
Flexible Scheduling of
Hard Real-Time Systems

Neil C. Audsley

Submitted for the degree of Doctor of Philosophy

University of York

Department of Computer Science

August 1993

Contents
Acknowledgments

......................
Declaration

.........................
Abstract

.......................... iv

1. Introduction
.................. 1

1.1 Scheduling in Hard Real-Time Systems 2
1.2 Thesis Goals 4
1.3 Structure of Thesis 4
1.4 Definitions

.................. 5
1.5 Nomenclature 7

2. Scheduling Hard Real-Time Systems: A Survey 8
2.1 Comple; dty Results 8

2.1.1 Computability and Decidability 9
2.1.2 Important Uniprocessor Results 9
2.1.3 Important Multiprocessor Results 11
2.1.4 Summary 11

2.2 Simple Uniprocessor Scheduling 12
2.2.1 Restrictions and Assumptions 13
2.2.2 Offline Scheduling 13
2.2.3 Static Priority Scheduling 14
2.2.4 Dynamic Priority Scheduling 17
2.2.5 Summary 19

2.3 Scheduling Realistic Uniprocessor Systems 19
2.3.1 Realistic Model 19
2.3.2 Problems Associated with the Realistic Model 19
2.3.3 Developments of Offline Scheduling 20
2.3.4 Developments of Static Priority Scheduling 21
2.3.5 Developments of Dynamic Priority Scheduling 25
2.3.6 Summary 26

2.4 Scheduling Multiprocessor Realistic Systems 27
2.5 Availability of Run-Time Scheduling 27
2.6 Summary 29

3. An Approach For Obtaining Flexibility in Hard Real-Time Systems
3.1 Characteristics of Next Generation Hard Real-Time Systems ...

3.1.1 Summary
3.2 An Approach For Introducing Additional Flexibility

......
3.2.1 Increasing Offline, Flexibility

.............
3.2.2 Increasing Run-Time Flexibility

...........
3.2.3 Summary

....................
3.3 The Complexity / Flexibility Trade-Off

3.3.1 The Offline Complexity / Flexibility Trade-Off
3.3.2 The Run-Time Complexity / Flexibility Trade-Off

3.4 Summary
.......................

4. Extending Offline Flexibility Via
Deadline Monotonic Feasibility Analysis

.....
4.1 Feasibility Analysis of Dj:! ý Tj Processes: Background
4.2 Sufficient and Not Necessary Feasibility Tests for Dj:! ý Tj Processes

4.2.1 Sufficient and Not Necessary Feasibility Test No. 1....
4.2.2 Sufficient and Not Necessary Feasibility Test No. 2....
4.2.3 Sufficient and Not Necessary Feasibility Test No. 3....
4.2.4 Sufficient and Not Necessary Feasibility Test No. 4....
4.2.5 Summary

.... ******,, **, **,, *
4.3 Sufficient and Necessary Feasibility Tests for Dj: 5 Tj Processes .

4.3.1 Response Time Sufficient and Necessary Feasibility Test .
4.3.2 Exact Interference Sufficient and Necessary Feasibility Test

4.3.3 Hybrid Sufficient and Necessary Feasibility Test
4.3.4 Summary

4.4 Feasibility of Sporadic Processes
4.4.1 Sporadic Processes: the Polling Approach
4.4.2 Sporadic Processes:

the Deadline Monotonic Scheduling Approach

30
31
34
35
35
37
38
39
39
41
42

43
44

49

49
52
54
59
64
64

65
70
75
77
77
78

4.4.3 Aperiodic Processes
4.5 Process Blocking

4.5.1 Reducing Bi Pessimism By Consideration of
nming Characteristics

4.6 Infeasibility Analysis
4.6.1 Sufficient and Not Necessary Infeasibility Test
4.6.2 Process Blocking, Sporadic Processes and Infeasibility Tests ..

79
80
81

82
85
87
88

4.7 Comparison of Feasibility Tests 88
4.7.1 Comparison of the Efficiencies of Sufficient and

Necessary Feasibility Tests 89
4.7.2 Comparison of Sufficient and Necessary Feasibility Tests .. . 96

4.8 Summary
....................... . 99

5. Extending Offline Flexibility Via Optimal Priority Assignment
.. . 101

5.1 Critical Instants
.................... . 105

5.2 Optimal Priority Assignment
............... . 106

5.2.1 Optimal Bottom-Up Priority Assignment
........ . 109

5.2.2 Algorithmic Implementation
............. . 110

5.2.3 Discussion
.................... . 112

5.3 Feasibility Interval
................... . 112

5.3.1 Discussion
.................... . 117

5.4 Sufficient and Necessary Feasibility
............ . 118

5.4.1 Schedule Construction Sufficient and
Necessary Feasibility Test 118

5.4.2 Hybrid Sufficient and Necessary Feasibility Test 120
5.5 Sufficient and Not Necessary Feasibility Test 126

5.5.1 Sufficient and Not Necessary Feasibility Test No. 1.... . 128
5.5.2 Sufficient and Not Necessary Feasibility Test No. 2... .. . 130
5.5.3 Sufficient and Not Necessary Feasibility Test No. 3.... . 131
5.5.4 Sufficient and Not Necessary Feasibility Test No. 4.... . 133
5.5.5 Summary

.................... . 137
5.6 Arbitrary Precedence Constraints

............. . 137
5.6.1 Model 138
5.6.2 Extending the Priority Assignment Technique 139
5.6.3 Algorithmic Implementation 140
5.6.4 Discussion 141

5.7 Resources 142
5.7.1 Background Considerations 143
5.7.2 Clairvoyant Blocking and the Reservation Protocol 143
5.7.3 Clairvoyant Blocking and the Priority Ceiling Protocol . 146
5.7.4 Pessimistic Blocking 148

5.7.5 Discussion 149

5.8 Increasing Feasibility 149

5.9 Summary 152

6. Spare Capacity and its Detection 154
6.1 Language Assumptions 157
6.2 Gain Points: An Approach for the Detection of Spare Capacity . 158

6.2.1 Static Gain Points 163
6.2.2 Dynamic Gain Points 163
6.2.3 Efficiency Gain Points 164
6.2.4 Resource Usage Gain Points 165
6.2.5 Resource Blocking

................. . 166
6.2.6 Detecting Slack Time 168
6.2.7 Siimmary

.................... . 168
6.3 Formal Model of Spare Capacity

.............. . 168
6.3.1 Relationship Between Slack and Gain Time 169
6.3.2 Code Representation

................ . 170
6.3.3 Gain Point Placement and Value 174
6.3.4 Preservation of Utilisation 176
6.3.5 Summary

.................... . 177
6.4 Implementation and Overhead Considerations 178

6.4.1 Gain Point Implementation 179
6.4.2 Gain Point Insertion Into Process Code 182
6.4.3 Evaluation of Gain Time Detection 183

6.5 Extensions 189
6.6 Summary

....................... . 190

7. Allocation of Spare Capacity 192
7.1 Characteristics of Spare Capacity 195

7.1.1 Initial Observations 195
7.1.2 Kernel Level Model of Spare Capacity 197
7.1.3 Preservation and Scope of Spare Capacity 199
7.1.4 Assignment of Gain Time and Slack Time 203

7.1.5 Scope and Assignment of Spare Resources 205

7.1.6 Summary 206

7.2 Conversion of Slack Time to Gain Time 206

7.2.1 Simple Conversion 206

7.2.2 Conversion By Prediction 207

7.2.3 Conversion By Preservation 208

7.2.4 Summary 211

7.3 Implementation Strategies for Spare Capacity Allocation Policies . 211

7.3.1 Periodic Execution of SCAP
............. . 212

7.3.2 SCAP Execution on Spare Capacity Detection and Request . . 212

7.4.1 Guaranteed Optional Performance
........... . 216

7.4.2 Unguaranteed Optional Performance
217

7.4.3 Increasing System Utility
219

7.4.4 Summary
219

7.5 Summary
220

8. Conclusions and Further Work 222
8.1 Further Work 224
8.2 In Conclusion 225

Appendix A. Generation of Random Process Sets
.......... 226

Appendix B. Processes Used In Gain Time Detection Evaluation 227

Bibliography 230

Acknowledgements
I would like to thank my supervisor, Dr. Alan Bums, for his interest and
involvement with this work and my research in general.
I am grateful to Rob Davis for reading earlier drafts of this dissertation.
Also, I am grateful to all those people with whom I have had discussions

upon various matters, especially Nhke Richardson, Andy Wellings, Ken
9Pindell and Rob Davis.
Finally, my thanks go to Liz, who encouraged, fed and watered me whilst
writing-up.

To Grandad, and his belief in education.

i

Declaration

Certain parts of this thesis have appeared in previously published papers,
specifically the following references (marked * for principle author):

*N. C. Audsley, A. Bums, "Scheduling Real-Time Systems", YCS 134,
Department of Computer Science, University of York, 1990.

*N. C. Audsley, "Deadline Monotonic Scheduling", YCS 146, Department of
Computer Science, University of York, 1990.

*N. C. Audsley, A. Bums, M. F. Richardson, A. J. Wellings, "Hard Real-
Time Scheduling: The Deadline Monotonic Approach", Proceedings of the
IFAC/IFIEP Workshop, Atlanta, Georgia, USA, 15-17 May 1991, ("IFAC
Workshop Series, 1992 Number 1", ppl27-132, Pergamon. Press, 1992).

N. C. Audsley, A. Bums, K Tindell, M. F. Richardson, A. J. Wellings, "The
DrTee Architecture for Distributed Hard Real-Time Systems", Proceedings
10th IFAC Workshop on Distributed Control Systems, Semifiering, Austria,

pp49-54,9-11 September 1991.

N. C. Audsley, A. Bums, K Tindell, M. F. Richardson, A. J. Wellings, "The
DrTee Architecture for Distributed Hard Real-Time Systems", Proceedings
IEEE Workshop on Architecture Support for Real-time Systems, San
Antonio, Texas, December, 1991.

*N. C. Audsley, "Resource Control For Hard Real-Time Systems: A Review",
YCS 159, Department of Computer Science, University of York, 1991.

*N. C. Audsley, "Optimal Priority Assignment and Feasibility of Static
Priority Tasks With Arbitrary Start limes", YCS 164, Department of
Computer Science, University of York, 1991.

*N. C. Audsley, A. Bums, M. F. Richardson, A. J. Wellings, "Incorporating

Unbounded Algorithms Into Predictable Real-Time Systems", YCS 171,
Department of Computer Science, University of York, 1992.

N. C. Audsley, A. Burns, K. Tindell, M. F. Richardson, A. J. Wellings, "The
DrTee Architecture for Distributed Hard Real-Time Systems", Proceedings

ii

9th IEEE Workshop on Real-Time Operating Systems and Software,
Pittsburgh, pp57-61, May 1992.

*N. C. Audsley, A. Bums, M. F. Richardson, A. J. Wellings, "Deadline
Monotonic Scheduling Theory", Proceedings IFAC/IFIP International
Workshop on Real-time Progr g, WRTP'92, Bruges, pp55-60, June
1992.

*N. C. Audsley, A. Bums, A. J. Wellings, "Unbounded Algorithms,
Predictable Real-Time Systems and Ada 9X", Proceedings IEEE Workshop
on Imprecise and Approximate Computation, Phoenix, ppll-15, December
1992.

*N. C. Audsley, A. Burns, M. F. Richardson, A. J. Wellings, "Incorporating
Unbounded Algorithms Into Predictable Real-Time Systems", Computer
Systems Science and Engineering, 8(3), pp80-89, April 1993.

*N. C. Audsley, A. Bums, A. J. Wellings, "Deadline Monotonic Scheduling
Theory and Application", Control Engineering Practice, 1(1), pp71-78,1993.

N. C. Audsley, K Tindell, A. Bums, "The End of the Line for Static Cyclic
Scheduling", Proceedings of 5th Euromicro, Workshop on Real-Time
Systems, Oulu, Finland, pp36-41,1993.

N. C. Audsley, A. Bums, K. Tindell, M. F. Richardson, A. J. Wellings,
"Applying New Scheduling Theory to Static Priority Pre-emptive
Scheduling", Software Engineering Journal, pp284-292, September 1993.

iii

Abstract
The design and implementation of increasingly complex hard real-time
computer applications has been limited by the severe restrictions imposed
by run-time support systems, in particular the scheduler. The restrictions
arise from the assumptions required to afford 100% guarantees to processes
with hard deadlines. This constrains the application to conform to the model
required by the scheduler. For example, rate-monotonic scheduling, as
originally proposed, restricts systems to periodic independent processes,
with no shared resources.

This thesis examines the trade-offs between the constraints required
to enable offline feasibility analysis and the demand for increased fleidbility
of the next generation of hard real-time systems. Initially, feasibility
analysis is developed for a flexible process model. Tests are derived for
static priority pre-emptive scheduling which relaxes the common restriction
that the period of a periodic process must be equal to its deadline. One
result of relaxing this constraint is that sporadic processes can be
accommodated directly. The feasibility analysis is extended to permit
processes that have their first execution offset from the 'initial start of
system execution. This enables process sets with arbitrary precedence
constraints to be expressed. An optimal priority assignment algorithm for

processes that have offsets is given.
Guaranteeing process deadlines using pessimistic estimations of

processor and resource requirements implies that at run-time, an under-
utilisation of system resources will occur. An approach is proposed to
identify this spare system capacity as soon as possible within the execution
of a process. Conventionally, this spare capacity is used for the executions of
processes without hard deadlines. This thesis presents an approach that

enables spare capacity to be allocated to processes with hard deadlines so
that system utility can be increased.

This thesis contends that the adoption of such an approach imposes

no real restrictions upon the application engineer, and greatly increases the
flexibility of hard real-time systems, enabling many of the requirements of
the next generation of hard real-time applications to be met.

iv

Chapter 1.
Introduction

Increasingly, society is placing trust in computers to perform tasks safely and
reliably. The "fly-by-wire" flight systems on some of todays passenger aircraft
place almost total reliance in computers to control the aircraft in flight, to
affect a change of course at a pre-determined time, or prevent the pidot from
performing manoeuvres beyond the design limitations of the airframe. An
example of such a system is the space shuttle, which relies heavily upon
computers for safe mission accomplishment [Carlow841. The role of the
computer in such systems is vital, as they are

of supporting, or necessary to, life"

[vital: Chambers 20th Century Dictionary)
Given the importance of the computer in these systems, and the inherent trust
that is placed in them, we need to be absolutely sure about the practical and
theoretical principles used to construct such systems.

The control systems described above are often termed real-time, in that
the actual absolute time at which the computer performs an application
process is significant. Consider the embedded control system in a washing
machine. This must perform specific fimctions at specific times and
dynamically react to changes in the environment (i. e. water temperature) in

order to wash and dry its load. When the consequence of failing to meet timing

requirements is potentially catastrophic, the systems are termed hard real-
time. In a nuclear power station, cooling rods must be inserted into the pile
within a time-limit else the reactor may go to a critical state, with obvious
consequences. The potential for catastrophic failure of systems that do not
perform within pre-defined functional and timing requirements has made hard

real-time systems a major area of research. It is these systems that will be

studied in this thesis.
The fundamental requirement of hard real-time systems is predictable

behaviour at run-time. In this context, predictability can be seen from two

main viewpoints: functionality and timeliness. Functionality refers to the
logical execution. This must be defined by requirements specification, given the

possibility of hardware component failure within the system, and of transient

1

errors occurring within a component (either software or hardware). Timeliness

refers to the time at which the logical execution occurs. Any timing bounds on
the execution must be adhered to. Conventionally, this equates to ensuring a
process (or task) receives sufficient resource to complete its logical execution
between a given start time and a given deadline. As intimated above, a failure
in either the functional or timing domains can have catastrophic results in
hard real-time systems.

The desire for predictability in hard real-time systems must be reflected
in all phases of the software life-cycle, from inception within requirements
capture, to the realisation of a running system, the latter being composed of
application software, kernel and/or run-time support software, and hardware.
Clearly, predictability must be maintained across the broad range of complex
interactions between these three basic constituent parts of a running system.

1.1 Scheduling in Hard Real-Time Systems
To maintain timing predictability at run-time, application functions must
execute within given time bounds. The problem of interleaving the execution of
application computations, or separate processes performing those
computations, is conventionally performed by a scheduler [Li4ter841. Since the
predictability of a hard real-time system must be determined before it is run,
offline feasibility analysis is required which can decide whether a proposed
scheduling technique will ensure that all timing requirements of all processes
are met at run-time.

Operational research approaches, such as queuing theory or job-shop

scheduling, are not applicable for hard real-time systems. Such approaches are
concerned with average performance: this is of secondary importance to the

predictable meeting of hard deadlines. For the same reasons, the scheduling
approaches of time-sharing systems, which are dedicated to a metric of fairness

amongst competing processes, are not appropriate.
Many applicable scheduling techniques have been proposed for hard

real-time systems, together with associated analyses that determine whether a
set of processes will meet all deadlines at run-time: that is determine whether
a process set is feasible (hence feasibility test). The scheduling techniques fall
into different categories according to the nature of the decision made at run-
time as to which process or application computation to execute at any time.
Two commonly used approaches are cyclic scheduling and static priority
scheduling.

2

Cyclic scheduling defines a schedule off-line, in the form of a list of times
to execute each process. Often the schedule is hand-crafted in an ad hoc
Manner, needing to be re-calculated for even the slightest change in system
requirements or implementation. Hence systems employing this scheduling
approach can be brittle and difficult to maintain. Another problem with cyclic
scheduling is lack of flexibility, given the fixed nature of the executions of
processes.

Static priority scheduling dictates that priorities are assigned to
processes, with the highest priority runnable process scheduled for execution
at any point in time. Many different analyses have been proposed, each
providing a sufficient decision regarding whether timing requirements will be
met. The differences in the analyses lie in their inherent assumptions and
restrictions. For example, two differing analyses cater for independent
processes and synchronising processes respectively. The former analysis is
simpler than the latter, although the latter permits more general process
systems. This trade-off between analysability and boundability on the one
hand and generality and flexibility on the other, is fundamental to scheduling
theory: fewer restrictions upon processes equates to more general and flexible

systems; however, the analysis is more difficult to formulate and more complex
to perform.

With any scheduling approach for hard real-time systems, guarantees
regarding the timing requirements are made, from necessity, using worst-case
(or maximal) evaluations of individual process requirements for resources (e. g.
processor, shared memory, databases). Often, analyses for worst-case execution
time and resource requirements are overly pessimistic: the expected worst-case
does not in fact occur. This is illustrated by the control-flow analysis to

calculate worst-case execution time: the conditional execution of one block of
code may also imply the non-execution of another conditional block; worst-case
analysis may conclude that both blocks will be executed. The effect on system
feasibility of pessimistic worst-case estimations is apparent in fewer systems
being declared feasible; systems that may well, at run-time, meet all timing

requirements. Reduction in pessimism, both in terms of worst-case analysis

and feasibility analysis is required.
Even if the pessimism of worst-case estimations and feasibility are

reduced, the actual utilisation of system resources at run-time will still, in

general, be less than off-line worst-case estimations. At run-time, unused

execution time and resources, guaranteed to be available off-line, can be

exploited to increase the utility of the system. In present systems, this is

3

achieved by letting other processes complete earlier than anticipated. Other,

perhaps more useful approaches, include the use of spare time and resources
by other processes to perform extra, unguaranteed execution, to increase the
utility of the system.

1.2 Thesis Goals
This thesis will explore the trade-offs evident between boundability of system
funing constraints and the flexibility provided for application implementations.
Specifically, the trade-off between analysability and flexibility will be
examined in terms of flexible scheduling techniques and associated analyses
for hard real-time systems, in particular, static priority scheduling. Two forms
of flexibility are introduced: offline and online.

Offline flexibility reflects the restrictions imposed upon the application
by the scheduler and associated analysis. An increase in flexibility is achieved
by relaxing these restrictions. Additionally, a method for efficient optimal
priority assignment is established for process systems with arbitrary timing
constraints (previous optimal assignments rely upon all processes having, at
some point in time during system execution, an identical start time). Then,
sufficient feasibility tests are developed for such process models.

Online flexibility relates to the ability of the running system to fully
utilise system resources. Given the availability of spare time and resources at
run-time, a framework for its constructive dynamic re-use is proposed by which
processes may increase their utility or value.

The goal of the research undertaken, and described within, is to increase
flexibility in hard real-time systems, permitting applications to be designed in

a less constrained manner. Therefore, the objective of this thesis is to test the
hypothesis:

"the flexibility of hard real-time systems can be improved by

weakening the constraints placed upon applications by the

choice of scheduling approach and its associated feasibility

analyses; and by the detection and re-use of spare capacity at

run-time. "

1.3 Structure of Thesis

The remaining sections in this chapter provide definitions and a nomenclature
for the rest of the thesis. Chapter 2 forms a review of scheduling literature. In

4

Chapter 3, a framework enabling the development of flexible scheduling for
hard real-time systems is outlined. Chapter 4 examines increasing offline
flexibility using deadline monotonic scheduling and associated feasibility

analysis. This form of scheduling permits process deadlines to be less than
their periods. Further offline flexibility improvements are given in Chapter 5,
which provides an optimal priority assignment and feasibility analysis for
processes with arbitrary start times. The effects of inter-process interaction are
also considered. In Chapter 6, methods for increasing online flexibility are
considered. In particular, an efficient approach for identifying spare system
capacity at run-time is developed, with Chapter 7 examining issues related to
the re-use of such spare capacity. Finally, Chapter 8 provides conclusions and
identifies areas requiring further work.

1.4 Definitions

A computer system consists of one or more nodes, each node forming an
autonomous physical computing resource. A node can consist of a single
processor, in which case it is termed uniprocessor; or many processors, termed
multiprocessor. Resources in the system are either physical, for example
devices, or logical, for example shared data. All physical resources (apart from
the processor) are mapped onto logical resource representations (e. g. software
device drivers).

Each processor executes a number of processes. These are the logical

units of concurrency within the system; they interact to achieve the common
goal of the system. Processes execute code which is either shared (with other
processes, for example a common procedure or fimction) or non-shared.

Processes whose progress is not dependent upon the progress of other
processes are termed independent. This definition discounts competition for

processor time. Interdependent processes interact in three main ways:

competition for shared logical resources, precedence-relationships between

processes and non-pre-emptability. The first reflects the possibility that a

resource may not be available when requested by a process. In this case, the

process becomes blocked. A process may also suspend itself, by execution of a
"delay" statement. Precedence-constraints (also called precedence-

relationships) define a partial or total order on the execution sequences of

processes. That is, one process may be prevented from executing until the

completion of a number of predecessor processes. Non-pre-emptable code

5

requires that any process executing it cannot be interrupted or pre-empted.
Processes may execute a mixture of pre-emptable and non-pre-emptable code.

Processes are generally partitioned into two groups according to the
nature of their invocations or releases. If a process is released at regular, pre-
defined intervals, it is termed periodic. Other processes are termed non-
periodic. These later processes are further subdivided: sporadic processes are
those which have a inimum time between successive releases; aperiodic
processes have unconstrained release patterns, with the possibility of an
unbounded number of instances of the process requiring execution at any time.

In a real-time system, the time by which a process must complete
execution aximilm is termed the deadline (relative to the start time). This is
derived from application requirements. The actual time at which the process
completes is termed the response time. Between the invocation of a process and
its deadline the process requires a given amount of computation time. For
processes with hard deadlines the computation time must be boundable: the

m. time required is termed the worst-case execution time (WCET).
Likewise, the inimilm execution time is termed the best-case execution time
(BCET). The precise amount of execution time required for a release of a
process is termed the actual execution time (ACET).

A scheduler consists of an algorithm or policy which produces a schedule
defining the execution order of processes on a processor. A feasibility test (also
termed schedulability test) determines if a schedule meets a given pre-
condition. A typical pre-condition for hard real-time systems is that all
processes with hard deadlines always meet those deadlines. If the test is

passed, the schedule is termed feasible. An optimal scheduler is able to produce
a feasible schedule for all feasible process sets.

A scheduler is termed offline if all scheduling decisions are made prior to

system execution. For example, cyclic scheduling is an offline approach: a table
is generated that contains all scheduling decisions for use during run-time. An

online scheduler makes decisions at run-time. For example, static priority
scheduling requires that the highest priority runnable process is executed at
all times. In essence, the decisions made by the online scheduler are based

upon process characteristics.
Schedulers may also have the attribute deterministic, whereby the

decision made at any point in time can be pre-determined offline given the

system state at that time. For example, static priority scheduling is

deterministic since at any time the highest priority runnable process is

executed.

6

1.5 Nomenclature

A process set A contains n processes, namely r,), where the priority

of ri is i with 1 being the highest priority, and n the lowest. When processes
have not been assigned priorities, they are labelled ("Ay'. Hi. e. upper-case sub-

script) with the process set still having cardinality n.
The timing characteristics of a process are even by Oi, Ci, Di, Tj (or

OA, CA, DA TA) representing the start time (relative to system start time at time

0), worst-case computation time, deadline and period of ri (or TA)* Periodic

processes are released initially at Oi (or OA) and subsequently every Tj (or TA)

time units. The deadline of a process is relative to its release. For sporadic
processes, Tj (or TA) defines the minimum inter-arrival time between successive

releases.

7

Chapter 2.
0 Scheduling Hard Real-Time Systems.,

A Survey

Many papers have been published in the field of real-time scheduling,
including several general surveys [Gonzalez77, Casavant, 88] and those

concentrating on hard real-time systems [Cheng87, Audsley9O, Burns9la].
Many varied aspects of scheduling are worthy of note in any survey on the

subject, from the theoretical complexity of the problem through to specific
scheduling approaches themselves. The latter depend largely upon the exact
characteristics and assumptions inherent in the target system; from

uniprocessor systems with periodic processes, to distributed systems containing
periodic and sporadic processes which may share resources. Therefore, to

provide background context for this thesis, the following survey concentrates
upon:

W computational complexity of scheduling;
(ii) scheduling with simplistic assumptions;
(iii) scheduling with realistic assumptions.

Primarily, the above are considered in terms of uniprocessor systems; although
key results are given for multiprocessor systems also.

2.1 Comple3dty Results

Complexity can be examined in three main ways:
G) complexity of finding a schedule;
(ii) complexity of testing the schedule;
(iii) run-time scheduling complexity.

Clearly, exponentially complex online scheduling schemes are not ideal for

hard real-time systems - their impact upon the processor time available for

application software is extreme. The following sections review scheduling

complexity work in the literature.

8

2.1.1 ComputabiHty and DecidabiHty
Two separate considerations are necessary: computability and decidability.
These parameters are illustrated using the travelling salesman problem
[Wilf86]. Whilst deciding if a solution to the problem exists (i. e. a route with
cost less than a given value) is not possible (in general) in polynomial time
(and is in fact NP-complete); computing whether a particular route has a cost
below a given value is trivial. Computability and decidability for scheduling an
arbitrary process set are described as follows:

decidability - deciding whether a feasible schedule exists.
computability - given a schedule, computing whether that
schedule is feasible.

Finding a feasible schedule consists, essentially, of an exhaustive search
amongst all possible schedules. Computing whether a schedule is feasible could
involve running the schedule to its natural conclusion, or to a point where it

repeats.

2.1.2 Important Uniprocessor Results

Important results for uniprocessor scheduling stem from the work of Garey and
Johnson [Garey75, Garey77, Garey781 summarised in Table 1.1. Concluding

from the results in the table, it is clear that for uniprocessor scheduling, all

combinations of desirable factors for flexible hard real-time systems (e. g.

arbitrary computation times and any number of shared resources) result in

NP-complete complexity for deciding whether a feasible schedule exists.
Other important results include those given by Mok [Mok83]. The most

important relates to computing whether a feasible schedule exists when the

processes use mutual exclusion primitives:
"The problem of deciding whether it is possible to schedule a set

of periodic processes which use semaphores only to enforce

mutual exclusion is NP-hard. " [Mok831

The above is proved by reduction to the 3-PARTITION problem which is known

to be NP-hard [Garey781. The proof is based upon partitioning non-pre-

emptable processes into the intervals between successive executions of another

process, the latter having to be executed at exact points in time.

9

Number of Number of Precedence Process Other Complexity
Processors Resources Constraints Execution Conditions

Times

:5 polynomial
0 none expression in polynomial

the number of

- processes
0 ýt 0 (but finite) none all unit time polynomial
2 0 none all unit time iDolvnomial

0 any all unit time p lynnmial
0 none arbitrary N-P-complete
0 none all unit time deadline for the polynomial

Drocess set
0 none either 1 or 2 deadline for the N-P-complete

pro ess set
0 none arbitrary deadline for the NP-complete

iDrocess set
0 none all unit time minimise total NP-complete

tardiness for

process set
2 1 limited all unit time NP-complete

3 1 none all unit time NP-complete

arbitrary 0 limited I all unit time 1 Polynomial I
arbitrary 0 arbitrary

I
all unit time I N-P-comp

Table 1.1: Complexity Results for Finding a Feasible Schedule.

We now turn to the problem of computing whether a schedule is feasible.
The schedule takes one of two forms:

Wa list of exact times at which processes are executed;
(ii) a set of processes and their timing characteristics, together with

an online scheduling algorithm.
To test schedules of form (i), we must simulate it up to some time limit. This

time must be bounded, since the schedule list must have been defined up to

this point. It is entirely possible that the checking of the schedule occurs as it is

created. Schedules of form (ii) require a feasibility test. This incorporates the

characteristics of the online scheduling algorithm, together with the

assumptions inherent in the timing characteristics of the processes. For

example, whether or not processes may be pre-empted, or have deadlines less

than their periods.

10

One important result has shown that a necessary and sufficient test for a
single processor and an arbitrary process set (no constraints on period,
deadline, computation time etc.) is NP-hard [Leung80]. Factors that can reduce
the complexity include:

constraining the characteristics of the process set;
defining a sufficient but not necessary test.

Constraints could include unit length processes (see Table 1.1). However, this
would make system design difficult. Defining a less complex test could result in
a test that fails every process set presented to it. This is sufficient and not
necessary, but practically useless.

2.1.3 Important Multiprocessor Results
The results of multiprocessor complexity work build upon that of uniprocessor
studies. Generally, the addition of processors increases the complexity of both
finding if a valid schedule exists, and validating a given schedule. One cause of
this is process allocation. For example, a set of independent processes is to
execute on two processors. These processes require a total of 2b units of
execution time. An optimal schedule would be one in which the processes were
split into two groups, each group having a total execution time of b units. This

splitting is an NP-complete problem, having been shown to reduce to the 2-
PARTITION problem [Garey77].

Some results of scheduling complexities for multiprocessor systems are
given in Table 1.1. The simple case (two processors, zero resources, no
precedence constraints, unit execution time of processes) has polynomial
complexity. The following constraints could be weakened:

(i) greater than zero resources, OR
(ii) precedence constraints permitted, OR
(iii) non-unit execution times of processes.

Weakening any of the above constraints results in NP-complete complexity.
Deciding whether a given schedule is feasible is at least as complex as

for uniprocessor systems, due to the extra dimension of allocation. Indeed,

Leung and Merrill have shown that for an arbitrary process system and

multiprocessors, the decision is NP-hard [Leung801-

2.1.4 Summary

Deciding whether a valid schedule esists is NP-hard in all but trivially simple

cases. Hard real-time systems have processes that are likely to have:

11

0 non-unit computation times;

resources that need to be accessed in a mutually exclusive manner
(e. g. devices, communications media etc.);

0 complex interactions between processes (e. g. precedence
constraints).

From the above discussion, it is apparent that for these characteristics of hard

real-time systems determining the existence of a valid schedule is NP-hard.
Computing whether a given schedule is feasible is achieved via a

sufficient feasibility test. A sufficient and necessary test is NP-hard in the
general case. However, less complex sufficient and not necessary tests exist
such that it is still possible for process sets to pass the test, whilst permitting
some of the characteristics of process sets that increase the complexity of
determining feasibility. Hence, a trade-off between the complexity of the test

and its accuracy can be observed, that is a trade-off between the complexity of
the feasibility test and the constraints imposed upon the processes.

2.2 Simple Uniprocessor Scheduling

This section discusses the current state of scheduling for a hard real-time
system consisting of a single uniprocessor node with extreme, constraints upon
resources and process characteristics.

The scheduling approaches considered are sub-divided into three
categories:

(i) offline;
(ii) online static priority;
(iii) online dynamic priority.

The first category refers to those approaches that create a schedule offline.
Mostly, they create a list of processes (or parts of processes) and assign them to

exact points in time for their execution. The list is bounded, enabling it to be

continually repeated. Hence, cyclic executives are formed, with the approaches
commonly known as cyclic scheduling. The run-time scheduler for these

approaches is trivial.
Online approaches are split into those which assign static priorities to

processes (category (ii)), and those varying process priorities at run-time
(category Gii)). At run-time, the highest priority runnable process is executed

at any time. Dynamic priority approaches allow process priorities to change at

run-time.

12

After a brief statement of assumptions for the simple uniprocessor model
in the following section, proposed scheduling schemes for the above three
categories are reviewed.

2.2.1 Restrictions and Assumptions

The following common restrictions are made [Liu73, Cheng87]:
W computation times for a given process are constant;
(ii) all processes are periodic;
(iii) no precedence relations exist between processes;
Gv) no inter-process communication or synchronisation is permitted;
(V) no process resource requirements are considered;
(vi) system overheads (e. g. context switches) have zero cost;
(vii) processes are not permitted to voluntarily suspend themselves.

We assume that all processes ci c- A have Cj: 5 Di and Cj:! ý Ti.

2.2.2 Offline Scheduling
Offline approaches are based upon an exhaustive search amongst all possible
schedules for one that is feasible [Wilf86]. An optimal search would always
find a feasible schedule if one exists. Such a search has, 'in general, NP-
complete complexity (except for even more restricted models). Therefore,
proposed approaches are sub-optimal, limiting the search-space examined.

Two main methods could be used to limit search space: approximate and
heuristic. An approximate method could stop when a sufficiently "good"

schedule is found. One difficulty with this approach is that it relies upon a
metric to evaluate the relationship between the current and optimal solutions.
That is, how to define relative quality of different solutions. This may not be

possible until a feasible solution is found.
Heuristic approaches define rules which restrict and guide the path

taken through the search space. The rules are often intuitive, encapsulating
some observation which has been seen to aid improvement from an infeasible

schedule towards one that is feasible. It is the heuristic approach that has been

adopted for many offline scheduling approaches.
Stankovic et al begin with an empty schedule [Stankovic87a]. Processes

are placed into the schedule until all processes meet their deadlines or not. In

the latter case, backtracking is performed to consider other options. Heuristic

fimctions are used in two places in the search:

13

W to limit the scope of backtracking - achieved by having a feasibility
fiinction which computes whether any feasible schedules can
result from the current unfinished schedule.

(ii) to provide suggestions as to which process to insert into the
schedule next. Options at this stage include the process with the
least laxity or the earliest deadline.

Fohler et al [Fohler891 use a similar scheme for generating offline schedules for
the Mars system [Damm89, Kopetz85, Kopetz891. A schedule is divided into
fixed time slots and then filled with processes. Again search space is restricted
by use of heuristic functions.

2.2.3 Static Priority Scheduling
The second form of simple uniprocessor scheduling, static priority, incorporates
three aspects:

W priority assignment;
(ii) feasibility test;
(iii) online priority pre-emptive dispatcher.

Proposed approaches for (i) and (ii) are given in the following sections.

Assignment of Static Priorities to Processes

Proposed priority assignment techniques depend upon the exact timing
characteristics of processes. When all processes rjr=A have Cj:! ýDj=Tj and
Oi=O, rate-monotonic priority assignment is known to be optimal [Liu731.
Here, the process with the shortest period is assigned the highest priority; the
process with the second shortest period is assigned the second highest priority.
Finally, the longest period process is assigned the lowest priority. This

assignment is optimal in the sense that if a priority assignment exists such
that all processes will meet their deadlines at run-time, a rate-monotonic
priority assignment will also ensure that process deadlines are met. It is noted
that if two processes have equal priority, ties may be broken arbitrarily
without affecting optimality of priority assignment.

A similar priority assignment, deadline monotonic, has been proposed for

process sets where all ri eA have Cj: 5 Dj: 5 Tj and Oi =0 [Leung821. Priorities

are assigned in a similar manner to rate-monotonic: the shortest deadline

process is assigned the highest priority; processes with successively longer

deadlines are assigned successively lower priorities. We note that deadline-

monotonic priority assignment is equivalent to rate-monotonic priority

14

assignment when, for all processes Tj E A, Dj = Ti. Deadline-monotonic priority
assignment is optimal in a similar manner to rate-monotonic: if there exists a
feasible priority ordering over a set of processes, a deadline-monotonic priority
ordering over those processes will also be feasible.

Both rate-monotonic and deadline-monotonic priority assignments are
no-longer optimal if either

(i) process deadlines are permitted to exceed their periods, i. e. Di > Ti,
[Lehoczky9O] or

(ii) processes have 0i #0 [Leung82].
In Chapter 5 an optimal priority assignment is presented which does not suffer
from the above problems.

Feasibility Testing of Static Priority Process Sets

Feasibility tests for static priority systems are not, in general, dependent upon
the exact priority assignment approach used; rather upon the exact process
timing constraints. Thus feasibility tests for process sets where all processes
, ri eA have Cj: 55 Di = Tj are applicable for any priority ordering, including rate-
monotonic; likewise feasibility tests applicable for processes with deadlines less
than their periods will be applicable to any priority ordering, including
deadline-monotonic. I

The fimdamental result regarding feasibility of static priority process
sets when all processes Ti EA have Oi =0 is that only the first deadline of each
, ci (at Dj) need be checked. The point in time at which all processes are

released simultaneously is termed a critical instant [Liu731. If the deadline of a
process is met for a release commencing at a critical instant, all subsequent
deadlines will be met. The result is based upon the observation that at a
critical instant, the work-load on the processor is at a maximum. Thus, the
demand of higher priority processes uj.., rj_j in [0, Dj) is at a maximum,

creating the hardest situation for ri to meet its deadline at Di.

The Di = Ti FeasibRity Tests

For processes assigned priorities according to the rate-monotonic approach, Liu

and Layland proposed a test based upon processor utilisation [Liu73]:
4

n(21 In-,) g
Ci (2.1)
Ti

This implies, for a set of two processes, if the combined utilisation of those

processes is no greater than 82.84%, the process set is feasible. As the

15

cardinality of the process set approaches infinity, the permissible utihsation
approaches 69.31%. This test is sufficient but not necessary, as process sets
with greater utilisation than the level given by equation (2.1) may still be
feasible. We note that the compleidty of this test is O(n) in the number of
processes.

A sufficient and necessary test has been identified by Lehoczky et al
[Lehoczky89]. This test is applicable to any arbitrary priority assignment. It
formulated as follows. The work-load Wj(t) on the processor at any time t due to

processes of equal or higher priority thanj is given by:

Wi(t)=Icj Ti

This equates to the sum of the computation times of all releases of processes
with priority equal or greater to j in the interval [0, fl. Process rj is feasible if

and only if the following condition holds:

min < (0<1: 5Tj)(t

The Dj: 5 Tj Feasibility Tests

When some or all processes have deadlines less than their periods, the tests
described for Dj=Tj are, in general, not applicable. The simplest method of
determining feasibility is to create a schedule for the interval LO, max(Di = 1-0)
[Leung8O]. If all deadlines are met in this interval, the processes are feasible.
This approach is computationally expensive, although sufficient and necessary.

Separate sufficient and necessary tests have been proposed by Joseph

and Pandya [Joseph861, Audsley et al [Audsley9le, Audsley9ld] and Nassor

and Bres [Nassor9l]. The latter test extends the Dj=Tj test defined by

Lehoczky et al [Lehoczky89]. Further feasibility tests (and comparisons) are

presented in Chapter 4.

The Di > Tj Feasibility Tests

For the case where process deadlines are permitted to exceed periods, Lehoczky

has proposed two sufficient and not necessary feasibility tests [Lehoczky9o].

Both tests are based upon utilisation, extending the Di = Tj utilisation test of
Liu and Layland [Liu73]. The tests restrict all processes Tj EA to have Dj=kTj,

where k is constant across all processes. One test restricts k to be an integer,

the other does not. The tests are sufficientlY complex to omit reproduction here.

16

9Pindell has also proposed a feasibility test for processes with deadlines

greater than periods [Tinde11921, based upon a static priority feasibility test for

processes with deadlines no greater than periods [Audsley9lc].

2.2.4 Dynamic Priority Scheduhng

The third form of simple uniprocessor scheduling, dynamic scheduling,
prescribes that all scheduling decisions are made online as the system
executes. The three main forms of dynamic scheduling are now discussed. All
are described in terms of priority pre-emptive dispatching.

Earliest Deadline

Earliest deadline scheduling assigns the runnable process closest to its
deadline the highest priority at any time [Liu73]. This process then executes
until a point in time when it either completes execution, or another runnable
process has a closer deadline. The feasibility of process sets under the earliest
deadline regime is given by:

,' Ci
< 1.0 (2.2) Z-

i=I Ti

The above assumes that all processes *Tj EA have Di = Ti.
Given the constraints of the simple model, Liu and Layland have shown

that earliest deadline is an optimal form of dynamic scheduling:
"the deadline driven scheduling algorithm is optimum in the

sense that if a set of [processes] can be scheduled by any
algorithm, it can be scheduled b the deadline driven Y
algorithm. " [Liu731

Least Laidty

Least laxity scheduling assigns the process with the smallest laxity (time

remaining before deadline minus remaining computational requirement), the

highest priority at any time [Dertouzos89]. The executing process has constant
laxity, whilst the laxities of the other processes decrease as the former

executes. Eventually, one of the latter processes may have the smallest laxity,

so becoming the highest priority process, pre-empting the executing process.
A problem arises with this scheme when two processes have similar

la, Nities. One process will run for a short while and then get pre-empted by the

other and vice versa. Thus, many context switches occur in the lifetime of the

processes. This can result in "thrashing", a term used in operating systems to

17

indicate that the processor is spending more time performing context switches
than useful work [Lister841.

The feasibility constraint for least laxity is exactly that stated for earliest
deadline scheduling (see equation (2.2) above). The least laxity heuristic is
optimal in the same way as the earliest deadline approach [Dertouzos89].

Value Functions

Whilst static priority assignment fixes the real-time importance of processes,
value : fimctions enable the varying importance of a process throughout the
system lifetime to be described. Specifically, the value function of a process
defines the benefit to the system of completing that process at a given time. For
example, Figure 2.1 shows a process which is considered damaging if it
executes before its start time (i. e. negative value); has constant positive value
(i. e. benefit) if it completes before its deadline; with deteriorating value for

completion after the deadline.
Locke has shown that the maximum value can be obtained across all

processes in the system if, at any time, the process with the highest value
density is assigned the highest priority [Locke86]. Value density is defined as
the constant completion value (i. e. the value of completing the process in
Figure 2.1 between its start time and deadline) divided by its remaining
computation time.

The system overhead for value fimction scheduling becomes increasingly
intrusive on system performance as the value fimctions become increasingly

complex. For example, if constant completion values are not evident (e. g.
increased value for completing a process as near to its deadline as possible),
value fimctions would have to be continually evaluated.

benot

Value

damage I

Figure 2.1: Example Value Function.

18

start time deadline
iI

2.2.5 Summary
The three proposed forms of scheduling simplistic uniprocessor systems have
been discussed. The offline costs of the approaches vary from high, in the case
of graph-based scheduling; to low for dynamic scheduling. In contrast, the run-
time costs are highest for dynamic priority scheduling, and lowest for graph-
based and static priority scheduling.

All the scheduling approaches examined have associated feasibility tests,
varying in accuracy and complexity. We observe that the sufficient and
necessary tests are more accurate, but are also more computationally expensive
than sufficient and not necessary tests.

2.3 Scheduling Realistic Uniprocessor Systems
When more realistic systems are considered, for example those that permit
resource sharing amongst processes, additional problems are introduced. The
following sections present a realistic system model, the problems introduced
into scheduling by such a model, and the development of the scheduling
approaches for simple uniprocessor systems.

2.3.1 Realistic Model
We extend the simple system model to permit:

(i) process computation times to be variable between a pre-calculable
minimum and -n

(best-case and worst-case respectively);
(ii) sporadic processes with hard deadlines;
(iii) processes to access (potentially) shared resources in a mutually

exclusive manner;
(iv) precedence relationships may be defined between processes, such

that the execution of one process must wholly precede the

execution of another process;
(V) 1/0 effects and other system overheads to be considered.

2.3.2 Problems Associated with the Realistic Model

The increased flexibility of the realistic model over the simple model increases

scheduling complexity, both in terms of run-time support and offline
feasibility. Two aspects of this more complex scheduling problem are now

outlined.

19

Sporadic Processes

Hard real-time systems are
"inherently non-deterministic in nature. " [Jensen9l]

Events do not necessarily occur periodically. To monitor such events requires
either:

(i) periodic polling processes, or
(ii) sporadic processes.

The first option constrains application processes to view all events as periodic.
This is clearly inefficient: to achieve a sufficiently short response time to events
requires a polling process with small period, perhaps half the shortest inter-
arrival time between successive events. This detracts from the feasibility of the
system due to the extra computations of the polling process. Whilst sporadic
processes provide a more natural method for providing fast response to
sporadic events in an efficient manner, the problem of incorporating sporadic
processes into the feasibility analysis is introduced.

Resources

When processes are permitted to access shared resources in a mutually
exclusive manner, the potential for blocking is introduced: a pyocess wishing to
access a resource can be prevented from doing so by another process which has

already locked that resource. The feasibility of such interacting processes
depends upon the ability to bound potential blocking times of processes, which
in turn depends upon the exact protocol used to control access to resources.
Also, deadlock must be avoided. All these issues must be addressed when
permitting processes to share resources.

Whilst many techniques have been proposed to cope with or avoid
blocking, few are applicable to hard real-time systems. Some approaches are
outlined in the following sections, whilst a more extensive survey of some of
these approaches has been undertaken elsewhere [Audsley9la].

2.3.3 Developments of Offline Scheduling

Stankovic et al extend their graph-based approach to incorporate resources and

precedence constraints between processes [Stankovic87]. Now, processes are

only inserted into a slot in the schedule if all the resources they require are

available for that slot, and if precedence constraints involving that process are

not violated. The graph based approach of Koza and Fohler has been extended
in a similar manner [Fohler891.

20

Xu and Pamas describe a successive approximation approach for

generating static schedules MOO]. Initially a schedule is created based upon
an earliest deadline ordering. Processes, or parts of processes, are then
shuffled until all precedence constraints between processes are met, and no
blocking can occur.

The developments of offline scheduling do not include sporadic processes
or take account of 1/0 effects. The static nature of schedules created offline
implies an implicit polling approach for sporadic events.

2.3.4 Developments of Static PrioritY Scheduling
For simple uniprocessor systems, it was noted that several optimal priority
assignment schemes were available, depending upon the exact relationship
between process deadlines and periods. When sporadic processes are
introduced, this optimality is no longer apparent, except when sporadic
processes execute at their mi um frequency. If this is not the case, an
optimal priority assignment can only be achieved if it is known a priori the
exact future release times of sporadic processes. Such clairvoyance is not
usually apparent.

Feasibility is also affected by the incorporation of sporadic processes and
resources. For the former, either the sporadic processes must be modelled to fit

existing feasibility tests, or the feasibility test must be extended. Similarly, for

resources, the tests must be extended to take account of potential process
blocking.

The following sections review developments of static priority scheduling
for sporadic processes, resources and 1/0 effects.

Sporadic Processes

To avoid the need for periodic polling processes various "bandwidth preserving"
algorithms have been proposed. These specify a periodic server process to deal

with sporadic events, with the server being able to preserve, within certain
constraints, its unused computation time, if no events need servicing.

The priority exchange approach declares a periodic server for sporadic

events [Lehoczky87, Sprunt88, Sprunt901- When the server's period

commences, it only executes if there are any outstanding sporadic events

requiring servicing. If no such requests exist, priority exchange allows the high

priority server to swap priorities with a lower priority periodic process. In this

way, the server's priority decreases whilst maintaining execution time reserved

21

for sporadic events. In contrast, the deferrable server maintains server priority
across its period, responding to sporadic events at a constant priority
[Lehoczky87, Sha891. Under both approaches, the computation time allowance
for the server is replenished at the start of its period.

Whilst the priority at which sporadic events are serviced decreases
within the server period under the priority exchange approach, the size of a
priority exchange server (i. e. the computation time that can be assigned to it in
each period) is greater than a deferrable server for a comparable system. Thus,
more sporadic events can be serviced by the former.

The sporadic server combines the server size of the priority exchange
approach with the constant priority of the deferrable server approach [Sha89].
The replenishment strategy of the sporadic server is as follows. Assume
capacity c is consumed in [t, t+c) then replenishment of c occurs at t"+T, where
T is the period of the server, and t' is the latest time prior to t at which a
process of lower priority than the server was executing or the processor was
idle. In this way, the sporadic server increases the quantity of sporadic
processes that can be serviced without lowering server priority.

The above approaches have a common problem, that of increasing system
overheads, due to the existence of additional server processes. It is noted that
the approaches were proposed to guarantee a minimum computation time for

servicing aperiodic events. Hence, their motivation lies more with providing
aperiodic (unguaranteed) processes with processing time, rather than

guaranteeing sporadic process deadlines.

xwsources
The requirement for shared resources to be accessed in a mutually exclusive
manner creates some interesting problems. For example, consider two periodic
processes which share a resource. Within a static priority system, the situation
could arise where the low priority process has locked the resource and is pre-
empted by a high priority process. The latter attempts to access the resource.
High is now blocked by the lower priority process. A medium priority process
pre-empts low. This is a form of priority inversion [Sha90]: the high priority

process has to wait for medium to complete execution and low to finish its

critical section before it can lock the resource and continue execution.
The problem of priority inversion can be avoided by the use of the

Priority Inheritance Protocol (PIP) [Sha87a, Sha901. This prescribes that if a
higher priority process becomes blocked by a low priority process, the priority

22

of the former is inherited by the latter (allowing it to execute immediately)

until the lock on the requested resource is released.
The PIP bounds the blocIdng time of process ci for each execution to a

maximum of minok) critical regions of lower priority processes, where k is the
number of lower priority processes which are able to block Ti, and j is the
number of resources used by lower priority processes that can block -Ti.
Effectively, the blocking is equal to the sum of the longest critical regions of
each lower priority process.

