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Abstract 

This thesis focuses on the use of Vector Autoregressive (VAR) models in 

macroeconomic policy analysis. The first chapter discusses a novel approach (PVAR 

approach) to identify from the VAR a structural model of the economy suitable for the 

solution of dynamic programming problems. As well dealing dynamic optimisation 

problems involving a single decision maker, the chapter also shows how to assess 

optimal policy from either the Markov perfect or the cooperative or the Stackelberg 

solutions to VAR dynamic games models in which several decision makers compete 

over the control of the economy. The second chapter compares the empirical 

performances of the PVAR approach against those of the standard identification 

methodology by assessing optimal interest rate rules using US data for the period 1960- 

2003. The empirical results show that feedback rules predicted under the PVAR 

approach are smoother than those calculated under the standard approach and welfare 

losses are considerably overstated by the standard approach, regardless of the 

specification of the objective function. The final chapter proposes an index of the fiscal 

stance based on the comparison of the targeted debt-GDP ratio with the short run 

forecast of the debt-GDP ratio of a VAR model formed from the government budget 

constraint. In contrast to the backward-looking assessments of the literature on fiscal 

sustainability, the new index is entirely forward-looking and can be used to construct 

time series of the fiscal stance for the evaluation of fiscal policy over time. The index is 

computed empirically to assess the fiscal stance of the US, the UK and Germany over 

the last 25 years. 
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Preface 

This thesis collects three papers on the use of VAR models for macroeconomic policy 

analysis. The first paper, entitled Optimal control of vector autoregressive models, 

assesses the use of Vector Autoregressive (VAR) models for the computation of 

optimal macroeconomic policy rules. I first focus on the problem of identifying from an 

unrestricted VAR model a stochastic dynamic system in which the endogenous state 

vector is conditioned upon an exogenous control vector. I describe an identification 

methodology recently proposed by Wickens (2003) which yields a dynamic system 

where the state vector equations are conditioned upon both current and lagged values of 

the exogenous control variables. This technique is evaluated against the conventional 

identification approach, which conditions changes in the state vector equations only 

upon the lagged value of the control variables. The new approach is compared with the 

standard one to evaluate its implications for both the assessment of optimal feedback 

rules and welfare analysis. In the second part of the paper, I look at the issue of 

identification within the context of VAR models involving more than one decision 

maker. Recent works on the computation of optimal policy rules based on VAR models 

- Sack, (2000), Martin and Salmon (1999), Monti (2003) - focus upon single decision 

makers control problems. However, macroeconomic models are often characterised by 

several decision makers simultaneously competing over the control of the economy. 

Hence, I describe how VAR models can be solved to compute optimal policy rules 
from either the Markov perfect or the cooperative or the Stackelberg solutions to vector 

autoregressive dynamic games models. 

The second paper, entitled Assessing optimal monetary policy through VAR models, 

analyses both theoretically and empirically a new approach - PVAR method - to 

formulate optimal policy based on a quadratic intertemporal welfare function and a 
dynamic constraint extracted from a VAR model of the economy. The paper argues that 

the VAR under control should not be derived simply by replacing the VAR equations 
for the policy instruments by an optimal control rule because this alters the stochastic 

structure of the state vector equations of the VAR and gives a state space representation 

of the dynamic constraint in which state variables can only respond to lagged values of 

the control. Instead, one should first transform the VAR in order to condition the non- 

policy variables on the current value of the policy instruments, then using the resulting 

sub-system as the dynamic constraint, and finally construct the VAR under control by 

combining this sub-system with the resulting optimal policy rule. In this way the 

original stochastic structure of the state vector equations of the VAR is retained. In 

addition, under the PVAR approach the non-policy variables in the dynamic constraint 
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are conditioned upon both current and lagged values of the control, hence giving a 

representation of the macroeconomic framework more suitable for policy analysis. In 

comparing the two approaches, the paper explains the theoretical advantages of the 

PVAR over the standard method and illustrates its empirical outcomes by examining 

the formulation of optimal monetary policy rules using US data for the period 1960- 

2003. I find that feedback rules predicted under the PVAR approach are smoother than 

those calculated under the standard approach and welfare losses are considerably 

overstated by the standard approach, regardless of the specification of the objective 

function. 

The final paper, entitled Measuring the fiscal stance, proposes an index of the fiscal 

stance suitable for practical use in short-term policy making. The index is based on a 

comparison of a target level of the debt-GDP ratio for a given finite horizon with a 

forecast of the debt-GDP ratio based on a VAR formed from the government budget 

constraint. This approach to measuring the fiscal stance is different from the literature 

on fiscal sustainability. We emphasise the importance of having a forward-looking 

measure of the fiscal stance for the immediate future rather than a test for fiscal 

sustainability that is backward-looking, or based just on past behaviour which may not 

be closely related to the current fiscal position. We also describe a bootstrapping 

methodology that can be easily implemented to attach confidence bands to the index in 

order to evaluate the statistical significance of the policy prescriptions arising from the 

empirical computation of the index. We use our methodology to construct a time series 

of the indices of the fiscal stances of the US, the UK and Germany over the last 25 or 

more years. We find that both the US and UK fiscal stances have deteriorated 

considerably since 2000 and Germany's has been steadily deteriorating since 

unification in 1989, and worsened again on joining EMU. Out-of-sample projections of 

the index also show that the fiscal stance is expected to improve in the United States 

and the United Kingdom, while further worsening in Germany. 
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Chapter 1 
Optimal control of vector autoregressive 

models 

Abstract 

This paper assesses the use of Vector Autoregressive (VAR) models for the compu- 

tation of optimal macroeconomic policy rules. I first focus on the problem of identifying 

from an unrestricted VAR model a stochastic dynamic system in which the endogenous 

state vector is conditioned upon an exogenous control vector. I describe an identifica- 

tion methodology recently proposed by Wickens (2003) which yields a dynamic system 

where the state vector equations are conditioned upon both current and lagged values of 

the exogenous control variables. This technique is evaluated against the conventional iden- 

tification approach, which conditions changes in the state vector equations only upon the 

lagged value of the control variables. In the second part of the paper, I look at the is- 

sue of identification within the context of VAR models involving more than one decision 

maker. Recent works on the computation of optimal policy rules based on VAR models - 

Sack (2000), Martin and Salmon (1999), Monti (2003) - focus upon single decision makers 

control problems. However, macroeconomic models are often characterised by several de- 

cision makers simultaneously competing over the control of the economy. I describe how 

VAR models can be solved to compute optimal policy rules from either the Markov per- 

fect or the cooperative or the Stackelberg solutions to vector autoregressive dynamic games 

models. 
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1.1 Introduction 

1.1 Introduction 

13 

Vector Autoregressive (VAR) models have been extensively used in macroeconomic policy 

analysis to assess how the future dynamic of key macroeconomic variables, such as infla- 

tion, output and unemployment, is likely to be affected by either an unanticipated policy 

intervention (policy shock) or a change in the systematic component of the policy (change 

in the policy rule). 

A reduced form VAR model cannot be used as it is to carry out any of these two types 

of policy analysis, since a set of minimum restrictions has to be imposed on the parameters 

of the reduced form system to identify the underlying structural model of the economy. 

Full identification of the structural VAR model is necessary to simultaneously assess policy 

shocks and changes in the policy rule. However, this paper is only interested in the second 

type of policy analysis: the change in the VAR policy rule. In particular, the paper deals 

with the issue of identifying from an unrestricted VAR model a stochastic dynamic linear 

model suitable for the computation and evaluation of macroeconomic policy rules. In this 

case full identification is unnecessary, since it is sufficient to identify a so-called semi- 

structural VAR model, through a partial identification scheme (see, Sack (2000)). 

The standard (partial) identification approach is based upon a block Cholesky de- 

composition of the VAR residuals so that policy changes can affect the state variables only 

with a lag. In practice, this implies that the dynamic constraint faced by policy makers 

corresponds with the state vector equations estimated from the reduced form VAR. These 

equations are then used in isolation from the rest of the VAR to measure feedback rules 

and carry out welfare analysis. The paper describes an alternative identification approach 
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proposed by Michael Wickens in his 2003 lectures on VAR modelling at the IMF. In con- 

trast to the standard methodology, the new Policy VAR (PVAR) identification approach is 

based upon a block Cholesky transformation of the reduced form residuals which yields a 

dynamic system of state variables conditioned upon both current and lagged values of the 

policy instruments, rather than only the lagged values as in the standard approach. The pa- 

per shows that the PVAR approach offers a state space representation of the state vector 

equations which encompasses the representation computed under the standard approach. 

Although it does not overcome the Lucas critique (1976) as it applies to VAR models in the 

analysis of policy changes, the new identification approach does not compound the prob- 

lem by imposing unnecessary timing restrictions - in the state vector equations - on the 

interaction between policy and non-policy variables. 

The application of the PVAR approach is presented in the context of reduced form 

VAR models including instrument variables of a single decision maker, in order to out- 

line the implications of the new methodology for the computation of optimal policy rules 

and welfare analysis. This framework is consistent with conventional macroeconomic pol- 

icy analyses, which are based upon the computation of decision rules from the solution 

to stochastic optimal linear regulator problems within VAR models including the policy 

instruments of a single decision maker, without taking into account other policy makers' 

reaction functions. I argue that this omission is bound to yield both misspecified policy 

rules and misleading welfare measurements, whenever there are several decision makers 

competing over the control of the economy. This is because the certainty equivalence prin- 

ciple, which applies to this type of dynamic optimisation problems, implies that the optimal 
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rule can only minimise the volatility of the deterministic part of the state vector equations, 

leaving unchanged that of the stochastic part. Since the computation of optimal policy rule 

depends upon the deterministic part of the stochastic constraint, the omission of variables 

affecting the deterministic component of the state vector leads to misspecified feedback 

rules and mismeasurement of the social welfare loss. 

The second part of the paper extends then the application of the PVAR identification 

approach to compute optimal policy rules in the presence of more than one decision maker. 

In this case, the solution depends upon the number of policy makers and type of strategic 

interaction among them. I show how optimal policy rules can be computed from VAR 

dynamic game models with either Markov perfect or cooperative or Stackelberg solutions. 

The discussion is articulated in four sections, following this introduction. Section 2 

considers the computation of policy rules under the method of dynamic programming when 

optimisation is carried out with respect to a dynamic linear constraint relating over time 

state variables, policy instruments and uncorrelated stochastic disturbances. In principle, 

the constraint can have two different types of timing structures, as policy actions can affect 

the state vector either instantaneously or with some delay. I show that the choice of the 

constraint affects (i) the timing structure and the coefficients of the optimal policy rule and, 

(ii) the measurement of the welfare outcome arising from the system under control. 

Section 3 discusses the identification problem in the context of reduced form VAR 

models, and compares the standard and the PVAR identification approaches. I show how 

the dynamic constraint obtained from both approaches can be used to compute optimal 

policy rules and discuss the welfare implications of each approach. 
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Section 4 extends the computation of optimal policy rules to dynamic optimisation 

problems involving more than one policy maker. The solution to these problems requires, 

first of all, the reduced form VAR model to include equations for objective and instrument 

variables of all decision makers competing over the control of the economy. The identifica- 

tion of the stochastic dynamic constraint then depends upon the type of competition among 

decision makers. The paper considers three alternative solutions. The Nash solution oc- 

curs when a specific objective function is entirely delegated to a single policy maker which 

optimises with respect to its own policy instruments by taking other decision makers' reac- 

tion functions as given. The cooperative solution is obtained when all policy makers pool 

together their policy instruments to minimise a common objective function. Finally, the 

Stackelberg solution is examined to compute optimal feedback rules when decision mak- 

ers compete over the control of the economy as in a leader-followers framework. Section 

5 concludes by summarising the main results and highlights the future potential of this 

research. 

1.2 Linear quadratic dynamic programming 

1.2.1 Computing optimal policy rules 

The computation of an optimal feedback rule involves the solution of an optimisation prob- 

lem in which a decision maker's loss function is minimised with respect to the available 

policy instruments and a dynamic constraint relating intertemporally instruments to objec- 

tive variables. If the decision maker's utility function is approximated with a quadratic 
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form and the intertemporal constraint with a stochastic linear function, the solution to the 

dynamic optimisation problem can be easily computed by employing the method of dy- 

namic programming. ' When solved by this method, optimal linear regulator problems are 

normally referred to as linear quadratic dynamic programming problems, since dynamic 

programming is used to optimise a quadratic return function, subject to a system of sto- 

chastic linear difference equations. ' 

Without loss of generality, the intertemporal quadratic cost function of the policy 

maker can be written as: 

00 

L= Et E ßt+s [(Yt+s-Y)'W (Yt+s-Y)] (l . 1) 
3=o 

where Et denotes mathematical expectations conditioned on time t information, yt+s 

I 
zlt+s ". " zit+s-p Z2t+s """ z2t+s-p ], 

zl is a vector of endogenous variables, z2 is 

a vector of policy instruments, y is a target vector and W is a symmetric positive semidef- 

finite matrix of policy weights. ' 

The value function V (yt), i. e. the minimum value at time t of the welfare loss under 

the infinite sequence of controls {z2t+s}s° 
o, is given by 

00 

V (Yt) = min EtE, Qt+s [(Yt+s-Y)'W (Yt+s-Y)]. 
{z2t+s}s-o 

s=0 

For detailed discussions about the use of dynamic programming in dynamic optimisation problems, see 
Bertsekas (2000) and Chow (1976). For applications of dynamic programming to economic problems, in 
particular to optimal linear regulator problems, see Ljungqvist and Sargent (2004). 
2 The Lagrange technique can also be employed as a method of dynamic optimisation as illustrated in 
section 5.4. For a description of dynamic economics optimisation by the Lagrange method, see Chow (1997), 
and, for comparison of dynamic programming and Lagrange method in the assessment of optimal policy, see 
Chow (1976). 
3 The vector yt+, can include current and lagged values of both state and instrument variables. The rep- 
resentation of equation (1.1) is sufficiently general to eventually include first differences of the objective 
function's arguments by imposing ad hoc identities in the off-diagonal elements of the matrix W. 
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Since L is a quadratic form in yt+8-y, the general structure of the value function can be 

guessed to be a linear combination of a quadratic, a linear and a constant term, which can 

be represented as: 

V (Yt) = YtPYt - 2Yip + d, (1.2) 

where P is a positive semidefinite symmetric matrix of coefficients having the same order 

of W, whereas p and d are vectors of coefficients compatible with yt+s. 

The Bellman (1957) principle can then be applied to write the value function in the 

recursive form 

V (Yt) = min (Yt-Y)'W (Yt-Y) + ßEt [V (Yt+i)] (1.3) 
{z2t+s}8=o 

and substitution of (1.2) into the value function of equation (1.3) gives the following recur- 

sive Bellman (1957) equation: 

PYt - 2Ytp +d= min (yt-Y)'W (Yt-Y) + ßEt [Yt+1PYt+1 
- 2Yt+ip + d] 

. Y' t 00 {z2t+s}s-o 

(1.4) 

The above dynamic optimisation problem is entirely recursive in the vector yt and 

determination of its solution requires the computation of yt+l from a dynamic system that 

relates yt+l to both the previous period value yt and the policy instrument z2. The con- 

straint can include either Z2t+1 or Z2t, according to whether the control vector affects the 

state vector instantaneously or with a lag. Therefore, the stochastic dynamic linear con- 

straint can be written as either 

Yt+i =a+ Ayt + Bzzt+i + Ut+i (1.5) 

or 
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yt+i =c+ Cyt + Dz2t + vt+l , (1.6) 

where the vectors a and c, and the matrices A, B, C and D includes fixed coefficients, 

while ut and vt are vectors of stochastic terms with Et [ut+i] = Et [vt+i] = 0, Et [ut+lui+l] 

Ut+l and Et [vt+lvt+l] = Vt+l. Moreover, the disturbances in both equations (1.5) 

and (1.6) are uncorrelated with the instrument vector, that is Et [ut+lz'2t+1] =0 and 

Et [vt+iz't] = 0. 

The next two sub-sections describe the computation of optimal feedback rules under 

the two specifications of the dynamic constraint. 

First case: yt+l =a+ Ayt + Bz2t+1 + Ut+l 

The dynamic constraint in equation (1.5) can be employed to take forecasts of yt+i, 

which can then be substituted into the recursive equation (1.4) so that, after taking expec- 

tations, the value function can be written as: 

V (Yt) = 
YtwYt +Q (a + AYt + Bz2t+i)l P (a + Ayt + Bzzt+i) 

(1.7) 
-2, Q (a + Ayt + Bz2t+i) P+ ßE (ut+iPut+i) +/ýd 

Differentiation of V (yt) with respect to the control variable z2t+1 gives the first order 

condition: 

äV (Yt) 
= ßB'Pa + ßB'PAyt + ßB'PBzzt+l - ßB'p. 

öz2t+l 

Setting the first order condition equal to zero and solving for z2t+1 yields the optimal feed- 

back rule 
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Z2t+i =- (ßB'PB)-i B'[ßß'a-ßp] - (ßB'PB)-i ßB'PAyt, 

which can be written in the compact form: 

Z2t =f+ Fyt_1, (1.8) 

f=- (B'PB)-1 B' (Pa - P) , 

F=- (B'PB)-' B'PA. 

Equation (1.8) shows that under the dynamic constraint (1.5) the optimal feedback 

rule is a linear function relating the current value of the policy instrument to a constant 

term and the previous period value of the state vector. A noticeable feature of the solution 

in equation (1.8) is the absence of stochastic disturbances in the feedback rule. This result 

is known as certainty equivalence principle, which implies that the solution to a stochastic 

discounted linear optimal regulator problem is the same deterministic linear feedback rule 

which would be obtained from the solution to the corresponding deterministic problem. ' 

Computation of the coefficients in the optimal feedback rules requires evaluation of 

the matrix P and the vector p. To this end, after substituting the optimal feedback rule into 

the value function (1.7), the minimum expected welfare cost V (yt) can be written as: 

(Yt-Y)' W (Yt-Y) + 

ytPyt - 2y'p +d= +ß [a + Ayt +B (f + Fyt)]' P [a + Ayt +B (f + Fyt)] 

-2,8 [a + Ayt +B (f + Fyt)]' p+ , QE (u'+1Put+1) +, 3d 

After multiplying through and rearranging, the above expression becomes: 

a See Brainard (1967) and Ljungqvist and Sargent (2004). 
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y'Wyt+ßy' (A+BF)P(A+BF)yt+ 

y Py - 2yiP +d 

[_2YWY 
+ 2ßy' (A + BF)' (Pa + PBf - p) + 

+y'Wy + ,ß 
(a + Bf)' P (a + Bf) + 

-2ß (a + Bf)' p+ ßE (u'+1Put+1) +ßd 

Since the term 

(A + BF)' PBf = A'PBf + F'B'PBf 

= A'PBf - A'PB (B'PB)-1 B'PBf = 0, 

the minimum value function becomes: 

y' Wyt + ßy' (A + BF) P (A + BF) yt+ 
-2yt'WY + 2ßyt (A + BF)' (Pa - p) + 'Pyt -2YiP+d= +y'Wy+ß(a+Bf)'P(a+Bf)+ 

(1.9) 

-2ß (a + Bf)' p+ ßE (u'+1Put+i) +ßd 

The matrix P can be calculated by equating the coefficients corresponding to the quadratic 

terms on both sides of equation (1.9) as: 

P= W+ßA'PA+2ßA'PBF+ßF'B'PBF. 

Substitution of F=- (B'PB)-' B'PA into the above gives 

P= W+ßA'PA-ßA'PB (B'PB)-1 B'PA, (1.10) 

which is the algebraic matrix Riccati equation for P. Equation (1.10) is highly nonlinear 

and can be computed numerically by writing: 

Pt+j = W+ßA'PtA-ßA'PtB (B'PtB)-' B'PtA, 

setting Pt-- 0 as initial value and then solving for Pt+l. The process is iterated until 

convergence to the stable value Pt= Pt+l = P. 
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The vector p can be calculated by equating the coefficients corresponding to the 

linear terms on both sides of equation (1.9), that is: 

2p =-2Wy+2ß(A+BF)'(Pa-p), 

and then solving for p as: 

p= ýI -Q (A + BF)'] -1 [Wy -ß (A + BF)' Pa] , 

where P is the previously computed stable solution to the algebraic matrix Riccati equation. 

Second case: yt+l =c+ Cyt + Dz2t + Vt+l 

The computation of optimal policy rules under the dynamic constraint in equation 

(1.6) requires rewriting the value function as: 

V(yt)=y y -2yf+d 

and the recursive Bellman equation as: 

V (Yt) = min (yt-Y)'W (Yt-Y) + ßEt [Y+iPYt+i 
- 2Yi+iP + d] 

{z2t +s}s-o 

After substituting forecasts of yt+l from equation (1.6) in the Bellman equation 

(1.11) and taking expectations, the value function can be written as: 

YiWYt +ß (c + Cyt + Dz2t)' P (c + Cyt + Dz2t) 
V (Yc) 

_20 (c + Cyt + Dz2t)' P+ ßE (V+iVt+i) +ßd 

Differentiation of fl (yt) with respect to Z2t gives: 

ý1 r (Yt) 
= ßD'Pc + : 3D'PCyt + ßD'Pc+ßD'PCyt + 2ßD'PDz2t+1 - 2ßD'p 

az2t 
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Setting the first order condition equal to zero and solving for Z2t, the optimal feedback rule 

is written as: 

Z2t =- 
(D'PD) 1 

D' [Pc 
- p] - 

(D'PD) -1 
D'PCyt, 

which can be expressed in the compact form: 

Z2t =f+ FYt, (1.12) 

f=- (D'PD) -i1 D' (Pc 
- P) , 

F=- (D'PD) D'PC. 

