
Managing the Evolution of Dependability
Cases for Systems of Systems

Georgios Despotou

Submitted for the degree of PhD

Department of Computer Science

University of York

April 2007

In memory of my grandfather

"Strength accompanied by wisdom has benefited the one who possesses it, but

without wisdom it harms more its possessors, and while it laureates the bodies of

those who cultivate it, yet it obscures the nurture of the soul. "

Isocrates

Abstract

Abstract

Dependability is a composite property consisting of attributes such as reliability,

availability, safety and security. The achievement of these attributes is often essential

for the operational success of systems undertaking critical and complex tasks.

Assurance that the final system will demonstrate the required dependability qualities,

can be crucial to the acceptance of the system into service.

Safety cases are a well established concept used to establish assurance about the safety

properties of a system. However, safety cases focus only on one attribute ot

dependability. The principles and processes of creating an integrated dependability case

- that assures all aspects of dependable system behaviour - are less well understood. A

number of challenges are faced when attempting to support dependability case

development. These include the systematic elicitation of dependability goals, the

management and justification of trade-offs, and the evolution of multi-attribute

arguments in step with the design process.

This thesis addresses these challenges by defining a rigorous framework, accompanied
by a set of methods, for establishing dependability cases. Firstly, a method for eliciting
dependability requirements is defined by extending existing safety deviational analysis

techniques. Secondly, a method for systematically identifying and managing justified

trade-offs is presented. Thirdly, the thesis describes the co-evolution of dependability

case arguments alongside system development - using a dependability case architecture

that corresponds to system structures. Finally, the thesis unifies these contributions by

defining a metamodel that captures and interrelates the concepts underlying the

proposed methods. Evaluation of the work is presented by means of peer review, pilot

studies and industrial examples.

4

Contents

Contents

Abstract ..
4

Contents ...
5

List of Figures ..
11

List of Tables ...
15

Acknowledgments
...

17

Author's Declaration ..
18

Chapter 1 Introduction ...
21

1.1 Systems of Systems ..
21

1.1.1 Air Traffic Control (ATC) ..
21

1.1.2 Network Centric Warfare (NC99 ..
22

1.2 General Characteristics of Systems of Systems .. 23

1.3 Assurance of Operation ..
25

1.3.1 Examples ofAccidents inNCWandATC ..
25

1.3.2 Assurance as Obligatory Requirement ..
26

1.3.3 System Dependability Assurance ..
27

1.4 Dependability ... 27

1.5 Dependability Cases .. 27

1.6 A Roadmap for Systems of Systems Dependability Cases ... 28

1.6.1 Multiple Dependability Attributes ... 29

1.6.2 Allocation and Apportionment ofRequirements ... 30

1.6.3 Conflicting Requirements .. 31
1.64 Changing Requirements .. 31

1.65 Traceability ... 33

1.6.6 Interaction of Case and Design ... 33

1.6.7 Ownership of the Dependability Case ... 34

1.7 Thesis Proposition ... 34
1.8 Objectives of the Research 35

1.8.1 Definition ofa Rigorous Framework
..

36

1.8.2 Identification of Dependable Operation ... 37

1.8.3 Resolution of Conflicts .. 37

1.8.4 Development of Case ...
37

1.9 Thesis Structure 38

Chapter 2 Literature Review ...
41

5

Contents

2.1 Introduction ...
41

2.2 Systems of Systems ..
41

2.2.1 Definitions ...
42

2.2.2 Modelling ..
45

2.2.2.1 UML ..
46

2.2.2.2 C4ISR & Defence Architecture Frameworks .. 47

23 Dependability 48

2.3.1 Definitions ...
48

2.3.2 Dependability& 'FaultScience ...
51

2.3.3 Unification of Safety and Security ...
53

2.3.4 Measuring Dependability ..
55

2.4 Trade-offs In System Design ...
55

2.4.1 The Architecture TradeoffAnalysis Method (ATAAV . ..
56

2.4.2 Design Rationale ...
59

2.4.2.1 QOC ...
60

2.4.2.2 SIBYL ...
61

2.4.2.3 gIBIS .. . 62

2.4.3 As Low As Reasonably Practicable (ALARP) Principle
63

2.5 Dependability Cases 66
2.5.1 Safety Cases .. 67

2.5.2 Reliability and Maintainability Cases ...
71

2.5.3 Security Cases ... 72

2.6 Summary .. 75

Chapter 3 Establishing a Dependability Case Framework ... 77

3.1 Dependability Arguments ... 77
3.2 Dependability Attributes and Non-functional Requirements .. 78
3.3 The Role of Argumentation In System and Requirements Evolution 79
3.4 Creating and Capturing Argument Context ... 81
3.5 Rigorous Definition of the Framework ... 83

3.5.1 Definition Using Kernel MetaMetaModel (KM3) ... 84

3.5.2 Eclipse Modelling Framework (EW) 86

3.5.3 Model Management Using EPSILON .. . 87

3.6 Summary 88

Chapter 4 Requirements Elicitation Using Dependability Deviation Analysis 90

4.1 Introduction 90

4.2 Deviation Analyses 91

4.3 Analyses during the System Lifecycle ...
91

4.3.1 Failure Modes and Effects Analysis ..
92

4.3.2 Hazard and Operability Studies (HAZOPS) ...
92

6

Contents

4.3.3 SHARD ..
93

4.3.4 Wtat-i(Analysis ..
93

4.3.5 SneakAnalysis ...
93

4.4 Dependability Deviation Analysis (DDA) 94

4.4.1 Overview ...
94

4.4.2 Structure and Elements ...
96

4.4.2.1 Dependability Attributes 98

4.4.2.2 Issues and Concerns .. . 98

4.4.2.3 System Elements, System Element Types and System Models 99

4.4.2.4 Deviation and its Children Classes 99

4.4.2.5 Guidewords ..
100

4.4.2.6 Failure Conditions ...
100

4.4.2.7 Traceability of Effect ...
101

4.4.2.8 Dependability Profiles and Dependability Requirements ..
101

4.4.2.9 System Tasks ...
102

4.4.2.10 Task Issues ...
102

4.5 Overview of the DDA Process ..
103

4.5.1 Using the Metamodel to Create Templates ...
103

4.5.2 Overall DDA process ..
104

4.6 Underlying Principles of DDA ...
105

4.6.1 Similarity of Concepts between Dependability Attributes
105

4.6.2 Extensibility of (deviation) Guidewords Representing Typical Issues
................

107

4.7 DDA Stages ..
109

4.7.1 Identification of Typical Issues
...

110

4.7.2 Identification of Concerns
...

III

4.7.3 Definition ofSuitable Deviations
..

115

4.7.3.1 Defence Architecture Frameworks (DAF) .. 115

4.7.3.2 Process Walkthrough .. .
116

4.7.4 identification ofApplicable Deviations
...

120

4.7.5 Identification of Failure Conditions
..

122

4.7.6 Definition of (Failure) Traceability
..

126

4.7.6.1 Using the MODAF Metamodel. to Understand Traceability
130

4.7.6.2 Scmi-automated Approach for Establishing Traceability
131

4.7.7 Definition of Dependability Profile and Preliminary Identification of Goals
....

133

4.8 Other Sources of Requirements ...
136

4.9 Summary ..
137

Chapter 5 Facilitating Trade-offs Between Dependability Requirements 139

5.1 Introduction
139

5.2 Trade-offs During Evolution of the Dependability Case
139

5.3 Review of Concepts and Methodologies In Decision Making
140

7

Contents

5.3.1 ATAM ..
140

5.3.2 Cost Benefit Analyses ..
142

5.3.3 Easy Win- Win ..
143

5.3.4 Multi Criteria Decision Analysis ...
144

5.3.4.1 The Analytic Hierarchy Process ..
144

5.4 Using AHP for Trading-off goals In the Context of Dependability Cases 145

5.4.1 Identification of Criteria & Alternatives ...
146

5.4.2 Calculation of Weights ..
148

5.4.3 Evaluation ofAlternatives ...
148

5.5 Drawbacks in the Numerical Representation of Dependability 151

5.6 The Trade-Off Method (TOM) ..
154

5.6.1 Objectives ..
154

5.6.2 Overview of the Method ..
155

5.6.3 Fundamental Concepts of TOM ..
156

5.6.3.1 Acceptability of Requirements ..
156

5.6.3.2 Flexibility in Goal Based Requirements ..
159

5.6.3.3 Willingness to Trade-Off ..
161

5.7 Method Walkthrough ...
165

5.7.1 Determination ofBounds ..
165

5.7.2 Identification ofAlternatives ...
169

5.7.3 Construction of the Trade-offArgument
...

170

5.8 The Trade-Off Argument ... 176

5.9 Summary .. 179

Chapter 6 Evolution and Architecture of Dependability Cases .. 181

6.1 Introduction ... 181

6.2 Processes Participating In the Evolution of the Dependability Case 182

6.3 Influence of GSN on System Development .. 184

6.3.1 Argument Strategies
..

184

6.4 Factor Analysis and Decision Alternatives (FANDA) .. 186

6.4.1 Overview and Structure ofFANDA Elements
...

187

6.4.1.1 Goal ... 187

6.4.1.2 Factor ... 187

6.4.1.3 Factor Instance ... 188

6.4.1.4 Decision ... 188

6.4.1.5 Impact on Goal .. 188

6.4.1.6 Decision Impact on goal ..
189

6.4.2 FANDA Process
..

189

6.4.2.1 Six Hats Method ..
189

64.3 Overview ofthe Process
..

191

6.4.3.1 Elicitation of Factors and Factor Instances Stage ..
192

8

Contents

6.4.3.2 Goal-wide Examination of Factor Instances Stage ..
195

6.4.3.3 Specification of Decisions Stage ...
196

6.4.4 Availability ofEvidence during the System Lifecycle ...
198

6.5 Architecting the Dependability Case ...
198

6.5.1 High Level Dependability Argument ...
199

6.5.1.1 Top Claim ..
201

6.5.1.2 Argument from the Perspective of Dependability Attributes
202

6.5.1.3 Arguing Acceptable Operation Regarding Dependability Concerns 203

6.5.2 Dependability Profiles Supporting the High Level Dependability Argument 205

6.5.3 Use of GSY Contracts to Structure the Dependability Case
207

6.5.3.1 Refactoring the High Level Argument to Use Contracts ...
211

6.5.3.2 Contract Module Supporting the High Level Argument ...
212

6.5.3.3 Supporting Modules ..
214

6.6 Summary ..
216

Chapter 7 Evaluation ...
218

7.1 Means of Evaluation .. . 219

7.1.1 Examples ...
219

7 1.2 Peer Review ...
219

7.1-2.1 Peer Review through Publications ...
220

7.1.2.2 Peer Review within the HIRTS Defence and Aerospace Research Partnership 221

7.1.2.3 Peer Review during Case Studies ..
221

7.1.3 Formalisation of the Framework and Tool Support ...
222

7.1.4 Case Studies
..

222

7.2 Evaluation of the Contributions ... 224

7.2.1 Evaluation ofDependability Deviation Analysis (Chapter 4) 224

7.2.2 Evaluation of the Trade-off Methodology (Chapter 5) 226

7.2.3 Evaluation of the Dependability Case Evolution and Architecture (Chapter 6). 227

7.2.4 Evaluation of the Metamodel .. 229

7.3 Evaluation of the Thesis Proposition .. . 230

Chapter 8 Conclusions and Future Work ... 234

8.1 Overall Conclusions .. 234

8.1.1 Conclusions on Dependability Deviation Analysis ... 235

8.1.2 Conclusions on the Trade-OffMethod .. 235

8.1.3 Conclusions on the Dependability Case Evolution ... 235

8.1.4 Conclusions on the Dependability Case Metamodel. .. 236

8.2 Revisiting the Dependability Case Roadmap 236

8.2.1 Multiple Dependability Attributes ...
237

8.2.2 Allocation and Apportionment ofRequirements ...
237

8.2.3 Conflicting Requirements ..
237

9

Contents

8.2.4 Traceability ...
238

8.2.5 Interaction between System and Case Development ...
238

8.3 Areas of Further Work ...
238

8.3.1 Extending the Library ofIssues and Deviations ...
239

8.3.2 Determining Assurance Levels in Dependability Cases
239

8.3.3 Dependability Cases in the Presence of Change ..
240

8.3.4 Socio-technical Issues Concerning Flexible Requirements and Trade-offs
240

8.4 Final Remarks ...
240

Appendix A Overview of the ARP 4761 ...
243

Appendix B Overview of MODAF and the AGO Scenario ..
250

Appendix C DCM & EOL Code ...
266

References ..
303

10

List offigures

List of Figures

Fig. 2.1 - UML Diagram for a BMD SoS [201 . .. 46

Fig. 2.2 - Laprie's Dependability Tree ... 49

Fig. 2.3 - Categorisation of Dependability Properties .. 50

Fig. 2.4 - Fault Transition to Failure ... 51

Fig. 2.5 - Laprie's Categories of Faults ... 52

Fig. 2.6 - Unification of Safety and Security 1341 ..
53

Fig. 2.7 - System Quality Attribute Obligations ...
57

Fig. 2.8 - ATAM Deliverables ...
58

Fig. 2.9 - Design Rationale Representations 1401 60

Fig. 2.10 - The QOC Method [401 ..
60

Fig. 2.11 - SIBYL Elements 1421 ...
62

Fig. 2.12 - IBIS Main Elements and Relations 1431 ..
63

Fig. 2.13 - ALARP Categorisation and Risk Acceptance ...
64

Fig. 2.14 - GSN Pattern for the ALARP Principle [471 ..
65

Fig. 2.15 - Safety Case Structure [52] ..
68

Fig. 2.16 - Principal Elements of GSN 1471 ...
69

Fig. 2.17 -'Control System' Example GSN Argument .. 69

Fig. 2.18 - Evolution of an Argument .. 71

Fig. 2.19 - Elements of the R&M Case [561 ... 72

Fig. 2.20 -A Security MOAT [581 .. 73

Fig. 2.21 - VNRM Concept 1601 .. 74

Fig. 2.22 -A VNRM Map Combining Fault Trees and GSN 1561 ... 74

Fig. 3.1 - Evolution of a Dependability Argument 81
Fig. 3.2 -Technologies Used in Dependability Cases ... 84

Fig. 3.3 - Extract of GSN in KM3 .. 85
Fig. 3.4 - UML Modelling of Basic GSN 85 .. .
Fig. 3.5 - GSN Press Argument In the Eclipse EMF Editor .. 86

Fig. 3.6 - Example of Constraints Using EPSILON ... 87

Fig. 3.7 - Press Argument in GSN (produced in GraphViz) .. 88

11

List offigures

Fig. 4.1 - Bow-Tie Analysis ...
91

Fig. 4.2 -A Multi-attribute Perspective of the Bow-tie Concept ... 95

Fig. 4.3 - Schematic Overview of DDA ..
95

Fig. 4.4 - DDA structure in the dependability case metamodel ... 97

Fig. 4.5 - Example Guidewords used in DDA ...
100

Fig. 4.6 -A DDA Template in the EMF Editor ...
103

Fig. 4.7 - Overall Stages of the DDA ..
104

Fig. 4.8 - Guidewords used in HAZOPS SHARD and Sneak Analysis 108

Fig. 4.9 -Identification of Concerns Stage ...
112

Fig. 4.10 - Definition of Suitable Deviations Stage Process ..
117

Fig. 4.11 - Properties of a Suitable Deviation in the EMF Editor 119

Fig. 4.12 - Properties of an Issue in the EMF Editor ..
119

Fig. 4.13 - Identification of Applicable Deviations Stage Process 121

Fig. 4.16 - Identification of Failure Conditions Stage Process .. 123

Fig. 4.15 - OV2 for the AGO using UML .. 124

Fig. 4.16 - OV-5 Node Connectivity Diagram Using UML ..
125

Fig. 4.17 - Definition of (Failure) Traceability Stage Process .. 127

Fig. 4.18 - Failure Conditions (FC) Map for the AGO Scenario ... 129

Fig. 4.19 - Associations of the OV2 MODAF Product .. 131

Fig. 4.20 - "Used-by" Association in UML .. 132

Fig. 4.21 - Definition of Dependability Profile Stage Process .. 134

Fig. 5.1 - Quality Attributes Utility Tree ... 141

Fig. 5.2 - Overview on CBAM .. 142

Fig. 5.3 - AHP Hierarchy .. 144

Fig. 5.4 - FTA Issues .. 147

Fig. 5.5 - AHP Criteria Comparison Table & Weights .. 148

Fig. 5.6 - Calculation of Utility Vector ... 151

Fig. 5.7 - Overall Processes of TOM .. 156

Fig. 5.8 - Example of Risk Classification and ALARP ... 157

Fig. 5.9 - Example of Flexible Security Requirements in GSN ... 161

Fig. 5.10 - Relating Degree of Satisfaction, Acceptability and Willingness 162

Fig. 5.11 - Compensating Willingness .. 165

Fig. 5.12 - Determination of Bounds Process .. 167

12

List ofFigures

Fig. 5.13 - Identification of Alternatives Process .. 170

Fig. 5.14 - Constructing the Trade-off Argument .. 172

Fig. 5.15 - Overview of the Trade-off Argument .. 177

Fig. 5.16 - Bounds Argument and Goal Bound Argument .. 177

Fig. 5.16 - Selection Argument ... 178

Fig. 6.1 - Methods Supporting Argument Based System Evolution 182

Fig. 6.2 - Example of Strategy in Goal Decomposition [471 ... 185

Fig. 6.3 - FANDA Metamodel Description .. 187

Fig. 6.4 - Overall FANDA Stages ... 191

Fig. 6.5 - Process for Instantiating Factors ...
193

Fig. 6.6 - Goal - wide Examination of Factor Instances .. 196

Fig. 6.7 - Specification of Decisions Process ..
197

Fig. 6.8 - High Level Dependability Argument and Support Modules 199

Fig. 6.9 - Case Partitioning Based on Attributes ..
200

Fig. 6.1 0 -Top Claim in Context of the System's Operation ...
202

Fig. 6.11 - Attributes of Interest in the High Level Module ..
203

Fig. 6.12 - Arguing About the Concerns ..
204

Fig. 6.13 - Strategy by Appeal to the Dependability Profile ..
206

Fig. 6.14 - Use of GSN Contracts in Structuring a Case ..
207

Fig. 6.15 - MODAF Centric Dependability Case Architecture ... 210

Fig. 6.16 - High Level Argument Using GSN Contracts .. 211

Fig. 6.17 - High Level Argument Linking to GSN Contract ... 212

Fig. 6.18 - Dependability Case Contract .. 213

Fig. 6.19 - MODAF Product Arguments ... 215

Fig. A. 1 - ARP 4761 Steps within the V-Lifecycle .. 244

Fig. A. 2 - The ARP 4761 Processes .. 245

Fig. A. 3 - Safety Analyses During System Lifecycle [761 ... 246

Fig. A. 4 - Failure Information During System Lifecycle ... 248

Fig. B. 1 - MODAF Requirements Documents .. 254

Fig. B. 2 - DODAF Product Dependencies (Data Centric Perspective) 255

Fig. B. 3 - Common Classes between MODAF Products (Data Centric) 256

Fig. B. 4 - AGO OV1 .. 258

Fig. B. 5 - AGO OV5 .. 259

13

List offigures

Fig. B. 6 - AGO OV6 .. 260

Fig. B. 7 - AGO OV2 .. 261

Fig. B. 8 - AGO OV7 .. 262

Fig. B. 9 - AGO SW ... 263

14

List of Tables

List of Tables

Table. 3.1 - Claims, Arguments and Evidence for Dependability Attributes 78

Table. 4.1 - SHARD Process ... 93

Table. 4.2 - Comparison of Concepts in Safety, Security and the DCM 106

Table. 4.3 - Mapping Between Guidewords and Attributes .. 109

Table. 4.4 - Compilation of Typical Issues ill

Table. 4.5 - Definition of Task Issues and Identification of Concerns 114

Table. 4.6 - Metamodel Elements and Failures .. 118

Table. 4.7 - Example Model Characteristics Required to Reveal Dependability Issues ... 120

Table. 4.8 - Description of the OV2 Needlines .. 124

Table. 4.9 - OV2 Failure Identification ... 125

Table. 4.10 - OV5 Failure Identification ... 126

Table. 4.11 -Associations Between Failure Conditions In OV2 and OV5 128

Table. 4.12 - OV-2 Traceability Matrix .. 131

Table. 5.1 - FTA Overall Concerns .. 147

Table. 5.2 - Weights for the Criteria Subset ... 150

Table. 5.3 - Evaluation and Normalisation of Alternatives ... 150

Table. 5.4 - Bounds & Limits of the Identified FTA Concerns ... 168

Table. 5.5 -Trade-off Table Format ... 170

Table. 5.6 - FTA Trade-off Table ... 174

Table. 5.7 - Identification of Best Alternative .. 175
Table. 5.8 - Identification of Benefit ... 175
Table. 5.9 - Identification of Compromise ... 175
Table. 5.10 - Evaluation of Best Alternative ... 176
Table. A 1- FHA for an Aircraft Wheel Brakin S stem 247 . g y ...
Table. B. 1 - Overview of the DODAF Products and Views ... 251

Table. 13.2 - MODAF Additional Views ... 251

Table. B. 3 - Representation of DODAF/MODAF Products In UML 252

Table. B. 4 - DODAF Development Process ... 257

Table. B. 5 -AGO OV-2 (Needline Description) .. 261

is

List of Tables

Table. B. 6 -AGO SV5 ... 263

16

Acknowledgments

Acknowledgements

This research is carried out under the High Integrity Real Time Systems Defence and
Aerospace Research Partnership (HIRTS DARP), funded by the MoD, DTI and
EPSRC. The members of the HIRTS DARP are BAE SYSTEMS, Rolls-Royce p1c,
QinetiQ and the University of York.

I would like to thank my supervisor, Dr. Tim Kelly, whose advice, encouragement and

patience have been invaluable.

I would also like to thank my friend Dimitrios Kolovos for his expert input on

modelling and metamodelling.

Finally I would like to thank the DARP Working Group members Colin o'llalloran and
Andy Ward, Glen Callow and Jane Fenn for their comments and feedback, and in

particular Jane Fenn, Glenn Callow and BAE SYSTEMS for providing this research

with an appropriate industrial case study.

17

Author's Declaration

Author's Declaration

Some of the material presented in this thesis has previously been published as

conference, workshop and journal papers:

(presented in reverse chronological order)

e G. Despotou, T. Kelly. Design and Development of Dependability Case

Architecture during System Development. In proceedings of the 25th

International System Safety Conference (ISSC), Baltimore, MD USA. August

2007.

G. Despotou, T. Kelly. An Argument Based Approach for Assessing Design

Alternatives and Facilitating Trade-offs in Critical Systems. Journal of System

Safety Vol. 43 No. 2 March-April 2007, System Safety Society. ISSN-0743-8826

e G. Despotou, D. Kolovos, R. Paige, F. Polack, T. Kelly. Towards a Metamodel

for Dependability Cases, presented at the Object Management Group (OMG) I st
Software Assurance Workshop, Washington D. C. USA, March 2007.

G. Despotou, T. Kelly. An Argument Based Approach for Assessing Design

Alternatives and Facilitating Trade-offs in Critical Systems. In proceedings of
the 24th International System Safety Conference (ISSC), Albuquerque, NM
USA. Proceedings by the System Safety Society, August 2006.

G. Despotou, T. Kelly. Extending Safety Deviation Analysis Techniques to
Elicit Flexible Dependability Requirements. In proceedings of the Ist IET

International Conference on System Safety Engineering, London, UK, June
2006. Proceedings by the Institute of Engineering and Technology (IET). ISSN

0537-9989.

G. Despotou, M. Hall-May, T. Kelly. Eliciting Safety Policy and Balancing with
Operational Fitness in Systems of Systems. In proceedings of the Ist IEEE
International Conference on Systems of Systems Engineering (SoSE), Los

18

Author's Declaration

Angeles, CA USA, April 2006. Proceedings by IEEE SMC. ISBN 1-4244-0188-

7.

G. Despotou, T. Kelly. The Need for Flexible Requirements in Dependable

Systems. In proceedings of the 4th International Workshop on Requirements for

High Assurance Systems (RHAS), published by the Software Engineering

Institute (2005). 13th IEEE International Requirements Engineering Conference,

Paris, France, August 2005.

G. Despotou, J. McDermid, T. Kelly. Using Scenarios to Identify and Trade-off

Dependability Objectives in Design. In proceedings of the 23rd International

System Safety Conference (ISSC), San Diego, CA USA, proceedings by System

Safcty Socicty August 2005.

R. Weaver, G. Despotou, T. Kelly, I McDermid. Combining Software Evidence

- Arguments and Assurance. Workshop in Rcalising Evidence Based Software

Engineering (REBSE), 25th International Conference on Software Engineering,

Saint Louis, MO USA, ACM 2005. ACM SIGSOFT Software Engineering

Notes, Volume 30, Issue 4 (July 2005), ISBN: 1-59593-121-X.

R. Alexander, M. Hall-May, G. Despotou, T. Kelly. Using Simulation to

Evaluate Safety Policy for Systems of Systems. 2nd International Workshop on
Safety and Security of Multi Agent Systems (SASEMAS), 4th International

Joint Conference on Autonomous Agents and Multiagent Systems, Utrecht,

Nctherlands, July 2005.

G. Despotou, T. Kelly. Extending the Concept of Safety Cases to Address

Dependability. In proceedings of the 22nd International System Safety

Conference, Providence, RI USA, proceedings by System Safety Society 2004.

Except where stated, all the work contained within this thesis represents the original
contribution of the author.

19

Intentionally Blank

20

Chapter I- Introduction

Chapter 1

Introduction

Dependability is a composite property consisting of attributes such as reliability,

availability, safety and security. The achievement of these attributes is often essential
for the operational success of systems undertaking critical and complex tasks. Systems

of Systems (SoS) is a term increasingly used to represent large complex systems

consisting of many independent elements. Systems of Systems are designed to solve

particularly complex and critical problems. Due to the criticality of the problems that

the SoS solve, system stakeholders need to have confidence that the system will operate
in an acceptable way. This entails examining the operational behaviour of the system

from the perspectives of a number of attributes crucial to the success of the operation,

such as performance, availability and safety. Dependability is an umbrella term used to

encompass these attributes.

1.1 Systems of Systems
An example of an SoS can be found in the integration of the air traffic control regions

providing automated air traffic management functions for both aircraft and flight

controllers; another is the concept of Network Centric Warfare which entails individual

platforms collaborating and sharing awareness to achieve the mission objectives more
effectively.

1.1.1 Air Traffic Control (ATC)

Air traffic control consists of a set of services aiming to direct aircraft through airspace,

overseeing adherence to separation limits between aircraft [1]. The airspace

management functions provided by ATC need to cover all phases of a flight. ATC

functions involve a number of geographically dispersed systems and users, such as

radars, controllers' terminals, airport towers, and meteorological stations, which need to

collaborate to achieve the safe and efficient passage of aircraft.

21

Chapter I -Introduction

In particular, airspace consists of Flight Information Region (FIR) sectors over which an
Area Control Centre is responsible for controlling all the flights. The FIR can be further

divided into sectors. During take-off (and initial climb), landing (and initial approach)

and whilst on the ground, aircraft are controlled by the local tower. When moving from

one region to another, responsibility for an aircraft is handed over to the corresponding

controllers. For example, shortly after take-off, the local tower will hand responsibility

over to the appropriate FIR control centre. Although pilots have ultimate responsibility
for the aircraft's safety, controllers may require an aircraft to change flight level

(altitude), reduce or increase speed in order to maintain separation,. or to request

manoeuvres such as joining a holding pattern.

Controllers must be able to see information in real time. Precision of navigation data is

another important requirement, which allows aircraft to cruise with reduced separation
between them. This has already led to airspace with reduced minimum vertical

separation between aircraft [2], increasing the capacity of an area for aircraft. The air

traffic management system has to predict the trajectories of aircraft in airspace over

time (i. e. 4D trajectories), search for any conflicts between aircraft, and help a flight to

avoid areas with turbulence or bad weather.

Operation of the ATC should be both safe and efficient. Not being able to achieve

either of these two attributes the system will not be fit to operate for its intended

purpose. The ATC example was used throughout the research to better understand the

challenges in acquiring confidence for this class of systems.

1.1.2 Network Centric Warfare (NCW)

The concept of NCW was introduced as a means of using computing and systems
engineering technology to achieve more effective military missions. The US
Department of Defense (DoD) in [3] suggests that "Network Centric Warfareprovides a
valuable perspectivefor achieving success in a target-oriented warfare situation, where
timely, relevant, accurate andprecise information is required to automatically engage
targets expeditiously with the most effective weapons andforces available".

22

Chapter I -Introduction

NCW involves integration and coordination between all battle, control and decision

making systems, so that the appropriate tactics and resources are used to efficiently

achieve mission goals. Each element consists of a battle platform that has a perception

of its environment, which then is shared among other platforms [4]. Each element is

capable of independent operation - making its own decisions in order to achieve

mission objectives. Elements should share their view of the environment in order to

enrich the overall intelligence 'picture'. Thereby one element may benefit from another

element's knowledge allowing it to make more accurate and more confident decisions.

When a mission goal is defined the system has to plan the steps required to achieve the

goal, the elements that will participate in carrying out these steps, along with the

contribution and responsibility of each element. After receiving the goals and its tasked

responsibilities, each clement has to decide upon the resources that it needs, and to plan
how it will acquire those efficiently. NCW is a paradigm vividly showing the need of

achievement of dependability attributes. The safety of the participating units, security

of sensitive information (e. g. communication codes) and availability when a unit is

required to operate are three attributes of importance in NCW. Moreover there can be

interaction between these attributes. For example in a NCW system the safety of the

system's elements is closely dependent to the security of the system, as security

vulnerabilities can be exploited by the enemy.

1.2 General Characteristics of Systems of Systems
The phrase "Systems of Systems (SoS)" has been introduced to describe systems such
as those described in the previous section. Although there are variations depending on
the particular domain in which the term System of Systems is defined, in this thesis the
following essential characteristics have been defined in order to classify a system as
System of Systems:

Overall objectives: A System of Systems has a set of high level goals of
interest to its stakeholders, such as provision of air traflic management (for
ATC) or accomplishmcnt of a mission (for NCW).

23

Chapter I -Introduction

Complexity of problem: SoS are typically used in problems of high complexity
(e. g. aircraft route planning or targeting).

Multiple elements: A System of Systems consists of many elements which are

systems in their own right and can or have been developed independently from

the SoS (e. g. a radar or an unmanned aircraft).

9 Autonomy: Elements are able to make their own decisions with varying degrees

of autonomy (e. g. autonomous vehicles).

e Geographical dispersion: SoS deployed in the real world often involve

elements that are geographically dispersed and mobile - changing their position

according to the overall SoS objectives.

e Collaboration: SoS elements need to collaborate offering some of their
functions to achieve the overall SoS objectives (e. g. sharing of intelligence

requires elements sensing and others analysing data).

Communication: Collaboration between the SoS elements results in exchanges

of information.

Elements are heterogeneous: Elements have been developed independently

from each other, potentially with different technologies and from different
developers.

This thesis defines System of Systems in the following terms:

A System of Systems is an organised complex unity assembled from

dispersed, highly cooperating, autonomous systems - each of which is

capable of operating independently.

24

Chapter I- Introduction

1.3 Assurance of Operation
In section I we briefly described two examples of Systems of Systems, as well as their

characteristics. Development and use of such systems can be very beneficial; however

SoS exhibit emergent behaviour resulting from the interactions between components.
This behaviour cannot be predicted from observation of any single component. To
illustrate this problem, the following sections present a number of historical situations in

which SoS did not operate as expected.

1.3.1 Examples of Accidents in NCW and ATC

Friendly Fire Accident in NCW

After the gulf war, on April 14th 1994, two F- 15 fighter aircraft operated by the US Air

Force shot down two Black Hawk transport helicopters operated by the US Army. The

helicopters were flying in the no fly zone, and as a result of the accident, everyone

onboard the helicopters was killed. This occurred despite the presence of the US Air

Force Airborne Warning and Control System (AWACS) which was in control of

coordinating NATO activity in the region. AWACS fitted aircraft are able to carry out

airborne surveillance and battle management functions. Leveson cites [5] that as many

as 130 mistakes could be identified as contributing factors to this accident. In this case,
failure of individual elements to operate as expected had an impact on the overall SoS

operation, resulting in compromising its safety levels. Alexander et al provide in [6] an

analysis from the viewpoint of the SoS characteristics, and how individual failures

propagated through the different SoS elements and contributed to the accident.

Air Traffic ControlAccident

After an accident in 1978 in which two aircraft were involved in a mid-air collision in

airspace over the airport from which they had just taken off, all aircraft were required to
install a collision avoidance system - WAS (Traffic Collision Avoidance System).
WAS continuously monitors the traffic around an aircraft enhancing the crew's
perception of the environment. It detects and resolves situations in which two aircraft
are on course for a collision.

Although the primary responsibility of resolving such conflicts lies with the air traffic
controller, WAS becomes essential when two aircraft are in such close proximity that

FUNIVEHSITY'l 25
OF YORK

Chapter I- Introduction

immediate action is necessary to avoid collision. In such situations, WAS systems on
both involved aircraft, after communicating with each other, issue resolution advisory

messages. These messages ideally will result in opposing (vertical) manoeuvres
increasing the aircraft separation. On the Ist of July 2002 a cargo Boeing 757 and a

passenger Tu-154 aircraft collided inside Swiss airspace over Lake Constance near
10berlingen [7]. Although the two aircraft were the only aircraft in that vicinity, a

number of circumstances resulted in the controller failing to notice the conflict until the

aircraft were in close proximity. The controller issued (with substantial delay) advice to

the aircraft to change altitude. At that time WAS had also issued resolution advisory

messages, requesting the ascent of the Tu-154 and the descent of the B-757. One

aircraft followed the controller's advice whereas the other followed TCAS. This

resulted in the descent of both aircraft and - ultimately -a collision. The accident

claimed 69 fatalities on board both aircraft.

The Problem of Multiple, Interacting, Causes

Analysing the accidents, one cannot conclusively pinpoint a single cause. In both cases
there were many factors that contributed to the accidents. The safeguards that had been

designed to contain the effects of possible failures failed to operate properly themselves.
Furthermore one can also notice different types of failures. For example had the ATC

controller completely failed to notice the conflict between the aircraft, the crews would
only have had the (safe) advisory of the TCAS. Instead, the untimely response of the

controller resulted in conflicting advice, which contributed to the accident.

1.3.2 Assurance as Obligatory Requirement

It is now commonplace that developers of safety critical systems are required to produce
a corresponding safety case - communicating an argument, supported by evidence, that
a system is acceptably safe to operate. Examples of application domains for such
systems include the defence and railway sectors. In such domains the description of
requirements for the safety case product, as well as the processes for development, are
described in detail by the respective safety standards such as the U. K. Defence Standard
00-56 [8].

26

Chapter I- Introduction

1.3.3 System Dependability Assurance

Over the years there has been significant research in the safety domain and in particular

regarding safety cases. However safety is only one of a number of system attributes
that arc potentially of interest. Other system attributes can be crucial to the stakeholders

of a system. For example, consider the case of NCW - conceived with the sole purpose

of improving the effectiveness of force elements in the battlefield. In such a system,

safety can be of similar importance with other attributes such as performance or

availability. For example, a defensive system being unavailable in the presence of an

enemy threat could be considered to be of utmost importance. The importance of

assuring the achievement of dependability attributes (other than safety) is readily

apparent in many Systems of Systems examples. Despite the fact that there are

standards explicitly requiring assurance about safety and the maintainability and

availability of a system, there are no standards explicitly asking for assurance about the

overall dependable behaviour of a system.

1.4 Dependability
Whilst there is no overall consensus on the exact definition of dependability, many

agree that it can be described as the "the system's characteristic thatjusti/1'es placing

one's reliance on it" [9], entailing such attributes as reliability, safety, security and

maintainability. Prasad similarly defines Dependability as a variable sized vector

of attributes describing overlapping desiderata, chosen subjectively, in accordance to

the stakeholders'particular requirements" [10]. Furthermore, Prasad highlighted that
despite the fact that dependability attributes can be interrelated, they are not orthogonal
to each other, and can be in conflict or in harmony. Overall, dependability is a
composite system property consisting of a number of different heterogeneous attributes.

1.5 Dependability Cases
In this thesis the following definition of a dependability case has been adopted:

A dependability case is a clear, defensible, and traceable argument that a
system is acceptably dependable to operate in a given operational context.

27

Chapter I -Introduction

Argument: A dependability case must communicate an argument about the

achievement of the dependability attributes of a system, providing assurance to

the developers.

Context: Context describes the system's intended operation; it is unrealistic to

attempt to create a dependability case without capturing the envisioned operation

and operational context of the system.

9 Dependable: A dependability case should provide confidence in all
dependability attributes that arc of interest to the system's stakeholders.

Acceptable: Achieving all the required attributes fully is a utopian goal.
Stakeholders must trade-off the (sufficient) achievement of multiple competing

attributes. Justification of this trade-off is an essential element of any
dependability case.

* Traceable: It should be possible to clearly trace between the objectives,

arguments, evidence and trade-offs of the dependability case. Such traceability

enables systematic review and evaluation of the acceptability of the system
design.

1.6 A Roadmap for Systems of Systems Dependability
Cases

The research presented in this thesis was performed under the initiative of the Defence

and Aerospace Research Partnership (DARP) for High Integrity Real-Time Systems
(HIRTS) - in collaboration with BAE Systems, QinetiQ and Rolls-Royce p1c. As part
of the HIRTS DARP work the participating companies helped define the main research
challenges in the field of assuring the dependable operation of Systems of Systems.
Identification of the challenges took place during workshops, in which participants from
the partner companies and the University of York discussed academic and industrial

experience and the state of the art related to the subject. Part of the output of the
workshops is discussed in [11]. A compiled list of challenges, focusing on

28

Chapter I -Introduction

dependability cases, was created during these activities. The following challenges were
identified:

" Multiple dependability attributes

" Allocation and apportionment of requirements

" Conflicting requirements

" Changing requirements

" Traceability

" Interaction of case and design

" Ownership of the dependability case

The identified issues are discussed in more detail in the following sections.

1.6.1 Multiple Dependability Attributes

Dependability is a multi-attribute system characteristic. Arguing about achievement of
dependability will include references to achievement of its constituent attributes. There

are several domains in which there are examples of the creation of arguments for

individual dependability attributes. One such domain is safety. The practice of safety

case development and acceptance is relatively mature, and extensively used both in

military and civil industry. Maintainability and reliability cases are examples of 'cases'

communicating arguments about dependability attributes. However their use is not as

widespread as that of safety cases.

Although the concept of creating cases for the individual attributes of dependability is

not new, 'simply integrating' all different attribute arguments will introduce challenges
that are difficult to overcome. A dependability case will need to record the relationships
between attributes as well as how they were affected by decisions taken during system
development. For example, the availability of a protection ftinction onboard an aircraft
(e. g. availability of TCAS) also (positively) affects the safety of the aircraft. In contrast,
availability and safety can also be at odds with each other. An example of such conflict
can be found in the development and use of an aircrafts Minimum Equipment List
(MEL). A MEL provides a detailed description of the minimum systems required to be

29

Chapter I- Introduction

operational for an aircraft to be airworthy. For example, an aircraft may be allowed to

be dispatched (for some time) with one processing unit inoperative. Hence, in principle,

a reduction of safety (due to reduced redundancy) is acceptable, in order for the aircraft

to perform its mission.

When designing to achieve multiple dependability requirements certain (design)

decisions may introduce conflicts between the attributes, which will eventually result in

trade-offs needing to be made. The dependability case should be able to capture the

conflicts that occur during system development and the trade-off process - providing
justification that the design decisions taken constitute the most optimal choice.

1.6.2 Allocation and Apportionment of Requirements

The operation of a System of Systems consists of the combined operation of each of its

individual elements. Identification of requirements with regard to the operation of a
System of Systems occurs by considering the envisioned operation of the SoS. For

example, in NCW initially the system stakeholders will specify the overall objectives
that the system is required to achieve, and not the individual contribution of each SoS

element. Consequently, the development of a case initially takes place in the context

of the overall concept of operation.

In terms of dependability, identification of the context includes identification of the

criteria of acceptable operation with respect to the dependability attributes of interest to
the stakeholders. The initial high level objectives constitute the stakeholders'
dependability requirements that need to be addressed by the proposed system design.

According to how the system is designed, the system elements can variably affect the

achievement of the stakeholders' overall dependability goals. For example, the overall

safety of a system may require certain system elements to achieve a particular reliability

requirement.

Following the initial stages of the case development (which regard the SoS in the large),

the system design process must consider apportionment of the overall SoS requirements
to individual elements of the system. Consequently, the focus of the case will shift
towards the individual elements of the SoS. Apportionment of requirements relies on a

30

Chapter I -Introduction

very clear understanding of the contribution of each system to the overall SoS

functionality. However, the characteristics of a System of Systems are such that do not

always favour a clear apportionment of requirements. Collaboration between the

elements of a SoS and dynamic reconfiguration of its operation, often result in emergent
behaviour which cannot be revealed by merely analysing the behaviour of each element
individually. The dependability case should be able to demonstrate assurance regarding

the contribution of the underlying behaviour of SoS elements, in satisfying the overall
dependability requirements of the SoS stakeholders.

1.6.3 Conflicting Requirements

Dependability attributes are heterogeneous and non-orthogonal to each other. They can

variably be in conflict or in harmony with each other, according to the design of the

system. The more complex the system and the larger its scale, the more unlikely it is

for its requirements to be met without any conflicts arising between them. This is

further exacerbated by the multiple attributes that a SoS needs to satisfy and their

interrelationships.

For example, consider an ATC system, similar to that described earlier. Increasing the

number of aircraft that an ATC (services) area can support is considered to be at odds

with safety. A 'busy' sky increases the safety risk. In order to achieve acceptable levels

of safety, the number of aircraft served at any time may need to be limited - eventually

resulting in delays. Performance and safety need to be balanced achieving a system that
is able to handle a satisfactory number of aircraft without increasing the safety risk to
intolerable levels. However, stakeholders will inevitably need to re-cvaluate and trade
their initial requirements identifying the most optimum solution for both (in this

example) performance and safety. Re-evaluation of requirements has to result
ultimately in an acceptable system, satisfying all the system stakeholders and fulfilling
its overall purpose.

1.6.4 Changing Requirements

The complexity and the time span of the problems that a (typical) SOS addresses, are
two of the reasons that cause SOS operational requirements will change. SOS

requirements may change in order to provide the same functionality in a more effective

31

Chapter I- Introduction

way, or to provide slightly different functionality. This can be achieved through the

reconfiguration of SoS elements, or the addition of new SoS elements in response to

capability enhanccments of the SoS.

Two examples regarding NCW and air traffic control demonstrate the reconfiguration

and capability enhancement characteristics of a SoS. Consider an existing NCW into

which UAVs carrying additional sensors are introduced to enhance intelligence

collection, or the dynamic allocation of responsibility to ATC centres according to air
traffic volume in a given time period. During reconfiguration the role of certain SoS

elements may change depending on the operation. For example, a UAV could have

intelligence collection function as well as suppression of enemy capabilities. According

to the role the system elements certain dependability requirements may differ, to reflect
the needs of the particular role.

Another issue that can result in requirements changes is the change of the operational

context of a SoS. The most typical example of such a situation is the change from

peacetime to wartime operations. The relative importance of requirements may change
to reflect the needs of the operation. For example, in wartime operation some reduction
in the safety (hence increasing the associated risk) levels of the SoS may be tolerated in

favour of increased operational effectiveness.

There is an obvious challenge when attempting to establish a dependability case that

will communicate assurance about the satisfaction of dependability requirements. The
dependability case should be able to provide justification for the elicitation of the
dependability requirements. Different scenarios for the operational context of the SoS

may result in different sets of requirements. Simply taking the union of the resulting
requirement sets may result in an impasse or in a suboptimal SoS. Requirements

elicited for a specific dependability attribute in the context of a specific scenario, may
not be in line with the requirements elicited for the same attribute in the context of a
different scenario.

In order to overcome the problem of ending up with a suboptimurn SoS which satisfies
requirements for many scenarios, limitations may be imposed on the number of
scenarios that will be 'targeted' by the SoS. Hence, the resulting system will be

32

Chapter I- Introduction

optimised for a specific number of scenarios. Alternatively, restrictions on the

operation of the SoS may be specified in the form of policy. Irrespective of how a

potential impasse is overcome, the dependability case needs to provide justification in a

clear and understandable manner. The dependability case could be used to 'inform' the

reconfiguration process of a SoS, whilst maintaining acceptable assurance about the

satisfaction of the overall dependability requirements.

1.6.5 Traceability

The dependability case of a system can be a part of the evolution of that system. It can
be used as a means of recording the requirements and their subsequent decomposition

and apportionment to SoS elements. Also, it can be a driver for evaluating the fitness of
the design against the required attributes of system operation (a successful design will
be easier to argue about).

Overall, the argument contained in a case brings forward many different sources of
information, such as analysis and testing. The use of all the different elements that will
be part of the final case should be clearly defined. Definition of a rigorous
dependability case framework requires well articulated relationships between the

concepts used during the evolution of a dependability case.

1.6.6 Interaction of Case and Design

Based on accumulated experience from the safety domain, many standards (such as
(13]) suggest that a (safety) case should be constructed in parallel with the system and
not at the end of the system lifecycle. Creating an argument about the achievement of
dependability in retrospect, after the end of the system development process can be

problematic. The design of the system may not be optimised for developers to create a
strong argument about its attributes (e. g. safety) easily. Instead, developers will
eventually 'force' the argument to support the overall claim often resulting in a weak
argument (e. g. relying on operational constraints). Tberefore a case will not be able to

communicate a satisfactory argument about assurance on the system's required
qualities. This means that either the system will be delivered with a case that doesn't

provide a satisfactory degree of assurance - something that may result in rejection of the
system - or parts of the design will need to be reconsidered so that stronger arguments

33

Chapter I -Introduction

can be created. Late in the lifecycle, there are limited opportunities for developers to

easily (and cost effectively) revise the system to address problems identified when

establishing the safety case. Creation of an argument in parallel with the system serves

to help evaluate record and justify decisions regarding the evolution of the system.

1.6.7 Ownership of the Dependability Case

Traditionally in safety, the contractor of a system is responsible for providing a safety

case that accompanies the system, which may be reviewed by an independent authority

and then submitted for approval to the appropriate regulatory bodies. Whereas this is a

clear allocation of responsibility with regard to the safety case, there is a problem of
ownership of the case when considering a safety case for a SoS, which increases in

complexity when considering a dependability (i. e. multiple attribute) case for SoS. To
begin with, typically there is no single contractor for the SoS, but instead there are

multiple contractors - responsible for elements (or even parts of the elements) of the
SoS. Arguing about aspects of the SoS that involve collaboration of elements may

require input from the different individual contractors that develop the SoS elements.
Moreover, some of stakeholders may be responsible for certain aspects of the SoS such

as performance or safety. This results in responsibility that can be traced to many
different elements of the SoS and their respective arguments in the case. Hence,

according to the layout of the case architecture, the responsibility of a stakeholder may
be dispersed. For these reasons it essential that a framework is defined under which the

contribution of each of the contractors to the dependability case can be clearly and
traceably identified. Moreover the framework should consider whether an overall
authority should be overall responsible for the construction of the dependability case.

1.7 Thesis Proposition
This thesis demonstrates that it is feasible to establish a structured approach to evolving
and presenting a dependability case for Systems of Systems through a unified approach
to eliciting flexible dependability requirements, facilitating resolution of trade-offs
between competing objectives, and combining and managing these activities using
structured argumentation.

34

Chapter I -Introduction

The main characteristics highlighted in this statement arc the following:

a Structured: The approach is rigorously captured and documented using an

undcrlying mctamodcl.

* Evolving: The case evolves in parallel with the system, providing feedback to

the system development process and influencing design decisions.

9 Systems of Systems: The type of systems for which the approach has been

optimised.

9 Unified: The proposed methodologies solving the identified challenges are

unified within a single framework, with their associations and synergies defined.

e Flexible: There should flexibility regarding the specification and achievement of
dependability requirements.

Facilitating resolution of trade-offs: The proposed approach identifies and
documents conflicts between requirements, facilitating selection of the best

solution with respect to the stakeholders' collective interests.

* Argumentation: The resultant case is a collection of arguments structured in

such a way as to provide compelling overall assurance of system dependability.

1.8 Objectives of the Research
This section summarises the objectives of this research, motivated by the identified

challenges, and the means of their achievement. This research focuses on the following

objectives:

0 Definition of a rigorous framework by means of establishing the Dependability
Case Metamodel (DCM).

35

Chapter I- Introduction

" Identification Of dependable operation (requirements elicitation) by means of

applying Dependability Deviation Analysis (DDA) method.

" Resolution of conflicts by means of following a qualitative, argument based

Trade-Off Method (TOM).

" Evolving the dependability case in step with system development by means of

examining the design rational by following the Factors, Analysis and Decision

Alternatives (FANDA) method; by means of specifying a paradigm
dependability case architecture encompassing the products of the

aforementioned methods.

The objectives of this research - listed above - target the following of the previously
identified challenges in the management of dependability cases for systems of systems.

Multiple dependability attributes

Allocation and Apportionment of Requirements (not considering negative

emergent behaviour)

Conflicting requirements

Traceability

Interaction of between the system and the case development processes

The following subsections give an overview of the research objectives.

1.8.1 Definition of a Rigorous Framework

A dependability case entails the integration of information concerning dependability

attributes and derived requirements, arguments, evidence, system models, and
underlying design rationale. This requires a clear understanding of the underlying
concepts within a dependability case as well as their interrelationships. The
dependability case metamodcl, aims to create a rigorous fully traceable framework by

defining the elements of a dependability case and their relationships.

36

Chapter I -Introduction

1.8.2 Identification of Dependable Operation

At the initial stages of the system lifecycle, system stakeholders do not have concrete

requirements as to the operation of the system. The overall requirements are elicited in

the context of the system's envisioned operation. In later stages of the system lifecyc1c,

design decisions are made and the collaboration between the SoS elements in order to

provide the envisioned operation is defined. According to the design, the initially

elicited requirements are decomposed and apportioned appropriately. System

requirements can be stated from the perspective of different dependability attributes.
Moreover requirements can be interrelated -a requirement stated from the perspective

of a dependability attribute may depend of the achievement of other requirements stated
from the perspective of other dependability attributes. Dependability Deviation
Analysis constitutes a method that elicits requirements for the elements of the SoS, by

analysing appropriate system models throughout its development.

1.8.3 Resolution of Conflicts

It is inevitable for SoS developers to encounter conflicts between the system's

objectives. Unless resolved, the development of the system will reach an impasse.

Resolution of conflicts involves compromises during decisions made throughout the

system's lifecycle, resulting to trade-off between the stakeholder's goals. The Trade-
Off Method (TOM) provides a systematic qualitative approach during which

stakeholders share viewpoints and justify the ease with which they can trade their goals.
The final outcome of TOM is an argument of preference of a decision alternative (e. g. a
design alternative) that is considered to best satisfy the stakeholders' interests.

1.8.4 Development of Case

The dependability case is not developed in isolation from the system. Although a case
refers to the final artefact, development of the case takes place hand in hand with the
design. System stakeholders specify what needs to be claimed for the final system and
accordingly elicit appropriate goals that correspond to each stage of the system
development. Evolution of the system and the argument involve making decisions

about the architecture and the design of the system, which need to be justified and
documented. Interaction between the argument and the design process exists during the

37

Chapter I- Introduction

evolution of the system. The argument should evaluate the design's fitness to satisfy the

stated goals. A design that is good satisfying the stated goals will result in a strong

argument. If the involved stakeholders deem that the argument is not satisfactory,

changes to the design will have to be made. FANDA examines how the features of the

proposed design alternatives affect the achievement of the goals. Moreover, the thesis

proposes a dependability case architecture optimised for the Ministry Of Defence

Architectural Framework (described in chapter 2), which is used, in particular, to model
SOS.

1.9 Thesis Structure
Chapter 2 provides a literature review of related published work. In brief, the chapter
addresses nomenclature of Systems of Systems, examines research and practice in

establishing safety cases and argumentation in general, presents an analysis of the

notion of dependability, and finally investigates existing techniques in decision making

- in particular trade-offs and design rationale within the context of systems architecture.

Chapter 3 presents the basis of the proposed dependability case framework.

Specifically, it presents the fundamental concepts that were used to creating the
dependability case framework. Moreover, it explains the approach taken to create a
metamodel which formally and rigorously defines the framework.

Chapter 4 describes a technique for methodically eliciting and specifying dependability

requirements. The technique extends existing analysis methods which focus on
examining possible deviations from intended system operation. Dependability
Deviation Analysis (DDA) is introduced as a means of identifying the overall goals and
concerns of the stakeholders. Furthermore, DDA is used to examine the behaviour of
the system elements from the viewpoint of each stakeholder's attributes of interest.

Chapter 5 presents an approach for facilitating conflict reconciliation by trading off
dependability goals. The Trade-Off Methodology (TOM) is based on the ALARP

principle in safety (explained in chapter 2). This chapter introduces the concept of
flexible requirements - necessary for enabling trade-offs to be made. TOM allows

38

Chapter I- Introduction

stakeholders to evaluate possible alternatives regarding the satisfaction of their goals -
creating arguments for and against committing to each altcmativc.

Chapter 6 presents the evolution of a dependability case by integrating the proposed

methodologies of the previous chapters. It presents the architecture of a dependability

case for a System of Systems. The chapter describes how this structure can be populated

according to the information available at each stage of the configuration of a Systems of
Systems. Factors, ANalysis and Decision Alternatives (FANDA) is introduced as a

method to facilitate collaboration and exchange of information between the design and

argument development processes.

Chapter 7 presents the evaluation of the proposed contributions against the thesis

proposal. The chapter discusses the findings for the methodologies individually as well

as for the proposed framework as a whole.

Chapter 8 prcscnts the ovcrall conclusions drawn from the rcscarch as well as avcnucs

of possiblc futurc work.

Appendix A presents an overview of the activities in the safety lifccycle as suggested
by the civil aerospace guidance document ARP 476 1.

Appendix B providcs an ovcrvicw of the Dcfcncc Architccturc Framcworks (namely

DODAF and MODAF). In addition, it prcscnts a documcntcd cxcmplar System of
Systcrns, uscd as a casc study throughout this thcsis.

Appendix C presents the Dependability Case Mctamodcl (DCM), capturing the

elements of a dependability case and their associations. Examples of code used to

manage dependability case models are also included.

39

Intentionally Blank

40

Chapter 2- Literature Review

Chapter 2

Literature Review

2.1 Introduction
This chaptcr dcscribcs background matcrial rclatcd to the work prcscntcd in this thcsis.

The main arcas rcvicwcd arc the following:

0 Systems of Systems: this scction includcs ddinitions regarding the conccpt of
SoS, and ovcrvicw of suitablc of modclling frammorks.

* Dependability: invcstigatcs approachcs in dcrining dcpcndability.

* Trade-offs: reviews mcthods supporting system evolution in the context of

competing design alternatives.

9 Dependability cases: Although the concept of safety cases is wcll-cstablishcd,

there is little work available regarding dependability cases. The section reviews
conccpts rcgarding argumcntation of dcpcndability attributcs.

The review areas arc presented in the following sub-scctions of the chapter.

