 kHz, which is greater than

at other frequencies, the errors show a slight increase in comparison to those re-
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constructed directly. Here, the minimum error value is 0.018% at 100 kHz, while

the maximum value is at 20 kHz with an error value about 1.6%.
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Figure 5.14: Error impact of proposed algorithm on tomographic images at dif-
ferent frequencies: M RE(7,~)(%) of real part (a) and imaginary part (b), the
duration of the chirp was T=5ms.

To see the impact of the characteristics of the excitation signal on the error,
the above simulations were repeated by using a modified chirp with duration

of T = 1 ms; figure 5.15 shows the results for this simulation. In this case,
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Figure 5.15: Error impact of proposed algorithm on tomographic images at dif-
ferent frequencies: M RE(7,v)(%) of real part (a) and imaginary part (b), the
duration of the chirp was T=1ms.
the comparison of the errors with those demonstrated in figure 5.14 shows a
greater error at lower frequencies including 20, 30 and 50 kHz, while there is no
significant difference at other frequencies. The minimum error value is 0.059%
at 150 kHz whereas the maximum values is at 20 kHz with a value about 4.08%..

These errors originate in the algorithm and arise from the wavelet transform.
To verify this, the relative error on the training waveform and also MRE (17 V)

calculated on the complete sets of the simulated measurements by WEIT, v
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and SFEIT, V at various frequencies, are compared. These are presented in
figure 5.16. By comparing these figures with those shown in 5.14 and 5.15 it is
evident that the errors are generated by the presented method and that these
are propagated through the simulated measurements and consequently appear

in the reconstructed images.
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Figure 5.16: Error of proposed algorithm at different frequencies: relative error
on the training waveform (a) and MRE(V,V)(%) on the simulatted measure-
ments using SFEIT and WEIT (b).

The reason for the greater errors at some frequencies, for instance 20 kHz, was
discussed in the previous chapter. It was shown that the necessary values can
be accurately estimated under conditions stated in Section 4.4.4 in Chapter 4;
The verification of these restrictions on the Chirp signals described above for
low frequencies implies that it is not possible to extract the temporal values

with the accuracy achieved at other frequencies. For the same reason the errors
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will increase when the chirp duration decreases, which can also be verified in
figure 5.16. However, these minor errors (in these simulation conditions) are
offset by the corresponding higher quality of estimation of the process spectral

information.

5.7 Noise Impact on Performance of Method

In this section the performance of the proposed method is investigated in the
presence of noise. For this purpose, noisy data sets, V were produced by con-
taminating the simulated data sets, V described in the section 5.4 with zero-mean

Gaussian noise n as:

o~

V=V+n (5.

ct
[y ]
~—

The standard deviation (STD) of the noise was varied from 1% to 5% of corre-
sponding measurement. Then the proposed method was applied to these data
sets to extract the electrode potentials on a frequency set from 10 kHz to 500 kHz
with 15 kHz increments. The performance was then evaluated by calculating
MREV,V)(%).

For comparison similar simulations were also performed on the measurements
simulated using SFEIT. The results of simulations are presented in figure 5.17.
The noticeable improvement is evident by comparison of the resulted error by
SFEIT, figure 5.17a and that of proposed method, figure 5.17b. These figures
demonstrate an improvement better than 600%. Therefore, it is verified that
exploiting the presented method leads to less sensitivity to the noise and that it
is able to provide better accuracy in the presence of noise. The reason for this
improvement is due to the nature of bandpass filtering of the wavelet transforin
which will decrease the noise impact [126].

Figure 5.18 exhibits two images reconstructed using noisy data at 20 kHz and
500 kHz, corresponding to the minimum and maximum errors, by using the pro-

posed method when the STD was set to the 1% of the noisefree simulated data.
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Figure 5.17: Performance of the presented method in presence of noise:
MRE(V,V)(%) using SFEIT (a) and with presented method (b), where V and V
are noise-free and contaminated measurements, respectively, and the noise STD
was set to the different values from 1% to 5% of corresponding measurement.

The regularisation parameter (a = 1 x 107%) was equal to the value used in the

section 5.5. It should be noted here the reconstruction at a higher level of noise
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may require the modification of the value of the regularisation parameter [48].
However, here due to the presence of noise the reconstructions converged with
final square error less than 2 x 107%. At 20 kHz the reconstruction converged
after 5 iterations while this raised to 11 for the image at 500 kHz which is due to
higher noise at this frequency. The presence of the noise introduces artifacts in
the images leading to the wrong analysis and interpretation of tomographic data.
In figure 5.18 for the images at 500 kHz although the true inclusions can still be
seen, the significant artifacts cause misinterpretation, for instance the number of

inclusions. In contrast, the images at 20 kHz shows more accurate images.