As for the previous case, the matrix P is calculated from the stable solution to the 

recursive algebraic matrix Riccati equation: 

Pt+1= W+ßc'Ptc-ßc'PtD (D'tD) -1 D'Ptc, 

while the vector p is computed from: 

P= LI -Q 
(C + DF) J1 LWy -Q 

(C + DE)' PcJ . LL 
Equation (1.12) shows that under the dynamic constraint (1.6), the optimal feedback rule is 

a deterministic linear function relating the current value of the policy instrument to a con- 

stant term and the current value of the state vector. Comparison of the feedback rules in 

equations (1.8) and (1.12) shows that the choice of the timing structure of the constraint 

affects both the magnitude of the response coefficients and the timing structure of the feed- 

back rule. 
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1.2.2 Welfare analysis 

The intertemporal loss function in equation (1.1) involves minimisation of the expected 

volatility of the state vector yt+s around the vector of targets Y. To assess the minimum 

welfare cost associated with policy rules in equations (1.8) and (1.12), it is convenient to 

decompose the loss function in equation (1.1) as: 

L= LD + LS 

oc 
LD = Et 1: 

, 
Qt+s [(Y 

- y)' W (y - Y)] 
s=o 
m 

Ls = Et >, üt+s [(Yt+s-Y)' W (Yt+s-y)], 

s=o 

where E [yt] =y is the unconditional expectation of the state vector. The term LD is the 

deterministic component of the welfare loss, measuring the social cost due to deviation of 

the private sector's rational expectation equilibrium from the medium term policy targets. 

The term LS is the stochastic component of the welfare loss and takes into account the 

social cost arising from the presence of random disturbances in the dynamic constraint. 

Basic matrix algebra can be employed to write LS as: 

00 

Ls = Et 1: 
, 
ßt+str [(Yt+s-Y)' W (Yt+s-y)] 

, 
s=o 
00 

= Et E ßt+str [W (yt+s-Y) (Yt+s-Y)ý], 

s=o 
00 

_ 
Eßt+'&WEt [(Yt+s-Y) (Yt+s-Y)'] 

, 
s=o 

which shows that the stochastic component of the welfare cost is a weighted linear com- 

bination of the variance of the variables included in the state vector yt+s. Therefore, the 

computation of L' requires the assessment in every period t+s of the covariance matrix 
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of the state vector, which can be written as: 

rt+s = Et [(Yt+s-y) (Yt+s-y)'] 
. 

25 

(1.13) 

The value Ißt+s under control - and therefore of the minimum stochastic social welfare cost 

- depends upon the specification of the dynamic equation for yt and its computation is 

discussed in the next two subsections. s 

First case: yt+l =a+ Ayt + Bz2t+1 + ut+l 

Substitution of the optimal rule (1.8) into the dynamic constraint in equation (1.5) 

gives: 

Yt+i =a+ Ayt +B (f + FYt) + ut+i 

= a+Bf+(A+BF)+ut+i 

Setting r=a+ Bf and R=A+ BF, the system under control can be written as: 

Yt =r+ RYt- i+ ut. 

Computation of the covariance matrix of the state vector is carried out by first post- 

multiplying equation (1.14) by yt and taking expectations, which gives: 

Et [Yty ]= rt = Et [ry] ]+ Et [RYt-1Yt] + Et [utYt] 
, 

REt [Yt-iYi] + Et [utut] 

5 For a detailed description of the solution techniques employed in the next two subsections, see Hamilton 
(1994). 

UNI VERITY 
OF YJFA 

BRARY 

(1.14) 
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Moreover, transposing equation (1.14), pre-multiplying by yt_1 and taking expectations 

yields: 

Et [Yt-iy ]= Et [Yt-ire] + Et [Yt-iYt-, R' ý+ Et ýYt-lui] 
, 

= Et Yt-iYt-, ] R'. 

When s=0, substitution of the above result in equation (1.13) determines the covariance 

matrix of the state vector under control as: 

rt = Rrt_1R'+ Ut. (1.15) 

The above expression is nonlinear and can be solved numerically by setting an initial value 

Fo -0 and computing the next period value IF,, which can then be used to compute F2 

and so on. This recursive procedure can be iterated until convergence to the stable solution 

rt = rt+1= r, which is used to assess the variance of yt in equation (1.13). 

Alternatively, an exact solution can be computed by assuming yt to be a covariance 

stationary process, i. e. rt = rt_1= r, so that equation (1.15) becomes: 

r=RrR'+U. 

The vec operator can then be employed to rewrite the above expression as: 

vecI' = vecRI'R' + vecU, 

= (R®R)vecF+vecU, 

where ® indicates the Kronecker product. Solving for vecF gives: 

vecl' = [I - (R 0 R)]-1 vecU, (1.16) 
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which is the vec representation of the covariance matrix of the state vector under the optimal 

policy rule. 

Both equations (1.15) and (1.16) are equivalent formulas for the assessment of the 

variance of the vector yt under the optimal rule. Since the variance of the vector yt before 

implementation of the optimal rule can be calculated from the the dynamic constraint (1.5) 

as 

I, t = Art-1A'+ Ut, 

the minimum variance in equation (1.15) can then be subtracted from I't to assess the 

welfare gain from the implementation of the optimal rule: 

rt -I't =AI't-lA'-RI't-1R'. (1.17) 

The result in equation (1.17) shows that the welfare gain is independent from the 

volatility of the disturbances in equation (1.5). This is a natural implications of the certainty 

equivalence principle, which states that the implementation of the deterministic optimal 

rule in the stochastic linear dynamic constraint minimises the volatility of the deterministic 

part of the state vector, leaving unchanged the variance of the disturbances. 

Under the stable solution in equation (1.15), the stochastic component of the welfare 

loss function can be computed as: 

00 

Ls =Eo"'trW1= 
1 

trW]F. 

s=o 
1- 

If the covariance matrix of the state vector is computed in the vec form as in equation 

(1.16), - by employing the properties tr (AB) =tr (A'B) = (vecA) (vecB) - LS can be 
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measured as: 

LS =1 (vecW)' [I - (R (9 R)]-' vecU. 1ß 

Second case: yt+l =c+ Cyt + Dz2t + vt+l 

The welfare analysis can be repeated under the constraint in equation (1.6). Substi- 

tution of the optimal rule (1.12) into the constraint gives: 

Yt+l =c+ Df+ (C + DF) yt + vt+l. 

Setting q=c+ Df and Q=C+ DF, the system under control can be written as: 

Yt+i =q+ QYt + vc+i " (1.18) 

As for the previous case, the covariance matrix of yt can be computed as: 

rt = Qrt-lQ' + Vt. 

The stable solution ft= If t+1 =r to the above equation can be either calculated 

numerically or in vec form as: 

vecI' = [I - (Q ® Q)]-1 vecV. 

Moreover, the welfare gain from the implementation of the optimal rule (1.12) into the 

constraint (1.6) is given by: 

t- i7 = crt-ic' - Qrt-1Qý. (1.19) 

As for the previous case, the certainty equivalence principle implies that substitution of the 

optimal rule into the stochastic economy constraint minimises the volatility of the deter- 

ministic part of the dynamic equation for the state vector, leaving unchanged the variance 
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of the disturbances. Comparison of the welfare gains in equations (1.17) and (1.19) shows 

that the choice of the timing structure of the constraint affects not only the dynamic struc- 

ture of the optimal feedback rule, but also the implied measure of minimum welfare cost. 

1.2.3 Assessment 

We have shown that the interaction between state and control variables in the dynamic con- 

straint used for the solution to linear quadratic dynamic programming problems affects the 

timing of the optimal policy rule and the magnitude of the optimal response coefficients. 

In addition, the dynamic specification of the state vector equations also alters the measure- 

ment of the welfare cost under the optimal policy. 

The previous analysis discloses at least two issues related to the assessment of opti- 

mal policy rules from VAR models, which will be discussed in the rest of the paper. 

The first issue concerns the identification of the structural model of the economy from 

the reduced form VAR. An important feature of optimal linear regulator problems described 

in the previous two sections is that, after replacing the instrument vector in the constraint 

with the optimal feedback rule, the dynamic equation for the state vector under control 

includes only endogenous variables. In fact, equations (1.14) and (1.18) give two VAR 

representations of the state vector, the first arising from the substitution of the feedback 

rule (1.8) in the constraint in (1.5) and the second from the substitution of the policy rule 

(1.12) into (1.6). Researchers can observe and estimate the reduced form VAR coefficients, 

but may not have a priori knowledge about the decision maker's utility function and the 

model used to predict future values of the state vector. On the other hand, any reduced 
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form VAR model can be thought as the outcome of a dynamic linear quadratic problem. 

In this respect, equations (1.14) and (1.18) disclose a fundamental identification problem 

occurring when estimating a VAR model which includes state and instrument vectors, as the 

optimal policy rule followed by the decision maker cannot be inferred from the observation 

of the VAR model alone. In turn, this implies that an identification technique is required 

to transform the system of endogenous variables into a dynamic constraint suitable for the 

computation of optimal policy rules, which takes the form of either (1.5) or (1.6). 

The second issue related to the assessment of optimal policy rules from VAR models 

concerns the specifications of the deterministic part of the structural model. The certainty 

equivalence principle implies that the optimal policy rule is deterministic and can only 

minimise the volatility of the deterministic part of the state vector in either (1.14) or (1.18). 

Therefore, welfare measures are sensitive to the specification of the deterministic part of 

the VAR model, as this in turn defines the structure of the optimal policy rule. Stochas- 

tic disturbances in the reduced form VAR model capture the effect on the state vector of 

any variable other than those explicitly specified in the model, but - as shown in (1.17) and 

(1.19) - the optimal policy rule does not change the volatility of the stochastic disturbances. 

Therefore, omission of any variable relevant for the assessment of the optimal policy from 

VAR models is bound to result in misspecified policy rules and overstated welfare mea- 

sures. Since traditional VAR analyses of optimal policy rules are based upon reduced form 

VAR models that include objective and instrument variables of a single decision maker, the 
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main source of misspecification arises from omitting the responses to policy actions of any 

other decision maker competing over the control of the economy. 6 

The next section focuses on the issue of identification and compares two alternative 

approaches. Section 5 completes the discussion on the use of VAR model in optimal policy 

analysis by describing how optimal policy rules can be computed within a dynamic game 

VAR framework, which includes several decision makers engaging in strategic interaction 

over the control of the economy. 

1.3 Vector Autoregressive models and optimal control 

Since the seminal work of Sims (1980) VAR models have been widely used in macroeco- 

nomic policy analysis. A natural starting point of an empirical work consists in specifying 

and estimating a VAR model in which the state vector includes non-policy macroeconomic 

variables, some of which may be directly targeted by the policy maker, whereas the control 

vector includes policy variables, which measure the current policy stance. 

In the unrestricted VAR both the state and the control vectors are treated as endoge- 

nous, whereas policy analysis requires conditioning the state vector equations upon an 

exogenous control vector which can be freely changed by the policy maker. The policy 

analysis may focus on assessing the effect of either unanticipated (policy shocks) or an- 

ticipated policy interventions (changes in the policy rule) on the future dynamic of the 

6 In particular, optimal monetary policy analysis focuses on the assessment of interest rate rules from VAR 

models that include objective variables targeted by the central bank, either directly or indirectly, as well as 
the short term policy interest rate. These models fail to include the effect of policy actions of other decision 

makers, such as for example fiscal authorities. See Sack (2000), Martin and Salmon (1999) and Goodhart 

(1999). 
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variables included in the state vector. In the former case, the estimated effect of policy 

changes on the future values of the state variables is assessed through the impulse response 

functions. In the latter case, the purpose of the analysis is to look at the likely pattern of the 

non-policy variables under rules different from that estimated from the unrestricted VAR 

and then assess the corresponding welfare implications. 

Neither of the two types of analysis can be conducted directly on the reduced form 

VAR, and a specific set of restrictions is required to identify policy shocks. Full identi- 

fication of the structural VAR allows computing both impulse response functions and as- 

sessing policy changes. This is however unnecessary if the aim of the analysis is only to 

look at changes in the systematic part of the policy reaction function estimated from the 

unrestricted VAR model, as only a partial identification scheme, which yields so-called 

semi-structural representations of the VAR model, is sufficient in this instance. 

To illustrate these ideas analytically and set the notation, consider the reduced form 

VAR model: 

zt =a+A (L) zt + et, (1.20) 

where zt is a set of endogenous macroeconomic variables, a is a vector of constant terms, 
P 

L is the lag operator, A (L) _ AZL' is the matrix describing the systematic adjustment 
Z=1 

of zt in response to its own lags and et is a vector of serially independent reduced form 

disturbances, with E [et] =0 and E [etet] = E,,,. After ordering state variables before 

control variables, the endogenous vector zt is partitioned as: 

Zt -[ Zit Z2t 
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where zlt is the state vector and z2t is a control vector. Therefore, the VAR model in 

equation (1.20) can be partitioned as: 

Zl, t 
_ 

aio + All (L) A12 (L) [Zi, 
t_i 1+ elt 

Z2, t a20 , (1.21) A21 (L) A22 (L) Z2, t-1 e2t 

and the covariance matrix of the reduced form disturbances is accordingly partitioned as: 

_ 
E11 E12 

ýe 
r21 E22 

where Ell is covariance matrix of the disturbances of the state variables, 1122 is the covari- 

ance matrix of the disturbances of the control variables, and E12 is the matrix collecting 

the covariances between the disturbances of state and control variables. ' 

If the policy maker has full control over the instruments included into the control 

vector, the policy equations estimated from the unrestricted VAR capture the reaction func- 

tion of the policy maker over the sample period. In particular, the deterministic part of 

the control vector Z2t is the systematic policy response to changes in the lagged values 

of the variables included in the VAR model, while the innovations measure unanticipated 

changes in policy or policy shocks. Contemporaneously, the equations in the state vector 

zlt captures the dynamic of the non-policy variables under the current policy stance. 

The reduced form innovations can be thought as a linear combination of the uncor- 

related structural shocks Et, with E [Et] =0 and E [etefl = EE. Following the partition 

employed for the reduced form VAR model, the relationship between structural and re- 

duced form innovations is written as: 

7 Since Ee is symmetric, note that T-'12 = Eil. 
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eit 
=B 

Eit 
__ 

I B12 Eit (1.22) e2t E2t B21 I E2t 

A well known issue in VAR models is that the structural system is not identifiable 

given the estimates of the reduced form model, unless an exact number of restrictions is 

imposed on the structural model. Several approaches have been proposed in the literature 

to fully identify a structural model from the reduced form VAR. 

A first identification approach imposes a recursive structure on contemporaneous in- 

teractions between reduced form and structural innovations. Examples of this approach 

include Sims (1972), Bernanke (1986), Bernanke and Blinder (1992) and Bernanke and 

Mihov (1998). A well known shortcoming of this identification approach is that the shape 

of the impulse response function obtained from the structural model critically depends upon 

the type of triangular structure imposed on the matrix B, namely whether policy variables 

are ordered before or after non-policy variables. An alternative identification approach ex- 

ploits information coming from the economic theory to impose restrictions on the long run 

effects of the disturbances of the reduced form VAR. This approach has been used by Blan- 

chard and Watson (1986), Blanchard and Quah (1989) and Gali (1992) among the many 

others. As pointed out by Blanchard and Quah (1989) one can retrieve at most only as 

many types of distinct shocks as there are variables. As a result, identification under this 

approach is difficult to achieve when the economy is likely to be affected by a number of 

shocks that is greater than the variables included in zt. More sophisticated identifications 

approaches focus on imposing sign restrictions on either the impulse response functions, as 
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in Uhlig (1999), or on the cross-correlation between the impulse responses, as in Canova 

and De Nicolo' (2002). 

Once the VAR has been fully identified by any of the approaches mentioned above, 

the structural model can be used not only to assess the response of non-policy variables to 

unanticipated changes in policy, but also the likely implications of changes in the policy 

rule estimated from the reduced form VAR. 

As previously stated, full identification schemes are not necessary to assess the ef- 

fects of changes in the systematic component of policy. In this case it is sufficient to employ 

only a partial identification scheme based upon a block Cholesky decomposition of the re- 

duced form disturbances of state and control variables. The next two sub-sections describe 

two alternative identification approaches and the implications of each of them for the com- 

putation of the policy rule and welfare analysis. The first one is based upon the assumption 

that policy changes can affect the state vector only with a lag, as in equation (1.6). Exam- 

pies of this approach in monetary policy analysis based on VAR models are in Sack (2000) 

and Monti (2003), among the others. I will refer to this as standard approach. An alterna- 

tive approach is to assume the state vector responds to both current and lagged changes in 

the control vector, as in equation (1.5). This approach has been recently proposed by Wick- 

ens (2003) and, to the best of my knowledge, has no been applied in any empirical work so 

far. 
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1.3.1 Standard approach 

The standard identification approach consists in estimating the unrestricted VAR model in 

equation (1.21) and then using the estimated equation for zit in isolation from the rest of 

the system to represent the dynamic constraint linking state and control variables. Given 

the objective function of the policy maker, the constraint can be used to derive an optimal 

policy rule under dynamic programming which would have a dynamic structure consistent 

with that in equation (1.12). More generally, the policy rule takes the form: 

Azit + z2t = ago + Ali (L)zi, t-i + A22 (L)Z2c-i (1.23) 

Welfare analysis is conducted under the standard approach by combining the optimal policy 

rule in (1.23) with the state vector equations in (1.21). This yields the VAR under control 

I0 zit 
_ 

alp 
+ 

I Z2t ago 

+ 
A_ ii (L) A12 zi, t-i + 

[eit 
(1.24) 

A2l(L) A22(L) 
1[7,2, 

t-1 0 

or, re-writing this as a VAR by pre-multiplying by the inverse of the matrix of coefficients 

of zt, 

zit 
_ 

Ali(L)_ A12(L)_ Zl, t-1 
Z2t -AA11(L) + A21(L) -AA12(L) + A22 (L) z2, t-i 

+ 

+ aio + elt (1.25) 
-Aalo + ä2o -Aelt 

The VAR under control in the standard approach has the following characteristics. 

First the equations for the non-policy variables are unaffected. Second, the equations for 

the policy instruments in the VAR under control have a disturbance term that is perfectly 

correlated with disturbances in the policy equations. 
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1.3.2 PVAR approach 

The PVAR approach suggests the use of a block Cholesky decomposition to the vector et 

in order to make the reduced form disturbances of the state vector a linear function of the 

corresponding disturbances of the control vector: 

el, t = Eit + Ge2, t 

where elt is the component of el, t which is uncorrelated with e2, t. Therefore, the vector e, t 

has the following state space representation: 

_ 
el, t _IG 

cit ]. 
et e2, t 01iL e2, t 

The matrix E can be used to construct the matrix G as follows: 

G=FJ12F22) 

which gives the transformation matrix 

1H-'= 

J 01 
I 

The matrix H-1 can be used to map the original system onto a new one in which 

the disturbances associated with the state variables are uncorrelated with the disturbances 

associated with the controls: 

H-'zt = H-ia + H-iA (L) Zc-i + H-let, 
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which in turn yields the following system of linear equations: 

Zi, t - Gz2, t = [alo - Ga20] + [All (L) - GA21 (L)] Zi, t-i + 

+ [A12 (L) - GA22 (L)] z2, t_l + el, t - Ge2, t 

Z2, t = a20 + A21 (L) zi, t-i + A22 (L) z2, t-i + e2, t. 
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Since ei, t - Ge2, t = Elt - and e2, t and Elt are uncorrelated - the above system is 

equivalent to 

zl, t = alo + All (L) zi, t-l + A12 (L) z2, t-1 + Eit (1.26) 

-G [a20 + A21 (L) zl, t-1 - z2, t + A22 (L) z2, t-1] 

Z2, t = a20+ A21 (L) Zi, t-i + A22 (L) Z2, t-i + e2, t, (1.27) 

Equation (1.26) can be separated from the VAR rule in equation (1.27) and employed 

as dynamic constraint for the evaluation of policy rules. The state vector zl, t is an autore- 

gressive function of both state and control variables and depends upon the current value 

of the control vector. The matrix G and the other autoregressive response coefficients in 

(1.26) can be computed from either the least squares or maximum likelihood estimates of 

the reduced form VAR model in equation (1.20). 

If we write the optimal control rule as: 

Z2t = ago + A*, (L)zi, t-i + AZ2(L)Z2t-i, 

the VAR under control becomes 

zlt 
_IG 

All (L) - GA21 (L) A12 (L) - GA22 (L) [Zlt_l]+ 
z2t -0I A*, (L) A22 (L) z2, t_1 

+IG 
alo - Ga20 

+IG Ec (1.28) 
01 a20 01 0' 
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or 

Zit All (L) - G[A21 (L) - A2, (L)] 
Z2t A21(L) 

+ aio - G(a20 - ago) 
.ý 

Et 
ago 0 

A12 (L) -G [A22 (L) - A22 (L)] Zl, t-ý 
A22 (L) Z2 , c-1 

(1.29) 

Thus, in a VAR under control based on the PVAR method, the new equation for the non- 

policy variables differs from the original VAR if the new policy rule differs from the original 

VAR equations for the policy variables. In addition, the VAR under control has a singu- 

lar error covariance matrix because the new VAR equations for the policy variables are 

deterministic. 

More generally, the vector z2t in equation (1.27) can be replaced by any deterministic 

policy rule of the form 

Azlt + Z2t = ago + A*, (L)zi, t-i + A22(L)z2t-i, (1.30) 

which gives a new complete model: 

I -G Zlt 
_ 

A11(L) - GA21(L) A12(L) - GA22(L) Zl, t-1 + AI 
[Z2t] 

A21(L) A22 (L) Z2, t-1 

+ 
alo - 

Ga20 
+ 

Elt 

ago 0 

and the VAR representation: 

zit 
_I -G -1 Ail (L) - GA21(L) A12(L) - GA22 (L) zi, t-i + 

z2t -AI A21 (L) A22 (L) z2, t-I 

+I -G -1 aio - Ga20 
+I -G Eit 

A1 a20 A10' 

As a result, if the policy rule incudes contemporaneous responses to changes in the 

state variables, then the PVAR approach yields a VAR model under control with a singular 
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variance-covariance matrix because the new VAR equations for the policy variables are 

deterministic. 

1.3.3 Assessment 

The PVAR and the standard approach represent two alternative methodologies to identify 

from an unrestricted VAR model a stochastic dynamic constraint that can be employed 

for the solution to dynamic linear quadratic problems. From a theoretical point of view 

the standard approach is equivalent to assume B12 =0 in equation (1.22), i. e. that policy 

shocks affect state variables with a lag. Consequently, if optimisation is carried out through 

dynamic programming, the dynamic structure of the optimal policy rule is consistent with 

that in equation (1.12) which states that the control responds responds to current change in 

the state vector. 

