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Chapter 1 

Introduction 

The importance of efficient data structures is reflected through literature span- 

ning many years [3,11,51]. Recently, this has included data structures and 

complexity models developed specifically for functional languages [14,38,40]. 

But, in practice, what distinguishes a good data structure from a bad data struc- 

ture? What is the main reason whether a data structure is useful? Empirical 

performance! Yet most literature has paid little attention to this aspect of data 

structures. We tackle this deficiency by developing the theory and practice of 
benchmarking functional data structures. 

1.1 Functional Languages 

Why use functional languages? Given the amount of literature on data structures 
for imperative languages, why do we need to bother with functional data struc- 

tures? There are strong arguments for the functional style of programming [5,22]. 

e Succinctness. A functional program is typically shorter than its imperative 

equivalent. This helps reduce development and maintenance costs. 

9 Clarity. The meaning of a functional program is arguably more immediate, 

by being shorter and by using features like algebraic datatypes and higher 

order functions. 

* Reasoning. The lack of state allows referential transparency, which in turn 

allows the meaning of a program to be independent of its surroundings. 

1 
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This simplifies any mathematical reasoning on a program, including for 

example, a proof of its correctness. This also simplifies the programmer's 

task, by aiding their own mental reasoning about a program. 

* Beauty. A functional program feels "cleaner" and more aesthetically pleas- 

ing. Through aesthetics, this affects the state of the programmer, their 

enthusiasm to work, and thus the quality of their results. 

As a small example, Figure 1.1 and Figure 1.2 show C and Haskell versions 

respectively of a program to insert and lookup a node in an ordered, unbalanced 

tree. The most obvious difference between these programs is the difference in 

size. Figure 1.3 shows a more compact C program, but it is still larger than the 

Haskell program, and less understandable than the larger C program. The Haskell 

program is far clearer than either C program. Because of this size difference, and 
because of the lack of pointers, programming the Haskell version is far less error- 

prone. The Haskell programmer is free to think about the tree itself, rather than 

how the tree is represented. 

1.2 Functional Data Structures 

Given we want to use a functional language, why do we need data structures 

specifically designed for a functional setting? Will not the vast array of imperative 

data structures suffice? Unfortunately not, because of the greater demands a 
functional language places on its data structures: A functional data structure 

cannot be destructively updated. No information can be lost until the program 

using the data structure no longer requires it. In particular, when a data structure 
is updated, both the new and the old versions of the data structure must be 

available for further use. 

Some imperative data structures can be brought across to the functional Nvorld 

with little change. In most cases the design actually becomes clearer in a func- 

tional setting. Figures 1.1 and 1.2 illustrate this well. Okasaki gives another 

example by implementing red-black trees in a functional setting [39] and further 

writes in the conclusions section: 
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#include <stdio. h> 
#include <stdlib. h> 

typedef struct node I 
int value; 
struct node *left, *right; 
node; 

typedef node *tree; 

int member (int x, tree t) f 

while (t != NULL && t->value != x) 
t= (x < t->value) ? t->left : t->right; 

return (t != NULL); 
I 

tree mknode Unt x) f 
tree t= malloc (sizeof (node)); 

t->value = x; 
t->left = t->right = NULL; 
return t; 

I 

void insert (int x, tree *result) I 
tree t= *result , *tptr = result; 

if (t == NULL) ( 
*result = mknode(x); 
else f 

while (t != NULL && t->value 1= x) 
tptr = (x < t->value) ? &t->left : &t->right; 
t= *tptr; 

I 
if (t == NULL) *tptr = mknode(x); 

I 
I 

3 

Figure 1.1: C program to insert and lookup a node in an ordered, unbalanced 

tree. 



4 CHAPTER 1. INTRODUCTION 

data Tree a= Empty I Node (Tree a) a (Tree a) 

member x Empty = False 
member x (Node 1y r) 

x<y= member x1 
x>y= member xr 
otherwise = True 

insert x Empty = Node Empty x Empty 
insert x (Node 1y r) 

x<y= Node (insert x 1) yr 
x>y= Node 1y (insert x r) 
otherwise = Node 1xr 

Figure 1.2: Haskell program to insert and lookup a node in an ordered, unbal- 

anced tree. 

#include <stdio. h> 
#include <stdlib. h> 

typedef struct node f 
int value; 
struct node *left, *right; 
node; 

typedef node *tree; 

tree* find Unt x, tree *tp) 
if (*tp 1= NULL) 

while (*tp I= NULL && (*tp)->value != x) 
tp = (x < (*tp)->value) ? &(*tp)->left : &(*tp)->right; 

return tp; 
I 

int member (int x, tree t) freturn (*find(x, &t) != NULL); j 

void insert (int x, tree *tp) ( 
if ((tp = find(x, tp)) != NULL) 

*tp = malloc(sizeof (node)); 
(*tp)->value = x; (*tp)->left = (*tp)->right = NULL; 

Figure 1.3: Compact C program to insert and lookup a node in an ordered 

unbalanced tree. 
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When existing imperative algorithms can be implemented in func- 

tional languages, the results are often much prettier than the original 

version. This has been amply demonstrated in the past for various 

kinds of balanced binary search trees, including 2-3 trees [47], BB- 

trees [21, and "L trees [311. 

Over the past six or seven years, many papers have given details of new 

functional data structures [7,10,14,32,33,34,40]. However, these papers 

only give limited attention to empirical performance. Okasaki writes in an open 

problems section of his thesis Purely Functional Data Structures [36], "The theory 

and practice of benchmarking [functional] data structures is still in its infancy. " 

This thesis develops the theory and practice of benchmarking functional data 

structures. 

1.3 Benchmarking Functional Data Structures 

Suppose we want to measure the efficiencies of some competing data structures. 

The standard approach is to find a few applications to act as benchmarks, allowing 

us to measure the efficiency of each data structure when used by each benchmark. 

Why not do this? Firstly, creating anything but a very artificial benchmark is a 

substantial task. Secondly, using the results of just a few benchmarks, especially 

artificial ones, can be very misleading. The efficiency of a data structure may 

vary heavily according to how it is used, and hence the choice of benchmarks may 
determine which data structure appears to be the best-see Section 7.2.1 for an 

example of this. Worse, we will not know if our choice of benchmarks is "fair" or 

not. 

We solve both of these problems by developing a benchmarking tool, Auburn, 

that creates a benchmark according to a description of use. By generating a fair 

distribution of benchmarks over a wide variety of different uses, we not only find 

which data structure is best overall, but also which data structure is best for a 

particular use. 

Suppose that we have a single application in mind, and we wish to choose one 

of many competing data structures to use in our application. Why not simply 
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measure the performance of our application using each data structure in turn? 

Unfortunately, this approach does not reveal why the data structures perform as 

they do. If our application changes how it uses the data structures, a different 

one may now be the most efficient, without us knowing why. 
By measuring how our application uses the data structures, and how the data 

structures' efficiency varies according to this use, we can know why the best data 

structure is best. Therefore, Auburn also creates a description of use from an 

application. 

1.4 Terminology 

In order to understand the following chapters, it is necessary to define a few key 

terms. 

* Benchmark. A benchmark is an application that can use any one of a 
family of competing data structures. A benchmark is used to measure the 

performance of such data structures. 

* Abstract Datatype. An abstract data type (ADT) is a type with associated 

operations manipulating values of that type. A more detailed definition is 

given in Section 3.1. 

* Implementation. A data structure that gives a concrete realisation of the 

type and operations of an ADT is called an implementation. 

Version. When an application uses a data structure, at any one point in the 

computation, there exist many different instances of the data structure-for 

example, a particular list, or a particular queue. Each particular instance 

of a data structure is called a version of the data structure. 

Persistence. Persistence is the property of allowing the use of any version 

of a data structure in its original form after it has been updated. A data 

structure that supports persistence is called persistent. A data structure 

that is not persistent is called ephemeraL 

* Single- Threaded. An application is single-threaded in the use of a data 

structure if it does not use any persistence supported by the data structure. 
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Amortisation. When applied to the complexity of an operation, amortisa- 

tion implies that the cost of an operation is considered in the context of 

a group of operations, rather than in isolation. This allows the cost of an 

expensive operation to be spread over many surrounding inexpensive oper- 

ations. Note that all complexities are arguably amortised in a lazy language 

like Haskell. 

1.5 Overview 

Chapter 2 reviews some implementations of three different ADTS: queues, random- 

access sequences, and heaps. The details of the implementations provide an ex- 

ample of the different ways of implementing an ADT. They also add meaning to 

the results of benchmarking the implementations in Chapter 7. 

Chapter 3 develops the theory of datatype usage upon which Auburn is based. 

It defines a datatype usage graph (DUG) recording how a data structure is used 
by an application, and a profile surnmarising the most important aspects of a 

DUG. This chapter also outlines how we can create a benchmark from a profile, 

and extract a profile from an application. 
Chapter 4 describes the implementation of the core algorithms of Auburn, as 

outlined in theory in Chapter 3. These involve the creation of benchmarks from 

profiles through the generation and evaluation Of DUGS, and the extraction of 

profiles from applications through the extraction and profiling Of DUCS. 

Chapter 5 investigates how we should use Auburn. There are many ways we 

could use the algorithms of Chapter 4, but we need any method to be efficient, 

to be accurate, and to produce concise, clear results. This chapter presents a few 

methods, surnmarising their advantages and disadvantages, and then recommends 

one of them. 

Chapter 6 outlines the design and use of Auburn. Chapter 4 gives the core 

algorithms of Auburn, but there are many other design decisions in how to im- 

plement and combine these into one package. Most of the decisions relate to the 

language in which we implement Auburn: Haskell. 

Chapter 7 reports the results of using Auburn on the data structures of Chap- 

ter 2. We examine the accuracy of these results, and the accuracy of Auburn as 
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a whole. We also investigate the source of any inaccuracy in Auburn. 

Chapter 8 concludes and lists future Nvork. 
Appendix A gives the code for the implementations of the data structures 

detailed in Chapter 2 and used in the final round of benchmarking in Chapter 7. 

Appendix B gives the modifications of the implementations of Appendix A 

used in the fine-tuning section of Chapter 7. 

Appendix C details the executables that make up Auburn. 



Chapter 2 

Implementations of Three ADTs 

In Chapter 7, we shall benchmark several implementations of queues, random- 

access sequences, and heaps. This chapter delivers the key idea behind each 

implementation. We may then interpret the results of the benchmarking in the 

light of this review. Without such a review, the results hold little value except 

towards choosing one over another; with this review, the practical results of design 

choices become visible and provide insight into their effectiveness. 

Each section of this chapter begins with a brief description and formal spec- 

ification of the ADT. The following subsections review each implementation. 

We give references to papers describing the implementations in greater detail. 

As we organise the review by data structure, we can easily compare different 

implementations of the same data structure. Appendix A gives code for each 

implementation. 

2.1 Queues 

Queues are among the simplest of ADTS. They are sequences supporting insertion 

at the rear, and removal from the front. Figure 2.1 gives the specification of 

queues. Table 2.1 lists the queue implementations and the complexities of their 

operations. 

9 
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type Queue a= [a] 

empty :: Queue a 
empty = [] 

snoc:: Queue a -+ a -+ Queue a 
snoc [xol ... i Xn-11 X= IX07 

... iXn-bX1 

head :: Queue a -+ a 
head [xo,..., x�-, ] = xo (n > 1) 

tail :: Queue a -4Queue a 
tail [io7 

... tXn-11 
[XIv 

... 7 
Xn-11 (n > 1) 

Figure 2.1: Queue specification. For the purposes of specification, we treat a 

queue as a list. 

Queues 
Name Lazy Complexities of Operations Reference 

NaIve - headltail: 0(l), snoc: O(n) n/a 
Simple - snoclheadltail: 0(1)t [20) 

Multihead - snoclheadltail: 0(1) [20] 

Banker's snoclheadltail: 0(1)1 [37] 

Physicist's snoclheadltail: 0(1)t [38] 

Real-time v, snoclheadltail: 0(1) [341 

Bootstrapped snoclheadltail: 0(1)t [38] 

Implicit snoclheadItail: 0(1)t [38] 

Table 2.1: Complexities of implementations of queues, including whether lazy 

evaluation is required. Complexities marked with f are amortized. Complexities 

marked with t also are amortized, but only under single-threaded use. All other 

complexities are worst-case. 
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NaYve Queues 

11 

We can represent a queue directlY as a list. The normal head and tail operations 

of lists implement head and taiL List catenation of a singleton list implements 

snoc. 

2.1.2 Batched Queues 

Hood and Melville [20] represent a queue as a pair of lists (f, r)-f giving the 

front portion of the queue and r giving the reverse of the rear portion of the 

queue. The queue of elements aj, a2, .... a,, is therefore represented by the lists 

f= [a 1, ..., a,,, ] and r= [a ...... a,, +, ], 0<m<n with f empty only when 

the queue itself is empty. To insert an element onto the queue, -simply add an 

element to the front of r. To remove an element from the queue, take the first 

element of f; if this leaves f empty, then let the queue become (reverse r, [ ]). 

Every operation except tail takes 0(1) time. If an application of tail causes a 

reversal of r, it takes O(n) time; otherwise, it also takes 0(1) time. For any single- 

threaded sequence of operations, a reversal of r happens at most once every A(n) 

operations, where A(n) is O(n). Therefore we can conclude that A(n) single- 

threaded queue operations take O(n) time-an amortized complexity of 0(l). 

However, persistence destroys this result. Consider an application of tail that 

reverses the rear list. Persistence allows us to repeat this application indefinitely, 

each application taking O(n) time. Therefore, in a persistent setting, the best 

complexity we can give to tail is O(n). 

We take the name of this implementation from [38]. 

2.1.3 Multihead Queues 

Hood and Melville [20] improve on the batched implementation of a queue by 

distributing the reversal of the rear list over a number of operations. This gives 

real-time queues, that is, the operations run in 0(1) worst-case complexity. 

In order to continue performing operations whilst reversing the rear list, the 

reversal begins when the rear list r becomes larger than the front list f. The 

reversal is spread over the following n operations, where n is the length of the 
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front list. These n operations create new front and rear lists fýp and r,, p by 

removing elements from f and by adding elements to the empty list respectively. 

At the same time, r is reversed onto the end of f to create a new front list fn, "', 
taking care to use only elements in fýp. The lists fn,,, and r,, p form the new 

queue. It is simple to prove that r, p is no longer than fn,,.. 

To create the list fn,,,, over n operations, reverse f to make f,,,, and at the 

same time reverse r to make r,,,. Then move elements from the front of f"', onto 

the front of r,,, till an element not in fýp is reached, or when all elements have 

been moved. It is sufficient to move only two elements per operation from f to 

fmv) from r to r, or from f,, to rr,,. Hence each operation takes 0(1) time. 

The name multihead derives from the similarity of the solution to how multi- 
head Turing machines can be simulated. Full details are given in [20]. Note that 

there are two mistakes in the code given in [20]. 

* The call cons [v, TI on line 4 should read cons [v, T11. 

* The value lendif f -1 on line 9 should read lendif f. 

Appendix A gives the corrected implementation. 

2.1.4 Banker's Queues 

Okasaki [37] presents an implementation of queues with 0(1) amortized com- 

plexity. He is able to give an amortized complexity in a persistent setting by 

appealing to the proof techniques that he develops in [32,37], and presents in 

[38]. Representing a queue as a pair of lists is once again the basis of the im- 

plementation. Hood and Melville remove the problem of the O(n) persistent 

complexity of the batched implementation by explicitly scheduling a distribution 

of the work involved in performing the reversal of the rear list. Okasaki gives a 

much simpler solution that uses lazy evaluation to implicitly schedule and share 

this distribution of work. 

The key idea is not to delay more work than a subsequent sequence of oper- 

ations can pay off. Under single-threaded use, traditional amortization allows us 

to spread the cost of the reversal of the rear list r of length Irl over the previous 
Irl applications of snoc that built r. With non-single-threaded use however, we 
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may have several queues sharing the result of a snoc. This application of snoc 

can only bear a constant additional cost before losing its 0(1) complexity. As 

an arbitrary number of queues may share the result of the snoc, the batched 

implementation of queues cannot have 0(1) complexity in a persistent setting. 

Okasaki shifts the burden of the reversal from the preceding sequence of op- 

erations to the succeeding sequences of operations-remember that there may be 

more than one such sequence because of persistence. This is done by insisting 

that a queue must never engage in a reverse whose cost cannot be spread over 

operations that occur after the reverse is formed but before its result is required. 
The cost of the reverse can then be shared by the operations that occur between 

suspending an application of the reverse and executing this suspension. The cost 

of the reverse is considered to be a debt, waiting to be paid off. Lazy evalua- 

tion plays a key role here in two respects: a function application can be delayed, 

and the result of the delayed application can be shared. For further details on 

persistent amortization, see [381. 

So when can we delay a reverse and still be in a position to pay off its debt 

before its result is needed? Suppose we only reverse the rear list r and append it 

to the end of the front list f when Irl becomes larger than a constant k times If I. 

As we apply tail to the resulting queue, the new front list will shorten. Until we 
have removed all of f, the result of the reverse is not required. The number of 

applications of tail required to do this is equal to if 1. As Irl is at most a constant 
k times If 1, we can share the cost of the reverse over the If I applications of tail 

by adding a constant additional cost to each. The operations therefore keep their 

0(1) complexity. 

For a more formal argument using the banker's method of persistent amorti- 

zation proof techniques, see either [37] or [381. The name of this implementation 

is derived from the proof technique used to give it its complexity. 

2.1.5 Physicist's Queues 

In the same way that Okasaki uses the banker's method to give 0(l) amortized 
bounds to banker's queues, he uses the physicist's method to give 0(l) amortized 
bounds to physicist's queues [38]. 
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The major difference between the banker's and physicist's methods is that the 

banker's method allows the debt of particular suspensions of work to be paid off 

individually whereas the physicist's method considers the debt of the whole data 

structure. The idea behind physicist's queues is to make fewer suspensions. For 

a strict language such as Standard ML where suspensions are explicit and costly, 

this may reap some rewards. For a lazy language such as Haskell where everything 

is suspended, the physicist's queues are unlikely to be any more efficient than the 

banker's queues. 