Real part Imaginary part

.

Figure 5.18: Tomography images reconstructed in the presence of noise at 20 kHz
(top) and 500 kHz (bottom ).
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5.8 Spectral Tomographic Data Analysis

The simulation results in previous sections have verified that the proposed method
is able to extend the SFEIT systems to the WEIT system. Since this method
leads to the formation of the tomographic images over desired frequency range,
it has the capability to provide local spectrum of the admittivity distribution.
In essence, this relates the characteristics of the process or its materials to the
spectral information. Hence in suitable applications we may expect that the
band-segmented spectral data, in conjunction with a look-up table, or a model
based method, may be deployed to identify the materials, or indicate their pres-
ence in a process. Compared to conventional MFEIT systems, this method has
the major advantages of providing enough spectral information besides the flex-

ibility in preparing spectral data sets that facilitates spectral analyses.

5.8.1 Look-up Table Method

The use of a look-up table is illustrated in principle in figure 5.19. This can be
realised by utilising a priori information of the known spectral responses of known
candidate components to build the table; and then using this in conjunction with
reconstructed images over the desired frequency range. In the spatial domain
specific image regions, having a given spectral index, would be extracted using
common image processing techniques such as image segmentation. For instance,
figure 5.19 shows the conductivity variation of three materials A, B and C over
the expected significant frequency range. By comparing experimental spectral
data with those in the look-up table it may be possible to identify material C in
this process.

To see the feasibility of this method, a simulation is illustrated using the
tomography images reconstructed with noisy data sets generated as described
in the last section, when the STD was set to the 1%. The tomographic images
were then reconstructed at all frequencies mentioned in the previous section.

The regularisation parameter was (@ = 1 x 107%). In this simulation, due to the
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Figure 5.19: Spectral study using Look-up table method.

presence of noise, the reconstructions converged with final square error less than
2 x 107%. To investigate the trajectories of the local spectrum admittivity three
regions were selected corresponding to the two inclusions, R, and Rs, and the
background admittivity distribution, Rz, as shown in figure 5.20. The regions
were selected based on the structural information provided by the reconstructed

images. Each of these regions consists of 10 elements.

Figure 5.20: Selected regions on the tomography image.

Local spectral trajectories of these regions were then determined by averaging
the admittivity values on the corresponding elements in the each regions. It is
evident that the noise impact on the the averaged trajectories is less than the tra-
jectory of each individual element. The results are shown in figure 5.21 together
with the true models. This figure verifies that the regions can be distinguished

from each other by their trajectories, thus by comparison of the true with the
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Figure 5.21: Trajectories of the real and imaginary parts of regions R;, R, and
Rj at various frequencies, real parts (a) and imaginary parts (b).

estimated trajectories the selected regions can be matched with true models.
This simulation implies that in practical situations it may be possible to exploit
similar procedure to estimate local trajectories of admittivity distribution which

may lead to recognition or identification of process parameters or materials.
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5.8.2 Fitting Parametrised Model

Another approach is fitting a suitable parametrised model to the estimated ad-
mittivity distribution. The values of the fitted model parameters may then he
utilised to identify the materials or interpretation of process characteristics. Here,
the essential issue is to find an appropriate model which may be determined by
either investigating the spectral aspects of the process materials or conducting
some trial experimental test for a particular application. For instance the Cole
model [58], and its modifications [123], for liquid chemical substances has been
used in medical impedance tomography [11] and also for pharmaceutical mate-
rials [123]. The Cole model was expressed by equation (5.3) which is specified
by four parameters G, Go, fr and A. However, in practice, since the absolute
value of admittivity distribution is usually unknown, the relative expression in
respect to a reference frequency is preferable. The model can then be expressed
by k = G /G, fr and A [127)].