The major disadvantage of the PIP is that deadlock can occur. For
example, let ci require resourcel and resource2. It obtains the lock on
resourcel, but before it can obtain the lock on resource2, it is pre-empted
by rj which locks resource2 and now requests resourcel. Deadlock has

occurred. The problem arises because a process is able to lock a free resource at
any instant, irrespective of its priority relationship with other processes that
will require that resource.

The Priority Ceiling Protocol (PCP) addresses the deadlock problem
inherent in the REP [Sha90]. This is achieved by ensuring that a strict ordering
of critical region execution is maintained. The notion underpinning PCP is as
follows. If one or more resources in the system are already locked, 'ri can only
lock a resource if that resource, or any other locked resource in the system, is
not accessed by a process with higher priority than ci. Thus, the priority of a
process holding a resource is guaranteed to be higher than can be inherited by

any pre-empted process.
The PCP can be siimmarised as:

a priority ceiling is assigned to each resource equal to the highest

priority of all processes that could lock it;

a resource is allocated if the priority of the requesting process is

strictly greater than the ceilings of all currently held resources. If
the resource is not allocated, the requesting process becomes
blocked upon that resource;
a process executes at its assigned priority unless it blocks a higher

priority process at which time it inherits the priority of the
blocked process for the duration of the current critical region.

The maximum priority that a process can inherit whilst holding a resource is

equal to the ceiling of that resource.

23

Deadlock avoidance is inherent in the PCP due to the strict priority
ordering of critical region executions. A formal proof of this has been developed
by Pilling et al [Pilling901-

The mi um. blocking time ri is bounded to the longest critical region
of a lower priority process that shares a resource with a process of equal or
higher priority than ci. This occurs if a high priority process can be blocked for
the entire duration of the critical region of a lower priority process. Effectively,
the low priority process must lock a resource momentarily before the higher
priority process becomes runnable. Clearly, in many cases, this will not occur,
implying that worst-case blocking times are, in general, pessimistic.

Two main variations on the PCP have been proposed, the Semaphore
Control [Rajkumar88a] and the Ceiling Semaphore Protocol [Rajkumar891.
The former provides a sufficient and necessary approach to resource allocation
(with respect to approaches based upon the PIP) by ensuring that resources
accesses denied by the PCP for reasons of possible deadlock prevention, are
only denied if they will definitely lead to deadlock. The latter ensures that any
blocking that a process receives will be at the beginning of its execution. Thus,
once the process has actually commenced execution, it will run to completion
without becoming blocked.

All the above approaches permit a process executing in a critical region
to be pre-empted. The kernelised monitor prohibits such pre-emption
[Dertouzos89]. However, the length of critical regions is required to be small as
the blocking time that any process can endure is limited to the maximum
length of any critical region. This approach requires progr .g and design
discipline to keep critical regions small. If critical regions become large, then
blocking times increase with associated loss of system feasibility. The
kernelised monitor is valuable in systems where pre-emption costs are high

compared to critical region execution times since system overheads can be

nimised.
An alternative approach to allowing processes to block is to adopt a non-

blocking run-time resource management scheme. One such approach is the
Four Slot Mechanism, which prevents the reader and writer of a shared
resource ever interfering with each other [Simpson901. Two pairs of slots are
provided for the shared data in the resource, one each for the reader and writer
processes. They are accessed in such a manner that the writer process will
never write to a slot currently being read; likewise, the reader will never read
from a slot being updated by the writer process.

24

Obviously, this approach is deadlock free, with zero blocking times for
processes. However, two problems exist. Firstly, time coherence of data may be
violated. Secondly, a resource may only have a single writer and a single
reader process at any one instance.

The non-blocking approach requires no extension to existing feasibility
tests. However, the blocking approaches require slight modification of the
tests, to guarantee the additional blocking time of a process before its deadline.
Thus, the test must ensure that for all ci r=-, &, Ci + Bi (where Bi is the blocking
time) be guaranteed before Di. This applies to both Dj=Tj and Dj_-5Tj systems.
Such extensions to the Dj=Tj feasibility tests have been proposed by Sha et al
[Sha901.

1/0 Effects

Studies performed to determine how 1/0 affects static priority scheduling draw
the following conclusions [Sha87b, Rajkumar87, Davari921:

W FIFO 1/0 schemes are not applicable to real-time systems due to
the potential of high priority process 1/0 being blocked by low
priority 1/0 so forming a priority inversion;

(ii) dynamically ordered queues can lead to fairness problems;
(iii) DMA can steal bus cycles from the processor and therefore from

application processes.

2.3.5 Developments of Dynamic Priority Scheduling
The earliest deadline approach has been developed to provide time for sporadic
and aperiodic processes. Chetto et al note that the normal earliest deadline
formulation runs periodic processes as soon as possible [Chetto891. This has
the effect of postponing idle time for as long as possible - it is this idle time that
is used for servicing sporadic events. When these occur, the scheduler switches
to a variation of the earliest deadline approach which runs guaranteed periodic
processes as late as possible (the latest start time of each process has been pre-
calculated offline). This is proved to provide the um time for processing
sporadic processes [Chetto89].

Whilst the non-blocking approach to resources outlined by Simpson
[Simpson901 is applicable to dynamic priority scheduling, two proposed
variations of the Priority Ceiling Protocol have been proposed that provide
solutions to any potential blocking. The Dynamic Priority Ceiling Protocol re-
defines the Priority Ceiling Protocol in terms of dynamic priorities [Chen90].

25
Ty

4A RY

This is achieved by re-evaluating the inherent priority ordering between

processes (i. e. the process with the closest deadline is assigned the highest
Priority at any time) and also the ceiling priorities of all resources. This
approach is relatively expensive, requiring resource ceiling priorities to be re-
evaluated on every process release or completion.

The Stack Resource Policy defines a dynamic priority and static pre-
emption level for each process [Baker9O). The latter is a measure of how
processes can pre-empt each other. For example, a process with a low pre-
emption level may not pre-empt a process with a high pre-emption level. For
earliest deadline scheduling, pre-emption levels are assigned according to the
deadline of the process: the process with the shortest deadline is assigned the
highest pre-emption level; the process with the longest deadline is assigned the
lowest level. The ceiling priorities of resources are defined in terms of these
pre-emption levels and are therefore static. Hence, this approach does not
suffer from the run-time overhead of ceiling priority re-evaluation incurred by
the Dynamic Priority Ceiling Protocol. It is noted that both the Dynamic
Priority Ceiling Protocol and the Stack Resource Policy assume that all
processes, rjEA have Di=Ti.

2.3.6 Summary

Due to the additional complexity of the realistic model, sub-optimal scheduling
schemes must be used. Such schemes include developments in offline, static
priority and dynamic priority scheduling. All three have been extended to
include shared resources. This requires expanded feasibility tests for each
scheduling approach and the provision of resource allocation protocols for

controlling access to shared resources at run-time.
Sporadic processes are not explicitly catered for by the offline scheduling

techniques examined, although they could be incorporated via a periodic
polling process. This is less efficient than the servers developed for static

priority scheduling, although the latter incur a run-time overhead due to their

complexity. Dynamic priority scheduling can incorporate sporadic processes by

running periodic processes as late as possible when the former process needs to

execute. However, the analysis for this approach does not guarantee sporadic

process deadlines.
Whilst the literature indicates how to include system overheads (i. e.

context switch) into the static priority feasibility analysis, no such theory has

been proposed for offline or dynamic priority scheduling.

26

2.4 Scheduling Multiprocessor Realistic SYstems

Whilst multiprocessor and distributed system scheduling is beyond the scope of
this thesis, for completeness, a number of key results are given.

In the previous section, proposed approaches for offline scheduling were
outlined. These have been further extended for multiprocessor systems. The
ALA, RS project initialise one empty schedule per processor [Kopetz85, Damm89,
Kopetz89]. Successively, individual processes are placed into one of the
schedules such that deadline, resource and precedence constraints are not
violated. A similar approach is taken by the Spring project [Stankovic87b,
Stankovic89, Stankovic9l]. An extension to the approach permits a process to
move to another processor if its deadline can be guaranteed at the destination
processor [Cheng85].

Both the above offline approaches treat the allocation of processes to
processors as part of the offline creation of schedules. An alternative strategy is
adopted by static priority scheduling. Here, allocation is viewed as a separate
issue, such that the processes are partitioned into sets, one per processor, with
each set then tested individually using the feasibility tests developed for

uniprocessor systems. This approach is taken by the ARTs kernel [Tokuda89,
Tokuda9l] and the DrTee kernel [Audsley9lb].

Whilst offline approaches place processes into a schedule so that
resource blocking is avoided, the static priority scheduling approach must
account for local and remote blocking. The latter occurs when a process
requests a locked remote resource, or a local resource that has been locked by a
remote process. Unfortunately, the Priority Ceiling Protocol does not translate

easily to a multiprocessor environment. The Multiprocessor Priority Ceiling
Protocol bounds blocking time to a function of the critical regions of other
processes by forbidding any process to execute outside a critical region whilst
other processes on the processor are blocked [Rajkumar88b]. Also, all resources
that are shared between processes resident on different processors are
allocated to a single synchronisation processor where all critical regions
associated with those resources are executed. The Generalised Priority Ceiling

Protocol multiprocessor [Rajkumar88b] is a further development that allows

shared resources to be resident on any processor.

2.5 Availability of Run-time Flexibility

The scheduling approaches outlined in the previous sections have enabled the

deadlines of processes in realistic systems to be guaranteed offline, via

27

associated feasibility tests. Whilst this provides 100% predictability at run-
time, it is clear that at run-time, system resources will be under-utilised due to

processes executing for less than their worst-case execution times; or due to

sporadic processes not being released at their . um frequency. Potentially,
this spare time could be used to provide additional fleidbility.

The identification of spare capacity has been discussed by Haban et al
[Haban89, Haban90]. The code of individual processes is decomposed into a
chain of basic code blocks, such that a block has a single entry and a single exit
point. Software triggers are inserted between blocks so that a hardware

monitor can measure precise execution time. Hence, at trigger points, the spare
capacity generated by the previous block can be calculated. The spare capacity
is used to enable the schedule to be revised to reduce the number of deadlines

missed.
A similar approach has been proposed by Dix et al [Dix89]. The milestone

is a software trigger inserted by the programmer to signal the scheduler when
it reaches a point in its computation such that the process is certain of its

remaining computation requirement. This enables improved scheduling. For

example, a high priority process that has declared that it requires 1 unit of
CPU time before its deadline in 2 units, can be stopped to allow a lower

priority process requiring 1 unit before a deadline in 1 unit. Thus, both
deadlines can be met. This approach is non-systematic, relying upon the

programmer to insert milestones.
Neither of the above approaches consider either sporadic processes

occurring at less than their worst-case arrival rate, unrequired blocking time

or unrequired resources. Unrequired resources have been considered by Shen

et al within the context of a multiprocessor architecture with shared memory
between processors [Shen89]. All resources can be accessed on each processor

with all processors sharing a common list of processes to run: an idle processor

runs the next runnable process on the list. A process becomes runnable if all its

required resources are available. Resources are reclaimed from running

processes if no longer required. The problem considered by Shen is that of

processes executing early due to resources becoming free earlier than

anticipated by offline analysis. This can actually cause deadline failure (by

Graham's anomalies [Graham691). A number of conditions are developed to

prevent this. The problems solved by this work are only encountered on

multiprocessor architectures with a central shared queue of processes to

schedule.

28

The literature does not address the lower-level problems of re-assigning
spare capacity generated by one process to another, without inducing the
Possibility of a deadline being missed. Also, the effective assignment of spare
capacity by the scheduler to multiple requesting processes is not addressed.
These issues are considered in Chapters 6 and 7.

2.6 Summary

The complexity of general scheduling has been seen to be NP-complete. Hence,
the emphasis in the literature has been to address the limited problems set by
a constrained model of hard real-time systems. This was seen in the discussion
on scheduling algorithms in simple uniprocessor systems where shared
resources, process precedence constraints and arbitrary process timing
constraints were not initially considered.

Due to these complexity considerations, sub-optimal scheduling schemes
have been proposed for the feasibility analysis of realistic hard real-time
systems, including the development of both cyclic and static priority
scheduling. Together, these indicate the possibility of-

guaranteeing both periodic and sporadic hard real-time processes
on the same processor;
utilisation of spare time by non-critical processes;
process blocking permitted;
precedence constraints between processes.

Some areas of scheduling theory were identified as pessimistic. For
example, worst-case blocking calculations for the family of resource control
protocols derived from priority inheritance. Also, existing analyses for basic

realistic feasibility are sufficient but not necessary. Increasing the accuracy of
these analyses will increase the number of process systems declared feasible.
However, it was seen that reducing forms of feasibility pessimism, in general,
increases the complexity of the feasibility test, and therefore the time required
to perform that test. Increasing the efficiency of feasibility tests is therefore

also important.
The detection of spare capacity at run-time occurs at the completion of a

process's execution or at points in a process's computation where the actual
computation time may be less than the worst-case computation time (from the

start of the process). In the literature, the re-use of spare capacity is

constrained to allowing the execution of soft real-time processes to occur.

29

Chapter 3.
An Approach For Obtaining

Flexibility in Hard Real-Time Systems

For hard real-time systems, where failure is costly in terms of life and other
resources, it is imperative to show that the system is predictably safe within
the scope of a given failure model. Arguments regarding predictability must be
made offline: there is little merit in the post-mortem approach of showing a
system to be unpredictable after failure has occurred. In hard real-time
systems, the meeting of the timing requirements of processes is a major factor
in determining the predictability of the system. Whilst recognising that
meeting these timing requirements embodies the complete software
engineering life-cycle from specification to implementation, it is the latter stage
that actually determines whether they will be met during the lifetime of the
system. Within the implementation, the role of the scheduler is crucial. The
decisions made at run-time regarding the sequencing and interleaving of
process executions directly affect whether the system will meet timing

requirements and thus achieve desired predictability.
In Chapter 2 it was seen that current scheduling theory places many

constraints upon the form of process, and the interactions between processes at
run-time. Also feasibility theory was observed to be pessimistic for such process
models. Thus, applications whose processes may actually meet all deadlines at
run-time could be declared infeasible by offline analysis.

The next generation of hard real-time systems are expected to include

long lifetime applications which are required to adapt dynamically to failure,

overload and re-configuration [Stankovic881. Processes may be required to

execute in degraded states in order to occupy less processor capacity in the

event of total processor capacity being reduced, for example by failure or

overload. Applications may require a process to be guaranteed to reach a pre-
defined minimum accuracy of result, but allow additional computation to use

spare processor capacity to improve that result. The implementation of such

systems requires more flexibility than is available using current scheduling
theory. Any increase in flesibility must itself be constrained to ensure that

guarantees afforded oflline to processes with hard deadlines are not

30

compromised: a trade-off is observed between increasing system flexibility and
decreasing the predictability of the resultant system.

In the following sections, the flexibility required for the next generation
of hard real-time systems is examined and compared with t hat supported by

current scheduling theory. From this discussion, a twin layered model for
flexible scheduling is introduced, consisting of offline guarantees and run-time
re-use of spare capacity. The provision of such flexibility needs to be balanced
against the predictability and analysability of the resultant system. Such
trade-offs are examined.

3.1 Characteristics of Next Generation Hard Real-Time
Systems

The typical applications for today's real time systems are in the command and
control domain, e. g. flight control, aircraft avionics, industrial plants. The next
generation of real-time systems will be more complex, although broadly in the
same command and control area, e. g. space station, undersea exploration,
intelligent manufacturing. The additional complexity of these systems arises
from the need to incorporate [Stankovic881:

distribution;
dynamic and adaptive behaviour;
long lifetime components;
critical components.

The motivating factors behind moving towards next generation real-time
systems are the advance in hardware, particularly in distributed systems, and
the need for adaptive and intelligent run-time behaviour. However, theory, in

particular feasibility analysis, has not kept pace with these developments (see

Chapter 2). For example, incorporation of application components with

unbounded timing characteristics (e. g. AD, to improve the results of critical

processes, is not possible using cyclic scheduling alone.
Given the additional complexity of these systems, it has been argued

that only a small proportion of the processes will be safety critical, requiring
100% predictability in terms of meeting their deadlines [Stankovic90]. This

permits offline guarantees to be afforded to a small number of process
deadlines, with run-time scheduling concentrating mainly upon increasing the

number of other processes meeting their deadlines (, via run-time scheduling
heuristics). In contrast, Bums and Wellings, argue that mission critical and

other essential processes need to be afforded 100% predictability [Burns9lb].

31

Thus, the proportion of guaranteed (crucial) processes is larger. The Integrated
Modular Avionics system being developed for civil aircraft flight control is
given as a supporting example [AEEC91). This view is also supported by Xu
and Parnas [Xu91] citing the U. S. Navy's A-7E aircraft flight control software
as an example [Faulk881.

The provision of adaptive process behaviour is key to the next
generation. This can be viewed in many forms: processes changing operating
modes between distinct phases in the lifetime of an application; processes
providing degraded but guaranteed functionality during overload or failure;
processes using different (possibly unbounded) additional components to
improve their benefit to the system. The overriding requirement is that spare
processor capacity should not be exhausted by the executions of soft real-time
processes, as in many scheduling schemes (e. g. see [Tokuda89]), but also to
increase the benefit of guaranteed processes to the system:

"where the system is predominantly concerned with crucial [i. e.
guaranteed] activity then it is these services that should benefit
from this extra [processor] capacity. " [Bums9lb)

This viewpoint is supported by the Imprecise Computation model [Lin87,
Chung901, in which spare processor capacity is used to improve the accuracy of
result of a guaranteed basic service.

Specific requirements placed upon feasibility theory by the next
generation of hard real-time systems are now examiined.

Periodic and Sporadic Processes

The relative proportion of periodic and sporadic processes is unclear, varying
greatly between applications. In general, the need to provide end-to-end
deadline guarantees across interdependent processes (possibly distributed),

some of which are initiated by external events, requires that both periodic and

sporadic processes are supported. Given stringent timing constraints upon

processes, it is unlikely that polling for sporadic environment events is efficient

enough. Hence, direct support is required for sporadic processes.

Process Deadlines Unequal To Their Periods

Permitting process deadlines to be less than their respective periods represents

a more natural method for representing real-time processes. For example,

processes often take the form:

32

read input; calculate response; output result
The release of the process occurs when the input data is available to be read.
The deadline of the process is naturally identified with the completion of the
Output. A finite amount of time is left between the output phase of one
execution, and the input phase of the next. This ensures that, for example,
hardware activators have been set to their updated value.

This process structure is also observed when messages are passed
between nodes in a distributed system. Here, the deadline of the process may
represent the point at which a process sends a message to a process on another
node, with the interval between the deadline and the period of the process used
for message transmission. The same effect is seen in precedence-constrained
processes where one process must complete before its successor commences.
The deadline of the former process is set to be less than its period in order to
let the successor process execute (assuming both processes share a common
period).

Arbitrary Process Start Times
The ability to have arbitrary process start times, relaxing the restriction that
all processes have (during the lifetime of the system) a common release time,
enables a more natural representation of application problems. Consider a
system which has two networks (for fault-tolerance purposes) using a token
passing protocol. To even out the work load on a node, the arrival times of the
tokens from the two networks are phased so that they never arrive
simultaneously (assuming constant token rotation time). This is naturally
represented by two network device driver processes, one for each network, with
equal periods and deadlines, but whose release times are offset from each
other. Another example concerns (non-trivial) device accesses. One process may
request data from a device, with a second process, offset from the first,

retrieving the data. The offset between the two processes relates to the

response time of the device to the request.
A precedence constrained set of processes can be modelled by assigning

arbitrary start times to processes. Later processes in the precedence constraint

are given an offset such that earlier processes are guaranteed to finish before

the later process is released. For example, processes of the form:
read input; calculate response; output result

can be split into three precedence constrained processes (one for each phase),

where the offset of the input phase is less than the offset of the computation

33

Phase, which is in turn less than the offset of the output phase (the three

Phases have identical periods).

Process Interaction Via Shared Resources and Precedence
Constraints
Increasing flexibility of inter-process interaction can be achieved in many
ways. At a scheduling level, most approaches can be supported by the provision
of shared resources which may be accessed in either a non-blocking or blocking
manner (the latter for mutually exclusive access); and precedence constraints
between processes.

Although non-blocking access may be provided to some resources, others
must be accessed in a mutually exclusive manner. For example, access to some
low-level devices must be mutually exclusive to ensure non-corruption of data

returned from the device. Also, if the context switch time in a system is

significant, this will form a blocking factor for all processes.
Incorporation of precedence constraints leads to greater flexibility in the

process model: multi-deadline processes can be represented. These are used
when processes have several time constrained goals to meet within a single
execution. For feasibility purposes, the process may be- decomposed to

represent its multiple goals.

Re-Use of Spare System Capacity

Offline feasibility analysis considers worst-case estimations of processor (and

other resource) requirements. Therefore, at run-time, a degree of spare system

capacity will become evident. Such spare capacity can be re-used to enhance
the functionality of system p rocesses. For example, spare capacity could be

utilised to enable unbounded software components to be executed at run-time,
that is components which could not be afforded offline guarantees
[Audsley93a).

Summary

In summary, the demands of next generation hard real-time systems on
feasibility theory include:

large proportion of crucial processes;
guaranteed periodic and sporadic processes;

process deadlines being not necessarily equal to periods;

34

arbitrary process start times;

shared resources accessed in a mutually exclusive or non-blocking
manner;
precedence constraints between processes;
run-time ability for guaranteed processes to re-use any available
spare processor capaci .

Note that issues of distribution are largely ignored within this thesis.
It is clear from the review in Chapter 2 that many of the scheduling

requirements of next generation hard real-time systems are not supported by
current scheduling theory. Whilst cyclic, static priority and dynamic priority
scheduling can all afford 100% predictability to limited forms of process, little
attention is given to run-time use of spare capacity by guaranteed processes.

3.2 An Approach For Introducing Additional Flexibility
In the previous section the requirements for the next generation of hard real-
time systems were outlined. From the observations made in Chapter 2, it is
clear that current scheduling approaches are too inflexible for such systems.
Therefore, in this section, a two-tiered approach is introduced to increase
fleitibility:

W basic offline guarantee of all crucial process deadlines;
(ii) run-time re-use of spare processor capacity to increase system

utility.
Tier W is the most significant, since 100% crucial process predictability is of
primary importance. Tier (ii) provides the ability to cope with process models
that permit crucial (and other) application processes to contain optional
components for increasing overall system utility.

3.2.1 Increasing Offline Fleidbility

To increase offline fleidbility, feasibility tests need to cope with all (or as many

as possible) of the requirements of complex hard real-time systems outlined in

the previous sections: the coverage of feasibility tests must be improved. Also,

the efficiency of algorithms used to test feasibility should be improved.

Additionally, feasibility tests must be made more accurate, to reduce

pessIMIsm in worst-case bounds on process execution and blocking times; and
to reduce the number of process sets declared infeasible, which would actually

meet all deadlines at run-time. For example, the conventional approach
towards finding worst-case execution times scans the control-flow graph of the

35

Process noting the longest path (in terms of execution time) [Puschner891. As a
by-product, the required resources on each path are found, with the worst-case
blocking requirement of processes now calculated. However, the worst-case
path through code with respect to execution time and resource usage may be
different: it may be impossible for both worst-cases to occur within a single
execution of the process. Thus, the worst-case estimations are pessimistic.

To form the basis for increasing offline flexibility, static priority pre-
emptive scheduling is chosen. The reasons for this choice include:

W much feasibility theory already exists;
(ii) the theory is extensible and adaptable;
(iii) it has simple run-time requirements;
(iv) it is predictable in overload situations;
(V) it is easy to incorporate detection and re-use of spare processor

capacity.
The availability of static priority feasibility theory for basic timing

characteristics (such as process period equal to deadline) and resource sharing
(via semaphores) provides an adequate basis for the development of feasibility
theory. Such analysis can be extended without having to start from first

principles.
Static priority pre-emptive scheduling is simple to implement at run-

time, even allowing for the complexity of resource allocation protocols (such as
priority ceiling protocol). This is due to not having to re-calculate priorities
dynamically. The simple static allocation of priorities enables acceptable
behaviour during a transient overload. For example, during an overload,
processes will miss their deadlines in a predicable manner: in general, lower

priority processes will miss their deadlines before higher priority processes.
Dynamic priority scheduling, for example earliest deadline, is discounted

since although it often leads to (potentially) greater processor utilisation, it is

unpredictable in overload situations: the process that misses its deadline first

during an overload cannot, in general, be determined offline.
Cyclic processor scheduling is not employed because it leads to systems

that are inflexible at run-time. Xu and Parnas argue that

"For satisfying timing constraints in hard real-time systems,

predictability of the system's behaviour is the most important

concern; pre-run-time scheduling is often the only practical

means ofproviding predictability in a complex system. " [Xu9 1]

36

However, by extending the coverage of static priority feasibility tests, it is
possible to match or exceed the coverage of feasibility tests for cyclic systems
[Audsley93b]. We note that, even with the same coverage, a cyclic schedule
may exist for a process set declared infeasible by a static priority test: in this
case, the cyclic test is more accurate. However, in the general case, the
flexibility that is lost, particularly at run-time, accounts for any gain in
accuracy.

Other disadvantages of cyclic scheduling compared to static priority
scheduling have been articulated by Locke [Ijocke921, who intimates that the
key disadvantage is fragility: it is difficult to change process code or other
timing characteristics during design and/or maintenance, without having to re-
engineer a schedule (c. f. static priority scheduling which only requires a re-
calculation of feasibility). We note that simple run-time implementation is
often cited as an advantage of cyclic scheduling over static priority. Both
schemes require an interrupt handler for a clock, and an ordered list of
processes to execute. However, the cost of explicitly handling resource
allocation at run-time adds to the cost of static priority scheduling. In reality,
the run-time overhead of static priority scheduling is not significantly greater
than cyclic scheduling.

Extending offline flexibility is considered further in Chapters 4 and 5.

3.2.2 Increasing Run-Time Flexibility
Guaranteeing process deadlines offline leads to an under utilisation of
resources at run-time. This arises from [Audsley93a]:

(i) software components not taking their worst-case execution time;
(ii) hardware behaving better than expected (due to pipelines, caches

etc);
(iii) sporadic processes not executing at their maximum rate;
(iv) non-execution of error handling software (i. e. recovery blocks,

exception handlers);
(v) spare time incorporated by feasibility analysis to guarantee hard

deadlines.
At run-time, this under utilisation is evident as spare capacity. In some

systems, this capacity is not explicitly detected, with processes merely

completing earlier than anticipated (e. g. time share operating systems). Other

systems allow soft real-time (or non-real time) processes to utilise the spare

capacity [Tokuda891. In section 3.1 it was argued that crucial processes should

37

be permitted to use some (or all) of the spare capacity to increase their benefit
to the system. As indicated in section 2.5, little work is evident in the literature
regarding the re-use of spare capacity. Any approach must:

W characterise available spare capacity when it occurs;
60 dynamically identify spare capacity at run-time;
(iii) consider viable poheies for re-assigning spare capacity.
Characterising spare capacity reflects the need to distinguish between its

various forms. For example, between guaranteed execution time not required
by a process, and that time not guaranteed to any process offline. Also,
mechanisms are required to enable automatic detection of spare capacity
without creating unnecessary overheads. Finally, re-assignment of spare
capacity must not violate already guaranteed deadlines. This could occur, for
example, if spare capacity were assigned to a process which proceeded to lock a
resource guaranteed to be available during another guaranteed process's
execution.

It has been argued that the requirement to provide 100% predictability
regarding crucial process deadlines implies the use of a simplistic run-time
scheduler, as alluded to by Stankovic and Ramamritham [Stankovic901 and
Damm et al [Damm891. This argument would preclude the detection and re-use
of spare processor capacity in hard real-time systems as ruli-time complexity
and overheads would be increased. However, if 100% predictability can still be

afforded to crucial processes in spite of this additional complexity, the
flexibility gained out-weighs the loss of simplicity.

The approach adopted in this thesis is to ensure that whilst detection of
spare processor capacity is an overhead slightly extending the computation
time of a process, any algorithm employed as part of the run-time scheduler to

re-allocate spare capacity is itself performed using spare capacity. This

illustrates the two-tied approach: if no spare capacity exists, the run-time

scheduling is simple static priority pre-emptive; if spare capacity does exist,

potentially complex algorithms may be executed using part of it to allocate the

remaining spare capacity.
The detection and re-use of spare capacity is considered further in

Chapters 6 and 7.

3.2.3 Summary

A two-tiered approach for increasing hard real-time system flexibility, with

respect to feasibility theory, has been identified. Offline flexibility can be

38

improved by extending the coverage, accuracy and efficiency of feasibility
analysis. Run-time flexibility can be increased by firstly detecting spare
processor capacity, and then employing spare capacity re-assig=ent policies
that do not violate offline guarantees regarding process deadlines.

Essentially, any extensions of feasibility theory, that permit more
flexible use of the processor, must adhere to the fimdamental 100%
predictability requirement of crucial processes in hard real-time systems.

3.3 The Complexity / Flexibility Trade-Off
Increasing the flexibility of scheduling to reflect the requirements of next
generation hard real-time systems has profound effects on the complexities of
both the offline feasibility test required and the scheduling algorithm employed
at run-time. As offline flexibility increases, so does the complexity of the
required feasibility test. Hence, a trade-off exists between flexibility and ease
of feasibility testing. A trade-off is also observed between the complexity of
run-time scheduling and the overheads incurred: the amount of spare
processor capacity that could be re-used decreases as overheads increase due to
the additional complexity.

In the following sections, the trade-offs outlined above are discussed.

3.3.1 The Offline Complexity / Flexibihty Trade-Off

In general, as the flexibility of the process model is increased, the ease of
determining feasibility decreases since the complexity of the required
feasibility test increases (see Chapter 2). As optimal solutions are now NP-

complete (or NP-hard), sub-optimal (i. e. sufficient and not necessary)
feasibility tests are employed. The coverage of such tests needs to reflect the

requirements of next generation hard real-time systems whilst remaining
efficient (i. e. tractable). The tests must have enough accuracy to detect an
adequate proportion of feasible process sets.

The trade-off between accuracy and coverage (i. e. flexibility) on the one
hand and the ease of determining feasibility on the other is illustrated in
Figure 3.1.

39

Unconstrained
Process Model

Very Constrained
Process Model

NP-Complete
Optimal Feasibility

Flexible
Required movement_
improving coverage
accuracy and efficiency

Sub-optimal
Psuedo-Polynornial
Some process model
constraints relaxed
Efficient Test

Inflexible

Figure 3.1: The Offline Complemity / Flexibility Trade-Off.

Flesibility is increased as the constraints upon the process model are relaxed
and/or the accuracy of the feasibility test increases. The requirement is to

make applicable sub-oPtimal tests more flexible by increasing coverage,
accuracy and efficiency (whilst not losing any process sets previously declared
feasible).

This trade-off is observed when the feasibility of realistic applications is

considered. Assumptions made regarding zero length context switches (and

other system overheads), and no inter-process interaction (usually some
blocking when accessing kernel) are often not adequate. Therefore, feasibility

theory should be extended (more coverage) whilst maintaining current

accuracy as much as possible (i. e. attempt to ensure that process sets that

passed previously will still pass).

Polynomial
Optimal Feasibility

40

3.3.2 The Run-Time Complexity / Flexibility Trade-Off

Detection

None

Identify Spare
Capacity on
Process Completion

Clairvoyance

Inflexible/
Simple

Re-Use

None

FCFS

Maximum Utility
Flexible/
Complex

Figure 3.2: The Run-Time Complexity / Flexibility Trade-Off.

The amount of spare processor capacity that is available at run-time is
dependent upon the exact run-time scheduling scheme assumed by the
feasibility test (and any further assumptions therein). For example, different
feasibility tests may require processes to be executed in different orders at run-
time: since the actual computation time of the processes may be dependent

upon current (real) time, the amount of spare processor capacity may vary in

quantity under different scheduling schemes. Also, the actual time at which
any spare processor capacity becomes apparent may differ. Therefore, the

comparison of different run-time schemes for detecting and re-using spare
capacity should be within the context of the same offline feasibility test and
assumed basic run-time scheduling regime (e. g. static priority pre-emptive).

Assuming that no explicit detection of spare capacity at run-time has

zero complexity (i. e. is simple) and incurs no system overheads, we may
observe that as detection complexity increases, so does that amount of spare
capacity detected. Also, the associated run-time overheads increase. Hence, as
complexity increases, a point may be reached whereby additional complexity
implies that less spare capacity will be detected, due to the size of overheads
incurred. This is illustrated in Figure 3.2. As complexity of detection increases,

for example from no explicit detection to identifying spare capacity on process

completion, flexibility and overheads increase.
For re-use of spare processor capacity, the null run-time policy (i. e. do

nothing) has no complexity and incurs no system overheads. As the run-time

41

re-use policy becomes more complex, more flexibility is introduced, although at
increased run-time cost. For example, assigning spare capacity on a First-
Come-First-Served basis amongst requesting processes is a more flexible policy
than no re-use at all, although it incurs increased overheads. As the policy
approaches the complexity of attempting to gain the most utility (e. g. via
Value-Functions [Locke86D from available spare capacity, complexity and
overheads increase further. These trade-offs are illustrated in Figure 3.2.

We note that detection and re-use are interdependent in that the ability
to re-use spare capacity is entirely dependent upon its previous detection: it is
little use to employ complex run-time re-use policies if detection is very poor.

Since schemes for detection and re-assignment add to system overheads
at run-time, the feasibility of crucial processes could be affected due to the fall
in available processor utilisation for guaranteeing deadlines. Therefore, if
possible, the detection and re-use policies should occupy spare processor
capacity themselves.

3.4 Summary

Existing feasibility theory is not sufficiently flexible to cope with the
requirements of the next generation of hard real-time systems. In particular,
inadequacies are highlighted by the need for more relaxed process timing

characteristics and adaptive run-time behaviour.
Increased flexibility can be achieved in two areas. Offline feasibility

analysis can be extended, so that the coverage, accuracy and efficiency of any
test is adequate for the features of next generation systems. The coverage of
feasibility tests must reflect the requirements of such systems, whilst being

sufficiently accurate to detect a large proportion of feasible process sets.
Run-time flexibility can be improved by the efficient determination and

re-use of spare capacity by crucial (and other) application processes, to improve

the utility of the system.
These observations lead to a two-tiered approach toward increasing the

flexibility of hard real-time systems. Primarily, offline guarantees for crucial

process deadlines are provided using static priority pre-emptive scheduling.
Then, at run-time, spare processor capacity is re-used to increase system

utility. This is achieved by accurate detection of spare capacity (based upon an

offline static code analysis), combined with efficient policies for allocation to

crucial processes.

42

Chapter 4.
Extending Offline Flexibility Via
Deadline Monotonic Feasibility

Analysis

In the initial chapters of this thesis it has been observed that current
feasibility analysis for static priority systems lacked the coverage required for
the next generation of hard real-time systems. Also, the available feasibility
analysis is overly pessimistic, often assuming worst-case scenarios that can
never occur at run-time. Thus system flexibility is constrained.

The aim of this chapter is to examine the relationship between flexibility
and complexity with respect to offline feasibility analysis. Additional flexibility
is introduced by extending the coverage of feasibility analysis to encompass
processes whose deadlines are no greater than their periods.

In the literature, few sufficient and not necessary feasibility tests for
processes with Dj: 5Tj have been articulated. This chapter develops several such
tests, with differing accuracies.

As observed in section 2.2.3, sufficient and necessary feasibility tests are
available for processes with Di = Ti. For example, for the purpose of determining
feasibility only, all process periods could be reduced to be equal to the deadline
(establishing Di = T). This assumes a higher workload on the processor than is

actually encountered at run-time. Under these circumstances, a sufficient and
necessary Dj=Tj feasibility test would become, in general, sufficient and not
necessary for Dj: 9Tj- Exact feasibility tests derived for D,: 5T, processes include:

construction of a schedule over the interval O, Týx(Dj) [Leung80]; I
15t: 5n

extension of the Dj=Tj test given by Lehoczky et al [Lehoczky89]

for Dj: 5-Tj processes [Nassor9l];

test based upon interval mathematics [Joseph86].

In general, these tests all attempt to determine the existence of a point
between a process's release and deadline such that all its computational

requirement has been met. The tests vary in their derivation, and also in

43

efficiency when implemented. The tests consider independent periodic
processes only: issues such as the incorporation of sporadic processes and
shared resources are not considered. All three tests assume deadline monotonic
Priority assignment (optimal for Dj: 5Tj processes) [Uung821.

Within this chapter, more efficient sufficient and necessary feasibility
tests are derived that also facilitate the introduction of sporadic processes and
process blocking.

Initially, some assumptions are made:
W all processes are periodic;
(ii) process computation times are bounded and known offline;
(iii) all processes have a common start time (i. e. for all processes ri,

Oi = 0).

processes do not interact (via shared resources or precedence
constraints);

(v) processes cannot voluntarily suspend, or become blocked by an
external event (e. g. reception of data from an external source).

During the course of the chapter, several of the above restrictions will be lifted.
The following section introduces background analysis of the run-time

behaviour of Dj: 5Tj processes. Section 4.2 develops several sufficient and not
necessary feasibility tests of differing accuracy and complexities. Section 4.3
develops sufficient and necessary feasibility tests. Sections 4.4 and 4.5 extend
the feasibility tests for sporadic processes and process that may block on
shared resources respectively. Section 4.6 discusses issues related with
determining infeasibility, presenting appropriate tests. Section 4.7 examines
the accuracy and efficiency of the developed tests using randomly generated
process sets. Finally, a summary of the chapter is given in section 4.8.

4.1 Feasibility Analysis of D,: 5T, Processes: Background

Initially, it is observed that under static priority scheduling, at run-time, only
processes with higher priority may affect the execution of a process by pre-

emption. Also, the worst-case for meeting the deadline of a process is for a

release starting at a critical instant, when it is released simultaneously with

all processes of higher priority [Layland731: if a process meets its deadline for a

release starting at a critical instant it will always meet its deadline (i. e. it is

feasible).
Consider the process set in Table 4.1 (see section 1.5 for nomenclature).

44

Process I C ID
T

T, 2 3 5
1

2 5. 6
1 8 9

T 14 1 18 20

Total
Requested

Computation
and Idle Time

Table 4.1: Example Process Set 1.

18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

Time

Figure 4.1: TRCG of Example Process Set 1.

We can illustrate the behaviour of the processes using the Total Requested
Computation Graph (TRCG) in Figure 4.1. This plots the sum of the total
requested computation requirement of processes -;.. T4 and the processor idle

time against time (solid line). The x=y line (dotted) represents the maximum
amount of computation (Plus idle time) that the processor could have serviced
at a given time. Three observations can be made:

when outstanding computation exists at time t, the solid line

remains above the dotted line;

when the outstanding computation reaches zero at time t, the

solid line touches the dotted line;
(iii) whilst the processor is idle, due to zero outstanding computation,

the solid line and the dotted line are coincident.
For example in Figure 4.1, when tE[0,15), the total requested computation is

greater than the amount of computation serviced by the processor in the

interval. At t=15, all requested computation has been serviced. This includes

all computation requested by ;, implying the process to be feasible (as all

computation of processes has been met and lower priority processes

45

23456789 10 11 12 13 14 15 16 17 18

cannot pre-empt During the interval [17,18) the processor is idle with
an interval of idle time identified.

It is noted that if processes do not actually require all their WCET at
run-time, ; may meet its deadline earlier. However, the worst-case must be
assumed to enable 100% predictability (with respect to meeting deadlines) to
be established.

At any time, the total requested computation can be split into that of T4
and that of higher priority processes (i. e. Tl.. T3). The latter represents that
amount of time that higher priority processes interfere with the execution of
In general, we form the following definition:

Definition 4.1:
Ii, the interference on ci, represents the total computation of higher

priority processes between the release of ri at a critical instant and
its deadline.

Formalising the feasibility constraint observed in the TRCG (Figure 4.1):
Ci + Ij: 5 Di (4.1)

Since Ci and Di are known constants, we conclude that it is the determination

of the exact value of Ii that ensures that the complexity of the feasibility test is,
in general, NP-hard (see Chapter 2). This becomes apparent by noting that the
calculation of the exact value of Ii must consider all higher priority process
releases in [0, D) (this is shown in Figure 4.1 for ;). Thus the complexity is
due to the values of process periods, not upon the number of processes. Hence,
in general, the complexity of determining (sufficient and necessary) feasibility

cannot be bounded by a polynomial fimction in the number of processes.
Although determination of a precise value of Ii results in NP-complete

complexity, pessimistic (i. e. high) estimations can be obtained in polynomial
time, although feasibility tests based on such a value will be sufficient and not
necessary. This point is illustrated by a pessimistic estimation of 14 given for

the process set in Table 4.1. The pessimistic estimation of total requested
computation is given by the dashed line in the TRCG in Figure 4.2. The

estimation is constant over [0,181. This implies that the 14 component of the

requested computation needs evaluation only once, at time 0. Assuming that
the evaluation of 14 has polynomial complexity, the overall complexity of the

feasibility test becomes polynomial. Hence, the complexity of the problem has
been reduced, but at the cost of decreased accuracy: if c4 has deadline 17 the

46

pessimistic estimation of total computation time would not meet the x=y line

until after the deadline, so declaring r4 -to be infeasible, whilst the exact value
for total requested computation time would still declare r4 feasible. This has

illustrated the offline compleidty-flexibility trade-off described in Chapter 3.

18
17
16
15
14

Total
13
12

Requested 11
Computation 10

and Ide 8
Time 7

6
5
4
3
2
1
0

Figure 4.2: TRCG of Example Process Set 1 With Pessimistic 14.

The relationship between estimations of Ii and the exact. value of
interference are formalised in the foRowing theorems:

Theorem 4.1:
If the estimated interference Ii is equal to the exact interference Ij'

the feasibility test given by equation (4.1) is sufficient and necessary.
Proof:

The proof is in two parts, proving sufficiency and necessity

respectively.
Sufficiency
The proof is by contradiction. We assume there is a process set that

passes the test but is not feasible, but show that if these processes

are not feasible, they must fail the test. Consider a set of n processes.
The feasibility of these processes is considered in order Let

, ri be the first process to pass the test but not actually meet its

deadline. To pass the test, the following must hold:

Ci +It :5 Di (4.2)

Now, for r, not to be feasible, it must miss its deadline during an

instance of the process starting at the critical instant of all processes

47

123456789 10 11 12 13 14 15 16 17 IS
Time

(i. e. time 0). At this point ri suffers its maximum interference, Ii',
due to higher priority processes. For ri to miss its deadline at run-
time, the following must hold:

Ci+Ii'> Di (4.3)
Since Ii = Ij' a clear contradiction eidsts between equations (4.2) and
(4.3).
Necessity
Again, the proof is by contradiction. Assume there is a process set
that fails the feasibility test but meets all deadlines at run-time
(assuming all processes always take their WCET). Consider a set of
n processes. The feasibility of these processes is considered in order
j.., cj---r.. Let ci be the first process to fail the test, but actually meet
all deadlines at run-time. To fail the test, the following condition
must hold:

Cj+I. > Di (4.4)
9

At run-time, for ci to meet its deadline, the following must hold:
Ci+Ii' -< Di (4.5)

Since Ii = Ij' a clear contradiction exists between equations (4.4) and
(4.5).

Theorem 4.2:
If the estimated interference Ii is greater than the exact interference

Ij' (i. e. is pessimistic) the feasibility test given by equation (4.1) is

sufficient and not necessary.
Proof.

The proof of sufficiency follows from the first part of the proof of
Theorem 4.1.
The time that may be guaranteed to ri by the feasibility test is given

by Di - I,. Since the actual time that could be guaranteed to 'ri is

Di -Iil with Ij' < Ii ý less time can be assigned to 'ri by this feasibility

test. Therefore, from the proof of necessity in Theorem 4.1, we
observe that this feasibility test is not necessary as processes may
fail the test but actually meet their deadlines at run-time.

48

4.2 Sufficient And Not Necessary Feasibility Tests For
D,: ýT, Processes

As intimated in the previous section, the basic feasibility test for Dj: 5Tj
processes can be stated (assuming a critical instant):

Vi: 1: 5 i: 5 n: Ci + Ii: 5 Di (4.6)
Differing estimations for Ii, together with the above equation, define different
feasibility tests, varying in accuracy and complexity. As pessimistic
estimations of Ii approach the exact value, their complexity increases, since to
obtain increasing accuracy requires a more accurate representation of the
actual points in time requests for computation of higher priority processes are
made (i. e. higher priority process release times) and when that computation is
actually performed by the processor. The following sections outline different
estimations of Ii, forming sufficient and not necessary feasibility tests of
differing accuracies and complexities. We assume that process sets have a
critical instant and that all process offsets are zero.

4.2.1 Sufficient And Not Necessary Feasibility Test No. 1

1ý

TI

0

T time

ci

Di 7> time

c

time

Figure 4.3: Estimating Ii (1).

Consider Figure 4.3. To estimate Ii we observe that the interference inflicted

upon ri by all higher priority processes corresponds to the computation
demands by those processes in the interval of time from the critical instant to
the first deadline of -ri, that is [0, Dj). The computation of higher priority

processes that forms part of Ii is shown in the Figure by dotted boxes on the

timeline of ci. Consider the foRowing theorem:

Cl cl cj

49

Theorem 4.3:
The um interference of rj on ri (1: 5j<i: 5n) is given by
fDjTjlCj.

Proof:
The interference of a higher priority process rj is at a maximum
when it executes in the first Cj time units after its release, and when
its final release in [0, D) is at least Cj units before Di. Formally, the

in interference of rj on ci occurs when cj executes in the
interval [t, t+Cj) where tc-10, Tj, --,

LDj1TjjTjj and where
LDilTjjTj + Cj: 5 DI. Thus each release of c, in [0, D) creates Cj units of

interference on ri. In total there are rDj-Tjl releases of rj in the
interval, implying a maximum interference of f DjTjlCj.

The feasibility test is given by:
Vi: l! ý i<n: Ci + Ij: 5 Di

where Ii Ci (4.7)

The complexity of this test is 0(n2) in the number of processes.
Since the estimation of Ii is at least the actual interference (Theorem

4.3), the test is sufficient and not necessary (by Theorem 4.2). The pessi ism
in Ii is due to:

processes are assumed to execute concurrently (i. e. only one
process may actually execute at time 0, even though all are
assumed to do so when deriving Ij);

(ii) execution of processes included in Ii may actually occur after D,.

The non-necessity of the test is illustrated in the following example:
Example 4.1:

Process
IC I D T

2 3.
_ 5

2 5 6

1 8 9

11 15 1 20

Table 4.2: Example Process Set 2.

50

Consider the process set in Table 4.2. Processes T1.. T3 are feasible

(calculation omitted for brevity). Consider r4. The feasibility of this

process is given by (from equation (4.7)):
4

FD41 rD41 C4 +
JC3

+- C2 +-q< D4
T3

IT2 IIT, IC -

15 151,
+[15 1+

1911+ [6
5

12:
5 15

15 = 15
Hence r4 is feasible. Let the deadline of r4 be increased to 16 - this

should not affect the feasibility of the process. Re-consider the
feasibility of r4 :

16 16 16 1+
1911+ [6 12

+
[512>

16 i. e. 17>16

Hence c4 is declared infeasible.

Since increasing a deadline cannot detract from the actual feasibility, the
above example has shown the feasibility test to be sufficient and not necessary.

Under certain circumstances, the above test is also necessary:
Theorem 4.4:

When considering the feasibility of ri by the test defined by equation
(4.7), if the following condition holds the test is necessary:

Vj: 2: 5j<i: Di -ý-t
I Di

Tj + Dj L Tj

I

Proof-
Trivially, the interference of c, on any ci U> 1) is always exact since

T, always executes for the initial C, time units after its release.
Assume that processes have been declared feasible. The

interference of rj (1:! ý j<i< n) upon ci in [0, D) is due to releases of 'Cj

at times tE[O, Tj,.., LDilTjjTjl. If the entire interval in which the

computational requirement of cj can be honoured by the processor

(i. e. the interval [t, t+Dj)), is contained in the interval [0, D), all Cj

will occur in [0, D). Since the final release of rj in [0, D) occurs at
LDilTjjTj, if the deadline for this release also lies in [0, D), all

51

computation for releases of c, in [0, Dj) are honoured in LO, D). Thus,
if the condition in the theorem holds, the estimation of interference
given in equation (4.7) is exact, ensuring that the feasibility test is
necessary (by Theorem 4.1).

It is noted that other conditions may also eidst which make the test necessary.

4.2.2 Sufficient And Not Necessary Feasibility Test No. 2
We may improve the accuracy of Ii given in the previous section (equation
(4.7)) by ignoring computation of higher priority processes that must occur
after Di. Consider the interference of r, (1: 5 j<i: 5 n) upon ri in [0, Dj). The final
release of -T, in the interval occurs at LDilTjjTj. If this release time is less than
Cj before Di, some execution must occur after Di. Consider the following
theorem:

Theorem 4.5:
The maximum interference of rj on r, (1: 5 j<i: 5 n) is given by:

[DjjT) 2-ilci
+ min(Cj, Di -j

[`Tj

Tj
Proof.

The number of whole periods of rj in [0, Dj) is given by LD J. Tjj. Thus,
LD j-Tjj C, represents the interference due to executions of r, that are
guaranteed to complete in the interval. The final release of c, in the
interval occurs at LDj-TjjTj. The maximum interference that can be
imposed on ci by this release is bounded by:

Di - LDj-TjjTj

Thus, the maximum interference, i, that this release may impose on
, cj is given by:

Ci

Dijr,
Di-

Ti j

Hence, the theorem holds.

Di ff Cj: 5 D
Ti

-

Ti

otherwise

52

The feasibility test is given by:
Vi: 1 -: 5 i5n: Ci + Ij:! ý Di

6-1 [ýei [DjjT
where Cj + min Cj, Di -j (4.8)

J-1 Tj Tj

The complexity of this test is 0(n2) in the number of processes, although in

practice it will take longer to execute than the test given in the previous
section.

Since the estimation of Ii is at least the actual interference (Theorem
4.5), the test is sufficient and not necessary (by Theorem 4.2).

