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Abstract. 

Interest in PrimuJa flowers from both a horticultural and scientific perspective dates back over 

400 years. Floral mutations were first used for ornamental value in the latter part of the 161h 

Century but had attracted little scientific attention. The phenomenon of floral heteromorphy as a 

mechanism to promote out-breeding was immortalised by the work of Darwin in the mid 1 cjh 

Century. Subsequent analysis of this breeding system has attracted much attention, including the 

genetic definition of the S locus as a cluster of tightly linked genes that control pin and thrum 

flower development and mediate self-incompatibility. 

Mutant phenotypes of British PrimuJa have been collected by the author for over twenty years. 

Classical genetic analysis of some of these mutants is included and provides the first detailed 

analysis of existing and new mutant phenotypes. Genetic analysis of these mutants is presented in 

the context of the ABC model of flower development. Detailed analysis of the early ontogeny of 

wild type and mutant flowers by scanning electron microscopy provides new insights into the 

control of Primula flower development. As Primula flowers were found to be homomorphic 

during early ontogeny development of pin and thrum heteromorphic features of Primula were 

investigated to maturity. A new heteromorphic feature was discovered; thrum flowers have a 

wider corolla tube mouth than pin flowers due to the corolla tube cells above the anthers being 

wider in thrum flowers than in pin flowers. 

Three of the mutant phenotypes Hose in Hose, Staminoid Carpels and sepaloid are predicted to 

arise through misexpression of a B function gene. The first two are dominant mutant phenotypes 

and all are linked to the S locus. A fourth recently discovered dominant mutant phenotype, 

Oa1cJea/. affects both leaf and flower development, and is also linked to 1he S locus. As 1he 

dominant nature of the Hose in Hose mutation precludes complementation tests three point 

crosses were used both as segregation tests and for mapping genes linked to 1he Primula S locus. 

Gene order was found to be Oak Leaf. S locus. Hose in Hose, with sepaloid either allelic to Hose 

in Hose or very tightly linked. In combination, these analyses have enabled 1he assembly of the 

first genetic map of genes around the S locus including flanking niarkers on either side. 

111 



Acknowledgements 

Abstract 

Contents 

Figures and Tables 

Abbreviations 

CHAPTER ONE: Introduction 

1.1. General introduction 

Contents 

1.2. Molecular basis offloral morphogenesis 

1.3. The Primula breeding system 

1.4. British species of Primula 

1.5. Mutant phenotypes of Primula: a historical perspective 

page 

iii 

IV 

v 

XlI 

XVln 

1 

1 

1 

11 

15 

17 

1.5.1. Primula homeotic mutants 17 

1.5.2. Mutant phenotypes with alteration to the usual form of the perianth 30 

1.5.3. Pleiotropic mutant phenotypes 

1.5.4. Summary 

1.6. Project aims 

CHAPTER TWO: Materials and Methods 

2.1. Sources of Plants 

2.2. Maintenance of plants 

2.3. Raising of progeny 

2.4. Observation of pollen size 

2.5. Photography 

2.6. Scanning electron microscopy 

2.7. Gene nomenclature 

2.S. 'lTests 

IV 

32 

33 

33 

35 

35 

36 

36 

37 

38 

38 

39 

39 



CHAPTER THREE: Wild type Primulos 

3.1. Introduction 

3.2. Botanical description of Primula 

3.3. Early ontogeny of wild type Primula 

3.4. Discussion of early ontogeny 

3.S. Development of pin and thrum heteromorphic features 

3.6. The diameter of the floral mouth is different in pin and thrum flowers 

3.7. Discussion of late development 

3.8. Timing of the development of the heteromorphic characters 

3.9. Corolla tube mouth diameter: a new heteromorphic character 

CHAPTER FOUR: Mutant phenotypes 

4.1. Introduction 

4.2. Description and development of the mutant phenotypes 

4.2.1. The Jack in the Green mutant phenotype 

(i) Description of Jack in the Green 

(ii) Development of Jack in the Green flowers 

4.2.2. The Hose in Hose mutant phenotype 

(i) Description of Hose in Hose 

(ii) Development of Hose in Hose flowers 

4.2.3. The Split Perianlh mutant phenotype 

(i) Description of Split Perianth 

(ii) Development of Split Perianth flowers 

4.2.4. The Staminoid Carpels mutant phenotype 

(i) Description of Staminoid Carpels 

(ii) Development of Staminoid Carpels flowers 

4.2.5. The sepaloid mutant phenotype 

(i) Description of sepaloid 

(ii) Development of sepaloid flowers 

4.2.6. The double mutant phenotype 

(i) Description of doubles 

(ii) Development of double flowers 

(iii) Whorl architecture in double flowers 

v 

40 

40 

40 

42 

47 

49 

53 

56 

56 

56 

58 

58 

58 

58 

58 

63 

63 

63 

66 

69 

69 

74 

74 

74 

77 

80 

80 

80 

84 

84 

86 

89 



4.2.7. Primula viridis the green primrose 93 

(i) Description of Primula viridis 93 

(ii) Development of Primula viridis flowers 93 

4.2.8. The virescent cowslip mutant phenotype 97 

(i) Description of virescent cowslip 97 

(ii) Development of virescent cowslip flowers 97 

4.2.9. The reduced petal mutant phenotype 100 

(i) Description of reduced petal 100 

(ii) Development of reduced petal flowers 100 

4.2.10. The Oak Leaf mutant phenotype 105 

(i) Description of Oak Leaf 105 

(ii) Development of Oak Lea/flowers 110 

.4.3. Discussion of Chapter four llO 

4.3.1. Discussion of the mutant phenotypes 110 

4.3.2. Discussion of early ontogeny ll8 

4.3.3. Discussion of late ontogeny 121 

CHAPTER FIVE: Genetic analysis of mutant phenotypes 122 

122 

122 

122 

123 

124 

124 

5.1. Introduction 

5.2. Jack in the Green 

5.2.1. Origin and history 

5.2.2. Subsequent crosses 

5.2.3. Summary of results 

5.3. Hose in Hose 

5.3.1. Origin and history 124 

5.3.2. Isolation of thrum homozygote (SS) 125 

5.3.3. Study of expression of Hose in Hose 127 

5.3.4. Testing of other lines of Hose in Hose plants 130 

5.3.5. Summary of previous results 133 

5.3.6. Subsequent crosses 133 

5.3.7. Testing for presence or absence of an S locus linked lethal factor in 

thrum Hose in Hose 133 

5.3.8. Summary of results 136 

VI 



5.4. Split Perianth 136 

5.4.1. Origin and history 137 

5.4.2. Subsequent crosses 137 

5.4.3. Testing for linkage of Split Perianth to the S loc~ 137 

5.4.4. Investigation of expression of the Split Perianth phenotype 138 

5.4.5. Summary of results 140 

5.5. Staminoid Carpels 140 

5.5.1. Origin and history 141 

5.5.2. More extreme fonns of Staminoid Carpels 142 

5.5.3. Subsequent crosses 143 

5.5.4. Observations of variable expression of Staminoid Carpels 143 

5.5.5. Investigation of segregation of Hih· with S and Hih with s 144 

5.5.6. Investigation of viability of whorl 4 ponen 146 

5.5.7. Investigation of the inheritance of pin Staminoid Carpels-

Hose in Hose 146 

5.5.8. Testing expression of homozygous Hose in Hose-Staminoid 148 

Carpels. 

5.5.9. Summary of results 148 

5.6. sepaloid 149 

5.6.1. Origin and history 149 

5.6.2. Inheritance of sepaloid 149 

5.6.3. Subsequent crosses 151 

5.6.4. Summary of results 153 

5.7. double 154 

5.7.1. Origin and history 154 

5.7.2. Subsequent crosses 157 

5.7.3. Investigation of the new double polyanthus "Lin Rogers" 158 

5.7.4. Tests to discover whether all different forms of double are allelic 159 

5.7.5. Investigation of fertility of the Jack in the Green-double with carpels 162 

5.7.6. Investigation of linkage between double and the S locus 163 

5.7.7. Summary of results 164 

5.8. reduced petal 164 

5.8.1. Investigation of whether or not there is any linkage between reduced 

petal and the S locus 165 
vii 



5.8.2. Summary of results 

5.9. Oak Leaf 

5.9.1. Genetic analysis of the original thrum Oak Leaf 

5.9.2. Testing of one thrum Oak Leaf for coupling to the S allele of the 

167 

167 

167 

Primu/a S locus 170 

5.9.3. Investigation of viability of OkllOkl homozygotes 172 

5.9.4. Summary of results 173 

5.10. Crosses using short homostyle 173 

5.10.1. Detennining the genotype of the blue short homostyle. 175 

5.10.2. Detennining the genotype of the yellow short homostyle. Long 

homostyle x short homostyle 175 

5.10.3. Summary of results 176 

5.11. Discussion of the inheritance of the mutant phenotypes 176 

CHAPTER SIX: Combinations of mutant phenotypes 181 

6.1. Introduction 181 

6.2. Combinations of mutant phenotypes that affect the first whorl 182 

6.2.1. The combination of leafy calyces (Jack in the Green) and 

petaloid calyces (Hose in Hose) that is tenned Jackanapes 182 

6.2.2. Combining Split Perianth with leafy (Jack in the Green) and 

peta10id (Hose in Hose) calyces 186 

6.3. Combining other mutant phenotypes 191 

6.3.1. Combining the pleiotropic mutant phenotype Oak Leafwith 

whorl 1 mutant phenotypes 191 

6.3.2. Combining the pleiotropic mutant phenotype Oak Leaf with 

another pleiotropic mutant phenotype reduced petal 194 

6.3.3. Other combinations of mutant phenotypes 195 

6.4. Combinations of phenotypes linked to the S locus with both long 

and short homostyle 197 

6.4.1. Crosses with long homostyles 199 

6.4.2. Crosses with short homostyles 200 

6.5. Investigation of whether the mutant phenotype is associated with the 

organ or with the whorl in which it occurs 

viii 

206 



6.6. Discussion of combinations of mutant phenotypes 207 

6.6.1. Combinations of whorl 1 mutant phenotypes 209 

6.6.2. Other combinations of mutant phenotypes 209 

6.6.3. Combination of Hose in Hose and Oak Lea/with long and 

short homostyle 211 

6.6.4. Combinations that illustrate the association of the mutant phenotype 

with the organ rather than with the whorl in which it occurs 212 

6.6.5. Summary of results 212 

CHAPTER SEVEN: Linkage analysis 214 

7.1. Introduction 214 

7.2. Investigation to determine whether Hose in Hose and sepaloid are allelic 215 

7.3. Investigation of the order of the linked genes Hose in Hose, Oak Leaf, 

and the Primula S locus' 221 

7.4. Investigation of the order of the linked genes Oak Leaf, sepaloid, 

and the Primula S locus 

7.5. Discussion of linkage analysis 

CHAPTER EIGHT: General discussion 

8.1. Introduction 

8.2. Discussion 

8.3. Further studies 

References 

Appendix 

IX 

231 

238 

241 

241 

241 

250 

252 

276 



Figures and Tables 

Chapter One 

Table 1.1 Floral organ identity mutant phenotypes 2 

Figure 1.1. Floral organ induction: the ABC model offloral organ identity 

(after Coen and Meyerowitz) 4 

Figure 1.2. A model for floral organ induction (after Coen and Meyerowitz) 6 

Figure 1.3. 

Figure 1.4. 

Genes involved in floral morphogenesis 

Pin and Thrum Primula flowers (from Darwin, 1861) annotated 

to show the parts of the flower and pollen flow between the 

twomorphs 

Figure 1.5. Wild British Primulas 

Figure 1.6. Jack in the Green (leaty sepals) 

Figure 1.7. 

Figure 1.8. 

Figure 1.9. 

Hose in Hose (petaloid sepals) 

Staminoid Carpels, sepaloid, and semi- double 

doubles 

Figure 1.10. Green floweredPrimulas 

Figure 1.11. The virescent cowslip 

Figure 1.12. Other mutant phenotypes 

Chapter three 

Figure 3.1. 

Figure 3.2. 

Figure 3.3. 

Figure 3.4. 

Figure 3.5. 

Figure 3.6. 

Figure 3.7. 

Figure 3.8. 

A comparison of early ontogeny between Primula vulgaris 

(primrose), Primula veris ( cowslip), and polyanthus 

Stages of development during early ontogeny in wild type 

Primula 

Differences in cell shape and size in whorl 1 at stage 6 

Development of whorl 4 into the component parts of stigma 

style and ovary 

Pin and thrum flowers of Primula vulgaris var. Blue Jeans 

Development of pin and thrum sibling flowers. 

Comparison of flower mouth diameter in pin and thrum flowers 

Scanning electron microscope analysis of Primula pin and 

thrum corolla tube cells above the anthers. 

x 

8 

13 

16 

18 

21 

23 

25 

28 

29 

31 

41 

43 

45 

46 

50 

51 

54 

55 



Chapter four 

Figure 4.1. Floral mutant phenotypes of Primula 59 

Figure 4.2. The Jack in the Green mutant phenotype 61 

Figure 4.3. Development of the Jack in the Green flower 62 

Figure 4.4. The Hose in Hose mutant phenotype 64 

Figure 4.5. Development of Hose in Hose flowers 67 

Figure 4.6. The Split Perianth mutant phenotype 70 

Figure 4.7. Development of the Split Perianth flower 72 

Figure 4.8. The Staminoid Carpels mutant phenotype 75 

Figure 4.9. Development of the Staminoid Carpels flower 78 

Figure 4.10. The sepaloid mutant phenotype 81 

Figure 4.11. Development of the sepaloid flower 82 

Figure 4.12. The double mutant phenotype 8S 

Figure 4.13. Development of double flowers 87 

Figure 4.14. Patterns of attachment of extra whorls of petals in four 

named commercial double primroses 90 

Figure 4.15. Extra whorls of petals in double flowers 91 

Figure 4.16. Variation in whorl architecture in five sibling double 

flowers, A-E 92 

Figure 4.17. Primula viridis, the green primrose 94 

Figure 4.18. Development of Primula viridis, the green primrose 9S 

Figure 4.19. The virescent cowslip mutant phenotype 98 

Figure 4.20. Development of virescent cowslip flowers 99 

Figure 4.21. The reduced petal polyanthus mutant phenotype 101 

Figure 4.22. Development of the reduced petal polyanthus flower 103 

Figure 4.23. The Oak Leaf mutant phenotype 106 

Figure 4.24. Pressed flowers and calyces from progeny of wild type 

P. vulgaris x Oak leaf primrose 108 

Figure 4.25. Development of Oak Leafflowers 109 

Figure 4.26. Interpretation and prediction of some mutant phenotypes 

through the ABC model of organ identity 111 

xi 



Figure 4.27. Interpretation and predictions of the phenotypes found in 

doubles through the ABC model of organ identity 115 

Chapter five 

Table 5.1. Origin of the two thrum Jack in the Green homozygotes 

(Jig S/ Jig s) 123 

Table 5.2. Isolation of thrum homozygote (HSlHS) Cross no. 1 125 

Table 5.3. Isolation of thrum homozygote (HSlHS) Cross no. 2 126 

Table 5.4. Reciprocal crosses of three ramets of one Hose in Hose plant 

to wild type 128 

Table 5.5. Combined totals from Table 5.7 128 

Table 5.6. Evaluation of the degree of expression of the Hose in Hose 

Phenotype 129 

Table 5.7 Test cross ofBamhaven Hose in Hose 130 

Table 5.8. Inheritance of Wanda hose in hose (1) 131 

Table 5.9. Inheritance of Wanda hose in hose (2) 132 

Table 5.10. First test for presence or absence of S locus linked lethal factor 

in thrum Hose in Hose 134 

Table 5.11. Second test for presence or absence of S locus linked lethal factor 

in thrum Hose in Hose 135 

Table 5.12. Test for linkage of Spr to the S loc~ 137 

Table 5.13. Self-pollination of the most extreme form of 

Split Perianth 138 

Table 5.14. The most extreme form of Split Perianth x wild type 140 

Table 5.15. Test cross of thrum Staminoid Carpels 141 

Table 5.16. Origin of a more extreme form of Staminoid Carpels 142 

Table 5.17. Origin of the most extreme form of Staminoid Carpels 143 

Table 5.18. Cross to observe expression of Staminoid Carpels 144 

Table 5.19. Testing of segregation of Hih· with S 145 

Table 5.20. Testing of segregation of Hih with s 145 

Table 5.21. Inheritance of pin Staminoid Carpels Hose in Hose 1 146 

Table 5.22. Inheritance ofpinStaminoidCarpels Hose in Hose 2 147 

Table 5.23. First test cross of sepaloid 149 

xii 



TableS.24. Second test cross of sepa/oid 150 

TableS.2S. First test for linkage between sepaloid and s 151 

Table S.26. Second test for linkage between sepa/oid and s 153 

Table S.27. Determining the genotype of the "Ward" semi-double 156 

TableS.28. Test of allelism between fully doub/e and semi-double 157 

TableS.29. Investigation of the new doub/e polyanthus. 158 

TableS.30. Allelism Cross I. 160 

Table S.31. Allelism Cross 2 161 

TableS.32. Allelism Cross 3 162 

TableS.33. Investigation of linkage between double and the S locus 163 

TableS.34. Test to establish whether or not there is any linkage between 

reduced petal and the S locus 165 

Table 5.35. Evaluation of the degree of expression of the reduced petal 

phenotype in the flowers 166 

Table 5.36. Classification of the ratio of Oak Leaf seedlings to wild type 

seedlings 1 167 

TableS.37. Test cross of the original thrum Oak Leaf 168 

TableS.38. Classification of the ratio of Oak Leafseedlings to wild type 

seedlings 2 169 

TableS.39. Reciprocal test cross of the original thrum Oak Leaf 170 

Table 5.40. Classification of the ratio of Oak Leaf seedlings to wild type 

seedlings 3 170 

Table 5.41. Testing of thrum Oak Leaffor coupling of Old with the S allele 

of the Primula S locus 171 

TableS.42. Investigation of viability of OkJ/Oki homozygotes 1 172 

TableS.43. Investigation of viability of Ok//Okl homozygotes 2 172 

Figure 5.1. Yellow and blue short homostyle flowers 174 

TableS.44 Determining the genotype of the blue short homostyle 175 

TableS.4S. Determining the genotype of the yellow short homostyle 176 

Chapter six 

Figure 6.1. Calyces of the double mutant Jackanapes 183 

Figure 6.2- The adaxial surface epidermal cells of a Jackanapes calyx 184 

xiii 



Figure 6.3. Development of the Jackanapes calyx 185 

Figure 6.4. Split Perianth double and triple mutants 187 

Figure 6.S. Development of flowers that combine Split perianth with 

other first whorl mutant phenotypes 189 

Table 6.1. Combining Oak Leafwith Jack in the Green and Jackanapes. 192 

Figure 6.6. Oak Leaf combined with whorl 1 mutant phenotypes 193 

Table 6.2. Combining Oak Leaf with reduced petal 194 

Figure 6.7. Combining Oak Leafwith reduced petal 196 

Table 6.3. Combining Hose in Hose with reduced petal polyanthus 197 

Figure 6.8. Other combinations of mutant phenotypes 198 

Table 6.4. Combining Hose in Hose with long homostyle 199 

Table 6.5. Combining Oak Leaf with long homostyle 200 

Figure 6.9. Combinations of phenotypes with loci linked to the S locus 

Table 6.6. 

Table 6.7. 

Table 6.8. 

Table 6.9. 

with long and short homostyle 201 

Combining Hose in Hose with short homostyle 1 

Combining Hose in Hose with short homostyle 2 

Combining Oak Leaf with short homostyle 1 

Combining Oak Leaf with short homostyle 2 

203 

203 

204 

204 

Table 6.10. Combining sepaloid with Jack in the Green and Split Perianth 206 

Table 6.11. Combining sepaloid with Split Perianth 207 

Figure 6.10. Combinations of phenotypes that show the mutant phenotype to be 

associated with the organ rather than the whorl in which it occurs 208 

Chapter seven 

Table 7.1. 

Figure 7.1 

Table 7.1. 

Cross no. 1. Three point cross to investigate whether Hose in Hose 

and sepaloid are allelic. 

Progress of pale seedlings to maturity 

Results of cross no. 2. Results of cross no. 2. Second test to 

216 

217 

investigate whether Hose in Hose and sepaloid are allelic 218 

Table 7.3. Results of cross no. 3. Third test to investigate whether Hose in Hose 

and sepaloid are allelic 219 

Table 7.4. Results of cross no. 4. Fourth test to investigate whether Hose in Hose 

and sepaloid are allelic 220 

xiv 



Table 7.5. Results of linkage analysis of Hose in Hose, Oak Leafand the 

Primu/a S locus 223 

Table 7.6 Map distances of Ok! and Hih from the S locus 224 

Table 7.7. Timing of flowering of Oak Leaf and wild type leaf progeny 225 

Table 7.S. Comparison of recombination frequency in pollen and egg of 

two Oak Leaf plants 226 

Figure 7.2. Short homostyles and stigmatic papillae length 228 

Table 7.9. Results of linkage analysis of Oak Leaf, sepaloid, and the 

Primula S locus 232 

Table 7.10 Map distances of Ok/ and sep from the S locus. 233 

Figure 7.3. Flowers of some progeny from crosses in section 7.4 that differ 

from the norm 235 

Figure 7.4. Variation in the form of some sepaloid-Oak Leafand 

sepaloid flowers 237 

xv 



Genotype 

Jig 

Hih 

Spr 

Stc 

sep 

dbl 

rdp 

Old 

gPA 

Gpa 

+ 

Ss 

ss 

? 

Abbreviations 

Phenotype 

Jack in the Green (leafy sepals) 

Hose in Hose (petaloid sepals) 

Split Perianth (calyx and/or corolla split) 

Staminoid Carpels (anthers in whorl 4) 

sepaloid (flowers of whorls of sepals and/or carpel) 

double (extra whorls of petals) 

reduced petal (small reduced petals, loss of colour, broad frilly 

leaves) 

Oak Lea/(lobed leaves/attenuated organs whorls 1 and 2) 

Long homostyle 

Short homostyle 

Wild type 

Thrum 

Pin 

Indicates that the genotype is not known 

xvi 
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CHAPTER ONE. 

Introduction. 

1.1. General introduction. 

Floral mutations have been recognized as curiosities for over two thousand years. Double 

flowers were recorded by Theophrastus before 286 B.C. (Meyerowitz et al., 1989). 

British native floral abnormalities were collected and grown as a means of adding variety 

to the garden, before introduced species and their modem derivatives became available 

(Parkinson, 1629), illustrated the range of Primula mutations available in the 17th 

centuIy. The appearance of a floral organ in a whorl normally occupied by a different 

floral organ was originally termed metamorphosis and became a subject of interest and 

research. The study of mutant flowers as a means of discovering more about normal floral 

morphogenesis was known as teratology, and continued throughout the 1800's (Masters, 

1869), and into the early 1900's (Worsdell, 1916). As early as 1790, Goethe had 

proposed that all floral organs are homologous to each other (cited by Coen, 1991).Nearly 

two centuries later Meyer illustrated that any organ in the flower is capable in some plant 

or other of developing in the form of any other type of organ in the normal flower 

(Meyer,I966). He did this by listing all the genera in which the various possible 

abnormalities were observed. Many of the abnormalities that Meyer listed have been 

observed in the mutant phenotypes of Primula collected by the current author, or 

recorded in the literature (Table 1.1). There were relatively few studies on the inheritance 

of plant abnormalities using classical genetics but those undertaken showed that single 

genes could control floral phenotypes. It was only with the development of methods of 

molecular analysis that studies of mutant plants began to unravel the process by which 

floral homeotic genes direct floral morphogenesis. 

1.2. Molecular basis ollloral morphogenesis. 

Floral morphogenesis in flowering plants requires, first, that meristem identity alters from 

vegetative growth to reproductive growth, and second, that the whorls of floral organs are 

produced in the correct 'order of sepals, petals, stamens, and carpels. Homeotic genes 

control gene expression during floral morphogenesis so that the appropriate genes for a 

particular developmental stage are switched on or off as required. Mutations in such 

homeotic genes result in the development of organs inappropriate to the whorl or to the 

position that they occupy. 
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WHORL 1. 2. 3. 4. 

Converted Sepaloid* Sepaloid* Sepaloid* 
to petals stamens carpels 
1. 

SEPALS 10 4 3 

2. Petaloid* Petaloid* Petaloid* 
PETALS sepals stamens carpels 

32 163 22 

3. Staminoid Staminoid Staminoid* 
STAMENS sepals petals carpels 

4 26 24 

4. Carpeloid Carpeloid Carpeloid* 
CARPELS sepals petals stamens 

1 5 65 

GROUND Leafy * Leafy* Leafy * Leafy* 
STATE/ sepals petals stamens carpels 
LEAVES 

57 60 22 34 

Table 1.1. Floral organ identity mutant phenotypes. 

Of the twenty possible mutant phenotypes above, twelve, (marked by 
asterisks) have been found in Primula. One, marked by pink asterisks, was 
recorded by Masters in 1877 but has not been observed since. The remaining 
eleven, marked by red asterisks, can still be seen today. In some instances 
two or more whorls are converted in the one flower, for example many 
doubles have whorls three and four converted to petals, and combinations of 
mutant phenotypes such as sepaloid Jack in the Green have whorls two, 
three, and sometimes whorl four also, converted to leaves. Numbers in grey 
indicate the number of genera listed by Meyer in 1966 in which the mutant 
phenotype had been observed. 
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The two vet)' distantly related species on which initial work was carried out are 

Arabidopsis thaliana andAntirrhinum majus. Despite the morphological differences 

between the two species, molecular and genetic results correlated sufficiently well to 

suggest an evolutionarily ancient basic process of floral morphogenesis (Bowman, 1997). 

Many genes found to be involved in floral morphogenesis are members of the MADS

box family. The first MADS-box genes to be identified in plants were AGAMOUS (AG) 

in Arabidopsis thaliana (Bowman etal. 1989,1991), andDEFICIENS (DEF) in 

Anlirrhinum majus (Sommer et 01. 1990). Both encode proteins with a highly conserved 

region of S8 amino acids which showed remarkable homology to the known DNA

binding transcriptional regulators of the yeast MCMI gene product (passmore et 01, 

1989), and the Sennn response factor encoded by SRF of humans and of Xenopus 

(Norman el 01. 1988). The motifwas named the MADS box after MCMI-AGAMOUS

DEFICIENS-SRF. After an intervening region there is a second conserved region, the K 

box. involved in protein - protein interactions, and MADS-box factors known to control 

similar processes also have a short stretch of homology at the C terminus. 

Both AGAMOUS and DEFICIENS were found to be organ identity genes, each with a 

different expression pattern and a different function. The ABC model for floral organ 

identity (Coen and Meyorowitz, 1991), proposed that three domains of action, each active 

in two adjacent whorls, control floral organ identity. In the ABC model the A function 

alone gives sepals, A + B gives petals, B + C gives stamens, and C alone gives carpels. 

Genes in the A and C domains are mutually antagonistic, while the B domain is 

established independently (Figure 1.1). The Antim,inium floral organ identity gene 

DEFICIENS (DEFJ was identified as a B function gene required for petal and stamen 

formation (Sommer et 01, 1990), and the AGAMOUS (AG) gene of Arabidopsis a C 

function gene required for stamen and carpel formation (Yanofsky et 01.,1990), 

(Figurel.1). As other genes involved in floral morphogenesis were discovered and 

characterized, both from the two model species Arabidopsis and Anti"hinum, and from 

other plants such as petunia, tomato, and tobacco, phenotypes of organ identity gene 

mutants (Figurel.2) were generally found to be consistent with the ABC model. The 

model was further tested by controlled crosses between plants with different mutant 

phenotypes, by maDipulation of flower structure in transgenic plants, such as in 

transgenic tobacco, (Mandel et aI., 1992; Davis et 01., 1996), and by ectopic gene 

expression, such as that inAlTlbidopsis (Mizukami and Ma, 1992). In situ hybridization 

also revealed expression patterns of organ identity genes consistent with those proposed 
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in the ABC model (Schwarz-Sommer et al.,I990; Sommer et al., 1991; Trobner et al., 

I 992;Simon etal. 1994; Goto and Meyerowitz, 1994; Krizek and Meyerowitz, 1996). 

Although genes involved in floral morphogenesis have now been characterized from 

many plant species, the greatest nmnber has been isolated from Arabidopsis thaliana. As 

new information became available it was necessary to refine the ABC model to include D 

function for ovules (Colombo et al. 1995), and E function for the SEPAUATA genes 

(Pelaz et.al. 2000; Honma and Goto 2001; Theisen and Sadler, 2(01). A nmnber of the 

genes involved in floral morphogenesis are shown in Figure 1.3, with Arabidopsis genes 

in red and Anti"hinum genes in blue. Many interactions between gene products are 

required for floral morphogenesis, some promoting or initiating activity of other genes, 

some repressing activity of other genes, and some establishing boundaries between 

adjacent domains. Besides MADS-box genes, other types of genes that contrIbute to the 

building of a flower have been identified, that encode F box, Zinc finger, AP2 domain 

and Homeodomain (Lohmann and Weigel, 2(02). 

A key initiator of the floral meristem is the homeotic gene FWRlCAULA (Coen et al., 

1990) and its orthologue LEAFY in Arabidopsis (Schultz and Haughin, 1991; Huala and 

Sussex,I992; Weigel and Nilsson, 1995). In initiating the flower LEAFY is expressed 

throughout the t10ral meristem and interacts with a nwnber of other genes, including the 

functionally redundant FRUITFUU, CAUUFWWER, and APETALA 1 genes (Bowman 

et al., 1993. Ferrandiz et al., 2(00). The DEFH28 gene from Antirrhinum is thought 

likely to be an ortholog of FRUITFULL (Muller et aI. 200 I). 

Both LEAFY (Weigel et aI. 1992 and Weigel and Nilsson, 1995) andAPETALA 1 

(Mandel et al. 1992; Mandel and Yanofsky, 1995) can cause conversion:from vegetative 

to 80ral meristem identity when expressed ectopically. The homeotic gene APET ALA 1. 

as well as interacting with LEAFY to specify meristem identity. is involved along with 

APETALA 2 in the determination of petals and sepals (Irish and Sussex. ]990; Mandel et 

al.l992; Bowman et 0/.,]993; Mandel and Yanofsky, ]995). The Antirrhinum homologue 

to APETALA 1 is SQUAMOSA, but while involved in the establishment of the floral 

meristem SQUAMOSA does not play a part in establishing organ identity (Huijser et 0/., 

] 992). LEAFY and APETALA 1 together negatively interact with the Arabidopsis gene 

TERMINAL FWWER 1 to maintain the floral meristem (Liljegren et aI., ]999). In 

AntirrhtnMm the homologue of TERMINAL FWWER I is CENTRORADIALlS (Cremer 
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Figure 1.2. A model for floral organ Induction (after Coen and Meyerowitz). 

The model illustrates the combinatorial interaction of the A, B, and C organ identity 
gene functions in normal or wild type flowers and in various combinations that result 
in mutant phenotypes. The triple mutant without A, B, or C function remains as 
"ground state" or leaves. I = leaf, s = sepal, p = petal, st = stamen, c = carpel. 
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et a/. 2001). Both mutants have a determinate raceme, rather than the normally 

indetenninate raceme found in these two species (Shannon and Meeks-Wagner, 1991; 

Bradley et al.,I996; Cremer et al., 2001). 

In Arabidopsis the APETALA 1 gene product also has a role in establishing the A 

function, possibly via the fonnation of protein complexes that act as a transcriptional 

activator of the B function (Honma and Goto, 200 1; Theisen and Sadler, 2001). The other 

Arabidopsis A function gene, APETALA 2, is not a MADS-box gene, and besides being 

involved in establishing organ identity it also negatively regulates C function in the first 

and second whorls (Drews et al., 1991). A closely related gene AINI'EGUMENI'A shares 

this function (Elliot et 01., 1996; Klucher et 01., 1996; Krizek et 01., 2000) and may also 

have a function in determining peta1 identity (Krizek et 01., 2000). Recently two A 

function genes have been isolated from Antirrhinum, UPland UP2, both of which must 

be inactivated to give a mutant phenotype. However unlike APETALA 2, UP genes are 

not required for negative regulation of C function in whorls one and two (Keck et 01. 

2(03). In Petunia, the gene PhAp2A that is considered to be the ortholog of APE TALA 2, 

does not fulfill the same function in Petunia as in Arabidopsis (Maes et 01. 200 1 ) 

illustrating evolutionary functional divergence in A function organ identity genes. 

The Arabidopsis B function genes that are required for petals in whorl two and stamens in 

whorl three have been identified as APETALA 3 and PISTILLATA (Jack et 01., 1992; Goto 

and Meyerowitz 1994). It has been shown that these two genes are sufficient to specify B 

function in Arabidopsis (Jack et 01.1994; Krizek and Meyerowitz, 1996). The 

FIMBRlATA gene in Antirrhinum shows extensive homology with UNUSUAL FWRAL 

ORGANS but differences in the functions and genetic interactions were found (Ingram et 

01., 1995). Both LEAFY and UNUSUAL FLORAL ORGANS regulate the B function 

genes, Ectopic expression of LEAFY and UNUSUAL FWRAL ORGANS was 

demonstrated to activate APETALA 3 andPISTlUATA outside the flower(parcy etal., 

1998; Honma and Goto, 2000). Since neither LEAFY nor UNUSUAL FLORAL ORGANS 

is an absolute requirement fur B function (Lohmann and Weigel, 2002), it has been 

suggested that in addition the MADS-box gene APETALA 1 directly regu]atesAPETALA 

3 by binding to the APETALLA 3 promoter (Hill et 01., 1998; Tilly et 01., 1998; Lohmann 

and Weigel, 2(02). UNUSUAL FWRAL ORGANS encodes an F-box-containing protein 

(Samacb et 01., 1999) that belongs to a SKP1-cu11en F-box (SCF) ubiquitin ligase 
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Figure1.3. Genes involved in floral morphogenesis. 

Abbreviations. FUL = FRUITFULL, CAL = CAULIFLOWER, SQUA = SQUAMOSA, LFY = LEAFY, FLO = 

FLORICAULA, TFLl = TERMINAL FLOWER 1, CEN = CENTRORADIALIS, UFO = UNIFOLIATA, FIM = 

FlMBRIATA, WUS = WUSCHEL, CHO = CHORIPETALA, DESP = DESPENTEADO, AP3 = APETALA 3, 
DEF = DEFICIENS, PI = PISTILLATA, GLO = GLOBOSA, AP 1 = APETALA 1, AP2 = APETALA 2, ANT = 

A/NTEGUEMENTA, AG = AGAMOUS, PLE = PLENA, STK = SEEDSTICK, SHP 1 AND SHP2 = 
SHATTERPROOF 1 AND 2, SEP 1 2 AND 3 = SEPALLATA 1 2 AND 3, SUP = SUPERMAN, AND OCT = 
OCTANDRA . (N.B. Not all genes known to be involved in floral morphogenesis could be shown above). 

Activation or upregulation of genes is indicated by an arrow. At bottom of the figure, the resulting organ 
formed i also indicated by an arrow. Repression of genes is indicated by ~ , and an interaction that is not yet 
fully understood is indicated by a connecting dotted line. Red = Arabidopsis genes; Blue = Anti"hinum genes. 
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complex (Ingram et al., 1995, Lee et al., 1997) and may possibly act in degradation of 

negative regulators of APETALA 3 (Ingram et. al., 1997; Zik and Irish, 2(03). Two such 

negative regulators of DEFICIENS and GLOBOSA have been identified in Anti"hinum; 

these are CHORJPETALA and DESPENTEADO that may be a target of degradation by 

the F-box protein FIMBRIA TA (Wilkinson el al., 2000). In order to regulate B function in 

Arabidopsis UNUSUAL FLORAL ORGANS interacts with ASK 1, another SCF 

component (Zhao el al., 2(01). Recent results suggest that it is a larger SCF complex that 

besides proteins from LEAFY and UNUSUAL FLORAL ORGANS includes products from 

two further genes AtCULl and AIRbxl that positively regulates B function (Ni et aI. 

2004). SUPERMAN is required for repression ofB function in whorl four in Arabidopsis 

(Bowman el al., 1992; Sakai et al., 1995; Yun el 01., 2(02) and OCTANDRA is required 

in Anlirrhinum. SUPERMAN in twn is under the control of LEAFY through APETALA 3 

- PISTILLATA dependent and independent pathways (Sakai et al., 1995). 

The SEPELLATA 1,2,3, and 4 MADS-box genes, have also been shown to be a 

requirement for the specification of floral organs (pelez et al., 2000, Honma and Goto, . 

2001, Ditta el al., 2004, Castillejo et 01.,2(05) and have been designated as E function 

genes (Theisen and Saedler, 2001). The four SEPELLATA genes are each fimctionally 

redundant but the triple mutant lacking SEPAUATA 1,2, and 3 has flowers composed 

only of sepals, and the quadruple mutant has indeterminate flowers composed only ofleaf 

like organs (Ditta et al., 2004). Conversion ofleaves into petals was achieved by 

ectopically expressing SEPELLATA genes with the A and B functions (Pelaz et 01., 

2(01). The SEPEUATA gene products interact with the ABC MADS-box gene p-oducts 

(Davies el al., 1996, Egea-Cortines el al., 1999, Honma and Ooto 2001, Causier et al., 

2003, Castillejo et al., 2(05). The formation oftenwy complexes led to the proposal of 

the "quartet model" offloral organ specification (Theisen and Saedler, 2(01). 

The C function organ identity gene AGAMOUS is expressed early in the apex of the 

developing flower (Mizukami and Ma, 1997) and specifies determinacy of the floral 

meristem in addition to organ identity. Expression is regulated by LEAFY (Weigel and 

Meyorwitz, 1993) and a homeodomain containing gene WUSCHEL (Zik and Irish, 2003; 

Jack T., 2004). Another gene, AtGCN5, may also be required to regulate floral meristem 

activity through the WUSCHEL -AGAMOUS pathway (Lohmann et al., 2001; Bertrand 

et al., 2(03). Once established, AGAMOUS then represses WUSCHEL (Lenhard et aI., 

200}). This interaction, along with HUAl, HUA2, and HUA ENHANCER 1, HUA 

ENHANCER 2 and HUA ENHANCER 4 activity is required to make the floral meristem 
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determinate (Li et 0/., 2001; Chen et 0/., 2002; Jack 2002; Zik and Irish, 2003). C 

function is required for stamens in the third whorl and carpels in the fourth whorl. 

However as LEAFY is expressed in all whorls, AGAMOUS in tum has the potential to be 

expressed throughout the floral meristem. Restriction of AGAMOUS to the third and 

fourth whorls is dependant on a number of genes including negative regulation by the A 

function gene APETALA 2. Two genes, AlNTEGUEMENTA (Krizek et 0/., 2000) and 

STERILE APETALA act redundantly with APETALA 2 (Elliot et 0/. 1996; Klucher et 0/., 

1996; Krizek et 0/., 2000). LEUNIG (Liu and Meyerowitz, 1995) along with SEUSS 

(Franks et 01., 2(02) has also been shown to regulate AGAMOUS; and CURLY LEAF acts 

redundantly with INCURVATA to repress AGAMOUS in both flowers and vegetative 

tissue (Goodrich et 01., 1997; Lohmann and Weigel, 2002). 

In Anti"hinum there are two C function genes, PLENA (Bradley et 01., 1993) and 

FARINELLI (Davies et 01., 1999) that, unlike AGAMOUS, have redundant negative 

control over the B function genes DEFICIENS and GWBOSA. Although AGAMOUS and 

PLENA are functional homologues, studies of AGAMOUS like genes from fifteen diverse 

angiosperm species show that PLENA and AGAMOUS are not orthologs but have come 

from separate paralogous lineages (Kramer et 0/., 2004). 

The first ovule identity genes FBP7 and FBP 11 were discovered in Petunia, 1I11d these 

have been designated as D function genes (Angenant et al., 1995b; Colombo et 01., 1995). 

More recently three ovule identity genes have been identified in Arabidopsis, 

SEEDSTICK, SHAITERPROOF 1 and SHATTERPROOF 2 (Pinyopich et 01., 2003; 

Favaro eta/., 2(03). 

Investigation of genes involved in floral morphogenesis from many different plants has 

provided valuable insight into flower development in general. This has revealed both 

evolutiOD8l)' conservation and evolutioDBIy divergence of developmental pathways 

(Winter et 01., 2002; Zhang et al., 2004). Studies ofangiospenn flowers with different 

flower structures, such as the two model species above - Arabidopsis with actinomorpbic 

flowers and free petals and Antirrhinum with zygomorphic flowers and a gamopetalous 

corolla - provided opportunity for the discovery of the genes CYCWIDBA and 

DICHOTOMA involved in dorsoventral symmetry (Luo et al., 1996; Luo et 0/., 1999). 

Other angiosperm plants exist that differ in the number, architecture and mangement of 

floral organs. From studies of Antirminum, Arahidopsis, Petunia, and other species 

similar genes have been found to cany out distinct functions, and in some cases the same 
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function is detennined by different nmnbers of genes. Further study on plants with 

different flower structures is essential in order to understand the differences and complete 

the picture of floral morphogenesis. 

The British Primuia species PrimuJa vulgaris, Primula veris, and their derived cultivars 

differ considerably from both of the two model species above. The gamopetalous corolla 

of Primula is actinomorphic, the stamens are epipetalous, and the flowers are 

heteromorphic. The Primula breeding system has been of interest since the time of 

Darwin. and mutant flower phenotypes that segregate with either the pin or thrum alleles 

of the S locus have been identified by the author. In addition a number ofnaturally 

occurring mutant forms have been collected by the author many of which are consistent 

with what might be expected from mutations in homeotic genes controlling organ 

identity. Primula is therefore an excellent candidate for finther study of floral 

morphogenesis, both because new infonnation gained from analysis of Primula could 

contribute to understanding of the variations on the ABC model, and because knowledge 

of flom homeotic genes from other species could enable the identification of genes 

responsible for the floral homeotic mutations in Primula. Such investigation could lead to 

the identification of genes linked to the S locus and enable the first molecular genetic 

analysis of this locus. 

1.3. De Prl1IIIIIII breed", system. 

Primula differs from other species previously studied by molecular means in that many 

Primula species are heteromorphic, with heterostylous flowers, a sporophytic di-allelic 

incompatibility system and an associated pollen dimorphism. Although heterostyly has 

been reported from 2S different angiosperm families, Primu/a is the genus that has the 

largest number ofbeteromorphic species. Those plants with flowers that have the stigma 

viSible at the mouth of the corolla tube and the anthers approximately halfway down are 

known as "pin" plants. Plants with flowers that have the anthers visible at the mouth of 

the mouth oftbe corolla tube and the stigma approximately half way down are known as 

"tbnon" plants (Fig.l.4). The thrum characters of short style, large pollen, and antha-s 

visible at the mouth of the corolla tube are dominant to pin characters oflong style, small 

pollen and anthers half way down the corona tube. The incompatibility mechanism is 

stronger in thrums than in pins; thrum x thrum crosses are completely, or almost 

completely incompatible, while pin x pin crosses have much reduced fertility. Pins are 

homozygous for the recessive allele, normally written as ss, but thrums are heterozygous 
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for the dominant allele, S, written as Ss. Thrum homozygotes, SS, are ~emely rare due 
-

to the presence of a lethal gene associated with the dominant S locus (Richards 

1986,1993, 1997). All Primulas studied in this project are diploid. Awareness of 

heteromOIphy in Primula flowers dates at least from the time ofClusius, (Qusius,1583), 

and has been of scientific interest since the time of Darwin, (Darwin, 1876). Even before 

the rediscoveI)' ofMendels' work, Darwin (Darwin, 1876) had begun breeding 

experiments with Primula vulgaris and had concluded that the reciprocal placing of the 

anthers and stigma in pin and thrum plants was conducive to outcrossing between the two 

morphs. Henslow described a self fertile P. vulgaris with anthers and stigma at the mouth 

of the corolla - the form that is now known as a long homostyle (Henslow, 1878). In 

1905 Bateson and GregOI)' published a paper on the inheritance ofheterostyly in P. 

sinensis stating that the long style in that species was a recessive character and the short 

style a dominant character. Ernst's results (Ernst, 1925,1936), from working with P. 

hortensis and P. visCOSQ indicated that S was not as he had thought a single gene, but a 

tightly knit suite of at least three separate genes with only rare recombination events 

between them. These three genes are represented as G for the gynoecium, P for pollen 

size, and A for the androecium position. Recombination between G and PA would result 

in the long homostyle with both anthers and stigma at the mouth of the corolla tube and in 

a short homostyle with both anthers and stigma half way down the corolla tube. A 

number of populations of P. vulgaris in Somerset contain v8I)'ing proportions of long 

homostyle plants have been the subject of much interest and study (Crosby, 1949; 1959, 

Bodmer, 1958; 1960, Charlesworth, 1979, and Curtis et al. 1985). Ernst originally gave 

the gene order as GAP, but Lewis and Jones (1993) on re-evaluating his data concluded 

that the order must be GPA as the former gene oIder would require a double cross-over in 

the thrum parent to generate the most common recombinants. From Ernst's studies the 

map distance between G and P was estimated to be 0.19 and between P and A, 0.37. 

Lewis and Jones also listed the four anomalous phenotypes obtained by Ernst in some of 

his crosses. Twenty-seven anomalous plants in all were obtained from crosses involving 

long or short hODlOstyles, twenty-one ofwbich appeared as mutations from the recessive 

aDele to the dominant (gp to GP, and a to A). Ernst's data also showed a significant 

deficit of short homostyles, and it was concluded that this was due to low viability of the 

short homostyle morpho In 1956, Dowrick, working on P. obconica, expanded the 

component parts of the S locus to C-G-S-Is-Ip-P-A, where C is the thnun area of 

conducting tissue, G is the style length oftbrum., S is the papilla length of thrum, 
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Figure 1.4. Pin and Thrum Primula flowers (from Darwin, 1861) annotated 
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There are vi ible differences between the two morphs: 

Pin flowers have long styles and the stigma at the mouth ofthe corolla tube. 
Thrum flowers have short styles and the stigma approximately half way down the 
corolla tube. Pin flowers have anthers approximately halfway down the corol1a 
tube. Thrum flowers have anthers at the mouth ofthe corolla tube. 
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Is is the thrum style incompatibility, /p is the thrum pollen incompatibility, P is the pollen 

size and A is the anther height. This was accepted and quoted as correct (e.g. Darlington, 

1973) for 30 years. In 1986 Richards reduced this again to G P and A on the basis that he 

could find no evidence for the other loci and commented that even the order of GPA was 

open to question. Stebbins in 1971 had concluded that the gene cluster for the S locus 

must be extremely old. He pointed out that the phenotypes it produces are found in very 

many species of Prlmula throughout the northern hemisphere and he considered the 

possibility of the characteristics arising and becoming associated with each other more 

than once being so unlikely that it could be disregarded. More recently (Kurian and 

Richards, 1997; Richards 1997), the component parts of the S locus have again been 

expanded and it bas also been suggested that heterostyly may have evolved separately in 

P. x tommasinii (subgenus Prlmula) and Primu/as of subgenus Auriculastrum from which 

Ernst's data was derived. Besides Gig, Pip and Ala, now included is, Mpmlmpm that 

controls dominance for pollen size, Pplpp that controls pollen size, Pm/pm that controls 

male compatibility phenotype, VI that controls tbnun homozygote lethality, Gmlgm that 

contributes to stylar length, and Mpplmpp that controls dominance of male 

incompatibility phenotype. Richards suggests a tentative order for part of the S locus gene 

cluster, as Gig, Ala, Mpmlmpm with order of the other loci uncertain but given as 

possibly Pp/pp, Pmlpm, Mpp/mpp, VL, and Gm/gm (Richards 1997). There have been 

reported differences in the position of the S locus in different species of Primula, in that 

in P. obconica it is 3% from the centromere and in P. sinensis it is completely linked 

(Lewis and Jones, 1993). 

There are features of the Primula breeding system that have not yet been indisputably 

verified, at least not in relation to P. vulgaris, P. verls, and their cultivars. The suggested 

order ofloci, GAP, for the polyanthus, (Kurian and Richards, 1997) if correct is likely to 

be the same for P. vulgaris and P. verls in which the polyanthus had its origin. However, 

the data was from a smaller sample than that done by Ernst, whose results suggested the 

order ofGPA (Emst,I92S,1936). The position of the hypothesized lethal gene, or lethal 

factor. is also problematic. Richards suggested that the current model for evolution of 

heterostyly at that time involved G becoming linked to a recessive lethal gene (Richards, 

1993). Certainly even heterozygous short homostyles Gap/gap, are reported to be less 

viable than heterozygous long homostyles gAP/gap, (Ernst, 1957, quoted by Lewis and 

Jones, 1993). and unlike long homostyles, have not been found in wild populations of P. 

vulgaris. Self-pollinated short homostyles yield one third of the progeny as pins and two 

thirds as short homostyles (Richards, pers. com.) which would also indicate that the 
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homozygote might be inviable. Yet results from the work done by Kurian on the 

Polyanthus suggests that there is a lethal factor associated with P (Kmian and Richards, 

1997). One problem with mapping the S locus by classical genetic techniques has been 

the absence of suitable outside markers sufficiently closely linked to the S locus to obtain 

indisputable results. It is only molecular analysis that will in time resolve both the 

question of gene order and the question of whether the S locus evolved separately in 

different Primuia species or is instead a very old and conserved gene cluster. 

1.4. British spedes of PrImIIIII. 

Although there are over 400 species of Primula worldwide, only five species of Primuia 

are native to Britain. These are Primula vulgaris, the primrose; P. veris, the oowslip, P. 

elatior, the oxlip, P.farinosa, the bird's eye primrose, and P. scotica, the Scottish bird's 

eye primrose. The two latter species have pink flowers, farinose leaves and chromosome 

nmnbers that differ both ftom each other (2n= 18 and 2n--s4 respectively) and from the 

three other species of native British Primula, so that they can not interbreed (Richards, 

1993). The first three all have the same chromosome number (2n=22) and can inted)Jeed 

to give fertile hybrids. (For details of hybridization betweal the species see Valentine, D. 

H. 1947,1951, and 1955). These three arenorma11y yellow in colour in the wild (Fig. 1.5) 

but old records (Oerani 1597, Parkinson, 1629) also mention white and green forms. 

The primrose has the most widespread distnbution in the wild, followed by the cowslip, 

(Richards, 1989), and where they grow together hybrids occur. The P. veris x vulgaris 

hybrid is commonly called ''false oxlip" and it is this hybrid that was the forenmner of 

the garden polyanthus. The true oxlip is iestricted in the wild to a small area of East 

Anglia so has been less widely used for hybridization in the development of commercial 

cultivars. P. vulgaris, subspecies sibthorpii with flowers in pinks reds and purple, was 

introduced ftom Eastern Europe in 1640 and QOIDIDOIlly used for hybridization in the 

past. More recently, the discoveJy of P.juJiae in the Caucasus in 1900 resulted in the 

development of the "Wanda" primroses, initially through hybridization of P. juliae with 

our native P. vulgaris. Commercial cultivars today are the result of much selective 

breeding. Not only have they been selected to have a wide range of flower colour, but 

most have also been rigmously selected for large flower size, high seed yield, large seed 

size, high and uniform gennination, summer germination, uniform growth rate, and 

uniform flowering time. Some lines will also be expected to have a more uniform genetic 

background than the wt/dtype species. The wild primrose P. vulgaris flowers in spring, 
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Figure 1.5. Wild British Primulas. 

There are three wild Primula species that can interbreed. A typical wild 
interspecific hybrid between P. veris x P. vulgaris is also illustrated .. 

A. P. veris, Cowslip; B. P. elatior, Oxlip; C. P. vulgaris, Primrose; D. P. veris 
x vulgaris, often called the "False Oxlip". Size bars are approximately 1 cm. 
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with the greatest abundance of wild flowers usually found from late March through to 

late April. The wild cowslip P. veris flowers slightly later, but the flowering time of the 

two frequently overlaps, and where they grow together natural hybrids between the two 

species can usually also be found in the wild. Commercial cultivars, although 

predominantly spring flowering by nature, frequently also produce flowers in the autumn 

if environmental conditions in the garden are favorable. All will flower for the first time 

at almost any time of the year if conditions are favourable, depending on when the seed 

was sown and the maturity of the seedlings. In their second year they become spring 

flowering, as is the norm. 

1.5. Mutant pbenotypes of Prlmulll; a historical perspective. 

All of the mutant phenotypes of Primula have occurred naturally. The first Primulas 

grown in gardens were grown for their herbal properties (Gerard, 1596; Culpepper, 

1740), but when flowers first began to be grown for ornament many mutant phenotypes 

of Primu/a were collected, along with other natural wild flower variants, in order to 

provide variety in the garden. At that time other foreign species had not yet been widely 

introduced and the possibility of using decorative "bedding plants" was undiscovered. 

Consequently many descriptions and illustrations of mutant phenotypes of Primu/a can 

be found in literature dating back to the sixteenth century. Although most of these 

phenotypes can still be found today, they have always been scarce. Cannell's catalogue of 

1880 lists Hose in Hose (that has the calyx converted to petals) at five shillings each and 

Jack in the Green (that has the calyx converted to leaves) at three shillings each, which 

even then was expensive. Today, those few nurseries that still sell the rare Primula 

Viridis, the green primrose, generally charge from £5 to £7 per plant. New mutant 

phenotypes do also appear from tin;le to time in populations of commercially produced 

plants. Some of the phenotypes found have been previously recorded, but had been lost to 

cultivation for some time; a few others have never been previously either recorded or 

illustrated. At least half of the phenotypes used in this project are consistent with what 

might be expected from homeotic mutations in organ identity genes. One has organs in 

the correct position but has alteration to the usual form of the organ, and two are 

pleiotropic mutant phenotypes with abnormal flowers in addition to other observed 

effects. 

1.5.1. PrImIIItI bOlDeotie mutana. 

Of the twelve phenotypic mutants available, Jack in the Green (sepals converted to 

leaves) Hose in Hose (sepals converted to petals), Staminoid Carpels (with partial 
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Figure 1.6. Jack in the Green (Jeafy sepals). 

The Jack in the Green has leafy sepals and has been illustrated for the past four 
centuries; the form is still available today. 