To illustrate this approach, a simulation was conducted by fitting the Cole model
to the same noisy data set as used in the previous section. Obviously, it is possible
to fit the model to the trajectory of each element separately, and then calculate
the average of fitted parameters for each region. Instead, to reduce the effect of

noise this was performed on the averaged trajectories. Table 5.2 and figure 5.22

Table 5.2: Estimated and true Cole parameters using trajectories of the regions
in the presence of noise

A fr(kHz) k=Gx/Go
Region Residual Error

True|Estimated|True| Estimated|True| Estimated

R, 1 0.9060 | 200 202.5 |0.67| 0.7145 | 2.074 x 10~

Rz |0.8] 08329 | 50 42.28 |0.67| 0.7418 | 2.090 x 10~4

R3 - 1 - 29.42 - 0.9719 2.1x 1074

demonstrate good agreement between estimated and true model parameters.
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Figure 5.22: True Cole model and the estimated model for regions R,, R,, real

parts (a) and imaginary parts (b).
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5.8.3 Improving Conductivity Contrast Using WEIT

Since in a process containing frequency-dependent materials the conductivities
are changing over frequency range, performing the experiments at frequencies
that process materials exhibit higher conductivity contrast may enhance tomog-

raphy images. Figure 5.23 describes this phenomenon. An advantage of the

(o}
A

S (kHy)

0 40 60 80 100

Figure 5.23: Conductivity trajectories of two materials A and B over frequency
range, Ao conductivities difference at a frequency.

WEIT could be determination of such frequency. In this regard, since the pre-
sented method has the capability to deliver the measurement data set over a wide
range of frequency, it can be an appropriate approach to identify the optimum
frequency for a SFEIT systems.

For instance, for the regions shown in 5.20 since the background admittivity
IR[vr,]| = 1 and |3[yr,]| = 0.1, the trajectories of the contrasts for regions R,
and R, have similar trends as their averaged trajectories shown in figure 5.21.
This implies that for the real part of 4 the highest contrast for both regions can
be achieved at frequency about 20 kHz whereas for the imaginary part the max-
imum contrast for R, and R, are different which can be obtained at frequencies
about 200 kHz and 500 kHz, respectively.

In [128] for a conductive distribution the fraction C' = 04/0p is also defined as
conductivity contrast, where o4 is the conductivity of region A within a larger re-
gion B with conductivity . This definition was adapted for the multi-frequency

imaging in [129].
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5.9 Conclusion

The chapter presents a novel method for the WEIT using chirp excitation, based
on the wavelet transform. The performance of the proposed method has been
investigated by various simulations. The synthetic data sets were produced by
using a 2D mesh with two frequency-dependent regions. The tomography images
were reconstructed for the real and imaginary parts of the admittivity distribu-
tion. Based on these images comprehensive error analysis was conducted. The
results demonstrate a relatively precise estimation of the admittivity distribu-
tion over the frequency range, but there is an increase in the average error that
originates in the proposed method. The performance of the method also has
been evaluated in the presence of noise. This simulation has shown significant
improvements in the noise performance. The chapter concludes with an illus-
tration of two approaches for the analysis of spectral tomographic data. The
results imply the potential of the WEIT to provide a range of flexible local
spectral admittivity information, which can enhance the identification of process
materials or process parameters. The results of this chapter in general support
the conclusion that utilising Chirp excitation efliciently facilitates tomographic
measurement over a desired wideband frequency range, but this is achieved at
the minor cost of extra processing complexity and a slightly increased average

error.
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Chapter 6

Experimental Feasibility Study

6.1 Summary

This chapter demonstrates the feasibility of the proposed method through ex-
perimental simulation. For these trials a single-channel EIT Chirp excitation
was implemented which is briefly described. The tests were conducted using re-
sistive paper and also a 16-electrode EIT rig. The experimental data were then
analysed and tomography images were reconstructed by using the extracted data
over the relevant frequency range. The chapter will also present the capability of
a method for four-probe impedance spectroscopy used for performing reference

tests on food materials.

6.2 Hardware Implementation

This section presents an overview of the implementation of the electronic system.
This provides a single-channel EIT chirp excitation implementation to perform
the experimental simulations, as an alternative to a real-time parallel data collec-
tion system, to support pseudo-static tests. Figure 6.1 shows the block diagram
of this system.

In this system, the excitation Chirp was generated by a direct digital synthe-

sis (DDS) unit [72] controlled by a host computer. Following initial amplifica-
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Figure 6.1: Block diagram of hardware.

tion the waveform is converted into a current stimulus supplied from a current
source based upon a LT1228 fast trans-conductance amplifier [130]. The cur-
rent was applied to the excitation electrodes using a selector board, according
to the adjacent electrode protocol. To realize a simple feasibility test-bed the
sensed voltages were differentially measured using a purpose-designed high-input
impedance buffer, and then stored using a LeCroy digital storage oscilloscope.

The following sections present further details of the implemented hardware.

6.2.1 DDS-based Chirp Generation

In this section the generation of the Chirp signal is described. As discussed
in chapter 3, a Chirp is a signal which transits between two frequencies over a
specified time duration. The frequency transition can be a linear or nonlinear
function of time; a linear or nonlinear Chirp, respectively. To generate a Chirp
signal a DDS technique was employed. As mentioned in chapter 2, this technique
supports the generation of a very stable and accurate signal.