The plausibility of this assumption critically depends upon two factors: the type of 

macroeconomic variables included in the state vector and the unit of observation of the 

data. Since the empirical evidence suggests that output and inflation respond with delay to 

changes in the interest rate, the standard identification approach works well in the context of 

monetary policy analysis based on VAR models, which include observations of output and 

inflation in the state vector and of the interest rate in the control. However, the standard 

approach is inappropriate if the state vector includes other variables which are likely to 

quickly react to policy changes, such as financial market variables. In addition, it is unlikely 

that macroeconomic variables respond with delay to policy changes when data are available 

on a low frequency basis. For example, if data are available on a quarterly basis, then 
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output is likely to respond to changes in policy within the period of observation. As a 

result, forcing output to respond with a lag, as under the standard approach, would yield a 

misspecified representation of the dynamic links between state and control variables, hence 

the wrong solution when computing the optimal policy. Stock and Watson (2001) argue 

against the use of the standard identification approach even with monthly data. Because 

most of macroeconomic data are available at least on a quarterly basis, this implies that the 

standard identification approach is of little use in macroeconomic analysis. 

The PVAR identification approach is based upon a block Cholesky decomposition 

which effectively is equivalent to assume B21 =0 in equation (1.22). This has the ad- 

vantage of leaving the linear dynamic structure of the state vector equations entirely unre- 

stricted. In fact, under the PVAR approach the state vector equations are conditioned upon 

both current and lagged value of the control, as well as their own lags. In this respect, the 

PVAR approach allow the inclusion of a wider range of variables in the state vector equa- 

tions and it is suitable for the analysis of both high and low frequency data. Indeed, the 

structural VAR model derived under the standard approach is a special case of that result- 

ing from the PVAR approach, obtained by setting G=0 in equation (1.26). If optimisation 

is carried out through dynamic programming, then the dynamic structure of the policy rule 

obtained under the PVAR approach is consistent with that in equation (1.8). This implies 

that policy makers respond with a lag to changes in the state vector, which reflects the 

presence of information lags in the policy response to changes in the non-policy variables. 

However, the structural VAR model obtained under the PVAR approach can be combined 

with any unrestricted rule, such as in equation (1.30). In this instance optimisation can be 
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carried out by grid searching through the parameters of (1.30), given the policy maker ob- 

jective function and the constraint in (1.26). This entirely unrestricted linear framework 

cannot be achieved under the standard approach. 

1.4 Dynamic games 

1.4.1 Related Literature 

Dynamic optimisation often involves problems which include more than one decision maker. 

The presence of more than one decision maker give raise to dynamic games models which 

have been extensively studied in several areas of both microeconomics and macroeco- 

nomics. Examples include industrial organisation and price determination - Beggs and 

Klemperer (1992) Fershtman and Kamien (1987), Karp and Perloff (1989), Reynolds (1991) 

- exhaustible and renewable resources - Hansen et al. (1985), Lindsey (1989) -, policy cred- 

ibility - Kydland and Prescott (1977), Barro and Gordon (1986) - international policy co- 

ordination - Cohen and Michel (1988), Currie et al. (1989), Miller and Salmon (1985a, 

b, 1990) - and monetary policy games - Obstfeld (1991), Lockwood and Phillipopoulos 

(1994). 

A branch of the literature has focused on the interactions between monetary and fiscal 

policy and the alternative welfare implications of different types of interactions between the 

central bank and the government, for example Pindyk (1977), Tabellini (1988), Benigno 

and Woodford (2003) and Dixit and Lambertini (2003). A recent empirical assessment of 

the predictions arising from this literature is provided by Kirsanova et al. (2005). The 
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authors add to the conventional IS curve-Phillips curve-Taylor rule model of Svensson 

(1997) and Rudebusch and Svensson (1999) two further equations which take into account 

the conduct of fiscal policy and the dynamic accumulation of public debt. The model 

is calibrated to study stabilisation policy under alternative types of competitions between 

monetary and fiscal authorities. 

On the other hand, VAR models have been extensively used to assess separately 

the effects of either monetary policy shocks, for example Bernanke and Blinder (1992), 

Bernanke and Mihow (1998) and Christiano, Eichenbaum and Evans (1999), or fiscal 

shocks, see for example Blanchard and Perotti (1999) and Fatas and Mihov (2000). More 

recently, simultaneous assessment of monetary and fiscal shocks has been proposed by 

Canzoneri, Cumby and Diba (2002). VAR models have also been employed for the com- 

putation of optimal monetary policy rules in the United States, see Sack (2000), and in the 

United Kingdom, see Martin and Salmon (1998). However, to the best of my knowledge, 

VAR models have not been exploited so far to evaluate how optimal monetary policy is af- 

fected by the presence of the fiscal sector, under alternative types of competitions between 

monetary and fiscal authorities. Consequently the next subsections discuss the computation 

of optimal policy rules under alternative strategies of the policy makes when the dynamic 

structure of the economy is initially observed from the perspective of an unrestricted VAR 

model. 
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1.4.2 Setting up the model 

A dynamic game model is usually designed by first specifying the objective function, the 

policy instruments and the stylized forecasting model employed by each decision maker, 

and then assessing the welfare outcome of policy decisions by taking into account alter- 

native types of interactions among policy makers. So far, little attention has been given 

to the assessment of dynamic games models when the macroeconomic framework is ob- 

served from a reduced form VAR model. In principle, the VAR model has to be specified 

in terms of objective and instrument variables of all decision makers competing over the 

control of the economy. The identification problem is more complex than the individual 

policy maker case, as it requires knowledge of all policy makers' preferences as well as 

assumptions about the interaction of each policy instrument with both state variables and 

other policy instruments. 

More importantly, the identification strategy and the solution to the dynamic game 

model depends upon the type of interaction among decision makers. A Markov perfect 

solution occurs when each decision maker solves his own optimisation problem by taking 

other players' best strategies as given. A special case of the Markov perfect solution arises 

when the optimiser knows that others decision makers are committed to an ad hoc policy 

rule. A cooperative solution results when all decision makers pool together their policy 

instruments to jointly optimise a common utility function. Finally, a Stackelberg solution 

occurs when policy makers are ranked in terms of their decision power, as either leader or 

follower, and act strategically by taking into account other players' optimal responses. 
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A preliminary issue when using VAR systems to analyse dynamic games models is 

to appropriately allocate the variables included in the endogenous vector yt between the 

state vector zit and the control vector z2t. There are two sets of variables that can be em- 

bodied into yt. The first is a vector xt =[ x1 x2 ... Xq ] of the so called natural state 

variables, which refers to macroeconomic variables directly targeted by decision makers, 

as well as any other variable that indirectly affects the expected value of targeted variables. ' 

The second set of variables, when there are n>1 decision makers, includes each policy 

makers' instrument vector vj, with j=1, ..., n. 

While natural state variables are always included into zit, the location of the instru- 

ment vectors vas depends upon the type of interaction among policy makers. Under the 

two Nash solutions, the optimiser treats other policy makers' reaction functions as given 

and includes their policy instruments into the state vector zit. Under the cooperative solu- 

tion, only natural state variables are included into the vector zit, as all policy instruments 

are jointly employed in the optimisation. This implies that under Markov perfect and co- 

operative solutions, the dynamic optimisation problem preserves its recursive structure and 

can be still solved using the dynamic programming as in the single decision maker case. 

Computation of optimal policy rules is more complicated when decision makers inter- 

act strategically as in a leader-follower scenario, since standard recursive techniques cannot 

be applied to compute optimal policy rules. This is because other decision makers' reac- 

tion functions cannot be treated as recursive state variables when a decision maker chooses 

his optimal policy in a rational expectation framework where several decision makers com- 

8 See Ljunggvist and Sargent (2004). 
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pete over the control of the economy. In this case, the optimal policy is time inconsistent, 

in the sense that other decision makers respond to the optimal policy and therefore change 

its expected outcomes. However, Kydland and Prescott (1980) argued that these types of 

optimal control problems can still be solved by recursive methods by treating other policy 

makers' reaction functions as recursive bounding constraints. The next four subsections 

examine the application of the PVAR approach to compute policy rules in VAR based dy- 

namic games having either a Nash or the cooperative or the leader-follower solution. 

1.4.3 Linear Markov perfect equilibria 

In a dynamic game model with two players, j=1,2, a linear Markov strategy occurs when 

at any time t player J's action is restricted to be linearly dependent on the past history of 

play through the state vector. In this framework a Markov perfect equilibrium is a pair 

of linear Markov strategies giving the mutual best responses at any possible state of the 

world. In a dynamic macroeconomic model, the utility function of the decision maker j 

can be written as: 

00 

Lit = Et ßt+s I(yt+, 
-Yj), Wj (yt+s -Yj) 

] 

s=o 

where yj and Wj indicate the j- th decision maker's preferences over the policy targets 

and the arguments of the objective function respectively. The vector yt+s is specified by 

treating as state variables all policy instruments different from those of the j- th decision 

maker, that is: 

Zlt+s L Xt+s Vlt+s v2t+s vj-lt+s vj+lt+s vnt+s 
] 
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and 

Z2t = vet+s 
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The PVAR approach can be employed to transform the VAR model into a dynamic 

constraint of the form of (1.5). Since this dynamic optimisation problem is entirely recur- 

sive in the state vector, the optimal policy rule can then be computed through the dynamic 

programming method, as for the single policy maker case described in section 2. Under the 

Markov perfect equilibrium, the j- th decision maker's optimal rule is a linear determin- 

istic function relating the current value of the instrument vector vet to a constant, lagged 

values of natural state variables and other policy makers' instruments, that is: 

Zit-1 

(1.31) vet = fn + Fn Zit-p 
, V jt-1 

V jt-p 

where the coefficients fn, and F, z are computed as in equation (1.8). 

An important special case occurs when the optimiser knows that all other policy 

makers are bounded by a commitment technology, such as an explicit policy rule. The 

solution to this problem is not a Markov perfect equilibrium because the optimiser takes 

into account the ad hoc rule of the other policy makers, rather than their best reaction 

function. To simplify, suppose there are only two decision makers so that the instrument 

vector is partitioned as 

vt =[V lt V 2t 
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where vlt includes instruments of decision makers committed to the policy rule, while vet 

is the vector of instruments of the optimiser. The reduced form VAR can be partitioned 

accordingly as: 

Xt alo All (L) A12 (L) A13 (L) xt-1 elt 

Vit = a20 + A21 (L) A22 (L) A23 (L) Vit-1 + e2t 

V2t a30 A31 (L) A32 (L) A33 (L) V2t-1 e3t 

so that natural state variables are separated from the two instrument vectors. Under the 

PVAR approach, the transformation matrix 

LI 

-Gi -G2 
H= 0I0 

00I J 

can be computed to make the instrument vectors of both policy makers exogenous and 

determine dynamic constraint 

I -G1 -G2 Xt I- G1 -G2 alo 
0 I 0 VU = 0 I0 a20 + 
0 0 I VFt 0 0I a30 

I -G1 -G2 A11 (L) A12 (L) A13 (L) Xt-i 
+0 I 0 A21 (L) A22 (L) A23 (L) VLt_1 + 

0 0 I A31 (L) A32 (L) A33 (L) VFt_1 

I -G1 -G2 eit 
+ 0I 0 e2t 

00 1 eat 

At this stage, the coefficients corresponding to the instrument vector vlt can be re- 

placed with those of the ad hoc policy rule 

Qxt + Vit + Mv2t = ago + A21(L)xc-i + A22(L)vit-i + A23(L)v2t-i + etc, 

to obtain the new model 
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I -G1 -G2 Xt I- G1 -G2 Q I M Vit = 0 I0 
0 0 I vet 0 0I 
I -G1 -G2 A11 (L) A12 (L) A13 (L) 

+0 I 0 A21 (L) A22 (L) A23 (L) 
0 0 I A31 (L) A32 (L) A33 (L) 

I -G1 -G2 eit 
+ 0I 0 e2t 

00 1 eat 

alo 
a20 + 

a30 
Xt-1 

vlt-1 + 

V2t-1 
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After erasing the coefficients corresponding to the control vector vet and solving for 

the state vector Xt 
, the constraint of the economy can be written as: V it 

Xt 

V it 

-G1 I -G1 alo I -G1 - GZ 
Q I Lo I j[a*j+ 

20 
[Q 0 

]a3o+ 

+I -G1 ]-l I -G2 All (L) A12 (L) Als (L) Xt-1 
Q I 0I A21 (L) A22 (L) A23 (L) + 

vlt_1 

+ 
I -G1 
Q 

_l _G1 
p 

[A31 (L) A32 (L) A33 (L) ] vet-i 

I -G1 -G2 I- 
V2t+ 

G1 -i I -Gi eit 
Q I 

[q 
Mj I 0I LetI 

I _G1 - G2 
QI 0 est 

which is compatible with the dynamic system in equation (1.5), with y't =[ Zit ... 

zit ={ xt vlt ] and z2t = vet. Therefore, under this special case of the Nash solution, 

the optimal policy rule 
Zit-1 

V2t=fr+FT 
Zit-p 

V 2t-1 

V 2t-p 

is a linear function embodying optimal responses to changes in the objective variables 

Zlt-p Z2t 

targeted by the optimiser and rule-based changes of other decision makers' instruments. 
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1.4.4 Cooperative solution 
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A cooperative solution occurs when all decision makers coordinate their policy rules in 

order to achieve common objectives. This scenario can be described by assuming decision 

makers simultaneously employing all policy instruments to minimise a common objective 

function, as in equation (1.1), under a common forecasting model of the form of either (1.5) 

or (1.6). This implies that the vector zlt+s includes only natural state variables, while the 

control vector Z2t+S embodies all available policy instruments, that is: 

Zlt+s - Xt+s 

and 

Z2t+s =[ vlt+s V2t+s 2Jnt+s 
, 

The PVAR approach can be employed to compute a dynamic constraint in which the current 

value of natural state variables is conditioned upon the current value of the exogenous 

control vector z2. The dynamic optimisation problem can then be solved by minimising 

the cost function (1.1) with respect to z2 by employing the recursive dynamic programming 

method as in the single decision maker case. The solution to this dynamic problem implies 

that each policy maker has to commit to a specific optimal policy rule which relates his 

own policy instruments to natural state variables, but also takes into account the optimal 

behaviour of other policy makers. Therefore, the optimal policy rule can be written as: 

Z2t = fc+Fc 

Xt-1 

Xt_p 

Z2t-1 

Z2t-p 
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and each equation of z2t refers to the optimal policy rule of a decision maker under coop- 

eration. 

1.4.5 Stackelberg solution 

The assessment of either a Nash or the cooperative solution to a dynamic game from a 

VAR model specified in terms of all objective and instrument variables mainly requires the 

appropriate allocation of available policy instruments between state and control vectors. 

Once this task is accomplished, the dynamic game problem is solved by employing the 

same recursive technique used for the single decision maker case. This is because, the 

underlying nature of the dynamic optimisation problem under both Nash and cooperative 

scenarios remains recursive. 

When policy makers act strategically the solution to a dynamic optimisation problem 

is more complex as each decision maker sets the optimal policy given his prediction of 

other policy makers' reaction functions. In a leader-follower scenario, for instance, the 

follower's decisions in each period t is influenced by the forecast of the dominant player's 

next period action. In principle, the dominant player can either confirm or invalidate the 

follower's prediction. In the latter case the solution to the dynamic problem would exhibit 

time inconsistency and cannot be computed using a recursive technique. However, if the 

leader is bound to validate the follower's expectations, the reaction function of the follower 

can be interpreted as a constraint for the dominant player and a value can be attached to this 

constraint in terms of the cost of confirming past follower's expectations about the current 

behaviour of the leader. In this case, the Stackelberg problem is entirely recursive in both 
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the natural state variables and the bounding constraint and can be solved for the dominant 

player by using standard recursive dynamic programming methods. ' 

Consider the vector of policy instruments partitioned as 

Vt VLt VFt ]/, 

where VLt is the vector of leader's instruments and VFt is the vector of follower's instru- 

ments. The economy constraint is computed from a VAR model of the economy which can 

be partitioned as: 

Zit alo All (L) 
VLt 

[a2oj+[A21(L) 
A12 (L) Zit-1 

+ 
elt 

A22 (L) [VLt_1 
e2t 

(1.33) 

where the state vector zit =[ xt VFt ]' embodies natural state variables and the fol- 

lower's reaction function, the latter being interpreted as an intertemporal constraint re- 

flecting the leader commitment to confirm in each period the follower's forecast of his 

actions. 1° Under the PVAR approach, the transformation matrix H-' =0I -G 
1 can 

be employed to make the control vector VLt exogenous as: 

I -G zit 1 [0 
I] VLt 0 

+I 

+rI 

-G a10 + I a20 

-G All (L) 
I A21 (L) 

-G elt 
I e2t 

A12 (L) Zit-i 1 A22 (L) [VLt_1 

9 For a rigorous discussion of the solution to dynamic games models under strategic competition, see Kyd- 
land and Prescott (1980) and Ljungqvist and Sargent (2004). 

10 The VAR model in (1.33) is a compact system obtained by replacing v11 for VFt and v2L for vLt in 

equation (1.32). 
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In the single decision maker case, the matrix G is equal to the product between the co- 

variance matrix of the disturbances in the state and instrument vectors and the variance of 

the instrument vector's disturbances. In the Stackelberg problem, G includes also a sec- 

and term corresponding to the product between the covariance matrix of the disturbances in 

the bounding constraint and instrument vectors, and the variance of the instrument vector's 

disturbances. 

Under the certainty equivalence principle, the above dynamic constraint for the leader 

is compatible with the deterministic system: 

Yt = AY1t-1 + BVLt, (1.34) 

where yt =[ Zit ... zlt-p VD """V Lt-p ]' and the vector of state variables zit is 

augmented with VFt ... V Ft-p to take into account the cost for the leader accruing 

from confirming past periods' predictions of the follower about his current behaviour. 

If employing a quadratic objective function as in equation (1.1), the optimal policy 

rule for the leader takes the form: 

VLt = fo + F0Yt-1 (1.35) 

Given the interpretation of the variables included into yt, the optimal decision rule of the 

leader is dependent not only upon the forecasting model employed to predict natural state 

variables, but also on the follower's best response to the sequence of actions undertaken 

by the leader, as embedded in the vectors VFt ... VFt_p . The response coefficients f,, 

and Fo are calculated as in (1.8), which requires the computation of the stable solution to 

a matrix Riccati equation as in (1.10). In a Stackelberg optimisation problem, it is conve- 
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nient to determine the solution to the matrix Riccati equation by employing the Lagrangian 

method, since this allows a reinterpretation of the coefficients in the stable solution of the 

matrix Riccati equation P, which can then be exploited to solve the model through recursive 

techniques. Before forming the Lagrangian, the one-period utility function is decomposed 

as: 

(Yt-Y)' W (Yt-Y) = (Yt-Y)'R (Yt-Y) + VLtQV Lt, 

where R+Q=W and the matrix R assigns zero values to the diagonal coefficients cor- 

responding to the vector VLt in yt. This implies that the Stackelberg problem can be written 

in the following Lagrangian form: 

00 

G= Et E ßt 
(Yt+s-Y)' R (Yt+3-Y) + vLt+SQVLt+s+ 

s=o 
+2ßµt+3 (a + Ayt+3 + BuLt+s+i Yt+s+i) 

where µt+, is a vector of shadow prices associated with the sequence of dynamic con- 

straints in the Lagrangian. Given the definition of yt+s, the vector of shadow prices µt+, 

can be partitioned conformably as: 

tLt+s 
[ 

tLXt+s IIVFt+s µXt+s-P tLVFt+s-P PVLt+s %IVLt+. 
s_p J7 

where the sequence of multipliers µvFt+s " pvFt+s_p represent the set of shadow 

prices attached to the bounding constraints of the leader reflecting the cost of honoring 

current and past follower's expectations about future leader's policy choices, as captured 

by the reaction functions corresponding to VFt+s, """'VFt+s-p" 
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After taking expectations, the first order conditions with respect to yt and VLt+l are 

calculated as: 

ÖL 
_ -2ßtµt + 2ßtRYt + 2, ßt+lAuhµt+i, (1.36) Oyt 

2ßt+1B/µt+i + 2ßt+1QvLt+i" (1.37) DVLt+i 

Solving the first order condition (1.37) for VLt+l and substituting the solution in 

equation (1.34), the dynamic constraint can be written as: 

Yt+i = Ayt + BQ-1B'µt+i (1.38) 

and the system of first order conditions obtained by combining (1.36) and (1.38) has the 

following state space representation: 

10 I BQ-'B' yt+, 
__ 

A0 yt (1.39) 
ßA' lit+, -R 1 Ht]' 

with stable solution given by: 

At = PYt 
" 

(1.40) 

To compute P, substitution of the solution (1.40) into the system in equation (1.39) 

yields: 

(I + BQ-'B'P) Yt+l = AYt (1.41) 

ßA'PYt+j = (-R + P) Yt. (1.42) 

Since 

(I + BQ-1B'P)-1 =I- ßB (Q + ßB'PB)-' B'P 
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equation (1.41) can be solved for yt+l to obtain: 

Yt+i _ 
[A 

- ßB (Q + ßB'PB)-' B'PA] Yt. 

After setting Q=0 and substituting R for W, the term 0 (Q + ßB'PB)-' B'PA be- 

comes equivalent to the matrix F from equation (1.8) and yt+i is written as: 

Yt+l = (A-BF')yt" 

Premultiplying both sides in the above expression by the term /A'P gives: 

ßA'PYt+j = ,i 
(A'PA - A'PBF) Yt, 

which can be equated to the right hand side of (1.42) and solved for P to obtain: 

P= W+ßA'PA-ßA'PB (B'PB)-1 B'PA 

(1.43) 

which shows that the stable solution P to the dynamic system (1.39) is the same algebraic 

matrix Riccati required to compute the response coefficients in the optimal feedback rule 

(1.35). 