Consider the following example which illustrates the improvement in

accuracy of the above feasibility test compared to that of the previous section:
Example 4.2:
Process r4 in Table 4.2 was declared infeasible when its deadline was
increased from 15 to 16 by the feasibility test given by equation (4.7) in

the previous section. We now consider the feasibility of r4 as defined by

equation (4.8):

C4+[R4-]T3+min CPD4-[ýý-I]T3) +
[R4 JT2+min

C2, D4-
[D4 JT2

T3 T3 T2 T2

+[D4]T, +min(C,, D4-[D4]Tl) :5 D4
T, T,

1+
16],

+ min(l, 16 _[16]9)+[16
]2

+ min 2,16 -
[16]6)

+
[1612 19

9665

+min 2,16 -
16]5)

:! g 16
[5

16=16

Hence q4 is feasible.

An example is now given that illustrates the not necessary nature of the

feasibility test defined by equation (4-8).

53

Example 4.3:
Process IC ID

T

2 3 5
3. 5. 6

12_ 1 25 1 391

Table 4.3: Example Process Set 3.

Consider the process set in Table 4.3. Processes ý and ý, are feasible
(calculation omitted for brevity). Consider ;. The feasibility of this
process is given by (from equation (4.8)):

C3 + -E3- C2 +min C2, D3 -
[D3 JT2)

+[D3
JCI

+ min Cl, D3 -[
D3 JTI)

< D3
I

T2
-

T2 T, T,

2+ 25]3+min(3,25
_[25

]6)
+

25]2+min(2,25
_[25

]5)
= 25

[66[55

i. e. 25 = 25
Hence T3 is feasible. Let the deadline ofT3 be increased to 26 - this
should not affect the feasibility of the process:

2+ 26]3+min(3,26 26
*]6) +

26 J2
+ min 2,26 -

26]5)
> 26

[66[5 ['5

i. e. 27 > 26
HenceT3 is declared infeasible, although would still meet its deadline.

Since increasing a deadline cannot detract from the actual feasibilitY,
the above example has shown the feasibility test to be not necessary.

It is noted that the test is necessary under the conditions defined by
Theorem 4.4.

4.2.3 Sufficient And Not Necessary Feasibility Test No. 3

The estimation of Ii given by equation (4.8) in the previous section is

pessimistic as some (or all) of the final releases of rj (1: 5 j<0 are assumed to

execute concurrently. Consider the interference on ri by processes cj and ck
(1:! ýj<k<i). For shorthand purposes, we denote the final release of these

processes in [0, Dj) by tj and tt respectively, where tk< tj. That is:

tj -ý
Di Tj tk =

[Di]Tk

Tj Tk

54

Interference estimation is now improved. If the following condition holds,

concurrent execution will be assumed by equation (4.8):
Di-tj< Cj A Di-tt < Ck A tj - tk <Ck

Assume that the following ýcondition holds true:
Di - tj: 5 Cj A Di - tk: 5 Ck A tk<, tj

This is illustrated in Figure 4.4. Clearly the final release of Ck in [0, D) may
execute before tj (since t, <tj). The remainder of its execution will begin at or

after tj+Cj. The computation of higher priority processes that forms part of the

exact interference on ri is shown in the Figure by dotted boxes on the timeline

of 'Ci.

time
TIk

Ck Ck

time

: Ck

0 Di 0", tim e

Figure 4.4: Estimating Ii (2).

After calculation of the interference of ci upon -ci, we may reduce Di to tj when

considering the interference of rk on ri.
Definition 4.2:

The effective deadline of ri when considering the interference of rj

upon ri is denoted dj'. The interval [dj', Dj) is occupied entirely by the

executions of processes of higher priority than -Tj -
In the above example, dk=tj when considering the interference of tk on ri.

Consider the following theorem:
Theorem 4.6:

The maximum interference of rj on ri (1: 5 j<i: 5 n) is given by:

djý jC djý
-j +min Cj, djý - Tj
Tj

-Ti-

)

55

Proof-
The interference of rj upon ri can only be due to executions of cj in
[Ov d, ý), where d, ý :9 Di. Therefore, the quantification of interference
follows from Theorem 4.5.

The feasibility test may be stated:
Vi: l!! g i: 5 n: Ci + Ij: 5 Di

-I djý
Cj + min Cj, djý -

djý
where Ii =I Tj

j=l

(-

Tj Tj
Di if j=l

di i
d'

djL,
j-1 if j>1A djL, -I Tj-1

I
Ti-I > Ci-I

dj-,
Ti-I otherwise TH

I

(4.9)

The definition of djý reduces the effective deadline by the length of the interval
djý-j

Tj-lldj'-

-[Tj-1
if and only if that length is not more than Cj-j. In this way, the interval is

guaranteed to be occupied by the execution of rj-, (if it is not pre-empted by a
process of higher priority than rj-,).

The feasibility test above is sufficient and not necessary by Theorem 4.2
as Ii is at least the exact value of interference (Theorem 4-6). The test is 0(n2)
in complexity, although in practice will take longer to execute than the test

given in the previous section.
Consider the following example which illustrates the improvement in

accuracy of the above feasibility test compared to that of the previous section:
Example 4.4:
According to the feasibility test given by equation (4.8), process 'C3 in

Table 4.3 is feasible if D3=25 but not if D3=26. We now consider the

feasibilityOf 'C3 as defined by equation (4.9):

Noting that d, 3=D3=26 the interference upon 'T3 due to rl is:
3 3;

1 26] 26 31 C, +min Cl, dl -52+ min 2,26 -[5
]5) IT, IT,

-

)=I

56

3JT

I T
Now since d13 -[ýL'3

]Tj
< C, i. e. 1<2 we have

[d,

1 =25
T,

Interference due to c, is:

d3 [25 25 l C2+min C2,44-
ýý

T2)

6-
3+min(3,25

6-
6) = 13

T 2-

[T2-

Evaluating feasibility condition:
C4 +14 ! ýD4

+ 11 + 13 = 26
Hence 'C3 is feasible.

The value of Ii calculated by equation (4.9) is pessimistic, being at least

the actual Ii. The main reason for this is that concurrent execution is still
assumed between higher priority processes. For example, if T, has a final

release at tj, with tl+C, <Dl, then e4 = Di. Now, if the final release at t2is such
that t2 <tI < t2 + C2 overlapping execution between T and is assumed within Ii. I T2

We illustrate the pessimism of the test with the following example:
Example 4.5:

Process C D T

2 5 6
ý2 2 6 8

T3 3 12 18
'C4 2 20

Table 4.4: Example Process Set 4.

Consider the process set in Table 4.4. Processes ý, r2andT3 are feasible

(calculation omitted for brevity). Consider '14. The feasibility of this

process is given by (from equation (4.9)):

Noting that d, =D4=20 the interference due to r, is:
ý4 [. ý4

C, + min(Cl, d4
20] 2+min 2,20-[20]6) =8 Tl
66 T, T,

4,4
L di

Now since d14 -[AlL]Tj :5C, i. e. 2=2 we have Tl= 18
T,

IT, I

Interference due to 'ý2 'S:

[4JC2+min
C204-

[. ý24 JT2)

=
[18] 18 d2

82+ min 2,18 -[8
]8)

=6 T2 T2

57

4

Now since ig
JT2

:5 C2 Le. 2=2 we have d34 =

[4ýJT2

=16 -[T2 T2

Interference due toT, is:

[.44 ý3_j 4 16 16] C3+ min(C3, dý
j

T3]3+min(3,16-[-
18) =3 T3

[4T3 [18
18

Evaluating feasibility condition:
C4 +14 : 5D4
2 +8 +6+3< 20

Hence '14 is feasible.
Let the deadline of 'C4 be increased to 21 - this should not affect the
feasibility of the process:

Noting that d, 4=D4=21 the interference due to r, is:
4, d; [21 21 C, + min(CI, d, 4-[2+ min 2,21 -

]6)
8

41

T. -6 T, T, 61
4

4_[dj
I ý> Now since di

T,
T, C, i. e. 3>2 we have o4 = dj4= 21

Interference due to *12 is:

44 d2' d2
C2+min C2,44-

[T2-
T2

T2-

4

Now since t24-
L2

T2 > C2 i. e. T 2-

21
2+ min 2,. 21 -

21]8)
81[8

5>2 we have ig = ig = 21

Interference due toT3 is:

44 [2 [A3
4 .1

C3 +min C3, dý _

[±3

-]
1

3+min(3,21-[Ll
Tý

T3)

181 18
J18)

=6 T3
3

Evaluating feasibility condition:
C4 +14 5D4
2 +8 + 6+ 6>21

Hence'C4 is declared infeasible, although it would still meet its
deadlines at run-time.

Since increasing a process's deadline cannot detract from the actual feasibility,

example 4.5 shows the test to be not necessary. The test is necessary under the

assumptions given by Theorem 4.4, with dj' replacing Di in the condition.

58

4.2.4 Sufficient And Not Necessary Feasibility Test No. 4
The estimation of Ii given by equation (4.9) may still assume concurrent
execution of processes during their final release before Di. We may improve on
this estimation by separating the calculation of the effective deadline of 'ri for

, cj and the calculation of the interference of cj upon ri. Initially, the effective
deadline of ri is calculated iteratively considering all processes c1.., cj_j. Then,
interference is calculated with all processes rj.., rj-j assuming the same effective
deadline. This is in contrast to the approach adopted in the previous section
where only contribute to the calculation of the effective deadline for rj
(wherej<i).

C, V

'r2

t2C

-2-

time

t> time

3
C3

>
tim e ti

r---- --- ---- : C3 : C2
\/ >

time
t1t3D,

Figure 4.5: Estimating Ii (3).

Consider the interference of r, upon ri in Figure 4.5. From the figure we

observe that by the definition of d, ý by equation (4.9) dj'=Lý=Dj and c4=t3.
Clearly, the executions of cl at t2 , 'C2at t3 and 'C3 at tj should not all constitute

part of Ii. From the figure we may observe that the interval [tj, Dj) is occupied

by the executions of processes of higher priority than c, and that

Di -tj <Cj +C2 + C3. Ignoring rl, the executionof T2 at t3 Will OCCUPY It3p Dd with

the execution of T3 at tj occupying [ti, 0. Therefore, we may reduce the

effective deadline when calculating the interference of cl.., ci-I upon ri to t,.

This is illustrated in Figure 4.5 where the executions of 'C2 and 'ý3 form the

59

interference upon ri (dotted box on the timeline of r). It is noted that 'T, would
actually run in [t2, t2 + C2) as it has a higher priority than 'r2 and r3, although
the net effect on ri is equivalent: the interval [tj, D) is occupied by higher

priority process executions.
Consider processes cj.., cj-j (in order) in terms of their final release in (0,

Dj). Let the initial effective deadline be d=Di. If any processes are guaranteed
to occupy [t, d), where t is the final release of the process in [0, d), we may
decrease the effective deadline to t.

Definition 4.3:
The effective deadline of ri when considering the interference of 'Cj
upon, ri is denoted dj, kwhere k represents the current iteration (from
0 upwards). The interval [dj,, k, Dj) is occupied entirely by the

executions of processes of higher priority than ri.
The definition assumes that djý,,, :5 djý,, t-, for any k>1. Consider the following

theorem:
Theorem 4.7:

The maximum interference of Tj
Id

i'-,
Tj

kI Ci

upon ri (1 <j<i: 5 n) is given by:

where dj', O == 4.0 =... = di'-,. o = Di

and where the following condition holds:
3 k: k>0*Vm: 1:! ý m<i: dýk = <k-j

Proof.
After k-1 iterations, each of which considering processes cj*,, rj-j in

order of descending priority, the effective deadline has been reduced
to di'-,,, k-l (since ci-I is considered last). Let all processes have a final

release in [0, di'-I, k-,) that is completed by d, '-,, t-1. that is the following

condition holds:
tii-I'k-I i

Vj: 1: 5j<i:
I

Tj

I
Tj + Cj < ti-I'k-1

Now, no processes can reduce the effective deadline on the kth

iteration, so fulfilling the condition in the theorem. Thus, the
interval [di'-Ik-,, Dj) is occupied by the execution of processes of

higher priority than ri. The total interference is the length of the

60

interval [di'-Ik, D) and the interference of each -Tj on ci in [0, di'-,,, t).
The latter is given by extending Theorem 4.3:

Id
i'Ll
Tj

kI Ci (4.10)

We note that since the final release of all cj (1: 5j<i: 5n) in [0ý di'-,, *) is

at least Cj time units before di'
-I, k, there is no need to perform the

minimum operation required in the feasibility tests given by

equations (4.8) and (4.9).

Since the interval [dj'. I'k-j, Dj) is entirelyoccupied by the executions of processes

of higher priority than c,, the exact interference in this interval is
Di (4.11) i- ti.

-l, k

Therefore, total interference is a summation of equations (4.10) with (4.11) for

each higher priority process. The feasibility test may be stated:
Vi: 1: 5- i:! ý n: Ci + Ij: 5 Di

i"
di'-l,

k
where Ii = Di - dil (4.12) i-l, k + Ci

j=1

I

Tj

I

Di if (k=O)v(k=l A j=l)

if 1<j: 5 i-1 A

d'
prevj', iterJ d' dj'. k previ PreV'-"terkj
T d' r. j- T- <C

prevk prevp iteri prevj - prevlj Ts
previ

d' otherwise prevf. ited it k

i-1 ifj=l k-1 if j=l

prev iteril

j-I otherwise k otherwise

Assuming that at least 1 iteration is performed (i. e. the k=1 iteration), the

definition of djý, k corresponds to that required by Theorem 4.7. The definition of

dj"O = Di for 1 <- i<i allows the condition in the theorem to be evaluated after the

k=1 iteration. The fimctions prev and iter enable the effective deadline

61

calculated for ri-I to be used for r, on the next iteration, that is when
calculating d, '., the value di'-Ik-l is needed and is available.

The above test is sufficient and not necessary as Ii is at least the exact

value of interference (Theorem 4.7).
The complexity of this test is due to both effective deadline calculation

and the subsequent determination of feasibility. The former is dependent upon
the number of iterations W and the calculation of revised effective deadlines
during an iteration. In the worst-case this is 0(kn2), when exactly one rj

reduces the effective deadline by one on each iteration. Feasibility
determination has complexity O(n2). Thus the overall complexity is 0((k+l)n2)

0(kn2) where k= max(Dj). Since k is not a polynomial fimction of n, the test
1: 5j<i

is NP-complete (see Chapter 2). Such complexity occurs when very large

numbers are involved (i. e. large periods and deadlines). In most cases, the test

will not be applied to such numbers. Thus, the test has pseudo-polynomial
complexity' for limited values of k, for example when k=max(Dj). The

I! 5i: 5Dj
implication of this observation is that for most cases (excepting pathological
cases) the test has effective polynomial complexity.

The complexity may be reduced by setting k to be a constant for a process
set (or across all process sets). This has the effect of making the feasibility test
less accurate if the value chosen is insufficient to find the actual final value of
k, although this version of the test has polynomial complexity (for all values of

process periods and deadlines).
Consider the following example which illustrates the improvement in

accuracy of the above feasibility test compared to that of the previous section:
Example 4.6:
According to the feasibility test given by equation (4.9), process 'r4 in

Table 4.4 is feasible if D4=20 but not if D4=21. We now consider the

feasibihty0f 'C4as defined by equation (4.12):

Calculate effective deadline:
Iteration k= 1

d4 -D -21 I'l 4-
4

4_
[djj JT

Since di'l > C,
T.

44 i. e. 3>2 we have dý,, --di., --21

1 the definition of pseudo-polynomial compleicity is drawn from [Garey791.

62

4
4 d3,1

Since d3j _
T2 >C2 i. e. 5>2 wehave 4, =4,, =21

[T2

Iteration k=2

1 Since dý,, - : 5C, i. e. 3=3 we have d,, 4
-1

]T
4

]T3

=18 T3 T3

44
4

d;,
2 d12 JT

18 Since dj, -[T,: 5C, i. e. 0<2 we have I= ,2T,
4,2

T,
4

Since 4,,
d2',

2 T2: 5 C2 i. e. 2=2 we have 4. T2= 16
T 2 T2

Iteration k=3
d444 ;,

3 =d3,3 =4ý, 3 =16 (calculation omitted for brevity)

Thus, the iterative derivation of the effective deadline

completes by the condition in Theorem 4.8 when k=3.
The feasibility0f 'C4 is given by:

4
4:,

3]CI +
d34,3]C2

+

[d3,3 IC3

: 5D4
4

C4+ D4 4;,
3 +

TI TT 23

20 < 21
Hence 'C4 is feasible.

In the previous example, k could be set to a constant value to ensure
polynomial complexity. If k=1 then the effective deadline is 21, which would
cause the process set to be found infeasible (see example 4.5). If k=2 or k=3 the

effective deadline is 16 with the resulting feasibility test finding the process set
feasible.

The feasibility test given by equation (4.12) is sufficient and not
necessary as concurrent execution of processes is still assumed when
calculating Ii.

The estimation of I, remains pessimistic. Consider the following

condition:
Vj: 1: 5j<i: 5n:

Di
Tj +Cj <Dj

I
Tj

-
When the condition holds the effective deadline of r, remains D,. Concurrent

execution of (some) or all higher priority processes is now assumed if the

following condition holds:

63

3: 5 j, k: 1: 5 j, k<i: 5

< k
[22LITi

: 5[Di
JT 1`2'-]

Tj Tk k Tij
Tj + Ci

This observation is shown in the process set given in Table 4.5. The set is
declared infeasible by the above test although all deadlines will be met at run-
time (see example 4.7 section 4.3).

Process C ID T
1 5 6
3

1

6. 8
T3 4 14 14

1 14 20 30

Table 4.5: Example Process Set 5.

The feasibility test given by equation (4.12) is necessary under the same
general conditions as described by Theorem 4.4, with di'-I, k replacing Di in the

condition. We note that the theorem also holds if constant values of k are used,
since Dj-dj'I, k is always the exact interference of interval [di"-I, k, Dj) for any k.

4.2.5 Summary

This section has presented four sufficient and not necessary feasibility tests.
The tests are not-necessary as they assume some concurrent execution of
processes when calculating I, (although under some circumstances the

tests were found to be necessary). The concurrent execution, and therefore the
pessimism, occurs in the final releases of the former processes before Di. In

successive tests, this inaccuracy has lessened, with the effect of increased

compleidty.
In general, more accurate sufficient and not necessary tests could be

developed. The compleidty of these tests would, in general, increase further.

4.3 Sufficient And Necessary Feasibility Tests For Dj: 5Tj

Processes

To form a sufficient and necessary feasibility test an exact evaluation of I, is

required (by Theorem 4.1). All releases of processes of higher priority than r,

must be examined in [0, D) so that only executions actually occurring in the

64

interval form Ii. That is, the inherent assumption in the sufficient and not
necessary tests that some concurrent execution may occur (in [0, Dj)) is

removed.
Several approaches may be defined for determining sufficient and

necessary feasibility, for example by the explicit construction of a schedule for
the process set over O, max(D,)) [Leung821. This approach is computationally

I
1:! U5. A

expensive. The remainder of this section develops two other more efficient
approaches.

The first approach is to find the completion or response time of ri within
[0, D). This requires an exact value for the interference of higher priority
processes for the interval [0, R) where Ri is the response time of '; (Ri :ý Di for

the release of the process at a critical instant if the process is feasible). This

approach is especially useful when considering end-to-end deadlines: we must
determine whether a number of process, often arranged in a precedence-
constrained manner, meet a collective deadline. Here, the worst-case response
time of one process forms the latest start time of subsequent processes in the

precedence constraint. This is more accurate than assuming processes complete
at their deadlines.

The second approach is to find an exact value of Ii for the interval [0, D),

then to apply the simple feasibility constraint given by equation (4.1). Such an
approach is useful if the WCET of a process may be increased (by no more than
Di - Ij), for example to permit a more complex algorithm to execute (we return
to this in Chapter 7).

The approaches outlined above are discussed in the following sections.

4.3.1 Response Time Sufficient and Necessary Feasibility
Test

To find the response time Ri of ri requires that we examine the interference of
higher priority processes over intervals within [0, D).

Definition 4.4:
The term Ij' is the interference on ri due to releases of processes with
higher priority than ri in the interval [0,0 where 0 :! ý t5 Di.

We note that the definition prescribes that requested computation due to

releases of rj.., rj-j at 0,1,.., t-1 is included in Ii', not those at t. Hence, we may

state the feasibility test to be:

65

VT, : 1:! g i:! g n9
3tE[O, Di) e

(4.13)

Consider the behaviour of the process set in Table 4.6 as depicted in the
TRCG of the set in Figure 4.6.

Process C ID T
T, 1 12 4
'ý2 2 14 6

T-3 3 12 13
'T4 1 14 1 20

Table 4.6: Example Process Set 6.

is
17
16
15
14

Total 13
PwpestBd 12

11
Computation 10

9
and Idle a

Time 7
8
5
4
3
2
1
0

Figure 4.6: TRCG of Example Process Set 6.

From the discussion in section 4.1 we make the following observations
regarding Figure 4.6:

W c4meets its deadline, completing execution at time 11 (solid line

first touches dotted line);
(ii) the exact value of 14 + C4 is given by the sum of lengths of (non-

overlapping) intervals in [0, D41, that is the amount of time where

outstanding computation exists. In the graph this equates to the
lengths of intervals where the solid line is above the dotted line:

14 +C4= length([O, 111) +Iength ([12,14])
14 +C4=13

(iii) the idle time is given by the sum of lengths of (non-overlapping)
intervals in [0, D41where the solid line lies on top of the dotted

line:

66

01234567891011121314

Tim

S4= length([11,121) =1
Given that c, completes at time 11, we note that if D, is reduced to 11 then the
sufficient and not necessary test estimation of interference given by equation
(4-7) becomes sufficient and necessary (by Theorem 4.4).

Therefore, the maximum interference of a higher priority process rj upon
'ri U <j) in the interval [0, t) is given by:

[-
ftj

I
Ci

When t represents the completion time of ci, the above estimate will be exact.
Therefore, we may fully state the feasibility test:

VT,: 1: 5i: 5n *
3t r= [0, D) * Ci + Ii'= t

t

where Cj (4.14)
j=1 Tj

I

The test is sufficient and necessary since the interference is exact.
One obvious implementation of this test would use values of t from 1 to

Di (since Ci is assumed to be strictly positive), testing to see if the length of [0,
0 (i. e. 0 is sufficient to contain Ci and the execution due to releases of Tj,. Tj_j
(i. e. Ii') in the in terval. This would continue until a value-for t was found

satisfying equation (4.14). If no such value of t could be found, the process is
infeasible. We note that many (i. e. D) points in time are examined to
determine feasibility. This provides the non-polynomial complexity of the test
since at each point in time a polynomial function is evaluated.

The non-polynomial complexity can be lessened by reducing the number
of equations that need to be evaluated whilst determining the feasibility of ri.
This is achieved by limiting the points in [0, D) that are considered as possible

solutions for t. It is noted that Ii' is monotonically increasing over [0, D). The

points in time that the interference increases correspond to a release of a
higher priority process in [0, D). This is illustrated in Figure 4.6. In the figure

there are three processes of higher priority than T, Over the interval [0,11) the

value of total requested computation time is given by I, ' + C4. The graph is

stepped with plateaus representing intervals of time in which no higher

priority processes are released. Only one value of t need be considered for each
'2 3 =, 4

plateau as 14' does not change. For example, in Figure 4.6 Iý Iý = 14
4= 6, j

that is 6 units of computation are requested by cj-., cj_j in [0,4). To maximise

the time available for the execution of ri we let t be equal to the time at the

67

Huti right-most point of the plateau (e. g. t=4 ini ally in for Figure 4.6). This reduces
the number of equations required from 4 to 1 in this example.

The number of points in time we evaluate the feasibility of r, can be

reduced further by considering the computation times of higher priority
processes. Firstly, there is little point in considering any t(=- [0, C) as a
solution. Secondly, since time 0 corresponds to a critical instant, the least

possible value of t at which ri may complete is Rj_j+Cj as [0,) is occupied

entirely by the executions of We term the first possible value of t to be

to. given by:

to=Ri-, +Ci
If a release of a higher priority process occurs in [0, to) the value of t,, will not
form a solution. The exact amount of interference in this interval is given by
L Hence the next point in time r may complete is at:

tl=jjto+ Ci
Again the constraint will fail if higher priority processes are released in [t,,, tý).
Thus we may identify the points in time at which feasibility of ri must be

tested in [0, Di):

to=Ri-, +Ci where Ro =0
tl=jito+ci
t2 = Ii 11 + ci

....
tk =

We note that all t,,, t...... t, r= [0, Dil. At each of these points in time t, we

evaluate (extending equation (4.14)):
Q+ Ilk = tk

i-1 -
where iir'k

tk
C

j

i=1

1Tj

If for any value of t, the constraint holds, ; is feasible, otherwise 'ri is

infeasible.
The complexity of sufficient and necessary testing is in general NP-

complete (see Chapter 2). Indeed, the above approach has complexity 0(kn2)

where k represents the number of values of t required to determine feasibility

(or infeasibility). We observe that for ri the maximum number of values of t

required is Di, giving k= max(D). Although k is not a polynomial function of n,

it is constant for a particular process set. Hence the complexity is pseudo-

polynomial.
68

The feasibility test may be expressed by the algorithm in Figure 4.7. We

note that the algorithm terminates since:
G) tj > ti-, for successive iterations unless ti=ti-,, in which case a

solution has been found;
GO if tj > D, the algorithm exits the main loop.

Ri records the response time for ri if that process has been found feasible. All Ri

are assumed to be global variables. The calculation of Iit is according to

equation (4.14). The function returns n+1 if the process set is feasible; else the
index of the process that first fails the test.

function response_test (A) return integer is
feasible = TRUE
RO 0
i

begin

while i :5n and feasible loop
t= Ri-I + Ci

while Ij' + Ci >t and Ij' + Ci :5 Di loop
t= Ii, + Ci

end loop
if Ii, + Ci > Di

/*, Ti is infeasible force exit of loop

/* loop using feasible condition.
feasible = FALSE

else
/*'Ci is feasible note response time

/* go to next process.
Ri t

ii+

end if

end loop

return i

end response_test

Figure 4.7: Algorithm for Response lime Feasibility Test.

69

Consider the following example, illustrating the behaviour of the test.
Example 4.7:
The feasibility of the process set in Table 4.6 as calculated by equation
(4.12) is summarised in Table 4.7. We note that all processes are
declared feasible.

t Jt+C >t ii Iit+Ci: 5Di Jt+C >t ii Feasible Ri

A

I '+ C : 5D i j j
Ici o 0+1=t 0+1<A False 1
T2 3 1 1+2=t 1+2< Di False 3
'C3 6 4 4+3>t 4+3< Di True

7 6 6+3>t 6+3< Di True

9 7 7+3>t 7+3< Di True

10 7 7+3t 7+3< Di False 10
T4 14 13 13 +1t 13 +1 <Dj False 11

Table 4.7: Feasibility Summary for Process Set -6.

4.3.2 Exact Interference Sufficient And Necessary
Feasibility Test

To calculate Ii we need to consider the releases of processes with higher

priority than ri in [0, D). The pattern of processor use in the interval is as
follows. Initially, an interval of execution of processes rj.., rj-j occurs. This is

followed by an interval (possibly 0 length) of time when processes cj.. 'Cj-j have

no outstanding computation (although ri will execute if it has not completed).
This is repeated until Di is reached. The sum of the lengths of the intervals of

execution of processes Tj.., cj-j in [0, D) forms the exact interference Ii.

Trivially, the exact interference on -r, is 0. The exact interference of

'C2**, cn is now derived. Consider ci (1<i-<n).

Definition 4.5:
rnie start of the Yh execution interval of in [0, Dj) is given by

sj' (wherej is 1 upwards).

70

Definition 4.6:
The end of the yh execution interval of in [0, Dj) is given by ej'
(wherej is I upwards).

Definition 4.7:
The term Ii", b is the interference of processes with higher priority
than ci in the interval [a, b) where 0 :5a :5b :5 Di:

j
j]C

_[,
a

j)
j

la, b ([_b a
M j]c

Thus, execution intervals of rj.., cj ' '), [Si
... j[s;

'ntq eý. ',) where in [0, Dj) are [sl, el i 0)
21 e2

s, <ei! ý ... ! ýs,. <e,.: 5 Di. We note that for a critical instant process set, Sj'=O (1<i-<
-n

The last execution interval is constrained to end at or before Di, since
execution at or after Di (i. e. in [Di, Dj+1) etc.) byrj--'rj-j is not part of Ii.

To calculate the bounds of the Yh execution interval, the following
method is used. Let s, ý be the start of the interval, with c,, being one of the

processes released at s, ý (1 :5a< i). The earliest point at which outstanding
computation due to rj.., rj-j can reach 0, signalling the end of the execution
interval, is given by:

to = S, ý
The interval of execution of higher priority processes ends at to if no releases of

have occurred in [sj, to). If such a release exists, the next point in time

that the interval could end, tj, is given by:

tj=Sj ý +Iisý-'O
i Note that C, forms part of I"j"'. A series of times can be found at which we

check for the end of the execution interval:
to = sjý + C',

i
tj =4+ iisi'lo

ý"I sj t2 = Sjý + Ii

tk = sjý + Iisi

We note that all to, tl,..., tk E [4j, Dil. At each of these points in time tk we

evaluate
+ Sý = tk (4.15)

71

Thus we check to see if the interval W, tk) is long enough to contain all j
execution demanded by in [s, ý, tt). If the constraint does not hold for all
tk, there is outstanding computation (due to at Di, with the execution
interval concluding after Di. In this case, ej' = Di. If the constraint does hold,

ej'=tk (noting tk !ý D). If e, ý<Di, the start of the next execution interval is given
by:

ej'
sj, l -- rnin Tj

Tj

If sj, l < D, the end of this next execution interval is found, else no more
execution intervals start before Di. This progresses until the last execution
interval [s, i e.) is identified, where eý, is constrained to be no more than Di.

The contribution of the P execution interval toward Ii is the length of
the interval, i. e. el - s' giving: jj)

m

e, ý - s, '
j=l

Now, feasibility of ri can be found by equation (4.1).
The above measure of Ii is exact, implying (by Theorem 4.1) that this

approach for determining feasibility is sufficient and necessary.
The complexity of this approach is similar to the response time feasibility

test given in section 4.3.1. Again, in the worst-case, the complexity is 0(kn2)

where
k= max.

Hence, the algorithm is pseudo-polynomial.
The test is illustrated by the algorithm in Figure 4.8. For each process,

the execution intervals of higher priority processes are identified by the while
incomplete loop. The fimction returns n+1 if all processes are feasible, else
the priority of the first process to be found infeasible.

function interference_test (A) returns integer is

feasible = TRUE

i=1

begin

while i !ýn and feasible loop

incomplete = TRUE

tO ;

72

Ij
=0

while incomplete loop

/* find next release of process
/* in tF Dj)

s= Di

for i in 1.. i-1 loop

if FqTjlTj <s then

index =j

s=
FqTj ITj

end if

end loop ;
ifs< Di then

/* find end of exec interval
t=S+ Cinde,

while IjY +s>t

and Ii', ' +s Di loop
S'I t Ii, +s

end loop ;
if I, " +s>A then

/* end of exec interval at
/* or past A
Ii = Ii + (Di - s)
incomplete = FALSE

else /* end of exec interval
/* before A
Ij = Ij + (t - s)

end if

end if

end loop ;
if Ii + Ci :! ý Di then i+1

else feasible = FALSE

end if

end loop

return
end inter f erence_te st

Figure 4.8: Algorithm for Exact Interference Feasibility Test.

73

The test is illustrated in the following example.
Example 4.8:
Consider the process set in Table 4.8 (noting that 'ý4 is declared

infeasible by all sufficient not necessary tests in section 4.2).

Process C D T
T, 2 3 5

Iýz 3

1

5 14
T-3 2 10 15

2 -1 T4 18 1 20

Table 4.8: Example Process Set 7.

In Table 4.9, the behaviour of the algorithm (Figure 4.8) is given for
Process Set 7.

t Ii, -, +S>t I, ', '+s: g D, "t Ii +S>t Interference of Ii 1i + Cj: 5 Di Feasible Idle

A interval Dj-Cj-Ij

Ij"+s! 5Dj min(s-t, Di-t)

0 0 0+2<Di 1

0 2 2+0=t 2+0<Di False 2

51 7 1 2+5=t 2+5 >Dj False 0 2 2+3=Dj 0

'C3 0 2 5+0>t 5+0<Di True

5 5+0=t 5+0<Dj False 5

51 7 2+5=t 2+7<Di False 2 7 7+2<Di 1

'T4 0 2 7+0>t 7+0<Di True

7 9+0=t 9+0<Di True

9 9+0=t 9+0<Di False 9

10 12 2+10=t 2+10<Di False 2

14 17
1

7+14>t 7+14>Di False 4 15 15+2<Di 1

Table 4.9: Feasibility Summary for Process Set 7.

The table shows that all processes are found feasible, with exact
interference found. Consider 'C4 in the table: I, =15 and 1 unit of idle

time exists in [0, Dj) (time not required by 'C 1* "0. This is confirmed by

the TRCG for the interval and all four processes given in Figure 4.9.

The idle time occurs in [13,14).

74

20
19
18
17
16

Total 15
14

Requested 13
12

Computation II
and Slack 10 9

Time a 7
6
5
4
3
2
1
0

Figure 4.9: TRCG of Example Process Set 7.

4.3.3 Hybrid Sufficient And Necessary Feasibility Test
In some circumstances it is useful to know both the response time of ri and the
exact interference on c,. Whilst this could be achieved by using both the
response time and exact interference feasibility tests (sections 4.3.1 and 4.3.2
respectively), greater efficiency can be achieved by combining the tests. Firstly,
the response test is used to find all Ri. Then, the mechanisms for identifying
higher priority process execution intervals and slack intervals are used in [Ri,

Dj). We note that this test has NP-complete complexity (see sections 4.3.1 and
4.3.2). The test is summarised by the algorithm in Figure 4.10.

function hybrid test (A) is

feasible = TRUE

RO =0
1=1 ;

begin

i= response -
test

if i :5n then
while i :! ý n and feasible loop

incomplete TRUE
t Ri

while incomplete loop

/* find the next release of

75

0123456789 10 11 12 13 14 15 16 17 18

Time

/* process in [t, D,)

s= Di

for i in 1.. i-1 loop

if rqTjlTj < tr then

index =j
S= rqTj I Tj

end if

end loop ;
ifs<A then

/* find end of exec interval
t=s+ ci, ý
while If" +s>t

and Ii"' +s :5 Di loop
t I! 't +s

end loop ;
if Ii3, ' +s> Di then

/* end of exec interval
/* at or past D,
Ii = Ij + s)
incomplete = FALSE

else /* end of exec interval
/* before A
Ij = Ij + (t - s)

end if

end if

end loop
i=i+

end loop

end if

return

end hybrid_test

Figure 4.10: Algorithm for Hybrid Feasibility Test.

76

4.3.4 Summary
This section has introduced two forms of sufficient and necessary feasibility
test. The first calculates um response time, the second exact
interference. Motivation for the actual form (and implementation) of the tests
is efficiency. This is achieved by reducing the (non-polynomial) number of time
points considered when determining feasibihty. The two tests were also
combined to produce a hybrid test calculating both response time and exact
interference.

Further improvements in efficiency could be made by incorporating the
effective deadline calculation of sections 4.2.3 and 4.2.4.

4.4 Feasibility Of Sporadic Processes
Processes whose releases are not periodic in nature are useful for responding to
non-periodic environmental events, e. g. alarms raised. The general
characteristic of these events is a short deadline, by which time it is necessary
to complete some given computation, and a relatively long time between

successive events. Non-periodic processes can be placed into two categories
according to the nature of their release times [Bums9lal: aperiodic and
sporadic. Aperiodic processes are those whose release frequen cy is unbounded.
In the extreme, this could lead to an arbitrarily large number of
simultaneously active processes. Sporadic processes are those that have a

m frequency with the implication that a finite bound can be placed
upon the number of instances of a sporadic process active at any time.

When a static scheduling algorithm is employed, it is difficult to
introduce non-periodic process executions into the schedule: it is not known
before the system is run when non-periodic processes will be released. More
difficulties arise when attempting to guarantee the deadlines of these

processes. It is clearly impossible to guarantee the deadlines of aperiodic
processes as there could be an arbitrarily large number of them active at any
time. Sporadic processes deadlines can be guaranteed since it is possible, by

means of the aximiim release frequency, to define the maximum workload
they place upon the system.

One approach is to use static periodic polling processes to provide

sporadic processes with execution time. This approach is reviewed in section
4.4.1. Section 4.4.2 illustrates how the properties of sporadic processes enable
their deadlines to be guaranteed by the scheduling approach and feasibility

77

tests outlined in this Chapter. Finally, section 4.4.3 discusses provision of
processor time to service aperiodic processes.

4.4.1 Sporadic Processes: the Polling Approach
To allow sporadic processes to execute within the confines of a static schedule
(e. g. static priority pre-emptive scheduling) computation time must be reserved
within that schedule. An intuitive solution is to set up a periodic process which
polls for sporadic processes. Strict polling reduces the bandwidth of processing
as:

processing time that is embodied in an execution of the polling
process is wasted if no sporadic process is active when the polling
process becomes runnable;
sporadic processes occurring after the polling process's
computation time in one period has been exhausted have to wait
until the next period for service.

A number of bandwidth preserving algorithms have been proposed for use with
the rate-monotonic scheduling algorithm [Lehoczky87, Sprunt88, Sha89,
Sprunt901. These algorithms are founded upon a periodic server process being

allotted a number of units of computation time per period. When an aperiodic
process is released, it uses the computation time guaranteed to the server for

execution. If no aperiodic process requires time when the server is released, its

computation time is preserved whilst permitting other periodic processes to

execute. The computation time for the server is replenished at the start of its

period.
Problems arise when sporadic processes require deadlines to be

guaranteed. It is difficult to accommodate these within periodic server
processes due to the rigidly defined points in time at which the server

computation time is replenished. The sporadic server [Sprunt881 provides a

solution to this problem. The replenishment times are related to when the

sporadic uses computation time rather than merely at the period of the server

process. However, this approach still requires additional processes with

obvious extra overheads.

78

4.4.2 Sporadic Processes: the Deadline Monotonic

Scheduling Approach

Consider the timing characteristics of a crucial sporadic process ;- The

demand for computation time is illustrated in Figure 4.11. The minimum time
difference between successive releases of c, is the inimiim inter-arrival time

This occurs between the first two releases of c,. At this point, c, is behaving

exactly like a periodic process with period m [Mok831: the sporadic is being

released at its um frequency and so is imposing its aximum workload.
When its releases do not occur at the maximum rate (between the second and
third releases in Figure 4.11) c, behaves like a periodic process that is

intermittently activated and then laid dormant. The workload imposed by the

sporadic is at a maximum when the process is released at its maximum rate,
but falls when the next release occurs after greater than m time units have

elapsed.

'Es 'Es

released deadline
To 'us

released deadline
, cs

released

'Es V

> time

Figure 4.11: Sporadic Process Behaviour

In the worst-case the r, behaves exactly like a periodic process with

period m and deadline D. where Ds :5m. The characteristic of this behaviour is

that a maximum of one release of the process can occur in any interval [t, t+m)

where release time t is at least m time units after the previous release of the

process. This implies that to guarantee the deadline of the sporadic process the

computation time must be available within the interval [t, t+D,) noting that

the deadline will be at least m after the previous deadline of the sporadic. This

is exactly the guarantee given by the feasibility tests in sections 4.2 and 4.3.

For feasibility purposes only, we can describe the sporadic process as a

periodic process whose period is equal to m. However, we note that since the

process is sporadic, the actual release times of the process will not be periodic,
but successive releases will be separated by no less than m time units.

79

For the feasibility tests given in sections 4.2 and 4.3 to be applicable for
process sets containing both periodic and sporadic processes, it is assumed that
at some instant all processes are released simultaneously (i. e. a critical
instant). If the deadline of the sporadic can be guaranteed for the release at a
critical instant then all subsequent deadlines are guaranteed. No limitations
on the combination of periodic and sporadic processes are imposed by this
scheme. Indeed, the approach is optimal for a fixed priority scheduling since
sporadic processes are treated in exactly the same manner as periodic
processes. All feasibility tests outlined in sections 4.2 and 4.3 are suitable for
use with sporadic processes. To improve the responsiveness of sporadic
processes their deadlines can be reduced to the point at which the system
becomes infeasible.

4.4.3 Aperiodic Processes
Periodic server processes that provide a limited processor resource for sporadic
process executions, as described in Chapter 2 and section 4.4.1 above, were
originally defined to allow aperiodic processes a guaranteed proportion of
processor utilisation. In particular, the priority exchange and deferrable server
approaches [Lehoczky87, Sprunt88, Sprunt901, together with the extended
priority exchange algorithm [Sprunt881 and the sporadic server [Sha89,
Sprunt, 901 enable greatly improved aperiodic process response times compared
to background processing (i. e. service aperiodic processes when the processor is
idle) and strict periodic polling. Of these approaches the sporadic server has
been shown to provide the best service for aperiodic processes [Sha89,
Sprunt901.

Consider the following theorem:

"Theorem 2: A periodic [process] set that is [feasible] with a
[process] ri, is also [feasible] if ri is replaced by a sporadic server

with the same period and execution time. " [Sha891

Hence, no extensions to the feasibility analysis (and tests) given in this chapter

are necessary if sporadic servers are incorporated to provide some processor

utilisation for aperiodic processes.

80

4.5 Process Blocking
In realistic hard real-time systems, processes interact in order to satisfy
sYstem-wide requirements and to share resources. Two forms of interaction are
simple synchronisation and mutual-exclusion style protection of a shared
resource. Both forms cause process blocking (see Chapter 2) with the additional
problem of priority inversion [Sha901 occurring under static priority process
scheduling. Priority inversion can be avoided by use of one of the family of
priority inheritance protocols [Sha90] (see section 2.3.5). The effect on
feasibility analysis by the adoption of any of these protocols is identical.
Essentially, the blocking that any one process may receive can be bounded to
Bi.

Now, the basic feasibility constraint (equation (4.1)) becomes:
Ci + Ii + Bi: 5 Di (4.16)

Thus, for each process ri we guarantee that it can be blocked for its worst-case
blocking time and still meet its deadline.

The sufficient and not necessary feasibility tests detailed in section 4.2
are easily extended to incorporate this blocking. For example, the test in
section 4.2.1 can be restated:

Vi: 1: 5 i: 5 n: Ci + Ii + Bi: 5 Di
'-'[Di]C

where Ii =j
M Tj

The sufficient and necessary tests given in section 4.3 can also be

extended, noting that the response time of ; includes Bi implying that the

actual earliest completion time, to p of ri +,
is given by:

to = Ri - Bi + Cj+j + Bj+j

We may restate the feasibility test in section 4.3.1:
Ci + Ii'k+Bi=tk

i-I
where tk

[_tk

fj
j]C

As noted in Chapter 2, the estimation of Bi given by Sha et al [Sha90] is

pessimistic: the assumptions inherent in the analysis allow for situations that

can never occur. The following section examines how process timing

characteristics can be used to eliminate certain forms of blocking pessimism.

81

4.5.1 Reducing Bi Pessimism By Consideration Of Timing

Characteristics
The calculation of the worst-case blocking time, Bi, of process '; is the same for
the priority ceiling protocol and any of its derivatives. Bi is the length of the
longest critical region of any lower priority process, where that critical region
corresponds to the locking and unlocking of a resource shared with a process of
equal or higher priority ri [Sha901. The reason behind this estimation is that a
low priority process may lock a resource momentarily before ci is released, with
T. assumed to require that resource. This is illustrated in Figure 4.12. S

lock(S) lock(S)
nlock(S) complete (blocked) (granted) u

region
time

lock(S)
unlock(S) complete granted)

Tj aftical
Moon

to ti t2 t3 t4 time

Figure 4.12: Worst-Case Process Blocking.

Process c, is of lower priority than ti (i. e. i <j). At time to 'Cj locks semaphore S

and is immediately pre-empted by ri. At t, ri attempts to lock S and becomes

blocked. rj inherits the priority of ; and executes its critical region, unlocking
S att2 and returning to its original priority. Now, ci pre-empts rj and executes,
locking S, finishing its critical region at t3 Process ; completes execution at t,

at which point rj is free to execute.
Consider the following definition:

Definition 4.8:
LCRj is the length of the longest critical region of rj which locks and
holds a resource whose priority ceiling is higher than or equal to the

priority of ri (i < i).

Hence, Bi as defined under the priority ceiling protocol is given by:
I

Bi max (LCR-) (4.17)

imi c in that it accounts for In general this method of determining Bi is pess' isti

situations that may never occur. For example, if a higher priority and low

82

Priority process are initially released at time 0, with the period of one process a
Multiple of the other, the higher priority process could never be blocked by the
lower priority process. We note that a release of ; at t can only be blocked by a
release of rj at t' (i > i) if the following conditions hold:

(i) t'<t<f +Dj
(ii) rj has actually executed in [t', t);
(iii) r, has locked a resource in [t', 0 whose priority ceiling is at least i

(i. e. the priority ceiling of the resource is numerically no more
than 0 and holds the lock on the resource at t.

For a release of ; at t the value of process periods and deadlines can be used to
determine which lower priority processes are released before t but have a
deadline after t (i. e. they may be runnable at 0. For example, if the following
holds, rj fulfils condition M above:

t Tj <t<t Tj + Dj
Tj

II
Tj

-
We assume that if condition (i) holds, rj executes in the interval [LtlTjjTj, t)
locking all resources that it requires with locks still held at t. If E, requires a

resource whose ceiling priority is at least the priority of ; it will be locked at t.
Hence conditions GO and (iii) are met. Consider the following definitions:

Definition 4.9:
HPRj is the m um of the priority ceilings of resources locked by

Iri.
Defim*tion 4.10:

LRi is the set of processes of lower priority than ci that access a

resource with a priority ceiling of greater or equal priority than u,

and are potentially runnable at t:

LRi = cj EA I HPRj: 5 iAtJ Tj <t<t
]Tj+Djl

Ti Ti

We note that the right-hand clause in the conjunct identifies those lower

priority processes that could possibly execute at t. The definition precludes

lower priority processes released exactly at t and those where t lies in the

interval bounded by the deadline of one release and the next release time.

Consider the worst-case blocking time for each release of ; separately.

The maximum of these blocking times forms Bi. We note that the phasing of

process requests repeats at intervals defined by the least common multiple

83

(LCM) of all process periods. Let the LCM of the periods of processes in A be
denoted e. Now, Bi may be defined:

Bi = max_. max(LCR,) (4.18)
tejO, Ti, 2Ti, &}('TJELRf

I

Whilst this definition is less pessimistic than originally defined for the PCP
(equation (4.17)), it still caters for situations that can never occur. Let the
maximum blocking time occur at a release of ri at t and be due to r,. If the
following condition holds, the estimation of Bi above may include part of a
critical region execution that could not possibly occupy [t, LtlTjj Tj + Dj):

t]Tj+Dj-t
:5 Cj

Tj
Therefore, we may improve the estimation of Bj:

Bi max max min LCRj,, t Tj+Dj -t (4.19)
te{O, Ti. 2Ti,., LAj tjELRj'

(-

Tj

I

The inherent assumption is that all processes have computation time no
greater than deadline.

Example 4.9:
Process]C ID I T

Iq
11

3 10

, ---ý2
3 4_ 8

Table 4.10: Example Process Set 8.

Consider the process set in Table 4.8. Processes r, and T2 share a
resource, with the length of the critical region of 'C 2 being 3. Thus,

according to the priority ceiling protocol estimation of blocking
(equation (4.17)) B, = 3, with the consequence that r, would be declared

infeasible as Bl+c, +I, >Dl. Consider the evaluation of B, by equation
(4.19):

Given Lý= 40, we have tr= (0,10,20,30,40)
We note that LR, = LRi= LR, " = LRý' and LRl' (-c2)

Hence:

B, =min(LCRI',
10j8+4-10)=min(3.2)=2 [8

Using equation (4.16), we observe that r, is feasible as B, + C, +I, =D,

In the above discussion the blocking time of (any) rj upon ri is

determined in isolation: the effects of higher priority process executions are not

84

considered. This is pessimistic since a higher priority process may prevent Tj
&om execution in [LtlTjJTj, 0 so breaking condition (ii) (Le. Tj cannot block 'Ci in

this release). Also, the analysis assumes that if rj executes in [LtlTjJTj, 0 it

locks all resources it as its last action whilst executing in the interval, so that it
has still to execute its critical region when pre-empted by ; at t.

To counter these problems, blocking time analysis could be made more
complex. Consider a release of ; at t and a release of rj at f (i > i), where
t'<t<f +Dj. To determine whether rj could block ri requires an evaluation of
the schedule over the interval [0, t) to see if rj actually executes in [LtlTjj Tj, t) -
Whilst evaluating the schedule inninum execution times are assumed for all
processes to enable rj to have the . um possibility of executing in the
interval. Assume that rj can execute in the interval, having a inlmii a of t',

execution time (in the interval). For each resource access made by c,, there is a

nimum, time within the execution of cj before that access is made
(determined during worst-case execution time analysis). If the minimum time
before Tj could access a resource is at least t,. j., that resource access could not
block ci (during its release at t).

This approach would be computationally expensive, (similar to the

sufficient and necessary tests in section 4.3). It would only be required if

processes were infeasible assuming the assessments of blocking given by

equations (4.17), (4.18) or (4.19). We note that the schedule would have to be

evaluated once only, over the interval [0, L).
Consider systems consisting of a mixture of sporadic and periodic

processes. The worst-case blocking upon a periodic process is the maximum of
the worst-case blocking due to sporadic processes (by equation (4.17)) and that
due to periodic processes (by equation (4.19)). The worst-case blocking upon a

sporadic process is calculated by equation (4.17).

4.6 Infeasibility Analysis

The accuracy/compleidty trade-off described in Chapter 3 has been illustrated

by the feasibility tests of sections 4.2 and 4.3. Sufficient and not necessary
tests were seen to have polynomial compleidty. In contrast, the more accurate

sufficient and necessary tests have pseudo-polynomial complelity. One

approach to determining feasibility of a process set using these tests is to use a

85

sufficient and not necessary test initially. If the process set fails this test, an
exact feasibility test may be used.