2.2 Systems of Systems
The tcnn Systems of Systems is often used intuitively when large systems cooperate
(for example, the tcnn is often used to describe of enterprise networks). Tlicrc arc

several existing definitions of a SoS. A review of the modelling methods (UML, ADL)

and architccturc framcworks (C41SR framcwork, Opcnwings) that havc bccn uscd to
dcscribe SoS arc prcscntcd.

41

Chapter 2- Literature Review

2.2.1 Definitions

The concept of Systems of Systems (SoS) was introduced as a tcnn for complex

systems, entailing components that were developed independently of the rest of the

system. Although initially there were no formal definitions, and the identification of

SoS was based on a common set of characteristics, the concept has considerably

cvolvcd and cuffcntly is considcrcd to constitutc a class on its own.

Within the military domain, the term Systems of Systems evolved from the concept of

network centric warfare [3]; "Systems of Systems comprise a variety of land and air

assets integrated via network centric technologies and appropriate procedures" [13].

The definition identifics the independence of the Systems that comprise the SoS.

Integration of the systems requires certain procedures to crisure cffcctivc cooperation

and exclusion of hazardous and undesirable operation. Morcovcr, the definition

indicates a close association of the term with networks and communication

infrastructurc.

Kotov dcfincd a SoS to bc ". Jarge scale concurrent and distributed systems, the

components of which are complex systems themselves (e. g. enterprise nenvorks).
Communicating Structures are hierarchical structures that represent SoS In a uniform,

systematic way as composition of a small number of bask systems" [14]. This

definition mainly presents the communications aspect of a System of Systems.

Communicating with each other the a number of individual clcmcnts can form a SoS.

The definition provides an intuitive description of a SoS, however it only focuses on the

network aspect of the SoS not indicating characteristics that could uniquely distinguish

a SoS from a large network or a distributed system.

Maier [15] perceives the SoS concept as a natural consequence of the evolution of

collaborative systems with increased complexity and operational independence.

Ilowcvcr he does not provide a spcciric definition of a SoS. Maicr states that: "While

the term System of Systems has no clear and accepted definition. the phenomena are

widespread and generally recognised'. Maier mentions that the most important

characteristic that identifies a SoS, is the independence of the elements that consist the
SoS: "Systems of Systems should be distinguishedfrom large but monolithic systems by

the independence of their components, their evolutionary nature, emergent behaviours

42

Chapter 2- Literature Review

and a geographic extent that limits the interaction of their components to information

exchange". Even though the author idcntirics some characteristics of a SoS, such as the

independence of the elements, he too defines a SoS in terms of component
intercommunication: "Systems of Systems are defined by communication standards.
Different problems require standards at different levels". Although the idcntiricd SoS

characteristics arc broader than the 'purc' network view of IIcwlctt Packard, the

dcrinition is still based on the same principles (i. e. communication means). Maier

idcntirics three categories of SoS: directed, collaborative and virtual. The critcria for

defining these categories arc the different levels of operational and managerial
independence of the SoS elements, which can result in different SoS behaviour.

A broadcr dcfinition suggested by Pcriorcllis states that: "... a SoS Is a dependable

system composed of independent autonomous systems. 7he purpose of the SoS Is to

provide a set of enhanced or improved 'emergent'services, based on some or all of the

services provided byparticipating component systems" [16]. Pcriorcllis identified that

SoS elements can support roles that were spccificd without having overall SoS

objectives in mind. This results in different types of behaviour that cmcrgc from the

combination of the individual capabilities of the components of a SoS. Moreover, he

identifies the fact that such systems arc required to have collective mechanisms to

ensure reliable operation, as theoretically there can be indcrinitc and undcrincd failure

modcs. This dcrinition highlights a characteristic of SoS components, which is their

ability to coordinate a collective behaviour. When a SoS is dcrincd by focusing on its

communication structure (as in [14]) the latter considerations aren't always apparent.

Independence of the SoS elements poses a major challenge. SoS elements cannot be

implemented for a specific role or behaviour within a SoS. However some of its

inherent functions can be used when operating as part of a SoS to achieve some overall

objective. According to the description of the available functions, collaborating

elements choose the elements choose to collaborate with SoS elements that can provide
the necessary functions to fulfil their operational goals 7he analogy was drast-n to

planning a city, callingfor simulations to work together as a community, in Systems of
Systems. To build and operate an efficient city, a governing framework (e. g. street

plans, building codes) is laid out and certain basic services (e. g. utilities, schools) are
provided. Beyond that the residents are generally left to their own discretion as towhat

43

Chapter 2- Literature Review

type of home or business the build, who to interact with eld" [171. Under this Y

perspective, a SoS is a collection of services provided by a set of elements that

collaborate with each other. An important aspect of this definition is that

communication lines arc not the dcrinitivc element of a SoS. Instead, the SoS is dcrincd

according to the 'services' its collaborating components can provide. In this case the

communication infrastructure is considered an equal element of the SoS providing a

number o services.

Even though the previous definitions do not just focus on the communications of the
SoS, but also on the bchaviourat properties of the elements of the SoS, a question

remains as to when a system can described as a System of Systems. As dcrincd by the
US Dcpartmcnt of Defcncc (DoD) rcscarch dcvclopmcnt and acquisition officc, a
Systcrn of Systcrns is: "an asscmblagc of componcnts which individually may bc

rcgarded as systcms and which posscss two additional propcrtics" [181. The additional

propcrtics of the SoS arc the following:

1. Operational Independence of its components: If the SoS is disassembled into its

component systems, the component systems must be able to operate
independently. That is, the component systems fulfil customer or operator

purposes on their own.

2. Managerial Independence of the Components: The component systems not only

can operate independently, they do operate independently. Component systems

are separately acquired and integrated, and maintain a continuing operating
existence independent of the SoS.

The definition provided by the DoD gives practical means for distinguishing between a
large or complex system and a System of Systems. The fact that SoS consist of
independent elements introduces characteristics such as element heterogeneity,

autonomy and the capability of an clement to interpret the overall SoS goals according
to its atomic capabilities. Dcccntraliscd control is also a SoS characteristic that allows
the elements to take decisions on their own. Such decisions can have an impact on the

overall behaviour of the SoS.

44

Chapter 2- Literature Review

Overall, the presented definitions put forward a unique aspect of SoS. Kotov [14] and

Maier [15] focus on the communications infrastructure and identify some of the

characteristics of remote interacting independent systems. Pcriorcllis [16] and

llollcnbach [17] focuses on the behaviour of the SoS and how it is achieved by

assembling a system from independent systems. Although the DoD definition [18]

identifies the characteristics of SoS in their domain, it focuses on an ontological view,

specifying why an assemblage of components will be called System of Systems and not

a complex system.

Even though all definitions have idcntiricd a particular viewpoint of SoS, it can be

argued that arc not abstract enough and appropriate as a generic dcrinition of the

subject. Earlier work of the research strand' of which the author was a member,

produced a more generic and flexible definition of SoS. Defence companies involved

with SoS development have shared our opinion, throughout comparison with their case

studies. Therefore the definition that will be used as a basis for further research has as

follows:

A System of Systems is an organiscd complex unity assembled from distributed

autonomous systems, capable of independent provision of services, collaborating to

achievc an ovcrall systcm purposc.

2.2.2 Modelling

The main purpose of modelling is to represent and communicate the structure, the

architecture and the behaviour of the system. The unique charactcristics of the SoS

behaviour should be modelled and documented from early stages of the SoS

development. Kaanich [19] presents the need to accommodate dependability within tile

model of a SoS from the early stages. This section presents frameworks capable of

capturing the characteristics of a SoS.

1 Defence and Aerospace Research Partnership (DARP) strand 2: Dependable Systems of Systems
(DSoS). Members of DARP include BAE Systems, QinctiQ, Rolls-Royce and the University of York.

45

Chapter 2- Literature Review

2.2.2.1 UML

The Unified Modelling Language (UML) is currently a wcll-cstablishcd and popular
language in Object Oriented Development. UML integrates diffcrcnt views of a system
from its early conception to deployment (e. g. Use case view, Implcmcntation View,

Proccss vicw and Dcployment vicw). UML can providc a scamlcss way of rcprcscnting
the system during its development lifecyc1c, maintaining consistency between the
different models.

Threat Missile
+Velocity

-Detects
Sensor

+Mass +SensingRange
+Altitude +FiefdOfView
+Distance +Wavelength
j+LaunchPoInt +Position

J+Elevatlon I
+getTrackD& 0
+sendTrackD&tao

Weapon
-Controls -Range

-Send& o
+ DevelopFiring Solutiono
+Calculate_Min_Prob_Kill()
, +Fire Interco ptoro BM/C2

-Releases
j +RocolvoTrackDsta

r - +Disominato
+Corollate Interceptor *MonItorBM

-Velocity +AssignWeaponToTerget
-Range +AuthorlsoLounch
+Disominate() :j
+Lock In to rce ptPointo
Ll! ýacelveUpdateso

Fig. 2.1 - UINI L Diagram ror a B, %l D SoS 1201.

With respect to SoS modelling, UML has been used to represent the SoS elements, and
to show the data and the data types required in element collaboration. Caffal (20] uses a
UML class diagram to conccptualise the elements of a Ballistic Missile Defence SoS.

The top-level design is a conceptual class diagram with abstract classes, classifying the
type of systems used (e. g. sensors, weapon). The abstract classes have a description of
data that are needed by the SoS, and are associated with other classes, indicating the
role and collaborations of each element. For example the control class receives data
from the sensor class and controls the weapons class.

46

Chapter 2- Literature Review

UML has been suggested to be cffcctivc in abstracting the network infrastructure

modelling the SoS as a single system: "Rather than disparate reasoning about tile

individual systems of a proposed System of Systems, we propose that we develop a

sound modelfor reasoning about the System ofSystems a singlefunctional uniV' [20].

UML provides a widely adopted modelling framework, with expressive power and a

variety models capable of capturing capture many aspects of a system's operation.

Although UML is not optimiscd in representing Systems of Systems, certain UML

models can potentially be related (in terms of the information that capture) with
frameworks optimiscd, for SoS such as the ones presented in the next section.

2.2.2.2 C41SR & Defence Architecture Frameworks

The identification of the need for global (military) awarcncss has led to the

idcntification of C41SR (Command Control Communications Computcrs, Intclligcncc,

Survcillancc, Rcconnaissancc) systcms. In ordcr to makc the transition of SoS from

conccpt to dcsign, the C41SR architccturc framcwork [2 11 was proposcd.

The C41SR architecture framework provides 3 different architectural views:
Operational, Technical and Systems [21]. The operational view describes the tasks and

activities of concern and the information exchanges required. The systems view
describes the systems of concern and the connections among those systems in context

with the operational view. The technical view describes a profilc of a minimal set of
timc-phascd standards and rules governing the implementation, arrangement, interaction

and interdependence of system elements.

A key challenge idcntiricd in C41SR architectures is sharing of data between the

elements of a C41SR system. This means that cach clcmcnt will share their perception

of the environment with other SoS elements eventually composing an cnhanccd picture

of the battlefield. Jameson [22] uses the term data fusion to describe a means of sharing
information between SoS clcmcnts, and presents an example of how this can be

achieved between the heterogeneous elements of a SoS.

47

Chapter 2- Literature Review

The C41SR framework was superseded by the Department of Defence Architectural

Framework (DODAF) [23]. DODAF provides a framework organiscd in views similar

to the C41SP, in which defence systems can be modelled. In particular, systems similar

to NCW can be organiscd and modelled from every aspect of their operation. The

Ministry of Defence Architectural Framework (MODAF) is a very similar framework

used by the UK Ministry of Defence. DODAF and MODAF arc covered extensively in

appendix B in which an example system (AGO) is modelled using the framework.

2.3 Dependability
Dependability is an abstract term describing a system's overall behaviour.

Dependability as a concept is broadly accepted as being the "... the system's

characteristic thatjustiftes placing ones reliance on it. " [24]. Littlcwood ct al. state
that: "We use dependability informally to designate those system properties that allows

us to rely on a system functioning as required' [25]. Although in abstract terms the

definitions arc similar there is no overall consensus as to the exact definition of
dcpcndability.

2.3.1 Definitions

McDcrmid satcs that: "-dependability can only be thought of as afinction of a system

and its environment, not as a property Itself .. the form of specylication usedsometinjes
depends on the particular dependability characteristic of Interest" [26]. Villcmcur,

from a systems engineering perspective, gave the following dcrinition for dependability

[27]: "In its broadest meaning, dependability will be defined as the science offallures:
it, therefore encompasses the knowledge of these failures, their assessment, their

prediction, their measurement and their control". According to Villcmcur
dcpcndability can includc the following charactcristics:

" Rcliability

" Availability

" Maintainability

" Safcty

" Durability

48

Chapter 2- Literature Review

9 Scrvicc rctainability pcrformancc.

9 Scrvability pcrfortnancc.

Villcmcur defines dependability as a composite term, comprising of seven

characteristics, which arc achieved by being able to predict, control, and assess failures.

The critcria to assess dependability are associated to the fulfilmcrit of the required
functions and the conditions in which the system operates. This is in accordance to the

previous suggestion that dependability is a function of a system and its environment.
The primary focus of the definition is on the failures of a system. Lapric ct al. extended

the initial concept and defined dependability for computer systems identifying

dependability attributes, as well as means of achieving it: "Dependability is the system

property that integrates such attributes as reliability, safety, confildentiali% Integrity,

survivability and maintainability, is achieved by means of fault tolerance, fault

prevention, fault removal andfault recognition and it may be compromised byfaults,

errors andfallures" [24].

Attributes

- Reliability
- Availability
- Conridcntiality
- Integrity
- Maintainability
- Safety

Flg. 2.2 - Laprie's Dependability Tree

- Fault Tolerance
- Fault Prevention
- Fault Removal

- Fault Forecasting

This is the most complete of the dcrinitions as it provides a set of attributes that

comprise dependability. Laprie recogniscs the causes that can compromise
dependability, and identifies the means of achieving it. The attributes arc system

properties that describe the system's overall behaviour in rcspcct to its requirements.

Lack of conscnsus on a specific derinition is mifforcd by the fcw standards dcrining

dcpcndability. IEC 50-191 defincs dcpcndability similarly to Lapric: "The collective

term used to describe the availability performance and its Influencing factors:

Dtptndability
I

'Als

49

Chapter 2- Literature Review

reliability performance, maintainability performance and maintainability Support

performance. " [28].

Saridakis ct al [29] give a fault-tolcrant centric definition of dependability based on
Lapric's observations. According to Saridakis dependability properties fall into two

groups:

1. Abstract Properties specified in tcnns of system states, which are defined

independently of any fault tolerant technique, They serve to charactcrisc the
dependability behaviour of an overall architecture, when this behaviour is too

abstract to associatc a fault tolcrancc tcchnique with it.

2. Concrete Properties specified in terms of system actions, whose dcflnition is

closely related to some fault tolcrancc technique. They serve to charactcrise the

dependability bchaviours associated to architectural clcmcnts, with respect to a

givcn fault tolcrance tcchniquc.

Saridakis commcnts that "... the most abstract dependability property, simply qualifled

as Dependability, ensures that a system makes progress despite the occurrence of
failure" [29].

I Dependability I

i Abstract I 4 Concrete I

Reliability II Availability II Sarety II Detection II Fault mask

Fig. 2.3 - Categorlsation of Dependability Properties

Prasad defines Dependability as a variable sized vector of attributes describing

overlapping desiderata, chosen subjectively, in accordance to the stakeholders'
particular requirements" [10]. Furthcri-norc, Prasad highlighted that dependability

50

Chapter 2- Literature Review

attributes can be interrelated, but they are not orthogonal to cach other, and can be in

conflict or in harmony. Prasad's definition focuses on the behaviour of the system with
its environment, as suggested by McDermid. Prasad's definition is also the definition

adopted throughout this thesis.

2.3.2 Dependability & 'Fault Science'

As mentioned by Laprie [24], dependability has threats that can compromise it, as well

as means of achieving it. Taking in account the broader definition of dependability, a
threat should be anything that will result into the system operating erroneously and not

as expected. Both Laprie and Villcmcur, as well as a broad range of researchers, adopt
the opinion that dependability is compromised by faults that exist within the system,

resulting in failures and hcncc in erroneous behaviour. However, it has been obvious
that dormant faults within the system arc not the only reason a system's dependability

can be reduced. Also, the environment can cause the system to cntcr an crroncous
behaviour due to environmental hazards, operator cffors or malicious attacks.

A fault is a defect within the system; faults can be random (e. g. a dcfcctivc component)

and systematic (e. g. wrong design of a system). Not necessarily all faults result in

failures. Faults may be dormant in a system until activated by one or a sequence of

events. When activated faults produce failures, which results in the system failing to

perform its required function. When a failure occurs, if the system's behaviour deviates

from required operation, then the system has cntcrcd an crroncous state.

Erroneous
State 7-*

Fault Failure

Flg. 2A - Fault Transidon to Failure

Fig. 2.4 illustrates an example modelling the propagation of a fault [30]. Failures are
deviations from expected behaviour and we can identify that a system has failed in

respect to its environment. Failures arc the result of the fault activation to the system's
environment. Faults can be classified by the persistence and their source [31]. The

51

('hapter 2 Lacristure Review

SOUrce of a fault depends on the use ofthc system and the crivironnictit within which it
has been deployed. For example, there can be operator faults, interface faults, storage
faults etc. According to their persistence, faults have been catcgoriscd as design,

operational and transient Faults. Design faults are removable and can be corrected by

aults are non removabic and occur redesign of' the faUlty components. Operational I'l

when a part ofthe systern breaks (e. g. database corruption). Finally transicnt faults are

random t`aLIItS that are not deterministic and often cannot be reproduccd. Lapric et al.
[24] combined all finilt classes and categorised the faults according to the measures that

need to be taken to eliminate the faults into design, physical and intcraction IaLIItS.

IS MUt4L&

pain_AL

E:. fur.

II-IIIII
ML A"

WAL am, OR

OW WAL
D&L a"

plaft "am I'm

Lcxma Befthl Derecr
'"ma

ý)

/'

ma

FAULTS
I

ýIww-

"RAW

, Mft
sm,

now lftýft "M I- 1ý now I-

Fig. 2.5 -- Lapric'% Categm ic% ol 1-; ttjlt%

The number of' faults in it system has been associatcd With tile reliability of tile system.
Reliability has been defined as Ahe ptwhahdov that a piect, ol equipment "I- component

will peqiwin its intended filliclion satislactori4l, /;)I- a prescribed Iunc and under

stipulated environinewal cona'itions. " 1321. Although it bears similarities to the

definition ot'dependability, rchability is a mathematical rept-csciiiation of* (lic probability

of' the components flailing [331. The impact of' a rchahility Iailtire on the system Is

(1cpcndability can affcct other depoidability attributcs. For cxampic a reliability failure

ol'a processor may have an impact oil safety il'the processor is used to perform sat'ety

critical Functions, or it could have an impact oil the performance oil the system. I fence

it is not tile Cault itsclf'of'prirnary interest to tile system's stakeholders but its ct'icct oil

the dependability attributes, which describe tile system's behaviour.

52

2.3.3 Unification of Safety and Security

Safety and smirity arc two (1cpendability attrihutcs Miich mc cowidcicd it) dmic

common concepts. There have been a number of' studies examining the potential of'

unifying these two attributcs which are presented in tills section. A major dificrence

between sal'ety and security is the Intent. The methods involved in salcty are conccriml

with 11011-111,111CIOLIS 1111.11ts and how these can be avoided or mitigatcd. ()n the other
hand, security is involved with plarmcd malicious attacks to the system.

Jonsson et al. [341 idcritificd the functional relations bctween sccmity and dclmidability

threats. I le suggests that the overall objective is: "to arrive at I geticral and clear-cut
fi-ainewol-k that would ikwrihe how trustahle (dependah/c, securt') a N. 1-stem is.

I-cKardless 0/ the reavonfin- its not heing lota/h, trustable". [-or examp1c, it should be

possible it) treat a system 1111ilLirc causcd by an Intentional intriislon or a llai(k%arc fatilt

using tile sallic frictliodology". Jollsson's analysis is based oil the fact that III the
del)('11dabilit. l. (ifiscil)II11c, reasons fin. filihin's (11T cilfled fiIIIII. V 1111d vrror%, whereas

SeCiffitv I)C'ol)lt' Iraditionall. l. ledk abolit (11hick% that caust, hrtw(hv. v wnif vullicnihilitle. v".
Jonsson also provides an intcgratcd framework I'M dclmidabilaN and "CL-tirltv,

Illustrated in Fig. 2.6.

F.
I Chat aIIIýIý N rim I %

v v
I threjoi ONIFA-T INVITI M
R
0 ED- (SM 0
N riTnw N
m m

C ICMAI "'MIl Ar"laill) F.

t

Fig. 2.6 I tiffication of Safclý and Svcurilý 1.141

The framework identifics fivc main areas ill the sysicin and its iclationship ý%ith tile

environment. A threat (I) ("an environmental subsystem that can possibly Introduce it
I'llult III dic system") Introduces it litult exploiting it vulnerability (2) ("it place where it is

Possible to Introduce it fault"). 'I'llis propagates into tile system and causes an cri-or
(erroneous state) (3), which can have its a conscqLICIICC the occurrcncc of" a Iii1lure (4)

53

Chapter 2- Literature Reylew

that then affccts the system's behaviour (dependability) with respect to its environment
(5). In general Jonsson's framework provides a gcncralisation and does not accurately

prcscnt all possible states of a system in presence of a fault. Moreover, the

gcncralisation cannot be extended in covering other attributes such as safety, for which

there exist well defined frameworks and descriptions of how faults can cause accidents.

Ilowcvcr, Jonsson's framework is useful in introducing the concept of interaction

betwccn depcndability attributcs.

Another attempt to integrate safety and security is SafScc [35]. The objectives of the

SafSec project were to evaluate the feasibility of combining current and future methods

of acceptance of the next generation of military avionics against their safety and

security requirements. Predominantly, SaiScc seeks to provide a means for joint

certification of military aircraft for safety and security. A unified approach proposed by

SaiScc involves simultaneous reasoning about achievement of assurance regarding the

system's safety and security properties.

SafScc proposes the integration of safcty and security in the following way:

Unificd approach to risk asscssmcnt - combining the cffor oricntcd approach of
Safcty with the action-oricntcd approach of Sccurity.

Adoption of a risk dircctcd approach throughout the assurancc lifc-cycic - using

common languagc for spccifying the dcsircd propcrtics of a systcm.

Usc of modular ccrtification mcthods to providc a common framcwork for

sating cvidential rcquircmcnts to facilitatc rc-ccrtirication.

Similar work attempting to integrate safety and security requirements based on unirlcd

risk assessment was done by Moffett ct al. [36]. The study concludes that: "VOIlle the
definition of safety or security could be extended to include both concepts, in the

majority of the situations it is inappropriate to attempt to unJ& safety and security risk

analysis techniques he also point out that a sarcty case must provide separate

argument and goals when there is a security and a safety conflict [36].

54

Chapter 2- Literature Review,

2.3.4 Measuring Dependability

Being an abstract concept, it is difficult to examine the dependability of a system as

there is no metric associated with it. This has implications in decision making because

of the difficulty in comparing the dependability of two or morc systems. Individual

dependability attributes have been associated with mctrics; for example it possible to

identify that a system A is more reliable than a system B, based on quantitative

representation of reliability. However there were few attempts to provide an overall

metric for dependability. A notable attempt is from Prasad (101 who integrated the

individual attribute metrics in order to produce a single metric that will express
dependability numerically. The suitability of a number of methods and models (e. g.

additive method, hurt model, multi attribute utility theory) to produce a single metric for

dependability was investigated. Results showed it is not infeasible to derive a useful

and meaningful single metric of dependability that will reflect the behaviour of a system

with respect to its dependability attributes. Prasad cxcplicitly states that: "It is

infeasible to directly measure dependability as a composite property using a single real

number, even on a scale as weak as ordinal. This is because any given pair ofsystems

may not be comparable due to multiple attributes being implicit in the comparison, or,

may be ordered by different stakeholders" [10].

2.4 Trade-offs in System Design

Developing a dependable system involves addressing many (non-ortliogonal) attributes.
Consequently, having to resolve possible conflicts between the different dependability

attributes and make trades is an inevitable situation, especially for large-scale systems.
Lapric states that tradcoffs arc one of the reasons that developmental errors arc
introduced. "During development, faults result generally from tradeoffs, either a)

aimed at preserving acceptable performance andjacilitqting system utilisation, or b)

induced by economic considerations" [24]. Establishing a dependability case for a

system necessitates reasoning about those possible trade-offs. In some circumstances
trade-offs can be made relatively straightforwardly. For example, consider the

availability and safety of an airliner. Flying an aircraft with all its systems operational

would require repair times that would make the aircraft unavailable. On the other hand

'loss' of functionality has an impact on the sarcty levels of the aircraft. This

compromise has been historically resolved by consulting the Minimum Equipment List

55

Chapter 2- literature Review

(MEL) of the aircraft. A MEL specifics the systems that must be operational so that the

aircraft can take off. The list is populated aftcr assessing the impact on risk (probability

and sevcrity) when a system is unavailable. By comparing the resultant risk with the

maximum acceptable it is possible to specify whether the aircraft is airworthy and the

time interval within which the system has to be rcpaircd. Ilowcvcr, there can be cases

when simultaneously attempting to trade-off a large number of different goals in a

context where the priorities may not be so clearly defined (e. g. the defence domain as

opposed to the civil domain where safety is ideally the highest priority). In such cases,
in order to establish justificd, trade-offs a methodical approach is required,

systematically addressing a number of considerations.

By identifying the tradeoffs between the dependability attributes and their rclation to the
design of the system, an acceptable balance can be found. Three main strands were
investigated under the trade-off section.

Methods used in systems cnginccring to make trades between system

requirements. ATAM is one of the most prominent methodologies used for

trade-offs and is presented in this section. Several other methods arc bricfly

described in chapter 5, along with discussion rcgarding idcntiricd conccpts used
in trade-offs.

Design Rationale is used during the development of a system in order to

facilitate clicitation of design decisions and achieve agreement between the
different balancing their requirements.

As Low As Reasonably Practicable (ALARP) is an approach imposed by the
UK 11calth and Safety Executive (IISE), requiring developers to justify trade-

offs involving safcty.

2.4.1 The Architecture Tradeoff Analysis Method (ATAM).
ATAM is a method developed by the Software Engineering Institute (SEI) in Carnegie
Mellon University. The objectives are to understand the tradcoffs of candidate system
architectures and select the one that will satisfy the best, the requirements of the system.

56

Chapter ' Life-raturc- Reviess-

ATAM is a structurcd tecluilcitic 1'()r understanding the tradcol'I'S inlici-ciit III the

archaccturcs ot'sollwarc intcnsivc systcIlls. 'I'lic flictliod was dcvelopcd to: "providt, a

principled waY to evaluate 41 vo/twwre art -Iiitt, (*tlll*(, '. v with 11) 111111tiph,

compett . ng qualitY alfributes" 1371. According to the (1cf-mition adoptcd III ATAM,

quality attributcs ol'a systcm constitute Its bchavIOUr with rcspect to thc environment.

FN I RON NI NI

1011
ýXPF(

MIp Ell % SN sI %I

F

Fig. 2.7 - System Qualio kitrilm(c owigaijoll.,

Quality attributes represent the cxpcclcd hcha%lour ()I' I sysicin, ob. sci%ablc at
boundary as pi-cscilled III F,,. 2.7 13,841. This obsmation introduces the notion of' I

contract between the system and its environment, hased on the succcss of the , ýstcjlj to

provide the environment the expected bc1laviout. Although the Concept Is Intioduccd
1'rom the viewpoint of' quality, tile overall objective (i. e. 111c sN*.., tcli, I)CII; I%c jis

cxpcctc(l) of, defilling quality attributes Is the saille as III (ICI)CII(labilitY.

According to ATAM, quality attribute 1whaviour is rclatcd to the design oftlic syocin

scveral (Icsigns may satisfy onc attributc but not anotlicr, wlicii a tradc ot'l'cxi,, t-.,. "llic

A TA IV is Incant to be it risk idt'l II Ili('(Ili wI int'lliod, (I It It 'i II IN 0I di 'fd '(*1111.1ý t It'('I IA i)/

polcillial risk withill Mc an -h ift, clure 0/ a comph"t v"flivart, IIII(VISIVC 'ýVvftwl ...
Risks

IWC ell'Chilectural4l, importatil deci. vions Milt have Ito/ been madc or '14-clsioll. v Iililt have

heell madc. /)III whost, consequetices art, not JuIll, undervioOd' 1391, Hic tradcolfs M, c
then resolved by prioritising the systcnis actions to the external slimid, accold"19 to tile

sevcrity of' the scenario, and licncc by priormsing the quality attributes that correspond

to the respective scenario actions. Fig. 2.9 depicts the inpuls and outpuls of ATAM

57

('hapter 2 Larl allin. /?, -v it-vt

I ligh Priority Attribute Specific Architectural
Scenarios Qticstl()Il A pp roi kcIic

Analysi's

Sclisitivity Trade 01Y R isk,,
Pollits Points

Fig. 2.8 A LAN1

ATAM makes an important contribution that could bc related to the SoS conccpt, thc

ldclitilicatioll of' Sensitivity Points. According to ATANI wnsitivity poink are:

"... paralpleters ill /he archilecture to which NOMC /M WSUI*i lb/c quil/Ifl. (110,11,111t, re. sponst,

is hjghýv correlated. - [391.

Thcrcilore we can see that the behaviour of' it system is related to the design decisions

that are made. Possible use of' the concept III a SoS dc1mitlabilily case would he lo

relate the arguments about the dependability attributes to evidence dlIcctlv Coming 1'roill

tile SOS design. ldclit I ficat loll of' sensitivity points call facilitate III uIldclstall(ling lio%%

the design decisions made during system development, Call llclp achimlig the

goals described in the depcii(lability case.

ATAM is a very usefid method that identifics tradcoll's between sysicin atuibuics that

are related to tile design ol'the system and provides it methodology in order to scicct tile

most suitable design according to it set of" scenarios the system has to satisf'y. This

could I'Orni a basis I'Or tile concept of"delmidahility case. I 1()%%, c%-ci- tile incthod docs no(

mention interrelation of' it system's components and ho%ý otic's behaviour af'I'Ccl,, tile

other Moreover tile ATAM methodology rcpoiI explicitly mentions that ATAM is not

it structured method that can be used for formally reasoning about it System, bill it is a

method to evaluate the effect of' different scenarios in combination \% ith the design on

tile quality attributes.

59

Chapter 2- Literature Review

2.4.2 Design Rationale

Design Rationale aims to provide the rationale for design selections throughout the

system development process. "Design rationale (DR) expresses elements of the

reasoning which has been invested behind the design of an artefact. A DR answers

why ... ? Questions of different sorts, depending on the class of DR represented. " [40].

Apart from providing the design options necessary to evolve a system, there is also the

need to justify the selection of a specific option. Some design rationale approaches use

argumentation techniques to justify design selections based on a set of criteria,

concerning a particular problem in the system [41]. Argumentation based design

rationale is claimed to help in the problems such as [40]:

9 Clarify vague requirements, and tracking the rationale for their inevitable

evolution.

Represent multiple stakeholders' viewpoints, including that of end-uscrs in

participatory design.

9 Negotiating trade-offs between multidisciplinary analyses, such as software and

user criteria.

* Maintaining consistency in decision-making, e. g. through propagating changes
through networks.

* Communicate rationale to other designers.

9 Building cumulative design knowledge, through systematic re-use of rationale.

The ability of DR to allow negotiation of trade-offs can be used to show how a
dependability attribute is traded off against another based on a design decision. This
bears similarities to the ATAM method. The objective of the ATAM is to evaluate the
different design selections and identify the (design) sensitivity points that affect the

achievement of the quality attribute. Design rationale representations can be formal,

semiformal and informal (Fig. 2.8). The more informal the representation is the easier it

is for humans to conceptualise the rationale behind any design decisions (Fig. 2.9).

59

Chapter 2- Literature Review

human
r

hiJi

ým computational
ri-tictabili(v

ill f4 will-al semifiormal formal

Fig. 2.9 - Design Rationale Representations 1401

In this chapter semiformal representations of design rationale are examined, since they

are more suitable to accommodate argument based rationale [40], [41]. Design rationale

captures the dependency each requirement of the attributes has, oil design options. The

following pages provide a brief description of DR representations that were studied.

2.4.2.1 QOC

Tile Question Option Criterion (QOC) is a graphic representation Ior design rationale

used for design space analysis. Fig. 2.10 illustrates QOC. Questions used to describe

the system's required behaviour, which arc answered by design options which are

considered to be able to achieve the question indicates.

Argument

Aigume. tit ----- At Timent

pt, by rQ t--, - C. rit 1ý-r iF

OUestion W: (-: t iterion

W4,

Opfi Criterion

Con, ecluent C)Ljesficmi 4<

Fig. 2.10 -The QOC Method 1401

60

Chapter 2- Literature Review

The best design option is selected by arguing for each of the available options based on

certain criteria, which can support or object selection of a particular design option.
After the assessment of the relationship between options and criteria (supports or

objects to) the arguments are used to conduct debate about the design option that

satisfies the best the required question.

Debate as a product of the QOC method could provide discussions about tradeoffs.
Options are linked to consequent questions, and therefore inherently the best design

option that satisfies the most the questions is selected. However tradeoffs are not

explicitly mentioned and there are not any defined procedures used to identify the

tradeoff point as in ATAM and its impact on all the required attributes.

2.4.2.2 SIBYL

SIBYL is another tool used for design rationale. Lee describes SIBYL as "a system that

supports group decision making by representing and managing the qualitative aspects

ofdecision making; such as the alternatives, the goals to be satisfied and the arguments

evaluating the alternatives with respect to these goals" [42].

The two main motivations for SIBYL are knowledge sharing and qualitative decision

support. SIBYL uses the decision representation language (DRL). Using DRL, a
decision problem represents the problem of choosing the alternative that best satisfies

the system goals. Each alternative is related to a goal via an 'achieves' relation. A

relation in DRL is a subclass of claim. The overall evaluation of an alternative is

presented by the plausibility of the relation. The structure of the DRL vocabulary and
the achievement of the rationale capture are shown in Fig. 2.1 1. Selection of an

alternative is based on whether the alternative associated with a goal can credibly

achieve that goal. Justification is provided supporting each association between

alternative and goal. Being a goal-based approach, SIBYL supports decomposition and

refinement of goals into sub goals. Although SIBYL captures the rationale behind some
design decisions, the trade off points of a system cannot be easily evaluated.

61

Chapter 2 Literature Review

Minim'se
'P develc prnnt

J

Ct ost

Which t v ý
is-a-subgoal-of --- -

Supports
_ Cla

n guage
or 2 r for Zeuýý

E-mail
Can is-a-s oal-of Provides

implement is-a-su oal-of
Object

-a-subgoal-of Zeus System is- ie-b t- _ alte native or Interface in
queries X Windows

Why do
we need to

use X?

X Windows C++ is .. ppol s is written in supp
Available C

-7 C achieves

There is CLOS
and CLUE, supports provides pp., s
the LISP object

version-of x] denies system

There are There are
g. packa Ds built on packages U, ton suppors deni There is pp", S top of CL S that top of CLS th at Flavors

's, r 11
provide graphics, provide graphics,
e. g. Composer It e. g. Compc

Common
LISP achieves

Fig. 2.11 - SIBYL Elements 1421

The decision problem does not provide relations to other attributes so as to evaluate

architectures based on a collective view of tile attributes as ATAM does. I lowever a

useful conclusion of DRL is that claims can have both a negative and a positive cf! 'ect

on a goal or sub goal.

2.4.2.3 gIBIS

gIBIS is the last design rationale approach presented. -gIBIS is a hypertext system
designed to capture early design considerations" [43]. gIBIS is based on the IBIS

method, which helps providing arguments for the different stakeholders' viewpoints
during the design process. The gIBIS structure is shown in Fig. 2.12. IBIS is concerned

with 'issues' that need to be resolved during the design process. An issue is questioned

or suggested from a position. A position is a statement or assertion, which resolves the

issue. Each position is related to one or more arguments that can support or object it.

62

Chapter 2- Literature Review

Generalizes or Replaces, questions or
Specializes

ý70
Is suggested by (ý*F-I

s)stu e
ýueslgi ns

s sul
Oested

by Questions ug
Is suggested by

Position 1
-- ---- LArgument

Objects to

Fig. 2.12 - IBIS Main Elements and Relations 1431

Issues can be parallelised with goals and questions in other DR methods, whereas
positions and arguments are similar to the 'achieves' and 'supports' associations in
SIBYL. As with the rest design rationale methods reviewed, IBIS is used to facilitate

communication between stakeholders in the early design stages., It identifies the

concept of the design objecting to a goal of the system but there is no structured
approach for a collective view of a system based on its requirements.

2.4.3 As Low As Reasonably Practicable (ALARP) Principle

ALARP is a principle applied in safety critical systems, imposed by the UK Health and
Safety at Work (HSW) Act of 1974. According to HSW, system developers have a legal

obligation to demonstrate to the safety governing bodies that the risks have been

reduced to a level that is As Low As Reasonably Practicable (ALARP) [44]. According
to ALARP risk falls into three major categories; broadly acceptable (negligible),
intolerable and within the ALARP region. The ALARP region is defined by a target

and a limit value. When developers of a system accept a risk that falls in the ALARP

region, they need to show that the cost of fin-ther risk reduction would be grossly
disproportional to the actual risk reduction achieved. Decisions made are based on an
argument about disproportional benefit (although according to law there should be a
bias to safety), and on justification about the target and limit that define the (ALARP)

region of tolerability of risks. Walker underlines that ALARP "requires a comparison
of risk and the sacrifice involved in taking measures to avert the risk" [45]. When

making a decision, the system stakeholders need to justify their incentive for making the
decision, which in this case will take the form of an argument about the disproportion
between safety improvement and cost sacrifice.

63

Chapter 2 -Literature Review

Fig. 2.13 shows an adapted example of the categories for classification of risk used in

safety standards such as (46]. Risk can be classified in three major categories:
Negligible, Intolerable, and within the ALARP region. The safety 'target' is to achieve

risks that are considered negligible. Additionally, a limit on risk is defined. Risks

exceeding the defined limit are considered intolerable (i. e. unacceptable). The region
between these two values (target and limit) deftes the risks that can be considered to be

intolerable if they can be argued to be As Low As Reasonably Practicable (ALARP). A

risk is considered ALARP if costs of ftu-ther risk reduction options can be shown to be

disproportionate to the risk reduction that would be achieved.

Improbable 1 1 1 1

Unlikely 2 2 1 1

Possible 3 3 2 1

Frequent 3 3 3
.2

KEY
3: Intolerable Risk
2: ALARP
1: Negligible Risk

j Intolerable Risk
Limit

ALARP

7Target
L

egligibl

Fig. 2.13 - ALARP Categorisation and Risk Acceptance

The resultant system risk can be classified in the following categories:

1. Intolerable Risk, Risk cannot be justified except in extraordinary circumstances.

2. Undesirable Risk, tolerable only if reduction is impractical or costs are
disproportionate o improvements gained.

3. Tolerable risk if cost of risk reduction would exceed improvements gained.

4. Negligible risk.

Categories 2 and 3 belong to the ALARP region, where the risk has to be reduced as
low as reasonably practicable.

64

Chapter 2 -Literature Review

ALARP is a principle indicating a 'pure' tradeoff between safety and cost; the rationale

as well as the methods that are used in safety assessment could be extended to

accommodate more attributes than just safety. ALARP is used to assess the overall

system safety.

ohm-' cl
addm. md ad wd" 'W" tam*

G2
04

C2
C4 Ddnbond No nds

OWMAnd Ask moccoled Wh d wodw" rem m W~
119096W rwmwvq- 'a

cl
Al bkr"fl"PWM r

odundmimm
rpq R4 u6c" mmo* p

G6 n

11-81I. Mmm
RA uwaakd vah ldwmd -
km JQ ho bw Spom HuNd mwmw No"

Lag ma. 0

3ran
"wro

adnomma

in Go (9

Rok mmomWd vall Askasom"w1h FbIk . vkth (Hmwd)q hm Ism tkmd)Qhnbm
II Im)Qha bon m*mdlos*Wmbls m6iced N bw 0 *m is be M919AW lewd ý awy puke"

ý>
oil

pbmw)Q is Momm ho" bom Fwtw n&ocn d rM cs
ýVpvw in bkoll , ndt Plawflo-ILM 014nomd
PAUM (b@CMM d smoomiddsh d mwo pwroo WIN) ep"alwato

WPM

Fig. 2.14 - GSN Pattern for the ALARP Principle [471

Kelly [47] has formalised the principle by providing a pattern for ALARP arguments,
based on the Goal Structuring Notation (explained in the following sections of the

review). McDermid states that especially for software, ALARP cannot be quantified

and it would be better to look for a qualitative approach: "Perhaps more realistically,

the above says that we cannot apply ALARP in a quantified manner and we should
instead lookfor qualitative arguments to decide when risk has been reduced ALARP. "

[48]. This statement, along with Prasad's conclusions provide strong indication that

arguing the relation and the tradeoffs between the dependability attributes should be

based on qualitative approaches.

65

Chapter 2- Literature Review

2.5 Dependability Cases
Standards such as the UK Defence Standards 00-552 and 00-56 have an explicit

requirement that systems should be accompanied by a safety case, communicating a

comprehensible argument that a system is acceptably safe in a given operational

context. However there are no standards requiring a dependability case. The only

association of dependability case with a standard is by Froome and Jones [49], who
describe the dependability case as a possible supportive document for a system
developed widi the IEC-61508.

Maxion suggests that "dependability cases comprise an organising framework and

methodologyfor thinking about exceptions and the conditions under which they occur"
[50]. In this definition, the author identifies the association between assurance

regarding the dependability and system failures. The definition identifies the need to

understand exceptions. This refers to Laprie's statement that in order to achieve
dependability, faults in a system must be understood and controlled. However, he does

not provide any guidance on how to structure arguments regarding the attributes of
dependability.

Further work by Maxion identifies the dependability case as a basis for reasoning about
the "dependability" behavioural characteristics of a system stating that: "... a
dependability case is a documented body of evidence that provides a convincing and
valid argument that a system is adequately dependablefor a given application" [5 1].

Established practice regarding reasoning about a system involves well defined and

researched methods in the area of safety cases, which can be found in a variety of
industries (e. g. nuclear, defence). However safety cases represent only one aspect of
dependability. There are examples of standards and practices that require or propose a
'case' regarding the rest dependability attributes.

2 00-55 has been superseded by 00-56 and at the time of writing up this thesis has been made obsolescent. Ilowevcr it is a good source for some of the principles used in this thesis and their rationale.

66

Chapter 2- Literature Review

2.5.1 Safety Cases

Adelard define Safety Case as "a documented body of evidence that provides a

convincing and valid argument that a system is adequately safefor a given application
in a given environmene, [52]. This definition is almost identical to the definition given
by Maxion for dependability cases. Kelly having analysed numerous defence and

public standards concludes that: "A safety case should communicate a clear,

comprehensive and defensible argument that a system is acceptably safe to operate in a

particular context" [47].

Safety cases have been used both for public and military projects. Guidance on railway
[53] safety cases underlines that the aim of a safety cases regarding public transport

systems should:

1. Give confidence that the operator has the ability, commitment resources to

properly assess and effectively control risks to the health and safety of staff,
contractors, passengers and public.

2. Provide a comprehensive core document, with links to other more specific
documents, rules and procedures against which management and the department

can check the accepted risk control measures and the health and safety
management systems that have been properly put into place and continue to

operate in the way originally intended.

The Adelard Safety Case Manual presents the safety case structure as a set of claims

which, using an argument, are supported by evidence (Fig. 2.15). An argument

represents a set of inference refining the original claim. The argument can be
deterministic (true/false claims) or probabilistic (e. g. MTTR, MT7F). DEF STAN 00-

55 provides a required list of contents that a safety case should have to comply with the

standard. Initially safety cases were text based. However especially for large systems a
text-based arguments can often be difficult to understand [47]. This has led into

enhancing the text based argument with tabular based arguments (e. g. 00-55), and

graphical notations (e. g. GSN [47]).

67

Chapter 2 Literature Review

Evidence
im ---- -1

--(:
x ------ Evidence

s aim all Clain,

Inference ruie

Arqument structure

Fig. 2.15 - Safety Case Structure 1521

The Goal Structuring Notation (GSN) explicitly represents the Individual elements of'

any safety argument (requirements, claims, evidence and context) and (perhaps more

significantly) the relationships that exist between these elements (i. e. how individual

requirements are supported by specific claims, how claims are supported by evidence

and the assumed context that is defined for the argument) [47]. The main symbols of'

the notation arc shown in Fig. 2.16.

The principal purpose of a goal structure is to show how goals (claims about the system)

are successively broken down into sub-goals until a point is reached where claims ciln
be supported by direct reference to available evidence (solutions). As part of' this

decomposition, using the GSN it is also possible to make clear the argument strategics

adopted (e. g. adopting a quantitative or qualitative approach), the rationale for the

approach (assumptions, justi fi cations) and the context in which goals are stated (e. g. the

system scope or the assumed operational role. The Goal Structuring Notation (GSN)

[54], considerably improved the expressiveness of safety cases, as it provided a

graphical way of representing the elements of the case. Fig. 2.17 presents an example of

a goal structure arguing the fault free implementation of an industrial control system.

68

Chapter 2 Literature Review

jParpntGcýj Chil-16col

t ndv% dolml Coal I)n clolwd Gual Child Ond Unin%lanlialed milvo hoitv
I.. lw dv% ch q)rd

Fig. 2.16 - Principal Elements of GSN 1471

-t by
fact, on of all CIS

safety req,, mment

02 G3 G4

. se
sr t

Press controls being le
C/S fa is -1, (h, 11s) o,, ; v, d

of co""Is prior to press . -d I- , It -s. annuncales (by 0,,)d,, Ig
p"SS to -It ýss,, q phys-I PONR will kla.. n). . 11 s.. gi. r-p....

j- press operation to abort fed-,

G5 07
Snl

Fad, rel trans, bon of PLC 'Abort' trans, tion of PLC

B, I sla a mach, na mcludes, state machine Includes

I's ,
Z). BUTTON IN rema, nmg true BUTTON-IN 9-g FALSE

Test P, I's

S. 2

C/S SIM.
Ma&, ne

C/S Log, c s fault f

/51

Ng-ai, t by , g. -. nl by o-tuon
6 Wacl, b of all CIS 70 all

cf-hfod adt...
&: fety requ, mment,

GB

ljý U"A. d 'y l"llj 'A i"---
(. ft., P. NH) Iy suit of

Sa3 .4
H H. a,, . a"I

_t t_1

Cd,

-tý taM
la

'Hand trapped n
prosa due to

_'n. nd , r. e

Fig. 2.17 -'Control System' Example CSN Argument

In order to manage complex safety cases - in which there arc complex relationships

between arguments - the principles of compositional, modular, safety cases have

already been established [55]. In this approach, the safety case for an overall system

can be divided into a number of modules - containing the separate arguments and

evidence for different aspects of system safety. For example, for a complex avionics

platforrn the overall safety case can be reasoned about as the composition of separate

arguments for each of the separate avionics subsystems. However, as described above
for the dependability case, these arguments cannot be reasoned about in isolation. For

example, it may only be possible to argue about the safety of one avionics subsystem in

the context of assumed safe behaviour of another. To help manage the relationships that

exist between safety case modules the concept of modular safety case interfaces
(defining clearly the objectives, evidence, and assumed context of the case together with

69

Chapter 2- Literature Review

any dependencies on other cases) and safety case contracts (recording how the

dependencies between safety cases are resolved) have been defined.

Establishing a safety argument and creating a safety case is not a single process that

takes place at a single defined point of the system's lifecycle. Safety standards, such as

the U. K. Defence Standard 00-56 issue 4 [8] and the Ship Safety Management

Handbook JSP430 [12], require that safety case development be treated as an

evolutionary activity that is integrated with the rest of the design and safety lifecycle.

For example, Defence Standard 00-56 states that: "The safety case should be initiated at

the earliest possible stage in the safety Programme so that hazards are identified and
dealt with while the opportunitiesfor their exclusion exisf '.

In addition, JSP430 specifies that at least three versions of the safety case should be

constructed:

4p Preliminary safety case - After definition and review of the system requirements

specification.

9 Interim safety case - After initial system design and preliminary validation

activities.

Operational safety case - Prior to in-service use, including complete evidence of

requirements satisfaction

At each stage of the evolution of the safety case, the safety argument is expressed in

terms of what is known about the system being developed. At the early stages of project
development the safety argument is limited to presenting high-level objectives, as
design and safety knowledge increases during the project these objectives (and the

corresponding argument) can be expressed in increasingly tangible and specific terms

(as depicted in Fig. 2.18).

70

Chapter 2 Literature Review

Safe

General safety objectives
(e. g- standards, design concept
safety)

Specific safety objectAtes
(e. g design hazards, enacted
requIrements)

vonfication fargots
(o. g failuro rato, NSPF,
des4n propothes)

Safety Evidence
(e g Test Results, 'ýýEvfdwnce

Fauff Trees, Design
Information)

Safety
Planning

Prelim. Design
& Safety Analysis

Further
Design &
Safety
Analysis

F]

Evidence) Evidenc*

Fig. 2.18 - Evolution of an Argument

Although safety cases focus only on one dependability attribute, often there arc relations

identified to other attributes. However the rest of the attributes have a secondary role

acknowledged only if they affect the system's sallety goals.

2.5.2 Reliability and Maintainability Cases

Defence Standard 00-40 requires the construction of a reliability and maintainability

case. As defined by the standard, a R&M Case is "a reasoned auditable argument

created to support the contention that a dcfincd system satisfics the R&M requirements:

"... is also producecl progressively thiring (i pr(ýject /ý/ý cycle wul will ývpiceillv be

summarizeclin ti R&Mcase t1ocument in the entiql'thepheise" [561.

The R&M case is required to provide assurance that the R&M requirements of the

systems have been met. The standard requires the case to be reviewed and updated in

case:

The system is modified

The context of its operation is modified.

The R&M requirements are modified,

If there is deviation between the actual and intended performance

71

,r2 Literature Review

Fig. 2.19 presents the elements of a R&M case.

The R&M_ýaEse

Evidence
I< Assumptions

I Previous usage I

I Calculations I

-C

----r- -

Testing/Trials Reasoned
Arguments

Simulation

I Analvses I

R&M
Expert opinion Claims

Fig. 2.19 - Elements of the R&M Case 1561

An important aspect of the R&M case is that evidence of the R&M case can also be

used as input to the safety case, as suggested by the Defence Standard (I)Stan) 00-42

[57]. As already described dependability attributes are not Independent to each other.

A reliability or performance failure may lead to a safety or security 111111irc. For

example consider an ATC SoS delaying processing of' aircrall data. I lence claiming

achievement of acceptable safety or security may depend oil arguments regarding tile

reliability or perfon-nance of the system. Collaboration between cases representing

different system attributes is essential in order to establish assurance about tile overall

dependability of a system.

2.5.3 Security Cases

It is widely accepted that security is a composite attribute consisting ofaSpeCtS Such as

reliability, availability and confidentiality. Security failures are usually related to

malicious attacks from persons that deliberately attempt to exploit system

vulnerabilities.

72

Chapter 2 Literature Review

The concept of security case has not been explicitly defined similarly to sat'ety or the

R&M case. However, there are attempts to provide an argument of security. An

example is security Methodically Organised Argument Trees (MOATs) which are

"... used to document and communicate the assurance argument that establishes a

security property for a system under consideration" [58]. MOATs are based on

hierarchical fault trees [59]. Each node contains an assurance claim and the interior

nodes document how these assumptions compose to establish the required claim

(Fig. 2.20).

User's e-mail is
kept private

User's e-mail k User's e-mail User's e-mail kept
private in kept private in private on disk

transmissio memory

Encryption Key known only
- mail stored in 08 prevent,,

ensures sent to sender and encrypted form access by other
e-mail privacy receiver programs

Fig. 2.20 -A Security MOAT 1581

The goals are identified based on a security risk analysis of the system, evaluating the

consequences of possible security failure. The risk analysis provides the goals the

system must satisfy, in the same sense as a hazard analysis. MOATs are accompanied
by a methodology in order to produce an effective and valid argument concerning the

security of a system.

Other approaches include the Network Visual Rating Methodology (NVRM) developed

by the US naval research laboratory. NVRM is derived from GSN providing a set of
"decomposable" goals that using a justified strategy are supported by evidence. "The

VNRM is a toolset and language, for developing and evaluating a map qI'an argument

that mission critical information is adequately protected by a system in its larger

operational environment" [60].

73

Oiapter2 Literature Review

The methodology combines the three attributes of security (confidentiality, integrity and

availability), as well as four security disciplines (Physical, Technological, Operational,

Personnel) in order to compose an effective argument about the security (Fig. 2.2 I).

N
Integrity

'*"
Security

Confidentiah fyý
I ýAvailability Concerns

Security
Physical Assurance e Pet-sorinel

Argument

Sttength of
locks, t t, backI round

investigatiomi,
safes
SCIFs, Technological Operational omprenerrsion cassessment,

tamper- II performance
proofing, testing, Folloviling appraisals,...

guards.... simulation, procedures,
inspections, policies, Assurance formal proof, guidelines,...
covert channel Techniques
arialysis

Fig. 2.21 - VNRM Concept 1601

Fig. 2.22 -AL VNRNI Nlap Combining FaultTrees and CSN 1561

VNRM constructs argument maps (Fig. 2.22), which contain claims interrelated via
dependencies, assumptions and design decisions. Moreover, sub-claims of a map can

74

Chapter 2- Literature Review

have their own argument in a separate map in a style similar to modular GSN. An

important feature of VNRM is its ability to show the associations between different

claims based on design decisions.

2.6 Summary
The chapter presented a survey of related work in the areas of Systems of Systems,

dependability, systems design and trade-offs, and cases as a means of achieving

assurance about the operation of a system. Concerning Systems of Systems, several
definitions were presented, each having its own unique viewpoint. Moreover certain

modelling methods and frameworks were reviewed. Dependability was another topic

examined. Definitions are not always aligned, each approaching dependability from a
different perspective. However, some common assumptions, upon most of the
definitions, were identified. Finally system assurance cases were reviewed. In order to

make a dependable SoS, the development process should be structured, and we should
be able to determine how any design decisions will affect the SoS behaviour. Safety

cases are the most mature and widely used concept.

75

Intentionally Blank

76

Chapter 3- Establishing a Dependability Case Framework

Chapter 3

Establishing a Dependability Case
Framework

In the previous chapter a number of concepts were reviewed suggesting the creation of

an argument about dependability attributes such reliability, security and safety.

However, little has been done about integrating all dependability attributes in a single

case. This chapter lays the foundations for integrating dependability attributes by

establishing a dependability case framework. Firstly, the characteristics of a
dependability case are discussed. Then, key challenges are identified introducing the

work done in this thesis to address them. Finally, the chapter presents the technical

approach undertaken in creating a dependability case metamodel, rigorously defining

the concepts and their associations. The dependability case metamodel is used

throughout the thesis to clearly present the concepts of each of the proposed methods.

3.1 Dependability Arguments
Although the dependability case is a relatively new and untested concept, the idea of
developing 'cases' for system attributes other than safety is not unprecedented.
Maintainability cases are a requirement of the U. K. Defence Standard 00-40 [56].