Therefore, the matrix P can be partitioned in order to decode all information associ- 

ated with the Lagrangian multipliers of the constraint in equation (1.40) as: 

Ant 
_ 

PH P12 kt 

IIVFt P21 P22 
[VFt]' 

where µ, ßt 
is the vector of shadow prices associated with 

Kt =[ Xt Xt-1 VFt-1 """ Xt-p VFt-p VLt """ VLt-p 

The solution to µ,,, t is calculated as 

µvb't = P21 kt + P22V 
Ft, 
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which leads to the following formulation of the vector uFt: 

VFt = P22µvFt -P22P21kt 

The state vector and the vector of shadow prices can now be written, respectively, as: 

57 

Yt ==0 t VFt -pa ý'21 pi (1.44) 
2 22 µvF 

and 

µvFt =[ P21 P22 ] 

V Ft 

The optimal leader decision rule in equation (1.35) is thus computed as: 

VLt - -f0 - Fo L-P 
I1P21 

D1 
ýt (1.45) 

22 22 PvF t 

0 

Finally, both equations (1.44) and (1.45) can be embodied in the dynamic constraint (1.43) 

to write the state vector under control and optimal feedback rule of the follower respectively 

as: 

F Kt+i 
=I0 (A - BFo) I0 Kt 

%Iv,: t+l 
P21 P22 

-P22 
p21 P22 

[vEt 

VFt =[ -P22 
P21 P- Kt 

µvpt 

1.5 Conclusion 

This paper addresses the issue of measuring policy rules when the economy is represented 

by a VAR model. I describe a new partial-identification approach which has the advan- 

tage, over the existing methodologies, of leaving the dynamic structure of the state vector 

equations in the semi-structural VAR model entirely unrestricted, since it conditions the dy- 

namic of the state variables to both current and lagged values of the control vector, rather 



1.5 Conclusion 58 

than the lagged values alone as under the standard approach. The problem with the standard 

identification approach is well summarised by Stock and Watson in their 2001 review paper 

on VAR models: "... the timing conventions in VARs do not necessarily reflect real-time 

data availability, and this undercuts the common method of identifying restrictions based 

on timing assumptions. For example, a common assumption made in structural VARs is 

that variables like output and inflation are sticky and do not respond "within the period" to 

monetary policy shocks. This seems plausible over the period of a single day, but becomes 

less plausible over a month or quarter... " [Stock, and Watson, (2001), pp. 112]. 

In this respect, I believe, the new identification approach represents an improvement 

over the existing methodologies. The approach can be implemented for the computation 

of optimal policy rules within conventional output-inflation-interest rate VAR models used 

for monetary policy analysis to evaluate to what extent the choice of the identification ap- 

proach affects the response coefficients in the interest rate under the optimal rule and the 

welfare measurements. A similar analysis can then be extended to the evaluation of opti- 

mal fiscal rules. Furthermore, the PVAR approach is preferable to the standard one when 

the state vector equations includes financial market variables such as stock market prices 

or term structure which are bound to react immediately to policy changes. In this respect, 

the PVAR identification approach can be used for assessing optimal macroeconomic pol- 

icy rules within macro-finance VAR models of the economy. Finally, as already argued in 

section 4, there is a growing interest in the macroeconomic literature on the simultaneous 

assessment of optimal monetary and fiscal policy. This literature points out that optimal 

policy and welfare measures depends upon the type of interactions between monetary and 
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fiscal authorities. So far, and to the best of my knowledge, a preliminary assessment of 

these finding has been carried out by using stylised - backward looking - models of the 

economy. I describe how VAR models can be employed to compute optimal policy rules 

under multiple policy makers competing over the control of the economy. This provides 

an alternative framework against which one can compare the traditional findings of the 

literature on the interactions between monetary and fiscal authorities. The empirical imple- 

mentation of this framework is part of my future research agenda. 



Chapter 2 
Assessing optimal monetary policy through 

VAR models 

Abstract 

This paper assesses both theoretically and empirically a new approach - PVAR method 

- to formulate optimal policy based on a quadratic intertemporal welfare function where the 

dynamic constraint of the economy is derived from a VAR model. The paper argues that 

the VAR under control should not be derived simply by replacing the VAR equation for 

the policy instruments by an optimal control rule because this alters the stochastic structure 

of the state vector equations, and gives a state space representation of the dynamic con- 

straint in which state variables can only respond to lagged values of the control. Instead, 

one should first transform the VAR in order to condition the non-policy variables on the 

policy instruments, then use the resulting sub-system as the dynamic constraint, and finally 

construct the VAR under control by combining this sub-system with the resulting optimal 

policy rule. In this way the original stochastic structure of the state vector equations of the 

VAR is retained. In addition, under the PVAR approach the state variables in the dynamic 

constraint are conditioned upon both current and lagged values of the control, hence giv- 

ing a representation of the macroeconomic framework more suitable for policy analysis. In 

comparing the two approaches, the paper explains the theoretical advantages of the PVAR 

over the standard method and applies both methods by examining the formulation of opti- 

mal monetary policy rules using US data for the period 1960-2003. The empirical findings 

60 
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show that feedback rules predicted under the PVAR approach are smoother than those cal- 

culated under the standard approach and welfare losses are considerably overstated by the 

standard approach, regardless of the specification of the objective function. We suggest 

that since the whole process is easily automated, the PVAR method may provide a useful 

benchmark for use in real time against which to compare other, probably far more labour 

intensive, policy choices. 

2.1 Introduction 

This paper studies optimal monetary policy rules obtained from the maximisation of an in- 

tertemporal quadratic objective function based on a trade-off between inflation and output 

subject to a dynamic constraint that is derived from a vector autoregressive (VAR) model 

of the economy. The choice of a quadratic objective function in inflation and output (or 

the output gap) reflects common practice in the control and inflation targeting literatures, 

for example, Rudebusch and Svensson (1999) and Sack (2000). A more formal justifi- 

cation was provided by Rotemberg and Woodford (1998) - see also Woodford (2003) - 

who showed that such a quadratic function can be derived as an approximation to a micro 

founded macro model with standard preferences in terms of consumption. 

As far as the choice of the intertemporal constraint relating targeted variables to pol- 

icy instruments is concerned, pioneering works of Kydland and Prescott (1977), Barro and 

Gordon (1983) and Rogoff (1985) studied optimal monetary policy within rational expec- 

tations models of output and inflation. In contrast, Rudebusch and Svensson (1999) used 

a dynamic constraint obtained from an entirely backward looking model of output and in- 
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flation. Clarida, Gali and Gertler (1999) and Rotemberg and Woodford (1998) looked at 

monetary policy from the perspective of New Keynesian models, thus assessing optimal 

rules by using a dynamic constraint with forward looking components in both the aggre- 

gate demand and supply equations. Optimal policy will clearly be affected by this choice. 

A more agnostic approach, that seeks to avoid imposing a constraint not supported by the 

data, is to use instead a data-based VAR. Since it is a theory free model, the assessment of 

policy rules from a VAR model is not biased by the choice of the structural model of the 

economy employed by the decision maker. However, using VAR models to study optimal 

monetary policy presents two major issues. The first is related to the fact that a change of 

policy rule alters the VAR model. As a result, there must be a concern that any VAR is 

vulnerable to structural change. In principle, therefore, the Lucas Critique applies here. In 

practice, however, like Rudebusch (2002), we find that structural change to a VAR as a re- 

suit of changing policy appears not to be much in evidence. Without wishing to claim that 

basing policy on VAR is a first-best approach compared with using a correctly-specified 

structural model, given the difficulty of agreeing on what that structural model should be, 

using a VAR may still provide a helpful benchmark against which to compare a first-best 

policy and any other policies such as one based on a Taylor rule or a policy of discretion. 

The second issue arising when assessing optimal policy rules from VAR models is 

that in a VAR all variables are endogenous, whereas computation of an optimal policy rule 

requires a dynamic constraint in which state variables are conditioned upon exogenous pol- 

icy instruments. For this reason an identification technique is required to extract from the 

VAR a state space representation of the economy in which state variables are conditioned 
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on the exogenous vector of policy instruments. The standard identification approach re- 

suits in a dynamic constraint in which policy actions can only have a delayed effect on the 

state vector. Sack (2000) shows how this may be accomplished using a VAR in which the 

disturbances in the equations for the non-policy and policy variables are assumed to be un- 

correlated. Martin and Salmon (1999) also use a VAR but with a different set of identifying 

restrictions from Sack. Having obtained the optimal policy rule, forecasts of the non-policy 

variables are derived from the VAR under control by replacing the original VAR equations 

for the policy instruments by the optimal policy rule. We refer to this methodology as the 

standard approach. Stock and Watson (2001) have made a related suggestion, namely to 

replace the interest rate equation in a VAR with a Taylor rule. This has the added drawback 

that the Taylor rule may not be an optimal choice. 

Rather than make any assumptions about the correlation structure of the disturbances 

in the state vector equations of the VAR, we estimate the VAR unrestrictedly and then 

derive the dynamic constraint relating the non-policy variables to the policy instruments 

by transforming the VAR so that the non-policy variables are conditioned on the policy 

instruments. Having derived the optimal policy rule, we construct the VAR under control 

by combining the sub-system of equations for the non-policy variables that make up the 

dynamic constraint with the optimal rule. We refer to this approach as the policy VAR 

(PVAR) method. 

The paper examines in detail the theoretical and empirical implications for optimal 

monetary policy of the PVAR approach and compares its outcomes with those arising from 

the standard methodology. From a theoretical perspective, the paper demonstrates that the 
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choice of the identification approach has profound effects on both the dynamic structure of 

the policy rule and the magnitude of its response coefficients. Under the standard approach 

substitution of the optimal policy rule into the economy constraint minimises the volatility 

of the deterministic part of the state vector equation alone. The paper proves that under the 

PVAR approach the same operation minimises the volatility of the stochastic component of 

the state vector, as well as its deterministic part. 

Empirical comparison of the PVAR and the standard approach is carried out by as- 

sessing optimal interest rate rules under alternative specifications of the objective function 

using US data for the period 1960-2003. The results show that optimal policy rules pre- 

dicted under the PVAR approach deliver smoother feedback rates than those predicted un- 

der the standard approach. In line with Rudebush (2001), this finding corroborates the view 

that a plausible explanation of the gap between the response coefficients of the optimal and 

the VAR interest rate rule lies in the misspecification of the forecasting model employed 

by the policy maker, rather than in the uncertainty surrounding the precise values of the 

model's parameters. " Moreover, welfare losses computed under the PVAR approach are 

lower than those calculated under the standard approach, regardless of the specification of 

the objective function. This outcome occurs because, after substitution of the optimal rule 

into the dynamic constraint, output and inflation forecasts obtained from the PVAR ap- 

proach are systematically smoother and faster converging toward their targets than under 

the standard approach. 

For a survey on the effects of uncertainty on optimal policy rules, see Sack and Wieland (2000). 
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The discussion is articulated in five sections following this introduction. The next 

section describes the PVAR approach and compares it with the standard methodology. Sec- 

tion 3 shows how dynamic programming is used under the two methodologies to compute 

optimal policy rules. Section 4 describes the data and the empirical specification of the 

dynamic optimisation problem under both approaches. Section 5 comments on the main 

empirical findings and Section 6 concludes. State space representations of the dynamic 

constraint under the PVAR and the standard approach, as well as all tables and figures are 

reported in appendices at the end of the paper. 

2.2 Formulating the dynamic constraint from a VAR 

VAR models have been widely employed for the assessment of optimal macroeconomic 

policy rules (Sack (2000), Martin and Salmon (1999) Monti (2003)). This is accomplished 

in several steps. The first step consists in specifying and estimating a reduced form VAR 

model including state variables targeted by the policy maker and control variables, which 

represent the instruments used by the policy maker in the conduct of policy. The state vector 

may also include other variables which are not directly targeted by the policy maker, but 

may be involved in the transmission mechanism from the policy instruments to the policy 

targets. 

The second step consists in the identification of the dynamic constraint of the econ- 

omy from the reduced form VAR. For the purpose of computing and evaluating optimal 

policy rules, this second task is accomplished by imposing a block Cholesky decomposition 

between the disturbances of the state and control variables. The resulting semi-structural 
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VAR gives a sufficient state space representation of the dynamic of the economy for the 

computation of optimal policy rules. In particular, the traditional identification approach is 

based upon the assumption that policy actions have no immediate effect on state variables. 

Consequently, the dynamic constraint of the economy coincides with the VAR equations 

for the non-policy variables. This constraint is combined with a welfare function of the pol- 

icy maker - commonly chosen to be a quadratic function of the targets around their desired 

values - in order to compute optimal policy rules. If optimisation is carried out through dy- 

namic programming, then the optimal policy rule relates the instruments to the current and 

lagged values of the non-policy variables, as well as lagged values of the control vector. 

Welfare analysis is carried out by replacing the original VAR equations for the policy in- 

struments with the optimal policy rule to form a new VAR in the state variables, the VAR 

under control. The main drawback of this methodology is that it is only valid if, in the 

reduced form VAR, the disturbances of the non-policy and policy variables are uncorre- 

lated. In addition, Stock and Watson (2001) argue that the standard identification approach 

is of limited use in macroeconomic policy analysis as it implausibly imposes a delay in the 

response of output and prices to changes in policy. 

In response to these criticisms, an alternative identification approach, hereafter PVAR 

approach, based upon an identification methodology which is valid when the disturbances 

of the non-policy and policy variables are correlated in the reduced form VAR. The PVAR 

approach yields a semi-structural VAR model in which changes in the state variables are 

related to current and lagged values of the control vector, as well as lags of the state vector. 

Therefore, the PVAR approach has the advantage, over the existing methodology, of not 
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imposing any timing restriction in the state space representation of the dynamic constraint 

of the economy. Under the PVAR method, we estimate the VAR unrestrictedly and then 

derive the dynamic constraint relating the non-policy variables to the policy instruments by 

transforming the VAR so that the non-policy variables are conditioned on the current values 

of the policy instruments. Having derived the optimal policy rule, the VAR under control 

is constructed by combining the sub-system of equations for the non-policy variables that 

make up the dynamic constraint with the optimal rule. 

To illustrate analytically the PVAR approach, consider a generic reduced form VAR 

(p) model: 

zt =a+A (L) zt + et, 

where zt is aqx1 vector of endogenous variables, a is a vector of constant terms, L is the 
P 

lag operator, A (L) _ AiL', with Ai indicating aqxq matrix of lag i coefficients, et 
Z=i 

is a vector of stochastic disturbances such that E [et] =0 and E [etet] = E. To order state 

variables before control variables, the vector zt is partitioned as zt =[ zit z'2 t 
], where 

zi, t is asx1 vector of states and z2, t is acx1 vector of controls. The reduced form VAR 

can be partitioned accordingly as 

Z1, t = 
a1o + 

All (L) A12 (L) Z1, i + eft (2.46) [z2, 
tj ago A21 (L) A22 (L) Z2, t e2t ' 

Ppp 

where All (L) _ A11iLZ, A12 (L) = A12iLZ, A21 (L) _ A21iLi, A22 (L) _ 
i=1 i=1 i=1 

P 

A22iLi, whereas eit and e2t are vectors of reduced form disturbances corresponding to 

Z-ý 
state and control variables respectively. The covariance matrix of the disturbances is also 
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partitioned as: 

Eis E12 
E21 EJ22 

where Ell is the sxs covariance matrix of the disturbances of the state vector, E22 is the 

cxc covariance matrix of the disturbances of the control vector, and E12 is cxs the matrix 

collecting the covariances between the disturbances of state and control vectors. 12 

Bernanke and Blinder (1992), whose purpose was to identify the shocks rather than 

perform optimal control analysis, started with a structural VAR: 

Bzt =a+A (L) zt + ut, 

where the disturbances ut of the policy and non-policy instruments are assumed to 

be uncorrelated. They then consider two possible identification schemes to separate state 

and control variables: partitioning B, they set either B12 or B21 equal to zero. If the 

variables in zt are ordered non-policy and policy as before then this implies, respectively, 

that either the policy variables affect the non-policy variables with a lag or vice-versa. 

They then impose further restrictions on either B12 or B21 to compute impulse response 

functions. Bernanke and Mihov (1998) argue in favour of the restriction B12 = 0. They 

also point out that this restriction may not be suitable if the data period is so long that 

the non-policy variables have time to react to the policy instruments within the period of 

observation. The restrictions imposed by Sack, Bernanke and Blinder, and Bernanke and 

Mihov are sometimes known as partial identification of a VAR, or using a semi-structural 

VAR. Martin and Salmon (1999), who also consider optimal policy with a VAR, argue that 

12 Since E is symmetric, note that 1112 = Eil. 
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identifying a VAR through the sort of recursive restrictions used by Sack is unsatisfactory. 

Instead they use selective contemporaneous non-recursive restrictions to the disturbances. 

Under the PVAR method, a block Cholesky decomposition is applied to the parti- 

tioned vector et in order to make the reduced form disturbances in the state vector a linear 

function of the corresponding disturbances in the control vector, that is: 

el, t = Eit + Ge2, t, 

where Elt is the component of el, t which is uncorrelated with e2, t. Therefore, the vector e, t 

has the following state space representation: 

el, t IG¬ 
et- e2, t 0I e2, t 

The covariance matrix J can be used to construct the matrix G as follows: 

G= E12E22 1 
(2.47) 

which in turn gives the transformation matrix: 

H 1- 
01 

LI 

The matrix H-1 can be employed to map the original system onto a new one in which 

the disturbances associated with the state variables are uncorrelated with the disturbances 

associated with the controls: 

H-lzt = H-ia + H-IA (L) Zt-i + H-let, 
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which in turn yields the following system of linear equations: 

Zi, t - GZ2, t = [alo - Ga20] + [A11 (L) - GA21 (L)] Zi, t-i + 

+ [A12 (L) - GA22 (L)] Z2, t-i + el, t - Ge2, t 

Since el, t - Ge2, t 

to 

Z2, t = a20 + A21 (L) zi, t-i + A22 (L) z2, t-1 + e2, t. 
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Eit - and e2, t and it are uncorrelated - the above system is equivalent 

zl, t = a10 + All (L) zi, t-i + A12 (L) z2, t-1 + Eit 

-G [a20 + A21 (L) zi, t-i - Z2, t + A22 (L) z2, t-1] 

Z2, t = a20 + A21 (L) zi, t-i + A22 (L) z2, t-1 + e2, t, 

(2.48) 

(2.49) 

with Z2, t uncorrelated with elt. Hence, under the PVAR approach the state vector zl, t is 

conditioned on the exogenous control vector Z2, t. As a result, equation (2.48) can be used 

in isolation from the rest of the system to represent the law of motion of the state vector. 

Equation (2.49) can be replaced by any other policy rule and combined with equation (2.48) 

to form a complete new model of the economy under control. If the policy rule takes the 

general form: 

Azlt + z2t = ago + A*, (L)zi, t-i + A22(L)z2t-i + e* 2 20 

then the complete model of the economy is given by: 

I -G 
11 zlt alo +I -G All (L) A12(L) zi, t-i fit 

AI Z2t ago 01 A21(L) A22 (L) z2, t-1 e2t 
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The above model can be written as the VAR system: 

Zit I -G a10 + 
Z2t AI a20 

+I -G -i I -G [A11(L) A12(L) 

iL 
Zl, t-1 AI0I A21(L) A22 (L) Z2, i-1 

+I -G -ý Eßt 
AI eät 
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The standard approach is as a special case of the PVAR approach, obtained by setting 

G=0 in equation (2.48). This is because G= E12E22 and the standard identification 

assumes that J12 = 0. Thus, the two identification approaches lead to quite different state 

space representation of the dynamic constraint. Under the PVAR approach the response 

of the state vector to a current change in the policy instrument is embodied in the matrix 

G, while the coefficients of the vector z2t_1 are treated as part of the state vector. Under 

the standard approach, the state space representation of the structural model ultimately 

coincides with the state equations of the reduced form VAR. 13 

It is important to assess the implications of the two approaches for the stochastic 

properties of the VAR. This is because the stochastic properties of the state vector after 

substitution of any policy rule, either optimal or sub-optimal, are crucially different under 

the two identification approaches. The expected value of zi, t from equation (2.48) is given 

by: 

E [Zi, t] = aio + All (L) Zi, t-i + A12 (L) Z2, t-1, 

I' A detailed description of the two state space representations is provided in appendix A. 
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because the term in square brackets in equation (2.48) is equal to e2t, which has zero ex- 

pected value by definition. Since E [zl, t] is equal to the deterministic part of the state vector, 

the same expected value for zl, t is obtained from the stochastic dynamic equation derived 

under the standard approach and the original VAR. Therefore, the PVAR transformation 

does not alter the stochastic properties of the state vector. However, when the vector z2, t_1 

is replaced with another policy rule, the expected values of zl, t obtained from equations 

(2.48) depends upon the value of G. Under the PVAR approach, the forecast error of the 

new system under control, obtained after substitution of a policy rule in equation (2.48), 

is given by Elt since the expected value of the term in square brackets is nonzero under 

control. In contrast, when the matrix G is forced to be equal to zero, as under the stan- 

dard approach, the substitution of the same policy rule in equation (2.48) implies that the 

forecast error is given by elt. Therefore, substitution of the optimal rule into the dynamic 

constraint computed under the standard approach reduces the volatility of the deterministic 

part of the state vector, leaving unaffected the volatility of the stochastic term. In contrast, 

under the PVAR approach, substitution of the optimal rule into the dynamic constraint has 

the effect of reducing the volatility of both the deterministic and the stochastic component 

of the state vector. 

2.3 Optimal policy with a VAR 

The optimal control of a time-separable inter-temporal quadratic objective function con- 

strained by a stochastic linear dynamic system is well known. The solution may be ob- 

tained either by using the method of dynamic programming or the method of Lagrange 



2.3 Optimal policy with a VAR 73 

multipliers; both techniques lead to the same solution. 14 When dynamic programming is 

used the problem is commonly referred to as linear quadratic dynamic programming. We 

wish to compare the optimal solution based on the PVAR method with that based on the 

standard method using a VAR. We therefore derive the solutions for the policy variables Z2t 

for the case where the dynamic constraint determining the non-policy variables zlt is the 

conditional VAR in equation (2.48), and for the case where the equations for zit are those 

in the reduced form VAR, equation (2.46). 