A. Jack in the Green plant in flower. B. The Jack in the Green primrose as 
illustrated by Parkinson, 1629. C. This polyanthus fonn was also illustrated by 
Parkinson, 1629, but although it clearly shows leafy sepals it is described in the 
text as having calyces and bracts that are a mixture of leaf and petal. The name 
given is "Jackanapes on horseback" - Jackanapes being the name commonly 
given to plants with calyces of leaf and petal mixture, and "on horseback" 
referring probably to the fact of the flowers being on a scape with a circle of 
enlarged leafy bracts below the pedicles. D. This is one of the many flowers 
illustrated in Nuremberger Hesperides, 1709, a Jack in the Green flower. E. 
This accurately observed drawing of the Jack in the Green calyx is from 
Masters' Vegetable Teratology", 1868. F. This plant from Primroses, Cowslips 
Polyanthuses and Oxlips, by Philanthos, 1874, is described as "Jackanapes on 
horseback" and is similar to the plant illustrated by Parkinson in C above. The 
leafy bracts at the top of the scape are clearly illustrated, but while the 
description comments on the large foliaceous bracts there is no mention of any 
petal in the calyces or bracts. G. The plants in Cannells catalogue of 1880 
were all drawn in a very stylized manner. This Jack in the Green was advertised 
for sale at three shillings per plant! Size bar in A is approximately 1 cm. 
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or complete conversion of carpels to stamens), sepaloid (two to four whorls of sepals 

without any petals or stamens) and double (with normal sepals and indeterminate whorls 

of petals), can all be described as organ identity homeotic mutants. In addition the green 

primrose and the virescent cowslip each have a phenotype consistent with might be 

expected from mutations in other homeotic genes involved in flower development, tather 

than in the organ identity genes themselves. References to and illusttations of Jack in the 

Green (Fig.I.6A) can be found from 1629 onwards (Parkinson, 1629). Parkinson's Jack 

in the Green was a primrose, but he also illusttated the "Jackanapes on horseback", which 

from the description, carries both the mutation that gives Jack in the Green and the 

mutation that gives Hose in Hose. This was a scapose plant that may have been a P. veris 

x vulgaris hybrid, or could have been a cowslip Jack in the Green (Fig.l.6C), but there 

has been no specific mention of the latter in the old litemture. Gerard too in 1597 

described a "Jackanapes on horseback", but his description is different and does not 

mention a foliaceous calyx (Gerard, 1597). The illustration of a polyanthus in the Leyden 

catalogue of 1678 is that of a Jack in the Green and it bears great similarity to a pressed 

specimen from Bobart's Oxford herbarium (Duthie, 1988). Both have transformation of 

the bracts at the base of the pedicles to leaves as well as of the calyces to leaves. I have 

frequently found this to occur in progeny of P. veris x P. vulgaris Jack in the Green (see 

Chapter 4). Other references to the phenotype include Rea, (1665), Masters (1868,1877), 

and more recently Genders, (1959), and Fish (1967). An entire page of illustrations of 

varying degrees ofleafiness of Jack in the Green calyces can be seen in Tanners book of 

Woodland Plants (Tanner, 1981). Mention of the phenotype in the wild can also be found 

in some old floras such as, for instance, White's Bristol Flota that records a Jack in the 

Green found near Easton in 1883 and another found near Shepton Mallet in 1900 (White, 

1912). A selection ofillusttations of the phenotype throughout history can be seen in 

Figure 1.6B - O. References to and illusttationsofHose in Hose (Fig.1.7.A) can be found 

from the seventeenth centmy when Crispin de Passe (1614) illustrated Hose in Hose 

cowslips, (Fig. 1.7B). Parkinson (1629) illustrates Hose in Hose Oxelips (i.e. the cowslip, 

P. veris x primrose, P. vulgaris, hybrid) (Fig. 1. 7C). The first reference to a Hose in Hose 

primrose is found in Rea, where a red one is described (Rea, 1665). Hose in Hose 

cowslips are also mentioned by Rea, and again by Bradley (1724), Newton (1752), 

(Fig.1.7E), The New Botanic Garden, (1812) and Loudon (1822). It is not known whether 

the flowers illustrated in Nuremberger Hesperides (Hawkes, 1997) were from primrose or 

polyanthus plants as only the flowers are shown in each case (Fig. 1.7 .D). The majority of 
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Figure 1.7. Hose in Hose (pet&loid sepals). 

Hose in Hose has part or an of the calyx converted to petal. It has been 
illustrated for the past four centuries and the form is still available today. 

A. Flowers ofa Hose in Hose polyanthus. B. A Hose in Hose cowslip from 
Crispin de Passe, 1614. C. Hose in Hose "oxelips", from Parkinson 1629. It 
is generally accepted that these were "false oxlips", hybrids between P. veris 
and P. vulgaris rather than the true oxlip, P. etatjor. that is only found in the 
wild in an area of East Anglia. D. A Hose in Hose flower from 
Nuremberger Hesperides, 1709. E. Hose in Hose cowslips from Newton's 
herbal, 1752. Although the plates in this herbal are small, it can be seen that 
this Hose in Hose cowslip does not have the calyx as flower like as in the 
other old illustrations. F. This Hose in Hose plant is from Primroses, 
Cowslips Polyanthuses and Oxlips, by Philanthos, 1874. G. Hose ill HO.'ie 
polyanthuses from Cannell's catlogue of 1880 drawn in a stylized manner. 
The plant in G was advertised for sale at five shillings per plant! Size bar in 
A is approximately 1 cm. 
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Figure 1.S. Staminoid Carpels, sepaloid, and semi-double. 
Not all mutant phenotype have been illustrated in the past, and some of 
those that have been illustrated have been classified differently in the past 
to how they would be classified today. 

A. Staminoid Carpels; there are no references to or illustrations of this 
phenotype in old literature. B. A sepaloid plant in flower. There are no 
references to or illustrations of this phenotype in old literature. C. A semi
double with organ order of sepal, petal, petal, stamen, stamen 
(indeterminate). D and E. Two plants that were both described as "double 
cowslips hose in hose", by Gerard 1597 and Parkinson 1629 respectively. 
However in both instances the flowers are illustrated as having calyces as 
well as two whorls of petals so they are not true Hose in Hose with sepals 
converted to petal. The organ order suggests instead that these are semi
double cowslips. Size bars are approximately 1 em. 
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later references and illustrations throughout histOlY are of Hose in Hose polyanthuses 

(e.g. Fig.1.7F and G), but later horticultural works by Genders (1959) and Fish (1967) list 

both primrose and polyanthus forms. Occasional references to Hose in Hose folDld in the 

wild can be folDld in old floras, but even that mentioned in White's Bristol Flora is of one 

with three flowers on a stalk found near Backwell Hill (White, 1912).There have been no 

illustrations of either Staminoid Carpels (Fig.1.Se.) or seJXlloid (Fig.l.SD.) mutant 

phenotypes found in the literature. Meyer (1966) described sepalody as "a relatively 

uncommon abnormality" and described only two instances of sepaloid petals reported in 

Primula, one in Primula auricula and another in Primula kewensis. In both of these 

plants only whorl two was converted to sepals. 

There has been some confusion in the past regarding flowers with two whorls of petals. 

These were sometimes referred to as "Double cowslips two in a hose" (Gerard, 1597). 

However some of the illustrations (Fig. 1. 7F and G) clearly show plants with a normal 

calyx as well as two whorls of petals, so these must have been the form that we call semi

double today (Fig. 1.7E), rather than the true Hose in Hose that have the calyx converted 

partly or wholly to petal. 

The double phenotype (Fig.I.9A) is very well documented in both old and recent 

literature. Both double primroses and double cowslips were recorded and illustrated by 

Gerard (1597), but the woodcut used for the primrose is clearly that of a polyanthus 

(Fig.l.9B). This apparently was because woodcuts were expensive to produce and if 

something approximating to the form could be borrowed it helped to keep the cost down. 

The double cowslip was illustrated by Crispin de Passe (1614) (Fig. 1.9D) and again by 

Parkinson (1629), who also illustrated the double primrose (Fig.1.9E). At first double 

primroses were descnDed simply by colour and from Rea (1665) we discover that the 

double red primrose was the rarest Before there was any knowledge of inheritance or of 

classical genetics, Primula plants bad to be propagated either by division or by sowing 

naturally produced seed. Fertile dominant phenotypes would produce a proportion of the 

progeny of the same funn as the parent from seed. However doubles are not normally 

fertile and so were simply collected and propagated by division whenever they occwred. 

This is a slower process and they were sufficiently scarce to simply be known by the 

colour. Some of the 18th ceDtwy illustrations of double primroses can be seen in Fig.l.9 F 

- H. The New Botanic Garden (1812) lists five different colours of double primrose but 
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Figure 1.9. doubles. 

There are numerous illustrations of double Primula.<; from the past, both in 
primrose and in cowslip form .. 

A. A double primrose flower. B. The double white primrose of Gerard 
1597.However as can be observed this plant has a scape so is clearly not a 
primrose! At this time in history many woodcuts, expensive to produce, were 
frequently re used, even if not exactly correct. C. The double cowslip of 
Gerard, 1597. D. The double cowslip of Crispin de Passe, 1614. E. The 
double primrose (left) and double cowslip (right) of Parkinson 1629. F. The 
double primrose of Newton, 1752. G. The double primrose of Hale, 1757. II. 
An early coloured illustration of a double primrose "lilacena plena", from 
Curtis botanical magazine, 1794. This cuJtivar is reputedly still available, but 
there is no way of being sure of its authenticity although the present day plant 
does look very similar. Size bar in A is approximately 1 em. 
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Louden (1822) was able to list eight different colours, such as for instance the double red 

and the double paper white primrose. Towards the end of the centmy fashion changed to 

the use oflatin names - but still using colour as a criteria. Robinson in 1 883 lists six 

double primroses including alba plena, lilacena plena and sulphurea plena. The double 

cowslip was still around at this time and was mentioned by Ellacombe (1884), but it 

disappeared from cultivation soon afterwards. As travel increased double primroses were 

brought back from the continent, one of the first being Arthur Dumoulins a mauve double 

introduced to Britain around 1880. This was also one of the first individual cultivar 

names to appear. Another was Marie Crousse, introduced from France, and surprisingly, 

the latter is still available today. Breeding of double primroses only began around the tum 

of the century. A range of double primroses were developed by Murray Thompson but 

these have now died out. The Cocker brothers developed the "Bon Accord" doubles and a 

few of these are still available today, but are becoming increasingly scarce. More recently 

the Bamhaven doubles were developed in the 1960's and with the advent of micro 

propagation many double primroses are now freely available. The double cowslip in 

contrast disappeared completely for some time. There was a record of an accession by the 

University of Bristol Botanic Garden in 1982 of P. liens, double white, but this has not 

survived. It was not until the 1990's that Geoff Nicolle, a Primula Society member 

recreated the double cowslip, presumably by hybridization and introgression; this has 

now been micro propagated and is again available. Occasionally a double primrose is still 

found in the wild, a record in the Flora of Sussex, (1937), n=cords that one with double 

flowers was found at Bathwick Wood near Hastings. 

In the green primrose (Fig. 1. I OA) the transformation of organs is incomplete so that the 

petals retain the shape and appearance of petals while being green and having some leaf 

like characteristics. Similarly the lower part of the style also takes on leaflike 

characteristics. Green primroses and cowslips, both in single and double form, appear 

frequently in old literature. Gerard (1597) illustrates the green primrose (Fig. 1.1 OB), and 

describes the flowers as being "somewhat welted about the edges". Dodoen, (1619), 

mentions green primroses both single and double, and Parlrinson (1629), desaibes both 

green primroses and green cowslips, single and double. His double green primrose, on the 

left of Fig. I.IOC. is described as having two ''lowes" or whorls, ofgreen leaflike petals. 

His green cowslip, on the right of Fig. I.IOC. is illustrated as having flowers of nmmal 

appearance but described as green in colour. By 1665 Rea tells us that the double green 

cowslip has become "the rarest and most esteemed of all our FJlglish kinds", and 
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Figure 1.10. Green flowered Primulas. 

Green Primulas, single and double, primrose and cowslip were recorded in 
the sixteenth and seventeenth centuries. Of these only Primula viridis, the 
green primrose, can be obtained today but it is becoming increasingly rare. 

A. Primula viridis, the green primrose. Size bar approximately 1 cm. B. The 
green primrose of Gerard's Herbal. 1597. C. The double green primrose 
from Parkinson, 1629 (on the left) and his single green cowslip (on the 
right). D. The green primrose from Newton's herbal of 1752. 
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Figure 1.11. The virescent cowslip. 

The virescent cowslip, although known since the seventeenth century, is 
extremely rare and has not been frequently illustrated. 

A. Photograph of the virescent cowslip. Size bar is approximately lcm. 
B. Illustration of the "Greene Rose Cowslip" or "double greene 
feathered Cowslip" of Parkinson, 1629, which appears to be similar to 
the flower in A above. C. The vires cent cowslip as illustrated by Masters 
in 1877. The similarity to the plant above is more marked in this 
illustration which shows the mass of stigmatoid organs found in the 
centre of the flower. 
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subsequent to this no references to green cowslips, single or double, were fOtOld in the 

literature. Newton, illustrates the green primrose again in his herbal of 1752, and 

references to the green primrose continue to the present day, for example Taylor (1947) 

and Genders (1959). In 1984 Nelson lists Primulas of Irish origin, including three types 

of green primrose; "one with very pointed petals, one with rounded petals, and one with a 

welted calyx". These variations have not been described elsewhere, but a character of the 

green primrose, that of sometimes producing two whorls of green petals (see also Chapter 

4) has led to some horticultural confusion. I have in the past obtained such plants from 

three different sources; one described as a double green primrose, one as a green Hose in 

Hose and one as a green Jack in the Green. Yet all three were of the same form. Green 

primroses do also occur in the wild from time to time, Gardening mustrated of May 1909 

mentions a green primrose found by W. Eadon of Rugby. The flower is described as pale 

green with "the character of the petal" as a ''primrose leafin miniature". The Flora of the 

Isle of Man, 1984, also mentions a number of primroses with green flowers growing in a 

native population on Shellag Point 

The v/rescent cowslip (Fig.l.lIA) exhibits transformation of organs but the nature of the 

bract like organ type is unclear. There are carpeloid organs that are malformed and 

infertile surrounded by green organs that may be either bracts or sepals. However in P. 

verls the sepals are normally thin and pale, and these organs are distinctly green in colour, 

therefore I consider that they are more bract like than sepal like. The fum was illustrated 

by Parkinson (1629) as the "greene rose cowslip" or '4double greene feathered cowslip" 

(Fig.l.lIB), and again by Newton (1752). A more detailed drawing of the flower was 

illustrated by Masters (1877), (Fig. I. 1 1 C.), clearly showing the mass of stigmatoid 

organs in the centre surrounded by bracts or enlarged sepals. His illustrations show more 

organization in the flower form than was discovered in the specimen described here and 

again in Chapter 4. This form must also occur in the wild as a reference to a cowslip with 

a leafy inflorescence was recorded in the Flora ofWiltsbire, (1957). The plant that I 

obtained in the 1980's also occurred naturally among wild cowslips in a Somerset garden. 

1.5.1. Mutut PheDotypes with alterations to the usual form of the periutla. 

The Split Perianth mutant phenotype (Fig.I.l2A) has alterations to the usual form of the 

perianth. Unlike the normal Primula flower that has a gamosepalous calyx and a 

gamopetalous corolla tube below five free petals, the Split Perianth mutant phenotype has 



31 

1709 

Figure 1.12. Other mutant phenotypes. 

Other mutant phenotypes include phenotypes where there are alterations 
to the usual fonn of the organ, and pleiotropic mutants where other 
effects are observed in addition to flower abnonnalities. 

A. The Split Perianth mutant phenotype. This mutant phenotype has the 
calyx, and in some instances the corolla and the calyx, divided into five 
separate segments. B. Some examples of the form illustrated in 
"Nuremberger Hesperides" in 1709 are shown. C. The reduced petal 
mutant phenotype. This pleiotropic mutant phenotype has the petals 
thickened and reduced with loss of colour on the adaxial petal surface in 
addition to effects on leaf shape. No illustrations of the phenotype have 
been found in old literarure. E. The Oak Leafmutant phenotype. Petals 
are narrow and calyces have streaks of petaloid tissue. Leaves are lobed 
as are Oak leaves. No illustrations of the phenotype have been found in 
old literature. Size bars are approximately 1 em. 
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the calyx divided into five free sepals and the corolla tube may, or may not be, also split 

into five parts. The Split Perianth phenotype may have been the fonn that was descnbed, 

but not illustrated, by Parkinson (1629) as an "Oxelip" that ''hath a green huske under the 

flower but divided into several small long pieces". Gilbert, in 1693 also mentions a 

primrose with a similarly split calyx that he could find ''nowhere described". It was 

illustrated in the early 1700's (Fig.l.12B) in Nuremberger Hesperides (see Hawkes, 

1997), and may have been the fonn horticulturally referred to in Britain as "Feathers", 

"Shags", or "Scattered Polyanthus". A fonn described by Bradley in 1734 also appears 

to fit the description - "Feathers which seem by nature to be at first designed for Hose in 

Hose have their blossoms so split and curled that they somewhat resemble bunches of 

feathers. Of these there are many varieties which are multiply'd every year by sowing the 

seeds". These plants appear to be a combination of two phenotypes, Split Perianth and 

Hose in Hose. That they can be propagated by seed fits the filet that these are dominant 

phenotypes as described later in Chapter 5. The fonn was descn"bed by B. Smith (1986) 

as a type of polyanthus that was probably extinct ''with an elongated calyx that is cut up 

fine like a ftinge around the flower". The phenotype appears to occur naturally from time 

to time; a dark form of a garden cowslip with the calyx divided to the base is mentioned 

in The English Flora of 1828, and the CUJTent plants are derived from one that appeared in 

a batch of gold laced polyanthuses in Woodborough Nurseries, Nottingham. In the wild a 

form of P. elatior, termed "calycida", with the calyx "cut to the base" is recorded from 

Silesia in central Europe by Wright Smith and Fletcher, (1947). 

1.5.3. Pleiotropic IBmBt pbeDotypes. 

There are two pleiotropic mutant phenotypes described in this study. The first is reduced 

petal (Fig.l.12C) that bas reduced petals with loss of colour on the adaxial surface, and 

broader "frilly edged" leaves. The reduced petal phenotype bears some resemblance to 

the CINCINNATA mutant phenotype of Antin-hinum (Nath et ai, 2003; Crawford et al. 

2004). The second is Oak Leaf (Fig.l.12D) that has lobed leaves like that of the Oak and 

flowers with attenuated petals. There is no description of either form in any of the British 

Prlmulas in older literature, but a fonn named "oak leaf' was descnbed in P. sinensis by 

Gregory et al., (1923) and by De Winton and Haldane (1933). This form of P. sinensis 

did have lobed leaves but the flower did not have attenuated petals. 
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1.5.4. Summary. 

There are numerous naturally occUlTing mutant phenotypes of British PrimuJas, a nwnber 

of which have been documented and illustrated for up to four centwies. Many of these 

are organ identity homeotic mutant phenotypes. One hypothesis that may partially 

explain the large number of mutant phenotypes in British Primulas is the fact that two 

species P. veris and P, vulgaris can, and do interbreed to form fertile hybrids. A third 

species P. elatior can also interbreed with both of the former species but it has a more 

restricted natmal distribution. Meyer in 1966 commented on the disproportionately high 

number of aberrations to occur in interspecific hybrids, due either to the possibility of the 

two sets of chromosomes not functioning so well together as those from the same species, 

or to genes from one species functioning less well in a different cytoplasm (Meyer, 

1966). Certainly some of the mutant phenotypes illustrated were hybrids, such as 

Parkinson's Oxelips Hose in Hose and Jaclronapes on Horseback, and indeed all 

polyanthus mutant phenotypes are hybrids. Even the Hose in Hose cowslip illustrated by 

Crispin de Passe (1614) appears to also be a hybrid, since the flowers are larger than is 

usual for a cowslip and the leaves are not Il8ITOwed at the base as are cowslip leaves but 

instead resemble primrose leaves. In addition there is one flower bud on a single pedicle 

springing from the base of the plant at the right, something that does not occur in a pure 

cowslip species. The hoverfly pollinator depicted in the same illustration is an accurate 

observation so presmnably other parts of the illustration were also accurately observed. 

Similarly, more of the recently discovered mutant phenotypes have been found in 

Primula stock that has been developed commercially. However hybridization cannot be 

the total reason as to why there are so many mutant phenotypes in British Primu/as since 

records of mutant phenotypes found from time to time in the wild indicates that mutant 

phenotypes do occur in the species as well as in hybrids. Molecular analysis of flower 

development in Primula is required in order to answer this question. 

1.6.. Project Abns. 

The Primula S locus has been a focus of interest from the time of Darwin (Darwin 1861) 

and the subject of much subsequent literature (Ernst, 1925,1936; Crosby 1949; Bodmer 

19S8;Charlesworth 1979 Richards, 1986,1993, and Kmian and Richards 1997). Despite 

this intense interest in the S locus, little is known about the control of Primula flower 

development and the timing ofhetaommphy, and nothing is known about the genes 

controlling these events. The availability of several mutant phenotypes, including four 

that are linked to the S locus, provided the opportunity to initiate a detailed analysis of the 

genetic basis of Primu/a flower development and floral heteromorphy in this species. 
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Specific aims of this project were: 

I. To compare of early stages of wild type flower development with the development of 

floral mutant phenotypes in order to define the developmental consequences of these 

mutations. 

2. To undertake a detailed analysis of early and late flower development in Primula 

flowers in order to identify the timing of differential developmental in pin and thrum 

flowers. 

3. To characterize the inheritance of the available floral mutant phenotypes in order to 

determine dominance relationships, linkage and genetic interactions. While documenting 

this information is a component of the thesis it is only loci with mutant alleles linked to 

the S locus that are further investigated. 

4. Investigation of two of these loci, the predicted gain and loss ofB function mutants, 

Hose in Hose and sepaloid is of particular importance. 1bey could be allelic mutations or 

two separate but linked genes. 

S. To undertake linkage analysis in order to identify the long sought after flanking 

markers for the Prlmula S locus, and to establish the first classical genetic map of genes 

surrounding the S locus as a prelude to the molecular genetic analysis of the PrlmuJa S 

locus. 
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CHAPTER TWO 

Materials and methods. 

2.1. Sources of plants. 

Mutant Primula collected and bred since 1985 by the author constitute the National 

Collection of Primula "British Floral Variants". The original plants have been obtained 

from many different SOUIWS. The first Jack in the Green plants were discovered in a 

garden hedge in Killay, Swansea in 1980. The first Hose in Hose plant was obtained from 

the late Mary Mottram, North Molton, Devon, in 1985. The first Split Perianth plant was 

a gift from Dr. R. J. 8rumpton (Woodborough Nmseries, Nottingham) in 1997. The first 

Staminoid Carpels plant was a gift from Mrs. P. Gossage, Crewkeme, in 1988. The 

sepaJoid primroses were a gift from Dr. V. Wooley (Field House Alpines nursery, 

Nottingham) in 1996. Many double primroses are commercially available, and 

occasionally, ifnot completely male and female sterile, can be bred from. In addition the 

following were obtained as gifts. The semi-double with organ order of sepal, petal, petal, 

stamen, stamen, indeterminate, was raised using pollen from a similar semi-double 

obtained from Mr. P. Ward ofSaitford in 1993. The very old double "Alba plena" was a 

gift ftom Mrs. B. Chesney, Charminster in 1995. The double Polyanthus "Lin Rogers" 

was discovered by L. Rogers in a batch of commercial P. x tommasinii seedlings from a 

commercial source and was a gift from L. Rogers, Dovercourt, Essex, in 1m. The 

double cowslip "Katy MacSpanon" was a gift from Mr. O. Nicolle, Haverfordwest who 

bred the cultivar. The green primrose, Primula viridis, was purchased from Timpany 

Nurseries in Northern Ireland. The virescent cowslip was a gift from Mrs. P. Gossage, 

CTewkeme. The reduced petal polyanthus and the Oak Lea/primrose were gifts from Dr. 

R J. Bnunpton (Woodborough Nurseries, Nottingham) in 1999 and 2000 respectively. 

The following crosses provided mutants in similar genetic backgrounds for scanning 

electron microscopy. First, a Jackanapes Primula (P. x tommasinil cultivar) plant was 

pollinated from a double P. vulgaris cultivar "Lilian Harvey'. Phenotypes of the 

progeny were wiJdtype, Jack in the Green, Hose in Hose and Jackanapes, all were 

heterozygous for the recessive double allele. Second, a Jack In the Green plant from 

above was pollinated from a sibling Hose In Hose plant Phenotypes of the progeny were 

wiJdtype, Jack In the Green, Hose in Hose, Jackanapes, double, double-Jack in the Green 
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and douhle-Jackanapes. The first five phenotypes of these progeny were used in the 

study. 

Yellow short homostyle plants were seedlings from self pollinated short homostyles, a 

gift of Dr. A. J. Richards, University of Newcastle upon Tyne. Long homo styles were 

derived from crosses using pollen from the Wyke Champflower wild population of long 

homostyles in Somerset. The blue short homostyle with long stigmatic papillae was 

identified in a population of plants grown at Leeds University. 

Primula vulgaris L. var. "Blue Jeans" (Ft hybrid, Thompson and Morgan) were grown at 

the University of Leeds. Wild type P. vulgaris was initially grown from wild flower seed 

collected locally at Winford, near Bristol, but crosses done from 2002 onwards used 

plants bought from Round Trees Garden Centre, near Bristol. The red wild type P. 

vulgaris used to provide sibling progeny for measurement of corolla tube mouths of pin 

and thrum flowers was obtained from Cadbwys Garden Center near Bristol. and crossed 

with wild type primrose (P. vulgaris). 

2.2. Maintenance of plants. 

Plants were grown in Levingtons plant protection compost and maintained in pots in an 

unheated glasshouse under natural daylight. Dming prolonged periods of sub-zero 

daytime winter temperatures, a layer of fleece was used to cover plants on the greenhouse 

benches. Shade during warmer months was provided by applying "CooIglass" to the 

outside of the glasshouse, and green netting to the inside. After seed collection, plants 

were placed outside on hard standing throughout the remainder of the smnmer. 

Plants to be used as seed parents were maintained in an isolation unit covered with insect 

proof mesh, or under a secure net tent, from the time the flowers came into bud until seed 

set bad begun on the hand pollinated flowers. 

2.3. Ralsiaa of progeay. 

Female parents were prepared for crosses by removing the corolla with adnate anthcn 

from those flowers to be pollinated before dehiscence of the anthers occwred. Pollen was 

ob1ained from male parents of choice by removing the corolla after dehiscence of the 

anthers and bending the petals bade so that the anthers protruded. By holding the bent 

balf flower by the petal lobe and corolla tube together the pollen was directly transferred 

to the stigma of choice using the anthers themselves in a brush-like manner. Seed from 
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controlled crosses was collected, dried, labeled, and stored in sealed packets in the lowest 

compartment of a domestic fiidge until required for sowing. Seed stored in this manner 

has been known to be viable up to a period of at least five years. Fresh seed will 

germinate readily on immediate sowing, but if stored in the fridge it should be left for a 

minimmn of three weeks to simulate winter conditions. 

Seed was germinated in unheated propagators on a north facing windowsill that gave 

ample light without overheating from direct sunlight. Seed was sown directly on the 

surface of the compost as light is required for germination. Germination can generally be 

observed about three weeks later. However seed from commercial cultivars is likely to 

germinate faster and more uniformly. Seed from wild type Primula vulgariS, or from 

crosses with wild P. vulgaris in the genetic background, can germinate much more 

erratically. Consequently it is desirable to save the compost, where possible. after 

pricking out seedlings from any cross that bas a wild P. vulgaris genetic background, as a 

second, or even a third wave of germination may take place later in the season or even in 

subsequent years. Seedlings were pricked out when two to four true leaves had 

developed. Seedlings were raised either five plants to a 5" pot, and kept on indoor 

windowsills \Bltil growing conditions outside were suitable, or. in seed trays with 24 cell 

inserts and plastic covers with ventilation holes that were maintained in the cold green 

houses. The inserts were later transferred outside on to c::apillary matting on hard 

standing, where they remained until the plants had flowered and results were recorded. 

Pots likewise were placed outside on hard standing in a shaded position until plants had 

flowered and results were recorded. In some cases plants from crosses were transported 

to Leeds University greenhouses for growing on to flowering stage. The large three point 

crosses required thousands of progeny from a new mutant fonn "Oak Leal' (see Chapter 

four) that bas not yet been released to the public. Because of this some 1500 of the 

seedlings from one cross were transported to the commercial greenhouse belonging to 

Dr. RJ. BnDnpton, where the plants were raised to matmity. For the second large three 

point cross involving Oak Leaf, most of the seed was posted to the above nursety and the 

progeny raised entirely by them. 

2.4. ObservatiOD 01 poUen size. 

PoDen was placed on a microscope slide. stained with lacto phenol blue. covered with a 

coverslip. and examined \Blder a light microscope. Pollen from wild type thnm and pin 

flowers was available for comparison. 



38 

2.5. Pbotograpby. 

Colour photographs of wild type and mutant plants were taken on Activa 400 ASA film 

using an Olympus OMI 0 camera with attached close up lenses as required. Photographs 

of sectioned mutant flowers, and of the development of the wild type flowers were taken 

as above but using an attached Cosina macro lens. Film was developed by 

BONUSPRlNT Ltd. 

Macro photographs of developing wild type and homostyle flowers were taken using a 

Zeiss Tessovar macro photography system (Leeds University) with an Olympus OM2 and 

dedicated off camera flash. Film was Kodak Royal 100ASA. colour print film. 

Some individual flowers scanned directly using a HP scanjet 3670 flatbed scanner. Whole 

flowers, either entire or cut in two if internal organs were to be observed were placed 

between two small objects of suitable height (e.g. small wads of folded paper) directly on 

the scanner. A piece card was placed on top and the lid closed. To prevent light entering 

from the sides a piece of dark material was draped over the scanner. The flower was then 

scanned using the zoom and rescan function as needed. 

2.6. ScaDDing electron microscopy. 

To analyse flower development, scapes were removed from each plant and floral apical 

meristems and developing buds dissected out using scalpels and razor blades with a x20 

hand leos. For examination of corolla tube growth a range of four developing buds of 

different sizes along with one mature flower from a pin plant and from a thrum plant of 

P. vulgaris "Blue Jeans" was examined. Corolla tube tissue, upper and lower, was 

dissected out from the middle portion of each upper and lower corolla tube to be 

examined using scalpels and razor blades, some cut to a point, and an x20 hand lens. All 

tissue was prepared for SEM using an Emscope S. P. 2000 Sputter Cryo system. 

Samples were mounted on a copper stub using a thin layer of 2% aq. Methyl cellulose. 

Following mounting, the stub was screwed onto the freezing rod and immediately 

plunged into liquid nitrogen under chy argon gas and subsequently transferred to the 

miaoscope cold stage where the temperature was raised to -60 °c until no ice crystals 

remained. The sample was then transferred to sputter chamber where the sample was 

sputter coated with gold under vacuum. Specimens were transferred to a Phillips 501 B 

SEM wId stage and maintained at -153°C to -155 °C during observation. Photographs of 

the images were taken on FP4 film and processed in Ilford 1011 developer. 
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2.7. Gene nomenclature. 

Gene nomenclature is based on the popular Primula names of the phenotypes as the 

corresponding genes have not yet been isolated and fully characterised. Standard 

italicised three letter abbreviations have been used with an initial uppercase letter when 

the phenotype is dominant. Exceptions are long and short homostyles which are 

designatedgPA and Gpa respectively, as has been used by previous authors (e.g. 

Richards 1986, 1997) since these are not mutant phenotypes but GPAIFJXl recombinants. 

In this instance Gig, Pip and Ala are the three tightly linked loci responsible for the 

heteromorphic features of Primula (see Chapter 1, 1.3). 

The Primuia double mutant is phenotypically similar to the PLENA mutant of 

Anti"hinum and the AGAMOUS mutant of Arahidopsis but popular names of mutant 

phenotypes of Primula (e.g. Jack in the Green and Hose in Hose) do not always have 

conelates in Anti"hinum and Arabidopsis. New Primula mutants have been given names 

that simply describe the phenotype (e.g. Split Perionth, Staminoid Carpels, sepaloid, and 

Oak Leaj). The names used represent a temporary gene nomenclature for Primula which 

will be used only until the relevant genes have been isolated and shown to be orthologs of 

known genes. During the course of this project the Primula genes for DEFICIENS 

GWBOSA and PLENA have been isolated. When the Primula genes have been fully 

classified and characterised and shown to be associated with specific mutant phenotypes, 

the standard nomenclature for all sequenced pIant genes will be adopted following the 

Gene Nomenclature Guide as published in Trends in Genetics, Genetic Nomenclature 

Guide, (1995, 1998; http://zfin.orglzf info/nomen comm.html). The above system 

groups all plant genes that encode the same product and have similar coding sequences 

into the same gene family. 

2.8. t Tests. 

All X2 tests were done using the interactive calculation tool at 

hUp:/lwww.unc.edul=preachtr/dJlaglcbjaq,hlm 
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CHAPTER THREE 

3.1. Introduction. 

Wild British Primula species and the Primula breeding system have been introduced in 

Chapter 1. This chapter analyses the early ontogeny of the wild type Primula flower since 

no previous study of the temporal development of pin and thrum flowers has been done. 

Nor has there been any previous study of early Primula flower ontogeny using scanning 

electron microscopy. These detailed scanning electron microscopy studies characterise 

the early stages of development in normal Primula flowers (and later, in Chapter 4, also 

in the available homeotic mutants). During early ontogeny the individual organs are 

initiated and become recognizable. Different Primula species and cultivars have been 

observed to ascertain whether any notable differences in development were obvious, but 

none were fotmd. It was appropriate to include the cultivar P. vulgariS "Blue Jeans" in the 

investigation oflate development (Fig. 3.5) as it is the cultivar under molecular 

investigation in the Gilmartin laboratory. 

Primula flowers were found to be homomorphic during early ontogeny therefore pin and 

thrum flowers were investigated to maturity to reveal the differential timing of 

divergence of the two flower forms. In addition a new beteroUlOIphic feature was 

discovered; thrum flowers have a wider corolla tube mouth than pin flowers due to the 

corolla tube cells above the anthers being wider in thrum flowers than in pin flowers. 

3.2. Botanical description of PriIIIuI& 

Primula species and cultivars used in this project are rosette forming bemicryptophytes. 

Flowers are borne in an umbel and each pedicle bas a subtending bract. The flower is 

actinomorpbic, pen1amerous, hermaphrodite and heterostylous. The calyx is 

gamosepalous, five cleft and persistent. The oorolla is gamopetalous and the stamens 

epipetaJous. The gyneocium is polycarpellmy with a single style and a capitate stigma. 

The oV8IY is superior and unilocular with numerous ovules on a free central placenta. The 

fruit is a capsule, with valvular dehiscence. The seed is endospermous and germinination 

is epigeal. 
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Figure 3.1. A comparison of early ontogeny between Primula vulgaris 
(primrose), Primula veris (cowslip), and polyanthus. 

Although the size of the flower and the characteristics of the above plants 
are different the early ontogeny follows the same developmental pattern in 
each of them. 

A. Primula vulgaris (primrose). B. Primula veris (cowslip). C. Polyanthus. 
D. A clu ter of developing P. vulgaris flowers at different stages of 
development. E. A cluster of developing P. veris flowers at different stages 
of development. F. A cluster of polyantbus flowers at different stages of 
devel pment. Size bars A - C, approx. 1 cm. Size bars D - F 100 f.lm. 
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3.3. Early ontogeny of wild type PrimIIIII. 

Early developmental stages of both Arabidopsis (Smyth et 01. 1990) andAntirrhinum 

(Carpenter et 01.2(01) had already been characterized at the time of this study. The 

Antirrhinum study did not attempt to exactly follow the Arabidopsis study (C. Vincent, 

personal communication). Each stage of Antirrhinum was named by the physical 

appearance, e.g. "Loaf' and "Pentagon" of the developing flower. Stages in the two 

species do not correspond exactly. For example, in stage 3 in Arabidopsis the sepals are 

clearly visible in the scanning electron microscope image (Smyth et 01, 1990). In stage 3 

of Antirrhinum, (''pentagon''), the sepals are not clearly visible in the scanning electron 

microscope image (Carpenter et 01, 1995) although it is documented that they do begin to 

become visible as small bulges towards the end of this stage. Given the differences in 

flower structure and growth patterns in different species it was considered that attempting 

to match stages of development of Primula to the two different studies above would be 

inappropriate. Both Arabidopsis and Antim.inum bear flowers on racemes, so that 

development can also be divided into "nodes" (Carpenter et 01.1995), while Primu/a 

bears flowers in an umbel. Neither of the two model species above have organs that 

develop from a common primordium as do the petals and stamens of Primula. It was 

therefore considered preferable to look at specific developmentallandmarlcs of the 

Primula flower and to base each early stage on the development of a new primordium or 

primordia that would result in a new part or parts of the flower. 

Matw"e flowers of P. vulgaris (Fig. 3.IA), P. veris (Fig. 3.1B) and polyanthus (Fig. 

3 .I.C) differ in size and final flower shape, but follow the same early developmental 

pattern (Fig.3.1. D - F). Developing flowers of the same species can vmy slighdy in size 

even when each is at the same point in development, although the pattern is not different. 

The time taken for flowers to develop ftom initiation to maturity varies with seasonal and 

environmental conditions. The stages of development chosen represent convenient static 

images during continuous development. Although each of the stages represents clearly 

distinct developmental phenomena tb«e are visible differences within a stage as the 

individual organs develop, so stages I and 2 have been subdivided into early and late, and 

stages 3 and 4 into early, middle, and late. By stage 4, all four floral organs have been 

initiated. Beyond this stage there is no further differentiation of new organs, only further 

development of those that have already been defined. Stage 5 represents the developing 

flower fully enclosed within the sepals; at this stage the lobes of tile anthers become 

apparent. During stage 6 in whorl 4, the recognisable component parts of stigma style and 

ovary are initiated; inside the latter, owles begin to develop on a free central placenta. 
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Figure 3.2. Stages of development during early ontogeny in wild type 
Primula. 

Stages of development from 1 - 5 have been characterised using developing 
flowers from the hybrid polyanthus in Figure 3. l.C. 

A. Stage 1: Meristematic central primordium (me) fonns. Around the central 
primordium lateral primordia Op) fonn. B. Early stage 2: the lateral primordia 
divide into two parts, the bract primordium (bp) and the flower primordium 
(fp). C. Late stage 2: the lateral primordiun has now fully developed into two 
parts, the flower primordium and subtending bract (sb). D. Early stage 3: the 
flower primordium has initiated whorls 1 (wI) and 3 (w3). E. Middle stage 3: 
F. Late stage 3. G. Early stage 4: iniation of whorls 2 (w2) and 4 (w4). B. 
Middle stage 4. I. Late stage 4. J. Early stage 5: growth of the sepals begins 
to cover the inner whorls of organs. K. Middle stage 5. L . Late stage 5: inner 
organs can no longer be seen. Size bars, 100Jl1l1 . 
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Stage 1 is defined by an undifferentiated meristematic dome in the centre of the 

developing inflorescence which around which as it enlarges primordia develop 

(Fig.3.2A). During stage 2, each primordium that develops around the edges of this dome 

differentiates into two parts: one will become the flower primordium, the other the 

primordium of the subtending bract (Fig.3.2B). The flower primordium develops as a 

rounded mound, while the bract develops as an elongated structure that, when more fully 

developed, curls protectively over the developing flower (see Fig.3.2C) .. Figures 3.20-F 

show the early middle and late phases of stage 3. During stage 3, whorls 1 and whorls 3 

develop. At this stage, whorl 3 is represented by five developing common stamen-petal 

primordia (Fig.3.20). The lower outside edges of the flower primordium grows to form a 

ring that develops pentagonally into five sepal lobe primordia (Fig.3.2E). The inner 

region of the developing flower expands into pentagonal symmetry with the points of the 

inner pentagon adjacent to those on the outer pentagon (Fig.3.2F). The five rounded 

structures of the inner pentagonal mound will become the common stamen-petal 

primordia. 

Figme 3.20 - I show the early middle and late phases of stage 4. Stage 4 consists of the 

simultaneous development of whorls 2 and 4. Whorl 2 develops initially as a slight bulge 

on the abaxial base of each common stamen-petal primordium (Fig.3.2G). At the same 

time a ring structure forms in the centre of the flower that will develop to form the ovary 

wall, style and stigma. These changes become more apparent during middle stage 4 

(Fig.3.2H). By late stage 4 (Fig.3.2I) all fom whorls are clearly visible. During stage 5, 

the sepals enlarge to conceal the flower within. During early stage 5 (Fig.3.2J), the inner 

organs are still visible, but by middle stage 5 (Fig.3.2K) only the petal primordia remain 

visible and by late stage 5 (Fig.3.2L), the flower is fully enclosed. The free central 

placentation with associated ovules develops subsequently dming stage 6 within the 

carpels (Fig.3.4). More detailed observation was made of the growth of wild type whorll 

at late stage 5 (Fig.3.3.A - 0). Although all parts of the organ are growing at this time, the 

cells at the base of the organ can be seen to be smaller. There is also evidence of more 

frequent cell division, observed as less deep divisions between many of the cells. 

Similarly, the middle portion of the sepal can be observed to have a greater number of 

recently divided cells than the tip of the organ. 

Development of whorl 4 into component parts of stigma style and ovary has been 

designated as stage 6. Because the flower becomes fully enclosed in sepals by late stage 5 

(Fig.3.2L), subsequent observation of wild type whorls 2, 3 and 4 is only possible by 
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Figure 3.3. Differences in cell shape and size in 
whorl 1 at stage 6. 

One developing flower at stage 6 from the hybrid 
polyanthus in figure 3.1.C is shown in A with the 
different cell shapes and siz.es at the top in D, at the 
middle in C and at the bottom of the flower in D. Size 
bars are 100 Jlm in A, and 1 Jlnl in D - D. 
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Figure 3.4. Development of whorl 4 into the component parts of stigma 
style and ovary. 

Development of whorl four can not nonnally be observed without dissecting 
away part of the outer three whorls . 

• Whorl 4 before the top of the organ has swollen sufficiently to be 
recogni able as a stigma. A slight enlargement of the top of the organ (sg) 
indicate early stigm development. B. Whorl 4 at early stage 6 is 
differentiating into the recognisable component parts of stigma (sg) style 
(sy) and ovary(o). Anthers have elongated and anther lobes are clearly 
vi isble. . In this middle stage 6 flower, the top ofwhor14 has not yet 
clo ed although the component parts are differentiating into stigma style and 
ovary. In ide the ovary ovules (ov) are developing on what will become a 
free central placenta (p), and the outer and inner integuements of the 
developing ovule are clearly visible. D. By late stage 6 the three 
component parts of whorl 4 are clearly visible. Ovules can be seen inside on 
the central placenta that will have become a free central placenta when the 
flower i mature. Size bars are IOOJ.l.m . 
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dissecting developing flowers. The initiation of stage 6, is when the rim of the ovary ring 

first begins to expand, and is illustrated in Figure 3.4. At first the upper portion of whorl 

four is only slightly broader than the middle portion (Fig. 3.4A). The differentiation into 

stigma style and ovary soon becomes clearly visible (Fig.3.4B), although the ovary ring 

does not always close until the style begins to elongate (Fig.3.4C). There can be 

variation in the developmental timing for closure of the ovary ring during this stage. 

Inside the ovary, ovules develop on a free central placenta and at this point the inner and 

outer integmnents are clearly visible (Fig.3.4C). By late stage 6, the component parts of 

the stigma and style, with the ovary enclosing ovules on a free central placenta, are all 

easily recognisable (Fig.3.4D). No differences between pin and thrum flowers were 

observed up to and including stage 6. Primula flowers are homomorphic dming early 

stages of development (Webster and Gilmartin, 2003). 

3.4. Discussion of early ontogeny. 

Floral ontogeny in Primula has been a source of interest for many years with an extensive 

literature dating back nearly 200 years (for example Saint Hilarie 1816; Ducharte 1844; 

Van Tieghem 1869; pfeffer 1872; Eichler 1875; Henslow 1876; Masters 1878; Heinricher 

1932, 1933; Dickson 1936; Douglas 1936; Sattler 1967; Sundberg 1982). During flower 

development in Primula, stamens and petals develop from a common floral primordiwn 

(see Figure 3.2, 0, H, and I). The stamen initials develop first, and the petal initials arise 

later from the abaxial base of the stamen-petal primordium. This observation led 

Ducharte (1844) to conclude that the stamen and the petal were a single organ, and that 

Primula contained only three whorls of floral organs. This view was later challenged in 

1875 by Eichler who suggested that the common stamen-petal primordiwn probably 

resulted from congenital fusion of these two organs, and concluded that petals and 

stamens were indeed two distinct floral whorls, and subsequent authors have supported 

this view (Eichler 1875). 

The normal spatial configuration of floral organs within a flower from the outermost to 

the innermost whorls is always sepals, petals, stamens, carpels and temporal initiation of 

the four floral whorls in the two best-studied models offlower development, Arabidopsis 

thaliana and Antirrhinum mojus, occur in a centripetal manner. Early observations 

(Ducbarte 1844; Preffer 1872) revealed that the temporal development offloral organs in 

Primula did not occur in this linear centripetal order. In 1876, Henslow highlighted a 

Dwnber of examples of flower development where it had been observed that the whorls of 
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floral organs did not develop in an acropetal or centripetal manner, including Ranunculus 

acris and Veronica chamaedrys (Henslow 1876). Both of these species show the temporal 

order of floral organ development as sepals, stamens, carpels, petals. In 1967, Sattler 

descnbed a number of species with both stamen and petal initials occwring on a common 

stamen-petal primordium (Sattler 1967). The position of the second initial on the 

common stamen-petal primordium differs from species to species and ranges from a point 

on the innennost adaxial surface of the common stamen-petal primordium to a point on 

the outermost abaxial smface, as described previously for Primula. Sattler's observations 

(Sattler 1967) also revealed that irrespective ofwbich initial developed first on this 

stamen-petal primordium, the outennost primordium always gave rise to the petal and the 

innermost primordium to the stamen. This observation reinforced the universality of 

floral organ sequence and demonstrated that the tempoml order of the floral organ 

initiation does not affect the final spatial order of sepal, petal, stamen, carpel. More recent 

studies on flower development in Pisum sativum (Femndiz et 01. 1999) descnbe a similar 

process with common stamen and petal primordia that disrupts the sequential centripetal 

development of sepals, petals, stamens and aupels. 

The images obtained by scanning electron microscopy in this study are in accordance 

with the images ofw;ld type P. veris obtained by Ducbarte in 1844. However, the 

additional detail and resolution offered by the more modem approaches provides greater 

insight into the early events of floral development in Primula such as the differences in 

cell shape and size in whorl 1 illustrated in figure 3.3. These differences indicate that 

although growth is occurring in all tissues at this stage, the youngest tissue is at the base 

of the organ. 

The early ontogeny of Primula differs from that of Arabidopsis and Antirrhinum in a 

number of respects, due, in part, to major differences in the mature flower fonn in each 

species. For example a difference visible in early development includes the fact that 

subtending bracts are found in Antirrhinum and Primula but not in Arabidopsis. It is also 

important to note that any developmental stage may not be comparable across aU three 

species. Stage 3 for each species is set in diffen:nt criteria. In Primu/o flower both sepals 

and stamens begin to develop, in Arabidopsis sepals are the only organ to develop, and in 

Antirrhinum sepals only begin to appear at the very end of stage 3. Stage S bears some 

similarity in Arabidopsis and Antirrhinum in that in both the sepals begin to overarch the 

dome and petal primordia become viSIble, but in Arabidopsis, and not in Antirrhinum, 

stamen primordia also appear at this stage. Neither Arabidopsis nor Antirrhinum have a 
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common primordium from which whorls two and three develop, as is the case in Primula. 

During stage 4 in Primula whorl two develops at the same time as whorl four, but in 

Arahidopsis whorl four does not develop until after whorls two and three. These 

differences illustrate the difficulty of attempting to parallel stages of development in 

different species by physical appearance. Subsequent to the study on early ontogeny of 

Primula (Webster and Gilmartin, 2003) a more recent study on flower development in 

Anti"hinum (Vincent and Coen, 2004) used the plastochron index to provide a temporal 

framework for the mapping of developmental events. This system for mapping 

development could be used as part of a future study on PrimuJa. 

3.S. DeveiopmeDt of the pia and thrum heteromorphic features. 

As Primula flowers were found to be homomOIphic during early ontogeny, development 

of pin and thrum heteromorphic features of Primula were investigated to maturity. This 

work had been completed before the publication of that done on Antlrhinum using the 

plastochron index (Vincent and Coen, 2004) therefore instead of dividing late 

development of Primula into developmental stages the emphasis is on the development of 

the distinctive thrum and pin architecture (Figure 3.6). Heteromorphic features ofmature 

flowers are shown in figure 3.S. 

The developing flowers shown in figure 3.6 are from the cultivar Blue Jeans currently 

under molecular investigation in the Gilmartin laboratory. That the development 

illustrated is typical has been verified by analysis of several different cultivars (not 

shown) and comparing their late development with that of Blue Jeans. The first indication 

of differences between the two morphs is the elongation of the pin style that begins to 

raise the stigma above the anthers. This is just beginning in the pin flower in (Figure 

3.6A), but is very obvious in the pin flowers in Figure 3.6B, C and D. The thrum stigma 

normally remains below the top of the an1hers throughout development. There is no 

growth of the corolla tube below stamen attachment in either morph in Figure 3.6A, B or 

C. When whorl two of the Blue Jeans cultivar has reached approximately 7mm. 

elongation of the corolla tube below the anthers can be observed in the thrum flower but 

not in the pin flower (Figure 3.6D). It is not until whorl two has reached 13mm in length 

that elongation of the corolla tube below the point of stamen attachment can be observed 

in the pin flower (Figure 3.6E), and at this point the elongation of the corolla below the 

point of stamen attachment is considerable in the thrum flower. Thus growth of the 

corolla tube above and below the anthers vines both temporarily and physically in pin 

and thrum morphs. Both the pin and the thrum flowers in Figure 3.6F are about to open 
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Figure 3.5. Pin and thrum flowers of Primula vulgaris var. Blue Jeans 

A. Longitudinal section of pin flower. B. Longitudinal section of thrum 
flower. The length of the style and position of the stigma and anthers are 
shown. The lengths of upper and lower corolla tubes are also indicated. 
c. Top view of pin flower. D. Top view of thrum flower. Both C and D 
show diameter ofthe flower, the extent of the petal and diameter of the 
flower mouth. All size bars are 5 tnm. 
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Thrum 

-.,...~ Thrum 

Figure 3.6. Development of pin and thrum sibling flowers. 

Differences between pin and thrum flowers are only manifested later in flower 
development, as shown in A (earliest) - F (latest) comparison of pin and thrum flower 
development. The approximate height of whorl 2 has been measured (squares are 
1 mm.). In the developing flowers shown in A - C above the pin style elongates to raise 
the stigma above the anthers and the thrum stigma remains below the top of the anthers. 
Petal above anther attachment grows first in both pin and thrum flowers while anthers 
remain at a similar height, low in the flower. There is no growth of the corolla tube 
below anther attachment in the developing flowers shown in A - C. There is no growth 
of the corolla tube below the anthers of the pin flowers in D, but growth of the corolla 
tube below the anthers can be observed in all of the thrum flowers in D - F. Growth of 
the pin corolla tube below the anthers has just begun in E and continues in the pin 
flower in F. Flowers in F will soon open as mature flowers as shown in figure 3.5. 
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and both the final position of the anthers, at the mouth of the flower in thrum and half 

way down the corolla tube in pin (as shown in Figure 3.5) and the elongated style of the 

pin flower and the short style of the thrum flower can be observed. 

Previous ontogenetic studies on other species revealed that where stamens are attached to 

the corolla tube, the two parts of the tube above and below the anthers, are formed by two 

spatially and temporally separate processes. This division of the corolla tube into two 

parts, the upper corolla tube being the part above anther attachment and the lower corolla 

tube being the part below anther attachment has been employed by previous authors (e.g. 

Spome, 1974); and it has been observed also in Lactuca sativa and other members of the 

Compositae with epipetalous stamens that both parts develop by intercalary growth. The 

lower part develops later than the upper part, but the timing of its initiation varies 

between species (Erbar, 1991). As the lower corolla tube develops the stamens are carried 

up to their final epipetalous position. Erbar further defines the lower corolla tube as the 

stamen-corolla tube (Erbar, 1991). Work on C function in Primula (Cook, 2002) found 

expression of the C function organ identity gene in the lower corolla tube but not in the 

upper corolla tube above the anthers. This is in agreement with Erbar's definition, 

although it was thought that C function was not evenly distributed throughout the tissue 

but was probably confined to the vascular bundles (Cook, 2002). In Primula it has been 

shown (Figure 3.6) that the upper corolla tube begins to develop first in both pin and 

thrum flowers. However in flowers of the same or similar size the lower corolla tube of 

thrum flowers normally begin growth much earlier than the lower corolla tube of pin 

flowers. Observation of a series of developing flowers from eight thrum plants (not 

shown) revealed that all had exhibited early growth of the lower corolla tube when whorl 

two was approximately IOmm in length. In contrast, observation of a series of developing 

flowers from nineteen pin plants (not shown) revealed only two that exhibited growth of 

the lower corolla tube when whorl two had reached 10mm. in length. The latter 

observation indicates some flexibility in the temporal aspect of the growth, but it is the 

differential physical growth of the corolla tube above and below the attachment point of 

the stamens that results in different anther positions in the two morphs. The definition 

"attachment point" is used rather than the definition "insertion point" that has been used 

by some previous authors (e.g. Mather, 1950) since observations of early ontogeny show 

that the stamens develop first and that the second whorl subsequently develops attached 

to the stamens. 
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3.6. The diameter of the floral mouth is different in pin and thrum flowers. 

Study of pin and thrum flowers led to the observation that thrum flowers appeared to 

have a wider corolla tube mouth than pin flowers of the same size. In order to investigate 

the possibility of this being a new heteromorphic difference between pin and thrum 

flowers the diameter of the face of the flower, and the diameter of the corolla tube mouth 

in 30 pin and 30 thrum flowers from sibling plants, each with the normal complement of 

five petals, was measured and recorded. Data was collected in parallel from two different 

lines. The first line was of red cultivars produced from a cross between a red commercial 

Primula vulgariS and a wild primrose (P. vulgaris); the second line was the commercial 

Fl hybrid Primula vulgaris var. Blue Jeans. Figure 3.7 A shows pin and thrum flowers 

from the red primrose progeny indicating the measurements taken. The mouth of the 

corolla is visibly wider in the thrum flower than in the pin flower. Quantification of the 

data confirmed this initial observation with all measurements made to within 0.5 mm. 

The mean diameter of the flower face in the red cultivar progeny was 34 mm for both pin 

and thrum flowers (Figure 3.7B). The mean flower diameter in the Primula vulgaris var. 