Defence Standard 00-40 defines the reliability and maintainability (R&M) case as "a

reasoned auditable argument created to support the contention that a defined system
satisfies the R&M requirements". The Common Criteria for security [61] suggest a
document explaining why a system has met its required security level. Similarly, the
US Naval Research Laboratory whilst not explicitly using the term security case; have
described the development and evaluation of "a map of an argument that mission
critical information is adequately protected by a system in its larger environment" [60].
In all cases the argument communicates how the available evidence can support an

overall claim about the acceptable behaviour of the system regarding the respective
attribute. Table. 3.1 shows typical claims, arguments and evidence required when
reasoning about different dependability attributes.

77

Chapter 3 Fstablishing a Dependabilit-V Case Framework

Tnhip-3-1 - Claimv- Arpuments and Evidence for Denendabilitv Attrihutes

Attribute Overall Claim Typical Argument Typical
Evidence

Safety System is adequately Hazard mitigation II azard
safe argument Analysis, Causal

analysis

Reliability System meets Adequate redundancy, Testing
reliability resilience of components Simulation,
requirements Markov analysis

Maintainability System meets Modular cohesive Expert opinion,
maintainability design, ease of simulation.
requirements installation, ease of

replacing components
Security Mission critical Assets protection Access control,

information is argument policies,
adequately protected M0ATs3

Despite the fact that there are attempts to create cases for other attributes, all of' them

focus on a single dependability attribute. Also, none of them have been the Sub - Icct of'

as extensive research and development (e. g. tool support) as safety cases.

3.2 Dependability Attributes and Non-functional
Requirements

It is common for the dependability attributes to be characterised its noti-ftinctional

requirements (e. g. Robertson's classification of non-functional reqUircnicnts [62]). This

classification separates the concerns of the stakeholders into Functional and non-
functional, with the former describing what the system has to do, and the latter

describing properties of the system such as safety, performance and usability.

However this distinction between functional and non-functional requirements is not

always clear. Non-functional and functional requirements can be related to each other.
For example, in order to achieve a safety requirement, further functionality may be

needed that contributes to increasing the safety levels of the system, such as the

functionality provided by WAS which mitigates failure to maintain the prescribed

aircraft separation. Furthermore although to some degree dependability properties arc

3 Methodically Organised Argument Trees (MOATs) are described in chapter 2

78

Chapter 3- Establishing a Dependability Case Framework

inherent, their implementation to acceptable levels will require certain design

characteristics. For instance, it is common practice to ensure the availability of a
function by adding redundant components that provide the function. Hence,

establishing acceptable dependability levels can have impact on both the

implementation and the design/architecture of a system. Therefore it is often the case

that such attributes may have to be planned from the beginning of the system
development. This was recognised by Prasad [10] and Bass et al. who also add that

'ýyou can't get functionality right and then go back andput in qualities. They have to

be designedftom the start" [63].

Dependability can be thought of as a composite system property describing the system's
behaviour with respect to different viewpoints, with ultimate objective the reliance on
the system's operation. A dependability case communicates assurance about acceptable

operation of the system. According to Prasad's (more generic) definition, which has

been adopted in this thesis, dependability entails any requirement that the stakeholders

perceive to be important with regard to their interests.

A key challenge is to maintain the multiple attributes of dependability at acceptable
levels, addressing the achievement of each attribute in context of the others.
Engineering practice has shown that it is impossible to achieve all dependability

requirements without compromise. Satisfaction of the requirements depends on design

decisions during system evolution and contextual information about the operation of the

system. This task requires definition and justification of clear levels of acceptability for

each dependability requirement, as well as traceýbility of the requirements' rationale
throughout the entire lifecycle.

3.3 The Role of Argumentation in System and
Requirements Evolution

A safety case exists to communicate an argument. It is used to demonstrate how

someone can reasonably conclude that a system is acceptably safe from the evidence
available. A safety case is a device for communicating ideas and information, usually to

a third party (e. g. a regulator). In order to do this convincingly, it must be as clear as
possible. The safety argument is that which communicates the relationship between the

79

Chapter 3- Establishing a Dependability Case Framework

evidence and objectives. Both argument and evidence are crucial elements of the safety

case that must go hand-in-hand. An argument without supporting evidence is

unfounded, and therefore unconvincing. Evidence without an argument is unexplained;
it can be unclear that safety objectives have been satisfied [47]. Although the argument

of a case can be presented in a textual form, experience has shown that this is

inefficient, often resulting in weak arguments that are hard to comprehend. For this

reason the Goal Structuring Notation (GSN) was introduced to structure and present

clear and comprehensible cases [47], which was described in chapter 2.

The Goal Structuring Notation is used in a dependability case to structure the argument

about acceptable fulfilment of the system's dependability goals. In most goal-based
requirements engineering (RE) methods, goals represent something that a stakeholder
hopes to achieve in the future [64]. Often in RE, Goals refer to something general and
abstract that cannot be directly verified, as opposed to requirements that can be

validated and verified by the end of a system's development lifecycle. Thus goals need
to be refined until they can result in specific requirements. However, in a GSN goal

structure, goals are phrased as propositions. This means that they are statements that can
either be true orfalse.

Evolving in parallel to the system development, goals are decomposed until they can be
directly supported by evidence collectcd during the development and testing phases of
the system. GSN goals are specific claims that a system has achieved a particular

requirement. Being able to explicitly represent and associate all the elements of an
argument, GSN helps to articulate post-conditions for the initially identified

requirements of the system in question. In a dependability case, GSN is used to create
arguments supporting claims of sufficient achievement of the dependability attributes.
Fig. 3.1 presents a dependability adaptation of the evolution of a safety argument
illustrated in Fig. 2.18. Fig. 3.1 shows how a high level dependability claim can be
decomposed during development of the system. At each stage of the evolution of the
safety case, the dependability argument is expressed in terms of what is known about
the system being developed. At the early stages of project development the
dependability argument is related to the high-level objectives as conceived by the

stakeholders in the concept of operations (CONOPS). As design knowledge increases

80

Chapter 3 Estahlishing a Dependabilim Case Framework

during the project, these objectives (and the corresponding argument) can be expressed

in increasingly tangible and specific tenns.

Acceptably_--
Dependable CONOPS & II

System
'/Definition

General Operational
Dependability Objectives Prelim. Design
(e. g. constraints) & Analysis

Dependability Specification
(e. g. targets and limits) Further

Design &

Systern/Component
Analysis

Dependability
Specification
(e. g. failure rate, NSPF,

L- L

design properties)

Evidence ýEv
(e. g. Test Results, Evidence 1dn.

4
'Evid-

Fault Trees, Design
Information)

Fig. 3.1 - Evolution of a Dependability Argument

Analysis identifies the required behaviour of each component of the system in order to

satisfy the overall dependability goals that were identified by the stakeholders. The

goals are decomposed in context of the system as the latter evolves, which includes

specification of requirements and design decisions that will eventually affect the final

structure of the dependability argument.

3.4 Creating and Capturing Argument Context
One of the mcrits of GSN is its ability to explicitly capture the context in which the

claims of an argument are stated. In GSN context can be captured in two different

forms. The first is by using the context element, which can contain a reference or a

statement of contextual information. For example, a goal in a safety case claiming

acceptable safety can be stated in the context the definition of' acceptable safety. A

reference to contextual information can point to resources available from other

processes such as system models or inforination available in other documents. The

second type of context is represented by GSN (argument) modules. The argument Is

stated in the context of the top level claim of the GSN module which is supported by

argument and evidence. In this way the main dependability argument can be

decomposed in the context of other decisions or processes which need to be argued.

81

Chapter 3- Establishing a Dependability Case Framework

The contextual information which affects the evolution of the dependability argument

and should be captured in the dependability case is the following:

Component dependability requirements: These represent the (derived)

requirements of the system components in order to maintain an overall

acceptable behaviour as envisioned by the stakeholders.

* Design rationale: Information on how the various characteristics of a design

can help achieve the specified goals.

e Trade-offs: Identification of competing objectives documentation of
compromises within acceptable margins and justification of selection of

most suitable design option among candidate design alternatives.

Contextual information, whether represented by the GSN 'context' element or as GSN

modules, are created by three methods:

Dependability Deviation Analysis (DDA): DDA (described in chapter 4)

provides a systematic analysis of the system identifying the effects of deviations
from the normal operation of the system. In the context of dependability cases,
the purpose of DDA is to elicit acceptable behaviour of the system with respect
to dependability and identify associations between failures under the viewpoints
of each dependability attribute.

Trade-OffMethod (TOAI): TOM (described in chapter 5) describes a methodical

way of using the established space of admissible requirements to trade-offs goals

and resolve conflicts. TOM ultimately creates arguments of preference between

candidate decisions, in the context of which the dependability argument evolves.

Factor ANalysis and Decision Alternatives (FANDA): FANDA (described in

chapter 6) complements GSN in developing arguments. The method can be

thought of as a catalyst between the argument and the design. It assists analysts

82

Chapter 3- Establishing a Dependability Case Framework

to examine the system goals, record and manage rationale, and elicit candidate

options for decisions taken during the system lifecycle, such as design decisions.

The three methodologies in addition to the existing GSN method compose the overall
dependability case framework presented in this thesis. The methodologies are not
independent to each other but are associated and collaborate during the development of

the case. In order to provide a clear and rigorous description of the framework the
Dependability Case Metamodcl (DCM) has been created, capturing the concepts, their

attributes, their legitimate associations as well as constraints that need to be applied

when creating a dependability case instance.

3.5 Rigorous Definition of the Framework

At present, cfforts to formalise cases, and in particular argumentation, are largely tool-
driven and mostly limited to the safety community (e. g. The ASCE toot [65]).

Existence of a rigorous metamodel that captures the concepts existing in the assurance

cases domain in an open and standard format, can deliver a number of benefits. Most

importantly, it offers a common vocabulary and consensus on the concepts involved in

the task of assurance case development and their semantics. This can contribute to

avoiding 'deviant' implementations across tools from different vendors. Moreover,

evaluation of a toot implementation can be difficult as there is no common point of

reference. Also, a uniform serialization format can provide a tool-independent platform
to facilitate information exchange between different vendors' tools. Finally,

establishing a dependability case metamodel can provide the basis for further
introduction of concepts such as metrics management.

Fig. 3.2 shows the technologies employed in defining the DCM as well as their use in
defining and managing dependability case models (based on the DCM). Initially the

metamodel was defined using the Kernel MetaMetaModel (KM3) modelling language.
Using tools built in Eclipse (a software and modelling development tool) [66], the KM3

metamodel was transformed to an Ecore metamodel. Ecore is an implementation of the
Object Management Group (OMG) standard Meta Object Facility (MOF) 2.0

metamodelling architecture. Using Eclipse's EMF visual editor it is possible to

83

Chapter 3 -- Establishing a Dependubili(v Case Framework

instantiate the defined dependability case metamodel, and create and edit new models

(each created model is an instance of a dependability case).

Model in EMF Verification of
visual editor constraints (with evI) and

model management (with

eol) using epsilon

Aletaniodel in Metainodel in
KAL; L fF Reports

Transformations Instantiation of
already built-in metamodel

eclipse

Trans formation s
and code Graph Viz

generation using code
11
1

epsilon (eol) Graphical
GraphViz presentation qf

engine niodel

Fig. 3.2 - Technologies Used in Dependability Cases

Epsilon [67] is a platforin consisting of a number of model management languages

which were used to manage and verify the created model. In particular, the languages

used were Epsilon Object Language (EOL) and Epsilon Validation Language (EVL).

The implemented functions included among others, the automated generation of

GraphViz [68] code, a package used to create graphical representations of the models,

automated production of reports and logs of the dependability case and automated

support for the proposed methods.

3.5.1 Definition Using Kernel MetaMetaModel (KM3)

KM3 is a modelling language used to define metamodels [69], employed by the author

to define the dependability case metamodel. KM3 was selected mainly for its case of

use. KM3 consists of a relatively (to other languages) small number of classes, and its

simple syntax allows straightforward definition and editing of the metamodel.

Moreover the fon-nally defined semantics make verification of the metamodel possible,

eliminating potential errors. Fig. 3.3 shows an extract of the DCM in KM3 code
defining elements of GSN. The extract presents the class Sj)inafflement (goals,

84

Chapter 3 Establishing a Dependabilin, Case Frame'Work

strategies, solutions are all types of spinal elements), and the class SolvedBY which

represents the decomposition of a GSN spinal element. A class can have either

references to other objects, or attributes. The oppositeOf keyword dcfines bidirectional

associations between two classes. Hence by selecting a spinal element we can navigate

the model and find its parent and objects (e. g. parent strategy or goal). A spinal element

can have many references to solved by objects, denoted by [*].

package GSN (

abstract class SpinalElement extends ModelElement (
reference solvedBy [*] container: SolvedBy oppositeOf parent;
reference inContext0f [*] container : InContextOf oppositeOf parent;

I
class SolvedBy

reference parent : SpinalElement oppositeOf solvedl3y;
reference child container : SpinalElement;
attribute cardinality : Integer;
attribute optional : Boolean;

datatype String;
datatype Boolean;
datatype Integer,

Fig. 3.3 - Extract of G. SN in KM3

Fig. 3.4 - UML Modelling of Basic GSN

85

Chapter 3- Establishing a Dependabilit-v Case Framework

Using EOL, the KM3 metamodel can be transformed to UML for better v1sualisation of

the concepts. Fig. 3.4 shows the metamodel of GSN (as described by Kelly in [47]),

without the extensions for modularising GSN, as proposed by Kelly in [55]4.

Throughout the thesis, excerpts of the metamodel represented in UML will be used for

better understanding and illustrating the relations between the concepts. The metamodel

defined in KM3 can be found in appendix C.

3.5.2 Eclipse Modelling Framework (EMF)

The Eclipse Modelling Framework (EMF) is a modelling framework built on top of

Eclipse, an open development framework with extensive user base. The KM3

definition of the metamodel is transformed to the Eclipse Modelling Framework (EMF)

allowing the creation of instances of the metamodel, which can then be edited with the

EMF editor. Fig. 3.5 shows an example of the model of a GSN structure in the EMF

editor (by instantiating the DCM objects representing GSN).

platform: /resource/DC/Press^rgumentExample. ecore
Cý Case

Argument Module Main Argument
Goal C /S Logic is fault free

Solved By
Strategy Argument by satisfaction of all C/S safety requirements

Solved By
Goal Press controls being')ammed on'will cause press to halt
+ Solved By

+ Solution Black box test results
+ Solved By

Goal Failure I transition of PLC state machine inckideo BUTTON IN remaining true
Solved By

Reference Spinal
+ Solved By

Goal Release of controls prior to press Passing physical PoNR will cause press operation to abort
Solved By

Goal Abort transition of PLC state machine includes BUTTON-IN going FALSE
Solved By

-'- Sokition C/S State nuichine
Solved By
+ Goal c/s fads safe (halts) om anif annunciates (by sounding klaxon), all single component fa&Kes

+ Not"

Strategy Argummt by omission of all identified software hazards
Solved By

Goal Unintended opening of press (alcter PoNR) can only occur as a result of component faskire
+ Solved By

-: - Solution fault tree analysis cut sets for event 'Hand trapped ion press due to command error'
+ Solved By

:ý Reference Spinal
Solved By
+ Goal Unintended closing of press can only occur as a result of co"Wonent failure

Solved By

-'- Solution Hazard directed test reults
Solved By

. ý, Reference Spinal
In Context Of
' Context Identified software hazards

Fig. 3.5 - GSN Press Argument in the Eclipse EMF Editor

The modular GSN extension has been defined in KM3 (appendix

86

Chapter 3- Establishing a Dependability Case Framework

The editor does not show the graphical representation of the GSN elements, but it shows
the objects that have been created by instantiating the appropriate (GSN) classes of the

metamodel. Similarly, the rest of the concepts introduced in the proposed

methodologies can be modelled by instantiating the appropriate classes.

3.5.3 Model Management Using EPSILON

EPSILON is a platform of model management languages for tasks such as model

merging, model transformation and model validation [67]. It was used to manage the
instantiated dependability case models. Among the purposes for using EPSILON were:

9 Automating the creation of parts of the dependability case (where possible)

e Automated reporting of warnings or errors spotted in the model

* Checking the constraints of the metamodel

Transformation to GraphViz code [68], a graphics tool, that was used to

graphically present parts of the dependability case.

Fig. 3.6 demonstrates a GSN constraint example using the epsilon verification language.

context Goal (

constraint HasUniquelDescription :
Goal. allinstances. forAll(glg. descdption = self. clescription implies g= selo

fall:
'Goal'+ self. clescription +'has not unique ID')

}

Fig3.6 - Example of Constraints Using EPSILON

87

Chapter 3 Establishing a Dependabilitv Case Framework

:/

-' IiiII {I4

Fig. 3.7 - Press Argument in GSN (produced in GraphViz)

The constraint is applied on objects of type 'Goal' and it checks whether a goal has a

unique ID. The attribute (lescription represents the ID of the goals. If tile constraint

fails the code will report an error. Fig. 3.7 shows the (graphical) GSN structure of the

press argument example presented in Fig. 3.5after transformations using the Epsilon

Object Language 5.

3.6 Summary
The chapter has defined the concept of dependability cases, identifying prominent

characteristics, such as typical arguments and evidence for each dependability attribute.

Also the chapter describes the fundamental concepts of the proposed work. Ill addition

a dependability case metamodel has been defined, using the KM3 language, and then

transformed to the Eclipse Modelling Framework (EMF). The metamodel can be

instantiated enabling the creation of dependability case models. The Epsilon Object

Language was used to create scripts that will manage the created dependability case

models

5
The graphical representation of some GSN elements (i. e. context and context association) differs from

original GSN. GraphViz required definition of some of the shapes not included in its library, which was
considered to be outside the scope of this thesis. The example demonstrates the application of GraphViz
for future reference. I lowever throughout the thesis GSN structures are represented in a proper manner.

88

Intentionally Blank

89

Chapter 4- Requirements Elicitation Using Dependability Deviation Analysis

Chapter 4

Requirements Elicitation Using
Deoendabilitv Deviation Analvsis

4.1 Introduction
When examining the required system behaviour overall, system stakeholders can
identify some overall goals for the system. However, during evolution of the system
designers need to examine how their initial requirements and concerns can be related to

the behaviour of the more detailed layers of the system design. In safety, requirements
for a system are typically elicited through following a structured safety assessment

process during each stage of the lifecycle [70].

Among other techniques and methodologies used, the safety assessment process
includes deviation analysis techniques and methods such as Hazard and Operability

Studies (HAZOPS) [71]. Deviation analyses are used to identify possible deviations

from intended behaviour and their effect on the overall safety levels of the system.
Hence, the required behaviour for the elements of the system which are under analysis
is identified. Even though other attributes are recognised during the analysis such as

performance, the main focus is on safety. However eliciting dependability requirements

necessitates a more explicit analysis from the viewpoint of each dependability attribute.
Stakeholders interested in an attribute need to identify the effects of the behaviour of the

system (or an element of the system) with respect to that attribute. This entails possible

effects to other attributes that are of interest to other system stakeholders.
Dependability Deviation Analysis is a method for eliciting dependability requirements,
by identifying how dependability attributes affect each other. Establishing the required

operation of a system element in terms of the dependability attributes of interest, allows

creation of a dependability profile for that system element that encapsulates all derived

dependability requirements.

90

Chapter 4- Requirements Elicitation Using Dependability Deviation Analysis

4.2 Deviation Analyses
Deviation analyses are commonly applied in the safety domain in order to achieve a
better insight about possible safety implications of system deviant behaviour. Deviation

analysis methods aim to identify the causes and effects of deviations from intended

operation. Delivery of a service different to the one intended can be described as a
failure. Ultimately a failure can be characterised in terms of risk - the severity of the

outcome combined with the probability of the failure occurring.

Fig. 4.1 shows a bow tie model [72] used in safety. The focus of the model is commonly
a hazard, represented by the 'knot' of the tie. The bow-tie model consists of two

elements: a causal model that describes the causes of the hazard and a consequence (or

outcome) model that describes the effects of the hazard (alongside other contributing
factors). Deviation analyses are used to explore variations around the intended
behaviour of a system design and identify deviations with unsafe consequences (i. e.
'hazardous' deviations).

Fig. 4.1 - Bow-Tie Analysis

4.3 Analyses during the System Lifecycle
Application of analyses is affected by the analysts' knowledge about the design in

question. At first, during the initial stages of the system design the analysts do not
possess a great deal of information about the design. Furthermore at early stages the
design is still volatile as it undergoes a large number of changes in accordance to the
results of the analyses. During the latest stages of design evolution the analysts have

more data about the system as well as more detailed data. This is reflected on the type

of analysis that is employed during the safety lifecycle stages. Airborne Recommended
Practice 4761 (Appendix A) provides guidance on the safety lifecycle and its activities

91

Chapter 4- Requirements Elicitation Using Dependability Deviation Analysis

in the context of safety analysis for complex aircraft systems. The following sections

provide an overview of the main methods that influenced development of DDA. A

common characteristic of the reviewed methods is the fact that they use deviations from

intended operation, to probe the system design and examine whether the deviation can

credibly affect the safety of the system. Deviation based techniques have been applied

extensively to safety and are considered very successful during analysis of the system.

Although these techniques have been developed with the intention to be used in safety

analysis, there have been examples of deviation techniques applied in security [73].

The following subsections present an overview of the most notable safety analyses, the

principles of which and their application in dependability are discussed in §4.7

4.3.1 Failure Modes and Effects Analysis

Failure Modes and Effects Analysis (FMEA) [74] is a method that considers deviations

that are known to occur to the components examined, and assesses their effect.
According to the design of the system, deviations affect the operation of the overall

system.

4.3.2 Hazard and Operability Studies (HAZOPS)

The HAZard and Operability Studies (HAZOPS), is a methodology introduced in the

chemical industry domain by the Imperial Chemical Industries (ICI) [75]. HAZOPS is

a systematic analysis of the flows between the different parts of a chemical plant by

considering deviations from the intended behaviour of the flows' attributes. HAZOPS

uses a set of guidewords with which the design is probed. The guidewords identify a
possible deviation. The aim of the technique is to identify the effects and the possible
causes of the deviation. HAZOPS is nowadays a very popular technique used
extensively in the safety domain. Technique was primarily for the process industry it
has been extended for other uses, most notably by the Defence Standard DStan 00-58
for application on programmable electronics. Furthermore Purnfrey extended HAZOPS
for safety analysis of software, specifying the Software Hazard Analysis and Resolution
in Design (SHARD) [76]. Despite the fact that HAZOPS is a safety technique its

popularity has prompted its application in security analyses [73] in which the deviations

are substantiated in the context of security.

92

Chapter 4- Requirements Elicitation Using Dependability Deviation Analysis

4.3.3 SHARD

A prominent characteristic of SHARD is that it uses a simplified set of guidewords

compared with HAZOPS. The guidewords used in SHARD are optimised for software
failures, eliminating potential ambiguity in interpreting the existing HAZOPS

guidewords for software. The subject on which the SHARD guidewords are applied,

consist of the attributes of the services provided by the components of a system. These

include provision, timing and value of the provided service. When applying SHARD

the guidewords (omission, commission, early, late, coarse value, subtle value) are

applied on the services of the software. A service is defined as the "communication ofa

piece of information, with a specific value, at a particular time" [76]. Table-4.1

presents the main steps of SHARD.

Tahle. 4.1 - SHARD Prnripce

I Understand the Design
2 Select Infonnation Flow
3 Describe Flow and its Intended Behaviour
4 Ensure Intended Operation is Safe
5 Use Guideword to Suggest Deviation
6 Investigate Causes
7 Investigate Effects
8 Examine Detection Protection and Mitigation

4.3.4 What-if Analysis

A method akin to HAZOP is 'what-if' analysis [74]. However the involved

stakeholders can be more flexible than analyses such as HAZOPS, as the deviations

considered can be the result of brainstorming, or previous experience.

4.3.5 Sneak Analysis

Sneak analysis found widespread use in Boeing [77] as a means to systematically
analyse electrical systems for unintended situations. Commonly there are five

conditions for which the circuit is analysed:

e Path, examining for current flow along an unintended route.

* Open, examining lack of flow along an intended route.

93

Chapter 4- Requirements Elicitation Using Dependability Deviation Analysis

9 Timing, that prompts the circuit for flow at an incorrect time or lack of flow at

the correct time.

* Indication, examining the false or ambiguous indication about a system.

Labels, which prompts for a false or ambiguous label at the controls of the

system.

Sneak analysis is limited in considering conditions regarding the clectrical/electronic

circuits of systems. This bears similarities to HAZOPS and SHARD in that the

participants need to consider specific conditions and their respective causes and effects.

4.4 Dependability Deviation Analysis (DDA)

The Dependability Deviation Analysis (DDA), proposed by the author, is a methodical,

exploratory, deviation based system analysis approach. Its purpose is to elicit multi-

attribute (dependability) goal-based requirements, by being applied throughout the

stages of the system lifecycle.

4.4.1 Overview

A failure that occurs during the operation of the system may impact on the achievement

of a dependability attribute, which in its turn may have an impact on other attributes or

result in unacceptable system operation. DDA extends deviation analysis techniques,
investigating the system from the standpoint of each attribute. For example, a safety
hazard can lead to accident due to a number of different 'types' of contributing factors

such as the reliability of a component, performance of an algorithm or human error.
Fig. 4.2 shows a generalisation of the bow-tie analysis diagram used in safety, showing
the interaction between dependability attributes. In safety the 'knot' of the bow-tie

represents safety hazards. Wilson ct al. [78] in attempt to model and relate all concepts
in safety analysis described hazards as conditions. Generalising for dependability, the
knot of the bow-tie represents potential failure to meet the required dependable

operation, and in this thesis is dcfined as failure condition. The diagram also illustrates

a significant characteristic of dependability; a failure to achieve a dependability attribute
can be caused by and may result in failures regarding other attributes.

94

Chapter 4- Requirements Elicitalion Using Dependabilit-V Deviation Analv. vis

I Reliability I Performance

Perfor causes and 'ý-)C effects and I

contributing contributing
I"

I

factors factors

I Securitý

Fig. 4.2 -A Nlulti-attribute Perspective of the Bow-tic Concept.

Reasoning about the overall behaviour of a system, necessitates considering the failure

conditions with respect to the attributes of interest to the stakeholders, and their impact

on the overall operation of the system. This requires understanding of how each of the

attributes of interest can have an effect on another, as well as their contribution to the

system's operational behaviour that is required by the system stakeholdcr. The

projected effects of a deviation should not only be restricted to one dimension just by

focusing on only one attribute. Instead, wider consequences should be assessed

understanding how a deviation from the viewpoint of an attribute can affect the

operation of the system. Fig. 4.3 presents a schematic of the DDA, using the bow-tic

diagram.

Deviations probing the
system from the

viewpoints of ----

attributes of interest

Performance e ects

Availability ir
effects

Securitv

Safety effects

Fig. 4.3 - Schematic Overview of DDA

DDA is an analysis method used to identify potential failure conditions with respect to

dependability attributes and examine how these interrelate. It is an exploratory method
focusing on the effect analysis part of the bow-tie diagram. The main 'questions' that

the method aims to answer are: "What dependability failure conditions will affect the

95

Chapter 4- Requirements Elicitation Using Dependability Deviation Analysis

required operation of the system? ", and "What is the required operation of the system

given the identified failures? ". In the fashion of already established safety techniques, a

representative set of deviations (discussed later during the presentation of the DDA

process) is used to prompt the elements of the system, in order to reveal possible
failures from the viewpoints of a dependability attribute (of interest to the stakeholders).
The effect of the deviation may constitute the cause for a failure regarding a different

dependability attribute. DDA provides a methodical way of identifying the relation
between failures, which have been revealed after examining the design from the

viewpoint of each attribute of interest. Ultimately, the DDA will result in afailures'

map showing how the failures of the system are interrelated and how they can affect the

overall behaviour of the system. DDA (using the failures' map) results in identifying

how the deviations from intended behaviour of the system elements affect the overall
behaviour of the system. This helps defining a profile for the system elements,

specifying the required behaviour of that particular system element. The requirements

are specified with respect to the identified dependability attributes from the viewpoint of

which, the contribution of the system element to the overall operation was identified.

The failures' map and the profiles of the system elements are the two DDA products.
DDA has been defined in two levels. The underlying framework that presents the

concepts and their structure, and the process that explains the necessary steps in order

to perform he analysis.

4.4.2 Structure and Elements

The structure and relations of the concepts that make up the dependability deviation

analysis have been defined in the dependability case metamodel. Fig. 4.4 presents the
metamodel of the DDA in UML. The following concepts are part of the DDA
metamodel:

96

Chapter 4 -- Requirements Elicitation Using Dependahilitv Devialion Analvsis

- issueOfAttdbute

SystemTask

concemOfAttn bute

cor
syste

Issue Taskissue
+ tfiggers

Concern

+issue

'..,
I

+ revealsIssue -compromisesConcem IID.

W. tim, + guideword F -Guidewc

I

I. caused ByFai lureCondition
Appllcalble! Deviationý

FailureCondition

's. ItsToFail ureCondition
manifestsAsFailureCondition

+ ppearsInDeviation
+ caused ByDeviation

+ failureCondition traceBelongsToFailureCondition

'Co ureC

SystemModel

-revealedB SuitableDeviation
I-I +caused ByFail ureCondition E IffectTrace

SuitableDeviationl
; elementAppearsInModel

+effectTrace

TraceabilityOfEfh

+suitableDeviation
ýýysternElernentType

+ containsSystern Element

II SystainElonient

temElementType systemEiements

systemEtement
I

hasDependabilityProfile
vdependabilityRequirement

DependabilityProfile
10

1ý
deDendabilitvRenuirement

FDependZýý

O'l dependabilityRequirementLimit

Fig. 4.4 - DDA structure in the dependability case metamodel

97

Chapter 4- Requirements Elicitation Using Dependability Deviation Analysis

4.4.2.1 Dependability Attributes

The class dependability attribute represents the dependability attributes of interest to

the stakeholders. There are two main motives identified in this thesis, as to why a
dependability attribute can be of interest to the stakeholders; in terms of analysis and in

terms of overall objectives. In the first case the focus is on examining the system from

the viewpoint of the attribute of interest, whereas in the latter the attribute is one of the

overall objectives of the stakeholders for successful operation For example it is

common during a safety analysis to examine whether the performance of a system can

affect safety. However, the overall objective of the stakeholders is safety. Hence

performance is an attribute of interest because of its impact on the acceptable operation

of the system, whereas safety is a dependability attribute of interest because it

constitutes what the stakeholders have specified as part of the dependable operation of

the system. This distinction resulted in the definition of typical issues and concerns,

with which the (dependability attribute) class is associated.

4.4.2.2 Issues and Concerns

Dependability attributes are abstract and difficult to substantiate when eliciting

requirements. Issues and concerns are used to define in more tangible terms the

properties affecting the stakeholders' interests with regard to a dependability attribute.
The main distinction is the motive for their use, as explained in the previous section.
When analysing a system from the viewpoint of an attribute, stakeholders examine the

system regarding certain issues typical to the attribute. For example, a typical issue

when examining a system from the perspective of performance can be overload. Issues

constitute typical problems that may affect the system under analysis. However typical
issues may not always be of interest to the stakeholders regarding the high level

operation of the system. For example, although performance of parts of a system may
be crucial for the achievement of safety, performance itself may not be a high level

requirement described in the concept of operations of the system. The significance of

concerns lies to the fact that a concern relates to the overall envisioned operation of the

specific system under analysis. For example, consider the performance regarding the

number of incoming requests of an online system. In this case overloading of the

system will directly affect the envisioned operation of the system. Hence the

performance of the system is an attribute in the stakeholders' envisioned system

98

Chapter 4- Requirements Elicitation Using Dependability Deviation Analysis

operation. A concern is any potential occurrence with an unwanted impact on system

operation. A dependability attribute issue may constitute a concern if it can be said that

its effects impact the envisioned concept of system operation.

4.4.2.3 System Elements, System Element Types and System Models

The class system element represents any system entity that exists in the models of the

system. A system element type is a class that is used to specify the type of the system
elements such as activities, classes, actors, flows. Hence a system element refers to a
unique entity in the design; for example 'information exchange I' and 'information

exchange 2' are two unique system elements of the same system element type. The

system element type class was introduced in order to provide the capability of creating
DDA templates that would not have to refer to system elements of the particular system.
System elements types belong to system models. For example a use case diagram would
be a system model having as system elements actors and functions.

4.4.2.4 Deviation and its Children Classes

A deviation is an abstract class representing possible behaviour of an element of the

system in a way that was not intended. Similarly to HAZOPS a deviation is associated

with a guideword, which indicates the nature of the deviation. Deviations are used in

DDA to prompt the system revealing the possible effects of the specified issues.

Deviation is specified in the metarnodel as an abstract class, which means that it can be

instantiated in a model. Instead the children class suitable deviation and applicable
deviation can be instantiated. The difference between the two classes is the subject of
the deviation, which is prompted by the guideword inherited by the parent abstract
class. A suitable deviation is associated with system element types whereas an
applicable deviation with system elements. A suitable deviation is one that can
cfficiently reveal the effect of an issue by prompting the appropriate system elements
types with the appropriate guidewords. When a suitable deviation is applicable to the

system examined then an applicable deviation is created for each system element of
system element type as the one related to the suitable deviation.

99

Chapter 4- Requirements Elicitation Using Depoi(hibilitY Deviation Anahsis

4.4.2.5 Guidewords

These are the guhlewords used in deviations. They are used to prompt the appropriate

system elements in order to establish the deviations that will reveal the (possible) effects

of the identified issues. In methods such as HAZOPS and SHARD there is a standard

set of guldewords, perceived to be capable of revealing failures common to the domain

in which they are applied. However it is often the case that the set of guidewords

prescribed by a method may not be optimised for all system models and potential failure

conditions. Although guidewords used in existing methodologies can be used different

guidewords may be selected more intuitive to probe the system for the issues that they

reveal (further discussed during the description of the 'definition of suitable deviations'

DDA stage).
Guideword Omission
Guideword Early
Guideword Less
Guideword Late
Guideword Fake
Guideword Value
Guideword Public
Guideword Damage

Fig. 4.5 - Example Guidewords used in DDA

Fig. 4.5 shows an exemplar set of guidewords, consisting of a mix Of gUidewords taken

from existing methods such as SHARD, and guidewords derined (hiring an example

DDA process.

4.4.2.6 Failure Conditions

A fifilut-e contlition describes a possible state of the system, which results to

consequences unwanted to the stakeholders. A failure condition can be perceived as it

credible manifestation of a deviation regarding a dependability attribute. Failure

conditions can be associated with concerns and other failure conditions. Associations

between failure conditions and concerns are declarative, implying that the stakeholders
have identified cases, which can be justified to directly compromise their concerns.
Associations between failure conditions imply that the stakeholders did not identify a
direct compromise of a concern. The effects of a failure condition can result in other
failure conditions, contributing indirectly to the overall behaviour of the system. The

manner in which a failure condition will propagate in the system depends on the design

100

Chapter4 Requirements Elicitation Using Dependabilitv Deviation Analiwis

of the system. Associations between failure conditions are derived not declared, since

they refer to eventualities of an existing system.

4.4.2.7 Traceability of Effect

Traceabiliýv qfýlftct captures tile effect of a failure condition. The concept captures the

rationale, explaining the operation of the system in the presence of a failure and how

this will propagate. Traceability of effects works as an association class between two

failure conditions. Deriving the traceability of effect can be done manually through

analysis of the design, or by use of more mechanistic approaches (an example of a

mechanistic analysis is given by Mauri in [79]), according to how the system elements

cooperate resulting in the overall system. This requires the existence of a more

sophisticated traceability approach, capturing the relations between the system elements

and how they are combined to produce the overall system. In order to be compatible

.
Jýct) abstract, with different means of traceability, the class (traceability qj'

constituting the interface to other metamodels (e. g. the MODAF metamodel for a

system described in MODAF). Initially DDA used a simple textual representation of

traceability, represented by the Textual Ti-aceability o .
7ýct which extends the class

traceability qf qflýct. However later applications of DDA included a semi-automated

approach using a basic traceability model.

4.4.2.8 Dependability Profiles and Dependability Requirements

The ultimate purpose of applying DDA is to elicit requirements For system elements

from the viewpoints of the dependability attributes of interest. During deviation

analysis, the participants identify the behaviour that would compromise their concerns,

recording in the same time how the system element should perform to avoid unintended
behaviour. The dependability projile represents a collation of requirements that define

the behaviour of the system elements. The dependability profile was introduced to

facilitate the evolution of the dependability argument (chapter 6), by grouping the

acceptance criteria of a system element. A dependability profile is associated with the

system element to which it belongs and to the dependability requirements it contains. A

dependability requirement can be thought of as a specific declaration of the required

target for the system element's behaviour with respect to an attribute. However as

explained in chapter 1, conflicts between requirements will result in compromises of the

101

Chapter 4- Requirements Elicitation Using Dependability Deviation Analysis

original targets. Dependability requirement limits is a fundamental concept used in the

trade-off method (presented in chapter 5), representing the limit to which a requirement
can be compromised whilst maintaining the overall system dependability to acceptable
levels. DDA helps eliciting the rationale for the dependability requirement limit.

4.4.2.9 System Tasks

System tasks are the highest level tasks of the system that can be identified by the

stakeholders. The class represents the direct interests of the system in terms of
functionality. The collection of system tasks represents the (in MODAF terminology)
SoS operation scenario. System tasks can be thought of as the highest level system
activities that can be directly identified by the stakeholders. An alternative
representation in terms of the metamodel would be systems tasks to be a separate
system element type. Although earlier versions of the dependability case mctamodel
followed this approach, a distinction was made for two reasons. Firstly, system tasks

are used in a different type of analysis (which is part of DDA) with the purpose to
identify the concerns of the stakeholders. This type of analysis, similar in principle to
Functional Failure Analysis (FFA), has different purpose and characteristics to the rest
of DDA (which resembles the analyses during PSSA as suggested by ARP 4761), as it

takes place very early in the system lifecycle. Separating the concepts provides better

context for the DDA participants making the overall approach more intuitive.
Secondly, tasks constitute the overall concept of operation of the system, and inevitably

are abstract and stated in an ad-hoc way. Furthermore in MODAF, which was the
modelling framework mostly used in the thesis, as well as in the tried case studies, tasks
were (often) described in plain text making it difficult to represent high level tasks as
system elements.

4.4.2.10 Task Issues

Task issues are used to identify the concerns of the stakeholders. Its function is to
juxtapose the top level tasks with typical dependability issues, identifying whether they

constitute concerns to the stakeholders' interests. A task issue is associated with a
system task and an issue. Despite its similarities to a deviation, a distinction was made
for the same two reasons as system tasks.

102

Chapter 4- Requirements Elicitation Using Dependabilitv Deviation Analvvis

4.5 Overview of the DDA Process

This section presents the main stages that constitute the overall DDA process. During

the process the participants instantiate and use the concepts that are defined by the

metamodel.

4.5.1 Using the Metamodel to Create Templates

Some of the concepts in DDA do not need to be recreated with every application ofthe

DDA but can be reused in analysis of many systems (e. g. typical issues). Instantiation

of the concept using the metamodel allows 'storage' as objects in EMF (Fclipse

Modelling Framework). This is a useful capability allowing reuse of certain parts of the

DDA.

.......
.......

.... . case
Package DDA

Package Attributes
. . 0. Dependability Attribute Availability

- . 0ý Dependability Attribute Performance
Issue Latency
issue Througlwut
Issue Synchronisation

++ Dependability Attribute Reliability

. . 0: ý Dependability Attribute Security

+ -0ý Dependability Attribute Safety

+ Package Models
Package Overall Tasks

+ Package overall Task Issues
Package Concerns

+ Package Guidevoords

- Package Deviations

+ Package Suitable Deviations

+ Package Applicable Deviations

+ Package Failure Conditions
Packaae Acronyms

Fig. 4.6 -A DDA Template in the EMF Editor

Fig. 4.6 shows a DDA template used by the author in a number of analyses. It colitaills

the initial packages that need to be populated during DDA, the attributes of interest,

their issues as well as suitable deviations (with the respective system element types and

guidewords) able to reveal the identified issues. The template was a starting point of

the analysis as it contained all this information that did not have to be recreated.

However concepts such as the applicable deviations, the system elements, and the

failure conditions depend on the specifics of the system under analysis and therefore

cannot be used as templates.

103

Chapter 4- Requirements Elicitation Using Dependability Deviation Analysis

4.5.2 Overall DDA process
The DDA process consists of seven stages. Each stage is composite, consisting of a

number of steps. Fig. 4.7 presents the overall DDA process and its stages; each DDA

stage (apart from identification of issues) is described in more detail with a dedicated

flow diagram. The sequence of the stages depends on reuse of existing templates. For

the purpose of describing the process, we assume no use of templates. This implies

application of all possible stages. The process starts with identification of typical issues
for which the system is analysed. Following identification of issues, the stakeholders
need to examine their overall dependability objectives by defining what is of primary
concern to their interests.

Start

Have the typical
Issu

,;,
s, forwbicbb,,

the I will
probed beende n nod?

r- - -- --I

Identify Issues

Identify
Concerns

Are there deviations
suitable to reveal
the Issues In the

system In question

Identify Define suitable Applicable deviations Deviations

Ide ntify Failure
Conditions

Define
Traceability of

Effect

Define
End Dependability

Profile

Fig. 4.7 - Overall Stages of the DDA

.............
KEY.,

Templates can be

usedinthese
stages

Stage tha t needs
to be reapplied for

.......

different systems
.....................

104

Chapter 4- Requirements Elicitation Using Dependability Deviation Analysb

After completion of identification of concerns the participants specify the deviations

suitable to reveal the typical issues in the model types used in for the system design.

Once the participants state which of the suitable deviations are applicable for the system
in question, the resultant failure conditions are described examining their effect to the

system. Finally, after identification of the possible failure conditions, the participants
identify the required behaviour of the system. The required behaviour is specified in

terms of the dependability attributes of interest, in order to satisfy the stakeholders'

overall objectives.

4.6 Underlying Principles of DDA
DDA exercises the following two principles, which have influenced the definition of its

structure and concepts:

9 Commonality of concepts between dependability attributes.

Dependability attributes have commonality between their concepts which are

generically represented in the metamodel.

9 Extensibility of (deviation) guidewords and representation of typical issues.

In traditional deviation analyses (HAZOP) as well as in application of deviation

analyses in specific domains (SHARD, security deviational analysis), the

guidewords prompt for issues from the viewpoint of a particular attribute.

4.6.1 Similarity of Concepts between Dependability Attributes

The Dependability Case Metamodel (DCM) encompasses the dependability attributes,
by generalising on some of their common concepts. Security and safety are two
dependability attributes which have interested developers extensively, and as a result
have well-established concepts. Table. 4.2 juxtaposes similar concepts in safety and
security and presents the concepts with which parallelisms can be drawn in the
dependability case metarnodel.

105

Chapter 4- Requirements Elicitation Using Dependability Deviation Analysis

Table. 4.2 - Comparison of Concepts In Safety, Security and the DCM
Safety S curity DCM
Asset Asset System Element
Hazard Threat Failure Condition
Fault Vulnerability Issue
Accident Attack Concern

Similarity of concepts in safety and security is a position asserted in the SafScc project
[35], which was an attempt to establish a framework for jointly reasoning about the

safety and the security of military systems. SafSec adopts a risk based approach

according to which both security and safety threats are evaluated in terms of their effect

on the assets. This is achieved by defining the concept of loss; a generic term for any

unwanted system state that can occur from either a (safety) accident or (security) attack,

which is the ultimate concem of the stakeholders.

Assets in both safety and security represent entities of the system whether this is

humans, other systems or monetary value. In order to meaningfully analyse how

deviations may affect them (entities) they should be part of the system model. IIcnce

during the deviation analysis, whether the subject of the analysis are entities such as
humans data or other systems, they are all part of a container system model and are

represented by the system element concept.

Hazards and threats are two similar concepts that in some instances have been used
interchangeably. SafSec [35] uses the two terms to refer to occurrences that can have

unwanted impact on either safety or security. Laprie [9] used the term threat to describe

anything that can compromise the behaviour of a system in terms of dependability

attribute. Hazard is a concept tightly associated with safety. Purnfrey, among other
hazard characteristics, mentions that hazards are "conditions which can be mitigated,
butfrom which an accident can arise through a sequence of normal events or actions"
[76]. Similarly afailure condition can lead to compromising dependability attributes by

contributing to the realisation of the stakeholders' concerns.

Issues represent potential occurrences, under the viewpoint of any of the dependability

attributes, which can result in compromise of dependable operation of the system.
Issues can result in failure conditions. Srivatanakul examines in her thesis the
application of deviation analyses to security of a system. Similarly to safety, the

106

Chapter 4- Requirements Elicitation Using Dependability Deviation Analysis

analysis is done by interpreting the HAZOP guidewords from the perspective of

security. Of interest is the addition of a column for identifying vulnerabilities that when

exploited could threaten the system. A threat to a computer system is defined as any

potential occurrence, malicious or otherwise, that can have an undesirable effect on the

assets and resources associated with a system [80]. Similarly to hazards being

conditions that can result in an accident, threats constitute the potential for an attack.

Firesmith [81] also identifies the similarities and further describes threats and hazards as

types of danger for the system. A vulnerability is a weakness in a system that may be

exploited by a threat, resulting in an attack [82]. Correspondingly a fault in the system

can be the cause of a hazard that may result in an accident. Firesmith uses the term

vulnerabilities to describe internal system conditions that may impact both safety and

security [81]. Finally, similarly to SafSec, both Firesmith [81] and Srivatanakul [73]

contend that an asset is any component of a system which is of value to its stakeholders.

4.6.2 Extensibility of (deviation) Guidewords Representing
Typical Issues

HAZOPS uses a set of guidewords to probe the design for possible deviations. A

deviation occurs when the system does not operate as the designers intended it to.
However in safety analysis all deviations do not necessarily constitute hazards. The

examined deviation may affect stakeholders with interests towards other attributes,
however from the viewpoint of safety they are not examined.

An issue with HAZOPS is completeness of the guidewords. There is a question
whether the guidewords can identify all possible deviations than may occur. Kletz [75]

stresses that batch plants (as opposed to continuous flow plants) require a different set
of guidewords in order to comprehensively probe the design. Being a methodology that

emerged from the chemical industry, the set of guidewords in IIAZOPS is optimised to
identify failures relating to the flows and containers in a chemical plant. However the
types of failures that the original set of HAZOPS guidewords covers is not

representative of all systems, which can demonstrate other classes of failures. Related

to more specific applications, Purnfrey [76] indicates the existence of a set of
guidewords adapted to probe for failures relating to human factors. Defence standard
00-58 proposes an extended set of guidewords that covers failures common in

programmable electronics.

107

Chapter4 ReqiiirementsElicittitionU. YingDel)týti(kibilit. VDeviatiopi, iii(jlvsi. v

Furthen-nore, SHARD [76] uses an alternate set of guidewords suitable for identifying

failure conditions related to software. In all approaches, definition ot'guidewords relies

on an underlying failure model. This is defined taking into account a number ot'sourccs

including previous experience domain knowledge and existing failure models. F Ig. 4.8

presents the deviations in three analysis methods; HAZOPS, SHARD and sneak circuit

analysis.

HAZOPS SHARD Sneak Analvsis

- No

- More

- Less

- As well as
- Part of
- Reverse

- Otherthan

- Omission

- Commission

- Farly
- Late

- Value

- Opens

- Patlis

- Timing

- Indications

- Labels

Fig. 4.8 - Cuidewords used in IIAZOPS SHARD and Sneak Analysis

Comparing the guidewords with dependability we can observe that the guldcwords

represent a set of issues from the viewpoint of diff'crent dependability attributes. For

example guideword NO could be seen as representing an availability issue. In otlicr

words, the analysts are prompted to investigate the condition in which the system

element is not available. Despite the fact that the three methods were developed for

different domains (IIAZOP for process industry, SHARD lor sollwarc and sileak

analysis for electrical circuits) there are similarities in the underlying deviation

guidewords. Omission of a service in SHARD (e. g. no data flow between two

processes) could be seen as the equivalent of 'NO' in I IAZOPS and an open circuit (i. e.

no current flow along an intended route). In all three cases the examined deviation was

related with the availability of functionality, whether this wits data or messages or

current. Table. 4.3 presents how the deviations in IJAZOP, SHARD inid sneak analysis

can be interpreted as being associated with the domain of particular dependability

attributes. This table shows how, for example, service provision guidcwords (such as

'omission' and 'no') relate to the domain of service availability.

IN

Chapter4 Requiremetit. vElic-ii(itiotiU. vingDel)en(itibilit. t, Devitilioii., In(ill-sis

Tahle-4.1 - Nimmim, Between Guidewords and Attrihu(cN

Deviation

No

Attribute

A,, allabilily

Deviation

()IIIISsioll

Attribute

A,, adabihty

Deviation Attribute

Path Rchahiljlý

More Reliability Commission Reliability Timing Performance

Less Reliability Early Perfon-nance Indication Reliability

Partof Performance Late Performance Label I luman Iliclors

Reverse Reliability Value Reliability

Otherthan n/a Open Availability

In HAZOP, the guidmords were defined in the context of tile chemical industry

domain. The resultant set was broad enough and generic enough to be applied in a

number of domains and it is being applied confidently by the sallety community.
However limiting the probing of a model to this set OfgUidewords may CIILISC problems
during the analysis. Being generic, the guidewords require scoping, imagination and

extensive experience on interpreting the deviations. Srivatanakul in [73] uscs I IAZOP

in order to perforin a security analysis of a design. Again, the need Im appropriate
interpretation is highlighted. SHARD is an example in which the guidewords were

altered to be compatible with software failure models. Furthennore the Dcpartment of'
Trade and Industry (DTI) safety case for the parson's current limiter [831 indicates the

use of concems such asfidlure qfpower sqppýv directly as guldewords probing clements

of the design models. Definition of the guldewords is important when analysing a

system. Care needs to be taken, as the guidewords have not necessarily been specified
taking into account the classes of failures that an analyst may want to probe the modd
for. It is important for the participants of the analysis to havc a clear understanding of
the scope of deviations that the defined guidewords cover. Fven though a set of'
guidewords (representing a set of possible deviations) can be reused, once delined

caution must be taken when the analysts intend to investigate the system I'or different

issues which may not be revealed effectively.

4.7 DDA Stages

This section describes the individual stages of DDA as presented in Fig. 4.9. The

description entails the steps followed in each stage as well as the decisions need to be

taken. Application of the DDA stages is illustrated using the AGO scenario example.

109

Chapter 4- Requirements Elicitation Using Dependability Deviation Analysis

4.7.1 Identification of Typical Issues

Each of the dependability attributes represents a unique viewpoint regarding the

operation of the system. There is no universal definition of typical issues. Instead the

stakeholders of a system decide what is important to them regarding the operation of the

system. For example in the safety case report for a current limiter device, the analysis
identified typical issues prevalent to electrical devices, such asfailure ofpower supply,

and electricity contamination. These are not issues that would appear in analysis of

other systems. However the system was designed primarily for being used in electrical

networks, a domain in which these are typical issues that can result in failures affecting
the (in this case) safe operation of the system. Stakeholders may be influenced with the
definition of typical issues according to the domain in which the system is deployed.

This is apparent in the descriptions of some defence standards which identify typical

issues that have been inherited from accumulated past experience.

Standards often provide guidelines about what needs to be addressed in a system,

echoing experiences and typical issues gathered over a period of years by a relatively
large sample of practitioners. There are several examples of standards and good

practice guides which can constitute sources for typical issues regarding the
dependability attributes. The Ministry of Defence (MoD) (safety) Standard 00-56

(which supersedes 00-55 [84]), in its definition of safety identifies issues such as

physical injury and material damage. Defence Standard 00-25 [85] which addresses
human factors, mentions among others fatigue and workload. Pumfrcy identified failure

classes applicable to operating systems, such as incorrect value and deadline miss,

which resulted in definition of the respective guidcwords in SHARD (As discussed in

§4.1 and §4.2, these failure classes can be modelled in the DCM as issues related to
dependability attributes). The Common Criteria for security [61] suggest issues such as

unauthorised value and identity assurance. Finally, Quality Attribute scenarios [86]

allow identification of issues regarding a number of attributes. Table. 4.4 presents

example issues for the dependability attributes, identified in the aforementioned

standards and practices.

110

Chapter 4- Requirements Elicitalion Using Dependabiliti, Deviation AriaNsis

T-Ahlp dd- Cnmnilation of Tvnical 1%%up%

ib I Att ib t I Attribute
Availability

Issues
A service is not
available as

Attr ute
Reliability

ssues
I' ly", ca
Iailure

r u e
Sa ety

ssues
)a1mq-, C to

health

specified when
required

Incorrect value physical
damage

Data integrity pollution
Incorrect state

Performance Latency Security Unatithorised
Access

Human
Factors

Conitort

Deadline miss Repudiation of
transaction

Mistakes

Throughput Identity
assurance

latigue

Although indicative, according to the type ofthe systems the stakeholders can specify a

different set of issues. DeGan-no in [87] identifies issues regarding the operation of'

Unmanned Aerial Vehicles (UAV). Furthermore a different set of' issues was used

during a case study involving High Altitude Platforms (11APs), which are unnianned

aerial vehicles with the purpose to provide broadband communications over a large

area. These included issues common to communication aspects ofthe system such as

denial of service, interference and power emissions.

4.7.2 Identification of Concerns

During this stage of the DDA the stakeholders identify the possible impact of' the

concerns on the system's concept of operation. Subjcctivity of' tile stakeholders'

requirements needs documentation of the rationale based on which the concerns are
defined. At this stage it is essential that the acknowledged attributes of' interest and
their concerns are related to the concept of operations. I lencc, reasoning rcgarding

possible compromise of an attribute can be evaluated in tile context of' the system's

operation.

The stakeholders of the system recognise a concern because it principally affects their

interests regarding the envisioned operation of a system. In contrast, failure conditions

are recognised as potential contributing factors to systems concerns. Fig. 4.9 shows the

sequence of steps that need to be taken and decisions that need to be made in order to

establish the concerns during DDA.

Chapler 4 Requirements Elicitation Using Dependabilitil Deviation Analysis

Identify defined t Start/PrcAous
lssueý DDA Stage

Fnd/Next
Stag DIDA/NStage

Have the overall
TasAX of the

syst rn been
de'fined?

Y PS +
No

Furlher /. v%ueA SýIýct an 1,.,. e N EN ,ý

ýFu

rI
not

NNO

turther I'a, %A. % Oha(
ha- not h-n

Spvcif. ý T., Al,, ue
inw%ligated

Can you identify
sign i fi cant i "I pact

on cnNisi--cl
system operation?

Justifý
significance

N EN

Is it significant
because it affect, n
. ItHbulc oth- than

(he parent attribute of
the issue?

Can you idenlif
Tasklmueý "ith

, AMC juslification

NO

Dcýc, ihe Co-,.

Aggregate
Ta. ikl, mesand
associate oi(h

defined concern

Fig. 4.9 -identification of Concerns Stage

112

Chapter 4- Requirements Elicitation Using Dependability Deviation Analysis

Table. 4.5 summarises the identified tasks, the typical issues and the resultant impact

from the task issues for the AGO scenario (Appendix B). The box next to a task issue

with the letter "C" implies that the task issue raises a concern. This corresponds in the

DCM to setting the Boolean variable isAConcern of the class TaskIssue true. The initial

aim of this stage is to define the TaskIssues, which will elicit possible concerns of the

stakeholders. This prerequisites definition of the system overall tasks ideally at the

initial stages of the SoS conceptual design. Otherwise participants need to define the

overall system tasks. Next in this stage, participants need to examine whether the

TaskIssues can raise a possible concern in the context of the system operation. For

example latency (issue 2) combined with the task "transfer of forces" (system task 4)

will lead to identifying that this may allow the enemy to escape because of the delay.