In general, the quadratic loss function of the policy maker can be written as: 
00 

Lt = Et E ßS [(Yt+3-Y)' W (Yt+s-Y)] 
, (2.50) 

s=o 

where Et denotes mathematical expectations conditioned on time t information, yt+3 

I zit+s """ zit+s-p z2t+s """ Z2t+s-p ]', zl is a vector of endogenous variables, z2 is 

a vector of policy instruments, y is a target vector and W is a symmetric positive semidef- 

finite matrix of policy weights. " 

The value function V (yt), i. e. the minimum value at time t of the welfare loss under 

the infinite sequence of controls {z2t+s}s0 
o, is given by: 

00 

V (Yt) = min Et > ßt [(Yt+s-Y)'W (Yt+s-Y)] 
{z2t+s 

s-o s=0 

Since L is a quadratic form in yt+s-y, the general structure of the value function can 

be guessed to be a linear combination of a quadratic, a linear and a constant term and 

represented as: 

' An accurate comparison of the use of dynamic programming and Lagrange multipliers tecniques for the 

assessment of optimal policy rules can be found in Chow (1976). 

15 The vector yt can include current and lagged values of both state and instrument variables. The rep- 
resentation of equation (2.50) is sufficiently general to eventually include first differences of the objective 
function's arguments by imposing ad hoc identities in the off-diagonal elements of the matrix W. 
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V (Yt) = yPyt - 2Ytp + d, (2.51) 

where P is a positive semidefinite symmetric matrix of coefficients having the same order 

of W, whereas p and d are vectors of coefficients compatible with yt. The Bellman (1957) 

principle can then be applied to write the value function in the recursive form 

V (Yt) = min (Yt-Y)ý W (Yt-Y) + fEt [V (Yt+i)] (2.52) 
{z2t+s}s=o 

and substitution of the expression in (2.51) into the value function of equation (2.52) gives 

the following recursive Bellman (1957) equation: 

ytPyt - 2ytp +d= min {z2t+s}3.0 

2.3.1 Standard approach 

(2.53) 

The dynamic constraint in the standard approach is based on the sub-system of equations 

for zlt in the original VAR, equation (2.46). In state-space (companion) form it can be 

re-written as: 

Yt+i =c+ Cyt + Dz2t + Vt+i, (2.54) 

where vt+l = et+l and Et [vt+iz2t] = 0. Maximising the value function (2.53) 

subject to (2.54) gives the optimal rule, see Sack(2000) and Ljungqvist and Sargent (2004). 

(Yt-Y)'W (Yt-Y) + fEt [Yt+1PYt+l - 2Yi+lP + d] . 

The optimal solution is given by: 
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Z2t =f+ FYt, (2.55) 

f=- (D'PD) -1 D' (Pc 
- p) , 

1 
F=- (D'PD) D'PC. 

where P is calculated from the stable solution to the recursive algebraic matrix Riccati 

equation: 

Pt+1= W+ßC'PtC-ßC'PtD (D'D)' D'PtC, 

while the vector p is computed from: 

r1 -1 
P= LI -ß 

(C + DP)'] 
ýWy 

-Q 
(C + DF) Pc] . 

16 

Hence, in the standard method, equation (2.55), the policy instrument responds con- 

temporaneously to yt. The matrix Riccati equation is non-linear but satisfies a fixed-point 

theorem, the solution for P must be therefore be obtained through numerical iteration. 

Substituting (2.55) into (2.54) gives the state-space representation 

Yt+i =q+ QYt + vt+i, (2.56) 

where q=c+ Df and Q=C+ DE. Equations (2.56) represents the VAR under control, 

which gives the behaviour of the state vector on the implicit assumption that the policy 

instruments have always been generated by the above policy rule, and there has been no 

switch of policy. 

The expected loss under the standard approach may be evaluated as: 

16 See, for example, Ljungqvist and Sargent (2000), p. 1012-1014. 
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00 00 

Lt = 
1: 03 [(Etyt+3-Y)' W (Ety +s-Y)] +E QstrWrs, (2.57) 
s-o s-o 

where 

Fs = Et [(Yt+s-EtYt+3) (Yt+s-EtYt+s)i] J 

= (I+Q+... ß-Q3-l)S (I+Q+... +Qs-l )/ 

=Qf Q' + 

where I'0 -- 0 and Evtvt = Q. Thus I'3 is is the conditional covariance matrix of 

Yt+s given information at time t. Equation (2.57) shows that the expected welfare cost can 

be decomposed into two parts. The first term on the right hand side of equation (2.57) is the 

deterministic component of the welfare cost and measures the cost due to the unconditional 

expectation of the vector yt being different from the long run target. The second term is the 

stochastic component of the welfare cost, which depends upon the volatility of the vector 

yt+s. In particular, If, measures the volatility of the forecast error due to the presence of 

the disturbances eit+s, which cause deviations of yt+s from its expected path. 

2.3.2 PVAR method 

In the PVAR approach the dynamic constraint is based on equation (2.48). In state-space 

form it can be re-written as: 

yt+l =a+ Ayt + BZ2t+l + Ut+l (2.58) 

where ut+l = ct+l and Et [ut+lz2t+1] = 0. Maximisation of (2.53) subject to (2.58) 

gives the optimal rule: 
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Z2t =f+ FYt-1, (2.59) 

f= -(B'PB)-1B'(Pa-p), 

F=- (B'PB)-1 B'PA. " 

where P is the solution to the time-invariant Riccati equation: 

Pt+1= W+ßA'PtA-ß2A'PtB (B'PtB)-1 B'PtA 

and the vector p can be calculated from: 

p= ýI-, Q(A+BF)']-' [Wy-ß(A-+-BF)'Pa] 
. 

This solution differs from that of Chow (1976), pp. 156-160 and 176-178 due to the pres- 

ence of the discount factor. The loss function, equation (2.50), differs from Chow's which 

replaces ß8W by the more general W3. As for the previous case, the Riccati equation 

is highly nonlinear and it can only be solved numerically, for example, by setting initial 

values Pt-- 0 and iterating until convergence into the stable value Pt= Pt+i = P. 

The behaviour of the state vector under control is usually expressed in state-space 

form, which is obtained by substituting the optimal rule (2.59) into equation (2.58) to give: 

Yt+i =r+ RYt + ut+i, (2.60) 

where rt =a+ Bf and R=A+ BF. 

The loss function, equation (2.50), may be evaluated under control by re-writing it 

as: 
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00 00 
Lt =E [(Etyt+3-y)'W (Etyt+3-Y)] + ß8trWI's, 

8=0 s=0 
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where I's now measures the volatility of the forecast error due to the presence of random 

disturbances Et+s which cause deviations of yt+s from its expected path. I's may be ob- 

tained from equation (1). Denoting Eutut =1 then, as ut+s has a constant variance, 

I'3 = Et (Yt+3-EtYt+s) (Yt+s-EtYt+s)/] J 

_ (I+R+... +Rs-1)Q (I+R+... +Rs-1) ' 

= Rr3-, R' +c 

where I'o = 0. 

To summarise, if the original VAR disturbances are correlated, then the PVAR method 

should be followed instead of the standard approach which assumes that they are uncorre- 

lated, and hence that G=0. The PVAR approach has the further advantage of yielding 

a semi-strucural VAR in which state variables respond to current and lagged values of the 

control, rather than only lagged values of the control as in the standard methodology. In 

this respect, the PVAR approach does not impose any timing restriction on the dynamic of 

state and control variables in the state space representation of the economy. One could ar- 

gue that the drawback of the PVAR approach is that it yields optimal policy rules in which 

the control vector responds with a lag to changes in the state variables, equation (2.55), 

whereas the standard identification approach yields a policy rule in which the control vec- 

tor responds to current changes in the state variables, equation (2.59). However, this result 

is not related to the identification approach but rather to the technique adopted for the com- 
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putation of the optimal rule, i. e. dynamic programming. In fact, one could specify - under 

both identification approaches -a policy rule with a dynamic structure entirely unrestricted: 

Azlt + z2t = ago + Ali(L)zi, t-i + A22(C)zar-i, 

and then grid search through the parameters to maximise the objective function in equation 

(2.50). Within this optimisation framework, the optimal policy rule computed under the 

PVAR approach includes feedback to both current and lagged values of the state vector. 

2.4 Computing optimal monetary policy rules 

Inflation targeting policies carried out in western countries over the last 15 years consist 

in changing the monetary policy instruments, mainly the short term interest rate, in order 

to achieve either explicit or implicit medium term inflation targets. As a consequence, the 

literature on the computation of optimal monetary policy rules usually describes central 

banks' preferences through ad hoc discounted quadratic loss functions embodying con- 

trol over a linear weighted combination of inflation, output and changes in the short term 

interest rate, that is: 

00 

L= Et E ßt+s [\ (71t+s _ 7r)2 + )\yy +s + AorsOrst+sý (2.61) 

s-o 

where 7rt is the rate of inflation, yt is the output gap, rst is the nominal short-term interest 

rate controlled by the central bank, )=1 is the policy weight attached to inflation, while 

A. and Hors measure the policy weights attached to y and Ors relatively to inflation. The 
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term Orst, which measures the first-difference in the instrument rate, reflects the cost 

attached to changes in policy and it is referred to as interest rate smoothing term. 18 

The loss function is minimised with respect to the intertemporal sequence of inter- 

est rates {rst+s}s° o and a stochastic linear model representing the dynamic structure of the 

economy. Although the central bank targets only output and inflation, the optimal feedback 

rule has to embody responses to actions of any other decision maker that can contribute to 

the determination of output and inflation, either directly or indirectly. In macroeconomic 

analyses, the two main candidates are the fiscal authorities and the private sector. Fiscal 

authorities play a key role in smoothing the path of the nominal economy, mainly by set- 

ting the automatic stabilisers and, in principle, the response of the central bank to short-run 

fluctuations of real output and prices should be negatively correlated with the strength of 

the automatic stabilisers. " The private sector reacts to monetary policy actions by chang- 

ing short and long term spending decisions, as captured by the term structure of the interest 

rates. The transmission mechanism is completed by the link between the fiscal and the pri- 

vate sector, as reflected by the correlation between the budget deficit and the long-run real 

interest rate. 2° Therefore, the optimal feedback rule of an inflation targeting central bank 

has to include feedback not only to changes in output and inflation, but also to adjustments 

in government's spending and financing decisions and in the term structure of the interest 

rates. 

18 For a critical review of the optimal monetary policy literature, see Svensson (2003). 

19 For a detailed discussion, see Taylor (1995,2000). 

20 Canzoneri, Cumby and Diba (2002) discuss theoretical arguments in support of this transmission channel 

and provide empirical evidence of a positive and statistically significant effect of the budget surplus on the 

interest rate. 
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In light of this discussion, optimal monetary policy rules are computed by specifying 

a VAR model of the U. S. economy in which the endogenous vector zt includes: 

Rt Yt art rlt rst ], t yt yt yt 

where yt is the net liability-to-GDP ratio, is the government net expenditure-to-GDP 

ratio, y1 is the government revenue-to-GDP ratio, Rt is the effective interest rate on net 

government liabilities, yt is the output gap, 7rt is the rate of inflation, rlt is the nominal 

long-term interest rate and rst is the nominal short-term interest rate. 21 

Given the specification of the objective function in equation (2.61), the first seven 

variables in zt are non-policy variables, whereas the only policy instrument is rst. Note 

that yt and art are directly targeted by the central bank, whereas the other non-policy vari- 

ables contribute to the specification of the transmission mechanism. In fact, the first four 

variables in zt capture the response of the fiscal sector to monetary and non-monetary 

policy actions, while r1 addresses adjustments in the term structure of the interest rates 

following monetary policy actions. 

The empirical assessment employs annual data for the period 1960 to 2005, which 

are plotted in Figure 2.1.22 The VAR model is estimated by selecting a lag dimension of 2, 

as this is the minimum number of lags required to produce serially uncorrelated residuals 

in all equations of the system. To check the structural stability of the VAR I computed re- 

21 Specifically, b refers to the consolidated gross financial liabilities of the government sector net of short 
term financial assets, such as cash, bank deposits, loans to the private sector, etc.; rs refers to interest rates on 
the three-month deposits; and rl refers to the ten-year government bond yield. The measures of y, 

y, y and 
R are consistent with the government budget constraint and it is calculated as the rate of change in the GDP 
deflator. 

22 The OECD Economic Outlook is the source of all data except for the output gap series, taken from the 
Federal Reserve Bank of St. Louis' database. 
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cursive Chow tests, but with one marginal exception none were significant. I also examined 

recursive estimates of the VAR coefficients. These showed little variation beyond the ini- 

tial start-up observations, hence supporting Rudebusch's (2002) conclusion that a monetary 

policy VAR for the US does not display much evidence of the sort of structural instability 

predicted by the Lucas Critique. 

Following Rudebusch and Svensson (1999), optimal interest rate rules are computed 

under five alternative specifications of the objective function, obtained by varying the rela- 

tive weights Ay and AA,, and summarised in table 2.1. The first objective function sets the 

benchmark case, which assumes output having the same weight of inflation and the interest 

rate smoothing term having a weight of 0.5. Objective functions 2 and 3 look at the con- 

sequences of having a policy weight attached to output which is 5 times respectively lower 

or higher than that of inflation. Specifications 4 and 5 consider the effect of varying the 

policy weight attached to Ors, by setting A, = AY= 1 and AA,, either equal to one or to 

one-tenth of A, r. 

Optimal policy rules are assessed under both the PVAR and the standard approach, 

and the state space representations of the dynamic constraint under the two identification 

approaches are reported in appendix A. Finally, the target vector y is assumed to correspond 

with the expected value of the variables included in y, measured from the average sample 

value of the state vector. Therefore, the computation of the welfare cost function in this 

paper takes only into account the stochastic component of equation (?? ). 
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2.5 Empirical results 

The purpose of the empirical analysis is threefold. First, the predicted volatility of policy 

instruments is assessed under the PVAR and standard approach for alternative specifications 

of the objective function. Next, the performances of policy rules computed from both 

approaches are evaluated by comparing their implied welfare costs. Finally, sensitiveness 

analysis is carried out to appraise the impact of alternative choices of policy weights on 

the results, by examining the welfare effects of gradually switching the policy focus from 

inflation to output stabilisation. All results are reported in appendix B. 

Figure 2.2 plots optimal interest rates computed from both the PVAR and the stan- 

dard approach under the five specifications of the objective function described in table 2.1. 

Each panel in the figure includes the optimal policy instrument computed under both ap- 

proaches for a specific set of policy weights, as well as the interest rate predicted from the 

reaction function estimated in the original VAR model. For all specifications of the ob- 

jective function, the optimal policy instrument computed under the standard approach is 

closer to the VAR interest rate than that computed under the PVAR approach. In the latter 

case, evidence of a much larger gap is observed in the first half of the 1960s and from the 

second half of the 1970s to the first half of the 1980s. In addition, feedback rules computed 

from the PVAR approach seem to deliver smoother interest rates than those measured from 

the standard approach. 

Table 2.2 presents summary statistics of the series in figure 2.2, namely the standard 

deviation (SD) of each interest rate and the average absolute distance (AAD) of each op- 

timal rate from the VAR interest rate. The former statistics measure the overall volatility 
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of the policy instrument under a specific feedback rule, whereas the latter compute the dif- 

ference between the optimal and the VAR reaction functions. The statistics are calculated 

over the whole sample period (1960-2006), as well as the first (1960-1983) and second half 

(1984-2006). Two main patterns emerge from the table. First, the PVAR approach tends to 

deliver policy rules less reactive to changes in the state variables than predicted by the stan- 

dard approach. Standard deviations of optimal rates predicted from the PVAR approach 

are consistently smaller than those predicted from the standard approach under all specifi- 

cations of the objective function. 23 Second, the statistics confirm that optimal interest rate 

rules measured under the standard approach are closer to the VAR reaction function than 

those derived from the PVAR approach. The AADs for the whole sample and the first-half 

sub-sample are lower when calculated from the PVAR than the standard approach under all 

specifications of the objective function. This pattern is reversed during the second half of 

the sample when the AADs of rules computed from the PVAR approach are lower than the 

corresponding statistics from the standard approach. However, comparison of the average 

AADs for the five objective functions shows that the statistic is fairly stable between the 

two sub-samples under the standard approach, while the reversion of the pattern in the sec- 

and half of the sample is caused by the reduction of the AAD under the PVAR approach in 

that period. 

Figure 2.3 plots 20-periods ahead forecasts of output and inflation calculated after 

substitution of each optimal rule into the corresponding dynamic constraint. Panel 3. a 

includes forecasts for rules computed under objective functions 1,2 and 3, whereas panel 

23 The only exception is for optimal policy rates computed under objective function 3 in the second half of 
the sample, which display similar volatility under both approaches. 



2.5 Empirical results 85 

3. b displays forecasts obtained under objective functions 4 and 5. Each panel also includes 

output and inflation forecasts obtained from the original VAR and the policy targets. The 

figure shows that output and inflation stabilisation occurs more rapidly under the PVAR 

than the standard approach. Output forecasts under the PVAR approach are smoother and 

converge faster towards the target, while under the standard approach they have in the 

first quarter of the forecasting horizon a hump-shape for all specifications of the objective 

function. Inflation forecasts also appear to be less volatile when computed from the PVAR 

approach. As for the case of output, inflation forecasts under the standard approach are 

particularly volatile during the first 5 periods, before converging towards the target at a 

smoother pace. 

The above predictions, together with those of the interest rate smoothing term, are 

employed to measure welfare losses as in equation (2.61) for the five specifications of the 

objective function. Tables 2.3 and 2.4 report the calculated total welfare costs, as well as 

- to appraise the contribution of each component of the welfare function - standard devi- 

ations of forecasts of y, it and Ars. Each table also displays standard deviations of the 

forecasts of the three policy variables obtained from the original VAR model, and both un- 

weighted and weighted welfare costs measured under the PVAR and the standard approach. 

In particular, table 2.3 shows welfare costs computed by using undiscounted forecasts, i. e. 

,Q=1, whereas table 2.4 repeats the analysis by using /3 = 1/ (1 - p), where p is equal 

to the corresponding sample average of 5.42 per cent. As observed for figure 3, output and 

inflation forecasts obtained from the PVAR approach are less volatile than the correspond- 

ing predictions from the standard approach. Under the PVAR approach output volatility is 
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reduced, on average, by about 50 per cent and inflation volatility by about 40 per cent. Un- 

der the standard approach the average reduction in output and inflation volatility is of about 

20 and 10 per cent, respectively. Consequently, the overall loss under the PVAR approach 

is lower than that calculated under the standard approach, for all specifications of the ob- 

jective function. Discounting has the effect of smoothing the expected standard deviations 

over the horizon period, leaving unchanged the relative differences between the outcomes 

of the two identification techniques and the alternative specifications of the objective func- 

tion. 

The final part of the empirical assessment looked at the sensitiveness of welfare mea- 

surement to alternative policy actions. In particular, the sensitiveness analysis is carried 

out by solving the dynamic optimisation problem and computing the welfare cost itera- 

tively 990 times, for A ranging from 0.1 to 10. Since )= 1/)y, any increase in the 

policy weight attached to the standard deviation of output corresponds to a proportional 

decrease in the policy weight attached to the standard deviation of inflation. The first step 

of the iteration, Ay = 0.1 and A, = 10, approximates a strict inflation targeting policy, 

whereas the last step, Ay = 10 and )=0.1, simulates a strict output targeting regime. 

Therefore, the key purpose of the analysis is to unfold the change in the welfare cost due 

to the gradual switch of the policy focus from inflation to output stabilisation. 

To evaluate the contribution of each component of the welfare cost function as the 

policy weight attached to output volatility relative to inflation volatility increases, figure 2.4 

plots changes in the standard deviation of y, 7 and Ors under the PVAR approach while 

Ay ranges from 0.1 to 10. The figure includes three panels as the computation is carried 
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out by fixing AA,, respectively at 0.1,0.5 and 1. At the beginning of the iteration marginal 

increases of Ay augment the volatility of both y and 7, while reducing the volatility of Ors. 

These patterns, more evident in the panel corresponding to Ors = 1, quickly fade away 

and output volatility begins to decline, while Ors volatility starts to rise, as Ay increases. 

Inflation volatility decreases considerably in each panel up until Ay reaches 3.89,3.57 and 

4.44 - for Ars respectively equal to 0.1,0.5 and 1- before slowly rising until the end 

of the iteration. 24 Therefore, when Ay is low, increasing the weight attached to output 

relative to inflation reduces both output and inflation volatility. However, there is a critical 

combination of policy weights after which a further increase in Ay reduces the volatility of 

output at the cost of a higher volatility in inflation. 

Figure 2.5 repeats the previous analysis for the standard approach. At each level of 

RATS, output volatility monotonously decreases while Ay rises. Inflation volatility declines 

to reach minimum values when Ay is equal to 2.60 for Ars = 0.1, to 4.16 for RATS = 0.5 

and to 5.24 for AA, = 1.25 Similarly to inflation, the volatility of Ors decreases at the 

beginning of the iteration and begins to increase as soon as Ay reaches, respectively in each 

panel, 2.21,2.85 and 3.21 
. 
2' The declining pattern in output volatility is similar across 

the three panels, while the volatility of inflation is more heterogeneous, indicating that 

under the standard approach inflation stabilisation is more sensitive to the choice of AA,, 

than output stabilisation. Comparison of figures 2.4 and 2.5 clearly shows that both levels 

2' The volatility of inflation reaches the minimum values of respectively 0.46,0.41 and 0.39. The corre- 
sponding values of A, are respectively 0.26,0.28 and 0.23. 

25 The minimum value of inflation volatility at each of the three levels of Ate,.,, is 0.90,0.78 and 0.72. The 

corresponding A, 's are 0.38,0.24 and 0.19 respectively. 
26 The minimum standard deviation of the interest rate smoothing term, at each level of AA,.,., is 0.36,0.31 

and 0.29, reached at ) respectively equal 0.45,0.35 and 0.31. 
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and changes in the volatility of output, inflation and the interest rate smoothing term, with 

respect to Ay, are lower under the PVAR than the standard approach. 

Figure 2.6 plots the change in the total welfare loss for alternative choices of Ay 

under the PVAR and standard approach to appraise the sensitiveness of the total welfare 

cost to different values of the policy weights. The figure essentially confirms the evidence 

arising from the previous two graphs, since the total welfare loss computed under the PVAR 

approach is lower than that computed under the standard approach, at any combination 

of the policy weights. The figure shows that in general the total welfare cost declines 

during the first quarter of the iteration and increases afterwards. In the first quarter of 

the iteration, the patterns observed for the PVAR approach suggest that the reduction in 

output and inflation volatility dominates the increase in volatility coming from Ors. This 

pattern is reversed after the first quarter because the decrease in output volatility is more 

than compensated by the increase in the volatility of the other two variables. Under the 

standard approach the initial reduction in the total welfare loss is due to the simultaneous 

reduction in the volatility of all targeted variables during the first quarter of the iteration. 