Blue Jeans flowers was 37 mm (Figure 3. 7C). The corolla tube mouth diameters in both 

sets of samples was greater in the thrum flowers than in the pin with mean values of 2.0 

mm and 3.3 mm respectively for pin and thrum flowers from progeny derived from the 

wild primrose plants and 3 mm and 4 mm from pin and thrum flowers from the larger P. 

vulgariS var. Blue Jeans flowers. In both samples, the ratio of flower diameter to corolla 

mouth diameter is greater for pin flowers than for thrum flowers of the same size and 

further emphasises the difference between the two floral morphs (Figure 3.7B and C). 

This difference in Primula heteromorphic floral architecture has not been documented 

previously. 

Examination of corolla tube cells from above the anthers in thrum and in pin flowers 

using both light microscopy (not shown) and scanning electron microscopy (Figure 3.8) 

showed the corolla tube cells above the anthers to be broader in thrum flowers than in pin 

flowers. This observation indicates that the increased width of cells in the thrum upper 

corolla tube leads to an increased diameter of the flower mouth in thrum flowers as 

compared to pin flowers. 
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thrum 

Primula vulgaris (progeny of red cultivar) 

Primula vulgaris (progeny of red cultivar) 

0.0 +--JL...--L-,---JL...-.....l..-.,---I_.....l..-.,---I_.....l..-+--'_-'-.,---I_...J......., 

Pin Thrum Pin Thrum Pin Thrum 
Flower Flower Mouth Mouth 17m ratio f/m ratio 

Size Pin Thrum Pin Thrum Pin Thrum 
(mm) flower flower mouth mouth f/m ratio f/h ratio 

Mean 34.4 34.4 2.0 3.3 5.9 9.6 
SO 3.8 4.1 0.2 0.5 

c Primula vulgaris (Blue Jeans) 
45.0 

~.O +--T---T-------~------e 35.0 

El 30.0 
'-' 
~ 25.0 
U 20.0 

~ 15.0 

Q 10,0 

5,0 

0,0 +-'---'--,---J'-----'--,---J'----'--.--'----'-+-'---'-~'----'---, 

Pin Thrum Pin Thrum Pin Th.rum 
Flower Flower Mouth Mouth f/m ratio Urn ratio 

Size Pin Thrum Pin Thrum Pin Thrum 
(mm) flower flower mouth mouth tim ratio tim ratio 

Mean 36.9 36.8 2.9 4.0 7.7 10.8 
SO 3.9 4.2 0.6 0.9 

Figure 3.7. Comparison of flower mouth diameter in pin and thrum 
flowers 

A. Pin and thrum flowers showing flower diameters and mouth diameter. 
Size bars are 1 em. B. Flower diameter and mouth diameter measurements 
(mm) for pin and thrum flowers from a wild primrose-commercial cultivar 
cross. Error bars are based on standard deviations and the flower (f) to 
mouth (m) ratios are indicated for both pin and thrum flowers. C. As in 8 
but data obtained from measurements on Primula vulgaris var. blue jeans. 
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Figure 3.8. Scanning electron microscope analysis of Primula pin 
and thrum corolla tube cells above the anthers. 

A. Cells from the outer epidennis of the thrum upper corolla tube of 
a flower just opening (as in Figure 3.6F). B. Cells from the outer 
epidennis of the pin upper corolla tube of a flower just opening (as 
in Figure 3.6F). C. Cells from the outer epidennis of the thrum 
upper corolla tube of a mature fully open flower (as in Figure 3.5). 
D. Cells from the outer epidennis of the pin upper corolla tube of a 
mature fully open flower (as in Figure 3.5). 



56 

3.7. Discussion of late development. 

The presence of pin and thrum flowers in Primula and the phenomenon of heteromorphic 

flower development has been reputedly known since Clusius, 1583 (van Dijk 1943, 

quoted in Omduff 1993), and has been of scientific interest since Darwin, 1876. 

However there is as yet no insight into the molecular basis ofheteromorphy or an 

understanding of the cellular processes that <;:ontnbute to the differential development of 

pin and thrum flowers. This analysis provides new insight into the development of 

heteromorphic flowers and reveals a previously unreported characteristic of 

heteromorphic flowers. 

3.8. Timing of the development of heteromorphic chanctaistics. 

Despite the considerable interest in the S locus for very many years, there have been no 

previous observations on the timing of events that lead to the final architecture of the 

mature Primula flower and this data provides the first analysis of the developmental 

timing ofheteromorphy. It has been shown that observable differences between pin and 

thrum flowers are first seen dming when the pin stigma shows the first signs of elevation 

above the top of the anthers and in the corresponding thnun flower the tip of the anthers 

start to extend above the stigma (Figure 3.6A and 3.6B). The observation that pin style 

elongation is the first discernable step in heteromorphic development suggests that the 

effects mediated by the G locus may be the first to be implemented, Pin plants are 

homozygous for the recessive g allele, therefore an initial key event in Primuia 

heteromorphy may be the action of the dominant G allele in inhibiting style elongation in 

thrum flowers. Pin plants are also homozygous for the recessive a allele and do not show 

significant elevation of anthers from the base of the corolla lDltiliater than do thrum 

flowers. (Figure 3.6, D,E and F) Together these observations suggest that A plays a 

dominant role in promoting anther elevation, while G plays a dominant role by 

suppression of growth. These observations provide the first indication of differential 

timing of developmental events during hetel"omorphy, and indicate that temporal control 

of S locus gene expression may be an integral component of pin and thrum flower 

development. 

3.9. Corolla tube mouth diameter, a new heteromorphic cbaracter. 

This analysis was undertaken using both wild type primrose hybrid flowers and a 

horticultural variety P. vulgaris cv. Blue Jeans. In both examples, the observed greater 
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diameter of the flower mouth iIi thrum as compared to pin flowers indicated that the 

presence of this previously undocumented characteristic correlated with floral morpho 

The selection of equal numbers of pin and thrum flowers of similar sizes and with the 

normal complement of five petals enabled eljmjnation of differences that could be 

attributed to different flower sizes or to the presence of extra petals. As examination of 

corolla tube cells from above the anthers in thrum and in pin flowers using both light 

microscopy (not shown) and scanning electron microscopy (Figure 3.8) showed the 

corolla tube cells above the anthers to be broader in thrum flowers than in pin flowers it 

can be deduced that the increased width of cells in the thrum upper corolla tube leads to 

an increased diameter of the flower mouth in thrum flowers as compared to pin flowers. 

It is considered that this may be a direct consequence of the presence of a dominant A 

allele at the S locus. This new difference between pin and thrum flowers may have 

previously gone unnoticed due to the varying sizes of flowers in bloom on a plant at any 

one time, with the earliest flowers to bloom always being larger than the later flowers. 

These studies have illustrated the spatial and temporal functions of the dominant alleles 

of the S locus linked genes A and G. Analysis of Primula floral homeotic mutants will 

provide evidence for the organ identity specific effects of these S locus associated genes 

A and G. A new aspect of the Primula heteromorphic phenotype has been discovered. 

The isolation and characterisation of the genes located at the Primu/a S locus, including 

G and A, will be required to provide a molecular explanation for these cellular and 

developmental observations. Work in the laboratory is actively engaged in identifYing 

genes that are linked to Primula S locus with the objective of establishing an integrated 

physical and genetic map to facilitate identification and characterisation of the genes that 

control heteromorphy in Primula. 
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CHAPTER FOUR 

~utantPheno~ 

4.1. Introduction. 

Ten mutant phenotypes were investigated and are shown in Fig. 4.1. Half of these, Jack 

in the Green, Hose in Hose, Staminoid Carpels, sepaloid and double, can be described as 

organ identity homeotic mutants. The possible basis fur green primrose and virescent 

cowslip is less straightforward, although both do exhibit transformation of organs. The 

Split Perianth mutant phenotype has organs in the correct position but has alteration to 

the usual form of the organ, and two, reduced petal and Oak Leaf, are pleiotropic mutants 

where both the flower and the leaf furm are affected. 

4.2. Description of and development of the mumnt phenotypa. 

4.2.1. The Jack III tile green mutant phenotype. 

(i) Description of Jack in tile Green. 

The Jack in the Green phenotype has the calyx lobes converted wholly or partly to leaves 

(Fig.4.2A). Expression of the phenotype is variable. In the least extreme phenotypes, only 

the very tip of each calyx lobe is leafy; in the most extreme, each entire calyx lobe is in 

the form ofa leafand may be quite large in proportion to the flower (Fig.4.2B). Besides 

the variation in size ofleafY calyx from one plant to another, similar variation can occur 

on each plant from the beginning of the flowering season to the end. Large leafY calyces 

are produced early in the flowering season, smaller ones later, and some plants may have 

normal calyces on the very latest flowers of the season. The lea1Y calyx is persistent (Fig. 

4.2E) and remains intact until after seed bas ripened, although it may begin to deteriorate 

at this time as shown in Fig. 4.2F. When Jack in the Green is combined with the genetic 

background of the cowslip P. veris, the bracts at the base of the pedicles, may, in some of 

the progeny, also show conversion to leaves (compare Fig.4.2C and Fig.4. 20). The cross 

is done as P. vens x P. vulgaris Jack in the Green since crosses done in the opposite 

direction are not usually successful. (For studies of hybridization between British 

Prlmu/as see Valentine 1947, 1951 and 1955). The first illustration ofa polyanthus, 

drawn from Bobarfs herbariwn specimen, was ofaJack in the Green with large leafY 

bracts at the base of the pedicles. Conversion oftlle bracts to leaves is not thought to be a 
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Fig.4.1. Floral mutant phenotypes of PrimM/a. 

Ten mutant phenotypes are described. They are arranged in order of the 
whorls affected, from whorl 1 inwards. 

A. Jack in the Green - whorl 1 converted partly or wholly to leaves. B. Hose 
in Hose - whorl 1 converted partly or wholly to petal. C. Split I'erianlh - in 
which whorl 1, and in some plants whorl 2 also, fail to fuse to form the 
normal calyx tube and corolla tube structures. D. Siaminoid Carpels - a 
double mutant in which in addition to having whorl 1 converted to petal, the 
phenotypes have whorl 4 partly or completely converted to stamens. The 
form has not been found as a single mutant, and may be an allele of Hose in 
Hose or a separate mutation. E. sepaloid - in which there are no petals and 
anthers. There can be four whorls of sepals, or two or three whorls of sepals 
and a functional or non-functional carpel. F. double - in which the anthers 
and carpels are normally replaced by indeterminate whorls of petals. There 
are a number of forms of doubling with varying organ order (Fig. 4.15). G. 
Primula viridis, the green primrose - in which the petals are green, the 
stamens are degenerate and the carpel has a leafy ovary wall. II. Virescenl 
cowslip - in which there are no normal organs. The "flower" consists of a 
mixture of green leafy bracts, ectopic ovules, and stigma like structures with 
open carpels at the base. I. reduced petal polyanthus - in which the petals are 
reduced and there is loss of pigment on the adaxial surface. Leaves are also 
broader, thinner and more wavy edged than those of wild type siblings. J. 
Oak Leaf - in which the leaves are distinctively lobed as are oak leaves and 
are also thicker than normal leaves. Sepals and petals are generally 
attenuated. Size bars are approximately I em. 
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Figure 4.2. The Jack in the Green mutant phenotype. 

The Jack in the Green has part or all of the sepals converted to leaf form. 

A. A Jack in the Green plant in flower. B. Range of expression of Jack in the 
Green leafy calyces. C. A Jack in the Green cowslip hybrid with the bracts at the 
base of the pedicles also converted to leaves. D. A Jack in the Green cowslip 
hybrid with nonnal bracts. E. A Jack in the Green calyx during seed set. F. 
Persistent Jack in the Green calyx with open ripe seed capsule. Size bars are 
approximately I em. 



62 

Figure 4.3. Development of the Jack in the Green flower. 

Early development of the Jack in the Green flower up to and including stage 6 is 
illustrated. All images are from the same plant as the flower in Fig. 4.1. A 

A. Cluster of developing Jack in the Green flowers .. B. Developing Jack in the 
Green flower at middle stage 4. (w = whorl) C. Developing Jack in the Green 
flower at late stage 4. D. Developing Jack in the Green flower at stage 5. E - H . 
Jack in the Green calyces in developing flowers of 1.Omm, (E), 1.5mm, (F), 
2.0.mm, (G), and 2.5rnrn. (8), in length respectively. All are during stage 6. By 
the end of stage 6 the calyces are recognizably leaflike and from this point to 
maturity simply grow larger. 1 - L. Jack in the Green whorl 4 development 
during stage 6, in developing flowers of <l.Omm, (I), l.Omm, (J), l.Ornrn, (K), 
and > l.Omm (L), respectively. Note that although the flowers in I and J are the 
same size the degree of development is not the same. Size bars are lOOJ.1m . 
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straightforward Mendelian trait since it does not always occur in all of the Jack in the 

Green progeny, it is more likely to be due to the degree of expression of the phenotype in 

an individual plant. 

(ii) Development of Jilek in tile Green flowers. 

Early development of Jack in the Green flowers is similar to wild type (Fig.4.3B). 

During late stage 4 a progressive curling back of the tips of whorl 1 becomes evident 

(Fig.4.3C). This aspect of the phenotype permits observations of the development of 

inner organs, such that by late Stage 5 development of the four lobes of each anther are 

clearly visible (Fig.4.3D). Also visible at this time is a slightly raised ridge present all 

around the outer edge of whorl I. Progression of development through some of these 

stages can be seen in fig. 4.2A. By the time that the developing flowers reach 

approximately 1.0 mm in length, numerous trichomes are present on whorl I, on the 

curled back tips of what will become leafY sepals (Fig.4.3E). This aspect of the 

phenotype becomes more evident with increased growth of the developing flower 

(Fig.4.3F - H) and during stage 6 in developing flowm of2.0 - 2.Smm in size the leaf 

like tips of whorl I are unmistakable. Beyond this stage the leafY whorl I organs continue 

to grow larger and remain leaflike in appearance. Developing Jack in the Green flowers 

during late stage 5 and stage 6 (Fig.4.3I - L) were dissected in order to ascertain whether 

mutations in whorl 1 had any visible effect on inner whorls. Results show normal 

development of whorls 3 and 4 in these flowers. The ovemll sizes of the developing 

flower in fig. 4.31 and in fig. 4.3J is the same, but variability in rate of development of 

whorl 4 from one flower to the next is demonstrated by the observation that whorl 4 

development remains in stage 5 in Fig.4.3I while whorl 4 development in Fig.4.2 J is at 

early stage 6. 

4.2.2. The Hose hi Hose mutant phenotype. 

(I) Description of Hose in Hose. 

The Hose in Hose mutant has calyces that are wholly or partly converted to petal. In the 

most extreme expression of the phenotype one flower appears to grow out of another 

(Fig. 4.4A). The thrum stigma generally reaches the height of the mouth of the petaloid 

calyx corolla tube, so that if the true corolla is pulled out what remains looks like a pin 

flower without a calyx. Environmental conditions can influence corolla tube growth so 
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Figure 4.4. The Hose in /lose mutant phenotype. 

The Hose in Hose phenotype has the calyces wholly or partly converted to 
petal. The phenotype exhibits variability in expression both on the same plant 
and on different plants. The developing seed capsules are unprotected. 

A. Hose in Hose flowers with fully petaloid calyces, so that one flower appears 
to grow out of another. B. Hose in Hose seed capsules, without any protective 
calyx. C. Hose in Hose flowers wilting; showing the limited persistence of the 
petaloid calyx. Flower number 1 is just beginning to wilt and the petaloid calyx 
is still fresh .. Flower number 2 is completely wilted and the petaloid calyx is 
beginning to deteriorate slightly at the edges. D. A Hose in Hose cowslip with 
different degrees of expression of the phenotype on different flowers on the 
same scape. Calyx number 1 is as wild type, calyx number 2 is partly petaloid, 
and calyx number 3 is fully petaloid. E aDd F. Pressed calyces from a number 
of Hose in Hose flowers from different plants showing various degrees of 
expression of the phenotype. Where expression is very poor, as in numbers 1-4 
the phenotype may not be apparent without close examination of the calyces. G 
- J. Four flowers. from four sibling plants, exhibiting different degrees of 
petalody of the calyx. Size bars are approximately 1 em. 
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that under extreme conditions (either of heat or cold) the true corolla does not protrude as 

fully from the calyx corolla as normal, thus leaving the anthers and the stigma at the same 

height and giving the appearance of a long homostyle. The petaloid calyx is more 

persistent than the corolla, (Fig. 4.4C) but begins to deteriorate soon afterwards. Part of 

the wilted petaloid calyx may cling to the capsule during early seed set but the capsules 

are generally naked before seed is ripe (Fig. 4.4B). Expression of the phenotype can vary 

so that in some genetic backgroWlds the phenotype is only poorly expressed. There can 

be considerable variation in the degree of conversion of sepals to petals, and also in the 

shape of the petaloid calyx (Fig.4.4E and F). Where expression is unstable, expression of 

the phenotype can not only be variable within a single plant, but even from one calyx 

lobe to the next. The latter can be observed on some of the calyces in Fig 4.4. E and F. 

Where poor expression simply results in the calyx being streaked with green the Hose in 

Hose form is still recognizable. When only very tiny amounts ofpetal are found on some, 

but not all calyx lobes, (Fig. 4.4E, 1 - 4) the phenotype may not be recognized as Hose in 

Hose without close examination of the calyces. Siblings from the same cross frequently 

exhibit different degrees of expression of the phenotype (Fig.4.4G - J). Expression of the 

phenotype can sometimes deteriorate in older plants. Conversely, young plants with 

flowers showing calyces that have only a thin green midrib to each peta10id calyx lobe 

may develop flowers with fully petaloid sepals later in the season. In rare instances a 

single scape may have flowers of the above v8l}'ing forms (Fig.4.4D). As the plant 

continues to grow there will be ramets carrying flowers with different degrees of 

expression so that on one plant there may be ramets with fully petaloid calyces, ramets 

with partly petaloid calyces, and occasionally ramets in which the calyces have reverted 

to normal. Other plants exhibit stable expression of the phenotype for very many years. 

Unlike the Hose in Hose plants described by Ernst in 1931, tbeHose in Hose described 

here are all at least as floriferous as wild type plants, and in many instances more 

floriferous. 

(0) Development of Hose In Hose ftowen. 

Early development of Hose in Hose flowers is similar to wild type until Stage 4. By late 

stage 4 it is evident that whorll is thinner, broader, and shorter than wild type (Fig.4.SA). 

The presence of petals in place of sepals in whorl 1 becomes more evident by early stage 

5 (Fig.4.SB) and is unmistakable in late Stage S (Fig.4.SC). Beyond stage S the 

developing peta10id whorl I continues to grow (Fig.4.SD) without altering radically in 

appearance. In those plants where the homeotic conversion of sepals to petals is not 
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Figure 4.5. Development or Hose in Hose flowers. 

The early development of Hose in Hose flowers up to stage 6 is illustrated. 
Comparison is made of the early development of Hose in /lose flowers with 
incomplete expression of the phenotype with that of flowers that will have fully 
petaloid calyces. 

A. Developing Hose in Hose flower at late stage 4. B. A developing Ho.'te in 
Hose flower at early stage 5, with a stage 3 developing flower behind. C. A 
developing Hose in Hose flower at late stage 5. D. A developing Hose in Hose 
flower at approximately stage 6. (A - D were taken from the same plant as were 
the flowers in Fig. 4.4.1 and in Fig. 4.1A). E. A cluster of developing Hose in 
Hose flowers with incomplete expression of the phenotype (E -I) were taken 
from the same plant as was the flower in Fig. 4.4.L). F. A developing flower of 
approximately stage 6 from the same plant The central portion of each calyx 
lobe is densely covered with long trichomes, and only the smooth edge of the 
calyx lobe will be fully petaloid. G. The adaxial surface of a developing calyx 
lobe (approx. 3.0mm.in width) from the same plant II. Cells from the centre of 
the calyx lobe in G (shown by a white arrow). I. Cells from the edge of the 
calyx lobe in G (shown by a black arrow). Size bars in Hand 1 are IOum. Other 
size bars are lO0J.lm. 
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complete, Stage 4 and Stage 5 flowers are similar to wild type (Fig.4.5E). As the 

developing flower increases in size (Fig.4.5F, stage 6) it can be observed that the centre 

of each whorl 1 petal is densely covered in trichomes and only the lower edges are 

smooth. This contrasts sharply with the fully petaloid stage 6 flower in fig.4.50. The tip 

of a larger whorl 1 petal of approximately 3.Omm in width was examined more closely 

(Fig.4.5G). Cells from the center of the above petal are observed to be not of the normal 

conical papillate petal cell form (Fig.4.5H). Those closer to the edge of the immature 

petal are more rounded (Fig.4.5I), and although not conical papillate they do more closely 

resemble that form than do the cells in the previous figure. 

4.2.3. The Split P~1'IIInth mutant phenotype. 

(i) Description of SpIlt p~riImtIt. 

In this phenotype the calyx, and in many instances the corolla also, is divided into five 

separate parts without any connective tissue between the sepal lobes or the upper part of 

the corolla tube (Fig.4.6B). Where the corolla tube is split the division most commonly 

stops at the point of attachment of the anthers (Fig.4.6C), but occasional plants have been 

found that have whorl 2 split entirely to the base of the corolla tube making five separate 

segments (Fig. 4.6D). The split calyx is persistent mtil seed set and beyond (Fig. 4.6E), 

but being split and spread open it does not offer much protection to the ripening seed 

capsules. Primulas with divided calyces were illustrated in the past as bas been shown in 

Chapter 1. The form may have disappeared from cultivation for a time; it was no longer 

commercially available in spring 1997 when a single plant was discovered in a batch of 

gold laced polyanthus seedlings raised by Dr. R. J. Brumpton (Fig.4.6A). It was from this 

plant that all subsequent split perianth forms are derived. The splitting of the corolla in 

the original plant was uneven and erratic, and some progeny also exhibited uneven 

splitting of the corolla. One plant that was derived from a cross between two split 

perianth parents, produced flowers that were very much reduced at first flowering 

(Fig.4.6F-H), the most extreme being reduced to the two reproductive whorls only, 

(Fig.4.6H). Later in the flowering season the plant produced some flowers that did have 

all four whorls present. 
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Figure 4.6. The Split Perianlh mutant phenotype. 

The Split Perianth has the calyx and sometimes the coroHa also divided into 
separate parts. The first Split Perianth plant discovered is illustrated along 
with derived Split Perianth plants with different degrees of expression of the 
phenotype. 

A. The original Split Perianth plant from which all subsequent plants were 
derived. B. A Split Perianth plant with nonnal corolJas. C. A Split 
Perianth flower with the corolla split to the point of attachment of the 
anthers. D. A Split Perianth plant with the corolla totally split to the base of 
the corolla tube. E. A Split Perianth ripe seed capsule. F. A flower from a 
Split Perianth plant that produced flowers without any perianth whorls on 
many of the earliest flowers (later flowers did have both perianth whorls). 
G. A flower from the same plant as the flower in F, this one with petal 
tipped anthers. H. Another flower from the same plant as the flowers in F 
and G, this one without any perianth whorls. Size bars are approximately 
lcm. 
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Figure 4.7. Development of the Split PeritlnJh flower. 

Early development of the Splitl'erianrh flower is compared with that of wild 
type, and the development of the Split I'erianrh flower up to stage 6 is 
ill ustrated. 

A. Developing wild type flower at middle stage 4 (for comparison with Split 
Perianth). B. A developing Split i'erianrh flower at stage 4. c. A 
developing Split Perianlh flower at late stage 4. D. A developing ."'plit 
Perianth flower at late stage 5. E. A cluster of developing Split I'erianth 
flowers at different stages of development. F. A developing ."'plil I'erianth 
flower at approximately stage 6. An arrow indicates the "hour glass" shape of 
the developing petal. G. The tip of whorl 4 enlarging to eventually form a 
stigma. H. Whorl 2 emanating from the base of whorl 3, before the filament 
of the anther has developed. The size bar in II is lOJ.lm; all other size bars are 
lOOJ.lm. 
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(ii) Development of Split Perillnth flowen. 

Early development of Split Perionth mutants is generally as wild type to stage 3 During 

stage 4 there are some early differences between wild type (Fig. 4.7 A) and Split Perionth 

(Fig. 4.78). In wild type whorl 4 is less well developed than in Split Perianth at this 

stage, but whorl 2 is more developed in wild type than in Split Perionth. Despite the 

degree of development of whorls 3 and 4 in the Split Perianth stage 4 developing flower 

in Fig. 4.78, no whorl 2 primordium can be observed behind a whorl 3 organ. There is a 

similar absence of whorl 2 primordia behind the whorl 3 organs of the small flower in the 

Fig. 4.7E, that shows a cluster of developing Split Perianth flowers at different stages of 

development. The absence of the whorl 2 primordia makes it difficult to detennine 

whether the flower is at early or middle stage 4. From late stage 4 the separate organs of 

whorl} are evident (Fig.4.7C) and the whorl 2 organs are DOW apparent. In flowers 

where the corolla is also divided this becomes evident from late stage 4 (Fig.4.7D). 

Perianth organs appear less well developed by stage 5 than in other whorl I mutant 

phenotypes, but they do eventually reach the same length as wild type perianth organs in 

mature flowers. When both perianth whorls are split, unique observation of the 

development of inner whorls is possible. Figure 4.70 shows the very earliest enlargement 

of the top of whorl 4 that will become the stigma and figure 4.7H shows the point during 

stage 5 at which the anthers can be observed to be distinct from the corolla, although the 

anther filament has not yet elongated. The Split Perianth is extremely distinctive by stage 

6 (Fig.4.7F), and develops a rather untidy appearance as the developing flower grows 

larger. The Split Perianth petal as shown in Fig.4.7F. can be observed to have an "hour 

glass" shape - the upper part being the DOnnaI petal and the lower being the part 

normally joined to fonn the upper corolla tube. The images were taken from developing 

flowers from the same pin Split Perionth plant, as was the flower in Fig.4.6C. 

4.2.4. Tbe SfIImlnold Carpels mutant pbenotype. 

(I) Description of Sttunbrold ctll'pels. 

The Hose in Hose mutant with homeotic conversion of sepals to petals has been 

desaibed above. In addition to Hose is Hose, a second independent mutant phenotype 

was obtained in 1988 that shows strong similarity to Hose in Hose. This new phenotype, 

Staminoid Carpels, shows aberrant carpel development in addition to the petaloid sepals 

of Hose in Hose. Meyer (1966) descnbes staminody of the carpel as "quite unusual" and 

has no reports of the condition in Primula. As with other Primwa floral mutants studied, 
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Figure 4.8. The Staminoid Carpels mutant phenotype 

The Staminoid Carpels mutant phenotype has so far only been found in 
conjunction with Hose in Hose, and may represent a more extreme allele 
of that phenotype. Expression is variable in different genetic 
backgrounds. The least extreme form has an elongated ovary with an 
occasional anther enclosed inside the upper portion, a more extreme 
form has the ovary wall converted to anthers enclosing naked ovules, 
and the most extreme form has both the ovary wall and the ovules 
converted to anthers. 

A. Mature thrum flower with the least extreme form of Siaminoid 
Carpels. B. Mature thrum flower with Staminoid Carpels of the form 
that has anthers enclosing naked ovules. C. Mature thrum flower with 
the most extreme form of Staminoid Carpels, where both the ovary wall 
and the ovules are converted to anthers. D. The original mature pin 
flower with Siaminoid Carpels of the least extreme form. E -II. 
Progeny from the cross of thrum wild type x Slaminoid Carpels. Pin 
flowers, E and F, have elongated ovary walls that are shorter than those 
shown in thrum flowers, G and D. Only one thrum Siaminoid Carpels 
plant, that shown in D, had a shorter elongated ovary wall than is usual 
for thrum Staminoid Carpels flowers. That shown in G is typical. I and 
J. Mature sibling pin Staminoid Carpels flowers homozygous for Hose 
in Hose. K and L. Sibling Staminoid Carpels flowers~ that in K is 
heterozygous for Hose in Hose and that in L is homozygous for Hose in 
Hose. Expression of Slaminoid Carpels is not generally more extreme 
in the flowers homozygous for Hose in Hose. Thrum Staminoid Carpels 
flowers do elevate the whorl four Slaminoid Carpels to a higher position 
in the flower than do pin Staminoid Carpels. Size bars are 
approximately 1 cm. 
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there is considerable variability in expression of this new mutant phenotype in different 

genetic backgrounds. The original Staminoid Carpel mutant has the least extreme 

conversion of whorl 4 towards stamens. The whorl 4 organ has a normal stigma, short 

style, and an elongated ovary wall with an occasional anther inside the upper portion 

(Fig.4.8A). Subsequent crosses using pollen from this plant onto different genetic 

backgrounds revealed the more extreme phenotypes of this mutant allele. One of these 

has the ovary wall converted to anthers enclosing naked ovules (Fig.4.8B), while in the 

most extreme fonn the ovules as well as the ovary wall are converted wholly to anthers 

(Fig.4.8C). All of these plants had thrum flowers as the phenotype segregates with both 

the Hose in Hose allele and the thrum allele of the S locus. In 2001 one pin Hose in Hose 

plant with a Staminoid Carpel of the least extreme form occurred naturally as a garden 

seedling (Fig.4.8D ). Its origins are not known. The phenotype has never been found in 

the absence of the Hose in Hose phenotype. It is possible therefore that Staminoid 

Carpels may rep'esent an allele of Hose in Hose but the dominant nature of these 

mutations (see chapter 5) precludes complementation analysis. 

(il) Development of SlIIminoid Carpels flowers. 

Development of the least extreme conversion of whorl 4 to stamens appears normal up to 

and including stage 5 (Fig.4.9A). From stage 6 and beyond (Fig.4.9B-D) elongation of 

the ovary becomes increasingly obvious. Examination of the cells from different regions 

of the mature whorl 4 organ reveals normal stylar cells (4.9E) and elongated lower ovary 

wall cells with no distinguishing characteristics (Fig.4.9G). Cells from the upper part of 

the ovary wall are distinctly different, with the shape and surfuce characteristics of 

nonnal anther cells (Fig.4.9F). Development of the two more extreme phenotypes, both 

of which always have the ovary wall converted to anthers, is dramatically different. At 

stage 5 no whorl 4 organ has been initiated and the center of the developing flower is 

empty (Fig. 4.9H and M). Development of whorl 4 organs occurs relatively late in both 

cases, at what would probably be stage 6 in a normal flower (Fig.4.9I and N). Naked 

ovules on a central axis surrounded by small developing anthers can be observed in the 

stage 7 developing flower of approximately 3mm. (Fig.4.9J), and an enlargement of the 

whorl 4 region shows the outer and inner integuments of the ovules developing at this 

stage (Fig 4.9K). A mature detached whorl 4 organ of this form can be seen in Fig. 4.9L. 

Development of the most extreme fonn of Staminoid Carpels follows a similar pattern. 

By what would probably be stage 7 in a normal flower the whorl 4 anthers are clearly 

visible on top of the central axis (Fig.4.90). This axis raises the whorl 4 anthers high 

inside the corolla tube as seen in Fig.4.9C previously. Detail of the top of a Staminoid 
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Figure 4.9. Development of the Staminold Carpels flower. 

There are variations in the development of Slaminoid Carpels flowers of 
different extremes of form. Development of three extremes of form is 
illustrated, along with cells from some of the tissues. 

A. A developing Siaminoid Carpels flower of the least extreme form at 
stage 5. Whorl 4 appears to be developing norma))y at this stage. B. A 
developing Siaminoid Carpels flower of the least extreme form at stage 6. 
C. A developing Staminoid Carpels flower of the least extreme form at 
stage 7. At this point elongation of the ovary can be observed. D. A 
mature whorl 4 organ of the least extreme form.of Staminoid Carpels 
flower. E. Cells from the style of the above whorl 4 organ. F. Cells from 
the upper part of the elongated ovary of the above whorl 4 organ. G. Cells 
from the lower part of the elongated ovary of the above whorl 4 organ. H. 
Whorl 4 of Staminoid Carpels flower at stage 5, of the intermediate form 
that in the mature flower has anthers enclosing naked ovules. There is no 
development in the centre of the flower at this stage. I. Whorl 4 of 
Siaminoid Carpels flower at what would probably be stage 6 in a normal 
flower (but without a normal whor14 the stage cannot be accurately 
ascertained and must be deduced from development in general). J. Whorl 
4 of Staminoid Carpels flower at what would probably be stage 7 in a 
normal flower. Whorl 4 anthers are indicated by a black arrow. K. 
Enlarged image of whorl 4 from J above. Whorl 4 anthers surround naked 
ovules that have the outer and inner integuements developing. 1.. The top 
of a mature Staminoid Carpels whorl 4 organ with anthers surrounding 
naked ovules. M. Whorl 4 of a Siaminoid Carpels flower of the most 
extreme form at stage 5. There is no development in the centre of the 
flower at this stage. N. Whorl 4 of a Siaminoid Carpels flower of the most 
extreme form at what would probably be stage 6 in a normal flower. 
Anthers are just beginning to develop in place of the ovary wall and the 
ovules. O. Whorl 4 of a Staminoid Carpels flower of the most extreme 
form at what would probably be stage 7 in a normal flower. The whorl 4 
anthers are now clearly visible on top of the central axis. P. The top ofa 
mature Siaminoid Carpels whorl 4 organ of the most extreme form, anthers 
enclosing more anthers. Size bars in E, F, and G are IJ.lm~ in II it is 10J.lm~ 
other size bars are 100J.lm. 
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Carpels whorl 4 organ with the most extreme conversion of whorl 4 to stamens can be 

seen in Fig.4.9P. Both the ovary wall and the ovules have been converted to stamens. 

4.2.5. The sepaltJld mutant phenotype. 

(i) Description of sqHlltJUI. 

The first sepaloid mutants were discovered in 1996 in a batch of "Spectrum" commercial 

primroses and there is no description of this phenotype in old literature. The majority of 

the original sepaloid plants were sterile, having four whorls of sepals or a whorled flower 

of sepals. Only three plants that occasionally produced functional carpels were 

discovered and from these three all subsequent sepaloid plants are derived. The most 

extreme form of sepaloid flowers consist of four whorls of sepals (Fig.4.1 OA). These 

four whorls are generally concentric but one of the original plants bad whorls that 

spiralled one into the next. Other manifestations of the phenotype may contain either two 

or three whorls of sepals surrounding naked ovules (Fig.4.10B), may have a chimeric 

non-functional whorl four organ (Fig. 4.10C), or may have two whorls of sepals and a 

functional carpel (Fig.4.10D). 

(Ii) Development of ~1D1d flowers. 

A progression of development through some of the stages of sepaloid flower 

development can be seen in Fig.4.11A. The central meristematic area from which further 

primordia will develop can also be observed. Development of the sepaloid flower is 

indistinguishable from Wild Type up to stage 3. During stage 3 the first observable 

difference is that at middle stage 3 the depression within the centre of the developing 

flower is slightly deeper in sepaloid flowers than in Wild Type (Fig.4.lIB). Secondly, 

there is less differentiation of the organ primordia than in those of Wild Type at a similar 

stage. By late stage 3 sepaloid flowers develop a very pronounced hollow in the centre of 

the flower (Fig.4 .11 C). At this stage, the bulge on the outer surface that would form 

petals in Wild Type flowers can just be seen. From early stage 4 the developing second 

whorl is clearly visible, but it is evident that no separation of individual organs has 

occurred in either whorl 2 or whorl 3 (Fig.4.11D). In sepaloid mutants, the inner ring 

structure that would form the carpels in Wild Type flowers is absent. During middle and 

late stage 4 of sepaloid flower development a fourth whorl can be distinguished, but all 

organs in this particular flower are laterally joined to the inner whorls to form a 

continuous spiral (Fig.4.1IE). By stage 5, the growing whorl I sepals of the sepaloid 

mutant gradually obscure the inner whorls (Fig.4.11F and G). Removal of these outer 
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Figure 4.10. The sepaloid mutant phenotype. 

Variations of the fonn of the sepaloid flower range from fully 
infertile with four whorls of sepals to fertile with two whorls of 
sepals and a functional carpel. 

A. Fully infertile sepaloid flower with four whorls of sepals. 
B. Infertile sepaloid flower with three whorls of sepals 
enclosing naked ovules. C. Infertile sepaloid flower with 
chimeric fourth whorl organ of mixed sepal and carpel tissue 
(w.4). D. Fertile sepaloid flower with two whorls of sepals and 
a functional carpel. Size bars are approximately 1 em. 



82 

Figure 4.11. Development of the sepa/o/d flower. 

Variation in the form of the sepaloid flowers occurs from flower to flower 
on the same plant. Early development of the sepaloid flower up to stage 6 
is illustrated, along with a comparison of sepaloid stigmatic papillae with 
both thrum and pin wild type stigmatic papillae. 

A. Cluster of developing sepaloid flowers at different stages of 
development, with a central meristematic area (m) from which new 
primordia develop. B. Developing sepaloid flower at middle stage 3. C. 
Developing sepaloid flower at late stage 3. D. Developing sepaloid 
flower at early stage 4. E. Developing sepaloid flower at middle stage 4. 
F. Developing sepaloid flower at early stage 5. G. Developing sepaloid 
flower at late stage 5. H. Late stage 5 developing sepaloid flower with 
part of whorl 1 removed. I. A sepaloid flower at approximately stage 6, 
showing development of four whorls of sepals. J. A sepaloid flower at 
approximately stage 6 that has naked ovules developing in whorl 4. K. 
A sepaloid flower at approximately stage 6, showing development of a 
chimeric carpel and sepal organ in whorl 4. L. A sepaloid flower at 
approximately stage 6, showing development of a normal carpel in whorl 
4. M. Stigmatic papillae of sepaloid flower. N. Stigmatic papillae of 
thrum Wild Type stigma. o. Stigmatic papillae of pin Wild Type stigma. 
Size bars are IOOJ..!m. 
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whorl organs pennits observation of the developing flower within and reveals individual 

sepal lobes beginning to elongate upwards from the inner whorls (Fig.4.lIH). The final 

structure of the mature flower is apparent from what would probably be stage 6 in Wild 

Type. Four dissected developing flowers show inner whorls of sepals (Fig.4.11 I), a fourth 

whorl of n:aked ovules (Fig.4.IU), a chimeric whorl 4 of carpel and sepal tissue 

(Fig.4.IIK). and a fertile sepaloid with a nOIDlal fourth whorl containing developing 

ovules on a free central placenta (Fig.4.l1L). Although all organs continue to grow larger 

there are no significant changes beyond this stage other than the development of 

stigmatic papillae on fertile whorl 4 organs. All sepaloid plants tested so far have been 

found to be pin, and the sepaloid stigmatic papillae in Fig.4.11M more closely resemble 

the Wild Type pin stigmatic papillae in Fig.4.140, than the thrum Wild Type stigmatic 

papillae in Fig.4.1IN. Other sepaloidplants occasionally have stigmas with papillae of 

ambiguous form and it is only by breeding from them that the genotype may be 

discovered. 

4.2.6. The double mutant phenotype. 

(i) Description of doubles. 

In horticultural terms, flowers that produce petals in place of other floral organs are 

normally referred to as doubles. The plena mutants of Anti"hinum majus (Bradley et al. 

1993; Davies el al. 1999) and agamous of Arabidopsis thaliana (Bowman Smyth and 

MeyerowitzI989,1991; Yanofsky elal. 1990; Jack etal. 1997; Mizukami and Ma 1997), 

respectively represent well-characterised examples. Descriptions of and illustrations of 

double flowered forms of Primula are historically abundant as has been shown in Chapter 

I. A nwnber of named cultivars are commercially available; many of which are mass

produced using micropropagation techniques. Some of the older cultivars are conserved 

by specialist growers and propagated by division. 

Variability in the number of floral whorls and of organ identity of the whorls is common. 

This is reputedly influenced by environmental factors, although no studies have directly 

addressed this possibility. It is possible to sub divide female infertile double flowers into 

roughly four different categories, in which plants of each fonn predominantly produce 

flowers of the morph described. There may sometimes be considerable variation, for 

example, in the nwnber of whorls of petals or of stamens produced so that there cannot 

be an absolute criterion for any of the forms of double described. 
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Figure 4.12. The double mutant phenotype. 

There is considerable variation in the form of the double flower, ranging from 
flowers with indeterminate whorls of petals to flowers with stamens or a 
functional carpel in the centre of the flower. 

A . The fully double flower of the double cowslip "Katy MacSparron" has 
never been known to produce any organ other than petal from whorl 2 
inwards. B. A flower that appears fully double from above. C • A semi-double 
flower, with two whorls of petals enclosing numerous anthers. D . The double 
polyanthus "Lin Rogers" that has a second whorl of sepals in whorl 4. E. 
Flower from A, above in cross section. F. The flower from B above when in 
cross section can be observed to have a mixture of anthers, petals, and 
petaloid anthers in the centre of the double flower. G. The flower from C, 
above in cross section. The centre of the semi-double flower contains 
indeterminate whorls of anthers. H. The flower from D above in cross 
section. The second whorl of sepals can be observed to enclose naked ovules. 
I. Fertile semi-double primrose .. J. Sectioned fertile semi-double primrose. 
Anthers (a) can be seen on the inner whorl of petals, so that this semi-double 
has five whorls of organs K. Fertile semi-double polyanthus. L. Sectioned 
fertile semi-double polyanthus. This semi-double does not have anthers inside 
the inner whorl of petals, but occasionally an extra petal develops where 
anthers would normally be attached. Size bars are approximately 1 ern. 
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The first sub division is that of fully double flowers (Fig.4 .12A and E). These have the 

centre of the flower filled with indetenninate whorls of petals. There may be variation in 

the number of whorls of petals, but they rarely, and in some plants never, produce any 

stamens. The second is that of double flowers with the centre of the flower filled with an 

indeterminate number of whorls of both petals and stamens, or of chimeric organs 

composed of both types of tissue (Fig.4.12B and F) such as petal tipped stamens. Great 

variability has been observed both in the proportion of petals to stamens (or vice versa) 

and in the number of whorls produced. The third is that of semi-double flowers with the 

centre of the flower filled with indetenninate whorls of stamens (Fig.4.12C and G). 

There can be variation in the number of whorls of petals surrounding the stamens; it is 

normally two, but occasionally can be one or three. Variation of this form can 

occasionally include a determinate flower with naked ovules in the centre. The fourth is 

that of doubles with a whorl of sepals in the fourth whorl. These only extremely rarely 

produce any stamens. The original, double polyanthus "Lin Rogers" (Fig.4.12D and H) 

rarely varied. However similar progeny (raised as a result of two stamens being produced 

on one occasion only on the original plant) were less stable. Variation observed included 

the "flower within a flower" phenotype with occasionally up to three repeats of the organ 

order, and in a few cases reversion to fully normal and fertile flowers on the same plant 

as the double flowers. 

Recently female fertile semi-double primroses and polyanthuses have become available. 

The primroses, shown in Figure 4.121 and J, are from a commercial line, and have been 

on sale fur the first time during spring 2004. The polyanthus, shown in figure 12K and L, 

occurred from a horticultural cross of my own plants, and it is not yet known how stable 

the phenotype will be. Neither of these female fertile phenotypes was available at the 

time of investigating the development of double flowers. 

(Ii) Development of double flowers. 

There is no discernible difference from the development of the above double flowers and 

that of wild type flowers up to late stage 3 (Fig.4.13A). Beyond this there are discernible 

differences in the development of the different forms of double flowers. Those double 

flowers that have never been known to produce any stamens have an undulating ring in 

whorl 4 at middle stage 4 (Fig.4.l38). This will develop into a whorl of petals. Further 

development results in further concentric undulating rings (Fig.4.13C and D) so that the 

mature flower becomes as that shown in Fig.4.13A 1 and 2. Both doubles that produce a 

mixtme of petals and stamens in the centre of the flower (Fig. 4.l3E-I), and semi-doubles 
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Figure 4.13. Development of double nowers. 

There are differences in the early development of different forms of double. 

A. The late stage 3 developing douhle flower is indistinguishable from Wild 
Type, (see Chapter 3, Fig. 3.2F,). B. The douh/e cowslip "Katy Mac 
Sparron" (organ order, sepal, petal. petal. petal indeterminate) at middle stage 
4. C. The douhle cowslip "Katy Mac Sparron" at approximately stage 6 
showing development of four whorls ofpctals with a fifth devc\oping whorl in 
the center of the flower. D. The douhle cowslip "Katy Mac Sparron" when 
slightly further developed. E. A. developing double flower (from the same 
plant as was the flower in Fig.4. ]4.B) at early stage 4. F. A developing 
double flower (from the same plant as was the flower in Fig.4.14.B) at middle 
stage 4. G. A developing douhle flower (from the same plant as was the 
flower in Fig.4.14.B) at late stage 4. Flowers in Fig.4.IS.F and G show 
delayed development of whorl 4 organs at stage 4. H. A developing douhle 
flower (from the same plant as was the flower in Fig.4.14.B) at approximately 
stage 6. Three whorls of petals are well developed, beyond this development 
is delayed. I. A developing douhle flower (from the same plant as was the 
flower in Fig.4.14.B) at approximately stage 7, showing concentric whorls of 
well-developed petals. J. A developing semi-douhle flower (from the same 
plant as was the flower in Fig.4.14.C) at early stage 4. K. A developing semi
double flower (from the same plant as was the flower in Fig.4.14.C) at middle 
stage 4. Flowers in Fig.4.1S.J and K both show delayed development of whorl 
4 organs. L A developing semi-double flower (from the same plant as was 
the flower in Fig.4.14.C) at approximately stage 6. At this stage the whorl 4 
stamens are beginning to develop. M. A developing .'iemi-double flower 
(from the same plant as was the flower in Fig.4.14.C) at approximately stage 
7. The developing stamens in whorl 4 are recognizable at this stage. N. The 
double polyanthus "Lin Rogers" at stage 3. O. The double polyanthus "Lin 
Rogers" at middle stage 4. P. The double polyanthus "Lin Rogers" at late 
stage 4. There is a ring in whorl 4 that will become the inner sepals, enclosing 
the free central placenta. Q. The double polyanthus "Lin Rogers" at what 
would probably be stage 6 in the normal flower. showing development of 
sepa]oid whorl 4. R. The double polyanthus "Lin Rogers" at a later stage 
showing further growth of the sepals in whorl 4 that enclose the naked ovules. 
Size bars are IOOJ.1m. 
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that have an indetenninate Dumber of stamens in the centre of the flower (Fig.4.13J-M) 

have delayed development of whorl 4 at stage 5. A fourth whorl of petals can be 

observed in Fig.4.l3H when the flower is at what would be approximately stage 6 in a 

normal flower. In the semi-double flower at approximately stage 6 growth of the central 

core of stamens has become yjsible (Fig.13L), and these inner stamens can be observed 

at a further stage of development in Fig.4 .13M. There is no delay m development of 

whorl 4 m the double polyanthus "Lm Rogers" but the course of development is quite 

different from either of the above. At middle stage 4 there is a large swelling in the centre 

of the flower, with a slightly raised undulating ring around the edge that will become the 

whorl 4 sepals. By late stage 4 the ring that is now enclosmg the area that will develop 

naked ovules is quite distinct. The further development of this ring into an inner whorl of 

sepals can be observed in Fig.4.13Q, and again in Fig. 4.13R, when the naked ovules 

have begtm to develop. 

(iii) Whorl architecture in double flowers. 

From an aerial view double flowers have several whorls of petals (Fig. 4.1F and Fig. 

4.12B). Sepals were removed from one flower from each of four commercially available 

named double primroses, "Miss Indigo", Lilacena Plena", "Katy MacSparron" and 

"Chocolate Soldier", and the inner layers ofpetaJs were carefully 

separated and e amined . It was found that the base of each whorl frequently gave rise to 

several layers of peta Is attached one upon another as shown in Figure 4.14. 

Consequently a flower with four whorls at the base plus an indeterminate central area 

with organs so small that it was impossible to analyse whorl architecture, had up to nine 

whorls ofpetaJs when viewed from above (Fig. 4.14 no. 2). A flower from the cultivar 

"Miss Indigo" was split open to show the inner layers ofpetals attached one upon another 

(Fig. 4.15 A) and also the small inner whorl of fused petals that enclosed more petals 

(Fig. 4.15B). Some ofthe layers of inner petals appear to develop early m ontogeny as do 

the anthers and petals from a common primordium in the normal flower. However at 

least some petals do develop [Torn primordia on inner petals later in development, as ca.n 

be seen in Fig.4.15 and D. In order to ascertain whether this whorl architecture was a 

feature offulJy double flowers on1y, some sibling doubles with a lesser number of whorls 

of petals and that also produced anthers were examined (Fig. 4.16). All of these had more 

whorls of petals when viewed from above than they had at the base, and again the extra 

whorls were achieved by one or more petals growing from various pomts of another 

petal . Anthers were present, and appeared to develop randomly m different positions 
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Figure 4.14. Patterns of attachment of extra whorls of petals in four 
named commercial double primroses. 

Whorl 1, sepals, is not represented. Whorls of petals are numbered both 
at the base and at the top of the flower. Although aerially there are many 
whorls visible, from the base only five are clearly distinguishable. 
1. "Miss Indigo", 2. "Lilacena plena", 3. double cowslip "Katy 
MacSparron", this double also has the base of all the whorls above 
fused, and 4. 'Chocolate Soldier". 
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Figure 4.15. Extra whorls of petals in double flowers. 

Layers of petals are attached one upon another in the double 
cultivar "Miss Indigo". A new primordium can be observed to 
arise from an existing petal in the scanning electron images. 

A. Corolla of double "Miss Indigo" showing inner layers of 
petals attached one upon another, and an abnormally short 
corolla tube. B. Central core of small fused petals removed from 
A above. C and D. Scanning electron microscope images of 
developing semi-double (C) and double (D) flowers that have a 
new petal primordium arising from an existing petal. Size bars in 
A and 8 are 1 cm., those in C and D are 100J.lm . 
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within the flower. These observations are accurate for the time of observation, but there 

is much variability in the expression of the double phenotype. Although the increased 

number of whorls when viewed from above, due to petal growing upon petal, remains a 

constant feature of whorl architecture in double flowers, various organisations of 

attachment of inner whorls can occur on flowers of the same plant. 

4.2.7. Primula viridis, the green primrose. 

(i) Description of Primula viridis. 

The green primrose has been known for many centuries as has been shown in Chapter 1 . 

The mutation affects the inner three whorls of the flower. The petals are green in colour 

(Fig.4.1H, and Fig.4.17A) and they are more heavily veined than normal petals. The 

"eye" of the flower is of the nonnaI deep yellow colour (Fig.4.1H and 4.17 A B, and C). 

The anthers are thin and degenerate. Examination of crushed and stained anthers under 

the light microscope showed one or two pollen grains that stained norma11y. The stigma, 

when present, has a densely pubescent style and the elongated ovary is green and leaf 

like (Fig.4.17B). Ovules are present but poI1en cannot reach them through the leafY tissue 

and the phenotype has proved to be infertile. Some flowers have no stigma or style but 

have an open leafY tube enclosing naked ovules in whorl 4 instead. Sometimes a second 

whorl of petals occurs inside the first (Fig.4.17C). 

(i) Development of Primula viridis flowers. 

A progression through some of the stages can be seen in Fig.4.l8 A. Early development 

is as wild type until late stage 5. When whorl] organs are partly removed from a late 

stage 5 developing flower the anthers can be seen to be unusually elongated and pointed 

in shape, (Fig. 4.] 8 B). Sectioned flowers at early stage 6 show further elongation of the 

anthers and a curved extension on the tip of each (Fig. 4.18 C and D). During middle 

stage 6 through to stage 7 elongation of the ovary can also be observed (Fig.4.18 E and 

F) with the leafy ovary wall developing a folded appearance (indicated by a white arrow) 

from stage 7 (Fig. 4.18 F). The developing bud in this figure is approximately 4mm in 

size and by this stage trichomes cover both the upper part of the ovary and the style. 

Inside the ovary ovules are developing (Fig.4.18 E and F). The petal on the left of the 

flower in Fig.4.l8 F has the upper part of the petal curled back in a manner similar to the 

whorl 1 organs of Jack in the reen flowers. Beyond this stage all organs continue to 

grow larger. A mature anther was detached for examination (Fig.4.18 G), and the lobes 

can be observed to be thin and shrunken compared to those of nonna] anthers. 



94 

Figure 4.17. Primula viridis, the green primrose. 

The green primrose Primula viridis has the correct organ in each 
of the four whorls, but the organs of the inner three whorls are 
abnormal. Petals are green in colour, anthers fail to dehisce and 
the ovary wall is elongated and leaf-like. Sometimes an additional 
whorl of petals grows inside the first. 

A. Primula viridis, the green primrose, in bloom. B. Cross section 
of a typical P. viridis flower. C. A flower of P. viridis with an 
extra whorl of green petals and an open leafy ovary wall in the 
centre of the flower. Size bars are approximately I cm. 
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Figure 4.18. Development of Primu/a ~;ridis, the arcen primrose. 

Development of Primula viridis differs from that of Wild l)pe from stage 5 
when anthers begin to develop elongated tips. With the exception of the 
cells of the yellow eye of the flower, cells of tissues from the mature flower 
differ markedly from those of Wild Type. 