An alternative approach is to use sufficient and not necessary
infeasibility tests. Such tests have been given little coverage in the literature.
Consider Figure 4.13. A sufficient and not necessary infeasibility test identifies

some infeasible process sets in the same manner as a sufficient and not
necessary feasibility test identifies some feasible sets. Now, we may initially
try a sufficient and not necessary feasibility test. If the process set fails this
test, sufficient and not necessary infeasibility can be used. If this test is also
failed, the process set may still be feasible, so a computationally expensive
sufficient and necessary test may be employed.

Feosible Process Sets Infeosible Process Sets

Domain of Proýess Sets

Process Sets Identified By Process Sets Identified By
Sufficient and Not Necessary Sufficient and Not Necessary
Feasibility Test Infeasibility Test

Exact Division Found By Sufficient and Necessary
Feasibility (or Infeasibility) Test

Figure 4.13: Feasibility and Infeasibility.

There are many approaches available for the development of sufficient

and not necessary infeasibility tests. Essentially, a basic infeasibility test can
be stated: VT,: 1: 5, i5n o

3T, EA o Ci+ Ii
(4.20)

This states that if one process is definitely infeasible, the entire process set is

also infeasible. The value of Ii in the test must be no greater than the exact

interference. Consider the following theorem:
Theorem 4.8:

If the estimated interference Ii is less than the exact interference I'i

the infeasibility test given by equation (4-20) is sufficient and not

necessary.

86

Proof:
Converse of Theorem 4.2.

We note that if Ii is exact, the infeasibility test (equation (4.20)) is sufficient

and necessary, and is therefore equivalent to a sufficient and necessary
feasibility test. This observation is seen in Figure 4.12.

A basic estimation of a value of Ii that is less than the exact interference
is 0. This reduces the infeasibility test to a check to see if the computation time

of a process is greater than the deadline. Clearly, if such a process exists the

process set is infeasible. Formally:
3,; - eA9 Ci >A (4.21)

The test has comple)dty O(n) in the number of processes, although it is
inaccurate: there are many process sets that fail the test that are infeasible.

The following sections introduces a more accurate infeasibility test.
Then, the effects of sporadic processes and process blocking are considered.

4.6.1 Sufficient And Not Necessary Infeasibility Test

The accuracy of the infeasibility test given by equation (4-21) is now improved.
A critical instant is assumed. The interference of rj on ri is exact for all

releases except the last in [0, Dj). Let the final release of rj in [0, Dj) execute as

late as possible.
Accuracy can be improved further by adopting the effective deadline

strategy of sections 4.2.3 and 4.2.4. Now, [di'-I,
k', Di) is occupied by processes of

higher priority than ci, with the exact interference for this interval being

-1. k. Now, it is assumed that the final release of rj in [O, di'-I, k) executes as Di - di'

late as possible. Therefore, the test may be stated:
3,; - (z- A* Ci + Ii > Di

where
di'- -1k]Tj+Dj-Cj Ii = Di - di'-I, k +I

"k
Ici

+mi. Ci max 0, di'-I, k -
J-' j=l

-
Ti

and where d, ý,
k is defined by equation (4.12).

The test is sufficient and not necessary since the value of Ii is no greater than

the exact interference (by Theorems 8 and 9).

87

The complexity of the test has increased to be pseudo-polynomial (see

section 4.2.4) from the polynomial complexity of the test in the previous
section, although greater accuracy has been achieved.

4.6.2 Process Blocking, Sporadic Processes and Infeasibility
Tests

Extensions to permit sporadic processes to be incorporated within the
infeasibility test could be achieved in a number of ways. When considering
their interference on periodic processes, sporadic processes can be treated as
not occurring or as periodic. The latter case presents a more accurate
interference value. The interference of periodic (or sporadic) processes on
sporadic processes can be calculated as if the latter processes are periodic.

Blocking can be included in infeasibility analysis in several ways. It
could be assumed that no blocking occurs (i. e. Bi =0). A more accurate

alternative would be to calculate potential blocking in the manner outlined in
section 4.5.

4.7 Comparison Of Feasibility Tests
I

The offline accuracy / complexity trade-off observed in the development

of feasibility tests presented in this chapter is further explored in this section.
Firstly relative efficiencies of the sufficient and necessary tests are considered.
Secondly, the differing accuracies of the sufficient and not necessary tests are
examined in conjunction with their differing complexities.

The feasibility (and infeasibility) tests maybe compared in four ways.
(i) accuracy - provides a measure of the number of process sets that

are declared feasible by a given test.
(ii) time points - this measures the number of points in time that are

examined by a test when determining the feasibility of a process

set.
sample complexity - when a time point is considered, sample
complexity is a measure of the complexity of the feasibility test at
that point.

(iv) overall complexity - the combined complexity derived by

multiplying the number of time points considered by sample
complexity.

88

Accuracy is of interest when comparing sufficient and not necessary feasibility
(and infeasibility) tests, assuming that sufficient and necessary tests have

equivalent accuracies. The other three criteria are useful when discussing the

complexity and efficiency of the tests. For sufficient and necessary tests, the

relative efficiencies in determining feasibility can be examined by considering
time points, sample and overall complexities. For example, the explicit
construction of a schedule [Leung821 examines many time points at a minimal
sample complexity (the overall complexity being mostly dependent upon the

number of time points examined). In comparison, the tests described in section
4.3 limit the number of time points, at a cost of increased sample complexity.

In general, we may consider each of the above criteria in terms of both

worst and average-case performance. The former reflects theoretical

computational complexity (derived from the worst-case). The latter can be

achieved by measuring performance of the tests with respect to randomly
generated process sets. Essentially, four free variables exist when generating
such a process set:

(i) number of processes;
(ii) process computation times;
(iii) process deadlines;
(iv) process periods.

Sporadic processes and process blocking were not considered as they do not

affect the performance of the feasibility tests.

Within this section process sets were generated using normal and

uniform distributions of process deadlines, periods and computation times

(within given ranges). Some process sets had processes whose periods were

related. This reflects the often observed characteristic of hard real-time

systems that a process period is sometimes a multiple of another process's

period, due to hardware constraints. Further details of random process set

generation are given in Appendix A.

The following sections compare the efficiencies of sufficient and

necessary tests, and examine the complexity / accuracy trade-off of sufficient

and not necessary tests.

4.7.1 Comparison of The Efficiencies Of Sufficient and
Necessary Feasibility Tests

Sufficient and necessary feasibility tests have equivalent accuracy, hence in

this section only the relative efficiencies of tests for worst and average-cases

89

need to be examined. A number of algorithms have been proposed for
determining sufficient and necessary feasibility for critical instant process sets
(see Chapter 2 and section 4.3):

Leung'S Algorithm (LA) [Leung821 : Construction of a schedule over [0,
D.) for processes r, (1 :5i< n).

Lehoczky's Algorithm (LZA) [Lehoczky9O] : For each ci each point tE [0,
Dj) is examined to see if tile computation demands of ri.. Tj in [0,

is no greater than t.
Nassor and BresS Algorithm (NBA) [Nassor9l): This is derived from the

exact feasibility test derived for rate-monotonic analysis given in
[Lehoczky891. The algorithm maintains an event list of releases
and deadlines of processes, checking each process deadline event
against cumulative demands of released processes (of equal or
higher priority).

Joseph's Algorithm (JA) [Joseph861: This is based upon similar analysis
to that given in section 4.3.1 considering releases of processes in
[0, D) when determining the feasibility of ri.

In addition to the above algorithms, the algorithm given in section 4.3.1 to find
response time is considered, referred to as RA. I

The worst-case performance of the algorithms is given by their
theoretical complexity. This can be considered in terms of time points, sample
and overall complexity. Table 4.11 summarises the above algorithms with
respect to these three criteria.

Worst-Case LA
Complexities

LZA NBA JA RA I

Time-Point 0(kn) 0(kn) O(kn) 0(kn) 0(kn)
Sample 0(l) O(n) 0(nlog_gn) O(n) O(n)
Overall 0(kn) 0(kn2) 0(kn21092n) 0(kn2) 0(kn2)

Table 4.11: Worst-Case Complexities of Sufficient and Necessary Feasibility
Tests.

In the table k=max(Di) (for processes with deadline-monotonically assigned
Ish5m

priorities k=D.).

90

For LA, the worst-case time point complexity arises if when allocating
the Cj' slot to a release of ri, Di slots need to be examined. The sample
complexity is minimal, being the cost of ex i ing a schedule slot. Thus the
overall complexity is equivalent to the time point complexity.

The entries for LZA reflect that to determine the feasibility of Tj each tE
[0, Dj) may be considered. The sample cost at each time point reflects the need
to add the total processor demands made by c, T, in [0,0.

For NBA the worst-case time point complexity reflects the m
number of events (i. e. releases and deadlines) of rj.., cj in [0, Dj). This equates
to U-1)Dj if all processes oc, oci-I have period or deadlines set to 1. At each time

point, an event is removed from an ordered (by time) queue (and one added).
This has complexity O(qlog2q) in the number of items in the queue
[Sedgewick831. In this case, q=n in the worst-case.

For JA and RA the time point complexity reflects the need to examine
each tE [0, D,) in the worst-case (although this ignores the limiting of time

points to Di - Rj_j in RA). At each time point, the computational demand of each
higher priority process is calculated.

Although the overall complexities are similar, the worst-case complexity
of tests is only realised in constrained and differing circumstances. For

example, IA approaches its worst-case as process set utilisation approaches
100%. In contrast, RA has a worst-case if exactly one of rj.. Orj_I is released at

each tE [0, Dj), with the computation time of the released process being 1.

To gain greater insight into the respective performance of each
algorithm, the average-case behaviour is examined. The average-case
efficiencies of the algorithms were considered using approximately 2000
feasible process sets, randomly generated using both uniform and normal
distributions of timing values (further details are given in Appendix A).
Graphs 4.1 to 4.14 show the number of time points, overall complexity and

actual time' taken by the algorithms plotted against the utilisation of the

process set, for process sets of cardinality 10,30,50 and 100. Process sets with

utilisation between 0 and 10% are plotted at y-axis co-ordinate 5; between 10%

and 20% are plotted at y-axis co-ordinate 15 etc. Whilst the time point

complexity of LZA is plotted, the overall complexity and actual time taken by

lAcutal time taken on an Intel 486 processor running at 33MHz.

91

LZA is not plotted, being an order of magnitude greater than any of the other
algorithms.

6 LA
M LZA
A JA

NBA

Key for Graphs 4.1 - 4.14.

170
160

Time 150

Points 140
130
120
110
100

5 15 25 35 45 55 65 75 85 95

Utilisation (%)

Graph 4.1: Time Points for 10
Processes (LA and LZA).

3000

25W

Time 2WO
Points

1500

1000

500
5 15 25 35 45 55 65 75 85 95

Utilisation (%)

Graph 4.3: Time Points for 30
Processes (LA and LZA).

19
17

Time 15
Points 13

11
9
7
5

5 15 25 35 45 55 65 75 85 95

Utilisation (%)

Graph 4.2: nme Points for 10
Processes (JA, NBA and RA).

250

2W

Time 150
Points

100
50

0'
5 15 25 35 45 55 65 75 85 95

Utilisation (%)

Graph 4.4: Time Points for 30
Processes (JA, NBA and RA).

92

3=

25M
Time
Points 2ow

1500

1000

Graph 4.5: Time Points for 50
Processes (LA and LZA).

17000

15000

Time 13000
Points 11000

9000
7000
5000

Graph 4.7: Time Points for 100
Processes (LA and LZA).

160
140

Overäl 120

Con-Oex- 100
ity 80

eD
40
2D
0

5 15 25 35 45 55 65 75 85 95

Uilisalicn (O/o)

J
3

Time 2

Points 2
1
1

450
400
350

Time 3oo
PointS 250

200
150
100
50

5 15 25 35 45 55 65 75 85 95

Utilisation (%)

Graph 4.6: Time Points for 50
Processes (JA, NBA and RA).

Ar.

5 15 25 35 45 W 65 75 85 95

Utilisation (%)

Graph 4.8: Time Points for 100
Processes (JA, NBA and RA).

3300
3=

Ovedl 2400

ccffpi, ex- 2100
18001 ity 1500
1200
9m
600
300

5

Graph 4.9: Overall Complexity Graph 4.10: Overall Complexity

for 10 Processes. for 30 Processes.

93

5 15 25 35 45 55 65 75 85 95

Utilisation (%)

15 25 36 45 55 65 75 85 95

Uilisalicn (0/4

5 15 25 35 45 55 65 75 85 95

Utilisation (%)

7OW
6000

Overall 5000
Complex- 4ow

fty 3=

Graph 4.11: Overall Compleidty
for 50 Processes.

20
18
16

Tirm 14
12

(rM) 10
a
6
4
2
0

5 15 25 35 45 55 65 75 85 95
UilisEdion (*/o)

Graph 4.13: Actual Time
for 30 Processes.

24000

2=

Overail l=
C<rffiex- 12D00 ny

4000

0
5

Graph 4.12: Overall Compleidty
for 100 Processes.

Time
(MS)

Graph 4.14: Actual Time
for 50 Processes.

In general, graphs 4.1 to 4.8 show that RA visits less time points than the
other algorithms, thus reducing the non-polynomial part of the feasibility test
to a minimum (amongst these tests). The time point graphs for LA and LZA

suggest that for 10 processes (Graph 4.1) the number of time points decreases
from 30% to 60% process set utilisation. This is due to the difficulty of
generating process sets with low utilisations: process periods tend to be

relatively greater than those for higher utilisations, so reducing the number of
time points. This is shown to a lesser extent by Graphs 4.3,4.5 and 4.7. Since

the same effect is not observed for JA, NBA and RA (Graphs 4.2,4.4,4.6 and
4.8), noting that the same process sets were used for all tests, the conclusion is
drawn that the number of time points Visited by LA and LZA is more data-

dependent than the other three algorithms.
The overall complexities (graphs 4.9 - 4.12) of JA, NBA and RA were in

most cases, more efficient than simple schedule construction (i. e. IA). The

exceptions being for high utilisations (2M%) and high numbers of processes,

94

15 25 35 45 55 65 75 85 95

UilLsdon (0/o)

5 15 25 35 45 55 65 75 85 95

Lhilisalion ('Yo)

5 15 25 35 45 55 65 75 85 95

Uilýsztion (0/4

where N-BA was less efficient than the other three. For lower utilisations, N-BA
and RA were more efficient than JA, the former two tests having similar
overall complexities. The actual execution times (graphs 4.13 - 4.14) of the
algorithms reflected their relative overall complexities.

4.7.2 Comparison of Sufficient and Not Necessary
Feasibility Tests

The worst-case time point, simple and overall complexities of the sufficient and
not necessary feasibility tests given in section 4.2 are simmarised in Table
4.12.

Worst-Case Test 1
Compleidties

Test 2 Test 3 Test 4

Time-Point O(n) O(n) O(n) O(n)
Sample O(n) O(n) O(n) O(n)
Overall 0(n2) 0(n2) 0(n2) 0(kn2)

Table 4.12: Worst-Case Complexities of Sufficient and Not Necessary
Feasibility Tests.

We note that the average-case and theoretical worst-case performance are
equivalent for tests 1,2 and 3. The worst-case for test 4 is O(n) time points,

with O(n) sample complexity. However, the overall complexity must include

the calculation of the effective deadline. This has a worst-case when for each
iteration, the effective deadline decreases by one. Thus, effective deadline

calculation is of O(kn2), where k=max(Di) giving an overall compleidty of 1--5i--5n

0((k+ 1)n2) = 0(kn2).

When considering sufficient and not necessary tests, the benefit, in

terms of increased accuracy, for any increased cost, in terms of computational

complexity, is of most interest. Therefore, the average-case performance of the

tests was examined using the same randomly generated process sets used in

the previous section. Initially, accuracy was considered. Graph 4.15 shows the

percentage of feasible process sets passed by each of the tests plotted against

process set utilisation. The results froma sufficient and necessary test (RA -

see previous section) are also plotted to form a control. As expected, test 1 is

the least accurate, with test 4 the most. The discrepancy between the

accuracies of the sufficient and not necessary tests and the exact test widens as

95

utilisation increases: the effect of the assumed concurrent execution in the
sufficient and not necessary tests becomes increasingly significant.

Percentage go
so

of Process 70
Sets 60

Passing
50
40

Test 30
20
10
0

RA
Test 1
Test 2
Test 3

--*-Test 4

5 15 25 35 45 55 65 75 85 95

Utilisation

Graph 4.15: Accuracy For 10,30,50 and 100 Processes.

The cost of increased accuracy of the tests is now considered. It has been
observed that as the accuracy of the feasibility tests increases, so does the
compleidty and hence the cost. The cost of tests 1,2 and 3 is always n2if the
process set is feasible (or the lowest priority process is the only infeasible
process), whilst the cost of test 4 is higher, due to effective deadline calculation.
However, the accuracy of this test is greater than tests 1,2 and 3 (see graph
4.15). The overall compleidty of tests 1,2 and 3, and of test 4 (along with RA
for a control) are plotted against process set utilisation in Graphs 4.16 - 4.19.

RA
Test
1,2,3
Test 4

Key for Graphs 4.16 - 4.19.

100

80
Overall

Caroex- 60
RY 40

20

0

1100

A- A. 1000
Ovedl gm

Caroex- em
fty 70D

600
500

... 400

5 15 25 35 45 55 65 75 85 95

Litilisalion ý/o)

Graph 4.16: Overall Complesity
for 10 Processes.

Utilisation (%)

Graph 4.17: Overall Complexity

for 30 Processes.

96

5 15 25 35 45 55 65 75 85 95

2500 12000

24COA 11000

Overall 22CO Overil 10011,
Cave* 2000 ý

1800 Cai-oex- 9=
ity 1600 iýf 8000

1400 IO " 7OW
IaS -M -m 6000
1000 mm M
00 4000

5 15 25 35 45 55 65 75 85 95 5 15 25 35 45 55 65 75 85 95
LINsadion (0/4 Uilisation ýQ

Graph 4.18: Overall Compleitity Graph 4.19: Overall Complexity
for 50 Processes. for 100 Processes.

It is observed from the graphs 4.16 - 4.19 that the overall complexity of
tests 1,2 and 3 does not depend upon utilisation, only upon the cardinality of
the process set. The overall complexity of test 4 is greater than tests 1,2 and 3,
essentially due to the non-polynomial property of effective deadline calculation
in the test. In all cases, the overall complexity of test 4 is greater than RA,
which is in turn has higher overall complexity than tests 1,2 and 3. This
indicates that the computation of effective deadline is expensive.

90
80
70
60

Number of 5o

Process Sets 40
30
20
10
0

Overall Complexity

Graph 4.20: Overall Compleitity of RA For 30 Processes.

350

300

250
Number of 200

Process
150 Sets
100
50

0

Overall Complexity

Graph 4.21: Overall Compleidty of Tests 1,2 and 3 For 30 Processes.

97

400 425 450 475 500 525 550 575 600 6525 650 675 700 725 750 775 800 825 850 875

250 275 300 325 350 375 400 425 426 450

Although Graphs 4.16 - 4.19 indicate that the overall complexity of the
sufficient and necessary test (RA) is similar to sufficient and not necessary
tests 1.2 and 3, it is observed that the latter tests have polynomial complexity
in n, whilst RA has non-polynomial complexity. This is illustrated by the
ranges of values for overall complexity of RA in Graph 4.20, considering
process sets of cardinality 30. The number of process sets requiring a given
number of time points is plotted against the number of time points. The
distribution is normal, with standard deviation 68 (mean 558). It is observed
that 98.84% of the values are within three standard deviations of the mean. In

comparison, the values for tests 1,2 and 3 (Graph 4.21) have constant overall
complexity when a process set is feasible (by tests 1,2 and 3), dropping below
this constant value if the process set is infeasible. Hence the graph has a small
number of values below the mode (at 425 in the Graph) and none above it.
Thus, the difference in overall complexity between the non-polynomial exact
algorithm (RA) and the polynomial sufficient and not necessary tests is shown:
in the worst-case, the former are more expensive than the latter.

These observations can be extended for process sets of higher cardinality.
Graphs 4.22 and 4.23 show the overall complexity variation over 50 processes
for RA and tests 1,2 and 3 respectively. The standard deviation for RA is 87
(mean 1323), implying a large range of values for overall complexity, compared
to a ni i uni of 1225 for tests 1,2 and 3, with some results lower when the

process set is infeasible (by those tests).

500

400

Number of 300
Process Sets 2()0

100

0

Graph 4.22: Overall Complexity of RA For 50 Processes.

98

1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500 1550 1600 1650 1700

Overall Complexity

1600
1400
1200

Number of 1000
Process Sets 8w

6W
4W
200

0

Graph 4.23: Overall Complexity of Tests 1,2 and 3 For 50 Processes.

4.8 Summary

A representation of process execution has been presented which enabled the
development of feasibility tests which removed some of the constraints
imposed by current scheduling theory, therefore improving offline flexibility by
increasing feasibility test coverage, accuracy and efficiency. Throughout the
chapter, process deadlines were permitted to be no more than their periods.

Initially, a family of new sufficient and not necessary tests was outlined,
with differing accuracies and complexities. It was observed that increasing test

accuracy has the effect of increasing the complexity of analysis, and therefore
the time and resources required to perform it.

Sufficient and not necessary tests were then developed. The first test

provides a measure of worst-case response times of crucial processes, the

second the maximum amount of interference it can endure whilst remaining
feasible. These algorithms, together with methods proposed elsewhere for
determining feasibility, were compared with a view to efficiency.

Efficiency is related to complexity, which can be viewed as a combination
of the number of time points examined to determine the feasibility of a process,

and the complexity of the feasibility test used at each time point. For sufficient

and necessary tests, the latter is polynomial, with the number of time points

exponential: this is the root of the NP-complete nature of the feasibility

problem. The sufficient and necessary tests proposed in this chapter minimise
the number of time points (compared to other proposed tests), that is the non-

polynomial part of the problem, whilst maintaining a polynomial sample

complexity. It is noted that the tests described in this chapter are applicable for

any priority assignment, not merely deadline-monotonic priority assignment.
Also, the sufficient and necessary tests were compared with the family of

sufficient and not necessary tests. The average-case behaviour of the former

99

1000 1025 1050 1075 1100 1125 1150 1175 1200 1225 1250

Overall Complexity

tests indicates that in many cases, these tests do not incur significant
additional execution cost over that required by the sufficient and not necessary
tests. This emphasises the observation that the tests have pseudo-polynomial
complexity: in many cases their actual behaviour is polynomial, like that of the

sufficient and not necessary tests.
The coverage of the tests developed within the chapter was expanded to

enable sporadic processes and process blocking to be incorporated. The former
fit naturally within the deadline less than (or equal to) period process model,
with no extension to the theory required. The latter required a minimal
extension to each test. The resultant accuracy of the tests was improved by

reducing the pessimism inherent in the worst-case blocking calculations of the
Priority Inheritance Protocol (and its derivatives).

It is noted that this chapter has improved the fleidbility of offline
scheduling by increasing the coverage, accuracy and efficiency of feasibility

tests. In the next chapter, further improvements are made.

100

Chapter 5.
Extending Offline Flexibility Via

Optimal Priority Assignment

In Chapter 4 it was observed that as the coverage and accuracy of an offline
feasibility test increases, so does its complexity. In the limit, sufficient and
necessary tests for arbitrary process timing and interaction characteristics are
NP-complete. In the previous chapter this was illustrated, with various
feasibility (and infeasibility) tests of differing accuracies, efficiencies and
complexities for processes with static priorities. This chapter extends this work
by examining both priority assignment and feasibility of processes with
arbitrary timing constraints.

One of the assumptions of the feasibility tests in Chapter 4 was that all
processes have a common release time (i. e. critical instant). This assumption
simplifies priority assignment (and subsequent feasibility testing). When

process deadlines are equal to their periods, rate-monotonic priority ordering is

optimal, with deadline monotonic priority assignment optimal for processes

whose deadlines are no greater than their periods [Leung80]. If this

assumption is relaxed, processes are permitted to have arbitrary initial start
times, with this start time termed the offset. Thus, if the offset of ri is given by

Oi the releases of ri are at Oj, Oj+Tj, Oi+2Ti,.. etc.
Processes with offsets provide more flexibility in that more applications

can now be represented (see section 3.1). For example, processes which have a
high utilisation between a release and subsequent deadline (i. e. Ci close to Dj)

can now be phased, such that they will never be active simultaneously:

assuming a critical instant between such processes would almost inevitably

result in the process set being declared infeasible. Also, application

requirements may wish to place access to particular resources, either to reduce

potential process blocking, or because the resource needs time between

accesses (e. g. hardware devices).

Process offsets also allow a natural representation of precedence

constrained processes. For example, consider the real-time control of a physical

device. Periodically, a request is made by a process for data from the device.

101

Assume that the time for the device to respond is non-trivial. A second process,
whose release is offset from the first process, collects (and processes) the data.
This representation is an alternative to a single process which blocks whilst
the device responds, although this could be modelled for feasibility purposes as
two offset processes.

A process set containing processes with arbitrary offsets may still have a
critical instant, with the consequence that deadline-monotonic (or rate-
monotonic) priority assignment remains optimal. However, if a critical instant
does not occur, the known priority assignment strategies are, in general, no
longer optimal [Leung82]. This is illustrated by example.

Process 0 C D T Rate-Monotonic
Priority
Assignment

'CA 0 3 8 8 1
'C B

10 1 12 12 2/3
Tc 10 6 12 12 3/2

Table 5.1: Example Process Set 1.

Consider the process set in Table 5.1. Notionally we may assign
prionties in a rate-monotonic manner. Process 'CA is assigned the highest

priority. The assiginment of priorities for r,, and r, cannot be performed in the

arbitrary manner suggested by Lui and Layland [Layland731 for processes
with equal periods. If r, 9 is assigned a higher priority than rct the latter

process will miss its first deadline. However, if cc is assigned a higher priority
than'CBall process deadlines are met.

Process 0 C D T Deadline-Monotonic
Priority
Assignment

'CA 2 1 2 3 4 1
0 It 8 3 4 8

Table 5.2: Example Process Set 2.

Now, consider the process set in Table 5.2. Intuitively, deadline-

monotonic priority assignment is applicable, with cAassigned a higher priority

than 'rB. However, this leads to the deadline of the latter process to be missed

102

at time 4 (and then successively at 12,20,28,...) When priorities are reversed
(contrary to deadline-monotonic priority assignment) process deadlines are
met.

The above examples show that rate-monotonic and deadline-monotonic
priority assignments are not optimal for processes with arbitrary offsets.
Indeed, according to Leung, who describes processes with arbitrary offsets as
asynchronous:

'At the present time no priority assignment has been found
which is optimal for an arbitrary asynchronous system. "
[Leung821

An additional issue is that of feasibility testing. Tests developed
assuming a critical instant between processes remain applicable (given that
they do not assume a specific priority assignment rule). However, sufficient
and necessary critical instant tests become, in general, sufficient and not
necessary for processes with arbitrary offsets. For example, the exact feasibility
tests developed in section 4.2 are sufficient and not necessary for such process
sets; the tests in section 4.3 remain sufficient and not necessary.

Leung et al have proved that the problem of determining the feasibility
of a process set that has no critical instant is N-P-hard (Theorem 3.8 in
[Leung821). However,

"We also note that Theorem 3.8 does not imply that the problem
of finding an optimal priority assignment is NP-hard., for the
apparent difficulties in determining whether or not a [process

set] is [feasible] on one processor may entirely be due to the
difficulties in deciding whether or not the schedule produced by

a particular priority assignment is valid. " [Leung821

This statement is proved within this chapter, where it is shown that to find an
optimal priority assignment requires the examination of a polynomial number
of possible priority assignments.: the NP-hard complexity is due to determining
the feasibility of a given priority assignment.

The main focus of this chapter is the identification of priority
assignments and sufficient and necessary feasibility tests for processes with
arbitrary offsets. To this end the following key issues are addressed:

determining whether tasks with arbitrary start times are ever,
within the system lifetime, released simultaneously;
providing an optimal priority assignment mechanism;

103

determining, in a sufficient and necessary mmmer, the feasibility

of a process set with arbitrary start times.
Subsequently, the theory is expanded to allow processes with arbitrary
interaction requirements, via precedence constraints and shared resources, to
be analysed.

In the above discussion, the assumption is made that process offsets are
either fixed (like period and deadline), or a property of the application
requirements. Consider process sets that assume a critical instant, with all
process offsets set to zero. If such a process set is declared infeasible by a
sufficient and necessary test, we could assume that application timing

requirements need to be re-considered and/or processes re-coded. Alternatively,

we could assign offsets to processes to improve their feasibility, possibly
enabling the process set to be declared feasible. Even if the original process set
were declared feasible, it may be beneficial to introduce offsets, for example to

reduce potential process blocking. Issues surrounding the assignment of offsets
to processes is the final contribution of this chapter.

Initially, some assumptions are made:
(i) all processes are periodic;
(ii) worst-case process computation times are bounded;
(iii) processes do not interact (via shared resources or precedence

constraints);
(iv) processes cannot voluntarily suspend, or become blocked by an

external event (e. g. reception of data from an external source).
During the course of the chapter, restriction (iii) is removed.

The chapter is arranged as follows. The next section discusses the

detection of critical instants. in process sets with arbitrary process offsets.
Section 5.2 describes a method for achieving optimal priority assignment of

process sets without critical instants. Section 5.3 describes the time interval

required for feasibility testing, with sections 5.4 and 5.5 developing sufficient

and necessary and sufficient and not necessary feasibility tests respectively.
Sections 5.6 and 5.7 extend the optimal priority assignment and feasibility

tests for precedence constraints and blocking respectively. Section 5.8 discusses

the assignment of offsets to processes. Finally, a summary is given in section

5.9.

104

5.1 Critical Instants
When processes have arbitrary offsets, it is difficult, by inspection of process
timing characteristics alone, to determine if a critical instant will occur during
System execution. The problem of identifying a time when a critical instant
between all processes occurs can be solved using the Generalised Chinese
Remainder Theorem (GCRT). This can be stated [Knuth681 1:

Let mjj%,... 'mr be positive integers. Let m be the least

common multiple of mj, m2,... ̂ , and let a, uj, u2,..., u,, be any
integers. There is exactly one integer u which satisfies the
conditions a: 5 u<a+m and u =- uj(mod mj) for all 1! ý j:! ý r if

and only if ui -= uj (mod (gcd(mi, mj)) for all 1:! ý i<j: 5 r where
gcd(x, y) denotes the greatest common divisor of x and y.

Within this context we may set
a to be the maximum offset in the process set, i. e. max(O) 15i: 5n

ml, nt2,..., m,, are equivalent to TI, T29"'IT. where r=n
UI'U2,, ---sUr are equivalent to 01,02,..., 0,, where r=n

Thus for each pair of processes ri jj EA (i # j), the GCRT states that those

processes have a simultaneous release if and only if:
I Oi - Oj I=h gcd(Ti, Tj)

where h is a non-negative integer.
Example 5.1:
Consider the process set in Table 5.3.

Process 10 I T
'rA 5 10
'rB 4

1

9
rc 10

_ L 24

Table 5.3 Example Process Set 1.

According to the GCRT, each pair of processes needs to be combined in

turn to find if the process set has a critical instant.
'CA JB :1 5-41 =hgcd(10,9)

1=1h

The processes share a critical instant (integer solution for h).

1. a-= b mod c is equivalent to b mod c=a mod c

105

'rA Jc :15- 10 1=h gcd (10,24)

2h
The processes do not share a critical instant (no integer solution
for h).

'rB)rC :14- 10 1=h gcd (9,24)

3=lh
The processes share a critical instant (integer solution for h).

The process set does not have a critical instant since there is one pair of
processes that do not share a critical instant.

5.2 Optimal Priority Assignment
The process set (A) is denoted 9 if the member processes never have a
simultaneous release. We term Ya non-critical-instant process set. For any 9
the initial discussion at the start of the chapter indicated that neither rate-
monotonic or deadline-monotonic priority assignments were optimal. A feasible
priority assignment could be found by searching through all n! distinct priority
assignments over 9. This is inefficient. We now develop an efficient optimal
priority assignment for processes with arbitrary start times.

A' C" of cardinality n. A priority assignment f Consider Aý ý__ ('c 'CB' 'r unction

maps each process onto a different priority level. For A* there are n! distinct

priority assignments over the process set, hence the set of distinct priority
assignment fimctions has cardinality W. This is denoted by 0 .. : 14h, 102.1-, (D? I!

)-

Under a given priority assignment function, the mapping of a process onto a
priority level is given by:

4 'r = ýi(A)i

where the ith priority assignment function maps cA onto priority level j. The

mapping of priority level to process, is denoted:
T O_il(j) =A

When the priority ordering over e specified by a priority ordering function is

feasible, we term that iftmction a feasible priority assignment fimction.

In general, rAis feasible if and only if (see secition 4.1):

: 9D CA +, A A

where I represents the execution requirement (interference) of higher priority A

processes in the interval defined by the release and deadline of rA.

106

If rA is not feasible, and the process timing characteristics cannot be

changed (i. e. CA cannot bedecreased and DA cannot be increased), the only
way to make rAfeasible is to decrease IA (assuming that processes do not block

- this restriction is lifted in section 5.7). This is achieved by changing the
Priority ordering over A' by using a priority assignment fimction that reduces
the priority of a higher priority process to be lower than rA. (Note that we could
then promote a lower priority process to be higher than rA as long as the new
IAis less than the original.)

Let us now consider the effect on the feasibility of Y (cardinality n) for
(D., r= (D such that O., (, rA) = n. The following theorems discuss this assignment.

Theorem 5.1:
If -TA is assigned the lowest priority, n, and is infeasible, no
priority assignment fimction that assigns rA priority level n
produces a feasible assignment.

Proof-
Amongst the n! distinct priority assignment fimctions, (n-l)!
produce an assignment with rA at priority level n. For all such
assignments, the interference due to processes of higher priority
than rAis equal, as the same set of processes is of higher priority
than cA in each ordering. Thus if cA is infeasible as the lowest

priority process by one assignment fimetion, it will be infeasible
under the priority ordering of any other fimetion assigning it the
lowest priority.

Theorem 5.2:
If cA is assigned the lowest priority, n, and is feasible, then if a
feasible priority ordering for Y exists, an ordering with rA

assigned the lowest priority exists.
Proof:

Let us assume that an assignment fimction (Dy produces the

feasible assignment:
Oy('r, B)=1,0y('rc)=2,..., Oy('rA)=i, (Dy('cD)=i+lI ... j(Dy(, cE)=n

We note that rA is feasible at priority level kn. Within (D there

exists another priority assignment 0.,,:
O., ('cB)=1,4Dx('rc)=2,..., (Dx(-TD) = (Dx(rE) =n-1, (I)x(, rA)=n

107

Noting that by the theorem rAis feasible if assigned priority level

n. The processes assigned priority levels i+ L. n in (Dy are promoted
1 place under 0.., (i. e. the process at priority level i+ 1 is now
assigned priority 0. Clearly, the processes assigned levels 1J-1
under 0.,, are feasible since they were feasible under (Dy when
assigned the same priority levels. The processes assigned priority
levels Ln-1 under 0., are also feasible: the interference on these
processes is less under 0,, than (Dy. Therefore, (D., is a feasible

priority ordering: at least one feasible priority assignment e)dsts
with rAas the lowest priority process. The theorem is proved.

The above theorems limit considerations to priority level n. We now extend the
theorems to consider assignment of arbitrary priorities to processes, rather
than merely priority n.

Theorem 5.3:
Let the processes assigned priority levels ii+l,..., n by assignment
fimction 0., be feasible under that priority ordering. If there eldsts
a feasible priority ordering for 9, there e. Nists a feasible priority
ordering that assigns the same processes to levels Ln as (D.,

Proof:
The theorem is proved by showing that a feasible priority
assignment fimction (Dy can be transformed to assign the same

processes to priority levels ii+l,..., n as (D., whilst preserving the
feasibility of Oy. The proof is by induction: (Dy is transformed

successively by moving processes (D; '(n), (D; '(n- V" (i) to

priority levels n, n- i respectively under Oy.

Base
Let O-'(n)=, cA and Oy(, cA)=m, where m:! ýn. By Theorem 5.2 we

can move rAto the assigned level (n) under (Dy with Oy remaining

a feasible priority assignment.
Inductive Hypothesis
Assume that the processes assigned to priority levels n-l, n-
2,..., i+l under 0., are moved to levels n-l, n-2,..., i+l under (Dy with

, Dy remaining a feasible priority assignment.

108

Inductive Step
Ut 4)i'(')="B and (Dy(, c,,)=m, where m: gi (since the reassignment

of priority levels n-l, n-2,..., i+l has promoted rB to have a priority

of between 1 and 0. Under both orderings, the processes assigned
to priority levels i+l.. n are identical. Process r,, is reassigned in

Oy to level i. We know (by 4D.,) that rB is feasible at this level

(assuming that processes assigned to levels i+l.. n are identical
under (D., and (Dy). After the reassignment, processes at levels 1J-
1 remain feasible, as their respective interferences are no greater
than before the reassignment and therefore must remain feasible.
This proves the theorem.

5.2.1 Optimal Bottom-Up Priority Assignment
The above theorems are now used to develop an optimal static priority
assignment scheme which assigns processes to priority levels nn-l,..., l in

order. Only if a feasible assignment can be made to priority level i do we
proceed to priority level i-1.

Consider the assignment to level i (1 <i: 5n). We asstýme that priority
levels nA+1 have been assigned such that the processes assigned to those
levels are feasible. Let the process assigned to priority level j be given by T(j).

We note that T(j) is only defined for i<j: 5n. Let the set Y' be composed of
those processes in A' that have been assigned priority levels nn-l,..., i+l
(cardinality of e is n-i). For each process cA in 9-e (i. e. the set of

unassigned processes) we select a single Ok r= (D such that

VI: i<1 -5 n: Oil (1) = TM

The set of such (Dk for priority level i is termed Oý. Set Oý contains i elements of

(D, each of which assigns priority levels n to i+1 identically, differing in their

assignment of priority level i (each Ok assigns a different r,, E Y-e to level 0.

For each (DkEOý we check the feasibility of the process assigned priority

level i (by virtue of reaching the assignment of priority level i we know that

processes assigned to levels nn-1,... j+1 are feasible). Two cases are identified:

G) all processes are infeasible when assigned priority level i;

(ii) one or more processes are feasible when assigned priority level i.

In the first case, we know by Theorem 5.2 that no feasible priority assignment

exists for A' and so the process set is infeasible. In the second case, we may

109

arbitrarily select one of the feasible processes noting by Theorem 5.3 that if a
feasible priority assignment for A' eidsts, one will exist with the selected task

assigned priority level i. Thus, TU) is defined. We proceed to the assignment
Of Priority level i-1.

Eventually, we reach the assignment for level 1. This is trivial since at
this stage only one process remains to be assigned (i. e. the cardinality of 9 -Y
is 1) leaving no choice for priority level 1.

5.2.2 Algorithmic Implementation

An algorithm implementing the optimal bottom-up priority assignment method
is given in Figure 5.1. The parameter passed to the function is the process set
under consideration, with the function returning TRUE or FALSE depending

whether a priority assignment could be found or not. It is assumed that the
function feasibleo exists, determining whether a process CA is feasible

when assigned priority j within the process set A (where all other processes
have defined priorities).

function priority_assignment (9) returns boolean is

begin

A=Aý;
for j in n.. 1 loop -- priority level

unassigned = TRUE
for cA in A loop

if unassigned TRUE then

-- see if TA is feasible at

-- priority level i

if feasible(ICA, j, A) = TRUE

then
(=T j)

A;

A", =A-'rA ;

unassigned
end if

assign rA to

FALSE ;

exit when unassigned = FALSE ;

end if

end loop ;
if unassigned = TRUE then

return FALSE;

110

-- no feasible priority

-- assignment exists
end if ;

end loop ;
return TRUE ;

end priority_assignment ;

Figure 5.1: Optimal Priority Assignment Algorithm

Firstly, we attempt to find a process rA that is feasible at priority level j--n. If
one is found, then by Theorem 5.2 if a feasible priority assignment fimction
exists, one also exists with rA assigned priority level n, i. e. Next,
priority levelj--n-1 is now considered. If a process can be found (amongst the n-
1 processes that have not yet been assigned a priority level) that is feasible at
priority level n-1, then by Theorem 5.3 we know that if a feasible priority
assignment fimction exists, a feasible priority one also exists with this process
assigned priority level n-1. Successively, processes are found that are feasible
at priority levels nA. If, for any priority level ia feasible process cannot be
found, no feasible priority assignment function exists.

Consider the following example.
Example 5.2.
We return to the process set given by Table 5.2 at the beginning of the
chapter, re-stated below:

Process 0 C D T Deadline-Monotonic
Priority
Assign! j! ent

'C A2
1 2 3 4

Ira 0 3 4 8.

The process set is infeasible with priorities assigned in a deadline-

monotonic manner.
Initially we attempt to find a process that is feasible when assigned
priority level 2. Let 'CA be assigned priority level 2. This priority

assignment is found to be feasible (see following sections for details).

ill

Trivially, c,, is feasible when assigned priority level 1. Thus a feasible

priority assignment has been found.

5.2.3 Discussion
The priority assignment scheme detailed in this section is optimal in the sense
that if a feasible priority ordering exists for a process set, it will be found by
this method. The proof of this assertion lies in Theorems 5.1,5.2 and 5.3.

The complexity of the priority assignment scheme is dependent upon the
number of process feasibility tests performed. This is more readily described by

examunng the behaviour of the algorithm in Figure 5.1. To find a process that
is feasible at priority level n involves testing the feasibility of a maximum of n
processes. In general, to find a process which is feasible when assigned priority
level i: 5n requires testing the feasibility of ami um. of i processes (that is

the i processes that have yet to be assigned a priority). Therefore, across all
priority levels, the number of process feasibility tests required is given by:

=n+(n-1)+... +(n-(n-1)) =I (n2+ n) 2
This is polynomial in n and as such is exponentially more efficient than

examining the feasibility of all possible n! priority orderings. The overall

complexity is 0 n2+ nE where E represents the complexity of the feasibility (2

test required.

5.3 Feasibility Interval

Feasibility testing of a process set requires the definition of an interval over

which that testing needs to occur. We term this the feasibility interval. As seen
in Chapter 4, the feasibility of processes that share a critical instant can be

determined by examining the first deadline of each process after a critical
instant. Hence the feasibility interval for each ci is [tp t+Di) where t

corresponds to a critical instant. When arbitrary process offsets are permitted,

or more specifically when the processes form a non-critical-instant process set,
the feasibility interval needs to be re-defined.

For processes with offsets, Leung et al [Leung80] established that the

interval

max (0), max (0) +2* lcm (Ti)
Lgi: 5n 15h5n I: gi5n

112

is sufficient for establishing feasibility: if all process deadlines are met in the
interval, they will always be met. This interval was established by considering
dynamic priority scheduling schemes, such as Earliest Deadline. For static
Priority schemes we now show that, in general, a smaller interval is sufficient.

It is observed that the feasibility of an individual process in a static
priority pre-emptive scheduling scheme depends only upon itself and other
processes of higher priority than ri. Therefore, when determining the
feasibihty interval for ri c-Aý we consider ri and those processes in S of higher

priority. Considering the optimal priority assignment method introduced in

section 5.3, all priority levels 1J-1 are unassigned. Therefore, without loss of
generality, we arbitrarily assign currently unassigned processes to those levels.
When determining the feasibility interval, the specific assignments of levels
1J-1 is unimportant, only that all unassigned processes have priority greater
than c

Definition 5.1:
Pi is the least common multiple of the periods of processes
i. e.

Pi = 1CM(Ti)
1-, ýj! gi

Definition 5.2:
The initial stabilisation. time Si of process ci is the time after

which the execution of the process set repeats exactly every Pi

with respect to c,. ., c i-

Consider the following theorem, providing a precise value for Sj:

Theorem 5.4:
For all processes ci (1: 5i-<n) the initial stabilisation. time Si is

defined by:
- max(Oj

-
si = 1! ýi:! u Ti

Ti

Proof-
h Initially, consider a critical instant process set (wit a critical

instant at time 0). Assuming all processes always take their

WCET on each release (and no blocking occurs) we observe that if

a process ri executes at time t it will also execute at time t+Pi.

Formally:

113

execute(, cit t) =* execute(, ri, t+Pi)

This is an oft-stated property of static priority process sets (see for

example Lemma 2 in [Leung801).
We now extend this observation to processes with arbitrary
offsets. Consider the behaviour of the highest priority process cl.
It executes for the first C, time units in every interval

[01 + kTj, 01 + kT, + DI)

where k is an integer such that 0 :5k: 5 coq The behaviour of c, is
static: if it executes at t it will also execute at t+Pi.
The behaviour of 'r2 can be expressed in a similar manner: it

executes for the first C2units in every interval
[+U+U+D 02

2'y
02

2 2)

not used by rl. If the initial release of cl is after 02, i. e. 0, >02
then

execute("C2,0 : A> execute(C2, t+P2)

since '12 may execute earlier in a release at t<O, than at the

release t+kP2>0,. If we assume that the initial release of 'Cl is no
later than that of 'C2 ý i. e. 0,502, we may assert

execute('C2 ,0 => execute(T2, t+P2)

The argument can be continued until ri is reached. This process
will reserve the first Ci units of computation time that are not

required by processes Again, assuming that all Tl.. Ti-I
have initial releases at or before Oj we may assert:

execute(, vjý t) =* execute(ri, t+Pi)
Therefore, we have built up the static execution requirements of
all processes, assuming all higher priority processes have been

released.
We may now state that Si corresponds to max(Oj). Since for Si we 1--ýj! 5i
are concerned with releases of ri, we may advance Si to be the first

release of ci at or after max(Oj). That is:
h5j! 5i
- max(Oj)-

Si 1! 5j:! U . Ti
Ti

The theorem is proved.

114

The definition of the feasibility interval for ci is completed by the
following theorem:

Theorem 5.5:
Process ci is feasible if and only if the deadlines corresponding to

releases of the process in [Si, Sj+Pj) are met.
Proof-

By Theorem 5.4 any cj (1: 9, j :! 9 0 that executes at time t C= [Si, Si + Pj)

will also execute at t+Pi. Therefore the schedules in the following
intervals will be identical (with respect to

[Sit Si+Pi)
[Si+Pi, Si+2Pi)

[si+mpip Si+(M+1)Pi)

where m is a positive integer. If a process deadline is missed at d
from the beginning of one interval, it will be missed at d from the
beginning of all intervals above. Therefore, it is sufficient to check
the deadlines of one interval only, so proving the theorem.

The offsets assumed in the above discussion could be arbitrarily large. To
aid discussion in subsequent sections we may refine offsets without altering
relative process phasing, such that Oj<Tj (1: 5i 5n). Also, we may ensure that

when considering the feasibility of xi, Oi is zero. The following definition

introduces modified offsets, with the subsequent theorem defining them.
Definition 5.3:

The modified offset of rj when considering the feasibility of ri is

given by Ojý.
Theorem 5.6:

The timing characteristics of processes can be modified

without altering the relative phasing of those process releases

such that:
(a) Oi'=min(Oj)=O

I: Sj: gi
(b) VTj r= fr, ri

I* 0ii r= [0, Ti)

Proof.
We identify two cases:

115

Oi < Oi 0,1 needs to be increased to be at
least 0j;

Oi > Oi 0. ' needs to be reduced as much
as possible whilst remaining ýt Oi.

To ensure that relative phasing of process releases is not affected,
any increases or decreases to Oj are of the form 1Tj where I is a
positive integer (or zero). In both cases above, 0, ' must equal the
least element of 10j, Oj + Tj, Oj + 2Tj

which is at least Oi. For case (i), if 0, ý = Oj + IT, we may define

-0 jTj iI

For case (n), if 0, ý = Oj - IT, we may define

Tj

An amount Oi may also be substituted from each 0, '* (1: 5j :! ýO

without altering phasing of process releases. Thus, a full
definition of 0, ' is given by:

Oj +
0i -Oj Tj-Oj if0j<Oi

Tj
Oj' = (5.1)

Oj - Tj - Oj if Oj ý! Oj

-
Tj

This satisfies conditions (a) and (b): the theorem holds.

The modification process, together with the calculation of feasibility interval is
illustrated by the following example.

Example 5.3:
Consider the process set in Table 5.4

Process 0 T

TI 50

]

10
'r2

26 T3 20

Table 5.4 Example Process Set 4.

116

We note that no critical instant eidsts between the processes. Process

releases occur at:
Irl 50,60,70,80,90,...
'C2 7,19,31,42,55
'C3 26,46,66,86,106,...

Modified offsets, as given by equation (5.1) are:
01, = Ol - T, -03=50-

24
10-26=4

I

T,
1101

0 . 1'=o
IT2-03=7+ 19112-26=5 3

2' 2+ T2

[12

03
3 =03+

T3

]T3-03=26-26=0

We note that both conditions of theorem 5.6 hold, and that process
release phasings have been preserved. For example, originally the first
release of 'C2 after 0, occurs at 31, a difference of 31-26=5. With

modified offsets, the first releaseof 'r2 after 03 occurs at 5, again with a
difference of 5 (noting that 03'=O). The feasibility interval may now be

defined:

=[max(013

3) -
102 T, s3

3=[14
]20=20

T3 20

Noting that P3 = 60, the feasibility interval is given by [20,80). This
implies that three deadlinesof 'r3need to be checked, for releases at 20,
40 and 60.

5.3.1 Discussion

The feasibility intervals defined in the above sections are shorter than those
proposed by Leung et al [Leung80, Leung821. The latter interval was designed
for testing earliest deadline feasibility, although it is also valid for static
priority processes.

Clearly, any interval which is at least as long as the 1cm of process

periods is exponential in length. However, in practice, the interval defined

above for static priority processes is less than the interval defined for dynamic

priority processes. In general, the length of either interval is at am um

when process periods are co-prime.

117

5A Sufficient And Necessary Feasibility
The optimal priority assignment method developed in section 5.2 requires a
feasibility test. The test needs to be able to determine the feasibility of a
process assigned a given priority level i (1: 5i:! ýn) assuming that priority levels
I.. n have been assigned. We note that assignment of priority levels 1J-1 is
arbitrary amongst processes not assigned priority levels Ln and found feasible
at those levels. Also, we assume that when considering the feasibility of ri ý the

offsets of have been modified according to Theorem 5.6 (section 5.3), that
is Ojý (1: 5j: 50 are set.