This pattern is reversed afterwards because, as under the PVAR approach, the fall in output 

volatility is more than compensated by the increase in volatility of the other two variables. 

Figure 2.6 also shows that the total loss has a unique local minimum value which varies 

between the two identification approaches and considerably depends upon the choice of Ay 

and Hors. In particular, visual inspection suggests that the larger AA, the higher the value 

of Ay corresponding to the minimum welfare cost. 
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Table 2.5 presents summary statistics of the total welfare series plotted in figure 2.6. 

The table reports the minimum and the maximum values of the welfare cost, the corre- 

sponding policy weights, the average and the standard deviation of each series. Under the 

PVAR approach, the minimum value of the welfare cost decreases as AA, increases, rang- 

ing from 1.86 per cent when AA, = 0.1 to 1.58 per cent when AA, = 1. In general, the 

total welfare cost is fairly stable across different values of RATS, being on average about 

1.80 per cent with standard deviation of about 5.5 to 6 per cent. Also under the standard 

approach the minimum value of the welfare cost decreases as A rs increase, even though 

minimum values are higher than those computed for the PVAR approach, ranging from 

2.15 per cent when AA, = 0.1 to 1.75 per cent when AA, = 1. In addition, the average 

loss for the three values of AA,, is larger - about 2.20 per cent - and considerably more 

sensitive to variations in the policy weights - standard deviation of about 30 per cent - than 

that computed under the PVAR approach. 

Figure 2.7 plots the efficiency frontier for the feasible combinations of standard de- 

viations in output and inflation achievable by the optimal policy rules under the PVAR and 

the standard approach, while increasing Ay from 0.1 to 10 and for values of Hors equal to 

either 0.1 or 0.5 or 1. The shape of all efficiency frontiers plotted in the three panels ul- 

timately reflects the patterns outlined in figures 4 and 5 for output and inflation volatility. 

The span of the frontier is smaller under the PVAR than the standard approach, regard- 

less of the policy weight attached to the interest smoothing term. Each frontier shows that 

when the volatility of output is high, changes in the policy rules resulting from an increase 

in Ay have the effect of reducing inflation, as well as output, volatility. Output volatility 
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reaches a critical value, around 0.5 per cent under the PVAR approach and 0.8 per cent un- 

der the standard approach, after which any further increase in Ay requires inflation to be 

more volatile. 

Table 2.6 presents summary statistics of the efficiency frontiers plotted in figure 2.7, 

focusing, in particular, on the portions of the frontiers displaying the trade-off between 

output and inflation. The table shows that the length and the shape of the trade-off area 

varies considerably between the two identification approaches. Under the PVAR approach 

the trade-off area on the efficiency frontier covers almost 60 per cent of the iterations and 

it is considerably stable across the three values of Ars. On average, the trade-off begins 

when the policy weight attached to inflation volatility declines to about a quarter of that 

attached to output volatility. The net welfare gain (NWG) from increasing Ay, calculated 

as the difference between the welfare gain from the reduction in output volatility and the 

welfare cost from the increase in inflation volatility, is rather negligible, as it is almost 

zero when Hors = 0.1, and 0.01 or 0.02 per cent when Hors equals either 0.5 or 1. Under 

the standard approach, the length of the trade-off area on the efficiency frontier is more 

sensitive to the values AA, covering about either 75 or 60 or 50 per cent of the frontier 

when AA, is equal to respectively 0.1,0.5 and 1.27 Finally, the net welfare change is larger 

than that predicted under the PVAR approach and negative for all three values of AA,,. 

27 The trade-off starts when ) declines respectively to about 0.4,0.25 and 0.2. 
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This paper suggests a way of formulating optimal policy based on a VAR that avoids many 

of the problems found in the standard approach. For example, and perhaps the most impor- 

tant advantage, the PVAR method yields a dynamic structural representation of the econ- 

omy in which state variables are conditioned upon current and lagged values of the policy 

instruments rather than lagged values alone, as under the standard method. This state space 

representation is more suitable in macroeconomic policy analysis since output and prices 

respond within the periods of observation to a change in policy even when observed in a 

monthly basis. 

Since the whole process is easily automated, the PVAR method may provide a useful 

benchmark for use in real time against which to compare other, probably far more labour 

intensive, policy choices. Although basing optimal policy on a VAR has the merit of sim- 

plicity, it is not without its drawbacks. The paper shows that as a result of implementing 

optimal policy, the VAR under control is different from the original VAR. This is not nec- 

essarily a problem in itself, but it does draw attention to the fact that any previous changes 

of policy are likely to have caused structural change in the original VAR. This shows the 

vulnerability - at least in theory - of any VAR to structural change. The problem is further 

exacerbated because the VAR is just a particular time series representation of a structural 

model. If the parameters of the structural model alter as a result of policy changes, then 

we would expect the VAR coefficients to change too. In practice, like Rudebusch (2002), 

we find little evidence of structural change in the dynamics of a VAR suitable for analysing 

monetary policy for the US. 
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Another drawback of using a VAR is that it is not suitable for handling the effects 

on non-policy variables of anticipated policy changes. One cannot avoid using a structural 

rational expectations model if one wishes to analyse this problem. To avoid any misappre- 

hensions, therefore, we emphasise that in arguing the merits of adopting the PVAR method 

for formulating policy based on a VAR, we are not suggesting that using a VAR is neces- 

sarily preferable to using a well specified structural model. 

The PVAR method is compared empirically with the standard methodology by analysing 

monetary policy for the US since 1960 under different specifications of the welfare func- 

tion. The results suggest that the path of the interest rate obtained using the PVAR method 

would have been smoother than that obtained under the standard approach. This suggests 

that the excess of volatility typically found in studies on optimal US monetary policy un- 

der the standard approach (Sack (2000)) can be also imputed to the misspecification of the 

forecasting model employed by the policy maker, as well as the uncertainty surrounding 

the precise values of the model's parameters. 



Chapter 3 
Measuring the fiscal stance 

In this paper we propose an index of the fiscal stance suitable for practical use in 

short-term policy making. The index is based on a comparison of a target level of the 

debt-GDP ratio for a given finite horizon with a forecast of the debt-GDP ratio based on a 

VAR formed from the government budget constraint. This approach to measuring the fiscal 

stance is different from the literature on fiscal sustainability. We emphasise the importance 

of having a forward-looking measure of the fiscal stance for the immediate future rather 

than a test for fiscal sustainability that is backward-looking, or based just on past behav- 

four which may not be closely related to the current fiscal position. We also describe a 

bootstrapping methodology that can be easily implemented to attach confidence bands to 

the index in order to evaluate the statistical significance of the policy prescriptions arising 

from the empirical computation of the index. We use our methodology to construct a time 

series of the indices of the fiscal stances of the US, the UK and Germany over the last 25 or 

more years. We find that both the US and UK fiscal stances have deteriorated considerably 

since 2000 and Germany's has been steadily deteriorating since unification in 1989, and 

worsened again on joining EMU. Out-of-sample projections of the index also show that the 

fiscal stance is expected to improve in the United States and the United Kingdom, while 

further worsening in Germany. 
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Recent concerns in 2004 and 2005 about the fiscal stances of the US, France and Germany 

and of possible reforms to the EU's Stability and Growth Pact (largely due to the errant fis- 

cal positions of France and Germany) have renewed interest in the issue of how to measure 

the fiscal stance. In this paper we propose an index of the fiscal stance suitable for practi- 

cal use in short-term policy making. We take a very different approach from the literature 

on fiscal sustainability even though, like this literature, it is based on the government inter- 

temporal budget constraint. We emphasise the importance of having a forward-looking 

measure of the fiscal stance that focuses on the implications of the current fiscal stance 

for the immediate future. We argue against focusing on formal tests of the stationarity of 

debts and deficits as they are backward-looking and not necessarily a good guide to the 

current stance of fiscal policy. The index is based on a comparison of a target level of the 

debt-GDP ratio for a given finite horizon with a forecast of the debt-GDP ratio based on a 

VAR formed from the government budget constraint. By using a VAR forecasting model 

we avoid basing the index on a particular theoretical model of the economy, and the index 

is simple to compute and readily automated. We use our methodology to examine the fiscal 

stances of the US, the UK and Germany over the last 25 or more years. We find that both 

the US and UK fiscal stances have deteriorated considerably since 2000 and Germany's has 

been steadily deteriorating since unification in 1989 and worsened again on joining EMU. 

The index can also be employed to forecast the fiscal stance over the short run. Our result 

show that the fiscal stance is expected to improve in the US and the UK, but not in Ger- 

many. The emphasis on the fiscal stance, as opposed to fiscal sustainability, is a key feature 
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of this paper. Determining whether the current fiscal stance is sustainable has proved diffi- 

cult and controversial, and has limited applicability in evaluating fiscal policy in the short 

run. Typically, tests for fiscal sustainability focus on the dynamic properties of past debts 

and deficits and assume that these processes will continue into the infinite future with a 

view to establishing whether the present value of future primary surpluses are sufficient to 

meet current government debt obligations. There are obvious problems with this approach. 

First, a failure to satisfy a test for fiscal sustainability does not necessarily have any im- 

plications for the current fiscal stance. A government could argue that fiscal sustainability 

can be achieved by changing future fiscal policy so that sufficient surpluses would be gen- 

erated. Or, it may be that rejection of fiscal sustainability was due to past fiscal policy and 

that subsequent changes had removed the problem. In both cases, the time series properties 

of past debts and deficits would no longer be relevant for current policy. Second, a failure 

to satisfy a test for fiscal sustainability has little immediate relevance if financial markets 

are still willing to hold government debt, perhaps in the belief that governments will make 

the appropriate changes to fiscal policy in the future. Third, a test statistic is not a user- 

friendly way of representing fiscal policy. Something more transparent is required such as 

an index series that can capture changes in the fiscal stance over time. Fourth, in the re- 

lated literature on inter-temporal current account sustainability, the outcome of the test for 

sustainability depends on whether consumption is modelled correctly. We seek a measure 

of the fiscal stance based on the government constraint that is theory free. Although the 

outcome of tests for fiscal sustainability have not played much of a role in discussions on 

fiscal policy, a measure of the current fiscal stance would still be helpful. Such a measure 
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should be easy to represent and compute and not depend on a particular theoretical model 

of the economy. Governments need to know the likely consequences of their current fiscal 

stance for their debt obligations and the costs of borrowing and of servicing the debt. Mar- 

kets need to know the risks associated with the fiscal stance in order to price government 

debt. The Maastricht Treaty was an attempt to ensure that fiscal policy was set appropri- 

ately in the run-up to EMU so that the temptation to inflate away debts was avoided. Its 

successor, the Stability and Growth Pact, seeks to avoid fiscal spillovers from one country 

to another which might affect monetary policy or euro-debt obligations. It is increasingly 

recognised, however, that such fiscal rules are neither necessary nor sufficient. Whatever 

the fiscal framework, a crucial ingredient is an appropriate measure of the current fiscal 

stance. The index we propose is concerned with forecasting whether the debt-GDP ratio 

is likely to exceed or fall below a pre-specified target over a pre-specified time horizon. 

Given the time horizon and the target level of the debt-GDP ratio at the end of that horizon, 

the index is based on a comparison of the desired change in the debt-GDP ratio and a fore- 

cast of the present value of the current level of the debt-GDP ratio over the horizon derived 

from a simple VAR forecasting model of the economy. If the index exceeds unity then the 

current fiscal stance is said to be inconsistent with the debt objective over the horizon in 

the sense that debt is forecast to rise above target; if the index is less than unity then the fis- 

cal stance is said to be consistent with the debt objective. The choice of a VAR model is to 

avoid taking a particular view of the economy and to permit the method to be easily auto- 

mated. The VAR is based on a log-linear approximation to the government's inter-temporal 

budget constraint in order that interest rates, inflation and growth are allowed to be time 
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varying. This approach is in contrast to much of the literature on fiscal sustainability where 

interest rates, inflation and growth are held constant over the forecast horizon in order to 

eliminate the non-linearities that their time variation would introduce into the intertempo- 

ral budget constraint. The paper is set out as follows. In Section 2 we examine a number 

of different ways of writing the government budget constraint and establish our notation. 

In Section 3 we present an analysis of fiscal sustainability with a view to showing its lim- 

itations in providing a useful measure of the current fiscal stance. We provide an intuitive 

rationale for the various tests for fiscal sustainability that have been proposed in the litera- 

ture and discuss the technical problems in implementing these tests. We also comment on 

the implications of this analysis of fiscal sustainability for the debt and deficit limits of the 

EU's Stability and Growth Pact. In section 4 we describe how, by using a log-linear ap- 

proximation to the government budget constraint we can derive our proposed fiscal index 

and show how it can implemented using VAR analysis. In Section 5 we calculate the index 

for the US, the UK and Germany over the period from the 1970's to 2005. Section 6 shows 

further implications of the index for policy analysis. In particular, we describe a bootstrap- 

ping methodology that can be easily implemented to construct confidence bands for the 

index of the fiscal stance. We also suggest that projections of the index over the future pro- 

vide useful insights about the evolution and implication of fiscal policy in the medium run. 

Our findings are summarized in Section 7. 
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3.2 The government budget constraint 

We begin by considering the nominal government budget constraint (GBC), the sustainabil- 

ity of fiscal policy and the implications of various fiscal rules, such as the EU's Stability 

and Growth Pact. 28 The nominal GBC can be written 

Ptgt + (1 + Rt)Bt_1 = Bt + OMt + PtTt (3.62) 

where gt is real government expenditure including real transfers to households, Tt is total 

real taxes and Mt is the stock of outside nominal, non-interest bearing money in circulation 

that is supplied by the government (the central bank) at the start of period t, Bt is the 

nominal value of government bonds issued at the end of period t, Rt is the average interest 

rate on bonds issued at the end of period t-1 and RtBt_1 is total interest payments made 

in period t. 29 Thus the left-hand side of equation (3.62) is total nominal expenditures in 

period t and the right-hand side is total revenues plus additions to government current 

financial resources. 

The equivalent real GBC can be derived from the nominal GBC by dividing through 

the nominal GBC by the general price level Pt. This gives 

Pc-, Bt-, 
__ Tt 

Mt 
_ 

Pt-l Mt-l 
9t+(1+Rt) Pt Pt-i t+ Pt + pt Pt Pt- 

28 There is a substantial literature on these issues. Most of it goes back some way in time. See, for example, 
I lamilton and Flavin (1986), Trehan and Walsh (1988,1991), Kremers (1989), Wilcox (1989), Blanchard et 
al (1990), Bohn (1992,1995,1998,2005), Hakkio and Rush (1991), Buiter et al (1993), Ahmed and Rogers 
(1995) and Wickens and Uctum (2000). There is also a related literature on current account sustainabilit\. 
see Wickens and Uctum (1993). 

29 In practice governments issue bonds at a discount and redeem them at par. Thus if all bonds were for one 
period, then B, = P1'3B, ' where B(' is the number of bonds issued in period t each with price Ptß = l+Ht+l 
and B, _1 = (1 + R, )Bt, 

-1. 
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or 

9t+ (l+rt)bt-i =Tt+bt+mt- 11 Mt-i (3.63) 
+t 

where art =° Pl is the rate of inflation, bt is the real stock of government debt, mt is the 

real stock of money and rt is the real rate of interest defined by 

l+rt _ 
1+Rt 
1+7rt 

and implying that approximately rt ^- Rt - 7rt. 

The GBC can also be expressed in terms of proportions of nominal or real GDP by 

dividing through the nominal GBC by nominal GDP Ptyt, where yt is real GDP. We obtain 

9t 1+ Rt bt-, 7t bt Mt 1 ant-i 
-+ +-+- (3.64) 
yt (l+-Ft)(1+'Yt)yt-i Yt Yt Yt (1+7rt)(1+7t) Yt-i 

where ryt is the rate of growth of GDP and yl is the average tax rate. 

The total nominal government deficit (or public sector borrowing requirement, PSBR) 

is defined as 

PtDt = Ptgt + RtBt-i - PtTt - OMt 

hence D' 
, the real government deficit as a proportion of GDP is 

Dt 
_ 

9t + 
Rt bt-i 

_ 
Tt 

_ 
mt +1 'Mt-i 

Yt Yt (1 + 7t)(1 +'Yt) Yt-i Yt Yt (1 + 7t)(1 +'Yt) Yt-i 
bt 1 bt_1 

Yt (1+7t)(1+7t)yt-i 

The right-hand side shows the net borrowing required to fund the deficit expressed as a 

proportion of GDP. 
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We also define the nominal primary deficit Ptdt (the total deficit less debt interest 

payments) as 

Ptd _ PtDt - RtBt-, 

which implies that 

dt Dt Rt bt-, 

Yt yt (l+rt)(1+'Yt)yt-i 

Hence the ratio of the primary deficit to GDP is 

dt 
= 

9tTt'nt+ 1 mt-i 
Yt Yt Yt Yt (1 + 7rt)(1 + ryt) yt-i 

bt 1+ Rt bt-, 
(3.65) 

Yt (l+7rt)(1+%t)yt-1 

This is a non-linear difference equation in y If we define 

1+Rt 
l+ pt = (1+7t)(1+'Yt) 

where approximately, pt = Rt - 7rt - -yt = rt - -yt, the real interest rate adjusted for 

economic growth, then equation (3.65) can be written as 

It 
= (1 + Pt) 

bt-, 
+ 

dt 

Yt Yt-i Yt 
(3.66) 

This is the key equation for determining the sustainability of fiscal policy. We note that the 

evolution of " can also be written in terms of the total deficit since Yt 

bt 1 bt_1 Dt 
_+- (3.67) 

yt (1 + 7rt)(1 + "Yt) yt-i yt 

For positive inflation and growth this is a stable difference equation. 



3.3 Fiscal sustainability 101 

3.3 Fiscal sustainability 

Fiscal sustainability concerns the evolution of yL and whether it remains finite or explodes. 

The fiscal stance is said to be sustainable if yt is finite and if financial markets are willing 

to hold the level of debt that emerges. Before describing our proposed new procedure 

for determining whether the fiscal stance is sustainable we review the principal methods 

available in the literature. All of these methods take equation (3.66) as their starting point. 

In discussing sustainability it is convenient to distinguish between two cases: where the 

discount rate pt (and hence Rt,, 7rt and ryt) is assumed to be constant and where it is allowed 

to be time varying. " 

3.3.1 Constant discount rate 

If pt is assumed to be constant then from equation (3.66) y evolves according to the differ- 

ence equation 

bt 
= (1 + p) 

bt-1 
+ 

dt 
(3.68) 

Yt Yt-i Yt 

where 1+p= (1+7)(R y) or, approximately, p=R- it - -y. The solution for yI depends 

on whether the equation (3.68) is stable or unstable. We consider both cases. 

Casel: p<0 (stable case) 

<1 and equation (3.68) is a stable difference equation, and In this case 5+00+1) 

hence can be solved backwards by successive substitution. The expected value of the debt- 

GDP ratio in n period's time conditional on information at time t is 

30 Ahmed and Rogers (1995) and Bohn (1995,2005) argue that the appropriate discount rate to use for 
discounting future primary surpluses is the inter-temporal marginal rate of substitution. In a complete markets 
full general equilibrium model this would be the real rate of return used here. 
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Et(bt+n) + P) n 
bt 

+ 
n-1 
E (l + P) n-s Et(dt+s (3.69) 

Yt+n, Yt 
S=O Yt+s 

Taking the limit as n -* oo gives the transversality condition 

1rn (1 + P)nb t=0 (3.70) 

If this holds then we obtain 

n 

Jim Et (bt+n) = Jim E (1 + P) n-s Et (dt+s) (3.71) 
n-'O° Yt+n n-ýoo 

s=1 
Yt+s 

The evolution of the debt-GDP ratio depends on that of d' 
. Suppose that ' may be ye yr 

stochastic but is expected to grow at the rate A, then 

Et( 
dt+s) 

= (1 + ý)3 
dt 

(3.72) 
Yt+s Yt 

It follows that 

n 

lim Et(bt+n) - lim E (1 + p)n-s (1 ý' S 
dt 

n-' °° yt+n n-' °° Yt 
s=1 

(1 + A) n- (1 + P)n dt 
= 1im(1+A) 

-n-'°° A-P yt 

1 dt 
if A=0 (3.73) 

P Yt 

If p, A<0 then limnýý Et(bt+") =0 and it will explode if A>0. Thus, the debt-GDP yt+n 

ratio will remain finite and positive if the ratio of the primary surplus to GDP (- y`) does 

not explode. We note that if A<0 then yE is a stationary 1(0) process and the expected, 

or long-run value of the debt-GDP ratio is zero. And if A=0 then y is a non-stationary 

I(1) process, and hence y- will also be I(1). Moreover, y` and yL will be cointegrated with 
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cointegrating vector (1,1). Fiscal policy is therefore sustainable provided yE does not grow 

over time. 

Case 2: p>0 (unstable case) 

In this case 0< <1+i+(R ry) <1 and equation (3.68) is an unstable difference equation 

and hence must be solved forwards, not backwards as follows: 

bt 1 
Et ( 

bt+l 
- 

dt+l 

Yt 1+P Yt+i Yt+i 
n 

_ (1 + 0)-n Et t+n) 
-E (1 +, 0)-' Et( 

dt+s) 
(3.74) 

Yt+n 
s_1 

Yt+s 

Taking limits as n -* oo gives the transversality condition 

Ilr (1 + p)-n 
E( (3.75) 

n---, oo Yt+n 

which implies that 
0 bt 0 

_E (1 + p)_s Eta -dt+s) (3.76) 
Yt 

s=1 
Yt+s 

We note that the right-hand side of equation (3.76) is the expected present value of 

current and future primary surpluses expressed as a proportion of GDP. This condition 

implies that current and future surpluses will be sufficient to pay-off current debt. 