The combination of task and issues is used a means of identifying the end results with

which the stakeholders are interested.

Conditions described by task issues that are thought to be significant need further

deliberation in order to assess whether a concern can be identified. Participants in the

analysis are required to support the initial supposition explicitly identifying the

projected impact on the system operation indicated by the task. However this step of

the analysis is not intended to focus on how the identified task issue may affect the

operation. (This is performed during the identification of failure conditions stage). The

objective is to identify cases that can compromise the system stakeholders' primary
interests in the system operation. For example "Loss of life" (issue 8, system task 4)

directly interests the system stakeholders, hence issue 8 also constitutes a concern. By

contrast, a possible "Enemy Sabotage" (issue 7, system task 5) can have significant
effect on the system. However, the significance of the task issue lies in the fact that the

effect will result in possible casualties due to enemy sabotage. The identified condition
is a contributing factor to a safety concern but it does not represent the stakeholders'

ultimate interest in the system, and therefore cannot constitute a concern. Following the
identification of a concern stakeholders aggregate the concerns caused by the same
issues. For example "unauthorised access" is a concern revealed from two task issues

that the stakeholders have identified significant for different reasons, which need to be

recorded. Justification of significance can be used to further elaborate on the concerns
during construction of the dependability case. The steps are followed until all possible
task issue pairs have been examined.

113

-4
Z

"I.

e 1. J =

Z m

ri wý 10

*Z cu
J, CM j

vi Z 04
Z

ei
CD -

. - ý: i -

- oj w ej =0 1 s1
.2 Z- 1

,.
0

C- Z

x zr
ci GA . X 1Z4

E r- ll 4.1 412

u , -CD 0 4. 1-

ci
r_

cj CJ
cu "CJ w ý-

GA CD

CL. u

92. e- -CJ CD. cu "0

CJ

= '0
M r. :.) ýý 0 E CU

EZ
ej -, Z 10

E0ý

CA

M Li -E -Z
1 1 2 -ci 11

rj *
>, u

A Ij M
=- -CJ , Emm

(A zý r. M (U 1
u
ri 7 cu ;4' .ý 10

Chapter 4- Requirements Elicitation Using Dependability Deviation Analysis

4.7.3 Definition of Suitable Deviations

One of the challenges applying the deviation guidewords for dependability analysis is

the use of the appropriate system models. For example the UK defence standard 00-58

(HAZOP studies) provides guidance on the type of models that can be used to model

programmable electronics (referred in the standard as PES). The IEEE STD 1471-2000

[88] recommended practice for architectural description of software intensive systems,

suggests that some models are more appropriate in expressing specific system

viewpoints (e. g. engineering viewpoint, decomposition viewpoints). The recommended

practice identifies a number of concepts that are necessary for models to effectively

capture the proposed viewpoints. Instantiation of the deviations should be done using

suitable models in order to achieve a meaningful analysis. For example, data flow

diagrams are suited to revealing timing concerns whereas human factor concerns can be

revealed more easily in use cases. Representation of concerns in system architecture

views focuses on particular aspects of the system. Apart from suitable system clement
types, suitable deviations also entail the guidewords, which in combination to the

system element type will reveal the dependability issues. The combination of system

element type and guideword should result in suitable deviations that are meaningful and

unambiguous in terms of their interpretations. For DDA, we identify exemplar suitable
deviations for system clement types, in accordance to the Ministry Of Defence

Architectural Framework (MODAF) - in which the AGO scenario was captured.

4.7.3.1 Defence Architecture Frameworks (DAF)

The US Department of Defence initially specified DODAF in order to "define a

common approach for DoD architecture description development, presentation, and
integration for both war fighting operations and business operations and processes"
[23]. The framework consists of a number of products organised in views, which

ultimately describe the complete operation of the system.

The products describe various aspects of the system and essentially constitute the

models of the system. DODAF products are organised in four views; "operational",

"systems", "technical", and the "all-views" view which is used as reference to maintain
consistency between the views and the products. MODAF is the equivalent framework
defined by the UK Ministry of Defence (MoD). The MoD tailored MODAF to its

115

Chapter 4- Requirements Elicitation Using Dependability Deviation Analysis

particular needs adding two more views; the "strategic" and "acquisition" views.

MODAF and DODAF models are very similar and the views that arc common share the

same set of products.

Being primarily a framework for modelling enterprise architectures, MODAF does not
have a particular language in which it is modelled. Although the guides describing the

framework provide examples for implementing each of the products, it is stated (in

DODAF definition documents) that the users can employ any modelling language as

they see fit. Furthermore, the MODAF documentation [89] as well as further studies
(such as [90]), provides a description of how each of the products could be modelled in

UML. Table. 2 in appendix B shows a summary of the UML models that can be used to

represent MODAF products.

4.7.3.2 Process Walkthrough

Definition of suitable deviations is a systematic process examining the potential of the

modelling language - in which the system design is documented - to reveal the

identified issues. Fig. 4.10 presents the steps of this DDA stage. The steps arc

applicable for any modelling framework. However, the walkthrough provides examples
that were based on use of MODAF. Selection of models is a process that ought to be

performed by the involved stakeholders according to a number of criteria. Firstly, the

stakeholders need to evaluate the suitability of each system element type to reveal the

specified dependability issues. This involves subjectivity from the stakeholders that

make the evaluations. One such evaluation is whether the issue can be manifested at the

system clement type being examined. This requires understanding of what the system
element type represents in the system models. In order to achieve this we used the
MODAF mctamodel (W). The meta-model of a language documents the concepts, that

are modelled and how these are associated with each other. The classes of the meta-
model can assist with unambiguously documenting what each class represents in the

model language that was used. The MODAF meta-model (M3) provides an insight into

all products of all views explicitly identifying the concepts entities and data that each of
the products describes. Although both the DODAF and the MODAF mcta-models are
incredibly similar, in order to avoid confusion due to possible minor difference we have
focused on MODAF.

116

Chapter4 Requirement. vElicittitionU. YingDel)endabilitv, l)t, i, iiiii"tt,. It)(ilt,. vis

Start/ Pre%ious
DDA stage

Select a %Nstem
element tNpe

Seled a
dependability

Issue

FAamine
definition of

system element

Can the issue
manifest at the
selected s Wern
element Iýpe?

Describe hovs the issue
can be interpreted in
terms offhe %%stem

element

Are there
existing

guide%ords?

Select A

guide"ord

Are there any
Y Ell system element

types that have not
been examined? No

No -
En (1) Nýx

C

PS Are there any
isities [hat haw

notbeen
examined ?

Are there any istu-
that have not been
associated i1h a

,u liable deviation

N t"

ldritlif) modcl
characieri%lic% hich
can be affected b. s the

selected k%ue

I(an you uggel
Suggest a guidcýordý liernsic model , Ilt .1
that "ill ree. 1 the li'l. It , identified

,, I,, Ied issue
ch. r. c 1, ri%lic%!

ReOvý lhe
defined i,, ue%

Can the interpretation of
he guicleýord in NO

ombination ith the
system element type
reNeal the effects of

selected issue?

c

!
'Y

!

Re c.) rd sui --Ol=

Fig. 4.10 - Definition of Suitable Deviations Stage Process

1411,1, All
in it, I And I It rIr

N

117

Chapter4 Requirements Elicitation Using Depen(kibilitv DeviationAnalY. Siv

Table. 4.6 presents an example of analysing several classes from the node connectivity

(OV-2) product. The table contains some of the classes of the product OV-2, their

description as well as assessment of suitability with regard to two example

dependability issues. The classes examined in the table represent system elements types

that appear in the OV-2 MODAF models. After understanding what each of the

elements represents (based on the definition of the classes in the M3), the classes are

juxtaposed with the dependability issues in order to understand how the issue call

manifest oil the particular system element type (Table. 4.6).

1,11111c. -I. 0 Nletaniodel Elements and Failm-es

J ,ýII1, \ , 1,, -Iýol Im t 11ý1,1(11, ql ,Iýý!. I
I. C. liot all autoillated to aC11% IIN

function.
Needline A relationship specifying the need to Unatithorised access Rate of'

exchange infortnation between to the inforniation transimss toil of'
nodes. The needline does not exchanged between information.
indicate how the transfer is nodes.
implemented.

Infi)rmationExchange A specification of the infortnation UIlaUthoriscd access Rate of'
that is to be exchanged. to the inforniation transmission of

exchanged between information.
nodes.

Node A logical entity which creates Unauthorised access Node cannot
consurnes or manipulates to node. process tile
information. information fast

enough.

Once the potential of the system elements to capture the dependability issues is

established, participants need to identify the guidewords that will be used to prompt the

system element during the analysis. Existing guldcwords are examined 1'()i- their

suitability to reveal the required issue. Expressiveness of' the dcfincd guideword is
important. It is crucial to the DDA that guidewords can be interpreted unambiguously

so that analysts can understand the viewpoint under which the system element is

prompted.

Upon identification of an appropriate guideword the suitable deviation is recorded.
Fig. 4.11 shows the properties of a 'suitable deviation' instance in the EMF editor. The

deviation has been associated with other instances of the metamodel representing the

used guideword, the system element type and the issue for which it has been optinliscd

to reveal.

118

Chapter 4- Requirements Elicitation Using Dependabilitv Deviation Analvsts

Problems Console

Description
Deviation Is Applicable True

Guideword 2 Guideword Public

Name 2 Public:: Information Exchange

Reveals Issue MIssue Unauthorised access

System Element Type =ý System Element Type Information Exchange

Fig. 4.11 - Properties of a Suitable Deviation in the EMF Editor

a

Fig. 4.12 shows the properties of the issue "unauthorised access" in the EMF editor. The

issue which was identified from the viewpoint of the security attribute is revealed by a

suitable deviation (i. e. Public:: Infon-nation Exchange) which consists of the guldeword
"public" and the system element type "Information exchange" (the properties of this

deviation are shown in Fig. 4.13).

Problems Console

Issue Of Attribute Dependabihty Attribute Security
Name Unauthorised access
Revealed By Suitable Deviation Suitable Deviation Public:: Information Exchange

Fig. 4.12 - Properties of an Issue in the ENIF Editor

Following the examination of existing guidewords and specification ofnew ones, the

process examines the completeness of suitable deviations regarding the identified
dependability issues. In some cases there is a possibility that the defined suitable
deviations do not cover all issues (i. e. some issues have not been associated to a suitable
deviation despite the have been examined). This can be the result in case the available

models of the system do not have the necessary characteristics to clearly reveal the
issues (combinations of system element types and issues for which the result of the first

decision node in Fig. 4.10 is 'No'). To more easily understand this, we can consider
trying to define a deviation suitable to reveal synchronisation issues, using a model in

which temporal characteristics (e. g. sequence of events) are not present.

Following identification that the identified models cannot satisfactorily participate in a

suitable deviation, the participants need to identify the models that would help to

complete the analysis. Initially the participants are asked to identify the 'inadequacies'

of the identified models, by brainstorming the characteristics that the models lack in

119

Chapter 4- Requirements Elicitation Using Dependabiliti, DeviationAnalvvi. s7

order to define a suitable deviation. Table. 4.7 presents a table of derived characteristics

after considering example model characteristics that would help reveal the identified

dependability issues. The table is the result of 'forcing' the process in this stage of'

DDA to consider model characteristics. The suggested characteristics are not definite

but a generic example of the 'kind' of models that may be used for analysis.

Subsequent to suggestion of a model, the model should be analysed and tile system

element types included identified, following assessment of its suitability.

W-1.1- AI V11.111A 12ýaliirptl to Upt, oni lIvriond-iltililt I-aw,

Possible Model
Characteristics

Possible Mod I
Characteristics

Latency I'Cinporal Unauthorised Functions, data. Physical mnpom-Ws
diagranis, (Function/Data) CoMponents failure
lunctions, Access

processors
Deadline Temporal Repudiation of Interaction Incorrect Data, 1/0

miss diagrains, I10 Transaction (tnessaKinK) value
events models

Throughput Communication Assumed Identity Actors, messages Data 1)(11a. InessaKes

I lines, processors integrity
Functionality Function Comfort Actors ___ Incorrect State dhý41-anls

unavailable state
Mistake Actors, input Fatigue Actors

Completion of the stage implies that all dependability issues have been associated to a

suitable deviation. Failure to associate all issues to a deviation will compromise tile

completeness of the analysis, as possibly important issues will be overlooked.

4.7.4 Identification of Applicable Deviations

The suitable deviations defined in the previous stage are generic, relaning to the

identified dependability issues. In this stage of the DDA the applicability of' suitable

deviations to the system under analysis is examined. The stage is responsible I'or two

main functions; confon-nance of suitable deviations templates and documentation of'

applicable deviations.

Templates documenting suitable deviations are created with the purpose of' identifying

deviations capable of revealing the dependability issues. It may be the case that tile

available models that represent the system to be analysed do not contain the system

element type described in a suitable deviation. flence, although a suitable deviation

may exist for a particular issue, it can not be applied on the actual system being

120

Chapter 4 -- Requirements Elicitation Using Depen(labiliti, Deviation Analvsis

examined. Possible inconsistencies should be detected and corrected before using the

template.

Additionally in this stage all the applicable deviations which will be analyscd are

created and recorded. The system elements represented by the system elernent type in a

suitable deviation arc instantiated and an applicable deviation is created for each onc of

them. Fig. 4.13 illustrates the overall process of this stage.

Start/ Pre%ious
DDA Stage

Select a suitame
cie%iation

hkmitify 2ýjwleno
Flement 7: 1pe

S ugges t new models
in %%hich the svstern
should be modeled

Examine
availaMe S)SICIII

mo(k-Is

Are there similar
System Element 7: wpeN

that could be used in
the suitable de%iation?

N, Vs

Pre,. ious s(age/
Redefine Suitable

DeNiations

Do the muilabic
mmiels coulain the

. ýt, sfem Element 7.), pe?

VS

l(k-istikv systent
elements (if the same
S)Stell) element "pe

Create and record
applicat4e (k. %iatioll
for sNstem element

End

Are there Suitable
DeViUliOnN that haw
not been examined?

Fig. 4.13 - Identification of Applicable Deviations Stage Process

The stage starts with identification of the system element types required by the defined

suitable deviations. Next the participants study the models in which the system (under

analysis) is represented. Subsequently to successful identification or the saine system

121

Chapter 4- Requirements Elicitation Using Dependability Deviation Analysb

element types an applicable deviation is created for each system element of that type.
Recognition of an applicable deviation is captured in the metamodel by setting the

isApplicable attribute of the SuitableDeviation class to true. The process repeats until

all suitable deviations have been examined.

Ensuring that the system element type in the documented suitable deviations and the

available models are the same (i. e. represent the same concepts) is highly important in

order to avoid inconsistencies. In case a model contains system element types similar
but not the same as the suitable deviation, the suitable deviation should be redefined
with the available system element type in mind. Upon completion, the defined

applicable deviations will be examined whether leading to a credible failure condition
during the following DDA stage.

4.7.5 Identification of Failure Conditions

This stage involves failure analysis of the system by examining the applicable
deviations. The overall purpose of the step is to identify and understand the relations
between all credible failure conditions. The resultant failures will then be analysed in

the next stage in order to understand how a failure condition can cause another.

Fig. 4.16 shows the process of this DDA stage. At the beginning of this stage the

participants identify the available models in which the system is represented and the

system elements that are contained in the model. In this example we analyse the AGO
MODAF OV-2 (node connectivity) and OV-5 (activity diagram) models, which consist
of Table. 4.8, Fig. 4.15 and Table. 4.9 and Fig. 4.16 respectively. UML was chosen as the
language in which to implement the MODAF models as it is easier to understand, and
more broadly recognised in comparison to the MODAF specific graphical
representations.

Next, a system element is selected to be analysed, for which there exists an applicable
deviation that has been associated with it (during the previous stage of the DDA). The

analysis focuses on two types of elements for the respective models; needlines and
activities, which we probe for deviations using the defined guidewords, in order to
identify possible failures. As in 'traditional' HAZOP, it is important for the analysts to

122

Chapter4 Requirements Elicitation UsingDependabilitv DeviationAnalv, sis

understand the model and the intended behaviour of the system, so as to be able to

describe the effect of the deviation. MODAF describes a needfine as "A rclationship

specifting the need to exchange injbrmation between nodes. The needline does not

indicate how the transfer is implemented'. An activity is described as "a process

carried out by a person or organisation " [89].

Start/ Previous)(End/ Next
DDA tý DDA stage

Are there any
Select iNsteguil motle- Is that haw

motlel Mit been
exasellined?

Identify
contained systern

elements

Examine related
aplAicable
de %i at i on sI

v Are there further

Select Sýstclll
V EN SNS(Clvl clements ill like

current iruptlel for "hich
element there is 3111 applicable

tle-. iatiori not e%amiuted?

Descrilw
intended

operation

Apply g-tsideword
to system
element

Interpret effect
ofthe de%iation

Is the
(knialion Reject dL%iation
crech[Ae?

>

0---ý

V FN

Document
failure contlition

Fig. 4.16 - Identification of Failure Conditions Stage Process

Famillarisation with the models and the intended operation ofthe system is all important

facet of the analysis. SHARD also highlights this necessity [76]. This task assists

understanding the contribution of the element being prompted to the overall operation of'

the system. Contrary to previous methods such as SHARD which analyse specific

123

Chapter 4 Requirementv Elicitation Using Dependabilitv Deviation Analt-sis

model elements of the system, the focus of the DDA may differ. For example whereas a

needline focuses on abstract data exchange between participating systems, an activity is

concerned with functional contribution of each system to the overall mission.

Following the description of the intended system operation, participants prompt the

system element with the guidewords, as suggested by the respective applicable

deviations. The guidewords suggest deviant behaviour ofthe system element. Analysis

participants should examine the resultant system behaviour as Suggested by the

deviation and describe the impact on the system element's operation. Ifthe deviation is

credible, the impact of the deviation on the system element operation is documented as

a possible failure condition. Identification of a credible deviation is captured in tile

metamodel by setting the isCredihle attribute of the ApplictibleDevicition class to true.

-------------> Needline 1z

Needline 4 UAV Flock

Mission Control, ý-,
Needline 3

<------------------>

Needline 7
<-------- -- I

Infantry

Needline 2

Mi lie ry N aedl ine 6

Needline 5

Helicopters

Fig. 4.15 - OV2 for the AGO using U NI 1,

Table. 4.8 - DescriDtion of the OV2 Needlint-,

Information Exchange

Flight path

Producer Consumer

'VIIs. "loll Collilol

(Fusion) Sensor data UAV Flock Mission Control

2 Map Mission Control I lelicopters

Target area Mission Control I lelicopters

(Fusion) Feedback Helicopters Mission control

6 Theatre support Helicopters Int'antry

7 Target location Infantry Artillery

124

Chapter 4- Requirements Elicitation Using Dependabilitv Deviation Analysis

Table. 4.9 shows summary of this stage in tabular form. The first and second columns

define the system element under analysis. In this case all system elements are of the

same system element type (i. e. needline). The third column shows the guideword with

which the system elements are probed; the parentheses underneath the guidewords

indicate the dependability attribute from which the deviation has descended.

Table. 4.9 - ON'2 Failure Idenlitication
S, *Istcm
Element

Guideword Failure Condition Failure
Condition ID

11)
I Public Disclosure ofaircraft position

(Security) FCl

7 Overload Slow transmission of target data FC2

(Perfon-nance)
Fake Artillery receive fake target data with FC3
(Security) malicious intent
Public Enemy receives firing intent and target FC4

(Security) information
Omission Artillery will not receive any target data FC5

(Availability)
Value Artillery will receive the wrong FC6

(Reliability) location/order
Late Delay or possibly loss of request of FC7

(Performance) I target data

0
I nitwsteM issi on

v ' upon wvWion at minion,
l. UAVstake ff 3. Sd4jp Stand-by force3 it not knoyin vOwOw

enemy forces At be
detected

2. UAVs m ove to the enemy area 4. P strmo I Ar e-a

6. Suppress Enemy After moAng troops
to the ttw4mtre of
operations, the helicopters

5. Transport Specied Forces ------------ join enemy supprenkm

7. Deplane SF 8. Fuse operdicnsft*eatre information

Numbers for achOtles = :i
are tr :t

ýý

Cwo not
yf

sequence
9. E ngage E nemy

Fig. 4.16 - OV-5 Node Connectivity Diagram Using UML

Taking in mind the dependability attribute of origin at this stage contributes in defining

the viewpoint for the system's operation, and helps participants to describe the impact

of the deviation unambiguously. Finally the last two columns of the table document the

125

Chapler4 ReqiiiremenisElit-ittilionUvingDel)encitibilitvl)evititiotiAntilisi's_

failure condition. Similarly, Table. 4.10 summarises the (credible) deviations and failure

conditions for the activity system element types of MODAF product OV5.

Table. 4.10 ()N'5 Failure Identification
I-, system System
:

Guideword Failure Condition Failure
Element Element Condition

Type ID ID
Acti\ itý 4 Omission There is no patrolling filliction

available, cannot notify of enemy
forces

4 Mistake Users mistakenly identify enemy FC9

6 Mode A location is not suppressed FCIO

when it is being expected that it
does
A location is suppressed when it FCI I
should not

6 Late Delays in suppressing enemy FC 12

Scoping is important at this stage; the description of a fallure's effect should be limited

to the model that is being analysed. Interpretation ofthe failure condition depends oil

how the system element is used in each model. Scoping the failure condition DDA is

not limited to the consideration of deviant behaviour of system elements frorn the

perspective of the attributes of interest. Failure conditions may be associated with each

other affecting the overall behaviour ofthe system. The next stage of DDA examines

how failure conditions affect each other.

4.7.6 Definition of (Failure) Traceability

The previous stage of DDA identifies how deviant behaviour can affect tile system

elements within a local scope. This step of DDA entails tile creation of a map showing
how failure conditions are associated with each other, affecting the overall dependable

operation of the system. The effects of a failure condition may constitute causes or

contributing factors for other failures conditions originating from different attributes and

models. Traceability between failure conditions is necessary in order to understand the

associations between failure conditions. This involves consideration of how the system

elements are combined composing the overall system, which inevitably requires

examination of the system models. Fig. 4.17 presents the process overview of this DDA

stage. Initially the participants identify a system model (model A) and its respective

126

Chapler4 Requirements Elicitation UsingDependabilitv Deviation Analyst's

failure conditions and a system model associated with it (model B). Next the failure

conditions of 'model A' are examined, initially for their potential to directly impact the

concerns of the stakeholders (identified in the 2 Id DDA stage).

S(art/ Preýious
DDA %(age

End/ Next DDA
Stage

NO

2yN Arc there 2ýý
further models

to examine?

NO

Select a S)Stem
model (A)

Select an associated
s)item model (B)

Create failure
conditions table

Select failure

condition

Identify common
System element

tvpes

Describe operation
of models and

common system
element types

Selec(a failure

condition from (he
associated model (B)

VEN
Arethere

une xamined
failure conclitions

in mudel (A)? -------------------------------

Select concern

VIN

NO Are there
uncxarnined

concerns?

Can the failure
NO

condition result
to the described

concern?

Document

Declarathin i sociations it a association
between failum , ondifions
and concerns

--------------------------------- -------

I PIN

Can the failure
conditions be

credibly
associated?

Pro%ide rationale
for association

Are there
unexamined failure

sco
nditions in

>N

0 a socia(ed model
(B)?

Docu in en(
association

Fig. 4.17 - Definition of (Failure) Traceability Stage Process

127

Chapler 4 Requirements Elicitation Using Depenikibilitv Deviation Analvsis

Associations between failure conditions and concerns are declarative and not the

product of an analytical method. This happens because concerns are not associated with

a system element but with the overall operation of the system -a fundamental

difference of the concepts of failure conditions and concerns. I fence effects ofa I'ailLire

condition cannot be traced to concerns using the models of the system. In practice this

implies that such association is based on the subjective judgement of the stakeholders,

evaluating what constitutes direct compromise of their concerns. Following association

with concerns, associations with failure conditions of related models are examined.

Table. 4.11 provides a summary of possible associations between the identified failure

conditions for the AGO scenario. The two dimensions of the matrix are populated with

failure conditions associated with system elements belonging to OV2 and OV5. Its

purpose is to examine whether the respective failure conditions are credibly associated.

The rationale supporting the associations is elicited by the traceability model (explained

in the next section) that has been established during the earlier stages ofthe DDA.

Table. 4.11 - Associations Bel%wen Failure Conditions in OV2 and OV5.

Although the associations between the failure conditions are presented in a tabular
format, the results are also recorded by instantiating the mctamodel (creating a model
for the AGO DDA example). One of products of this stage is the I'ailure conditions

map. The failures condition map (Fig. 4.20) showing the failure conditions map for the
AGO scenario) is a visual representation of the associations between the failure

conditions. A failure conditions map is created by generating (directly from the

metamodel) code for the Graphviz tool which then produces the v1suallsation of the

model, created during the processes of the DDA. The failure conditions map of
Fig. 4.18 shows the deviations (ellipses) that prompted the identification of the failure

conditions (rectangles).

128

Z

LQ

6

u 42 110

0) 0.3 V- 'fý

u

0 ts

IHj

.0j. 4, eg%
n, 0- IK 2p

m

.2

�5

ol P. .I

,
pull

V

?8
is 93

"0

ý6

Chapter 4- Requirements Elicitation Using Dependability Deviation Analysis

Concerns can also be shown but have been left out in the example to preserve the clarity

of the illustration. The map was automatically generated from the instance of the

metamodel that corresponds to the analysis of the AGO scenario. The graphviz tool

was used for production of the graph. The code for the graph was generated using the

Epsilon Object Language (EOL). The colour of the deviations' border denotes the

MODAF view (i. e. blue for operational view) whereas the colour of the text the element

examined (i. e. purple for needlines and green for activities). The criterion for failure

condition colouring was the number of associations to other failure conditions
(including the associations not shown in this example visualisation).

Although the failure conditions map is a means of presenting the DDA, and not a
fundamental concept in the framework, it has proved useful in surnmarising the analysis
by showing:

9 An overview of the failure conditions and their associations

e The deviant behaviour of the system elements that was considered important.

e The (dependability attribute) context in which the failure condition was
identified.

Overall the failure conditions map has been very useful in identifying how the
behaviour of the system from the viewpoints of different dependability attributes affects
the overall system.

4.7.6.1 Using the MODAF Metarnodel to Understand Traceability

Traceability between the models under analysis can be established using the MODAF

meta-model. By examining the common elements (i. e. meta-model classes) between the
MODAF products we can identify how the models are associated. For example, an
information exchange identified in OV2 is also used in activities in a MODAF activity
diagram (OV5).

Fig. 4.19 shows the links of the OV2 product with other MODAF products. The
MODAF products that appear in Fig. 4.21 share common classes, which are used as
prescribed by the specification of each product.

130

Chapfer4 RequirementvElic-ittitionU. vingDel)en(hibilitvDevititionAtitil. v,,. viv

Table. 4.12 summarises the common classes between the MODAF products, which

resulted in identi FyIng the relationships of OV2 (Fig. 4.2 I).

Fable. 4.1 2M2

-1111m lnolloll[ý, h, III, -, 'c

-Node

-OperationalActivilY

-ActivifyConducled., ItNode

lý jh/Ný

-Neeilline

,
Nl at ri x

-Node

Op,

-OperalioizalA ctivitv

Although the products are not explicitly associated, the common classes allow us to

identify and understand the role or a system element from other viewpoints of' the

system operation. For example, a performance failure at the needline may give tile

artillery a command to engage the enemy at the wrong time. Hence the effect of a

performance failure regarding the needline constitutes the cause for a reliability failure

with respect to the activity. Textuaffraceabilitv IF, #ýýct the class that represents the

justification of how system elements are used in the system and how a I'ailure condition

may result in another.

4.7.6.2 Semi-automated Approach for Establishing Traceability

Textual representation of traceability presents certain disadvantages in its use. Firstly,

description of traceability is ad-hoc and depends on the DDA participants for clarity.
This can result in complex and often weak reasoning. The problems of text based

reasoning have been well documented by experiences in the safety case domain in [47].

131

Fig. 4.19 - Associations of the OV2 MODAF Product

Chaptcr4 Requirements Elicitation Using Dependabilit v, De viot ion A nUI. VS i's

Moreover identifying the association of a system element with others manually is a

tedious and time consuming task. Automation of the task even to some degree can offer

significant reduction in the time required to complete the task. This was achieved by

building a basic dependency model for system elements. Fig. 4.20 shows an extract
from the revised DCM with the addition of the class and the associations supporting the

basic traceability model. The difference with the initial extract of the DCM capturing

DDA, is the addition of the UseclBy Traceability class. This class serves as an

association class between system elements. The association class denotes the

dependencies between the system elements during operation. Consider OV2 (Fig. 4.17);

needline 2 depends on needline 1, hence ncedline I is usetl by needline 2. Associations

between system elements are declared during definition of the system models.

Fig. 4.20 - "Used-by" Association in UML

Participants can use a variable degree of granularity in which the model is represented.
For example only the needlines could be modelled, omitting the system elements of type

node. However if more detail is required the intermediate system elements can be

added; furthermore, this approach of providing traceability can be extended by

'hardwiring' to the dependability case metamodel, classes of the modelling framework

in which the system is represented, that correspond to lower level, and more detailed

models. Epsilon scripts were created to benefit from the provided basic traceability in

the following manner: by selecting the system elements (consider a hypothetical system
element A) the deviant behaviour of which triggered the definition of a failure

condition, the script identifies the system elements (consider hypothetical system

132

Chapter 4- Requirements Elicitation Using Dependability Deviation Analysis

elements B and C) that are using system element A, by navigating the

UsedByTraceabifity associations. The script then identifies the failure conditions that

resulted from deviations associated with system elements B and C. The two resultant

sets of failure conditions are suggested to the participants to examine the credibility of

possible associations between a pair of failure conditions belonging to each set. The

participants do not have to exhaustively check the combinations of all failure

conditions. The pairs prompted by the script include only failure conditions that could
be associated based on traceability. Providing this degree of automation in the analysis

proved to be very efficient, especially during analysis of large scale systems.

4.7.7 Definition of Dependability Profile and Preliminary
Identification of Goals

This is the last stage of the deviation analysis. Having understood how unwanted
behaviour can affect the operation of the system elements and the system overall,

participants elicit tangible dependability requirements. For the system elements, the

identified requirements constitute the dependability profile, which can be characterised

as a multi-attribute envelope of intended operation. Furthermore, this stage serves as a

preparatory stage, in which the participants are involved in a preliminary identification

of goals that will form the dependability argument. Fig. 4.21 shows the overall process

of the final DDA stage. The stakeholders motivated by identification of unwanted
(deviant) behaviour define dependability requirements. Concerns and failure conditions

are the concepts that capture the unwanted system operation. Consequently, the process

can be seen as having two threads corresponding to concerns and failure conditions.

The process starts with selection of a concern or failure condition. Although either can
be chosen in the beginning, ideally all concerns should be examined first. Priority of

concerns over failure conditions is something that will occur naturally by applying DDA

during the system's lifecycle.

133

Chapter4 RequiremenisElic-iltitionUvingDel)endabilitvDevi(itionAtitil. t, sis

(
Start/ Pre%ious ý,

111/1PII.
I.;

ý

Conc
Se I ect. a. fai Iur" -'ýFailure

condition condition or
XOR) concern

ldentifý related
es , attribute of intei attribute of interest

Identify rclated I

(descent of FC) (descent of concern)

Identify source
(cause) and target

(effect) Association,

Arc there defined
110 No depenclabiliaN

requirements
ifor

the target failure
condi ion,?

Select target failure r 1f

11 condition

Describe un. anted
ldvntif. ý sýstcvn

%Nslvm beha%iour element de%iant

CAP(U red b % concern
beha, iour leading to

- FC

IdentifN %)%Acnt g al

ýdc

n

-ti

f) %),. %Iem element' u
(haied on ru es) le') goal

((ta based (it GSN rules) I

II
Specify, mean% (if SpvcifN nicans (if

ei, aluating goa
I

v%alua ing goal

SpecifN criterion for Specif. ý criterion for

succes sum - of the gual

Justify and document Justify and document

success criterion success criterion

Are there concerns
Are there failure

y
without a iated conditions without

dependsasbilitý 8, S oc iated

requirement?
dc pendability I
requirement?

>1

Fig. 4.21 - Definition of Dependability Profile Stage Process

134

Chapter 4- Requirements Elicitation Using Dependability Deviation Analysis

Next, the participants should identify the attribute of interest with which the concern or
failure conditions is associated, providing the appropriate perspective to the analysis.
Following this, the participants identify the unwanted behaviour captured by the

concern (e. g. loss of life) or the unwanted behaviour of the system element that

corresponds to the failure condition (e. g. public access of needline I data). A

prerequisite in this step, is that the target associations of the examined failure condition

should have an already defined dependability profile. This is a necessary step that

allows the dependability requirements to be elicited in the context of operation of the

system. Consider failure conditions FC2 (slow transmission of target data) and FC12

(delay in suppressing enemy) of the AGO scenario, which are failure conditions
identified from the perspective of performance. Subsequent to the creation of the failure

map it was identified that FC2 could lead to FC12. If during the process FC2 is

examined before FC12 a requirement for FC2 cannot be justifiably derived. Althoughit

is possible to understand the nature of the requirements that will be elicited during the

next steps of the process (for FC2 rate of transmission and for FC12 speed of enemy

suppression), it is difficult to justifiably project the target rate of transmission without
knowing the target speed for suppression of the enemy. This constraint is in line with

the top-down apportionment of requirements as suggested by the ARP 4761 [70]. For

this reason the process participants will have to define the dependability profile of FC 12

before examining FC2. Concerns are not subject to this check as the requirements

elicited from concern would correspond to the highest level of the system operation and
hence are defined directly from the stakeholders.

Following identification of unwanted operation, goals for the behaviour of the system

need to be identified. This is a preliminary effort for stakeholders to describe in

tangible terms goals derived from the DDA analysis. Although these goals may not be
integrated 'as-is' in the arguments, they constitute candidates for the dependability case
arguments. Stakeholders should dcfine the goals using the syntax and scope rules
guidelines described in GSN step 1 [47]. In the case of the AGO scenario a goal elicited
from concern would be 'Overall scenario should be acceptably safe' whereas for a
failure condition would be Weedline should provide acceptable bandwidth'.
Identification of the goal should not be confused with the criteria for the satisfaction of
the goal, something also highlighted in the GSN methodology. In the case of FC2,

specifying that needline 7 should have I Mbps bandwidth is not a correct goal. The

goal is the provision of adequate bandwidth and I Mbps is the target requirement for the
135

Chapter 4- Requirements Elicitation Using Dependability Deviation Analysis

satisfaction of the goals. The two next steps of the process are responsible for

identifying the means of evaluation of the goal (risk for the goal regarding acceptable

safety and transmission rate for adequate bandwidth) and the goal satisfaction criterion

(I death inIO'hours of operation, I Mbps). Finally stakeholders need to present the

rationale based on which the acceptance criteria of the goals were specified. For failure

conditions this may prove to be easier as it depends on the collaboration of system

elements. For concerns such rationale may be justified by appeal to sources such as
business objectives, mission plans and legacy systems.

Upon concluding the process the system stakeholders will have identified requirements

associated with system elements and with concerns, as well as a set of goals that could
be used in the dependability case arguments. The set of the dependability requirements
associated with one system element constitute the dependability profile of that system

element.

4.8 Other Sources of Requirements
The main purpose to of DDA is to acknowledge the dependability attribute viewpoints
and understand how the system should behave with respect to those dependability

viewpoints. Application of DDA does not single out use of other analysis
methodologies. Instead other method can be used to complement the analysis. This is

one of the reasons for the adoption of the dependability profile. Using the dependability

profile requirements originating from other methodologies can be recorded and later

used in the dependability case. The DCM is extensible to accommodate other processes
for requirements elicitation, which however acknowledge and conform to the multi-
attribute view (requirements for each attribute) used in this thesis.

On the same tack, the goals elicited during application of DDA are not the only goals
that will be used in the dependability case arguments. The goals elicited during DDA

contribute in establishing product argument(s). This means that they mainly related to

the actual system (i. e. product). According to the architecture of the arguments and the

strategies based upon which the argument is developed, various types of goals can be

used such as goals asserting the correctness of the system process. For example,
consider an argument about quality control of the lifecycle processes (process

136

Chapter 4- Requirements Elicitation Using Dependability Deviation Analysis

argument). The goals elicited during DDA are but a subset of the total goals used in the
final dependability case artefact.

4.9 Summary

This chapter has defined Dependability Deviation Analysis, a technique for eliciting
dependability requirements. DDA supports identification of system requirements from

the perspective of any dependability attribute. In order to understand how a
dependability attribute can influence another, the concept of failures maps was
introduced. In order to capture and collate the requirements of the SoS elements DDA

introduces the concept of dependability profiles. Finally the DDA stages are
demonstrated throughout the chapter using the AGO scenario.

137

Intentionally Blank

138

Chapter 5- Facilitating Trade-offs Betwen J>Nndability Requimmen's

Chapter 5

Facilitating Trade-offs Between
Dependability Requirements

5.1 Introduction
A dependability case entails arguments about achievement of dependable operation of

the system. This involves reasoning about achievement of acceptable system behaviour

with respect to the dependability attributes of interest to the stakeholders. Establishing

an argument about the dependability of the system involves justification and
documentation of the decisions made during system evolution, in order to achieve the

required dependability attributes. However, decisions that favour achievement of an

attribute may conflict with other attributes. These occasions are common and inevitable

especially in large systems, resulting in an impasse. Resolving such situations often

necessitates trading-off the achievement of a requirement in favour of another.
Decision making is an integral part of the development of a system. This chapter

examines concepts applied in decision making, examines application of one such

methodology in the context of dependability cases, and finally it introduces the trade-off

method (TOM), an argument based method that facilitates trading-off conflicting goals.

5.2 Trade-offs During Evolution of the Dependability
Case

Construction of a compelling argument requires explicit consideration of contextual
information such as the design of the system or possible assumptions made during the

creation of the argument. For example, arguing about a requirement concerning the

availability of a system could result in adopting an architecture with redundant

components. Hence, that design decision would allow an argument to be constructed

combining the availability of the two components, assuming that the components will
not fail simultaneously. Similarly, tackling this last concern may lead to adopting a
diverse implementation of the two components, avoiding simultaneous failures due to
implementation faults.

139

Chapter 5- Facilitating Trade-offs Between Dependability Requirements

Evolution of requirements and design takes place in parallel. A representative example

of this is the twin peaks model [91]. During the evolution of a system, developers are

continuously faced with decisions which need to address the already specified

requirements and serve as the basis for the derivation and apportionment of more
detailed requirements. Satisfying the specified requirements of a system can be

achieved with a number of possible different alternative designs.

Degree of satisfaction of a goal is the degree of achievement of a goal by a candidate
design alternative, with respect to the defined criteria ofachievement.

Variability on how each design alternative can satisfy the system goals implies that any
decision will inevitably result in trading-off satisfying a set of goals in favour of others.
Trade-offs can be described as a "balance achieved betneen tno desirable but

incompatible features; a sacrifice made in one area to obtain benefits in another, a
bargain, a compromise" [92]. Generally, in order to make such decisions, system
developers need to examine the advantages or disadvantages of each design alternative

on the operation of the system, aiming to choose the optimal.

5.3 Review of Concepts and Methodologies in Decision
Making

There arc numerous methodologies and approaches that have been employed by system

analysts, not only in the engineering domain but also in other disciplines. Some of the

main concepts in decision making arc common in more than one methodology.
However cvcn subtle differences can signify a distinctive approach towards thinking

about decision making, and in specific about managing the process of making trade-

o ffs.

5.3.1 ATAM

ATAM is a method developed by the Software Engineering Institute in Carnegie
Mellon University [37]. The purpose of the method is for participants to propose
candidate architectures and prioritise them according to which will satisfy the best their

goals. Ile stakeholders' goals that the system needs to achieve arc defined during a

140

Chapter 5- Facilitating Trade-offs Betwven Dependability Requirements

complementary process to ATAM, the Quality Attribute Workshops [39]. The aim of

these workshops is to brainstorm scenarios about the use of the system, and the required

reaction of the system to certain events dcfmcd by the scenario. For example, in the

context of a network system, in the event of a hardware failure the network should

detect and recover the failure within 1.5 seconds. The output of the process is a utility

tree, which provides a top down model for directly translating business drivers of a

system into quality attribute scenarios. The overall ob cctives of the system are

decomposed into more concrete criteria. Fig. 5.1 presents an example extract from a

quality attribute utility tree with final criterion from the point of security and, in

particular data confidentiality. Tle resultant criteria arc charactcriscd by a priority and

risk indication according to the projected importance to the stakeholders' interest and

their risk (indicating diff iculty) of implementation.

Performance:]
(Priority, Ri7sý7k)

J Modiflabili
Transactions Data 99.999%

I Confid! iali -11-1 nt secure

, [----Data
-I!

-
Integrily

Fig. 5.1 - Quality Attributes Utility Tree

The participants of ATAM discuss the possible architectural approaches and how they

can contribute to achieving the elicited scenarios. The final selection of the appropriate

architectural strategies takes place after voting conducted by the stakeholders, selecting

the strategy with the highest score. Voting takes into account the priority of achieving

cach scenario as well as possible risks. An important activity of ATAM is the

idcntirication of sensitivity points. Sensitivity points are architectural decisions which

significantly affect the achievement of the attributes. An example of a sensitivity point

given in [86) is the level of confidentiality in a virtual private network, which is

sensitive to the number of bits of encryption. Identification of sensitivity points allows

the participants to undcrstand the architectural characteristics responsible for the

141

Chapter 5 Facilitatitkiz Trade-olls Benveen Dependabilin Rt-quirernents

achievement of the stakeholders' goals. The objectives are to analyse and communicate

the objectives of a systern and understand the means of their achievement.

5.3.2 Cost Benefit Analyses

in gencral. coý, t henct-It anlilý ses compare the expected return of an iný estment against

the initial monetary value required of the implementation of the alternative. One

application of the principles ofcost benefit analysis in systems engineering is the Cost

Benefit Analysis Method (UBAM) [861. CBAM compares the benefit from

implementing an architectural strategy against its implementation cost. Ultimately, the

purpose of the implemented architectural strategy is to achieve the required quality

attribute. The return of investment is the calculation of the achieved benefit over the

cost required to achieve that (benefit / cost). Rctuni of investment is a numerical

measure used in CBAM. In order to calculate it (since cost is also numerical) CBAN1

suggests quantification of utility. Utility represents the benefit with respect to the

required quality attributes resulting from implementing a candidate architectural

scenario. Fig. 5.2 presents a schenia of how the return of investment is calculated. The

stakeholders assess the improvement in the systern in ternis of the required quality

attributes and subjectiNely specify the utility on a scale from 0 to 100.

Performance

Business %rchitectural
Benefit

C Strategies

k

Usability
Cost i

Utility

Return Of Investment

Fig. 5.2 - O%er,. iei% on CBANI

Although importance of implementation of each attribute can be added as part of the

analysis using weights, CBAM remains a pure numerical comparison of utility of each

attribute against cost. Cost benctit analysis is a straight Fonvard process and although

the results are compelling analysts should be circunispect. as the numerical

representation ot'all quality attributes may mask the importance of a quality attribute. A

142

Chapter 5- Facilitating Trade-offs Between Dependability Requirements

case in which cost benefit analysis has been misapplied taking into account only

economical results is discussed in the ALARP section.

5.3.3 Easy Win-Win

Easy win-win is a process for eliciting and negotiating system requirements [93]. The

objective is again to engage system stakeholders in understanding each other's

viewpoint and collectively agree a set of compatible requirements. In order to achieve

this state each stakeholder describes a set of win conditions. Win conditions are

statements about the successful operation of the system as it has been envisioned by the

stakeholders. Stakeholders examine the win conditions and identify whether they can
impact other stakeholders negatively. A condition which can impact stakeholders

negatively is called a lose condition. Wntification of win and lose conditions allow the

stakeholders to negotiate through the win-win process an alternative set of

requirements, ultimately resulting in conditions that would be characteriscd as win

conditions by all.

The method identifies trade-off points. Unlike ATAM win-win points are statements of

conflict between requirements and do not suggest how the architecture can influence the

achievement of the requirements. Trade-offs are not explicitly analysed and recorded
but the method focuses on describing the result of the negotiations between the involved

stakeholders over an acknowledged conflict. Win conditions are described in terms of
importance and case of implementation, which is the product of voting among the

participants of the analysis. An important aspect of easy win-win is the classification of
the win conditions and their subsequent prioritisation. According to the values assigned
to importance and case of implementation, win conditions can be classified in four

categories [93]:

* Low hanging ftuits (important, easy): Win conditions with a high business

importance, which seem to be feasible.

* Important with hurdles (important, difficult): Crucial win conditions difficult to
implcmcnt.

AVbe later (unimportant, easy): Low-priority win conditions that may be

considered latcr because of their low difficulty of rcalisation.

143

Chapter 5- Facilitating Trade-offs Between Dependability Requirements

e Forget it (unimportant, difficult): Unimportant win conditions that are difficult

to achieve.

The importance and case of implementation are two criteria that motivate the system

stakeholders to implement some win conditions over others. For example, an

unimportant and difficult is considered to be something that will not be implemented on
the grounds that is difficult to implement, and that the perceived utility of the

achievement of the condition is low in comparison to the other conditions. The

prominence of this feature of easy win-win lies in the fact that the four categories

constitute implicit arguments based on which the decision about the implementation

order is justi ficd.

5.3.4 Multi Criteria Decision Analysis

Multi Criteria Decision Analysis is a process that allows making decisions between

candidate alternatives in an environment with multiple competing objectives. One such

model is the Analytic Hicrarchy Process (AIIP).

5.3.4.1 The Analytic Hierarchy Process

Ile Analytical Ilicrarchy Process (AIIP) is a systematic method for making decisions,

between a number of possible options with respect to multiple objectives [94]. Fig. 5.3
illustrates an ATIP the main elements in the AIIP hierarchy.

Overall goal

Criterion III Criterion 211 Criterion 311 Criterion 4

Candidate A andid cA Candidate A
te 13

11 II Candidate A
Candida and

ze
B Candidate B Candidate B

Candidate C Candidate C Candidate C Candidate C

Fig. 53-AIIP Hierarchy

Initially the participants state the overall goal of the decision making process, which
usually would be the selection of the optimum candidate decision. In a process

144

Chapter 5- Facilitating Trade-offs Between Dependability Requirements

resembling the creation of utility trees in ATAM, the overall goal is decomposed into a

number of criteria (also called the objectives that the alternative needs to achieve) that

need to be satisfied, and against which the candidate decisions will be evaluated. After

the critcria have been defined the participants make pair-wise comparisons between

goals populating a matrix with values indicating the relative importance of the x, y

objectives (i. e. I= believe that they are of equal importance, 9= very strongly believe

that X is more important than Y). Calculating the eigenvector of the matrix of the

critcria, results in a vector that indicates the overall importance of each goal.

Following the calculation of weights for each of the objectives the participants make use

of the same process to compare the 'goodness' of the options. For each objective a
table is created with pair-wisc comparison between the options answering the generic

question "which option from the two you think has achieved the objective better".

Alternatively scale values can be used. The process will result in a set of tables, the

eigcnvector of which shows the relative 'goodness' of each alternative with respect to

each objective. Combining the table using matrix algebra results in aI xN (where N the

number of alternatives) matrix, showing the overall score of each alternative. Among

AIIP's strengths is the fact that the participants can made subjective judgements

regarding the importance of the objectives, as well as the achievements of the objectives
from the options.

5.4 Using AHP for Trading-off goals in the Context of
Dependability Cases

This is an exercise showing potential use of AIIP as part of the construction of a
dependability case. The exercise was created during meetings between the mcmbcrsý
of the partnership, as part of which this research took place. The purpose of the exercise
was to examine the suitability of AIIP to be used in order make justified trade-offs
between system goals in the context of dependability case development. In the exercise
AIIP was used to select the most optimum design for a hypothetical Future Transport
Aircraft (FTA). The new transport requirements as described in [95] served as
inspiration for the definition of the requirements and the general context for the FTA

exercise. This is a hypothetical example with the sole purpose the evaluation of the

*'QinctiQ, BAE Systems and Rolls-Royce pfc.

145

Chapter 5- Facilitating Trade-offs Between Dependability Requirements

concepts (such as application of a utility vector to represent dependability) of the AHP

methodology. In accordance to the description of AIIP the process involves three main

phases:

- ldcntification of ovcrall goal and critcria

- Prioritisation of criteria and calculation of weights

- Asscssment of the candidatc dccisions

Although it was cndcavourcd to provide realistic requirements, their accuracy is not of

primary importance to the exercise. The data relating to the aircraft were inspired by

real examples, but in certain occasions (i. e. minimum stall speed and flight endurance)

conjectures were made. However this does not affect how AIIP is used but merely the

dctails of the final rcsult, which is not a conccm.

5.4.1 Identification of Criteria & Alternatives

The first step in the AIIP process is the identification of the criteria, which will be part

of the final hierarchy. Criteria represent the requirements that need to be achieved by

the candidate design, and constitute the context in which the candidate (design)

alternatives will be assessed. In a (GSN based) dependability case the criteria would be

the equivalent to goals, representing the system requirements that will have to be

achieved by the system (i. e. the aircraft).

Deviation Dependability Analysis (described in chapter 4) was applied to derive the

goals and dependability requirements for the FTA. DDA was not used for a full system
analysis but to clicit the high level system goals and requirements by identifying the

system concerns. A prerequisite for DDA was the existence of the high level of concept
of operations. The Future Transport Aircraft (FTA) is a military cargo aircraft.
According to its concept of operation, the FTA can undertake multiple roles according
to the purposes of the mission, including strategic, tactical and theatre of operations.
The strategic role involves transport of big volumes of cargo and personnel between
(possibly distant) bases or command ccntrcs. During a tactical mission the aircraft is

required to deploy equipment and personnel using temporary airstrips, prepared at the
beginning and maintained until the end of the mission. Finally in the theatre of

146

Chapter 5 Facililating Trade-oftý Between Dependabilitv Requiremepit, ý

operations role, the FTA provides support such as surveillance and medical evacuation.
Fig. 5.4 presents the issues with which the tasks of each FTA role were prompted. The

issues cover a range of attributes including perforniance safety, usability.

Cargo capacity
Range
Speed
Fake off landing runway length
Autonomous ground handling
Oround manoeuvrabilit-v
Minimurn stall speed
Flight Durability
Ease of payload comersion
I lull loss (Safety)

Fig. 5.4 -F FA Issues

Using the identified issues the high level tasks of the FTA for each role were examined

and concenis were identified.

Payload Inadequate transport capability. 60 t
Range Inadequate range, requires refuelling for distances greater 3500 iini

than the achieved range.
%V1111111111111 Difficulty in deploying paratroopers, and airborne 110 kts
Stall Flight delivered equipment. This also impacts the length of the
Speed landing strip.
Flight The aircraft will have to break mission to refuel 10 hrs
Endurance

Reliabilltv Probability of fault that will result in aborting the 10-5
Mission.

s'roi, Nfininium length ofthe required runway for short take of 2300 ft
and landing (STOIA Very difficult to create long
runways in theatre of operations.

By applying the steps of the DDA process, Table. 5.1 was created. The table

surnmarises the task issues, the ackTIONVIedged concerns, and their respect'Ve

requirements elicited from the DDA process.

147

1 ý, Z, 1H% ()%crall(g, ii�. tiiN

Chapter 5 FacililathW Trade-offs Between Dependabilit. V Requirements

5.4.2 Calculation of Weights

The next step of AHP involves calculation of weights for each of the identified criteria.

The weights show the relative importance among the identified criteria. Calculation of

weights entails the creation of a matrix, which includes pair wise comparisons of the

criteria (Fig. 5.5 a). The values represent the relative importance of the criteria (i. e. I=

believe that they are of equal importance, 9- very strongly believe that X is more
important than Y). A tool implemented by the author in Java, prompted the exercise

participants for pair-wise evaluations between the identified criteria, and calculated the

eigenvector of the table. The resultant vector is shown in Fig. 5.5 (b), and represents

the importance of each criterion according to how the participants evaluated each pair-

wise comparison.

1 2 3 4 5 6 7 WEIGHTS:

1
21
31
41

1
0.126
0.2
0.33

- -----------
8
1
3
4

5
0.1ý33
1
2

3
0.25
0.5
1

3
0.33
3
1

4
2
3
2

3
025
0.25
0.5

Safety: 0.35453835
STOL: 0.17924733
MinSpeed: OA2529664
Range: 0.12261105
Endurance: 0.10109467

51 0.33 3 0.33 1 1 2 0.5 Reliability: 0.0673232
61 0.25 0.5 0.33 0,5 0ý5 1 1 Payload: 0.049888786
71 0.33 4 4 2 2 1 1 1 1 TO-TAUJAMOO

(a) (b)

Fig. 5.5 - AllP Criteria Comparison Table & Weights

As expected, when making the pair-wise comparisons, safety received the highest rating
followed by the remaining criteria. It is worth noticing that two of the criteria, namely

minimum stall speed and range have little difference in their weights, only becorning

evident at the 3 rd decimal digit of the weight value (the significance of this observation
is discussed in §5.5)

5.4.3 Evaluation of Alternatives

Evaluation of the possible design options followed the calculation of weights. In the
FTA exercise the focus was on one design aspect, namely the number and configuration

of the aircraft engines. Identification of how the characteristics of each option affect the

goals (similar to sensitivity analysis as performed in ATAM) was not in the scope of the

148

Chapter 5- Facilitating Trade-offs Between Dependability Requirements

exercise, which focused on the effectiveness of AHP in architectural trade-offs; a more
detailed discussion about design rationale can be found tin chapter 6. However during

the exercise such activity took place in order to understand how each alternative would

affect each criterion. Three options were proposed:

Option A: Two high thrust engines under the wings.

Option B: Four engines under the wings.

9 Option C: Two engines above the wings.

The characteristics of the three options have different impacts on the operation of the

aircraft. At this stage assumptions were made about how the three configurations affect

each of the criteria. Again, although the participants had rudimentary knowledge of the

principles that govern the behaviour of the aircraft, there were assumptions made; the

factual accuracy of which was not of primary importance to the exercise.

By using two engines over the wing, option C achieves more lift and therefore the

aircraft has lower minimum stall speed. This allows for shorter a runway as the aircraft

can take off sooner and needs less space to brake during landing. Moreover when using
temporary strips as runways, the engines are protected from debris suction that may
damage the engine; especially during short take-offs when the engine is set to the
highest thrust, this can be a very serious risk. In contrast to option C, option A has two

engines mounted under the wing, providing less lift. Hence higher thrust engines are
required, something that would increase the possibility of debris suction. Moreover
higher thrust engines would comparatively contribute to higher overall weight,
increasing in the same time fuel consumption, which would compromise flight

endurance. Finally, option B is a more conventional configuration; the aircraft has
lower (compared to the two other options) thrust four engines mounted under the wing.
Although more exposed to debris than option C, the low thrust reduces the risk of debris
ingestion in comparison to option A. Option B provides the aircraft with the capability
to fly with one or two engines shut down or at idle power (i. e. gliding with a small
descent rate) preserving fuel and therefore extending flight endurance.