2.1.6 Real-Time Queues 

A real-time data structure supports all operations in 0(1) worst-case time. 

Okasaki gives a real-time implementation of queues in [341. We may derive this 

implementation from the banker's queues by splitting up any monolithic chunks 

of work into portions taking 0(1) time. These portions are spread evenly over 

every operation. This allows each operation to run in 0(1) time. 

The only monolithic work suspended by the banker's queues not of 0(1) 

complexity is the reversal of the rear list. This is replaced by the function rotate 

that incrementally reverses the rear list onto the back of the front list. A constant 

portion of the rotation is done each time the queue is updated. 

2.1.7 Bootstrapped Queues 

Okasaki [38] offers yet another variation on the banker's queues, this time using 

the principle of data-structural bootstrapping given by Buchsbaum [8]. The basic 

idea behind bootstrapping is to extend the design of an incomplete or inefficient 

data structure to use smaller instances of the same data structure. 

Recall that banker's queues reverse the rear list onto the end of the front list 

every time the rear list becomes too large. After a series of such reversals, the 

front list will look something like this: 

( ((f -ii-reverse ri) 4-i-reverse r2) .... I+reverse rk) 

As append is linear in its left argument, such a series of appends is rather ex- 

pensive since some elements are traversed more than once, eg. every element of 
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r, will be traversed k times. Bootstrapped queues remove this inefficiency by 

storing the collection freverse rl,. . ., reverse rk} of reversed rear lists separately, 

and using them to replace the front list as necessary. This does not then require 

any applications of append. But how should we store this collection? Noting the 

first-in first-out order in which they are inserted and removed, we shall represent 

this collection as a queue of lists. This is where bootstrapping is used: A queue 

of lists represents part of a queue. The type of a queue becomes: 

data Queue a= Empty 

I Queue [a] (Queue [a]) Int [a] Int 

where Queue fmf ml.,, r rl.,, is a queue with front list f, queue m of reversed rear 
lists, and rear list r; f ml.,, gives the combined length of f and the lists in m; and 

ri.. gives the length of r. The recursive type requires a base case for termination, 

so an Empty constructor is introduced. 

The operations of this implementation run in 0(log* n) time', but a simple 

alteration improves this complexity to 0(1). In practice however, this makes 
little difference. 

2.1.8 Implicit Queues 

Okasaki [381 describes another implementation of queues, this time based on the 

principle of recursive slowdown. Kaplan and Tarjan first introduced recursive 

slowdown in [24]. The key observation underlying the technique arises from 

considering a bootstrapped data structure (for an example of bootstrapping, see 
Section 2.1.7). 

Suppose an operation on a bootstrapped data structure of size n involves a 

constant amount of work plus that of calling the same operation a constant c 
times on nested data structures of combined size f (n). Let T(n) measure the 

time taken by this operation. We have: 

T(n) = 0(l) + cT(f (n)) 

If we solve this recurrence relation for c=1 and f (n) = log n, we find that 

T= 0(log* n). This gives the complexity of the bootstrapped queues of Sec- 

I logM k= 1092 k, log(') = log log('-') k (i > 1), log* k= minjil log() k< 1) 
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tion 2.1.7. If however, we solve the relation for c= 1/2 and f (n) = log n, we 

find that T(n) = 0(1). Indeed, for c<I and f (n) =n-1, we still find that 

T(n) = 0(1). But what does performing, say, half an operation mean? Suppose 

we made sure that only one operation was performed on a nested data structure 

for every two operations on the enclosing data structure. This could be seen as 

performing half an operation on the nested data structure for every one operation 

on the enclosing data structure. This is recursive slowdown. 

To apply recursive slowdown to queues, we shall represent a queue using a 

smaller inner queue on which we perform one operation for every two operations 

performed on the enclosing queue. If the inner queue is a queue of pairs, we need 

only insert or remove a pair every two insertions or removals respectively on the 

enclosing queue. We will keep at least one element at the front of the enclosing 

queue. This ensures that the enclosing queue is ready to perform an operation 

and that the inner queue is distinctly smaller. This is Okasaki's implementation, 

and the type of queues is given by 

data Queue a= Shallow (ZeroOrOne a) 
I Deep (OneOrTwo a) (Queue (a, a)) (ZeroOrOne a) 

data ZeroOrOne a= ZeroInOne I OneInOne a 

data OneOrTwo a= OneInTwo aI TwoInTwo aa 

Whereas Kaplan and Tarjan explicitly schedule thework involved in recursive 

calls to inner data structures, Okasaki uses lazy evaluation to implicitly schedule 

this work, hence the name of this implementation. Data structures using implicit 

recursive slowdown are typically a lot simpler than their explicit counterparts, 

but are amortized rather than worst-case. 

2.2 Random-Access Sequences 

Figure 2.2 specifies sequences that support access to any element. Table 2.2 lists 

some implementations. 
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type RASeq a= [a] 

empty:: RA Seq a 

empty = [] 

cons :: a -+ RASeq a RASeq a 

cons x [xo) ... 2Xn-11 
IXIX07 

... 7 Xn-11 

head :: RASeq a -+ a 
head [xol ... ) Xn-11 : -- XO (n > 

tail :: RA Seq a -+ RA Seq a 

tail[xo,..., x�-1]=[xl,..., x�-1] (n>l) 

snoc:: RASeq a -+ a -+ RASeq a 

snoc [xo, 
.... 

Xn-11 X= IXO.... 
e Xn-1, X] 

last :: RASeq a -+ a 
last [xo, 

... I Xn-11 : -- xn-1 (n > 

init :: RA Seq a -+ RA Seq a 
init [xo, 

---, Xn- II= IX0.... 9 xn-21 (n > 1) 

lookup:: RASeq a -+ Int -+ RASeq a 
lookup [xoj ... iXn-lli=Xi (O<i<n-1) 

17 

update :: RASeq a --* Int -ý a -+ RASeq a 

update [xol 
... 9 Xn-11 ix= [xo, 

---, xi-i i xt xi+l i ... 7Xn-11 
(O<i<n-1) 

Figure 2.2: Specification of a sequence supporting random-access. For the pur- 

poses of specification, we treat a random-access sequence as a list. 
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Random-Access Sequences 

Name Lazy Complexities of Operations Reference 

NaIve Lists - conslheadltail: 0(l), n/a 
lookup/update: O(i), 

snocliastlinit: O(n) 

Threaded - conslheadltail: 0(l), [29] 

Skew Binary lookup: 0(min(i, logn)), 

Lists update: O(i) 

Balanced - conslheadltail: O(logn), [2,31] 

Trees lookuplupdate: O(logn), 

snocliastlinit: O(logn) 

Braun Týees - head: 0(l), cons/tail: O(logn), [21] 

lookuplupdate: O(logi), 

snoc/lastlinit: O(logn) 

Slowdown - conslheadltail: 0(l), [24] 

Deques lookuplupdate: 0 (log d), 

snoc/lastlinit: 0(1) 

Skew Binary - conslheadltail: 0(l), [33] 

Lists lookuplupdate: 0(min(i, logn)) 

Elevator - conslheadltail: 0(i), n/a 
Lists lookuplupdate : O(i) 

Table 2.2: Complexities of implementations of sequences supporting random- 

access, where n is the length of the sequence, i is the index being accessed by a 

lookup or update operation, and d is the distance from the index to the nearest end 

of the sequence. All complexities are Nvorst-case. None of the implementations 

require lazy evaluation. 
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2.2.1 NaYve Lists 
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An ordinary list provides 0(1) access to the front and O(i) access to the ith 

element. 

2.2.2 Threaded Skew Binary Lists 

Myers [29] extends the ordinary list implementation with an efficient lookup op- 

eration, whilst preserving the complexities of the other operations. 
Myers uses a number system called skew binary that proves very useful in 

many data structures [7,32,381. The advantage of this system of representing 

numbers is that no more than a single carry is caused by an addition or subtrac- 

tion of one. Each digit is either 0 or 1, except the least-significant non-zero digit, 

which is either 1 or 2. The i1h digit has weight 2('+') -1 as opposed to the usual 
2' of ordinary binary numbers. For example, 

(120)2. 
= (1 x7+2x3+0x 1)10 = (13)10 

(11111)2, 
= (31 + 15 +7+3+ 1)10 = (57)10 

where ("Ob is the number given by x under base notation b, with 2, standing for 

skew binary, 2 for binary and 10 for decimal. With skew binary, addition of one 

produces at most one carry, for example, 

(120 + 1)2, = 
(200)2, 

whereas with binary we could have a cascade of carries, 

+ 1)2 
--'ý 

(1000)2 

Removing the possibility of such a cascade allows us to perform an addition or 

subtraction of one by changing at most two digits, irrespective of the size of the 

number. 
Myers uses the skew binary number system to add auxiliary pointers to ordi- 

nary lists. These provide access to elements further down the list. A list of seven 

elements [V7, 
... , vi] , with V7 at the front is shown in Figure 2.3. Along with 

the value vi of each element in the listwe store the position Pos of vi from the 

end of the list, a pointer NEXT to the next element down from vi, and a pointer 
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mp 

Z 
NEXT 

(POS)2, 

Figure 2.3: An example of a threaded skew binary list. The empty list is repre- 

sented by [ 1. 

jump to an element further down the list with POS equal to j. The value of j is 

determined as follows: take the Pos of vi in skew binary, and reduce the least- 

significant non-zero digit by one. For example, element v6 has POS = (20)2. and 

hence its jump should point to the element with POS = (10)2,, namely V3- Using 

the jump pointers where possible, lookup now runs in 0(min(i, log n)) time. 

As with ordinary lists, however, update still runs in O(i) time. There is a series 

of pointers to the updated element from every preceding element. Therefore each 

of these elements must have their pointers updated. 

Maintaining the jump pointers can be done in 0(1) time as follows. Consider 

a list with head element s. Let the JUMP of s point to t. Let the JUMP of t point 

to u. To cons an element onto the list, compare the distance between s and t, 

with the distance between t and u. If the two distances are equal, analogous to 

the least significant non-zero digit of a skew binary number being two, we point 

jump to u, analogous to carrying one in skew binary. If the two distances are not 

equal then we point jump to s. 

For example, consider how the JUMP Of V7, was calculated. At the time V7 was 

added to the list, the head element was V6. The JUMP Of V6 points to v3, and 

the JUMP Of V3 points to The distance between V6 and v3 is the same as the 

distance between V3 and Hence the JUMP Of V7 should point to []. 

Myers uses pointers to describe and implement his data structures, taking 

explicit care to ensure that the structures are persistent. With algebraic data- 

types, the persistent property is enforced and no pointers are mentioned. The 

type of Myers' list would be given in Haskell by: 

100 20 12 11 10 210 
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data RASeq a= Empty 

I Node a (RASeq a) (RASeq a) Int 

The list with head element V, NEXT pointing to the list next, jump pointing to 

the list jump, and Pos equal to pos would be given by Elem v next jump pos. 
For example, Ir = Elem V7 Empty 16 7 (with a suitable definition Of 16, etc. ) gives 

the list 17 in Figure 2.3. 

Okasaki [32,38] gives an implementation of random-access lists that is essen- 

tially an unthreaded version of Myers' implementation. See Section 2.2.6 for a 

comparison of these two data structures. Okasaki constructs his lists with alge- 
braic data-types. Comparing Okasaki's implementation with Myers' illustrates 

well how algebraic data-types can provide clarity and insight. 

Okasaki [32] benchmarks Myers' implementation, improving the code slightly 
by maintaining the difference between the POS of an element and the Pos of the 

element to which JUMP points. This value is called the rank of an element. The 

Pos of each element is no longer maintained and the calculation of the Jump 

involved in an application of cons is now simpler and more efficient. Appendix A 

gives this improved implementation. 

2.2.3 Balanced M-ees 

Various forms of balanced tree may be used to implement a random-access se- 

quence. Most of these implementations offer O(logn) access to any element. 
Braun trees are a notable exception and offer improved access to the front of 

the sequence whilst maintaining logarithmic access to any element as an upper 
bound. They are therefore treated separately in Section 2.2.4. 

AVL trees [3,31] are straightforward but tedious to implement. Okasaki 

uses an implementation adapted specifically for random-access lists in [33]. Ap- 

pendix A gives this implementation. 

Adams [21 provides an alternative in the form of BB-trees. Adams' implemen- 

tation seems to be quite widely used, so we shall look at it below. Other forms of 
balanced trees are documented well in imperative literature and most translate 

across easily to the purely functional or persistent worlds. 
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Adams gives an implementation of sets using BB-trees, which we describe 

below. The modifications required for implementing random-access sequences 

are minor (see the code in Appendix A). 

BB-Trees 

Adams represents a BB-tree as follows: 

data Set a= Empty 

I Branch Int (Set a) a (Set a) 

For a non-empty tree Branch n1xr, we have: 

*A node containing an element x and the number n of elements in the tree 
I 

o The left subtree 1 

o The right subtree r 

The elements are stored in symmetric order; that is, given any non-empty subtree 

Branch n1xr, every element in the tree 1 is less than or equal to x, and x 
is less than or equal to every element in the tree r. The following balancing 

invariant is maintained: 

Given a subtree Branch n1xr containing more than two elements, 

neither 1 nor r has more than a times the number of elements of the 

other. 

To restore the balance of a tree after adding or removing an element, whilst 

maintaining the order of elements, we need to perform rotations. Figure 2.4 

shows the four forms of rotation required and Figure 2.5 shows the corresponding 

code. Note that the trees are constructed using the function branch, not the 

data constructor Branch, and that branch does not take size as an argument. 
The function branch calculates the size of the tree from the sizes of the left and 

right subtrees. This avoids unnecessarily verbose code produced by calculating 

the size separately each time a tree is constructed (as would be necessary if 

Branch was used directly). Adams calls these functions smart constructors. Two 

further smart constructors are given: 
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Single Left 

Single Right 

Double Left 

Double Right 

Figure 2.4: Rotations of a binary tree. 
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* balBranch, which constructs a balanced tree from a previously balanced 

tree that has had at most one element deleted or added to one of its subtrees, 
both of which are assumed to be now balanced 

9 concat; 3, which constructs a balanced tree from a node and two subtrees 

of arbitrary size 

Adding or removing a single element to or from a subtree may require a 

rotation to restore the balancing invariant. An unbalanced tree with a large left 

or right subtree requires a right or left rotation respectively. Let's suppose that 

the right subtree r is too large. 
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branch :: Set a -> a -> Set a -> Set a 

branch 1xr= Branch (1 + size 1+ size r) 1xr 

size Empty =0 

size (Branch nIx r) =n 

singleL 1x (Branch 
- rl y rr) = branch (branch 1x rl) y rr 

singleR (Branch 
-1x rl) y rr = branch 1x (branch rl y rr) 

doubleL 1x (Branch 
- 

(Branch 
- rll y r1r) z rr) = 

branch (branch 1x r1l) y (branch rlr z rr) 

doubleR (Branch 
- 

11 x (Branch 
- 

lrl y lrr)) zr= 

branch (branch 11 x lrl) y (branch lrr z r) 

Figure 2.5: Rotating binary trees. 

If the left subtree rl of r is smaller than some constant a times the right 

subtree rr, then we move rl across to the left subtree I of the main tree to 

try to restore the balancing invariant whilst preserving the order. This is 

a single left rotation-see Figure 2.4. The rotation also shifts elements x 

and y round to preserve order. 

If the right subtree rl of r is larger than a times the right subtree rr, then 

we move only part of rl to restore the balancing invariant. We move the 

left subtree rll of rl across to the main left subtree I whilst preserving the 

order of elements-this is what a double left rotation does, see Figure 2.4. 

The case of the left subtree I being too large is treated symmetrically. The 

above algorithm can be seen in the code for balBranch in Figure 2.6. The 

function concat3 simply traverses the tree, restoring balance as necessary by 

calling balBranch. 

In a technical report [1], Adams investigates what values of a and a are suf- 

ficient for the algorithm above to maintain the balancing invariant. He produces 

a graph of suitable combinations of a and a. As used in Figure 2.6, a=5 and 

a=2 is one such suitable combination. However, in [2] Adams gives code with 
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sigma :: Int 

sigma = 

alpha :: Int 

alpha =2 

balBranch :: Set a -> a -> Set a -> Set a 

balBranch 1xr 

sizeL + sizeR <2= branch 1xr 

sizeR > sigma * sizeL = 

let (Branch 
- rl - rr) =r 

in if size rl < (size rr) * alpha 

then singleL 1xr 

else doubleL 1xr 

sizeL > sigma sizeR = 

let (Branch 11 
- 

lr) =1 

in if size lr < (size 11) * alpha 

then singleR 1xr 

else doubleR 1xr 

I otherwise = branch 1xr 

where sizeL = size 1 

sizeR = size r 

concat3 :: Ord a => Set a -> a -> Set a -> Set a 

concat3 Empty xr= add xr 

concat3 1x Empty = add x1 

concat3 10(Branch n1 11 x 1r) y rQ(Branch nr rl z rr) 

sizeRatio n1 < nr balBranch (concat3 1y rl) z rr 

sizeRatio nr < n1 balBranch 11 x (concat3 1r y r) 

otherwise branch 1yr 

UNIvERSITY 
OFYORK 
Uý Figure 2.6: Smart constructors of balanced trees. UPARY 
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a=5 and a=1, which is not suitable. One suspects that the proportion of 

unbalanced trees is low and the cost of ensuring all trees are balanced is greater 

than the cost taken to navigate the occasional unbalanced tree. However, Adams 

does not mention this. 

Consider the operation add that adds an element to a set. The operation add 
descends the tree by recursively calling itself to add the element at the correct 

position (or returning the tree if the element is present already). As it does so, 

it may unbalance the tree at each of the nodes lying on its path to the added 

element's final position. The balancing smart constructor balBranch is designed 

specifically to handle this case by assuming that only a single element has been 

added or removed since the tree was last in a balanced state and that all subtrees 

of the two trees it joins are balanced. 

add :: Ord a => a -> Set a -> Set a 

add x Empty = singleton x 

add x tQ(Branch -1y r) Ix<y= balBranch (add x 1) yr 

I<x= balBranch 1y (add x r) 

I otherwise =t 

Other set operations are defined similarly. 