Figure 6.2 shows the block diagram of the DDS-based Chirp generation unit [72].
In this figure, the phase accumulator Ac2 is driven by summation of initial fre-
quency fi tuning word and the output of the frequency accumulator Acl. The
accumulator Acl recursively sums the frequency increment, tuning word Af, at

a rate determined by the ramp clock. This means that at each clock pulse the
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Figure 6.2: Block diagram of DDS-based Chirp generation.

input to the Ac2 is increased by Af and consequently the output frequency f is
updated each time. Both linear and nonlinear chirps can be generated by appro-
priate modification of the frequency increment. If the ramp clock is generated at
equal intervals and the Af word is constant, the slope of the output frequency
variation is also constant and the output Chirp will be linear. To synthesis a
nonlinear Chirp, the flexibility of the DDS technique allows the modification of
Af, or ramp rate, within the transition from the initial frequency. fi,, to the
final frequency, fy, according to the desired nonlinear function. In this work all
experiments were carried out using a linear Chirp generated using an evaluation
board supporting an AD9852 digital synthesiser [107]. This ensures the genera-
tion of a high quality Chirp from this precision device.

To generate a linear Chirp, one needs to specify essential Chirp parameters con-
sisting of fin, fg, Chirp duration T and Af. According to the DDS theory [72]
and figure 6.2, for a up-sweep Chirp, fi, < ff, the output frequency can be

expressed as:

f = fin+nlf n=0,---,N (6.1)

where n is an integer number and N = z%ﬁ". A further necessary parameter for

the DDS Chirp generation is the ramp rate /N, which determines the duration
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spent at each frequency. It can be expressed by:

_ AT
"N

Nr -1 (62)

where f, is the system clock frequency.

6.2.2 Wideband Sinusoidal Current Source

Most EIT systems use sinusoidal current source excitation. The performance of
the current source significantly affects the accuracy of the measurements, and in
turn on the constructed images. A concise review on the reported current sources
has been presented in the second chapter of this thesis. Since the characteristics
of the current sources reviewed are frequency dependent, they are not able to
retain their required features over a wide frequency range, when a simultaneous
excitation signal is applied. Therefore, they can not be exploited for the WEIT
systems. In this case, the variation of load impedance over a wide frequency
range is a further reason that the design of the wideband current source is more
challenging than that of the conventional EIT.
Among the reported current sources the monolithic VCCS such as the AD844
[80] provides wider bandwidth and thus, the possibility of working with a simul-
taneous excitation signal. The other advantages of using these type of amplifiers
are reduction in the electronic circuitry, stability over frequency and load range,
and also avoiding component mismatching. The limitation in the maximum out-
put current is a drawback of this type of current source. To overcome this, a
parallel arrangement of current sources may be deployed to achieve a composite
higher output current source, for instance in [64], but at the expense of lower
total output impedance.

For the implementation of the current source in this research an LT1228
amplifier [130] was utilised. This is a 100 MHz current feedback amplifier, which

includes a very fast transconductance amplifier. This amplifier can be externally
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Figure 6.3: Schematic of current source using LT1228.

controlled by adjusting the reference current I, as shown in figure 6.3. It has
also a wide output voltage range and, thereby, the capability to handle a wide
range of output load. LT1228 has two main advantages in comparison with
AD844. Firstly, a wider range of output load and secondly, the possibility of

programming the output current without increasing the input voltage.
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Figure 6.4: Current source AC analysis, magnitude (solid line) and phase (dashed

line) .

Figure 6.4 shows the Spice AC analysis of the current source shown in figure
6.3. These results show a flat output current magnitude and phase change of
2.4(degree) over the bandwidth of 1 MHz. The simulation indicates that the
maximum output impedance is 1.064 M at a very low frequency value which
declines to 400 k2 at 1 MHz, as shown in figure 6.5.

In practice, however, the output impedance is less than these values. The practi-

cal tests over the frequency range of 10-200 kHz show the variation of the output
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Figure 6.5: Output Impedance Z,,,;.

impedance from 286 k2 at 10 kHz to 280 kQ2 at 200 kHz. However, after this
range the impedance gradually decreased to 20 k(2 at frequency 500 kHz. In the
range of 10-200 kHz, the current indicated a relative change of 0.7% when the
output load Ry was 1 k(2. To see the stability of the current source with the
load variation, a further test was conducted at frequency of 50 kHz. The tests
over the load range of 0.1-3.5 k{2 show a realtive current change of 1.4%. These
tests were conducted at the output current of about 5 mA and power supply of
+15 Volt.