A. A cluster of developing green primrose flowers. Until, and including, 
late stage 4 they are indistinguishable from Wild Type. B. Early stage 5 
flower with part of whorl 1 removed. The anthers can be observed to be 
abnormally pointed. C. Late stage 5 flower cut in two. The anthers have 
developed a projecting tip. D. Early stage 6 flower cut in two. The stigma 
is beginning to develop and the anthers now have a long projecting tip. E. 
Middle stage 6 flower. The ovary is slightly elongated, ovules are 
developing, and the projecting tip of the anther has become hook like. F. 
Stage 7 flower cut in two. The ovary wall has now become folded in 
appearance and both the ovary wall and the style are covered in trichomes. 
The anthers have a hooked tip, but not so elongated as previously. A petal 
visible on the left is covered in trichomes and has curled back edges 
reminiscent of jack in the green calyces. G. An anther from a mature 
flower. The anther lobes are thin and the filament covered in trichomes. 
The hooked tip is still visible. II. Cells from one of the anther lobes, at the 
point marked by an arrow. I. Normal anther cells from a Wild Type 
primrose. J. Tip of a mature green primrose petal. K. Cells from the edge 
of petal tip above. L. Normal conical papillate petal cells from a wild type 
primrose. M. Another petal tip from another grecn primrose flower. N. 
Cells from the center of petal tip above. O. Underside of a mature green 
primrose petal tip. P. Cells from the ye))ow "eye" of a normal Wild Type 
primrose. Q. Cells from the ye))ow "eye" of a green primrose. R. Cells 
from the yellow "eye" of a green primrose with some green cells in the 
foreground. S. Cells further out form the mouth of the corolla tube; some 
conical papillate yellow "eye" cells can be observed in the center with cells 
from green tissue on either side. The petal tip would have been some 
distance to the right of this image. T. The last conical papillate yellow 
"eye"cells. surrounded by green cells. The petal tip was some distance to 
the right of this image. Size bar in M is I urn; size bars in 1.., 0, P, R, T, 
and U are 1 OJ.Ull~ other size bars are 100Jlm. 
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Examination of cells (Fig.4.l8 H) at the point marked by a white arrow show them to be 

unlike notmal anther cells (Fig.4.18 I). Green primrose petals, milike normal petals, have 

a small projecting point at the end of each main vein that runs through the centre of the 

petal. Two of these points were examined on the adaxial surface (Fig.4.l8J and K, M and 

N) and one on the abaxial surface (Fig. 4. 180). In neither case were the cells at all like 

the normal conical papillate cells of wild type petals shown in Fig.4.18L. The abaxial 

surface (Fig.4.180) is densely covered with trichomes. At the base of each petal and 

continuing around the mouth of the corolla is the deep yellow area, referred to as the 

yellow "eye" of the flower. In normal wild type primroses the cells of this yellow "eye" 

are of the elongated conical papillate type (Fig.4.18.T). Examination of the yellow "eye" 

of the green primrose reveals the cells here to also be of normal appearance (Fig.4.l8Q). 

Following the central vein of the petal from the mouth of the corolla outwards 

(Fig.4.18R, Sand T) reveals conical papillate cells surrounded by flatter cells. The 

conical papillate cells decrease in number and become less elongated further up the petal 

until they stop (Fig.4.l8T). 

4.2.8. The viresceot cowslip mutant phmotype. 

(i) Description of virescent cowslip. 

The flowers formed by this mutant are similar to those illustrated in the past as has been 

shown in Chapterl. The present plant (Fig.4.19A) was found in the late 1980's in a 

naturalized population of cowslips in a garden near Crewkeme. It has leafY bracts at the 

top of the scape and individual "flowers" composed of one or two whorls of leafY green 

bract like organs and numerous stigmatoid organs in varying proportions (Fig. 4.198 and 

C). Naked ovules are present and are randomly attached to the inner organs, especially 

around the bases of the stigmatoid organs. Sometimes the base of these organs ends in an 

open carpel with naked ovules visible. No closed carpels or fertile organs have been 

produced to date and the plant must be propagated by division. Secondaty scapes or 

elongated pedicles may sometimes arise from the main scape. 

(ii) Development of virescent cowslip Bowen. 

Early development shows only two forms of primordia, one form that is densely covered 

with trichomes, these will become the leafY organs; and one form that is smooth that will 

become the stigmatoid organs (Fig. 4.20A). When further developed the disorganized 
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Figure 4.19. The vires cent cowslip mutant phenotype 

The vires cent cowslip has no organised flower structure. Flowers consist 
of a mass of green bract like structures and pale stigmatic like organs on 
long styles but without any functional ovary. 

A. The vires cent cowslip plant in flower. B. A scape of virescent 
cowslip flowers that consist predominantly of stigmatic like organs on 
long styles interspersed with some green leafy bracts. C. A single 
flower of the virescent cowslip that consists of green leafy bracts, 
interspersed with fewer stigmatic like organs on long styles. Size bars 
are approximately I cm. 
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Figure 4.20. Development of virescent cowslip flowers. 

Lack of organisation in the developing virescent cowslip flower is evident from 
the earliest stages. Scanning electron microscopy highlights the profusion of 
ectopic ovules exhibited by this phenotype. 

A. The meristematic area of vires cent cowslip flower. Developing bracts (br), 
and developing stigmatic organs (st), can be observed. B. Developing virescent 
cowslip flower of approximately 3mm. cut in two. Both bracts and stigma like 
organs can be seen. Numerous developing ectopic ovules (ov), can also be 
observed. C. Part of another flower showing a cluster of naked ovules (ov) 
developing around the base of a stigma like organ (st). D. Ectopic ovules. In some 
instance the developing inner and outer integuements can be observed. E. Ovules 
developing in another incompletely enclosed ovary at the base of one stigma like 
organ. F. Papillae developing on the tip of a stigma like organ. 
The size bar in F is lOJ.lm ; other size bars on SEM images are 100J.lm. 
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positioning of the owles on the sides of and at the base of the stigmatoid organs can be 

seen (Fig. 4.20B and C). Structures resembling open carpels can be seen in Fig.4.20D and 

E. The tips of the stigmatoid organs were examined and were found to be developing 

small stigmatic papillae (FigA.20F). 

2.9. The reduced pet1Il mutant phenotype. 

(i) Description of redllCed pet41. 

A number of plants of the phenotype first appeared in 1999 among both the pin and the 

thrum progeny (Fig. 4.21C and D) ofan inbred line of silver laced polyanthus raised by 

Dr. R J. Bnunpton, of Wood borough Nurseries, Nottingham. Silver-laced polyanthus 

and gold-laced polyanthus have the petals outlined around the edges and down the central 

vein of the petal with either white (silver-laced), or yellow (gold-laced), (FigA. 21A). 

Although laced polyanthuses have been grown and descnbed for many years, there is no 

previous mention of the mutant reduced petal fonn. The most obvious feature of the 

original mutant plants was the reduced size of the petals and the loss of pigment from 

most of, or sometimes from the entire adaxial surface of the petal. The stunted petals also 

feel slightly thicker than normal. In some instances the perianth may also be split (Fig. 

4.21 E and F); this is not a constant trait but occurs randomly on plants that do not 

normally have the perianth split on the majority of the flowers. Stigmas are frequently 

distorted and female fertility is always much reduced. Leaves are thinner and broader 

than wild type laced polyantbus leaves, and the edges have an undulating appearance 

(Fig. 4.21 B). Trichomes on leaves oftbe mutant plants are fewer and shorter than on 

normal laced polyanthus leaves. Breeding experiments with the reduced petal mutants 

uncovered less extreme fonns of the condition. Some plants had flowers with petals of 

normal form but with reduced pigment on the adaxial petal sumce (Fig.4.21 G). Others 

were almost normal, (Fig.4.21 H) with only slight loss of pigmentation, so that the lacing 

remained a feature but without the clean aisp lines normally expected from the form. 

(ii) Development of redIIc. pt!llll ftowen. 

A progression through the development of some of the early stages up to and including 

late stage 5 can be seen in Fig.4.22A. It can be observed that these flowers would also 

have had a split perianth, at least in whorl 1. Dissected flowers at early and middle stage 

6 am be seen in Fig.4.22B and C. By middle stage 6 the distorted stigma is obvious 
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Figure 4.21. The reduced petal mutant phenotype. 

Normal silver-laced polyanthus flower and leaf form is compared with that 
of the reduced petal mutant phenotype. Deterioration in flower form of the 
most extreme phenotype later in the flowering season is illustrated with 
examples of two less extreme forms of the reduced pctal phenotype. 

A. Flower of a normal silver-laced polyanthus. B. A leaf from a reduced 
petal polyanthus on the left, with a leaf from a normal silver-laced 
polyanthus on the right. The former is much broader. thinner. and often a 
lighter green than that of the normal silver-laced polyanthus. C. A thrum 
reduced petal polyanthus flower. of the most extreme form. D. A pin 
reduced petal polyanthus flower, of the most extreme form. f:. A reduced 
petal polyanthus flower from C above y,ith a split perianth later in the 
flowering season. F. A reduced petal polyanthus flower from D above with 
a split perianth later in the flowering season. G. A less extreme form of the 
reduced petal polyanthus flower. The petals are not so "reduced" but there is 
loss of colour on the adaxial surface of the petals. II. The least extreme 
form of the reduced petal polyanthus flower. The petals are not reduced at 
all but there is some loss of colour on the adaxial surface of the petals. Size 
bars are approximately 1 cm. 
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Figure 4.22. Development or the reduced pnal nower. 

There is little difference in the early development of the reduced petal 
flower except when the perianth is spli~ as observed on the late season 
flowers in Figure 4.24E and F. Comparison of mature cells from the reduced 
petal mutant phenotype with that of Wild l)pe highlights differences in the 
form of the mature cells. Pollen appears normal. 

A. Cluster of developing reduced petal flowers at stages 4 and S. B. A 
developing reduced petal polyanthus flower at early stage 6. C. A 
developing reduced petal polyanthus flower at middle stage 6. D. A 
developing reduced petal polyanthus flower at stage 7. The stigma can be 
observed to be irregular. Fewer than normal ovules appear to be developing. 
E. The adaxial surface of the tip ofa petal ofa normal silver-laced 
polyanthus. The surface is evenly covered by conical papillate petal cells. 
An area from the centre of the petal tip has been enlarged in order to 
demonstrate that the white central stripe on the petal of the silver-laced 
polyanthus is not achieved by alteration of the cell shape .• '. Part ofa 
reduced petal adaxial petal surface from a flower with small patches of 
colour as in C and E in previous fig. A patch of conical papillate cells can be 
observed, but the surrounding cens are flatter. G. An enlarged view of cells 
in the center of the area of conical papillate cells. If. An enlarged view of 
cells at the edge of the area of conical papillate cells. J. An enlarged view 
of the cells that are not conical papillate. J. Pollen from a normally fertile 
thrum Hose in Hose polyanthus. K. Pollen from a thrum reduced petal 
polyanthus. L Pollen from a pin reduced petal polyanthus. Size bars in II, 
J, K, and L are 1 um~ size bars in G and I are 1 O).1J1l~ other size bars are 
lOOJ-lm. 
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(Fig.4.22C). A. developing flower at stage 7, of approximately 3mm. in size, also has a 

large and distorted stigma (Fig.4.22D). It has a split perianth visible in whor12, and less 

than the usual number of developing ovules. Mature petal tissue from a normal silver

laced polyanthus was examined to discover whether there was any structural difference 

between the cells of the laced areas and the pigmented cells (Fig.4.22E). No differences 

were observed. A piece of mature reduced petal polyanthus petal tissue from the plant 

shown in Fig.4.22C was examined (Fig.4.22F). The latter had some patches of cells that 

did produce pigment, but most of the adaxial surface was white. Where patches of 

pigmented cells occurred the cells were of the normal conical papillate form (Fig.4.22G 

and H), the surrounding cells were flatter and had not developed the conical papillate 

form (Fig.4.22I). Pollen from both pin and thrum reduced petal polyanthus plants was 

examined (Fig.4.22K and L). Pollen from a thrum Hose in Hose plant known to be a 

fertile pollen parent was examined for comparison (Fig.4.22J). The reduced petal 

polyanthus pollen appears smoother than the Hose in Hose pollen but is of normal 

stephanocolpate form. 

4.2.10. The Od La/mutant phenotype. 

(i) Description of Od Leaf. 

Dr. R J. B11Dllpton, of Wood borough Nmseries, Nottingham, discovered the original 

Oak Leaf primrose, shown in Fig. 4.23.A, in a neighboring nursety during spring 1999. 

From this one plant all subsequent Oak Leqf plants have been derived. In spring 2000 I 

received a division of the original plant and also a number of Oak Leaf seedlings raised 

by Dr. R. J. Brumpton. The leaves of the Oak Lea[form are deeply lobed as are oak 

leaves. They are thicker and firmer than normal leaves and have broader than usual 

veining. This is especially noticeable in the main vein through the centre of the leaf 

(Fig.4.23A and D). The abaxial smface of the leafis extremely pubescent. Flowers 

frequently have petals that are much attenuated (Fig.4.23A - D). During the first season 

the original Oak Leaf plant appeared to be female infertile, but in the second year seed 

was set nOlDlally from controlled pollination. A few of the progeny from wild type x Oak 

Leafbad near normal petals (Fig.4.23.F). A selection of pressed flowers from the first 35 

progeny to bloom can be seen in Fig. 4.24A. Only two of these approximate to the nonna! 

form, all others have attenuated petals that are sometimes forked or divided. All of the 

wild type progeny from the same cross had normal petals. Flowers of many of the first 

generation of Oak Leaf plants bad a tendency to break down in fOIDl, developing irregular 

splitting of the petals, either over the flowering season (Fig.4.23G), or from one season to 
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Figure 4.23. The Oak lea/mutant phenotype. 

The flower of the original Oak Lea/primrose and those of some 
representative plants from subsequent progeny exhibit differences in form, 
but the majority have flowers that are smaller than those of the wild type P. 
vulgaris and have attenuated petals. Other unusual features associated with 
the Oak Lea/mutant phenotype are lobed cotyledons and ectopic shoots. 

A. The original Oak Lea/primrose at first flowering. B. The same plant 
in the second flowering season showing breakdown of the flower form. C. 
A first generation plant from a cross of wild type x Oak Lea/showing the 
most typical flower form. D. A first generation plant from a cross of wild 
type x Oak Lea/with extremely attenuated petals. E. A first gcncration 
plant from a cross of wild type x Oak Lea/with slightly less attenuated 
petals. F. A first generation plant from a cross of wild type x Oak [,eaf 
with near normal petals. G. A first generation plant from a cross of wild 
type x Oak Lea/later in the flowering season. Early in the flowering season 
flowers were similar to those in F above, but flower form has already 
begun to break down. H. An ectopic meristem developing on the main 
vein of a leaf. I. A nother ectopic meristem on the main vein of a leaf of a 
different plant, at a later stage of development. J. An ectopic flower on a 
leaf tip. K. An ectopic seed capsule on the same leaf tip as a consequence 
of pollinating the ectopic flower. The few seeds produced were not viable. 
L Seedlings from the cross of wild type x Oak Leaf The Oak Leaf 
phenotype is sometimes evident at the cotyledon stage, and is always 
evident at the first true leaf stage. Size bars are approximately 1 cm. 
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Figure 4.24. Pressed flowers and calyces from progeny of wild type 
P. vulgaris x Oak lea/primrose. 

This figure shows the variability in petal shape, and the varying amounts 
of petaloid tissue in the Oak Leaf calyces. A. One pressed flower from 
each of the first 35 plants to bloom, adaxial view. B. One pressed calyx 
from each of the first 45 flowers to bloom, adaxial view. All have at 
least a small amount ofpetaloid tissue in the calyx. Size bars are lern. 
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Figure 4.25. Development of Oak Lea/flowers. 

This figure shows the early development of Oak Leqfflowers, up to 
and including stage 6. 
A. A cluster of developing Oak Leaf flowers at stages 3,4, and 5, 
showing that they are much more open than wild type flowers at 
stages 4 and 5. B. Side view of stage 6 flower, showing that whorls 
1 and 2 already appear attenuated. They are also shorter than wild 
type whorl 1 and 2 organs at this stage. C. Stage 6 flower cut in 
two. Whorls 3 and 4 appear to be developing normally. 
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the next. This was first observed in the original plant (FigA.23B). The original plant also 

had an excess number of petals. The most recent generation of Oak Leqf plants (from 

crosses described in Chapter 7) have flowers that do not appear to break down in form. 

Flowers of Oak Lea/ are generally smaller than those of wild type P. vulgaris, being 

usually about 2cm. in diameter as opposed to the 3 to 3.5cm. diameter of wild type P. 

vulgaris. Calyces are generally split, but not quite to the base of each calyx lobe 

(Fig.4.23A). Figure 4.24B shows that some streaks ofpetal tissue occurred in the calyces 

of the original plant and in the calyces of the first Oak Lea/progeny, although later 

progeny from crosses with commercial primroses had calyces without any petaloid 

streaking. Two of the progeny from wild type x OakLea/produced ectopic meristems on 

the central vein of a leaf (FigA.23J and K). One plant from a later cross (see Chapter 7) 

produced an ectopic flower on the central vein at the tip ofa leaf(Fig. 423J). At first it 

appeared to set seed from controlled pollination (Fig.4.23K) but the few seeds produced 

were not viable. Oak Leqf seedlings are sometimes recognisable even at the cotyledon 

stage, and all are recognisable by the first true leafstage (Fig.4.23L). 

(ii) Development of the 0IIk Letlfflower. 

Development of Oale Leaf flowers through some early stages up to middle stage 5 (largest 

flower on left) can be seen in Fig.4.25A. All stages seen are much more open in 

development than normal flowers of stage 4 and 5. Whorl 4 is broader and more 

prominent in the stage 4 developing flowers than it is in wild type plants. Petals are more 

pointed organs than in wild type at stages 4 and 5, and sepals do not grow to cover the 

inner organs by middle stage S. A flower of stage 6 (Fig.4.25B) shows the inner whorls 

still visible. Another stage 6 flower was cut in two and this revealed that whorls 3 and 4 

were developing nonnally (Fig.4.2SC). 

4.3. Discussion of Chapter 4. 

4.3.1. Discussion of the mutant phenotypes. 

Jack in the Green plants used in this study had conversion of the upper part of the calyx 

to leaf (Fig.4. I A), the lower part of the calyx was as normal. The degree of conversion of 

sepal to leaf in Jack in the Green plants varies from smallleaiY sepal tips to a completely 

leafY calyx (Fig. 4.28). This observation could be due to a delay in the expression of the 

floral organ identity genes at the time of initiation of the cells of the sepal lobes, with the 

size of the leafy portion in each case correlating with the degree of delay. From the ABC 

model of floral morphogenesis (Coen and Meyerowitz 1991), therefore, it could be 
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predicted that this Jack in the Green mutant phenotype arises through an absence offloral 

organ identity gene function in the upper part only of the first whorl (Fig. 4.26 no2), as 

the top of the organ is the first part to be initiated and it is converted to leafform. Late 

expression of the A organ identity function could then result in sepaloid tissue at the 

calyx base, and in the petals in the second whorl. 

It could similarly be predicted that the Hose in Hose mutant phenotype is due to ectopic 

expression ofB function genes in the first floral whorl (Fig. 4.26 no 3). The phenotype 

observed in Jackanapes flowers (see Chapter 6), which combines both mutant alleles, 

further supports these hypotheses. The first whorl organs in these flowers have leaf-like 

tips and only the basal regions that appeared as a nonnal calyx in Jack in the Green 

flowers shows homeotic conversion to petals. This observation suggests that the potential 

for petal identity cannot be established without underlying sepal identity as predicted by 

the ABC model. A number of studies using Antirrhinum, tobacco, Arabidopsis and 

Petunia have characterised phenotypes that phenooopy Hose in Hose. In Petunia, ectopic 

expression of the B function MADS box gene GREEN PETAL (OP) using 3SS-GP results 

in the homeotic conversion of sepals to petal and the associated up-reguIation of other 

possibly B function MADS box genes (Halfler et al. 1994). Similar studies have also 

been reported using transgenic tobacco over-expressing the Antinbinum B function 

MADS box genes DEFICIENS and GWBOSA. In these studies, over expression of 

GWBOSA using 35S-GW, produced partial homeotic conversion ofsepals to petals. 

These plants also showed alterations in development of the fourth whorl with some 

characteristics of both carpels and stamens (Davies et oJ. 1996). Two Antinhinum 

mutants, CHOR/PETALA and DESPENTEADO also show petaloid transformation of the 

first whorl, reduced female fertility and occasionally reduced or unfused carpels 

(Wilkinson et al. 2000). These phenotypes show ectopic B function expression, although 

interestingly both CHOR/PETALA. and DESPEN/'EADO are recessive mutations. Further 

studies with ectopic expression of B function genes in Arabidopsis also reveal interesting 

similarities to Hose in Hose. Over-expression of the Arabidopsis B function gene 

PISTILLA TA (PI) using 35S-PI produces partial conversion of sepals to petals, whereas 

over expression of the other B function geneAPETELA-3 (AP3) using 35S-AP3 only 

affects whorl 4 (Krizek and Meyerowitz 1996). However, as with the studies in 

transgenic tobacco (Davies et al.I996), ectopic expression ofboth B function genes had 

significant affects on both whorls 1 and 4 (Krizek and Meyerowitz 1996). By analogy to 

these studies, and the dominant nature of Hose in Hose, it is tempting to predict that the 

Hose in Hose phenotype is caused by a mutation that causes either direct or indirect up-
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regulation of the B function MADS box genes. The Staminoid Carpels mutant phenotype 

might also be explained as ectopic expression ofB function in whorl 4 (Fig. 4.26 noA). 

When Arabidopsis B function genes are expressed ectopically using the CaMV 35S 

promoter the 35S: :AP3 flowers have staminoid carpels (Jack et 01., 1994). It is tempting 

to predict that Staminoid Ca1pels may represent an allele of Hose in Hose, but the 

dominant nature of these mutations (see Chapter 5) precludes complementation analysis. 

The cadastral gene SUPERMAN in Arabidopsis (Bowman et 01., 1992; reviewed by 

Lohmmann and Weigel, 2(02) is required to maintain the inner bo1Dldary of expression 

of the B function gene AP 3 in Arabidopsis, and it is possible that a deficiency in a 

Primula orthologue of SUPERMAN may be responsible for the Staminoid Carpels 

phenotype. 

Although the sepaloid mutant phenotype shares some similarities with that predicted by 

the loss of B function in the ABC model, aspects of the phenotype are different from the 

DEFICIENS or GWBOSA mutants of Antirrhinum (Sommer et 01. 1990; Trobner et 01. 

1992) orthePISTILLATA or APETALA-3 mutant of Arabidopsis (Hill and Lord 1989; 

Jack et 01. 1992). Also of possible relevance is the phenotype of the Arabidopsis 

SEPl1213 triple mutant (Pelaz et 01.2000,2001; Honma and Goto 2001). The phenotypes 

produced by the combination of these different mutant alleles include conversion of the 

inner whorls to sepals. However, the Primula sepa/oid mutant differs from the above in 

remaining determinate, occasionally produces fertile carpels, and is determined by a 

single locus. Although it is a possibility that the sepa/oid mutant phenotype arises 

through either a direct or indirect loss ofB function activity (Fig. 4.2600.6), the 

pOSSIbility cannot be excluded that it arises through the loss of SEP-lilce proteins. 

However, because sepa/oid is inherited as a single locus, such a possibility would require 

sepaloid to be a regulator of SEPELLATA genes or the SEP-function in Primula to be 

determined by a single gene. 

The Primula sepaloid mutant phenotype also shares some similarity with the most 

extreme form of the FIMBRIATA mutant (Simon et 01., 1994) of Antirrhinum. The sepals 

in at least one plant were arranged in a spiral, some of the carpels were incompletely 

formed or were fused to inner sepals and some of the later generations of sepa/oid plants 

had flowers with secondaty inflorescences (see chapter 7, Fig. 7.4). The Arabidopsis gene 

UNUSUAL FLORAL ORGANS shows extensive homology with FIMBRIATA but 

differences in the functions and genetic interactions were found (Ingram et 01., 1995) 

UNUSUAL FLORAL ORGANS is, along with LEAFY, an upstream co-regulator of the B 
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function organ identity gene APETALA 3 (parcy et 01., 1998; Honma and Goto, 2000). 

However the Primula sepaloid mutant differs from both of the above in that no less 

extreme fonns of the sepaloid phenotype have so far been discovered. 

The phenotype of the virescent cowslip also appears to be without any B function 

expression, in that no petals or stamens are ever produced. The fonn looks similar to the 

uniluni fonn described in pea in 1997, (Hofer et 01. 1997). There is a profusion of 

carpeloid organs in the centre of the flower in both instances, and this is distinctly 

different from the sepaloid mutant phenotype above. Also, unlike sepaJoid, none of the 

carpeloid organs are complete and fertile, so that associated disruption of some aspect of 

the C function can be inferred. The complete infertility of this phenotype made genetical 

analysis impossible. 

No correlates for the developmental mutant Split Perianth bas been descn1>ed in the 

literature. However both the Arabidopsis gene CUC2 (Ishida et 01. 2000) and the 

Antirrhinum gene CUPUUFORMIS (Weir et 01. 2(03), have been reported to be 

involved in organ separation in both shoot and meristem but there is as yet no evidence 

that either gene is implicated in Primula. Only further molecular analysis of Primula will 

confinn which mutations in which genes are responsible for each different mutant 

phenotype. Notable is the loss of some or both of the perianth organs in early flowers of 

two plants (Fig.4.6F-H). Instead of alteration of the whorl to another organ type, these 

flowers appear to have fililed to initiate meristems for whorls I and/or 2. This extreme 

fonn of the mutation was not stable; later flowers on the same plants did have perianth 

organs. Also notable is reflexing of the petals in those flowers with the corolla tube 

divided into five separate pieces (Figure 4.6, C and D). It bas been proposed as a possible 

phenotypic modification necessary for an evolutiomuy shift from the heterostyly of 

Primula towards the solenoid flowers of Dodecatheon (Mast et 01., 2004). 

The double phenotype in a number of other plants has been demonstrated to be due to 

mutation in the C function gene(s) that are required for normal stamen and carpel 

development Yanofsky et 01., 1990; Coen and Meyerowitz, 1991; Bradley et 01., 1993; 

and Pneuli et aI.,I994). Two genes have been isolated from Primula, PvPLEI and 

PvPLE2 (Cook, 2002) that have expression patterns that appear to correspond to C 

function (PvPLEl) and D function (PvPLE2). Some of the variability of expression of the 

double phenotype may be due to mutation that results in varying degrees of expression of 
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FIpre 4.27. Interpretation and predietions of the phenotypes 
found In doubles through the ABC model of organ Identity. 
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one or both of these genes. Offour doubles analysed by RT-PCR (Cook, 2(02) "Miss 

Indigo", "Our Pat", "semi-double" and "Farmen double", only the commercial cultivar 

"Miss Indigo" was completely deficient in both gene products. This cultivar has not 

exhibited variation in third or fourth whorl organs; no stamens, carpels, or ovules have 

ever been discovered and the flower is always indeterminate. The other three doubles in 

which she found weak expression of one or both of the genes were also doubles that 

produced stamens, carpels (infertile) or ovules in whorls three and/or whorl four. From 

my observations of these three plants, "Our Pat", "semi-double" and "Fannen double", 

over a number of flowering seasons, the factor common to all of them is that the centre of 

the flower is frequently determinate. The molecular factor common to all three (Cook, 

2(02) is the presence of PvPLE2, and in the case of the "Farmens double" there was also 

absence of PvPLEl. Consequently, it is my opinion that PvPLE2 is required for 

determinacy. Absence of PvPLE2 appears to result in ectopic B function in the centre of 

the flower, giving indetenninacy as found in the double ''Miss Indigo". However all 

doubles have variable expression that is predicted to be due to environmental influences, 

so that ifit were possible to do further RT-PCR analysis on flowers of the same plants 

over a longer time span, they might be expected to show variations in the amounts of 

PvPLEl and PvPLE2 gene products. Unfortunately the double "Lin Rogers" that 

produces sepals in whorl 4 was not analysed, but the presence of naked ovules in the 

centre of the flower, from H. Cook's previous results (Cook, 2(02), suggests that PvPLE2 

expression must not nonnally be impaired in this plant. A simplified interpretation of the 

varying phenotypes found in double flowers through the ABC model of organ identity 

can be seen in Fig.4.27. It illustrates that only those flowers predicted to lack ectopic B 

function in whorl 4 are determinate. 

The incomplete transformation of the inner three whorls of the green primrose, P. Viridis, 

shares some phenotypic characteristics with transgenic tobacco plants expressing 

antisense RNA for the gene 1M5 (Pnueli et ai, 1994). Both have normal sepals, but petals 

are green and do not senesce nonnally. Both phenotypes also ex1ubited excessive 

pubescence of the upper style, and both occasionally produce a more complex form of 

flower. There are differences as well as similarities, in that in P. viridis the complex 

flowers usually only have one extra whorl of green petals and unlike the transgenic 

tobaca> the stamens are not green in colour. Co-supression of the petunia homeotic ... 

fbp2 also gives flowers with modified second third and fourth whorl organs (Ana .... ·.;t 
':',,;','_'C( ",,' -
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01, 1994), and this gene has been found to be highly homologous to 1M5 of tobacco. The 

infertility of P. viridis, the green primrose, made analysis of the phenotype impossible. 

The reduced petal mutant phenotype bears some resemblance to the CINCINNATA 

mutant phenotype of Antirrhinum. The wider and more lDldulating "fiilled" edges of the 

leaves of the reduced petal phenotype resemble those described in Antirrhinum plants 

lacking the CIN gene (Nath et 01. 2003; Coen 2(03). Similar petal reduction and loss of 

conical papillate ceOs has been reported in the most extreme CIN allele of Antirrbinum 

(Crawford el 01. 2(04). Loss of colour on the adaxial petal surface also bears similarities 

to that described in Antirrhinum plants with deficiency in the transcription factor MlXTA 

(Glover et 01, 1998, Martin et ai, 2002). y/e cannot however assume from the phenotypic 

similarities between CINCINNATA and reduced petal that the mutation in Primula is 

caused by a defect in the same genes as have been studied in Anti"hinum. 

The Oak Leaf mutant phenotype exhibits some of the characteristics of the phenotype 

desaibed in Arabidopsis thaliana when the Knoned gene from maize was expressed 

ectopically (Chuck et 01, 1996). Most notable are the lobed leaves in both instances, and 

the possibility of ectopic meristems. However it is only in the most extreme forms of the 

Arabidopsis transformants that the petals are described as being thin and elongated, while 

attenuation of the petals in Primula is present in the majority of cases. The attenuated 

Primula petals however are of normal colour while the most extreme Arabidopsis 

transformants bad greenish petals that abscised early. Another gene, inactivation of which 

results in lobed leaves in Arabidopsis thaliana is JAGGED (Dinneny et 01. 2004), but 

inactivation of JAGGED also results in petals and sepals with serrated edges. Oak Leaf 

flowers do not have serrated edges to either sepals or petals. 

It is predicted that Hose in Hose (peta1oid sepals) and sepaloid (no petals or stamens) 

result from gain and loss of B function. They could be allelic mutations or two separate 

but linked genes. If the latter, they could be on the same or on opposite sides of the S 

locus. If allelic mutations, they will be the first example of B ftmction complementary 

phenotypes. If they are two separate genes this will be the first example of a B ftmction 

gene and a regulator of B being tightly linked. These possibilities will be investigated in 

Chapter 7. 
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4.3.2. Discussion of early ontogeny of mutant phenotypes. 

Despite the early documentation of several mutant phenotypes of Prlmu/a (Gerard 1 S97; 

Parkinson 1629; Masters 1878) this is the first detailed analyses of early flower 

development in these plants. Not all of the mutant phenotypes studied exhIbited 

distinctive early ontogeny, the reduced petal mutant phenotype only became recognisable 

later in development, although where the latter also had splitting of the perianth this 

feature was obvious from stage 4 (Fig.4.22A ). P. viridis, the green primrose, is as wild 

type up to and including stage four, but by stage 5 the abnormally pointed anthers are 

distinctive (Fig.4.1SC and 0 ), while the virescent cowslip is distinctive in that it lacks 

organisation of floral organs throughout development. The Oak Leafflower assumes a 

much more open form than any other mutant phenotype during early ontogeny and this 

allows observation of inner whorls even at stage 6. Development of whorls three and 

four appears normal at this stage (Fig.4.2SB and C). 

The majority of first whorl mutations become clearly viSIble with expansion of the sepal 

lobes during stage 4. One exception is Split Perlonth, in which the divisions between 

individual sepals are evident at earlier stages of development (Fig.4.7E). However, it is 

not easy to differentiate between the Jack in the Green mutant phenotype, and the 

Jackanapes plants that cany both the Hose in Hose and Jack in the Green mutant alleles, 

until stage 5 (the double mutant is shown in Chapter 6, figure 6.3). The developmental 

progression of whorl 1 is such that the tips are more developed than the bases, and it is 

not until the lower edges of the sepal lobes have begun to expand later in development 

that the petaloid nature of this part of the organ becomes evident. 

The early architecture of the common stamen-petal primordium for whorls 2 and 3 is 

common to both the wild type (see Chapta' 3, Fig.3.2F.) and to the double Prlmula with 

predicted loss ofC function (Fig.4.l3A,B,E,F,G,and K). In the wild type, anthers develop 

from the larger initials and petals from the smaller initials on the abaxial bases of these 

common primordia. In double flowers, ho1h of1he initials become petals, despite the 

structure of the initials during stages 4 and S being identical to that of1he wild type. The 

identity of the second and third whorl organs in this case does not influence the early 

arcbitecture of the primordium. The persistent presence of a common primordium for the 

second and third whorls in double flowers suggests that the underlying control of this 

aspect of floral development OCClD'S independently of genes required for carpel and 

stamen development. Similarities in Antirrhinum between the appearance of whorl 4 in 
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the Wild Type and plena mutants at an early developmental stage (stage 6) has also been 

reported (McSteen et al., 1998). Only when the relevant Primuia homologues of defined 

MADS box organ identity genes have been fully characterised and their expression 

patterns defined in the wild type and mutant flowers, will direct comparisons with the 

well-defined Anti"hinum and Arabidopsis ABC models be possible. 

In striking contrast to the observations of double flowers where the initial development of 

whorls 2 and 3 is identical to the wild type irrespective of the final organ identity in these 

whorls, development in sepaloid flowers that have no petals or stamens shows a 

dramatically different early ontogeny. Although the second whorl emanates from the base 

of the third floral whorl, there is no separation of the whorl 2 and 3 organs, and whorl 4 

arises :from the inner base of whorl 3 as opposed to emerging from the centre of the 

flower. These observations, together with those of the double flowers that develop sepals 

within the inner fourth whorl (Fig.4.12H and 4.130-R), suggest that the programming of 

sepal identity within a whorl directly affects the development of that whorl. In the 

absence of programmed sepal identity, the development of whorl 2 and 3 is unaffected by 

the subsequent identity of the organ that will develop. The phenotype of the sepaloid 

mutant shows no evidence of any B function gene activity, as these flowers never 

produce petals or stamens. However, the ability of these flowers to produce sepals in the 

third and, occasionally, fourth whorl would also suggest that C function might also be 

impaired. These observations also raise the question ofwhether the B function plays a 

part in the separation of organs in whorls 2 and 3 during early ontogeny as it is only in 

sepaloid plants that are unable to produce petals or stamens in which the second and third 

whorl organs do not separate. 

Although the sepaloid mutant phenotype shares some similarities with that predicted by 

the loss ofB function in the ABC model, aspects of the phenotype are different from the 

DEFICIENS or GWBOSA mutants of Antirrhlnum (Sommer et al., 1990; Trobner et al., 

1992) orthePISTILLATA or APETALA 3 mutant ofAmb/dopsis (Hill and Lord 1989; 

Jack et al., 1992). Also of possible relevance is the phenotype of the Arabidopsis sepll213 

triple mutant (Pelaz et al., 2000, 2001; Honma and Gato 2(01). The phenotypes produced 

by the combination of these different mutant alleles include conversion of the inner 

whorls to sepals. However, the Primula sepaJoid mutant differs from the above in 

remaining determinate, occasionally produces fertile carpels, and is determined by a 

single locus. Although it is a possibility that the sepaloid mutant phenotype arises 

through either a direct or indirect loss ofB function activity, we cannot exclude the 
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possibility that it arises through the loss of SEP-like proteins. However, because sepaloid 

is inherited as a single locus, such a possibility would require sepaloid to be a regulator of 

SEPE~ TA genes or the SEP-function in Primula to be determined by a single gene. 

An interesting observation arising from analysis of flowers from double flowers that 

produce stamens in the fourth whorl and Staminoid Carpels is that development of 

stamens in the fourth whorl of Primula is associated with the delayed development of the 

fourth whorl. In contrast, there is no delay in the development of the fourth whorl in 

Arabidopsis flowers when stamens are ectopically produced in this whorl, either by over

expression of PI and AP3 (Krizek and Meyerowitz 1996), or following mutation of sup

IlfloIO (Schultz et al., 1991; Bowman et al., 1992). In addition, the central area of the 

developing flower remains undeveloped for an extended period of time in double 

(Fig.4.13F), semi-double (Fig.4.l3J and K) and in Starninoid Carpels (Fig.4.9H and M). 

This delay is associated with the presence ofa mixture ofpetals and stamens in the centre 

of the flower in doubles, and stamens in semi-doubles and Slaminoid Carpels. Given that 

both A and B functions are required to produce petals and that both B and C functions are 

required to produce stamens, these findings reinforce previous observations (Bowman et 

al., 1992) that B function may be involved in the loss of determinacy of the floral 

meristem by over-riding the determinacy role of the C function. Previously, loss of 

determinacy has been associated with loss ofC function; however, observations on two 

different Primula mutants, semi-double and Staminoid Carpels, show that loss of 

determinacy can occur following expression ofB function in the fourth whorl offlowers 

that also contain C function. 

Analyses of mutant Primula flowers shows that Horal ontogeny in this plant have 

revealed a number of differences as compared with the two model plants Antirrhinwn 

majus (McSteen et al., 1998) and Arabidopsis thollana (Smyth et al., 1990). The ABC 

model of floral development was formulated primarily from studies on these two species. 

Observations of the early stages of flower development mutant Primula flowers provide a 

foundation for the possibility to explore the differences in floral MADS box gene 

expression in this pIant as compared with Arabic/opsis and Antlrrhinwn. Worlc to identify 

the relevant Primu/a MADS box genes and to determine the molecular basis of many of 

the mutant phenotypes desaibed in this work is currently underway in the Gilmartin 

laboratory. 
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4.3.3. Discussion oflate ontogeny. 

Many phenotypes have comparatively lDleventfullate ontogeny, the leafy calyces of Jack 

in the Green for example simply become larger as growth progresses. Others such as 

Primula Viridis, show increased variation from the norm as ontogeny progresses, so that 

by maturity the only normal cell type in the flower is that of the yellow "eye" of the 

flower (Fig.4.18Q). 

Poorly expressed Hose in Hose, in which the central portion of the petaloid calyx is 

green, appear as wild type during early ontogeny. Comparison of a well expressed Hose 

in Hose flower at stage 6, which in the mature flower bas a completely petaJoid calyx 

(Fig.4.5D), with a poorly expressed Hose in Hose flower of the same stage (Fig.4.5F) 

shows that the centre of the abaxial surface of each first whorl organ of the latter is 

densely covered with trichomes. Examination of the adaxial surface (Fig 4.50) shows 

that the cells in the centre are not the expected conical papillate cells ofpetaJ tissue (Fig. 

4.SH), but that those nearer the edge appear less abnormal (Fig.4.5I). A IIl8t11re flower 

from the same plant (Fig.4.4J) clearly shows the first whorl to be petaloid but with green 

sectors in the centre of each first whorl organ. 

Observation ofmutaDt phenotypes, and analysis of development using scanning electron 

microscopy, provides much useful information. Fmther infurmation can be obtained by 

genetical analysis of the mutant phenotypes. As both Primula viridis the green primrose 

and the virescent cowslip were found to be consistently infertile investigation of these 

two phenotypes cannot be taken further. Future molecular analysis of Prlmula and of 

Primula mutant phenotypes will supply a fully comprehensive picture of floral 

morphogenesis in Primula. 
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CHAPTER FIVE 

Genetic analysis of mucant pbenotypes. 

5.1. Introduction. 

Characterizing the inheritance of the available fertile floral mutant phenotypes by self and 

test crosses was essential in order to determine dominance relationships and linkage 

patterns. Genetic analysis was not possible for either the green primrose or the virescent 

cowslip as neither produced any viable reproductive parts dmiog tbis project, and both 

appear to be reproductively inviable. Genetic analysis for some of the phenotypes was 

already underway before commencing this project, and for two of the phenotypes, was 

almost completed. Other phenotypes were discovered dmiog the course oftbis project 

and require further analysis. Crosses are generally presented in chronological order 

within each section. Older work is included in order to give a fullpicture of what is 

known of each phenotype. Data obtained before beginning tbis project is included under 

"Origin and history", and new data under "Subsequent crosses". When beginning analysis 

of mutant phenotypes, most initial crosses were of small numbers but were sufficient to 

determine dominance relationships. Larger nmnbers of progeny were raised in tests for 

linkage, although in instances where the locus for the mutation was tighdy linked to the 

Primula S locus linkage was obvious even with smaller nmnbers. 

5.2. Jack in the Green. 

The majority of crosses required for genetic analysis of Jack in the Green (leafy calyces) 

were completed before commencing this project. It was already known to be a dominant 

phenotype with the locus for the mutation unlinked to the Prlmu/a S locus. It was not 

certain whether plants homozygous for the dominant Jack in the Green mutation were 

viable, but indications were that they were probably inviable (Webster and Grant, 1990). 

5.2.1.0 ...... and history. 

Pin and thnun Jack in the Green plants were derived wm thrum Jack in the Green plants 

found growing under the garden hedge in Killay, Swansea, (SS 600926) and were 

subsequently interbred with wild type plants. Controlled crosses were carried out (in 

coqjunction with the Department of Botany, University of Bristol) in 1986, and the 

progeny classified in 1988. Results showed that there was no linkage between Jack in the 

Green and the Primula S locus. Dominance of Jack in the Green was also confirmed with 
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a better fit for a 2: 1 ratio than a 3: 1 ratio, indicating possible inviability of the 

homozygote Jig/Jig (Webster and Grant, 1990). 

A petalless Jack in the Green (designated Jig·) that arose in 1985 from naturally set Jack 

in the Green seed was pollinated by a thrum Jack in the Green in 1986 and the progeny 

classified in 1987 (Table 5.1). 

pin petalless Jack in the Green x Thrum Jack in the Green 

Jig· s 
? s 

Thrum 
Jack in the 

Green 
Jig S 
? s 

2 

pin 
Jack in the 

Green 
Jig s 
? s 

2 

x 
-J, 

1bnun 
wild type 

+ S 
+ s 

1 

Jig S 
+ s 

pin 
wild type 

+ s 
+ s 

2 

Table S.l • Origin of the two thnuD Jilek In tile Grea homozygotes 
(Jig SI Jig of) 

The two thrmn Jack in the Green plants from above set seed from natural pollination. 

This resulted in 16 progeny that were classified in 1996; all of these were Jack in the 

Green, indicating homozygosity Jig/Jig. Further proof of homozygosity was obtained 

from a further sowing of naturally set seed that yielded 23 progeny from the first plant 

and 11 progeny from the second plant, all of which were again of phenotype Jack in the 

Green. 

5.2.2. Subsequent crosses. 

In order to ascertain whether pin homozygotes Jig/Jig were also viable, crosses of 

heterozygous pin Jack in the Green (Jigljig) x homozygous thrum Jack in the Green 

(Jig/Jig) were carried out under controlled conditions. Progeny were raised and four pin 

Jack in the Green plants subsequently crosses to wild type to identifY homozygotes. One 

pin homozygote was identified. 
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5.2.3. Summary of resu"s. 

From the above analysis it can be concluded that: 

1. Jack in the Green, is a dominant phenotype. 

2. No linkage was observed between Jack in the Green and the Prlmula S locus. 

3. At least some Jig/Jig homozygotes are viable, but may be under represented in the 

population. 

5.3. Hose in Hose. 
As for Jack in the Green, the majority of crosses required for the genetic analysis of Hose 

in Hose were completed before commencing this project. Only crosses in section 5.3.8 

were done during the period of this project. 

5.3.1. Origin and history. 

The first Hose-in-Hose plant was obtained from the late Mary Mottram, Devon, in 1985. 

It was a thrum plant and it was subsequently established that Hose in Hose is a dominant 

phenotype and that tight linkage existed between Hose in Hose and the S allele of the 

Primula S locus (Webster and Grant, 1990). IncompatIbility between thrum x thrum 

crosses in these Hose in Hose plants was successfully broken down at this time so that 

thrum plants from these progeny could be successfully self pollinated. 

From natural seed raised from a Jack in the Green plant growing close to the original 

Hose in Hose, plants with a number of phenotypes were raised in 1987188. These 

included Hose in Hose, Jack in the Green, wild type, and Jackonapes (the latter express 

both the dominant phenotype of Hose in Hose together with the dominant phenotype of 

Jack in the Green and have calyces of both leafand petal). 

One of the Hose in Hose plants raised was the first recombinant between Hih and S, a pin 

Hose in Hose. This was crossed reciprocally to thrum Hose in Hose and the progeny 

classified in 1988. Results reported in 1990 indicated that Hose in Hose homozygotes 

were viable (Webster and Grant, 1990). Subsequently Hose in Hose homozygotes, both 

pin and thrum, were developed. 

By hybridization and introgression Hose in Hose cowslips were raised. The phenotype 

can be expressed in a P. veris genetic background. This was expected as the first 

illustrations of Hose in Hose were ofP. veris Hose in Hose (Chapter 1, 1.5.1) and it is 
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possible that the phenotype originated in P. liens. The phenotype can also be expressed in 

a P. elatior background as such cultivars are available commercially from some specialist 

nurseries. 

5.3.2. Isolation of thrum homozygoCe (SS). 

Thrum homozygotes have previously been reputed to be inviable in native British 

Primula (Richards 1986, 1993, 1997), although one was reported from a non British 

species Prtmu/a sinensis (Mather and de Winton 1941). The thrum homozygote described 

here is the first report of a thrum homozygote in a Primula vulgaris cultivar. 

One of the thrum progeny from a cross of thrum Hose in Hose se1f:.pollinated, set seed 

from natural pollination. The progeny from this seed was raised to test for homozygosity 

for Hih and classified in 1993/4 (Table S.2). 

Thrum 
Hose in Hose 

Hlh S 
? s 

63 

Thrum Hose in Hose #7 x pin wild type. 

Hih S 

? ? 

pin 
Hose in Hose 

Hih s 
? s 

0 

x ? s 

? s 

ThnDn 
Jackanapes 

Hih S. + 
+ s Jig 

2 

pin 
wild type 

+ s 
+ s 

0 

Table 5.2. Isolation oftbrum homozyaoCe (HSIHS) Cross no. 1. 

Thrmn Jaclcanapes (i.e. Hose in Hose and Jack in the Green are expressed in the same 

plant giving calyces ofleafand peta1- result ofnatural pollination). 

There were DO pin progeny, indicating that the pan:nt was a thrum homozygote. The 

parent thrum homozygote died so some of the progeny above were test crossed to wild 

type pin in order to look for another potential thnun homozygote. Results from one of the 

progeny, Hose in Hose Thrum #2 are classified in Table 5.3. 



126 

Thrum Hose in Hose #2 x pin wild type. 

Hih S x ~ 
? ? -!. + s 

Thrum pin Thrum pin 
Hose in Hose Hose in Hose wild type wild type 

Hih S Hih s ~ .L-1 
+ s + s + S + S 

24 0 0 0 

Table 5.3. Isolation of thrum hOlDozygote (HSlHS) Cross no. 2. 

Results confinn that Hose in Hose thrum #2 is homozygous for both Hih and S. 

Pollen ftom Hose in Hose #2 was stained and examined under alight microscope. 

Comparison with wild type pin and wild type thrum pollen showed Hose in Hose #2 

pollen to be of the same size as thrum wild type large pollen. 

A population oftbrum homozygotes was raised in spring 1998 by self pollination of Hose 

in Hose #2 and subsequent raising of progeny. One of the progeny was tested by raising 

naturally set seed which resulted in 32 thrum Hose in Hose progeny, confirming that this 

plant was homozygous for both Hose in Hose and fur thrmn. The majority of these thrum 

homozygotes were short lived. 

These data provide evidence fur the potential of breakdown in the self incompatibility 

system. Further evidence was observed in wild type thrum gold laced po1yanthus. As 

these are "show plants", and only thrum plants are considered attractive, self-pollination 

has ftequentIy been undertaken by breeders of show plants in order to obtain larger 

numbers oftbnun progeny. Consequently the incompatIbility of thrum x thrum crosses 

appears to have also been broken down in many lines of gold laced polyanthus. 

A aoss of self-pollination ofa gold laced polyanthus was done in 1990. If thrum 

homozygotes are viable a 3: 1 ratio ofthmm to pin progeny would be expected. 
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A ·l analysis was done to test the null hypothesis that there is no significant difference of 

the data ftom the predicted ratio of 3: 1. 

observe 46:13; expect 44.25:14.75; 

X2 for 3:1 (l dot) = 0.277, P = 0.59. 

A X2 analysis was done to test the null hypothesis that there is no significant difference of 

the data ftom the predicted ratio of2:1. 

observe 46:13; expect 39.32: 19.66; 

X2 for 2:1 (1 dot) =3.39, P =0.066. 

Results are closer to a 3: 1 ratio, than to a 2: 1 ratio indicating that there may be thrum 

homozygotes in this line of gold laced polyanthus. 

This raises the question of whether self-pollination oftbrum plants and the breakdown of 

thrum x thrum incompatibility could be associated with the loss of inviability of thnun 

homozygotes. It has been suggested in the past that the homozygous thnun P. sinensis 

may have arisen in response to selection for self-fertility in thrum P. sinensis in 

cultivation (Richards, 1993). 

S.3.3. Study of expression of Bose in Bou. 

lt bas been observed that expression of Hose in Hose is not always stable. A Hose in 

Hose plant raised in 1988 developed ramets with different degrees of expression of Bih, 

on the same plant When sufficiently well grown the ramets were split to give three 

plants; one had fully petaloid calyces, one had calyces that were a mixture of petal and 

sepal material and one was as wild type. The wild type ramet did occasionally produce 

tiny petaloid extensions to one or two calyx lobes later in the season. 

The three ramets were designated R #1, R #2 and R #3 respectively. Reciprocal crosses 

with wild type pin vulgaris were cmied out in order to discover whether the loss of petal 

in the calyx was heritable and to observe and compare the degree of expression of Bih in 

the progeny from the individual ramets. Three SIbling wild type vulgaris plants were used, 

one for each ramet. Results were obtained during 1991 and 1992 (Table S.4). 
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Cross Thrum pin Thrum Pin 
Hose In Hose in wild type wild type 
Hose Hose 

Hih S Hih s + S ~ 
+ s + s + s + s 

R#I xWf 9 3 0 7 
WfxR#1 IS 10 0 1 
R#2 xWf I 0 6 11 
WTxR#2 8 0 2 9 
R#3xWT 1 0 2 12 
WTxR#3 2 0 8 7 

Table 5.4. Reciprocal crosses of three nmets of ODe Hose in Hose 
plaDt to wIIIl type. 

The ramet with the fully petaloid calyces (R# I) produced mon: Hose in Hose plants than 

wild type, while ramets with poorer expression (R#2 and R#3) produced mon: wild type 

than Hose in Hose progeny. Results indicate that the plant ftom which R # 1.2.and 3 were 

obtained was homozygous for Hih but so unstable that Hih was not expressed in many of 

the progeny (Table 5.7.). Since the plant was ftom a aoss between two Hose in Hose 

parents homozygosity was possible. The instability that produced three ramets with 

different degrees of expression of Hih, the filet that exp-ession beaune poorer with time 

in a number of the progeny (Table 5.6) and the larger proportion of wild type to Hose in 

Hose (Table 5.5) supports this view. 

Ifreciprocal n:sults an: added togetberto give the total ratio of to wild type plants 

obtained ftom each ramet the n:sults an: as follows (Table S.5). 

Ramet HosemHose wild type 

R#I 38 8 

R#2 9 30 

R#3 3 30 

Table 5.5. CombiDed totals from Table 5.4. 
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The degree of expression observed on each of the first 40 Hose in Hose plants to bloom 

was evaluated as follows. Fully petaloid calyx = 1. More petal than sepal in calyx = 2. 

Evenly mixed peta1/sepal calyx = 3. More sepal than petal in calyx = 4. Almost wild type 

calyx, only vel)' tiny amounts of petal in calyx = 5. Results are shown in Table 5.6. 

Hose in Hose Hose in Hose 

Thrum pin 

degree 1 2 3 4 5 1 2 3 4 5 

R#1 x 0 2 0 0 2 0 0 1 0 1 

WT 

WTx 10 1 0 2 0 3 3 0 3 1 

R#l 

R#2 0 0 0 0 0 0 0 0 0 0 

xWT 

WTx 3 2 2 0 2 0 0 0 0 0 

R#2 

R#3 0 0 0 0 1 0 0 0 0 0 

xWT 

WTx 0 0 0 0 1 0 0 0 0 0 

R#3 

Table 5.6. Evaluation of the degree of expression of the Hose ill Hose 
phenotype. 

Ten of the above plants were observed over several weeks. In most cases the expression 

of Hih became poorer over this period. Five plants placed in expression category 1 now 

fell in category 4; one placed in expression category 1 now fell in categmy 2 and one 

plant placed in expression category 2 now fen in expression category 3. In three plants 

the expression category improved; from 5 to 3 in one instance, from 3 to 2 in another and 

from 2 to 1 in the last instance. 

Results also show that more plants of phenotype Rih S were obtained than of phenotype 

Hih s, and that more of these were ob1ained from wild type seed parents crossed with 
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Hose in Hose pollen than from Hose in Hose seed parents. The latter suggests that in 

these plants some genes influencing expression may be carried in the cytoplasm. The 

former suggest that in this line Hih is better expressed in thrum than in pin plants, 

possibly in part due to Hih S on one chromosome (if the unstable plant was a 

homozygote), having come from a more stable line of Hose in Hose plants. It would have 

been better iftbree ramets of the same wild type plant had been available, as the sibling 

wild type plants used may have had variations in the genetic backgro1Uld that influenced 

expression of Hih. Should such an unstable plant with different degrees of expression of 

Hih on different ramets occur again, the experiment to test the hypothesis that reversion 

from Hose in Hose towards wild type is permanent and heritable, could be repeated using 

individual ramets of one wild type plant 

5.3.4. Testing of other Dnes of Hose In Hose plants. 

Testing of other lines of Hose in Hose plants was done to reveal whether or not different 

lines might have different characteristics and therefore may be diffelent alleles with 

different origins, or alternatively whether all Hose in Hose may have a oommon origin. If 

all are from a single origin testing will reveal linkage of other lines to the S locus. 

<s> Bamhaven Hose in Hose. 

Bamhaven is a seed company specializing in primrose and polyantbus seed. 

A thrum Hose in Hose plant ofBamhaven origin was test crossed to pin wild type in 1990 

(Table 5.7). No reciprocal cross was done. 

Thrum Bamhaven Hose in Hose x pin wild type. 

Thrum 
Hose In 
Hose 

Hih S 
+ s 

0 

Hih ? 

? ? 
pin 

Hose in 
Hose 
Hih s 
+ s 

18 

x .LJ 

+ S 

Thrum 
wi/dtype 

±--.! 
+ S 

18 

pin 
wild type 

±....--A 
+ s 

0 

Table 5.7. Test cross of Bambsven Hose In Hose. 



131 

Results give a perfect fit of 1: 1 for linkage of Hih to the s allele of the S locus in this 

plant. It was observed that there was very poor expression of Hih in all of the progeny 

indicating greater instability in this line. Linkage to the S locus indicates that the origin 

for Hose in Hose is likely to be the same for this line. 