The remainder of this section is as follows. Sections 5.4.1 and 5.4.2
describe feasibility tests based upon schedule construction and the hybrid
critical instant feasibility test of Chapter 4 respectively. Finally, section 5.4.3
provides a comparison of the tests.

5.4.1 Schedule Construction Sufficient And Necessary
Feasibility Test

By Theorem 5.5 (section 5.3) the feasibility of a process with an arbitrary offset
can be determined by checking that all deadlines in its feasibility interval are
met. Notionally, the schedule needs to be constructed over the interval [Si,

Sj+Pj). However, any process cj (1: 5j<i) that has remaining computation at Si

must also be inserted into the schedule over [Si, Sj+Pj). Thus in general a

schedule must be constructed over [0, Sj+Pj). Since in the worst-case Sj=Pj

(actually Si+l=Pi in the worst-case), the length of the interval over which the

schedule is constructed becomes 2Pj. We note that the length of interval

proposed by Leung et al [Leung8O, Leung821 is always 2P,

An empty schedule of length Sj+Pj is formed. Initially, c, reserves the

first C, slots in each interval [t, t+D,) where t represents a release of the

process in [0, Sj+Pj). Successively, 'r2.., ci also reserve slots. If sufficient slots

cannot be allocated to a release of Tj at tE[Si, Sj+Pj) then within the context of

the optimal priority assignment method, ci is not feasible at this priority level.

In contrast, if all deadlines of r, are met, it is feasible at priority level i.

The complexity of this approach is dependent upon the length of the

schedule which is not a polynomial function of n. Hence the complexity is NP-

hard [Leung82). We note that the size of data required (i. e. the length of the

118

schedule) is also non-polynomial. Thus, the schedule would be progressively
raore difficult to construct as the 1cm of all process periods increases.

Example 5.4:
We extend example 5.3 (section 5-3). Values for process computation
and deadline are added to Table 5.4 to generate the process set in Table
5.5.

i1 Process 0 03

i
I ci Ti

'r, 50 4 3 5 10
'r2 7

1

5 3 6 12
"C3 26 1 01 21 81 20 1

Table 5.5 Example Process Set 5.
We note P3=60 and S3=20 (from example 5.2 section 5.3). Hence we
construct a schedule over the interval [0,80). This is shown in Figure
5.2. The priority of the process executing in a slot is shown for each
time slot in the schedule. The deadlinesof 'C3 are shown by double bars
(11): all deadlinesof 'T3are met.

Time 0 1 2 3 4 5 6 7
1

8 9
1

10 11 12 13 14
1

15 16 17
Process 3 3 -I - 1 11 1 2

12

- - 1 2

Time 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 9

ProceSS 3 3 - - 1 1 1 - - 2 2 2 - - 1 1 1

Time 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

ProceSS 3 2 2 2 1 1 1 3 - - - - - 2 1 1 1 2

'fime 60 61 62 63 64
1

65 66 67, 68 69
1

70 71 72 73 74
1

75 76 77 78 79

Process 3 3 - - 1
L

1 2 2
-- - - 11 1 1 2 2 2

M%

I gure 5.2: Schedule for Process Set 5.

119

5.4.2 Hybrid Sufficient And Necessary Feasibility Test

The previous section developed a schedule construction feasibility test. As
Chapter 4 showed, this approach can be expensive. A more efficient approach
is now developed.

To determine the feasibility of process ri we are required to check each
deadline of ri corresponding to a release in (Si, Sj+Pj) (by Theorem 5.5).
Consider a release of ri at tE[Si, Sj+Pj). Within the interval U, t+Di) Tj is

prevented from executing by:
W interference of due to releases in [t, t+Di);

(ii) interference of due to releases in [0,
Case (i) corresponds to the definition of interference for critical instant

processes in Chapter 4. Case (ii) recognises that at time t, there may eidst some
outstanding computation of *

Any of the sufficient and necessary tests developed in Chapter 4 for

critical instant processes sets could be developed for non-critical instant

process sets. The hybrid test (section 4.3.3) is chosen as both the response time

and exact interference is calculated.
The foRowing definition is introduced:

Definition 5.4:
J, ' represents the outstanding computation of at time t.

The above definition enables the feasibility constraint for a release of ri at
tE[Sil Si+Pi) to be stated:

3ee [t, t+ Di) o (5.2)
Ci + ii, + Ii'-" = t, -t

We note that the hybrid feasibility test calculates response time and exact
interference. Therefore, the following definitions are introduced:

Definition 5.5:
Iii't represents the exact interference on ci by in [t, t+Dj).

Definition 5.6:
R, ' represents the response time of ri for a release at tE[Si, Si+Pi).

Extending the logic of the hybrid critical instant test (see section 4.3.3), for

each release of ci at te[Si, Sj+Pj) the value Ji' needs to be established. Then, Rj'

can be calculated, followed by 1j', ". Initially, a method for calculating Ji' for

any tE[O, Sj+Pj) is presented. This is used for determining R, ' and

120

Calculation of J, '
The intuitive method for calculating Ji' is to find all (non-overlapping)

execution intervals of cl .., ci-I in [0, J,). However, if values of Ji'O (to <0 have

already been found, this result can be used when evaluating Jj'. If more than

one such J, 'O exists, we select the one with the greatest value of t, At least one
previous value of Jý is available, when to=O, i ing JjO=O. givi I

Let Jito=O. Now, only executions of in [to, t) need be considered.
This can be achieved by the method of section 4.3.2, which finds the execution
intervals of cj.., cj-j in a given interval. We note that there may be no execution
intervals (of rj.., cj-j) starting in the interval (c. f. the critical instant exact
interference test (section 4.3.2) where there is guaranteed to be at least one
execution interval). Let the final interval identified be [s', e') where s' and e' M fli MM
are defined in section 4.3.2. If no intervals exists, s' =t. The value of Jj' is given
by:

I
max(M! mý-(t-smi)) Ji

If Jj'O >0 this remaining computation must be accounted for when calculating Jj'

(assuming that if no execution intervals were found in [t, t) then s' . =t). The

remaining computation at to may affect the computation of interference in [s. '

t) if the following condition holds:
J"O +> S'i. -to

Thus we may state:
if =max II-I-

(t
- Si,,)) + .

(0' Jito + Ij'O (S. i - t')) I
(OXý

We note that at least one such Ji'O (to :50 is always available, as JjO=O (no

process is released before time 0).
The above calculation is illustrated by the algorithm in Figure 5.3. The

function calculates J, "d having been passed i as a parameter. The rem

parameter defines J: " where start :5 end.

function J (i, A%start, end, rem) returns integer is

begin

t= start
incomplete TRUE

while incomplete loop
/* find the next release of process

121

/* in (t, Di)

s= end
for j in 1.. i-1 loop

if start :5 Ojý +
Tj

Tj <s then

index =j;

S= ojý +
Tj

Tj

end if

end loop ;
if s< end then

/* find end of execution interval
t=s+

V while Ii, +S>t and Ii'4 +s :5 end loop
t= Ii'-' +s;

end loop ;
if Ii"' +S> end then

/* end of execution interval
/* at or past end
incomplete = FALSE

end if

else incomplete FALSE

end if

end loop
/* last execution starts at tr
return max(O, Iflo' - (end - s)) + max(O, rem + Iis"-s - (s - start))

end i

Figure 5.3: Algorithm for Calculating J;.

An alternative method for calculating Jj' UE(Sjý Sj+Tjj.., Sj+Pj)) can be
formulated by finding the latest time at which there is no outstanding
computation in [0, t). This can be achieved without finding all execution
intervals of processes as in the method above. Let t, E[O, 0 be such a
time. We may state:

Ji'= max(O, Iil-'- (t - t,))

122

In general, the computation of t, is non-trivial. In some constrained cases t, can
be found by inspection. For example, if for all processes of higher priority than
'ri , time t falls between the deadline of one release and the next release of 'ri
we observe t, =t and J, '=O.

Feasibility Test
Given that Jj' can be evaluated, we now develop the feasibility test. Consider
the release of ; at t= Si. Jj' is found by the call:

J, ' =j(i, A7,0, Si, 0)
Now the feasibility of this release of ri can be determined by finding Rj'. This is

achieved in a similar manner to section 4.3.1, with the series of time points at
which we check the feasibility of r, given by:

to =t+ii' +ci
tj =t+ii' +Ii'-'o +ci

'+li t2=t+Ji ."+ Ci

+ I"'" + Ci tk : -- t+ Ji

At each of these points in time we evaluate:
Aj t+ji +ci+Il, tk ýtk

If for any value of t, E [t, t+ D) the constraint holds, ci is feasible for -the release

at t., with tk identified as the point in time where ci completes in [t, t+Di).
Hence the response time is given by:

i=
tk -t

Now, we proceed to calculate Ii', ". Initially, we determine the outstanding

computation of cj.., cj-j at t+Di by the call (noting that no outstanding

computation due to rl.. -Tj exists at Ri'+t):
jj+Dj =j(i0, A7, Rit + t, t+ Di, 0

Now, the exact interference on ri in [t, t+D,) can be stated:
I emct = It, I+Di + jt _ jt+Di

il iii

By Theorem 5.5 we need to repeat for all releases of c, at tc-[Sit Sj+Pj) to

determine feasibility. We note that J, "Di forms the seed required for

determining the feasibility of the release of ci at t+Ti.

In section 4.3.3 it was noted that the hybrid test for critical instant

process sets had NP-complete complexity. Also, Leung et al note that

123

determining the feasibility of a process set without a critical instant is NP-hard
[Leung801. The complexity of the method given in this section is O(jkn2) where
k represents the maximum number of time points that are examined when
determining the feasibility of one release of a process; j represents the number
of deadlines of a process that need to be checked. In the worst-case:

k= max(Ti) 15i: 5n

j=2P.
The value of k recognises that testing the feasibility of ri requires max(D) time

h5i-, 5n
points with the calculation of Jj' requiring an additional max(T, - D) time

h5i: 5n

points. The value ofj recognises that in the worst-case the interval [0,2P,,) can
have 2P. releases of ci. We note that the product jk is a constant for a process

set (being dependent upon the fixed timing characteristics) implying that the

complexity becomes pseudo-polynomial.
The feasibility test is illustrated by the algorithm in Figure 5.4. The

function tests the feasibility of the process assigned priority level i in 9,

checking all deadlines for releases in [start, end). The function returns
Si + Pi if the process is feasible, else the time of the first infeasible release.

function sn_offset_test (il S. start, end)

return integer is

feasible = TRUE

release = start
begin

/* Calc the remaining interference at start

jit =j (i, S, 0, start, 0);

/* For each release in (start, end) check

/* deadline

while start :9 release < end and feasible loop

/* calc the response time for this release

t= jit + Ci + release f.
Ireleasev +C>t while release + Jit +ii

and Jit + jineleasev + Ci :! ý Di loop
Ireleas4t +C t release + Jit +

end loop ;
if Ii,, k, 41 + Ci + jit > Di

124

feasible = FALSE ; /* T, infeasible

else /* 'Ci feasible record Ri""le'
Rj"'kas* =t - release

end if

if feasible then
/* calc remaining comp at release+Di
rem A7, release + Rjr"Ie"e,

release + Di, 0)
/* calc exact interference for Tj
Irelease, rzact = Irelemerelease+D, + Jit - rem
/* calc remaining comp at release+T
jit =ii, A7, release + Di,

release + Ti,, rem
release release + Tj

end if

end loop ;
return release

end sn_offset_test ;

Figure 5.4: Algorithm For Sufficient and Necessary Feasibility Test For
Processes With Arbitrary Offsets.

Example 5.5:
We return to the process set given in Table 5.5 (considered previously
in example 5.4). Process 'CA is assigned priority level 2. According to
Theorem 5.5 we may modify the process offsets such that OA=O and
OB=6. Thus, tile feasibility interval is [0, SA+PA) that is [0,16). Hence,
for the releasesof 'CAat 0,4,8 and 12 we must ensure that the deadline
is met. The test is simmarised in Table 5.6.

Release at W f Ji' Rit t+ Di
I Feasible

0 0 2 3 V,
4 0 6 7 V/
8 1 11 11 V/
12 14 1 15 1 T: 7]

Table 5.6: Summary Of Feasibility.

125

5-5 Sufficient And Not Necessary Feasibility
The optimal priority method detailed in section 5.3 relies upon the availability
of a sufficient and necessary feasibility test. This was seen to be
computationally expensive in section 5.4. This section examines the
effectiveness of the optimal priority assignment method when used in
conjunction with a sufficient and not necessary test. The advantage of using
such a test is the decrease in complexity, although at a cost of decreased
accuracy.

The optimal priority method is built upon the premise that the feasibility
test employed has the following characteristics:

(i) the feasibility of a process can only improve if assigned a higher
priority level;

(ii) the feasibility of a process can only decrease if assigned a lower
priority level.

The sufficient and necessary tests in the previous section comply with the
above criteria, where the only variable in determining feasibility is
interference: interference on a process does not decrease if moved to a lower
priority level, and does not increase if assigned a higher priority level.

Consider a sufficient and not necessary test which complies with the
above criteria. Now, if a priority assignment exists over processes in A7 that
could be declared feasible by the sufficient and not necessary test, then the
priority assignment method would find it (in conjunction with the sufficient
and not necessary test). If no feasible priority assignment is found (i. e. if for a
particular priority level no feasible process can be found when assigned that

priority level), then there still may exist a feasible priority assignment which
could be found by either using a more accurate sufficient and not necessary
test, or by a sufficient and necessary test.

The sufficient and not necessary tests developed for critical instant

process sets in section 4.2 are not directly relevant: by assuming a critical
instant, a deadline monotonic priority assignment may as well be used (since it
is optimal in such circilm tances) with the advantages of arbitrary offsets lost.
To develop a sufficient and not necessary test to determine the feasibility of the

process assigned priority level i (i. e. ci) requires:
W the determination of the release of ri in [Si, Si+Pi) at which ri

suffers its highest interference;

a sufficient evaluation of interference for a given release of ri.

126

If both can be achieved in polynomial timet a test of polynomial complexity is

available. However, it is unclear how the worst-case release can be found in
polynomial time amongst a potentially exponential number of releases of ci in
its feasibility interval (c. f. critical instant feasibility when it is easily proved
that the release of a process at a critical instant is the one which suffers
greatest interference [Layland731). Therefore, the feasibility of each release of
, ri is considered in turn. For each release, an approximation of interference is

made that is at least the exact value, yielding a sufficient and not necessary
test (by Theorem 4.2).

Definition 5.7:
is the interference of processes upon ci for a release

of the latter process at te[Si, Si+Pi).
With the above definition, the basic feasibility constraint becomes:

Vtc-fsi, si+Ti,..., Si+pi-Ti, si+piI 0

+C:! 5 Di

To aid the discussion in subsequent sections, the following definitions

are introduced:
Definition 5.8:

When considering the feasibility of ri, the last release of rj (j<i) at

or prior to time t is denoted by:

PU, j, 0= ojý +
t-oý

iI Tj

I
Tj

Definition 5.9:
When considering the feasibility of ci, the next release of cj (j<i)

after time t is denoted by:

n(i, j, 0=0; i+ Tj
Tj

IT

Definition 5.10:
The notation (x)o is equivalent to max(O, x).

We note that definitions 5.8 and 5.9 assume that tý! O.

The following four sections extend the principles of the sufficient and not

necessary tests in Chapter 4 for processes with arbitrary offsets.

127

5.5.1 Sufficient and Not Necessary Feasibihty Test No. I
For a release of ci at t, the interference of rj is composed of.

releases of cj after t (before t+Di), and
(ii) the release of rj at or prior to t.

This is shown in Figure 5.5 where the interference in case (i) is mised by

assuming that rj executes in intervals [t,, tl+Cj) and [t2, t2+Cj) for each of its

releases in [t, t+Di) where tc=[Si, Sj+Pj). The interference in case (ii) is
.. sed by letting the release ; of cj at to prior to t execute as much as

possible in the interval [t, t+Cj).

'LI

[---,
Ic

t t+Di

Figure 5.5: Estimating Interference.

Consider the following theorem.
Theorem 5.8:

The m* interference of rj upon ci (1 :! 5 j<i :5 n) for a

release of ci at tE[Si, Sj+Pj) is given by:

min
((

p (i, j, t) + Dj - t)O, Cj) +t+
Di - n(i, j, t))O

Cj (5.3)
Tj

I

Proof:
This is a simple extension of Theorem 4.3, noting that the last

release of cj at or before t (i. e. in [0, tD is given by p(i, j, t). The left

hand part of equation (5.3) limits the interference of this release

on ri to be the minimum of Cj and the amount of time after t

before the deadline of the release of r,.
The subsequent release of rj (i. e. the first release of Cj in (t, t+Di))

is given by n(i, j, t). The right hand part of equation (5.3) Emits the

interference on ci to Cj for every release of cj in (t, t+Di). Note

that if there is no release of rj in (t, t+Di) then the right hand

128

to tj t2

evaluates to 0. If a release of rj occurs at t, the interference of this

release if; calculated by the left hand part of equation (5.3) with
releases strictly after t catered for by the right hand part.

We may state the feasibility test by:
VtE1Si, Si+TiI ... Si+Pi-Ti, Si+Pil

t. release +C :5 Di i
where

, relewe
i-I (t+Di-n(ij, t))o I,, min((p(i, j, t)+D, -t)(), Cj) + 6.1

Ci

j=l

I

Ti

We note that by Theorem 4.2 this test is sufficient and not necessary since
interference is at least the exact value (by Theorem 5.8). The estimation of
interference has 0(n2) complexity, although the overall complexity of the tests
is non-polynomial due to having to check all releases of processes in their

respective feasibility intervals.
Under constrained circumstances this test is also sufficient and

necessary:
Theorem 5.9:

When considezing the feasibihty of r, by the' test defined by

equation (5.3), if the following condition holds the test is

necessary:
Vt c- Isi, si + Ti I ... lsi+Pi-Ti, Si+pil

Vj: 1: 5j <i0
p(i, j, t) + Dj !ýtA p(i, j, t+Di) + Dj: 5 t+ Di

Proof:
We note that If is exact for any t as there are no higher priority

processes. In general, the interference of cj (1: 5j<i: 5n) upon ri in

[t, t+Di) is due to the last release of rj prior to the interval, and

subsequent releases of rj within the interval. In the former case, if

the deadline of the release is constrained to be before t, no
interference will be due to that release. In the latter case, if the

deadline of the final release of ri in the interval has a deadline at

or before t the estimation of interference will be exact. Thus, if the

condition in the theorem holds, the estimation of interference

given in equation (5.3) is exact, ensuring that the feasibility test is

necessary (by Theorem 4.1).

129

5.5.2 Sufficient and Not Necessary Feasibility Test No. 2
U7',,,
vve, note that the test in the previous section is inaccurate for similar reasons
as the test in section 4.2.1: execution assumed to occur before t+Di (when
calculating Ii'-"') cannot actually occur until after t+Di. For example, if the
final release of -rj 0--ýj<i: 50 in [t, t+Di) is at t', with t'+Cj > t+Di, the

estimation of interference will exceed the exact value by (at least) t'+Cj - Q+Dj).

Theorem 5.10:
The um interference of cj upon ci (1 :5j<i :5 n) for a
release of ri at tE[Si, Si + Pj) is given by:

min((p(i, j, t) + Dj - t)O, Cj) +
(t+Dj-p(i, j, t))O

Ci
I

Tj

+ niin(Cj, t+ Di - p(l, j, t+ Dj))

Proof-
Extending the proof of Theorem 5.8, we note that the first clause
gives interference due to the last release of rj at or before t. The

second clause determines interference for releases of rj at t' where
t< t' < t'+Tj :5 t+Di. The third clause limits interference by a

release of rj at CE(t, t+Dil where t'+Tj>t+Di, to be no more than

the length of the interval [t", t+Dj).
The feasibility test may be stated by:

VtElSi, Si+Ti,..., Si+Pi-Ti, Si+PiI

Ij""" + Ci 5 Di

where

release =

i-I min((p(i, j, t) + Dj - t)o, ci) +
(t + Di -p (i, j, t))o

Ci
II Ti

j=l
+ min

(Cj, t+ Di -p
(i, j, t+ Di))

We note that the above test is sufficient and not necessary since interference is

at least the exact value (by Theorem 5.10). The test has 0(n2) complexity for

interference determination, although its overall complexity is non-polynomial.
The test is necessary under the same conditions as defined by Theorem 5.9.

130

5.5.3 Sufficient and Not Necessary Feasibility Test No. 3
The estimation of Ii"re' given in the previous section is pessimistic in a similar

manner to the critical instant sufficient and not necessary test in section 4.2.2:

concurrent execution is assumed between processes during their final release
in [t, t+Di). Section 4.2.3 showed how this pessimism may be reduced by
^-ml calculating the effective deadline of ri.

A second form of concurrent execution can be identified, peculiar to the
calculation of interference for offset processes, where processes rj and rt (1 :9j

<k<i :5 n) are assumed to execute in [t, t+Cj) and [t, t+Ck) respectively.
Clearly concurrent execution is in evidence. This pessimism can be reduced by

calculating the effective release of ri. This is illustrated by considering rj and Tk
introduced above. If cj executes in [t, t+Cj), the effective release of ri when

considering rk is at t'= t+Cj (for the purposes of feasibility determination only).

Now, unless Tk can execute for the entirety of W, t'+Ct), the estimation of
interference will be reduced.

Definition 5.11:
The effective deadline of ri for a release at tc-[Si, Sj+Pj) when

considering the interference of r, upon ri is denoted djý, ' (relative to

0. The interval [t+ djý, t
I t+Di) is occupied entirely by the executions

of processes of higher priority than rj.

Definition 5.12:
The effective release of ri for an actual release at t (-= [Si t Si + Pj) when

considering the interference of c, upon ci is denoted rj-. In the

worst-case, the interval [t, rj4) is occupied entirely by the

executions of processes of higher priority than r, -

131

Consider the following theorem:
Theorem 5.11:

The ammum interference of rj upon ri (1 :5j<i:! ý- n) for a

release of ci at tE[Sj, Sj+Pj) is given by:

min((p(i, j, rj,
)+ Dj - rj, ')O, Cj) ++

djý' - n(i, j, rj'ý)) 0c
Tj i

min
(Cj,

t+ djý, '- p(i, t+ djý"))

Proof:
Extending the proof of Theorem 4.6, we note that interference of
, rj upon ri can only be due to executions in [rj'ý , t+d, ý-) since [t, ri")

and [t+d, ý, lj t+Di) are occupied by the execution of higher priority

processes (i. e. cj.., rj-j). We note that the exact interference of

processes executing in the interval V, rj'ý) (that is the length of the

interval) may be less than rj, -t, but never more. Thus the

interference is at least the exact amount.

The total interference of upon ci must include the lengths of the

intervals [t, rj-,) and [di'!,, Dj). The feasibility test may be stated by:
WE f Si, Si + Ti Si+Pi-Ti, Si+pil 0

+C <Dj i
where

I trelease _i -- t) + (Di
- di.

-",

i-i min((p(l, j, rj, ')+Dj-rj"')O, cj)+

(t
+ djý-' - n(l, j, rj"

))
0 Ci

+1 Ti

j=l
+min(Cj, t+dj-'-p(i, j,, t+d, ý-'))

Di

djý"= Oj'-j+p(i, j-l, t+djýýj)-t

I
djýll I

if j=1

if t+d"' -p(i, j-l, t+djý'): 5-Cj-, j-1 -1

otherwise

132

t if j =I

rj'-'+min(Cj-,, p(i, j-l, rj'!,
)+Dj

-ri,,
)

rii
j-

i if P(i, j-l, rj!,
): 5rj!, <p(i, j-l, rj'!,

)+Dj-I

rii! l otherwise

The definition of djýý reduces the effective deadline of a release of 'Ci at t for
process cj by the length of-.

[p(i, j-1, t+djý, -tj), t+dý, ' J-1)
if and only if that length is no greater than Cj-j. The definition of rj, ' increases
the effective release of ri when considering rj by the maximum amount of

ij execution a release of rj-l prior to t can occupy in [rj-,, t+Di). We note that
these definitions are adequate with respect to Theorem 5.11.

The test defined in this section is sufficient and not necessary by
Theorem 4.2 since the estimation of interference is at least the exact value (by

2) f, Theorem 5.11). The complexity of the approach is O(n or interference
estimation at each release of ci in its feasibility interval, although the overall
test has non-polynomial complexity. The test is necessary under the same
conditions as defined by Theorem 5.9.

5.5.4 Sufficient and Not Necessary Feasibility Test No. 4

The estimation of interference given in the previous section may still assume
concurrent execution of processes during the final release prior to t and during
their final release before t+D,, due to the inaccuracy of effective release and
deadline estimation. For example, if all processes cj (1 :ýi<0 have a final

release at t+D, -C, +l, then the effective deadline will be equal to Di, with

concurrent execution assumed between the final releases of higher priority
processes.

In a manner similar to section 4.2.4, the estimation of interference may
be improved by separating calculation of effective deadlines and releases from
the determination of Initially, the effective release and deadline are

calculated iteratively, considering processes in turn. Then I, ""' is

determined.

133

Definition 5.13:
The effective deadline of ci for a release at tE[Sj, Sj+Pj) when

considering the interference of cj upon ci is denoted d,: k (relative

to t), where k represents the current iteration (from 0 upwards).
The interval V+d, ý"

,kI
t+Di) is occupied entirely by the executions of

processes of higher priority than ci.
Definition 5.14:

The effective release of ri for an actual release at t Ez- [Sj, Si + Pj) when
considering the interference of rj upon ri is denoted rj'ý', where k

represents the current iteration (from 0 upwards). In the worst-
case, the interval U, rj'ý') is occupied entirely by the executions of

processes of higher priority than ci.

Initially, for a release of ri at tE=-(Si, Sj+Tj2 ... 2
Si + P9

.
4'1 = r2 -*

i't ==r,, t, =t and
i, ' - d"' d!, ' = t+Di. For each iteration, i. e. k=1, k=2 etc., each process I-2 1-1

, rj.., cj-j is considered in turn with a view to improving the effective release and
deadline. If there exists a release of rj (1 :5j<0 at t' where t<ri-,, k<t +Dj then
the effective release could be improved. Likewise, if there exists a release of rj
(1 :5j< i) at t' where tl'+ Cj ýt t+ di', ',,, then the effective deadline can be improved

(i. e. decreased). When the effective deadline and release can no longer be
improved, the interference of can be calculated.

Consider the following theorem:
Theorem 5.12:

The maidmum interference of rj upon ci (1 :5j<i :5 n) in the

for a release ofci at tE[Si, Sj+Pj) is given by: interval (riiII,
k)-t+d, '-I, k

)

t+ di'-, ',,, t - min
(t

+ d-t
'k,

p r i-I
(ili"

ii-, I, k))

Tj . Ci

when the following condition holds:
3k: k>O, o

Vml:! ým<i: d" -di' A
i' r

iý
n4k-I - n4k

r. ýk-l ýk

Proof:
We note that for the condition to hold, no release of any process 'Cj

(1 :5j< i) can improve the effective release (by increasing it) or the

effective deadline (by decreasing it). Therefore, the interference of

134

, rj upon ci is equal to C, for each release of the process in [r,

t+ di'. -'I, k
The first release of cj at or after ri'-l, k is at p(i, jIrjij'J. However,

this may also be at or after t+d,. "I, k* Therefore, we constrain the
t first release of cj at or after ri', I, k to be no later than t+di', ',, k* This

gives the first release at:
f= Mn(t+dii-IIk9P(i2jvri-I, k))

Now, the number of releases of cj in [r'- 11,
k) 'Sgiven by: j-1, k t t+d,

r(t + di'! I, k- f)1Tj I

For each of these releases, the interference created by cj is Cj.
Thus, the theorem holds.

The feasibility test must include the assumed interference due to process
executions in the intervals U, r, "') and lt+d, '-I, k P t+Di): I, k

VtEfSi, Si+Ti, --., Si+Pi-Ti, Si+piI 0
it, releme + Ci

:5 Di i
where

i-I - t+di'. -",, -min(t+d"', k, p (i, j, Ii't releas,
k+ ri i't

k i-I Ci =D I, k t+1: i- di'
j=l Ti

Di if (k=O)v(k=lA j=l)

d"' p i, prev, ý, t+jt if O<t+d-' ,,.,,, -p(i, prev, ý, t+d, '
j, k pmvj iterk pm-ýj k prevj k pmvlj

otherwise prevj, iterjk

135

t if j =I

j +min Cp
(1,

prev'j,? ýý
jýwj

)+DP.
V. lp jýta pre-., j kk

rj', Jk

if p(i, prevj, iý,
j,. j <p(l, prev,

J., j + Dp.,,
j k

rpýt.,
j

otherwise

i-l ifj=l k-1 ifj=l

prev'. iterij
1 otherwise k otherwise

I

The definition of prev, ý returns the priority of the process immediately higher

than cj, with wrap-around so that prev'=i-l. The definition of iteri returns the
iteration index of the last calculated value of r" or d',, noting that iter' =k-1 as j. k j'A: k

the last process considered was ri-I on iteration k-1.

The definition of rj',,, '
,k assumes sufficient iterations so that r, ' for all rj'ý 5-1

, rj j< i). If this condition is not reached, a release of a 'Ej may occur before
i't rj, k that could contribute to interference on ri in [ri', ',

, k) t+d,. "I, k). However, this

release would not be counted in the interference calculation above. The
estimation of d,; is sufficient if at least one iteration is performed (i. e. the k=1

iteration), although successive iterations (until d, ý` = d, ýý'-, for all cj) improve
,k

the estimate, implying the estimation of interference will become more
accurate (or at least will not become more inaccurate).

The calculation of interference has compleidty 0(kn2) where k represents
the number of iterations required to calculate the effective deadline and
release. In general, this is NP-complete since k is not a polynomial fimction of
n. We observe that iterations can stop if = t+di'., 'Ib (where b represents an
iteration before the final iteration k) as ci is definitely infeasible for this

release. Therefore, in the worst-case, k is equal to Di. The overall test has non-

polynomial complexity.
We note that the test given above remains pessimistic due to assumed

concurrent execution in two places. Firstly, the final release of a higher priority

process rj at t' before t may not actually execute at or after t even if t'+Dj > t.

Thus, the execution of higher priority processes actually executing at t (if any)

136

is assumed to be concurrent to the execution of rj. The second form of
concurrent execution occurs on the final release of rj (1 : 5j<i) before t+di'! I, k
which is assumed to complete before t+dý"Ik. However, higher priority processes
(i. e. 'r, .., cj-,) may prevent Tj from completing before t+d'ý i-I, k

5.5.5 Suinunary

This section has extended the critical instant sufficient and not necessary
feasibility tests (section 4.2) for use with the priority assignment method
developed in section 5.2. With such tests, the priority assignment method is
still applicable: if a priority assignment exists that is feasible by a given
sufficient and not necessary test, it will be found. If no feasible priority
assignment is found using a sufficient and not necessary test, a feasible
ordering may be found by adopting a more accurate test (in the extreme a
sufficient and necessary test). The tests presented increase in accuracy, at a
cost of increased complexity.

5.6 Arbitrary Precedence Relations
In this section one of the restrictions upon processes, namely -independence, is

removed. Specifically, processes with precedence relationships between them
are considered. These are especially important when considering systems that

use intermediate processes to transform input data to output action.
Precedence relationships take many forms. The simplest form is a chain.

Here, a single process reads input data. This is then passed to the next process
in the chain which transforms it and passes modified data to the next process.
Eventually, the output process is reached. A more complex and general form is
the arbitrary acyclic graph (AAG) where nodes in the graph represent
processes, arcs represent precedence relationships between processes. The

acyclic constraint is imposed to reflect the bounded execution requirement of
hard real-time systems. We note that the chain is a simple form of an AAG.

The assumption is made that all processes in an AAG have equal

periods. Precedence constraints are imposed by the inherent timing constraints

of processes, and the assignment of priority levels to processes. The highest

priority levels are assigned to processes at the start of an AAG. Priority levels

are lowered across the graph, with the lowest priority level assigned to

processes at the end of the graph.

137

After initial description of the model, we show the bottom-up priority
assignment technique to be applicable for this model of precedence constraints
without complicating feasibility analysis.

5.6.1 Model
The non-critical instant process set 9 is split into precedence related process
sets Ak g. W each containing exactly one AAG:

G) UA "ý Aý k'
1 :5k: 5 m :5n

GO VAj, Ak : Ai ("' Ae 0
1 :sj<k: 5 m :sn

where m represents the number of distinct AAGs in Aý. This can be a
aximum of n when no precedence constraints exist: all processes are

independent with one process per AAG.

,C+, C meaning Within a AAG, precedence relationships are defined by A- B
, rA "immediately precedes" 'CB : 'CB cannot execute until rAhas completed. For each
*'A' Ak the following definitions are made:

Definition 5.15:

pred (, rA) - the set of processes that must have completed before rA

may execute.

Definition 5.16:
succ (rA)- the set of processes that cannot be executed until at
least rAhas completed.

Tc

TA

/*

TD

TE TF

Figure 5.6: Example AAG

Consider the example AAG in Figure 5.6. The pred and succ sets for the

processes are defined by:

138

pred (rA)=0 SUCC TA (rB
I TICY 'ED Y TE f TF)

pred (TB)=(TA *5UCC TB (TC
Y TD

pred (r, - = (, cA, rB, r,) SUCC T%-, ("CD

pred ("CD 'CAY TBI ýCv 'CEP TF I SUCC 'TD {O)

pred (rE rA) SUCC TE ';
-- ý TD) TF

pred ('rF -TA I TE SUCC TF TD)

5.6.2 Extending the Priority Assignment Technique
Initially, we observe that within any AAG a process will not execute until all
its predecessors have completed. For arbitrary timing constraints, if rA-ý,; 3 the

situation may arise that OA > OB. Process 'CB cannot execute until at least OA.
This creates extra complexity for the feasibility test: it needs to account for 'r',

not being runnable until OA, even though the processor may be idle. Without

loss of generality, offsets within an AAG can be re-arranged such that a
process has an offset at least that of all its predecessors. The deadlines must
keep the same relationship with the period: if OAis increased by x, DAmust be
decreased by x as DAis relative to the release of rA. In general, for each process
,r in each Ak (selected in order from start to finish of the AAG): A

diff := max
(OJ

- OA)
'CJ6Pr84d('WAOP'OA

OA := OA+ diff
DA := DA

- diff

Formally, priorities are assigned by Oj to processes in 9. The processes

within a Ak are assigned priorities such that:
V'c A A'E k:

V'CB lEpred (, cA): (Di(, rA) > (Di('CB) A

VTC E SUCC (TA) : (Dj(, cA)<d)j(ýc)

This is a natural extension of the priority assignment technique. When

assigning a process to a priority level, only those unassigned processes whose

successor processes have all been assigned priorities are considered. Thus, the
feasibility of CA can only be affected by predecessor processes and higher

priority processes. Since all predecessor processes have higher priorities, the

assumptions made in Theorems 5.1,5.2 and 5.3 are not violated. Hence, the

139

optimal priority assignment technique is sufficient and necessary for this

method of assigning priorities to processes with precedence constraints. In

practise, the bottom-up priority assignment method may be adopted.
The offset and deadline re-arrangement, together with descending

Priorities, ensure that feasibility testing remains exactly equivalent to that
employed for independent processes in section 5.2.

5.6.3 Algorithmic Implementation

The algorithmic implementation, given in Figure 5.7, is similar to that in
Figure 5.5 for independent processes. Three sets are used: Y, 9 and A.
Respectively, these represent the processes that have been assigned priority
levels (and are feasible); those that have not been assigned and cannot be

considered for the current priority level; and those that have not been assigned
but can be considered for the current priority level. At any time,
Y +, Y +A= 6ý. At the beginning of the main loop, we determine if any more

processes can be considered for the current priority level i. e. if any more
processes have had all their predecessors assigned priority levels. The

algorithm then proceeds as in Figure 5.4.

function priority_assignment (X) returns boolean is

begin

-- calculate pred succ sets
S,; -- unassigned processes
0; assigned processes
0; processes ready to be assigned

for j in n.. 1 loop -- priority level

unassigned = TRUE
for cA in iff loop

if (succ (ICA) C Y) then
y= 'ff -T A;

A+ TA;

end if ;

end loop ;
for cA in A loop

if unassigned = TRUE then

-- if TA is feasible at

140

if feasible(TA, j, A) = TRUE
then

-- assign 'CA to pri
=T ly (j)

A;

A=A-TA ;

unassigned = FALSE

end if

end if ;

exit when unassigned = FALSE

end loop ;
if unassigned = TRUE then

return FALSE
end if ;

end loop ;
return TRUE

end priority-assignment

Figure 5.7: Priority Assignment With Precedence Constraints

5.6.4 Discussion
Whilst we observe that optimal priority assignment, is achievable assuming
descending priorities across an AAG, we note that the descending priority
assignments for precedence constraints is not optimal amongst all priority
assignment methods [Harbour911. Consider the process set in Table 5.7, noting
that rA --* 'CB -

Process
10 C_ DI T

'TA 0 4 5 10
Ir B5

1

1 1 10

Irc 0 11 21 5

Table 5.7 Example Process Set 6.

The only feasible priority assignment is rA -3, 'CB - 1, cc - 2. Thus, ascending

priorities are required along the precedence relation cA -ý, cB.

The complexity of the optimal priority assignment approach for

descending priority precedence constraints is similar to that for independent

141

processes given in section 5.3. The worst-case of (n 2 +n)/2 process feasibility

tests occurs when processes are independent: exactly one process per AAG with
n distinct AAGs. The worst-case overall complexity is 0(((n2+ n) / 2) E) where E

represents the complexity of the feasibility test (i. e. identical to that for
independent processes).

The best case occurs when a single chain involving all processes in 9
exists. Now, there is exactly one process to choose from for each priority level
assignment: the feasibility of n processes is determined.

We note that this method of handling precedence constraints imposes no
extra burden on the feasibility test if offset and deadline re-arranging is
performed: a sufficient and necessary test for independent processes is
applicable.

5.7 Resources

In this section processes that share resources are considered. If these resources
are not required in mutual exclusion, blocking cannot occur, with the
consequence that the optimal priority assignment technique for independent

processes can be used. When mutual exclusion is required, blocking may occur.
The following discussion examines the impact of potential -blocking on the

optimal priority assignment technique, assuming that mutual exclusion is

provided via locking and unlocking binary semaphores associated with a
resource.

There are two main considerations for resources and the optimal priority
assignment technique:

G) bounded blocking times;
(ii) run-time behaviour of the resource allocation algorithm.

Potential blocking must be bounded, with worst case blocking times (WCBT)

calculable a priori offline, to enable feasibility to be determined.
Conventionally, this is achieved by adopting a run-time resource allocation
protocol having the property of bounding all blocking. Unfortunately, WCBT

estimations are pessimistic: it is difficult in the presence of arbitrary control-
flow within process executions to predict a priori exactly when resources are
locked and unlocked. Feasibility assessments based on such estimations are

sufficient and not necessary. If clairvoyance were available to provide exact
blocking times, sufficient and necessary feasibility may be possible.

142

This observation is considered further in the following sections. Initially,
the validity of the optimal priority assignment method is considered when
clairvoyant blocking times are available (that is the blocking times incurred by
a release of a process is known before the system executes). This scenario is
discussed in conjunction with both the Reservation Protocol of Babaoglu et al
[Babaoglu90, Babaog1u931 and the Priority Inheritance Protocol defined by Sha
et al [Sha901. Then, the effects of removing clairvoyant blocking times and
replacing them with pessimistic blocking times are considered.

5.7.1 Background Considerations
Essentially, Theorem 5.3 shows that given a feasible priority ordering with cA
assigned priority level i, with rA also feasible at priority level i+k (assuming

the same processes assigned to priority levels i+k+l.. n), a feasible priority
ordering exists with cAassigned i+k. The proof is based on pair-wise swapping
of process priority level assignments: i. e. priority levels i and i+1 are swapped,
i+1 and i+2,..., i+k-1 and i+k. This assumes that the process with the higher

priority before the swap finds it no easier to meet its deadline after the swap
and the lower priority process finds it no harder. Also, the feasibility of other
processes in A is not affected. Formally, for a release of cA at t (shown in the

previous Theorems):
CA + 1; j) ý5 CA + At ((Dk) t ((D (5.4)

where 4) j and (Dk are the priority assignment fimctions before and after the

swapping of rA from priority level i to i+1. The notation IAt((Dj) refers to the

interference on rAfor a release at t under priority ordering IIj-

With the inclusion of blocking, the estimation of WCBT needs to be
included in the feasibility inequality:

f ((Dj) +Bf(O CA + I;
A j) :5 CA + 'At "d + B' ((Dk) (5.5) A

where B; (0j) represents the WCBT for a release of 'ZA at t under priority

ordering Oj. For any calculation of blocking times and run-time resource

allocation algorithm it must be shown that equation (5.5) holds.

0
5.7.2 Clairvoyant Blocking and the Reservation Protocol

Initially we examine the reservation protocol proposed by Babaoglu et al
[Babaoglu90, Babaoglu931. Each process reserves in advance the interval

143

during which it will hold a resource, with the highest priority process having
first opportunity to reserve resources. A resource is only allocated to rA if it will
not be required by a higher priority process during the interval requested by
'r A* Under this protocol, blocking occurs when a resource request is denied,

although this is never due to a lower priority process holding the resource. The
blocking time equates to the elapsed time before the resource is available. A
block may occur on each resource access.

U71n,
Ae assume the presence of clairvoyance for calculating blocking times:

for any release of rAat time te (OA., OA+TA,, OA+2TA,...) the exact length of block

experienced by rA is known W). The applicability of the priority assignment A

method with the reservation protocol assuming clairvoyant blocking is shown
by the following theorem.

Theorem 5.13:
Consider two priority orderings Oj, (Dk e 4) over 9. Both assign the

same process to priority levels l.. i-l, i+2.. n with (Dj(, cA)= i, (Dj('EB) =
i+1; (Dk("CA) = i+1., 'Dk(TB) = i. Let clairvoyant blocking calculations be

available, with the reservation protocol employed for run-time
resource allocation. The following conditions hold:

t ((Dj) + BI (D ýt ((Dk) + Bý' ((Dk) (1) CA +, A j):: 5 CA + Iý

(2) CB + IBt ((D t Bt(4Dk) j)+B ý ((Dk) + BB I ((Dj) CB +I! B

(3) the priority level exchange of cA and 1B between and

(Dk does not affect the feasibility of any other process.
Proof.

The proof is in three parts, reflecting the clauses of the Theorem.
Proof of Clause (1)
We note that It (4D.): 5 It ((Dk) since the interference due to 'CB is

AIA

present under (Dk but non-eidstent under (Dj. The blocking factor

is the sum of all blocks endured during a release, one per resource
request. Two cases of blocking are identified on rA:
(a) due to rAsharing a resource with a process assigned one of

priority levels Ei-l (i. e. not with rB)

Under Oj let the request by rAfor the resource occur at t, with it

allocated at tg. For cA the interval [t,. , tg) is composed of blocldng

and interference. Under 4Dk the request time t,, may be later than

144

due to the execution of 'CB pushing the request of cA back.
However, tg will remain the same as cA and c,, do not share a

resource: i. e. tr :5t,, :5 tg. If t.,, > t, we note that under both (Dj and

(Dk the interval Ur, tr,) is occupied by the execution of rB. Hence,

although blocking may decrease by an amount t,,, > t, under (Dk
the interference will increase by trp > tr. Additionally, Iý((Dt) may
be greater than Iý (0) due to the normal executionOf 'rB
(b) due to c sharing a resource with T AB

Let the resource be shared between r and c AB (and perhaps lower

priority processes). Now, cA may receive a block under Ok not
endured under Oj when requesting the shared resource (although

this additional block may be of length 0). Let the resource be

shared between rA, rB and a higher priority process. We observe
that case (a) applies, with the possibility that the time at which
the resource is granted under Ok may be greater than tg (i. e. when
it was granted under 0j) due to c, requiring the resource. Let the

later time be tg,. The interval [tg , tg,) contains some executionof 'CB
(which will be part of I; ((Dk)) but also may contain lower priority

process executions. Hence blocking for this resource will be at
least that under Oj.

Therefore clause (1) holds.
Proof of Clause (2)
As proof of clause (1).
Proof of Clause (3)
This holds by observation since a process cannot be directly
blocked by a lower priority process holding a resource under the

reservation protocol.

Given Theorem 5.13 (and the observations of section 5.7.1) the reservation
protocol with clairvoyant blocking maintains the optimality of the priority
assignment method of section 6.2.

145

I

5.7.3 Clairvoyant Blocking and the Priority Ceiling Protocol

A family of resource allocation protocols are available based upon priority
inheritance (see section 2.3.5). One of these is the Priority Ceiling Protocol
(PCP) [Sha901. The PCP assigns a static priority ceiling to each resource, equal
to the priority of the highest priority process that uses it. At run-time, a
process is only granted the lock on a resource if it has a higher priority than all
the ceiling priorities of all currently locked resources, or, if no other process
currently holds a resource. When a process is blocked on a resource, the process
holding that resource inherits the highest priority of the processes blocked on
that resource until it releases the resource. The blocking that a process receives
is experienced solely at the first resource access within a release.

The PCP is unsuitable for use with the optimal priority assignment
technique, even assuming clairvoyant blocking, as the feasibility of higher

priority processes may be degraded by two lower priority processes exchanging
priority levels. Consider two priority orderings, (Dj, OkE (D over A' with (Dj(, rA)=
'-P (Dj(CB) (Dk(CA) --= '+1-I (Dk(CB) = i; and Oj(Td = (Dk('Cc) =I where 11<i.

Examine the execution of the tasks under Oj given in Figure 5.8. At time to, TB

is released, executing up to tj when it is pre-empted by 'CA. The latter process

executes, locking a resource shared with ýc at t2. At t, 3 rc becomes runnable,

executing up to t4 when it becomes blocked requesting the resource held by 'rA,

which inherits the priority of rc and completes its critical region at t5. Now, rc

executes completing at t6, with cAand "CBcompleting at t7 and t8 respectively.

-TC
r

--i prwess released

'9A resourm request

To

resource released

to t, t2 ts t, ta t', t? to

Figure 5.8: Execution Under 4Dj

Now consider the execution of the processes under (Dk given in Figure

5.9. Firstly, -TB executes to completion at tj with rA then executing and locking

146

the resource at t2. Process Tc pre-empts rA at t3 becoming blocked at t4

attempting to access the resource held by cA. The latter process now executes
its critical region, completing at t5 enabling T(- to execute its critical region and
complete at t6, with TA completing at t7-

Tc

To

TA

A

to

tprocess
released

LJ %source
request

resource released

II

t4 t5

H
tl t2 t3

Figure 5.9: Execution Under Ok

t6 t7

Under (Dk I process TA executes later than under Oj, so locking the

resource later but still before the release of rc. Thus, more of cA's critical region
is outstanding when ý- becomes runnable. Therefore, the blocking that cc
endures has increased, solely due to two lower priority processes swapping
priority levels. This has degraded the feasibility of cc implying that using the

PCP cannot always result in optimal priority orderings being found (even

assuming clairvoyant blocking calculations).
We note that the PCP and the optimal priority assignment method is

sufficient, in that when a process is proved feasible at priority level i, the
feasibility of processes assigned priority levels i+l.. n is unchanged. Hence, if

the algorithm completes having assigned all priority levels, a feasible priority

ordering will have been found.
The PCP and priority assignment method remains optimal in the

constrained circumstances that all processes have equal WCBT. This could

occur, for example, if the context switch time formed the longest block on each

process. Now, no process endures increased blocking due to lower priority

processes swapping priority levels.

147

5.7.4 Pessimistic Blocking
In practical systems, exact clairvoyant blocking factors are not available.
Therefore, we now address the problems raised by the use of pessimistic
blocking factors.

Consider the reservation protocol, seen to be applicable for use with the
Optimal Priority assignment method with clairvoyant blocking. When
calculating the WCBT offline for process cA, the exact ordering of higher

priority processes is required, not merely the set of higher priority processes.
Under the optimal priority assignment only the latter is available. Hence, for
, rAthe worst possible priority assignment of the higher priority processes must
be assumed for each resource access. The calculation of this has, in general,
exponential complexity.

Assuming blocking factors are calculated in this way, the reservation
protocol may still be used with the optimal priority assignment method. This
combination is optimal: if a feasible priority ordering exists it will be found.
The proof of this assertion lies in noting that Theorem 5.13 holds even
assuming that clairvoyant blocking factors are not available. However, the
effect of pessIMIstic blocking ensures that if no feasible priority assignment is
found, the process set may still meet all deadlines: sufficient and not necessary
feasibility is evident.

Consider the PCP. The blocking factor for cAassigned priority level i is

equal to the longest critical region of any lower priority process which locks a
resource with a process assigned one of priority levels 1J [Sha901. If a process
swaps priority levels with another process with which it shares a resource, the

sum of interference and blocking may actually decrease by lowering the

priority level (i. e. i to i+1) if the increase in interference is not greater than the

critical region length of the previously lower priority process. This can happen

when the executions of the processes do not overlap.
For example, consider process rA assigned priority level i, and 'CB

assigned priority level i+1, with their offsets and periods ensuring that their

executions never overlap. The processes share a resource. The exact
interference upon rA is IAwith worst-case blocking BA (due to 'CB). Likewise,

the interference upon 'rB is IB (due to processes with priorities 1J-1 since 'CA

does not interfere with 'CB)with worst-case blocking 0. Let the two processes

swap priority levels (i. e. rAis assigned priority level 41 and 'CB is assigned i).

The interference upon cAhas not increased, but the blocking has fallen to 0.

148

Slinlilarly, the interference on ro has not decreased, but its blocking has
increased due to the critical region of cA. Thus, by lowering the priority of rA
the likelihood that the process will be feasible has increased. Also, increasing
the Priority of cBhas decreased the likelihood that the process will be feasible.

Hence, the PCP and the optimal priority assignment method will be
sufficient and not necessary for the assignment of priorities: a feasible priority
assignment may not be found even if one eidsts (assuming worst-case blocking
times). Also, sufficient and not necessary feasibility is apparent due to the
pessimistic blocking.