2.2.4 Braun Trees 

Hoogerwoord [21] uses Braun trees [6) to implement flexible arrays. Braun trees 

have the following properties: 

9 For any node of a Braun tree with left subtree I and right subtree r, 
Irl :5 111 :5 Irl + 1. 

9 The size of a Braun tree determines its structure exactly. 

* Every Braun tree is of minimum height. 

Consider the infinite tree of Figure 2.7. Now consider the subtree formed by 

Temoving all nodes bar those labelled with numbers in the range [O.. n-11 inclusive. 

-This is the Braun tree of size n. For examples of Braun trees, see Figure 2.8. The 
to'! 
pattern of how the nodes are labelled is best illustrated by the lookup operation. 
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Figure 2.7: The infinite Braun tree. 
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43/, c Zh 

Figure 2.8: The Braun trees of size four, nine and seven. 

To lookup the n th element of Braun tree T with left subtree I and right subtree 

r, use the following rules: 

9 If n=0, then return the root element of T. 

9 If n is even, then return the ((n/2) - 1)th element of r. 

* Otherwise, n is odd, so return the ((n - 1)/2)th element of 1. 

The update operation is defined similarly. As every Braun tree is of minimum 

height, these operations run in O(logn) time. Treating the trees as lists, it is 

possible to define cons and tail to run in O(logn) time, and head in 0(1) time. 

Hoogerwoord implements flexible arrays, whereas we want random-access 

lists-we shall now explain the difference. When an element is added or re- 

moved from the front of a random-access list, the positions of the other ele- 

ments in the list shift. If instead positions remain fixed, we have a flexible 

array. For example, consider applying cons to the list 11 = [0,..., n] to give 

the list 12 [- 1,0, ..., n]. Both a random-access list and a flexible array give 

lookup 11 i i. However, a random-access list gives lookup 12 i=i-1, whereas 

a flexible array gives lookup 12 i= i- It is simple to extend an implementation 

/% 
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of a random-access list to give flexible array behaviour, and vice versa. The al- 

gorithm we have described above, and the code in Appendix A, both implement 

random-access lists. 

2.2.5 Slowdown Deques 

Kaplan and Tarjan [24] introduce the technique of recursive slowdown and use 
it to implement many data structures, including double-ended queues (deques). 

Section 2.1.8 gives a brief explanation of recursive slowdown. The deques can 

also be made to support random access. 
A deque is represented by a prefix of up to five elements, an inner central 

deque of pairs of elements, and a suffix of up to five elements. A large deque 

is therefore made up of many deques nested within each other. The outermost 
level contains simple elements in its prefix and suffix, the second level pairs of 

elements, the third level pairs of pairs of elements, etc. As with the implicit 

queues of Section 2.1.8, we make sure that an operation on the inner deque takes 

place every two operations on the outer deque. To do this, we need to make 

sure that the prefix and suffix are kept close to being half full to avoid cascades 

of operations on nested deques. Kaplan and Tarjan introduce a colour scheme 
to identify prefixes and suffixes with dangerously few or many elements: red for 

zero or five elements, yellow for one or four elements, and green for two or three 

elements. A deque is coloured according to the most dangerous colour of its prefix 

or suffix. The following invariant is then maintained: 

There is a green deque outside of the outermost red deque. There is 

also a green deque between any two red deques. 

This ensures that the outermost deque is always in a state ready to accept a new 

element or to give up a current element. The details of how to juggle the prefixes 

and suffixes to maintain this invariant are complex and not given here. Main- 

taining the invariant may require performing an operation on the inner deque. 

However, an operation on the inner deque is only necessary if the outer deque is 

red. The invariant ensures that when the outer deque is red, the inner deque is 

not red, hence preventing a cascade of operations on nested inner deques. The 

invariant can be maintained with a constant amount of work per operation. As 
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the invariant guarantees that the deque is ready to perform an operation in 0(l) 

time, this proves that the deque allows operations on either end to run in 0(1) 

worst-case time. 

The operations lookup and update are implemented by descending the series 

of nested deques till we reach the prefix or suffix in which the element is stored. 

If the element is at most d positions from the nearest end of the deque, then the 

element is at O(logd) depth since the number of elements stored in each level 

grows exponentially. As the second level contains pairs of elements, the third level 

pairs of pairs of elements, and so on, we have to descend this tree-like structure 

to reach the element. As this tree is also 0 (log d) deep, the complexity of lookup 

and update is O(logd). 

2.2.6 Skew Binary Lists 

Okasaki [32] notes that complete binary trees are a good structure to use for 

random-access, allowing access and update to any node in O(logn) time. How- 

ever, these trees are only found in sizes of the form 2k -1 so the problem remains 

of how to store lists of arbitrary size. The skew binary number system of Sec- 

tion 2.2.2 once more comes to our aid. Recalling that the ith digit represents 

2' - 1, this number system is ideal for implementing a list of n elements as a 

collection of complete binary trees according to the representation of n in skew 
binary (see Figure 2.9). Importantly, the addition or removal of an element in- 

volved in the cons and tail operations is also dealt with in 0(1) time thanks 

to the main property of skew binary numbers: addition or subtraction of one 

produces at most one carry. 
The importance of cheap access to the front of the list for cons, head and tail 

suggests we order the trees by size, smallest first, and order the elements with 
left-to-right pre-order. 

By analogy with skew binary addition and subtraction, cons and tail are 

implemented as follows: 

* To cons an element onto a list, check if the two smallest trees are the same 

size. If not, add the new element as a singleton tree. Otherwise, create a 
larger complete binary tree with the new element as root and the two trees 
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Figure 2.9: A list [vi V13] represented as a collection of complete binary trees. 

Number of nodes = (13)1o =1x (2 3- 1) +2x (2 2- 1) +0X (21 - 1) = (120)2. 

therefore we have one complete binary tree of depth three, two of depth two and 

none of depth one. 

as children-this preserves the ordering and the skew binary form. 

To take the tail of a list, simply remove the leading singleton tree if one 

exists. If not, remove the root of the smallest tree and return both its 

children to the collection. 

These operations are illustrated in Figure 2.10. 

The operation head is easy to implement in 0(1) time. Similarly, lookup and 

update are reasonably simple to implement if the size of the tree rooted at each 

node is stored in the node. 

The string representing the number n in the skew binary number system is 

0 (log n) long. A list of length n is therefore represented by a collection of 0 (log n) 

trees. The largest tree in a list of length n is also O(logn) deep. The operations 

lookup and update traverse the list till the tree containing the desired element 

is found. This tree is then descended to reach the element. Hence update and 

lookup each take O(logn) time. Upon further examination, we can improve this 

complexity to 0(min{i, logn}) in the worst case and O(logi) in the expected 

case, when indexing the ith element. 

Parallels can be drawn between Okasaki's lists and Myers' lists (see Sec- 

tion 2.2.2). There are many redundant pointers in Myers' representation, causing 

update to be less efficient, running in O(i) time. The shortest path from the head 

of the list to any element never uses any of these pointers. By removing them, one 
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Figure 2.10: The effect of cons and tail acting on a list represented by a collection 

of complete binary trees with the smallest two being T, and T2. 

obtains a structure isomorphic to the same list represented with Okasaki's struc- 

ture (see Figure 2.11). One can therefore view Okasaki's work as an improvement 

of Myers' work to gain a more efficient update. 
Alternatively, one may view Myers' lists as threaded versions of Okasaki's 

lists. A tree is threaded when every node contains a pointer to the next element 

with respect to some traversal order-left-to-right pre-order in this case. This 

can be seen in Figure 2.11. For example, node V3 contains a pointer to node V6- 

However, for every case where searching through a Myers' list would follow such 

a pointer, the search in the equivalent list of Okasaki would have followed at least 

one fewer pointer. For example, the search for V6 in Okasaki's list moves from V2 

directly to V6; the search for V6 in Myers' list moves from V2 to V6 via V3- 

2.2.7 Elevator Lists 

Preliminary benchmarking results of the implementations of random-access se- 

quences show that the ndfve implementation often wins for small lists, and some 
form of tree wins for large lists. We design an implementation of random-access 

sequences that is a hybrid of the simple list and the structured tree. 

An elevator list is a simple list of floors. Each floor is itself a simple list. 

data List a= Floor Int [a] (List a) 



32 CHAPTER 2. IMPLEMENTATIONS OF THREE ADTS 

(a) 

(b) (c) 

Figure 2.11: A list [vi, 
... , v8] represented (a) by Myers' random-access list, (b) 

by Okasaki's random-access list, and (c) by Myers' list with redundant pointers 

removed. Note the similarity between (b) and (c). 

We label each floor with its size. There is a fixed "separation" between floors: 

When the top floor becomes larger than a fixed size, a new floor is built on top. 

Ordinary list operations act directly on the top floor. Random-access oper- 

ations first descend to the correct floor, by subtracting the floor sizes from the 

index, till the index is less than the floor size, and then use ordinary list lookup 

and update on this floor. 

We represent an empty list by a circular list of empty floors. 

empty = Floor 0D empty 

For further details, see the code in Appendix A. 

2.3 Heaps 

Priority queues, or heaps, support an ordered collection of elements. A spec- 

ification is given in Figure 2.12. A table of implementations can be found at 
Table 2.3. 
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type Ord a =ý- Heap a= -< a >- 

empty :: Ord a =: ý- Heap a 

empty = --o- 

insert :: Ord a =: ý. a -+ Heap a -+ Heap a 

insert xh= -<x>- Uh 

merge:: Ord a =ý. Heap a -4 Heap a -4 Heap a 

merge h, h2 
= h, U h2 

findMin :: Ord a =ý- Heap a -+ a 
findMin h=xAxEhA Vy Eh*x <- y (h 0 --o-) 

deleteMin :: Ord a =ý, Heap a -+ Heap a 
deleteMin h=h- -< findMin h >- (h :A -< >-) 
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Figure 2.12: Heap specification. A bag is delimited with --<>-, U is bag union, 

and - is bag difference. 
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Heaps 

Name Lazy Complexities of Operations Reference 

Ndive - insert/merge: O(n) n/a 

findMinldeleteMin: 0(1) 

Binomial - insert/merge: O(logn) [38] 

findAlin/deleteAlin: O(logn) 

Skew Binomial - insert: 0(l), merge: O(logn) [7] 

findMinldeleteMin: O(logn) 

Bootstrapped - insert/merge: 0(1) [7] 

Skew Binomial findAlin: 0(l), deleteAlin: O(logn) 

Pairing - insert/merge: 0(1) [35] 

findMin: 0(l), deleteAlin: O(logn) 

Leftist - insert/merge: O(logn) [311 

findAlin: 0(l), deleteAfin: O(logn) 

Splay - insert: 0(logn)t, merge: 0(n)l 

findMin/deleteAfin: 0(logn)l 

Table 2.3: Complexities of implementations of heaps (priority queues), where 

n is the size of the heap (the resulting heap in the case of menye). Complexi- 

ties marked with t are amortized under single-threaded use. The complexity of 

deleteMin for pairing heaps is only a conjecture for single-threaded amortized 

use; this bound has also been conjectured for a persistent version of pairing 

heaps under amortized persistent use. If lazy evaluation is used, the complexity 

of insert for binomial heaps becomes 0(1) amortized. All other complexities are 

worst-case and none of the implementations require lazy evaluation. 
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Bo B, B2 

0 1 

Figure 2.13: The first four binomial trees. 
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2.3.1 NaYve Heaps 

An ordered list implements a heap with findMin and deleteMin running in 0(1) 

time, and insert and merge running in O(n) time. 

2.3.2 Binomial Heaps 

Vuillemin presents binomial queues in [51] with every operation running in 

O(logn) time. Okasaki [38] preserves this complexity in a purely functional set- 

ting. To avoid confusion with ordinary queues, we shall refer to binomial queues 

as binomial heaps. 

Binomial Trees 

The size of a binomial tree determines its shape exactly: the first four are shown 
in Figure 2.13. Figure 2.14 shows two equivalent definitions of the binomial tree 

B,,. The binomial tree Bi has 2' nodes, 'Cj of which are at depth j, where 
'Cj = fl(i - j)! Ij! gives the number of ways of choosing j items from a collection 

of i items, disregarding order of choice. The name binomial derives from the 

co-efficient of the ith term of a binomial expansion (x + y)' being given by I-'Ci. 

Given an ordering of elements, a tree is heap-ordered if for every node n with 

parent m, the element stored at n is no smaller than the element stored at m. 
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B,, 

Bn-I no 

Figure 2.14: Equivalent forms of the binomial tree B,,. 

4 

7 

Figure 2.15: An example of a binomial heap: [B2, B01. There is no B, tree and 
its absence is indicated by a vertical dash. 

A binomial heap is a list of heap-ordered binomial trees: [Bio 
, Bil I ... ? Bij with 

io < i, < ... < i,. The size of a binomial heap determines its structure exactly. 
The binomial tree Bi appears in a binomial heap either once or not at all. An 

example of a binomial heap can be seen in Figure 2.15. 

A useful property of binomial heaps is that the binary representation of the 

number of nodes within the heap corresponds exactly with the heap representa- 

tion. For example, the heap in Figure 2.15 has five nodes and its binary equivalent 
is indeed the number five: "l B2,0 B, and 1 BO" giving "101". The length of 

the binary representation of the number n is 0 (log n). Hence a binomial heap of 

n elements is a list of length O(logn). 

Operations on Binomial Heaps 

An example of a merge can be seen in Figure 2.16. Merging binomial heaps is 

strongly analogous to binary addition. Trees or digits of equal weight are added 
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Figure 2.16: A merge of two binomial heaps and the corresponding binary addi- 

tion. 

together to produce a tree or digit of the next heaviest weight. Two binomial 

trees of equal weight are added together by making the tree with the larger root 

the leftmost child of the other tree. 

The operation findMin simply scans the roots of the binomial trees to be 

added. The other operations are defined in terms of merge: deleteMin q scans 
for the minimum root, removes it, and merges its children with the remainder of 

q (the children of the root of a binomial tree always form a binomial heap, as 

can be seen in Figure 2.14); insert iq simply merges q with the singleton queue 

containing i. As there are O(logn) binomial trees in a binomial heap of size n, 

each operation takes O(logn) time. 

2.3.3 Skew Binomial Heaps 

Brodal and Okasaki [71 adapt the binomial heap implementation to use skew bi- 

nary arithmetic (see Section 2.2.2) in place of ordinary binary arithmetic. Recall 

that the addition or subtraction of one takes 0(1) time using the skew binary 

number system. In the case of heaps, this allows insert to run in 0(1) time. The 
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other operations maintain their O(logn) complexity. 

A skew binomial heap is a list of skew binomial trees. Unfortunately, skew 

binomial trees are not as neat as their binomial counterparts. This is because 

we must use some form of addition to implement merge. Skew binary addition 

is rather awkward in general and so we choose to use ordinary binary addition. 

The conflict between using skew binary addition to implement insert and ordinary 

binary addition to implement merge reduces the elegance of the implementation. 

However, making insert run in 0(1) time allows heaps of optimal complexity to 

be built-see Section 2.3.4. 

2.3.4 Bootstrapped Skew Binomial Heaps 

Brodal and Okasaki [7], after adding the skew binary number system to binomial 

heaps, add yet another feature: bootstrapping (see Section 2.1.7). This gives 
heaps of optimal complexity: deleteMin runs in O(log n) time and findAlin, insert 

and merge run in 0(1) time. It is easy to show these bounds are optimal using 

the Q (n log n) bound on sorting n items. 

Recall that bootstrapping extends the design of an incomplete or inefficient 

data structure by using smaller instances of the same data structure. We shall 
let heaps contain other heaps as elements. This allows merge to be implemented 

by the more efficient insert. 

Suppose we import a heap implementation that runs insert in 0(1) time. 

In the Haskell notation, let the type of these heaps be given by Old. Heap a. 
We wish to create bootstrapped heaps that can contain other heaps. We might 

consider the type: 

data Heap a= Heap (Old. Heap (Old. Heap a)) 

Here we have applied a single level of bootstrapping. But the top-level heap 

contains elements of type Old. Heap a. These old heaps contain simple elements 

of type a, and so we cannot insert heaps into them; we need to be able to insert 

heaps at an arbitrary depth of nesting. We need a recursive definition: 

data Heap a= Heap (Old. Heap (Heap a)) 
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However, we do not have anywhere to store the simple elements of type a with 

this definition. So instead we store the minimum element at the root as follows: 

data Heap a= Empty 

I Root a (Old. Heap (Heap a)) 

The old heap implementation will require an ordering of its elements: boot- 

strapped heaps in this case. This is given by an ordering of the roots. 
As bootstrapped heaps are old heaps of bootstrapped heaps, we can merge 

two bootstrapped heaps by using Old. insert to insert one into the other. As 

Old. insert is 0(l), merge is 0(l). We can define insert in terms of merge as 

usual, and so insert is still 0(l). The operation findMin simply looks at the 

root. The operation deleteMin is implemented in terms of Old. merge, Old-findMin 

and Old. deleteMin and therefore remains 0(logn) (assuming that the old heaps 

implement these operations in 0(logn) time). 

2.3.5 Pairing Heaps 

Okasaki [35] presents a functional translation of pairing heaps which were first 

described by Fredman, Sedgewick, Sleator, and Tarjan [15]. A heap is represented 
by a heap-ordered multi-way tree: 

data Heap a= Empty 

I Node a [Heap a] 

The operation findMin simply looks at the root. Two heaps are merged by making 

the heap with the largest root the leftmost child of the other heap. An element 
is inserted by merging with a heap containing the single element. Pairing heaps 

derive their name from the implementation of deleteMin: the root is removed 

and the children are combined in two passes. The first pass working left-to-right 

merges successive pairs of children together. The second pass working right-to-left 

merges the results of the first pass into one heap. 