149

Chapter 5- Facilitating Trade-offs Between DependabilitY Requirements

Next in the AHP process, the alternatives are evaluated against the identified criteria. In

order to simplify the example and increase accuracy of the exercise, only three criteria

were used. Selection of the three criteria was based on the confidence of the

participants, in being able to predict how the characteristics of each alternative would

affect the criteria during evaluation. Calculation of weights was repeated for the three

selected criteria, the results of which are presented in Table. 5.2.

Table. 5.2 - Weil! hts for the Criteria Subset

I Safety ý 0.7018
1 STOL 10.1972

I Endurance 1 0.1009 1

Table. 5.3 shows an overview of the normalised results of the evaluation of the three

options. Within brackets is the original score in a scale from I to 10 that assigned to

each altemativc with respect to each criterion.

In the case of this exercise, evaluation was based on the participants assigning the

'goodness' of each alternative, by interpreting the degree of satisfaction of each

criterion. For example, the evaluation results show that both options 13 and C would

have the same degree of achievement of endurance and therefore were assigned the

same grade. Moreover the table implies that option C performance in STOL is nearly

fully satisfied the criterion and therefore was assigned a9 out ot' 10.

Table. 5.3 - E,, aluation and Normalisation of A lternafiNes

Option B FOption C

0.2857 (6/10) 0.3809 (8/10) 0.333 (7/10)

0.2727 (6/10) 0.3181 (7/10) 0.409 (9/10)

0.25(4/10) 0.375 (6/10) 0.375 (6/10)

The final result of the process is a 10 matrix presenting the overall utility of each of the

alternatives. This is produced by combining, using matrix algebra, the matrix that

results from Table. 5.3 and the matrix containing the weights of each criterion Table. 5.2.

150

Chapter 5- Facilitating Trade-offs Between Dependability Requirements

The resultant matrix contains the overall (normalised) utility of each alternative with

respect to all criteria.

UtifityMatrix(U) = AlternativesEvaluationMatrix x WeightsMatrix =>

0.2857 0.2727 0.25 w, 0.2857 0.2727 0.25 0.7018 0.27936"option4'

U=0.3809 0.3181 0.375xw, =: ý0.3809 0.3181 0.375xO. l972=>0.36787 optionB
0.333 0.409 0.375 w3 0.333 0.409 0.375 0.1009 0.35219, optionC,

Fig. 5.6 - Calculation of Utility Vector

Fig. 5.6 shows the calculations taking place when producing the utility matrix. Option B

(0.36787) is the most optimum option followed closely by option C (0.35219); option A

(0.27936) scored the lowest.

5.5 Drawbacks in the Numerical Representation of
Dependability

As described in chapter 3, dependability is a generic term which encompasses many
heterogeneous attributes. This characteristic of dependability causes problems when

attempting to represent or even understand dependability as a single concept. In fact,

when referring to dependability, it is often done in the context of a particular viewpoint

such as reliability and safety. This section investigates the problems when modelling
dependability using a numerical representation, and discusses its application (i. e. AHP

exercise) in making justified decisions in the context of a dependability case. After

presentation of the problem and completion of the AHP exercise, discussions followed

regarding the suitability of the characteristics of AHP as decision making tool in

dependability cases. Observations by the participants of the exercise as well as

subsequent analysis and evaluation from the author, identified several challenges to be

overcome, in order for a trade-off resolution method to be used in dependability case
framework.

Use of a trade-off resolution method in the context of a dependability case requires
clarity in rationale of justifications, and traceability. As explained in chapter 3, a
dependability case presents an argument and communicates assurance regarding the

151

Chapter 5- Facilitating Trade-offs Between Dependability Requirements

operation of the system. Arguments in the dependability case evolve and are

constructed in the context of the system, and consequently design decisions. In order
for the final argument to be compelling all decisions made during system development

should be justified. Moreover the rationale on which the decisions were based should
be clearly communicated in the case. Clarity of rationale and documentation of
justification on which decisions are based are important prerequisites for traceability of
the argument. Traceability is an important aspect of a strong and compelling argument

contributing to the overall system assurance. Reviews of the argument should be easily

performed and reviewers should be able to identify the assumptions and justifications

accompanying the inferences from the statement of a goal to the provision of evidence

supporting that goal. Moreover, developers need to be able to trace the reasons on
which their decisions were based, to identify improvements and to control changes by

analysing their impact on the overall dependability of the system.

At the early stages of the exercise, participants expressed a certain degree of confusion

when challenged with pair-wise evaluation of the objectives. Specifically, in some
instances participants were unable to express a clear preference between the

alternatives. The main cause for that was the lack of context in which the relative
importance of the criteria was evaluated. Participants were asked to distinguish

preference based on the abstract notion of each attribute (e. g. safety versus endurance).
However there was no analysis supporting this judgement as to how each attribute

contributes to the overall operation of the system. Criteria that were considered far

more important than others may be subject to exceptions, something that is not captured
by pair wise assessment of the criteria. For example, during a surveillance mission
endurance may be more important than safety. Arguing about preference between two

objectives requires an assessment on behalf of the stakeholders of the consequences of
trading off each objective. However, even when relating the objectives to the intended

operation of the system, stakeholders often cannot precisely specify a preference. The

reason for this is that the involved stakeholders cannot substantially understand what
failing to meet the ob ective will signify for the envisioned operation of the system, j

unless the degree of satisfaction of that objective is stated.

Making trade-offs involves comparing the achievement of each of the goals
(descending from the attributes) with respect to the design alternatives. Being

152

Chapter 5- Facilitating Trade-offs Between Dependahility Requirements

heterogeneous and representing fundamentally different concepts, dependability

attributes cannot be compared directly with each other by a mere numerical comparison.
For instance consider two goals representing requirements elicited from the viewpoint

of two different dependability attributes. The goals are described using numerical

representation of utility, with measures (assuming a percentage scale) of 65% and 70%.

This may not necessarily mean that there is an overall difference of 5% in utility. The

consequences of not achieving the goals are fundamentally different and cannot be

directly compared. Even factoring weights in the utility of each goal cannot represent

with accuracy how the two goals can be valued in terms of their impact on the system's

operation. Prasad [10] in her thesis concludes that we can only quantify attributes of
dependability individually. Even then, Prasad mentions that some attributes such as

safety are not easily quantifiable. Furthermore, she continues by claiming that is

infeasible to represent dependability as a single metric with methods such as the Multi

Attribute Utility Theory. This is a view also put forward by [96] in which it is stated
that "The main problems perceived in use of multi-attribute utility methods are:
difficulty of trading-off very different kinds of attributes; subjectivity of the problem

structure and weightings used,, and consistencyfrom one decision to another". Prasad

mentions that a representation of utility as a vector could be potentially used. However

a numerical approach also showed difficulties in justifying the meta-decisions made
during the assessment such as pair-wise judgements, and evaluation of alternatives.

Application of the trade-off method takes place within an argument based framework

such as dependability cases. Hence any decision made needs to be justified. Another

part of the exercise was the construction of an argument justifying the alternative that

was selected that would incorporate steps of the AHP. This eventually resulted in

arguing about the assignment of values to the comparisons. Although the overall
direction of the comparison (e. g. A is better than B) was captured, the specific value
assigned during a pair-wise comparison is something that is assigned subjectively and
cannot be justified that it reflects the stakeholders' interests, resulting in weak
arguments. Fench et al suggest, with regard to decision making in general, that
"disagreements among groups are addressed via sensitivity analysis and debate not via
some mathematical formula which combines judgements in some democratic way and
prescribes a consensus decision " [96].

153

Chapter 5- Facilitating Trade-offs Between DePendability Requirements

Traceability of decisions (irrespective of whether they involve trading off of objectives)
is an important aspect of a dependability case supporting evolutionary development.

The justification and rationale behind a decision and in particular decisions

necessitating trades, constitute vital information for the success of further design

reviews, system (and case) maintenance, and integration with other systems in a System

of Systems. During these activities system developers need to review how a decision

was taken and re-examine whether the contextual information used (such as the design

of the system) have changed since the decision. Developers are often interested in how
individual elements of the system contribute to the overall 'fitness' of the system for its

use. Basing a design decision or trade-off on numerical criteria such as the creation of a
utility function (using for example AHP) makes it considerably more difficult to trace
the decision to individual elements of the system, something that was also pointed out
by Prasad [10].

5.6 The Trade-Off Method (TOM)
The Trade-Off Method (TOM), developed by the author, is inspired from the ALARP

principle, aiming to facilitate dynamic reasoning about candidate design options (with

respect to the system goals). TOM consists of a number of steps, which allow system
stakeholders to evaluate design alternatives and systematically make trade-offs
balancing all required system properties.

5.6.1 Objectives

The purpose of the method is to produce an argument module, which reasons about
optimum and acceptable selection of an alternative. The resultant argument provides
context in which the dependability case evolves. TOM aims to:

e Enable stakeholders to understand and share their perspectives and rationale
for acceptability. Each stakeholder has a unique perspective on the system's
operation with system goals that reflect their interests. This means that when
eliciting goals related to them, stakeholders cannot necessarily understand the
implications the achievement of the goals will have on other stakeholders.
Moreover, it is essential that during trade-off discussions, all the stakeholders

154

Chapter 5- Facilitating Trade-offs Between Dependability Requirements

share their rationale and understanding of the consequences of compromising all

goals on the overall acceptability of the system. There is little useftilness in

developing a system that may satisfy the goals of a particular stakeholder but is

not fit for purpose with regard to another. It is not the purpose of TOM to

provide a 'recipe' for solving disagreements between stakeholders. The final

decision of the process must be justified.

Systematically examine and understand the trade-offs involved with each

alternative and provide feedback to the evolution of the design. Selection of
each alternative involves relative bcnefits and compromises with respect to other

alternatives. Stakeholders identify the motivation for selecting each alternative

and reason whether the benefits of an alternative can balance the compromises.
Moreover, the strengths and weaknesses of each alternative can be fed back to

the design process, which under a particular focus (provided by TOM) may
improve the proposed alternatives.

Document reasoning, contributing to the traceability of the dependability case.
Evolution of the system entails design decisions, in the context of which the
dependability case evolves. The trade-off argument constitutes context to the
'main' dependability argument capturing the justification and rationale, on the
basis of which the alternative was selected. Documentation of the reasoning
leading to the selection of the alternative provides an explicit reference to

contextual information which can be easily reviewed and modified.

5.6.2 Overview of the Method

Fig. 5.7 presents the stages of the trade-off method. Initially, the system goals are
identified from the dependability case along with their targets. Following the links in
the dependability case provided by the metamodel (DCM), participants identify from

the products of the DDA process, the rationale for the goals and their target. The aim of
this step is to define and justify 'how much' compromise of the goals can be tolerated,
still resulting in an overall acceptable system.

155

Chapter 5- Facilitating Trade-offs Between Dependability Requirements

Start Identify goals & ý-ýdetermlne
bounds

Identify candidate
alternatives

Create trade-off End
argumer

Fig. 5.7 - Overall Processes of TOM

Next, participants identify the candidate alternatives that were created during the design

process and evaluate the alternatives with respect to the goals. Finally examining the
'goodness' of the candidate alternatives participants identify the involved trade-offs and
reason about the selection of the most suitable alternative.

5.6.3 Fundamental Concepts of TOM

The trade-off method introduces a number of concepts used in order to establish the
trade-off argument:

e Acceptability of requirements

* Flexibility of requirements

e Willingness to trade-off

These concepts are discussed in the following sub-sections.

5.6.3.1 Acceptability of Requirements

Acceptability of the degree of satisfaction of requirements depends on the context in

which the system will operate, as well as on how the stakeholders envision the operation
of the system. Achieving stated requirements is often not a 'black or white' situation,
but they can also be partially met. The degree of satisfaction indicates the extent to

which the requirement has been met; however, it is meaningless if stated out of the
context of operation of the system. For example stating a degree of achievement of
90% for a performance requirement of IMbit bandwidth is not helpful; unless the
stakeholders assess the implications of the 'partial' achievement of the original

156

Chapter 5- Facilitating Trade-offs Between Dependability Requirements

requirement to the (envisioned) operation of the system. Implications may mean that

the interests of the stakeholder(s) that defined the requirement are compromised, or they

can be negligible. Acceptability of requirements helps providing a meaningful
interpretation of the degree of achievement of a dependability requirement. Trade-offs

especially in large systems are inevitable. In order to be able to make trades

stakeholders should avoid looking at the requirements as single targets, and instead be

prepared to discuss the acceptability of a broader range of (degrees of) satisfaction.
This will result in a space in which a not fully met requirement may still be admissible
from the stakeholders.

One of the most compelling examples in which partially met requirements may be

admissible is safety. It is common consensus that a safety critical system can never be

completely safe. For example the stereotype that the safest airplane is the one that will

not fly reflects that belief. Hence the assurance for a safety critical system is based on

reasoning that a system is acceptably safe for its particular use in its operational context.
A well-established approach for defining the acceptability of risks is the As Low As

Reasonably Practicable (ALARP) principle [44]. The risk associated with the operation

of a system is defined in terms of the frequency and severity of the consequences of the
identified system hazards. Fig. 5.8 shows an adapted example of the categories for

classification of risk used in safety standards such as [46].

, *e
re Improbable I I 1 1

Unlikely 2 2 1 1

Possible 3 3 2 1

Frequent 3 3 3 2

KEY
3: Intolerable Risk
2: ALARP
1: Negligible Risk

Intolerable Risk
Limit

ALARP M
.G
w

egligibi
Target

Risk

Fig-5.8 - Example of Risk Classification and ALARP

According to the ALARP framework, risk can be classified in three major categories:
Negligible, Intolerable, and within the ALARP region. The safety 'target' is to achieve
risks that are considered negligible. Additionally, a limit on acceptable risk is defined.
Risks exceeding the defined limit are considered intolerable (i. e. unacceptable). The

region between these two values (the target and limit) defines the risks that can be

157

Chapter 5- Facilitating Trade-offs Between Dependability Requirements

considered to be tolerable if they can be argued to be As Low As Reasonably

Practicable (ALARP). A risk is considered to be ALARP if costs associated with
further risk reduction can be shown to be disproportionate to the risk reduction that

would be achieved.

Defining acceptability criteria for safety is common practice. The requirement for

acceptable safety can be flexible depending on the cost required to achieve it. The UK's

Health and Safety Executive (HSE) gives examples for targets and limits with regard to

acceptable tolerable and intolerable risks to the general public and individuals in various

work environments. According to the UK HSE [44], a risk of I death in 1,000,000 per

year broadly defines the boundary between negligible and tolerable risk. HSE suggest

that the boundary between tolerable and intolerable risk should be I in 10,000 per year

for the public, and I in 1000 per year for workers. When considering the limit for the

risk limits we take into account the residual risks of every day life, as well as the benefit

of the activity to the society.

Security is another example of dependability attribute for which flexibility in

requirements is practiced. Security has a unique characteristic that possible threats to

the system are caused by malice. The Common Criteria for Information Technology

Security Evaluation [61] provides a framework that defines the security evaluation

process for a system, with respect to a target of evaluation. The Common Criteria

framework defines six security assurance levels, each of which describes a set of criteria
to be satisfied and the processes to be followed during the development of the system.

There are other examples of attributes in which the definition of acceptability is

important in understanding the benefit of a design decision. For example, the

performance of a system (i. e. delivery of functionality in a timely manner) is important

for real time systems, where temporal deadlines must be met. In practice, occasional
losses can often be tolerated, either because the consequences of the loss are negligible,

or because the system is able to react before the next deadline without serious

consequences. It has been suggested that the tolerability of missing the deadlines can be

specified by 'constraint values' that define the limit for missed deadlines [97]. For

example, consider a hypothetical telemedicine system providing real time digital video.
The system should decode the video stream at a desired 23 frames per second (fps). A

158

Chapter 5- Facilitating Trade-offs Between Dependability Requirements

missed deadline is a frame that has not been decoded before the next one in sequence

arrives for decoding. If few deadlines are missed the video stream would not degrade

significantly, but if too many are missed this can endanger the procedure. In this case
the target is 0 missed deadlines and the limit is no more than 3 missed deadlines in a

row, at which the video will still be acceptably clear although with degraded quality.
Overall, stakeholders' acceptance may vary according to operational context of the

system. In this thesis the term acceptability is defined as follows:

Acceptability is the attribute of a goal that captures the interpretation of the degree of

satisfaction ofa goal, with respect to the impact it will have on the envisioned operation

of the system compared withfull achievement ofthe goal.

5.6.3.2 Flexibility in Goal Based Requirements

In the aforementioned examples, defining the acceptability of a system requires
description of the required 'target' and 'limit' values, defining the region in which
divergence from the target value is tolerable. When the limit of the acceptability criteria
has not been met, the system is considered unacceptable and action must be taken to

correct this. However, in cases where a target value for an attribute is not met the

system can still be considered acceptable ifjustified. This requires arguing that the

consequences of 'increasing' the attribute towards the target are disproportionate to the
benefit achieved. Defining the acceptability region also needs to be justified. The

acceptability region is only meaningful when considered in the operational context of
the system.

Targets and limits define the bounds of a goal that represent a space (of acceptable
solutions) in which degree ofsatisfaction ofa goal can be traded.

Definition of bounds achieves separation of concerns when reasoning about

requirements. Goals describe the core intent of the requirement (e. g. system is

acceptably safe), whereas bounds represent the acceptability criteria of the requirement.
As an extension to GSN, this thesis introduces the concept of bounds of acceptability of
a goal, comprising of a target and limit values. These two criteria define the bounds

159

Chapter 5- Facilitating Trade-offs Between Dependability Requirements

within which a requirement may be considered acceptable provided that the levels

achieved for the goal in question are as high as reasonably practicable.

With respect to GSN, bounds constitute contextual information and they are related to a

goal with in context of associations. Hence a goal can be stated in context of a target

and limit (i. e. bounds). In terms of representation in GSN, bounds are denoted by GSN

context elements, with a solid bar along the top or bottom edge of the context,
indicating the target and limit respectively.

Fig. 5.9 presents the security requirement goals associated with part of an example
dependability case for GIS (Geographical Information System) software. The extract
focuses on security. The top-level goal for security (SecTop), refers to the architecture

ensuring adequate security and it is stated in the context of the definition of security
('SecDefn). In order to ftirther decompose the top-level goal, we follow strategy

'ArgScen' to argue over the identified system scenarios that refer to security. Among

the identified scenarios are scenarios describing the response of the system in the event

of someone trying to login to the system (authorisation), and the scenario of the system
detecting intrusion to the system.

Eliciting the requirements based on the scenarios, results in identifying as goals for

security 'AccSec Auth' and 'AccSec-Detect'. These goals state that the system should

provide acceptable means for authorisation and that the system adopts acceptable means
for detecting system intrusions. The security goal 'AccSec Auth'is stated in the context
of acceptability criteria 'TargSec Auth'and 'LimSec Auth'which define the target and
limit values of acceptability, and in the context of justification (Auth

-
BoundsJ),

enabling references to the supporting rationale for the acceptability criteria as defined.

Since the security goal is stated in the context of a target and limit, changing the

acceptability criteria or the justification for them will not necessarily affect the 'core'

security goal. Definition of bounds can isolate reasoning about requirements from

reasoning about acceptability of requirements and explicitly define a space in which
design alternatives can constitute an acceptable solution.

160

Chapter 5- Facilitating Trade-offs Between Dependability Requirements

SecDefn SecTop

Overall definition of GIS architecture ensures
security sufficient security

SScenarios I ArgScen
Security Attribute Argument over Scenarios

)'*-ýsccurity
scenarios

SSlDefn
Detect AccSec

I
Definition of

'Authenticate access' System acceptably detects
I TI

s, a
t

cenario intrusions
FA-ccSec7Auth

TargSec-AUTH Acccptable means of
V

Hardware Key Access a=uthenticated access Auth BoundsJ

I

and Password provided

Y-

-i Target and limit approved

LimSec-AUTH
<> by stakeholders

Password protection

Fig. 5.9 - Example of Flexible Security Requirements In GSN

5.6.3.3 Willingness to Trade-Off

Trading-off design goals requires information about how the degree of achievement of

the goal is affected by each alternative, the acceptability of the achievement, and

evaluation of the importance of each goal.

In ALARP, after the stakeholders have defined the target and limit values of risk, trades
between safety and cost need to demonstrate that the cost required to reduce the risk
levels of the system is disproportionate to the actual risk reduction achieved. In

practice, the tolerable (ALARP) region is often split in two equal sub-regions. Hence

when a design is within the ALARP region, it can be identified as being closer to the
limit or being closer to the target. This distinction is made in order to help stakeholders
to argue about disproportional benefit. For example, it is easier to justify that a risk

reduction would be beneficial when closer to the limit value rather than when closer to

the target. Extending the ALARP principle for multiple attributes, when two
dependability objectives A and B are in conflict, not fully achieving A, may be tolerated
if the benefit from not compromising B, is greater than the benefit gained from fully

161

Chapter 5- Facilitating Trade-offs Between Dependabilitv Requirements

achieving the original requirement of A. In order to implement this principle,

willingness to trade-off a goal was introduced in TOM to facilitate trades.

Willingness of the stakeholders to trade a (dependability) goal represents the ease with

which the stakeholders are prepared to trade the degree of satisfaction of the goal.
Willingness is a means of expressing acceptability of a decision alternative with respect

to a goal.

The rationale behind willingness to trade-off is that stakeholders, similar to ALARP,

will be more willing to trade a goal if that goal is closer to the target or if that goal is not

very important. Accordingly, the minimum required benefit in order to trade-off a goal

will vary based on the degree of achievement and the importance of a goal. As

discussed, acceptability interprets the degree of satisfaction of a goal. Willingness is

specified in relation to the degree of achievement of the required goals by a particular

option. Willingness of a goal should not be defined a priori (as in the case of the a

priori comparison of importance between goals in AHP), but needs to take place as part

of the assessment of an alternative with respect to a goal.

a. b.

Target

Limit

Bounds

Degree of
satisfaction

C.

Willingness

Fig. 5.10 - Relating Degree of Satisfaction, Acceptability and Willingness

Fig. 5.10 shows the relation between degree of satisfaction, goal acceptability and
willingness to trade-off a goal. The left bar represents the range of values for the degree

of satisfaction of a goal. However, the values alone are not meaningful; the middle bar

162

Acceptability

Chapter 5- Facilitating Trade-offs Between Dependability Requirements

(b) captures the acceptability to the stakeholders, interpreting the various degrees of

satisfaction. Finally the right bar (c) illustrates the categories of willingness, expressing

the levels of acceptability of a goal. There are five categories of willingness defined to

represent the acceptability of the degree of satisfaction of a goal:

1. Unconstrained (Categoly D:

This category represents a degree of satisfaction that exceeds the defined target.
These goals would be the first to consider trading, given that the requirement of
the stakeholders represented by the goal has not been compromised in any way.
Stakeholders would not need significant gains (in terms of the benefit to the

satisfaction of other goals) in order to be willing to trade the goal.

2. Probable (Catego1y 11):

This category represents a degree of satisfaction falling short of the target value.
These goals would be probable candidates for trade-offs, if some benefit (to the

satisfaction of other goals) can be gained.

3. Potential (Category 111):

The third category represents a degree of satisfaction falling in the region of

'medium' tolerability, being neither close to the target nor limit values.

Stakeholders would be willing to trade the satisfaction of these goals given a

considerable alternative benefit to the satisfaction of other goals.

4. Hesitant (Categoly IW

This category represents a degree of satisfaction closer to the limit value. These

goals would be the least likely to be traded-off given their marginal

acceptability.

5. Ineligible (Categoly W

This category represents a degree of satisfaction that is considered unacceptable
(i. e. falling short of the limit value). An alternative that results in a degree of
satisfaction in this category will be rejected and cannot be traded-off.

163

Chapter 5- Facilitating Trade-offs Between Dependability Requirements

The degree of satisfaction of the goal is not the single consideration when assigning

willingness to goals with respect to an alternative; another consideration is the relative
importance between the goals. For example, ALARP assumes that importance between

safety and cost should be biased in favour of safety. This is the reason that the system

stakeholders are required to demonstrate that the benefit from compromising safety (and

therefore cost saving) is disproportional to the compromise itself. Willingness to trade-

off incorporates importance of the goal. Importance of the goal is not stated explicitly

using a metric, but is implicitly included in the assignment of willingness.

Stakeholders will be more willing to trade a goal in favour of a more goal. By

describing willingness to trade-off stakeholders implicitly include assessment of how

important the goal is to them. For example, if a performance and safety goal were
described with the* same level of willingness (with respect to an alternative), this would

mean that stakeholders after considering the acceptability of the degree of satisfaction of

the goals (step of the TOM process), they are equally willing to make a trade-off A

major difference with the example using the AHP method is that stakeholders only

evaluate the specific instance of the goal in relation to the candidate alternative.

Altering the distribution of the willingness categories within the acceptable space of the

goal, stakeholders can compensate for the goal's importance. An example of an
occasion in which this could happen is when the operational context of the system
changes making the goal more important to the system stakeholders. Fig. 5.11 includes
instances of goals (bars d and e), which show two additional examples of assignment of
willingness. In the examples, the spaces, which represent lower willingness to trade the

goal, cover most of the range with the bounds of acceptability of the goal.

This is illustrated best in the goal captured in bar e. The importance of the goal makes
the stakeholders hesitant to trade it, leaving only a small window in which the goal can
be traded without some significant benefit (yellow and aqua spaces), and an even
smaller window in which the goal can be traded with some benefit (aqua space only).

164

Chapter 5- Facilitating Trade-offs Between Dependability Requirements

a. b. C. d. e.

Target

Limit

Bounds

Degree of
satisfaction

LZ

2-,. " ---

Willingness
Possible willingness

apportionment compensating
jbr importance

Fig. 5.11 - Compensating Willingness

5.7 Method Walkthrough

This section presents in detail the stages of the methodology, illustrating its application

on the FTA example.

5.7.1 Determination of Bounds

The first stage of the trade-off method is responsible for eliciting and capturing the

degree of satisfaction of the goals as well as the acceptability, described in terms of

willingness, which corresponds to the different levels of the degree of satisfaction.

Fig. 5.12 illustrates in detail the process of this stage. Initially, the stakeholders identify

the goals that the system needs to satisfy, which are defined during application of the

Dependability Deviation Analysis (DDA). At this stage the goals elicited during DDA

are stated in the context of the target (one of the two elements of bounds; the other is

limit). The target represents the actual requirement accompanying the intent

represented by the goal, as described in chapter §5.6.3.2. During application of TOM

the tolerability of the stakeholders with regard to the requirements is examined,

resulting in definition of the limit (complementing the already defined targets).

Following identification of the goal, it is important for the participants in the method to

165

Acceptability

Chapter 5- Facilitating Trade-offs Between Dependability Requirements

identify and understand the type of criteria associated with the goal. The purpose of this
is to comprehend how the target can be reduced defining the range for the degree of

achievement of the goal, until the lowest limit of acceptability is identified.

For example, consider the target of the FTA payload; in this case the type of the

acceptance criteria is mass (measured in tons), hence the range of values in which the

degree of satisfaction of the goal is the different mass values. Identifying the type of

criterion is necessary in order for the participants to be able to comprehend the range of

values the degree of satisfaction can have. It may be the case that the type of the

requirement is not clear, especially for qualitative requirements the description of which

may contain ambiguities. In such occasion TOM participants will not be able to

understand the range of the satisfaction of the goal. To remedy this situation,

participants should refer to the 'specification of dependability profile' DDA stage, in

order to understand the rationale based on which the goal and the target were elicited.
Payload constitutes a quantitative criterion; however requirements can also be described

using qualitative criteria. In the case of the GIS software example the security goal was

stated in the context of qualitative criteria. The intent of the goal was the provision of
'adequate means of authentication'. The type of the criterion is the functionality

required for authentication. Reducing the degree of achievement to identify the

acceptable limit, the degree of satisfaction involved 'less' authentication functionality,

thus making the system less secure. In this example target and limit were not

quantitative but they were qualitative. Forcing the criteria to be expressed

quantitatively is not always the best approach. A possible quantitative representation of
this goal could be a statistical metric showing the probability of malicious actors being

authenticated successfully. However such a metric may not always be accurate or even
possible to define. Specifically for security there are practical problems introducing a
metric; one of them is that the statistical sample may not be suitably large to make
conclusions since the actual security attack is unknown until detected.

Bounds can be described in qualitative terms by the stakeholders, provided that they

understand and explain how the target can be reduced, defining in this way a region of
the degree of satisfaction of the goal. In this example the combination of functionality
that allows hardware key authentication and password authentication is considered to be

more effective than password authentication, which is also the limit of the goal.

166

.
fs Between Dependabilit. Requiremenis Chapter 5 Facilitating Trade-of v

V Explain motivation for
rejecting this d gree of

Identify satisfaction as
dependability unacceptable

goals

Eý

Reduced degree
of satisfaction is

unacceptable

I

No Are there any
End / Next

(1
goals without 7Sýtag

limit?

Yes

Select
dependability

goal

Identify target
and related

dependability
requirement

Reevaluate respective Explain type and l
dependability profile grounds for

[pt

r o
specification during DDA -l of target rop o

Can you
No so ggesttype

oferiterion
for the target?

Yes

Reduce criterion

Identify impact o
reduction on the

goal

Reduced clexree
of satisfaction is

he. silant

Identify impact of
reduction on the

goal

No

Would you
accept the

compromise
given great

benefit?

Identify impact of
Reduce criterion reduction on the

goal

Reduced degree
of satisfac I iorl 1,

potential

IdClttifý iloPad of
Reduce crilCHOR reduCtlOR (In lhV

goal

Reduccd degre], e Yes

of 5al If. ction i,

p,,, I,. bl,

II Identify impact of
Reduce criterion reduction on the

goal

Reduced degree of
satisfaction within
acteplable region

, N, o

Doesthe
c omp

o op, r. ti

ompromise
affect the

peration of the V,,
system'?

Fig. 5.12 - Determination of Bounds Process

Would you accept
the compromise

ýij h some
considerable

benefit?

zllzý
Would you
accept the

compromise
"Ith S. I.
benellt?

Table. 5.4 shows the FTA concerns after the completion of this step of the trade-off

methodology. Column c documents the type of the criterion that was identified during

requirement elicitation shown in column b. Subsequent to identification of the type of

167

Chapter 5 Facilitating Trade-olj. ý Between Depen(hibiliti, Requirements

the criteria this stage of the method involves elicitation of the goal's limit. To achieve

this, participants reduce the criterion hypothesising a new degree of satisfaction.
According to the rationale based on which the target value was elicited the acceptability

of the hypothesised degree of satisfaction is described. This iterative process takes

place until a hypothesised degree of satisfaction is described not acceptable. An

important outcome of this process is the justification of the limit (target has already
been justified during the requirement elicitation). Justification of the limit is elicited by

combining reduction of the criterion and allocation of the new degree of satisfaction to a

willingness category.

Table. 5.4 Bounds & Limils ol'the Itivitlifivil 1-1 % Concei nN

oil
Tyýe of

Criterion

Ilull loss 10-1 Probability 10-1 Maximum probability of' losses of
previous systems.

Payload 60 t Mass 50 t Weight of armoured vehicle and
equipment required for start ofoperations.

Range 3500 Distance 2800 Minimum distance between refuelling
nm nrn points.

Min. Stall 110 kts Speed 140 kts Maximum speed for deploying equipment
Speed without being damaged.

Flight 10 hrs Time 8 hrs Average time of' most operations which
Endurance the FTA will have to support.

Reliability 10-1 Probability 10-4 Minimum probability to abort mission

STOL 2300 ft Distance 3000 ft This is the maximurn length of runway the
engineering unit can construct on time for
the mission

Allocation of a willingness category involves identification of the impact that a reduced
degree of satisfaction will have on the intended operation and utility of the system.
Participants are asked to evaluate the compensation that would make the compromise of

the degree of satisfaction tolerable. This question is put forward in a step-by-step

approach, in which the participants evaluate whether the acceptability of a degree of

satisfaction belongs to one of the prescribed willingness categories.

168

Chapter 5- Facilitating Trade-offs Between Dependability Requirements

Taking a step-by-step approach is more preferable as, in this way, the participants

consider the entire range of the degree of satisfaction of a goal.

Consider the payload requirement for the FTA. The target was defined to be 60 tons,

with the rationale for choosing this value being that this was the maximum weight of a

typical armoured transport vehicle with related equipment. The impact of gradually

reducing the payload capacity is a reduction in the FTA's capability to transfer the

vehicle and all of its equipment. Hence, only the necessary equipment for the vehicle's
immediate operation could be transferred. This may be a reduced capability that is still

considered tolerable. Further reduction would result in the FTA being able to transport

only the vehicle without any equipment. Continuing to reduce the payload capacity will

ultimately result in a FTA that cannot transport an armoured vehicle. The payload

capacity at which this occurs was considered to be the the limit for the payload goal.

Tablc. 5.4 shows the limits and justifications for all requirements in the FTA example,

elicited by applying the process.

5.7.2 Identification of Alternatives

This is a relatively straightforward stage of the trade-off method. The purpose of this

stage is for the stakeholders to identify the alternatives and record the acceptability of

each alternative with respect to the goals.

Initially the stakeholders identify the candidate alternatives. Construction of the

alternatives is not within the scope of the trade-off method, but the product of design

evolution methods discussed in chapter 6. After identifying the degree of satisfaction of

each goal with each alternative, a willingness category is assigned to each goal-

alternative pair. Categories of willingness are assigned based on the correspondence
between degree of satisfaction and willingness identified during the previous stage.
Evaluation of the alternatives is captures in a tabular form, the trade-off table, illustrated

in Table. 5.5. Each of the shaded cells constitutes a result of evaluating an alternative

with respect to a goal. By browsing through the cells, stakeholders can review the

acceptability of each goal, identifying whether an improvement can be made.

169

.
fs Between Dependabilitv Requirements Chapter 5- Facilifuling Tra(k-qf

Identify proposed 1
44 Start

alternatives

Select alternative
End

No

Are there
Select goal nexamined

I ýýternatives? '

Identify degree of
satisfaction of

goal

spcciýv
willingness

Fig. 5.13 - Identification of Alternatives Process

Table. 5.5 -Trade-off Table Format

Attributes Coal I Coal 2 Goal 3
Alternatives
Option A
Option B
Option C

Moving vertically in the table the participants of the method can identify the

compromise or benefit from switching between candidate options. Moving horizontally

the participants identify how an option affects the goals that need to be achieved.
Combining these two actions it is possible to identify which goal was the motivation to

select another alternative and what is the impact of this improvement. If the
improvement involves reducing the acceptability of another goal, then a potential trade-

off occurs.

5.7.3 Construction of the Trade-off Argument

Examining an option can lead to opportunities of improving a goal that has not met the

target criterion (given that some other option improves the acceptability of that goal).
This can lead to arguments in favour of adopting the option that improves that goal.

170

Chapter 5- Facilitating Trade-offs Between Dependability Requirements

This stage of TOM facilitates decision making after the consequent trade-offs are

evaluated. Fig. 5.14 presents the process followed in this stage of TOM.

The process begins with the participants examining the populated trade-off table to
identify what they perceive to be the best alternative. Characterisation of an alternative

as best can be thought of as a token that indicates at any time the alternative considered

as the most preferred with respect to satisfying the dependability goals. The better the

alternative is overall, the less likely the participants will prefer another. Selection of

what is perceived to be the best alternative at the beginning of the stage, reduces the

number of potential trade-offs that the participants will evaluate. Instead of randomly

selecting an alternative for evaluation, this step provides a starting point to this stage of
TOM.

There are no specific rules for the selection of the best alternative. As a 'rule of thumb'

at the beginning of this stage the alternative that has the fewest goals in the lower

willingness categories will initially be considered the best alternative. A constraint that

applies to the selection of the best alternative is that the acceptability of all goals must
be within the tolerance region (i. e. above the limit), thus selecting an alternative that is

overall acceptable. This means that an alternative with a goal categorised as 'ineligible'

cannot be selected as best alternative, neither at the beginning of the stage nor during

later parts of the stage.

Following identification of the best alternative, the participants examine the

acceptability (described as willingness) of the alternative with respect to the
dependability goals. The objective is to identify goals, the acceptability of which is in

need of improvement. Improving such a goal motivates the stakeholders to choose a
different alternative, which achieves higher acceptability with respect to that goal (these

goals are referred to as motivating goals). Stakeholders should not seek to improve a
(motivating) goal if it is in a higher willingness category than another goal. This would
imply that the goal characterised with 'higher' willingness is more important. This is in

conflict with the definition of willingness, making the resultant trade-off argument

weak.

171

Chapter 5- Facilitating Trade-offs Between Dependability Requirements

(-S-w't--ý

Identify best
a] ternative

R dellue willingness :
I vels or select goal

with lower Examine
willingness willingness of the

goals

Identify a goal
Are th 'ere that needs

No alternative. that Improvement
Improve the

willingness of the
goal?

Etplain
motivation for

F

improvement

Is there another goal
(w. r. t same

alternative) with
lower willingness

levels?

Noý

Can the
alternative be
Improved w. r. t

goal?

Is the goal
Improved In

other
alternatives?

Are there goals of
the same

willingness
compromised In
I, ew alternative?

No

Identify
Improvement (in

willingness

Identify compromise
>-- (in willingness
Yea

ý

categories)

Can you identify a
goal compromise
that cancels out

the benerit?

Identify compromise
of the rest of the

goals (in willingness
categories)

j

Fig. 5.14 - Constructing the Trade-off Argument

ZýIý
Justify final

selection

End

Yes

Are there other
goals motivating

for Improvement?

Reexamine alternative
and Identify

Improvements (FANDA)

Continue

Improve
alternstl

Continue/
Improve target

alternative for the
compromised goal

Benefit not
sufficient to commit

to the trade-off

No

Hasthe
alternative
been 'best'

before?

Commit to trade-off
and select new

alternative

Is the overall
compromise of

the lower
willingness

goals approved?

172

Chapter 5- Facilitating Trade-offs Between Dependability Requirements

If participants continue to feel a stronger motive to improve a goal with higher

willingness level than another, the willingness levels of the goals must be re-examined

as shown in Fig. 5.1 1. Improving the degree of satisfaction of a motivating goal can be

achieved in two ways. Firstly, participants may improve the design of the alternative.
Altering the design is outside the scope of the trade-off method and the Factors,

Analysis and Decision Alternatives (FANDA) method should be used (as presented in

chapter 6). Alternatively, a goal can be improved by selecting another alternative
(termed the candidate alternative) that best improves the willingness of the motivating

goal. Improvement of a goal can entail compromising other goals.

Following identification of a candidate best alternative, participants evaluate whether
they are prepared to accept the consequent trade-offs. Initially participants identify the

goals of the same willingness which will be compromised by the selection of the target

alternative. Selection of the target alternative is based on the participants' acceptance of
the involved compromises. If a compromise is identified that cancels out the benefit

from selecting the target alternative, feedback is provided to the design rationale process
(by invoking FANDA) in order to improve the target alternative. If goals in the same

willingness category as the motivating goal are not present, participants examine

whether they can afford the rest of the goals being compromised. TOM provides a
systematic analysis of the trade-offs involved in selecting each alternative. It facilitates

stakeholders to argue about the selection of an alternative, by allowing them to reason

about the motivations for selecting an alternative as well as objections for not selecting
others.

However TOM does not provide a definite answer about which alternative should be

selected. The final decision lies with the stakeholders who need to justify their

selection. The argument about the selected alternative records the information on which
the decision was based. Table. 5.6 shows the resulting trade-off table after the first

stages of TOM. In the first the acceptability (expressed in willingness) of the goals with

respect to the degree of achievement of the goals was identified and in the second stage
the alternatives for the FTA were evaluated against the goals.

173

.
fs Between Dependabilit. Requirements Chapter 5- Facilitating Trade-of v

Following the process of the third stage of TOM a best alternative needs to be selected
in order to start studying the involved trade-offs. Using the rule of thumb, alternative C

was described as the best alternative as it had fewer goals in the lower willingness

categories. Moreover, by examining the table it is immediately noticeable that

alternative A is an unacceptable alternative, since the endurance this configuration will

result in is below the lowest acceptable limit of the degree of satisfaction for tile

endurance goal. Identifying that a particular goal is unacceptable can lead participants

to examine the design rationale of the alternative. The FANDA method was invoked,
identifying how the characteristics of alternative A contributed in 'unacceptably'

satisfying the endurance goal.

As a result alternative A was modified with the new design accommodating engines

with slightly lower thrust that also weigh less. Changing these two I'actors was

considered to improve the endurance of the FTA. During this step improving all

alternative with respect to a goal may compromise it (the alternative) with respect to

other goals. However in the example it was considered that other goals were not

affected to a degree in which the willingness was changed. Table. 5.7 shows the trade-

off table after modifying alternative A and identifying alternative C as the best

alternative. Examining the best alternative, safety was identified as a motivating goal
for selecting another alternative (Table. 5.8). Although endurance has lower willingness
level cannot be improved as all other alternatives achieve the sarne level of' willingness.
Safety is improved only in alternative B (Table. 5.8), which was decided that it would be

the target best alternative.

174

Table. 5i. 6 - FTA Trade-off Table

Chapter 5 Facilitating Trade-offs Between Dependabiliýv Requirements

In order to select the target alternative as best, participants need to examine the

compromise involved (Table. 5.9 & Table. 5.10). As a consequence of improving the

safety levels of the FTA, the acceptability of the STOL capability is compromised firorn

category I to category 111.

175

'rable. 5.7 - Identification of Best Alternative

Table. 5.8 - Identification of Benefit

Chapter 5- Facilitating Trade-offs Between Dependability Requirements

As already discussed, TOM does not provide a definite answer; final selection lies with

the stakeholders. According to whether they approve or not the compromises involved

with a goal improvement the final alternative selection is made. However justification

of the final selection is required, as this is essential information to be recorded for the

overall dependability case. In this case compromising STOL was not considered

acceptable as the reduced take-off/landing theatre capability during operations was

considered to outbalance the safety improvement.

5.8 The Trade-Off Argument
Upon completion of TOM, participants will have created arguments that ultimately

guide them to selection of the best alternative. The arguments contain inforination

about a number of issues addressed during the TOM processes, including the following:

* Identification and rationale of bounds

0 Acceptability of the altematives

0 Preference between competing alternatives

The arguments resulting from TOM provide important contextual information to the

dependability case. In order to use the arguments within a dependability case, modular

GSN is used to capture them. Fig. 5.15 shows the structure of the Trade-off argument

module. The top level goal of the argument (TradeOft) claims selection of the most

suitable decision among the candidate alternatives. The goal is stated in context of the

dependability goals that the alternative needs to satisfy (TradeOffCl), and the candidate

alternatives created during design evolution (TradeOfJC2). In this thesis FANDA -

176

Fable. 5.1 0 F%aluation of Best Alternative

Chapter 5- Facilitating Trade-offs Betwecn Dependahiliti, Rcqifircmcnis

described in Chapter 6, is a design rationale method used to create the alternatives used

in TOM.

-------- -----------

If %
b

electi- claim

Trd. OlfCI T. d. W T
C17d

set Of MM _n. _

s 0,
g,

dsti, (D-n Q).. th. m. 9
mh

D ,
gh

D

O"C,

01) m
inni'y

(-
QUbIe... 9. U-tr, e.

T. d. OffS

Argu-t over Wt"Wity
(Doei- D) rd :
etwenm cc, mpwing

(J-1 i
Select-

Boiand, li-nd,

Bounds Argument
D. A.

Dom

10%1 Argument
ý.

II (Dee, s- D) is dommnt among I

jDwsion D), s aceeptab

Fig. 5.15 - Overview of the Trade-off Argument

The Trat1eq1j'goal is substantiated by two away goals (DecAcc and DecDom), which

correspond to separate argument modules (Bounds Argument and Selection Argulnent).

The Bouncls Argument is further decomposed to argument modules arguing about tile

apportionment of acceptability of a goal with respect to its degree of satist'action. Tile

left half of Fig. 5.15 shows the overall structure of the trade-off' argument.
Decomposing the Bountis Ai-gument to smaller modules about the acceptability of' each

goal, was adopted after considering the overall dependability case architecture
(presented in Chapter 6). When a goal in the dependability case is stated in the context

of a Target and Limit, it is also associated with an away (argument) context justifying
the derived Bounds.

%
1

A

n-4 (w, ll,. gmu

G-Rld

Rýdl- .1 IW ftg-

ý
.. W. - ý IG-1 G) t j'

Gl
_ zs

If

ýtegones)

R. d

'I
/- -"\ / IR

GoT., /-
09W, dSbIty \I "t th fli, (i k)

DeO I/ (Go. 'C)

D. fly
p, Ofü. M. g.

Fig. 5.16 - Bounds Argument and Goal Bound Argument

177

I'
I

1 //

Chapter i Facilitating Trade-of
.
7, ý Between Dependahilitv Requirements

By partitioning the trade-off module as shown in Fig. 5.15, the Goal Bouncls argurnents

can easily be referenced from other goals. Fig. 5.16 shows the details of the Boun(Is

Argument (left half), and the Goal Bounds Argument (right half).

The top level goal of the Bounds Argument claims that the decision selected during

TOM is acceptable. This is substantiated by the goals DecMetGoal and
BoundsAst-GocdGbountZv - the latter being an away goal. The first goal states that tile
decision meets the limit, which is the minimum criterion for a goal to be acceptable.
The second goals corresponds is instantiated for each dependability goal arguing tile
justification of the apportionment of willingness to the degree of satisfaction ofthe goal.
The right half of Fig. 5.16 shows the argument module.

The argument is decomposed based on identification of the acceptability for tile various
levels of degree of satisfaction of the goal. The top level claim is Supported by the

goals TypCrit, GoalTa? - and GoalRetl. 7: vpCi-it documents the type of' the criterion
describing the target, and GoalTcir the rationale for setting the target -- elicited during

the last stage of DDA. The goal GoalRed is instantiated for each willingness level

capturing the impact a reduction of the degree of satisfaction of' the goal has on the

operation of the system.

179

Fig. 5.16 - Selection Argument

Chapter 5- Facilitating Trade-offs Between Dependability Requirements

Achievement of the limit is not alone a sufficient argument for choosing an alternative.

Participants also argue about the preference of the selected alternative with respect to

the others. Fig. 5.16 illustrates the Selection Argument of the trade-off argument

module. The overall goal (DecDom) claims that participants identified the selected

alternative as best among the candidates. The top level claim is supporting an argument

stating that despite the presence of goal motivating the participants to select another

alternative, the selected alternative was preferred. The final decision is stated in the

context of a justification element stating why one alternative was preferred over the

others.

5.9 Summary
This chapter has defined TOM, - a qualitative method, for systematically identifying and

arguing about trade-offs. TOM introduces the concept of bounds capturing an

admissible space in which goals can be traded-off. In order to relate the degree of

satisfaction of a goal to system operation, the concept of acceptability is introduced.

Selection of a goal involves identification of benefit and compromise using the trade-off

table. Finally, the chapter defines GSN arguments arguing about the selected decision,

in the context of which the development of the dependability case takes place.

179

Intentionally Blank

180

Chapter 6 -Evolution andArchitecture ofDependability Cases

Chapter 6

Evolution and Architecture of
Dependability Cases

6.1 Introduction
Accepted practice in safety cases suggests that a case should be constructed
incrementally in parallel with the system. In particular, safety standards such as the

Ship Safety Management Handbook JSP430 [12] and the Defence Standard 00-56 [8]

explicitly require development of the safety case to start at the beginning of the system
lifecycle.

Evolution of the system and the argument involves making decisions about the

architecture and the design of the system that need to be justified and documented.

Interaction between the argument and the design process exists during the evolution of

the system. The evolving argument should serve to evaluate the design's fitness to

satisfy the stated dependability goals. A design that directly addresses the stated goals

will result in a strong argument. If the stakeholders involved in the development of the

argument deem that the argument is not satisfactory, changes to the design will have to

be made. The top levels goals of the argument correspond to what needs to be claimed
for the final system and accordingly appropriate goals are elicited according to the stage

of the system development. Goals in GSN are specific claims that a system has

achieved a particular requirement. Being able to explicitly represent and interrelate all
the elements of an argument, GSN helps to articulate post-conditions for the initially
identified requirements of the system in question.

As part of this decomposition, GSN captures the strategies based on which the goals

were decomposed, the rationale for the argument approach adopted and the context in

which the goals are stated. The argument of a dependability case can constitute the
interface between evolution of requirements and design, providing a systematic way of
documenting, tracing and reasoning about decisions. This chapter presents how GSN

181

Chapter 6 -Evolution andArchitecture ofDependability Cases

arguments can be used as a design and assurance driver to evolve requirements and
design in parallel. Additionally the chapter describes how we can establish a modular

compositional dependability case relating to the structure of System of Systems.

6.2 Processes Participating in the Evolution of the
Dependability Case.

Overall, the dependability case framework incorporates the three different

methodologies which are proposed in the earlier chapters of this thesis. The participant

methodologies collaborate during the evolution of the dependability argument, which
itself is based on the Goal Structuring Notation (GSN) methodology and notation.

GSN

Trade-off argument

oc m
requirements TolerabxliýZo 0

& iated requ rem
(bounds)

Requirements
DDA

Space Elicitation of citation a
u ltý

-: ýreýqu

irements

Fig. 6.1 -Methods Supporting Argument Based System Evolution.

Fig. 6.1 presents the collaboration between the methodologies to support argument based

co-evolution of design and requirements, by showing the flow of information between

them during system evolution. The methodologies participating in the evolution are the
following:

Dependability Deviation Analysis (DDA): DDA (described in chapter 3)

provides a method for the systematic analysis of the system identifying the

effect of system deviations on the normal operation of the system. In the context

System goals

Feedback FANDA

decisions In
designlargument

evolution

Design models

Description of
system

Design

Space

TOM

182

Chapter 6 -Evolution andArchitecture ofDependability Cases

of dependability cases, the purpose of DDA is to elicit the required and

acceptable behaviour of the system with respect to dependability and to clearly
identify associations between failures from the viewpoint of each dependability

attribute.

e Goal Structuring Notation (GSM): GSN (reviewed in chapter 2) consists of a

notation and method pertaining to the development of structured arguments.
GSN is used to construct the core of the dependability case - the dependability

argument. The dependability case framework has been built using GSN

exploiting its ability to explicitly reference contextual infonnation.

9 FactorANalysis and Decision A Iternatives (FANDA): FANDA (described in this

chapter) complements GSN in supporting the development of arguments. The

method can be thought of as a catalyst between the argument and the design. It

assists analysts in examining the system goals, recording and managing

rationale, and eliciting candidate options for the design decisions taking place
during the system lifecycle.

41 Trade-Off Method (TOM): TOM describes a systematic way of establishing and

using a space of admissible requirements, to trade-off achievement of
dependability goals, hence overcoming a potential impasse that resulted from

conflicts between the goals. TOM ultimately creates arguments of preference
between candidate decisions, in the context of which the dependability argument
evolves.

The starting point of the evolution is considered to be the definition of the overall
concept system operation - e. g. the definition of the concept of operations (CONOPS)

and operational scenarios and roles of a system. This information constitutes the high

level model of the system (e. g. OV-1 in DODAF). The models are used in DDA,

during which analysts identify the attributes of interest and elicit dependability

requirements for the system elements identified in the models. The GSN method is

used to identify and create an argument about the dependability of the system. The

requirements elicited during DDA constitute the required dependability behaviour of the
system. The goals are used by the FANDA method to elicit design rationale and

183

Chapter 6- Evolution andArchitecture ofDependability Cases

identify the candidate design alternatives that satisfy the goals. The identified design

alternatives are fed (along with the GSN goals) to the trade-off method, which will

facilitate selection of the most suitable alternative. The first stage of TOM can also be

called from the GSN in order to define the bounds. Moreover TOM can also provide
feedback to FANDA in order to improve the identified alternatives. Following the

selection of the most suitable alternative, the design space is updated with the models

that reflect the design decisions. The new models or system elements can be analysed

using DDA, thus starting a new evolution cycle for the argument and the system.

6.3 Influence of GSN on System Development
Creating a compelling dependability argument requires references to the product and the
(system) development process. Showing that a system is safe may require references to

decisions concerning, for example, the elimination or mitigation of identified hazards.

Other goals may need to be supported by arguments regarding the operation of the

system or elements of the system with respect to other dependability attributes. For

example, claiming that a system is reliable may be argued from the design decision to

adopt redundant units. An argument is closely related to the context within which it is

stated. In this case the context would be the design decision to use redundant units.
Had the argument construction been left for the end of the lifecycle, developers may
have not decided to adopt a redundant design. This would eventually lead to

construction of a weak argument concerning the system's reliability, or may even result
in an unreliable system as the 'inefficiencies' of the design would be apparent.

6.3.1 Argument Strategies

A GSN goal structure evolves through a process in which goals are decomposed into

sub-goals, until the sub-goals can be supported by evidence. Goals can be decomposed
in a manner that analysts perceive is suitable in order to support the parent goal.
Strategies are used in GSN to describe how the argument has been decomposed.

Identification and elaboration of strategy takes place during steps 3,4 and 5 of the six-

step GSN method, as described in chapter 2. During these steps the developers of the

argument need to identify the strategy based on which the argument should evolve, the

contextual information necessary to make this decision, and the children goals that need

184

Chapter 6- Evolution andArchilecture ofDependability Cases

to be defined to support the parent goal, given the selected strategy. Fig. 6.2 presents an

example of strategy describing how goal G3 is achieved by its sub-goals.

G3

Probability of Hazard HI
accuring Is acceptably low

C11 Argument by appealing to Specification of the effectiveness of mechanical mechanical interlocks In Interlocks
-I design

Mech
f,

: nical interiocks
j4

fted re acceptably
reliable

rI

Fig. 6.2 - Example of Strategy In Goal Decomposition 1471

The strategy argues over the effectiveness of a decision related to the design of the

system. Strategy should communicate the approach which is used to decompose the

argument. However decisions regarding the development of the argument are often

closely related to decisions regarding the system. In the case of the example of Fig. 6.2

the strategy is to argue by appeal to the effectiveness of the interlocks - stated in context

of the interlock design decision. Kelly [47] remarks that although a strategy can refer to

design decisions (as in the case of Fig. 6.2), it should not be a mere reference to the

design decision. Instead, this should be done using the design decision as context.
GSN strategies are not only limited to describing design approaches. For example, a

system argument may be developed to argue about the quality of procedures and

processes of the development lifecycle.

Definition of argument strategy is a pivotal point during the evolution of the argument.
Regardless of the particular focus of an argument the process of evolving the argument

cannot be perfon-ned in isolation of the system. 'The process includes evaluation of the

goals that need to be achieved and contextual information such as the evolution of

design of the system up to that point, previous experience and architectural tactics.

Deciding upon a strategy to develop an argument can influence many facets of the

system lifecycle and ultimately affect the system itself. The decision for the adoption of

a strategy (and its subsequent influence on development of the system) can originate out

185

Chapter 6 -Evolution andArchilecture ofDependability Cases

of a set of possible alternative decisions. Whilst GSN documents all the necessary
information required to review and understand an argument, the process resulting in the
identification of the appropriate argument strategy and the information related to this
decision are not recorded.

A situation in which the documentation of decisions becomes important is the activity
of changing part of the argument. Changing an aspect of the system such as design, test
data, goals will have a ripple effect to the argument [47]. Hence decisions that at the
time that were taken were thought to be the best option may need to be reviewed. This

requires reviewing the rationale as well as the argument, based on which they were
preferred over other possible decisions in the first place.

In this chapter, FANDA is presented as a method to help developers understand and

record the evolving dependability goals, the means of achieving the goals, and the

resultant decision alternatives during the processes of parallel evolution of argument
and system architecture and design.