(b) "Wanda", hose in hose. 

The cultivar "Wanda" was derived from crosses between P. vulgaris and P. juliae. P. 

juliae was discovered in the Caucasus in 1900 and was introduced to Britain in191 1. The 

genetic background of "Wanda" hose in hose might therefore be expected to be different. 

Wanda hose in hose could not be used as a seed parent because of abnormalities in the 

fourth whorl, which was a chimeric organ of stamen and ovary tissue. It was used as 

poDen parent to Wild Type P. vulgaris and results obtained in 1991 (Table 5.8). 

Thrum Wild Type x Wanda hose in hose 

+ S 

+ S 

Thrum pin 
hose in hose hose in hose 

hih s hih s 

+ S + s 
0 0 

x hih s 

? s 

Thrum 
Wild type 

+ S 
+ s 

11 

pin 
Wi/((1J'J!e 

+ s 
+ s 

9 

Table 5.8. Inheritance orWa.da __ illlIosI (1). 

No hose in hose progeny were obtained, indicating that hose in hose is not a dominant 

phenotype in this cultivar, or is not expressed in this new genetic background. 

Two of the progeny were crossed together pin x thrum to discover if hose in hose was 

recessive in the "Wanda" cultivars. No hose in hose progeny resulted from the cross, but 

only five progeny were obtained. Time and space did not aUow for testing aU of the 

progeny at that time and they were subsequently lost. 

In 1994 a cross of Wanda, Wild Type x Wanda hose in hose was made and results 

obtained in 1995 (Table 5.9). 
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Thrum Wanda Wild Type x pin Wanda hose in hose. 

+ S x hih s 

+ S ? s 

Thrum pin Thrum pin 
hose in hose hose in hose Wild type Wild type 

hih s hih s + S + s 
~ .. + s + s 

0 0 14 10 

Table 5.9. Inheritance of Wanda IIo6e blhose (Z) 

Again no hose in hose progeny were obtained reinforcing previous results that indicate 

hose in hose is not a dominant phenotype in the cultivar "Wanda" hose in hose. If Wanda 

hose in hose was linked to the s allele of the S locus but was inviable due to the effects of 

other genes in the genetic background then a deficiency of pin Wild Type might occur. A 

X2 analysis was done to test the null hypothesis that there is no significant difference of 

the data from the predicted ratio of 1 : 1 for pin : thrum Wild Type. The X2 for a ratio of 1 : 

1 fur pin : thrum Wild Type is 0.67 (ldot) P = 0.4. The results are consistent with 1: 1 

segregation. There is no deficiency of pin Wild Type. 

It was not possible to cany out crosses between the 10 pin plants above and 10 of the 

thrums (in various combinations) to ascertain whether Wanda hose in hose was canied as 

a recessive and expressed in any of the progeny since facilities for raising such a large 

Dumber of progeny were not available. 

Experiments with Wanda hose in hose were discontinued until 1999, when whorl fOW" of 

one plant reverted to DOrmal and it became a fertile seed parent. This was self-pollinated 

and seed obtained. All but one of these seeds failed to germinate, and this one had Wild 

Type Wanda flowers. The following year the plant was not fertile. It is possible that hose 

in hose in the "Wanda" cultivar may be the result of a different mutation from that in P. 

vulgaris, but further testing is required. 
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5.3.5. Summary of previous results. 

From the above analysis it can be concluded that: 

1. Hose in Hose is a dominant phenotype in P. vulgaris, P. veris and their cultivars. 

2. Hose in Hose is tightly linked to the S allele of the Slocus. 

3. Thrmn incompatibility was successfully broken down in this line of Hose in Hose in 

1986 so that thrum x thrum crosses are now possible. 

4. Hose in Hose homozygotes are viable. 

5. Expression can be variable. 

6. The OCCUlTeJlce of a thrum homozygote among the progeny of a Hose in Hose plant 

suggests that it is feasible to obtain homozygous (SS) plants. 

7. Hose in Hose from the Bamhaven range exhibited linkage to the s allele of the 

Primula S locus. 

8. "Wanda" hose in hose, derived from P.juJiae, is not dominant and does not appear to 

be heritable but heritability is not fully tested. It is poSSIble that the phenotype may have a 

different origin in this cultivar. 

5.3.6. Subsequent crosses. 

Subsequent crosses were canied out to test for p~ or absence of an S locus linked 

lethal factor in thrum Hose in Hose. The presence of such a factor linked to the S allele of 

the PrimuJa S locus bas been suggested previously (Richards 1986, 1993, 1997), but 

occurrence of one thrum homozygote among the progeny of a Hose in Hose plant 

suggests viability of homozygous (8S) plants in this line of Hose in Hose. 

5.3.7. Testing for presence or absence of aD S loculiDked IetIIaI factor in thrum 

HOMInH,.. 

Further investigation of thrum Hose in Hose #2, the homozygote Hih SlHlh S, (see 

5.3.2.above) was undertaken. If the predicted lethal factor (Richards 1997), in coupling 

with the S allele, had recombined so that it was now in coupling with the s allele, this 

would be unlikely to have occurred more than once. Therefore it would seem likely that 

only one of the two S alleles in the homozygous thrum would have lost this lethal factor. 

To investigate whether any of the progeny from the cross of wild type (+ s I + s) x Hose 

in Hose thrum #2 (Hih S IHIh S), that will have genotype of Hlh 8/+ s, (see 5.3.2 above) 

had lost the lethal factor the following aoss was carried out. 
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Two surviving plants ftom the cross of wild type (+ S / + s) x Hose in Hose thrum #2 

(Hih SIHlh S),with genotype of Hih S 1+ s, (see 5.3.2 above) were each self-pollinated 

and progeny raised from the two duplicate self pollinations (Table 5.10). 

Thrum Hose in Hose heterozygotes selfpollinated. 
Hih S x Hih S 
+ s ,J, +s 

Plant no. Thrum pm pin Thrum 
Hose in Hose in wild type wild type 

Hose Hose 
Hih S Hih s .L2 ~ 
? s + s + s + S 

1 31 0 2 0 

2 27 2 2 0 

Table 5.10. First test for preseace or abseDce of S locus linked 
lethal factor in thrum Hose bt Hose. 

If the S aUele no longer was in coupling with the lethal filctor a 3: 1 ratio of thnun Hose In 

Hose to pin wild type could be expected. If the S aUele remained in coupling with a lethal 

factor a 2: 1 ratio could be expected. 

Ifboth parents are Hih heterozygotes and if one or both are lacking an S locus linked 

lethal factor expect a 3: 1 ratio of Hih : wild type. A ,l analysis was done to test the null 

hypothesis that there is no significant difference of the data from the predicted ratio of 

3:1. 

Plant no. 1. X2 fur 3: 1 fur Hose in Hose thrum to wild type pin, 

observe 31:2; expect 24.75: 8.25; 

X2 (1 dot) 6.3, P = 0.012 

Results are not consistent with a 3: 1 ratio for Hose in Hose thrum to wild type pin. 

Plant no. 2. X2 fur 3: 1 for Hose In Hose thnDn to wild type pin 

observe 29: 2; expect 23.25 :7.75 

X2 (1 dot) = 5.69 P = 0.017 

Results are not consistent with a 3: 1 ratio for Hose in Hose thrum to wild type pin. 

As results are not consistent with the 3.1 ratio fur Hose in Hose thnun to wild type pin 

(expected if a lethal factor is associated with the S allele) a t analysis was done to test 
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the null hypothesis that there is no significant difference of the data from a predicted 

2:l.ratio 

Plant no. 1. X2 for 2: 1 for Hose in Hose thrum to wild type pin, 

observe 31 :2; expect 22:11; 

X2 (I dot) 11.04, P = 0.0009 

Results are extremely deviant ftom a 2: I ratio of Hose in Hose Thrum to wild type pin. 

Plant 00.2. X2 for 2:1 for Hose in Hose thrum to wild type pin 

observe 29: 2; expect 20.66:10.33; 

X2 (1 dot) = 10.08 P = 0.0015 

Results are extremely deviant ftom a 2: 1 ratio of Hose in Hose thrum to wild type pin 

The results for 3: 1 (expected if a lethal factor is no longer associated with the S allele), 

fits the predicted ratio better dian does 2: 1 for both plant 1 and plant 2 although both are 

deviant from the expected ratio .. Both selfpollinations resulted in a madced deficit of 

wild type pin plants that cannot currently be explained. 

Two plants from the cross pin Hose in Hose (Hlh slHih s) x Hose in Hose #2 (Hih 

SlHih S) were also self-pollinated and progeny ftom the duplicate self-pollinations 

raised (Table 5.11). 

Thrum Hose In Hose homozygote selfpolliDated. 
HihS x ~ 

Hih s Hih s 

Plant no. Thrum pin 
Hose in Hose Hose in Hose 

Hth S Hih s 
Bih ? Hih s 

I 12 6 

2 19 14 

Table S.ll. Second test for presence or absence of S locus 
Iinbd lethal factor" danuD H0$6111 H0$6. 

Ifboth parents are heterozygous for Hih and ifboth lack an S locus linked lethal factor 

expect a 3: 1 ratio of Hose in Hose thrum to Hose in Hose pin. If either of both plants 

have an S locus linked lethal factor a 2: 1 ratio of Hose in Hose thrum to Hose in Hose pin 
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can be expected. Plant no. 1 gave an exact 2: 1 ratio for Hose in Hose thrum to Hose in 

Hose pin as expected if a lethal factor is in coupling with the S allele of the Primula S 

locus. A -l analysis could not be done to test the null hypothesis that there is no 

significant difference of the data from the predicted ratio of 3: 1 for plant no. 1 since one 

of the expected numbers would be less than 5; a"l analysis would not therefore be valid. 

A -l analysis was done to test the null hypothesis that there is no significant difference of 

the data from the predicted ratio of2: 1 for plant no.2. 

-l for 2: 1 Hose in Hose thrum to Hose in Hose pin for plant no 2 

observe 19:14, expect 22:11; 

.. l (1 dot) = 1.227, P = 0.267 

Results fit the predicted 2:1 ratio. 

A Xl analysis was done to test the null hypothesis that there is no significant difference of 

the data from the predicted ratio of 3: 1. 

Xl for 3: I Hose in Hose thrum to Hose In Hose pin for plant no 2 

observe 19:14, expect 24.75:8.25; 

--I (1 dot) =5.34, P = 0.02 

Results are slightly deviant from the predicted 3: 1 ratio. 

It is therefore possible that plant no. 1 may lack the lethal factor but plant no.2 is likely to 

have the S locus linked lethal factor. Test crossing of progeny to wild type will identifY 

which plants are thrum homozygotes. 

5.3.8. Summary of resul" 

From the above analysis it can be concluded that some Hose In Hose plants appear to 

have lost the S locus linked letbal factor and SS homozygotes appear to be viable. These 

can be identified by test crossing to wild type. 

5.3. SpIlt PerltuUII. 

Both the calyx and the corolla of the original gold laced polyanthus plant discovered by 

4,4.3.3 and Fig. 4.6), the latter to the point ofat18chment of the anthers. Investigation of 

the inheritance of the phenotype had begun before this project commenced, but the 

majority of the work has been done during the project. 
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5.4.1. Origin and history. 

The phenotype had been described and illustrated in old literature but had not been seen 

for many years. Splitting of the calyx remained stable in each plant, but splitting of the 

corolla varied considerably even on a single plant. From his own crosses Dr. Brompton 

had established by breeding tests that Split Perianth (genotype designated Spr) is a 

dominant phenotype that can be expressed with the Hose in Bose and Jack in the Green 

phenotypes and also as a triple mutant (Bih Jig Spr). A piece of the original Spltt 

Perianth plant was obtained in spring 1998, and ftom crosses of this pin plant to wild type 

thrum Split Perianlh progeny of both pin and thrum phenotypes were raised. 

5.4.2. Subsequent crosses. 

Subsequent crosses were undertaken first to look for any linkage of Spr to the S locus and 

second to investigate variable expression of the phenotype. 

5.4.3. Testing for linkage of Spr to die S locus. 

In order to test whether there was any linkage of Spr to the S locus a cross of thrum Split 

Perianth to pin wild type was carried out. This cross wiD also test for dominance. Results 

are tabulated in Table S.12. 

Thrum 
Split Perianth 

Spr S 
+ s 

14 

Thrum Split Perianth x pin wild type. 

+ S 

+ S 

pin 
Split Perianth 

Spr s 
+ s 

16 

x 
.J, 

Spr S 
+ S 

Throm 
wild type 

+ S 
+ s 

13 

pin 
wtldtype 

+ s 
+ s 

20 

Table 5.12. Test for linkaae of Spr to dle S locus. 

If Spltt Perianth is a dominant phenotype and if there is absence of any linkage of Spr to 

the S locus expect equal Dumbers of all phenotypes. A .x} analysis was done to test the 

null hypothesis that there is no significant difference of the data ftom. the predicted ratio. 
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-l for 1 : I : 1 : 1 for equal numbers of all phenotypes 

observe 14 : 16: 13 : 20, expect 15.75: 15.75 : 15.75: 15.75. 

-l (3 dot) = 1.825. P = 0.6. 

Results fit the predicted I: 1 : 1 : 1 ratio. There is no linkage of Spr to the S locus. Results 

also confinn dominance of Split Perianth to wild type. 

The Split Perianth plant used was one with a split calyx but with a normal corolla. The 

Split Perianth progeny resembled the parent in that in all but a few plants the calyx but 

not the corolla was split. 

S.4.4. Investigation of variable expression of the Split Perilud phenotype. 

Observation of other Split Perianth plants subsequently obtained ftom Dr. Bnunpton 

showed that both plants with split calyx and corona completely split to the base of the 

flower, and plants with the calyx split but with a normal corolla were stable in fonn. It 

seemed likely that the splitting of the corona and the splitting of the calyx were caused by 

degrees of expression of the same dominant allele. Further investigation was undertaken 

by self and test crossing the most extreme phenotype that had both the calyx and the 

corolla split to the base. Results were classified in 2002 and are given in Table 5.13 (self

pollinated), and Table 5.14 (test crossed to wild OPe). Selfpollination also tests for 

viability of SprlSpr homozygotes. 

Pin Split Perianth selfpollinated 
Spr s x Spr s 

+ S + S 

Split wild type 
Perianth 
Spr s + s 
+ s + s 

15 4 

Table 5.13. SeIf-polliutioa of Che .... t extreme form of 
SplIt hIiatII. 

Ifhomozygous Split Perianth plants are viable expect a ratio of 3 : 1 for Split Perianth : 

wild type. A ·l analysis was done to test the null hypothesis that there is no significant 

difference of the data ftom the predicted ratio of 3: I. 
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x2 for 3 : 1 for Split Perianth : wild type. 

observe 15 : 4, expect 14.25 : 4.75. 

X2 (1 dot) = 0.35. P = 0.55 

Results fit the expected ratio of 3: 1. indicating viability of Split Perianth homozygotes. 

Continued observation of above progeny for some weeks showed the majority of the Split 

Perianth progeny to exhibit complete splitting of the corolla. Exceptions were one that 

had a corolla split only to the point of attachment of the anthers and one that initially had 

no corolla at all, but had anthers on individual filaments initiating from the base of the 

ovary. Later flowers had one petal per flower, remaining anthers being on filaments as 

above. Fmther observation of wild type progeny found that two of the wild type exlubited 

splitting of the corolla only in flowers produced later. These latter were crossed to wild 

type but aU progeny were normal. Occasionally splitting of the corolla can be seen in 

nonnal plants flowering out of season and it is probably environmental in origin. It is 

therefore likely that the splitting of the corolla in two of the wild type progeny was of 

environmental origin. 

As no linkage was observed between Spr and theSlocus(Table 5.14) expect a ratio of 

1: 1 Split Perianth : wild type and equal numbers of all phenotypes. A X2 analysis was 

done to test the null hypothesis that there is no significant difference of the data from the 

predicted ratio of 1 : 1. 

X2 for 1 : 1 Split Perianth : wild type 

observe 13 : 12, expect 12.5 : 12.5. 

X2 (1 dot) = 0.04 P = 0.84. 

Results fit the predicted ratio for 1 : 1 

A X2 analysis was done to test the null hypothesis that there is no significant difference of 

the data from the predicted ratio of 1: 1: 1: 1 for equal numbers of all phenotypes. 

X2 for 1 : 1: I : I for equal numbers of all phenotypes 

observe 7: 6:5:7, expect 6.25: 6.25 : 6.25: 6.25, 

X2 (3 dot) = 0.44 P = 0.93 

Results fit the predicted ratio of I : 1: 1: 1. 
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Split Perianth x wild type 

Spr s x + S 
+ s -l- + s 

Thrum pin Thnun pin 
Split Perianth Split Perianth wild type wild type 

Spr ? Spr s + S + s 
+ ? + s + s + s 

7 6 5 7 

Table 5.14. The most extreme form of Split PerIIlnth I wild l)p& 

Observation of flowering over a number of weeks showed the Split Perianth progeny of 

the most extreme fonn of Split Perianth x wild type to exhibit splitting of the corona only 

to the point of attachment of the anthers, with 3 plants also having an occasional flower 

with a single split to the base of one side of the corona tube. All wild type plants had 

normal corollas. It is possible that expression of the phenotype may be affected by 

modifier genes or associations of modifier genes so that when Split Perianth is crossed 

with wild type alleles recombination may cause the modifier genes to become 

disassociated from a position of influence. Conversely, inbreeding the phenotype may 

enhance the effect of such modifier genes as the alleles of influence will be canied by 

both parents. " 

5.4.5. Summary of mula. 

From the above analysis it can be concluded that: 

1. Split Perianlh is a dominant phenotype. 

2. There is no linkage of Split Perianth to the S locus. 

3. Variability of expression was observed. More extreme phenotypes with totally split 

corollas appeared with inbreeding, and less ex1reme forms with normal corollas appeared 

through outbreeding. This may be due to modifier genes in the genetic background. 

5.S. StlUIIlnold Ctupels. 

Staminoid Carpels plants, in addition to having petaloid sepals have a fomth whorl that 

exhibits various degrees of conversion to stamens in different Staminoid Carpels plants 

(see Chapter 4,4.3.6). Some investigation into the inheritance of the phenotype was 

undertaken before commencement of this project. 
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5.5.1. Origin and history. 

One plant, reputed to be a very old clone of a thrum Hose in Hose, was obtained from 

Mrs. P. Gossage, Crewkeme, Somerset, in 1989. It was female infertile because of the 

mutant whorl 4 phenotype; male fertility was nonnal. The original phenotype had a 

normal stigma and short style above an elongated ovary with petaloid tissue in the ovary 

wall and an occasional anther inside the upper portion of the ovary wall. The form has 

been phenocopied in Tobacco following ectopic expression of the Anti"hinium B 

function genes Deficiens and Globosa (Davies et all996). One indication that it may be 

an extreme allele of Hose in Hose was the appearBlla' of one plant with a whorl 4 mutant 

phenotype from the reciprocal cross between a pin Hose in Hose and a thrum Hose in 

Hose. (See 5.3.l.above) Each of these parent plants was unrelated to the Slaminoid 

Carpels plant obtained from Mrs. Gossage. One of the 29 thrum Hose in Hose progeny 

had a Slamimid Carpels whorl 4 phenotype, but was lost before being used in any 

crosses. The original Slaminoid Carpels-Hose in Hose (genotype designated as Hih·) 

from Mrs. Gossage was used as a pollen parent to pin wild type Primula vulgaris in 1990 

and progeny were classified in 1992 (Table 5.15). 

pin wild type x Thrum Staminoid Carpels Hose in Hose. 

+ s x Hlb.· S. 
+ s .1. ? s 

Thrum Slaminoid Pin Thrum pin 
Carpels-Hose in Hose in Hose wild type wild type 

Hose 
Hih· S Hih s + S + s 
+ s + s + s + s 

9 0 0 11 

Table 5.15. Test cross oftlarum StIIInbIDId CIupns. 

If Slomimid Carpels-Hose in Hose is heterozygous for Hih·, with mutant phenotypes in 

both whorls 1 and 4 segregating with S expect a for 1: 1 ratio for Slamimid Carpels-Hose 

in Hose to wild type. A.,} analysis was done to test the null hypothesis that there is no 

significant difference of the data from the predicted ratio of 1 :1. 

X'1. for 1 : 1 for Slamlnoid Carpels-Hose in Hose to wild type 

observe 9: 11, expect 10: 10. 

X2 (l dot) = 0.2, P = 0.65 

Results are consistent with the expected 1: 1 ratio. 
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Isolation for the majority of crosses was by use of a net ''tent'' enclosing the seed parent. 

Isolation for the following two crosses was by the removal of whorls two and three 

(petals and anthers) before anther maturity - thus rendering the flower unattractive to 

insect pollinators. This method is the one used by commercial breeders, but cannot be 

100% reliable as an isolation technique unless insects can be effectively excluded from 

the greenhouse. 

5.5.2. More extreme forms of Sttuninoid Ctlrpels. 

In 1992 a pin Hose in Hose was pollinated by a thrum Staminoid Carpels-Hose in Hose. 

Progeny were reared and classified in 1994/95 (Table 5.16). 

pin Hose in Hose x Thrum Staminoid CQ1pels Hose in Hose. 

Thrum 

Hih s 
? s 

Staminoid 
Carpels-
Hose in 
Hose 

Hih*S 
+ s 

4 

Thrum 
Hose in 

Hose 

Hih S 
+ s 

3 

pin 

Hih*S 
+ s 

pin 
Hose in wild type 
Hose 

Hih s ~ 
+ s + s 

2 0 

Table 5.16. Origin of a more extreme from of SIIUIIinoid 
CIIrpels. 

One of the above Staminoid Carpels-Hose in Hose was recorded as being a more extreme 

whorl 4 mutant phenotype in that there was no ovaty wall but instead stamens were in 

whorl 4 on an elongated axis, enclosing naked ovules. This was designated Staminoid 

Carpels-Hose in Hose # 2. Results indicate that the genotype of the female parent must 

be Hih s I Hih s. The 3 thnun Hose in Hose raise the question of whether the isolation 

technique was effective. The more extreme form was used to pollinate a heterozygous pin 

Hose in Hose in 1995 and the progeny classified in 1996/97 (Table 5.17). 
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pin Hose in Hose x Thrum Staminoid Carpels Hose in Hose #2 

Hih s x Hih· S 
+ s -J, ? s 

Thrwn Thrum pin pin 
Staminoid Hose in Hose Hose in Hose wild type 

Carpels-Hose 
in Hose 
Hih·S Hih S Hih s ~ 
+ s + s + s + s 

2 2 4 0 

Table 5.17. Origin of the most extreme form of SflunInDltl 
Carpels. 

One of the Stam;noid Carpels-Hose in Hose plants from the above progeny had whorl 4 

completely converted to anthers (plant # SUPERMAN, because of having no female 

parts)! Results indicate that the genotype of Staminoid Carpels-Hose in Hose # 2 must be 

Hih· S / Hih s. Again the presence of thrum Hose in Hose raises a question regarding the 

efficacy of the isolation technique. 

5.5.3. Subsequent crosses. 

For subsequent crosses seed parents were maintained in an isolation unit with a hinged lid 

and covered with insect proof material, until seed set had begun. This ensured complete 

isolation and tested whether the thrum Hose in Hose obtained in previous crosses resulted 

from firiled isolation. Subsequent crosses observed variable expression of the phenotype, 

investigated the segregation of Hih· with S and Hih with s, viability of whorl 4 pollen, 

and investigated the inheritance of a new pin Staminoid Carpels plant. 

5.5.4. Observations of variable expression of Stadnold Oltpels. 

In 1998 pollen from the original Staminoid Carpels-Hose in Hose of the least extreme 

fonn was used on a homozygous pin Hose in Hose. Progeny were classified in 1999/2000 

(Table 5.18). Results both allowed observation of variable expression of the phenotype in 

the progeny, and tested the efficacy of the new isolation unit. 
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pin Hose in Hose homozygote x original Staminoid 
Carpels Hose in Hose. 

Hih s x Hih*S 
Hih s -i + s 

Thrum pin Thrum pin 
Staminoid Hose in wi/dlype wild type 
Carpels- Hose 
Hose in 
Hose 

Hih*S Hih s ±...J ~ 
+ s + s + s + s 

10 5 0 0 

Table 5.18. Cross to observe expression of Sfllminolil 
Ctltpels. 

As the female parent was a homozygous pin Hose in Hose a ratio of 1: 1 for thrum 

Staminoid Carpels-Hose in Hose: pin Hose in Hose would be expected. A r analysis 

was done to test the null hypothesis that there is no significant difference of the data from 

the predicted ratio of 1 : 1. 

·l for 1: 1 for thrum Staminoid Carpels-Hose in Hose to pin Hose in Hose 

observe 10 : 5, expect 7.5: 7.5 

·l (1 dot) = 1.667, P = 0.196 

Results fit the I :1 ratio of thrum Staminoid Carpels-Hose in Hose to pin Hose in Hose. 

Half of the Stam/mid Carpels-Hose in Hose plants were as the original foon with an 

elongated ovary and half as Slaminoid Carpels-Hose in Hose # 2 with the ovary wall 

converted to anthers enclosing naked ovules. Other genes within the genetic backgroWld 

may modify the degree of expression 

5.5.5. Investigation of segregation of lllh It with Sand Bih with s-

In order to observe segregation of Hih· with Sand Hih with s one of the thrum Staminoid 

Carpels-Hose in Hose progeny and one of the pin Hose in Hose progeny were crossed to 

pin wild type. Results were classified in 2003 and are shown in Table 5.19 and Table 5.20 

respectively. 
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If Staminoid Carpels-Hose in Hose segregates with S expect a ratio of I : I thrum 

Staminoid Carpels-Hose in Hose: pin wild type. A oJ! analysis was done to test the null 

hypothesis that there is no significant difference of the data from the predicted ratio of 

1:1. 

pin wild type x Thrum Staminoid Carpels-Hose in Hose. 

+ S 

+ S 

Thrum 
Staminoid 

Carpels-Hose 
in Hose 
Hih*S 
+ s 

18 

pin 
Hose in Hose 

Hih s 
+ s 

0 

Hih s 
? s 
1brwn 

wild type 

±-..S. 
+ s 

0 

pin 
wild type 

.±...-t! 
+ s 

27 

Table 5.19. Testing of segrfption of IIlh * with S. 

'l for I: 1 thrum Staminoid Carpels-Hose in Hose: pin wild type 

observe 18: 27, expect 22.5 : 22.5. 

-l (l dot) = 1.8, P = 0.179. 

Results fit the 1: 1 ratio for thrum Staminoid Carpels-Hose in Hose: pin wild type. 

Results confirm segregation of Staminoid Carpels-Hose in Hose with S 

+ S 

+ s 
Thrum 

Slaminoid 
Carpels-Hose 

in Hose 
Hih*S 
+ s 

0 

pin wild type x pin Hose in Hose. 

x llihJ 
-t. ? s 

pin Thrum pin 
Hose in Hose wild type wild type 

Hih s ±-S. ±-..£ 
+ s + s + s 

13 0 24 

Table 5.20. Testing of segreptioa of IIlh with So 

If Hih segregates with s expect a ratio of 1: I pin Hose in Hose : pin wild type. A ·l 
analysis was done to test the null hypothesis that there is no significant difference of the 

data from the predicted ratio of 1: I. 
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x: for 1: 1 pin Hose in Hose : pin wild type 

observe 13 : 24, expect 18.5 : 18.5. 

"l (l dot) = 3.27, P = 0.07. 

Results fit the 1: 1 ratio of pin Hose in Hose: pin wild type. 

All pin Hose in Hose progeny (Table 5.32) had normal carpels. 

5.5.6. Investigation of viability of whorl 4 poUen. 

In order to evaluate the viability of whorl 4 pollen. pollen from the whorl 4 anthers of 

Slaminoid Carpels-Hose in Hose # SUPERMAN was used to pollinate a wild type plant. 

Seed was set and five progeny flowered in 2003. All were Hose in Hose, indicating 

homozygosity (Hih/Hih), and three were Slaminoid Carpels-Hose in Hose confirming 

viability of whorl 4 pollen. 

5.5.7. Investigation of the inheritance of pia StlllIIlnoill Ctupds Hog In Hose. 

Until 2001 all Slaminoid Carpels-Hose in Hose were thrum. At that time one pin 

Slaminoid Carpels-Hose in Hose (Fig. 4.10, D) occurred in a flowerbed in the garden. Its 

origin is unknown. To investigate the inheritance of the new pin Staminoid Carpels-Hose 

in Hose two crosses were carried out. First pin Slaminoid Cmpels-Hose in Hose was 

crossed to thrum wild type. Progeny were classified in 2003 (Table 5.21). 

Thrum wild type x pin Staminoid Carpels Hose in Hose. 

+ S 
+ S 

x 
J. 

Thrum pin Staminoid 
Slaminoid Carpels-Hose 

Carpels-Hose in Hose 
in Hose 
Hih· S Hih· s 
+ s + s 

6 4 

Hih· s 
? s 
Throm 

wild type 

+ S 
+ s 

5 

pin 
wild type 

+ s 
+ s 

8 

Table 5.21. Inheritance of pin SttuIIlnoill Ctupels Hose in Hose 1. 

Equal numbers of all four phenotypes are predicted with the thrum Slamimid Carpels

Hose in Hose progeny having genotype ofHih· s I + S. A'l analysis was done to test the 

null hypothesis that there is no significant difference of the data from the predicted ratio. 
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'l for 1: 1 : 1 : 1 for all four phenotypes 

observe 6:4:5:8, expect 5.75:5.75:5.75:5.75. 

1: (3 dot) = 1.52, P = 0.67 

Results fit the prediction of 1 : 1: 1 : 1 for all four phenotypes. 

Observation of the progeny above showed that at first flowering all of the thrum 

Staminoid Carpels-Hose in Hose had stigmas at the mouth of the corolla tube, and all pin 

Staminoid Carpels-Hose in Hose had stigmas lower down. Later pin Staminoid Carpels

Hose in Hose flowers had longer styles and stigmas higher up the corolla tube. 

Elongation of the ovary wall however remained longer in the thrum Staminoid Carpels

Hose in Hose than in the pin Staminoid Carpels-Hose in Hose progeny (see Chapter 4, 

Figure 4.11, E - H). 

Thrum Staminoid Carpels-Hose in Hose progeny were aossed to wild type pin to confinn 

segregation of the new Staminoid Carpels-Hose in Hose allele with pin. Results are 

classified in Table 5.22. 

pin wild type x Thrum Staminoid Carpels Hose in Hose. 

pin 

+ s 
+ S 

Thrum 
Staminoid wild type 
Carpels-
Hose in 
Hose 

Hih· s + S 
+ s + s 

13 5 

x 
J, 

Hih· s 
+ S 

Thrmn pin 
Staminoid wild type 
Carpels-
Hose in 
Hose 

Hih· S. ~ 
+ s + s 

1 0 

Table 5.22. Inheritance of pin Stluninoltl 0upeIs Hose in H~ 2. 

Results in table 5.22 above are as reconied in May 2004, 32 progeny did not flower. 

These initial results do show the new Staminoid Carpels-Hose in Hose allele segregating 

with pin. One recombinant, a thrum Staminoid Carpels-Hose in Hose, shows that in 

recombination Staminoid Carpels also segregates with Hose in Hose. Each of the pin 

Staminoid Carpels-Hose in Hose flowers had an elongated ovary wall that did not reach 

anther level mid way up the corolla tube. 
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5.S.8. Testing expression of homozygous Hose in Hose-Stamlnold Carpels. 

In order to test whether homozygosity for Hose in Hose affected expression of Staminoid 

Carpels, two further crosses were undertaken. It had already been established that the 

most extreme form of Staminoid Carpels # SUPERMAN was also homozygous for Hose 

in Hose (5.5.6 above, also other results not shown). To do this a pin Staminoid Carpels 

(Hih· s I hih s) was crossed to two Hose in Hose plants of different genotypes, one that 

would result in all of the pin Siaminoid Carpels being homozygous for Hose in Hose, and 

the other that would result in all of the thrum Siaminoid Carpels being homozygous for 

Hose in Hose. Results indicate that it is not homozygosity for Hih that is responsible for 

the more extreme phenotypes. Some of the progeny from these crosses can be seen in 

Chapter 4. Both of the pin Slaminoid Carpels-Hose in Hose homozygous for Hose in 

Hose (Fig. 4.11, I and 1) exhibit the same form of expression as the heterozygotes (Fig. 

4.11, D-F). The thrum Staminoid Carpels-Hose in Hose (Fig. 4.11, L) is not as extreme in 

expression as the homozygote shown in Fig. 4.11 C, but is only slightly more staminoid 

than the heterozygotes (Fig. 4.11, G and H). Sibling plants of pin and thrum Siamimid 

Carpels continued to show marked differences in elevation of the staminoid carpels in 

whorl four (Fig.4.11 K and L). This demonstrates that the A gene of the S locus governing 

anther height is not whorl specific but organ specific. 

There were no unexpected phenotypes among any of the progeny when using the new 

isolation unit. Removal of the perianth organs alone, as oommonly used by commercial 

breeders is demonstrably not a reliable form of isolation unless insects can be effectively 

excluded from the greenhouse by some other means 

5.5.9. Summary of results. 

From the above analysis it can be concluded that: 

I. Slaminoid Carpels is a dominant phenotype that originally segregated with both 

Hose in Hose and the S allele of the Primula S locus. 

2. Whorl 4 pollen is viable. 

3. One pin Stamimid Carpels occurred in 2001, a possible recombinant, it has 

Staminoid Carpels linked to both Hose in Hose and the s allele of the Primula S locus. 

4. Thrum progeny from thrum wild type x pin Staminoid Carpels exlubited a more 

elongated ovary wall than their pin siblings. This demonstrates that the action of the A 

gene of the S locus governing anther height is organ specific rather than whorl specific. 
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5.6. sepaloid. 

The sepaloid flower never produces any petals or stamens; it may consists of 4 whorls of 

sepals, or 2 or 3 whorls of sepals and a fimctional or non functional carpel. (Chapter 4; 

4.3.7). Investigation into the inheritance of sepaloid had already beguIi before the 

commencement of this project. 

5.6.1. Origin and history. 

The first batch of sepaloid primroses arose in the "Spectrum" strain of commercial 

primroses grown from Nickersons seed in 1996. Dr. V. Wooley of Nottingham obtained a 

number of these sepaloid primroses. All but two of the plants she obtained were infertile, 

with 4 whorls of sepals; I was given the two plants that had some flowers with caq>els 

and four others. Two of these four did subsequently produce an occasional flower with a 

functional carpel. All subsequent sepaloid plants used in this project were derived by 

breeding from the fertile siblings above, or from their progeny. Crosses were carried out 

to investigate inheritance of the phenotype . 

5.6.2. Inheritance of sepaloid. 

The two fertile sepaloid plants were pollinated by thrum Wild Type pollen in 1996 and 

results classified in 1997 (Table 5.23). 

Two fertile sepaloid plants x thrum Wild '!Ype. 

sep ? x + s 

? ? -!- + S 

Plant Thrum Wild pin 
e Wild 

+ S + s 
se + se + 

se loidNo.l 2 2 
se loidNo.2 11 S 

Table 5.23. First test cross of sepflloiIJ. 

Results indicate that the phenotype is recessive. Expect equal numbers of pin and thrum 

plants. The expected 1: 1 ratio of thrum Wild Type: pin Wild Type is perfect in sepaloid no 

1 results, but numbers are very small. A 'l analysis was done to test the null hypothesis 

that there is no significant difference of the data from the predicted ratio of 1: 1 for plant 

no.2. 
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-l for sepaloid no 2 results 1: 1 for Thrum Wild Type : pin Wild Type 

observed 11 : 5, expect 8: 8. 

12 (l dot) = 2.25, P = 0.13 

Results fit the predicted 1: 1 ratio for Thrum Wild Type: pin Wild Type. 

In order to investigate further whether the phenotype is recessive the above progeny were 

crossed together pin x thrum, and the results classified in 1998 (Table 5.24). 

pin Wild Type (heterozygous fur the recessive sepaloid allele) x Thrum Wild 
Type (heterozygous for the recessive sepaloid allele). 

sep s x seD S 

+ s -1, + S 
Sepaloid Thrum Wild pin 

Type Wild Type 
sel!. s ~ sep s 
sep s seD S + s 

sepa10id no.l progeny results 9 7 4 
se~oid no.2 progeny results 2 13 7 
Total numbers 11 20 11 

Table 5.24. Second test ~ross of septlloiIl. 

Results confirm that the phenotype is recessive. 

If there is linkage of sepaloid to S expect a ratio of 1 :2: 1, fur sepaloid: thnnn Wild Type : 

pin Wild Type. A 12 analysis was done to test the null hypothesis that there is no 

significant difference of the data from the predicted ratio. 

12 for 1 :2: I. for sepaloid: thrum Wild Type : pin Wild Type 

observe 11:20:11, expect 10.5:21:10.5. 

t (2 dot) 0.095, P = 0.95. 

A ratio of I :2: 1 is consistent with sep being in coupling with the s allele of the Primula S 

locus. 

If there is no linkage of sepaloid to s expect a ratio of 1:3 for sepaloid: Wild Type, with 

equal numbers of pin and thnDn Wild Type. We observe 11: 33 sepaloid: Wild Type and 

would expect 11 :33 so there is a perfect ratio of 1:3 for sepaloid: Wild Type. 

If there is no linkage expect a ratio of 1 : 1 for thrum: pin. A X2 analysis was done to test 

the null hypothesis that there is no significant difference of the data from the predicted 

ratio oft: 1. 



x2 for 1: 1 for thrum: pin 

observe 20: 11, expect 15.5:15.5 

X2 (l dot) 2.6, P = 0.12 

Results fit the ratio of 1: 1 for thrmn: pin. 
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If there is complete linkage of sepaloidto s expect 2:1 thrum: pin. A 'l analysis was done 

to test the null hypothesis that there is no significant difference of the data from the 

predicted ratio of2: 1. 

X2 for 2: 1 for thrum: pin 

observe 20: 11, expect 20.66:10.33; 

X2 (l dot) 0.06, P = 0.8 

Results fit the ratio of 1 : 1 for thnun: pin. 

The ratio for 2: 1 for thrum Wild Type : pin Wild Type fits the predicted ratio better than 

1 : 1 and indicates complete linkage of sepaloid to s. The experiment was continued in 

order to produce larger numbers and a more conclusive result. 

5.6.3. Subsequent crosses. 

Two more crosses were carried out to further investigate linkage of sepaloid to the 

Primu/a S locus. These crosses will also confirm that the phenotype is recessive. 

Total numbers indicated that sepaloid was in coupling with the pin allele of the S locus. 

The cross was repeated in subsequent years until a larger number of progeny were 

classified (Table 5.25). 

Wild Type pin (heterozygous for the recessive sepaloid allele) x Thrum Wild Type 
(heterozygous for the recessive sepaloid allele) 

Year 

1998 
1998 
1999 

2000 
2001 
2002 
Totals 

sep s 
+ s 

Cross (pinx 
Thrum) 

sepaloid 1 progeny 
sepaloid 2 progeny 
sepaloid 1 progeny 

x sepiJloid 2 
progeny 

sepaloid 1 progeny 
sepaloid 2 progeny 
sepaloid2 progeny 

x 
-1-

sepaloid 

sep s 
sep s 

9 
2 
6 

10 
9 
6 

42 

sep s 
+ S 

Thrum 
Wild Type 

L.£ 
? s 

7 
13 
6 

11 
22 
15 
74 

pin 
Wild 1'ype 

sep s 
+ s 

4 
7 
3 

6 
S 
10 
35 

Table 5.25. First test for Hwge betwem septIIoiIJ and s. 
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Iflinkage exists between sep and s expect 1 :2:1 for sepaloid· thrum Wild lYpe : pin Wild 

Type. A 'l analysis was done to test the null hypothesis that there is no significant 

difference of the data from the predicted ratio. 

'l for 1 :2: I for sepaloid" thrum Wild Type : pin Wild lYpe. 

observed 42:74:35, expected 39.25:78.5:39.25 

'l (2 dot) = 0.709, P =0.7. 

Results are consistent with the ] : 2 : ] ratio expected of sepaloid· thrum Wild Type : pin 

Wild Type. 

If there is linkage of sepaloid to s expect a ratio of2: I thrum: pin wild type. A 'l analysis 

was done to test the null hypothesis that there is no significant difference of the data from 

the predicted ratio. 

,l for 2:] thrum: pin Wild Type 

observed 74:35, expect 72.66: 36.33 

·l (I dot) = 0.07, P = 0.79 

Results are consistent with a ratio of2: I thrum: pin Wild Type. 

If there is no linkage of sepaloid to s expect a ratio of I:] for pin wild type : thrum wild 

type. A ·l analysis was done to test the null hypothesis that there is no significant 

difference of the data from the predicted ratio. 

'l for 1: 1 for pin Wild Type : thrum Wild Type 

observed 35: 74, expect 54.5:54.5 

12 (l dot) = 13.96, P = 0.0002 

Results are not consistent with a ratio oft:] for pin Wild Type: thrum Wild Type. 

Results confirm linkage between sep and s. 

A cross of wild type thrum plants canying the recessive allele for sepaloid were back

crossed to a pin sepaloid and the progeny classified in subsequent years (Table 5.26). (As 

the mating type of the sepaloid is not always physically obvious, plants that had already 

been used for other crosses and ~ known to be genotypically pin sepaloid were used). 
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pin sepaloid x Thrum Wild Type heterozygous for the recessive sepaloid 
allele. 

sep s x + S 
sep s J, sep s 

sepaloid Thrum pin 
Wild Type Wild Type 

sep s + S ~ 
sep s sep s sep s 

2000 Thrum wild type 7 18 0 
from sepaloid 1 

2001 Thrum wild type 3 6 0 
from sepaloid 2 

2002 Thrum wild type 18 20 0 
from sepa/oid 2 

2003 Thrum wild type 7 1 
from sepaloid 2 

Totals 3S 45 0 

Table 5.26. Second test for Hnkage between sqtIIDld and 6. 

Ten plants from the 2001 progeny were lost before they could flower. 

24 plants from 2003 did not flower. 

If there is complete linkage between sepaloid and the s allele of the Prlmula S locus 

expect 1: 1 sepaloid: Wild Type. A'l analysis was done to test the null hypothesis that 

there is no significant difference of the data from the predicted ratio. 

X2 for 1 : 1 sepaloid: W i/d Type 

observed 3S : 45; expect 40 : 40 

X2 (1 dot) = 1.25 P = 0.26. 

Results fit the predicted 1:1 ratio for sepaloid: Wild Type. 

Results confinn tight linkage between sep and s. 

5.6.4. Summary of results. 

From the above analysis it can be concluded that: 

1. The sepaloid phenotype is recessive. 

2. Tight linkage exists between sepaloid and the s allele of the Prlmu/a S locus. 
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5.7. double. 

Primulas of double form usually have inner whorls converted to petals (see Chapter 4, 

4.3.8). They have been cultivated from at least the sixteenth centmy (see Chapter 1, 

1.5.1). The inheritance of the phenotype has been known since at least the early part of 

the twentieth centmy, and that the allele for the phenotype is recessive has been 

subsequently commented on in horticultural literature (e.g. Genders 1959). In order to 

work with the double phenotype it is necessary to find viable reproductive organs on 

what is generally an infertile flower. Some commercial double Primula flowers produce 

an occasional anther on one or more petals, others may have a core of stamens or a petal 

stamen mix in the centre of the flower. The majority of commercial double flowers are 

fully sterile. Even when not fully sterile, only an occasional flower may produce anthers, 

so that in order to find pollen very many flowers may need to be pulled apart. The second 

requirement is that such pollen should be discovered at a time when a suitable female 

parent is also in flower. Because of the thrum incompatibility system (see Chapter 2) pin 

Wild Type is the ~ parent of choice for the first cross. Results from this will allow the 

genotype of the double parent to be determined and provide fertile single plants canying 

the recessive allele for double fur future use. It is not known how many alleles for double 

may exist in the population. Before the inheritance of the phenotype was known double 

primroses were propagated vegetatively from plants that occurred naturally. How many 

of these provided pollen for breeding purposes is unknown and it is possible that the older 

cultivars provided the double alleles found in the more recent cultivars. However new 

double Prlmulas do still occur naturally from time to time and it is possible that these 

may have new mutations giving new double alleles. Alternatively they could simply be 

the result of the same older alleles circulating in the population. Some investigation of the 

double phenotype had taken place befure the commencement of this project. 

5.7.1. Origin and history. 

Initially crosses using double primroses were undertaken fur purely horticultural reasons. 

The first, in 1993, used pollen from the commercial cultivar ''Chocolate Soldier", and 

pollen from a double seedling from Rosetta Jones' seed. Each of these was used to 

pollinate a pin Wild Type gold-laced polyanthus with the intention of breeding some laced 

doubles. Seed set was low and seed was pooled from the two crosses. The 17 resulting 

single progeny were all pin flowered with laced edges to the petals. This indicated that 

both double plants used as pollen parents were genotypically pin. The three progeny with 
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the best lacing were selected and labeled no's 1,2, and 3 canying the recessive double 

allele. The double no. 1 was self-pollinated in 1995 and of the 12 progeny to flower in 

1997 two were laced double, both with a central core of stamens. These will also be 

genotypically pin. Pollen obtained from the double Jack in the Green cultivar "Dawn 

Ansell" in 1995 (and again later in 1997 and 1998), was used on pin Wild Type cultivars. 

Results of these crosses are not shown but all gave only pin progeny, indicating that 

"Dawn Ansell" too is genotypically pin. One of the progeny canying the recessive double 

allele from "Dawn Ansell" was self-pollinated and the resulting 11 plants flowered in 

spring 1999. Five were double and 6 were pin wild type. If the plant as expected canied 

the recessive double allele from "Dawn Ansell" then expect a ratio of3:1 for Wild Type: 

double, but numbers above are below the limits for Chi Square testing. 

Despite being from a self-pollinated plant that will therefore have had only one double 

allele from the parent "Dawn Ansell", the five double plants varied in form at first 

flowering. One was fully double with indeterminate whorls of petals, one had a 

petal/stamen mix in the centre of the flower, two had a central core of stamens and the 

last had a central core of stamens surrounding naked ovules. All were raised in the same 

environmental conditions. This indicates that the background genotype in which the 

double alleles are being expressed must influence expression. 

Individual flowers of double with pollen were obtained from Peter Ward in 1995. These 

were used to pollinate pin Wild 'l)Ipe flowers. Resultant progeny were ofboth pin and 

thrum form indicating that the double primroses from Peter Ward were genotypically 

thrum. In 1996 a thrum laced edge Jackanapes (calyx of both leaf and petal) was 

pollinated by the double cultivar "Lilian Harvey" to give progeny of wild type, Hose in 

Hose (petaloid calyces), Jack in the Green (leafY calyces) and Jacmnapes, all canying 

the recessive allele for double. The Jack in the Green was subsequently pollinated by the 

Hose in Hose to give progeny of wild type, Jack in the Green, Hose in Hose, double, and 

the first recorded Jacl«mapes-double. Subsequently Hose in Hose-double were also 

produced. In 1997 pollen from the old double "Bon Accord, lilac" (the only instance 

known of this plant producing any pollen), was used to pollinate another pin wild type 

carrying the recessive allele for double from "Dawn Ansell". This resulted in 12 progeny, 

6 double and 6 Wild Type pin. The Wild Type carry only the recessive dbl allele obtained 

from "Bon Accord lilac", but the doubles have one dbl allele from both "Dawn Ansell" 
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and "Bon Accord lilac". These also showed variability in form at first flowering during 

spring 1999. Three had fully double flowers with indeterminate whorls of petals, one had 

fully double flowers with an occasional stamen on inner petals, and two had a 

peta1/stamen mix in the centre of the flower. None bad a core of stamens or naked ovules 

as observed in the double progeny from self-pollination (that flowered the same season), 

and it is possible that some interaction between the two dbl alleles from different parents 

is also influencing expression. 

In 1 m, some different fonus of double flowers were obtained from Peter Ward. There 

was considerable variation in form, ranging from semi-double with organ order of sepal, 

petal, petal, stamen, stamen, indeterminate, to a central core of mixed petals and stamens, 

to fully double flowers as seen on commercial cultivars. The flowers were from plants 

that he bad bred himself, but not all were from the same genetic baclcground. Also in 

1997 a new very recently discovered double polyanthus "Lin Rogers" was obtained. It 

had flowers with organ order of sepal, petal, petal, sepal, naked ovules, and provided 

another variation in the form of the double flower. The variation in form observed 

prompted the question of whether or not all forms of double were allelic. Peter Ward's 

flowers, (a double, a semi-double Jack in the Green and another semi-double) were used 

in various horticultural crosses in order to produce more doubles. The latter semi-double 

was used as pollen parent on my wild type no.3 (canying the recessive allele for double 

with organ order of sepal, petal, petal, petal, indeterminate), and the progeny classified in 

1998 (Table 5.27). 

Wild 'JYpe pin heterozygous for the recessive double allele x Ward semi
double. 

dbl s 

+ s 

double 
dbl s 
dbl ? 

6 

x dbl ? 
dbl s 

Thrum Wild Type pin Wild Type 
dbl S dbl s 
+ s + s 

4 2 

Table S.l7. De~rmiDinl the It'Mtype of the "Ward" &emI-doubk. 

Results show that this semi-double is genotypically thrum. 
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Where a plant is homozygous for the recessive double allele and is crossed to a plant 

heterozygous for the recessive double allele, expect a ratio of 1: 1 double: Wild Type 

Results are a perfect I: 1 ratio. 

One of the double plants from the above progeny was a semi-double, with the same form 

as the pollen parent from Peter Ward. Pollen from this semi-double, of organ order sepal, 

petal, petal, stamen, stamen indeterminate was used to pollinate pin Wild Type no. 2 

canying the recessive double allele for a fully double flower. The fully double flower had 

indetenninate whorls of petals but occasionally produced anthers in the centre of the 

flower. Twelve progeny resulted, and the first six to flower were classified in 1999 (Table 

5.28). 

Wild Type pin heterozygous for the recessive double allele x semi-double. 

dbl s 

+ S 

double 
dbl s 
dbl ? 

3 

x dbl ? 

dbl s 

Thrum Wild Type 
dbl S 
+ s 

2 

pin Wild Type 
dbl s 
+ s 

1 

Table 5.28. Test of allelism betweea fully dollbk and sl!llll"'lIble. 

Results are consistent with the semi-double being allelic to fully double as double plants 

occurred among the progeny. The three doubles classified from the latter cross were of 

semi-double form, with a central core of stamens at first flowering. The presence of Wild 

Type thrum in the progeny indicates that 1his semi-double is genotypically thnDn. Those 

progeny that did not flower in 1999 were lost and could not be classified. 

5.7.2. Subsequent crosses. 

Continued investigation of double flowers followed three lines of inquiry: 

1. Continued investigation of whether all forms of doubling are allelic. 

2. Continued investigation into the variability of expression of double. 

3. Investigation of whether any linkage exists between dbl and the S locus. 

Results from some crosses give insight into more than one of these. 
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In order to carty out these investigations it was necessary to obtain pollen from double 

flowers and to raise Wild Type progeny carrying the recessive allele for double from a 

nwnber of different double plants. This also reveals the genotype of the double parent. 

S. 7.3. Investigation of the new double polyanthus "Lin ROlen". 

Three cross were undertaken to investigate the new double polyanthus "Lin Rogers" of 

organ order of sepal, petal petal, sepal, naked ovules. The plant produced two anthers on 

one flower only, late in the flowering season of 1998 (this was the only pollen ever 

produced by this plant which was later lost in 2003). Pollen was used to pollinate a pin 

gold-laced Jack in the Green polyanthus that was still in bloom when the majority of 

primroses and polyantbuses were finished. The resulting 11 progeny were classified in 

1999 as 5 thrum wild type, 2 pin wild type, 3 thrum Jack in the Green, and 1 pin Jack in 

the Green. Results show the double polyanthus "Lin Rogers" to be genotypically thrum. 

All of the progeny will be heterozygous recessive for the double allele from the double 

polyantbus "Lin Rogers" and can be used to test for allelism to other fonns of double 

flower. 

Wild Type progeny carrying the recessive double allele for "Un Rogers" were crossed 

together pin x thrum in 1999 and results classified in 2000/200 1 (Table 5.29). 

pin Wild Type (heterozygous for the recessive double allele from "Lin 
Rogers") x thrum Wild Type (heterozygous for the recessive double allele 

from "Lin Rogers") 

double 
s dbl 
S dbl 

14 

s dbl 
s + 

x 
J, 

S dbl 
s + 

pin Wild Type 
s ? 
s + 

25 

Thnnn Wild 1}Ipe 
S + 
s ? 

14 

Table S.29. Invesdgation of the new double poIy_nthas. 

As double is a recessive character expect a ratio of 3 Wild Type : 1 double. A 'l analysis 

was done to test the null hypothesis that there is no significant difference of the data from 

the predicted ratio. 
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.. f! for 3 Wild Type : 1 double 

observed 39 +: 14 dbl, expect 39.75 Wild Type: 13.25 dbl. 

'l(1 dot), 0.05, P = 0.8. 

Results fit the predicted ratio of3 Wild Type: 1 double. 

If there is no linkage of double to the S locus expect a ratio of 1 : 1 pin Wild Type : thrum 

Wild Type. A 'l analysis was done to test the null hypothesis that there is no significant 

difference of the data from the predicted ratio . . 
.. c for 1: 1 pin Wild Type : thrum Wild Type 

observed 25:14, expected 19.5:19.5 

X2 (1 dot) = 3.1, P = 0.078 

Results fit the predicted ratio of 1 : 1 pin Wild Type : thrum Wild Type and indicates that 

there is no linkage between double and the S locus. 

If there is linkage of double to the S locus expect a ratio of 1:2 pin Wild Type : thrum 

Wild Type. A 'l analysis was done to test the null hypothesis that there is no significant 

difference of the data from the predicted ratio. 

·l for 1:2 pin Wild Type : thrum Wild Type 

observed 25:14, expect 13:26 

X2 (1 dot) = 16.6, P = 0.000046 

Results are extremely deviant from the predicted ratio of 1:2 pin Wild Type : thrum Wild 

Type and show no linkage of double to the Slocus. However if linkage was very loose 

very large nwnbers of progeny would be required to identify the linkage. 

Variability of expression of double was observed. All double progeny had a whorl of 

inner sepals in the fourth whorl at first flowering. Variations that occmred in later flowers 

included a reduction in the size of the inner sepals and additional whorls of petals in some 

plants. Two plants had a flower within a flower phenotype, but not on all flowers; one 

plant repeating this to give three sets of inner sepals between whorls of petals on 

occasional flowers. 