Although pairing heaps are quite well-known, no one has established tight 

bounds on their complexity. It is clear that all operations beside deleteMin run 
in 0(1) time. In an ephemeral setting, it has been conjectured that deleteMin 

runs in O(logn) amortized time. In a persistent setting however, the above 
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implementation certainly does not meet these bounds. Consider successively 
inserting the elements 0, n into an empty heap. The result will be a heap 

with root 0 and children [n,... 
' 1]. Now perform deleteAlin on the same heap m 

times. Each deleteMin will repeat the same work taking O(n) time each. The 

amortized cost of deleteMin is therefore O(n) in a persistent setting. 

Okasaki [35] also presents a persistent version of pairing heaps using lazy eval- 

uation, which should not be subject to a similar refutation of O(logn) amortized 

complexity. However, as with their ephemeral counterparts, a proof is not known. 

Appendix A gives the ephemeral version. 

2.3.6 Leftist Heaps 

A leftist heap [251 is a heap-ordered binary tree satisfying the leftist property: 

The r-height of every left child is greater than or equal to the r-height 

of its right sibling. 

The r-height of a binary tree is the number of internal nodes on the path from the 

root to the rightmost external node-this path is called the 7ight spine. One may 

prove by induction that the r-height of any leftist heap of size n>0 is bounded 

above by 1092 n+1. 

Leftist heaps are an example of a data structure that translates across easily 
from the imperative to the persistent or functional world. Ndfiez et al. present a 
functional implementation in [311. 

To merge two leftist heaps, view their right spines as ordered lists. Merging 

these ordered lists ensures the resulting tree is heap-ordered. This constructs 
the right-spine from top to bottom. On the way back up, the leftist property 
is preserved by making the child with the largest r-height the left child. As 

each pass runs in time proportional to the combined length of the right spines 

of the arguments of merge, the operation runs in 0(logn) time. The remaining 

operations are straightforward. 
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2.3.7 Splay Heaps 
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Okasaki [38] presents an implementation of heaps using splay trees [49]. A splay 

tree is a binary tree that does not maintain any balance information but con- 

sistently re-structures itself in a manner that tends to balance the tree. For 

example, as the elements are stored in symmetric order, the deleteMin operation 

must remove the leftmost node. After this node is removed, the leftmost path is 

ascended, re-structuring the tree as it does so by shifting elements from left sub- 

trees over to right subtrees. This tends to shorten the leftmost path, improving 

the time taken for subsequent applications of deleteMin. 

To insert a node x, the tree is split into nodes smaller than x, and nodes larger 

than x. These subtrees then form the left and right children of x respectively. 
As the tree is split, it is once again re-structured: if x splits the tree somewhere 
in the left subtree of the root, then elements are moved over to the right subtree 

and vice versa. This tends to balance the tree. 

The operation findMin simply finds the leftmost node. This takes O(logn) 

time. If every application of deleteMin is accompanied by at most one application 

of findMin, as is often the case, we may amortize the cost of findMin to 0(l). 

Otherwise, we may store the minimum element separately from the tree. This 

may be done without increasing the complexity of the other operations. As this 

causes more work, this is only advisable when findMin is called often. 

2.4 Summary 

This chapter shows there are many ways to implement the same ADT. But which 
implementation is best? Does it depend on how we use the data structure? 
Calculating the complexities of the operations gives us a theoretical answer, but 

empirical performance may give a different picture. 
Therefore, after developing the benchmarking procedures motivated in Sec- 

tion 1.3, we benchmark all of the implementations of this chapter in Chapter 7. 
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Chapter 3 

Datatype Usage Graphs 

In Section 1.3 we identified a need to qualify the performance of a data structure 

by how it is used. We can do this by creating benchmarks whose use of the data 

structure is well-defined. This information is useless unless we can find out how an 

application uses a data structure. This chapter outlines a theoretical framework 

for (a) creating a benchmark from a description of use, and for (b) creating a 

description of use from an application. Chapter 6 builds on this framework to 

provide a practical tool to do both (a) and (b). 

The ADT framework has a solid basis of literature [521 and is very convenient 

for abstracting over many data structures-an ADT abstracts over many data 

structures implementing the same operations. We shall therefore insist on every 

data structure we deal with being an implementation of some ADT. 

The ambiguity of the phrase "how an ADT is used" presents an obstacle. With- 

out an exact definition of this property, we would find it hard to talk about the 

efficiency of an implementation of an ADT according to how it is used, or indeed 

about how a particular application uses an ADT. Consider the two applications 

of queues in Figure 3.1 (see Section 2.1 for a definition of queues). Inspecting the 

code for each application allows us to see what operations are being performed, 

in what order, and how the result of one operation may rely on the result of 

another. But the task is by no means straightforward. With more complicated 

applications, the task would become extremely difficult. We need a simple record 

of how an ADT is used by an application. 

We use a labelled directed graph. See Figure 3.2 for examples that describe 



44 CHAPTER 3. DATATYPE USAGE GRAPHS 

apply :: Int -> (a -> a) -> a -> 

apply nfq= (iterate f q) Hn 

snocTrue :: Queue Bool -> Queue Bool 

snocTrue q= snoc q True 

appl :: Int -> Bool 

appI n= (head . apply (n-1) tail . apply n snocTrue) empty 

app2 :: Int -> Bool 

app2 n= (and . map (head . tail) . take n. repeat) nSnocs 

where nSnocs = apply n snocTrue empty 

Figure 3.1: Two artificial simple applications of queues: appl and app2. Note 

that app2 uses a where clause to share the value of nSnocs. 

how the queue ADT is used by the two applications of Figure 3.1. The nodes 

are labelled with partially applied operations of the ADT, with the remaining 

arguments supplied by the arcs. There is an arc from u to v if the result of the 

operation at u is taken as an argument by the operation at v. The nodes are 

numbered according to the order of evaluation. Such a graph is a datatype usage 

graph (DUG). We shall make the definition of a DUG precise in the following 

section. 

A DUG is closely related to both an execution trace [38] and a version graph 
[13]. An execution trace without cycles and with every operation returning a 

single result is a DUG. A DUG with every operation returning an ADT value is a 

version graph. Execution traces have been used as a model on which to explain 

persistent amortized complexity via lazy evaluation [381. Version graphs have 

been used to explain the design of persistent data structures [12,13,40]. 

During the run of an application, many different instances of an ADT Will 

exist. For example, whilst running queue application appi there will exist at 

some time an empty queue, a queue containing just True, a queue containing two 
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appl: 01... n 

n+l 2n-I 

2n 

app2: 

n+2 

3n-I 

3n 

I 

Node Operation 

0 empty 

1 ... n Al - snoc 1 True 

n+1... 2n -1 Al - tail I 

2n Al - head I 

Node Operation 

0 empty 
1 ... n At - snoc I aue 

n+1 At - tail I 

n+2 At head I 

3n -1 At tail I 

3n At - head I 

Figure 3.2: Graphs showing how the queue ADT is used by the different appli- 

cations given in Figure 3.1. Note that node n of app2 corresponds to the value 

nSnocs shared by n applications of tail. 
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copies of Time, and so on. Each of these particular instances of the ADT is called 

a version [38] (as defined in Section 1.4). A node of a DUG is called a version 

node if it is labelled with an operation that results in a version. The subgraph 

of a DUG containing just the version nodes is called the version graph. This is 

consistent with the definition of a version graph given by Driscoll et al. [13]. 

The rest of this chapter is organised as follows. Section 3.1 defines a DUG 

precisely. Section 3.2 defines the evaluation of a DUG, effectively creating a 
benchmark. Section 3.3 defines a profile of a DUG, surnmarising the main char- 

acteristics. Section 3.4 defines a shadow data structure, useful for creating a DUG 

that matches a given profile, and for adding information to a profile. 

3.1 Definition 

We should first define what we mean by an ADT. An ADT provides operations 

to create, manipulate, and observe values of some new type. The only way to 

interact with values of this type is through the ADT operations. This allows the 

implementation of the ADT to be removed from its use-we may exchange imple- 

mentations without changing how we use the ADT. We have therefore abstracted 

away from the implementation. 

We shall restrict ourselves to container types, that is, ADTS that contain cle- 

ments of some other type. For example, a list ADT allows lists of integers, lists 

of characters, etc. For any such ADT, we may consider the ADT as defining a 

type constructor T. For example, a list ADT may be taken as defining a type 

constructor List taking a type t to the type List t. A list of integers would then 

have the type List Int. We shall restrict T to be unary. Most common ADTS 

satisfy these restrictions. 

Definition 3.1 (ADT) 

For any type constructor T, and any set of functions F, the pair (T, F) is 

an ADT if the following are satisfied: 

"T is unary. 

" Each function in F takes at least one argument of type T a, or returns 

a result of type T a, where a is a type variable. 
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For the sake of simplicity we shall further restrict the ADTS considered by giving 

the following definitions. 

Definition 3.2 (Simple Type) 

For any type constructor T of arity one, we say that the type t is simple 

over T if t 

* Can be formed as type by the grammar 

type argument-type -+ type I result-type 

argument-type Taa Int 

result-type Taa Int I Bool 

where a is a type variable 

* Contains at least one occurrence of Ta 

We shall abbreviate this to saying that t is simple where the context makes 
it unambiguous over which type constructor t is simple. 

Example 3.2 

The following types are simple over the type constructors Queue, List and 
Set respectively: 

Queue a-+a-4Queue a 
o List a -+ Int -+ 

o Set a 

The following are not simple over any type constructor: 

o List a -+ Queue a 
9 (a -+ a) --+ List a -+ List a 

o 

Definition 3.3 (Simple ADT) 

We define the ADT A= (T, to be simple if the type of each 

operation fi is simple. 
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module List (List, empty, catenate, cons, tail, head, lookup, isEmpty) 

where 

empty List a 

catenate List a -> List a -> List a 

cons a -> List a -> List a 

tail List a List a 

head List a a 

lookup List a Int -> a 

isEmpty List a Bool 

Figure 3.3: Haskell code giving the signature of a simple list ADT ALW providing 

normal list operations, catenation and indexing. The exported type constructor 

is List. The type of each operation is simple over List. 

Example 3.3 

The signature of a simple ADTAList is given in Figure 3.3. 

Many ADTs are simple: queues, deques, lists, random-access sequences, heaps, 

sets, integer finite maps, etc. However, any higher-order operations such as map, 

or any operations converting from one data structure to another such as fromList, 

need to be excluded. 
When talking about DUGS we shall find it useful to classify the operations 

according to the different roles they play. We therefore make the following defi- 

nition. 

Definition 3.4 (Generator, Mutator, Observer, Role, Version Arity) 

For any operation f of type t, where t is of the form 

tl -+ t2 -+ *** -+ tm 

and is simple over the type constructor T, f is classified as follows: 

Generator If t.. =Ta and (Vj, 1<j< m) tj 94-Ta 
Mutator If t,, =Ta and (3j, 1<j< m) tj =Ta 
Observer If t,, 54 Ta and (3j, 1<j< m) tj =Ta 
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Note that the categorisation is complete and any operation of simple type 

is exactly one of: generator, mutator or observer. This is called the role 

of the operation. We define the version arity of an operation to be the 

number of version arguments taken by that operation. Therefore, every 

generator has version arity 0, and every mutator and observer has version 

arity greater than or equal to 1. 

Example 3.4 

Looking at the signature of the simple ADT AList in Figure 3.3, empty is 

a generator; catenate, cons and tail are mutators; head, lookup and 

isEmpty are observers. Every mutator and observer has version arity 1, 

apart from catenate, which has version arity 2. 
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Look at the DUGS in Figure 3.2. The label attached to a DUG node is a partial 

application of an ADT operation. For simplicity, the arguments used to partially 

apply the operation are restricted to atomic values-nested function applications 

are not allowed. The remaining arguments are supplied by the arcs. We shall 

now define the functions that label DUG nodes. 

Definition 3.5 (Partial Application, Pap(A)) 

Given a simple ADT A= (T, f,, }), a partial application of fi is any 

function of the following form: 

AXI * 
AX2 * ... * AXk - fi a, a2 a,,,, 0<k<m 

Here, m is the arity of fi, each xj occurs exactly once in the sequence 
[a,, 

..., a,, ], and every other element of this sequence is an atomic value. 

To avoid duplication, we further insist that xj, .. -7 Xk occur in order in 

the sequence [a,,... ', a,,, ], that is, xj, occurs before xj, for j, < j2. The set 

of all partial applications of any function of a simple ADT A is denoted by 

Pap(A). 

Example 3.5 

For the list ADT AListy whose signature is given in Figure 3.3, the following 

functions are in Pap(AList): 
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e Al - cons 'a' I 

* empty 

0 All* A12 *catenate 11 12 

Whereas, the following functions are not: 

o Al - catenate 11 

o All , 
A12 ' catenate 12 11 

0 All 'A12 ' cons (lookup 11 2) 12 

We may use a partial application to assign a role to a node: For a node v labelled 

with a partial application of the operation f, the role of v is defined to be the 

role of f. For example, looking at the DUG for appl in Figure 3.2, node 0 is a 

generator, nodes 1 to 2n -1 are mutators, and node 2n is an observer. 

We are now in a position to give a definition of a DUG. For nodes with more 

than one incoming arc, we need to identify which arc corresponds to which argu- 

ment. We therefore label every arc to such a node with an argument position. 

Definition 3.6 (DUG) 

Given a directed graph = (V, 6), a simple ADT A (T, f"j), 

a total mapping 77 :V Pap(A), and a bijection aV -+ 11-1VII, let 

Sp CS be those arcs incident to a node with more than one incoming arc, 

and let -r : Ep -+ N be a total mapping. The 4-tuple (9,77, u,, r) is a DUG 

for A, if for every vEV the following properties are satisfied: 

1. The arity of q(v) equals the in-degree of v. 

2. If v has more than one incoming arc, 7- restricted to the incoming arcs 
is a bijection with the set fl.. indegree(v)}. 

3. The application of 77(v) to the arguments given by C and T is type 

consistent. 

4. If v has successor wEV, u(v) < a(w). 

5. The type of every argument of q(v) is T a. 
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Properties 1-3 ensure the DUG is well-defined. Properties 4-5 impose re- 

strictions on DUGS to make generating DUGs easier: Property 4 orders 

the arguments of an operation before the operation itself-note that this 

forces the graph to be acyclic-see the problem Choosing the operation 
before the arguments of Section 4.1.1 for justification of this restriction; 
Property 5 ensures only version arguments are taken from the results of 

other operations-see the problem Choosing non-version arguments from 

the graph of Section 4.1.1 for justification. 

Example 3.6 

Once again using the ADT AList, whose signature is given in Figure 3.3, an 

example of a DUG is shown in Figure 3.4. A table defines 77. The ordering 

or of the evaluation of the nodes is given by: a(vi) = i. Labels assigned 

by 7- are written beside the relevant arcs: V5 catenates v, onto the front of 

V3, and V7 catenates v, onto the front Of V6. The type variable a can be 

substituted by the type Char to obtain type consistency for every function 

application. 
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As each operation returns only a single value, we may associate each node with 

the value it produces. The nodes of the version graph are associated with versions 
formed by either generating a fresh version or by mutating one or more previous 

versions. The arcs within the version graph represent the flow of data within 
the privacy of the ADT framework. The arcs going out from the version graph 

represent the flow of data out of the privacy of the ADT framework. 

3.2 Evaluation 

We have so far presented a DUG as a record of how an application uses an imple- 

mentation of an ADT. We can reverse this process. By creating an evaluator of 

DUGS, we create an application that uses an ADT implementation in the manner 

given by the DUG it evaluates. We can then use this application as a benchmark 

with a known pattern of use. 
For example, evaluating the DUG for appi of Figure 3.2 should create an empty 

queue, then snoc the value True onto the queue n times, then take the tail of the 
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17 f2 

Ldý-ý 

71 

vo empty 

V, Al - cons VI 
V2 empty 
V3 Al - cons 'h' I 
V4 Al - head 1 

V, 5 Ali - 
A12 

- catenate 1,12 
V6 Al - tail I 
V7 All - A12 - catenate 11 12 
V8 Al - tail I 

V9 AI - lookup 11 

VIO Al - isEmpty I 

Figure 3.4: A DUG for the list ADT AList (see Figure 3.3). 

queue (n - 1) times, and finally apply head. We will define evaluation by first 

defining how we may associate each node with a function application. 

Definition 3.7 (Interpretation of Partial Applications) 

Let A be any simple ADT. Let f be an operation of A. Let 9E Pap(A) 

be any partial application of f. Let I be an implementation of A. The 

interpretation of g under 1, denoted by [gl: r, is the -, -alue of g using the 

implementation of f in I. 

Example 3.7 

Let C be the ordinary Haskell implementation of lists, then 

9 [Al - cons True llc = \1 -> (True: 1) 

o [Al - head llc =\ (x: xs) -> x 

o [empty], c = [I 
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Definition 3.8 (Interpretation of Nodes) 

Let (9,77, u,, r) be any DUG for the ADT A, let v be any node of 19, and let 
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I be an implementation of A. Let el, ..., ek, k>0, be the arcs incident to 

v, ordered by r, from the nodes VI, ... 7 Vk respectively. The interpretation 

of v under 1, denoted by [vl: r, is the following expression: 

[VIT 
--.,: 

[77(V)ll jV1127 
... 

[Vkll 

where the right-hand side is an application of the function [77(v)II. Note 

that as g is acyclic, this recursive definition is sound. 

Example 3.8 

Using the DUG shown in Figure 3.4, and the ordinary Haskell implemen- 

tation L of lists, 

0 [vilc =M -> (IcI: 1) )II 

'0 [V4]£ 
-' 

(\ (X: XS) -> X) (M -> 

3.2.1 Order of Evaluation 
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The order of evaluating the interpretations of the DUG nodes can significantly 

affect efficiency. Within functional languages there are two main schemes for 

deciding the order of evaluation of an expression: lazy and eager. We shall 

accomodate both schemes by using the node ordering of a DUG (! 9177, o,, 7') given 

by or in two separate ways. 

Lazy Evaluation 

If we consider how a function is applied under lazy evaluation, we see that a 

closure representing the application is first formed, then its value is perhaps 

demanded one or more times, and then it is garbage collected. The formation of 

the closure can be a separate incident to its value being demanded. The order 

of the formation of the closures can also affect efficiency. Hence we shall order 

the forming of the closures of the expressions given by the interpretations of each 

DUG node. 
Under lazy evaluation, only the work required to form the demanded result 

is performed. We must demand a result or no work will be done. Within the 

ADT framework, we cannot look within an ADT value, so we instead demand the 
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values that are of some other type. Looking at a DUG, only the values given by 

the observer nodes have such a type. The order in which we demand these values 

will affect efficiency. 