6.4 Factor Analysis and Decision Alternatives (FANDA)
FANDA facilitates the interaction between the argument and the design. Eliciting
design alternatives is an inductive process that uses inferences to associate goals with
recognised factors that affect them. The combination of these design factors will form

the proposed alternative. The process can use information collected from activities such
as brainstorming, reuse of previous and general domain experience, application of
patterns and experiments. The purpose of this step is to give developers the necessary
impetus to produce candidate alternatives optimised for the satisfaction of the
dependability case goals. FANDA provides the following functions:

e Brainstorming and elicitation of alternatives affecting the design of the system &

the satisfaction of the dependability case goal.

* Documentation of decision rationale concerning the achievement of the goals

41 Identification of competing decisions

186

Chapter 6 -Evolution andArchitecture ofDependability Cases

" Relative impact of and identification of degree of satisfaction of decisions on

goals

" Collation (and digest) of information regarding argument construction

FANDA consists of a number of elements that have been introduced in the DCM, as

well as of a process that helps to instantiate and use FANDA.

6.4.1 Overview and Structure of FANDA Elements

Fig. 6.3 depicts in UML the principal elements of FANDA as well as their structured, as

defined in the dependability case metamodel.

Goal

a -factoir
af fects O.. j

gow + goal

II

fronfedorkmlanc
OA

OJ

o.. l I +lnfluericea8f II

II Decision DealUnD*cislan

+ dedsloNnipactOnGoal

O.. l IH
Fig. 63 - FANDA Metamodel Description

6.4.1.1 Goal

The class 'goal' represents the GSN goals that exist in the dependability case (described

in chapter 3). Goals participate in FANDA, as they are the epicentre (and starting point)

of the process around which the alternatives are proposed.

6.4.1.2 Factor

Factors are a concept analogous to sensitivity points [37]. Their sole purpose is to

identify possible characteristics that may affect a goal. In the context of this thesis,

factors relate to design characteristics that are considered to influence the goal. For

187

Chapter 6 -Evolution andArchitecture ofDependability Cases

example redundancy in a design is a factor that can affect a goal regarding the

availability of the system, or the strength ofencryption of data affects the security levels

of a system. According to the goals that refer to, factors can be generic statements. For

example identification of redundancy as a factor, refers to the architectural layer of the

system, and would take place during the initial stages of the system development.

6.4.1.3 Factor Instance

Although a factor identifies an association of a feature with a goal, it does not provide

an indication of how the observation is used in the system under development. A factor

instance essentially is a concrete proposal for using a factor in a particular way, in order
to achieve the goal. For example with respect to strength of encryption a factor instance

could be. 128-bits encryption, or with redundancy the factor instance could be use of
triple modular redundancy.

6.4.1.4 Decision

Decisions represent the actual alternatives created from the FANDA process that

constitute the proposed solutions regarding with respect to the dependability goals. It is

these decisions that are evaluated during the trade-off method. A decision consists of a

number of factor instances. Hence it is related to all goals that the designers need to

achieve. For example, a decision would be triple modular redundancy architecture

using 128 bit encryption. This thesis focuses on design decisions; however other types

of decisions can exist. For example there can be decisions regarding the process
followed to develop a system and not the product (design) itself. Such decisions could
be modelled in the DCM by extending the decision class.

6.4.1.5 Impact on Goal

Factors acknowledge an association between the design characteristic that they

represent, and a goal. However they do capture how the factor will affect the goal.
Impact on goal is an association class between the factor instance and the goal. Given a
concrete use of a particular factor, the impact captures how the proposed factor instance

affects the goal. Impact of goal has two types of attributes: type of impact and
magnitude of impact. The type of impact captures whether the factor instance affects a

188

Chapter 6 -Evolution andArchitecture ofDependability Cases

goal positively, negatively or it may be neutral. The magnitude captures the extent to

which the factor instance affects the goal. Magnitude of impact is described in a
qualitative scale including low, medium and high.

6.4.1.6 Decision Impact on goal
Having identified factor instances and their impact on the goals (decision) alternatives
are proposed. Decision impact on goal captures the impact of the proposed alternatives

on the goals. Contrary to impact of goal which is mainly used to trigger brainstorming,

decision impact should be accurate. In essence, decision impact mirrors the degree of

satisfaction of an alternative with respect to the goal, used during TOM.

6.4.2 FANDA Process

The FANDA process provides a systematic way of examining the required
dependability goals and eliciting the decision alternatives. The FANDA process is

structured using the six hats method [98], which helps stakeholders reach consensus.

6.4.2.1 Six Hats Method

The strength of the method lies in the fact that decisions arc not achieved through a

process of debate. Instead, participants identify a number of perspectives from which a

problem is viewed, focusing on each in isolation. This increases the productivity and
effectiveness by structuring brainstorming, which often is an ad-hoc activity. Each of
the perspectives represents a thinking hat switching the participant's mindset to

particular thinking philosophy, forming an attitude that the stakeholders can follow.
The six thinking hats are labelled as colours, for ease of remembering their function,

namely:

- White hat: The white hat is concemed with facts and figures. The purpose of
this perspective is to identify the available data that can be used to support
positions. The white hat aims to be neutral and objective and therefore personal
opinion is dismissed in white hat thinking. However, facts that cannot be

verified are permissible and arc denoted as beliefs. Further investigation and
collection of data about a belief needs to take place. Apart from the availability

189

Chapter 6 -Evolution andArchilecture ofDependability Cases

of information that supports a fact, the likelihood of a fact being true is also an
important attribute. The concept of likelihood separates the concepts of a
generally acceptable truth and a fact. For example, it can be said that that it is

generally true that avoiding loops will decrease complexity of a program;
however this may not necessarily be a universal rule and there may not be

adequate evidence to support this claim. The two concepts (acceptable truth and
fact) have been incorporated in the DCM.

- Red hat: This hat provides an emotional view and allows feelings on an issue

without having to justify the position. It is suggested by De Bono that there

should not be any attempts to justify an opinion. Intuition in expressing an
opinion is represented in this perspective.

- Black hat: Black represents caution and its purpose is to focus on the negative

and weaknesses of an idea. Under black hat thinking participants are asked to

answer questions such as "what can go wrong". Black hat thinking can also
identify a suggestion that is not supported by facts. Dc Bono further advocates
that black hat thinking should not degenerate into an adversarial argument.

- Yellow hat: Optimism and thinking about the positive aspects of an issue arc

covered under the yellow hat. Yellow hat thinking explores possible value and
benefit.

- Green hat: Creativity and proposal of new ideas is the focus of the green hat.
This perspective is involved with what can be done and what alternatives can be

produced regarding an issue.

- Blue hat: The blue hat is responsible for organising the overall process and use
ofthcotherhats. It can be said that the author of this research defined the use of
the hats in FANDA from the perspective of the blue hat.

190

Chapter 6- Evolution andArchirecture of Dependability Cases

The six hats methodology influences the FANDA by constraining the attitude of the

participants during each of the FANDA processes, focusing only on the necessary

perspective at each stage.

6.4.3 Overview of the Process

FANDA consists of three stages, elicitation of factors and factor instances (I"' stage)

and goal wide examination of factor instances (2 nd stage) and elicitation and

examination of decisions (3"d stage), illustrated in Fig. 6.4. Each stage is further

analysed using dedicated process diagrams in subsequent sections of this report.

Start

Elicitation of
factors and

factor Instances

Goal wide
examination of
factor Instances

Elicitation and
examination of

decisions

Focus on brainstorming,
creativity and identification

ofevidence

Focus on Identification of
sensitivitypoints with regard

to the elicited goals

Focus on proposition of
alternatives and examination

oftheir suitability

End

Fig. 6.4 - Overall FANDA Stages

The objectives of the first stage are:

To identify the goals that the alternative is required to satisfy

Identify the factors affecting the goals

Suggest ways forward using the factor

Explore possible factor instances and identify their impact on the goal

191

Chapter 6 -Evolution and Architecture ofDependability Cases

9 Examine the availability and plan collection of evidence supporting the factor

instance's impact on goal

The focus of the first stage is limited on a single goal. Not taking into account the
impact a factor may have on other goals, the participants of this stage aim to maximise

creativity. Critical thinking is part of the second stage, which examines the factor

instances with respect to the entire set of the dependability goals. The objectives of the

second stage are:

e Identify the impact of factor instances across all goals create a rationale map

0 Identification of evidence suggesting negative impact

Following identification of the impact of factor instances across all goals, participants
have created a (as mentioned by De Bono) 'rationale map'. The map captures possible

ways forward identified by the participants and both the positive and negative impact

that they will have on the goals. The last stage of FANDA involves:

9 Creation of decisions

9 Specification of their impact on all goals, according to the factor instances that

they contain

9 Identification of insufficient evidence and planning of evidence collection

6.4.3.1 Elicitation of Factors and Factor Instances Stage

Fig. 6.5 presents in a flowchart diagram the process for instantiating factors and factor

instances. The process starts by importing, from the argument, the dependability goals
that participate in FANDA, and selecting a goal that will be examined. By examining
the goals individually the scope of the process is reduced and the appropriate focus is

given on an individual problem at a time.

Identification of the goals includes examining the context of a goal, as well as any
inherited context (when a goal is decomposed using the GSN method, the children of
that goal are also stated in the context associated with the parent goal). Hence any

192

Chapter 6 -Evolution andArchitecture ofDependability Cases

information from the context associated with a parent goal needs to be acknowledged as
it may provide useful information.

stmi it End

No

Identify a goal
and Its Yes Are there any

Inherited onexamined

context
goals?

No

Suggest a new I
actor that affects --

EDiscard

factor
the goal
(green)

No

Are there any other
sources of data

re garding the fador?
(White)

State availability of I
evidence supporting
link betwen stated

factor and goaL
(white)

IN,,

Can you Identify
positive contribution In

achieving the goal?
(Yellow)

Examine ways
forward using the
suggested factor

Yos

Fig. 6.5 - Process for Instantiating Factors

Propose factor
Instance

Following the selection of a goal, participants suggest factors that possibly affect the

goal. At this stage, a factor can be anything that it is thought to affect the ability to

address the goal. Using a 'green hat' attitude the participants need to assert factors that

they think can influence the goal without necessarily analysing at this stage the validity

of the claim. Inspection of the validity and usefulness of a factor takes place gradually
throughout the process. Initially an assessment of available facts regarding the factor

needs to be performed. Participants need to look for sources of facts regarding the

yes

Do you think that
as

0,

goal has been

tly?

k that
so

ad
Ig

No S. Mcien
-4 addressed

ufflciently?
(Red) (Red)

Document
Factor

I n. t C@ Our

yes

Can you suggest
magnitude of

Impact?
(White)

193

Chapter 6- Evolution andArchitecture ofDependability Cases

factor and its associated goal such as experimental results, and data from previous

experience and proofs. Where a factor is suggested but there is insufficient evidence to

support it, the association between the fact and the goal should be characterised as belief

and not as claim. This means that there is uncertainty whether the association is true.

Hence the association between the factor and the goal is expressed using likelihood.

Participants need to plan how sources of evidence can be further verified to support the

association with more certainty. At this point of the process, as suggested by the white
hat, interpretation of the facts in order to conclude as to whether a factor will affect the

goal positively or negatively should be avoided. The task is solely limited to identifying

the availability of evidence regarding the association between the goal and the identified

factor.

Instantiation of factors should first take place using'a positive and optimistic attitude. In

other words the participants seek factors that will contribute to the satisfaction of a goal.
This is reflected in the next step of the process, in which a hypothesis on how the factor

can be used to support the satisfaction of a goal is suggested. Although this step needs
to take place with a positive attitude, a suggestion needs to be supported by rationale,

explaining the available evidence supporting the hypothesis. Caution should be given

not to criticise the hypothesis but to maintain a focus on whether the suggested factor

can contribute positively to the goal given the available evidence. Identification of

positive contribution and definition of the rationale is a stepping stone for proposing a
factor instance. Proposing a factor instance entails a concrete specification of how the

factor (which was identified as having a positive contribution to the goal) could be used
to achieve the goal. The definition of the factor instance is accompanied by definition

of the magnitude of impact. This captures the degree that the factor instance is believed

to contribute in achieving the goal (low, medium, high), which is an attribute of the
ImpactOnGoal class in the FANDA metamodel (Fig. 6.3). Identified sources of
information can provide evidence supporting the decision. Eventually the factor
instances that have high impact on goal will be given extra consideration when an
alternative an alternative will be specified. It is these factors that will influence the
dependability attributes of the proposed alternative.

The process ends with the participants determining whether the identified factors, along
with the factor instances, can sufficiently help support the goal. A thorough analysis

194

Chapter 6 -Evolution andArchitecture ofDependability Cases

and justification for having addressed the goal adequately is not required. Completion

of the stage (for each goal) is a subjective decision of the participants, based on whether

the brainstorming activity suggesting factors as well as elaborating on their use, has

been effective enough.

6.4.3.2 Goal-wide Examination of Factor Instances Stage

During the first stage of FANDA factor instances are proposed driven by identification

of a factor that can (positively) contribute in achieving the goal. Factor instances will

not have a positive impact on all goals and may affect certain goals in a negative

manner (black hat mentality). This part of FANDA involves examining a factor

instance with respect to the rest of the goals, also identifying negative impact. The main

reason for which examination of possible negative does not take place during the
instantiation of the factors (first stage of FANDA) is to avoid rejecting a factor instance

on the grounds of negative contribution. A factor instance and the corresponding factor

and approaches should not be rejected before examining how it can contribute to the

overall decision.

Identifying potential negative contribution of a factor instance and collecting the

appropriate evidence, which takes place during this stage is an important activity. The

concept is similar to the requirement of Defence Standard 00-56 [6], which asks for the
identification of possible counter evidence that could have a negative impact on the

creation of a safety case. Fig. 6.6 presents the process for examining the factor instances

with respect to all required goals.

The process begins by selecting a proposed factor instance. Using the appropriate
mindset as described in the six hats methods, participants need to identify whether the
factor instance will have, in their opinion, a negative or positive impact on a goal.
Impact in this case can also be described as neutral. The possibility of neutral impact is

considered during the use of the positive thinking (yellow) hat. This is in accordance to

maintaining an overall positive attitude for the benefit of creativity. Failure to identify
impact on a goal implies insufficient information about the relationship between the
factor instance and the goal. In case the impact is considered to be neutral this should
still be supported by evidence. Lack of evidence does not imply a neutral impact.

195

Chapter 6 -Evolution andArchilecture ofDependability Cues

__C
D

Select a factor Instance
V

I-

F_ Select a goal
I

Can you Identify
negative Impact

on goal? No
(black)

Yes

Can you suggest
es positive or neutral

Impact on goal?
(yellow)

IF

No

Yes
Can you suggest End

magnitude of
impact?
(white)

No

No

Are there any
Document unexaMined

Impact on goal factor Yes
Instances?

Can you Ident fy other
possiblesour sofdats,

regarding the factor Discard Factor

Yes instance and goal? 0
Instance

(White)

Fig. 6.6 - Goal - wide Examination of Factor Instances

Identifying available sources of evidence that can support a suggestion regarding the

impact of a factor instance is necessary for evaluating of the overall decision.

6.4.3.3 Specification of Decisions Stage

Following completion of the second stage, participants have created an overview of the

factors that affect the required goals, and have created factor instances using the
identified factors. The last stage of FANDA involves composition of factor instances

and proposition of candidate (design) decisions.

196

Chapter 6 -Evolution andArchitecture ofDependability Cases

: Shirt Reezandne, factors and : L)
instancm. (Stage 1)

identiliedf«, «
tanr

1(

End

Can you Identify
goal that you think
could be InWrowd?

(yello%)

Select a goal

Does the decision Can you Identify
contain bctor Impectol's

in, tances associated decision's factor
vAth the goal? Instance on goal?

NO
Exandue factor Instance
with respect to the goal

(Stage 2)

IDiscard clstonj
_- -

t--

Suggestand temporarylack
ari; e about I

Suggestand
argue about

impactougoal
Are there

unexandned
goals?

Fig. 6.7 - Specification of Decisions Process

Fig. 6.7 shows the process of the last stage of FANDA. There are no specific guidelines

as to how the decisions should be made. De Bono suggests that by identifying,

understanding and discussing the impact of each factor instance on each goal, a

grationale map' is built that contributes in enhancing the perception of the problem.
Following proposal of a decision participants investigate whether there are associated
factor instances belonging to the decision with the goals. By examining the associations
between factor instances and goals already dcfined during the previous steps of FANDA

can identify the impact of the decision on the goals. There is the possibility that the

proposed decision does not have any factor instances associated with one of the goals.
In this occasion participants should identify sources of evidence that can help establish
the association. In order to do this, the impact of the decision's factor instances should
be assessed using the steps of stage 2. Failure to identify impact of decision on a goal

197

Chapter 6- Evolution andArchitecture ofDependability Cases

implies inconclusive sources of evidence that will later support the argument and hence

are discarded.

6.4.4 Availability of Evidence during the System Lifecycle

With FANDA participants specify factor instances and decisions, and dcfinc their

association with the system goals. During FANDA, participants enter an incremental

process of establishing a collection of 'micro-argumcnts' (although not captured in GSN

as with the main dependability argument) about the association of factors, factor

instances and decisions with the goals. Evidence supporting these micro-arguments arc

an essential aspect of the FANDA process. However, availability of evidence varies

according to stage of the system lifecyclc. At the early stages of the lifecycle,

availability of evidence is more limited compared to later stages. Booch [99] suggests
that defining an architecture requires "... suboptimal decisions madepartly in the dark".

Initially the claims in FANDA may be supported by beliefs (e. g. based on previous

experience or common practice), which need to be verified by evidence as the
development of the system progresses. Apart from identifying available information, it

is essential during FANDA to think about evidence collection required to support
decisions made at an earlier stage of the lifecycle based on beliefs or limited evidence.

6.5 Architecting the Dependability Case
At the end of its development, dependability case will combine claims regarding a

number of perspectives of the system development such as the trade-offs, the product
and the process. Consequently there will be differences in the arguments supporting
these claims. Techniques such as modularising arguments in GSN, allow the overall
dependability case to be represented as a series of interrelated modularised arguments.
According to how the links between the arguments are defined the overall case can
result in different layouts (architecture). This section defines a possible dependability

case architecture. There are three main concepts are which have been used by the

author to structure the dependability case:

* Use of a high level dependability argument

* Use of the dependability profile to structure the supporting arguments

198

Chapter6 Evolution and Architecture q/ Depcndabilitv Cases

e Use of GSN contracts to compose the overall dependability case

The following sections describe how these concepts contribute to the proposed
dependability case architecture.

6.5.1 High Level Dependability Argument

A dependability case communicates assurance that the system will provide acceptable

operation with respect to the stakeholders' envisioned dependability requirements. The

overall dependability argument constitutes a description of the stakeholder's
dependability goals. By constructing the high level dependability argurnent,

stakeholders determine the dependability attributes of interest For the system, their

respective requirements and associated acceptability criteria (i. e. the bounds of tile

goal), which are elicited during DDA. The high level argument predominantly captures

the requirements of the system in context of its envisioned operation.

One of the advantages of using modular GSN is the achievement of separation of'

concems between the argument modules. Fig. 6.9 shows application of modular GSN to

separate high level dependability argument from other supporting modules.

High level depenthibilitil argument clainis
ichieventent ofelepen(kibilitV characteristics with

t-(,, v)ect to the stakeholders'inferests

Partitioning is nol arbilrarilYspec4lied. Rationale
for the creation ofthe supporting wgument mo(hi/es.

JIrguments

supporting
the high level

dependabilitv claim

Fig. 6.8 - High Level Dependability Argument and Support Modules

The focus of the high level dependability argument is on the high level dependability

requirements of interest to the system stakeholders, which also define the system's high
level envisioned operation.

199

Chapter 6 -Evolution andArchitecture ofDependability Cases

Supporting modules provide the arguments for achievement of the requirements
identified in the high level dependability argument. Partitioning of the dependability

case cannot be arbitrarily specified. The rationale for a particular way of partitioning

the dependability case needs to identified, examining the (logical) relationship between

the high level argument and the arguments supporting it. A possible way to architecting

the dependability case is to use the high level dependability argument as a means for

separating individual arguments regarding the dependability attributes. Fig. 6.9 shows

the basic structure of the resulting dependability case using a high level dependability

argument. The high level dependability argument (called dependability specification

argument in this example) is used to identify the required system dependable operation.
Following identification of the goals of dependable operation, each of the attributes is

supported by separate arguments focusing on arguments pertinent to that attribute
(Table. 3.1).

Dependability
Specification Argument

saftty Securiti
P-; Argument Argument

Ij

Trade-off
Argument

Fig. 6.9 - Case Partitioning Based on Attributes

The argument modules concerning the dependability attributes are stated in the context

of a module arguing about the conflicts and trade-offs between the attributes. Although

this architecture for a dependability case is appealing there are certain problems that

make its use difficult for communicating a clear argument about the achievement of the

required dependability properties.

200

Chapter 6 -Evolution andArchilecture ofDependahility Cases

As demonstrated in chapter 4, there are associations between dependability attributes

which during DDA are captured as 'can cause' relationships between failures. This

dependency is carried through to the respective goals that were elicited during DDA.

For example, consider a safety goal for the AGO scenario, claiming achievement of

satisfactory safety (loss of life) where this has been identified as being a system concern
during application of DDA. During DDA the consequences of failure condition
'Artillery will receive the wrong location' (FC6) were associated with the safety

concern. Correspondingly, the claim about achievement of safety will depend on

achievement of reliability in those system elements that participate in transmitting

target data. Hence, a requirement stated from the perspective of one attribute may be

supported by claims stated from the perspectives of other dependability attributes.
Making many cross-references between the argument modules as shown in Fig. 6.9 will

result in a case that is difficult to comprehend and review. An alternative, more viable,

approach to structuring the architecture of a dependability case is presented in section
6.5.3.

Establishing any high level dependability argument will entail the following aspects:

9 Top level claim: The overall claim that the dependability case communicates.

* Attributes of Interest: Goals defining the required (high level) operation of the

system regarding the dependability attributes of interest to the system

stakeholders.

Relation to DDA analysis: identification of how DDA can be used to identify the

stakeholders' concerns and how these can be supported using the products of
DDA.

The individual aspects of the high level argument (i. e. the arguments contained within
the high level dependability argument module) are described in the following sections.

6.5.1.1 Top Claim

Dependability Deviation Analysis, as described in chapter 2, provides a framework for
thinking about how each attribute can affect the operation of the system. Establishing

201

Chapter 6- Evolution andArchitecture ofDependability Cases

the dependability claims that the system will need to satisfy are determined during the
first stages of the DDA.

TopClalm TopCIaImC1

(System X) (System)0 Is appropriately
dependable for its operational
operation. objectives.

Fig. 6.10 - Top Claim In Context of the System's Operation

The top claim (Fig. 6.10) of the dependability case represents the overall claim regarding
the envisioned operation of the system. Correspondingly, the goal is stated in the

context of the objectives of the operation of the system. The top level claim is the

starting point of the argument. In the initial stages of dependability case development

references to dependability attributes cannot be meaningfully established. Hence at this

stage, identifying the operational objectives of the system can provide the necessary
background for decomposition of the top level claim, in which dependability attributes

can meaningfully relate to the stakeholders' interests.

6.5.1.2 Argument from the Perspective of Dependability Attributes

Identifying the attributes of interest entails stakeholders examining the operational
objectives (captured in context TopCIaimC]) from the perspective of each dependability

attribute. Definition of the system objectives is one of the initial stages of the DDA

process.

During DDA typical issues pertinent to the dependability attribute under which the

system objectives are examined can reveal the primary concerns for the system
stakeholders. A concern is an issue that can credibly affect the system objectives and
hence the overall acceptable operation of the system.

202

Chapter 6- Evolution andArchitecture ofDependability Cases

TopClalm TopCIaImC1

(System X) Is appropriately --'-->C(Systermr X) concept
of dependable for its
of ope of operations operation.

TopClaimS
Argument over DepAttr

envisioned operation) Ds of A ibutes of
w. r. t. Identified Interest
attributes of Interest

n= no. of attributes

DepAftr

Appropriate operation with
respect to dependability
(attribute D) has been
achieved

t DepAttrS Ids ntified Concerns

Argument over Identified DDA stage
system objectives' 'Identification of
concerns concerns'

Fig. 6.11 -Attributes of Interest In the High Level Module

Fig. 6.11 illustrates how the top level goal can be decomposed to capture the attributes

of interest to the stakeholders. TopClaimS is the strategy based on which the top goal is

substantiated, requiring identification of the attributes of interest to the stakeholders that

will contribute to achieving dependable operation. The strategy is solved by goal

DepAttr which is instantiated for each identified dependability attribute of interest and

claims acceptable achievement of that attribute. The strategy (DepAttrS) for solving

goal DepAttr is to argue over the concerns (identified during DDA) that may

compromise the attribute of interest. Use of concerns and DDA to support goal DepAttr

is discussed in the following section.

6.5.1.3 Arguing Acceptable Operation Regarding Dependability

Concerns

Development of the goals referring to the attributes of interest is achieved in

substantiating goals addressing the stakeholders' concerns. Analysis of the system
during the Dependability Deviation Analysis identifies how deviating from normal

operation with respect to an attribute can compromise the operation of the system. Goal
DepAttr is substantiated by arguing over the concerns identified by the stakeholders
during DDA. Fig. 6.12 presents the resulting argument.

203

Chapter 6- Evolution andArchitecture ofDependability Cases

Goal ConcAttr supports strategy DepAttrS by claiming that the concerns that may
compromise the attributes of interest have been addressed. DDA provides the necessary
information for claims ConcEffect and DepConc0p, supporting the ConcAttr goal
which was identified earlier. ConcEffect claims identification and understanding of the

concern's effect on the system operation. This takes place during the initial stages of
DDA, in which the top level objectives are examined. DepConcOp argues that the
operation of the system with respect to the concern is acceptable. DepConcOp is

defined in context of the elicited target and limit, which define the bounds of

acceptability. Also, DepConcOp is stated in the context of the claim that the bounds of

acceptability have been justified. This claim is associated with the argument produced
by TOM stage one, which captures the rationale behind the determination of limits.

'UUM,

DepAttrS ldentiffedConcems 1Aj

3nt o ntified DDA ; tage
5) stem obj= 'Identification of

concarnsý Concerns

j

High level argument
no. of concems argues over all

ConcAttr
identified concerns

(Concern C) relating to the
envisioned operation has
been Identfied and
addressed

(ConcAttrS

Argument over identifying
the effects and addressing
causes of the concerns

ConcEffect

(Concern C) can
compromise (system)()
envisioned operation

DepConcOp

(Concern Qs been
acceptabty addressed SoUndsClalrn_13oundsAr Away context argument

justifying the bounds. Lnds

have been Jusfified The argument is product
El: l BoundsArg

I

oj TOM

DepConcOpT Target elicited I
during the last

(Target T)
>"

stage of DDA

DepConcOpt. Limit elicited
I

during thefirst (Umft Q
- stage of TOM

ConcEffect

DIDA High
Level

Objectives'
Analysis

(ConcSDDA-B

Argument over
Identificaiton of
contributing factors

co

ConcSDDACI j

Identified contndbuting
oncem cam factors to (Concem

QI nrc DA

Failure condition map in
Dependability Deviation

Analysis (DDA)
Rationale in

identification of
concerns.

Fig. 6.12 - Arguing About the Concerns

204

Chapter 6- Evolution andArchitecture ofDependability Cases

Further development of the argument requires identifying how a single failure

condition or combination of failure conditions, can result in concerns that will

compromise the dependable operation of the system (strategy ConcSDDA
-

B). This is

stated in the context of the failure conditions map identified during DDA

(ConcSDDACI), which provides a 'causal picture' of which failure conditions can

result in a concern. Understanding the failure conditions that can cause the concern

being argued allows further decomposition of the argument under strategy

ConcSDDA_B. As explained there are interrelations between failure conditions which

were depicted using the failure maps. Use of case studies by the author indicated that it

is difficult to decompose ConcSDDA
-B

with goals relating to each of the failure

conditions that may cause the concern; this would result in circular references and a

great number of associations between goals, which would make the dependability case

difficult to manage. The use of the dependability profile is used in this research as a

means of structuring the dependability case.

6.5.2 Dependability Profiles Supporting the High Level
Dependability Argument

The high level dependability argument's objective is to capture and argue about the

overall required operation of the system. Hence, the high level dependability argument

primarily focuses on the overall system requirements stated in context of the envisioned

operation. However arguments claiming satisfaction of the high level requirements

needs to be developed in context of a particular system design. The dependability

profile is a concept introduced to facilitate traceability between the high level

dependability argument module and argument modules developed in the context of the

system. The dependability profile is created during Dependability Deviation Analysis
(DDA) and describes acceptable behaviour of system elements that are modelled (in the

modelling framework that has been selected) with respect to various dependability

attributes. Each profile is a collation of requirements elicited from the perspective of
each attribute of interest, regarding a particular system element.

As described the strategy to argue over contributing factors ConcSDDA
-B

(Fig. 6.12)
introduces certain problems in the design, resulting in a complicated and difficult to
manage dependability case. However, information such as the effects and consequences
of the various failure conditions does not need to be part of the argument, but

205

Chapter 6 -- Evolution andArchifecture of'Dependahilin, Cases

constitutes the context in which the argument is created. An alternative (to

ConcSDDA B) strategy (recommended by this thesis) would be to argue over

achievement of requirements that were elicited in the context of the identified failure

conditions. This way instead of supporting a goal about a concern (goal DepConc-0p)

by arguing over the failure conditions, the argument will be made by claiming

achievement of the requirements that were elicited given the identified failures. For

example, in the case of the AGO (discussed in §6.5.1) claiming achievement of a safety

concern would need an argument over the reliability levels of the target data provision
function.

Fig. 6.13 illustrates a refactored high level dependability argurnent, substituting strategy
ConcSDDA_B with a strategy (DepConc-OpS) supported by an argument based upon

satisfaction of the dependability profiles of the system elements. This is the approach
favoured by this thesis.

m= no. of concerns

ConcAftr

(Concerri C) relating to the
erimsioned operation has
been identified and
adcreýed

ArCcincA
Strategy 1br evolving

gu 170, or dentifyi DepConcOpT -fs
Jme

S.
W7rig

t. effe . nd
:,! = the argument rellec

causes s 'dependahiliti,
(Target T) usc of

Proliks

ConcEffect DepConcOp

(Concem C) can (C h b

DepConcOpL

(Limit L)
1-1

00, oncem Q as een cornpromise (system X)
envisioned operation acceptably addressed BoundsCialm-Boundsk

I--9-
-le

Bounds havpken justified

CaincEffec

Ej:], ýIbund. Avg

DDA High Depconcops
Level CcmcSDDAC1

to Ckjectves' Argument by appeal
adh: r= a A, natysis nee of rel=ted system

P
ru m Identified contributing

I

D

elements to the L

C

wn factors to ýConcom
C DDA

Yfile dpee blity profile rid refill
j, n

N.

Fig. 6.13 - Strategy by Appeal to the Dependability Profile

206

Chapter 6- Evolution and Architecture of Dependability Cases

In order to create a clear and manageable case, the dependability profiles associated

with the concern are not directly associated with DepConcOpS since this would result in

separate arguments for each concern of each attribute of interest. Instead, the arguments

referring to the dependability profiles are contained in separate modules, which support
the high level argument. Linking argument modules requires recording the interfaces

between the arguments in an understandable manner, maintaining traceability and

clarity of the argument. GSN contracts are employed to compose the dependability case

out the identified individual arguments.

6.5.3 Use of GSN Contracts to Structure the Dependability Case

Using GSN, a case can be partitioned into modules, each of which constitutes an

individual argument. The overall case is defined by aggregating and documenting the

relationships between the participating modules [100]. Fig. 6.14 shows how contracts

can be used to structure a case. The top level module contains the overall claims about
the system.

Two GSN goals ol'the
argument (orange & blue) are
supported by arguments in
other modules. Ae goals are
solved by contract

GSN contrat ts are a type
GSN contracts document the q1'argument themselves,

being able not only interfaces between the
modules providing support document but argue about
and the module o 'the parent the decomposition

goal.
Loý

/'

Some ofthe goals in certain argument (GSN)
modules can support goals in other modules. The
visibility ofa goal, supporting a parent goal in a
different module solved by contract needs to be set to
public. The supporting goal does not have to be the
top level goal ofthe module. 7his gives flexibility in
structuring the case. Some goals may provide support
to more than one line oj'argument

I! -

Fig. 6.14 - Use of GSN Contracts in Structuring a Case

207

Chapter 6 -Evolution andArchitecture ofDependability Cases

For example, overall claims about the achieved safety levels of the system (safety), or
the dependability behaviour of the system (dependability case). Development of the

argument contained in the top level module can result into goals that are supported by

arguments in other modules (orange and blue goals).

The two goals are 'developed by contract', which captures the association of the parent
goal with the modules supporting it. Contrary to 'away goals', a goal developed by

contract does not necessarily have to be associated with the top goal of an argument

module, but it can be supported by any public goal in the module (a public goal in GSN

is a goal visible outside its container module). Moreover goals within an argument

module can provide support to more than one contract; in Fig. 6.14 the bottom module

provides support to two contracts. Use of GSN contracts provides the following

benefits:

High Cohesion: Modules focus on particular aspects of the system-case
development.

Low Coupling: Relations between the modules are captured at the module level.

* Documented Interfaces: The interfaces of the modules are captured and

explained.

Information hiding: Only public goals are visible to other modules. Particularly

useful for security policies between development teams, constraining free access

to all modules.

Use of contracts provides flexibility in structuring a case that cannot be achieved with
the use of 'hard-wired' away goals and contexts. A contract is not merely a collation of
the interfaces between the modules; instead they are arguments themselves, providing
an argument about the way in which the parent module is decomposed. In the context
of the dependability case, contracts are employed to structure the dependability case
capturing the interfaces between the modules, and arguing about how the arguments

208

Chapter 6 -Evolution andArchitecture ofDependability Cases

regarding the achievement of the dependability profiles can support the dependability

goals of the high level dependability argument. Fig. 6.15 presents the resulting

architecture of the dependability case, proposed in this thesis, using contracts in

modular GSN.

In this thesis, we structure the dependability case of a system based on the models that

represent it (the system). In particular we align the dependability case with MODAF

products. In general, defence architectural frameworks are optimised to Systems of
Systems (SoS). As discussed in chapters 2 and 4, the MoD and DoD specification do

not provide a definite way for developing the products. However, the DoD deskbook

provides guidelines for a data-centric approach, called the activity Based Methodology

(ABM) [23] presents the sequence in which the products are constructed following the

ABM.

ABM is used to maintain consistency between the DAF products, creating integrated

architectures by adding detail to existing models, the elements of which can be mapped

onto the new models. An important aspect of the ABM methodology is that during the

evolution of the system, the developers follow a set of well specified steps incorporating

traceability during development of the models. Addition of detail in each step, results
to the evolution of the overall system by defining new models. DAF models using the

ABM, define a hierarchy that can be used to trace dependability considerations from the

high level concept of operations (CONOPS), to individual systems and functions that

constitute the operation of the system.

The dependability case architecture proposed in thesis is organised around the hierarchy

presented in Fig. B. 2. Fig. 6.15 illustrates the resulting architecture of the dependability

case employing GSN contracts for its composition. The case consists of four different

types of argument modules:

* High level dependability argument: High level dependability argument:

Argument about the satisfaction of the high level dependability requirements, of

primary interest to the system stakeholder.

209

Chapter 6 -Evolution andArchitecture ofDependability Cases

* Operational view product arguments: Arguments about the satisfaction of
dependability requirements of each operational level product. These

requirements are derived according to how the operation of the SoS may affect
the dependability attributes of interest to the stakeholders.

System view product arguments: Arguments about the satisfaction of W-
dependability requirements of each system level product. These requirements are
derived according to how the systems may affect the operation of the SoS.

Trade-off arguments: The trade-off arguments, product of TOM, constitute

context to the dependability case, providing an argument that the selected

altemative is the most suitable.

Dependability goals stated in the
context of hounds (elicited in
TOAV. The goals are analysed in
FANDA identifyingfactors.
Proposed decisions are provided
to TOM

The contract mL. Ies are
defined in the contert of the
decision based on which the
respective MODAF views were
created. Analysing the resulting
modelsfrom the decision in
DDA the systems that can
contribute in manifesting a
concerns are identified and
theirprofile is created. The
contract captures these
associations between the goals
of the parent module and the
goals that support it.

Fig. 6.15 - MODAF Centric Dependability Case Architecture

Arguments
about
operational
view OV
productproftles

210

Chapter 6 -Evolution andArchitecture ofDependability Cases

The high level dependability focuses on the dependability requirements of the system

stakeholders. The leaf goals of the module are stated in the context of bounds and their
justification argument. Justification of the bounds is a part of the trade-off method

argument. Using GSN contracts the leaf goals of the high level argument are supported
by arguments regarding the dependability profiles of each of the (MODAF) operational

view products, which in their turn are supported by arguments about the dependability

profiles of each of the systems view products.

6.5.3.1 Refactoring the High Level Argument to Use Contracts

As illustrated in Fig. 6.13 the strategy followed in the high level dependability argument

was to argue over addressing the concerns that were identified (during DDA) to be able
to compromise the envisioned operation of the system. Fig. 6.16 shows the leaf goals of

the high level argument refactored to reflect the use of contracts.

ConcAttrS

I
Argument over Identifying DepConcOPT

ams Targ tT

the effects and addressing/

DOPC oncopt.

causes of the concerns

ConcEffect
DepConcOp 11.1mit L)

fConcern Q can
compromise (system X) (Concern Q has been B-- undeClalm-BoundeAr
envisioned operation acceptably addressed

I

Fo
Bounds have been justified

ConcEffect

DDA High
Level

Objectives'
Analysis

Fig. 6.16 - High Level Argument Using GSN Contracts

Using the GSN contracts the high level argument focuses purely on addressing the

overall dependability goals of the stakeholders, as identified by the DDA. Details of
how the case is structured are now not a part of the high level argument. In Fig. 6.13 the
DepConcOp was substantiated using a strategy to argue over adherence to the

appropriate dependability profiles (DepConcOpS). The strategy was stated in the

context ConcsDDACI which references the product of the DDA that shows the
dependability profiles related to a particular concern (i. e. failures map).

211

Chapter 6 -Evolution andArchitecture ofDependability Cases

Information regarding how the dependability case modules support the instances of goal
DepConcOp is now part of the contract module. Fig. 6.17 illustrates how the developed

by contract goals (DepConc0p) are associated with their respective contract
(DepConcOpContract).

(ConcAttrS

Argument over Identifying
the effects and addressing
causes of the concerns

ConcEffect

(Concern C) can
compromise (system X)
envisioned operation

DepConcOp

(Concern C1 has been
acceptably addressed

ConcEffect

DDA High
Level

Objectives'
Analysis

(Concern Q support
contract

DepConcOpT

(Target T)

(Im

DapConcOpL

Umit L)

BoundsCialm-BoundsAr
9

Bounds have been justified

Fig. 6.17 - High Level Argument Linking to GSN Contract

6.5.3.2 Contract Module Supporting the High Level Argument

Using modular GSN and in particular GSN contracts, information regarding the

partitioning of the dependability case is not part of the high level dependability

argument. As described a contract is an argument module itself, which can capture the

rationale and justification for the particular dependability case layout.

Fig. 6.18 illustrates a pattern for contract modules representing the approach adopted in

this thesis. DepConcOp_. HighLevelArgument is the goal in the contract module that

corresponds to the (leaf) 'developed by contract' goal DepConcOp in the high level
dependability argument.

The goal is substantiated by strategy DepConcContrS. The strategy states that the

argument will be developed, by arguing over meeting the requirements dcfined in the

profile of the system elements, which have been identified as contributing to concern C.

212

Chapfer6 Evolution and Architecture q/ Dependabilav Cases

i

(Concern C) has been acceptably
addressed

I

F1--i High Level Argument I

Depeclable operation of
(system element sel directly
affects (concern C) based on
conclusions from the DDA

<: J-- - --

Argument is satisfied by
decomposition over the
profiles of the elements
relating to (concern C)

DepConcOp-High Level
Argument

t DepConcContrS

Argument by adherence to
dependability profile of
system elements relating to
fconcern C)

1.. n

ConcSupport-Module m

i
(Dependability Requirement DR) in
(Dependability Profile DP) for (System
Element SE) has been acceptably met

Module m

Fig. 6.18 - Dependability Case Contract

Inherited Context
(All inherited context for
Goal Requiring Support

in (High Level
Argument))

(High L. -I Aqu.. rl)

rchContext

-tu e Archte, r (design)
(Decision D)

TradeOff

jDecision D) is most sui(able
decision among alternatives

FL-1 TradeoffArg

Inherited Context
(All 0l

t tr

fl"h tt- 0-1ý , lod. 11 Ill.

Oul, lul. N0 md-
h. -ps ., -W- n
. abalf-W. of th,. 9-1)

En M""" "'. I

The strategy DepConcContrS is stated in the context of the following items:

* DepConcDDA: Refers to the DDA I'ailure map that shows the lailure condi'lliolis

of which system elements can contribute to concern C.

ArchContext: Specifies the design decision which resulted in tile definitioll of

the model elements that were analysed in DDA, rcSLIltIIIg III tile I'alkire Mill)

referenced from DepConcDDA.

TradeOfj'- This is a reference to the argument resulted from TOM Justifying Illat

the architectural (or design) decision stated in ArchContext is the most stiltabic

among the candidate alternatives.

0 Conc-DecompJust: Explains how concerns are related with the system clenicnts

based on the results of the DDA.

213

Chapter 6- Evolution andArchilecture ofDependability Cases

9 DecompJust: Explains how the leaf goals of the contract module will be

associated with goals in other modules.

A characteristic of GSN contracts is that the goals that are referenced in other argument

modules (i. e. the top and leaf goals of the contract module), inherit the context of the

parent goals in the module in which they belong.

6.5.3.3 Supporting Modules

With regard to MODAF, as presented in Fig. 6.15 each of the supporting arguments

serves as 'wrapper' argument about the profile of a MODAF product. The modules

support the higher level goals based on the results of the DDA analysis, justified in the

contract module.

Fig. 6.19 shows the pattern of a supporting module. The top level goal of the argument
MODAFProdProf claims that the profiles of the system elements related to the product
have been met. The goal is decomposed to goals regarding each dependability

requirement of each system element associated with the MODAF product. The goals

resulting from this decomposition (RQSEMet) are the public goals referenced from the

contract.

214

Chapler6 Evoltiliontin(lAr(-hilt, t-itirt, olDel)ett(hibiliti, (', Lves

MODAFProdProf

Dependability profiles
related to (Product P) has
been acceptably met

I MODAFProdProf

Argument over profile of
(System Ellements SE)
in (Product P)

MODAFproducls

t,. g. OV2, OV5

n=no. of SE in P

Acceptable behaviour is determined by ab e beh I I. s ou
SEProf

he (Dependabil tv Req the (Dependability Requirement DR) ty (System Element SE) has
and the (Dependability Requirement I the {)ependabilty

acceptably met its

j

:L
whi t tL DRL) ch are Urnt DRL), which are part of the (Dependability Profilej I bit tv Profile (Dependability Profile Dfý for the = m

m Ele
:
ant SE) [Sys

SEProfS liý

Ar gument over satisfying

[

e th r the requirements specified/
th4 in the (Dependbaility ý
of

zfile
DP)

n-vF-no. of FROs in SE profile
QSEMetA

ýCISEMO

RQSEWI: describes the

(

intent of the requirement (Dependability Requirement u
specified by the target and DR) has been acoceptably
limit pair met

ý- ----
-%

ý. ----.
.0

-

Goals re/erenced bv the
RQSEMeti QS Iii

contracts supporting the
Argurnent over identified failure
oond tJon

SC :: 7

'develop ýv contract'
s i s compromising A 1` res behaviour of (System Bement

goals in the high level I SE) with respect to (Dependablity
R 0 Requirement DR)

dependability argument -

Identyk-ation qfthefifilure Goiltv developed hY
conditions that are

FCAddrs
conti-aci. The goals are

associated with the (Failure Condition FC) stipporled bY goids in the
dependabiliýv requirements has been addressed N* vsteni view Ivvc/

hased on the DCIV. L:! Q i, rguincw Inodides

Fig. 6.19 - MODAF Product Arguments

The argument is further developed in the context of the DDA analysis, according to

which the failure conditions of other system elements can compromise the requirement

claimed by RQSEMet. Addressing the identified failure conditions (goal FC. 4thh-s)

requires references to other modules, which are implemented using contracts.

215

Chapter 6- Evolution and Architecture of Dependability Cases

6.6 Summary
This chapter has defined FANDA, a method for capturing design rationale and
brainstorming design alternatives. In addition the chapter describes how the proposed

methods collaborate to create a dependability case. A dependability case architecture is

proposed defining how the overall dependability argument can be structured using
modular GSN and contracts. Use of dependability profiles allows structuring the case
around MODAF products. Finally, the chapter presents how the information collected
using DDA and TOM are related to the dependability argument.

216

Chapter 6 -Evolution andArchitecture ofDependability Cases

Intentionally Blank

217

Chapter 7 -Evaluation

Chapter 7

Evaluation

This chapter describes the means by which the work presented in thesis was evaluated

against the thesis proposition, throughout the duration of the research. The thesis

proposition was stated in the following terms:

"This thesis demonstrates that it is feasible to establish a structured approach to

evolving and presenting a dependability case for Systems of Systems through a

unified approach to eliciting flexible dependability requirements, facilitating

resolution of trade-offs between competing objectives, and combining and managing

these activities using structured argumentation. "

As discussed in Chapter 1, the proposition implies the following challenges:

" Understanding relationships between dependability requirements

" Analysis of the design from the viewpoints of the dependability attributes

" Elicitation of acceptable dependability requirements

" Design rationale and identification of resultant trade-offs

" Management and facilitation of trade-offs

" Evolution of case in parallel to the design

" Composition and architecture of the dependability case

" Traceability between all the levels of the dependability case

The challenges are addressed by three distinct strands within the research, namely:

" Dependability requirements elicitation using deviation analysis, described in

Chapter 3

" Argument-based resolution and management of trade-offs, described in Chapter

4

" Dependability case evolution and architecture, described in Chapter 5

218

Chapter 7 -Evaluation

The evaluation of the proposition was focused on examining the application of the

framework with respect to the following concerns:

1. Feasibility of the proposition - examining the resulting dependability case

structure after application of the methodologies

2. Benefit in applying the methodologies in order to address the challenges
inherent in the proposition

7.1 Means of Evaluation

Various means of evaluation were employed during the different stages of the research.
These included the following:

" Use of simple examples and anti-examples

" Peer review

" Formalisation and tool support

" Case studies

7.1.1 Examples

Examples were the simplest means of evaluating the concepts of the thesis. They were

a means of quickly testing newly introduced concepts within the framework. Initial

acceptance or rejection of concept was based on proof of concept (using an example) or
identification of an 'anti-example' demonstrating inefficiency of the concept. Larger

scale evaluation was also required for evaluation of the overall resultant framework.

7.1.2 Peer Review

Design and proposal of a framework is an inherently difficult subject to evaluate, since
it is typically infeasible to obtain a statistically significant sample of case studies.
Furthermore, the domain of application of the research is characteristically conservative

219

Chapter 7- Evaluation

in adopting and evaluating new methodologies. For these reasons, the need for

evaluation by means of peer review was highlighted at an early stage of the research.
The author used all available opportunities for peer review from highly experienced

persons who were professionals in domains related to high integrity systems and

requirements engineering. Having been based extensively on the concept of safety

cases, the input of experiences and practices from reviewers related to the domain had a

significant impact on the evolution of the work. Reviews included comments on the

feasibility of the methodologies, as well as the potential bcncflt gained through

application of the framework. Description of the dependability case framework was

communicated using examples and worked through case studies.

7.1.2.1 Peer Review through Publications

Most of the material in this thesis has been presented in international conferences and
workshops. Safety and requirements engineering conferences were targeted with the

aim to subject the research to opinions from professionals in as closely related domains

as possible. In general there was positive feedback relating to the work. Although this
is the weakest form of peer review, positive feedback was consistently received during

different conferences, giving an indication of acceptance of the work. An exception in

which the work was subjected to more scrutiny was the presentation of a paper in the
24th International System Safety Conference. The paper, describing FANDA and TOM

and their use in the dependability case framework, received the best paper award after
being evaluated by a panel of professionals and academics affiliated to the System
Safety Society. Although the methodologies were not investigated by the panel in depth
it was considered a vote of confidence regarding the benefit from potential application
of the methodologies. Furthermore, the overall framework was presented at the I't
Object Management Group (OMG) Workshop on Software Assurance Cases -a
workshop with the declared aim of standardising the structure and presentation of
assurance cases. The metamodel presented in this thesis addresses some of the issues
identified by the workshop panel. Finally, some of the work has been cited in a number
of papers [101], [102], [103]; most notably, is the reference of all the methodologies
that constitute the dependability case framework, in a report issued by the US homeland

security regarding good practice in software assurance [104].

220

Chapter 7- Evaluation

7.1.2.2 Peer Review within the HIRTS Defence and Aerospace

Research Partnership

This research is carried out under the High Integrity Real Time Systems Defence and
Aerospace Research Partnership (HIRTS DARP), funded by the MoD, DTI and
EPSRC. The members of the HIRTS DARP are BAE SYSTEMS, Rolls-Royce p1c,
QinetiQ and the University of York.

As part of the partnership the results of the research was frequently presented to the
industrial partners during two types of events; quarterly working group meetings and
yearly DARP workshops. The former type of event consisted of persons with particular
interest and experience to the strand of research regarding dependability cases and SoS.
The latter involved a broader audience interested in the work, not limited to the DARP

industrial partners.

Quarterly working group meetings constituted a very effective means of evaluation and

provision of feedback. The meetings included review of examples and case studies, and

presentation of the methodologies and their underlying theories. Discussions triggered
by the presentations were held throughout the meetings, examining the qualities of the

methodologies as well as their feasibility and potential benefit. Experience and close

relationship of participants to the subject, as well as in depth discussions made the
DARP working group meetings a strong means of evaluation. Feedback collected in the

meetings significantly influenced the work.

DARP workshops provided an opportunity to present the work to a broader audience
interested in the topic. Compared to the working group meetings, DARP workshops did

not provide as much substantial feedback. The dependability case framework and its

associated methodologies were not examined in the same detail. In general the work
received positive feedback and some comments were further discussed during the

working group meetings.

7.1.2.3 Peer Review during Case Studies

This type of peer review encompasses discussions taking place prior and during

application of case studies, in order to familiarise persons related to the case studies

221

Chapter 7 -Evaluation

with the framework. This form of evaluation was useful in gaining the experience of

those other than the thesis author in their first-hand application of the methods. In brief,

the majority of the received comments reflected recognition of benefit from the

application of the methods.

7.1.3 Formalisation of the Framework and Tool Support

Formalisation of the dependability case framework involved creating a metamodel that

captured concepts and interrelationships required to support the proposed methods.
Further support was provided to the metamodel with scripts that performed a range of
functions: These included functions to perform validation of instances of the

metamodel, production of graphs, as well as automatic labelling and creation of objects

where applicable. Although there is not a properly developed tool encompassing the

dependability case framework, the eclipse model editor and the scripts written provide

some fundamental computer aided support for someone wishing to create a
dependability case based on the proposed framework.

The metamodel classes and their related attributes define the essential concepts of
dependability cases. Associations between the metamodel classes help understand the

relationships betweep the methods described in the thesis. Definition of a metamodel

requires a high degree of rigour. Existence of a rigorous metamodel that captures the

concepts of the assurance cases domain can deliver a number of benefits. Most

importantly, it offers a common vocabulary and consensus on the concepts.
Furthermore, satisfactory use of the scripts offers some evidence of the correctness,

coherence, sufficiency and detail in the implementation of the metamodel.

7.1.4 Case Studies

Evaluation by means of application on case studies was necessary in order to evaluate

the research framework. The methodologies were applied to three case studies:

1. The Anti-Guerrilla Operations (, AGO scenario (presented in appendix B). This

is a fictional fully developed case study created by the author for the purposes of
the research. Although fictitious, the case study was considered to be realistic

222

Chapter 7 -Evaluation

enough for its use. This claim was also supported by the DARP partners as well

as by feedback received during DARP workshops. It was substantially based on
input from industry, as well as examples widely available from sources such as

the US Department of Defence. The AGO case study was the main case study

used to communicate the results of the research for peer review during working

group meetings and workshops.

2. Network Centric War are WCM case study. The second case study was L

provided by BAE Systems, one of the DARP partners. Due to the sensitive

nature of the case study, details of the underlying scenario, models and results
cannot be revealed. The NCW case study was defined in the spirit of a typical
NCW example, and has very similar qualities with the AGO scenario.
Application of the methodologies on the NCW case study was particularly

useful. Compared to the AGO example, this was a 'real' example which
demonstrated the readiness of the research to be applied in industry.

Furthermore, the particular case study evaluated the framework in terms of

scalability. Being a real scenario, the case study included numerous platforms

collaborating and exchanging information. Through the course of the case study

revisions of the methods took place.

3. Hig-h Altitude Platfonns Wfs). This is the third case study, developed in

collaboration with the Department of Electronics of the University of York.

Typically, a HAP is an airship or an endurance aircraft capable of flying at an
altitude of around 20km. This is above any current normal aircraft but

significantly below stratospheric satellites. The case study was initiated during

the latter stages of the research. The main motivation was to establish an overall
dependability case about the use of the HAP and the accompanying systems

required for the required scenarios. The methodologies presented in the thesis
have been presented and explained to the HAP stakeholders. The HAP case

study has been a very effective means of supporting the evaluation, because it is

developed in collaboration with individuals with no safety engineering
background. This allowed the author to examine how easily the concepts can be

understood and applied by someone unfamiliar to safety cases -a founding

concept underlying the approach presented in this thesis. The case study offered

223

Chapter 7- Evaluation

evidence for the clarity of the concepts as well as the sufficiency of detail of the

methods. Moreover, the case study offered a platform of evaluation which
demonstrated all the characteristics of a typical System of Systems, whilst being

considerably different to the Network Centric Warfare examples.

7.2 Evaluation of the Contributions

In this section the contributions are examined individually. The discussion that follows

is based on feedback received from the application of the means of evaluation as
described in section 2.

7.2.1 Evaluation of Dependability Deviation Analysis (Chapter
4)

Dependability Deviation Analysis advocates a philosophy of examining potential
deviations from the perspective of each dependability attribute. Furthermore it

introduces the concept of the dependability profile, which is used as a 'stepping stone'
for the specification of acceptable dependability contracts used in the assurance process
(construction of the case). Application of the methodology results in identification of

credible deviations and their resultant failure conditions that can compromise the

stakeholders' objectives, as well as a dependability profile for each of the system model

elements that were analysed. DDA can also be graphically represented in a failures

map which is automatically generated from the metamodel instance.

An important aspect of DDA is the definition of concepts common to all dependability

attributes, namely issues, concerns, failure conditions and system element. The purpose

of these concepts was to provide gencralisations for concepts specific to individual

attributes. Furthermore their associations were defined as part of the mctamodcl. The

representation of the concepts of failure conditions and system elements were swiftly

understood when presented to other individuals as part of working group meetings or
during case studies. Comparatively, the concepts of issues and concerns proved to be

more challenging to explain. These two concepts are more abstract than their equivalent

attribute specific concepts such as security vulnerabilities and security breaches.