5.7.4. Tests to discover whether aU differeDt forms of tIoIIbk are allelic. 

The form of fully double flowers with indeterminate whorls of petals is notably different 

from semi-double flowers with organ order of sepal, petal, petal, stamen, stamen. Both 

are notably different from the double polyanthus "Lin Rogers" with organ order of organ 
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order of sepal, petal petal, sepal, naked owles. Crosses were carried out to investigate 

whether all of these different forms are allelic. 

The first cross to test allelism was a cross between Wild Type pin canying the recessive 

double allele for "Dawn Ansell" (that has indeterminate whorls of petals with sometimes 

occasional anthers on inner whorls ofpetaIs), and a semi double (with organ order of 

sepal, petal, petal, stamen, stamen), carried out in 2001, and classified in 2002 (Table 

5.30). 

Wild Type pin (heterozygous for the recessive double allele 
from "Dawn Ansell") x semi-douhle. 

s dbl x ? dbl 
s + -!- s dbl 

Thrum Wild Type pin wild Type double 

S dbl s + ? dbl 

s + s + s dbl 

4 8 15 

Table 5.30. AUe6sm Cross 1. 

The two forms are allelic since double plants oCCUlTed in the progeny. 

Ifno linkage exists between double and the S locus expect a ratio of 1:1 for thrum Wild 

Type : pin Wild Type. A -lanalysis was done to test the null hypothesis that there is no 

significant difference of the data from the predicted ratio. 

X2 for I: 1 for thrum Wild Type : pin Wild Type 

observe 4:8, expect 6:6. 

X2 (1 dot) = 1.33, P = 0.248. 

Results fit the predicted ratio of 1: 1 fur thrum Wild Type : pin Wild Type. 

The semi-double is genotypically thrum. The majority of the doubles (i.e. 1 1 of 1 S) from 

the above cross, had stamens in the centre of tile flower at first flowering, the remaining 4 

had a petal/stamen mix in the centre at first flowering. 
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To investigate whether the double allele of the double polyanthus "Lin Rogers" is allelic 

to the double allele of the commercial double Jack in the Green, "Dawn Ansell" the 

following cross was undertaken. Pin Jack in the Green, carrying the recessive allele for 

double Jack in the Green "Dawn Ansell" was pollinated by a thrum Jack in the Green 

carrying the recessive allele for double polyanthus "Lin Rogers" in 1999, and progeny 

classified in 200012001 (Table 5.31). 

pin Jack in the Green (heterozygous for the recessive double allele from no "Dawn 
Ansell") x Thrum Jack in the Green (heterozygous for the recessive double allele 

from "Lin Rogers'') 

Jig s dbl x Jig s + 
+ s + .J, + S dbl 

Thrum pin Jack in double Thrum pin double 
Jack in the the Green Jack In the Wild Type Wild Type 

Green Green 

J ? ? J s ? J ? dbl + s ? + s ? + ? dbl 
? ? ? ? s ? ? ? dbl + S ? + s ? + ? dbl 

8 8 6 2 2 0 

Table S.31. Allelism Cross 2. 

Results confirm allelism to the double "Dawn Ansell" since despite the very different 

organ order observed in flowers of the two plants double plants were obtained among the 

progeny. 

No linkage patterns were observed in these crosses, but numbers are low, loose linkage 

would require larger numbers to identifY. 

The flowers were examined at first flowering as part of tile investigation of variability of 

expression of double. Flowers from all six doubles were found to be determinate - all bad 

some naked ovules in the centre. Subsequent flowers sometimes produced occasional 

inner sepals, or sepal material on iona' petals. Some flowers on some plants only, had an 

occasional inner whorl of inner sepals that were fully developed and leafy as the whorl I 

Jack in the Green sepals. One Jack in the Green-double produced some flowers that had 

normal carpels. Fertility of the carpels was investigated (see 5.7.5). 
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Another smaller cross, wild type pin canying the recessive allele for double ''Lin Rogers" 

x thrum Jack in the Green canying the recessive allele for double ''Lin Rogers" was 

undertaken at the same time and classified in 200012001 (Table 5.32). 

Wild Type pin heterozygous for the recessive double allele from "Lin 
Rogers" x thrum Jack in the Green heterozygous for the recessive double 

allele from "Lin Rogers" 

+ s dbl x Jig S dbl 
+ s + -J, + s + 

Thrum pin Thrum pin double double 
Wild Type Wi/dType Jack in Jack in Jack in 

the Green the Green the Green 
+ S dbl + s + Jig S ? Jig s + + s dbl Jig S dbl 
+ s + + s ? + s + + s ? + ? dbl + s dbl 

2 5 2 2 7 0 

Table 5.32. Allelism Cross 3. 

The flowers were examined at first flowering as part of the investigation of variability of 

expression of double. All double flowers from the above cross had inner sepals in whorl 4 

at first flowering. 

5.7.5. Investigation of fertility of the JtlCk In the G~en-dDubk with carpels. 

The Jack in the Green-double with cmpels was pollinated in order to ascertain fertility; 

seed was collected and progeny were subsequently raised from the cross, fertile semi

double Jig x double Hose in Hose (with a central core of stamens) (Table 5.33). The 

normal carpels of the Jack In the Green-double were found to be fully fertile. As 

expected all progeny were double, 8 were double- Jack in the Green, 7 were double, 1 

was double-Hose in Hose and 2 were double-Jaclamapes. Results show the Jack in the 

Green-douhle to be allelic to the Hose in Hose-double. Ifrecombination is OCCUlTing 

freely between double and the other mutant phenotypes Jack in the Green and Hose in 

Hose then expect equal numbers of all phenotypes but numbers are too low for statistical 

analysis. The flowers were examined at first flowering as part of the investigation of 

variability of expression of double. There was considerable variability in the flower 

structure of the progeny (see Chapter 4, Fig.4.l9). The plant did not produce fertile 

carpels again. 
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5.7.6. Investigation of linkage between double and the S locus. 

There had been no evidence of linkage between double and the S locus, but large 

numbers are required to observe loose linkage patterns. To investigate whether there 

might be loose linkage patterns between the recessive allele for double and the Primula S 

locus a thrum Wild Type canying the recessive allele for double flowers was pollinated 

from a double that was known to be genotypically pin. It can be difficult to obtain large 

numbers due to the filct that little or no pollen is produced by many, ifnot most, double 

flowers, but in 2002 better pollen production resulted in better seed production and 171 

progeny were eventually raised .. Two of these were lost before they flowered. Results 

were classified in 2003 (Table 5.33). 

Thrum Wild Type (heterozygous for the recessive double allele from 
semi-double) x pin double. 

S dbl x s dbl 
s + .1, s dbl 

Thrum pin double 

Wild'/jlpe Wild'/jlpe 

s dbl s dbl s dbl 

S + s + ? dbl 

IS 21 133 

Table 5.33. Investigation of linkage between 4oIIb/e and the S locus. 

If there is no linkage of dbl to the S locus expect equal numbers of pin and thrum progeny 

and equal numbers of Wild Type to double. A X2 analysis was done to test the null 

hypothesis that there is no significant difference of the data from the predicted ratio. 

X2. for 1:1 for pin Wi/dType: thnun Wild Type 

observe 21 : 15; expect 18 : 18 

X2 (1 dot) = 1.0, P = 0.317 

Results fit the predicted ratio of pin Wild Type : thrum Wild Type. 

X2. for 1: 1 for Wild Type : double 

observe 36 : 133; expect 84.5 : 84.S 

X2 (1 dot) = 55.67, P = 0 

Results do not fit the predicted ratio of pin Wild Type: thrum Wild '/jIpe. 
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The hugely disproportionate number of double plants in the progeny is unexpected. It 

could be due to viability effects from other genes in the genetic background. 

Alternatively if double was not fully penetrant the thrum Wild Type parent might have 

been genotypically double, but there is no previous evidence for this hypothesis. As the 

wild type parent died the cross cannot be repeated. 

Despite both parent doubles having stamens in the centre of the flower all double progeny 

were entirely without any stamens in any position at first flowering.; at later flowering 

some doubles had stamens in the centre of the flower and one plant had a few flowers 

with nonnal carpels. 

s. 7.7. Summary of results. 

From the above analysis it can be concluded that: 

I. The double phenotype is recessive. 

2. The phenotype of the double flower is extremely variable in fonn, even in some 

instances within an individual plant. 

3. All double plants tested so fin' have been found to be allelic. 

4. No linkage has been observed. 

S.8. reduced petlll. 

All investigation of redMced petal was done during this project. The phenotype first 

occwred in the nursel}' of Dr. R. Brumpton in 1999 in a line of very inbred silver-laced 

polyanthus. The petals were thicker and much reduced giving them an immature 

appearance. Colour is fully or partly absent from the adaxial petal surface and the conical 

papillate cells of the adaxial epidennis are not fully developed (see 4.3.l1).Leaffonn is 

broader and more "frilled" at the edges than Wild Type. In 1998 plants oftbis phenotype 

was obtained in both pin and thrum, but when crossed together seed set was vay poor. 

Seed set was also poor when used as a ~ parent poIJinatcd by Wild 1'ype, but when used 

as a ~ parent seed set was normal. A cross of pin silver-laced polyanthus x thrum 

reduced petal polyantbus (genotype designated as 1$), produced only three progeny 

three pin and one tIuum Wild Type, indicating that the phenotype was likely to be 

recessive. 
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5.8.1. Investigation of whether or not there is any Hnkage between reduud petsl and 

the S locus. 

A cross of thrum silver laced polyanthus heterozygous for the recessive allele for reduced 

petal x pin reduced petal was undertaken to test for linkage patterns. The parents were 

sibling progeny from the cross Pin Hose in Hose heterozygous for the recessive allele 

reduced petal x thrum reduced petal (shown in Chapter 6, Table 6.5). Results are 

classified in Table 5.34. 

Thrum Wild Type beterozygous for the recessive allele for reduced petal x pin 
reduced petal polyanthus. 

rdp S x rdp s 
+ s .j, s 

Thrum Wild pin Wild Type 

+ S + s s S 

11 S S S s 
27 34 26 23 

Table 5.34. Test to esmbUsh whether or not there is any linkage between 
redllct!tl pdJII and the S locus. 

If there is no linkage between reduced petal and the S locus expect a ratio of I : I for 

reduced petal: Wild Type. A ·l analysis was done to test the null hypothesis that there is 

no significant difference of the data from the predicted ratio. 

X2
• for 1: 1 for reduced petal: Wild Type 

observe 49 : 61; expect 55 : 55 

"I: (1 dot) = 1.3, P = 0.25 

Results are consistent with a 1: I ratio of reduced petal: Wild Type. 

If the ~ parent is heterozygous Ss expect a ratio of 1: 1 for thrum to pin. A 'l analysis 

was done to test the null hypothesis that there is no significant difference of the data from 

the predicted ratio. 

,l for 1 : 1 for thnun to pin 

Observe 53: 57; expect S5 : S5 

X2 (1 dot) = 0.15, P = 0.7 

Results are consistent with a 1:1 ratio of thrum : pin. 
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A 'l analysis was done to test the null hypothesis that there is no significant difference of 

the data from the predicted ratio of 1: I: 1 : 1 for all possible phenotypes. 

X2 for 1 : I : 1 : 1 for all possible phenotypes 

observe 27 :34 : 26 : 23; expect 27.5 :27.5 : 27.5: 27.5 

"t: (3 dot) = 2.36, P = 0.5 

Results are consistent with a I: I: 1 : I ratio for all possible phenotypes. Results confhm 

that there is no linkage between reduced petal and the S locus. 

At the seedling stage the Wild Type and reduced petal phenotypes could be identified by 

the different leaf forms. The reduced petal leaves were paler in colour, thinner, wider, 

and more frilled at the edges. Expression of the phenotype was variable in the petals. This 

was evaluated by dividing the degree of expression into categories as shown in Fig. 5 .35. 

reduced petal Thrum reduced petal pin 

Type 1 Type2 Type3 Type 1 Type2 Type3 

18 4 4 12 5 6 

Table 5.35. EvaluatiOD of the degree of expression of the 
reduced peIIIl pbenotype in the tlowen. 

Type I = the most extreme phenotype, Type 3 = the least extreme phenotype, and Type 2 

= a phenotype intermediate between 1 and 3. 

The majority of the progeny were clearly defined but a few of the Type 3 forms were 

very similar to Wild Type and deciding how to categorise the phenotypes became more 

difficult. This was accentuated by some alteration of the leaf form in a few of the mature 

progeny that were potted into larger pots for growing on, so that three Wild Type plants 

now had leaves that exhibited some \Dldulation of the edges, and two reduced petal plants 

had leaves that were slightly less undulating. When the phenotype was expressed only in 

the genetic background of silver laced polyanthus, in which it first occurred, it maintained 

both flower type and leaf type as being very distinct from Wild Type. In the new genetic 

backgrom1d, introduced by breeding with Hose in Hose (see Chapter 6,6.3.3) the 

differences between the leafphenotypes have become less distinct. The flowers have also 

become larger and less reduced in appearance, but continue to exJnbit loss of colour on 

the adaxial swface of the petals. Further investigation of variability of expression of the 

reduced petal phenotype is required. 
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5.8.2. Summary of results. 

From the above analysis it can be concluded that: 

1. The reduced petal phenotype is recessive. 

2. Expression of the phenotype is variable. 

3. No linkage has been observed. 

5.9. Oak leaf. 

All investigation of the Oak Leaf phenotype was done dming this project. It was first 

discovered in 1999 in Ken Foster's nursery Nottingham, by Dr. R. Brompton. Its 

parentage and horticultural origin is unknown. The lobed leaves are similar in shape to 

oak leaves and floral organs in whorls 1 and 2 are attenuated. The original Oak Leqf plant 

was thrum (genotype designated as Ok/), and crosses carried out by Dr. Brompton in 

1999 established that it was a dominant phenotype (Old/old) that could be expressed with 

mutant phenotypes Hose in Hose, Jack in the Green and Split Per/anth. An assorted 

mixture of young seedlings from the above crosses were given to me in 1999. On 

flowering they included one thrum Oak Leaf, along with a number of pin Oak Leqfplants. 

A double mutant, Hose in Hose-Oak Leaf also occurred. I received a ramet of the original 

plant when it was divided in spring 2000, and it was used along with the above seedlings 

for genetical analysis of the Oak Leaf phenotype. 

5.9.1. Genetic analysis of the original thrum 0tIk Leaf. 

A test cross of Pin wild type x thrum Oak Leafwas undertaken, seed sown in Dec. 2000, 

and initial scoring of seedlings by leaf morphology done in spring/summer 200 1 (Table 

5.36). As Oak Leaf is a dominant phenotype, a ratio of 1: 1 for Oak Leaf: wild type 

seedlings can be expected. 

Pin wild type x thrum Oak Leaf. 
+ s x QIeI S 
+ s J, + S 

(An additiooal4S seedlings firiled to germinate fully in that the 

cotyledons failed to emerge from the testa). 

Table 5.36. ClalSif'lcatiOD of tile ntio of Od lafseedIiDgs to wIItl 
IyJM seedH..., 1. 
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A 'l analysis was done to test the null hypothesis that there is no significant difference of 

the data from the predicted ratio of 1 : 1 for Oale Leaf: wild type. 

X2 for I: 1 for Oak Leaf: wild type 

observe 112:54, expect 83:83 

X2(1 dot) = 20.2. P = 0.000007 

Results are very significantly deviant from the expected I: I ratio for a dominant 

heterozygote crossed to wild type. 

The deficit of wild type cannot be adequately explained. Ifit is possible that the 45 fililed 

seedlings may have been all wild type, this would give a closer approximation to I: I, but 

this cannot be assumed. The original Oak Leaf occwred in a commercial line of 

primroses that would have been rigorously selected for high and uniform germination. 

The wild P. vulgaris in contrast generally has erratic germination. It is poSSIble that the 

factor(s) responsible for high and uniform generation are segregating with the Oak Leaf 

phenotype. 

Progeny were fully classified as they flowered during 200112 (Table 5.37). 

pin wild type x Thrum Oak Leaf. 

+ s x Old ? 
+ s J, + ? 

Thrum Oak Leaf pinOakLeqf Thrum wild Type pin wild type 

Old S Old s + S + s 
+ s + s + s + s 

2 94 25 2 

Table Sol7. Tat cross of the origiDaI Thrum 0tIk LetJj. 

In addition 18 Oak Leqf and 29 wild type were lost before scoring. Results show Oak Leaf 

and the s allele of the Primula S locus are in coupling. Four recombinants in a to1Bl of 123 

progeny scored give a map distance of 3.30/0. 

As Oak Leafis dominant expect a ratio of 1: 1 for Oak Leaf: wild type. A X2 analysis was 

done to test the null hypothesis that there is no significant difference of the data from the 

predicted ratio 
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Observe 114 : 58; expect 86: 86 

x2(1 dot) = 18.2, P = 0.00002. 
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Results are significantly deviant from the predicted ratio of I : 1 for Oak Leaf: wild type. 

Again it is possible that the factor(s) responsible for high and unifollD generation are 

segregating with the Oak Leaf phenotype since the original Oak Leaf occurred in a 

commercial line of primroses that would have been rigorously selected for high and 

uniform germination. The wild P. vulgaris in contrast generally has erratic germination. 

This hypothesis could be tested by using a commercial wild type cultivar rather than a 

wild P. vulgaris. 

The original Oak Leaf plant did not initially set seed and was thought to be female 

infertile. However in 2001 the reciprocal cross Oak Leqfthrum x wild type pin (Tables 

5.38 and 5.39) succeeded. Control for this cross was by removal of the perianth organs, 

thus rendering the flower unattractive to insects. The plant was weak and not suitable for 

enclosure in an isolation unit. It died after seed harvest. 

Original thrum Oak leafx pin wild type. 

Q!Ll. x ±-..! 

+? .t. + s 

Oak Leaf wild type 

23 21 

Table 5.38. ClassiftcatiOD of the ntio of 0tIk L«If 
seedlings to wild ~ seedlings, 1. 

As Oak Leqf is dominant expect a ratio of I : 1 for Oak Leaf: wild type. A X2 analysis was 

done to test the null hypothesis that there is no significant difference of the data from the 

predicted ratio. 

X2 for 1: 1 for Oak Leaf: wild type 

observe 23 :21, expect 22:22 

X2 (1 dot) = 0.091, P = 0.76. 

Results fit the predicted 1: 1 ratio for Oak Leaf: wild type 



170 

Of the 44 seedlings in Table 5.46, II with wild type leaves were lost as seedlings. Thirty 

three plants were raised to maturity but four OaleLeafand 3 wild type plants were lost 

before flowering. Final classification is given in Table 5.39. 

Original Thrum Oale leafx pin wild type. 
Old? x ~ 

+ ? + S 

Thrum Oak Leaf Pin Oale Leaf Thrum wild type Pin wild type 

Old S Old s + S + s 
+ s + s + s + s 

3 16 7 o 

Table 5.39. Reciprocal test cross of tile origiDalThrum 0.1 LeG/. 

Two thirds of the wild type progeny (14 plants) were lost before matwity, therefore no 

accurate map distance can be calculated for this cross as it is possible that the failed wild 

type progeny could have included recombinants. 

5.9.2. Testing of one thrum OM Lea/for coupUng of Okl with the S aDele of tile 

PrbnllIII S locus. 

One thrum Oale Leaf occurred among the assorted seedlings that I was given by Dr. R, 

Brompton (see 5.10). This was test crossed reciprocally to wild type in 2000 in order to 

discover whether it was a recombinant that now bad Oale Leaf in coupling with the S 

allele of the Primula S locus. Initial scoring of seedlings by leafmorpbology was done in 

spring/summer 2001 (Table 5.40). 

Thrum Oale Leafx pin wild type. 
OldS x + s 

+ S + S 

OaleLeaf wild type 

14 14 

reciprocal 
20 39 

Total nmnbers 
34 53 

Table 5.40. Classiftcation of the ntio ofOllk LeGI 
seedHnp to wild ~ seallinp, 3. 
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As Oak Leafis a dominant phenotype expect a ratio of 1: 1 fur Oak Leaf: wild type. The 

cross of thrum Oak Leaf x pin wild type had a perfect ratio of 1: 1 for Oak Leaf: wild 

type. A "J! analysis was done to test the null hypothesis that there is no significant 

difference of the data from the predicted ratio of 1 : 1 for Oak Leaf: wild type fur the 

reciprocal cross. 

.J! for 1 : 1 for Oak Leaf: wild type for the reciprocal cross 

observe 20: 39, expect 29.5: 29.5 

X2 (1 dot) = 6.12 P = 0.013. 

Results do not fit the predicted 1: 1 ratio for Oak Leaf: wild type. There is a deficit of Oak 

Leaf. 

A X2 analysis was done to test the null hypothesis that there is no significant difference of 

the data from the predicted ratio of 1 : 1 fur Oak Leaf: wild type for total numbers. 

X2 for 1 : 1 for Oak Leaf: wild type for total numbers 

observe 34: 53, expect 43.5:43.5 

X2 (l dot) = 4.1, P = 0.04 

Results do not fit the predicted 1:1 ratio for OakLeaf: wild type. There isa deficit of Oak 

Leaf. 

Final classification was undertaken in 2002 (Table 5.41.). 

Thrum Oak Leafx pin wild type. 

OIdS x + s 

+ s -1- + s 

Thrum Oale Leaf pin OakLeaf Throm wild type pin wild type 

Old S Old s + S ±--.! 
+ s + s + s + s 

8 1 0 16 
reciprocal 

19 0 0 32 
Total numbers 

27 1 0 48 

Table 5.41. Testing of thrum Od Letqfor coupling of Oil with the S allele 
of the l'rIMIdtI S locus 
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Results show Oak Leaf to be in coupling with S. One recombinant among 25 progeny 

gives a map distance of 4%. In this cross three Oak Leafprogeny were lost before 

matmity, so whether they would have been thrum or pin is unknown. There were no 

recombinants among 51 progeny from the reciprocal cross. If numbers from the 

reciprocal crosses are combined then a total of one recombinant from a total of 76 

progeny gives a map distance of 1.3%. 

5.9.3. Investigation ofviabiHty of OkVOkl bomozygota. 

To investigate viability of Ok/lOk} homozygotes two crosses were undertaken, Thrum 

OakLeafx pin Oak leaf(Table 5.42), and thrum OakLeaj'x pin Hose in Hose Oakleaf 

(Table 5.43). Results were classified as seedlings. 

Thrum Oak Leafx pin Oak Leaf. 

Ok} S x Ok] s 

+ S + S 

OakLeaf wild type 

15 5 

Table 5.42. Investigation of viability of 0kII0k1 
bomozygote! 1. 

The above numbers are exactly consistent with the 3:1 ratio expected if the Old/Ok] 

homozygote is viable. 

Thrum Oak Leafx pin Hose in Hose OakLeaf. 

Ok} S + 

+ S + 

OakLeaf 

21 

x Old s + 

+ sHih 

wild type 

s 

Table 5.43. Investiption ofviabllity of 0kI/01i 
bomOIYI0tes 2. 

Two seedlings failed to germinate fully from the above cross. 
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If Oak Leafhomozygotes are viable expect a ratio of3: 1 for Oak Leaf: wild type A 1.2 

analysis was done to test the null hypothesis that there is no significant difference of the 

data from the predicted ratio of 3: 1 for Oak Leqf: wild type. 

1.2 for 3: I for Oak Leaf: wild type 

observe 21 :5, expect 19.5:6.5 

1.2 (1 dot) = 0.46, P = 0.497. 

Results are consistent with 3:1 segregation. 

The result indicates viability of Oak LeaJhomozygotes. 

5.9.4. Summary of resuiCs. 

From the above analysis it can be colltluded that: 

1. Oak Leafis a dominant phenotype. 

2. Oak Leafis in coupling with the s allele of the Primula S locus. Recombinants had 

Oak Leafin coupling with the S allele of tile Primula S locus. 

3. Map distances obtained were 3.2% and 4.0% respectively from two different crosses 

(reduced to 1.3% ifreciprocal totals are combined) .. 

4. Numbers indicate that the Old/Old homozygote is viable. 

5.10. Crosses using short homostyles. 

The majority of wild primrose plants have genotype gpa/gpa, pin; or GPAlgpa, thnm 

(see also Chapter 1; 1.3). Rare recombination events within these main components can 

result in self fertile short homostyles with genotype Gpalgpa. Two short homostyle 

primroses were obtained from Prof. A. J. Richards in spring 1998. Self-pollinated seed 

from these plants resulted in two more short homostyle primroses and one pin wild type 

(seed set was normal but germination was very poor). Selfpollination of short 

homostyles results in progeny that segregate as two short homostyles to one wild type pin 

(J. Richards, 1998; personal communication). 

The short homostyle from the line ob1ained ftom Prof. Richards, had yellow flowers of 

the expected form with anthers in the pin position, small pollen and with a short style and 

short stigmatic papillae. Another was found that was a blue flowered plant with similar 

characteristics except that the flowers were found to have long stigmatic papillae as 

expected on long styled pin plants. This was from the Blue Jeans parental line, and was in 

Leeds University Greenhouses. Flowers ofho1h of these plants can be seen in Figure S.l. 
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Figure 5.1. YeUow and blue short homostyle flowers. 

Both flowers have anther and tigma halfway down the corolla tube. 
They are different only in that the yellow flower has short stigmatic 
papillae while the blue flower ha long stigmatic papillae. 

A. Yellow h rt h m tyle f1 wer. This has the expected morphological 
feature f I w anth rs, mall pollen, short style and short stigmatic 
papillae. B. Blue h rt homo tyle flower. This also has low anthers, small 
pollen and h rt tyle but the tigmatic papillae are long. Stigmatic 
papillae length and pollen ize are not visible in the photographs and were 
detennined by light micr py. Size bars approximately 1 cm. 
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In order to discover whether either Of both of these plants carried the dominant G of the S 

locus gene cluster, genotype Gpalgpo the following crosses were undertaken. The yellow 

short homostyle was crossed to thrum wild type (and also to both pin and thrum Hose in 

Hose and pin and thrum Oak Leaf - see Chapter 6, 6.4.2). Results of the cross to thrum 

wild type were 10 thrum wild type and 6 pin wild type. No short homostyle progeny were 

obtained from the cross. Three of the pin wild type had slightly shOrtef than normal styles 

and all had long stigmatic papillae. Four progeny were lost before blooming. 

5.10.1. Determining the genotype of the blue short homostyle. 

The blue flowered short homostyle with long stigmatic papillae was crossed to thrum 

wild type, and the results classified in Table 5.44. 

Thrum wild type x blue short homostyle 
GPA x ZJzg, 
Gpa ! gpo 

Thrum wild type pin wild type Short homostyle 

GPA 8l!!!. Qeg 
gpa gpa gpa 
17 11 0 

Table 5.44. Determining the genotype of the blue short 
homostyle. 

Ten plants were lost before maturity and twelve had not bloomed at the time of scoring 

the results. No short homostyles were obtained among the progeny that did bloom. Five 

of the pin wild type had shorter than normal styles though not so short as thrum styles and 

all had long stigmatic papillae. 

5.10.2. Determining the genotype of the yellow short homostyle. Long homostyle x 
short homostyle. 
No short homostyles were obtained from crosses in section 5.12. As one possible reason 

fOf this could be low viability of short homostyles (Lewis and Jones, 1993), a cross of 

long homostyle (gPA/gpa) x yellow short homostyle (putative genotype Gpalgpa) was 

carried out in 2003. If the genotype of the yellow short homostyle is as predicted 

phenotypes of the progeny should include long homostyle, pin wild type, short homostyle, 

and thrum wild type in a I: 1: I: I ratio. Even if the expected numbers of short homostyles 

were not obtained, 25% of the progeny should be thrum wild type (gPA/Gpa). This would 
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confinn genotype of the short homostyle as Gpo/gpo. Plants were classified as they came 

into flower in 2004 and results are tabulated in Table 5.45. 

Long homostyle x short homostyle. 

x 

Long pin wild Short Thrum wild 
homostyle type homostyle type 

-
gPA gpo Q.m GPA 

gpo 
gpo gpo gpa 

21 19 0 0 

Table 5.45. DeterminiDg the genotype of die yellow short homostyle. 

Results show no short homostyles or tbnun wild type among the progeny therefore the 

genotype of the short homostyle can not be Gpo/gpo. The characteristics of the flower, 

low anthers, short style, short stigmatic papillae and self compatibility would therefore 

have to be achieved by a different mechanism. 

5.10.3. Summary ofresult5. 

From the above analysis it can be concluded that: 

1. No short homostyles were obtained from either cross. This could be due to low 

viability of short homostyles, but is more likely to that the characteristics of the flower, 

low anthers, short style, short stigmatic papillae and self compatibility have been 

achieved by a different mechanism. 

2. The long stigmatic papillae of the blue short homostyle may indicate that this plant 

should be re-classified as a short styled pin plant, with shortening of the style due to 

factors other than recombination within the Prlmula S locus. Further investigation of 

short homostyles is required. 

5.11. Discussion of the inheritance of the mutant pbenotypes. 

A surprising find was the discovery of so many dominant mutant phenotypes in Prlmula 

vulgaris and in P. veris x vulgaris cultivars. Of the eight phenotypes investigated only 

sepaloid, double, and reduced petal were found to be recessive. IfnaturaUy set seed is 

collected from any dominant heterozygous mutant phenotype 50% of the resultant 

progeny will exhibit the dominant mutant phenotype. Consequently in the past when 



177 

variants of British wild flowers began to be grown for horticultural purposes these 

phenotypes could easily be increased. In contrast, before understanding of Mendelian 

genetics, recessive phenotypes could only be propagated vegetatively. For example it was 

around the turn of the 20th centwy that breeding of double primroses, that have a 

recessive phenotype, first began. This may be one reason for some of the dominant 

mutant phenotypes such as Jack in the Green (leafY sepals) and Hose in Hose (petaloid 

sepals) surviving as horticultural curiosities. Not all Primu/a species have so many 

dominant mutant phenotypes; P. sinensis was intensively studied early in the twentieth 

centwy and only three of the thirty five phenotypes investigated were found to be 

dominant (De Winton and Haldane, 1933). 

A notable discovery was linkage of four loci to the Primu/a S locus. Linkage of Hose in 

Hose (petaloid sepals) was previously known (Ernst, 1931; Webster and Grant 1990), and 

it is possible that Staminoid Carpels that segregates both with Hose in Hose and the S 

allele of the Primula S locus is an allele of Hose in Hose. Investigation into sepaloid 

found sepaloid to be in coupling with the s allele of the S locus. The newly discovered 

mutant phenotype Oak Lea/was also initially in coupling with the s allele of the Primula 

S locus, but recombinant plants were also generated that had Oak Lea/in coupling with 

the S allele of the Primula S locus (Tables 5.54 and 5.56). The discovery of these S locus 

linked loci allowed mapping of the linked genes using appropriate three point crosses (see 

Chapter 7). 

Another notable discovery (made before the commencement of this project and 

investigated further here) was the viability of SS homozogotes in a line of Hose in Hose 

plants. All previous reports consider SS homozygotes to be inviable and thrum plants to 

be invariably of genotype Sa (Richards 1986), although one such homozygote was 

reported by Mather and De Winton on one occasion in P. sinensis (Mather and De 

Winton 1941; also Quoted by Richards, 1993; Kurian and Richards, 1997). 

All mutant phenotypes exhibited variability in expression. The flowers of doubles 

exhibited very great variation in form, yet all doubles investigated were found to be 

allelic. The hugely disproportionate nwnber of cIouhle plants in the progeny from the 

second test for linkage of double to the S locus (Table 5.50) is unexpected and invites 

further investigation. Should the phenotype filii to be penetrant in some plants the 

inheritance of double would require reassessment It would, however, explain the result. 

If the Wild Type thrum carrying the recessive allele for the semi-double was instead a 
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double with a non penetrant phenotype then all progeny would be genotypically double 

but in some plants double could fail to be penetrant. There is no previous evidence for 

such a hypothesis, but recent variability in expression on a single double polyanthus plant 

has included the occasional production of single fertile flowers (not shown) on a plant 

that produces predominantly double flowers. The hypothesis could be tested by 

investigation of those wild type plants obtained from the cross shown in Table 5.50, as 

these would be also expected to be genotypically double but with a non penetrant 

phenotype. If the wild type progeny are both pollinated by double pollen and also crossed 

both together pin x thnnn the resultant progeny could be assessed for penetrance of the 

double phenotype. 

It has already been observed that the Hose in Hose phenotype exhibits variability not only 

from plant to plant but sometimes also from one ramet to another (see 5.3.3) or from one 

flower to another on the same scape. It bas been observed that the petaloid calyx 

frequently becomes more petaloid later in the season, and this is likely to be the result of 

environmental influences as the same effect can be observed on a plant in consecutive 

years. Variability of expression from one part of the plant to another however could be 

the result of either somatic recombination or oftransposon excision since results of the 

initial investigation showed the change in expression to be a permanent one (as 

documented in 5.3.3). Parallel work in the laboratory (Dr. J. Li and Prof. P. Gilmartin, 

personal communication) has cloned Primula DEFICIENS and GWBOSA homologues 

and analysed linkage to the S locus. GWBOSA, but not DEFICIENS, was found to be 

linked to the S locus and a restriction fragment length polymorphism associated with 

GWBOSA was found to co-segregate with Hose in Hose. Analysis of genomic clones of 

GWBOSA from wild type and Hose in Hose identified a retrotransposon in the promoter 

of Hose in Hose that is predicted to cause upregulation ofGWBOSA. Instability of the 

retrotransposon is suggested by the reversion of Hose in Hose to wild type both on 

individual ramets, on individual flowers on the same scape and on individual calyx lobes. 

This could be due to excision, which is 1Dlusual for a retrotransposon, or possibly an 

epigenetic effect associated with chromatin remodeling or with methylation. However 

recent results from PCR and sequencing of the revertant allele indicates that transposon 

excision has occurred (Dr. J. Li, personal comm1Dlication). 

The recessive reduced petal phenotype bears some resemblance to the CINCINNA.TA. 

mutant phenotype of Antirrhinum (Nath et al., 2003; Crawford et al., 2(04). In initial 

crosses it appeared as a pleiotropic mutant phenotype affecting both flowers and leaves. 
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Observation of mature plants from later crosses to a different genetic background 

discovered some plants that appear to Wlcouple these two effects. This requires further 

observation over a longer period of time. It may be that different alleles of the reduced 

petal form exist, some alleles being stronger than others. Consequently some further 

work is required on this mutant phenotype. 

The dominant Staminoid Carpels phenotype was initially only fOWld in thrum Hose in 

Hose and it was not until 200 1 that the first pin Staminoid Carpels-Hose in Hose 

occurred. Results from the cross of pin Staminoid Carpels-Hose in Hose to thrum wild 

type (Table 5.34) showed that in a pin linked Staminoid Carpels-Hose in Hose the thrum 

Staminoid Carpels-Hose in Hose progeny had more elongated mutant whorl four organs 

than did pin Staminoid Carpels-Hose in Hose (Chapter 4, Fig 4.11). These elongated 

ovaI)' walls have undergone transfonnation towards the form of the corolla tube, and an 

occasional anther can be found inside the upper portion of this organ. Elongation of this 

organ could therefore be said to elongate the whorl four anthers towards the thrum or the 

pin position in the flower (see Chapter 3). The Staminoid Carpels-Hose in Hose mutant 

phenotype is predicted to be the result of ectopic B fimction (see Chapter 4; 4.3.1) and 

anther position is dictated by the A component of the Primula S locus (see Chapter 3). 

Differences in the elongation of the pin and thrum Staminoid Carpels-Hose in Hose 

whorl four organ, even though the Staminoid Carpels-Hose in Hose alleles are the same, 

each linked to the pin allele of the Primula S locus, indicates that the A component is 

organ related rather than whorl related. 

Whether the differences in elongation of the mutant whorl four organ are due to the 

effects of A or a is being tested by crosses of pin Staminoid Carpels-Hose in Hose to both 

long homostyle (gAP/gap) plants and to a short homostyle Hose in Hose with large pollen 

S locus of GaP/gap (see Chapter 7 for origin oflatter). The former should give 25% of 

the progeny as Staminoid Carpels-Hose in Hose with S locus of gAP/gap and the latter 

should give 25% of the progeny as Staminoid Carpels-Hose in Hose with S locus of 

GaP/gap. It is predicted that the Staminoid Carpels-Hose in Hose carrying the dOminant 

A component of the Primula S locus will have more elongated mutant whorl four organs 

than those carrying the recessive a component and the dominant G component. Results 

are not expected until 200516. 

Investigation of short homostyles crossed to other mutant phenotypes is documented in 

Chapter 6; 6.4.2. Further investigation of short homostyles is required .. Genes outside 
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the S supergene have been found to suppress S functions in buckwheat (Fagopyrum 

esculentum) (Matsui et al., 2004). A generation ofF2 Primula progeny raised to ascertain 

whether this may be the case in Primula has not yet flowered. The importance of 

stigmatic papillae length as a reliable diagnostic factor of pin or thnun gynoecia also 

needs to be clarified. 

Genetical analysis of mutant phenotypes has yielded much useful information on the 

inheritance of these fonns and provides a sound basis for further analysis at molecular 

level. Identification ofloci linked to the Primula S locus enables mapping of the genes 

around the S locus (see Chapter 7). 
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CHAPTER SIX 

Combinations of mutant phenotypes 

6.1. Introduction. 

Following the detailed characterization of mutant phenotypes affecting flower 

development (Chapter 4) it was important to discover whether any interactions would 

occur when mutant phenotypes of Primula were combined. Both absence of interactions 

and discovety of interactions would be informative. The only previous information on 

combinations of mutant phenotypes in ?rimula, was of the inheritance ofJaclranapes, a 

mutant combining the dominant alleles of Jack in the Green OeafY calyces) and Hose in 

Hose (petaloid calyces), (Chapter 4 and Webster and Grant 1990). The mature 

Jackanapes flower is fully described and the development of the Jaclcanapes flower has 

been investigated by scanning electron microscopy (section 6.2.1). 

To investigate whether interactions might occur between mutant genes affecting the first 

whorl, Jack in the Green, Hose in Hose and Jaclrtmopes (Jack in the Green-Hose in 

Hose) were combined with the developmental mutation that gives Split Perianth (section 

6.2.2). Mutant phenotypes that affected the whole plant as well as the flower were also 

combined both with each other and with other phenotypes in order to look fur any 

possible interactions (sections 6.3.1, 6.3.2, and 6.3.3). 

Where phenotypes were fu1Dld to be linked to the S locus they were combined with the S 

locus recombinants of long and short homostyle in order to discover whether this would 

affect expression of either phenotype in any way. (sections 6.4.1 and 6.4.2). 

The question of whether the mutant phenotype is associated with the organ or with the 

whorl in which it occurs was answered by experimental combination of mutant 

phenotypes (section 6.S). Where linkage between genes was identified it was necessary to 

combine the relevant phenotypes in order to filciIitate undertaking large three point 

crosses that could determine gene order. These combinations, with results, are dealt with 

in Chapter 7. 



182 

6.2. Combinations of mutant phenotypes that affect the first whorl. 

Mutant phenotypes that affect the first whorl include Jack in the Green (leafY calyces), 

Hose in Hose (petaloid calyces) and Split Perianth. The first two are organ identity 

homeotic mutants and the last has alteration to the usual form of the Perianth (sections 

1.5.1, 1.5.2,4.2.1,4.2.2, and 4.2.3). No previous information on combinations involving 

Split Perianth could be found, nor any detailed information on Jackanapes, the Hose in 

Hose and Jack in the Green combination. 

6.2.1. The combination ofleafy calyces (Jack In 1M GreeII) and petaloid calyces 

(Hose in Hose) that is termed Jacluuulpes. 

When plants heterozygous for the dominant leafy ca1yx mutation (Jack in the green) are 

crossed with plants heterozygous for the dominant petaloid calyx mutation (Hose In 

Hose), then in 25% of the progeny the two dominant mutant alleles will be expected to 

occur in the same plant (Webster and Grant, 1990). The phenotype has been described 

under the horticultural name of Jackanapes from as early as the 16th centwy (e.g. Gerard, 

1597; Parkinson, 1629; Bradley, 1734), at a time when there was no understanding of 

genetics or inheritance. In the majority of Jaclranapes plants the leafy portion is at the 

top of the calyx lobes and the petaloid portion is at the base (Fig.6.lA, B, and C). In some 

plants, where the expression of the Hose in Hose phenotype is poor, the phenotype will 

vary from one calyx lobe to the next. Some calyx lobes may be either completely leafY, 

or only have a tiny segment of petal, while others may exhtbit the more usual form (Fig. 

6.1D). The junctions between petaloid and leafY tissue do not normally correspond on the 

adaxial and abaxial epidermal surfaces; there is generally more petaloid tissue on the 

adaxial smface, often overlying the green leafY tissue underneath (Fig. 6.1 A and C). 

Conversely there is usually more green leafY tissue on the abaxial surface, looking paler 

on the portions where it overlies a petaloid upper epidermis (Fig. 6.1B). Flowers that are 

pink or red frequently lose the colo\D' at the junctions between the two cell types (Fig. 

6.1 C, indicated by black arrows). Where the colour is maintained, but overlies a green 

leafY portion it appears darker (Fig.6.1C, indicated by white arrows). 

JWlCtions between the two tissue types were examined in more detail using scanning 

electron microscopy (Fig.6.2A,B,C,F.O.and H). There is a clearly distinguishable 

difference between the leaf celIs (Fig. 6.2D and E) and the conical papillate petal celIs. 
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Figure 6.1 Calyces of the double mutant, Jackanapes. 

The Jackanapes calyx combines the dominant phenotype of Jack in the 
Green (leafy calyces) with the dominant phenotype Hose in Hose 
(petaloid calyce ). 

A. Adaxial view of a yellow Jackanapes calyx,. B. Abaxial view of the 
Jackanapes calyx shown in A. Calyx lobes are numbered so that the 
difference in expression of the tissue types on the upper and lower 
epidermal surfaces can be compared. C. Adaxial surface of a red 
Jackanapes calyx, showing loss of red colour at the junctions between 
petal and leaf tissue, examples are indicated by black arrows. Where the 
red petal cells overlie green leaf cells the colour appears darker, examples 
are indicated by white arrows. D. Jackanapes calyces on a plant with 
irregular expres ion of the Hose in Hose phenotype. Some calyx lobes are 
completely devoid of any petal tissue. Size barsl cm. 
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Figure 6.2 The adaxial surface epidermal ceUs of 8 Jackanapes calyx. 

Some junctions between different cell types on the adaxial surface of a mature 
Jackanapes calyx are very distinct, in others cell types merge graduaJIy with 
chimeric cell forms in between. Normal1eaf epidermal cells are also shown for 
comparison. 

A. The upper epidermis at a junction between two cell types, petal and leaf. 
Conical papillate petal cells can be observed in the lower right hand portion of the 
image. B. A strip ofleafy tissue running through petal tissue. C. The end of the 
strip ofleafy tissue in B. D. Normal leaf epidermal cells, including two closed 
stomata. E. Jackanapes calyx leaf cells. F. A junction between conical papillate 
petal cells and cells that do not appear as nonnalleaf cells. G. A junction where 
the changes from one cell type to the other appears less abrupt. H. An area of 
transition from leaf cells (upper left-hand comer) to conical papillate petal cells 
(lower right hand comer), with chimeric cells between. I. Chimeric cells with 
conical papillate cells at lower right hand side of image. Size bars in A and B are 
100um. All other size bars are 10um. 



185 

Figure 6.3 Development of the Jackanapes calyx. 

During early stages of development the Jackanapes flower is similar to Jack in 
the Green. This is illustrated by scanning electron micrographs of the 
development of the Jackanapes flower from inception up to and including stage 7 
(see Chapter 3 sections 3.3 and 3.5 for stages of development in wild type). By 
stage 7 both the leafy and the petaloid portions of the developing calyx are 
clearly distinguishable. 

A. A group of developing Jackanapes flowers at different stages of development. 
B. A stage 4 developing Jackanapes flower. The leafy tips of the sepal lobes are 
just beginning to curl back, and are not easily distinguishable from Jack in the 
Green at this stage. C. A stage 5 developing Jackanapes flower, again similar to 
Jack in the Green at this stage but the sepal lobes are slightly broader. D. A bud 
of 1.Smm. (at approximately stage 6). The tips of the sepal lobes are clearly leafy 
but where the base of the lobes join there is a thinner area of tissue that is not 
curled back and that will become petaloid (marked by a white arrow). E. A bud 
of 2mm. (approximately late stage 6 or early stage 7). The petaloid tissue at the 
base of each calyx lobe is now beginning to expand (marked by a black arrow). 
F. A bud of approximately 3.5mm (approximately stage 7). The expanding 
petaloid tissue is very obvious and the leafy tissue at the tips of the sepal lobes 
has numerous trichomes on the adaxial surface. Size bars are lOOum. 
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In some instances the junction between the cell types, leaf and petal, is quite precise (Fig. 

6.2C and F) ; in others there appear to be regions of chimeric cells that are not conical 

papillate as petal cells, but that are smooth and more raised than leaf cells (Fig.6.2G,H, 

and I). The colour of the Jaclumapes flower examined was red (Fig. 6.1C), and it is 

possible that these are the cell types that show loss of pigment. 

Development of the Jackanapes flower was studied using scanning electron microscopy 

(Fig. 6.3). At stage 4 the tips of the leafy calyx lobes are just beginning to curl back and 

the Jaclumapes flower is indistinguishable from a Jack in the Green flower (Fig. 6.3B). 

This is further evidence of the tip of the organ developing in advance of the base (see 

Chapter 3, Fig.3.3). By stage five (Fig. 6.3C) the calyx lobes are slightly broader than 

those of the Jack in the Green, but the difference is not obvious until stage 6 (Fig. 6.30) 

when the lower part of each calyx lobe can be seen to be thinner and smoother than that 

of jack in the green flowers at the same stage. This is the portion of the calyx that will 

expand and become petaloid, as shown in Figs. 6.3E and F, offlowers of2mm and 

3.5mm in size, and at approximately stage 7. The difference between the smooth petaloid 

tissue and the leaf tissue with numerous trichomes is particularly evident in the largest 

flower. 

6.2.2. Combining Split PeriIlnth with leafy (Jilek in 1M Gl'f!en) and petaloid (Hose In 

Hose) calyces. 

During 1998 and 1999, Dr. R J. Brompton who discovered the Split Perianth phenotype 

had already carried out combinations between it and the dominant whorl 1 mutant 

phenotypes Hose in Hose and Jack in the Green and provided sample plants of Split 

Perianth Hose in Hose (Fig. 6.4A), Split Perianth Jack in the Green (Fig. 6.4B) and Split 

Perianth Jackanapes (Fig. 6.4C). The mature petaloid calyx of the Split Perianth Hose in 

Hose reflexes downwards, more so in some plants than in others. This downward 

reflexing of the Split Perianth calyces is also observed in mature Split Perianth 

Jaclcanapes that has a petaloid portion at the base of each calyx lobe. In contrast the Split 

Perianth Jack in the Green holds each individual calyx lobe upright, or, in some plants, 

slightly towards the horizontal; in no instance have they been observed to reflex 

downwards. The mature flower of Split Perianth Jackanapes that is shown has only 

partial splitting of whorl 2, but many flowers produced later on the same plant had the 

second whorl split down to the point of attachment of the anthers. 
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Figure 6.4. Split Perianth double and triple mutants. 

Split Perianth can be combined with other first whorl mutant phenotypes, 
Hose in Hose (petaloid calyces) and Jack in the Green (leafy calyces) 

A. Split Perianth-Hose in Hose. B. Split Perianth-Jack in the Green. C. 
Split Perianth-Jack in the Green-Hose in Hose (Jackanapes). Size bars are 
approximately 1 em. 
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Development of the flowers was studied using scanning electron microscopy. The results 

(Fig. 6.5) are arranged in three vertical columns so that the developing flowers of each 

combination, at the same, or at a similar stage of development, are horizontally parallel 

for comparison. The top of each column shows a cluster of developing flowers on the 

apical meristem and stages 4, (D, E, and F), stage 5, (G, H, and I), and stage 6 (1, K, and 

L), follow below. Split Perianth Hose in Hose are in the left-hand column (A, D, G and 

J), Split Perianth Jack in the Green in the centre (B, E, H, and K), and Split Perianth 

Jackanapes in the right-hand column (C, F, I, and L). 

The fact that the perianth is split is evident in the first whorl from stage 4, and to some 

extent in the second whorl from stage 5, because of the splitting of the first whorl that 

allows the second whorl to be visible. By stage 6 splitting of both whorls 1 and 2 is very 

obvious in both Split Perianth Hose in Hose and Split Perianth Jaclamapes (Fig. 6.5. A4 

and D4), but whorl 2 of Split Perianth Jack in the Green is sufficiently enclosed by whorl 

1 to be partially obscured (Fig. 6.S.K). The differing forms of the three combinations are 

less evident at stage 4 than if the perianth were not split, but at stage S they are clearly 

differentiated. The petaloid whorl I of Split Perianth Hose in Hose and the leafY whorl I 

of Split Perianth Jack in the Green is narrower than in Hose in Hose or Jack in the Green 

without a split perianth. Whorl 1 of Split Perianth Jackanapes is slightly broader at this 

stage than the previous two forms. All forms have a distinctly "keeled" midrib to the first 

whorl organs by stage 6 (Fig. 6.5, J, K, and L). At this stage Split Perianth Jack in the 

Green has a much narrower first whorl organ than does Split Perianth Hose in Hose or 

Split Perianth Jackanapes. Both the first and second whorl organs of the latter two forms 

have a distinct "waist" to the organ at the point where it would normally have been joined 

to the adjacent organs in the whorl. This is due to the greater expansion of the petaloid 

tissue at the upper edges of the first whorl in the region that will become the petal. The 

petaJoid area below that would normally become a petaloid outer corolla tube does not 

expand to the same extent. The developing flowers of the latter two forms are very untidy 

in appearance as they are not neatly enclosed by the first whorl as are developing flowers 

with a normal calyx. The more rigid tissue of the calyx in the Split Perianth Jack in the 

Green fulfills the protective role of the calyx to a greater degree than do the other two 

combinations. 
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Figure 6.5 Development of flowers that combine Split perianth with 
other first whorl mutant phenotypes. 

Development of Split Perianth mutant phenotypes combined with other 
first whorl mutant phenotypes show distinctive differences between the 
combinations by stage 6. The scanning electron micrographs are arranged 
in three vertical columns so that the developing flowers of each 
combination, at the same, or at a similar stage of development, are 
horizontally parallel for comparison. The top of each column shows a 
cluster of developing flowers on the apical meristem and stages 4, 5, and 6 
follow below. Split Perianth Hose in Hose are in the left-hand column, 
Split Perianth Jack in the Green in the centre and Split Perianth 
Jackanapes in the right-hand column. 

A. Cluster of developing Split Perianth-Hose in Hose flowers. B. Cluster 
of developing Split Perianth-Jack in the Green flowers. C. Cluster of 
developing Split Perianth-Jackanapes flowers. D. Split Perianth-Hose in 
Hose at stage 4. E. Split Perianth-Jack in the Green at stage 4. F. Split 
Perianth-Jackanapes at stage 4. G. Split Perianth-Hose in HO.'le at stage 5. 
H. Split Perianth-Jack in the Green at stage 5. I. Split Perianth-Jackanapes 
at stage 5. J. Split Perianth-Hose in Hose at stage 6. K. Split Perianth
Jack in the Green at stage 6. L. Split Perianth-Jackanapes at stage 6. Size 
bars are IOOum. 
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6.3. Combining other mutant phenotypes. 

The Oak Leaf phenotype was combined both with all of the whorl 1 mutant phenotypes, 

Jack in the Green, Hose in Hose, and Split Perianth (6.3.1), and with the reduced petal 

mutant phenotype (6.3.2). The double mutant phenotype and the reducedpetal 

phenotypes were also combined with some of the other mutant phenotypes available 

(6.3.3). 

6.3.1. Combining tbe pleiotropic mutant phenotype Od Letifwith whorll mutaat 

phenotypes. 

The Oak Leafform had been combined with both Hose in Hose (Fig. 6.6 C) and with 

Split Perianth-Hose in Hose (Fig. 6.6 F) by Dr. R. Brompton, who supplied sample plants 

of these combinations. To make combinations with all available whorl 1 mutant 

phenotypes, the following two crosses were made. First a thnun Split Perianth-Hose in 

Hose Oak Leafwas crossed with wild type, and second a pin Hose in Hose-Oak Leqfwas 

crossed with a thnun Jack in the Green. Although the crosses were small recombination 

between the unlinked Split Perianth and the S locus linked genes provided two Split 

Perianth Oak Leqfmutant phenotypes (Fig. 6.6D). No phenotypes that might be expected 

from recombination between the genes linked to the pin or thrum alleles of the S locus 

were obtained. Although the calyx of the Oak Leaf phenotype is frequently deeply 

divided it never forms completely separated calyx lobes (see Chapter 4, Fig. 4.26A and 

Fig. 4.278) as does the Split Perianth-Oak Leaf. 

Oak Leaf- Jack in the Greens and Oak Leaf.Jaclamapes were obtained from the 

following cross: pin Hose in Hose-Oak Leafx thnml Jack in the Green (Table 6.1). 

Eleven Oak Leafplants and three wild type plants did not bloom. No Hose in Hose, Oak 

Leaf-Hose in Hose, or wild type progeny, were obtained from the cross, so of the 

phenotypes should have been present in both pin and thrum form. 6 possible categories 

are missing from the table. The single thrum Oak Leqf.JacJronapes is a recombinant that 

could have been derived from recombination between either Oak Leaf and s, or Hose in 

Hose and s. The pin and thrum Jack in the Greens could also have arisen from such a 

recombination, but other possible phenotypes are absent Hose in Hose and S are even 

more tightly linked (Webster and Grant 1990). One possible explanation could be that 

some of the Jack in the Greens should in f8ct have been Jackanapes but that Hose in 



pin Hose in Hose-Oak Lea/x Thrum Jack in the Green 

+ Old s + x Jig + s + 
+ + sHih .!, + + S + 

Thrum Oak pin Oak Thrum Jack pin Jack in Thrum Jack pin Jack in Thrum Jack pin Jack in Thrum Jack pin Jack in 

Leaf Leaf in the the Green- in the the Green- In the the Green in the the Green-
Green-Oak OakLeaf Green-Hose Hose in Green Green- Hose in 

Leaf in Hose- Hose-Oak Hose in Hose 
OakLeaf Leaf Hose 

+ Old s+ + Old s+ + Old s+ + Old s+ + Old sHih + Old sHih ++s+ ++s+ + + sHih + + sHih 
+ + S + ++s+ Jig+8+ Jig+s+ Jig+8+ Jig+s+ Jig+8+ Jig+8+ Jig +8+ Jig + s+ 

11 13 1 3 1 0 5 7 5 13 

Table 6.1. Combining 0.1 la/with JlICk ill tile Green and JIICIuuuIpes (calyx of leaf and petal). 
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Figure 6.6. Oak Leaf combined with whorl! 
mutants phenotypes. 