Within the current framework we shall insist that the order in which we 
demand the evaluation of the observer nodes coincides with the order of the 

formation of the closures associated with observer nodes, ie. as soon as we form 

a closure for an observer node, we demand it. There is the possibility for an 

extension here to allow for these to occur at different times. 

Definition 3.9 (Lazy Evaluation of a DUG) 
Given a DUG (9,77, c,, r) for an ADT A, and an implementation I of A, tile 

lazy evaluation of the DUG with respect to I is the process of performing 

the following steps on each node a(i) in order: 

9 Form the closure given by [a(i)].,. 

e If the node is an observer, demand the value of this closure. 

Example 3.9 

The lazy evaluation of the DUG of Figure 3.4 would form the closures [vil 

for 0<i< 10 in order. When the closures for the observer nodes are 
formed, namely [v4l, [vgl, and [viol, their value is demanded at the same 

time. 

Eager Evaluation 

Whereas with lazy evaluation many applications of functions may remain uneval- 

uated closures, under eager evaluation they will always be reduced. Hence the 

eager evaluation of a DUG will evaluate every node and there is no distinction 

between forming a function application and evaluating it. 

Definition 3.10 (Eager Evaluation of a DUG) 

Given an ordered DUG (V, a), and an implementation 
.1 of A, the evalua- 

tion. of the DUG with respect to I is the process of taking each node a(i) 
in order and evaluating the application given by [a(i)]z. 
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Example 3.10 

The eager evaluation of the DUG of Figure 3.4 would simply evaluate each 

Ivil for 0<i< 10 in order. 

3.2.2 Abstract Evaluation 
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The most abstract implementation of an ADT is the ADT itself. We use the 

abstract operations to create, manipulate, and observe abstract values. These 

abstract values only exist within the abstract world of mathematics, not within 

any machine. 

Definition 3.11 (Abstract Evaluation) 

The abstract evaluation of a DUG for the ADT A is a mapping ý that takes 

a node v to the result of evaluating [v]A. 

Example 3.11 

The abstract evaluation ý of the DUG of Figure 3.4 is given by the following 

table, using [xo, 
---, xnj to denote a list of elements xo, ..., Xn: 

Vi VO VI V2 V3 V4 
1 

V5 
1 

V6 
I 

V7 
I 

V8 V9 
-1 

C(vi) H l7c') [] [W] 17 
1 

1 7c7l'h'] I ['h'] I ['c', 'h'] I ['h'] WI False 

3.3 Profile 

Recall from the introduction of this chapter that we want to create a benchmark 

from a DUG, and that we want to extract a DUG from an application. However, 

a DUG may be very large, and hence difficult to give or inspect, so we shall 

now define the profile of a DUG. The profile will condense the most relevant 

characteristics of a DUG into a few numbers. We can use pseudo-random numbers 

to generate a family Of DUGS that on average have a given profile. The initial seed 

given to the pseudo-random number generator determines which one is chosen. 

We can now create a benchmark from a profile, and extract a profile from an 

application. 

We should first give some justification of using pseudo-random numbers. Why 

do we need a random element to our DUG generation? This is because there are 

many DUGS that match a single profile, and without an element of randomness we 
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will always pick the same one. But why cannot we just generate this one DUG? 

Because fixing ourselves to just one of these invites bias into our results. Such 

a bias may favour one ADT implementation over another, unfairly representing 

their performance. Picking several of these DUGs at random combats this bias. 

So what characteristics do we choose to record in a profile? One obvious 

choice is the fraction of persistent applications of operations. An application 

of an operation is persistent if one of the version arguments has already been 

mutated-that is, a mutator has already been applied to this argument. However, 

considering the application of an operation as a whole causes problems with the 

generation Of DUGS. Specifically, we will find that it is easier to choose the 

arguments independently of each other before applying the operation-see the 

problem Choosing the operation before the arguments of Section 4.1.1. 

To solve this problem, we split an application into the parts represented by 

the arcs: One arc identifies one application. This allows us to identify whether 

an application is persistent according to whether the source of the arc has been 

previously mutated. With this definition of persistence we can identify which 

applications of operations to an argument are persistent independently of the 

other arguments. Note that the order associated with the targets of the arcs 

indicates the order of the applications. 

Definition 3.12 (Mutation, Observation) 

For any node v of the version graph of a DUG, a mutation of v is an arc from 

v to a mutator node. Note that an n-ary mutator creates n mutations. An 

observation is defined similarly. ýIutations and observations inherit the 

ordering given to the nodes to which they point. 

Example 3.12 

Looking at the DUG in Figure 3.4, the arc from V7 to V8 is a mutation, 

and the arc from V7 to V9 is an observation. As vq is ordered after v8, the 

observation V7 -+ V9 is ordered after the mutation V7 -+ V8- 

Definition 3.13 (Persistent, Ephemeral) 

For any node v of the version graph of a DUG with node ordering a, a 

mutation or observation of v is persistent if it is ordered by cr after the 
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earliest mutation of v. This captures the notion of persistence: mutating 

or observing the previous value of a mutated data structure. A mutation 

or observation that is not persistent is called ephemeral. 

Example 3.13 

As in Example 3.12, looking at the DUG in Figure 3.4, we see that the 

observation V7 -+ vq occurs after the mutation V7 -+ V8. As this mutation 

is the only mutation Of V7) it is also the earliest. Thus the observation 

occurs after the earliest mutation, and so is persistent. The mutation 

VI -+ V7 is also persistent. The observation V3 -+ V4 is ephemeral. 

57 

Another obvious characteristic Of DUGS is the ratio of how many times we apply 

one operation relative to another. 

Definition 3.14 (Weight) 

For any DUG 1), the weight of a mutator f in D is the number of muta- 

tions that apply f to nodes in D. The weight of an observer is defined 

similarly. The weight of a generator f is simply the number of nodes that 

are generated by f. To unify these two definitions, one might imagine a 

single void node with arcs to each generator node. 

Example 3.14 

The weights of the operations in the DUG in Figure 3.4 are given below. 

Role Generator Mutator Observer 

Operation empty catenate cons tail head lookup isEmpty 
Weight 2 4 2 2 1 1 1 

We can localise the weight of a mutator or of an observer to just a subgraph. 

This allows us to see how this ratio might change from one region of the DUG to 

another. 

Definition 3.15 (Weight in V) 

For any subgraph W of a version graph, the weight of a mutator f in W 

is the number of mutations that apply f to nodes in X The weight of an 

observer is defined similarly. 
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Example 3.15 
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Looking at the DUG in Figure 3.4, let the subgraph ?i include just the 

nodes vo, Vl ý V2 and v3. The weights of the mutators and observers in W 

are given below. 

Role Mutator Observer 

Operation catenate cons I tail head ý lookup isEmpty 

Weight in W 3 2 0 1 0 0 

Information such as the average number of mutations of a node is not only useful 

for summarising DUGS, it also provides a very convenient way to generate a DUG 

with a given profile (see ahead to Section 4.1.1). 

From the fraction of mutations that are persistent, we can calculate the aver- 

age number of mutations of previously mutated nodes as follows. Let p,,, be the 

fraction of mutations that are persistent. Take any node vi that is mutated at 
least once. The first mutation of vi is ephemeral, and the remaining ni mutations 

are persistent. Averaging over all j mutated nodes, we have 

Pm 
ni ni 

=> 
Pm 

+ p�, 

If we know the fraction m of nodes that are not mutated at all, we can calculate 
the average number 17 of mutations of a node: 

Ti =Om+ 1+ Pm (1-m)= 
1-m (1 -PM) 1 -PM 

We call p,,, the persistent mutation factor (PMF), and m the mortality. 

If we calculate the ratio r of mutations to observations, Nve can also estimate 
the average number of observations of a node. Making the assumption that a 

node was made by a mutator, then the average number of observations of a node 

is 1/r. As we have excluded nodes made by generators, this is only an estimate. 

From the fraction p,, of observations that are persistent, we can calculate the 

average number of observations made before the first mutation at (1 -p,, )/r, and 
the average number of observations made after the first mutation at p,, /r. We 

call p. the persistent observation factor (POF). 

Later we shall wish to calculate the profile of a subgraph of a DUG. As 

the weight of a generator cannot be localised to a subgraph, we separate out 
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generation weights from the weights of mutators and observers. To allow the 

calculation of the ratio r of mutations to observations, we group the mutation 

and observation weights together to form the mutation- observation weights. 

Definition 3.16 (DUG Profile) 

The profile of a DUG V with version graph ! 9V is given by the following: 

* Generation weights: The ratio of the weights of each generator. 

* Mutation- observation weights: The ratio of the weights of each mu- 
tator and observer in gv. 

" Mortality: The fraction of nodes in gV that are not mutated. 

" PMF: The fraction of mutations of nodes in 9v that are persistent. 

" POF: The fraction of observations of nodes in gv that are persistent. 

Example 3.16 

The DUG shown in Figure 3.4 has the following profile: 

9 Generation weights: As there is only one generator, empty, this prop- 

erty is redundant at: empty = 1. 

* Mutation-observation weights: We have 

catenate : cons : tail : head : lookup : isEmpty =4: 2: 2: 1: 1: 1 

Note that each application of catenate carries double the weight of an 

application of one of the other operations because each application of 

catenate creates two mutations. 

* Mortality: Of the eight version nodes, only one NO is not mutated, 

so the mortality is 1/8. 

0 PMF: There are eight mutations, one of which (vi -* v7) is persistent, 

so the PMF is 1/8. 

0 POF: There are three observations, one of which (V7 -ý V9) is persis- 

tent, so the POF is 1/3. 

If the PMF and POF of a DUG are both zero, then we know that there are no 

persistent applications of an operation. Therefore, we make the following defini- 

tion. 
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Definition 3.17 (Single-Threaded) 

An application using an implementation of a simple ADT A in a manner 

recorded by the DUG V is single-threaded for A if the PmF and POF of V 

are both zero. A single-threaded application does not require a persistent 

implementation of the ADT. 

Example 3.17 

The DUG of application appi shown in Figure 3.2 has PMF and POF both 

zero and is therefore single-threaded. 

3.4 Shadow Data Structure 

To aid the generation of DUGS, and to add information to profiles, we use a shadow 

data structure. A shadow data structure maintains a shadow of every version. 

This shadow contains information about the version. A shadow data structure 

does not depend on any implementation of the ADT, but is instead abstract and 

applicable to any implementation of the same ADT. 

As a running example, for the ADT AList, whose signature is given in Fig- 

ure 3.3, and for which each version is a list, let the shadow of a version contain 

the length of the list. Below we give an overview of the uses of a shadow data 

structure. 

Guarding Against Undefined Function Applications 

When generating a DUG from a profile, if we blindly choose to label a node with 

any operation, we may create an application that is undefined: for example, 

Most list ADTS would not define the value of head empty. Such applications of 

partial operations need to be excluded from a DUG generated at random. We 

need to have a guard around the partial operation telling us which applications 

of the operation we can form. We can use the shadow of a version to store 

enough information to allow decisions about whether a particular operation may 

be applied to that version. For example, for AList, if we maintain the length of a 

list in the shadow, we can prevent the application head empty by only allowing 

head to be applied to lists of length 1 or more. 
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Phasing Profiles 
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We can also use the shadow data structure to split a profile into phases. The 

shadow of a version node will determine which phase the node is in. This is useful 
for giving a more specific profile. For example, we might wish to make a DUG 
for AList where the average length of the list is n elements. We can do this if we 

make cons more likely than tail on lists shorter than n elements, and vice versa 
for lists longer than n elements. This is possible if we maintain the length of the 

list in the shadow, and give a different profile for each of the two phases: lists no 
longer than n elements, and lists longer than n elements. 

Shadow Profiling 

The shadow could also store any other useful information about what operations 

were performed. This shadow profile information would allow profile information 

specific to an ADT to be collected, along with the general profile information 

already described in this chapter. For example, by maintaining the length of a 
list, we can calculate the average length of a list per mutation or observation. 

Note that a shadow data structure is only used for the generation or analysis of 
DUGs, and need not be involved in applications using an ADT implementation. 

We shall later use a further restriction on DUGS to aid both DUG generation 

and DuG extraction: Versions may only contain integer elements. Introducing 

this restriction here also simplifies the definition of a shadow data structure. See 

Section 4.1.1 for a discussion of this restriction. This restriction implies that the 

type variable a in the type of an operation becomes instantiated to Int. 

We shall now define a shadow data structure precisely. 

3.4.1 Shadowing 

We should first define the shadows themselves. The shadows are maintained by 

the shadow operations. 

Definition 3.18 (Shadow Operation) 

For any simple ADT (T, F), and for any generator or mutator fEF, let t 
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be the type of f with type variable a instantiated to Int. For any type s, 

the function g is an s-shadow of f if g has the type shadow, (t) given by 

shadow, (tl -+ t2) = shadow, (ti) -+ shadow. (t2) 

shadow, (T Int) =s 

shadow, (Int) = Int 

The shadows maintained by this shadow operation have type s. There are 

no shadows of observers as they do not return versions. 

Example 3.18 

For any type s, an s-shadoNv of the lookup operation of AList (see Figure 3.3) 

has the following type: 

shadow, (T Int -+ Int -+ Int -ý T Int) =s -+ Int -+ Int -ý s 

Definition 3.19 (Shadowing) 

Let A= (T, f,, }) be any simple ADT. Let Jfj 
..... fij be the 

generators and mutators of A. For any set F= Ifi 
...... 

fi',. ) of opera- 

tions, and any type s, the pair (s, F) is a shadowing of A if the following 

hold: 

e Each fij is an s-shadow of fij. 

9 There exists a homomorphism 0:: T Int -+ s; that is, 

for all fij q xj , ... , xA, , where k>0 is the arity of fi,, 

if fij X1 ... xk is well-defined, then the following holds: 

F 0 (fij Xl Xk) ý fij «ý XI) ... 
(oý Xk) 

where for all x, 

0 x, if x has type T Int 

X, othenvise 

Example 3.19 

The Haskell code of Figure 3.5 is a shadowing SLij of the ADT AList (see 

Figure 3.3). In this case, the type s shadowing List Int is of type Int, and 

the homornorphism 0 :: List Int -+ Int is the function that returns the 

length of a list. 
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type Shadow = Int 

empty-Shadow :: Shadow 

empty-Shadow = 

catenate-Shadow :: Shadow -> Shadow -> Shadow 

catenate-Shadow sO sl = sO + sl 

cons-Shadow :: Int -> Shadow -> Shadow 

cons-Shadow iO sO = sO +I 

tail-Shadow :: Shadow -> Shadow 

tail-Shadow sO = sO -I 

Figure 3.5: A shadowing of ADT AList (see Figure 3.3). 
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Definition 3.11 assigns an abstract ADT value to every version node of a DUG; the 

following definition assigns the shadow of the ADT value. 

Definition 3.20 (Shadow Evaluation) 

Let V be any DUG for ADT A, and S= (s, F) be any shadowing of A. The 

shadow evaluation of V is a mapping C that takes a version node v to the 

result of evaluating [v1s, where an operation is interpreted by its shadow. 

Example 3.20 

Taking the DUG of Figure 3.4 with the shadowing SLi, t of Figure 3.5, the 

shadow evaluation C of the DUG is given below: 

Vi 
i 

VO Vl V2 V3 V5 V6 V7 V8 

(vi) 0 1 0 1 2 1 2 1 

Note from Examples 3.11 and 3.20 that the evaluation of each version node under 

SLi, t equals the length of the list produced by the evaluation under AList. This 

results from the condition that a shadowing defines a homomorphism from the 

ADT values to the shadow values. This is now proved. 
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Lemma 3.1 For any DUG V for ADT A, any version node v in V, and any 

shadowing S defining a homomorphism 0, if [v]A is well-defined, then 0 [vjA 

IVIS. 

Proof. - We shall proceed by induction on n, the number of nodes of in the version 

graph. 

* For n=0 the lemma is satisfied trivially. 

We shall assume that the lemma is true for all DUGS with no greater than n 

version nodes. We claim the lemma is true for any DUG with n+1 version 

nodes. Take such a DUG V. Take any version node v with zero out-degree 

within the version graph. There must be at least one such node as the graph 

is acyclic. As v has no successors within the version graph, we may remove 

v and any successors outside of the version graph from V to obtain another 

DUG V. As V has n version nodes, the inductive hypothesis states that 

for any version node v' in V, 0 [v']A = [v']s. Therefore we need only prove 

that the lemma is true for v. Let el, ..., ek, k>0, be the arcs incident to v, 

ordered by r, from the nodes vi, ... 7 Vk respectively. Let f be the operation 

from which 77(v) is derived, and let f be the shadow of f given by S. 

[VIS 
--. ': 

[71(V)IS [VIIS 
... 

[Vk]S 

= (AXI ** AXk - fal ... a�, ) (0 jull. 4) ... 
(0 [Vkl, 4) 

Without loss of generality, we shall assume that for 1<i<k, ai = xi. 

[VIS 
--. ' fl (0 [VIIA) 

... 
(0 [Vk]A) ak+I a 

"': 0 (f [VIIA 
... 

[Vk]A ak+l a) 

Pll *... 'Alk-f a, ... a,,, ) Iv, ]A 
... 

[Vk]A) 

(77M IVIIA 
... 

[Vk]A) 

: -'4 
0 [VIA 

13 

This lemma shows that we can have access to the shadow of a version, as defined 

by the homomorphism of the shadowing, by using just the shadow operations. 
We do not need a version to create a shadow, we need only know which operations 

created the version. This abstracts us away from any concrete representation of 
the version. 
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For example, the shadowing of Figure 3.5 defines a homomorphism from a 

version, which is a list, to its length. Lemma 3.1 shows we can calculate the 

shadow of a version v, namely its length, without having access to v itself. All 

we need to know is which operations created v. To construct the length of v, we 

use shadows of the same operations, with the same arguments. 