The above results show that the current source delivers its best performance over

the frequency range of 10-200 kHz.

6.2.3 Noise Performance

The noise performance of the single-channel EIT system is evaluated by using
Fourier analysis. Figure 6.6 presents the spectrum of an excitation Chirp and
measured voltage in an experiment with the EIT rig, as illustrated later in this
chapter. This is swept from 10 kHz to 210 kHz in a period of 5 ms. This figure
shows the bandwidth occupied by the fundamental Chirp and the apparent dis-
turbances. The figure implies that the disturbances consist of random noise and
non-linear effects. The fundamental Chirp occupies the bandwidth 10-210 kHz.

For this example, the power ratio of the fundamental signal to the non-linear
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part, is about 30 dB whereas it is about 40 dB for the noise components. The
verification of these on a further 20 randomly selected signals shows similar dis-
turbances and ratios.

The source of noise is generally random noise and quantization error. The ran-
dom noise is mainly due to electronic noise. For the quantization noise, since
the output DAC of the AD9852 has 12-bit resolution, the ratio of signal power

to quantization noise power(SQR)[131] is:

SQR =1.76 + 6.02B = 74 (dB) (6.3)

where B is the DAC resolution.
Since all signals were recorded by the digital oscilloscope which has 8-bit reso-
lution, then according to equation (6.3), this limits the SQR to about 49.92 dB.
Comparing these theoretical values with the mentioned SNR of the practical data
sets, implies the impact of quantization error on the total SNR of the system.
This suggests that the implementation of a sophisticated measuring system with
12-bit ADC, for instance, would result in significant improvement in the overall
SNR. It is also evident that since the non-linear disturbance has greater power
ratio than that of the noise, it is a limiting factor in the implemented hardware.
Here, again it must be emphasised that, due to the bandpass filtering of the
wavelet transform the non-linear effects and also noise will be efficiently rejected
by the proposed method.

Further investigation of the performance of the implemented hardware was
carried out by the evaluation of the harmonic components in the current wave-
form applied to the rig at 50 kHz. As a measure of this, the total harmonic

distortion (THD) method was exploited. This is expressed by:

B+ B+ + 12
= 7

THD(%) (6.4)
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Figure 6.6: Spectrum of excitation current (a) and measured voltage (b), when
the Chirp swept 10 kHz-210 kHz in period of T' = 5ms.
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Figure 6.7: Spectrum of excitation current waveform at 50 kHz.

where I and I, are the magnitude of the fundamental frequency and harmonics,
respectively. These values can be determined from the spectrum of the current
signal, shown in 6.7. The calculation shows that the total harmonic distortion

for this example is, THD = 2.9(%).

6.3 Experimental Simulations

The feasibility of the WEIT method was verified by applying the algorithm on
data sets obtained from various experimental feasibility trials. These tests consist
of pseudo-static experiments using resistive paper and also food materials. The
tomographic tests were performed using a 16-electrode EIT array and exploiting
the single-channel EIT hardware described earlier in this chapter. The parallel
data collection, typical of an industrially scaled system, was simulated for this
exercise through superposition, by simply repeating the excitation for a sequence
of separate measurements. This procedure realised a simple feasibility test-bed in
which the sensed voltages were differentially measured using a purpose-designed
high-input impedance buffer, and then stored using a LeCroy digital storage

oscilloscope.
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6.3.1 Image Reconstruction

For reconstruction purposes, all measurements were normalized to the amplitude
of the excitation current. Then, their temporal amplitudes were extracted by the
method described in chapter 4. In the reconstruction phase, a similar FEM mesh
to that of section 5.5 was utilized, but with the diameter of 15 ci. For simplicity
in modelling, the frequency dependence of the electrodes was ignored, but the
relative impedance 2092 was assumed for each electrode. The images were then
reconstructed for the magnitude of the admittivity distribution, performed by
five iterations of the nonlinear regularized Gauss-Newton method described in
Chapter 2. The regularization factor was selected by inspection. In practice, to
produce informative tomographic images, in the absence of information of the
absolute values of admittivity, a difference image with respect to a reference may
be deployed, as shown in figure 6.8.

As described in Chapter 2, for multi-frequency imaging the image at a cer-
tain frequency can be utilised as a reference. Therefore, objects which exhibit
frequency-dependent behaviour will appear in the tomographic images. A sec-
ond approach is reconstructing the final image with respect to the homogeneous
medium. This consists of a simple two stage process. The 