5.7.5 Discussion
A direct comparison between the two resource allocation protocols for use with
optimal priority assignment is difficult. The nature of the reservation protocol
dictates large blocking factors when compared with the PCP, although the
combination provides optimal priority assignment. However, the loss in
feasibility of the process set due to those blocking factors may override the lack

of optimality available with the PCP.
It is noted that under certain circumstances the PCP with the optimal

priority assignment method will indeed provide optimal priority assignments
even with pessimistic blocking factors. For example, this occurs if all processes
share a resource and are all subject to the same length mi um block
(assuming the lowest priority process, for feasibility purposes, endures a
block).

The main differences in the behaviours of the two protocols when
combined with the optimal priority assignment method lies in the nature of
their blocking characteristics. The reservation protocol does not permit a lower

priority process to hold a resource at a point in time at which it is required by a
higher priority process. Under the PCP this is not true. Therefore the precise

relative ordering of lower priority processes affects the feasibility of higher

priority processes under the PCP, but not the reservation protocol.

5.8 Increasing Feasibility

The relationship between the feasibility of process sets with a critical instant

(i. e. all offsets are zero) and the same set without a critical instant (i. e.

arbitrary offsets) is such that the latter is more likely to be feasible. This is

observed by taking a process set with arbitrary offsets and no critical instant,

149

and setting all process offsets to be zero and employing a critical instant
feasibility test. For example, consider the process set in Table 5.6.

Process 0 C DI T
'CA 0 5 5 10
Ir 1,5 5 5 10

Table 5.8: Example Process Set 7.
Using a sufficient and necessary offset feasibility test, the processes are
declared feasible. However, if offsets are assumed to be 0 (for feasibility
purposes) the process set will be declared infeasible (by a sufficient and
necessary critical instant feasibility test). The implication of this observation is
that process sets that have a critical instant and are infeasible could be
assigned offsets which ensure that a critical instant does not occur, leading to
the possibility that the process set could be declared feasible by a sufficient and
necessary offset test.

In broad terms, process offsets need to be defined such that a critical
instant does not occur. That is the following condition holds (drawn from

section 5.1):
3ij: 1: 5i<j<n

I Oi
- Oj I#h gcd(Ti, Tj)

(5.6)

where h is a non-negative integer. The number of different combinations of
offset values which fulfil this condition is potentially large. For example, when
choosing an offset for ri, values in [0, Tj) may be considered. In the extreme,
this could lead to T, *T2* ... *T

,,
different sets of values for process offsets.

Consider ri and rj (i*j) where g=gcd(Ti, Tj). Only values of Oi and Oj need be

considered such that I 0j-0j I is not a multiple of g and QjE[0, Dj) and
Oj E[O, Dj). Clearly this approach is impractical: even a small process set of

cardinality 10, with all periods equal to 10, may require the consideration of
-1010 different combinations of process offsets, each incurring the complexity of

a subsequent optimal priority ordering method (including the sufficient and

necessary feasibility test).
After all combinations of offsets have been considered, it is possible that

the process set remains infeasible. For example, if all periods are mutually co-

prime, no offset combination will result in a process set without a critical
instant. Given that a number of combinations of offsets are available, each

ensuring that no critical instant exists for the process set, it is an open

150

question as to whether (at least) one of these combinations is guaranteed to be
feasible (assuming that the optimal priority assignment method is used to
determine process priorities and feasibility).

A heuristic is now out1ined that limits the number of offset combinations
examined. Consider a critical instant process set that is infeasible and has
utilisation no greater than 100%. Whilst attempting to determine feasibility,
processes are considered in order i. e. high to low priority (see Chapter
4). Let the first process that fails the test be ri (1<i<n), where are
feasible. Amongst the processes rj.., rj-j whose periods are not co-prime with
respect to Ti, choose the process that has the highest interference on ri. Let this
process be Tj. Choose Oi such that the condition defined by equation (5.6)
holds. Now, the feasibility of ci is re-considered. If 'Ci remains infeasible,

another offset may be chosen. We note a maximum of Ti-1 offsets for 'Ci are
tried. If an Oi is found such that ri is feasible, we proceed to cij

Since c,,, has a critical instant with rj.., rj-j then we test to see if it has a
critical instant with ri. If it does, its feasibility is determined using the critical
instant test, otherwise the sufficient and necessary offset test is employed. If

, ci+l is feasible, we proceed to 'Ci+2, If ci+l is not feasible we sýlect an offset for

, ci, l in the manner described for ri above.
n

The method examines a maximum of T. offset combinations, less than

the maidmim possible number of combinations (TI *T2* *T,).

Consider the following example.
Example 5.5:
Consider the process set in Table 5.9

Process C D II T Prioritv
M--

'CA
14

5

, C, 6 2 8 8 2

'TC 2 6 12 3
'CD 3 11 12 4

Table 5.9: Example Process Set 8.

When applying a sufficient and necessary critical instant feasibility

test process 'CD is declared infeasible. Since only TA (of all higher

priority process periods) is co-prime with TD, and the interference of r,

151

on 'TD is higher than that of rc, we choose an offset for 'CD such that it

no-longer shares a common release time with cB *
Given that gcd(rB I 'TD)

= 4, then possible values for OD are 1,2,3,5,6,7,9,10 or 11. Initially, let

OD = 1. By employing the sufficient and necessary offset test, it is found

that 'CD is now feasible.

With minimal modification the approach can also be used for process sets
that have no critical instant originally, and whose priorities are assigned using
the optimal priority assignment approach given in this chapter. Now, the
following approach is used if a process cannot be found that is feasible at a
given priority level. Let such a priority level be i. One of the i processes that
fail at this level is chosen, and its offset adjusted as indicated above. If no
offset exists for the process, we choose another (of the i processes). If a process
(with modified offset) can be found that is feasible at the priority level, we
proceed to level i-1. This extension of the method examines a um of

Is
n T. offset combinations.

Processes that have precedence constraints between them must maintain
the same offset relationships. Thus, if Oi is changed where ti -ý, cj, then Oj is

changed by the same amount (and so on for other processes in the AAG).
The method also applies if processes block since this only affects the

determination of feasibility. More interestingly, even if a process set is feasible,

we may use the above approach to reduce the amount of blocking that a process
encounters. That is, if ri suffers a worst-case block of Bi, due to a critical region

of cj (i < j) then ri (or cj) may be assigned an offset such that Bi is reduced
(using the accurate blocking analysis in Chapter 4). Care must be taken, since
by assigning such an offset, another process of priority greater than cj may

now have increased blocking leading to it becoming infeasible.

5.9 Summary

This chapter has extended ofnine flexibility by considering and addressing

several outstanding issues in static priority feasibility theory. Essentially,

feasibility test coverage is increased by permitting processes to have arbitrary

start times. This creates a number of problems, mainly that of priority

assignment, since deadline-monotonic priority assignment (assumed in

Chapter 4) is no longer optimal. The main results of the chapter are' an

152

efficient method to assign optimal priorities to processes with arbitrary start
times, and the provision of feasibility tests for such processes.

Leung et al observed that whilst the determination of the feasibility of a
non-critical instant process set is NP-hard [Leung8O], it was an open question
as to whether this complexity was due to both priority assignment and
feasibility testing, or merely feasibility testing [Leung821. It has been shown in
this chapter that optimal priority assignment can be achieved in polynomial
time, implying that the NP-hard complexity is due to the determination of the
feasibility of a given priority assignment over a process set.

The optimal priority assignment method given in the chapter relies upon
the availability of a sufficient and necessary feasibility test. This was defined,
together with the interval over which feasibility needs to be determined.
Additionally, the sufficient and not necessary tests of Chapter 4 were extended
for use with non-critical instant process sets.

The priority assignment approach was then extended to cater for
processes with arbitrary precedence relations, remaining optimal when process
priorities descend across the precedence relationship graph. Also, resource
allocation protocols that permit processes to share resources were considered,
in particular the reservation and priority ceiling protocols. Problems were
encountered with the inclusion of resources since worst-case blocking times are
inherently pessimistic. This has the consequence of sufficient and not
necessary feasibility testing. Howcver, the reservation protocol was seen to
remain optimal with respect to priority assignment, with the priority ceiling
protocol sufficient and not necessary.

Finally, it was shown how some infeasible critical instant process sets
may be converted into feasible process sets by assigning offsets to processes, so
that the process set no longer has a critical instant.

It is noted that further consideration of the behaviour of the optimal
priority assignment method with different precedence constraint strategies and
resource allocation policies is required.

153

Chapter 6.,
Spare Capacity And Its Detection

Chapters 4 and 5 have examined methods of increasing the offline flexibility of
hard real-time applications by improving the coverage, accuracy and efficiency
of feasibility analysis. Such analysis provides the 100% deadline predictability
required for crucial processes at run-time. The second level of potential
additional flexibility identified in Chapter 3 occurs at run-time due to the
detection and subsequent re-use of spare capacity by crucial (and other
application) processes to improve the overall utility of the system. The focus of
this chapter is the detection of spare capacity.

Rudimentary approaches for gain time detection have been proposed by
Haban [Haban89, Haban901 and Dix et al [Dix89] based upon software triggers

placed into application code (see Chapter 2). This enables gain time to be
detected after it has been generated, although before process completion. The
Extended Piiority Exchange approach identifies gain time on process
completion by comparing actual and worst-case execution time [Sprunt881.

In this chapter, a more powerful approach towards the detection of all
spare capacity is developed. It is language based, using software triggers to
declare when spare capacity is about to be, or has been, generated. The triggers

are placed at strategic points within the code, decided by offline analysis of the

control flow properties of the process code. The approach enables the detection

of spare capacity as early as possible using offline control flow analysis of code

only.
Given the need to provide 100% deadline predictability for crucial

processes, it is inevitable that the processor and other resources, at run-time,

will be under-utilised. This occurs for many reasons [Audsley93a], including

the following:
G) worst-case execution time (WCET), resource usage and resource

blocking time analyses are inherently pessimistic [Puschner89]:

at run-time, software components do not always require their

worst-case execution time (due to the control-flow nature of

application code); also, they may not require their worst-case

requirement of resources.
(ii) hardware behaving better than expected at run-time:

154

for example, pipelines and caches speed-up the actual execution of
processes, whilst their effects are not easily calculable offline,
thus adding to the pessimism of worst-case execution time
analysis.

Gii) sporadics may not execute at their maximum frequency:
the aximum. frequency is assumed for feasibility analysis,
although sporadic processes may not actually execute at such a
frequency.

(iv) non-execution of error handling software:
For example, recovery blocks, exception handlers that are not
required at run-time.

(v) spare time incorporated by feasibility analysis to guarantee crucial
process deadlines:
Feasibility analysis often dictates that not all 100% of processor
utilisation can be used for guaranteeing crucial processes. For
example, in rate-monotonic scheduling [Layland731, process sets
are only declared feasible if system utilisation is not greater than
69% (for large numbers of processes), effectively providing 31% of
total processor utilisation as spare capacity. Earliest deadline

scheduling [Layland73], in theory, allows utilisations to reach
100%. However, when resources are considered, this utilisation
cannot be achieved, except in very contrived circumstances. Even

scheduling approaches where static schedules are created offline
(i. e. MARS, Spring) rarely produce schedules with 100%

utilisation when resources are considered.
(vi) the system may have an inherent utilisation of less than 100%:

Even if feasibility permitted 100% utilisation, the process set
itself may not require utilisation of that level.

When considering the types of spare capacity outlined above, three general
forms may be identified:

Definition 6.1:
Slack nme - processor time that is not guaranteed to a process

offline.

155

Definition 6.2:
Gain Time - processor time, guaranteed to a crucial process offline,
but not required by that process at ran-time.

Definition 6.3:
Spare Resources - those resources assumed to be required by a
crucial process (by worst case resource usage analysis) but not
actually required at run-time (including both logical and physical
resources apart from the processor).

Gain time occurs due to processes executing for less than their worst-case
execution time; hardware speed-ups; non-execution of guaranteed error-
handling software. Slack time occurs due to the inherent utilisation of the
system being less than 100%; in-built slack due to the feasibility test employed;
and the execution of sporadic processes at less than their worst-case frequency.

One important difference between gain time and slack time lies in their
potential assignment to processes. Since gain time has been guaranteed offline,
as part of a crucial process's worst-case execution time, when re-assigning that
gain time to another process, the latter inherits the guarantee afforded to the
original process. The same guarantee cannot, in general, ' be afforded to
processes inheriting slack time. Slack time occurs when no processes are
runnable, i. e. after the completion of the currently running process, if that is
the sole runnable process. Intuitively, slack time could be guaranteed, up to
the next release of a crucial process, if that release time is known. When

sporadic processes are present, the determination of this time is not possible
(without aid of clairvoyance). However, a lower bound maybe placed upon it as
the kernel must track the release times of sporadics to ensure that they do not
occur at intervals less than their respective inimum inter-arrival times.
Therefore, slack time can be generated up to the earliest possible release of a
sporadic, but not after than time.

The following section introduces some assumptions regarding the
language model used in the remainder of the chapter. Sections 6.2 and 6.3

describe informal and formal models of gain points, and a technique for

detecting gain time. Section 6.4 introduces a possible implementation and
discusses the trade-off between accuracy of gain time detection and overheads
incurred. Extensions to the gain point technique are given in section 6.5, with

a summary of the chapter given in 6.6.

156

6.1 Language Assumptions
Since the approach outlined in this chapter for the detection of spare capacity
is at a language level, assumptions regarding the language are now considered.

Languages appropriate for hard real-time systems must be boundable
and deterministic. This enables worst-case execution bounds to be placed upon
code. Specifically, the language must not permit (Burns891:

W unbounded loop iterations -a pre-declared constant is associated
with each loop defining the maximum number of loop iterations;

(ii) unbounded recursion - both direct and indirect;
(iii) procedure and fimction parameters;
(iv) goto style operations;
(V) non-deterministic constructs (e. g. the guarded commands of Ada

[Ada831).
These limitations are seen in a number of experimental languages specifically
developed for boundability, including the Ada83 derivative Spark Ada
[Carre891. When such languages are targeted at distributed applications the

passing of pointers as parameters is often forbidden [Hutcheon871: de-

referencing may occur in the wrong physical address space.
A simple control-flow language is assumed with the following basic

control-flow constructs:
0 IF condition THEN .. code.. ELSE .. code.. FI

9 WHILE condition MAX const_positive_int
DO .. code.. ENDDO

0 FOR loop-variable_expr TO

[loop_limit-variablelconstant]

STEP const_positive_integer

MAX const-positive_int

DO .. code.. ENDFOR

0 CALL procedure_name (parameters)

It is assumed that in a FOR loop, the loop variable increases by the step value
in every iteration. If initially the loop limit variable (or constant) is less than

the loop variable, the loop body will not be executed.
We assume conventional expression constructs (such as those defined for

the Ada progr .g language [Ada831). Note tnat a unsF, statement is

semantically equivalent to successive ir statements (although some run-time

efficiency may be lost). Locking and unlocking resources is achieved via GET

and RELEASE statements respectively. These will map onto kernel mechanisms

157

responsible for allocating resources (e. g. semaphores). A Do. WHILE construct
is omitted as the same semantics can be achieved with a WHILE.. DO loop,

although some run-time efficiency may be lost. Within the context of this
thesis, language support for fault-tolerance is not considered.

The language assumptions outlined above bound process execution
times. This permits WCET analysis of processes. Conventionally, this is
achieved by breaking code into basic blocks, each having a single entry point
and a single exit point [Puschner891. The worst-case path through the basic
blocks, in terms of execution time, defines the WCET. Within this chapter basic
blocks are further constrained to contain either a single control-flow statement,
e. g. IF.. WHILE,, CALL etc, or many non-control-flow statements. Thus, tile

conditional statement in a WHILE statement is contained in a different basic
block from the loop body. Initially, we preclude the use of semantic aids, such
as markers to quantify exactly the number of loop iterations [Puschner891; or
source code annotations to define possible control-flow paths through the code
at run-time [Park931. These are discussed in section 6.5.

6.2 Gain Points: Am Approach For The Detection Of Spare
Capacity

Several approaches have been proposed to enable detection of gain time (see
Chapter 2). Haban places software triggers into the code to enable actual
execution time to be calculated [Haban90]. This is then compared with the

worst-case execution times to identify gain time. Consider the application
process code:

Block I Block 2 Block 3
CT)

WCET 10 WCET 6 WCET 71

The process code has been broken into three basic blocks, with single control
flow paths between them: block 1 is executed initially, then block 2 and finally
block 3. Software triggers are inserted ("T" in a circle). At run-time, the
triggers measure actual execution time for the three blocks as 6,5 and 5

respectively. This is illustrated in Figure 6.1. The graph in Figure 6.1 plots the
total accumulated gain time against the execution time of the process.

158

8

6

Total
Detected

Gain Time

2

0

Process Execution Time

Figure 6.1: Gain Time Detection for Haban's Approach and Nfilestones

Dix et al insert software triggers termed "milestones" [Dix891. The value
of the milestone is the um remaining execution time of the process:
effectively they declare that a process will finish at or before that time value.
Consider the application process code:

Block 1
qqjýo

0, Block 2 p, Block 3
WCET 10 WCET 6 WCET 7

Afilestones ("M" in a circle with number denoting milestone value) are inserted

within the code. Each milestone permits the identification of gain time from
the previous block (hence the milestone of value 0 after the final block).
Consider the same run-time behaviour as given above for Haban's model:
blocks 1,2 and 3 actually require 6,5 and 5 time units respectively. At time 6,
the first milestone is reached, declaring that a worst-case of 13 time units are
required for the remainder of the process. Using the following formula, the

gain time may be determined:
Total WCET ofprocess - milestone value - actual execution time of block

Thus, after the first block a gain time of 23 - 13 -6=4 is detected. The total

gain time determined, together with the time at which it is detected is

equivalent to that of Haban's approach (i. e. the graph in Figure 6.1).

159

10 is 20

The central observation is that both the above approaches determine
gain time after it has been generated. In general, we wish to be aware of spare
capacity as soon as possible: the sooner it can be determined, the sooner it can
be usefully utilised (the assignment of detected spare capacity to processes is
considered in Chapter 7).

It is noted that neither Haban's or Dix's approach cater for spare
resources; non-execution of error handling code; sporadics not released at a
maximum frequency; inherent under-utilisation of the processor; spare time
required by feasibility analysis.

An approach for the earlier detection of spare capacity is now described.
Consider the following process code fragment:

condition == TRUE

THEN ... code

ELSE ... code

ri

This can be analysed to determine the WCET of both the THEN and the ELSE
clauses (the WCET of the fragment being the mwdmum of the two values):

IF condition == TRUE

THEN [10 units]

ELSE [6 units]

Fi

Depending upon the control flow through the fragment, gain time will become

evident. For example, if the ELSE clause is executed, 4 units of gain time will
be realised - the difference between the WCET's of the two clauses. We note
that both Haban's and Dix's approach could detect this gain time after the ri
statement, not before. These approaches also detect gains due to hardware

sPeed-ups.
The gain point is introduced to enable detection of gain time in the

manner described above. The gain point is a software trigger, named to reflect
that it is inserted at a point in the application code where gain time can be
detected. The gain point can be considered to be a call into the kernel interface
(we return to implementation issues in section 6.4). The value of the gain point
reflects the amount of gain time that can be detected due to the control flow of
the code. Consider the following code fragment:

160

IF conditionl == TRUE

THEN [6 units)

ELSE (10 units]

FI

IF condition2 == TRUE

THEN (6 units)

ELSE (5 units]

FI

IF condition3 == TRUE

THEN [5 units)

ELSE P units]

F1

This corresponds to the code fragments used to illustrate Haban's and Dix's
approaches earlier. Gain points are inserted into the code:

IF conditionl == TRUE /* Block 1

THEN GAIN_POINT (4)

(6 units]

ELSE [10 units]

F1

IF condition2 == TRUE

THEN [6 units)

ELSE GAIN_POINT(l)

(5 units)

ri

IF condition3 == TRUE

THEN GAIN_POINT(2)

[5 units)

ELSE units]

FI

/* Block 2 */

/* Block 3 */

161

At run-time, the THEN clause is executed in Block 1; the ELSE clause in

Block 2; the THEN clause in Block 3. The calculation of gain time is
illustrated in Figure 6.2. When comparing the detection of gain time by gain
Points in the figure, with Haban's triggers and milestones in Figure 6.1, two

observations may be made:
the total gain time detected is equal;
the time at which the gain time is detected is earlier using gain
points.

Indeed, using pure static code analysis only (without clairvoyance or use of
semantic analysis), gain points enable gain time to be identified as early as
possible).

0

6

Total
Detected

Gain Time

2

0

Process Execution Time

Figure 6.2: Gain Time Detected Using Gain Points

As well as gain time, all other forms of spare capacity can be detected

using the gain point mechanism. To achieve this, four separate forms of gain
point are required:

(i) static for static code;
(ii) dynamic for loop constructs;
(iii) eff"wiency for detecting hardware speed-ups;
(iv) resource usage for identifying spare resources.

These are discussed in the following sections, together with the detection of

slack time.

162

05 10 15 20

6.2.1 Static Gain Points
Static gain points detect gain time due to branches in the control flow (as

shown in the previous section). In general, whenever a branch occurs in

Process code, a gain point is placed as the first statement in each branch. The

value of the gain point is the difference between the WCET of that branch and
the maximum WCET of all branches, to the next point in the code where all the
branches converge. For efficiency, if a gain point's value is 0, it can be removed
(this will occur for one of the clauses of an iF statement).

6.2.2 Dynamic Gain Points

Gain points can be used to note the amount of time gained by not using the
maximum number of iterations in loops. This can occur in two ways:

conditional loops: the loop body is continually executed whilst a
conditional expression evaluates to true;

set loops: the number of executions of the loop body is determined
by the value of a variable set before loop entry.

The first, for example, corresponds to wuiLE statements; the second to FOR

constructs. In both cases, the um number of iterations is specified by a

constant declared with the loop statement, to constrain the code to have

bounded execution time.
In conditional loops, the gain point is placed on exit of the loop, with the

value calculated dynamically. For example, if the maximum and actual

number of iterations are given by max and loopvar respectively, with the

WCET of the loop body being C, then the gain point value is given by:

(max - loopvar) *C
For example, consider the following statement:

WHILE condition == TRUE MAX 20

DO [10 units]

ENDWHILE

GAIN POINT ((20 - loopvar) * 10)

The loop counter loopvar is assumed to be compiler generated to ensure that

the variable name is not known to the application code so that it cannot be

altered within the loop body. It is incremented immediately before the end of

163

the loop body, with the compiler extending the application declared WHILE

condition to test to see if loopvar > max.
In set loops, the maximum number of iterations is declared as a static

constant (as in conditional loops). However, the number of iterations is also
limited by the value of a variable set before the loop is executed. Consider the
foHowing statement:

FOR i=1 TO j STEP 1 MAX 20

DO [10 units]

ENDIFOR

The number of iterations of the loop is equal to the minimum of max (where

max = 20 in this example) and j. Hence, a gain point maybe placed
immediately preceding the loop statement with value equal to

min(j,, 20) *C

where c is the WCET of the loop body. This assumes that the value of j is not
varied within the loop. Although this would only matter if j were increased,
the value of max is set to the initial value of j for the duration of the loop.

, Additionally, a gain point may be set after the loop statement to detect

gain time due to less than min (j, max) loop iterations. This caters for the

possibility of the code within the loop e-siting the loop before j iterations have

occurred. Thus, the annotated code is:

GAIN_POINT (min(ji, 20) * 10)

FORi= 1 TOj STEP lbULX20

DO [10 units]

ENDFOR

GAIN_POINT ((min(j, 20) - loopvar) * 10)

6.2.3 Efficiency Gain Points

Static and dynamic gain points do not enable gains due to hardware speed-ups
to be detected. Consider a basic block whose worst-case execution time has

been found by WCET analysis. Since a basic block contains no control-flow

statements, theoretically, the worst-case and actual-case execution times of the

block should be equal. However, due to inaccuracies in WCET analysis (e. g.
hardware instructions which have an actual execution time less than expected,

164

for example rotate etc.) and hardware speed-ups, the actual-case is less than
the worst-case by g time units. This gain may be detected by the placement of
an efficiency gain point after the basic block. The value of the gain point is

equal to the worst-case execution of the block minus its actual execution time
(assumed to be determined by the kernel in a similar manner to Haban's and
Dix's approaches).

Since hardware speed-ups can also occur for execution of any code (for

example WHILE and IF statements and there inherent conditions), efficiency
gain points can be placed after such statements as well.

6.2.4 Resource Usage Gain Points
Used and unrequired resources can also be detected using gain-points. The
former are those resources that have been used by a process during its

execution; the latter consists of those resources a process requires at the start
of its execution but, due to the control-flow path taken through the code at run-
time, does not use.

Initially, we examine unrequired resources. Consider the following

statement:
IF condition == TRUE

THEN GET (resourcel)

[6 units]

RELEASE (resourcel)

ELSE GET (resource2)

(5 units]

RELEASE (resource2)

ri

The statement above requires exactly one of two resourcesý either the resource
controlled by resourcel or that controlled by resource2. That is, at the start

of the statement, the resources required during execution are resourcel and

resource2. After the branch, one resource is no longer required: at the start of
the TEmN branch a gain point resource2 is inserted; a gain point resourcel
is placed at the start of the ELSE branch. This is illustrated below:

165

IF condition == TRUE

THEN GAIN_POINT(resource2)

GET (resourcel)

[6 units)

RELEASE (resourcel)

ELSE GAIN_POINT(resourcel)

GET (resource2)

units]

RELEASE (resource2)

ri

The gain point statements inform the scheduler that the resource is no longer

required by the particular execution of the process.
Since a process may use a resource at more than one point in its code,

the gain point may only be inserted if the process will definitely not require
that resource at any future point in its current execution. In general, at the
start of each branch, a gain point may be inserted if a resource is not required
by the branch, but is required by another of the branches bef6re the end of the

process's code. When a resource is accessed inside a loop statement, the gain
point must be placed outside the loop.

6.2.5 Resource Blocking

When detecting the feasibility of a set of processes, the maximum blocking time
for a process set must be considered. This depends largely upon the run-time
resource allocation policy employed. For example, non-blocking policies imply

no blocking at run-time; blocking policies limit potential blocking to a number
of critical region accesses by lower priority processes. When determining the
feasibility of a process, both the WCET and the WCBT must be guaranteed
before the deadline of the process. It is apparent that since the worst-case

estimation of blocking time may be pessimistic, some blocking time may be

unused at run-time. For example, consider the use of one of the family of
Priority Ceiling Protocols for resource allocation in the context of static priority

scheduling. Blocking time guaranteed for process ri may be used for one or

more of the following reasons:

166

the lower priority blocking process does not execute for the WCET

of its critical region;
the lower priority blocking process executes for some of its critical
region before the release of ci;

(iii) the lower priority blocking process does not have the longest

critical region amongst all processes that may block ri.
Intuitively, any unused blocking time may be detected as gain time.

Consider the Ceiling Semaphore Protocol. Blocking is constrained to
occur before a process begins its execution (i. e. between the release of a process
and the time at which it first executes) [Rajkumar891. Thus, a single gain point
could be placed at the start of the process's code. Consider two processes, ý and
T2, that share a resource (, ý has the higher priority):

C1=5 B1=2 TI=DI=7 01=0
C2=2 B2=0 T2=D2=7 02 =0

The processes are feasible using conventional rate-monotonic analysis
[Lehozky891. Initially, both processes are released at time 0, with ý executing
without experiencing any blocking. The above discussion would indicate that a
gain point could detect 2 units of unused resource blocking time. However, it is

clear that unless this time is used for the normal execution of ý, this process

will miss its deadline.
The reason that unused blocking time cannot be detected as gain time is

that the blocking time guaranteed to ý during offline analysis is actually for

the execution of T2 at the priority of ý. Thus in general, for process 'Ci, Bi
"maps" at run-time onto the execution of the critical region of a lower priority
process, not onto the execution of ri.

Gain time will become apparent if the lower priority process does not
execute for the worst-case execution time of its critical region. However, this

will be detected in the context of the lower priority process.
Unused blocking time does have one useful property. Since blocking time

is to permit lower priority processes to execute temporarily at a higher priority
level, unused blocking time may be used to execute lower priority processes at
a higher priority level. In the example above, 5 could execute at ý's priority for

the duration of any unused blocking time. We note that this relies upon the

property of the Ceiling Semaphore Protocol that blocking occurs before a

process actually executes, so permitting unused blocking time to be used after

167

the process has commenced execution. This property of unused blocking time is
explored further in Chapter 7.

6.2.6 Detecting Slack Time
Slack time becomes evident when no process with guýLranteed execution time is
runnable, that is when no crucial process has outstanding computational
requirement. Slack time could be detected by use of a dynamic gain point at
the completion of a process. The value of the gain point would be the amount of
time re alm*ng before the next release of a crucial process. Given the presence
of sporadic crucial processes, this estimation of time can only take into account
periodic crucial processes: when a sporadic crucial process is released, the
amount of slack time remaining immediately becomes zero. However, this
means that gain points are used for the detection of both guaranteed and
unguaranteed execution time. Also, slack time is related more to the complete
system rather than individual processes. Therefore, the detection of slack time
is the responsibility of the kernel.

6.2.7 Sununary

In this section a method for detecting spare capacity has been outlined. Gain
points are inserted into a process's code at the earliest point at which gain time
can be detected. In general, gain points identify gain time at an earlier stage
than either Haban's or Dix's approach. Static gain points are inserted to detect
the gain time generated by taking a branch in the code that requires less

processor time than alternative branches. Dynamic gain points are inserted to
detect unused computation time due to loop constructs not executing for their

worst-case number of iterations. Efficiency gain points are inserted to detect

code that executes faster than anticipated due to hardware speed-ups. Finally,

resource gain points are inserted to detect resources that are not required by a
process.

It is noted that the gain Point approach is applicable for both periodic
and sporadic processes, processes that block on shared resources, and those

processes related by precedence constraints.

6.3 Formal Model Of Spare Capacity

An important property of the gain time model is that all spare capacity is

identified accurately. That is, for any path that a process may take through its

168

code, the sum of the actual execution time and the detected gain time should
equal the worst-case execution time. A formal framework for the placement of
gain points and their associated values is now developed which enables this
property to be shown for the gain point model.

In the following section, the relationship between slack time and gain
time is articulated, showing that they account for all processor utilisation not
occupied by the actual execution of guaranteed crucial processes.
Subsequently, a formal model of the control-flow language described in section
6.1 is given, together with a method for the placement of gain points.

6.3.1 Relationship Between Slack and Gain Time

The theoretical worst-case utilisation of the system is given by:

W=
Ci

,; eA Ti

This represents the utilisation. of the system if all processes in A require their
WCET for each execution, and experience their worst case blocking time
(noting that blocking time for one process is actually the execution time of
another, hence Bi may be ignored). The inherent slack time due to the system
having less than 100% utilisation is given by:

s= 1-W
su u

This slack time will always exist at run-time.

(6.1)

Equation (6.1) assumes that sporadic tasks execute at their worst case
frequency. At run-time, additional slack time is generated by sporadic tasks

executing at intervals greater than their minimum inter-arrival time. This is

given by:
I ELI ci

sss =
1,

- IT!
"

'C, eATi 'TEJ& A

(6.2)

where Tj' is the mean inter-arrival time of ri. We observe that Ti'=Ti for all

periodic processes. Therefore the total slack time at runtime is:
Ss, + S.,. (6.3)

At run-time, gain time is generated by processes executing for less than

their WCET. Let the mean execution time and mean blocking time of ci be

denoted Cj'. The gain time available at run-time is given by:
CM C.

G1=1 M-YaT M
(6.4)

, tie&
Ti, -CAA i

The total spare capacity (slack time and gain time) in the system at runtime is

given by:

169

T,, =S+G
Expanding in terms of equations (6.1), (6.2), (6-3) and (6.4):

S,. + S. +G

+ T T . T
C,
T m

C',
m -): C,

l" i , Cie, & i ; ieA i ; e, & i tie, & Ti V'& Ti
Hence, the model of spare processor capacity accounts for all processor
execution at run-time.

The model above quantifies the amount of spare capacity in the system.
However in practice, the amount available for re-assignment to processes is
less, due to the cost of detecting the spare capacity. Assume that the cost of a
gain point is constant c, with the mean number of gain points executed by a
process being t. Therefore, the amount of time available for re-use is:

1-
Cim + tC IM

-cir=A
Ti

The cost of spare capacity detection is considered further in section 6.4.

6.3.2 Code Representation
To enable detailed discussion regarding the placement cwýd value of gain
points, a formal model of the language described in section 6.1 is now given.
Let the code for the processes in a system be written in the language. Syntax

analysis can provide a control-flow graph (CFG) for each process's code
[Aho891. This is also required for worst-case execution time analysis
[Puschner891. The nodes in the graph are statements in the code, connected by
directed arcs showing the possible routes through the code. Consider the
following code fragment:

IF a>c

THEN a; c :=

ELSE GET (device)

CALL device_driver ()

RELEASE (device)

ri

WHILE d>0 MAX 5

Do

170

ENDWHILE

FOR c=0 TO j STEP 1 MM 10

DO k :=k*

EMFOR

Oth IF
A START >0 AND loopvar < 5-1
B3 Ir a>c

T F F
T T

e E:
:ý

y Oth body
C EE GKT da
D

2

I.
vice F= F CALL device dri7er loopvar :- loopvar +

G RElxASz (driver:):]

_
ist IF

HH[loopvar :-0
f IF d>0 AND loopvar < 5-]

T
TIP d>0 ANn I oopv r<

F A
j AAa

K r1 pvar +I
_ -

4th IF

F I
Fd >0 AND loopvar <5 L hmpyar *. -0j T N" F F

m1max i-min (1ý0,5)ý F; -7 4th body ýj ody t-j--t e
IF c <- j AND loopvar <- vmx

F TF floopvar :- loopvar +1
Ol kk*2 Sth IF

P
V

\

IF d>0 AND loopvar < 1 c: C. + :L

01 loopvar :- loosmar + 11

RI STOP

Figure 6.3: Example CFG. Figure 6.4: CFG of Flattened
Loop Construct.

The CFG of this code produced by syntax analysis is shown in Figure 6.3. In
the CFG, the condition expressions in WHILE and FOR statements are
expressed as IF statements, with the provision of a variable to count the actual
run-time loop iterations (loopvar) and ensure the maximum number of
iterations is not exceeded. After executions of the loop body, the return to the
IF expression at the head of the loop is achieved by an arc back up the graph.
Such an arc is termed retreating (e. g. from the node labelled K to the node
labelled I). This represents a shorthand form, since all loops could be flattened.
For example, the WHILE loop in the above could be flattened to the CFG in

Figure 6.4 with no retreating arcs. We note that if the maximum number of
loop iterations (set by 1. =) is x the body is executed a maximum number of x
times, the IF condition a maximum of x+1 times. This observation also applies

171

to CALL statements. Two additional nodes are introduced into the CFG, namely
START and STOP. There are placed at the top and bottom of the CFG

respectively, and contain no code.
Formally, CFG = (Nc, Ec), where Nc is the set of unique node labels and

Ec the set of directed edges. We denote an edge between nodes A and B by (A,
B). This implies that the statement represented by node A is immediately
preceding that represented by node B in the CFG. The set Ec is the union of
the sets of retreating edges (Ec-) and the forward edges (Ec):

Ec = Ec' u Ej

where

c nEj =0
In general, the CFG is acyclic (since loops and calls can be flattened). This is a
direct consequence of the restrictions placed upon the language.

Consider the following definitions:
Definition 6.4:

For the edge A B) we define node B to be a successor of node A. The
set of successor nodes of A is given by 9(A).

Definition 6.5:
For the edge (A, B) we define node A to be a predecessor of node B.
The set of predecessor nodes of B is given by JV (B).

We note that START is the only node with no predecessor; STOP the only node
with no successor.

Definition 6.6:
The function ý: Nc -4 (START, STOP, SIMPLE, CALL, IF, FORIF,

WHILEIF, GET, RELEASE) defines, for each node, a type.
Nodes containing an IF statement are assigned type]IF, except if derived from

a FOR or WHILE construct, where the type of the node is given by FORIF or
WHILEIF respectively. Nodes containing non-control flow statements are
assigned type SIMPLE. For example, for the CFG in Figure 6.3:

ý(A)=START; O(B)= IF; O(F)=CALL

Definition 6.7:
A path from node A to node B, denoted [A, A1,..., AjpAj+jj***jA,, B],

B) exist in E+ exists if and only if edges (A, A,),..., (Ai, Ai +),..., (AnJ* C
We note that a path contains one or more forward edges. The set of all paths in

a CFG is denoted Pc.

172

Definition 6.8:
The fimction cc: N, -*Z'- defines, for each node of type WHILEIF or
FORIF, the value of the MAX constant in the statement.

Thus, for node K in Figure 6.3, a(K) =5 and a(N) = 10. For all other nodes in the
Figure, the function is undefined. We note that values for the function are
easily obtained during syntax analysis of the code.

Definition 6.9:
The fimetions Pb". N, -ý Z+ and P ""': N, -4 Z' define for each node
the best and worst case execution times for that node (when it is
executed).

Definition 6.10:
The fimetions yb": N, -4 Z+ and N -4 Z' define for each node
the best case and worst case execution times of any path from that
node to either the STOP node, or the next retreating edge.

Consider a CFG consisting of only SIMPLE and IF type nodes (together with
START and STOP nodes). For any node, y' and yst correspond to the BCET

and WCET of all paths from the node to the STOP node.
Consider the inclusion of loop constructs. Now, no path (consisting

entirely of forward edges) exists from any node in the loop body, to the STOP

node. For nodes in the loop body, y" andy"" represent the BCET and WCET

respectively, for all paths from the node to the end of the loop body. Therefore,
for the first node in the loop body, -f" and y""' define the BCET and WCET of
the loop body. For nodes of type FORIF or WHILEIF, the value of -[" is

merely P' since the loop conditional expression is always evaluated at least

once. The value of ý"' for node A (of type FORIF or W-HILEIF) is given by:
(((x(A) +1)*P(A))+ (a(A)*y*0"t(B)) + ywor'"(Q

where nodes B and C are both successors of A; B representing the first node in

the loop body, C the node after the loop body. We note that the FORIF and
WHILEIF node is executed, in the worst-case, one more time than indicated by

the value of the cc fimction: this reflects the fact that for x executions of the
loop body, the conditional expression is executed x+1 times.

The set of resources required in a CFG is denoted Rc.

Definition 6.11:
The function e: Pc -* Rc defines the set of resources that are accessed

when traversing a given path.

173

6.3.3 Gain Point Placement And Value
Within the language model defined in the previous section, a gain point
becomes a property of an edge in E+ (no edge in Ej has an associated gain C
point).

Definition 6.12:
GP(A, B, v) defines a gain point which emists on edge (A, B) E Ec.
The gain point has value v: by traversing that path at run-time, v
units of gain time, or gained resource v, has been detected.

The placement and value of the gain points outlined in section 6.2 is now
formally defined. The mathematical notation of the Z specification language is

adopted [Hayes871.
The set of all sets of nodes in CFGs is introduced [NODE), together with

the set of all sets of paths [PATH] and resources [RESOURCE]. The set of
nodes (N,,), paths (P,) and resources (R,) are defined:

F NODE

F PATH
F RESOURCE

We now turn to the formal definition of gain point value and placement.

Static Gain Points
Vn: NODEInF-NC A o(n)=EF o

3'511, S2: NODE I s, e Aý (n) A S2 E Aý (n) 9 s, * s2 A ywOrst(sl)::,, ywOrst(S.)

4--* GP(n, S2. Pfworst(SI) -'Yworsl(S2))

We note that nodes of type IF have exactly two successors.

Efficiency Gain Points
Vn: NODE Ine Nc 9

Vs: NODE Ise X*(n)
true icz* GP(n, s. y wors'(n) - ACET(n))

The ACET of a simple block is assumed to be available from the kernel.

Dynamic Gain Points

For nodes of type VVHILEIF a single gain point is placed on the edge between

the WHILEIF node and its successor that represents the first node after the

loop body (i. e. not the successor node that represents the first node in the loop

body). This gain point is defined:

174

Vn: NODEIneNC A o(n)=WHILEIF 9
3s,, S2: NODE I s, 4=- A"(n) A S2 r= A"(n) e Sl * S2 A

3s: NODE Is r= Nc A o(n)=STOP A [SI, Sl E Pc

4-. * GP(n, S2, (cc(n) - loopvar) * (, yworv' (sl) +0 wors(n)))

Nodes of type FORIF have two gain points associated with them. The first is
placed on all edges between predecessor nodes and the FORIF node:

Vn: NODEinr=Nc A ý(n)=FORIF
V p: NODE Ip e)V-(n) A

3s,, S2 : NODE I s, r= A" (n) A S2r= A" (n) 9 Sl * S2 A

3s: NODE Is (=- NcAO(n)=STOPA[sj. s1 r= P,,

, ý-* GP(p, n, (a(n) - max)* (, y**"" (S2) +0 worst(n)))

The second gain point is placed on the edge between the FORIF node and its
successor that represents the first loop after the loop body.

Vn: NODEInENC A o(n)=FORIEF e
3s,, S,: NODE I s, e A"(n) A S2 E A"(n) o Sl * S2 A

3s: NODE ISE NC A ý(n)=STOP A [s,, s] E P,

ýt* GP(p, n, (max - loopvar) * (y""' (S2) +0 worst(n)))

Resource Usage Gain Points
The primary observation made in section 6.2.4 is that all resource usage gain
points are placed outside loop constructs. Firstly, resource usage gain points
may be placed on edges between an IT node and its successors, if resources will
no longer be required if that path is taken:

Vn: NODEInENc A o(n)=IF e
3s,, s2: NODE I slc-A"(n) AS2EA(n) SI*S2A [s,, STOP]r=P,, A [s2, STOP]EPo

V r: RESOURCE I riEF-([sl, STOP])
r0 e(fs2, STOP]) 4* GP(n, 52, r)

vVr: RESOURCE IrE F-([s2. STOP]) o

ro effsj, STOP D 4* GP(n, s, , r)

175

Secondly, resource usage gain points may be placed on the edge leading from a
WHILEIF or FORIF node to the first node after the loop body if resources used
in the loop body are not required by the rest of the CFG:

Vn: NODEinr=Nc A 0(n)(=-(FOREF, WHELEIFj 9
3s,, S2: NODE I s, e Aý(n) A S2 r= Aý(n) o Sl # S2 A [s,, STOP]c- Pc

V n, : NODE I n, r= Nc A IS2, nj (=- Pc
V r: RESOURCE IrE F'(IS2, nj) o

ro F'QS2, STOP]) 4-* GP(n, s,, r)

It is noted that no resource usage gain points are placed in nested loops.

6.3.4 Preservation Of Utilisation

If the detection of gain time is accurate, whichever path is taken ftom the
START to STOP node in a process execution, the sum of actual execution time
and detected gain time is equal to Ci, the WCET of a process: utilisation is

preserved. This could be achieved by placing an efficiency gain point
immediately before the STOP node. However, the insertion of gain points
according to the definitions of placement and value given. in the previous
section enables earlier detection. The remainder of this section shows that such
gain points preserve utilisation.

Consider static gain points. If the WCET of the paths leading from a
divergent node differ, a static gain point is placed onto the shorter (in terms of
execution time) path. Formally, divergent node A has two successor nodes, B

and C. Let y" (B) > y`(C). A gain point is placed onto (A, Q to value y"'
(B) - y"(C). Given CA, the actual execution time up to node A, and GA, the

gained time up to node A, then
CA+ GA+ y"' (A) = Ci (6.5)

Expanding for node B, the actual computation becomes CA+ 0"' (A) +'Y""'(B),

with the gain time detected up to node A remaining at GA. Thus,

CA+ 0"' (A) + y` (B) + GA= Ci (6.6)

Expanding for node C, the actual computation becomes CA+ P"'(A) +'Y"r(C),

with the gain time detected GA+ -t"' (B) - y"'(C). Thus,
CA+ P"rs'(A) + y"' (C) + GA+ y""" (B) (C)

= CA+ 0`(A) + GA+ y"' (B) = Ci (6.7)

176

The equivalence between equations (6.5), (6.6) and (6.7) for paths from node A
is noted.

For dynamic gain points it is observed that the value of any such gain
Point is equal to the amount of execution saved by not executing the maximim
number of iterations. Thus, if one iteration is not executed, the actual
execution time after the loop must be at least w less than the worst-case
execution time to that point, where w is the worst-case execution time of the
loop. Additionally, the gain time up to this point will have increased by w.

Trivially, the property also holds for efficiency gain points since they
only detect the difference between the anticipated and actual execution times
of a block of code analysed to have constant execution time.

6.3.5 Summary

The informal model of gain point placement and value given in section 6.2 has
been formalised. A model of process code and possible control-flow through the
code was defined using an acyclic graph. Then, the placement and value of
gain points was defined, where gain points are a property of an edge between
two nodes in the graph. It is noted that in the formal model, a succession of
nodes each with a single successor and a single predecessor (Le. a linear ch in

of nodes) were not joined to form a basic block as implied by the informal model
of section 6.3. Thus, efficiency speed-ups are detected after every statement
rather than every basic block. This is clearly more accurate, as gain time is
detected sooner, although the number of gain points, and therefore the

associated overheads, are greater. The trade-off between accuracy and
overheads is discussed further in section 6.4.

The formal model of gain points is shown to preserve utilisation: all g in

time is detected. Although this could be achieved by noting the actual

execution time compared to the worst-case on process completion (i. e. no active

gain time detection), gain points allow the majority of gain time to be detected

before process completion. Dix's and Haban's approaches also identify (most)

gain time before process completion, although later than the gain point

approach. It is noted that these approaches are equivalent to the insertion of a

single efficiency gain point after each basic block.

177

6.4 Implementation And Overhead Considerations
Ideally, process set feasibility should not be affected by the insertion of gain
Points: the WCET of a process must be the same before and after gain point
insertion. This property holds if the value of a gain point (i. e. the amount of
gain time detected) is always at least the cost c (assumed constant) of executing
the gain point. Effectively, gain time is used to execute the gain point itself.
However, achieving this property in practice is difficult. Indeed, it is noted that
Dix's and Haban's approaches do not maintain this property.

One method of ensuring that the property holds is by using clairvoyance:
only gain points that will have values of at least c are inserted. This is clearly
impossible in practice as the values of dynamic and efficiency gain points
cannot be determined offline. Alternatively, dynamic and efficiency gain points
could be omitted, with only static gain points having values at least c being
inserted. With this approach, the accuracy of gain time detection decreases
(although all gain time not detected by gain points will be detected as spare
capacity on process completion). Clearly, the first method of ensuring that
feasibility is not affected by gain point insertion is not practical. The second
method greatly reduces the accuracy of gain point detection.

In Chapter 3 the trade-off between accuracy of detection and overheads
incurred was outlined. As the accuracy of gain time detection increases, so do
the overheads, with the likelihood of the process set being feasible decreasing.
For example a process with a single gain point placed at the end of its CFG
(effectively detecting the worst-case minus the actual-case execution time of
the process) detects g gain time, at a cost of c. In contrast, the gain time

placement outlined earlier in the chapter where (at least) one gain point is

placed on each edge in the CFG, detects g gain time, but at a cost of nc where n
is the number of gain points. Thus, the WCET of the process is increased by c
in the first case and nc in the second.

If the process set remains feasible, despite the additional overhead of nc
for each process (where n will vary for different processes), then all the gain

points suggested by the previous sections in this chapter could be inserted.

However, if the process set is not feasible with all those gain points, but is

feasible without them, then the number of gain points needs to be decreased.

Also, even if all n gain points can be inserted without the process set becoming

infeasible, many gain points will not be worthwhile.
For example, it is observed that the number of efficiency gain points

inserted is high compared to the number of static and dynamic gain points, as

178

efficiency gain points are inserted after each node. However, in general, the

gain time detected by efficiency gain points will be small compared to that
detected by static and dynamic gain points. This is due to hardware efficiency
gains being small relative to gains made due to control flow decisions not to

execute nodes (in a CFG). Therefore, if the overall number of gain points is to
decrease, it is preferable to reduce the number of efficiency gain points rather
than static or dynamic gain points.

Consider an implementation of efficiency gain points which reports the

gain time due to hardware speed-ups since the last efficiency gain point rather
than merely the last node executed in the CFG. This requires less efficiency
gain points to be inserted, each detecting more gain time. The ratio of
overheads to detected gain time has decreased, along with detection accuracy,
compared to insertion of efficiency gain points after every node.

In the extreme, all efficiency gain points could be omitted, with the

accuracy of detection of gain time generated by hardware speed-ups decreasing
further. However, this problem can be (partially) overcome by the
implementation of gain points given in the following section. Subsequent

sections providing an implementation for the insertion of gain points into

process code and the detection of slack time respectively.

6.4.1 Gain Point Implementation

The architecture assumed by this section is given in Figure 6.5. This is an

abstraction of conventional hard real-time kernel design [Kopetz85,

Ramamritham87, Bums921 also assumed by Haban et al [Haban90]. Resident

in the kernel is the scheduler implementing a gain time policy (discussed

further in Chapter 7). Within this context, the implementation of gain points
involves insertion of code into a process, that code being responsible for

communicating the value of detected gain time to the kernel (and therefore the

gain time scheduler). This is achieved by a kernel interface call to record gain

time with parameters including the value of the gain time detected, and the

type of gain point making the call. The call is termed the Gain Time Kernel

Call (GTKC). For static gain points, only the GTKC need be inserted into

process code (since the gain point value is constant). For dynamic gain points

code to calculate the value of the gain point is required as well as the kernel

call.

179

Application
Kemel Interfoce -

Kernel

I Hardware I

Figure 6.5: Architecture.

Efficiency gain points require the actual and worst-case execution times

of the preceding block in order to calculate their value. This would require at
least one kernel call. This overhead can be reduced by merely inserting a
GTKC of null value, with the kernel obtaining the actual and worst-case
execution times of the preceding block and calculating the gain point's value.