224

Chapter 7 -Evaluation

However, upon finiher elaboration, the differences as well as the purpose of each of the

two concepts was recognised. Separation of concerns and issues makes a distinction

between the ultimate interests of the stakeholders regarding overall system operation
(i. e. concerns), and the properties of the system design that could lead to these concerns.

Comments received also suggested the specification of templates of typical issues that

could be defined and reused during the analysis of similar systems. The usefulness of

this was explicitly highlighted during the HAP case study, in which the set of concerns
incorporated communication specific issues.

All three case studies have extensively exercised the DDA method. DDA has proved to
be very efficient in identifying the relationships between failure conditions. Application

of deviations that were optimised to reveal issues particular to one dependability

attribute, - resulted in the wider identification of failure conditions that compromised

other attributes. Identified failure conditions can directly compromise the stakeholders'

concerns, or they can be the cause of another failure condition already been identified.

Comments received through peer review were positive, mostly concentrating on the

usefulness of the failures map to capture and clearly record failures from multiple
dependability viewpoints. Often the failures map revealed associations between

dependability failures that otherwise would have been difficult to conceive.

Dependability profiles capture the specification of behaviour required from a system

element in order for the system as a whole to operate dependably. Dependability

profiles were introduced in the framework as a means of facilitating partitioning of the

argument modules of the dependability case, using GSN contracts. Dependability

profiles can also potentially be used to aggregate specifications that were elicited with
methodologies other than DDA. Finally, the dependability profile helped specifying the
bounds of the goal.

An important characteristic of the DDA method is that it is model independent. DDA

has not been defined for use with a particular modelling framework. Instead, DDA is

applied on, what is described in the metamodel as, system elements. This represents an
entity of the system iffespectively of how it is modelled. In a few cases independence

of the modelling framework was practically shown when transforming some system

225

Chapter 7 -Evaluation

models used in the case studies from one notation to another (e. g. from a MODAF

specific notation to UML), without having to reapply the method.

In conclusion, it is considered that evaluation of the DDA has been successful. The

means of evaluation were applied extensively throughout the research and provided

sufficient evidence. The methodology can offer a valuable perspective on typical issues

regarding the dependability attributes, the concerns of the stakeholders, and how deviant

behaviour of the system can affect the overall dependability of a system in its

operational context.

7.2.2 Evaluation of the Trade-off Methodology (Chapter 5)

The Trade-Off Method (TOM) provides a qualitative approach for managing conflicting

goals and arguing about trade-offs between goals.

One of the significant contributions of TOM is the introduction of the bounds in GSN.

The bounds consist of a target and limit, which constitute the acceptability criteria of

the goal and signify the region in which the goal could be tradcd-off against another.
During the initial stages of the research there was some scepticism about having to

explicitly think about the bounds during the definition of a goal, i. e. before encountering

an actual conflict. However, during the research the benefits of thinking about the

bounds became clear. The worked examples and case studies showed that dcfining the
bounds enables reasoning about the overall acceptable levels of dependability in system

operation. Definition of bounds involves capturing and sharing the rationale of the

requirements between the stakeholders. Moreover, their introduction provided a useful

means for unambiguously separating the core intent of the goals from their acceptability

criteria.

During the definition of TOM, the use of numerical approaches for resolving trade-offs

and in particular AHP was examined for its suitability to handling the trade-offs within

a dependability case. TOM addresses the problems identified in numerical approaches
by means of qualitative reasoning. Participants do not need to a priori prioritise the

goals without considering the operational context of the system. Instead, the goals are
traded according to the impact that a possible compromise will have on the operation of

226

Chapter 7- Evaluation

the system. Willingness to trade-off helps in sharing of vieMMoints and reaching

consensus between the stakeholders of the system. Willingness to trade-off was

recognised in peer review as being both easy to understand and apply. Another quality

of the method that received positive comments is the fact that it does not provide a

definite solution but it deliberately seeks debate and argumentation when selecting an

option. Creation of the GSN arguments provides a clear way of expressing the

motivation for selection of one between two or more competing decisions. Furthermore

it adds traceabilily to the dependability case, as the resultant GSN argument reflects all

the steps of the method.

One concern is scalability. Although TOM has worked acceptably well in the examples

and case studies there is a concern with a major increase of competing objectives and

alternatives. In such situations there may be occasions in which similarities between the

alternatives make conclusion of an optimal decision difficult. Although such a problem

was not encountered there are several suggestions for solving the problem such as
further refinement of the willingness to trade-off categories. Although scalability may

pose a challenge to TOM this is a shared concern for all of the reviewed trade-off

methods. In numerical methods, scores close to each other make it difficult to

appreciate the qualitative differences with respect to the system operation. Having

scalability in mind the author, has written scripts for TOM which process decision

alternatives and their related goals. The script generates a report in which the best

option is identified and a list is produced showing the potential compromise and benefit

from choosing an option other than the one identified as the best alternative.

Overall, TOM provided an alternative means of managing and arguing about trade-offs,
in the context of a dependability case.

7.2.3 Evaluation of the Dependability Case Evolution and
Architecture (Chapter 6)

Chapter 6 presents contributions at three different levels. Firstly, it shows the links

between the methods (DDA, FANDA, TOM and GSN) and how they collaborate in

order to evolve a dependability case in parallel with system design. Secondly, it

presents FANDA, a design rationale method developed to work with TOM. Finally, the

chapter proposes a dependability case architecture.
227

Chapter 7 -Evaluation

FANDA has a dual purpose during the evolution of the dependability case. Firstly it is

used to identify the features (factors) of the design that affect the required dependability

goals. Thereby FANDA highlights the elements of the design on which the developers

should focus. The second use of FANDA is to assist brainstorming, the creation of
design alternatives, and recording design rationale. Identification of design factors and
how they affect the required goals proved to be a useful tool during application of
TOM. Conflicts between design alternatives can be traced to the underlying design

factors that cause them. Furthermore, it provides an early assessment of the impact of
design factors on the goals before committing to an actual decision. FANDA employs
the six hats method which helps participants to manage information related to the
identified factors and to brainstorm, identifying new design alternatives. Furthermore

FANDA can also be used to manage the collection of evidence regarding the evaluation

of the alternative with respect to the dependability goals. FANDA was applied on a

number of examples and it was also applied during case studies. It helped to clearly

reveal the design factors responsible for a goal conflict. This was rccognised during all
forms of peer review and during application of the AGO case study. FANDA helped

the participants in brainstorming alternatives. However, in the other case studies the

system details were already finalised making application of FANDA less effective.
Although the benefit from identifying sensitivity points in the design was clearly

expressed, there was not adequate evidence to suggesting that use of FANDA resulted
in proposing designs alternatives which otherwise would not have been conceived.

The Goal Structuring Notation (GSN) was chosen to capture the core arguments of the
dependability case. GSN proved to be a correct decision in terms of:

9 Previous experience from use in safety cases

* Appeal to peers and ease of use

o Extensibility

From an early stage in the research it was clear that creating a dependability case
combining individual argument modules (using the features of modular GSN) was the

most appropriate route. GSN modules provide a useful means of separating the
dependability case into arguments corresponding to elements within the system

228

Chapter 7- Evaluation

structure. GSN contracts help record how individual modules can be be composed to

satisfy the overall objectives of the dependability case. Furthermore, modules make it

possible to organise the dependability case in terms of the MODAF products. At the

highest levels an argument was stated in context of the envisioned operation of the

system, abstracting contextual information about system design. The proposed

architecture for dependability cases was received positively both during case studies and

peer review; especially the suggestion of a high level dependability argument focusing

on the dependability qualities of interest to the stakeholders. This has been adopted as
the starting point in other projects such as [10 1].

Additionally, the chapter provided a useful insight to the synergies between the

proposed methodologies. Failures identified during dependability deviation analysis
helped eliciting goals arguing about the acceptable behaviour of the system. The

dependability profile was introduced as a means of capturing the requirements elicited
during DDA without explicitly referring to DDA as this would result in weaker and

more complicated arguments. The use of GSN contracts in conjunction with the

dependability profile was accepted as being a viable solution constructing a
dependability case. The argument modules that support the contracts as well as the

profile of a SoS element, can potentially make clearer the decomposition of the

dependability argument.

The suggestions of this chapter have been subject to lengthy discussions during the

research. Feasibility of the suggestions was demonstrated with examples and creation

of arguments during case studies. Regarding the benefit from the contributions, some of

the suggestions have been used by peers, however the ultimate evaluation in terms of
benefit will only come with wider industrial application.

7.2.4 Evaluation of the Metamodel

The metamodel is an important contribution of the research. The metamodel provides
formalisation as well as a concrete representation of the dependability case concepts and
their associations. In terms of feasibility the metamodel was created using tools widely

established in the modelling research community. The correctness of the mctamodel

was achieved through numerous examples and application of case studies. For any

229

Chapter 7- Evaluation

problems, ambiguities, or inefficiencies that were discovered the metamodel was

changed appropriately.

The benefit from the implementation of the metamodel was immediately apparent and

significant. The metamodel introduces traceability in the dependability case by

unambiguously defining the associations between the concepts. Furthermore,

traceability at the instance of the metamodel, can clearly show the related elements that

were produced during application of the methods. This allows the use of automated

verification, processing and transformation of the model. For example, scripts were

written the functions of which included verification that there are no errors in the model,

and automatically producing a list of applicable deviations from a template including

the dependability attributes of interest and a basic traceability model between the system

elements on which the* deviation analysis was applied. Scripts accompanying the

metamodel are a feature particularly useful regarding scalability. The industrial case

study provided by BAE Systems produced a dependability case with approximately
1,500 elements. Scripts provided an invaluable means of managing the elements of the

case within reasonable time limits. Moreover the metamodel makes a solid starting

point for creation of a tool that will incorporate the methods. A proof of concept

exercise was attempted by the author to create a tool using the eclipse GMF framework.

The results of the exercise were very encouraging and a very simple application was

created, able to create and graphically represent simple GSN arguments.

The metamodel proved a very successful means of communicating the proposed

concepts, and positive comments as well as further interest regarding dependability

cases echoed among all research peers.

7.3 Evaluation of the Thesis Proposition

The contributions were also assessed in ternis of the distinct characteristics of the thesis

proposal, as highlighted in Chapter 1.

Structured: The Dependability Case Metamodel extends GSN to incorporate all

of the concepts and associations necessary to structure a dependability case. In

230

Chapter 7- Evaluation

addition, step-by-step guidance has been established for each of the methods

proposed.

Evolving: Iterative collaboration between the methods allows the evolutionary,

analysis, design rationale and development of the design and the dependability

case.

Systems of Systems: This is the type of systems predominantly used in the

examples and case studies throughout the research. DDA and FANDA in

particular have been shown to work with Systems of Systems descriptions

provided using the MODAF framework. The research has also shown how it is

possible to use the modelling structure provided by MODAF products to

organise and present a modular Systems of Systems dependability case.

Unifiled: Definition of the metamodel was particularly successful in bringing

together the concepts and associations underlying the proposed methods. As a

result, when working on any element of the dependability case (e. g. a goal or a
dependability concern) it is possible to clearly identify its association with other

elements.

e Flexible: Flexibility was introduced by stating the dependability goals in the

context of bounds of acceptability. Encouraging developers to think about
flexibility from the early stages of the design is a necessary activity effective in

supporting trade-offs between goals.

Facilitating resolution of trade-offs: TOM systematically identifies potential
trade-offs between dependability goals, enabling their resolution through a

process of debate and argumentation.

Argumentation: Using GSN as the underlying argumentation approach, the
framework presented encourages the development of 'primary' dependability

arguments, together with arguments concerning the rationale behind the

231

Chapter 7- Evaluation

dependability goals as stated (e. g. concerning the bounds of acceptability) and
justifying the optimality of the trade-offs made.

232

Intentionally Blank

233

Chapter 8- Conclusions

Chapter 8

Conclusions and Future Work

8.1 Overall Conclusions
This thesis has presented an integrated approach for managing and evolving
dependability cases. The contributions of this thesis can be surnmarised as follows:

Definition of a dependability requirements elicitation technique. Dependability

Deviation Analysis (DDA) is the proposed method, documented in Chapter 4.

Systematic management, analysis and justification of trade-offs resulting from

competing dependability objectives. The Trade-Off Methodology (TOM) is the

proposed method presented in Chapter 5.

Support for the evolutionary development and architecting of dependability

cases in parallel with system design processes and structures. The Factors

Analysis and Decision Alternatives (FANDA) method, together with a proposed

architecture for the dependability case, are documented in Chapter 6.

Definition of the Dependability Case Metamodel (DCM) that rigorously

captures the associations between the concepts inherent in dependability cases.
The technical approach taken to define the metamodcl is presented in Chapter 3.

The complete mctamodel can be found in Appendix C.

This chapter discusses how the contributions presented in this thesis support the

proposition stated in Chapter 1, and discusses areas of future work.

234

Chapter 8- Concluslow

8.1.1 Conclusions on Dependability Deviation Analysis

Chapter 4 discusses how safety analyses are used to analyse the system and elicit

requirements during each stage of the system lifecycle. Dependability Deviation

Analysis (DDA) is a method for the analysis and elicitation of dependability

requirements, optimised for the SoS paradigm. DDA extends existing well established
deviation-based safety analysis techniques. It includes a number of novel concepts.
DDA allows participants to explore how deviations - established from the perspective

of one dependability attribute - can impact the achievement of other attributes. DDA

introduces the concept of failure maps to explicitly document and visualise these

associations. Creation of failure maps relies upon the underlying traceability between

system models. Although this can be found in some safety analysis techniques (e. g.
Hip-Hops [105]), DDA has been optimiscd for models representing SoS behaviour

(specifically MODAF). Finally, DDA includes checks for distinguishing the 'end'

requirements - requirements of primary interest to the stakeholders - from the 'means'

requirements - requirements that are contributing factors in achieving the former.

8.1.2 Conclusions on the Trade-Off Method

The Trade-Off Method (TOM), documented in Chapter 5 is a methodology for

systematic identification of trade-offs, facilitating the production of arguments
justifying the associated decisions. The arguments produced provide essential context
for the development of the dependability case. A distinct characteristic of TOM is the

adoption of qualitative, rather than quantitative, reasoning. Moreover, TOM introduces

the concept of flexible requirements, considered necessary to enable trade-offs to be

made. Whilst inspired by elements of the ALARP principle, TOM allows examination

of trade-offs between multiple dependability attributes (in contrast to the safety - cost
trade-offs made in the ALARP framework).

8.1.3 Conclusions on the Dependability Case Evolution

Chapter 6 describes how a GSN based dependability case can be developed in parallel
to the system design. In the six-step method for constructing arguments using GSN
developers are encouraged to identify and document the strategies they have used in

argument decomposition. However, it provides little guidance on how strategies are

235

Chapter 8- Conclusions

identified. FANDA focuses on brainstorming and gradual elicitation of design rationale
in order to identify possible decision alternatives. Although FANDA is presented in the

context of SoS configuration decisions, experience from its application shows potential
for its use in other domains. Moreover, the chapter discussed the collaboration of the

proposed methods in order to establish a dependability case. Finally, a dependability

case architecture is presented that integrates the outputs of the proposed methods.

8.1.4 Conclusions on the Dependability Case Metamodel

At present there is no established metamodel for assurance cases. Existence of a
rigorous metamodel that captures the concepts of the assurance cases domain can
deliver a number of benefits. Most importantly, it offers a common vocabulary and
consensus on the concepts involved in the task of assurance case development and their

semantics. Recently, there has been increasing interest in this subject. In particular, the
Object Management Group will shortly be issuing a Request for Proposals for an

assurance case metarnodel.

8.2 Revisiting the Dependability Case Roadmap
Chapter I described a number of the challenges that exist in establishing a dependability

case for Systems of Systems. The following challenges were introduced:

1. Multiple dependability attributes

2. Allocation and apportionment of requirements

3. Conflicting requirements

4. Changing requirements

5. Traceability

6. Interaction of case and design

7. Ownership of the dependability case

As stated in Chapter 1, this research specifically targeted a number of these challenges,
namely 1,2,3,5 and 6. The work presented in this thesis has made the following

contributions with respect to the targeted challenges:

236

Chapter 8- Conclusions

8.2.1 Multiple Dependability Attributes

Interaction of dependability attributes is identified during DDA, in which failure

conditions are associated, thereby identifying how the operation of the SoS from the

perspective of one attribute can affect the operation of the SoS from the perspective of

other dependability attributes. Requirements regarding all of the attributes of interest

for a specific SoS element are collated using the dependability profile. Dependability

profiles are used to structure the architecture of the dependability case. The proposed
dependability case architecture does not simply merge heterogeneous attributes (an

approach identified to be problematic). Using the traceability mechanism introduced by

the rigorous definition of all associations between the dependability case concepts,

reviewers of the case can. trace an overall dependability case (GSN) goal to the

requirement within the dependability profile for a given SoS element, and the attribute

of interest with which the goal is associated.

8.2.2 Allocation and Apportionment of Requirements

Allocation and apportionment of requirements is an activity that takes place during

DDA. Initially the system stakeholders identify their overall concerns with regard to

the system's operation. Following that, using guidcwords, the design of the system is

prompted to identify how deviating from the intended operation (with respect to a
dependability attribute) can affect the overall operation of the system. Accordingly,

appropriate requirements are derived for each system clement. However, the methods

proposed in this thesis do not explicitly handle negative emergent behaviour of SoS.

DDA allows engineers to hypothesise deviations and map the causal relationships
between failure conditions. However, negative emergent behaviour can arise even

when no deviations have occurred (e. g. through the composition of individual systems'

normal behaviour).

8.2.3 Conflicting Requirements

The Trade-Off Method allows stakeholders to examine their requirements - identifying

and justifying the extent to which compromise of their requirements can be tolcratcd.
TOM allows stakeholders to exchange views concerning the preference of one design

alternative over another, as well as helping establish the rationale for the chosen option.
237

Chapter 8- Conclusions

After applying the method stakeholders will have established a justification for the

trade-off made (communicated through a structured argument) which can then be used

to support the dependability case.

8.2.4 Traceability

The Dependability Case Metamodel was defined as a means of documenting the

associations between the contributions of this thesis. It provides traceability between

the concepts used in this thesis that contribute to establishing a dependability case. In

particular, methods that support the trade-offs and evolution of the dependability case.
By instantiating the metamodel (instances of) fully traceable dependability cases arc

created. Having an underlying metamodel allows the (instantiated) models to be fully

navigable. Moreover, with the help of modelling management tools, certain aspects of
dependability case evolution can be automated.

8.2.5 Interaction between System and Case Development

This thesis has defined how the proposed methods can be used in combination to

support the evolution of a dependability case, alongside the decision-making processes

of system development. FANDA facilitates the evolution of the case and system, by

capturing how features of proposed decision alternatives will affect the goals of the

system. Documenting these observations FANDA facilitates further clicitation of
design alternatives and identification potential improvements to existing alternatives.
Moreover, the various interfaces between the stages of the (proposed) methods are

captured describing and documenting their collaboration during evolution of the
dependability case. Finally the products of the proposed methods are related with the
dependability case product (describing how they are used in the final dependability

case), resulting in an architecture for a dependability case.

8.3 Areas of Further Work
During the course of the research reported in this thesis, some possible directions for

future work, improving the proposed concepts have been identified:

e Extending the library of issues and deviations

238

Chapter 8- Conclusions

o Determining assurance levels in dependability cases

* Dependability cases in the presence of change

e Socio-technical issues concerning flexible requirements and trade-offs

These areas are discussed ftuther in the following sub-sections.

8.3.1 Extending the Library of Issues and Deviations

During the development of DDA, a number of typical issues were identified for 'key'

dependability attributes that were applicable across a wide range of domains. However

case studies, in particular the HAP case study, identified a number of domain specific
dependability issues that needed to be considered. Moreover, deviations have been

optimised alongside models that feature particular characteristics capable of exploring
dependability concerns. Further study of domains and cataloguing of related issues, as

well as incorporation of other model frameworks such as SysML, could expand the

applicability of DDA.

8.3.2 Determining Assurance Levels in Dependability Cases

Dependability case arguments are, and will be, inherently subjective - relying upon
inductive reasoning. This thesis has demonstrated how we can capture claims regarding
the acceptability of a system. An important facet of argumentation is the degree of
assurance with which these claims are made. Work done by Weaver ct al. [106]
demonstrates how assurance levels can be incorporated in argumentation. Applying this
to the dependability case is a potentially useful way forward enhancing the framework

proposed in this thesis. In particular, it would be interesting to explore the relationship
between the newly introduced concepts of GSN 'bounds' and the determination and
achievement of assurance levels. As defined currently, bounds identify the limits of an
acceptable solution in terms of achievement claims, without considering the degree of

assurance of those claims. There will be a relationship between these two concerns.
For example, a stronger claim, closer to the parent goal's target, may be more weakly
assured that a claim closer to the parent goal's limit.

239

Chapter 8- Conclusiow

8.3.3 Dependability Cases in the Presence of Change

One of the characteristics identified for System of Systems is that they often include re-

configuration. This means that the assumptions and context regarding the SoS may

change. A dependability case based on these assumptions and context will be called
into question following re-configuration. It will be unrealistic to expect complete rc-

evaluation of a dependability case following every change to a SoS configuration. In

this thesis a modular dependability case architecture has been proposed that will

potentially allow changes to the dependability case to be bounded and limited to only

affected parts. In addition, the concept in this thesis of establishing dependability

profiles that capture the required characteristics of system elements could help support
change by enabling substitutions of system elements with matching characteristics.
However, ftirther work is required to explore how a dependability case architectcd in

accordance with the principles in this thesis will cope with realistic change scenarios
(and potentially timescales).

8.3.4 Socio-technical Issues Concerning Flexible Requirements
and Trade-offs

Whilst it is accepted that conflicts and trade-offs are inevitable, it is not current

subcontracting practice to contract elements of the system using flexible requirements.
There is a general belief that adopting such an approach would require a framework for

ensuring that suppliers have made 'genuine' trade-offs, not simply aiming for the

minimum acceptable system. Moreover, the significant of trade-off decisions needs to
be related to authority to make such decisions. An example where this is demonstrated
is shown in the U. S. MIL-STD-882C [107]. In this standard the higher the residual
safety risk the higher authority is required for ultimate sign-off and approval.

8.4 Final Remarks
The concept of a dependability case may initially be perceived as a straightforward

extension of the well established concept of a safety case. However, this thesis has

shown that the concept brings with it a number of new challenges, primarily concerned

with the management of the interrelationships that exist between dependability

attributes. These challenges are particularly apparent in the operation of Systems of
Systems, where the problem becomes one of configuring a network of interoperating

240

Chapter 8- Concluslom

systems in such a way as to address the dependability objectives associated with the

overall concept of operation. Through the methods presented in this thesis we have

begun to address these challenges. The methods defined support the systematic
development of a dependability case - from the initial identification of dependability

objectives, the management of trade-offs, and the evolution of the case in step with the

configuration of Systems of Systems. However, a number of challenges remain in

establishing the dependability case concept for System of Systems. Questions still exist,
for example, concerning the overall ownership of the Systems of Systems dependability

case, and the sustainability of the concept in the presence of rapidly changing

requirements and system configurations. The work presented in this thesis provides a
framework within which these, and other, issues can continue to be explored.

241

Intentionally Blank

242

Appendix. 4 -A" 4761

Appendix A

Overview of the ARP 4761

Safety is a system property, the achievement of which has a crucial contribution to the

system's final acceptance. Due to its importance, safety should be methodically
analysed along the system lifecycle. A number of standards and recommended
practices define the processes and the objectives of the safety lifecycle.

The civil aerospace guidance document ARP 4761 provides a comprehensive guide of

safety analysis for airborne systems [70]. ARP 4761 suggests the following activities
during a system's lifecycle: Preliminary Hazard Analysis (PHI), Functional Hazard

Assessment (FHA), Preliminary System Safety Analysis (PSSA) and System Safety

Analysis (SSA). The safety lifecycle takes place in parallel with the system lifecycle

providing appropriate feedback, according to the design information available, during

the evolution of the system. The FHA is a process that takes place at the beginning of
the system development cycle. The purpose of the FHA is to identify and classify the
failure conditions that are associated with the system functions or with combinations of

system functions. The rationale for the classification of the failure conditions is

specified by taking into account the risk of each condition, justifying the classification
based on the severity of the failure. Furthermore FHA examines failure conditions
involving multiple functions as well as multiple systems, which is conducted fault tree

analysis (FTA) at function and system level respectively.

PSSA is conducted interactively with the design of a system and it is used to complete
the failure conditions list and elicit detailed safety requirements for each of the

participating systems and subsystems. PSSA extends FHA and uses the conclusions of
the FHA to further explore how the individual systems can contribute to the identified

failure conditions. PSSA uses fault trees to identify how possible single or combination
of system of function failures can affect the assessed failure conditions during the FIIA.
The PSSA results to detailed safety requirements for the system which are examined
and design strategies are proposed for their achievement.

243

Appendix. 4 ARP 4761

Hazaj d
Identification

Rft-pureiwilts Deliverv and Deliven, of
anah-sis mid coninliss . 1011111? -. I, e
specification

Risk
\

Assessinent Al-chitectiwal Testine. V&V
design

Detailed hitem-ation
P'ýSA

4A
hilpleluelitation

Coininon cause connnon
niode and zonalmiah-ses

Fig. A. 1 - ARP 4761 Steps within the V-Lifecycle

Fig. A. 1 presents Pumfi-ey's adaptation of the V-1ifecycle model [761 including tile main

safety activities during the development of a system, such PSSA and SSA which are

also described in ARP 4761. A prominent feature of the diagram is the clear association

of the safety activities and the system design activities. The proposed safety lifecycic

model is nearly identical to what is described in ARP 4761. Fig. A. 2 shows in cxcerpt

from ARP 4761 that has been abstracted to highlight the relation between function

analysis and system specification with extraction of general and systcin specific

requirements during the development of a system. Initially identification ofthe overall

safety objectives of the system with respect to its overall functionality and the

ftinctionality of the identified systems (FIIA & System FIIA) takes place.
Understanding of how the individual systems contribute to the overall functionality of'

the platforril (i. e. aircraft) is essential in order to apportion specific requirements to each

of the systems. FHA and system level FFIA are followed by PSSA, which involves
identification of the proposed detailed design of the system.

During PSSA the identified failure conditions in FIIA and system FIJA are evaluated

against the proposed design, which may result in altering the design in order to improve

the overall safety levels. SSA takes place during the evaluation ofthe system and (lie

main purpose to complete the safety assessment with verification that the requirements

set during FIIA and PSSA have been achieved.

244

Appendi-vA ARP4761

Functional Upper Level Requirements
Analysis

------------ Main Main Failure

-- :t ------ I Functions Conditions
Aircraf Level

n Functions

Aircraft Level *
Exchanged

Aircraft Level: Functions List
-Failure Condition Effects

- Failure Condition

r unction LIST
r----------f

Requirements and Failure

----- ------ I Key. - I Condition List to Consider in
System Aircraft Design and in Lower

Functional Level Activities (System F1 IA)
Analysis

r

System Level System Level Functions Failure
Functions Analysis

System Level Failure Condition Effects
Exchanged Failure Condition

Functions List

H

Requirements and Failure
Condition List to Consider in
Aircraft Design and in Lower

. evel Activities (PSSA & SSA)

Failure Condition Evaluation
For each significant failure condition identified in the system level Fl IA

perform an evaluation to show that system meets the requirements

Planned compliance with FHA requirements, Justification materials,
Operational - maintenance tasks, Items development assurance level,

Requirements for lower level studies.

Transmission of PSSA requirements for incorporation in the design process

Failure Condition Evaluation (SSA)

Fig. A. 2 - The ARP 4761 Processes

245

Ippendix AA R11 4 76 /

The civil aerospace guidance document ARP 4761 provides a compreliensivc guide ot

safety assessment analysis for airborne systems [70]. ARP 4761 stiggcsts thc f(fliowing

activities during a system's lifecycle: Functional Hazard Asscssinclit (FIIA),

Preliminary System Safety Analysis (PSSA) and System Safety Malysis (SSA).

Fig. A. 3 presents a schematic of how the safety analysis stages arc associated with tile

system lifecycle.

11 1
Hazard
Analysis Final Safely

Requirements Delivery and Case
analysis and Commissioning
specification

Risk Architectural Testing,

Assessment Design:

]

V&V

Detailed Design Integration SSA
I

.. III

PSSA
N

Implementation

Fig. A. 3 - Safety Analyses During System Lifecycle 1701

FUJA considers the aircraft functions and idcntifics I'ailurc conditions i-clatcd to dicin.

The participants during FIIA are required to evaluate the consequences of'cach I'aililre

condition and assign probability target according to the severity of' cach Cadure

condition. Taking into account the contribution of' the aircraft systcnis to thc overall

aircraft functions, analysts specify safety objectives l'or the constituent systems ol'each
function. Table. A. 1 shows an excerpt from ARP 4761 FIIA, in which thc breaking

function (whilst on ground) of a passenger aircraft is evaluated with 1-espect to a set of'

possible failure conditions.

FIIA is followed by PSSA which is described by ARP 4761 as "a sYstematic

examination qf the proposed system architecture to determine how. /ai/jjj-cýv c-in, lea(l to

thejýnctional hazards identýfied b. v the Functional HazardAssessinent (h'11, A), and how

the FHA requirements can be met". Finally the SSA is a confirmatory analysis, which

240

Appeti(h. v A ARP 4761

takes place at the end of the system lifecycle, verifying that the safety targets that were

finalised during PSSA have been met.

'lr-Ahlo A1- FH A far an Airernft Whpvl Hrakinig

Function Failure Condition Phase Effect of Failure Classification Verifi ation
(Ilazard Condition on Aircraft

Description) / Crew

Decelerate Loss of Landing See Below
Aircraft on Deceleration /RTO
the ground Capability /Tax i

a. Unannunciated Landing Crew is unable to Catastrophic SIX Aircraft
loss of Deceleration /RTO decelerate the aircraft, I'aultTree
Capability resulting in a high

speed overrun

b. Annunciated loss Landing Crew selects a more I la/ardous S18 Aircial"I
of Deceleration suitable airport, notifies kitilt free
Capability emergency ground

support, and prepares
occupants for landing
overrun

C. Unannunciated Taxi Crew is unable to stop Major
loss of Deceleration the aircraft on the taxi
Capability way or gate, resulting

in low speed contact
with terminal, aircraft
or vehicles.

d. Annunciated loss Taxi Crew steers the aircraft No safely
of Deceleration clear of' any obstacles eftect
Capability and calls for a tog or

portable stairs

Purnfrcy [76] classifies the analysis techniques according to the arnount ofinforniation

available during the system's fifecycle, about the ldcritified 1111lure with respect to

causes and effects. Hence the causes and effects ofa failure can be unknown, pro jectcd

and known. Fig. A. 4 shows how each of the analysis stages described in ARP 4761 can

contribute into increasing the information about tile design. At the beginning of' the

system's lifecycle exploratory analyses are employed to identify system failures that

constitute possible hazards. During this stage of' the systern's 111ecycle, the causes as

well as the effects are unknown. At this stage analysts extrapolate possible effects

based on the preliminary studies of the design and early identification ofhazards. As

the analysis methods are applied on the gradually evolving design, the confidence about

the causes and effects increases.

247

Appendix AA Rl' 4 76 /

[IMF

Unkno-

Urikmo-n

FFA Caus-
flkos Projected

PSSX Projected

w Pflects Projected 1111PICITICIllation

Sý, Iclll 'Pecili"O"'ll sp, 'L

Kit ýn

Fig. A. 4 - Failure Information During System Lifecycle

Exploratory analyses assist in considering possible IallUres and eliciting requirements

about the system. In specific, after the completion of PSSA the requirements should be

clear and complete and the involved stakeholders should be able to understand tile

rationale for their elicitation. For example in ARP 4761 the IISSA identifies how cach

individual system contributes in achieving the functions analysed in F1 IA (Table. 3.1).

The achievement of the design to satisfy the requirements is shown by employing

confinnatory analysis. SSA is the phase ofthe lifecycle, during which tile design has

reached a mature and enough detailed stage, can be used to identify with certainly

weather the safety requirements have been met. Starting from known causes and effects

confirmatory analysis takes place verifics the requirements and the proJectcd salety
levels specified in during the earlier stages of tile safety analysis. Ideally, both tile

causes and effects of a deviation in the intended system operation should be known at
the end of the safety lifecycle.

248

Intentionally Blank

249

Appendix B- Overview of Defence Architectural Frameworks

Appendix B

Overview of MODAF and the AGO
Scenario

Thc emergence of concepts such as the Network Centric Warfare (DoD) and the
Network Enabled Capability (Mol)) has resulted in highlighting many aspects,

necessary for their intended operation of a system. Analysis and design evolution of

such systems required a concrete framework which could be used to communicate

architectures as well as their intended operation. The US Department of Defence

proposed an architecture framework (DODAF) to be used by all the different

stakeholders to represent their concerns, during the system's entire lifecycle. In this

document we present how the methodologies and descriptions provided by the DoD and
MoD can be used to model a system, by illustrating the Anti Guerrilla Operations

(AGO) scenario, as presented in the strand 2 examples.

1. Overview
DODAF is used to "define a common approach for DoD architecture description

development, presentation, and integration for both war fighting operations and
business operations and processes". DODAF has evolved over the years from

fmmc-A, orks that were used by individual bureaus within the US Dol), initially resulting
in the C41SR Architecture Framework [21]. The framework consists of several

products organiscd in views, which when used will ultimately describe the complete

operation of the system. DODAF products arc organiscd in three main views:
Operational, Systems and Technical, accompanied by a fourth view used as reference

and to maintain consistency between the other views, called the All-Vicws (Table. B. 1

surnmariscs the DODAF products).

NIODAF is the equivalent architecture framework dcfincd by the UK ministry of
dcfcncc. NIoD has tailored DODAF to its needs with the addition of the stratcgic and
the acquisition vic%%-s. Tablc. BI presents the products of the additional MODAF vicws.

250

Appendix B Overview ol'Dqýnce Art hilet tural Fraincivorks

Overviewof the DODAF Products and VjeýNrS
NI OV I

(Operational)

SV

(Systems)
II igh-Leý el Systems Interface I ksci iption I echnicai (A CI ý lcký alld
Operational Concept Standards Profile Summary
Graphic Information
Operational Node Systems Communications Technical Integrated
Connectivity Description Standards Dictionary
Description Forecast
Operational Systems-Systems Matrix -
hif'ormation Exchange
Matrix
Organisational Systems Functionality -
Relationships Chart Description
Operational Activity Operational Activity to -
Model Systems Function Traceability

Matrix
a) Operational Rules Systems Data Exchange -
Model Matrix
b) Operational State - -
Transition Description

c) Operational Event- - -
Trace description
Logical Data Model Systems Performance -

Parameters Matrix

- Systems volution Description -
- Systems Technology Forecast -
- a) Systems Rules Model -
- b) Systems State Transition -

Description

- 0 Systems Event-Trace -
Description
Physical Schema

Table. 13.2 - NIODAF Addition
Stv

(Strategic View)
Strategic Capability Vision -

al Views
AcV

(Acquisition VI
SoS Acquisition (hitci,,

Capability Functions SoS Acquisition Prograninics
Capability Phasing
SoS lustcrs
Capability to Systems D cployment M

2. DODAF Modelling notations and Frameworks

DODAF is intended to provide the common grounds flor description of' architectures.
DODAF does not include any specific modelling methodologies/notations. Instead, it

provides descriptions of what inforination the products at each stage of the systern's
lifecycle should capture.

251

AppendixB

This provides DODAF with the flexibility to use any model that can satisfactorily

address all the issues that are required for each of the products. UML is tile modelling

language most commonly used to model DODAF products, even though there arc

problems to overcome, mainly due to the fact that there is no definite way to model the

DODAF products in UML.

The DODAF and MODAF as well as other studies (e. g. [90]), Suggest UML models that

can be employed to represent the DODAF/MODAI, ' products. Table. 13.3 presents the

products and the UML models that can be employed to construct them.

Table. B. 3 - Representation of DODAF/iNIODAF Products in UNIL
[DI: DODAFTechnical Specification, I MI MODAFTechnical Spec i fical i on,

[T]: Telelogic's white paper on modelling N('W and NIC

"Ipability Vision n/a (ftee l'orniat)
Capability <(Capability>> Stereotyped Class
hinctions
Capability Phasing n/a
, ýoS Clusters <<CapabilitV>) Stereotyped Class with Depcildencies
Capability to Stereotyped classes representing <<Systems>> can be overlaid on a 2-
'--;, ys, tenis 1) (X, Y) table representing capabilities (X) and organis. ations (Y).

Deployment
Mapping
Capability n/a (tabular form)
hinction to

Operational

iI ig li Level n/a (free forni) [1) M
()perational
Concept Class or use case diagram & graphics [T]
Operational Need Collaboration diagrams ID]
Connectivity
I)escription Composite (Stereotyped) Structured Diagram [M], [T]
Operational n/a [D], [M]
Information
Exchange Matrix UML report queries [T]
Organisational Class diagram using actor icon I D]
Relationships Chart

Class diagram [M], [T]
Operational Operational activity diagram with object flows & actors
Activity Model representing nodes [D], [M], [T]
Operational Rules n/a (free text), post and pre conditions and OUL can be applied on
Model use cases [D], [M], J]
Operational State Statecharts [D], [M], [T]
Transition
Description

252

Appendi-vB

ON'6c Operational Event Sequence diagram [D], [M], [T]
Trace Description

ON'7 Logical Data Class diagram [D], [M], Fri

-
Model

7

Svi Systems Interface Deployment diagrams [D]
Description

Class diagram using stereotypes [M]

Composite structure diagram [T]
Systems n/a however could be modelled using deployment & component
Communications diagrams denoting the cornmunications links 11) 1
Dcscription

SysML (UML 2) [M]

Composite Structure Diagram [T]
'ý; Ystenls-systenls n/a, tabular form [1) M
\Iatrix

DOORS traceability view [T]
Systems Use cases, classes and class operations 11) M
I'LIFICtionality
Description Activity diagram with object flows ['rj
Operational n/a however can be gathered from OV-5 and SV-4. <<Include>)
Activity to Systems relationships. [1)], [M]
I unctionality
I raceability Matrix DOORS traceability view [T]
'ýYstems Data n/a [M], however the matrix product expands on the int'orniation
I xchange Matrix associated with SV-I systems, SV-4 use cases, and system data

flows [131.

tJML model queri es [I']
Systems 11/a 11)], [M]
11crformance
Parameters Matrix UML model queries [T]
'ýystems Evolution n/a [all]
Description
1ýystems n/a [all]

echnology
orecasts

'-, 'ystems Rules Pre, post conditions on classes of'SV-4 JDJ, OCL I MI
Model

Text ['F]
Systerns State Statechart [D], [M I, ["F]
1'raiisition
Description

I Systems Event Sequence diagram [D], IMI, [T]
['race Description

WMA Iý Physical Sc ema Class diagram [D], [M], [T]

253

AppendixB

3. Evolution and Model Dependencies

The MODAF and DODAF technical specification do not provide defitute gm(felliles

regarding the stage of the lifecycle that each of the products should be constructed.

Each of the products can be used at any stage of the system liflecycle ifit's useful for tile

concerned stakeholders. However there are examples of suggested use of' the models.

The department of navy use the Architecture Definition Process Management which
defines 432 tasks and their interdependencies. MODAF acquisition community of'
interest handbook suggests a set of products for requirements management during the

CADMID [109] lifecycle, shown in Fig. B. I. Furthermore the DODAF deskbook gives

a data-centric perspective in which the data is developed and orgamscd to continually

add layers of complexity to the description of the enterprise, creating intcgrated

architectures (shown in Fig. 13.2).

User Reouirenients Document
" StV6, Capability Functions to Operational Mapping (Concept)
" OVI, High Level Operational Concept (Concept)
" OV2, Operational Node Connectivity Description (Assessment)
" OV3, Operational Information Exchange Nlatrix (Assessment)
" OV5, Operational Activity Model (Assessment)
" TVI, Technical Standards Profile (Assessment)

Svstcm Requirements Document
" OV7, Logical Data Model (Assessment)
" SVI, Systems Interface Description (Assessment)
" SV3, Systems - Systems Matrix (Assessment)
" SV4, Systems Functionality Description (Assessment)
" SV2, Systems Communication Description (Assessmeno
" SV6, Systems Data Exchange Matrix (Assessment
" SV7, Systems Performance Parameters Matrix (Assessment)

" TV1, Technical Standards Profile (Assessment)

Fig. B. 1 - MODAF Requirements Documents

254

AppendixB Overview ol Delowe Art -hilet -tural Frameworks

\\ Operatimul/
OV-3 Iýiov Prothicts

(:::;
D

------\----------- --------------------------------iI
'Ww'"Is

SV4 svio Vlcýi Produas

svi

SV5

According to Fig. 13.2 the development ofthe products is oriented around tile definition

of the operational activity diagram (OV5) and the mapping of' those activities onto
individual systems (SV5). The two views have three main 'design areas' with which

they are linked. The first represents the functions of the system and their activities and
how these are mapped onto individual systems. The second refers to tile data and

entities that need to be used and how the systerns represents the defined entities and use
the identified data. Finally the third area involves conirmin icati oils and in general links

that need to be established in order for the system to perform the specified functions.

Using the MODAF metamodel Fig. 13.3 presents the common classes between the

products according to how their relations as indicated in Fig. B. 2. Identit, ying the

common classes between two products can help the analysts understand the system

element shared by the two products.

255

Fig. B. 2 - DODAF Product Dependencies (Data Cen(ric Perspedive)

110 kn

"I

SI "

S II

.
S ft

.. *l

,z 12: :- 'ý i
.-, -VI

,,
ý, iý-,

,: 2 'Z: ý.

I-

.0

Appendix B- Overview qf Defence Architectural Frameworks

As it can be seen in Fig. B. 2, the identification of the products is not representative of

the order in which they are defined (always from a data centric perspective). The main

activities for specifying the system in DODAF are shown in the following table along

with their respective products.

Table. B. 4 - DODAF Development Process

Development of0pera tional View
Obtain/ build an operational concept OV I
Document the business process OV5
Document business rules associated with the OV5 must be updated OV6
business process accordingly
Aggregate activities into operational nodes OV2
Develop logical data model OV7
Determine information exchange requirements OV3
Identify organisation types that will perform OV4
the activity associated with the nodes
Assign organisations and physical locations to Using OV4 and OV2, update OV3

o erational nodes and activities
ýý I

OV3
0 ýý

Identify physical node locations Useftil to determine

communications asset
availability

Identify and characterise available systems in
terms of owners, system functions and
perfon-nance
Based on the operational activities deten-nine Requires OV5 SV5
tile requires system functions
Define the relationship among systems and Requires SV5 SV4
functions
Develop the physical data model Should be done before SV6 SVI I
Determine systems' behaviour SVIO
Assign systems and other interfaces to the Requires OV2 SVI
Operational Facilities (OPFACS)
Map information exchange requirements into Requires OV3 SV6
candidate systems
Develop systems communications description SV2
Identify hardware and software performance SV7
parameters
Describe system to system relationships Requires SV6 and SV I SV3

257

Appendix B- Overview of Defence Architectural Frameworky

4. The Anti Guerrilla Operations (AGO) Scenario

The Anti Guerrilla Operations (AGO) is a hypothetical scenario, in which the army
forces (in this case air force, artillery and Special Forces) collaborate, based on

paradigms described by the concepts of NCW and NEC, to suppress guerrilla operations
in a hostile territory. The case study includes example products for the operational view

and two of the system view products (SV4 & SV5). The systems view was not
developed in full due to the detailed technical knowledge that it requires. The

operational view and products 4 and 5 from the systems view are adequate to

demonstrate the logical links and traceability between the DODAF products when
developing an integrated architecture.

OV I High Level Operational Concept

The following figure shows a schematic of the overall concept of operations during the

AGO scenario as described in [I 101.

UAV Scout
Theatre Command

Long-range
Artillery

Troop-carrying
Helicopter,,,

Fig. B. 4 - AGO OV I

Guerrilla
Enemy

According to the scenario guerrilla activity is identified by unmanned vehicles

patrolling the hostile area. Artillery is used to weaken the enemy defences allowing

transport and attack helicopters to transport and support Special Forces in order to

neutralise the guerrilla teams.

258

Appendix B- Overview of Dqfence Architectural Frameworks

OV5 Operational Activity Diagram

The suggested way to model OV5 is by using activity diagrams. Activity diagrams

model the flow of events. This way the system behaviour captured in OV-1 can be

further analysed, without showing any detail about the implementation and structure of

the system.

0

Initiate Mission

upon initiation of mission,

a

1. UAVstake off 3.
ýSet-up

Stand-by forces it not kno*n W)ether
enem y forces vWl be
detected.

2. U AVs m owe to the enemy area 4. P atro I Area 14e--

6. Suppress [Enemy Ater mwAng troops
to the theatre of
operations, the helicopters

5. Transport Special Forces ------------ join am my suppression

N

7. Deplane SF

N Lim ber s =i 'Aties
are for traceability
not specizic: on of 9. E ngage E nem y
sequence

Fig. B. 5 - AGO OV5

OV6 Operational Rules Model

Having defined the activities that take place to complete the mission, OV6 is defined

which provides a detailed view of mission, including events and messages between the

mission entities. As part of OV6 the collaboration diagram for the AGO scenario is

provided.

Ater rnwAng troops
to the theatre of
operations, the helicopters
join enemy suppression

259

Appendix B- Overview ofDefence Architectural Frameworks

UAVFlod: Iie I Iin I I'I
Order Take Off

send patrol area

Yat rol Area

loop(ever y5 sed) 0C, P(aV, sec) .1 1 E

nd ay position ý. se I;
,,

Order mobillsation 6
Dispatch to erýam y

suppress enemy
deplam

,oS ecs)
upd.

ý
map

n

- I
I

00p(i 0 secs)
updat a map

l0 sec*) 1 r ý
, 1

ý
,

.

Fig. B. 6 - AGO OV6

OV2 Operational Node Connectivity

The suggested representation of this product is made with collaboration diagrams,

identifying the entities within the system and the needlines, which show the information

exchanges that exist between the participating entities. In the example presented
instead of using a collaboration diagram strictly using UML, we have employed a use

case to show the information dependencies between the different actors. Merely

identifying the "needline links" between the system actors is not adequate to specify
this product. We also need to specify what information will be 'carried' by the needline

as well as the consumer and provider of the information.

260

Appendix B Overview ol'Dtfience Architectural Frameworks

-------------> Needline 1

Needline 4 UAV Flock
<------------------>

Mission Control ý, -'
Needline3

Needline 7
<-------- -- I

Infantry

Needline 2

Arti He ry Needline 6

Needline 5

Helicopters

Fig. B. 7 - AC .0 OV2

I k(; () M .1 iNct-Alim D(ý(1 11014,11)

Information Exchange

(Fuse)sensordata ' c

I ,

UAV Hock "WISS1011contiol
amet Area Tr ý Mission Control Helicopters
is e nsor data (I I le I icopters Mission control

arget area Mission control Artillcry
irget area Mission Control Infantry

\1ap Mission Control Infantry
luse) feedback Infantry Mission Control

\Iap Mission Control I lelicopters
1 irget area Mission Control I lelicopters
(Fuse) feedback I lei icopters Mission Control
Theatre Support i lelicopters lilf-Intry '
Target location I [Art illcry

OV2 is a view of particular interest as it specifies at the highest level the

interconnections and sharing of information that is required by each of the SoS

elements. This product can be very useful when conducting analysis associated with the

safety or dependability of the system. Each of the needlines serves a purpose regarding
the successful completion of the scenario. Identification of the criticality ofthe services

261

AppendixB Overview ol'Defence Architectural Frameworks

provided by each needline can help in understanding the required integrity tor system

features such as data, communication links, and interfaces.

OV7 Logical Data Modelling

The Logical Data Modelling product describes the structure of the data types that are

used by the system. Class diagrams identify the data types as well as the relationships

between the entities.

ý<0FOOF966400>>

commands MSSION CONTROL

-TheatreMap object

-TargetArea obled

-attribute-9. int

-commandUnitMoyemerd 0. void
+commandAttack(TargdAiea: TwgetArý). Yod
. operati on_l 0 0, void

T
ISR

<<"Cffp>
UAV Flock

-Localion. object

. WaWoird objed

-T argetArea oo ect

-UAYSIstutobjed

-updateSensomo void
+updateMapo void
+moveo vood
+pagrol()Yotd
+scanGroundo void
+scwf nmronmerto. yoid

commards ISR

< <Urkit> >
kwor*y

, boardPlaneo. void

+deboarcIC rat o Yoid

+moyeo. void

+attackArea (T argetAr ea: T argetAtea) void

+updedeMap(y. yoid

commands

commands

uniV-
HE LICOPIERS

o"rvsAon, >

ARTILLIE RY

-T&rgeIP4aa oblact

-affackAteao void

ISR

-ovell v ands
suppo"

-attackAres(TorgetAtee. TorgetArea)yoid

Comm

Fig. B. 8 - ACO OV7

SV5 Operational Activity to Systems Function Traceability Matrix

SV5 is one of the products that provide a link between the opcratloilal and systems

view. This is achieved by analysing the defined activity t1or the scenario (as described

by OV5), identifying which system (or organisation) participate during each of' the

activities. This allows determining how the individual entities contribute in achieving

the overall functionality (or capability). SV5 cannot be specified only from the activity

diagram, but it also requires knowledge of what functions each of the system call

provide. Hence, based on the functions that a system provides the developers examine

which systems contribute to an activity and how. An example Activity to Systems

Function Matrix for the AGO scenario is presented below. The table also show a

262

AppendixB Overview ql'DtýfenceArchitevtural Fraincivewks

possible decomposition of the Mission Control entity into two subsystems, one For

decision making and the other responsible for communications and Fusing the received
data. As more detail is added the class diagrams should be updated accordingly.

I able. 11.6 X(A) S\"%

C4
g

u

l e m n-,

UAV'I'ake-off x x X
Guidance of UAVs x x x
Set up of forces x x x x
Patrol Enemy Area x
Transport Special Forces x x
Deplane Special Forces x x
Suppress Enemy x x x
Fuse infonnation

I
x x x x

Engage Enemy x x

SV4 Systems Functionality Description

This product documents the functionality of the systems participating in the scenario. A

use case provides a hierarchy of functionality showing the relationship between

functionality using the <<include>> association.

--on objectfus..
Noutrahme Eýy

include

rndude-

include

obled-
DeOoynerd of Speml Forces

Include dude Include
Include

mclude inducler

--mislion obledrrre. - M=
Transport Dp.. W F-: "

... 3son cbled-. Maon obid---
Su Spe.

ýa:

lFw:

D..

include include

isswobledKe--
Patrol Hoitile Area

Fig. B. 9 - AGO SV4

263

Appendix B- Overview ofDefence Architectural Frameworks

Furthermore a class diagram can be employed identifying the functions (methods) of

each class, as well as the data flows in between them. Fig. B. 9 shows the use case
diagram for this product. As class diagram the OV7 product can be used to depict the

methods of each of the entities and their data interconnections. The class diagram

abstracts detail of the exact data flow between the systems.

5. Summary

This section presents a brief exercise, the objective of which was to develop the AGO

example according to DODAF, using UML as modelling basis. The main focus was on
the operational view since it is the one in which the overall dependability operation of
the system can be analysed, showing all the characteristics distinct to SoS such as

geographic distribution, collaboration and data sharing. The operational view is the

main view for requirements elicitation as it can be used to associate and analyse the

system behaviour with the overall scenario objectives. Furthermore of particular
interest is the decomposition of the SoS level to the individual systems (elements) level,

which is achieved using the products SW and SV5 maintaining the traceability of

requirements (functional and non-functional) to systems level.

264

Appendix C- DCM

Intentionally Blank

265

Appendix C- DCM

Appendix C

DCM & EOL Code

The appendix presents the Dependability Case Metamodel as defined using KM3.

Moreover some of the scripts are presented whish were used for the creation and

analysis of the dependability case. Due to the fact that EOL is still an experimental
language there cannot be an integrated way in which the scripts are applied on the

model. Instead the user needs to know which script needs to be run at each stage of the
dependability case. At the time this thesis is written the author is migrating the code to a

newer version of EOL which supports these features. The scripts in this appendix are

presented as code samples.