Oak Leaf can be combined with combined with Jack in the 
Green, Hose in Hose, and Split Perianth as double or triple 
mutant phenotypes. 

A. Oak Leaf Jack in the Green at first flowering. B. A 
flower from the same plant later in the flowering season. 
C. Oak Leaf Hose in Hose. D. Oak Leaf Split Perianth. E. 
A triple mutant combination of Oak Leaf Jack in the 
Green-Hose in Hose (Jackanapes). F. A triple mutant 
combination of Oak Leaf Split Perianth-Hose in Hose. 
Size bars are approximately 1em. 
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Hose failed to be expressed in that particular genetic background. Observation of the 

plants over a longer period may have resolved this uncertainty as plants canying Hose in 

Hose generally show some traces of petal tissue in the calyx at sometime during the 

flowering season, but the remaining progeny were lost. Thirteen recombinants in a 

population of 59 plants would give a recombination map distance of22%. This is much 

greater than previously recorded for Oak Leaf to S (3.2%). Jack in the Green is only 

poorly expressed in an Oak Leafbackground. Some flowers have a recognizable 

phenotype at first flowering (Fig. 6.6A), but soon the leafy calyx reduces to thin 

extensions on the edges of the calyx lobes (Fig. 6.6B) and two of the four Jack in the 

Green-Oak Leafplants were indistinguishable from wild type later in the season. The 

Jackanapes phenotype in Oak Leaf also has only smalileaf}t extensions to the calyx lobes 

(Fig. 6.6E). 

6.3.2. Combining the pleiotropic mutant phenotype Oak La/with another 

pleiotropic mutant phenotype reduced pettlL 

In 2000 a pin Oak Leaf, was pollinated from a thrum reduced petal. Seed was sown in 

Dec. 2000 and progeny obtained (Table 6.2) that flowered in 2001,2002, and 2003. 

pin Oak Leqfx thrum reduced petal 

x 

+ S 

Thrum pin Oak 
Oak Leaf 
Leaf 

Q!U: QkU: 
rtlp S + s 

7 7 

thrum 
wild 
type 

+ s 

rdpS 

7 

rdpS 

rdp s 

pin wild 
type 

+ s 

rdp s 

9 

Table 6.2. Combining 0tIl La/with reduced peflll 

As reduced petal is not linked to the S locus and is a recessive phenotype, a ,·l analysis 

was done to test the null hypothesis that there is no significant difference of the data from 
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the predicted ratio of 1 : 1 : 1 : 1 Thrum Oak Leaf, pin Oak Leaf, thrum wild type, and pin 

wild type. 

Chi. squared for 1: 1 : 1 : 1 for above phenotypes, 

observe 7:7:7:9. expect 7.5:7.5:7.5:7.5, 

'l (3 dot) = 0.4, P = 0.94 

Results fit the predicted 1: 1 : 1 : 1 ratio for above phenotypes. 

All of the above progeny will be heterozygous for the recessive reduced petal allele. Pin 

and thrum OakLea/progeny (Fig.6.7A and B) were crossed together. Five of the eleven 

progeny were Oale Leaf(Fig. 6.7C-0). It was difficult to be certain which, ifany, of these 

carried both mutant alleles. Given the low numbers obtained only one Oak Leaf-reduced 

petal might possibly be expected. The FI generation of Oak Leaf, (from the cross pin Oak 

Leaf x reduced petal shown above) all heterozygous for the recessive for rdp, had small 

flowers with normal broad petals at first flowering (Fig. 6.7 A). The following spring all 

flowers had the attenuated petals associated with the oak leaf phenotype (Fig. 6.7B). 

Similarly the early leaves were much broader than the leaves nonnally produced by Oak 

Lea/at first flowering, but later leaves were attenuated (not shown). The F2 generation 

(from crossing pin and thrum FI generation OakLeafprogeny canying the recessive 

reduced petal allele together) also had some small flowers with broad petals at first 

flowering (Fig 6.7C, E and 0), and two others that were very ragged and split (Fig. 6.7D 

and F). In the second year, again the petals were again attenuated, both in the entire and 

in the ragged petal fonns (Fig. 6.5N and 0). Increased expression of the Oak Lea/ 

phenotype with time may also be responSIble for the observed breakdown in flower fonn 

in progeny from crosses with wild type (see Chapter 4, Fig. 4.260). Results indicate that a 

combination of these two pleiotropic mutant phenotypes has a very detrimental effect on 

the flowers. 

6.3.3. Other combinations of mutant phenotypes. 

Combination of Hose in Hose and sepaloid was undertaken in order to mcilitate using a 

three point cross both as a segregation test and for gene mapping. This is described in 

Chapter 7. It was found that Hose in Hose and sepaloid are not expressed together. The 

double phenotype can be combined with any of the whorl I mutant phenotypes (Fig. 
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Fi ure 6.7. Combining Oak Leaf and reduced petal. 

Oak Leaf-reduced petal combination has a detrimental effect on flower form. 
Flowers of the arne progeny over two flowering seasons are illustrated. 

A Progeny from the cross Oak Leafx reduced petal. An Oak Lea/plant 
heterozygou for the recessive allele for reduced petal is on the left and a 
wild type plant from the same cross on the right. B. The Oak Leafplant 
heterozygou for the recessive allele for reduced petal (on the left in G) as it 
flowered during the following spring. C. Oak Leaf progeny no. 1 from the 
cro between pin and thrum Oak Leaf plants heterozygous for the recessive 
allele for reduced petal D. Oak Lea/progeny no.2 from the cross between 
pin and thrum Oak Leaf plants heterozygous for the recessive allele for 
reduced p etal. E. Oak Leaf progeny no.3 from the cross between pin and 
thrum Oak Leafplant heterozygous for the recessive allele for reduced 
petal. F. Oak Lea/progeny no.4 from the cross between pin and thrum Oak 
Leafplant heter zygous for the recessive allele for reduced petal. G. Oak 
Leafprog ny n .5 from the cross between pin and thrum Oak Lea/plants 
heterozyg u for the rece ive allele for reduced petal. H. Oak Leaf progeny 
no.3 it flowered the following spring. I. Oak Leafprogeny no.4 as it 
flowered the fI 1I0wing pring. Size bars are approximately 1 em. 
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6.8B, and C). The cross Oak Lea/x double was undertaken but this combination was not 

successful due to failure of seed germination. As the reduction in petal in the pleiotropic 

mutant phenotype reduced petal could possibly indicate B function impairment, it was 

crossed to Hose in Hose in order to observe any possible interactions. Hose in Hose is 

predicted to be the result of ectopic B 

pin Hose in Hose heterozygous for the recessive allele reduced petal x thrum reduced petal. 

Hih s + x + S nq, 
+ s rdp + + s rdp 

Thrum pin Hose Thrum pin wild Thrum pin Thrum pin 
Hose in in Hose wild type type reduced reduced reduced reduced 

Hose petal- petal- petal petal 
Hose in Hose in 

Hose Hose 
Hih s + Hih s + + s + + s + Hihs1$ Hihsnq, + s rdp + s rdp 
+ S rdp + s rdp + S 1$ + s rdp + S rdp + s rdp + S rdp + s rdp 

4 1 2 7 3 1 2 1 

Table 6.3. CombiniDg Hose lit Ho~ widl reduced petal polyaadlus 

function (see Chapter 1 section 1.2. and Otapter 4 section 4.3.1). The first generation 

(Hose in Hose x reduced petal) produced Hose in Hose plants recessive for reduced 

petal. The following cross was undertaken and the results (Table 6.3) classified during 

200012001. No interactions were evident, the two phenotypes Hose in Hose and reduced 

petal can be expressed together (Fig.6.8A). 

6.4. Combinations of phenotypes linked to the S locus with both long and .hort 

homostyle. 

The loci linked to the S locus include those for Hose in Hose, Stamtnotd Carpels, 

sepaloid, and Oak Leaf. Of these only Hose in Hose and Oak Leafbave both normal male 

and normal female reproductive organs and so are suitable for combination with long and 

short homostyle. 
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Figure 6.8. Other combinations of mutant phenotypes. 

Other combinations of mutant phenotypes can be expressed together as is 
shown above. 

A. Hose in Hose-reduced petal polyanthus. B. Jack in the Green-double 
primrose C. Jack in the Green-Hose in Hose (Jackanapes)-double 
primrose. Size bars are approximately 1 em. 
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6.4.1. Crosses with long homostyles. 

Nonnal plants have genotype gpalypa, pin; or GP A/gpa,thrum, (as described in chapter 

2) where, Gig style length, stigma papilla length, stylar cell length, female mating type; 

Pip male mating type, pollen size; and Ala anther position. Rare recombination events 

within these main components can result in self fertile long homostyles with genotype 

gPAlgpa. Wild populations of these long homostyles exist in Somerset, one of which is at 

at Wyke Champflower (ST656339). The site is the west-facing slope ofa hedge bank 

running along a field boundary, with a road on the other side of the hedge and with a 

convenient public footpath running through the field. In spring of 1999 pollen was 

collected from the site for use in these crosses. Homozygous pin Hose in Hose primroses 

(genotype Hih gpo! Hih gpo), were pollinated with long homostyle pollen. Seed was 

sown in Dec. 1999. Results (Table 6.4) were classified in 2000/200 1. 

Pin Hose In Hose x long homostyle 
Hih gpo x + gPA 
Hih gpo .J, + gpa 

Long pin 
Homostyle Hose in Hose 

Hose in Hose 

Hih gpo Hih g(lg 

+ gPA + gpa 

2 6 

Table 6.4. Combining Hose In Hose with long homostyle 

As PA is dominant expect half of the progeny to be long homostyle Hose in Hose and 

half pin Hose in Hose. As "j} analysis requires expected numbers of progeny to be greater 

than 5 numbers above are too low for statistical analysis. The results do show that Hose 

in Hose and long homostyle can be expressed together (Fig. 6.7 A). 

The Ok/ locus is also linked to the S locus but not so tightly as HIh. A long homostyle 

Hose in Hose primrose was crossed to a pin Oak Leqf primrose and results classified in 

2002 and 2003. 
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Pin Oak Leaf x Long homostyle Hose in Hose 
Okl gpo + x + ?JXl Hih 
+ gpa + -!. + gPA + 

Long Pin Long pin 
Homostyle Hose in Homostyle Hose in 
OakLeaf Hose Hose-Oak 

Leqf 
Ok/gpa + + gpa Hih + Ima + Ok/gpa + 
+ gPA + +gpa + + gPA + + gpo Hih 

7 9 9 2 

Table 6.5. CombiniDg Oak Iafwith long bomostyle 

In addition to the progeny recorded in Table 6.5, one pin Oak Leaf was recorded, a 

probable recombinant between Rih and gP A . 

As all the loci are linked expect a ratio of 1 : 1: 1 : 1 for Long Homostyle Oak Leaf. Pin 

Hose in Hose: Long Homostyle : pin Hose in Hose-Oak Leaf AX? analysis was done to 

test the null hypothesis that there is no significant difference of the data from the 

predicted ratio. 

'l for 1 : I : 1 : I for the above phenotypes, 

observe 7:9:9:2. expect 6.75:6.75:6.75:6.75, 

.. l (3 dot) = 4.85, P = 0.183 

Results fit the predicted 1: 1 : 1: 1 ratio. 

Results show that Old and gPA can be expressed together to give long homostyle Oak 

Leaf plants. 

6.4.2. Crosses with short bomostyles. 

The majority of wild primrose plants have genotype gpa/gpa, pin; or GPAlgpa, thnDn. 

Rare recombination events within these main components can result in self fertile short 

homostyles with genotype Gpo/gpo. Two short homostyle primroses were obtained from 

Prof. A. J. Richards in spring 1998. Self-pollinated seed from these plants resulted in two 

more short homostyle primroses and one pin wild type (seed set was normal but 

germination was very poor). 
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Figure 6.9 Combinations of phenotypes with loci linked to the S locus 
with long and short homostyles. 

Phenotypes with loci linked to the S locus were combined with long and 
with short homostyles. Each flower is dissected in two to show the 
position of the anthers and the stigma. 

A. Long homostyle Hose in Hose flower. B. Long homostyle Oak Lea/ 
flower. C. Oak Lea/flowers with shorter than normal pin style in the 
mature flower (left) from the cross pin Oak Lea/x short homostyle. An 
immature newly opened flower (right) has a style that appears longer, but 
growth of the corolla tube will raise the anthers further by maturity. D. 
Oak Lea/flowers with pin styles of more usual length. E. Oak Lea/ 
flower no. 1 from the cross thrum Oak Lea/x short homostyle. Style 
length is between the expected length for pin and the expected length for 
thrum. F. Oak Lea/flower no.2 from the cross thrum Oak Lea/x short 
homostyle. Style length is as pin. G. Oak Lea/flowers nos.3a and 3b 
from the cross thrum Oak Lea/x short homostyle. Style length is as short 
homostyle and self pollination appears to be taking place. However 
examination of the stigmatic papillae under an x20 hand lens showed the 
papillae to be long. H. Oak Lea/flower no.4 from the cross thrum Oak 
Lea/x short homostyle. Style length is as short homostyle. Examination 
of the stigmatic papillae under an x20 hand lens showed the papillae to be 
short. Size bars are approximately 1 em. 
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The cross homozygous pin Hose in Hose x yellow short homostyle was canied out in 

1999 and progeny classified in 2000. Results are shown in Table 6.6. 

The reciprocal cross failed due to infection by botyntis. 

Homozygous pin Hose in Hose x short homostyle 
Hih gpa x + ?pa 

Hih gpo + gpo 

Short Pin 
Homostyle Hose in Hose 
Hose in Hose 
Hih g(2f!. Hih flDQ 

+ Gpa + gpo 

0 38 

Table 6.6. Combining Hose in Hose with short lIomostyle, 1 

As G , if present, is dominant to g expect half of the progeny to be short homostyle Hose 

in Hose and half pin Hose in Hose. There is a deficit of short homo style progeny. 

In 2002 the cross Hose in Hose x short homostyle was repeated, but this time using a 

heterozygous thrum Hose in Hose with linkage Hih to pin. Results (Table 6.7) were 

classified in 200213. 

Thrum Hose in Hose x short homostyle 
+ GPA x + ?pa 
Hih gpo .J, + gpo 

Short Pin Short Thrum 
Homostyle Hose in Homostyle wild type 
Hose in Hose 
Hose 
Hih gpa Hih flDQ + G01. + GPA 
+ Gpa + gpo + gpo + gpo 

0 23 0 28 

Table 6.7. Combining Hose bJ Hose with sllort lIomostyle 2 
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If G is present in the short homostyle genotype and if GG is viable, expect a ratio of 

1: 1: 1: 1, of short homostyle Hose in Hose, Pin Hose in Hose, Short Homostyle, and thrum 

wild type. No short homostyle plants were obtained among 51 progeny therefore the 

results do not fit the predicted ratio. 

In order to investigate whether short homostyle and Oak Leqf could be expressed 

together, both pin and thrum Oak Leaf plants were pollinated with short homostyle 

pollen. The results were classified in 2003 (Tables 6.8. and 6.9). 

Pin Oak Leafx short homostyle. 
OKL gpo x + ?pa 

Plants were + gpa J, + gpa 

Short pin Short pin 
Homostyle OakLeaf Homostyle wild type 
OakLeaf 
OKL gpo OKL ma + Goa + rea 
+ Gpa + gpa + gpa + gpo 

0 16 0 17 

Table 6.8. Combining 0tIk Lftifwitb short homostyle, 1 

If no recombination occurs between Oak leaf and the S locus and as both Oak leaf and G, 

if it is present in the short homostyle genotype, are dominant expect a ratio of 1 : 1: 1 : 1 of 

Short Homostyle Oale Leaf pin Oak Leqf, Short Homostyle, and pin wild type. As no 

short homostyle plants were obtained among 33 progeny the results clearly do not fit the 

above ratio. 

Thrum Oak Leafx short homostyle 
OKL gpo x + ?pa 
+ GPA J, + KI!!! 

Short Pin Thrum pin 
Homostyle OakLeaf wild type wild type 
OakLeaf 
OKL gpo QKL + GPA + S!JXl 
+ Gpa + gpa + gpa 

gpo 

+ gpa 
1 14 24 1 

Table 6.9. CombiDiDg Od Lafwith short homostyle 1 
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As both Oak Leaf and G if it is present in the short homostyle genotype, are dominant, 

and if GG is viable, then expect a ratio of 1 : 1 : 1: 1 for Short Homostyle Oak Leaf, PinOak 

Leaf, Thnun wild type and pin wild type. With only 1 pin wild type and 1 short 

homostyle Oak Leafresults do not fit the above ratio. 

All plants from cross I above were classified as pin form, but some Oak Leqf plants at 

matw1ty had flowers with shorter pin styles than normal (Fig. 6.9C), while others had 

styles ofnonnal or near nonnal length (Fig. 6.90). Many of the OakLeqfpin progeny 

from cross 2 above had shorter than normal styles (Fig. 6.9.E), while others were of 

normal or near normal length (Fig. 6.9F). At first flowering all were classed as pin, but 

later in the flowering season a few plants were found to be producing flowers with 

sufficiently short styles to be classed as short homostyle (Fig. 6.90 and H). These flowers 

also appeared to self-pollinate. On examination with an x20 hand lens all plants but one 

(Fig. 6.9H), including that shown in Fig. 6.90, were found to have long pin form 

stigmatic papillae. The short homostyle poDen parent had short thrum like stigmatic 

papillae. No short styled pin wild type progeny were found among progeny from Oak 

Leaf crosses. Style length in the short styled pin Oak Leaf flowers varied from flower to 

flower on the same plant, so that some appeared as short homostyle and some as short 

styled pin (as in e.g. Fig. 6.9E). Style length on the short homostyle pollen parent was not 

variable in this manner. The stigma was always below the anthers when flowers first 

opened and subsequent growth of the corolla tube raised the anthers to the point where 

self-pollination took place. When the stigma is above the anthers as the flower opens, 

anthers and stigma never meet and self-pollination never takes place. Only the single 

plant that had short stigmatic papillae as well as a short style was therefore classed as a 

short homostyle Oak Leqf(Fig. 6.9 H), but it requires confirmation by test crossing to 

wild type. Unfortunately the plant was lost before it could be used for experimental 

breeding. It was already known that style length in Prlmula could be affected by genes 

that are not part of the S locus gene complex (Richards, personal communication 1988) 

and this may be the explanation for many of the short styled pin Oak Leqfprogeny. 
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6.5. Investigation of whether the mutant phenotype is associated with the organ or 

with the whorl in which it occurs. 

The sefXlloid phenotype provided an ideal medium for the above experiment. The aim 

was to alter the fonn of the sefXlloid organs and observe whether or not the altered fonn 

was expressed in the inner whorls of a sepaloid flower. Pin Split Perlanth pollen and pin 

Jack in the green heterozygous for the recessive sep allele x Split Perlanth 
heterozygous for the recessive sefXlloid allele 

Jig + + x + + Spr 

+ sep + J, + sep + 
Jaclc in Jack in Spill wi/dtype sepaJoid Jack In Split Jaclcln 

the green the Perlanth the Perlanth- the 
green- green- sepa/oid green-

Split 
sepaJoid Split 

Perlanth-
Pertanth 

sepalold 

Jig + + Jig + + + + Spr + + + + sep+ Jlgsep + + SepSpr Jlgsep+ 

+ ? + + ?Spr + ? + + ? + + sep+ + sep+ + sep+ + sepSpr 

6 0 5 5 2 3 2 2 

Table 6.10. CombiDing septJ/lJiIl with JIICk III tIJe Green and Split PerilUlth 

Jack in the Green pollen was used to pollinate sepaloid seed parents in 1998. All progeny 

carried the recessive allele for sepaloid. All progeny were also pin, thus confirming the 

genotype of tile parent sefXlloid plants. A aoss between Jack in the Green carrying the 

recessive allele for sefXlloid and Split Perlanth also canying the recessive allele for 

sefXlloidwas undertaken in 1999 and progeny classified in 2000. Results are classified in 

Table 6.10. Despite the numbers being small the majority of expected phenotypes were 

obtained. The absence of Split Perlanth Jack in the Green is unexpected given that this 

combination of phenotypes had previously been obtained from other aosses. sepaloid 

Jack in the Greens (Fig. 6.l0A), Split Perlanth sepaloids (Fig. 6.10B) and Split Perlanth 

sefXlloid Jack in the Greens (Fig. 6.10C) all exhibited the mutant phenotype on the inner 

whorls of sepals. This demonstrates that the mutant phenotype is associated with the 

organ rather than the whorl. 
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Another cross, done and classified at the same time, of sepaloid x Split Perianth 

heterozygous for the recessive allele for sepaloid gave results that agreed with the above 

sepaloid x Split Perianth heterozygous for the recessive allele for sepaloid 
sep + x + Spr 

sep + sep + 

Split Split wild type sepaloid 
Perianth Perianth-

sepaloid 

+ Spr sep Spr + + sep + 

sep + sep + sep + sep + 

3 3 3 2 

Table 6.11. Combining.feJNI/old with Split Perltmtll 

in that the Split Perianth sepaloid plants from this cross also exhibited the mutant 

phenotype on inner whorls. Results from the above cross are classified in Table 6.11. As 

there is no linkage between sep and Spr expect equal numbers of Split Perianth, Split 

Perianth- sepaloid, wild type, and sefXlloid As the number of progeny obtained was 

small, numbers were too low to do a ·i analysis. 

Further evidence that the mutation is associated with the organ rather than with the whorl 

in which it occurs was obtained accidentally, when testing different forms of double for 

allelism. A Jack in the Green double was obtained with organ order oflea1Y calyx, petal, 

petal, leafY calyx, enclosing naked ovules (Fig. 6.1 OD). In this plant the sepals in whorl 

four were also converted to leaf form as were the sepals in the first whorl. 

6.6. DiscussioD of combiDatioDs of mutut pheDotypes.. 

It was found that the majority of mutant phenotypes can be expressed together. Hose in 

Hose and sepaloid are the only phenotypes that cannot be expressed together (see also 

Chapter 7), Hose in Hose is predicted to be due to ectopic B function and sepaloid allele 

is predicted to be due to lack of B function. If Hose in Hose and sepaloid are allelic 

mutations then the Hose in Hose allele is dominant to the sepaloid allele. If they are two 

separate genes then Hose In Hose is epistatic to sepaloid as the presence of Hose in Hose 

masks the presence of sepaloid. 



208 

Figure 6.10. Combinations of phenotypes that show the mutant 
phenotype to be associated with the organ rather than the whorl in 
which it occurs. 

C mbinati n of epa/Did with two other whorl1mutant phenotypes 
how th mutant phenotype to be associated with the organ rather than 

the wh rl in which it occurs. 

A. Jack in the Green- epa/Did. B. Split Perianth-sepa/oid. C. Split 
Perianth-Jack in the Green- epa/Did. D. Jack in the Green-double with 

rgan rd r f leafy epal petal, petal, leafy sepal, naked ovules. Both 
th epal in wh rl one and the epals in whorl four are converted to 
leav . iz b ar approximately 1 cm. 
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6.6.1. Combinations ofwborll mutant pbenotypes. 

Jaclcanapes calyces that combine Hose in Hose and Jack in the Green (Webster and 

Grant 1990) showed interactions between cell types at the junctions between petal and 

leaf cells. Some junctions were sharply defined (e.g. Fig. 6.2C and F), but the cells 

adjacent to the petal cells in these instances were not exactly the same in appearance as 

either normal leaf cells (Fig. 6.2. D) or the green cells of the Jaclwnapes leafY tip (Fig. 

6.2E). Other junctions exhibited gradual change in cell shape and many cells appeared 

chimeric (e.g. Fig. 6.2G, H, and I). In previous studies ofAntirminum (Perbal et ai, 1996) 

boundaries between wild type and mutant cells in sectorial chimeras were observed to be 

sharp. This observation was the basis for their conclusion that there was absence of DEF

mediated lateral communication between cells. Images of boundaries that are clearly not 

sharp in Primula may indicate lateral communication in this instance given that DEF and 

GWare required for petal tissue. Transport of DEFbetween cell layers was found to be 

polar in Anti"hinum (Perbal el ai, 1996; Efremova et 01, 200 1). The epidermal layer of 

petal cells that can be observed to overlie green tissue on the adaxial surface of Primula 

Jackanapes calyces may indicate similar polar transport (Fig. 6.1 A). Were it otherwise, 

the product might have been transported to the layer beneath thus converting the tissue to 

petal. Some differences in the efficacy ofB-function-mediated cell communication was 

found between Anli"hinum and Arabidopsis (Euemova et ai, 2001) and so there will be 

scope for further study on communication between cells in Primula, especially 

investigation of possible DEF-mediated lateral communication between cells. 

Combining phenotypes first whorl mutant phenotypes with the Split Perianth pheno1}lpe 

showed that all of these could be expressed together. The most notable interaction was 

the reflexing of the calyx in combinations of both Split Perianth and Hose in Hose, and 

Split Perianth and Jacmnapes both of which have petal tissue at the base of the calyx. 

Some were only slightly reflexed as in Fig. 6.4A, but most were extremely reflexed as in 

Fig.6.4C. 

6.6.2. Other comblnadoD! of mutant phenotypes. 

Combining Oalc Leaf with other mutant phenotypes similarly showed that the mutant 

phenotypeS could be expressed together (as shown in Fig.6.4). Notable was the weak 

expression of Jaclc in lhe Green in an Oalc Leafbackground, and the deterioration in 

flower quality in flowen from the aoss pin x thrum Dale Leaf, recessive for reduced 



210 

petal. That the petals of the latter flowers became attenuated in the second flowering 

season is in accord with previous results from crossing Oak Leafand wild type. Some 

flowers from the latter crosses had near normal petals that either became attenuated in the 

second season or became ragged later in the first season. This phenomenon is therefore 

unlikely to be the result of combination of phenotypes. 

The possibility, suggested by the nmnber of increased nmnber of recombinants in section 

6.3.1 (table 6.3) that combining the Oak Leaf and Hose in Hose mutant phenotypes might 

increase recombination is interesting. A similar possible increase in recombination was 

observed in one of the crosses designed to test viability of the OakLeafhomozygote, 

(Chapter 5, section 5.11.1 and Table 5.59), namely thrum OakLeafx pin Hose in Hose 

Oak Leaf. Reduction of recombination rate by selection has been reported as long ago as 

1921 (Detleson and Roberts, 1921) and increase of recombination rate by selection in 

1958 (Parsons, 1958). A similar possible increase in recombination was observed in one 

of the crosses designed to test viability of the Oak Lea/homozygote, (Chapter 5), 

(namely thnnn Oak Leafx pin Hose in Hose OakLeaf). The possibility of Hose in Hose 

failing to be expressed in some genetic backgrounds would also explain the anomaly. If 

this were the case the Hose in Hose progeny would be expected to appear as wild type. 

This could explain the results for the cross in chapter 5, but not the above cross where no 

wild type progeny at all were obtained. Ifplants are retained for a nmnber of flowering 

seasons it is usual to discover at least some calyces with traces of petal tissue in any plant 

that callies the Hose in Hose allele, however poorly expressed. It must be noted that 17 

seedlings were lost before maturity from the cross shown in table 6.3, and 14 mature 

plants, of which II were oak leaf and 3 wild type, had failed to bloom at the time of 

scoring the results. Results of the reciprocal three point cross of thrum Hose in Hose Oak 

Leaf pollinated by wild type (see Chapter 7), may help elucidate the problem of whether 

combining Hose in Hose with Oak Leaf does indeed increase recombination rate. 

Another combination made was reduced petal and Hose in Hose. This combination 

produced flowers with the petaloid calyces of Hose in Hose but with the characteristic 

loss of colour associated with reduced petal on the adaxial surface of both the whorl one 

and the whorl 2 petals. The reduced petal phenotype has not yet been combined with 

Jack in the Green, Jackanapes, Split Perlanth or double. The double mutant phenotype 

has not yet been combined with Split Perianth, reduced petal or Oak Leaf. 
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6.6.3. Combination of Hose in Hose and Oak Letlfwitliiong and short homostyle. 

Combinations were made of both Hose in Hose and OakLeafro long homostyle. Each of 

these was shown to have linkage to the S locus, Hose in Hose ro the S allele (Chapter 5, 

section 5.3.1 and Webster and Grant, 1990) and OakLeafro the s allele (Chapter 5, 

section 5.11). Consequently it was of interest ro discover whether there might be any 

interactions between these linked genes. None were found both phenotypes were 

expressed with long homostyle without any interactions (Fig. 6.9A and B). 

Combinations of Hose in Hose and Oak Leafwith short homostyle were problematic. 

Crosses ofboth pin Hose in Hose with short homostyle, and thrum Hose in Hose with 

short homostyle, failed to produce any short homostyle progeny. Pin Hose in Hose 

progeny had styles of nonnallength. Previous findings indicate that a deficiency of short 

homostyle progeny might be expected due to low viability of the morph (Lewis and 

Jones, 1993), but to obtain none at all from a total of 89 progeny is unexpected. 

Crosses of pin Oak Leafwith short homostyle, and thrum OakLeafwith short homostyle, 

resulted in a number of Oak Leaf progeny of ambiguous phenotype, particularly among 

the progeny from the thrum Oak Leaf The wild type progeny were unambiguous. The 

majority of pin Oak Leajprogeny from the fonner aoss had normal, or near normal, pin 

length styles, but some had styles that were slightly shorter than normal (Fig. 6.7C and 

D). The majority of styles in Oak Leaf progeny from the latter cross were of shorter than 

normal length (Fig. 6.7E), although a few were of normal length (Fig. 6.7F). Later in the 

flowering season style length in some flowers became sufficiently short as to present as 

short homostyle (Fig. 6.70). Although style length is controlled by GIg it is also affected 

by polygenic modifiers (Ford, 1964; Richards, pers.com. 1989). Examination of the 

stigmatic papillae found only one plant with short stigmatic papillae, and this one only 

was originally classified as short homostyle Oak Leqf(Fig. 6.7 H). However in spring 

2005 the flowers were pin, with long stigmatic papillae and with shorter than normal 

style. In whorl four stylar cell length and stigmatic papillae length are considered ro be 

developmental correlates of stigma height (Richards, 1993, 1997). Results indicate that 

the short homostyle phenotype parent does not have the genotype Gpalgpo and that the 

phenotype must have a different genetic origin. All but one of the short styled pin Oak 

Leafplants had distinctively long stigmatic papillae. Some of these have been retained for 

further observation. 
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6.6.4 Combinations that illustrate the association of the mumnt phenotype with dle 

organ radler dlan widl the whorl in which it occun. 

There have been numerous previous reports ofhomeotic mutants with organs that are 

nonnal being produced in the inappropriate whorl (e.g. Bowman et 01. 1989; Bowman et 

01. 1991; Bradley et 01. 1993; Jack et 01. 1997). By combining the sepaloid mutant 

phenotype with both Split Perianth (Fig. 6. lOB) and Jack in the Green (Fig. 6.10A) 

flowers with both abnonnal sepals, and sepals in inappropriate whorls were produced. 

The Split Perianlhlsepaloid organs, although divided into individual sepals in an 

abnonnal manner, were none the less clearly sepals. Similarly, thefrl1 ag Arabidopsis 

flower (Hase et 01, 2(00) had frilled petals in inappropriate whorls that were clearly 

petals. In contrast, the sepaloidiJack in the Green (Fig. 6. lOA), the Split 

PerianthisepaloidiJack in the Green (Fig. 6.lOC), each had homeotic conversion of 

sepals to another organ fonn that were also produced in inappropriate whorls (see 

Fig.6.1 0). In addition the double/Jack in the Green with organ order ofleafy sepal, petal, 

petal, leafY sepal, shown in Fig. 6.100, has both the whorl one and the whorl four sepals 

converted to leaf These examples clearly illustrate that each mutant phenotype observed 

here is associated with the organ, rather than with the whorl in which it occurs. 

6.6.5. Summary of results. 

From the above analysis it can be concluded that: 

t. Hose in Hose is either dominant to sepaloid (if Hose in Hose and sepaloid are allelic 

mutations) or epistatic to sepaloid (if they are two different genes) as the two phenotypes 

are not expressed together, (See also Chapter 7). 

2. The mutant phenotype is associated with the organ rather than the whorl. 

3. Other interactions include some effects on the phenotype, such as for example, 

combining Split Perianth with Hose in Hose results in whorl 1 petals that are extremely 

reftexed and Jack in the Green is observed to be poorly expressed in an Oak Leqf 

background. It was also observed that combining reduced petal with Oak Leqfhas a 

detrimental effect on flower form. 

Having examined dominance relationships and linkage in Chapter S, and genetic 

interactions in Chapter 6 above, the nugority of the mutant phenotypes are not analysed 

further. Only three phenotypes, Hose in Hose, Oak Leaf, and sepaloid are used both for 
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investigation oflinkage analysis and investigation ofpossihle allelism of Hose in Hose 

and sepaloid (see Chapter 7). 
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CHAPTER SEVEN 

Linkage analysis. 

7.1. Introduction. 

The discovery offom genes that show linkage to the Slocus, Hose in Hose, Staminoid 

Carpels. sepaloid and Oak Lea/provided opportunity to develop a linkage map of genes 

SWTounding the S locus. It is possible that Stamimid Carpels is a second allele of Hose in 

Hose. As this requires further investigation Slamimid Carpels was not included in the 

following linkage analysis. 

It could be predicted that Hose in Hose and sepaloid could be gain and loss ofB function. 

They could be allelic mutations or two separate but linked genes. If the latter, they could 

be on the same or on opposite sides of the S locus. If allelic mutations, they would be the 

first example of B function complementaly phenotypes. If they were two separate genes 

this would be the first example of a B function gene and a regulator ofB being tightly 

linked. One object of this study was to investigate whether one gene or two is respons1ble 

for the phenotypes. A second object, if two genes should be fo1Dld to be involved, was to 

discover gene order. As the dominant nature of the Hose in Hose mutation precludes 

complementation tests three point aosses were used both as segregation tests and for 

mapping genes linked to the Prlmuia S locus. Not all sepaloid plants are fertile (see 

Chapter 4, 4.2.7), and those that are frequently have only a limited number of fertile 

flowers on each plant. Both this, and the vety tight linkage of Hose in Hose and sepaloid 

to the S locus presented impediments to the investigation. 

Oak Lea/is less tightly linked to the Prlmula S locus (Chapter 5,5.11; Tables 5.54 and 

5.58) and can be combined with Hose in Hose. The genotype (Old s + / + SHih) 

provided a good basis for undertaking a second three point aoss to look for gene order, 

and was used to pollinate pin wild type .. 

A third opportunity for mapping gene order was provided by pollinating a pin sepaloid (+ 

sep s/+ sep s) with pollen from a thrmn Oak Leqfparent (Old S +1+ + +). The latter was 

the result of recombination between Old and s that brought Old and the S allele into 

coupling. As the sepalotd phenotype is recessive, all Oak Leaf progeny from this cross 

will be heterozygous recessive for sepa/oid. These thrum Oak Leaf progeny were used to 

pollinate pin sepa/oid As with all crosses involving sepaloid, an initial difficulty was that 
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of obtaining enough seed from sepaloid plants that have limited fertility, in order to 

produce a sufficiently large number of progeny. 

7.2. Investigation to determine whether Hose In Hose and sepillold are allelic. 

Investigation of the relationships between the tight linkage of Hose in Hose and sepaloid 

to the S locus was undertaken to determine whether two genes were involved or whether 

the two mutant phenotypes may be allelic. In order to do this four crosses were carried 

out, including use of the three point cross for gene mapping, shown in Table 7.1, as an 

alternative to complementation since Hose in Hose is a dominant phenotype. In 1996 a 

pin sepaloid had been pollinated by a Hose in Hose plant of genotype Hih S / Hih S. 

Not many progeny resulted from this cross, and of these most fiIiled to survive. Only four 

thrum Hose in Hose plants survived to maturity, each heterozygous recessive for sepaloid 

and providing a suitable genotype ( + SHih / seD s +) for a three point cross. As gene 

order was unknown, the hypothesis that Hose in Hose and sepaloid may not be separate 

genes was tested. In 1998 the following crosses were canied out. Cross no. 1 : pin sepaloid 

x thnun Hose in Hose, heterozygous for the recessive seJKlloid allele (sep s + I sep s + x 

+ SHih I seD s + ). Cross no.2: Wild Type pin, heterozygous for the recessive sepaloid 

allele x Hose in Hose thrum, heterozygous for the recessive sepaloid allele (+ s + I sep s 

± x + SHih I sep s + ). In order to attempt to overcome the difficulty of obtaining 

enough progeny Cross no. 1 was repeated in subsequent years. Results were classified 

from 2000 onwards. The same Hose in Hose plant (genotype+ S Bih / seD s +) was used 

as parent to plants classified in 2000-2002, but was subsequently lost. A different Hose in 

Hose plant (genotype+ SHih / seD s +), one of the progeny classified in 2002 was used 

for the final pollinations. Twenty green seedlings from this cross were lost before 

matwity through fimgal infection and could not be classified. If Hose in Hose and 

sepaloid are two separate genes then a recombination event could result in an occasional 

wild type plant among the progeny. If linkage is ve:cy tight expect 1: 1 pin sepaloid : 

Thrum Hose in Hose. A .; analysis was done to test the null hypothesis that there is no 

significant difference of the data from the predicted ratio. 

X2 for I: I pin sepaloid : thrmn Hose in Hose 

Observe 113:82; expect 97.S:97.S 

X2 (l dot) = 4.93, P = 0.026 

Results show that there is a deficiency of thrum Hose in Hose. 
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Pin sepa!oid x thnnn Hose in Hose heterozygous for the recessive allele for 
sepaloid (gene order unknown) 

sen s + x + 8 Hih 
sep s + .J, sep s + 

sepaloid Thrum pin Thrum pin 
Hose in Hose in wild type wild type 

Hose Hose 
~ s + + 8 Hih + sHih +8+ + s + 
sep s + sep s + sep s + sep s + sep s + 

2000 14 9 0 0 0 

2002 48 35 0 0 0 

2003/4 51 38 I 0 0 

113 82 1 0 0 

Table 7.1. Cross 1. Three point cross to investipte whether HOSt! 111 Hose and 
St!ptdtJld are allelic. 

As the seedlings from 2003 began to genninate it was observed that there were a large 

number of pale yellow or white seedlings. Some of the pale yellow seedlings survived but 

all of the white seedlings died. A C01Dlt was made of nmnbers of green (110) and of 

white/pale seedlings (32). Ifa lethal gene for white seedlings is carried in both parents 

and is unlinked to either Hose in Hose or sepaloidthen expect a ratio of3:1 for green to 

white or pale seedlings. A -i analysis was done to test the null hypothesis that there is no 

significant differen~ of the data from the predicted ratio. 

X2 for 3 : I green: white/pale seedlings 

Observe 110:32; expect 106.5:35.5 

X2 (1 dot) = 0.46, P = 0.498. 

Results do not quite fit the ratio of 3: 1 green : White/pale seedlings. 

Twelve of the pale seedlings (Fig. 7.1, A and B) survived to maturity and were classified 

as seven Hose in Hose and five sepaloid, confirming that the lethal gene for pale/White 

seedlings is not linked to either Hose in Hose or sepaloid. Twelve pale seedlings with 

leaves that later became green, survived and grew to maturity (Figure 7.1). Seed set from 

controlled pollination failed, and despite growing strongly at first (Figure 7.1 C) the plants 

began to deteriorate later (Figure 7.1 D) and have since been lost. 
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Fi ure 7.1. Progress of pale leaf seedlings to maturity. 

Pale leaf edling appeared able to develop chlorophyll in the leaves, 
but nly I wly. They continued to grow until they flowered, but both 
failed t et eed and failed to continue to develop chlorophyll later in 
th flowering eason. 

A. Pale leaf eedling . Note the greening of the older leaves. B. Pale 
leaf plants with new leave pale and older leaves green. C. Pale leaf 
Ho in Ho at first flowering. D. Pale leaf Hose in Hose later in the 
fl wring n. No further greening of the leaves took place and the 
plan ub equ ntly died. Size bars are approximately I cm. 
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It is possible that there is a problem of viability linked to Hose in Hose in this line, but 

this requires fmther investigation and the excess number of sepaloid progeny obtained 

from this three point cross cannot currently be explained. One recombinant plant with the 

phenotype pin Hose in Hose was obtained. However a recombination event that gives a 

wild type plant was required in order to establish that there are two genes involved. There 

could possibly have been other recombinants among the seedlings lost before maturity. 

Should Hose in Hose (predicted ectopic B function) and sepaloid (predicted absence ofB 

function) be allelic, with Hose in Hose dominant to sepaloid, recombination between this 

locus and the S locus would result in a pin Hose in Hose. Should the cross be repeated it 

would be essential to obtain larger nmnbers of progeny as was possible for linkage 

analysis of Oale Leaf, sepaloid and the Primu/a S locus (see 7.4). The very tight linkage 

between sep and s means that a minimum of several hlDldred progeny is required before a 

recombinant could actually be expected. Further evidence is required to confirm that 

Hose in Hose and sepaloid are two separate genes. 

Cross no. 2. Pin Wild Type heterozygous for the recessive allele for sepaloid was 

pollinated by thrum Hose in Hose heterozygous for the recessive allele for sepaloid and 

the results classified in Table 7.2. 

Wild type pin, heterozygous for the recessive allele for sepaloid x Hose in 
Hose thrum heterozygous for the recessive allele for sepaloid 

+ S + x + SHih 
sep s + i sep s + 

sepaloid Thrum Pin Thrum Pin 
Hose in Hose in wild type wild type 
Hose Hose 

SRI + + ~ Hib. seD. s Hih + S. + seu s + 
sep s + ? s + ? s + + S + + S + 

6 18 1 1 6 

Tlble 7.2. Results of cross no. 2. Second test to investigate whether Hose 
In Hose IDd septUold Ire delle 

Results from the second cross show two possible recombinants, pin Hose in Hose and 

thrum wild type. The latter plant was lost. The tables fur crosses 1 and 2 show the 

genotypes for 2 genes on opposite sides of the S locus but alternative genotypes for the 

cross should Hih and sep be allelic, are hihsel' s / hihseU s x Hih+ S / hihsep s. In 

this case recombination could occur between hihsep and the S locus to result in pin Hose 
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in Hose and thrum wild type. The resultant genotype of the pin Hose in Hose could be 

either (A) hihsep s / Hih+ s or (B) Hih+ s / hih+ s. 

If Hose in Hose and sepaloid are two separate genes it is not known whether the genes 

are on opposite sides oftheS locus or on the same side of the S locus. If they are on the 

same side the predicted order would be hih seD s since no confirmed recombinants 

between sep and the S locus have been obtained so far, thus indicating complete linkage 

between sep and s. If Hose in Hose and sepaloid are on the same side of the S locus 

possible genotypes for a pin Hose in Hose resulting from recombination between sep and 

s are (C) hih + s / Hih + s and (0) hih seD s / Hih + s. PosSIble genotypes for pin 

Hose in Hose from recombination between hih and sep are (E) hih + s / Hih seD s and 

(F) hih seD s / Hih seD s. 

If as postulated in the tables (7.1-7.4) there are 2 genes on opposite sides of the S locus 

then recombination between Hih and S could give possible genotypes for the pin Hose in 

Hose as (0) seD sHih / + shih and (H) sep shih /sep sHih. 

Cross no. 3. The pin Hose in Hose (putative genotype sep s Hih!+ s + ) was 

backcrossed to pin sepaloid (sep s + lsep s +) in 2000, as shown in Table 7.3, and results 

were classified in 200 1. 

Pin Hose in Hose backcrossed to pin sepaloid 

se.p s + 

seP s + 
sepaloid 

sep s + 
sep s + 

1 

x seD sHih (putative genotype) 

+ S + 

Hose in Pin 
Hose wild type 

mz sHih + s + 

sep s + sep s + 

7 17 

Table 7.3. Results of croa DO. 3. Third test to iDvestigate whether Ho. 
m Hose aad .,..111 are allele 
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Only genotypes (from A- H) above that predict results of pin Hose in Hose and pin wild 

type can be considered. If sepaJoid and Hose in Hose are allelic then genotype (B) above 

would give pin Hose in Hose and pin wild type, but no sepaloids could occur. To obtain 

the sepaloid classified in Table 7.3 two genes would be required and the genotype of the 

pin Hose in Hose would be either that as in (E) above if Hih and sep are on the same side 

of the S locus, with a single recombination occuning between hih and sep that would give 

both the pin Hose in Hose and the thrum wild type, or as that in (0) above, as the putative 

genotype in Table 7.3, with recombination occurring between sep and s. However in this 

instance a second recombination event between Hih and S would be required to give the 

thrum wild type recombinant. Results from cross no. 3 therefore indicates that there are 

two genes involved, probably both on the same side oftbe S locus, but another 

recombinant would give absolute proof, so further tests were undertaken. 

Cross no. 4. The reciprocal crosses between thrum wild type heterozygous for the 

recessive allele for sepaloid (seD (I) sHih I + s hili) and pin Hose In Hose (putative 

genotype, + shih / see sHih) was also carried out. Results were classified during 2003. 

Thrum wild type heterozygous for the recessive allele for sepaloid x pin Hose 
in Hose (putative genotype + s hih / sep sHih) 

sep s + 

+ S + 

Thrum pin 
Hose in Hose in 
Hose Hose 

+ S + sell. s + 
sepsHih sepsHih 

2002 20 30 

Recip. 4 3 
cross 
2003 6 10 

--.----
Recip. 4 1 
cross 
Total 34 44 

x 

1bnun 

seem sHih 

+ s + 

pin 
wild type wild type 

+ ~ + sel!. s + 
+ s + + S + 

19 26 

14 14 

8 10 

15 3 

56 53 

sepaloid 

0 

0 

0 

0 

0 

Table 7.4. Results of cross DO. 4. Fourth tat .. iDvestipte whether Hose in 
B~ aad .,..111 are allellc 
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Equal numbers of thrum wild type, pin wild type, thrum Hose in Hose and pin Hose in 

Hose can be expected given the results from the cross above. In addition it is possible that 

recombination could produce an occasional sepaloid plant that would confinn the 

previous results. (sepaloids are the only recognisable recombinant phenotypes from the 

above reciprocal cross) . No recombinants were identified. A ·l analysis was done to test 

the null hypothesis that there is no significant difference of the data from the predicted 

ratio. Ifno recombination is occurring expect equal nwnbers of Hih s: Hih S: + s: + S 

X2 for ): I: I:) for Hih s : Hih S : + s : + S 

Observed 44 : 34 : 53 : 56; expect 46.75 : 46.75 : 46.75 : 46.75 

·l (3 dot) = 6.31 P = 0.097 

Results are consistent with ): 1: 1 : I for Hih s : Hih S : + s : + S 

The sepaloid from the cross tabulated in Table 7.3 above indicates that there are two 

genes involved. Although the vel)' tight linkage between sepaloid and s means that the 

chance possibility of a recombinant being obtained ftom such low numbers is unlikely, it 

is not impossible. Similarly it is not surprising that no recombinants were obtained from 

the larger cross shown in Table 7.4 as a minimum of seveml hmdred progeny would be 

required before a recombinant could actually be expected. The result of this investigation 

was initially considered inconclusive as there was no way of being sure whether the 

sepalDid could have been the result of experimental error (e.g. a stray seed) or a genuine 

recombinant. However given the prediction that mwation ofGWBOSA. is the basis of the 

Hose in Hose phenotype and the possibility of Hose in Hose and sepaloid being allelic 

further molecular analysis was undertaken in the Gilmartin laboratory. Sequence of the 

geoomic locus of GWBOSA. in sepaloid showed no DNA sequences different from the 

Wild Type allele that might be predicted to create a null allele (Dr. J. Li, personal 

communication). Consequently it now scans likely that there are two genes involved and 

that the sepaloid obtained (see Table 7.3) is a genuine recombinant. 

7.3. IavatiptiOD of tile order of tbe IIDked ... BOH ill BOH, 0aIc l.etif, aad tbe 

~Slocas. 

A homozygous Hose in Hose plant that was also a rare homozygote for the dominant S 

aJlele of tile Prlmula S locus, genotype /JJlJ.£/~ (see Chapter 5,5.3.4), was po11inated 

using pollen from a pin Oak Leafplant genotype Old s / + s. The thrum Hose in Hose-
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Oak Leaf progeny from the above cross can be expected to have the genotype Hih S + / 

+ saki (gene order unknown). Three sibling plants of this genotype were used in 

reciprocal crosses with wild type pin plants in an attempt to raise a very large nwnber of 

progeny. Gene order could be either Ok! Hih S or Okl SHih, but not Hih Old S as it has 

already been established that Old is less tightly linked to the S locus than Hih (see 

Chapter 5, 5.11). 

The Oak Leafplants proved to be less productive seed parents than wild type. In contrast 

the wild type plants used as seed parents pollinated with Oak Leaf pollen produced 

abundant seed. A problem both anticipated and encountered with this three point cross 

was the difficulty of separating true pin Hose in Hose-Oak Leaf recombinants from pin 

Oak Leaf plants with streaks of petal in the calyx. Where the calyx is completely petaloid 

and of the expected Hose in Hose fonn there is no doubt of the classification, but where 

the streaks of petal are as those found in the calyces of Oak Leaf progeny from wild type 

x Oak Leaf(see Chapter 4, Fig 4.28) there can be ambiguity. Those pin Hose in Hose

Oak Leaf with sufficiently petaloid calyces to be indisputable were recorded as such, and 

all possible recombinants were maintained for a second flowering season in order to 

verifY results. This worked well with progeny from two of the Oak Leaf parents, but pin 

Oak Leaf progeny from a third Oak Leaf parent were sufficiently ambiguous for scoring 

of progeny from this cross to be discontinued and results eliminated from the final 

classification shown in Table 7.5. 

A second difficulty was the possibility ofthrwn wild type actually being Hose in Hose 

with a poorly expressed phenotype. The latter possibility is easier to ascertain, as such 

plants generally produce at least small amounts of petal in the calyx at some time dmiog 

the flowering season, so that retaining them for observation throughout the flowering 

season was sufficient to ensure accurate classification. 

Final classification of the three point crosses is tabulated in Table 7.5. Results confum 

gene order as Old SHih. 



Cross 

OakLafI. 

Results of linkage analysis of Hose in Hose, Oak Leaf, and the Primula S locus. 

pin wild type x thrum Hose in Hose - Oak Leaf 

Parentals 

+ s + 
+ s + 

pin Oak Thrum pin 

x 
.J, 

Sco O'ldls 
Thrum 

Leaf Hose in wild type Hose in 
Hose Hose-Oak 

Leaf 

Okl s + 
+ SHih 

ScoHihlS 
pin Hose Thrum 
inHose- wild type 
OakLeaf 

pin Hose 
in Hose 

Dco 

QIcI s + + S. Hih ±-.L± Old S. Hih QIcI sHih + S. + + s Hib. 
+ s + + s + + s + + S + + s + + s + + s + 

lAo Pin wild type 1 x Thrum 229 180 0 2 1 0 0 
Hose in Hose - Oak Leaf 1 

lB. Pin wild type 2 x thrum 276 152 2 0 0 0 0 
Hose in Hose - Oak Leaf 1 

Ie. Throm Hose in Hose - Oak 215 228 2 0 0 2 0 
Leaf I x pin wild type 3 

OakMtd2. 
2A. Pin wild type 4 x thrum 236 254 2 3 0 4 1 

Hose in Hose - Oak Leqf2 
28. Thrum Hose in Hose - Oak 78 77 1 10 0 1 0 

Le~2 x pin wild type 4 
2e. Pin wild type 5 x thrum 65 42 1 2 4 2 0 

Hose in Hose - Oak LeaJ2 

Total numbers 1099 932 8 17 5 9 1 
2032 25 14 3 

2075 
-- ~ ---

Other 
Thrum 

OakLeaf 

QIcI S. + 
+ s + 

1 0 

0 0 

1 0 

0 0 

0 0 

0 1 short homostyle 
Hose in Hose with 

large pollen. 

2 1 
1 

Table 7.5. This table depicts results of crosses of pin wild type plants x two different thrum Hose in Hose-Oak Letifplants, Oak Leaf 
1 and Oak Lea/2. Three different wUd type plants, marked 1,2, and 3, were used with Oak Letifl, and two with Oak Lea/2, 

marked 1 and 2. Crosses 2A and 2B are reciprocal crosses. 
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Cross Total numbers Old/s HihlS 
recombinants recombinants 

Pin wild type 1 x 413 3 2 
Thrum Hose in 

Hose- Oak~l --
Pin wild type 2 x 430 2 0 
thrum Hose in 

Hose - Oak Leaf 1 
Thrum Hose in 448 3 3 

Hose - Oak Leaf 1 
x pin wild type 3 
Combined total 1291 8 5 
Map distance Old/s=0.6% Hih/S=0.4% 

Pin wild type 4 x 500 6 5 
tbrumHose in 

Hose - Oak Lea/2 
ThmmHosein 167 11 1 

Hose - Oak Leaf2 
x pin wild type 4 
Pin wild type 5 x 116 3 6 
thrum Hose in 

Hose - Oak Lecif2 
Combined total 783 20 12 
Map distance Okl/s = 2.6% HihlS= 1.5% 

Table 7.6. Map distances of Bih and Okl from the S locus 

Map distances V8IY dramatically between the crosses (Table 7.6) but put Oak Leaf further 

from the S locus than Hose in Hose. 



225 

Dwing the analysis it was noted that as the progeny first began to flower there appeared 

to be more Oak Leaf plants among the earliest plants to bloom. The first Oak Leaf plant 

discovered was in commercial stock as were some of the wild type plants used, and many 

commercial lines have been specifically selected for early flowering. To investigate 

whether early flowering segregated with Oak Leaf a count was made of the plants raised 

in Woodborough Nursery under the same environmental conditions. Results are shown in 

Table 7.7. 

Progeny of flowered Not 
plant 1 flowered 
Oak leaL 349 90 439 
wild type leaf 166 286 452 

515 376 891 

Progeny of plant 1. ·l (1 dot) = 167 P = 0 ( significant) 

Progeny of flowered Not 
plant 2 flowered 
Oakleaf 88 121 209 
wild type leaf 63 87 150 

151 208 359 

Progeny of plant 2. "l (1 dot) = .008 P = 0.93 (not significant) 

Table 7.7. Timing of flowering of Oak LeBf and wild type leaf progeny. 