In discussions above, it was indicated that the number of efficiency gain
points can be reduced by calculating the value of an efficiency gain point with
respect to all nodes in the CFG executed since the last efficiency gain point,
not just the previous node. Also, the value of the gain point is more efficiently
calculated by the GTKC itself. Thus, the value of an efficiency gain point
becomes:

Ci -y worst (n) - ai - gi

where n is the node in the CFG after the call. The actual execution time of ci

up to (and including) the call is aj, with the gain time reported by ri prior to

the call given by gi. We note that Y" (n) is available as a static array

instantiated at system start-up.
A key issue when developing hard real-time kernels is that of protection

[Burns92]. This manifests itself in the implementation of gain points and the

associated GTKC. Consider static gain points, where the value of the gain

point is constant. Conventionally, this constant would be embedded in the

process code, with little likelihood of the process being able to maliciously alter
it (assuming that code is write protected). However, dynamic gain points

calculate the amount of gain time before making the kernel call. A malicious
(or faulty) process may report more gain time than actually generated causing

potential failure of processes to meet deadlines (if that gain time were assigned

to another process). To counteract this problem, the GTKC must check to see if

the value of reported gain time is possible.
Intuitively, this could be achieved by checking that the following

condition holds when a GTKC is made:
ai + gi +g+ 1`(n) Ci

180

The actual execution time up to the call includes all nodes executed prior to the
gain point call, whilst the worst-case execution time of remaining code is
7"""W for the node after the gain point call (n). The amount of reported gi
time is g. The inequality is due to the possibility of hardware speed-ups not
having yet been detected by efficiency gain points.

Consider a rogue gain point of value g+ 8, being 8 greater than its actual
value, with the actual execution time up to the call being at least 5 better than
expected due to hardware speed-ups. The above condition will hold. Now, a
GTKC is made at an efficiency gain point, of value S' (where 5' ýt 5). The net
effect is that g+S'+8 has been reported, even though only g+S' has actually
been generated, with the above condition failing.

The problem can be solved by noting efficiency gain time when a GTKC
is made for a static or dynamic gain point. Initially, the reported gain time is
increased by the efficiency gain time since the last GTKC (either efficiency,
static or dynamic). This is used, along with the value in the gain point call, to

evaluate condition given above.

procedure GTKC (type : NodeType; value : INTEGER;

snode : NC) is

begin

-- add on efficiency gain time since last GTKC

gt [i]= Ci - Pywor"' (snode) - actual [iI

-- now do static / dynamic

if type = static or type = dynamic then

if value + gt[i] + actual(i] + Pyworst(snode)
< Ci then

gt[i] gt[i] + value

end if

end if

end GTKC ;
Figure 6.6: Algorithm For GTKC.

The pseudo-code for the GTKC is given in Figure 6.6. The array gt [i] is used

to accumulate the gained time generated by process ri (where i is available

within the kernel, being the identifier for the currently executing process). In

Chapter 7, this method of recording the gain time is expanded. The array

actual(iI is used to record the actual execution time of a process. The

181

parameter snode represents the node immediately after the gain point call in
the CFG. This is a constant, available at compilation time. The values for y"
for the nodes in a process's CFG are hinitialised at system start-up.

The implication of implementation of GTKC is that efficiency gain time
is detected during a GTKC for static or dynamic gain time, implying that
efficiency gain points need not always be inserted into a process's CFG.

6.4.2 Gain Point Insertion Into Process Code
The WCET of a CFG can be determined by analysing the graph from START to
STOP node. For each node, the functions Pb", P"', yb"' and y" need to be
defined. Nodes of type START and STOP are null, and therefore require 0
execution time. Nodes of type IF, LOOP and SIMPLE consist of 1 or more
statements executed in strict sequence. Each statement is assumed to take
constant time: hence P" and P"" of each statement, and therefore the node,
are equal. The value of P" (and therefore P"') is provided by basic block

analysis of conventional WCET analysis, e. g. instruction cycle counting
[Puschner891.

Node of type CALL must be treated differently: P" and P"O' reflect the
best and worst-case execution times of both the CALL node itself and the called
procedure. To obtain the WCET of the procedure, the CFG corresponding to the
procedure is analysed. Now, P" and P" for a CALL node correspond to the

sum of the best-case execution time of the procedure call and procedure code,
and to the sum of the worst-case execution time of the procedure call and
procedure code, respectively. Thus, even if the same procedure is called at
different points in a process's CFG, the procedure code is only analysed once.
An alternative strategy would be to expand the CFG of the procedure within
the CFG for each process that calls the procedure, and at each point within the

process that the procedure is called. This is inefficient compared to the first

approach which requires a single pass through the CFG only.
To obtain y" and y""' (and the best and worst-case execution times of a

procedure), each possible path from START to STOP nodes in the CFG is

analysed. One method of analysis is via a depth-first recursive scan of the CFG

(i. e. from STOP to START). This approach reflects the observation that y" and

, y"' for a node depends upon the values of y" and y"" being defined for its

successor nodes. Whenever a CALL node is encountered, the first node in the

CFG for the associated procedure is examined to see if y6"' and y"' have been

182

defined for that node. If they have not, a recursive scan of the procedure's CFG
is ILMtiated.

Having defined y" and y" for a process's CFG (and any
procedures invoked directly or indirectly by the process), gain point insertion
may proceed. This could be achieved by several alternative methods, including
a bottom-up scans of the CFG (c. f. WCET analysis). Simplistically, two passes
are required through the CFG, one for determination of y" and y"' and the
other for insertion of gain points. I

6.4.3 Evaluation Of Gain Time Detection
In this section the detection of gain time using gain points is compared with
the alternative approaches of Dix and Haban. Specifically, three approaches
are compared:

Pragmatic Gain Points (PGP) : all static and dynamic gain points are
inserted, (with most efficiency gain time detected by these gain
points), with a single gain point inserted before the final (STOP)
node in a process's CFG.

Dix / Haban Approach (DH): an efficiency gain point is inserted after
each basic block in a process's CFG.

Experimental Control (EQ: a single efficiency gain point is inserted prior
to the final (STOP) node in a process's CFG.

The PGP approach is that outlined in sections 6.3 and 6.4. The EC approach
provides a control for the comparison.

During comparison, time at which gain time is detected within a
process's execution is noted for a number of processes, along with any overhead
costs that have been incurred. It is assumed that any gain time detected has a
useful lifetime, or scope, up to the deadline of the process generating that spare
capacity (see Chapter 7 for further details). This enables comparison between

approaches that detect gain time at different points in a process's execution.
The generation of random process sets to use with the above gain time

detection approaches is difficult since actual process code structure needs to be

generated, i. e. loops, conditional statements etc. To overcome this problem, the
WCET, offsets, deadlines and periods were chosen randomly for 5 processes
(see section 4.7). The randomly generated process timing characteristics are
given in Table 6.1. It is noted that the worst-case utilisation of the process set
is 95.96%. The process set does have a critical instant (the first occurring at

183

time 4107), and is feasible with priorities assigned in a deadline-monotonic

manner (i. e. in descending order in the table).
An arbitrary process structure was then composed for each process, with

Portions of WCET assigned to basic blocks within that structure. The size of
the blocks (in terms of WCET) were differed across the process set. Also, a
nurnmum execution time was assigned to each basic block, with the actual
execution time of that block determined by a random number (from a normal
distribution). The process code is given in Appendix B.

Process 0 C D T
47 77 92 406

'C2 435 173 264 612
T3 504 393 971 1201
'C4 1235 89 1062 1436
'C5 1740 1 -232 F

2360 1 23671

Table 6.1: Process Set For Gain Point Evaluation.

The cost of each gain point is assumed to be constant for an application
on a given hardware platform. However, this may vary across applications and
platforms. Consider the gain point implementation given in section 6.4 where a
kernel interface call is prescribed. The overheads of such a call are, in general,
greater than an application level procedure call due to protection [Burns921.

For example in a system implemented on an Intel 486DX processor
[Intel89], a kernel call with protection could be implemented using the
hardware "call gate" mechanism. The low privilege application process has its

privilege increased for the duration of the call. The cost of the call, due to
hardware checking of the callers right to make such a call, is 94 cycles on a
33MHz processor, that is about 3gseconds. This is the equivalent to about 4

multiplication instructions. In contrast, an implementation which does not
utilise protection, the GTKC is the equivalent of a normal procedure call. On

an Intel 486DX processor this requires 23 cycles (about 0.7 g seconds).
These differing overheads are recognised in the comparison, with the

detection approaches considered with respect to overhead costs of 1 and 4.
These values are approximately 5% and 20% of the average block size of the

processes.
A number of runs of the process set were performed, with differing actual

execution times of basic blocks between runs, although the same actual

184

execution times were used for each of PGP, DH and EC for a given execution in
a run. In all, there were 1201,792,409,336 and 162 executions of processes rl P
21 and c, respectively (the diff T 'C3

I T4 erences being due to the relative periods
of the processes).

PGP
PGP (overheads)
DH

---- DH(overheads)

-EC
- EC(ove

Key For Graphs 6.1 - 6.10

35
30
25

Gain Time 20
Detected 15

10
5
0

0

Jp

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Process Computation Time

Graph 6.1: Gain Time Detected From Executions Of rl (Overheads, = 1).

70
60
50

Gain Time 40

Detected 30
20
10
0

0

m Mw- m

n__. r- -- ý- 0 ; ý7
m BIL ft w

20 40 60 80 100 120 140 160 180

Process Computation Time

Graph 6.2: Gain Time Detected From Executions Of c2 (Overheads = 1).

185

250

200
Gain'Ame

150
Detected

100

50

0
0 40 80 120 160 200 240 280 320 360 400

Process Computation Time

Graph 6.3: Gain Time Detected From Executions Of v, (Overheads = 1).

40
35
30

Gain Time 25
---------- ;; 7, =f

20
Detected 15

10
5
0

0 10 20 30 40 50 60.70 80 90

Process Computation Time

Graph 6.4: Gain Time Detected From Executionsof 'U4 (Overheads = 1).

100
90
80
70 W% M&

Gain Time 60
50

Detected 40
30
20
10
00

20 40 60 80 100 120 140 160 180 200 220 240

Process Computation Time

Graph 6.5: Gain nme Detected From Executions Of c, (Overheads = 1).

186

35
30
25

.0aa- ; 1;; t --------------------------- Gain Time 20 If 00, j lb

.

/0

, 144

7.

Detected 15 %8
10 .8

an MM A

5
0r

05 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Process Computation Time

Graph 6.6: Gain Time Detected From Executions Of r, (Overheads = 4).

70
60

win a# Gain Time 40
Not= Detected 30 I= Sol, M EMS. 20

10
0

0 20 40 60 80 100 120 140 160 180

Process Computation Time

Graph 6.7: Gain Time Detected From Executions Of c, (Overheads = 4).

250

200
Gain 91'fine i5o
Detected 100

50

0L
0

.----------

40 80 120 160 200 240 280 320 360 400

Process Computation Time

Graph 6.8: Gain Time Detected From Executions Of c, (Overheads = 4).

187

40
35
30

bir or 0-ý; a
Gain Time 25

20 ------------- ----------------
Detected 5 ------------- I

10
5
0

0 10 20 30 40 50 60 70 80 90

Process Computation Time

Graph 6.9: Gain Time Detected From Executionsof 'r4 (Overheads = 4).

100
90
80

=%, &some Mm
saw

70

50 -j r
Gain Time 60

Detected 40
30
20
10
0

L.

J=ý

0 20 40 60 80 100 120 140 160 180 200 220 240

Process Computation Time

Graph 6.10: Gain Time Detected From Executions Of c, (Overheads = 4).

The graphs plot on the y-axis the average amount of gain time detected
during the execution of a process, and the average amount of gain time
detected after overheads have been subtracted for each gain point. The x-axis
represents the amount of process computation time that has elapsed. This

ranges from 0 to Ci for process ci. Thus, in graph 6.1, after c, has executed for

20 time units, an average of 24 units of gain time have been detected by the
PGP approach, 5 time units have been detected by the DH approach, with no

gain time detected by the EC approach. After the subtraction of overheads, 22,

4 and 0 time units are detected respectively.
When overheads are not considered, the graphs show that in general,

gain time is detected earliest by gain points, when compared with Dhes and
Haban's approach, and the experimental control. Thus, detection using gain

188

Points is, in the majority of cases, the most accurate. For process -T5, Dix's and
Haban's approach appeared the most accurate within interval [130,200] (see

graph 6.5 or 6.10). This was due to the efficiency gain time after the execution
of a basic block being detected immediately after the execution of the basic
block by the DH approach and not by the PGP approach. It is noted that an
efficiency gain points could be inserted after the basic block under PGP (as
proposed by the informal and formal models in sections 6.2. and 6.3) although
this would add to overheads.

When overheads are considered, the higher overhead of 4 (graphs 6.5-
6.10) reduces the amount of gain time that can be re-used when compared with
an overhead of 1 (graphs 6.1-6.5). For practical implementations, this overhead
must be kept as low as possible, by using the fastest secure mechanisms
available for communication to the kernel.

6.5 Extensions

The sources of spare capacity outlined at the beginning of this chapter include
the pessimism inherent in the WCET analysis of processes. Previous sections
have shown how the pessimism due to control-flow branches in code and
inaccuracies in basic-block analysis can be detected earliest by the use of gain
points. However, it has been observed that in some cases, processes will never
execute for their WCET due to their semantics [Puschner891. For example,
WCET analysis may assume the execution of two basic-blocks that cannot be
both executed at run-time (i. e. one block is executed if a condition is true, the

other if the same condition is false). Semantic aids inserted into process code
can reduce such WCET pessimism.

Consider an application process which performs some operations on a
300x2OO pixel image (drawn from [Puschner891):

row =1

while row :5 300 loop

column =1

while column :! 5 200 loop

if pixel[row, column] =1 then

-- if pixel set perform operation

-- 10 time units

189

end if ;

column = column

end loop

row = row

end loop

Conventional analysis assumes 300x2OO iterations, at a cost of 10 time units
each. This is clearly pessimistic if the maximum number of pixels that are ever
set is s< 60000. Puschner et al propose the use of markers, placed into the loop
body indicating the actual aximum number of iterations of the loop
[Puschner891. Only one marker is permitted within the scope of any loop.

Such a marker could be placed inside the above loop code to inform
WCET analysis that the pixel operation is called ami um of 100 times
(although the IF statement and associated condition will be called 300x2OO
times). If such markers are utilised, the placement of (dynamic) gain points is

unaffected. However, the value of such gain points must consider the value of
the marker. Thus the maximum number of iterations of the loop is given by:

m, n(valueof
a marker within the scope of theloop,

maximwn iteration constant declared in toop'construct)

The marker must also be considered when defining y" and P" for nodes

representing loop statements.
The gain point approach could also be extended to consider other

semantic aids, for example those described by Park [Park931, which enable
aspects of high-level knowledge regarding actual control-flow to be captured
via a regular expression representation of possible control-flow paths.

6.8 Summary

To guarantee 100% predictability of processes requires the worst-case usage of

resources to be considered. Often, the worst-case estimation of resource usage

exceeds the actual-case usage. This implies that at run-time, a degree of spare

capacity will be evident in the system. This chapter has considered the

detection of such spare capacity, in particular gain time, defined as the

proportion of spare capacity due to processes not executing for their worst-case

execution time.

190

Gain time could be detected by comparing the actual and worst-case
execution times for a block of process code, after the basic block has completed
execution. However, much gain time can be detected earlier at control-flow
branches in the code. Gain points were introduced to enable such detection.
Gain points take the form of software triggers inserted into process code offline
at the earliest points in the code that gain time can be detected (without the
aid of clairvoyance).

Specifically, static, dynamic and efficiency gain points were described to
detect gain time due to static control-flow, loops and hardware speed-ups
respectively. A fourth form, namely resource gain points, were introduced to
enable spare resources (i. e. non-processor) to be detected. An informal model
was presented which described the placement and value of gain points. This
was developed into a formal model, based upon an acyclic graph of process
code. Within the context of the formal model, gain points were shown to detect
all gain time.

An implementation of gain points was described, taking the form of a
kernel call placed into process code. The implementation given enables the
amount of gain time reported by a process to be checked so that rogue
processes cannot report more gain time than has actually been detected. If this
were possible, the allocation of gain time to another process could cause a
guaranteed deadline to be missed.

The trade-off between the accuracy of detection and overheads incurred

was discussed. As accuracy increases, so do the overheads, the latter detracting
from the amount of gain time that can be assigned to other processes. One

approach for the insertion of gain points dictates that efficiency gain points be
inserted after each basic block of code, incurring significant overheads.
However, an implementation of gain points was found whereby efficiency gain
time can be detected by a gain time kernel call reporting static or dynamic gain
time. This reduces the number of gain points required to detect all gain time,

although at a cost of reduced accuracy.
The gain point approach was evaluated by comparing it with other

approaches for detecting gain time, namely those proposed by Dix et al [Dix89]

and Haban et al [Haban901. Gain points were shown to detect gain time earlier
than the other proposed approaches, although at a higher cost.

In general, the earlier detection of gain time provides a greater potential
for the re-use of spare capacity, leading to the increase of overall system utility

and flexibility at run-time.

191

Chapter 7.
Allocation Of Spare Capacity

The efficient and early detection of spare capacity was considered in Chapter 6.
Gain time and unrequired resources are signalled to the underlying kernel, via
gain points, at the earliest point at which they may be detected. The
identification of intervals of slack time was seen to be the responsibility of the
kernel itself. Given the ability to detect these forms of spare capacity at run-
time, the outstanding issue now becomes the re-use of such spare capacity to

extract greater utility from the system. This issue forms the main focus of this
chapter.

In the literature, little consideration has been given directly to the

allocation of detected spare capacity. In Haban et al [Haban901 and Moron et al
[Moron931 policies are defined which allocate spare capacity to (non-crucial)

processes that may otherwise miss their deadlines, so improving the number of
deadlines met. Within the context of this thesis, crucial process deadlines are
guaranteed offline with the result that any available spare- capacity can be

used to improve the overall utility of the system. Whilst meeting the (soft)
deadlines of non-crucial (unguaranteed) processes may im&ove the utility of
the system, it was argued in Chapter 3 that assignment of spare capacity to

crucial processes can also improve overall system utility. Therefore, a
computational model is required under which crucial processes may improve

their utility by using spare capacity.
Many models have been proposed to enable optional, possibly

unbounded, computation to be incorporated into crucial processes. Most are
founded upon the notion of processes consisting of mandatory and optional

parts, the former being guaranteed offline, the latter unguaranteed. Liu et al
have identified three general methods by which optional software components

can be incorporated into crucial process executions [Chung90, Liu911:

W imprecise computations;
(ii) sieve functions;
(iii) multiple versions.

Imprecise computations produce a result whose accuracy increases

monotonically as execution proceeds. A minimum accuracy is achieved using a

mandatory (i. e. guaranteed) execution, with subsequent optional (possibly

192

unguaranteed) executions improving the result. The latter utilise run-time
spare capacity. Sieve functions represent code within a crucial process that has

not been guaranteed as part of a crucial process. However, if sufficient spare
capacity is available, it may be executed at run-time. Again, the motivation is
to enable additional accuracy or utility to be achieved. Multiple versions
prescribe that several different implementations of a function are available at
run-time, with the version with shortest execution time guaranteed as part of a
crucial process. At run-time, if sufficient spare capacity is available, one of the

more expensive (in terms of execution time) versions may be executed
(assuming that greater execution time equates to greater accuracy or utility).

The above three methods have been generalised by Audsley et al
[Audsley93a], where a process takes the form:

IP, C1, X, C2, OP
IP and OP represent the input and output phases of the process. C1 and C2 are
both part of the mandatory computation (with IEP and OP) with X forming the

optional execution. It is this model that is assumed in this chapter for crucial
processes that require spare capacity for additional computation.

To afford X, in the above model, the possibility of executing at run-time,
two methods are identified:

W after executing C1 (and IEP) the process requests'spare capacity to

execute X, prior to executing C2 (and OP);
(ii) the process is split into three processes: IP and C1 are placed into

one process, C2 and OP into another (both these processes are

guaranteed), with X forming a third, unguaranteed, process. This

process may execute using spare capacity. A linear precedence

constraint is placed over the three processes.
In method G) only gain time can be allocated to execute X since at least one

crucial process is runnable (with no slack time by definition). In method (ii),

gain time or slack time could be allocated for X, if the first process completes
before the release of the third process.

It is noted that in both methods, the crucial process demands spare

capacity. This is achieved via a Spare Capacity Kernel Call (SCKC) within the

kernel interface (see Figure 6.5 section 6.4.1). The parameters of such a call

include the minimum and maximum amount of spare capacity requested,

together with the deadline by which that spare capacity is required. If spare

capacity is allocated, the exact amount given to a process is between the

minimum and maximum values. If a deadline is specified, any allocated spare

193

capacity is guaranteed to execute before the deadline. Some of the possible
fOlmins of optional computation permissible within the constraints of these
parameters are:

bounded optional with a 1/0 constraint (i. e. if started must
complete): minimum and um requested amounts of spare
capacity are equal to the WCET of the optional computation, with
the deadline set to be the time by which the optional must
complete;

(ii) unbounded optional: um amount of spare capacity set to be
the least amount of execution time required to produce a useful
result, with the . um set to be at least the mean execution
time of the optional component;

(iii) bounded optional: minimum amount of spare capacity set to be the
mean execution time of the optional computation, the . um
amount set to be the WCET. The deadline is set to be the time by

which the optional must complete.
It is noted that in GO and (iii) above, the relationship between the urn
and m* requested spare capacity values, and the maximum, mean and

. nimum execution times of the process, could be varied. Other possible
optional computations include non-crucial processes.

Within this chapter a number of additional assumptions are made.
Requests for spare capacity originate from running (or runnable) processes.
These could be either application or kernel processes. When requests for spare
capacity have been made, via a SCKC, a kernel resident spare capacity
allocation policy (SCAP) determines which requesting processes are to receive
spare capacity, and the amount of spare capacity they receive. Under normal

execution, processes are assumed to have a static priority, with processes
dispatched in a priority pre-emptive manner. To enable resource sharing under
the auspices of one of the priority inheritance protocols (see Chapter 2), process

priorities are permitted to be varied whilst executing part or all of a critical

section.
To enable the construction of SCAPs a greater understanding of the

exact characteristics of spare capacity needs to be developed. For example,
there is little merit in allocating gain time if such an action leads to deadlines

that have been guaranteed offline to be missed. To counter this problem a
model of spare capacity is derived in this chapter, in terms of its scope and
preservation. The former refers to the interval of time that any spare capacity

194

may be allocated to a process without causing subsequent deadlines to be
missed. The latter discusses how, under certain circumstances, the scope of
spare capacity may be extended in order to prolong its useful lifetime. Using
this model, a set of parameters are defined to which any SCAP must conform
so that 100% predictability of crucial process deadlines is not violated. This
model is discussed in the following section.

In section 7.2 the conversion of slack time to gain time is discussed, the
motivation being to enable more spare capacity to be guaranteed. Section 7.3
presents implementation strategies for spare capacity allocation policies. An
evaluation of the main proposals of the chapter is given in section 7.4, with a
summary of the chapter given in section 7.5.

7.1 Characteristics Of Spare Capacity

In this section, the characteristics of spare capacity are explored, in terms of a
model which defines the properties of gain time, slack time and spare
resources. The following section provides some initial observations. Subsequent

sections define a formal model and derive a number of properties of that model.

Initial Observations

Gain time occurs when processes, at run-time, do not execute for their WCET.
Conventionally, the spare capacity due to gain time becomes apparent when
the process completes early. Figure 7.1 shows a single crucial process cl with
WCET C, and actual execution time A, for a release at t. At t+A, the process

completes. Now it is apparent that CI-Al gain time is available (indicated by

the dotted box in the figure). This gain time can be assigned to any other
process without affecting cl since it has already completed and met its

deadline. If the process assigned the gain time executes in the interval [t+A,,

t+C,), no other process is affected (assuming that this process executes within

the interval at the same priority level as the crucial process and uses no

resources), with 100% predictability of crucial process deadlines maintained.

I-
t+ A, t+cl

time

Figure 7.1: Assigning Gain Time Detected At Process Completion.

195

Using gain points, the gain time may be identified earlier. For example,
Tj may have gained C, -A, units after a single unit of execution time. This gi
time can be utilised whenever detected without affecting the predictability of
, rl. For example, let the processor idle whenever gain time is detected, for an
amount of time equal to the length of gain time detected: this cannot affect the
deadline of r,. This is illustrated in Figure 7.2. Crucial process 'r, detects tb- t'
units of gain time at t. which is consiimed by idling the processor for the
interval [t., t.). Again, guaranteed deadlines of other processes are not
compromised.

T,
ta th t +Cl

time

Figure 7.2: Assigning Gain Time Detected During Process Completion.

In both scenarios detailed above, slack time is identified at the
completion of rl (see section 6.2.6), up to the release of the next crucial process.
When using gain time to idle the processor, at the point at which slack time is
identified, all gain time has been utilised. However, when gain time is
identified at the completion of a process execution, along with slack time, more
spare capacity has been detected than is actually available For example, in
Figure 7.1 at time t+A, there are C, -A, units of gain time detected. If the next
release of a crucial process is at t'>t+Cl, the t'-(t+A,) of slack time will be
identified. The total spare capacity detected is:

t'- Q+A,) + C, - A,
The actual interval of spare capacity is [t+Al, 0. Clearly, the length of this
interval is less than the total amount of spare capacity identified, that is:

t'- (t + A,) + C, - A, > t'- (t + A,)

The implication of this observation is that one or both of gain time and slack
time available must be reduced to compensate.

Slack time may be assigned to any process without affecting any crucial
process deadlines, since no crucial processes are runnable when slack time is

available. It is assumed that slack time is utilised at a priority lower than any
crucial process.

196

Extending these observations, it is noted that gain time detected by rl
can be partitioned and assigned to more than one other process at any time
after its detection without affecting the generating process. However, since the
WCET of r, (i. e. C,) has been guaranteed by feasibility analysis, and gain time
generated by rl can only be used before the deadline of cl. Intuitively, this gain
time must also be utilised at no more than the priority of r,.

The essential principle underpinning these observations is that spare
capacity can be assigned to any process, in any quantity, at any time, without
affecting the generating process, or any other crucial process, subject to certain
rules of scope and assignment. The following sections define a model of spare
capacity based upon these initial observations.

7.1.2 Kernel Level Model Of Spare Capacity

When gain time is detected by a gain point a GTKC is made (see Chapter 6)

reporting the spare capacity to the kernel. At this level, spare capacity may be

represented by a gain-time tuple of the form <, r,, j, 5, t, d> where ri is the

executing process detecting the gain time; j the priority level at which ri is

currently executing; 8 the amount of gain time detected; t the time at which
the gain time was identified and d the deadline of the current execution of ci
(i. e. d= t+Di where ci is released at t').

At the completion of crucial process ci, the kernel itself is responsible for

detecting slack time (see section 6.2-6). Such slack time is represented by a
slack-time tuple of the form <8, t> where 8 is the amount and t the start time

of detected slack time. Typically, 8 will be equal to t'-t, where t' represents the

next release of a higher priority (crucial) periodic process after the completion

of ri at t. The deadline of this spare capacity is given by 5 +t.

When spare resources are detected by a gain point (via a GTKQ a

resource tuple of the form <, ri, R, d> is formed, where R is the resource detected

as spare by process ci. The deadline d is the next time at which any crucial

process may next require the resource. Clearly, the calculation of such a value
is problematic. Alternatively, the scope can be set to the next release time of ci,

or, if such information is available to the kernel at run-time, the mi i um

execution time of ci before it may request R. This approach places emphasis

upon the SCAP to consider the requirements of other crucial processes

regarding R.

197

In the worst-case, a gain-time tuple is created for each gain point in a
process. This could lead to a large number of gain-time tuples. However, if on
the creation of a gain-time tuple another exists with the same process, priority
level and deadline fields, the two tuples may be reduced to a single tuple.
Hence, if <Ti, j, 8, t, d> exists when <rj, j, 8', t, d> is created (i. e. t>t) , then
the two tuples are merged into a single tuple <, ci, j, 5 +8', t, d>. Since only one
activation of a process is runnable at any one time, this limits the number of
tuples to an of n.

In the same manner, a tuple may be split into several parts, where the
process, priority level, creation time and deadline are the same, with the
amount of spare capacity in the original tuple equal to the sum of the spare
capacity declared in the new tuples. This applies both to slack time and gain
time tuples.

It is noted that if a process detects gain time whilst executing in a
critical region at a priority level higher than normal, the created tuple could be

merged with tuples representing gain time detected by the process whilst
executing at its normal priority level, assuming that all the gain time had been
detected at the normal priority level. This maintains the limit of n on the

number of gain-time tuples. The priority level of the gain time detected in a
critical region can be preserved by noting the behaviour of the run-time
resource allocation protocol. Under the Priority Ceiling Protocol [Sha901 (see

section 2.3.5), a process could execute at all higher priority levels whilst in a
critical section. This limits the maximum number of tuples to i for a process
whose normal priority level is i. Thus, 1+2+... +n gain time tuples could exist at
any time (i. e. (n 2+ n) / 2).

On creation, gain-time, slack-time and resource tuples are placed into

GTList, STList or RList respectively. These are lists, although the cost of
insertion (i. e. during a GTKC) is minimised by placing new tuples at the head

of the list. It then becomes the responsibility of any SCAP to order the

respective lists if required (discussed further in section 7-3). At certain times,

tuples are discarded from the lists (discussed further in section 7.1.3).

When gain time or slack time is assigned to requesting processes, a

pseudo-process is created, with release time, computation time, deadline and

priority level inherited from the characteristics of the spare capacity assigned

to the requesting process. For example, if gain time <, ci, j, 8, t, d> is assigned

to process rk at time t, the pseudo-process ck' is created with release time t',

computation time 8, deadline d-t' (i. e. relative to t') and priority level j. If slack

198

time <5, t> is assigned to ct at time t, the pseudo-proceSS -Tk' is created with
release time t, computation time 8, deadline t+B-t' (i. e. relative to 0 and
Priority level lower than all crucial processes. If more than one gain time or
slack time tuple is assigned to a process, one pseudo-process is created for each
tuple assigned, to reflect the possibility that the assigned tuples may have
different priority levels, computation times or deadlines.

7.1.3 Preservation and Scope of Spare Capacity
Since gain time has been guaranteed at a particular priority level by offline
feasibility analysis, it must be utilised in preference to the normal execution of
a lower priority process. This is summarised by the following theorem:

Theorem 7.1:
If a gain time or slack time tuple exists with a higher priority level
than the currently executing process (either crucial or non-crucial),
that gain time (or slack time) must be utilised immediately. If more
than one such tuple exists, they are utilised in descending order of
priority.

Proof:
Consider gain time tuples. During feasibility analysis, processes are
assumed to execute as soon as possible. Assume that gain time has
been detected by ri, that process completing at t. Let process 'Ek (k >
i) execute. Now, if the gain time tuple created by ci is utilised at

priority level i, the assumption inherent in feasibility analysis that
processes execute as soon as possible has been broken: the
interference on a lower priority process by ci may now be greater
than assumed offline (possibly) causing a deadline to be missed.
Therefore, if a gain time tuple exists which has a higher priority
than all currently runnable processes, that gain time tuple must be

utilised. If more than one gain time tuple exists of higher priority
level than 'Ck then the tuple with the highest priority level must be

utilised since this is the priority level at which execution is assumed
to occur by ofnine analysis.
A similar argument applies to slack time tuples assuming they have

a priority lower than all crucial processes.

199

It is noted that a process of priority Tk could execute in preference to gain time
detected at priority level i (k > i) if the gain time was then not utilised. Also, if
gain time tuples exist with equal priority levels, then an arbitrary choice
amongst them can be made with respect to which is utilised if the priority level
is greater than the running process.

The implication of Theorem 7.1 is that if no process is runnable whilst
gain time or slack time tuples exist, that gain time (or slack time) must be used
to idle the processor (highest priority gain time first). It could be argued that
since slack time is terminated whenever a crucial process is released (i. e.
crucial sporadic process) it is not necessary to utilise slack time to idle the
processor. However, a SCAP may decide to execute an optional process using
that slack time assuming that a given amount of slack time exists, when in
practice it may not.

Theorem 7.1 appears to limit the usefulness of gain time since it needs to
be utilised as soon as the detecting process completes. However, an approach
for the preservation of gain time is now described.

One method for preserving gain time, the Extended Priority Exchange
(EPE) method, has been presented by Sprunt et al [Sprunt881 to enable gain
time to be used to permit non-crucial sporadic processes to execute. Under
EPE, gain time is detected upon process completion (actual execution time is

compared to worst-case execution time). If non-crucial processes are available
to utilise that gain time then they are executed. If no such process is available,
the highest priority runnable crucial process is executed, with the gain time

preserved at this lower priority level. Eventually, if the gain time is not
utilised, it is used to idle the processor.

However, EPE does not provide any guarantees regarding available gain
time for requesting processes. Also, EPE does not incorporate slack time and
spare resources. After formal proof of the applicability of the EPE, these

restrictions are lifted. Consider the following theorems:

Theorem 7.2:
Let gain time given by <cj, j, 8, t, d> be assigned to process 'Ck
(where rkmay be crucial or non-crucial). If the gain time is not fully

utilised byTk fit may be preserved up to the deadline of ri (i. e. d) at

the priority level at which that process detected the gain time (i. e. j).

200

Proof:
Let rkutilise S'<8 units of gain time. This is equivalent to splitting
<Ti, j, 8, t, d> into <, ci, j, 8', t, d> and <, ri, j, 8 -8,, t, d> with the
former tuple assigned to rk. Effectively, the latter tuple has not been

assigned and is thus preserved up to d.

Theorem 7.3:
Let gain time given by <, ri, j, 8, t, d> be assigned to crucial process
, rk executing at priority level 1. Process Tk utilises the gain time to
execute already guaranteed computation. The original gain time may
be preserved in the form<Tk) 10 8, t, t'+Dk> where t' is the release of
Tk*

Proof:
After 'Ckhas been assigned the gain time, it may use Ckunits in [t',
t'+Dk) and an additional 8 units in [max(t, 0, min(d, t'+Dk)). Assume
that 'Ckutihses the gain time first. An extra 8 units of gain time will
become apparent (by use of an efficiency gain point at the completion
Of 'Ck). This has been guaranteed for the interval [t') t'+Dk) offline,
implying that gain time tuple<'ý kP1.1

81 t') t'+Dk> has been created.

Theorem 7.3 proves the applicability of the EPE approach. It is noted that
Theorems 7.2 and 7.3 must preserve gain time within the context of Theorem
7.1: the gain time must be utilised if it has been detected at a higher priority
than any runnable crucial process.

The EPE approach may be extended to provide guarantees regarding
gain time by noting the scope of gain time tuples. Assume that for crucial
process ri, feasibility analysis has guaranteed Ci units of execution time in any
interval [t, t+Di) where t is a release of ri. Let <, ci, j, 8, t, d> be due to a gain

point within ri detecting 8 units of gain time at time t'. Essentially, 8 is

guaranteed at priority level j until d. Consider the following theorem:

Theorem 7.4:
Gain time defined by tuple <, ri, j, 8, t, d> cannot cause crucial
deadlines to be missed if it is used in [t, d).

201

Proof-
Consider ri released at t with 8 units of gain time detected at t, >t,
that is tuple <, uj, 1,8, tj, t+D, > is created. Two cases are identified:
(i) 8 units ofgain time are assigned to ri to execute in [t,, t+D,):

Since the actual execution time of cl is at least 8 less than C,, all
8 time units have been guaranteed by offline feasibility analysis.
The execution of ci at priority level 1 for 8 units in [t,, t+DI)
cannot affect other crucial process deadlines.

(ii) 8 units ofgain time are assigned to ci to execute in [t+D, 1 00):
Let the interval [tj, t2), where t2>t, ýI+D,, be required by a crucial
process to meet its deadline at t2. If ri executes for between 1A
time units at priority level 1 within the interval, the
aforementioned crucial process will miss its deadline.

In consideration of Theorem 7.4, when the current time equals or exceeds the d
field in any gain-time tuple it is removed from GTList, as its spare capacity has
expired.

Slack time tuples cannot be preserved by Theorem 7.3 since if a crucial
process is runnable which may utilise slack time, no slack time can exist by
definition. Slack time tuples have similar scope to gain time tuples (Theorem
7.4): if their deadline expires they are removed from STList. One implication of
this is that exactly zero or one tuples will exist in STList at any time. Consider

a tuple placed into STList with deadline equal to the next time a crucial
process is runnable. The tuple will run out of scope before another slack-time
tuple can be created, noting that STList contains no tuples if a crucial process
is runnable. Also, if a sporadic crucial process is released before the deadline of
a slack-time tuple, that tuple is removed.

If both slack time and gain time exist at any time, both must be
decreased concurrently by process execution or idling the processor is idle. For

example, consider process cl completing at time t having generated 1 unit of

gain time. The deadline of c, is t+1, with the next crucial process to be released

at t+1. Hence, slack time tuple <t, t+l> is created. Let the processor idle in the
interval [t, t+1). Clearly, neither the slack or gain time tuples can be preserved

past the deadline t+1. Hence, both must be utilised (i. e. in parallel) whilst the

processor is idle. The implication of this observation is that if the process idles

202

for 1 time unit, that amount of time must be subtracted from a gain time tuple
and from a slack time tuple, whichever exists.

7.1.4 Assignment Of Gain Time And Slack Time
Initially gain time is considered. Any assignment of gain time to a process
must ensure that the guaranteed deadlines of crucial processes are not
compromised. In section 7.1.2, it was noted that on assignment of gain time to
process ck, pseudo-process ck' is created to utilise the gain time. The

computation time and deadline of ck' are given by the characteristics of the

gain time tuple assigned: if % is assigned gain time tuple <, ri, j, 5, t, d> at time
t' then the release time, computation time and deadline of 'Ct' are t', 8 and d-t
(i. e. deadline relative to start time) respectively.

The priority level of ck' is now defined. let the crucial processes that are

runnable in W, d) (i. e. are runnable at t' or may become runnable in the
interval) be denoted ARwhere AR g; A. Let ri>, rj represent the fact that ri has

a higher (base) priority level than cj. Consider the following theorem:

Theorem 7.5;
If gain time tuple given by <, ri, j, 8, t, d> is assigned to rt at time t',

then pseudo-process rk' must execute at priority level j to ensure that

no crucial process deadlines are compromised and that 'Ck' executes
for 8 units in U, d).

Proof-
At time t' AR=[, ci, 'Cat 'Cb) Tc, 'Cd) with the priority ordering over A.

defined by Ta>Tb>Ti>Tc>Td. Three cases are identified:

(') 'Ck' is assigned a priority level higher than that Of Tb:

Hence the priority ordering over AR becomes either
or Ta>Tk>Tb"i>'r, >'Td- In either priority

ordering, the worst-case interference assumed on 'rb during

offline feasibility analysis has increased by B. This may cause rb

to miss its deadline.
(") Tk 'is assigned a priority level lower than that of rc:

Hence the priority ordering over AR becomes either
'ra >Tb "i "c "k '"d or 'Ca"b>'ri>'rc>'Cd>Tk'- In either priority

ordering, the execution0f Tk' occurs after c, (also after rd in the

203

second priority ordering). When the feasibility of ci was
considered, the executions of r, (and 'Cd) did not form part of any
interference calculations. Therefore, if Tk'executes at either of the
above priority levels, it may not be able to execute for all 8 time
units in R, d).

("') 'Ck' is assigned to the same priority level as ri:
Hence the priority ordering over AR becomes either

or 'Ua>Tb>Ti>T, k >'rc>Td Ta>Tb>Ck #>Ti>rc >Td * In either priority
ordering, rk'can execute for 8 time units without affecting the
deadlines of any other process (including ri) since the spare
capacity was detected and guaranteed (by offline analysis) at this
priority level.

The proof holds whether a high priority level process detects gain time
which is then assigned to a lower priority level process or vice versa.

It is noted that if <rj, i, 8, t, d> is assigned to ct then the execution of pseudo-
process ct' could occur at a lower priority level than i without compromising
crucial process deadlines, although ct' may not receive all 5 units of
computation time in [t, d).

In the above theorem, there is no implied relationship between the
deadline (d) of the process detecting the gain time (, ci) and the deadline (d') of
the process (Ck) receiving that gain time. It is observed in the theorem that the

pseudo-process ct'inherits the deadline of ci, i. e. d.
It is noted that if the priority level of 'Ck' is higher than 'Ck then the

pseudo-process will complete execution before rt, else it will complete afterTk.
This has implications upon the use to which the gain time assigned to a
requesting process can be put. Consider using the gain time for executing
bounded additional code within a crucial process (i. e. sieve function). This code
must either complete before the crucial process continues or its result will be
ignored. Clearly, if the priority level of rt' is lower than rk the pseudo-process

will not execute before rk has completed. Here, the additional computation

could occur during the normal (guaranteed) execution of 'Ck 'with the allocated

spare capacity used for the final part of the normal execution of ck .
The assignment of slack time to processes does not cause any problems.

Since slack time is not guaranteed, any process utilising it has an effective

204

Priority level below that of all crucial processes. Therefore, any crucial
(sporadic) process becoming runnable whilst slack time is being utilised by a
process will pre-empt the latter process, with no crucial deadlines

compromised.

7.1.5 Scope And Assignment Of Spare Resources

Whilst the scope of gain time and slack time are the deadline of the detecting

process and the next release of a periodic crucial process respectively, the scope
of a spare resource is the time at which the detecting crucial process may next
use that resource. Simplistically, this is assumed to be the next release of the
detecting process (see section 7.1.2). It is noted that once the current time is at
least the deadline field in any resource tuple, that tuple can be removed since
the scope within which the spare resource can be assigned to a requesting
process has passed.

In general, any assignment of a spare resource to a process must ensure
that the latter process releases the resource at or before the scope of the

resource expires. Where more than one crucial process access a given resource,
all the processes must have declared that resource spare before it may be

assigned to another (possibly non-crucial) process. It is noted that all the

required resources of a crucial process have been detected as spare by the

completion of that process (by resource gain points).
Any SCAP must ensure that assignment of a spare resource does not

compromise assumptions made offline during feasibility analysis regarding
resource availability at run-time. If offline analysis assumes that all resources
required by a process are available at the release of that process, then if any of
the resources are declared as spare, their scope cannot extend past the next

release of the process. However, it is noted that the semantics of some run-time

resource allocation policies may enable the scope on spare resources to be

extended. If the PCP is used, then so long as the worst-case blocking times of

crucial processes do not increase, the scope of spare resources may be extended
to enable the process that has been allocated the spare resource to complete its

critical region. For example, if the length of this critical region is not greater
than any critical region that is responsible for the worst-case blocking times of
higher priority processes, the scope of the spare resource may be extended to

allow the completion of the critical region. It is assumed that the critical region
is bounded. If it is not, the scope cannot be extended in this manner.

205

When a SCAP allocates a spare resource to a process to execute an
unbounded critical section, provision must be made within the kernel to

automatically release the resource at the end of the scope.

7.1.6 Summary

A model of detected spare capacity has been developed which has enabled a
number of parameters to be established regarding the allocation of spare
capacity to requesting processes. The priority level at which gain time and
slack time can be utilised has been established, along with the interval within
which such spare capacity can be used.

Spare resources were also considered. It was noted that the assignment
of such resources to processes must be controlled according to the assumptions
inherent in the run-time resource allocation policy and the associated offline
feasibility analysis for that policy.

7.2 Conversion Of Slack Time To Gain Time

The difference between gain time and slack time is that the former is

guaranteed, the latter is not. Whilst either form of spare capacity can be

assigned to requesting processes, it is advantageous in some'circumstances to
be able to provide online guarantees regarding allocated spare capacity. For

example, a crucial process requests spare capacity to execute optional
computation which has a known minimum execution time, c, before a useful
result is achieved. Whilst unguaranteed spare capacity could be assigned, it is

preferable to assign at least c guaranteed spare capacity. In the following

sections, methods for converting unguaranteed slack time into guaranteed gain
time are examined.

7.2.1 Simple Conversion

Slack time occurs when no crucial processes are runnable, although

outstanding requests for spare capacity may still exist. Intuitively, in a purely

periodic system (with respect to crucial processes) slack time may be

guaranteed from the completion of a crucial process (assuming no other crucial

processes are runnable) up to the next release of a crucial process at a priority

level lower than all crucial processes. Thus if ri completes at t with the next

release of a crucial process at t', then [t, 0 is guaranteed to be available as

spare capacity. However, at time t some gain time tuples may remain in scope,

206

guaranteeing execution time up to t8, where t'>t (i. e. the sum of the amounts of
gain time in available gain time tuples is given by tg-t). Therefore, slack time
in [t, 0 may only be guaranteed within the interval [tg, t') if t-: 5 tir <-t' (assuming
that if no gain time tuples are in scope at t then t' =t). This implies that gain
time tuple <-, s, C-tl, tý-tll, t'> can be created where s represents a priority level
lower than all crucial processes.

When crucial sporadic processes exist in a system, converting slack time
to gain time becomes more problematic. This is due to the possibility of the
release of a sporadic crucial process in the interval [t, t'). Let the earliest
release of a sporadic process at or after t be t". Clearly if t": ýX then slack time
can be converted to gain time in the manner outlined above for purely periodic
systems. If t9<t"<t', only that slack time in [ti, t") maybe guaranteed. Thus, the
slack time in [t, t") is converted into gain time tuple <-, s, t'ý- t", t9, t 11 > with
slack time tuple <tý-t", t"> also created. If tgý! t", no slack time can be converted,
with slack time tuple <tý-tg, tg> created.

Whilst some slack time is converted into gain time by the above
approach, it is noted that the intervals during which the gain time can be

utilised are between the executions of crucial processes. Often requests for

guaranteed spare capacity will be made by crucial processes requiring extra
computation time before their deadlines (see section 7.1). By definition slack
time and therefore slack time converted to gain time in the above manner will
not be available in these intervals. The conversion methods given in the
following sections attempt to circumvent this problem.

7.2.2 Conversion By Prediction

The method given in the previous section enables some slack time to be

converted to gain time in the intervals when no crucial process is runnable.
The weakness with this method becomes apparent when processes request
spare capacity for extra computation before their own deadlines: no slack time

exists for extra computation before their own deadlines and so no slack time

maybe converted to gain time.
One approach to counteract this problem is to shuffle the computation of

crucial processes so that they run later once a request for guaranteed spare
capacity has been made. This has been proposed by Chetto et al in the context

of earliest deadline scheduling and the servicing of non-crucial sporadic

process requests [Chetto89]. Crucial processes are executed as early as possible

until a non-periodic process requests computation. Then, crucial Processes are

207

run as late as possible. This is achieved by plotting a schedule for all processes,
noting the latest possible start time of each process whilst maintaining 100%
guarantees of crucial process deadlines. Similarly, Lehoczky et al map out the
execution of periodic crucial processes over a schedule of length equal to the
least common multiple of all process periods [Lehoczky92]. The lengths of any
intervals of slack time within the schedule are noted. Slack intervals are used
to enable the computation of crucial processes to be postponed at run-time. The
approach is costly: for each release of a process (in the least common multiple
of all process periods) a value for the length of the slack interval needs to be
held by the kernel at run-time. An online version of this approach is given by
Davis et al [Davis931.

The above approaches are, in a sense, predictive: some knowledge of
slack time that will become available is derived offline. Neither Chetto's nor
Lehockzy's approaches cater for crucial sporadic processes, or processes that
may block on access to share resources. Also, these approaches are relatively
expensive, in time and space, having to construct schedules over potentially
large intervals and hold large tables of values at run-time. Davis's approach is
expensive in terms of the time required to calculate available spare capacity at
run-time.

7.2.3 Conversion By Preservation
Another approach for conversion of slack time to gain time is to incorporate

additional gain time into processes. That is, slack time is converted into gain
time offline. This approach was formulated by Sprunt et al [Sprunt881 in terms

of the Extended Priority Exchange (EPE) algorithm. If a process set is declared
feasible, additional computation time is added to the highest priority process
whilst ensuring the process set remains feasible. Then, additional computation
time is added to the second highest priority process. Again, feasibility across
the process set is maintained. This continues for all processes. At run-time, the

extra computation is detected (along with any gain time due to the normal
computation of the processes) at process completion time. Since the motivation
behind the EPE algorithm is to decrease the response times of aperiodic (non-

crucial) processes, detected spare capacity is utilised for the execution of such

processes.
This approach is directly applicable for use with gain points. Let the

amount of additional computation allocated to a crucial process ri (periodic or

208

sporadic) be A,. The method of allocation has ensured that all crucial processes

remain feasible, that is Cj+Aj (and Bi if appropriate) has been guaranteed
before Di (for all releases of ci in its feasibility interval). It is noted that the
EPE approach detects the availability of Ai at the release of the process but

detects gain time at the completion of the process. Thus, the use of a static gain
point at the start of the process permits the detection of gain time Ai at the

commencement of the execution of c,. Formally, a static gain point of value Ai
is placed after the start node in a process's CFG (see Chapter 6).

normal, ri -shadow Ti

t t+D, t+ Ti
time

Figure 7.3: Conversion Of Slack Time To Gain Time Using A Shadow Process.

The approach can be extended by observing that for any process, the

slack time inherent in the interval between the deadline of one execution of a
process and the next release of the process is not converted. A shadow process
is introduced to enable slack time in this interval to be converted to gain time.
Consider Figure 7.3. The normal execution of ci at t detects A, units of gain

time at t. A shadow process ri is introduced with offset Oi'=Oi+Di, deadline

D, s=Ti- Di and period Tis=Ti . The computation time of ri is 0, i. e. Ci =0. If the

priority ordering of the process set is . >, uj>, rj>... the priority level of ci is set to

be between ri and rj, i. e. .. >, ri>, rs>, rj>
Initially, cS cannot affect the feasibility of crucial processes (since Cis=O).

i
Let additional computation be assigned to the shadow processes in the same

manner as to crucial processes (in order whilst maintaining the 12
feasibility of both crucial processes and the shadow processes. Thus, to each

shadow process ri', Aý units of additional computation time have guaranteed

(with Ci'=O). This can be detected as soon as ci is executed at run-time, using a

static gain-point.
Practically, the shadow processes are only required for offline feasibility

analysis, with the kernel becoming responsible for creating a gain-time tuple of

appropriate size at run-time at the deadline of a crucial process. For example,

tuple <, ri I i, A! v t+Di, t+Ti> is created at the deadline of the release of c, at t.