1. The Dependability Case Metamodel

I package DC

2

class Case extends Package (

4

5

6 class ArgumentModule extends PackageableElement, Package
7 reference goat: Goal;
8

9

10 class SolvedBy
II reference parent: SpinalElement oppositeOf solvedBy;

12 reference child container : SpinalElement;

13 attribute cardinality : String;

14 attribute optional : Boolean;
15

16

266

AppendU C- DCM

17 class InContextof (
18 reference parent: SpinalElement oppositeOf inContext0f,

19 reference child container: ContextualElement;

20 attribute cardinality : Integer;

21

22

23 abstract class SpinalElemcnt extends Modeffilement
24 reference solvedBy [*] container: SolvedBy oppositeOf parent;

25 reference inContext0f [*] container: InContextOf oppositeOf parent;

26

27

28 abstract class LeafSpinalElement extends SpinalElemcnt

29

30

31 class ReferenceSpinal extends LeafSpinalElement

32 reference pointsTo : SpinalElement;

33

34

35 abstract class ContextualElement extends ModelElement

36 attribute contextStatus : ContextStatus;

37

38

39 class ReferenceContextual extends ContextualElement

40 reference pointsTo : ContextualElement;
41

42

43 class Goal extends SpinalElement, PackageableElement

44 attribute goalStatus : GoalStatus;

45 attribute isGoalPublic : IsGoalPublic;

46

47

48 class AwayGoal extends LeafSpinalElement, ContextualElement

49 reference argwnentModule: ArgumentModule;

50

267

Appendix C- DCM

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74
75

76

77

78

79

80

81

82
83

84

class Solution extends LeafSpinalElement (

attribute solutionStatus : SolutionStatus;

class Strategy extends SpinalElementj

attribute strategyStatus : StrategyStatus;

}

class Context extends ContextualElement

I

class AwayContext extends ContextualElement j

reference argumentModule : ArgumentModule;

class Bounds extends ContextualElement

attribute target : String;

attribute limit: String;

class Justification extends ContextualElement

class ModuleSolution extends LeafSpinalElement

reference argumentModule : ArgurnentModule;

class ModuleContract extends ArgurnentModule

class ContractSolution extends LeafSpinalElement

reference moduleContract: ModuleContract;

268

Appendix C- DCM

85

86 class InheritedContext extends ContextualElement
87 reference inherits [*] container: ReferenceContextual;

88

89

90 class Factor extends ModelElement

91 attribute approachOnFactor String;

92 reference affects [*] : Goal;

93 reference inFactorlnstance [*] container: FactorInstance oppositeOf
94 fromFactorlnstance;

95

96

97 class FactorInstance extends ModelElement

98 reference impactsOnGoal. [*] container: ImpactOnGoal;

99 reference fromFactorlnstance : Factor oppositeOf inFactorlnstance;

100

101

102 class Decision extends PackageableElement

103 reference influencedBy [*] : FactorInstance;

104 reference decisionlmpactOnGoal [*1 container: DecisionlmpactOnGoal;
105

106

107 class DesignDecision. extends Decision
108 reference systemElements SystemElement;

109

110

III class ImpactOnGoal. extends ModelElement

112 reference goal : Goal;

113 attribute typeOflmpact: TypeOflmpact;

114 attribute magnitudeOflmpact : MagnitudeOflmpact;

115

116

117 class DecisionlmpactOnGoal extends Modeffilement
118 attribute tolerabilityClassification : TolerabilityClassificaiton;

269

Appendix C- DCM

119 reference goal : Goal;

120 reference statementOflmpact: ArgumentModule;

121

122

123

124 class DependabilityAttribute extends PackageableElement

125 reference concern [*] container: Concern oppositeOf concemOfAttribute;

126 reference typicallssue [*] container: Issue oppositeOf issueOfAttribute;

127

128

129 class Concern extends PackageableElement

130 reference addressedInGoal : Goal;

131 reference concemOfAttribute : DependabilityAttribute oppositeOf concern;

132 reference causedByFailureCondition FailureCondition oppositeOf

133 compromisesConcern;

134

135

136 class Issue extends ModelElement
137 reference issueOfAttribute : DependabilityAttribute oppositeOf typicallssue;

138 reference revealedBySuitableDeviation SuitableDeviation oppositeOf

139 revealsIssue;

140

141

142 class Guideword extends PackageableElement

143

144

145 class SysternModel extends PackageableElement
146 reference containsSystemElement SystemElement oppositeOf

147 elementAppearsInModel;

148

149

150 class SystemElementType extends PackageableElement
151 reference systernElements [*] : SystemElement oppositeOf isOfsystemElementType;

152 reference suitableDeviation [*] : SuitableDeviation oppositeOf systemElementType;

270

Appendix C- DCM

153

154

155 class SystemElement extends PackageableElement
156 reference appcarsInDeviation [*] : ApplicableDeviation oppositeOf

157 deviationOnSystemElcment;

158 reference elementAppearsInModel SystcmModel oppositeOf

159 containsSystemElement;
160 reference hasDependabilityProfile container: DependabilityProfile oppositcOf
161 systernElement;
162 reference isOfSystemElementType : SystemElementType oppositeOf
163 systemElements;

164

165

166 class SystemTask extends PackageableElement

167

168

169 class TaskIssue extends PackageableElemcnt
170 attribute tasklssuelsAConccm : TasklssuelsAConcem;

171 attribute aggregated : Aggregated;

172 reference systcmTask: SystemTask;

173 reference issue : Issue;

174

175

176 abstract class Deviation extends PackageableElement

177 reference guideword: Guideword;

178

179

180 class SuitableDeviation extends Deviation

181 reference revealslssue [*] : Issue oppositeOf revealedBySuitableDeviation;
182 reference systernElementType SystemElementType oppositeOf suitableDeviation;
183 attribute deviationIsApplicable DeviationIsApplicable;

184

185

186 class ApplicableDeviation extends Deviation

271

Appendix C- DCM

187 reference manifestsAsFailureCondition : FailureCondition oppositeOf
188 causedByDeviation;
189 reference deviationOnSystemElement: SystemMement oppositeOf
190 appearsInDeviation;

191

192

193 class FailureCondition extends PackageableElement
194 attribute effect : String;
195 reference causedByDeviation: ApplicableDeviation oppositeOf
196 manifestsAsFailureCondition;
197 reference effectTrace [*] container: TraceabilityOfEffect oppositeOf
198 traceBelongsToFailureCondition;

199 reference causedByFailureConditionEffectTrace TraceabilityOfEffect

200 oppositeOf resultsToFailureCondition;
201 reference compromisesConcern [*] : Concern oppositeOf
202 causedByFailureCondition;

203 reference dependabilityRequirement : DependabilityRequirement oppositeOf
204 faitureCondition;

205

206

207 abstract class TraceabilityOfEffect extends ModelElement
208 reference traceBelongsToFailureCondition : FailureCondition oppositeOf
209 effectTrace;
210 reference resultsToFailureCondition FailureCondition oppositeOf
211 causedByFailureConditionEffectTrace
212

213

214 class TextualTraceabilityOfEffect extends TraceabilityOfEffect

215

216

217 class DependabilityProfile extends Modeffilement

218 reference systernElement : SystemElement oppositeOf hasDependabilityprofile;

219 reference dependabilityRequirement [*] container: DependabilityRequircment;

220

272

Appendix C- DCM

221

222 class DependabilityRequirement extends ModelElement

223 reference addressedByGoal : Goal;

224 reference failureCondition : FailureCondition oppositeOf dependabilityRequircment;

225

226 abstract class ModelElement

227 attribute description String;

228 attribute name : String;

229 reference taggedValue [*] container: TaggedValue;
230

231

232 class TaggedValue

233 attribute key: String;

234 attribute value: String;

235

236

237 class Package extends PackageableElement

238 reference content [*] container: PackageableElement;

239

240

241 abstract class PackageableElement extends ModelElement

242

243

244 datatype String;

245 datatype Boolean;

246 datatype Integer;

247

248 enumeration TypeOflmpact

249 literal NotDefined;

250 literal Negative;

251 literal Positive;

252

253

254 enumeration MagnitudeOflmpact

273

Appendix C- DCAJ

255 literal NotDefined;

256 literal High;

257 literal Medium;

258 literal Low;

259

260
261 enumeration Severity

262 literal Catastrophic;

263 literal Critical;

264 literal Marginal;

265 literal Negligible;

266

267

268 enumeration GoalStatus

269 literal Normal;

270 literal ToBeDeveloped;

271 literal ToBeinstantiated;

272 literal SolvedByContract;

273 literal ToBeDevelopedAndlnstantiated;

274

275

276

277 enumeration ContextStatus

278 literal Normal;

279 literal ToBeInstantiated;

280 1

281

282 enumeration SolutionStatus

283 literal Normal;

284 literal ToBeInstantiated;

285

286

287 enumeration StrategyStatus

288 literal Normal;

274

Appendix C- DCM

289 literal ToBeDeveloped;

290 literal ToBeInstantiated;

291

292

293 enumeration IsGoalPublic 1

294 literal False;

295 literal True;

296

297

298 enumeration DeviationisApplicable

299 literal NotDcfined;

300 literal False;

301 literal True;

302

303

304 enumeration DeviationSeverity

305 literal NotDefined;

306 literal Minor;

307 literal Substantial;

308 literal Major;

309

310

311 enumeration TolerabilityClassificaiton

312 literal Unconstrained;

313 literal Probable;

314 literal Potential;

315 literal Hesitant;

316 literal Ineligible;

317

318

319 enumeration TasklssueIsAConcem

320 literal NotDefined;

321 literal itisConcemExistinglnltsOwnRight;

322 literal ItIsAFailureCondition;

275

Appendix C- DCM

323

324

325 enumeration Aggregated

326 literal NotDefined;

327 literal True;

328 literal False;

329

330)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

2. Samples of Scripts Used in the Dependability Case

Creation of Task Issues from Typical Issues and Tasks

VARIABLES

def systemElementsInDC: Sequence;

def issues : Sequence;

def tasks: Sequence;

def packages : Sequence;

def systernTasks : Sequence;

--INITIALISATION OF VARIABLES

systemElementsInDC := SystemElement. alllnstanceso;

issues := Issue. allInstanceso;

systemTasks := SystemTask. alllnstanceso;

packages := Package. allInstanceso;

276

Appendix C- DCAf

22

23

24

25

26

27

ý8

29

30

31

32
33

34

35

36

37

38

39

40

41

42

43

44
45

46

47

1

2

3

4

5

6

--MAIN PROGRAM----

-COUNT SYSTEM ELEMENTS

(systemElementsInDC. sizeo +Total System Elernents')-> printlno;

(issues. sizeo +' Specified Typical Issues')-> printlno;

(systemTasks. sizeo +'Overall System Tasks)-> printlno;

def tipackage : new Package;

tipackage. name := Task Issues';

packages. sclcct(plp. name='DDA!). firsto. content. add(tipackage);

dcf taskIssueCounter: Integer;

-tipackage. printlno;

for (i in issues) I

for (st in systemTasks)

def ti : new TaskIssue;

taskIssueCounter := taskIssueCounter + 1;

ti. name i. name +': + st. description;

ti. issue i;

ti. systemTask := st;

ti. tasklssueIsAConcem: = TasklssuelsAConcem#NotDefined;

tipackage. content. add(ti);

('Created'+ taskIssueCounter+' Issue Instances)->printlno;

DC. store(DC. modelFile. replace('ecore', 'copy. ecore'));

Creation of Deviations

-----VARLABLES-

def systemElementsInDC: Sequence;

def packages - Sequence;

def issues: Sequence;

277

AppendU C- DCM

7

8

9

to

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28

29
30

31

32

33

34

35

36

37

38

39

40

def suitableDeviations : Sequence;

def guidewords Sequence;

def efforCount Integer;

def wamingCount: Integer;

def suppressWarnings : Boolean;

def createApplicableDeviations : Boolean;

def loopCounter: Integer;

----INITIALISATION OF VARIABLES

systeniElementsInDC := SystemElement. alllnstanceso;

issues := Issue. allInstanceso;

packages: = Package. alllnstanceso;

suitableDeviations := SuitableDeviation. allInstanceso;

guidewords: = Guideword. allInstanceso;

---CUSTOMISATION VARIABLES- ---

suppressWamings := false;

createApplicableDeviations := true;

-----MAIN PROGRAM----------

'Starting deviations checking >printlnO;

'Opening File... '->printlno;

(DC. modelFile)->printlno;

'Done. '->printlno;

"->printlno;

wamingCount: = 0;

'Examining deviations >printlno;

'Checking issues for suitable deviations... ->printlno;
for (i in issues)(

278

Append& C- DCM

41

42

43
44

45

46

47

48

49

50

51
52

53

54

55

56

57

58

59

60

61
62

63

64

65

66

67
68

69

70

71

72

73
74

75

if (i. revealedBySuitableDeviation. sizeo=O) I

if (not suppressWarnings) I

C #WARNING-Issue + i. name + "', has not been associated with any

suitable deviatioif)->printlno;

wamingCount := wamingCount + 1;

'Issues checked 1! '->printlno;

"->printlno;

'Checking suitable deviations... '->printlno;

def errorFound : Boolean;

-efforFound is a flag indicating that there is an error in the definition of a suitable deviation

-if an error is found the script will not attempt to create name for the sd

for (sd in suitableDeviations) (

def errorFound : Boolean;

errorFound : =false;

if (sd. systemElementType. sizeo = 0)

(' #Effor-Suitable deviation "' + sd. name + lias not been associated with any System

Elements. ')->printlno;

efforCount: = efforCount + 1;

efforFound := true;

I

if (sd. guideword. sizeO = 0) 1

C #Error-Suitable deviation + sd. name +has not been associated with a
Guideword. ')->printlno;

errorCount: =errorCount +1;

errorFound := true;

}

if (crrorFound = false) I

-if the suitable deviation is defined correctly create name

-and check wethcr applicability has been defined

279

Appendix C- DCM

76 sd. name: = sd. guideword. name +':: '+ sd. systemElementType. name;

77 if (sd. deviationIsApplicable. name =NotDefine&)

78 if (not suppressWarnings) (

79 #WARNING-Define if suitable deviation + sd. name +

80 ... is applicable!)->printlno;

81

82 wamingCount: = warningCount + 1;

83

84

85 -sd. printlno;
86

87 'Suitable Deviations checked !! ý->printlno;

88 'Storing Model... ->printo;
89 DC. storeo;

90 'Done! '->printlno;

91

92 if (createApplicableDeviations)

93 "->printlno;

94 'Creating Applicable Deviations...! ->printlno;
95 ffound'+ suitableDeviations. sizeO +' suitable deviations for the attribute issues speciried. ')-

96 >printlno;

97 loopCounter: = 0;

98 for (sd in suitableDeviations) (

99 if (sd. deviationIsApplicable. name = True')

100 loopCounter := loopCounter + 1;

101

102

103 C of which'+ loopCounter +have been defined as applicable.)->printlno;

104 def adPackage : new Package;

105 packages. select(plp. name='Deviations'). firsto. content. add(adPackage);

106 adPackage. name : =Applicable Deviations';

107 --create a new package below the package deviations to add the applicable deviations

108 loopCounter: =O;
109 for (sd in suitableDeviations) I

110 if (sd. deviationIsApplicable. name = True')

280

Append& C- DCAf

III for (se in sd. systemElementType. systemElements) (

112 --for every type instance associated with a suitable deviation

113 def ad: new ApplicableDeviation;

114 ad. name: = sd. guideword. name +':: '+se. name;

115 --ad. name->printlno;

116 ad. deviationOnSystemElement: = se;

117 ad. guideword: = sd. guideword;

118 loopCounter := loopCounter + 1;

119 adPackage. content. add(ad);

120

121

122

123 ('Created'+ loopCounter +'applicable deviations')->printlno;

124

125

126

127 ". printlno;
128 DC. store(DC. modelFile. replaceCecore', '2. ecore));

129 ('Storing Model as: ')->printlno;

130 C'+ DC. modelFile. replace('ecore', 2. ecore)) ->printlno;
131 ". printlno;

132

133 (warningCount +'Wamings. ')->printlnO;

134 (errorCount +'Errors. ')->printInO;

135 if (suppressWamings) fTo see the warnings change the "suppressWamings" variable in the script. '-
136 >printlno;)

137

138 FINISHED **'->printlno;
139 -------
140

Creation of Failure Conditions

281

Appendix C- DCAf

2 --VAFJ"LES
3-

4 def applicableDeviations : Sequence;

5 def packages : Sequence;

6 def failureConditions : Sequence;

7

8 def errorCount : Integer;

9 def wamingCount: Integer;

10 def loopCounter: Integer;

11

12

13

14 applicableDeviations := ApplicableDeviation. alllnstanceso;
15 packages := Package. alllnstanceso;

16 failureConditions := FailureCondition. alllnstanceso;
17

18

19

20 -create a package to add failure conditions
21 def fcPackage : new Package;

22 packages. select(plp. name=DDA'). firsto. content. add(fcPackage);
23 fcPackage. name : ='Failure Conditions';

24 'Created Failure Conditions Package under DDA->printlnO;
25

26 -create a failure condition ofr every deviation

27 loopCounter :=1; --counter will be used to ID failure conditions
28 for (ad in applicableDeviations) 1

29
-check if there already is one

30 if (ad. manifestsAsFailureCondition. isDefmedO)f

31 fcPackage. content. add(ad. manifestsAsFaitureCondition);
32 loopCounter := loopCounter + 1;

33

34 if (not ad. manifestsAsFailureCondition. isDefinedo)

282

AppendU C- DCM

35

36

37

38

39

40

41

42

43

44

45
46

47

48

49

50

51

52

53

54

1

2

3

4

5

6

7

8

9

10

II

def fc : new FailureCondition;

fc. causedByDeviation := ad;

fc. name := TC+ loopCounter;

fcPackage. content. add(fc);

loopCounter := loopCounter + 1;

}

CCreated'+ (loopCounter-1) +'failure conditions)->printlno;

'! ->printlno;
'Combining failures... '->printlno;

for (fc in failureConditions)

fc. printlno;

fc. causedByDeviation. guideword. printlno;

if (fc. causedByDeviation. guideword ='ornission)

FINISHED ***'->printlno;

Creation of GraphViz File for Failure Map

def failureConditions : Sequence;

def deviations: Sequence;

def systemElements: Sequence;

def traces : Sequence;

def applicableDeviations : Sequence;

def out : String;

def shapeCase : String;

def count: integer;

failureConditions := FailureCondition. alllnstanceso;

283

Appendix C- DCM

12 applicableDeviations := ApplicableDeviation. alllnstanceso;
13 systemElements := SystemElement. alllnstanceso;

14 traces := TraceabilityOfEffect. alllnstanceso;
15

16

17

18

19 ------MAIN- --
20

21 'digraph G ('. printlno;
22 -begin digraph

23 'Dependability Deviation Analysis Automated Graph Extractiolv->printlno;

24 'Process started! '->printlno;

25 'Digraph created! ->printlno;
26 "->printlno;

27 'ranksep 2'. printlno;
28 'nodesep 0.7'. printlno;
29

30 ('Identified'+ failureConditions. sizeO +'failure conditions. ')->printlno;

31 ('Identified '+ applicableDeviations. sizeO +' deviations. ')->printlno;

32 ('Identified'+ systemElements. sizeo +'systern elements.)->printlno;

33 ('Identified'+ traces. sizeO +'associations. ')->printlno;

34 "->printlno;

35

36

37 'Drawing failure conditions'->printlno;
38

39 for (fc in failureConditions)

40 shapeCase : ='rectangle';
41 ('fc+ failureConditions. index0f(fc) +'(I +'shape ='+ shapeCase +, label- +
42 fc. name+W+ (fc. description). formatTexto +""+', color='+ ((fc. effectTrace). sizeo). colourFCO +
43 style = filled'+'];). printlno;
44)-endfor

45

46 "->printino;

284

AppendU C- DCM

47

48

49

so
51
52

53

54

55

56

57
58

59

60

61

62

63

64

65
66

67

68

69

70

71

72

73

74

75

76
77

78

79
80

81

'Drawing deviations->printlno;

for (d in applicableDeviations. select(dld. manifestsAsFailureCondition. isDefinedo))

("'t + d. name + "" +Icolor ='+
(d. deviationOnSystemElement. isOfSystemElementType. name). colourSystemElemento +, fontcolor

+ (d. guideword. name). colourDeviationo +']'). printo;

'. '->printo;

-d. guideword. name->printlno;

} --endfor

"->printlno;

'Drawing failure condition associations'->printlno;

for (f: in failureConditions)

-fc. name->printlno;

for (et in fc. effectTrace. select(etlet. resultsToFailureCondition. isDefinedo))

-C'+et. name)->printlnO;

for (fc2 in et. resultsToFailureCondition)

'. '->printo;

('fc'+ failureConditions. index0f(fc) +'->'+'fc'+
failureConditions. index0f(fc2)). printlno;

-(' '+fc2. name)->printlno;

}
)--end for

I -end for

"->printlno;

'Drawing deviation associations'->printlno;

for (d in applicableDeviations. select(dld. manifestsAsFailureCondition. isDefinedo))

Coll + d. name + 111 -> fc' +

failureConditions. index0f(d. manifestsAsFaitureCondition)). printlno;

'. '->printo;

-d. guideword. name->printlno;

) -endfor

285

Appendix C- DCM

82 ')'. printlno;
83 "->printlno;

84 'Digraph closed! '->printlno;

85

86 out. store(DC. getN4odelFileo. replace('. ecore, '. DDA. col. grapif));

87 'DDA. graph file created! ->printlno;
88 'Process complete'->printlno;
89 "->printlno;

90

91

92 operation Any printIno
93 out := out + self + W;

94

95

96 operation Any printo
97 out := out + self;
98

99

100 operation String colourSystemElement 0 String

101 def inString : String;

102 def outString : String;

103

104 -inString = self. toCharSequenceo;

105

106 inString : =self;
107

108 if (inString ='Information Exchange')

109 outString : =Tbrestgreen'
110

III if (not (inString ='Information Exchange))

112 outString: ='blacle;
113

114 return outString;
115

286

Appendix C- DCM

116

117

118 operation String colourDeviation 0: String

119 def inString : String;

120 def outString : String;

121

122 -inString := selftoCharSequenceo;
123 inString : =self;
124

125 if (inString ='Omission) 1

126 outString : =deepskyblue2';

127

128 if (inString ='Earl3e)

129 outString := 'darkorange4;

130

131 if (inString ='Less')

132 outString : ='firebricle;

133

134 if (inString ='Late)

135 outString : =goldenrod!;

136

137 if (inString ='Fake')
138 outString : =dodgerbluel';

139
140 if (inString ='Value')

141 outString : ='darkorchid2;
142

143 if (inString ='Public')

144 outString : =gray;

145

146 if (inString ='Damage')
147 outString := 'comsilk3';

148

149 return outString;

287

Appendix C- DCAI

150

151

152 operation Integer colourFC 0: String
153 def outString : String;
154

155 if (self = 0)

156 outString : =green3';
157

158 if (self = 1)

159 outString : ='olivedrab3';
160

161 if (self = 2)

162 outString : =yellowl';
163

164 if (self= 3)

165 outString : =orangel';
166

167 if (self >= 4)

168 outString : ='orangeredl';
169

170 return outString;
171

172

173

174 operation String formatText 0: String

175 -formats the text according to the number of words and the length of the sentence
176

177 def length : Integer;

178 def charCounter: Integer;

179 def inString : Sequence;

180 def wordCount : Integer;

181 def outString : String;

182 def wordPointer: Integer,

183

288

Appendix C- DCAI

184 '. ->printo;
185 -TEST- self->printlno;
186 inString - self. toCharSequenceo;

187 length: = inString. sizeo;

188 -TEST- length->printlno;

189 wordCount : =I; -Start from the I st word not Oth

190 -count the words
191 -TEST-'Counting Words... ->printlno;
192 for (c in Sequence (O.. Iength)

193 if (inString. at (c+l) =
194 wordCount := wordCount + 1;

195 -TEST-'Space found! ->printlno;
196

197

198 -TEST- C# of words+ wordCount)->printlno;
199

200 -Formatting
201 if (wordCount < 10 and length > 25

202 for (bin Sequence (O.. Iength)

203 outString := outString + inString. at(charCounter);

204 if (inString. at(charCounter+l) =') (

205 wordPointer := wordPointer + 1;

206 -TEST- CWorpointer+ wordPointer)->printlno;

207 if (wordPointer = 4) (

208 wordPointer: = 0;

209 outString := outString +' \W;

210 -if a space is found jump to the next char by increasing the
211 counter

212 charCounter := charCounter + 1;

213

214

215 charCounter := charCounter + 1;
216

217

218

289

Appendix C- DCM

219
220 if (wordCount >= 10)(
221 for (b in Sequence (O.. Iength)

222 outString := outString + inString. at(charCounter);

223 if (inString. at(charCounter4-1) = ") (

224 wordPointer := wordPointer + 1;

225 -TEST- CWorpointee + wordPointer)->printlno;

226 if (wordPointer = 5) (

227 wordPointer: = 0;

228 outString := outString +'\\n`;
229 -if a space is found jump to the next char by increasing the
230 counter

231 charCountcr := charCounter + 1;

232

233

234 charCounter := charCounter + 1;

235

236

237

238 if (wordCount < 10 and length < 25

239 --this is for shapes with small words; we don't want to break them

240 for (bin Sequence {0.. Iength))(

241 outString := outString + inString. at(charCounter);

242 if (inString. at(charCounter+l) ='I) (

243 wordPointer := wordPointer + 1;

244 -TEST- CWorpointee + wordPointer)->printlno;

245 if (wordPointer = 5) (

246 wordPointer :=0;
247 outString: = outString +\W;
248 -if a space is found jump to the next char by increasing the
249 counter
250 charCounter := charCounter + 1;

251

252
253 charCounter := charCounter + 1;

290

Appendix C- DCAf

254
255

256 -TEST- self->printlno;
257 return outString;

258

259

Creation of GSN GraphViz File

1 def out: String;

2 def shapeCase : String;

3 def count : Integer,

4 def spinalElements : Sequence;

5 def contextElements : Sequence;

6

7

8 spinalElements := DO SpinalElement. alllnstanceso. select(seinot se. isKind0f(ReferenceSpinal));

9 contextElements : =DC! ContextualElement. allInstanceso;
10

11

12 'digraph G(I. printlno;
13 node [shape=record, fontname=Tahoma, fontsize=61; '. printlno;
14 edge [fontname--Tahoma, fbntsize=8]; '. printlnO;
15 'rankdir = TB; '. printlno;

16 center--true; '. printlno;
17

18

19 'Formating! ->printo;
20 for (se in spinalElements)
21

22 if (se. inContext0fisDefmedo)

23 ('Subgraph sameLevelAV + spinalElements. index0f(se) (). printlno;
24 'rank = same; '. printlno;
25

26 -create nodes and shapes for all spinal elements

291

Appendix C- DCM

27

28

29
30

31

32

33

34

35
36

37
38

39

40

41
42

43

44

45

46
47

48
49

50

51

52

53

54

55

56

57

58

59
60

61

if (se. isType0f(Goal)) (

shapeCase : ='rectangle';

Cse'+ spinalElements. index0f(se) +'['+'shape ='+ shapeCase +, label-

+se. description +W + (se. name). fonnatTexto +'"]; J. printlno;

if (se. isType0f(Strategy)) (

shapeCase := 'parallelogranY;

('se'+ spinalElements. index0f(se) +'['+'shape ='+ shapeCase
label="'+se. description +ý\rf + (se. name). fonnatTexto + "'];). printlno;

if (se. isType0f(Solution)) (

shapeCase : =circle';

Cse'+ spinalElements. index0f(se) +'[I +'shape ='+ shapeCase +, '+

label=", +se. description +ýW + (se. name). formatTexto + "']; '). printlno;

-ýse. inContextO"rintlno;

for (ce in se. inContext0f) (

('ce'+ contextElements. index0f(ce. child) +'['+'shape = octagon, label- +

ce. child. description +W + (ce. child. name). formatTexto +'"];). printlno;

Cse'+ spinalElements. index0f(se)+'->+ce'+

contextElements. index0f(ce. child) +'; '). printlno;

')'. printlno;

if (not se. inContext0f. isDefinedo) (

-create nodes and shapes for all spinal elements

if (se. isType0f(Goal)) (

shapeCase : ='rectangle';

('se'+ spinalElements. index0f(se) +'['+'shape ='+ shapeCase +', label-

+se. description +ýW+ (se. name). fonnatTexto '). printlno;

292

Appendix C- DCAI

62

63 if (se. isType0f(Strategy))
64 shapeCase := 'parallelogram';

65 Cse'+ spinalElements. index0f(se) +'['+shape =+ shapeCase ++
66 label="' +se. description +W + (se. name). fonnatTexto + "'];). printlno;

67

68

69 if (se. isType0f(Solution))
70 shapeCase : ='circle';
71 ('se'+ spinalElements. index0f(se) +'['+'shape ='+ shapeCase +', +
72 label="' +se. description +ýW + (se. name). fonnatTexto + "']; '). printlno;
73

74

75

76

77 "->printlno;
78 'Added Spinal Element Nodes -- OK! ->printlno;
79 -Tormating! ->printo;
80 -ADDING CONTEXTUAL ELEMENTS

81 -for (ce in contextElements) (

82 - if (ce. isType0f(Context))

83 - shapeCase : ='octagoif;
84 - ('ce'+ contextElements. indexORce) +'['+'shape shapeCase label-
85 +ce. description +NW+ (ce. name). formatTexto + "'];). printlno;
86

87

88

89 -%>printino;
90 -Added Context Element Nodes - OK! ->printlno;
91

92

93

94 "-printlno; l. printlno; I f. printlno; l. printlno;
95

96 -CONNECTING SPINAL ELEMENTS

293

Appendix C- DCM

97 for (se in spinalElements)
98 for (sb in se. solvedBy)
99 -sb. child->printlno;

100 -print the parent spinal element

101 Cse'+ spina]Elements. index0f(se)). printo;
102

103 --if child is reference point to target

104 if (sb. child. isType0f(ReferenceSpinal)){

105 ('->'+'se+ spinalElements. index0f(sb. child. pointsTo) +'; '). printlno;
106

107 -and if it is not reference print the child index in the spinal elements container
108 if (not sb. child. isType0f(ReferenceSpinal)) (

109 C ->'+'se'+ spinalElements. indexOgsb. child) + ;). printlno;

110

112

113 'Added spinal connectors -O1C->printlnO;
114

115 ')'. printlno; -Close the digraph G
116

117 - write file

118 out. store(DC. getModelFileo. replaceC. ecore', '. GSN. grapif));
119

120 operation Any printlno
121 out: = out + self + W;
122

123

124 operation Any printo
125 out: = out + self;
126

127

128 operation String formatText 0: String 1
129

-formats the text according to the number of words
130

- the point is that the greater the number of words is the more

294

AppendU C- DCAI

131 -words each line should have in order to maintain the ratio
132 -of the shapes

133

134 def length : Integer;

135 def charCounter: Integer;
136 def inString : Sequence;

137 def wordCount: Integer;
138 def outString : String;
139 def wordPointer : Integer,
140

141 '! ->printo;
142 -TEST- self->printlno;
143 inString := selftoCharSequenceo;
144 length: = inString. sizeo;
145 -TEST- length->printlno;
146 wordCount : =I; -Start from the I st word not Oth
147 -count the words
148 -TEST-'Counting Words... ->printlno;
149 for (c in Sequence (O.. Iength)
ISO if (inString. at (c+l) =
151 wordCount := wordCount + 1;
152 -TEST-'Space fbund! ->println0;
153

154
155 -TEST- C# of words'+ wordCount)->printlno;
156

157 -Formatting
158 if (wordCount <8 and length > 25
159 for (bin Sequence (0.. length)
160 outString := outString + inString. at(charCounter);
161 if (inString. at(charCounter+l) = ") (
162 wordPointer := wordPointer + 1;
163 -TEST- CWorpointer+ wordPointer)->printlno;
164 if (wordPointer = 3) (

295

Appendix C- DCAI

165 wordPointer :=0;

166 outString := outString + '\W;

167 -if a space is found jump to the next char by increasing the
168 counter
169 charCounter charCounter + 1;

1 70

171

172 charCounter : =ý, charCounter + 1;

173

174

175

176

177 if (wordCount >= 8

178 for (bin Sequence (O.. Iength)

179 outString := outString + inString. at(charCounter);
180 if (inString. at(charCounter+l) = ") (

181 wordPointer := wordPointer + 1;

182
-TEST- CWorpointee + wordPointer)->printlno;

183 if (wordPointer = 5) (

184 wordPointer :=0;
185 outString := outString +' \W;
186 -if a space is found jump to the next char by increasing the
187 counter
188 charCounter := charCounter + 1;
189

190

191 charCounter := charCounter + 1;
192

193

194

195 if (wordCount <8 and length < 25
196 -this is for shapes with small words; we doift want to break them
197 for (bin Sequence (O.. Iength))(
198 outString := outString + inString. at(charCounter);
199 if (inString. at(charCounteri-1) = ") (

296

AppendU C- DCAf

200 wordPointer := wordPointer + 1;

201 -TEST- CWorpointee + wordPointer)->printlno;

202 if (wordPointer = 5) (

203 wordPointer: = 0;

204 outString := outString +' \W;

205 -if a space is found jump to the next char by increasing the
206 counter
207 charCounter charCounter + 1;

208

209

210 charCounter := charCounter + 1;

211

212

213 -TEST- self->printlno;
214 return outString;
215

GSN Constraints Using EVL

I pre I

2 def numberOfFANIN: Integer;

3 def numberOfSolutionFANIN , Integer;

4

5

-6 post
7

8

9 context AwayGoal

10

11 constraint IlasArgumentModule

12 self. argumentModule. isDefinedO

13 fail:

14 'Away goal'+ selfname +'has no associated argument module'
15

297

Appendix C- DCAf

16 constraint NamesMatch :
17 self. name = self. argumentModule. name
18

19

20 context SolvedBy
21

22 constraint I lasChild

23 selEchild. isDefinedo

24 fail :
25 'Element'+ self eContainero. description +does not have a solution!
26

27

28 context ReferenceSpinal
29

30 constraint PointsToNonReference

31 not selfpointsTo. isType0f(ReferenceSpinal)

32 fail :
33 'Reference Spinal points to another Reference Spinal under: '

34 + self. eContainero. eContainero. name
35

36 constraint ShouldnotPointToGoal
37 not selfpointsTo. isTypeOf (Goal)

38 fail (

39 numberOtGoalFANIN: = numberOfFANIN + 1;

40 return 'Goal'+ selfeContainero. eContainero. description +

41 'Fans-in to goal'+ selfpointsTo. description;
42

43

44 constraint ShouldNotPointToSolution:
45 not selfpointsTo. isType0f(Solution)

46 fail (

47 numberOfSolutionFANIN := numberOfSolutionFANIN + 1;

48 return'Fan-in at solution'+ selfpointsTo. description +
49 ' under goal I+ selfeContainero. eContainero. description;

298

Appendix C- DCM

50

51)-END OF ReferenceSpinal Constraints
52

53 context Goal
54

55_ constraint I lasUniqueName

56 Goal. alllnstances. forAll(glg. name selEname implies g= self)
57 fail :
58 'Duplicate Goal name: I+ selfname +' at '+ self description

59

-60 constraint I lasUniqueDescription

61 Goal. alllnstances. forAll(glg. description = selfdescription implies g selo
62_ fail:

63 'Goal'+ selEdescription +'has not unique ID'

64

65

66 END GOAL CONSTRAINTS
67

68 context LeafSpinatElement
69

70 constraint IsNotDecomposed
71 selfsolvcdBy. sizeo 0
72 fail :
73 'Goal solution'+ selEdescription +'is illegally decomposed'

74

75

299

Appendix C- DCAf

GraphViz Failures Map for the AGO

digraph G(

f; O[shape = rectangle, label= " FC I\nDisclosure of aircraft position " color - green3 , style - filled

f; I[shape = rectangle, label= " FC2\nSlow transmission of target \ndata " color - yellowl , style
filled];

fc2[shape = rectangle, label= " FOViArtillcry receive fake target \ndata with malicious intent " color

orange I, style = filled];

fc3[shape = rectangle, label= " FC4\nEnemy receives firing intent \nand target information " color

green3 , style = filled];

fc4[shape = rectangle, label= " FC5ViArtillery will not receive \nany target data " color - orangered I,

style = filled];

fc5[shape= rectangle, label=" FC6\nArfillery will receive the \nwrong location/order " color-yellowl

, style= filled];

fc6[shape = rectangle, label= " FC7\nDelay or possibly loss of \nrequest of target order and \ntarget

information " color = olivedrab3 , style = filled];

f; 7(shape = rectangle, label= " FC8\nThere is no patrolling function \navailable, cannot notify of enemy
Worces " color = olivedrab3 , style = filled];

fc8[shape = rectangle, label= " FC9\nUsers mistakenly identify enemy " color = orange I, style - filled

1;

fc9[shape - rectangle, label= " FC I O\nA location is not supressed \nwhilst it is being expected What it

does " color = olivedrab3 , style = filled];

fclO[shape -rectangle, label=" FCI I\nA location is suppressed \nwhen it should not" color-

olivedrab3 , style = filled];

fcll[shape= rectangle, label=" FC12\nDelays in supressing enemy" color= olivedrab3 style -filled
1;

"Public:: Needline 1"[color = blue, fontcolor = deeppink4]"Overload:: Needline 7"[color - blue, fontcolor

= deeppink4]"Fake:: Needline 7"(color = blue, fontcolor = deeppink4]"Public:: Needline 7"[color = blue,
fontcolor = deeppink4]"Omission:: Needline 7"[color = blue, fontcolor = deeppink4]"Value:: Needline
7"[color = blue, foritcolor = deeppink4]"Late:: Needline 7"[color = blue, foritcolor -
deeppink4]"Omission:: Activity 4"[color = blue, fontcolor = forcstgreen]"Mistake:: Activity 4"[color -
blue, fontcolor = forestgreen]"Mode:: Activity 6"[color = blue, fontcolor = forestgrcen]"Late:: Activity

6"[color = blue, foritcolor = forestgreen]"Public:: Needline 1 &0

"Overload:: Needline 7" -> fc I

"Fake:: Needline 7" -> &2

"Ilublic:: Needline 7" -> f: 3

"Omission:: Needline 7" -> fc4

300

Appendix C- DCAI

"Value:: Needline 7" -> fc5

"Late:: Needline 7" -> fc6

"Omission:: Activity 4" -> fc7

"Mistake:: Activity 4" -> fc8

"Mode:: Activity 6" -> fc9

"Mode:: Activity 6" -> fc 10

"Late:: Activity 6" -> fc II

fcl -> fcl I

fc2 -> fc8

fc2 fc 10

fc4 fc6

fc4 fc9

fc4 fcll

fc5 fclo

fc6 fc8

fc6 fc9

fc6 fcl I

0 fc4

fc8 fc4

fc8 fc5

301

Intentionally Blank

302

References

References

[1] Fedcral Aviation Authority, 4eronautical Infionnation Manual : Official

Guide to Basic Flight Information andATC Procedures, February 2006.

[2] S. Kinncrsly, "Whole Airspace ATM System Safety Case - Preliminary

Study". . 4E, 4T LD7600812 Issue 1, AEA Technology for Eurocontrol.
http: //dependability. cs. virginia. cdu/research/safctycascs/EUR_WholeAirspa
ce. pdf Last accessed September 2006.

[3] DoD. Network Centric Warfare. Department of Defence Report to US

Congress, 2003. http: //www. c3i. osd. mil/NCW Last accessed November

2005.

[4] V. Smimova, Multi Agent System for Distributed Data Fusion in Peer-To-

Peer Environment, 112002, M. S. Thesis, University of Jyvaskyla.

[5] N. Leveson, P. Allen, and M. A. Storey, "The analysis of a friendly firc

accident using a systems model of accidents". In Proceedings of the 201h

International System Safety Society Conference (ISSC 2003), pages 345-

357. System Safety Society, Unionville, Virginia, 2002.

[6] R. Alexander, M. Hall-May, Characterisation of Systems of Systems

Failures. In proceedings of the 22nd International System Safety Conference,

System Safety Society, 2004.

[71 German Federal Bureau of Aircraft Accidents Investigation, Investigation

Rcport AXOO I-1 -2/02 May 2004.

[8] Ministry of Dcfcncc, "Safcty Managemcnt rcquircmcnts for dcfencc

systcms", Defence Standard 00-56 issue 4, Ministry of Mcrice, 2005.

[91 J. Lapric, Dependability. Basic Concepts and Terminology, Springer-WrIag,

ISBN 3-211-82296-8,1992.

303

References

[10] D. Prasad, "Dependable Systems Integration using Measurement Theory and
Decision Analysie'. PhD Thesis, Department of Computer Science,
University of York, UK, 1998.

[111 G. Despotou, R. Alexander, M. Hall-May. Key Concepts and Characteristics

of Systems of Systems (SoS). February 2003. Defence and Aerospace
Research Partnership (DARP-HIRTS) Public Document

[12] Ministry of Defence, "JSP430 - Ship Safety Management System

Handbook, " Ministry of Defence January 1996.

[131 R. Seymour, G. D. Sands, A. Grisogono, M. Unewisse, J. Vaughan, R.
Baumgart, "Application of Network Centric Warfare Concepts to a Land Air

System - experimentation approach", Land Operations Division, Defence

Science and Technology Organisation, Australian Department of Defence.

141 V. Kotov, Systems of Systems as Communicating Structures, Hewlett

Packard Computer Systems Laboratories, 1997.
(ww. hpl. hp. com/techrcports/97) Last accessed September 2006.

[151 M. W. Maier, "Architecting Principles for Systems of Systems"
(http: //www. infocd. com/Open/PAPERS/systems. htm) Last accessed October
2006

[161 P. Periorellis, J. E. Dobson, "Organisational Failures in Dependable
Collaborative Enterprise Systems", Journal of Object Technology, Vol. 1,
No. 3, Special issue: TOOLS USA 2002 proceedings, pages 107 - 117.

[17] J. W. Hollcnbacb, W. L. Alexander, "Executing the Modelling and
Simulation Strategy Making Simulation Systems of Systems a'Rcality" ,
Proceedings of the 1997 TYinter Simulation Conference (pp. 948 - 954).

[18] T. A. Clare, "The Engineering and Acquisition of Systems of Systems. US

Department of Defense", Research Development and 4cquisition Office,
2000.

304

References

[19] M. Kaanich, K. Kanoun, M. Rabah, Preliminary framework for SoS

Dependability Modelling and Evaluation, LAAS - CNRS, 200 1.

[20] D. S. Caffal Michael, "Systems of Systems Design from an Object Oriented

Paradignf', Proceedings of Monterey Workshop: Radical Innovations of
Software and Systems Engineering in the Future, US Army Research

Officc, 2002.

[21] C41SR Architecture Framework, Version 2.0, Architectures Working Group,
US Department of Defence.

[22] S. Jamcson, "Architccturcs for Distributcd Information Fusion to Support

Situation Awareness on the Digital Battlefield", Fourth International

Conference on Data Fusion, Montreal, Canada, August 7-10,2001.

[23] US Department of Defense. Architecture Framework Working Group

"DODAF version I- Deskbook7', Department of Defence 2004.
,

[24] J. Laprie, A. Avizicnis. Dependability: Basic concepts and teminology,

Springer-Verlag, ISBN 3-211-82296-8,1992.

[25] B. Littlewood, L. Stringini, "Software Reliability and Dependability: A

Roadmap", Centro for Software Reliability, ' City- University.

(httpJ/www. csr. city. ac. uk) Last accessed July 2006.

[26] J. McDermid, "On Dependability, its measurement and its managcmenf'
High Integrity Systems Journal, 1994, l(l): 17-26.

[27] A. Villerneur. Reliability, Availability, Maintainability and Safety

Assessment. Volume 1. Methods and Techniques. 1992, Wiley.

[281 International Elcctrotcchnical Commission, "IEC 60050-191 International.

Electrotechnical Vocabulary", Chapter 191: Dependability and Quality of
Servicd". www. icc. ch.

[291 T. Saridakis, V. Issarny, "Developing Dependable Systems Using Software

Architecture". In Proceedings of the Ist Working IMP Conference on
Software, .4 rchitecture, pages 83 - 104, February 1999.

305

References

[30] H. Thane, "Safe and Reliable Computer Control Systems Concepts and
Methode' Mechatronics Laboratory, Department of Machine Design, Royal
Institute of Technology, KTH, Stockholm. ISSN 1400-11791996.

[31] J. D. Lawrence, "Software Reliability and Safety in Nuclear Reactor

Protection Systems" Report prepared for the US Nuclear Regulatory

Commission. Lawrence Livermore National Laboratory.

[32] N. Leveson., Safeware System Safety and Computers, Addison Weslcy,

199S.

[331 G. I Pai, "A Survey of Software Reliability Models", Report CS 651:

Dependable Computing. Department of ECE, University of Virginia, 2002.

[34] E. Jonsson., L. Stromberg, S. Lindskog, On the Functional Relation between

Security and Dependability Impairments. New Security Paradigm

Workshop 9/99 http: //Www. nspw. org. Last accessed in October 2006.

[351 SafScc: Integration of Safety and Security Certification. Phase I Final

Summary Report. ST1199.43.5 Issue 2. January 2003, Praxis.

(http: //www. safsec. com).

[361 J. Moffett, D. Eames. The integration of Safety and Security Requirements.

Proceedings of Safecomp 1999.

[37] F- Kaman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, J. Carriere,

"rhe Architcctum Tradeoff Analysis Method" Appeared in the 4 th

International Conference on Engineering of Complex Computer Systems

(ICECCS98), August 1998.

[38] M. R. Barbacci, M. H. Klein, C. B. Weinstock, "Principles for Evaluating

the Quality Attributes of a Software Architecture", Technical Report

CMUISEI-96-TR-036, Software Engineering Institute, * Carnegie. Mellon

University, 1997.

J39] M. Barbacci, S. J. Carrierc, 11. P. Feiler, R. Kazman, M. Klein, F. H.

Lipson, A. T. Longstaff, B. C. Weinstock, "Steps in an Architecture

306

References

Tradcoff analysis Method: Quality Attribute Models and Analysis". SET,

Carnegie mellon University, Technical Report CMUISEI-97-TR-029,1998.

[40] S. Shum, N. Hammond, "Argumentation-Based Design Rationale: From

- Conceptual Roots to Current Use", International Journal of Hum an
Computer Studies, Volume 40 M9 1993, pp 603 - 652.

[41] S. Shum S., A. MacLean, V. Bellotti, N. Hannnond, "Graphical

Argumentation and Design Cognition". Knowledge Media Institute, The

Open University, 1997, Report: KMI-TR-25.

[421 L. J. SIBYL, "A Tool for Managing Group Decision Rationale",

Proceedings of Conference on Computer Supported Cooperative Work, 990

pp. 79-92.

[43] J. Conklin, L. Bcgcman, gIBIS. ' A hypertext tool for e plorato poli X CY
discussion, 1998, ACM 0-89791-282-9/8810140.

[441 The Health and Safety Executive (HSE), "Reducing Risks Protecting

People', HSE Books, Norwich, 2001.

[45] T. Walker, "Tolerability of Risk. its Use in Nuclear Regulation in the UK! ',

International Committee on Nuclear Technology (I
,
LT) Symposium on

Opportunities and Risks of Nuclear Power, April 2001.

[46] UK Railtrack. Engineering Safety Management Issue 3, Yellow Book

3. Railtrack PLC 2000.

[471 T. Kelly, "Arguing Safety, a Systematic Approach, to Managing Safety

Cases", PhD Thesis, Department of Computer Science, Univ ersity of York,

1998.

[48] J. McDermid, "Software Safcty: Whcrc's the Evidencc? " In procudings 6th

Australian Workshop on Industrial Experience with Safety Critical SYStenu

and Software (SCS'O 1).

307

References

[49] P. Froorne, C. Jones, Developing Advisory Software to Comply with IEC-

61508. Prepared by Adelard for the Health and Safety Executive. ISBN
0717623041,2002.

[501 R. Maxion, I, Olszewski. "Improving Software Robustness with
Dependability Cases", Digest of Papers 28h Annual International

Symposium on Fault-Tolerant Computing, Munich 1998, pp. 346 7 355.

[51] IL Maxion, "Measuring Intrusion-Detection Systems", Presented to The
First International Workshop on Recent Advances in Intrusion Detection,
1998, Louvain-la-Neuve, Belgium.

[521 ASCAD, Adclard Safety Case Development Manual, 1998, Adelard, 3

Cobom Rd., London.

[53] Department for Regional Development, Safety Case- Administration

Manager, Railway Safety Case Regulations, Transport Division, Belfast.

[54] J. McDermid, Support for Safety Cases and Safety Arguments using SAM, "

Reliability Engineering and System Safety, 43: 111-127,1994.

[551 T. P. KcIly, Concepts and Principles of Compositional Safety Cases,

COMSA/2001/l/I - Rescarch Commissioncd by QinetiQ, Dcpt. of
Computer Science, University of York.

[56] Ministry of Defcnce, Dircctorate of Standardization, Dcfence Standard, 00-

40 (Part 1)/Issue 4, Rcliability and Maintainability (R&M), 1999.

[571 Ministry of Defence, Directorate of Standardization, Defence Standard, 00-

42 (Part 2)/Issue 3, Reliability and Maintainability (R&M), 1999.

[581 M. D. Kicnzic, "Practical Computer Security Analysis". PhD Thesis.

School ofEngineering and, 4pplied Science, University of Virginia, 1998.

[591 P. Fcnclon, A. J. McDermid., "An Integrated Toolset for Software Safety

Analysis"t Journal of Systems and Software, July 1993.

308

References

(601 A. Moore, B. Strohmaycr, Visual NRM User's Manual, Centre for High

Assurance Computing, Naval Research Laboratory, Washington, DC 20375-

5320. Report: NRUFR/5540-00-99502000

[61] Common Criteria Project Organisations. "Common criteria of information

technology security evaluation", http: //commoncriteriaportal. org. Last

accessed on 10 October 2005.

[621 S. Robatson., J. Robatson. Mastering the Requirements Process, Addison-

WCSICY, 1999.

[631 L. Bass, P. Clements, R. Kazman,. Software Architecture in Practice, Ist

Edition, Addison-Wesley, 1998.

[64] E. Kavakli, P. Loucopoulos, "Goal Driven Requirements Engineering:

Analysis and Critique of Current Methods", Infonnation Modeling Methods

andMethodologies (, 4dv. topics of Database Research), John Krogstic, Terry

Halpin and Kcng Siau (eds), IDEA Group, pp 102 - 124.
ý

[651 Adelard, ASCE Tool Ovcrvicw, http: //www. adelard. com/wcb/hnav/ASCE/

Last acccsscd May 2006.

[661 Eclipse foundation, Getting Started with Eclipse.

httpJ/www. eclipse. org/reso=es/ Last accessed October 2006.

[67) D. Kolovos, P, Paige, and F Polack, "The Epsilon Object Language (EOL)",

in Proc. European Conference in Model Driv en Architecture (EC-AMA)

2006, Bilbao, Spain, July 2006.

[681 E. Gansncr, E. Koutsoflos, S. North, Drawing graphs with. dot.

http: //www. graphviz. org/Documentation. php Last acccssed August 2006.

[69] F. Jouault, J. Bdzivin, KM3: a DSL for Metamodel Specification:

Proceedings of 81h IFIP International Conference on Formal Methodsfor

Open Object-Based Distributed Systems, LNCS 4037,2006, Bologna, Italy,

pages 171-185.

309

References

[70] SAE, "Guidelines and methods for conducting the safety assessment process

- on civil airborne systems and equipment ARP 4761", Society for
Automotivc Enginecrs, 1996.

[71] Ministry of Defence. "Defence Standard 00-58: HAZOP Studies on Systems

Containing Programmable Electronics". 1996.

[721 EUROCONTROL. "Review Of Techniques To Support The EATMP Safety
Assessment Methodology", Volume 1, EEC Note No. 01/04, Project SRD-3-

I, January 2003.

[73] T. Srivatanakul, "Security Analysis with Deviational Tehniques", PhD
Thesis, Department of Computer Science, University of York, 2005., .

[741 R. Stcphans and T. Warner "Systcm Safcty Analysis Handbook! ', 2nd

Edition. Systcm Safcty Socicty, 1997.

[751 T. Kletz, "HAZOP and HAZAN. Identifying and Assessing Process Industry

Hazards", Institution of Chemical Engineers, 1992.

[761 D. Pumfrey, "rbe Principled Design of Computer System Safety Analyses",

PbD Thesis, Department of Computer Science, University of York, 1998.

[77] J. P. Rankin., "Sncak Circuit Analysis", Nuclear Safety, Vol. 14 no. 5,1973.

[78] S. P. Wilson and J. A. McDcrmid. "Integrated Analysis of Complex Safety

Critical Systems", Tbc Computer Journal 1995 38(10): 765-776, ISSN 1460-

2067

[79] G. Mauri "Integrating Safety Analysis Techniques, Supporting

Identification of Common Cause Failurce', PhD Thesis, University of York,

YCST-2001-02.

[80] E. G. Amoroso, Fundamentals of Computer Security TechnIology, Prentice-

Hall, 1994.

310

References

[811 D. Firesmith. "Analyzing the Security Significance of Systems

Requirements", SEI, Symposium on Requirements Engineering for
Infonmtion Security (SREIS 2005), August 29-30,2005.,

[821 C. P. Pflccgcr, Security in Computing, 3rd EditiOn, Prcntice-Hall, 2002.

[83] Department of Trade and industry, Development of a Safety Case for the
Use of Current Limiting Devices to Manage Short Circuit Currents on
Electrical Distribution Networks, Report Number: URN 04/1066.

[841 Ministry of Defence, Directorate of Standardization, Defence Standard, 00-

55, Requirements for Safety Related Software in Defence Equipment.

August 1997. (Part 1)/Issue 2: Requirements, (Part 2)/Issue 2: Guidance

[85] Ministry of Defence, "Defence Standard 00-25, Human Factors for

Designers of Systcrr&, Principles and Process, Ministry of Defence, 2004.

[861 L. Bass, P. Clcmcnts, P, Kazman, Software Architecture in Practice 2nd

edition, Addison-Wesley.

[871 M. T. DcGarmo, , issues Concerning Integration of Unmanned Aerial

Vehicles in Civil Airspace", report Mp o4WO000323, November 2004.

[881 Institute of Electrical and Electronics Engineers, Recommended Practice for

Architectural Description IEEE STD 1471-2000.

[89] MoD, MODAF Partners, "MODAF Handbook, technical specification for

MODAF'Ministry of Defence, 2005.

[90] C. Kobbrin, C Sybbald, "Moddling DODAF Compliant, Architccturcs",

Telelogic white paper http: //ýww. tclclogic. conVstandards/modaf cfm- Last

acccsscd Junc 2006.

[911 13. Nuscibch, Weaving Together Requirements'and Architectures, March

2001(Vol. 34, No. 3), pp. 115-117.

[92] Oxford Univcrsity Prcss, Oxford English Dictionary, 2000.

311- ''

References

[93] P. Granbachcr, B. Boehm, "EasyWinWin: a groupwarc-supportcd

methodology for requirements negotiation7', Proceedings of the 8th

European software engineering conference held jointly with 91h ACM

SIGSOFT international symposium on Foundations of software engineering,
Pages: 320 - 321 2000 ISBN: 1-58113-390-1.

[94] FL Karsten, T. Garvin, "The Use of the Analytic Hierarchy Process in the

Selection of Participants for a Telecommuting Pilot Project", SlGCPR/

SIGMIS '96, Denvcr Colorado USA 1996 ACM.

[951 Airbus, MOOM, New, 4irlift Requirements,

http: //www. airbusmilitary. com/requiremcnts. html Last accesscd Septcrnber

2006.

[96] S. French, T. Bedford, E. Atherton, "Supporting ALARP decision-making

by Cost Benefit Analysis and Multi-Attribute Utility", Journal of Risk

Research (2005) Vol 8 No 3 April pp. 207 - 223.

[97] G. Bemat, A. Bums and A. Llamosi, "Weakly Hard Real-Time Systcme',

IEEE Transactions on Computers voL50 no. 4pp 308-321. April 2001.

[98] E. De Bono, Six Thinking Hats, Penguin Books, 1999.

[99] G. Booch, Software Architecture

www. booch. conVarchitecture/blog/artifacts/SoftwareArchitecture. pdf Last

accessed July 2006.

[100] J. Fenn, R Hawkins, T Kelly, P Williams, "Safety Case Composition Using

Contracts -Refinements based on Feedback from an industrial Case Study",

in Proceedings of 15th Safety Critical SYstems'-Symposium(SSS'07),

February 2007 (Proceedings published by Springer)

[101] Susan Stcpncy, Fiona Polack, Hcather TuMcr, Engineering Emergence,

ICECCS 2006, IEEE 2006.

312

References

[102] J. Dehlinger, R. Lutz, "Bi-Directional Safety Analysis for Product-Line,

Multi-Agent Systems", ITCES'06, April 4,2006, San Jose, California, USA.

ACM 1-58113-000-0/00/0004.

[103] 1 P. Corriveau, D. Arnold, S. Basharoust, V. Radonjic, "Automated Support

for Validaiton and Verification of NET Systems", in proceedings of the
International Conference on Software Engineering, 2007.

[104] US Department of Homeland Security, Secure Software Assurance "A

Guide to the Common Body of Knowledge to Produce, Acquire, and Sustain

Secure Software", editor S Redwine.

(105] Y. Papadopoulos, J. A. McDermid, "HiP -HOPS: Hierarchically Performed

Hazard Origin and Propagation Studies, " SAFECOW '99, l8th Int 7 Conf

on Computer Safety, Reliability and Security, Toulouse, LNCS, 1698: 139-

152, Sep 1999.

[106] R. A. Weaver. "The Safety of Software - Constructing and Assuring

Argument". PhD thesis, Department of Computer Science, univcrsity of
York, YCST-2004-01.

[107] US Departmcnt of Dcfcnce. Systcm Safcty Program Rcquirements, 1993,

AMSC Numbcr F6861.

[108] DoD. Architecture Framework Working Group "DODAF version I-

Deskbook", Department of Defence 2004.

[109] Ministry of Dcfencc, The Acquisition Handbook Edition 6, Octobcr 2005.

[110] M. Hall-May, T Kelly, "Using Agcnt-bascd Modelling Approaches to

Support the Development of Safety Policy for Systems of Systems", in

Proceedings of the 25th International Conference on Computer Safety,

Reliability and Security (SAFECOMP'06) Gdansk, Poland, September 2006

(Springcr-Vcrlag in LNCS).

313