3.4.2 Guarding 

Using the information stored in the shadows, we wish to define a guard of an 

operation f that indicates which applications of f are allowed. We could make a 

guard take the same arguments as f and return true or false, according to whether 

the application is allowed or not. However, when generating an application at 

random, this would force every argument of an operation to be chosen before 

passing these arguments to the relevant guard. With an application such as lookup 

I i, this means guessing which indices are available for lookup before testing the 

validity of the application. This would be very inefficient. 

The definition of a DUG already restricts arguments supplied by the result of 

another operation to just version arguments. This allows non-version arguments 

to be chosen independently of the results of other operations. Suppose we pass 

the guard only the version arguments of an operation. The valid ranges of re- 

maining arguments could be returned as the result. One argument could then be 

chosen from each range with the resulting application guaranteed to be valid. For 

example, the guard for lookup could return a range of indices up to the length of 

the list. 

This works only if we make the further restriction that the guard returns 

independent ranges of non-version arguments. Where the ranges of valid non- 

version arguments are dependent, the guard must return some independent subset 

of ranges. As we have ensured that every non-version argument is of type Int, a 

guard may return a range using the type IntSubset. 
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Definition 3.21 (IntSubset, member) 
The type IntSubset is given by 

data IntSubset = All 
Pool 

Int :..: Int 

FiniteSet (Set Int) 

None 

and represents subsets of integers in the sense made precise by the following 

definition of the membership operation: 

member 

member i All 

member i Pool 

member i (I :..: u) 

member i (FiniteSet s) 

member i None 

Int -+ IntSubset -+ Bool 

Tru e 
(1 <i< poolsize) 

(I <i< U) 

memberFS is 

False 

where memberps is the membership operation on the type Set Int, and 

poolSize is some constant. We assume the availability of a suitable ADT to 

manipulate values of type Set Int. 

The definition of IntSubset allows the same set to be given in more than one way; 

in fact, only the FiniteSet constructor is needed. However, the other constructors 

provide dynamic, more efficient, or shorter alternatives: 

The set of all possible integers is more efficiently given as All than as 
FiniteSet (foldr add empty [minBound.. maxBound]). 

* The constant poolSize can be given at run-time of the generation of a 

DUG. The constructor Pool therefore gives a set of dynamic size. This 

is useful in assessing the effect of equal elements on efficiency of ADT 

implementations-see the problem Choosing non-version arguments from 

the graph of Section 4.1.1 for further details. 

The set 11, 
..., n} is more easily and more efficiently given as 1n than 

as FiniteSet (foldr add empty [I.. n]). 
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e The None is included to complement All and as a shorter alternative to 

FiniteSet empty. 

Using IntSubset, we can now give the type of a guard. 

Definition 3.22 (Guard Type) 

Let T be any type constructor of arity one. Let t be any simple type over T 

with type variable a instantiated to Int. Let n be the number of arguments 

of an operation of type t, v of which are version arguments. For any type 

s, the type guard,, (t) is given by 

v times 

_ý 

I [IntSubsetln-v if v<n guard, (t) -s 
Bool if v=n 

where [a],,, is the type of lists of n elements of type a, and where s represents 

the type of shadows. This replaces every version argument with a shadow, 

and moves every non-version argument over to the result type. There are 

n-v non-version arguments; if n-v=0, then the result type is Bool, 

otherwise it is a list of length n-v of elements of type IntSubset. 

Example 3.22 

Consider the ADT AList, whose signature is in Figure 3.3. For any type s, 

any guard of the operation head using shadows of type s must be of type 

guard, (T Int -+ Int) =s -+ Bool 

If we add the operation update of type 

update :: List a -+ Int -+ a -+ List a 

to AList, then any guard of update must be of type 

guard, (T Int -4 Int -4 Int -4 T Int) =s -4 [IntSubset]2 

As the type [a],,, cannot be written in Haskell, one might ask why we have chosen 
it over an i-tuple. Unfortunately, Haskell does not support functions over tuples 

of arbitrary size. We must work with the result of any guard in general, and 

thus we are forced to use lists. However, the type of lists does not express their 
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length. Hence lists with types that do specify length were chosen as a compromise 

between expressibility and practicality. 

We can now define a guard itself. We ensure the guard is of the correct type, 

and that it correctly indicates when a function application is well-defined. 

Definition 3.23 (Guard) 

Let S= (s, F) be a shadowing of the ADT A= (T, F) defining a horno- 

morphism 0:: T Int -ý s. For any operation fEF of type t, the function 

g is an S-guard of f if the following hold: 

e The type of g is guard, (t). 

* For all xj,..., x, where xi ...... xi,, are each of type T Int and 

Xii, ---, xj, are the rest, we have: 

- If I= 0, f X, ... x,, is well-defined if 

(0 xij ... (0 xi, ) = True 

- If I>1, f X, ... x,, is well-defined if 

xi, 3 = [si, 
---, sil 

and for all 1<t< 

member xj, st = True 

Example 3.23 

The Haskell code of Figure 3.6 defines SLig-guards of every operation of 

AList. Recall that the homomorphism given by SLjt is the length function. 

The guards of empty, catenate, and isEmpty, are trivial as these operations 

are total. The guard of cons allows any element to be added to the front 

of a list. The guard of tail will return True when and only when the list 

whose shadow it is being applied to is non-empty, ie. exactly when it is 

safe to apply tail to the list. The guard of head is identical. The guard 

of lookup will return the range of indices over which lookup is well-defined: 

any index from first to last element inclusive. 



3.4. SHADOW DATA STRUCTURE 

empty-Guard :: Bool 

empty-Guard = True 

catenate-Guard :: Shadow -> Shadow -> Bool 

catenate-Guard sO sl = True 

cons-Guard :: Shadow -> [IntSubset] 

cons-Guard sO = [All] 

tail-Guard :: Shadow -> Bool 

tail-Guard sO = sO>O 

head-Guard :: Shadow -> Bool 

head-Guard sO = sO>O 

lookup-Guard :: Shadow -> [IntSubset] 

lookup-Guard sO = [0:..: (sO-1)1 

isEmpty-Guard :: Shadow -> Bool 

isEmpty-Guard sO = True 
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Figure 3.6: Haskell code for SLit-guards of the operations of ALW (see Figure 3.5). 

Note that as Haskell does not have a type for lists of a given length, and as tuples 

are awkward to manipulate in the general case, lists of arbitrary length are used. 
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We shall generate a DUG by adding one node at a time. We shall choose an 

operation and predecessors for a new node, and then decide using the guards 

which integer arguments, if any, will produce a new DUG with a valid evaluation. 
We now wish to prove that the guards do allow us to make this decision. 

Lemma 3.2 Suppose we have a DUG V= (9,77, a,, r) for ADT A, a shadowing 
S of A, and an S-guard for every operation of A, with every node of V having a 

well-defined evaluation under A. Now propose an extension of V by one node v 

using operation f and predecessors vI, ..., vk. The guards can use just the infor- 

mation provided by the shadow evaluation of V to give sets of integer arguments. 
Choosing any integer from each will provide a well-defined evaluation of v under 
A 

Proof. Let g be the S-guard of f. If valid, the evaluation of v under A is given 
by the result of evaluating the following: 

[VIA : -- 77(V) [VIIA 
... 

[VkIA 

= 

where xi,. = [VMIA, IX, 
", 

}k 
=1 

U {Xj,. }l 
=1 = {Xm}n 

=1 and k+I = n. As each v,,, is MMM 
in V, [Vn]A is well-defined. By Lemma 3.1,0 xi.. =0 [vm]A = Ivm1s. Therefore, 

given the shadow evaluation of V, we can determine the value of each 0 xi,,,, 

and hence the integer sets given by g (0 xi, ) ... 
(0 xi, ). From Definition 3.23, 

choosing any xj ...... xj, from these sets gives awell-defined evaluation of v under 
A. 13 

Note that, in general, it may not be possible to define a guard that gives every 

well-defined application-for example, where the integer arguments cannot be 

independently chosen. However, for all of the ADTS in this thesis, it is possible 

to define guards which do give every well-defined application. 

3.4.3 Phasing 

It is useful to be able to identify different phases of an application. The profile 

of each phase may be given separately. For example, an application could have 

a growth phase where the data structures are being built, and a decay phase 
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where the data structures are being examined and taken apart. The profile of 

the growth phase would show more applications of building operations than of 
deconstructing operations, and vice versa for the decay phase. 

Thus a profile split into phases reveals more about an application's use of the 

ADT than just the whole profile. Additionally, when generating a DUG according 

to profiles for each phase, there is more control over the generation process. 

We assign each ADT version to a phase. Note, however, that at any one point 
in the computation, there may be many versions in different phases. For example, 

using the growth and decay phase example above, there may be some versions 
being built in the growth phase, whilst some are being taken apart in the decay 

phase. 

Information stored in the shadow determines which phase a version is in. The 

phases partition the version graph; that is, each version node will belong to a 

single phase. The non-version nodes are not shadowed and will not belong to 

any phase. We will identify a phase by a value of the type PhaseId which we 

will define as a type synonym with Int. The first phase is phase 1. Letting 5 be 

the type of a shadow, we may suppose that the following simple function would 

suffice: 

phaser :: s -+ PhaseId 

In general however, the function phaser needs more information than this. 

Suppose we are generating DUGS over the list ADT AList- Suppose further that 

we want to split the lists into two phases: those below a given length, and those 

above. We wish to parameterise the phasing over this length. This is the phase 

argument. A function phaseArgRead is required to read in the argument from a 

string. A value phaseArgDefault is required to specify the phase argument to use 
if none is given. 

Definition 3.24 (Phasing) 

Let S= (s, P) be a shadowing of some ADT. The 4-tuple 

P= (r, phaseArgRead, phaseArgDefault, phaser) 
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data PhaseArg = MeanSize Int I NoMeanSize 

phaseArgRead :: String -> PhaseArg 

phaseArgRead s= MeanSize (read s) 

phaseArgDefault :: PhaseArg 

phaseArgDefault = NoMeanSize 

phaser :: Shadow -> PhaseArg -> PhaseId 

phaser - 
NoMeanSize =1 

phaser s (MeanSize m) 

Is <= m=1 
I otherwise =2 

Figure 3.7: Functions implementing an SLit-phasing assigning lists no longer than 

the phase argument to phase 1, and those longer to phase 2. See Example 3.19 

for the definition of SLi. t. If no phase argument is given, all nodes are placed in 

phase 1. 

provides an S-phasing when the following type signatures are correct: 

phaseArgRead String r 

phaseArgDefault r 

phaser s -+ r PhaseId 

Note that the type PhaseId is a type synonym for Int. 

Example 3.24 

The Haskell code of Figure 3.7 defines an SLig-phasing. This phasing 

places lists of length less than or equal to the phase argument (an integer) 

into phase 1, and the rest into phase 2. 

Each part of the DUG profile defined in Section 3.3 can be parameterised over the 

phase of a version node, except for generation weights. 
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Definition 3.25 (Phased DUG Profile) 

Let V be a DUG for ADT A with version graph! gv. Let S be a shadowing of 

A. Let Iii, ..., lip be the subgraphs of ! 9V partitioned by the S-phasing P. 

The P-phased DUG profile of V can be calculated by replacing gV with Iii 

in Definition 3.16 for every property bar generation weights. The phased 

profile of a DUG is therefore: 

*A generation weights ratio 

*A set of the following properties, one for each phase of the DUG: 

mutation-observation weights, mortality, PMF, and POF. 

Example 3.25 

Using the SLit-phasing PLig of Example 3.24 with a phase argument of 1, 

partition the DUG shown in Figure 3.4 into two phases: (1) lists, of length 

zero or one, and (2) lists of length two or more. Example 3.20 gives the 

length of each list. Let W, contain nodes in phase (1), namely vo, vi) V2, 

V31 V6, and V8. Let W2 contain nodes in phase (2), namely v5 and V7. The 

PLi, t-phased profile of this DUG is given below: 

9 Generation weights-as there is only one generator, empty, this prop- 

erty is redundant at: empty = 1. 

* Set of profiles of each phase. 
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- For W1, the lists of length zero or one, we have the following 

profile: 

* Mutation-observation weights: 

catenate : cons : tail : head : lookup : isEmpty = 
4: 2: 0: 1: 0: 1 

* Mortality-of the six version nodes in 711, only one (V8) is 

not mutated, so the mortality is 1/6. 

* PMF-there are six mutations of nodes in 711, one of which 

(V1 --ý V7) is persistent, giving a PMF of 1/6. 

* POF-there are two observations of nodes in W1, neither of 

which is persistent, giving a POF Of 0. 
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- For W2, the lists of length two or more, we have the following 

profile: 

* Mutation-observat ion weights: 

catenate : con i: tail: head: lookup : isEmpty = 
0: 0: 2: 0: 1: 0 

* Nfortality-all version nodes are mutated, so the mortality is 

PmF-there are three mutations of nodes in W2, none of whicli 

are persistent, giving a PMF of 0. 

POF-there is one observation of a node in W2 (v, -+ t-9), 

which is persistent, giving a POF of 1. 

3.4.4 Shadow Profiling 

Shadow profiling allows information to be collected about every operation applie(j 
to a version, namely mutations and observations. The shadow of any versioll 
that is mutated or observed is the source of this inrormation. For "aniple, if tl,, L. 
shadow of a list contained its length, we could suin the lengths of lists involvcý(j 

in mutations and observations and return the average. Note that this is not 
the same as summing the lengths of every mutatml or observed list: if a list is 

mutated or observed more than once, its shadow is used more than once. 
We will need to maintain a shadow proffle- The initial value will be givell by 

shadowProfileZero. Information will be collected using the function shadowPro- 
filer. The final value will be shown using the function shadotrProfileShow. 

Definition 3.26 (Shadow Profiling) 

Let S= (s, F') be a shadowing Of SOMC ADT. The . 1-tuple 

(p, shadowProfileZero, shadowProfder, shadowProfileShow) 

provides an S-profiling when the following type signatures are correct: 

shadowProfileZero :: 
shadowProfiler :: p -+ s -+ 

shadowProfileShow :: p -+ String 
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data ShadowProfile = ShadowProfile Int Int 

shadowProfileZero :: ShadowProfile 

shadowProfileZero = ShadowProfile 00 

shadowProfiler :: ShadowProfile -> Shadow -> ShadowProfile 

shadowProfiler (ShadowProfile sum count) s= 

ShadowProfile (sum+s) (count+l) 

shadowProfileShow :: ShadowProfile -> String 

shadowProfileShow (ShadowProfile sum count) = 

"Average size = 11 ++ show (sum/count) 
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Figure 3.8: Functions implementing an SLi, t-profiling. The average length over 

every mutation and observation of a list is calculated. See Figure 3.5 for the 

definition of SLjt. 

Example 3.26 

The Haskell code of Figure 3.8 defines an SLi, t-profiling. This shadow 

profiling calculates the average length of a list over all mutations and ob- 

servations. For the DUG of Figure 3.4, this reports an average length of 
12/11. To verify this, here is a table of every mutation and observation, 

and the corresponding length of the mutated or observed list: 

Mutation/Observation vo -+ v, V2 -+ V3 V3 -4 N VI -ý V5 V3 -+ V5 

Version Operated On VO V2 V3 V1 V3 

Length 0 0 

V5 -+ V6 Vl -+ V7 V6 -+ V7 V7 -+ V8 V7 -4 V9 V8 -+ V10 

V5 VI V6 V7 V7 V8 

2 11 11 12 2 1 

Given a list 1 of shadows of versions that are mutated or observed, one might 

view the shadow profile with: 
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shadowProfileShow Voldl shadowProfiler shadowProfileZero 1) 

3.4.5 Definition 

We are now in a position to give a formal definition of a shadow data structure, 

which includes shadowing, guarding, phasing, and shadow profiling. 

Definition 3.27 (Shadow Data Structure) 

For any simple ADT A= (T, F), any shadowing S of A, any set W con- 

taining a single S-guard of every operation in F, any S-phasing P, and 

any S-profiling 0, the 4-tuple (S, W, P, 0) is a shadow data structure for 

A 

Example 3.27 

Take SLj, t from Figure 3.5, WLi, t containing the SLi,, -guards of Figure 3.6, 

PLj, j from Figure 3.7, and OList from Figure 3.8. The 4-tuple 

(SList i Mist t 'PList i OList) 

is a shadow data structure for the ADTALW, whose signature is given in 

Figure 3.3. 

3.5 Summary 

We now have a formal model capturing how an application uses a data structure: 

a DUG. We also have a summary of the most important aspects of this use: a 

profile. By generating a DUG from a profile, and by defining the evaluation of a 

DUG, we can now create a benchmark from a profile. The shadow data structure 

plays an important role in the generation Of DUGs by allowing us to avoid unde- 
fined applications of operations. By extracting a DUG from an application and 
by calculating its profile, we can also create a profile from an application. The 

shadow data structure helps here by adding useful information to the extracted 

profile. 
However, all of this is defined only in theory. In the following chapter we shall 

turn this theory into practice by giving algorithms for the generation, evaluation, 

extraction, and profiling of DUGS. 



Chapter 4 

Implementing Datatype Usage 

Graphs 

As stated at the start of Chapter 3, we want to be able (a) to create a bench- 

mark from a description of use, and (b) to create a description of use from an 

application. In Chapter 3, we defined a DUG, describing how a data structure 

is used by an application. We then outlined in theory how we can (a) create a 

benchmark from a profile of a DUG, and (b) create a profile of a DUG from an 

application. In this chapter, Sections 4.1 and 4.2 show how these ideas can be 

implemented. Section 4.3 describes the technical details involved in these con- 

crete implementations. Section 4.4 evaluates the accuracy and efficiency of these 

implementations. 

4.1 From Profile to Benchmark 

Recall from Section 3.3 that we create a benchmark from a profile as follows: 

(1) Use a pseudo-random number generator to create a DUG that probabilisti- 

cally has the given profile-that is, the expected profile is the one given. 

(2) Use a DUG evaluator to evaluate this DUG using a given implementation of 

the ADT. 