Suppose once more that yL is expected to evolve according to equation (3.72) then 

00 bt 
=E (l + p) (1 + A)s(-dt (3.77) 

Yt 
s=1 

Yt 

_ 
1+\ ( -dt fA 
P-A yt) 

i -1 <<p, P>0 
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Thus, provided that the current level of the debt-GDP ratio does not exceed the right-hand 

side, fiscal policy is sustainable and the debt-GDP ratio will grow at the rate A, the same 

rate as -dt Yt 

If yt is stationary then -1 <A<0 and yL will also be stationary. If A 

y 'L is l(l) then we obtain the same condition as equation (3.73) 

bt 
= 

1(-dt 

Yt P Yt 

implying that yr will be l(l) and cointegrated with yd' 

0, so that 

(3.78) 

These results can be compared with a number of well-known empirical tests for fiscal 

sustainability and provide some insight into the rationale behind the tests. The test of 

Hamilton and Flavin (1986) is based on the following version of equation (3.74) 

00 bt 
=Ao(1+P)-t-E(l+P)-sEt(dt+s) 

Yt 
s=1 

Yt+s 

except that real debt and the real primary deficit is used rather than bt and dt 
. 

On the null Yt Yt 

hypothesis that the transversality condition holds AO = 0. 

Trehan and Walsh (1988) propose a cointegration test for fiscal sustainability. They 

measure debt and the primary deficit in real terms rather than as proportions of GDP, but 

Hakkio and Rush (1991) employ the test expressing the variables as proportions of GDP. 

If the variables have unit roots and are cointegrated with cointegrating vector (p, 1) then 

fiscal policy is sustainable. (Or, if government expenditures and revenues are I(1), then the 

cointegrating vector with debt must be (p, 1, -1). ) This result follows immediately from 

equations (3.73) and (3.78). Alternatively, if the cointegrating relation between debt and 



3.3 Fiscal sustainability 

the primary deficit is 

dt bt 
-+a-=Ut Yt Yt 

where ut is 1(0), then from equation 3.68), 

(l + a) 
bt 

= (1 + P) 
bt-i 

+ ut 
Yt Yt-i 

It follows that yG has a unit root if cc = p. 

3.3.2 Time-varying discount rate 

105 

In practice, pt will be time-varying, not constant and so these tests will in general be invalid. 

We therefore revert to the original budget constraint, equation (3.66). This may be solved 

forwards to obtain 
n bt 

= Et [(rls 
1 bt+n 

_ Et[ý (ni_1 
1 dt+s 

(3.79) 
Yt I+ Pt+s Yt+n 

s_1 
1+ Pt+i Yt+s 

if 

btS=II. 
_ 

I 
<1 for alls>1 1+ Pt+i 

Hence fiscal solvency depends on the transversality condition 

lim Et [(IIS 
11) 

bt+n 
]=0 (3.80) 

n-, oo 1+ Pt+s Yt+n 

which implies that 

bt 
= Et[>00 (IIz_1 

11 
dt+s 

(3.81) ) (- )ý 
Yt 

S=i 
+ Pt+i Yt+s 

Like equation (3.76), equation (3.81) says that the present value of current and future pri- 

mary surpluses must be sufficient to offset current debt liabilities. The difference is that the 

discount rate is compounded from time-varying rates. 
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In order to analyse sustainability we define the variables 

bt 
Xt = 6t, 

n- 
Yt 

Zt = CSt, n, 
dt t 
Yt 

We may now write equation (3.66) as 

Axt = Zt 

Fiscal sustainability now requires the transversality condition 

lim Et(xt+n) =0 n-, oc 

and implies that 
n 

xt =- lim Et [E zt+s] 
n-+oo 

s=1 

Wilcox (1989) shows that fiscal sustainability is satisfied if xt is a zero-mean station- 

ary process. Wickens and Uctum (2000) prove a more general result that does not require Xt 

to be stationary. They show that fiscal sustainability is satisfied if zt is a zero-mean station- 

ary process. It then follows that xt will be an I(1) process. Trehan and Walsh (1991) argue 

that fiscal policy is sustainable with a variable discount rate if the total deficit is station- 

ary. This result follows directly from equation (3.67). As it is a stable difference equation 

if nominal growth is positive, y, is finite (and stationary) if D+s is stationary. 

3.3.3 Stability and Growth Pact (SGP) 

This was based on the original Maastricht conditions that yi must be less than 0.6 and DL 

must be less than 0.03. It can be shown that these conditions are neither necessary, nor suf- 
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ficient for fiscal sustainability. Much has already written on the issue of necessity. To show 

insufficiency, consider equation (3.67) assuming that inflation and growth are constant and 

bt and Dt are constant at these maximum values. Hence we obtain the condition Yt Yt 

b_ (1+ßr)(1+ ;)D 
y (1+ßr)(1+7)-1 

1D 

7r+'Yy 

It follows, therefore, that 
D 

7r + 'y ^ý y 
b 

y 

Thus, given the limits on debt and deficits specified under the SGP, the nominal rate of 

growth must not be less than °s 5%. If nominal growth were less than this then 

debt would rise above 60% even if the deficit limit were satisfied. Conversely, even if the 

deficit or debt limits were exceeded, the appropriate rate of nominal growth would still be 

consistent with fiscal sustainability. For example, if the deficit exceeds 3% it is still possible 

for the debt-GDP ratio to satisfy the 60% limit if nominal growth exceeds 5%. This shows 

that, in general, the SGP is neither necessary nor sufficient for fiscal sustainability. 

3.4 An index of the fiscal stance 

All of these tests of fiscal sustainability are of limited practicality. The main problem is 

that the tests are based on the past behaviour of debts and deficits whereas the sustainabil- 

ity of current fiscal stance is related to their future behaviour. The test outcome could be 

dominated by an influential, but anomalous, period in the distant past yet the current fiscal 

stance may still be sustainable. Even if the current fiscal stance is not sustainable, govern- 
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ments could claim that a policy change planned for the future would make it sustainable. 

As a result, the tests provide an ineffective constraint on fiscal policy, especially in the near 

future. This suggests that we need a more forward-looking approach that focuses on the 

short-term implications of the current fiscal stance. As the fiscal position varies over time, 

it would be helpful to have a measure that reflects this and enables historical comparisons 

to be made. We therefore propose constructing an index number series of the current fiscal 

stance. 

The index is based on the inter-temporal government budget constraint. The index 

measures the ratio of the desired change in the discounted debt-GDP ratio over a given 

time horizon relative to the forecast change. The target debt-GDP ratio at the end of the 

horizon could be, for example, a particular number such as the 60% SGP limit, a percentage 

reduction or the maintenance of the current level of debt. The forecast change in the debt- 

GDP ratio is, in effect, the present value of current and future primary surpluses. Future 

primary surpluses and discount rates are forecast using a VAR based on the variables in 

the govermmment budget constraint. Any other forecasting model could be used instead, 

including a structural model of the whole economy. The reasons for choosing a such a 

VAR are its simplicity and its ease of replication and automation for any economy. We also 

wish to try to avoid taking a particular view on macroeconomic theory and on the structural 

of the economy. Since time variation in the future discount rate may be of importance, we 

base the VAR on our log-linear approximation to the government budegt constraint. The 

use of an index of sustainability was initially proposed by Blanchard et al. (1990) and 

Buiter et al. (1993). Their indices are based on a comparison of the current debt-GDP 



3.4 An index of the fiscal stance 109 

ratio and that n periods ahead with given fixed values of the deficit and discount rate. The 

main shortcoming of these indices of fiscal sustainability is that the future dynamic of all 

macroeconomic variables employed to forecast fiscal policy is set in advance through ad- 

hoc assumptions rather than being determined endogenously from a model of the economy 

(see, Cuddington 1997). In contrast, the index of the fiscal stance proposed in this paper 

overcomes these issues and generalises the existing indices by allowing the deficit and 

discount rate to be time-varying and endogenous. 

3.4.1 Log-linearising the GBC 

The index of the fiscal stance proposed in this paper is based upon a log-linear approxima- 

tion to the government budget constraint. In principle, the log-linear approximation can be 

taken about several points. 

One option is the steady-state solution of the GBC, assuming it exists. The problem 

with the steady-state solution is that, even when it exists, it may be difficult to detect in 

small samples, not least because, even in small samples, government control over the level 

and the way of financing public spending implies that long run fiscal targets are unstable 

and bounded to change under different fiscal regimes. One could also argue that the exis- 

tence of the steady state already implies long run fiscal sustainability, hence there no need 

of further testing it or constructing an index of the fiscal stance. This is true to the extent 

that one is interested solely about the long run implications of fiscal policy. The index of 

the fiscal stance proposed in this paper aims at assessing the short and medium run effects 

of the current fiscal stance, given its long run position. In addition, it would be preferable 
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to have a measure of the fiscal stance which can always be computed, regardless of whether 

or not the steady state can be detected empirically. 

As a result, a second option would be to specify an intertemporal objective function 

for the government and then computing the optimal level of debt-GDP given the constraint 

of the economy. In this case, the GBC can be log-linearised about the average optimal level 

of debt computed from the solution to this optimisation problem. 

In this paper we follow a much simpler approach and log-linearise the GBC about a 

balanced-budget position, in which the constant debt-GDP ratio is chosen to be consistent 

with a specific level set by the government. In particular, we choose the sample average of 

the debt-GDP ratio. Alternatively, when the index is computed for European countries the 

obvious candidate is the 60 per cent ratio established in the SGP. We then take the sample 

average of both the government revenue-GDP ratio and the interest rate on government 

debt. Finally, the level of government spending is determined so that it is consistent with 

the balanced budget position and the average measures of debt, revenue and interest rate 

described above. 

In computing the index, as the primary deficit can take negative values, it is necessary 

to write the GBC in terms of total expenditures gt and total revenues vt both of which are 

strictly positive. We therefore re-write the GBC, equation (3.64), as 

bt 
- 

9t 
- 

vt + (1 + Pt)bt-i 
Yt Yt Vt 

where 

? it 
_ 

Tt nit 1 'Mt-i 
Yt Yt 

+ 
Yt (1 +7rt)(1 +7) yt-i 
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Next we approximate the GBC about the balanced-budget solution described above. 

As described above, we assume bt 
, vt and pt to be constant and equal to their sample Yt Yt 

average, which we denote with y, y and p respectively. The corresponding balanced budget 

level of I-, denoted as y, is determined from to the GBC therefore satisfies 

gvb 
yyy 

To log-linearise, the GBC may be re-written as 

f (xt) = exp [In 
bt 

]- exp [In 9t ]+ exp [In v]- 
exp [In (1 + pt) + In 

bt-1 
]=0. 

Yt Yt Yt Yt-i 

Noting that a first-order Taylor series approximation to h(xt) = exp[ln xt] about In x is 

h(xt) = x[1 + (In xt - In x)] 

a log-linear approximation to the GBC is given by 

In 
bt 

c+9 In 9t 
-V In v+ (1 + p) ln(1 + pt) + (1 + p)lnbt-1 (3.82) 

Yt b yt b yt Yt-i 

c= -plnb-91n9+vlnv-(1+p)ln(1+p). ybyby 

As ln(1+pt) ^- pt, in effect the discount rate is an additional variable in the equation. Thus, 

by employing a log-linear transformation of the GBC, we may analyse fiscal position when 

the deficit and discount rate are time-varying using, once more, a constant coefficient linear 

difference equation. 
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Whether the difference equation is a stable or unstable depends on the sign of p. 

Assuming that p>0, we solve the equation forwards to obtain 

n 

In 
bt 

= (1 + p)-n Et(In 
bt+n) 

_E (1 + p)-3 Et(kt+s) (3.83) Yt yt+n 
s=1 

v kt = c+ - In 9t 
-v- In t+ (1 + p) In(1 + pt) (3.84) b Yt b Yt 

where kt is, in effect, the logarithmic equivalent of the primary deficit. The transversality 

condition is therefore 

lim (1 + p) -n Et (1n 
bt+n) 

=0 (3.85) 
l-' °° Yt+n 

which implies that 

00 

In 
bt 

=- (1 + p)-' Et(kt+s). (3.86) 
yi 

s=1 

If kt is stationary then In b' 
, and hence bt 

, remains finite and stationary. This may Yt Yt 

occur due to the individual terms of kt being stationary, or due to some being l(l) but 

being cointegrated with the appropriate cointegrating vector. If kt and each component of 

kt are I(1) then, if they also cointegrated with cointegrating vector given by the coefficients 

in the definition of c, then fiscal sustainability is still satisfied. From equation (3.82) the 

cointegrating vector is: 

Inbt --- 
1n9t+ 1n-+l+Pln(1+Pt) 

Yt p pb Yt pb yt p 
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3.4.2 Constructing the index 

The basis of our proposed index is the inter-temporal log-linearized budget constraint equa- 

tion (3.82). This can be re-written as: 

n 
(I + p)-n Fit(ln 

bt+n) 

_ In 
bt 

=E (1 + P)-' Et(kt+s) 
Yt+n Vt 

3=1 

which can be interpreted as determining in logarithmic terms the present value of primary 

deficits required to achieve an expected change in discounted debt. If we replace Et [in y'+7L ] 

by a target level ln('-+ )* then we can determine whether future values of lit are consistent Yt+n 

with satisfying a particular target change in discounted debt given by: 

(1 + p)-' In( 
bt+n)* 

- In 
bt 

Yt+n Yt 
_ (1 + p)-' Et(kt+s) 

s=1 

(3.87) 

The left-hand side of equation (3.87) can be interpreted as the desired change in dis- 

counted debt between periods t and t+n. The right-hand side is the logarithmic equivalent 

of the present value of the primary surpluses required to achieve this desired change in 

discounted debt. We replace Et(kt+s) by forecasts of the future values of kt based on the 

information available at time t, including the current fiscal stance. 

A measure of whether the current fiscal stance is likely to achieve the debt objective 

is obtained by comparing the two sides of equation (3.87). If, for example, the aim is to 

decrease discounted debt then the left-hand side will be negative and the right-hand side 

gives the present value of the primary surplus required to achieve this reduction in debt. We 

therefore base our measure of the consistency of the current fiscal stance with the n-period 
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debt objective on the gap between the objective and the forecast outcome: 

FS(t, n) = [(1 + p)-n ln(bt+n )* - In 
bt 

1-nE (1 + p)-s Et(kt+s) > 0. 
Yt+n Yt 

S-i 

Our index is: 

FSI(t, n) = exp[FS(t, n)] 
Kt, 

n 

bt/yt 
n 

In Kt, n = (I + P)-n In( 
bt+n 

)* -E (1 + P)-S Et(kt+s) 
Yt+n 

s=1 

lit = c+9In9t - 
vIn-+(1+p)In(1+pt) 

b Yt b Yt 

c= -pln 
b--g 

In g 
-+ 

V In v 
-- (1 + p)ln(l + p). 

ybyby 
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As n -* oo the first term in In kt, n tends to zero and the index can be interpreted as com- 

paring the existing level of the debt-GDP ratio, with the resources to pay it off. The index 

may be interpreted as follows: 

(i) FSI(n) =1 the debt-GDP ratio in period t+n is forecast to be on target 

(ii) FSI(n) >1 the debt-GDP ratio in period t+n is forecast to be below target 

(ii) FSI (n) <1 the debt-GDP ratio in period t+n is forecast to be above target 

Only in case (iii) is the forecasted present value of the primary surplus insufficient to 

achieve the desired change in the debt-GDP ratio. In this sense, the current fiscal stance 

would not be sustainable. 

In practice, the special case considered by Buiter and Blanchard of maintaining a 

constant debt-GDP ratio over the planning horizon will usually be of most interest. In this 
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case 
n 

FS(t, n) _ [(1+p)-n- 1] In 
bt 

-E(1+p)-3Et(kt+s) >0 
Yt 

s_1 
The index then becomes 

FSI(t, n) = exp[FS(t, n)] 

_ 
Kt, 

n 
bt/yt (3.88) 

n 

In Kt, n = (1 + p)-n In 
bt-E 

(1 + p)-' Et 
Yt 

s=1 
Since in this case: 

n 

In 
bt 

= (l + p)-n In 
bt 

- (1 + p)-' Et( t+, ) Yt Yt 
s_1 

1n 

n 
(1 + P)-3 Et(kt+s) 

1- (l + p) s-1 
1n 

n (1 + P) Et(kt+s) 
P 

s=1 

the index could also be calculated as 

FSI (t, n) = t, n (3.89) bt/yt 
1n 

In Kt 
n=- _n 

Z (1 + p) Et(kt+s) 

1-(l+p) 
s=1 

where the numerator is now proportional to the present value of primary surpluses. We 

consider this case in our empirical examples below. 

3.4.3 Forecasting the fiscal variables 

In order to compute the index, we require forecasts of the variables of the following vector 

zt: 
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Zt 
bt 9t Vt IRL IRS = -ý -ý -ý ytý tý tý t Yt Yt Yt 

where yt 
, 
yL and yt denote government debt, revenue and net spending, respectively, all 

measured as a proportion to GDP; yt is the output gap measured as deviation of real GDP 

from a quadratic trend; art is the inflation rate computed from the growth rate of the GDP 

deflator; I RLt is the long-term interest rate; and I RSt is the short term interest rate. 

For the reasons given above, we use a VAR(p) to obtain these forecasts. This is a 

simple forecasting scheme that is easily implemented and is theory free. We denote the 

VAR by: 

P 

zt = Ao + Aizt-i + et, (3.90) 
2-1 

where et - i. i. d. [0, E]. The vector of variables zt may be 1(0) or I(1). For forecasting 

purposes it is unnecessary to take account any non-stationarity or cointegration among the 

variables. Equally, if cointegration exists, a cointegrated VAR could be estimated instead 

of a levels VAR and the cointegrated VAR could then be written in levels to obtain (3.90). 

We also note that to improve the forecasts zt may contain additional variables to those that 

appear in the budget constraint. 

n-period ahead forecasts may be obtained using the companion form 

Zt = Bo + BZt_1 + ut. 

where Z' -[z' z' z ], u' = [e' 0 0] B' = [A', 0, ..., 0] and t- t' t-1 "', t-p+l t- t> 3 ""., 
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Al A2 
.. Ap-, 

0I0. 
B= 0I0 

010 

The forecast of Zt+, is 

s-1 

Et [Zt+sj =Z BZBO + B8Zt 
i=0 

Expressing lit as the following linear function of zt 

kt =a+ ß'Zt 

and defining the selection matrix S =[I, 0,0,.., 0] such that 

zt= SZt 

we obtain 

FS(t, n) = In Kt, 
n-In 

bt 

Yt 
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1n s-1 bt 

-n 
E{(1 + p) -s [a + 3'S (E BZBo + BsZt)]} - In 

As the last term In y is also a linear function of Zt, FS(t, n) could just be written as 

FS(t, n) = an + bnZt 

where a,, is a scalar dependent on the time horizon and b, is a vector. This emphasizes 

that FS(t, n) is based on information available at time t, and in particular the current fiscal 

stance. Increasing the forecast horizon alters a, z and b, but not Zt. 

To implement this in practice it will be necessary to estimate a,, and b, from the VAR 

estimates. The choice of p and c could be based, for example, on the average values in the 
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sample, their time t values or their average values over the forecast period. A time series for 

FS(t, n) could be calculated from the sample either using all of the sample observations to 

estimate the VAR, or recursively using only observations up to period t. 

Note that for the empirical computation of the index, no measure of pt is included in 

the VAR. This is because we take only the n-periods ahead forecast of bý 9' and LI and then yt yt yt 

compute the corresponding value for pt in such a way that the one-period GBC is satisfied 

in its forecasts. This implies that one can construct the index of the fiscal stance also by 

comparing the debt-GDP ratio forecasted n-periods ahead with the corresponding targeted 

level, rather than constructing the right-hand side of the GBC as described above. We do 

not follow this alternative approach because in this case the index cannot be decomposed, 

hence it would not be possible to understand the reasons of the misalignment between the 

forecasted debt and the its targeted level. 

3.5 Indices of the fiscal stance of the US, the UK and Germany 

We now construct a time series of the index of the fiscal stance for the US, the UK and 

Germany. For the US we consider three horizons: one-year, two-years and five-years ahead. 

For the UK and Germany we use just a one-year horizon. We assume that the aim in each 

period is to maintain the current level of the debt-GDP ratio. Hence, we use the version 

of the index given by equation (3.89). The data are annual and range from 1960 to 2005 

for the US, from 1970 to 2005 for the UK, and from 1977 to 2009 for Germany. The 

data sources and the construction of the variables are described in the Appendix. There 

are minor differences in definitions for the different countries. For example, the debt data 
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for the US are measured as net liabilities. This is different from the Maastricht definition 

of debt but, given the definitions of the other variables, is consistent with the government 

budget constraint. Table 3.1 gives the average values for v, b, g, b and p in Germany, the 

UK and the US. 

Table 3.1: Balanced-budget GBC (in percentage) 

b9VP 
Germany 48 89 43.17 44.13 1.96 

United Kingdom 35.22 40.74 41.64 2.57 

United States 43.81 28.86 31.24 5.44 

Note: b, v and p are sample averages, g is constructed from balanced budget equation 
v=g+ pb 

3.5.1 The United States 

Figure 3.1 gives a plot of eight key variables: the debt-GDP ratio (Debt-GDP), the gov- 

ernment spending in goods and services as a proportion of GDP (Spending-GDP), the gov- 

ernment revenue as a proportion of GDP (Revenue-GDP), the implied primary deficit-GDP 

ratio (Deficit-GDP), the inflation rate computed from the change in the GDP deflator (Infla- 

tion), the deviation of real GDP from a quadratic trend (output gap), the long term interest 

rate (IRL) and the short term interest rate (IRS). 
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Figure 3.1: US data plot 
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Augmented Dickey-Fuller tests for these variables using up to 6 lags suggest that we 

cannot reject a unit root for any variable other than the output gap. As we are using the VAR 

only for forecasting we estimate a VAR in levels of the variables and ignore any possible 

cointegration arising from the variables that have unit roots. For space reasons we do not 

report the results from the Augmented Dickey-Fuller and the VAR estimates, but we note 

that a lag of 1 produces serially uncorrelated residuals. 

We examine fiscal sustainability based a constant target debt-GDP ratio for three 

horizons: one-year, two-years and five-years ahead. For each horizon we present four 

figures. Figures 3.2.1,3.2.2 and 3.2.5 are plots of FSI(n), the index of the fiscal stance. 