209

The approach is applicable for processes which block and those with
precedence constraints. In the latter case, the size of shadow processes (in

terms of allocated computation) is likely to be small, since the interval between
the deadline of one crucial process execution and its next release is probably
occupied by other processes in the precedence constraint.

Consider the following example.
Example 7.1:

Process 01 CI DI T A As

'r, 0 3 12 16 3 0
'T2 5 3 14 14 0 0
'C3 12 4 20 40 0 1
'C4 8 6 35 50 1 1

Table 7.1: Process Set 1.

Consider the process set in Table 7.1. The processes do not share a
critical instant. Prior to additional computation allocation, the worst-
case utilisation of the process set is 62.18%. The A column in the table
indicates the amount of additional computation allocated to each
process. The utilisation converted from slack to gain time by assigning
additional computation to crucial processes is 20.75%. The As column
indicates the amount of computation allocated to shadow processes.
This enables an additional 4.5% of utilisation to be converted from

slack to gain time. Overall 25.25% of utilisation has been converted. It

is noted that at run-time additional slack time could be converted by

the methods outlined in section 7.2.1.

The approach is expensive, in that many feasibility analyses need to be

performed to determine Ai and Aj' for each process. However, the number of

such analyses can be reduced by observing that the amount of additional

computation can be found by a binary search over [0, Dj-Cj) for crucial

processes, or over [0, Tj-Dj) for shadow processes, rather than performing

analysis for each member of the respective intervals. Also, if the exact

interference feasibility tests of sections 4.3.2 and 5.4.2 are used, a bound can

be found upon the maximum additional computation that could be assigned to

a process (where the bound is a member of [0, Dj-Cj) for crucial processes, or [0,

T-Dj) for shadow processes). I

210

The allocation of additional computation to crucial processes (or shadow
processes) is applicable for sporadic and periodic processes, those processes
that block and those within a precedence constraint. It is noted that the
additional computation allocated to a sporadic process will only become
available when it is released (i. e. sporadically).

7.2.4 Sununary

A number of methods for the conversion of slack time to guaranteed gain time
have been described. The methods for conversion by prediction are expensive at
run-time either in terms of space or time. The simple conversion and
conversion by preservation methods were seen to fit in with the gain point
model, catering for crucial periodic and sporadic processes, together with
process blocking and precedence constraints. Although the preservation
method is expensive offline, at run-time does not suffer the space expense of
the prediction method.

7.3 Implementation Strategies For Spare Capacity
Allocation Policies

Chapter 3 noted two trade-offs evident at run-time . concerning the
implementation of, and the complexity of, any spare capacity allocation policy
(SCAP). Firstly, as the time between detection of spare capacity and its

assignment increases, the system flexibility decreases, assuming that in

general, early assignment of spare capacity leads to greater improvements in

system utility. However, reducing the time between detection and assignment,
in general, leads to the SCAP being executed more frequently. This increases

the overheads incurred by crucial processes, so decreasing system feasibility.
The second trade-off concerns the actual policy employed to allocate

spare capacity. In general, as the complexity of the SCAP increases, so does the

ability to allocate spare capacity to the process which will have the greatest
benefit to system utility. However, in general, as the policy complexity
increases, so does the amount of time that policy takes to execute.

Conventionally, little attempt is made to re-use spare capacity. In terms

of the trade-offs identified above, this approach incurs no overheads due to

execution of the SCAP. However, no increase in system utility is achieved. The

following sections discuss the above trade-offs in terms of some other potential
implementation strategies for SCAPs.

211

7.3.1 Periodic Execution Of SCAP
The assignment of spare capacity to outstanding requests is performed by
executing the SCAP as a periodic process. Potentially, the interval between the
detection of spare capacity and its assignment can be large. If the SCAP is
executed as the highest priority process, in the worst-case, the interval
between detection and assignment becomes the period chosen for the SCAP
process. If the SCAP is executed at a priority other than the highest, almost
twice the period of the SCAP process could elapse between detection and
assignment.

The advantage of this approach is that the overheads imposed on crucial
processes are entirely controlled by the priority level, computation time and
period selected for the SCAP process. For example, if the SCAP is implemented
at the highest priority level, the impact of the SCAP on the feasibility of the
process set is due to extra interference on crucial processes. It is noted that
with the presence of arbitrary offsets, it may be possible to choose the start
time and periodicity of the SCAP process so that interference increases are

nimised (see section 5.8).
This approach becomes increasingly less appropriate as the interval

within which the spare capacity is requested by a crucial process shortens: it
becomes less likely that the SCAP will execute within that interval to allocate
spare capacity. If the period of the SCAP process is reduced to counter this
problem, the overheads on all processes increase, with the feasibility of the
system deteriorating.

Another problem with this approach is that spare capacity is not
assigned to requests until at least the next execution of the SCAP process. This
is not appropriate for requests by crucial processes for spare capacity to

execute optional computation immediately (i. e. sieve ftinctions). The approach
is more applicable for requests for spare capacity to execute optional
computation between successive executions of a crucial process, or between

members of a precedence constraint of crucial processes.

7.3.2 SCAP Execution On Spare Capacity Detection And

Request

To minminise the interval between the detection and subsequent assignment of

spare capacity, the SCAP can be implemented as part of detection, either

within a GTKC or on kernel detection (e. g. from a shadow process). If

212

outstanding requests for spare capacity exist at the time of detection, spare
capacity can be assigned. However, if no such requests exist, subsequent
requests will not be allocated until the next detection of spare capacity occurs
in the system. This problem may be circumvented by executing the SCAP as
part of a spare capacity request also. Now, a minimal time is achieved between
detection and assignment of spare capacity.

The overheads incurred by this approach are due to the execution time of
a (possibly) complex and expensive SCAP on any detection or spare capacity
request. Thus, the amount of computation that needs to be guaranteed for

crucial processes increases. It is observed that in many cases the SCAP need
not actually be executed: if there are no outstanding requests at spare capacity
detection, or if there is no available spare capacity when a request is made.
Clearly, the execution time saved under these circumstances could be detected

as gain time.
Intuitively, spare capacity itself could be used to execute the SCAP. Now,

unless sufficient spare capacity exists at a GTKC (or other spare capacity
detection point) or at a spare capacity request, the SCAP will not be executed
(assuming that outstanding requests exist). This spare capacity must exist at a
priority level at least that of the detecting or requesting process, else the SCAP

may not be executed immediately.
A significant problem exists with this approach. Consider two processes

, ri and c, whose priority levels are related by cj>, uj, Process C, executes and

requests spare capacity, with the SCAP able to commence execution at the

priority level of -c,, The action of the SCAP is to consult the outstanding

requests and available spare capacity, and then allocate spare capacity to one

or more of the requests. Process ri now becomes runnable, pre-empting the

execution of the SCAP (and therefore c) after it has consulted the list of

available spare capacity. Now, ci requests (or detects) spare capacity, with a

second SCAP becoming runnable. The running SCAP (i. e. invoked by 'r,) may

assign gain time which at a later time may be assumed to be still available by

the other execution of the SCAP (i. e. invoked by r).

One solution to this problem is to place the execution of the SCAP within

non-pre-emptable critical region. Intuitively, this requires that the execution of

a SCAP be included in a crucial process's execution time for each detection of,

or request for, spare capacity. Also the execution of the SCAP may form the

longest critical region in the system, so increasing all crucial process worst-case

213

blocking time (assuming the use of one of the family of Priority Inheritance
Protocols for run-time resource control [Sha90D. Clearly, this detracts from
feasibility.

Alternatively, the approach that prescribes the execution of the SCAP in
spare capacity and that which guarantees the execution of the SCAP within
critical regions in crucial process code, may be merged. The only part of the
detection that actually needs to be guaranteed (as part of crucial process
execution) is that given in Chapter 6, that is the part of the GTKC which
checks the amount of reported gain time and creates the gain time or resource
tuple. Then, if sufficient gain time is available at an equal or higher priority
level, the SCAP can be executed. It is noted that the calculation to determine if
sufficient spare capacity is available to execute the SCAP is also guaranteed.
Similarly for spare capacity requests, the guaranteed computation consists of
recording the request. Then, if sufficient spare capacity exists, the SCAP is

executed. In both cases the SCAP is executed in spare capacity.
To alleviate the problem of a SCAP being executed whilst another

execution of the SCAP has been pre-empted, the SCAP is placed into a non-pre-
emptable critical region. Now, the only penalty to process set feasibility is the

possibility that the SCAP forms the longest critical region in the system, so
increasing the worst-case blocking time of crucial process. The additional
penalty of having to guarantee (possibly many) executions of the SCAP for

each crucial process has been removed.
Potentially, this approach miýnimises the interval between spare capacity

detection and assignment, whilst ensuring that the impact of SCAP execution

upon process feasibility is also minimised. This is in contrast to the approaches

of Moron et al [Moron931 and Haban et al [Haban901 where the policy to

allocate spare capacity executes as part of a context switch, increasing the

overheads on all crucial processes and detracting from system feasibility. We

note that the cost of the SCAP itself detracts from the ability to execute the

SCAP since more spare capacity is required.

7.4 Evaluation

In this section, the approach for the allocation of spare capacity given in this

chapter is evaluated. This is achieved by comparing its performance with other

proposed approaches in two main ways:
(i) guaranteed spare capacity that can be assigned to requesting

processes;

214

(ii) unguaranteed spare capacity assigned to requesting processes.
In both (i) and (ii), the approach given in this chapter (referred to as the SCAP
approach in this section) is compared with the Extended Priority Exchange
(EPE) approach [Sprunt881. The EPE approach is assumed to be able to
guarantee requesting processes gain time within the constraints defined by
Theorems 7.4 and 7.5. Also, additional computation time is detected at the
start of a process with gain time detected at the completion of the process. The
SCAP approach assumes that gain time is detected via gain points (see
Chapter 6). Also additional computation is detected at the release of a process)
with each crucial process assigned a shadow processes detecting gain time at
the deadline of the associated crucial process.

The allocation policies assumed in both approaches assign spare capacity
in a first-come-first-served manner on spare capacity detection or request. This
enables overheads to be assumed approximately equivalent between the two
approaches, implying that they can be ignored during this comparison.

Process 0 1C 1D ITI A As
'Cl 5 - 17 10 1 40 3 3
'C2 44 12 271 60 2 0
'C3 50 27 100 1201 3 0
'r4 124 9 110 180 0 0
r5 171 230 230 11 01

Table 7.2: Process Set 2.

Initially, crucial process timing characteristics were chosen (given in
Table 7.2). These characteristics are similar to those chosen (randomly) in

section 6.4.3 (given in Table 6.1) although decreased by an order of magnitude.
The basic utilisation of the process set is 72.39%. An additional 21.27% of
utilisation is converted to gain time by assigning additional computation time
to the crucial processes (column A) and their shadow processes (column AS).

To each process, an arbitrary control-flow structure was allocated,
incorporating a mixture of conditional and loop statements (similar to the

processes in Appendix B). Within each process's code, a number of calls for

guaranteed spare capacity are made to enable execution of optional code before

a process's deadline. Also, at the end of each process's execution, spare capacity
is requested to execute optional code before the next release of the process.

215

Given that worst-case utilisation. is 72.39%, the total amount of
execution requested by a crucial process to execute optional code was on
average about 50% of their worst-case computation times, that is about 35% of
overall utilisation. Thus, in the worst-case, the load on the processor is over
100% (i. e. 72% + 35%).

On each release of the process, a random path was taken through each
process's control-flow structure. Thus, the points at which gain time could be
detected was varied, along with the amounts of gain time generated by a
process and the times at which guaranteed spare capacity was requested. For a
release of a process at time t, the path taken when considering the SCAP

approach was the same as the release of the process at time t when considering
EPE. Thus, available gain time and requests for spare capacity were the same
for the two approaches all times.

7.4.1 Guaranteed Optional Performance

The process set was executed across the interval [0,10000) five times (a total of

over 7500 process releases). Both requests within process code and the request

at the end of process code were for guaranteed spare capacity. If sufficient

spare capacity was available before the given deadline, it is assigned, with the

execution of the optional code guaranteed.

6000

5000

4000

Gain Time 3000

2000

1000

0

ACE
Gain Time Detected By Gain
Points
Gain Time Detected By EPE

Gain Time Guaranteed To
Optionals By SCAP

Gain Time Guaranteed To
Optionals By EPE

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Elapsed System 11me

Graph 7.1: Comparing Amounts of Guaranteed Spare Capacity Assigned.

216

Number of
Guaranteed
Optionals

1200 Number Of Optionals Requested
Number Of Optionals Assigned

1000 Spare Capacity By SCAP
sw & Number Of Optionals Assigned

6001 Spare Capacity By EPE
j

400

200

0
0 1000 2000 3000 4000 5000 6GOO 7000 8000 9000 10000

Elapsed System Time

Graph 7.2: Comparing the Number of Optionals Assigned Guaranteed Spare
Capacity.

The results obtained are shown in Graphs 7.1 and 7.2. In Graph 7.1, the
amount of guaranteed spare capacity assigned by EPE and SCAP to requests is
plotted against elapsed time (from system epoch). For reference, the total
amount of actual execution time of the crucial processes (i. e. not the optional
executions) is also plotted against elapsed time, along with the amount of gain
time detected. The latter would indicated that EPE is close in performance to
gain points for detecting gain time, although consideration of the scale of the
axes indicates the superiority of gain points (a better evaluation is given in

section 6.4.3). The main conclusion that is drawn from Graph 7.1 is that the
amount of guaranteed spare capacity assigned by the SdAP approach is

greater than that assigned by EPE, by on average 30%.
In Graph 7.2, the number of individual requests for spare capacity are

plotted against elapsed time. Also, the number of requests guaranteed to

complete by the two approaches are plotted against time. The number of
requests which are assigned guaranteed spare capacity and complete is higher

using the SCAP approach compared with EPE. On average, the former

approach assigns spare capacity to 30% more requests than the latter.

7.4.2 Unguaranteed Optional Performance

Again, the process set was executed five times over the interval [0,10000).

Requests within process code were assigned guaranteed spare capacity.
Requests for spare capacity at the end of a crucial process's execution, to

execute optional code prior to the next release of the crucial process, were not

guaranteed. It is noted that in the experiment, when a crucial process starts
the execution of an optional unguaranteed computation, if that computation
has not completed by the next release of the crucial process, that computation
is terminated and assumed incomplete.

217

Number Unguaranteed
Optionals; Requested
Number Unguaranteed
Optionals Completed Using
SCAP
Number Unguaranteed
Optionals, Completed Using
EPE
Number Guaranteed Optionals
Requested
Number Guaranteed Optionals
Assigned Spare Capacity By
SCAP
Number Guaranteed Optionals
Assigned Spare Capacity By

700

600

Soo

Number of 400
Unguaranteed I

Guaranteed
Optionals 300

200

100

0

Graph 7.3: Comparing the Number of Optionals Assigned Unguaranteed
Spare Capacity.

The results obtained are shown in Graph 7.3. For both EPE and the
SCAP approach, the number of unguaranteed optional executions started and
the number of those that actually completed, are plotted against elapsed
execution time. Also, the number of requests for guaranteed spare capacity,
and the number of those requests actually assigned spare capacity are plotted
against time.

The graph shows that the number of unguaranteed computations
completed by EPE is marginally greater than the SCAP approach. This is due

to the latter approach being able to utilise more of the spare capacity for

218

0 2000 4000 6000 8000 10000
Elapsed System Time

guaranteed computation. This is shown by the disparity between the number of
guaranteed requests met by the two approaches.

7.4.3 Increasing System Utility

It has been noted in this chapter that, in general, as the complexity of a SCAP
increases, so does its potential for allocating spare capacity in a manner which
has greatest benefit to system utility. Disregarding the null policy, the simplest
SCAP would appear to be "first-come-first-served". Here, a request for an
amount of spare capacity before a deadline receives spare capacity if sufficient
has been detected with appropriate scope. Whilst incurring minimal overheads,
such a policy is not ideal: spare capacity could be assigned to execute optional
code with little benefit to system merely because no other requests are
outstanding, even if a request which would benefit system utility greatly were
just about to be made.

Another approach that would appear practical for use in a SCAP is that
of time-value scheduling proposed by Locke [Locke861. This approach enables
the scheduling of processes which have a pre-defined time-value relationship:
the notional value for completing a process is known for all possible completion
times (i. e. between the release time and deadline of a process). The . Um
overall value from the system if the process with the highest value density is

scheduled at each point in time. The value density of a process is defined as
VIC,,,, where V is the value obtained for completing the process and C, " its

remaining execution time.
Clearly, if the relative values or utility of optional components could be

obtained, the time-value approach would appear applicable for assigning spare

capacity at run-time.
More complex decision algorithms could be used within a SCAP, for

example those that consider the possible future requests for spare capacity by

other crucial processes. However, the development and discussion of such

algorithms is beyond the scope of this thesis.

7.4.4 Summary

This section has evaluated the model for spare capacity in terms of

preservation, assignment and conversion (see sections 7.1-7.3) by comparison

with the Extended Priority Exchange algorithm. In general, the amount of

spare capacity guaranteed to requesting processes is higher using the former

219

approach: a larger amount of guaranteed spare capacity is assigned to a
greater number of requesting processes. When some optional computations do

not require guaranteed spare capacity, the approach defined in this chapter
was slightly less effective at completing those computations compared with the
EPE approach. However, this is directly attributable to the former approach
guaranteeing more spare capacity, and utilising that spare capacity for
executing optional components requiring guarantees.

Overheads were not specifically considered in the evaluation in this
section since the overheads of EPE and that of the approach of this chapter
(assigning spare capacity using an inexpensive first-come-first- served policy)
are broadly equivalent.

7.5 Summary

In Chapter 6, the efficient and early detection of spare capacity was considered.
In this chapter, the issue of allocation of detected spare capacity was
considered. Initially, a model of spare capacity was developed as gain time
tuples, slack time tuples and resource tuples. Each tuple described the amount
of spare capacity detected, the detecting process and the interval of time within
which that spare capacity could be utilised.

Several properties of the tuple model were derived, including the

preservation and assignment of tuples. The former discussed the circumstances
under which the scope of a tuple could be extended. This is important: if at a
given time some detected spare capacity has not yet been assigned, extending
its useful lifetime increases the chance that the spare capacity may be assigned
in the future. Assignment of spare capacity to requesting processes was seen to
be constrained by the scope of the tuple, which effectively provides the deadline
by which that spare capacity must be utilised, and its priority level (in the case

of gain time tuples). Essentially, the model describes a number of criteria that

any spare capacity allocation policy must meet so that deadlines of crucial

processes are not compromised.
Conversion of unguaranteed slack time to guaranteed gain time was

considered. Simplistic conversion enables slack time between executions of

crucial processes to be
'
converted to gain time whilst no crucial sporadic process

can execute. This approach does not provide extra gain time during the

execution of crucial processes. This problem was surmounted by guaranteeing

additional computation time to crucial processes offline, available at run-time

as gain time on process release.

220

The implementation of spare capacity allocation policies was also
considered. One approach is that of a periodic process executing the allocation
policy. This approach does not cope particularly well when requests for spare
capacity are made to enable the immediate execution of an optional component.
Alternatively, the allocation policy can be executed using spare capacity,
whenever spare capacity is detected or requested, providing sufficient spare
capacity is available to execute the policy. This approach toward spare capacity
allocation was evaluated by comparison with the Extended Priority Exchange

approach, which also detects and assigns guaranteed spare capacity. The

approach detailed in this chapter was shown to allocate more guaranteed spare
capacity to a greater number of requests than achieved by the Extended
Priority Exchange algorithm.

The approach toward spare capacity allocation detailed in this chapter
enables the online flexibility of hard real-time systems to be improved.
Optional software components can be assigned guaranteed computation time,

enabling the utility of the system to be increased at run-time. The approach
has a minimal effect upon crucial process feasibility, since the computationally
expensive allocation policies are executed using spare capacity.

221

Chapter 8.
Conclusions And Further Work

In general, the requirements of the next generation of hard real-time
systems are not catered for by present scheduling approaches and
associated feasibility analyses. In particular, support for long lifetime,

adaptive and dynamic systems is not provided. To overcome this problem,
this thesis has proposed a two-tiered approach to increase the flexibility of
hard real-time systems: improvement of offline feasibility and re-use of
online spare capacity.

The process model assumed by current scheduling methods is

constrained, both in the timing and fimctional domains: timing and
fimctional characteristics of processes are limited. Such constraints limit

the offline flexibility, in that application engineers are not provided with
the richness of expression required to enable efficient development of next
generation hard real-time systems. Solutions to a number of problems set by

such systems have been articulated within this thesis. This has been

achieved by extensions to static priority offline feasibility analysis.
Primarily, a method was provided for optimal priority assignment of

processes with arbitrary release times and deadlines no greater than their

periods. Feasibility analyses were provided for such processes (both for

processes with and those without common release times). These analyses
have been extended to enable the incorporation of sporadic processes,

processes that block on shared resources, and those processes which have

precedence constraints defined over them. The developments presented in

this thesis improve offline flexibility, since analysis of a process model

suitable for next generation hard real-time systems is now possible.
A trade-off between the flexibility and complexity of offline analysis

was observed. In general, as accuracy of analysis and generality of the

process model improves, the complexity of resultant feasibility increases.

This was highlighted when sufficient and necessary analyses were

compared with sufficient and not necessary analyses for the same process

model. The former analyses have in general, non-polynomial complexity

whilst the latter have polynomial complexity.
The dynamic and adaptive nature of next generation hard real-time

systems is not reflected in current online scheduling. Static priority

scheduling assumes a fixed set of processes with bounded execution times.

222

The assumption is directly attributable to offline feasibility analysis. Such

analysis cannot guarantee the deadlines of unbounded (in terms of
execution time) software components. Often such components are required
to express much of the required dynamic and adaptive behaviour (e. g. AI).
Hence, the ability to execute these (optional) components at run-time
improves the fleidbility of the resultant system. Within this thesis an
approach enabling the execution of such components was developed, based

upon the observation that the use of offline analysis to guarantee crucial
process deadlines implies that, at run-time, resources are under-utilised.
The identification of such spare system capacity permits its re-assignment
to processes so that additional (optional) computations may be executed.

The gain point mechanism has been developed to identify much of
this spare capacity in an efficient manner. By examining the control-flow
graph representation of a process's code, gain points are inserted to detect

gain time, a guaranteed form of spare capacity, as early as possible.
Having detected spare capacity, the key issue becomes that of

effective assignment so that system fle3dbility and utility can be improved.
Initially, a model of spare capacity was developed. This highlighted several
important considerations, namely scope and preservation. Guaranteed

spare capacity, or gain-time, is detected due to crucial (guaranteed)

processes not executing for the worst-case execution time. Such spare
capacity has a scope by which time it must be used. However, it was found

that under certain conditions, scope could be extended to prolong its lifetime

and therefore preserve the usefulness of that scope.
Another important issue is that of the amount of spare capacity

available at run-time that can be guaranteed to requesting processes. The

presence of this form of spare capacity at run-time enables guarantees to be

afforded to optional bounded components or a minimum execution time to

be guaranteed to unbounded optional components. These observations

motivated the identification of methods which enabled the conversion of

unguaranteed spare capacity, to the more useful guaranteed form.

Finally, allocation policies for spare capacity were considered, in

particular, their implementation. It was shown that potentially complex and

expensive policies, with a large potential overhead on crucial process

feasibility, could actually be executed using spare capacity itself

An online trade-off was observed between overheads incurred during

spare capacity detection and allocation, and the benefits to system

flexibility. In general, as detection accuracy increases, so do the overheads

involved. Also, as the complexity of allocation policy increases, so does the

possibility of assigning spare capacity to the requesting process which will

223

benefit the system most. However, increasing allocation policy complexity
implies additional overheads. The gain point approach for detecting spare
capacity was seen to occur minimal overheads: a single kernel call. Also,
allocation policies can be executed using spare capacity. Therefore, the
potential benefits from spare capacity by early efracient detection can be
maximised, whilst iminuising the effects on crucial process feasibility qf
detection and allocation.

In essence, the two-tiered approach proposed in this thesis provides a
framework within which increased flexibility for next generation hard real-
time systems can be achieved. Offline fleidbility has been improved by
relaxing the common constraints upon the process model, whilst online
flexibility is increased by efficient dynamic detection and assignment of
spare system resources.

8.1 Further Work
Whilst presenting relatively self-contained research, this thesis provides a
framework for further work in the area of providing additional flexibility for
hard real-time systems. Such additional work falls into two broad areas,
equating to offline and online analysis.

Offline feasibility analysis will always require further development,
in terms of accuracy (i. e. reducing pessimism) and coverage: responding to
demands from application engineers for ever more flexible process models.
In particular, the feasibility analysis of processes using fault-tolerant
language structures, or replicated processes is an immediate requirement,
together with support for distributed systems (including the additional
problem of inter-node commu ni cations). Also, feasibility analysis is required
for specific hardware and architectural features, for example 1/0 scheduling
(e. g. disks and other multi-media devices), on and off processor caches,

processor pipelines etc.
The online mechanisms by which run-time spare capacity can be

detected efficiently need to be integrated into hard real-time kernels and

progr .g languages. The criteria described by which spare capacity

allocation policies can be built without compromising crucial process
deadlines or impairing the feasibility of a process set, provides a framework

within which, potentially, a wide range of spare capacity allocation policies

can be developed. These could be based on current online scheduling

strategies which consider process value, or perhaps using AI techniques.

Together with the implementation of the spare capacity detection

mechanisms, the implementation of spare capacity allocation policies within

224

actual systems would lead to a greater understanding of the potential
benefits of spare capacity re-use at run-time.

8.2 In Conclusion

This thesis set out to examine the hypothesis that the flexibility of hard

real-time systems could be improved in two main ways. Firstly, by choice of
scheduling approach. Secondly, by detecting the inherent under-utilisation
of system resources at run-time. In both cases, the hypothesis has been

shown to be correct. Offline feasibility analysis has been provided for a more
flexible process model. Efficient online detection of inherent spare system
capacity is given, enabling subsequent assignment of (possibly guaranteed)
additional execution time to processes to perform optional computations.

225

Appendix A.
Generation of Random Process Sets

The generation of random numbers with a uniform distribution was achieved
using the linear congruential method [Knuth681. The generation of random
numbers with a normal distribution was achieved using the Box-Muller method
[Knuth681. Assume two independent random variables U, and U2 uniformly
distributed upon (0,1) (U, and U2 provided by the uniform random number
generator). The Box-Muller method uses U, and U2 to provide two values X and Y
thus:

X= (-2(ln U,
))112

cos(2 n U2)

Y= (-2(ln U,))112
sin(2nU2)

By taking pairs of U, and U2we produce a sequence of values that are normally
distributed. The distribution is standard, that is g=0 and a=1 where g and a
are the mean and standard deviation respectively. A value x ftom a non-standard
distribution by:

x+ Z(Y,

where x is a value from the normal distribution with mean g' and standard
deviation cr', and Z is a random value from a standard normal distribution (i. e. X

or Y above).
Using one of the random distributions above (uniform, standard normal or

non-standard normal), values for process timing characteristics can be chosen.
For example, if a value in the range [a, b] is required from a normal distribution,

then g= (x + y)/2. The standard deviation is now set to a= (b - a)/4. This implies

that 95.45% of values fall within the interval (since it is 4 standard deviations

wide).
When process timing characteristics are unrelated, that is the

characteristics of one process do not depend upon the characteristics of another

process, their value is chosen from the interval [minimum, maximum] (minimum

and maximum are parameters to the random process set generator). When

process timing characteristics are related, specifically the period of a process is a
function (f) of another process period M, the value is chosen to be in the interval

[f(T), maximum]. Functions used include those that ensured that some periods

were equal; some periods were multiples of others. This reflects the observation

that processes often have periods related due to constraints of hardware or

precedence-constraints.

226

Appendim B.
Processes Used In Gain Time Detection

Evaluation
The following psuedo-code describes the processes used during the evalutation of
gain-time detection strategies (see section 6.4.3).

Gain time is reported using via the call gainpoint (priority, v) where
priority is the priority level of the process, v the amount of gain time detected.
Efficiency gain time is detected within the call (effectively by the kernel).

Spare capacity detected by Dix's and Haban's approach is reported via a
dhpoint (w) call, where the amount detected is calculated by the call by

comparing the actual execution time up to this point with the worst-case
execution time up to this point, passed as parameter w.

The execute (priority
-1,

x, y) call provides the actual execution of
the process, that is execute at priority level priority_ 1 for between x and y

time umts.

process process-1 () is
begin

execute (priority_1,, 1)
if (rando %3 = 1) then

gainpoint (priority_1,26)
execute (priority-1,36,40)

else
if (rando %2 = 1)
then execute(priority_l, 14,16);

else gainpoint (priority_l, 11)

execut, Eý (priority_l, 4.5)

end if ;
i= rand 0%5
gainpoint (priority

-
1,

while (i < 5) loop
execute(priority_l,
i++ ;
if (rando %4
then exit
end if

end loop
gainpoint (priority-11

end if ;
dhpoint (67)
execute (priority-1,9.. 10)
dhpoint (77)
gainpoint (priority-1j, 0)

end process_1

io*i)

9" 10)

and i< 5)

10 * (5 - i))

227

process process-2 () is
begin

execute (priority_2,17,18)
dhpoint (18)
i= rando %3
gainpoint (priority-2,31 * i)
while U< 5) loop

execute (priority_2,12,14)
if (rando%2)
then execute (priority_2,15,17)
else gainpoint (priority_2,17)
end if
i++

end loop
dhPoint (173)
gainpoint (priority_2, (5-i)*31)

end process-2

process process-3 () is
begin

execute (priority 3,10,11)
dhpoint (11)
i= rando %3
gainpoint (priority_3,76 * i) ;
while (i < 5) loop

execute (priority_3,1,1) ;
j= rando % 10 ;
gainpoint (priority-3, j* 15) ;
gt += j* 15 1
while (j < 15) loop

execute, (priority_3,4,5) ;
j++ ;
if (rando %2 = 1) then

gainpoint (priority-3,5 * (15 j)
exit

end if
end loop
i++ ;
if (rando %2 =1 and i< 5) then

qainpoint (priority_3,16 * (5 - i))
exit

end if
end loop
dhPoint (391)
execute (priority-3,2,2)
dhPoint (393)
gainpoint (priority_3,0)

end process-3

228

process process_4 () is
begin

execute (priority_41 5,, 6)
dhpoint (6) ;
if (randO %4 = 0) then

gainpoint(priority_4,27)
execute (priority

-
4r 41,43)

else if (rando %4 = 6) then
execute(priority_4,66,, 70);

else if (rand () %4 == 0) then
gainpoint (priority 4,14)
execute (priority_4 50,, 56)

else gainpoint (priority_4,57)
execute (priority-4,12,13)

end if ;
dhpoint (76)
execute (priority_4,, 12,13)
dhpoint (89)
gainpoint (priority_4,0)

end process-4

process process-5 () is
begin

if (rando%4 = 0) then
execute (priority_5,28,31)

else gainpoint(priority 5,19)
execute (priority_5,11,12)

end if ;
dhpoint (31)
execute (priority_5,48,53)
dhpoint (84)
if (rando %2 1) then

gainpoint (priority
-

5,, 70)
execute (priority_5,32,34)

else if (rando %2= 1) then
gainpoint (priority_5,, 56,);

execute (priority_5,44,48)
else execute (priority-5,96,
end if
dhpoint (188
execute (priority 5,, 40,, 44)
dhpoint (232)
gainpoint (priority_51 0)

end process-5

I

F

�

1

I

I

104)

229

Bibliography

[Ada831 U. S. Department of Defense, "Reference Manual for the Ada
Programming Language", ANSI/MIL-STD 1815 A, 1983.

[AEEC911 AEEC, "Design Guidance for Integrated Mondular Avionics, "
ARINC 651 (Draft 9) (September 1991).

[Aho861 Aho, A. V., R. Sethi, J. D. Ullman, "Compilers Principles,
Techniques and Tools", Addison-Wesley, 1986.

[Audsley901 Audsley, N. C., A. Burns, "Scheduling Real- Time Systems, " YCS
134, Department of Computer Science, University of York
(1990).

[Audsley9lal Audsley, N. C., "Resource Control For Hard Real-Time Systems:
A Review, " YCS 159, Department of Computer Science,
University of York (August 1991).

[Audsley9lb] Audsley, N. C., K. Tindell, A. Bums, M. F. Richardson and A. J.
Wellings, "The DrTee Architecture for Distributed Hard Real-
Time Systems, " Proceedings 10th IFAC Workshop on
Distributed Control Systems (9-11 September 1991).

[Audsley91c] Audsley, N. C., A. Bums, M. F. Richardson, A. J. Wellings,
"Hard Real-Time Scheduling: The Deadline Monotonic
Approach",, Proceedings 8th IEEE Workshop on Real-Time
Operating Systems and Software, Atlanta USA, 15-17 May

1991.
[Audsley9ld] Audsley, N. C., 'Deadline Monotonic Scheduling", YCS 146,

Department of Computer Science, University of York 1991.

[Audsley93a] Audsley, N. C., A. Bums, M. F. Richardson and A. J. Wellings,

"Incorporating Unbounded Algorithms Into Predictable Real-

Time Systems, " Computer Systems Science and Engineering,

8(3), pp. 80-89, (1993).

[Audsley93b] Audsley, N. C., K. Tindell, A. Bums, "The End of the Line for

Static Cyclic Scheduling", pp. 36-41, Proceedings of the 5th

Euromicro Workshop on Real-Time Systems, Oulu, Finland,

June 1993.

230

[Babaoglu901 Babaoglu, 0., M Marzullo, F. B. Schneider, "Priority Inversion

and its Aviodance in Real-Time System", TR-90-1088,
Department of Computer Science, Cornell University, (1990).

[Babaoglu931 Babaoglu, 0., Y, Marzullo, F. B. Schneider, 'A Formalisation of
Priority Inversion".. The Journal of Real-Time Systems, 5(3), pp
285-304, (October 1993).

[Baker901 Baker, T. P., "A Stack-Based Resource Allocation Policy for
Realtime Processes, " Proceedings 11th IEEE Real-Time Systems
Symposium (5-7 December 1990) pp. 191-200.

[Burns891 Burns, A., A. J. Wellings, "Real-Time Systems and Their
Programming Languages", Addison-Wesley, 1989.

[Bums9lal Bums, A., "Scheduling Hard Real-Time Systems: A Review, "
Software Engineering Journal 6(3) (1991) pp. 116-128.

[Bums9lb] Bums, A., A. J. Wellings, "Criticality and Utility in the Next
Generation, " The Journal of Real-Time Systems, vol. 3 (1991),

pp. 351-354.
[Bums921 Bums, A., A. J. Wellings, "Safetfy Kernels and the Ada

Programming Language", pp. 56-70, Ada in Transition,
Proceedings of Ada UK International Conference, 1992.

[Carlow841 Carlow, G. E., "Architecture of the Space Shuttle Primary
Avionics Software System, " CACM 27(9) (September 1984)

pp. 926-936.
[Carre891 Carre, B. A., T. J. Jennings, 'A Subset of Ada for Formal

Verification (SPARK)", pp. 121-126, Ada User, vol. 9,1989.

[Casavant, 881 Casavant, T. L., J. G. Kuhl, "A Taxonomy of Scheduling in

General Purpose Distributed Computing Systems, " IEEE

Transactions on Software Engineering 14(2) (February 1988)

pp. 141-154.
[Chen901 Chen, M. I., K. J. Lin, "Dynamic Priority Ceilings: A

Concurrency Control Protocol For Real-nme Systems, " Real-

Time Systems 2(4) (November 1990) pp. 325-346.

[Cheng851 Cheng, S., J. A. Stankovic and K Ramamritham, "Evaluation of

a Flexible Task Scheduling Algorithm for Distributed Hard

Real-Time Systems, " IEEE Transactions on Computers 34(12)

(December 1985) pp. 1130-1143.

[Cheng871 Cheng, S., J. A. Stankovic and K Ramamritham, "Scheduling

Algorithms for Hard Real-nme Systems -A Brief Survey, ",

231

pp150-174 in "7ýztorial on Hard Real-Time Systems, " ed. J. A.
Stankovic and Y, Ramamritham, pub IEEE Press (July 1987).

[Chetto891 Chetto, H., M. Chetto, "Some Results of the Earliest Deadline
Scheduling Algorithm, " IEEE Transactions Software
Engineering 15(10) (October 1989) pp. 1261-1269.

[Chung901 Chung, J. Y., J. W. S. Liu and YJ. Lin, "Scheduling Periodic
Jobs That Allow Imprecise Results, " IEEE Transactions on
Computers 39(9) (September 1990).

[Damm891 Damm, A., J. Reisinger, W. Schwabl and H. Kopetz, "The Real-
nme Operating System MARS, " ACM Operating Systems
Review Special Issue (1989) pp. 141-157.

[Davari921 Davari, S., L. Sha, "Sources of Unbounded Priority Inversions in
Real-Time Systems and a Comparative Study of Possible
Solutions, " ACM SIGOPS Review 26(2) (April 1992) pp. 110-120.

[Davis931 Davis, R. I., K. Tindell, A. Bums, "Scheduling Slack Time in
Fixed Priority Pre-emptive Systems", (to appear) Proceedings
Real-Time Systems Symposium, (Dec. 1993).

[Dertouzos89] Dertouzos, M. L., A. K L. Mok, "Multiprocessor On-Line
Scheduling of Hard Real-Time Tasks, " IEEE Transactions on
Software Engineering 15(12) (December 1989)'pp. 1497-1506.

[Dix89] Dix, A., R. F. Stone and H. S. M. Zedan, "Design Issues for
Reliable nme-Critical Systems, " Proceedings of Workshop on
Real-Time Systems (September 1989).

[Faulk881 Faulk, S. R., D. L. Parnas, "On Synchronization in Hard-Real-

77ime Systems, " Communications of the ACM 31(3) (March

1988) pp. 274-287.
[Fohler891 Fohler, G., C. Koza, "Heuristic Scheduling for Distributed Real-

Time Systems, " Instiut für Technische Informatik, Technische

Universitat Wien, Austria (April 1989).

[Garey751 Garey, M. R., D. S. Johnson, "Complexity Results for

Multiprocessor Scheduling Under Resource Constraints, " SIAM

Journal of Computing 4 (1975) pp. 397-411.

[Garey771 Garey, M. R., D. S. Johnson, "Two Processor Scheduling with
Start Times and Deadlines, " SIAM Journal of Computing 6

(1977) pp. 416-426.

232

[Garey781 Garey, M. R., D. S. Johnson, ""Strong" NP-Completeness
Results: Motivation, Examples, and Implications, " Journal of
the ACM 25(3) (July 1978) pp. 499-508.

[Garey79] Garey, M. R., D. S. Johnson, "Computers and Intractability",
Freeman, New York, (1979).

[Gonzalez771 Gonzalez, M. J., "Deterministic Processor Scheduling, " ACM
Computing Surveys 9(3) (September 1977) pp. 173-203.

[Graham691 Graham, R. L., "Bounds on Multiprocessing nming Anomalies, "
SIAM Journal of Applied Mathematics 17(2) (March 1969)
pp. 416-429.

[Haban891 Haban, D., K G. Shin, "Application of Real-nme Monitoring to
Scheduling Tasks With Random Execution Times, " Proceedings
10th IEEE Real-Time Systems Symposium (5-7 December 1989)
pp. 172-181.

[Haban901 Haban, D., K G. Shin, "Application of Real-nme Monitoring to
Scheduling Tasks With Random Execution Times, " IEEE
Transactions on Software Engineering 16(12) (December 1990).

[Harbour9l] Harbour, M. G., M. H. Mein, J. P. Lehozky, "Fixed Priority
Scheduling of Periodic Tasks with Varying Exectuion Priority",
Proceedings 12th IEEE Real-Time Systems Symposium, San
Antonio USA, 1991.

[Hayes871 Hayes, I., "Specification Case Studies", Prentice-Hall
International, 1987.

[Hutcheon871 Hutcheon, A., A. J. Wellings, 'Ada for Distributed Systems",
Computer Standards and Interfaces, 6(l), 1987.

[Intel891 "Intel i486 Microprocessor to, , Intel Corporation, 1989.
[Jensen9lal Jensen, E. D., "The Kernel Computational Model of the Alpha

Real-Time Distributed Operating System, " IOS Press (1991).

[Joseph86a] Joseph, M., P. Pandya, "Finding Response Times in a Real-Time

System, " The Computer Journal (British Computer Society)

29(5) (October 1986) pp. 390-395.
[]Knuth681]Knuth, D., "The Art of Computer Programming: Seminumerical

Algorithms ", Addison-Wesley, 1968.

[Kopetz851 Kopetz, H., W. Merker, "The Architecture of Mars, " 15th Fault-

Tolerant Computing Symposium (June 1985) pp. 274-279.

[Kopetz891 Kopetz, H., A. Damm, C. Koza, M. Mulazzani, W. Schwabl, C.

Senft and R. Zainlinger, "Distributed Fault-Tolerant Real-Time

233

'-- tems: TheMars Approach, " IEEE Nficro (February 1989) oys

pp. 25-40.
[Ijehoczky871 Lehoczky, J. P., L. Sha and J. K Strosnider, "Enhanced

Aperiodic Responsiveness in Hard Real-TYme Environments, "
Proceedings IEEE Real-Time System Symposium (1987)

pp. 2,61-270.
[I., ehoczky89] Lehoczky, J., L. Sha and Y. Ding, "The Rate-Monotonic

Scheduling Algorithm: Exact Characterization and Average
Case Behaviour, " Proceedings IEEE Real-Time Systems
Symposium (5-7 December 1989) pp. 166-17 1.

[Lehoczky901 Lehoczky, J. P., "Fixed Priority Scheduling of Periodic Task Sets
With Arbitrary Deadlines, " Proceedings 11th IEEE Real-Time
Systems Symposium (5-7 December 1990) pp. 201-209.

[Lehoczky921 Lehoczky, J. P., S. Ramos-Thuel, 'An Optimal Algorithm for
Scheduling Soft Aperiodic Tasks in Fixed Priorit Preemptive y
System Proceedings IEEE Real-Time Systems Symposium,
1992..

[Leung801 Leung, J. Y. T., M. L. 'A Note on Preemptive Scheduling of
Periodic, Real-nme Tasks") Information Processing Letters,

11(3), (November 1980).
[Leung821 Leung, J. Y. T., J. Whitehead, "On the Complexity of Fixed-

Priority Scheduling of Periodic, Real-7Yme Tasks, " Performance

Evaluation (Netherlands) 2(4) (December 1982) pp. 237-250.

[Lin871 Lin, K J., S. Natarajan and J. W. S. Liu, "Imprecise Results:

Utilizing Partial Computations in Real-Time Systems, "

Proceedings 8th IEEE Real-Time Systems Symposium (1-3

December 1987) pp. 210-217.

[Lister841 Lister, A. M., "Fundamentals of Operating Systems, " Macmillan

Computer Science Series (1984).

[Liu73a] Liu, C. L., J. W. Layland, "Scheduling Algorithms for

Multiprogramming in a Hard Real-nme Environment, " Journal

of the ACM 20(l) (1973) pp. 40-61.

[Liu911 Liu, J. W. S., K. J. Lin, W. K. Shih, A. C. S Yu, J. Y. Chung, W.

Zhao, 'Algorithms for Scheduling Imprecise Computations",

IEEE Computer, pp. 58-68, May 1991.

234

[Locke861 Locke, C. D., "Best-Effort Decision Making for Real-TYme
Scheduling, " Computer Science Department, CMU (May 10,
1986).

[Locke921 Locke, C. D., "Software architecture for hard real-time
applications: cyclic executives vs. f4ed priority executives, " Real-
Time Systems 4(1) (March 1992) pp. 37-53.

[Mok831 Mok, A. K L., "Fundamental Design Problems of Distributed
Systems For The Hard Real-7Yme Environment, " Laboratory of
Computer Science, Massachse#S Institute of Technology (1983).

[Moron931 Moron, C. E., H. Zedan, 'Adaptable Scheduler Using Milestones
for Hard Real-Time Systems to , YCS 191, Dept. Computer
Science, University of York 1993.

[Nassor9l] Nassor, E., G. Bres, "Hard Real-nme Sporadic Task
Scheduling for Fixed Priority Schedulers, " Proceedings
International Workshop on Responsive Systems (3-4 October
1991) pp. 44-47.

[Park931 Park, C. Y., "Predicting Program Execution nmes by Analysing
Static and Dynamic Program Paths", pp. 31-62, Real-Time
Systems, 5(l), March 1993.

[Pilling901 Pilling, M., A. Bums and K Raymond, "Formal Specifications

and Proofs of Inheritance Protocols for Real-nme Scheduling, "
Software Engineering Journal (September 1990) pp. 263-279.

[Puschner891 Puschner, P., C. Koza, "Calculating The Maximum Execution
nme Of Real-nme Programs, " The Journal of Real-Time
Systems 1(2) (September 1989) pp. 159-176.

[Rajkumar871 Rajkumar, R., L. Sha and J. P. Lehoczky, "On Countering the
Effects of Cycle-Stealing in a Hard Real-nme Environment, "
Proceedings IEEE Real-Time Systems Symposium (1987) pp. 2-

11.
[Rajkumar88a]Rajkumar, R., L. Sha, J. P. Lehoczky and K. Ramamithram,

"An Optimal Priority Inheritance Protocol for Real-nme
Synchronisation, " Deptartment of Computer and Information
Science, University of Massachusetts (October 17,1988).

[Rajkumar88b]Rajkumar, R., L. Sha and J. P. Lehoczky, "Real-nme
Synchronisation Protocols for Multiprocessors, " Proceedings
IIEEE Real-Time Systems Symposium (December 1988) pp. 259-
269.

235

[Rajkumar891 Raikumar, R., L. Sha and J. P. Lehoczky, "An Experimental
Investigation : of Synchronisation Protocols, " Proceedings 6th
IEEE Workshop on Real-Time Operating Systems and Software
(May 1989) pp. 11-17.

[Ramamritham. 871 Ramamritham, K, J. A. Stankovic "The Design of the , Spring Kernel".. Proceedings IEEE Real-Time Systems
Symposium (December 1987) pp. 146-157.

[Sedgewick831 Sedgewick, R., 'Algorithms", Addison-Wesley, 1983.
[Sha87a] Sha, L., R. Rajkumar and J. P. Lehoczky, "Priority Inheritance

Protocols: An Approach to Real-YYme Synchronisation, "
Computer Science Department, Carnegie-Mellon University
(December 1987).

[Sha87b] Sha, L., J. P. Lehoczky and R. Rajkumar, "Task Scheduling in
Distributed Real-nme Systems, " Proceedings IEEE Industrial
Electronics Conference (IECON) (1987) pp. 909-915.

[Sha891 Sha, L., B. Sprunt and J. P. Lehoczky, "Aperiodic Task
Scheduling for Hard Real-nme Systems, " The Journal of Real-
Time Systems 1 (1989) pp. 27-69.

[Sha901 Sha, L., R. Rajkumar and J. P. Lehoczky, "Priority Inheritance
Protocols: An Approach to Real-nme Synchronisation, " IEEE
Transactions on Computers 39(9) (September 1990) pp. 1175-
1185.

[Shen891 Shen, C., K. Ramamritham and J. A. Stankovic, "Resource
Reclaiming in Real-YYme, " Proceedings 10th IEEE Real-Time
Systems Symposium (5-7 December 1989) pp. 41-50.

[Simpson. 901 Simpson, H., "Four-Slot Fully Asynchronous Communication
Mechanism, " IEEE Proceedings Part E 137(l) (Jan 1990) pp. 17-
30.

[Sprunt881 Sprunt, B., J. Lehoczky and L. Sha, "Exploiting Unused

Periodic Time For Aperiodic Service Using the Extended Priority

Exchange Algorithm, " Proceedings IEEE Real-Time Systems

Symposium (December 1988) pp. 251-258.

[Sprunt901 Sprunt, B., "Aperiodic Task Scheduling for Real-Time Systems",

Ph. D. Thesis, CMU, 1990.

[Stankovic87a]Stankovic, J. A., K. Ramamritham and W. Zhao, "Preemptive

Scheduling Under Time and Resource Constraints.. " IEEE

Transactions on Computers 38(8) (August 1987) pp. 949-960.

236

[Stankovic87b] Stankovicp J. A., Y, mamritham, "The Design of the Spring

Kernel, " IEEE Proceedings Real-Time Systems Symposium
(1987) pp. 146-157.

[Stankovic881 Stankovic, J. A., "Misconceptions About Real-Time Computing: A
Serious Problem for Next Generation Systems, " IEEE Computer
21(10) (October 1988) pp. 10-19.

[Stankovic891 Stankovic, J. A., K mamntham and W. Zhao, "Distributed
Scheduling of Tasks with Deadlines and Resource
Requirements, " IEEE Transactions on Computers 38(8) (August
1989) pp. 1110-1123.

[Stankovic901 Stankovic, J. A., K tham, "What is Predictability for
Real-Time Systems?, " Real-Time Systems 2(4) (1990) pp. 247-
254.

[Stankovic9l] Stankovic, J. A., K. Ramamritham, "The Spring Kernel, " IOS
Press (1991).

[Tindel1921 Tindell, K., 'An Extendible Approach For Analysing Fixed
Priority Hard Real-Time Systems", YCS 189, Department of
Computer Science, University of York (1992).

[Tokuda891 Tokuda, H., C. W. Mercer, "ARTS: A Distributed Real-TYme
Kernel, " ACM Operating Systems Review Special Issue (1989)

pp. 29-53.
[Tokuda9l] Tokuda, H., C. W. Mercer, "The ARTS Kernel: Toward

Predictable Distributed Real-Time Systems, " IOS Press (1991).

[Wilf861 Wilf, H. S., "Algorithms and Complexity, " Prentice-Hall

International (1986).
[XU901 Xu, J., D. L. Parnas, "Scheduling Processes with Release Times,

Deadlines, Precedence, and Exclusion Relations, " IEEE

Transactions on Software Engineering 16(3) (March 1990)

pp. 360-369.
[Xu9lal Xu, J., D. L. Parnas, "On Satisfying Timing Constraints in

Hard Real-nme Systems, " Proceedings ACM SIGSOFT '91

Conference on Software for Critical Systems (December 4-6

1991).

237