Section 4.1.1 describes (1), and Section 4.1.2 describes (2). 
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To generate a DUG: 

while the DUG is too small do 

choose an operation 

choose version arguments for the operation 

choose non-version arguments for the operation 

add a node to the DUG 

add arcs from the nodes used as arguments to the new node 
label the node with the operation and the remaining arguments 

Figure 4.1: Overview of the DUG generation algorithm. 

4.1.1 DUG Generation 

How shall we build a DUG? Figure 4.1 gives a reasonable starting point for an 

algorithm. 

Problems with DUG Generation 

Unfortunately, the simple algorithm of Figure 4.1 encounters some problems. 
These are listed below, together with the solutions we choose. 

Creating undefined applications. Some applications of operations may not 
be well defined. For example, the application head empty is usually not 
defined. We need to avoid these applications. We do this by maintaining 

extra information-a shadow-about each possible argument of an applica- 

tion. A guard protects us from creating an undefined application, by using 

the shadow of every argument. Shadows and guards make up part of a 

shadow data structure-see Section 3.4. 

Allowing undefined arguments. Lazy evaluation evaluates the operation 

before the arguments. Therefore, adding a node with (as yet) undefined ar- 

guments seems reasonable. However, without knowing the arguments, we 

cannot avoid undefined applications using a shadow data structure. There- 

fore we never add a node without knowing all the arguments. 
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Choosing the arguments from the whole graph. We could pick the arguments 

from any part of the DUG already formed. However, in practice, because 

we must maintain a shadow of every possible argument, this can cost too 

much memory. Therefore we restrict choice of arguments to a subgraph, 

the frontier. We need only maintain shadows of nodes in the frontier. If 

the frontier becomes too large, we remove a node (though it stays in the 

DUG). 

Choosing non-version arguments from the graph. We could choose non- 

version arguments from the results of observers. However, this proves too 

restrictive-for example, whilst generating a DUG for the ADT of Figure 4.2, 

from where does the argument of type a for the first application of cons 

come? There can be no applications of head in the graph yet. But how else 

can we generate an argument of type a? As the role played by non-version 

arguments is a relatively minor one (for example, no profile properties de- 

pend on them), we restrict them to being integers-that is, we instantiate 

the type variable a to Int. For simplicity, now that every non-version argu- 

ment has type Int, we then choose all non-version arguments independently 

of the graph. 

But what effect do arguments of type a have on the efficiency of ADT 

implementations? For those ADTS that do not examine the elements they 

carry (that is, arguments of type a), the only affect these elements can have 

is through their size-the larger the element and the more elements held 

onto by the ADT implementation, the larger the heap size which in turn 

affects efficiency. By restricting ourselves to elements of type Int, we have 

no means of measuring this effect. 

For those ADTS that do examine the elements they carry, for example, by 

comparing them under equality, or by ordering them, the values of these 

elements can affect efficiency. For the data structures considered in this 

thesis, only equality and ordering is used on elements. Under this use of 

elements, one of the main effects on efficiency is through the number of 

equal elements. This is controlled through the pool size. 
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The range of integer arguments given by the Pool data constructor of 
IntSubset (see Definition 3.21) are drawn from 11, 

.... p), where p is called 

the pool size. The smaller the pool size, the more equal elements will be 

inserted. Changing the pool size may effect the efficiency of ADT iMple- 

mentations. For example, one implementation of a set ADT may be more 

efficient than another at handling many insertions of equal elements. 

Apart from this rather crude means of controlling the range of elements, 

we currently have no other control of the effect of elements on efficiency. 

Choosing the operation before the arguments. We could choose an operation 
for the new node before choosing its arguments. However, this proves rather 

awkward for generating a DUG to fit some of the profile properties. For 

example, persistence and mortality depend on whether the arguments have 

been previously mutated or not. Before choosing arguments, 'we would need 

to know which have been mutated and which have not, if we are to attempt 

to match these properties. Additionally, phasing the profiles increases our 
dependence on prior knowledge of the arguments. It is easier if we choose 

an argument first, and the operation second. Therefore, for each new node, 

we plan which operations each node should be involved in as an argument, 

and in which order. See Section 3.3 for a discussion of how the profile 

properties are used to plan a node's future. 

We choose an argument first, and let the first operation in its future deter- 

mine the operation of the new node. However, we must cater for operations 

that take more than one node as an argument. Therefore, we place argu- 

ments in a buffer according to operation, and wait till it contains as many 

nodes as the operation takes arguments, before creating a new node with 

this operation. Unfortunately, this has the drawback that it is impossible 

to create an application where the same node appears as more than one 

argument, for example, catenate v v. However, there does not appear to be 

a simple solution to this problem. 

* Diverging. If we allow the same operation and arguments to be chosen 

repeatedly, and if this application is rejected by the guard, we could diverge. 
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module List (List, empty, catenate, cons, tail, head, lookup, isEmpty) 

where 

empty :: List a 

catenate :: List a -> List a -> List a 

cons a -> List a -> List a 

tail List a List a 

head List a a 

lookup List a Int -> a 

isEmpty List a Bool 
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Figure 4.2: Haskell code giving the signature of a simple list ADT providing 

normal list operations, catenation and indexing. 

Therefore, once a guard rejects an application, we remove this operation 
from the node's future. 

The DUG Generation Algorithm 

We build a DUG one node at a time. Each node has a future and a past. The future 

records which operations we have planned to apply to the node, in order. The 

past records which operations we have already applied to the node. The nodes 

with a non-empty future together make up the frontier. The first operation in a 

future is called the head operation. 
As we add a node to the DUG, we take arguments from the frontier. The 

frontier therefore is the subgraph on which we are building. We shall bound the 

size of the frontier above and below: 

Bounding above prevents the frontier from getting too large. If the PMF 

is non-zero, we shall need to mutate nodes more than once. This leads to 

exponential growth of the frontier, which may need to be capped to prevent 

running out of memory. When the frontier exceeds a given limit, we remove 

an arbitrary node from the frontier. This will affect the final profile, and 
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so should only be used when there is no alternative. 

Bounding below ensures there is at least one node to build on, and encour- 

ages diversity, especially in the presence of operations with large version 

arities. 

When a new node is made, we record this as a birth. A list of births, in order, 
describes a DUG completely. When a node no longer has a future, we record 
its past as a death. A list of deaths also describe a DUG completely'. A list of 
births describes a DUG from a global perspective (how was a node added to the 

graph) whereas a list of deaths describes a DUG from a local perspective (what 

was applied to a node). A list of births is more convenient for evaluating a DUG. 

A list of deaths is more convenient for profiling a DUG. Hence, we shall produce 
both as we generate the DUG. 

Our definition of a DUG restricts non-version nodes from being re-used, and 

so each non-version node always has an empty future and an empty past. To save 
time and space, we do not record the death of a non-version node--the node is 

assumed to die immediately after birth. 

An overview of the algorithm is given in Figures 4.3 and 4.4. Fuller details of 
the algorithms are given below. 

Generating the DUG. The main function generateDug takes an integer and 

returns a DUG with this many nodes, in the form of a list of births and deaths. 

generateDug :: Int -+ [BirthOrDeath] 

A birth records the identity of the node born, the operation used, the version 

arguments (identities of other nodes), and the non-version arguments (integers). 

A death records the identity of the dead node, the arcs from the dead node, and 

the shadow of the dead node. 

data BirthOrDeath = Birth Nodeld Operation [Nodeld] [Int] 

I Death Nodeld [Arc] Shadow 

I This is only true if we consider a generator as taking an imaginary void node as an argument 
(see Definition 3.14) and include the death of this node. However, in practice, it is easier to 

just use the birth of the generator, which is what we do for DUG profiling. 
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To generate a DUG: 

while the DUG is too small do 

if the frontier is too small then 

try to make a new node using a generator (see part 11) 

else-if the frontier is too large then 

remove a node from the frontier 

record the death of this node 

else 

remove a node from the frontier to act as a version argument 
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place the node in the buffer corresponding to the node's head operation 
if this buffer is full then 

try to make a new node with the buffer's contents acting as the version 

arguments for their common head operation (see part 11) 

fi 

fi 

od 

record the death of every node in the frontier and buffers 

Figure 4.3: Overview of the DUG generation algorithm (part I). 
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To try to make a new node from an operation and some version arguments: 

apply the guard of the operation to the shadow of every version argument 
if the guard fails then 

remove the head operation of each version argument 

else 

choose some non-version arguments from the result of the guard 

make a new node by applying the operation to the arguments 

record the birth of this node 

add the new node to the DUG 

if the operation is not an observer then 

plan the future of the new node 

else 
leave the future of the new node empty 

fi 
if the new node has a non-empty future then 

add the new node to the frontier 

else 

record the death of this node 
fi 

remove the head operation of each version argument 

fi 

record the death of every version argument with an empty future 

add every other version argument to the frontier 

Figure 4.4: Overview of the DUG generation algorithm (part 11). 
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The shadow of a node is needed for DUG profiling but not for DUG evaluating, 

and so we only include it in a death. Recall that an arc from a node u to a node 

v represents the application of an operation at v to the result of the operation 

at u. The type Arc records the operation at v, the argument position of u, the 

non-version arguments, and the identity of v. 

data Arc = Arc ItargetNodeOp :: Operation, sourceNodeArgPosn :: Int, 

intArgs :: [Intl, targetNodeld :: Nodeldl 

The function generateDug is defined using an auxiliary function-a function that 

performs the same task but maintains auxiliary arguments-called generateNodes, 

taking the following auxiliary arguments: the current frontier, the current buffers, 

the identity of the next node to be created, and the number of nodes left to create. 

generateNodes :: INode} -+ Buffers -+ Nodeld -+ Int -+ [BirthOrDeath] 

A node is identified by a value of type Nodeld. The node also stores: the node's 
future, the node's past, and the node's shadow. 

data Node = Node Inodeld :: Nodeld, future :: [Operation], 

past :: [Arc], shadow :: Shadowl 

Each buffer holds the arguments waiting to be involved in the application of a 

particular operation. Therefore the type Buffers is a function taking an operation 
f to the buffer for f. A buffer is a list of arguments, in the order they were 

added. 

type Buffers = Operation -+ [Node] 

Initially, the frontier is empty, the buffers are empty, the next node is the first 

node, and every node still has to be made. 

generateDug noOfNodes = generateNodes J} (Af - []) initialNodeld noOfNodes 

Generating a node. At the core of the algorithm lies a loop. Each iteration of 

the loop is a call to generateNodes, and each call attempts to add a new node to 

the current DUG. If we have no more nodes to make, we record the deaths of the 

nodes left in the frontier and buffers. All other nodes had their deaths recorded 

as they left the frontier without entering into a buffer. 
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generateNodes frontier buffers newNodeld 0= 

[Death (nodeld node) (past node) (shadow node) 

node +- frontier U range buffers] 

If the frontier is too small, we attempt to make a new node using a generator 

chosen according to the generation weights of the profile. 

generateNodes frontier buffers newNodeld nodesLeft 

size frontier < frontierMin = 
tryApplication (chooseOperationt genera tionWeigh ts) 

frontier buffers newNodeld nodesLeft 

The function tryApplication attempts to make a node from an operation and a 
list of version arguments. It also carries through the arguments given to gener- 

ateNodes. 

tryApplication :: Operation -+ [Node] -+ INodel -+ Buffers -+ Nodeld -+ Int -+ 
[BirthOrDeath] 

The function chooseOperation takes some operation weights and returns an oper- 

ation pseudo-randomly, biased according to the weights. This requires a random 

seed, but we omit that argument here, for the threading of seeds clutters the code. 
Therefore, for the purposes of this presentation of code, consider the function as 

using hidden state and hence being impure. All such functions are indicated 

by at superscript. For details on the implementation of these functions, see 
Section 4.3.1. 

chooseOperationt :: f(Operation, Weight)) -+ Operation 

If the frontier is too large, a node is removed from the frontier. The death of this 

node is recorded, and we repeat the main loop with a call to generateNodes. 

generateNodes frontier buffers newNodeld nodesLeft 

size frontier > frontierMax = 
let (node, frontier') = removeNodet frontier 

in Death (nodeld node) (past node) (shadow node) 

generateNodes frontier' buffers newNodeld nodesLeft 
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The function removeNodet removes a node at random from the frontier, and 

returns this node and the new frontier. 

removeNodet :: Node -+ (Node, fNode}) 

Otherwise, we choose a node v from the frontier as an argument for a new node. 

generateNodes frontier buffers newNodeld nodesLeft 
I otherwise = 

let (v, frontier) = removeNodet frontier 

in useArgument v frontier' buffers newNodeld nodesLeft 

For each operation f, we keep a buffer of version nodes whose head operation is 

f. We add v to the appropriate buffer. 

useArgument :: Node -+ lNode} -* Buffers -+ Nodeld -+ Int -+ [BirthOrDeath] 

useArgument v frontier buffers newNodeld nodesLeft = 
let (f : rest) = future v 

buffers' gIg == f=v: buffers 

I otherwise = buffers 

in checkBuffer operation frontier buffers' newNodeld nodesLeft 

If the buffer of f contains the same number of nodes as the version arity of f, we 

remove these nodes vs. We then try to make a new node from operation f and 

version arguments vs. 

checkBuffer :: Operation -+ lNode} -+ Buffers -+ Nodeld -+ Int -+ 
[BirthOrDeathl 

checkBuffer f frontier buffers newNodeld nodesLeft 
I length (buffers f) == numberOfVersionArguments f= 

let vs = buffers f 

buffers' gIg == f= [I 

I otherwise = buffers 

in tryApplication f vs frontier buffers' newNodeld nodesLeft 
I otherwise = generateNodes frontier buffers newNodeld nodesLeft 
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Trying an application. Recall that the function tryApplication attempts to 

make a new node using an operation f and version arguments vs. We apply the 

guard of f to the shadow of every node in vs to find the ranges of possible non- 

version arguments. If these ranges are empty, we abandon this application using 

the function cleanUpFailure. Otherwise, we make a new node using makeNewNode. 

tryApplication f vs frontier buffers newNodeld nodesLeft 

case applyGuard f (map shadow vs) of 

Failure -+ cleanUpFailure vs frontier buffers newNodeld nodesLeft 

IntSubsets iss -+ makeNewNode f vs iss frontier buffers newNodeld nodesLeft 

The function applyGuard applies the guard of an operation to a list of shadows, 

and returns the ranges of possible non-version arguments. 

applyGuard :: Operation -+ [Shadow] -+ NonVersionArgs 

If any of the ranges is empty, applyGuard returns Failure. 

data NonVersionArgs = IntSubsets [IntSubset] I Failure 

The type IntSubset is defined in Section 3.21. 

Cleaning up after a failed application. If an application of the guard of 

an operation f to the shadows of the nodes vs fails, we change the nodes vs to 

reflect this using the function chronicleFail. We record the death of any node 

without a future, return the rest to the frontier, and repeat the main loop by 

calling generateNodes. 

cleanUpFailure :: [Node] -+ {Node} -+ Buffers -+ Nodeld -+ Int -+ [BirthOrDeath] 

cleanUpFailure vs frontier buffers newNodeld nodesLeft = 
let (dead Nodes, I ive Nodes) = splitWith (null o future) (map chronicleFail vs) 

obituary = [Death (nodeld node) (past node) (shadow node) I 

node i- deadNodes] 
in obituary +F 

generateNodes (frontier U liveNodes) buffer newNodeld nodesLeft 

The function chronicleFail removes the head operation of each node. 

chronicleFail :: Node -+ Node 

chronicleFail node = node {future = tail (future node)) 
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Making a new node from a successful application. If an application of 

the guard of an operation f to the shadows of the nodes vs succeeds with ranges 

of possible non-version arguments iss, we choose non-version arguments is, one 

from each set in iss using chooseint. We change vs to reflect this successful 

application using chronicleSuccess, record the death of any node without a future, 

and return the rest to the frontier, as in cleanUpFailure. The birth of the new 

node is recorded. If the operation is not an observer, the new node is given a 

future using the operation bear, and placed in the frontier (if its future is not 

empty). Otherwise, it dies at birth (but we do not explicitly record the death). 