We recall that FSI(n) <I implies that the debt-GDP ratio is forecast to be above target. 

The forecasts are based on estimates of the VAR for the whole sample. 
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Figures 3.3-3.5 give various breakdowns of the index into its component parts. Thus, 

Figures 3.3.1,3.3.2 and 3.3.3 are plots of 1nk, -- and the forecast logarithm of the present Yt 

value of current and future primary surpluses, In Kt,,, which we denote in the graph by 

EPVGBC(n). There are three components to FS(t, n): the desired change in discounted 

debt PVdb(n), the present value of the primary surplus PVs(n) and the term for the dis- 

count factor, PVrho(n). These are plotted in Figures 3.4.1,3.4.2 and 3.4.5. Finally, in 

Figures 3.5.1,3.5.2 and 3.5.5 we plot the two components of PVs(n). These are the 

present value of revenues PVv(n) and of expenditures PVg(n). 

(i) One-year horizon 

Figure 3.2.1 

2 

1.8 

1.6 

1.4 

1.2 

1 

0.8 

0.6 

nA 

United States: Fiscal Stance Index 

FSI(5) 

...... .. 

V. T 

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 



3.5 Indices of the fiscal stance of the US, the UK and Germany 

90 

80 

70 

60 

50 

40 

30 

20 

IA 

Figure 3.3.1 

United States: b/yand EPVGBC(5) 

b/y 
ýi --- EPVGBC(5) 

1 
1 

_I 

1 
_I 

1 
I 

I1/ý ý1 

/ 
IIý ýý 

I 
1 

1 

\/ 

\/ 

ýI1 
I 1^ 
1/výI 

'- 

1V 

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 

Figure 3.4.1 

1.5 
United States: PVs(5), P/rho(5) and PJdb(5) 

1 

0.5 

0 

-0.5 

-1 

_1 
S 

PVs(5) 
PVrho(5) \\ / \/ 

--- PVdb(5) / 

122 

"1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 



3.5 Indices of the fiscal stance of the US, the UK and Germany 

Figure 3.5.1 
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(ii) Two year horizon 

Figure 3.2.2 
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Figure 3.3.2 
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Figure 3.5.2 
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(iii) Five-year horizon 

Figure 3.2.5 
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Figure 3.3.5 
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Figure 3.5.5 
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We observe that FSI(n), the index of the fiscal stance, exceeds unity for any length of 

time only during the early 1960's and the 1990's. In the other periods it is either roughly 

equal to unity (implying that the -fiscal stance is compatible with a non-rising debt-GDP 

ratio) or less than unity (implying that the debt-GDP ratio is rising). 

From 2001 the FSI strongly indicates a rising level of the debt-GDP ratio at each 

horizon. The FSI is also less than unity for the period ending in 1989. The start date of 

this period depends on the time horizon. For one-year and two-year horizons it is similar, 

consisting of most of the 1980's, but for the five-year horizon it extends back through the 

1970's, almost to 1965. Thus the 1990's marked a period of US fiscal recovery which 

ended in around 2000. 

Decomposing the index into its components, we find that FSI< I for the period 1979- 

1994 when the debt-GDP ratio rose substantially. We also find that variations in the present 

value of forecast primary surpluses are the main determinant of fluctuations in the index. 
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The change in debt target and the discount factor nearly offset each other. This is because 

we have assumed a constant discounted debt target and so the discount factor is the variable 

causing the change in discounted debt term to fluctuate. The present values for expenditures 

and revenues are similar before 1995 but are different thereafter. In the period 1995-2001 

the present value of revenues exceed those of expenditures thereby producing a fiscal re- 

covery. After 2001 the present value of expenditures exceed those of revenues. This fiscal 

deterioration was due to a combination of rising expenditures and sharply falling revenues. 

Fluctuations in the discount rate make an additional, but not large, contribution. To sum- 

marize, there is clear evidence of a break in US fiscal policy from 2001 that has resulted 

in a rising debt-GDP ratio no matter the horizon over which we look. This fiscal stance 

would be unsustainable if maintained. The cause is a combination of a rising present value 

of expenditures and of sharply falling revenues. There have been previous periods when 

the fiscal stance also led to a rising debt-GDP ratio, most notably from 1979-1994. This 

was not fully corrected until the period 1995-2000 when the present value of expenditures 

was reduced and was much lower than that of revenues. 

3.5.2 The United Kingdom 

The data are annual for the period 1970 to 2005 and are plotted in Figure 3.6. 
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Figure 3.6: UK data 
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Based once again on a levels VAR(l), but considering only a one-year horizon, we 

obtain the measures of the index reported in Figures 3.7-3.10. 

Figure 3.7 
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Figure 3.8 
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Figure 3.10 
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We observe only two brief periods where FSI > 1. These are 1986-1988 and 1997- 

2000. From 1971-1984 and after 2000 FSI <I often by a considerable margin. The period 

1984-2005 has four clear episodes. From 1984-1989 there were falls in the debt-GDP ra- 

tio and in both revenues and expenditures in present value terms resulting in an improving 

fiscal position. This was a period where privatization receipts were used to pay off debt, 

even though the assets were not included in our measure of debt, namely, net government 

liabilities. From 1989-1992, when sterling left the ERM, the fiscal position deteriorated 

sharply due to rising expenditures. This may even have been a contributory factor in the 

speculation against sterling in 1992. After 1992 the debt-GDP rose steadily as it did iti the 

US, but expenditures, after continuing to rise, turned down, which caused an improvement 

in the fiscal stance. From 1996-2001 there was a marked improvement in the fiscal posi- 

tion mainly due to rising revenues from the upturn in economic activity. From 2001 the 
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fiscal stance deteriorated again due to expenditures (which started to increase in 1998) ris- 

ing much more than revenues. The Chancellor of the Exchequer has said throughout his 

tenure that the UK is meeting its fiscal targets, but this evidence indicates that this has not 

precluded an obvious decline in the sustainability of the UK's fiscal stance. 

3.5.3 Germany 

The data are annual for the period 1960 to 2005 and are plotted in Figure 3.11. 

Figure 3.11: Germany data 
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The results on fiscal sustainability for the period from 1977 are reported in Figures 

3.12-3.15 for a one-year horizon. 
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Figure 3.12 
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There has been a steady deterioration in the F SI over the whole period since 1977. 

There were two occasions when the index worsened sharply. They are in 1989 on German 

unification, and again in 1999 shortly after EMU began. Both events seem to have been 

very harmful to the -fiscal stance. Throughout the period the debt-GDP ratio has risen and, 
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with the exception of the period 1992-1999, the fiscal position has gradually deteriorated. 

The improvement during the period 1992-1999 coincides with improvements in the US 

and UK and is due to sustained economic growth causing a rise in tax revenues. But since 

expenditures also increased during this period, the improvement in the German fiscal stance 

was less marked that for those of the US and UK. Since 1999 the fiscal stance has continued 

to worsen as expenditures, although falling over the period, have exceeded revenues which 

have also decreased. The observed secular decline in the German fiscal stance reflects and 

supports the widespread perception that Germany may need structural reform. 

3.6 Using the fiscal stance index for policy analysis 

The index of the fiscal stance proposed in this paper gives a useful benchmark against 

which to compare the short term implications of the current -fiscal policy. In this section 

we use a bootstrapping technique to add confidence bands to the index in order to measure 

the statistical significance of its policy prescriptions. In principle, since the index is based 

upon VAR forecasts, one could bootstrap the VAR forecasts and then compute at each 

stage of the iteration the FSL There are at least two problems with this approach. First, 

there is not agreement in the literature on how to bootstrap VAR forecasts, in particular 

when the VAR may include nonstationary variables (see, for a review, Berkowitz and Kilian 

(2000)). The second issue is that much of the literature on bootstrapping the predictions 

arising from AR(p) and VAR(p) models focuses on out-of-sample forecasts, whereas the 

index is computed by taking forecasts through the whole sample period. This is an issue 

particularly relevant because the bootstrap of out-of-sample AR(p) and VAR(p) forecasts 
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is generally accomplished by setting the last p observations in each bootstrapping sample 

equal to the last p observations in the original sample. In this way the bootstrapped forecasts 

are always constructed by using the same type of information in each bootstrap sample. 

(See, Thombs and Schucany (1990)). The FSI exploits in-sample forecasts from the VAR, 

so that predictions are based on an information set that changes with the sample. In this 

case, a possible solution is to estimate the VAR recursively and then compute and bootstrap 

the FSI at each point in the sample. This would be however be inconsistent with the way 

in which we compute the FSI in the paper, as we estimate the VAR only once and over 

the whole sample. In light of these issues we follow a much straightforward approach. 

We recognise that the FSI is ultimately a time series which can be approximated with an 

AR(p) model. Hence, the estimated parameters of any AR(p) model can be bootstrapped 

following the standard Stine (1987) algorithm. This works as follows: 

I. Set up the AR(p) model: A (L) yt = et 

2. Estimate the parameters A (L) and compute the vector of residuals 6t. 

-P 3. Compute rescaled residuals ̂ ct ýt/ =ý 
V T-2p 

4. Resample with replacement from the rescaled residuals ýt to generate the bootstrap 

innovations ý* t 

5. Generate a bootstrap sample ýy*j from the original sample jytj leaving the first 
t 

p-observations in fy*1 equal to those in fyt I 
t 

6. Generate pseudo-data from A (L) yt = Et 
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7. 

8 

Calculate the bootstrap parameter estimates A* (L). 
P 

Compute the predicted series f ýt*+h I from ýt* =A (L) yt*. 
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9. Repeat 4-8 B-times and build the confidence interval. 

In particular, we used an AR(6) and constructed 10000 bootstrapped samples. Fig- 

ures 3.16-3.18 plot the FSI(I) for the United States, the United Kingdom and Germany 

with the corresponding 10 per cent confidence bands. 
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Figure 3.17 
United Kingdom: Fiscal Stance Indexwith 90% confidence bands 
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The results show that there are several periods in which the FSI index is either above 

or below I and well between the 10 per cent confidence bands. In particular, in the United 

1985 1990 1995 2000 2005 2010 
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States the index is below I and within the confidence bands during the first half of the 

1980's and the period 2003-2005. The index is above I throughout the 1990's and for short 

periods of time in the late 1960's, as well as mid and late 1970's. In the United Kingdom, 

the index is considerably greater than one only during the second half of the 1990's and 

early 2000. The index is significantly below I during the first half of the 1990's and after 

2001. The results for Germany display a significant deterioration after the 1990 and the 

year 2001, but also a significant recovery since 2005. 

We conclude by showing a further use of the index of the fiscal stance FSI to assess 

the likely implications that the current fiscal stance has over the future. As proposed in the 

previous section we fit an AR(p) model on the FSI series computed for each country. Next 

we take the n-periods ahead prediction of the index to evaluate its dynamic over the short 

run. The forecasts are displayed in figures 3.19,3.20 and 3.21, for the Unites States, the 

United Kingdom and Germany respectively. As well as the predicted path, each graph also 

plots the forecasts standard error, determined by taking into account both the error variance 

and parameter uncertainty. 
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Figure 3.19: US forecast FSI(I) 
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Figure 3.20: UK forecast FSI(I) 
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Figure 3.21: Germany forecast FSI(I) 
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In particular, the results show that the fiscal stance is forecasted to remain above I in 

both the United States and the United Kingdom, and to deteriorate below I in GermanY. 

3.7 Conclusion 

In this paper we have proposed the construction of an index to measure the current fiscal 

stance. We have distinguished this from existing measures of the sustainability of the fiscal 

stance and argued that such tests, which focus on the past, may not be a helpful guide 

to the current stance of fiscal policy. Like the tests for fiscal sustainability, this index is 

based on the government inter-temporal budget constraint. The main differences are that 

the index is forward looking, it applies to a finite time horizon, and it uses a log-linear 

approximation to the government budget constraint which enables the inflation, economic 

growth and interest rates to be time varying rather than constant. In effect, the index is 

L 5-step Formwts FSI(F) 
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based on a comparison of the forecast and the desired debt-GDP ratio over that horizon 

where the forecast is constrained to satisfy the government budget constraint. We propose 

the use of a VAR forecasting model based on the government budget constraint as this 

is simple to compute and easily automated. We have shown how to identify individual 

components of the index that may be causing problems for the fiscal stance. We have 

applied this methodology to three countries: the US, the UK and Germany. In the UK 

and US the index of fiscal sustainability has fluctuated considerably with periods when 

the debt-GDP ratio has risen followed by periods when it has fallen. During the period of 

strong economic growth in the 1990's the fiscal positions of all three countries improved 

considerably, but in recent years the fiscal stance in all three countries has been steadily 

deteriorating. Our index indicates that a continuation of the present fiscal stances is leading 

to a period of marginal -fiscal recovery in the US and in the UK, while the Gernian fiscal 

position is expected to deteriorate over the medium run. 



Appendix A 
State space representation (Chapter 2) 

The dynamic constraint computed under the standard approach corresponds to the 

state vector of the reduced form VAR in equation (2.46) and has the same dynamic structure 

of the constraint in equation (2.54). The term A12 (L) Z2, t in equation (2.46) can be written 

as: 

pp 
A12 (L) Z2t Al2iL'Z2t= A12. IZ2t-I+Y: Al2iL'Z2t-1 = 

[Al2.1+ A- 12 (L)] Z2t-15 

i=2 

where A12.1 are the coefficients of the first lagOf Z2t while -ý-12 (L) includes the coefficients 

of all others lags. 

Therefore, under the standard approach the state space representation of the dynamic 

constraint is obtained by setting: 
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On the other hand, the dynamic constraint under the PVAR approach in equation (2.48) is 

compatible with a dynamic constraint of equation (2.58). Thus, the appropriate state space 

representation of the model under the PVAR approach is given by: 
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Appendix B 
Tables and figures (Chapter 2) 

Table 2.1: Alternative specifications of the objective function 

Policy Weights 

-OF 
A, AY AArs 

I 11 0.5 
2 1 0.2 0.5 
3 15 0.5 
4 11 1 
5 11 0.1 
Notes: OF=Objective function, the OF is 

described in equation (2.6 1) 

Table 2.2: Interest rate rules under alternative specifications of the objective function, 
summary statistics 

Sample 1960-2006 1960- 1983 1984-2006 
SD AAD SD AAD SD AAD 

Original VAR 
2.80 2.76 2.30 

OF PVAR approach 

1 2.22 1.62 1.00 2.31 2.02 0.97 
2 2.17 1.33 1.17 1.78 1.78 0.90 
3 2.65 2.29 1.80 3.40 2.50 1.24 
4 2.18 1.29 1.24 1.77 2.01 0.83 
5 2.70 2.43 1.84 3.50 2.18 1.41 
Mean 2.38 1.79 1.41 2.55 1.10 1.07 
OF Standard approach 
1 3.03 1.31 2.29 1.44 2.28 1.17 
2 3.14 1.25 2.46 1.31 2.19 1.19 
3 2.95 1.55 2.10 1.78 2.49 1.31 
4 2.89 1.13 2.27 1.21 2.19 1.04 
5 3.27 1.59 2.41 1.79 2.44 1.40 
Mean 3.06 1.36 2.31 1.51 2.32 1.22 
Notes: OFs=Objective functions as described in table 1; SD= 

Standard Deviation, in percentage; AD= Average Absolute 

Distance between optimal and VAR rule, in percentage; 

mean=average value across die five OFs. 
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Table 2.3: Welfare loss analysis under alternative specifications of the objective function, 
undiscounted forecasts 

SD 
y 7r Ars Tot I y 7r Ars Tot 

_ Original VAR 
1.27 1.35 0.42 3.04 

OF PVAR approach 
unweighted weighted 

1 0.60 0.52 0.56 1.69 0.60 0.52 0.28 1.41 
2 0.75 0.52 0.56 1.74 0.15 0.63 0.18 0.96 
3 0.46 0.45 0.85 1.76 2.31 0.45 0.43 3.19 
4 0.67 0.54 0.45 1.66 0.67 0.54 0.45 1.66 
5 0.52 0.54 0.80 1.86 1.02 0.98 0.24 2.24 
OF Standard approach 

unweighted weighted 
1 1.02 0.98 0.48 2.48 1.02 0.98 0.24 2.24 
2 1.09 1.05 0.56 2.71 0.22 1.05 0.28 1.55 
3 0.88 0.87 0.34 2.09 4.41 0.87 0.17 5.45 
4 0.97 0.98 0.40 2.36 0.97 0.98 0.40 2.36 
5 1.10 0.98 0.62 2.70 1.10 0.98 0.06 2.14 
Notesi OF=Objective functions as described in table 1; 

SD=Standard Deviation, in percentage. 
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Table 2.4: Welfare loss analysis under alternative specifications of the objective function, 
discounted forecasts 

SD 
y 7r Ars Tot I y 7r Ars Tot 

Original VAR 
1.01 0.50 0.36 1.87 

OF PVAR approach 
unweighted weighted 

1 0.52 0.18 0.44 1.14 0.52 0.18 0.22 0.92 
2 0.62 0.14 0.27 1.03 0.12 0.14 0.14 0.40 
3 0.43 0.29 0.69 1.41 2.14 0.29 0.34 2.77 
4 0.57 0.16 0.34 1.07 0.57 0.16 0.34 1.07 
5 0.46 0.23 0.66 1.34 0.46 0.23 0.07 0.75 
OF Standard approach 

unweighted weighted 
1 0.84 0.43 0.43 1.70 0.84 0.43 0.22 1.49 
2 0.88 0.48 0.50 1.86 0.18 0.48 0.25 0.91 
3 0.76 0.45 0.29 1.50 3.82 0.45 0.14 4.42 
4 0.79 0.41 0.35 1.55 0.79 0.41 0.35 1.55 
5 0.93 0.47 0.56 1.95 0.93 0.47 0.06 1.45 
Notes: OF=Objective functions as described in table 1; 

SD=Standard Deviation, in percentage. 
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Table 2.5: Welfare loss computed from PVAR and standard approach under alternative 
choices of Ay and A, summary statistics 

PVAR Standard approach 
Loss AyA, Loss AY A, 

/\A7.8 = 
0.1 

min 1.86 1.14 0.88 2.15 2.56 0.39 
max 2.02 10 0.10 3.58 0.10 10 
mean 1.94 2.64 
SD 5.42 34.99 

0.5 
min 1.65 1.98 0.51 1.88 3.87 0.26 
max 1.84 10 0.1 3.40 0.1 10 
mean 1.74 2.10 
SD 6.05 27.84 

min 1.58 2.57 0.39 1.75 4.92 0.20 
max 1.80 0.1 10 3.25 0.1 10 
mean 1.65 1.92 
SD 5.26 28.16 
Notes: SD=Standard Deviation, in percentage; Ay ranges 

from 0.1 to 10, A 7r =1/ Ay' 
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Table 2.6: Output/inflation trade-off under PVAR and standard approach, summary 
statistics 

PVAR Standard approach 
From to From to 

AA, -, = 0.1 
AY 10 3.77 10 2.59 

0.1 0.27 0.1 0.39 
SD(y) 0.417 0.425 0.75 0.88 
SD (ir) 0.471 0.462 1.21 0.90 
NWG -0. 001 -0.18 

AA,, = 0.5 
AY 10 3.59 10 4.17 
A, 0.1 0.28 0.1 0.24 
SD(y) 0.426 0.460 0.732 0.763 
SD (7r) 0.435 0.411 0.877 0.782 
NWG 0.01 -0.064 

, 
\AT'S 

ý 
1 

AY 10 4.32 10 5.20 
A, 0.1 0.23 0.1 0.19 
SD(y) 0.440 0.483 0.713 0.723 
SD(7r) 0.410 0.389 0.763 0.718 
NWG 0.022 -0.035 
Notes: SD=Standard Deviation, in percentage; A, = 1 /Ay; 

NWG= Net Welfare Gam=ASD(y) - ASD(7r) 
. 
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Figure 2.1: Data plot 
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Figure 2.2: Interest rate rules from original VAR, PVAR and standard approach, under 
alternative specification of the objective function 
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Figure 2.3. a: Output and inflation forecasts from original VAR, PVAR and standard 
approach, objective function 1,2 and3 
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Figure 2.3. b: Output and inflation forecasts from original VAR, PVAR and standard 
approach, objective function 4 and 5 
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Figure 2A Change in standard deviation of welfare loss components under alternative 
choices of Ay and A, PVAR approach 
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Figure 2.5: Change in standard deviation of welfare loss components under alternative 
choices of Ay and A, standard approach 
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Figure 2.6: Change in welfare loss under alternative choices of A, and A, PVAR and 
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Figure 2.7: Efficiency frontiers of optimal interest rate rules under PVAR and standard 
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Appendix C 
Data (Chapter 3) 

The US data are annual for the period 1960 to 2005 and are taken from the OECD 

Economic Outlook database and are described in the OECD Economic Outlook Database 

Inventory and on the Annex Tables session of the Sources and Methods. 

GDP,, Value, at market prices, of gross domestic product; 

GNFL, Value of government net financial liabilities"; 

PGDP, deflator of GDP at market prices; 

GGINTP,, Value of gross government interest payments; 

GGINTR, Value of gross government interest receipts; 

GNINTP, Value of net government interest paymentS32. 

YPGT, Value of government total disbursement; 

YRGT, Value of government total receipts; 

IRS, Short-term nominal interest rate (in percentages)", 

IRL, Long-term interest rate (in percentages)" 

The variables used in this study are then calculated as follows: 

I. kl-, is GNFL in percentage of GDP. 
Yt 

31 This variable refers to the consolidated gross financial liabilities of the government sector net of short-term 
financial assets, such as cash, bank deposits, loans to the private sector etc. 

32 GGINTP = GNINTP - GNINTR 
" U. S. rates refer to interest rates on United States dollar three-month deposits in London, UK interest rates 
are 3-month rates on interbank loans, while Gennany interest rates refer to the 3-month FIBOR rate. 

34 Rates refer to the ten-year government bond yield for the US and the UK, while they refer to the federal 
bond yield in the case of Germany. 
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2. Ll- is YRGT in percentage of GDP. 
Yt 

3. ýL' is YPGT minus GGINTP in percentage of GDP. 
Yt 

4.7rt is the annual rate of change in the natural logarithm of PGDP 
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5. yt is the output GAP measured as deviation of real GDP from a quadratic trend. 
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