The results indicate that the Oak Leafprogeny from the first thrum Hose in Hose-Oak 

Leaf plant are flowering significantly earlier than the wild type progeny. Progeny of the 

second thrum Hose in Hose-Oak Leafplant show no significant difference in flowering 

time between the two leaf phenotypes of the progeny. A future experiment could be done 

specifically to test segregation of early flowering with the Oak Leaf phenotype in 

different plants. However it is also possible that early flowering could have been canied 

by some of the wild type plants and as three different wild type plants were used with Oak 

Lea/plant no. 1, (Table 7.5), in a future experiment a single wild type parent only should 

be used. 
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Progeny of parental Recombinant 
plant 1 (Old / s) 
female 445 3 448 
male 838 5 843 
total 1283 8 1291 

Progeny of plant I. Yates' -l. (I dot) = 0.042, P = 0.838 (not 
significant) 

Progeny of parental Recombinant 
plant 2 Jlli!/ Sl 
female 445 3 448 
male 839 4 843 
total 1284 7 1291 

Progeny of plant 1. Yates'X2. (l dot) = 0.003, P = 0.96 (not 
significant) 

Progeny of parental Recombinant 
plant 1 (Old/ ~ 
female 156 11 167 
male 607 9 616 
total 763 20 783 

Progeny of plant 2. Yates'Chi sq. (1 dot) =11.885, P = 0.0006 
(significant) 

Progeny of parental Recombinant 
plant 2 lHih/ S) 
female 166 1 167 
male 605 11 616 
total 771 12 783 

Progeny of plant 2. Yates' X2. (1 dot) = 0.566, P = 0.45 (very slightly 
significant) 

Table 7.8. Comparison of recombination frequency in pollen and egg 
of two Oak Leaf plants. 

Numbers of recombinants from the two thrum Hose in Hose-Oak Lea/plants as male and 

female parents were also compared. Results are classified in Table 7.8. Recombination in 

the pollen and seed parents is not significantly different for Thrum Hose in Hose-Oak 

Lea/no. 1 but there is some significant different for Thrum Hose in Hose-Oak Lea/no. 2. 

A future experiment could be undertaken specifically to test recombination in pollen and 

seed parents of Prlmula. 
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Of particular interest is the S locus recombinant, a short homostyle Hose in Hose with 

large pollen (fig. 7.2.A) obtained from the three point cross (see Figure 7.6). It has the 

expected characteristics of a short homostyle in that as well as having a short style the 

stigmatic papillae are also short (Fig. 7.2.B). The majority oftlowers that appear as short 

homostyle (Fig.7.2.C) have long stigmatic papillae (Fig 7.2D). Unfortunately this short 

homostyle Hose in Hose with large pollen does not give us the gene order of the S locus 

as double recombination within all gene orders could give this phenotype. 

Examples are set out below (- indicates recombination points). 

0/cJ p - a - g hih 

o/cJ P - A - G Hih 

0/cJ g- a-p hih 

o/cJ G - A - P Hih 

0/cJ gp-a-hih 

o/cJ G P-A -Hih 

0/cJ - a- p ghih 

o/cJ - A - P G Hih 

to give o/cJ P a G Hih and 0/cJ p A g hih as gametes of the 

genotypes 

to give o/cJ GaP Hih and OkJ gAD hih as gametes of the 

genotypes 

to give old G P a Hih and 0/cJ g pA hih as gametes of the 

genotypes 

to give okJ a P G Hih and Old A p g hih as gametes of the 

genotypes 

No long homostyle Oak Lea/plants were discovered among the progeny. All 

recombinants were checked for pollen size and no further pollen size recombinants were 

discovered. A random sample of approximately 50 plants of both pin Oak Leaf and thrum 

Hose in Hose from each cross were also sampled for pollen size without discovering any 

pollen size recombinants. Some pin plants (both one pin Oak Leaf and one pin Hose in 

Hose-Oak Leaf) were found to exhibit mixed size pollen; but when checked repeatedly 

over the flowering season the pollen size eventually ceased to be of mixed size and was 

uniformly small as normal pin pollen. The above plants reverted to producing mixed size 

pollen again at the end of the 2004 flowering season. They have both been self pollinated 

and their pollen has also been used on thrum wild type flowers in order to test whether 
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i ure 7.2. hort homostyles and stigmatic papillae length. 

Th fl wer and the tigmatic papillae in C and D are shown for 
compari n with that of the short hornostyle Hose in Hose in A and 
8. h rt h m tyl are normally expected to have short stigmatic 
papillae but ional plants are discovered that present as short 
h rn tyl but that have long stigmatic papillae. 

. h rt h m tyle Hose in Hose with short stigmatic papillae and 
lar 11 n. B. tigmatic papillae of flower in A as seen under the 
light mi r p.. A hort homostyle flower with small pollen 
and I ng tigmati papillae. D. Stigmatic papillae of flower in C as 

n und r th Ii ht micro cope. Size bars are approximately tcm. 
In and and appr imately O.5mm. in Band D. 
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they might behave as the p. plants described by Kwian and Richards (Kwian and 

Richards, 1997). There is scope for investigation of pollen size over the flowering season. 

Five different wild type plants were used for the three point cross, three with Oak Leaf no. 

1 and two with Oak Leafno. 2 (Table 7.5). Of these wild type plants two were 

commercial cultivars from a line called "Emily" primroses (Table 7.5, pin wild type 

numbers 3 and 4- Oak Leaf 1 cross C, and Oak Leaf2 Crosses A and B), one was a wild 

P. vulgaris (Table 7.5, pin wild type 2 - Oak Leaf 1 Cross B) and two were from a cross 

of P. vulgaris x a commercial cu1tivar (Table 7.5, pin wild type 1 - Oak Leaf 1 cross A 

and pin wild type 5 - Oak Leaf2 cross C). It had been previously observed that when 

crossed to P. vulgaris more Oak Leaf progeny than progeny with wild type leaves were 

obtained (Chapter 5; 5.10.1). It was suggested that this could be due to irregular 

germination of wild plants in contrast to commercial cultivars that have been rigorously 

selected for both high and unifonn gemtination. Having crossed both P. vulgaris and 

commercial primrose cultivars with each of the two Oak Leaf plants it allowed further 

investigation of this possibility. The three crosses using Oak Leafnol were individually 

tested for a 1: 1 ratio of for Oak Leaf to wild type leaves. The first two crosses using Oak 

Leafno. 2 were reciprocal, so could be tested together, and the third cross was tested 

individually. As the Oak Leaf plants were heterozygous for the leaf character (Old s + / + 

SHih) expect a ratio of 1 : 1 for Oak Leaf to wild type leaves. 

Oak Lea/no. 1. 

'l for 1: 1 wild type no 1 x Oak Leaf no. 1. Cross 1 A. 

observe 233 : 180, expect 206.5: 206.5 

'l (1 dot) = 6.8, P = 0.009 

Results do not fit the predicted ratio of 1: 1 for Oak Leaf to wild type leaves. 

"l for I: 1 wild type no 2 x Oak Leafno. 1. Cross 1 B. 

observe 276 : 154, expect 215 : 215 

'l (l dot) = 34.6 P = 0 

Results do not fit the predicted ratio of 1 : 1 for Oak Leaf to wild type leaves. 

'l for 1: 1 wild type no 3 x Oak Leaf no. 1. Cross 1 C 

observe 215 : 232, expect 223.5: 223.5 

-l (1 dot) = 0.6, P = 0.42 

Results do not fit the predicted ratio of 1 : 1 for Oak Leaf to wild type leaves. 
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Oale Leaf no. 2. 

'l for 1: 1 wild type no 4 x Oak Leaf no. 2 (+ reciprocal). Crosses 2A and 2B 

observe 327: 240, expect 283.5 : 283.5 

X2 (1 dot) = 13.35, P = 0.0003 

Results do not fit the predicted ratio of 1: 1 for Oak Leaf to wild type leaves. 

X2 for 1: I wild type no 5 x Oak Leafno. 2. Cross 2C. 

observe 71 : 45, expect 58 : 58 

X2 (I dot) = 5.8, P = 0.016 

Results do not fit the predicted ratio of I: I for Oak Lea/to wild type leaves. 

It is a cross that involves a commercial cultivar (pin wild types number 3) that is least 

inconsistent with a I: I ratio of Oak Leaf to wild type leaves. The lowest proportion of 

wild type leaf plants is from the cross using wild P. vulgaris (pin wild type no 2). This 

indicates that delayed germination of some seed may be associated with wild P. vulgariS. 

The habit appears to be retained in first generation progeny, pin wild type numbers I and 

5 do not fit the predicted ratio of 1: 1 for Oak Lea/to wild type leaves, but the proportion 

of wild type leaf plants to Oak Leaf plants in these instances is not so low as that from 

wild P. vulgariS. There is scope for further investigation into germination of wild P. 

vulgaris seed versus selected commercial cultivar seed. 

It was essential to confirm the genotype of the short homostyle Hose in Hose with large 

pollen, a recombinant from the three point cross (see Table 7.5 and Figure 7.2) by test 

crosses, particularly in the light of experiments that found the yellow presumed short 

homostyle studied in Chapter 5 not to be of the predicted genotype (Chapter 5,5.10). The 

short homostyle Hose in Hose with large pollen is extremely self fertile and the 

possibility of it being a short styled pin Hose in Hose with large pollen required 

investigation. Recent results from a small test cross have resulted in two short homostyle 

Hose in Hose plants with large pollen and ten wild type pin plants. There are further 

progeny still to bloom but this result confirms the genotype of the short homostyle Hose 

in Hose with large pollen. The pollen size of the ten wild type progeny was examined and 

one plant was discovered to have mixed size pollen composed of both large and small 

pollen. This will be further investigated to discover whether it might behave as the p. 

plants descn"bed by Kurian and Richards (Kurian and Richards, 1997). 



231 

7.4. Investigation of the order of the linked genes Oak Leaf, sepalold, and the 

Prlmulo S locus. 

It has been established that Oak Leafand Hose in Hose are on opposite sides of the S 

locus (7.3 above). A second investigation to discover whether sepaloid is on the same 

side of the S locus as Hose in Hose or on the opposite side of the S locus to Hose in Hose 

but on the same side as Oak Leaf, mapping of Oak Leaf and sepa/oid to the S locus was 

undertaken using a three point cross of sepaloid x Oak Lea/heterozygous for sepa/oid 

(sep s +/sep s + x + S Okll sep s +). To construct the Oak Leafplants heterozygous 

for sepa/oid a thrum Oak Leaf (Old S / + s) recombinant from the cross shown in Chapter 

5, table 5.54, was used to pollinate a pin sepa/oid (seD s / seD s). The cross failed at the 

first attempt and so was repeated the following spring when it was successful; seed was 

collected, sown, and progeny subsequently raised. All five Oak Leaf progeny from this 

cross were both tbnun and heterozygous for the recessive sepa/oid allele. Four thnun Oak 

Leafplants heterozygous for the recessive sepaloid allele (+ SOld / seD s +) flowered in 

2003 and were used as pollen parents on sepaloid (sep s / sep s) plants. In order to obtain 

as much seed as possible two sepa/oid seed parents were used for each thnun Oak Leaf 

pollen parent. Not all flowers on sepaloid plants are fertile, even on those plants that do 

produce carpels. A total of717 progeny were raised, 581 in Woodborough Nurseries and 

136 in Winford. Results were scored in mid June 2004 and are classified in Table 7.9. 

Numbers of recombinants were smaller than had been hoped for, but indicate that the 

gene order is likely to be Oak Leaf S locus sepa/oid. From the map distances calculated 

in Table 7.10 it can be observed that there is variation in recombination rate from one 

plant to another. Oak Leafis further from the S locus than sepaloid. Map distances vary 

considerably from plant to plant but generally put Oak Leaf further from the S locus than 

sepaloid. Like Hose in Hose, sefXlloid is tightly linked to the S locus; and from the results 

shown in Table 7.9 sepaloid is on the same side of the S locus as Hose in Hose. Since the 

map distances from the S locus are similar, either Hose in Hose and sefXl/oid are allelic or 

they are two separate but very closely linked loci. The 118 plants that had not flowered in 

2004 (see Table 7.9) were retained until 2005 and no further recombinants occurred. 

While all retained plants were as the parental, either Thrum Oak Leaf or pin sepa/oid, due 

to the loss of a number of labels it was not possible to allocate the correct numbers of 

Thrum Oak Leaf and pin sepaloid to the correct parent plants. However for the pmpose of 



pin sepaloid x Thrum Oak Leafheterozygous for the recessive sepaloid allele 
sep s + x + S Old 

+ ! + . 
Cross Parentals Soo Okl/S Soo S/S~ Doo 

Thrum sepaloid Thrum pin pin wild Thrum pin Oak Thrum Plants not 
OakLeaf wild type sepaloid type sepaloid Leaf sepaloid scored 

Oakleaf Oakleaf 

+ SOld sell. s + + S + sell. s Old + s + sell. SOld + s Old sell. S + 
sep s + sep ? + sep s + sep s + sep s + sep s + sep s + sep s + 

pin sepaloid x Thrum Oak Leaf 76 69 0 1 0 0 0 0 39 
heterozygous recessive for 

sepaloid Do.1. 

pin sepaloid x Thrum Oak Leaf 37 23 0 0 1 0 0 0 20 
heterozygous recessive for 

sepaloid Do.2. 

pin sepaloid x Thrum Oak Leaf 157 136 1 3 0 1 1 0 9 
heterozygous recessive for 

sepaloid DO.3. 

pin sepaloid x Thrum Oak Leaf 59 35 1 0 0 0 0 0 50 
heterozygous recessive for 

sepaloid no.4. 
Total numbers 329 263 2 4 1 1 1 0 118 

592 9 recombinants 
601 plants 

Table 7.9. Results of linkage analysis of Oak Leaf, sepaloid, and the Primulll S locus. 

Four different Oak Lea/plants heterozygous recessive for sepaloUJ and numbered 1-4 were used to pollinate sepaloid plants. 
232 
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Cross Total OkllS S/sep 
numbers recombinants recombinants 

pin sepaloid x Thrum Oak Leaf 185 1 0 
heterozygous recessive for sepaloid 

no.l. 
Map distance 0.5% 0 

pin sepaloid x Thrum Oak Leaf 81 0 1 
heterozygous recessive for sepaloid 

no.2. 
Map distance 0 1.2% 

pin sepaloid x Thrum Oak Leaf 308 5 2 
heterozygous recessive for sepaloid 

no.3. 
Map distance 1.6% 0.6% 

pin sepaloid x Thrum Oak Leaf 145 1 0 
heterozygous recessive for sepaloid 

no.4. 
Map distance 0.7% 0 

Table 7.10. Map distances of Okl and sep from the S locus. 

calculating map distances more accumtely these 118 parental phenotypes have been 

included in the total numbers in Table 7.10. 

It is not possible to be sure of whether the sepaloids are pin or thrum without breeding 

or pollination tests, and there is the possibility of infertile recombinant thrum sepaloid 

plants not being identified. Breeding tests were carried out on two sepaloid-Oak Leaf 

and two sepaloids that had short styles. One of the thrum sepaloid - Oak Leafplants 

consistently failed to accept thrum pollen while setting seed from pin pollen. This 

indicates that this sepaloid - Oak Leaf plant is a thrum plant with associated thrum self 

incompatibility. The number of expected recombinants would be very small. 

Depending on gene order a thrum sepaloid (if order Okl sep S locus) or a thrum 

sepaloid-Oak Leaf (if order Olel S locus sep) could result from a recombination event 

between sepaloid and the s allele of the S locus, but linkage between sepaloid and the 

s allele of the S locus is very tight. Again depending on gene order, a thrum sepaloid 

(if order Olel S locus sep) or a thrum sepaloid-Oak Leaf (if order Okl sep S locus) 
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could result from a double recombination event. The latter would normally be 

expected to be a very rare event. 

Another difficulty in classifying progeny from the crosses shown in Table 7.9 arises 

from failure of the fIrSt cross attempted (pin sepaloid x thrum Oak Leaf). 

Environmental stress affects floral morphogenesis and it is therefore advisable to 

monitor recombinants and any ambiguous phenotypes for a second flowering season. 

This could have been achieved if the thrum Oak Leafheterozygous for the recessive 

sepaloid allele had been available a year earlier. To achieve results rapidly it is 

sometimes necessary to sow seed indoors in autumn or winter, instead of waiting until 

spring. This results in the progeny beginning to flower in late Mayor June when the 

weather is often hot. In hot weather many flowers exlubit restricted corolla tube 

growth so that thrums appear as long homostyles, especially when grown in small 

pots. When observed flowering during a cooler period or in a less stressful position, 

the same plants raise the corolla tube and associated anthers high above the stigma. 

Examination of stigmatic papillae length under a light microscope can help clarify the 

phenotype. Potting ambiguous phenotypes into larger pots and observing flowering in 

a cooler shaded position is the most definitive method of clarifying the phenotype. 

Another feature of flowers produced in hot stressful conditions is failure of pollen 

production. Pollen size tests on plants from the crosses shown in Table 7.6 were 

carried out during autumn 2003 and spring 2004. Attempts to obtain pollen during 

June 2004 from progeny of the crosses shown in Table 7.9 consistently failed - all 

anthers produced in the hot weather of late May and early June 2004 were empty. 

Consequently were there any pollen size recombinants among the progeny of these 

crosses they were not identified. 

The flower of the pin Oak Lea/from the cross classified in Table 7.9 was aberrant in 

that the petals were split down to the attachment of the anthers and the anthers were at 

the base of the petal instead of half way up the corolla tube (Fig. 7.3A and B). This 

may be due to environmental stress: splitting of the corolla has been observed 
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7.. low rs of ome progeny from crosses in section 7.4. 
that differ from the norm. 

nt in ak L afwith pi it corolla. B. The calyx of the flower 
n mpl tely removed. C. A later flower of the aberrant 

ok L 0 • n J ng r plit but with free anthers low in the corolla 
nat an maty of anthers separating from the 

fthrum ak Lea/flowers. Sepals have been removed. 
f n rmal form. G. Long styled thrum Oak Leaf 

n tyled thrum Oak Lea/flower no 2 .. Flowers in F 
tigmati papillae. Size bars are approximately 1 em. 
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previously and found not to be either a permanent feature or heritable. One example of 

this is mentioned in Chapter 5; 5.4.2). Only if splitting of the corolla persisted 

throughout a second flowering season, or was found to be heritable would this 

aberration be considered significant. The abnormally low anthers however are a 

feature not seen previously as an environmental abnormality, although separation of 

the anthers from the corolla tube on to long individual filaments has been observed on 

the later flowers of one thrum Oak Leaf plant (Figure 7.3D and E). A small amount of 

pollen was obtained from undehisced anthers of the pin Oak Leaf and it was found to 

be of mixed size both large and small grains. This will require further observation as 

previous observations found that some plants with mixed size pollen altered to small 

pollen when flowering during the normal flowering season. The aberrant pin Oak Leaf 

plant was repotted into a larger pot and grown in shade, and by the end of the first 

week of August 2004 the flowers had ceased to be split (Figure 7.3C). However the 

anthers remained as before and there was no division of the corolla tube into upper and 

lower parts as is usual. The free anthers may possibly be the result of a separate 

mutation. Two thrum Oak Leaf plants occurred that had long styles and short stigmatic 

papillae (Figure 7.3F and G), one from no. 1 on Table 7.9 and one from no. 4 on Table 

7.9 but lack of pollen production prevented testing for self compatibility. 

One of the four sepa/oid Oak Leafrecombinants from no.3 on Table 7.9 had some of 

the flowers with streaks of yellow pigment on the lower part of the inside of the 

second whorl of sepals (Fig. 7.4C). This is of the same colour as is found on the 

yellow eye of the normal flower The second whorl of sepals are also much longer than 

the first whorl. On examination under a light microscope the pigmented cells of the 

second whorl were found to be of the elongated conical papillate form as those of the 

yellow eye of the normal flower and of the yellow eye of the green primrose flower. 

This is the first time that any petallike feature has been observed in a sepaloid flower. 

Although the flowers of this plant bear some similarity to the green flowers of Primula 

viridis, the green primrose, it is different in having fertile carpels on many flowers. 

Pollination tests from pin and thrum pollen were carried out both in autumn 2004 and 

spring 2005. Thrum pollen consistently failed, while fertile seed was consistently set 

from pin pollen. Some of this was sown and has resulted in 12 progeny that have yet to 

flower. The stigmatic papillae remained consistently short both in 2004 and 2005. 
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Figur 7.4. ariation in the form of some sepaloid-Oak Leaf and sepaloid 
flow from the cross described in section 7.4. 

A. epa/old- ak Lcaftl w r with two whorls of sepals and a functional carpel. 
B. paloid- ak Lcaf fl w r with whorl 2 sepals reduced in size. C. sepaloid
Oak Lcalpr 'ed fl w r with petal cells on the lower part ofthe whorl 2 sepals. 
D. pa/oid. ak L alfl w r with three whorls of sepals and a nonnal carpel. E. 
A fl wer m th arne plant that has a secondary inflorescence. F. A sepaloid 
fl w r with tv ndary inflore cences. Size bars approximately 1 cm. 
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Consequently this plant has been classified as a thrum sepaloid Oak Leaf It is possible 

that the petal material in whorl two is the result of a recombination event that partially 

restored B function. Results of a cross of the thrum sepaloid Oak Lea/ pollinated by a 

pin wild type heterozygous recessive for the sepaloid allele should reveal which allele 

of sepaloid is dominant, although it might be predicted that the allele with some gain 

of function will be the dominant one. 

The sepaloid-OakLea/from no.1 on Table 7.9 has two whorls of sepals and a normal 

carpel (Fig. 7.4A). One of the other four sepaloid-Oak Lea/plants from has flowers of 

this form, but the other three siblings have flowers of different forms. One is the 

sepaloid-Oak Leafwith petal cells in whorl 2 (Fig. 7.4C), another has whorl 2 sepals 

very much reduced (Fig. 7.4B), and another has three whorls of sepals (Fig.7.4D). The 

latter also has an occasional flower with a secondary inflorescence (Fig 7.4.E). Two 

sepaloid plants from Cross no 1 on Table 7.9 also produced one or more secondary 

inflorescences in some flowers (Fig. 7.4.F). Secondary inflorescences had not 

previously been observed in sepaloid primroses and the form bears some similarity in 

appearance to the Petunia FBP2 cosuppression mutant (Angenant et al1994). The 

Petunia FBP2 gene is considered to be a putative orthologue of the Arahidopsis 

SEPELLATA 3 gene (Ferrario et al. 2003), and it is not inconceivable that sepaloid in 

Primula may be caused by a mutation in an orthologous gene to a SEPALLATA gene. 

7.5. Discussion of linkage analysis. 

The presence ofa recombinant (sepaloid) in Table 7.3 in conjunction with the 

sequence data obtained in the Gilmartin laboratory (see &.2 above) indicates that Hose 

in Hose and sepaloid may be two separate loci. From the results shown in Table 7.9 

sepaloid is on the opposite side of the S locus to Oak Leaf and therefore has to be on 

the same side of the S locus as Hose in Hose. Since the map distances from the S locus 

for Hose in Hose and sepaloid are similar (Tables 7.7 and 7.10), either Hose in Hose 

and sepaloid are allelic, or, as now seems likely, are two separate but very closely 

linked loci with Hose in Hose epistatic to sepaloid. If the cross was repeated, larger 

numbers of progeny as was possible for linkage analysis of Oak Leaf. sepaloid and the 

Primula S locus, would be essential (see 7.4). The very tight linkage between sep and s 
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means that a minimum of several hundred progeny would be required before a 

recombinant could actually be expected. 

Results from the cross pin wild type x thrum Hose in Hose-Oak Leaf(7.3), established 

that Hose in Hose and Oak Lea/are on opposite sides of the S locus and this result 

provides the long sought after flanking markers for the Primula S locus. 

The variation in recombination rates observed from one plant to another is notable. 

Environmental influences can affect recombination. Ernst (1939) studied chiasma 

frequency in Anti"hinum at different temperatures. He discovered that a change in 

temperature resulted in a sudden but temporary fall in chiasma frequency (Ernst, 1939; 

reviewed in Yanney Wilson, 1959). Ifchiasma frequency is influenced by temperature 

a contributory factor to the variable recombination rates observed in Primula could be 

that pollination was undertaken over an extended period of time. as flowers became 

available, and temperature will have varied considerably. 

Alternatively variation in recombination rate can have a specific genetic basis. Genes 

controlling chiasma frequency in Hordeum have been documented (Gale and Rees, 

1970), and studies on Petunia hybrida found that a gene Rml (recombination 

modulator 1) controlled recombination rate during female gametogenesis (Cornu et. a1. 

1988). Comparison of recombination frequency in pollen and egg of two Oak Leaf 

Primula plants (Table 7.8) found no significant difference between pollen and egg in 

plant number 1 and only slight significance in plant number 2. A future experiment 

could be done specifically to test recombination in pollen and seed parents of PrimuJa. 

In Primula the genetic loci in the S locus are very tightly linked and Hose in Hose in 

tum is tightly linked to the S locus. Recombination between these loci is therefore 

expected to be rare. However once chromosomes become paired the enzymes involved 

in recombination may mediate further recombination throughout a localised region. 

This could result in variation in recombination rates as not every recombination event 

could be expected to provoke exactly the same number of additional recombination 

events. A consequence of recombination occurring in clusters is that the number of 

double recombinants may be much higher than might be expected. This is termed 
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"Negative Interference" ("Positive Interference" in contrast being when one 

recombination event has an inhibitory effect on the possibility of a second 

recombination event occurring). Negative interference is found when markers are 

tightly linked, as around the Primula S locus, and the extent of interference is 

expressed as a coefficient of coincidence (i.e. observed double crossover frequency/ 

expected double crossover frequency). Calculations from the data in tables 7.6 and 7.7 

give a coefficient of coincidence of 64.6 for plant no. 1 and of 6.5 for plant no. 2. There 

is high negative interference exhibited in both Oak Leaf plants, particularly in plant 

no. I, in this three point cross. Negative interference is a rarer phenomenon than 

positive interference but has been reported in other plants, e.g. Triticum dicoccoides 

(Peng et. ai, 2000), Hordeum vulgare (Esch and Weber, 2002), and Maize (Goldman 

and Doyle, 1995; Auger and Sheridan, 2001), 

Pollen size on the pin Oak Leafwith low anthers was checked throughout the 

flowering season, and pollen size was small later in the season Further observation of 

the two long styled thrum Oak Leaf plants was also undertaken. The latter were found 

to be self incompatible and later in the season the corolla tubes lengthened to raise the 

anthers above the stigma, although the styles were longer than is usual for thrum 

plants. Other genes unlinked to the S locus can alter style length and flowers appear as 

long or short homostyles (Richards 1988, personal communication), consequently the 

long styled thrum Oak Leafplants have not been classed as recombinants on Table 7.9 

The short homostyle Hose in Hose with large pollen (7.3) is self compatible and set 

seed from controlled self pollination. This would not normally be expected from a 

plant with large pollen and a short style with short stigmatic papillae. It may be due to 

the genetic background being from the rare thrum Hose in Hose homozygote (Hih S I 

Hih S) that bad lost thrum incompatibility (ChapterS; 5.3.4). 

Molecular work on the recombinant plants in the Gilmartin laboratory is providing 

further information on gene order at the S locus. Studies of the recombinants from the 

investigation of the order of the linked genes Hose in Hose, Oak Leaf, and the Primula 

S locus (7.3) have enabled other S locus associated genes to be plotted on the map. 

The recombinant plants from the cross pin sepaloid x Thrum Oak Lea/heterozygous 

for the recessive sepaloid allele (sep s I sep s x O/cJ S /.:L!) will also be an invaluable 

aid to further molecular investigation. 
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CHAPTER EIGHT 

General Discussion. 

Two intimately interlinked but distinct aspects to this work were investigation of the 

mutant phenotypes and mapping of genes around the Primula S locus. The availability 

of a large number of mutant phenotypes allowed opportunity to study flower 

development in a plant with distinct developmental characteristics. The value of such 

study had already been demonstrated in Anti"hinum where study of the zygomorphic 

Anti"hinum flower led to the discovety of the CYCLOIDEA and DICHOTOMA genes 

that are involved in flower symmelI)'. Subsequent study of the CYCLOIDEA and 

DICHOTOMA genes in a related species, Mohavea confortiflora, revealed a 

correlation between changes in gene expression and morphological form (Hileman et 

a1. 2003). Such studies are also of interest in relation to the evolution of flowers and 

inflorescences (Rudall and Bateman, 2003). Like Anti"hinum, the Primula flower has 

a distinguishing morphological feature in that Primula is heteromorphic, therefore 

investigation of Primula might be expected to uncover novel data regarding 

development of heteromorphic flowers. The pin and thrum heteromorphic features of 

Primula have been of interest from the time of Darwin (Darwin 1861) and the subject 

of much subsequent literature (Ernst, 1925,1936; Crosby 1949; Bodmer 

1958;Charlesworth 1979 Richards, 1986, 1993, and Kurian and Richards 1997). 

Heteromorphy in Primula is controlled by a tightly knit suite of genes known as the S 

locus (Ernst, 1925,1936; Dowrick, 1956; Richards, 1986, 1993, 1997, Kurian and 

Richards 1997). As investigation of the inheritance of the mutant phenotypes of 

Primula revealed that four mutant genes were linked to the S locus, study of these four 

mutant phenotypes is intimately interlinked with linkage analysis of the Primula S 

locus. 

8.2. Discussion. 

Investigation of the early and late ontogeny of wild type and mutant Primulas using 

scanning electron microscopy revealed previously undocumented characteristics of 

Primula development that are different from those observed in other species. Notable 

is the persistence of the common primordium of whorls 2 and 3 in the double flower 
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even though both whorls will develop as petals (Webster and Gilmartin, 2003). 

Similarities in Anli"hinum between the appearance of the fourth whorl in Wild Type 

and plena mutants at stage 6 has also been reported (McSteen et al., 1998). The 

identity of the second and third whorl organs in Primula does not influence the early 

architecture of the primordium. The persistent presence ofa common primordium for 

the second and third whorls in double flowers suggests that the underlying control of 

this aspect of floral development occurs independently of genes required for carpel 

and stamen development. 

During early ontogeny of sepaloid, there is no separation of the whorl 2 and 3 organs, 

and whorl 4 arises from the inner base of whorl 3 as opposed to emerging from the 

centre of the flower (Chapter 4; Webster and Gilmartin 2003). The phenotype of the 

sepaloidmutant shows no evidence of any B function gene activity, as flowers never 

produce petals or stamens. The question is therefore raised as to whether B function 

plays a part in the separation of organs in whorls 2 and 3 during early ontogeny as it is 

only in sepaloid plants that are unable to produce petals or stamens in which the 

second and third whorl organs do not separate. 

The delay in development of whorl 4 in those mutant phenotypes that produce stamens 

in the fourth whorl is also novel (Webster and Gilmartin, 2003). There is no delay in 

the development of the fourth whorl in Arabidopsis flowers when stamens are 

ectopically produced in this whorl, either by over-expression of PI and AP 3 (Krizek 

and Meyerowitz 1996). or following mutation of sup-l /flo 1 0 (Schultz et al., 1991; 

Bowman et al., 1992). In addition. the central area of the developing flower remains 

undeveloped for an extended period of time in double (Fig.4.13F), semi-double 

(Fig.4.13J and K) and in Stam/noid Carpels (Fig.4.9H and M). This delay is associated 

with the presence of a mixture of petals and stamens in the centre of the flower in 

doubles, and stamens in semi-doubles and Stam/noid Carpels. Given that both A and 

B functions are required to produce petals and that both B and C functions are required 

to produce stamens, these findings reinforce previous observations (Bowman et al., 

1992) that B function may be involved in the loss of determinacy of the floral 

meristem by over-riding the determinacy role of the C function. Previously, loss of 

determinacy has been associated with loss of C function; however, observations on 

two different Primula mutants, semi-double and StamInoid Carpels, show that loss of 
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show that loss of determinacy can occur following expression ofB function in the 

fourth whorl of flowers that also contain C function. 

The differences in morphology and development from those species already 

investigated suggest that genes regulating floral morphogenesis in Primula may have 

subtle differences in their functioning. Subsequent molecular study of Primula will 

therefore enlarge understanding of floral morphogenesis generally. 

It has been shown that Primula flowers are homomorphic during early ontogeny and 

that the distinguishing features of the pin and thrum morphs develop during late 

ontogeny (Chapter 3). A new heteromorphic feature was discovered, the mouth of the 

corolla tube is wider in thrum flowers than in pin flowers. No previous studies report a 

difference in the size of the corolla tube mouth between pin and thrum flowers, or of 

the larger cells in the corolla tube above the anthers in the thrum flowers. It is not yet 

known whether this new heteromorphic feature is under the control of the A 

component of the Primula S locus or whether it is under a separate genetic control that 

will need to be included as another gene in the gene complex. Besides the three 

components of the Primula S locus Gig for the gynoecium, Pip for pollen size, and Ala 

for the androecium (Ernst, 1925, 1936), other genes suggested as part of the Primu/a S 

locus gene complex have been described by Richards and by Kurian and Richards 

(Richards 1997, Kurian and Richards 1997). Besides Gig, Pip and Ala, now included 

is, Mpm/mpm that controls dominance for pollen size, Pplpp that controls pollen size, 

Pm/pm that controls male compatibility phenotype, VI that controls thrum 

homozygote lethality, Gm/gm that contributes to stylar length, and Mpplmpp that 

controls dominance of male incompatibility phenotype. Should recombination result in 

the feature of larger cells and wider corolla tube mouth cells transferring to a pin plant 

it would show the feature to be under separate genetic control. Such investigation 

could provide the basis for future study. 

The absence of short homostyle progeny from crosses of short homo style to wild type 

(Chapter 5), and to Hose in Hose, is notable (Chapter 6). As none of the progeny were 

either short homostyle or thrum wild type then it must be concluded that the short 

homostyle phenotype of the parent has to be caused by something other than a 

genotype of Gpalgpa. Genes outside the S locus have been found to suppress S 
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functions in buckwhea~ Fagopyrum esculentum (Matsui et al., 2004). A generation of 

F2 Primula progeny raised to ascertain whether this may be the case in Primula has 

not yet flowered. The observation that some plants appear as short homostyle but have 

long stigmatic papillae and the presence of two long styled thrum plants with short 

stigmatic papillae among the progeny from the cross to investigate linkage analysis of 

sepaloid Oak Leaf and the S locus leads the author to consider that stigmatic papillae 

length may not always be a correlate of stylar cell length as has been previously 

suggested (Kurian and Richards, 1997), unless the shorter style of the short homostyle 

with long stigmatic papillae also has long stylar cells and the long style of the long 

styled thrum with short stigmatic papillae also has shorter stylar cells. This requires 

further investigation. 

The thrum Hose in Hose homozygote (Hih SIHih S) discovered before the 

commencement of this project is remarkable in that thrum homozygotes were 

previously not thought to be viable (Richards 1986, 1997). Although the original plant 

was lost in 2003, one seedling from controlled self pollination of the above plant 

survives. This plant will be useful for molecular investigation of the Primula S locus. 

Characterization of the inheritance of the available floral mutants revealed an unusual 

number of dominant phenotypes. The inheritance of two of the dominant phenotypes, 

Jack in the Green and Hose in Hose, had already been published (Webster and Grant, 

1990) and investigation of the inheritance of Staminoid Carpels and Split Perianth had 

been begun before the commencement of this project (see Chapter 5, 5.4 and 5.5). The 

fifth phenotype, Oak Leaf, was discovered in 1999 and obtained for this project in 

2000. Three of the dominant mutations were found to be linked to the S locus, Oak 

Leaf, Hose in Hose and Staminoid Carpels. The latter two are predicted to be the result 

of ectopic expression ofB function, in the first whorl, and in both the first and the 

fourth whorls, and may be allelic mutations. Jack in the Green in contrast is predicted 

to be the result of absence of early floral organ identity gene expression in the first 

whorl. Split Perianth has alteration to the usual gamosepalous and gamopeta1ous form 

of the perianth. Flowers with fusion ofperianth organs are generally regarded as being 

at a higher level of evolution than those in which they are free from each other 

(Spome, 1974). Consequently it could be postulated that loss of such fusion in the 

Split Perianth mutant phenotype may be considered as a return to a more ancestral 
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state. The Split Perianth mutant phenotype may therefore be useful in evolutioruuy 

studies of flower fonn. Reflexing of the petals in those flowers with the corolla tube 

divided into five separate pieces (Figure 4.6, C and D) has been proposed as a possible 

phenotypic modification necessary for an evolutioruuy shift from the heterostyly of 

Primula towards the solenoid flowers of Dodecatheon (Mast et al., 2004). Oak Leafis 

a pleiotropic mutant phenotype, with both leaf and flower morphology affected, and 

exhibits some of the characteristics of the phenotype described in Arabidopsis thaliana 

when the Knoned gene from maize was expressed ectopically (Chuck et ai, 1996). 

Another species of Primula, P. sinensis, was extensively analysed in the past 

(Gregory, 1911; Gregory, de Winton, and Bateson, 1923; and de Winton and Haldane, 

1933), but only three of the thirty five phenotypes of P. sinensis investigated were 

found to be dominant (De Winton and Haldane, 1933). Since then, all of the variant 

fonns of P. sinensis appear to have been lost. If they were still available they could 

have been used for molecular study today. However in P. sinensis no recombination 

within the S locus has been recorded (Lewis and Jones, 1993) so it would not therefore 

be a useful model for study ofheteromorphy as are P. vulgaris and P. vulgariS 

cultivars in which recombination within the S locus does take place. In addition the 

three dominant mutations, and the one recessive mutation found to be linked to the 

Primula S locus provided opportunity for mapping of the genes around the S locus. 

Two of the mutations linked to the Primula S locus result in the predicted gain of and 

loss ofB function phenotypes Hose in Hose and sepaloid. No complementary gain and 

loss of B function phenotypes have been reported for other species, but 

complementary gain and loss of C function in Antirrhinum was found in the 

OVULATA and PLENA mutations (Bradley et al., 1993). As the dominant nature of the 

Hose in Hose mutation precludes complementation tests a three point cross (see Table 

7.4) was used as a segregation test with the additional aim of mapping genes linked to 

the Primula S locus. Numbers of progeny obtained were insufficient for a conclusive 

segregation result. However even with larger numbers it would not be possible to 

prove a negative result as absence of recombinants could be due either to lack of 

recombination between two tightly linked genes, or to recombination not being 

possible due to the two mutations being allelic. Mapping of genes to the same or to a 

different locus would work more efficiently if negative interference was not an 
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additional factor. In this instance the variable recombination rates resulting from 

negative interference make precise mapping impossible. If, as is indicated by the 

single putative recombinant in Chapter 7, Table 7.3, and the sequence data obtained in 

the Gilmartin laboratory, two genes are involved then larger numbers would at least 

present greater opportunity for obtaining recombinants that would furnish proof that 

two genes are involved. 

Hose in Hose and Oak Lea/are on opposite sides of the S locus (see Table 7.5). From 

the results shown in Table 7.9 sepaloid is on the opposite side of the S locus to Oak 

Leafand therefore has to be on the same side of the S locus as Hose in Hose. The 

similar distances of each from the S locus (Tables 7.7.and 7.10) indicates that they 

have to be either allelic mutations or two separate but very tightly linked loci .. No 

tightly linked genes involved in flower development have been reported from other 

species studied, although loose linkage of the Petunia genes PhAp2A and BI on 

chromosome 4 has been reported (Maes et al., 2001). Both the sepl and PlSTlLLATA 

genes of Arabidopsis are on chromosome 5 but are not tightly linked, while the sep2 

and APET ALA 3 genes are on opposite arms of chromosome 3 (Arabidopsis T AIR 

website (http://www.arabidopsis.org/ <http://www.arabidopsis.org/>). If as predicted 

sepaloid and Hose in Hose are two separate genes then the Hose in Hose phenotype 

must be epistatic to sepaloid (see 7.2, Table 7.3) as the presence of Hose in Hose 

masks the presence of sepa/oid. If they were allelic it would be predicted that Hose in 

Hose with predicted ectopic B function would be dominant to sepaloid that has no 

evidence of any B function. 

Hose in Hose is predicted to result from ectopic B function in the first whorl. Parallel 

work in the laboratory (Dr. J. Li and Prof P. Gilmartin, personal communication) has 

cloned Primula DEFICIENS and GLOBOSA homologues and analysed linkage to the 

S locus, Primu/a GLOBOSA, but not DEFICIENS, was found to be linked to the S 

locus and GLOBOSA polymorphisms were found to segregate with Hose in Hose. 

Analysis of genomic clones of GLOBOSA from wild type and Hose in Hose identified 

'a retrotmnsposon in the promoter of Hose in Hose that is predicted to cause 

upregulation ofGLOBOSA. Instability of the retrotransposon is suggested by the 

reversion of Hose in Hose to wild type both on individual ramets, on individual 

flowers on the same scape and on individual calyx lobes. This could be due to 
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excision, which is unusual for a retrotransposon, or possibly an epigenetic effect 

associated with chromatin remodeling or with methylation. Further experiments are 

underway to determine the molecular basis of the instability. Analysis of GLOBOSA in 

sepaloid has found absence of GLOBOSA expression, but no mutations were 

discovered within the transcription unit that could cause loss of expression. This 

suggests that sepaloid may be the result of a mutation in a regulator of GLOBOSA. 

However there is a 5bp insertion within the sepaloid GLOBOSA promoter that 

coincides precisely with the insertion point of the retrotmnsposon in Hose in Hose. If 

sepaloid was due to excision of the retrotransposon from Hose in Hose conversion of 

the dominant Hose in Hose to the recessive sepaloid would be masked by the now 

dominant Wild Type allele, but could appear in a subsequent generation. However 

there is no evidence for Hose in Hose in any sepaloid background. The author has now 

obtained sepaloid plants on three separate occasions from commercial primrose stock 

and no Hose in Hose primroses are, or have been, commercially available to date. 

The phenotype of sepaloid bears some resemblance to the SEP ALLATA 1/2/3 triple 

mutant (Pelez el al. 2000 .200 1; Honma and Goto 2001). Of interest is the gain of 

function sepaloid Oak Leaf that has some petal cells in whorl two. These cells in tum 

resemble those of the yellow eye cells of Primula viridis the green primrose (Ch 4, 

Figure 4.21Q), that shares some phenotypic characteristics with transgenic tobacco 

plants expressing antisense RNA for the gene TM5 (pnueli et ai, 1994). Co-supression 

of the Petunia homeotic gene jbp2 also gives flowers with modified second third and 

fourth whorl organs (Angenant et al. 1994), and this gene has been found to be highly 

homologous to TM5 of tobacco. Secondary inflorescences have recently been 

observed in sepaloid primrose flowers and these too bear some resemblance to the 

Petunia FBP2 cosuppression mutant (Angenant et al .• 1994). The Petunia FBP2 gene 

is considered to be a putative orthologue of the Arabidopsis SEPEUATA 3 gene 

(Ferrario et al. 2003). It is tempting to predict that sepaloid will be found to be 

homologous to SEP ALLA TA 3 and that the green primrose phenotype will be caused 

by an allelic mutation to sepaloid. 

The Primula sepaloid mutant phenotype also shares similarity with the most extreme 

form of the FIMBRIA TA mutant of Antirrhinum (Simon et al .• 1994). The Arabidopsis 

gene UNUSUAL FLORAL ORGANS shows extensive homology with FIMBRIATA 
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but differences in the functions and genetic interactions were found (Ingram et al., 

1995) UNUSUAL FLORAL ORGANS is, along with LEAFY, an upstream co-regulator 

of the B function organ identity gene APET ALA 3 (parcy et al., 1998; Honma and 

Goto, 2000~ The sepaloid mutant of Primula differs from both of the above in that no 

less extreme forms of the sepaloid phenotype have so far been discovered. The 

possibility that the sepaloid phenotype could be the result of an as yet uncharacterized 

gene cannot be ruled out. 

The Primula S locus has been a focus of interest from the time of Darwin (Darwin 

1861 ) and the subject of much subsequent literature (Ernst, 1925,1936; Crosby 1949; 

Bodmer 1958;Charlesworth 1979 Richards, 1986, 1993, Lewis and Jones 1993 and 

Kurian and Richards 1997). There have been previous attempts to map the main 

components of the S locus (Ernst, 1925, 1936; Dowrick, 1956, Richards 1986, 1997; 

Lewis and Jones (from Ernst's data) 1993; and Kurian arnd Richards 1997). However 

a major difficulty has been the lack of flanking markers for the locus (Lewis and Jones 

1993). This work has revealed that Hose in Hose is on one side of the S locus and Oak 

Leafis on the other, and so identifies the long sought after outside markers for the 

Primula S locus. A second marker, sepaloid, is also on the opposite side of the S locus 

to Oak Leaf Flanking markers are required to allow classical genetic mapping of the 

Primu/a S locus. Plants that have been generated that had recombination between 

these outside loci and the S locus, and/or between these loci and within the S locus, 

have provided further valuable tools for molecular analysis of the Primula S locus. 

The three plants that exhibited mixed size pollen require further investigation to 

discover if they behave as the p. plants descnbed by Kurian and Richards (Kurian and 

Richards, 1997). If they are found to be S locus recombinants the gene order of the S 

locus will be OlcJlold Gig Ala Pip Hihlhih. To have half of the pollen large a 

dominant P must be present (although if not all pollen is large some of the dominance 

must have been lost as was reported for the p. plants of Kurian and Richards (Kurian 

and Richards, 1997». Recombination events that could give a pin Oak Leaf with SOme 

large pollen and a pin Hose in Hose Oak Leafwith some large pollen are either, 

Old g a - p - hih to give Old gaP hih and old GAp Hih as gametes of 

old G A - P - Hih the genotypes 
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Or, 

Old g a - p hih to give Old gaP Hih and old GAp hih as gametes of 

old G A - P H ih the genotypes 

If gene order was either Olc/ g p a hih or Okt a p g hih or Old p a g hih 

olc/ G P A Hih old A P G Hih olc/ P A G Hih 

a triple crossover would be required to give the phenotype of pin Hose in Hose-Oak 

Leaf with some large pollen. 

The pin wild type with some large pollen (found in the progeny from the test ofwitd 

type x short homostyle Hose in Hose with large pollen) is also possible from the above 

gene order with a double recombination event. 

old g a - p - hih 

old G a - P - Hih 

to give old gaP hih and old Gap Hih as gametes of 

the genotype 

It would appear from these results that P is not fully dominant in the absence ofG. In 

both generations of short homostyle Hose in Hose with large pollen, it could be 

predicted from the phenotype that there was also a dominant G present but no 

dominant A and there was no variability in pollen size. In the three plants generated 

that had mixed size pollen it could be predicted from the phenotype that there was 

neither a dominant G nor a dominant A present. The position for the suggested gene 

for dominance, Mpm, (Richards, 1997), was given as G A Mpm P, but from the 

results obtained above such a gene \Wuld have to be either proximal or distal to G (G 

Mpm A P, or Mpm GAP). However long homostyles, with no dominant G, but 

with a dominant A present, also have a dominant P. This would both suggest that P is 

fully dominant in the presence of either G or A, and that Mpm is between G and A. 

Since this is not consistent with the results obtained by Kurian and Richards (Kurian 

and Richards, 1997) it raises the question of whether dominance of P is indeed the 

result of a single gene at a given locus or whether instead other factors could be 

responsible. A possible alternative hypothesis is that P is actually a null allele and that 

large pollen \Wuld be the nonn without the suppressant factor of p. If one allele of p 

was insufficient to suppress pollen size, with the homozygote pp being epistatic to P, 
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then one slightly deficient p allele may result in P not being completely suppressed. 

This hypothesis requires further investigation. 

8.3. Further studies. 

It would be possible to repeat a three point cross to confirm that Hose in hose and 

sepaloid are two separate genes. A repeat experiment would use a number of plants of 

Hose in Hose heterozygous recessive for sepaloid (Hih + SI + sep s) crossed to pin 

sepaloid ( + sep s/+ sep s). Large numbers of progeny would be required before 

recombinants could be expected. Alternatively, as the SEPAlLATA and FIMBRIATA 

genes are possible candidates for sepaloid homologues a molecular approach is also 

possible. The Primula SEPALLATA and FIMBRIATA equivalents could be isolated and 

tested for linkage to the Primula S locus. Any gene not linked to the S locus could be 

eliminated from the investigation. If linkage was discovered it would then be possible to 

look for polymorphisms that co-segregated with the mutant phenotype. 

A number of other questions were raised from investigations carried out during this 

project. Investigation of the inheritance of the new heteromorphic feature of wider 

cells and correspondentIy wider corolla tube mouth of thrum plants could be 

undertaken by a large cross of pin x thrum wild type, in order to discover whether the 

locus responsible can recombine on to the s allele to enable its presentation in pin 

plants. In addition further investigation could be carried out to discover whether Oak 

Leaf plants are earlier flowering than plants with wild type leaves, or whether there is 

more recombination in the egg than in the pollen of Primula cultivars. 

Of particular interest is the anomaly in the size of pollen. Variation in pollen size in a 

single plant over a flowering season has not previously been documented and further 

observation and investigation of both the pin Oak Lea/and the pin Hose in Hose-Oak 

Leafis required. The mixed size pollen discovered onP. Tommassinii (Kurian and 

Richards. 1997) was considered to be the result of recombination within the S locus. 

The pollen of the plants with mixed size pollen discovered during this project varied 

between being of mixed size early and late in the flowering season and being small 

pollen in the middle of the flowering season. By self pollinating the plants and by test 

crossing to both pin and thrum wild type. whether the plants behave as do those p. 

plants descnbed by Kurian and Richards (Kurian and Richards. 1997) can be 
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detennined. If these plants are S locus recombinants this will give gene order of the 

main components of the Primula S locus. 

Alternatively, should study of the plants with mixed large and small pollen fail to 

confirm them as S locus recombinants, the newly discovered flanking markers for the 

Primula S locus will allow the author to undertake classical genetic analysis of the 

main components of the Primula S locus. Order of the main components of the 

Primula S locus has never been verified. Ernst originally gave the gene order as GAP, 

but Lewis and Jones (1993) on re-evaluating his data concluded that the order must be 

GPA as the former gene order would require a double cross-over in the thrum parent to 

generate the most common recombinants. More recently GAP has been suggested as 

the order of the main component parts of the S locus and it has also been suggested 

that heterostyly may have evolved separately in P. x tommasinii (subgenus Primula) 

and Primulas of subgenus Auriculastrum from which Ernst's data was derived (Kurian 

and Richards. 1997; Richards 1997), Consequently pollinations have been done by the 

author to generate seed that will give plants with the genotypes, 

1. Olel gap Hih 1+ gAP + 

2. OIcJ gap + I + G a PH (actual gene order is unconfirmed). 

The second genotype is generated using the short homostyle Hose in Hose with large 

pollen, a recombinant plant from the three point cross in Table 7.5. Parallel three point 

crosses to wild type that will give large numbers of progeny should result in sufficient 

numbers of recombinants to reveal the gene order of Gig Ala and Pip. Work sheets 

have been drawn up elucidating possible recombinant phenotypes and showing which 

parallel recombinant phenotypes will reveal gene order (see Appendix). 
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APPENDIX 

Work sheets for classical genetical analysis of the Prlmu/Q S locus. 

For simplicity, genes have been given only single letter designations in the work 
sheets. 

Flanking markers. 
o = Oak Leaf 
H = Hose in Hose 

Genes within the S locus. 
G = gyneocium, controls style length and stigmatic papillae length 
A = andreocium, controls anther position 
P = Pollen, controls poUen size 

Two three point crosses are used, one of long homostyle Hose In Hose-Oak Leal 
crossed to wild type and one of short homostyle Hose In Hose-Oak Lealwith large 
pollen crossed to wild type. This increases the chance of discovering recombinants 
that will give the gene order, as besides those few recombinants that would in 
themselves define gene order, the presence of a particular recombinant from one 
cross aloag with a particular recombinaot from tbe second cross would only be 
possible with one particular gene order. 
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\Vork heets for three point crosses of plants of putative genotypes (S locus gene 
order unknown) to pin wild type. 

Putative 
genotype 
of non 
wild type 

Cro sed to 
wild type No. I. 
genotype 

Dco O/g + 
AlP 
Dco in S 
locus 

Dco O/g + 
PIA 
Dco in S 
locus 

NO.3. 

1. If G is next to O. 
Putative 
genotype 
of non 
wild type 

Crossed to 
wild type No.2. 
genotype 

Sco alP 
Dco G/a + 
PIH 
Dco O/g + 
G/a or alP 
Dco in S 
locus 

Dco O/g + 
G/P 
Dco in S 
locus 

OG 

0 

No.4. 

that will ONLY be possible if G is next to 0 are, 
(sco g/A), PH T'G (sco G/a or alP or GIP) and 08 + GP (sco Pia), the latter 

two phenotypes are definitive for gene order ogpah. 

ombinations of phenotypes (one from each cross) that give gene order are, 
( co AlP) with OG + P (sco Pia) 
(sco AlP) with + G, (sco G/a or alP or GIP). These combinations can only 

occur if gene order is ogaph. 

(sco G/a or alP or G/P). 
(sco PIA) with (deo GIP + atH, or dco in S locus) 

PIA) with OR + GP (sco Pia). 
( eo g/P) with on + GP (seo PIa). These combinations can only OCcur if gene 

ogpah. 
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of non 
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genotype 
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No. 5. 

No. 7. 
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2. If G is next to H. 
Putative 
genotype 
of non 
wild type 

lant 

Crossed 
to wild 
type 
genotype 

Dco Pia + 
GIH 
Dco O/p 
+ a/G 
Dco in S 
locus 

Dco alP + 
GIH 
Dco O/a 
+ PIG 

No. 6. 

00 

OG PH 

0 POH 
As 

No. 8. 

Dco in S Dco inS 
__ ~_I_ocu~s ____ L-__ ~ ____ ~~ ______ ~~l~oc~u~s~ __ ~ ______ ~ __ ~ 

that will ONLY be ble if G is next to Hare, 
( co A/g or Pig), (sco Pia or a/G), OPG + H (dco alP and GIH) 

and OPGn + wild type ( co alP); the latter phenotypes are definitive for gene 
order oapgh. 

of p ne from each cross) that give gene order are, 
( co PIA) with (seo Pia or a/G). 
(seo PIg) with OG + PH (dco Pia + GIH or dco O/p + a/G). These give 

gene order a opagh. 

oapgh. 

(seo AlP) with «sco Pia or a/G), 
( co AlP) with OPG + H (dco alP and GIB), 
( co Pig) with OPG + H (dco alP and GIH), 
( co Pig) with (dco in S locus). These give gene order as 