We repeat the loop, obtaining a new node identity, and decreasing the number 

of nodes left to generate by 1. 

makeNewNode :: Operation -+ [Node] -+ [IntSubset] -+ INode} -+ Buffers -+ 
Nodeld -+ Int -+ [BirthOrDeathl 

makeNewNode f vs iss frontier buffers newNodeld nodesLeft 
let is = map (chooseintt poolSize) iss 

newNode = if role f == Observer then [] else [bear f vs is] 

vs' = zipWith (chronicleSuccess f is newNodeld) vs (versionArgs f) 

(dead Nodes, liveNodes) = splitWith (null o future) (vs' +F newNode) 

obituary = [Death (nodeld node) (past node) (shadow node) I 

node +- deadNodes] 

in Birth newNodeld f (map nodeld vs) is : obituary 4+- 

generateNodes (frontier U liveNodes) buffer 

(nextNodeld newNodeld) (nodesLeft-1) 

The function chooseInt chooses an integer from an IntSubset using the given pool 

size. 

chooselntt :: Int -+ IntSubset -+ Int 

To reflect the successful application of an operation f to a node v at argument 

position pos with non-version arguments is to create a new node with identity 

newNodeld, we remove the head operation, and record the application as an Arc 

in the node's past. 

chronicleSuccess :: Operation -+ [Int] -+ Nodeld -+ Node -4 Int -+ Node 
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chronicleSuccess f is newNodeld v pos = 

v [future = tail (future v), past = Arc f pos is newNodeld : past v} 

The new node is given an identity tag, a future calculated by the function plan 

using information contained in the shadow of the new node, an empty past, and 

a shadow. 

bear :: Operation -+ [Node] -+ [Int] -+ Node 

bear f vs is newNodeld = let newShadow = applyShadow f (map shadow vs) is 

in Node newNodeld (plan newShadow) [] newShadow 

The function applyShadow applies the shadow of an operation to the shadows of 

the version arguments and to the non-version arguments. 

applyShadow :: Operation -+ [Shadow] -+ [Intl -+ Shadow 

The function versionArgs returns the positions of the version arguments of a given 

operation. 

versionArgs :: Operation -+ [Int] 

Planning the future of a new node. The function plan decides the future 

of a new node v using information contained in the shadow of v. 

plan :: Shadow -+ [Operation] 

The phase of v is given by the shadow of v and the phase arguments. 

phase = phaser shadow phaseArgument 

The profile of this phase determines the node's future. See Section 3.4.3 for 

further details. 

phaser :: Shadow -+ PhaseArg -+ Phaseld 

mutationObservationWeights :: Phaseld -+ i(Operation, Weight)} 

mortality, pmf, pof :: Phaseld -+ Double 

We first decide if we shall mutate v or not, using the mortality. If we are to 

mutate v, recall from Section 3.3 that the average number of extra mutations of 

mutated nodes is p,,, 1(1 -p,,, ), where p,,, is the PMF. NVe use a Poisson distribution 

with this mean to determine how many extra mutations we shall apply to v. 
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noOfMutns I chancet (mortality phase) =0 
I otherwise =1+ poissont (pmf phase / (i - pmf phase)) 

The function chance makes a decision based on the given probability. 

chancet :: Probability -+ Bool 

The Poisson distribution was chosen because it is well-known, because it ranges 

over non-negative integers, and because it is simple. Another similar distribution 

would also be appropriate. 

poissont :: Mean -+ Int 

The profile gives the mutation and observation weights together, to relate fre- 

quency of mutators to frequency of observers. We use the ratio of mutators to 

observers to calculate the number of observations we shall apply to v. Section 3.3 

details how we reach the approximation given in the code below. 

mutnObtnWgts = mutationObservationWeights phase 

mutnWgts = [(f, w) (f, w) +- mutnObtnWgts, role f Mutatorl 

obtnWgts = [(f, w) (f, w) 4- mutnObtnWgts, role f Observer] 

noOfObtns = sum [w I (f, w) +- obtnWgts] / 

sum [w I (f, w) 4-- mutnWgts] 

The number of ephemeral observations and the number of persistent observations 

are calculated directly from the POF. 

noOfEphmObtns = poissont (noOfObtns * (1 - pof phase)) 

noOfPersObtns = poissont (noOfObtns * pof phase) 

We use the mutation-observation weights to determine which operations to use for 

the planned mutations and observations. Note that these operations are not all 

the same, despite the use of replicate, because we have hidden the pseudo-random 

choice within the impurity of chooseOperation. 

mutns = replicate noOfMutns (chooseOperationt mutnWgts) 

ephmObtns = replicate noOfEphmObtns (chooseOperationt obtnWgts) 

persObtns = replicate noOfPersObtns (chooseOperationl obtnWgts) 
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The future of v is therefore the ephemeral obser-t-ations, followed by the first mu- 

tation (ephemeral, if it exists), followed by a mixture of the remaining mutations 

(persistent) and the persistent obser-*-ations, mixed using the function mixt. 

plan shadow = let mixPersOps [] os = os 

mixPersOps (m: ms) os =m: mixt ms Os 

... definitions of phase through persObtns... 
in ephmObtns +F mixPersOps ms postMutnObtns 

Biased choices ensure that the function mixt combines the lists evenly (see Sec- 

tion 4.3.1). 

mixt :: [a] -4 [a] -+ [a] 

4.1.2 DUG Evaluation 

The process of DUG evaluation is quite straightforward. Unlike DUG generation, 

we encounter no theoretical problems. In practice however, efficiency is a problem. 

The DUG evaluator sometimes takes more time over input-output and maintaining 

a lookup table than it does over performing the ADT operations. Times taken for 

DUG evaluation therefore vary little between ADT implementations, preventing us 

from accurately measuring their relative efficiencies. In such cases, we can solve 

this problem by using aC program to perform the input-output and lookup table 

maintenance. This requires an interface to C that allows C to call Haskell. We 

use an extension to the Green Card package [43]. See Section 4.3.2 for further 

technical details. 

Definition 3.9 defines how a DUG should be evaluated lazily. When a non- 

version node is born, its result must be demanded immediately. As the result of an 

observer is either of type Int or of type Boot, we demand this value by converting 
it to an integer, and adding it to the checksum. This checksum is the result of the 

DUG evaluation. Different implementations of the same observat ionally- equivalent 

ADT evaluating the same DUG should return the same checksum. This may be 

used to check the correctness of one implementation against the correctness of 

another. An ADT that is not observationally equivalent allows many values for 

a single evaluation of an observation. For example, a bag ADT may support an 

operation that returns an unspecified element in the bag. 
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while not at the end of the DUG file do 

read the next birth or death 

if we read a birth then 

apply an operation to integers and nodes in the frontier, as given by the birth 

if the operation is an observer then 

convert the result to an integer and add it to the checksum 

else 

add the resulting node to the frontier 

fi 

else 

we read a death, so remove the dead node from the frontier 

fi 

od 

report the checksum 

Figure 4.5: Overview of the DUG evaluation algorithm. 

An overview of the algorithm is given in Figure 4.5. Fuller details follow, 

using the types defined in Section 4.1.1. 

The main function takes a list of births and deaths, and returns the checksum 

made from evaluating the observations. 

evaluateDug :: [BirthOrDeath] -+ Int 

We shall read one birth or death at a time. As with DUG generation, we shall 

maintain a frontier, containing the nodes awaiting further applications. To define 

evaluateDug, we use an auxiliary function evaluateNodes, taking the current fron- 

tier and the current checksurn as auxiliary arguments. Each node is identified by 

a Nodeld and contains just a version of type T Int, where T is the type constructor 

exported by the ADT implementation used to evaluate the DUG. 

evaluateNodes :: (Nodeld -+ T Int) -+ Int -+ [BirthOrDeath] -+ Int 

Initially, the frontier is empty, and the checksurn is 0. 
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evaluateDug dug = evaluateNodes (, \n - undefined) 0 dug 

If there are no more births or deaths to read, we return the checksurn. 

evaluateNodes frontier checksum [] = checksurn 

A birth of an observer node creates a value either of type Int or of type Bool. 

We convert this value to an integer using resuItTolnt and add it to the checksuni. 

As we must demand this value immediately, we must explicitly demand its value 

using seq, which evaluates its first argument before returning its second argument. 

evaluateNodes frontier checksurn (Birth nodeld f vs is : dug) 

I role f == Observer = 
let result = resultToInt (apply0peration f (map frontier vs) is) 

in seq result (evaluateNodes frontier (checksum + result) dug) 

If a version node is born, we add the node to the frontier. 

evaluateNodes frontier checksurn (Birth nodeld f vs is : dug) 

I otherwise = 

let frontier' n 
In == nodeld = resultToNode (apply0peration f (map frontier vs) is) 

I otherwise = frontier n 

in evaluateNodes frontier' checksum dug 

A death of a version node removes the node from the frontier. Recall that we do 

not record the death of a non-version node. 

evaluateNodes frontier checksum (Death nodeld arcs shadow : dug) = 

let frontier' nIn == nodeld = undefined 
I otherwise = frontier n 

in evaluateNodes frontier' checksurn dug 

The following functions allow the result of an application of any operation to be 

manipulated, whether of type T Int, Int, or Bool. 

apply0peration :: Operation -+ [T Intl -+ [Intl -+ Result 
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data Result = Node (T Int) I Int Int I Bool Bool 

resultToint :: Result -+ Int 

resuItToint (Int i) =i 

resultTolnt (Bool b) = fromEnum b 

resultToNode :: Result -+ T Int 

resultToNode (Node v) =v 

4.2 17rom Application to Profile 

We create a profile of a DUG from a run of an application as follows: 
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(1) Extract the DUG describing how the run of the application uses an imple- 

mentation of the ADT. 

(2) Calculate the profile of thiS DUG. 

Section 4.2.1 describes (1), and Section 4.2.2 describes (2). 

4.2.1 DUG Extraction 

The task of extracting a DUG from the run of an application is quite tricky in a 
lazy language like Haskell. One approach is to modify the compiler. However, 

as this solution depends on the details of a specific compiler, it would not be 

portable. An alternative approach is to transform the original program into one 

that gives the same result, but also produces a DUG. We adopt this method. 

Problems Of DUG Extraction 

Here are two key goals we must achieve by transforming the original program, 

the problems they pose, and the solutions we choose: 

Lazy Evaluation. Whilst recording the operations applied, we must be care- 
ful not to evaluate anything that was not evaluated by the original program, 

and to evaluate everything in the same order as the original program. Oth- 

erwise we may get a different DUG, or the resulting program may fail to 
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terminate. We only examine something we know has been evaluated to at 
least the same degree that we will force. 

It is possible that some arguments may not be evaluated at all. In such 

circumstances, after the program has finished, we record any such uneval- 

uated arguments explicitly in the DUG. The DUG e%miuation and profiling 

algorithms must accommodate these special nodes. See Section 4.3.2 and 
Section 4.3.4. 

Recording the DUG. We must record the DUG somewhere. However, side- 

effects are only allowed within the 10 monad in Haskell. It would be highly 

undesirable to transform every function to work within the 10 monad. Nei- 

ther do we wish to pass information about the DUG as a result from every 
function that calls an ADT operation, all the way up to the main function. 

This would involve changing a lot of code. We avoid this problem by cheat- 
ing. We interface to a side-effecting C function that records the DUG in a 
file. 

We cannot however, record arguments of type a, as we do not know in 

general how to store these. The user could supply a function to convert 

any value of type a to, say an integer. However, extracting this value could 

evaluate the argument more than previously. Therefore we decide not to 

record such arguments. 

The DUG Extraction Algorithm 

We modify the application and ADT implementation to perform the same task, 

but produce a DUG as a side-effect. We do this by wrapping the main function and 

every ADT operation. The wrapped main function performs some initialization, 

calls the old main function, and then tidies up the results. Each wrapped ADT 

operation works with wrapped versions. A version is wrapped with an identity 

tag. A wrapped operation uses the identity tags to record which nodes were used 

in the creation of the new node using which operation. A wrapped operation also 

calls the old operation, and wraps the result into a node with a new identity tag. 

For example, the list ADT of Figure 4.2 provides the type constructor List. 

The wrapped version datatype for this ADT is given by: 
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data WrappedList a= Node Int (List a) 

The wrapped implementation of cons is given by: 

wrappedCons :: a -+ WrappedList a -+ WrappedList a 

wrappedCons iv= let nodeld = new-node Cons 

in seq nodeld (Node nodeld (cons i (arc v nodeld 1))) 
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where new-node is aC function that returns a new identity tag for a node, after 

recording which operation labels this new node. The function arc unwraps and 

returns the version argument, after recording the arc from this version node to 

the newly created node: 

arc :: WrappedList a -+ Nodeld -+ Int -+ List a 

arc (Node from v) to position = seq from (seq (new-arc from to position) v) 

where new-arc is aC function that returns only unit, after recording the arc, 
including argument node identity, result node identity, and the position of the 

argument node. 
The function wrappedCons is only evaluated when cons would have been eval- 

uated in the original program. It forces the evaluation of the identity of the new 

node, and then returns the wrapped result. 
However, we do not record any of the arguments yet, as we do not know that 

they will be evaluated. We wrap the version argument with a call to arc. When 

the version argument would have been evaluated by the original program, we 

can examine the identity of the argument. The function arc does this, and then 

records the arc. 
We do not wrap the argument to cons of type a for reasons given in the 

problems Of DUG extraction above, but we can wrap arguments of type Int. The 

wrapped implementation of lookup is given by: 

wrappedLookup :: WrappedList a -+ Int -ý a 

wrappedLookup vi= let nodeld = new-node Lookup 

in seq nodeld (lookup (arc v nodeld 0) (intArg i nodeld 1)) 

The function intArg records the integer argument in the label of this node at the 

given argument position, and returns the integer argument: 
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intArg :: Int -ý Nodeld Int -4 Int 

intArg int node position seq int (seq (int-arg int node position) int) 

where int-arg is aC function that returns only unit, after recording the relevant 

details. 

A general definition of a wrapped ADT is given in Figure 4.6. Further details 

are somewhat technical. For example, interfacing to the C functions requires use 

of a package called Green Card [43]. We leave these details to Section 4.3.3. 

4.2.2 DUG Profiling 

As with DUG evaluation, we read one birth or death at a time. The algorithm is 

quite straightforward. 

The type of a profile is consistent with Section 4.1.1, except that there 'was 

an implicit profile in Section 4.1.1, whereas here it is an explicit argument. For 

example, the code mortality phase in Section 4.1.1 becomes mortality (phases profile 

phase) in this section, and similarly with the other profile properties. 

data Profile = Profile IgenerationWeights :: {(Opera tion. Weight) ), 

phases :: (Phaseld -+ Phase)} 

data Phase = Phase imutationObservationWeights :: i(Operation. Weight)}, 

mortality :: Double, pmf :: Double, pof :: Double) 

To calculate the generation weights and the mutation-observation weights, we 
keep a note of the number of nodes made by each operation (qualified by phase 

in the case of mutations and observations). To calculate the mortality, we need 

to keep both the number of nodes not mutated, and the total number of nodes. 
From this we can calculate the proportion of nodes not mutated: that is, the 

mortality. Similarly, we need to keep a numerator and denominator for the PMF 

and the POF. All this information is kept in a value of type ProfileData. 

data ProfileData = 
ProfileData IgWgts :: {(Operation, Weight)), 

phaseDatas :: (Phaseld -+ PhaseData)) 

data PhaseData = 



4.2. FROM APPLICATION TO PROFILE 

data T' a= Node Int (T a) 

fi'W :: WT(ti, l) WT(ti, ni) 

fiw a1... ani-1 

let nodeld new-node wN(fi) 

in seq nodeld wR(fi wA(al) ... wA(ani-1)) 

where 

WT(t) 
Twa, if t=Ta 

t, otherwise 

WOO gives the data constructor that names fj 

WR(e) 
Node nodeld e, if e has type Ta 

e, otherwise 

arc aj nodeld j, if aj has type T' a 

WA (aj) intArg aj nodeld j, if aj has type Int 

aj, otherwise 
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Figure 4.6: Definition of a wrapped ADT. For an ADT exporting type constructor 
T and operations fi :: ti, l ti, no the wrapped ADT exports type construc- 

tor T' and operations fi'. 
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PhaseData jmoWgts :: i(Operation, Weight)), unmutated :: Int, total :: Int, 

persMus :: Int, mus :: Int, persObs :: Int, obs :: Int} 

InitiallY, the generation -sveights and mutation-observation weights are all zero, 

as are the remaining fields. 

profile :: [BirthOrDeath] -+ Profile 

profile = let emptyProfileData = 
ProfileData J(f, O) If +- operations, role f == Generator} 

(Ap - emptyPhaseData) 

emptyPhaseData = 
PhaseData f(f, O) If +- operations, role f /= Generator} 

000000 

in calculateProfile o foldl gatherProfile em ptyProfile Data 

The function gatherProfile is folded over the list of births and deaths to calculate 
the final profile data. 

gatherProfile :: ProfileData -+ BirthOrDeath --+ ProfileData 

The function calculateProfile converts the final profile data into a profile. 

calculateProfile :: ProfileData -+ Profile 

calculateProfile (ProfileData gWgts phaseDatas) = 
Profile gWgts (calculatePhase o phaseDatas) 

calculatePhase :: PhaseData -+ Phase 

calculatePhase (PhaseData moWgts unmutated total persMus mus persObs obs) = 
Phase moWgts (fromintegral unmutated/fromIntegral total) 

(fromIntegral persMus/fromlntegral mus) 
(fromIntegral persObs/from Integral obs) 

Births of generators are used to calculate the generation weights. The other 
births are ignored, as the deaths are sufficient to calculate the rest of the profile. 

gatherProfile (ProfileData gWgts phaseDatas) (Birth n op vs is) 

I role op == Generator = ProfileData (addWgt gWgts op) phaseDatas 
I otherwise = ProfileData gWgts phaseDatas 



4.2. FROM APPLICATION TO PROFILE 

The function addWgt increases the weight of an operation by one. 

addWgt :: I(Operation, Weight)} -+ Operation -+ I(Operation, Weight)} 

addWgt wgts op = jif f == op then (f, w+l) else (f, w) I (f, w) +-- wgts} 

The death of a node v affects the profile of the phase to which v is assigned. 

gatherProfile (ProfileData gWgts phaseDatas) (Death n past shadow) = 
let phase = phaser shadow phaseArgument 

oldPhaseData = phaseDatas phase 

newPhaseDatas pIp == phase = gatherPhase oldPhaseData past 
I otherwise = phaseDatas p 

in ProfileData gWgts newPhaseDatas 
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The function gatherPhase returns a new phase data using the past of the dead 

node v. 

gatherPhase :: PhaseData -* [Arc] -+ PhaseData 

gatherPhase (PhaseData moWgts unmutated total persMus mus persObs obs) 

past = 

let ops = map targetNodeOp past 

ms = length [op I op +- ops, role op == Mutator] 

os = length [op I op +- ops, role op == Observer] 

postMutnObs = length [op I op +- dropWhile ((/= Mutator) o role) ops, 

role op == Observer] 

newMoWgts = foldl addWgt moWgts ops 

newUnmutated = if ms == 0 then unmutated +1 else unmutated 

newTotal = total +1 

newPersMus = persMus + max (ms-1) 0 

newMus = mus + ms 

newPersObs = persObs + postMutnObs 

newObs = obs + os 

in PhaseData newMoWgts newUnmutated newTotal newPersMus newMus 

newPersObs newObs 

The calculation of the phase is quite straightforward: ops is the list of operations 

applied to v, ms is the number of mutations of v, os is the number of observations 
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of v, and postMutnObs is the number of observations occurring after the first mu- 

tation (ie. the persistent observations). The new mutation-observation weights 

ratio is calculated by adding every operation in ops. If the number of mutations 

is zero, then v is not mutated. The number of persistent mutations is one less 

than the number of mutations, if any. The number of persistent observations has 

already been calculated. 

4.3 Technical Details 

The algorithms presented in this chapter are implemented in Haskell to create 

the tool of Chapter 6. However, for both efficiency and practical reasons, some 

refinements of this code were necessary. That is, some of the code is too slow, and 

some is not primitive to Haskell (eg. sets). We shall now detail the key points of 

these refinements. 

4.3.1 DUG Generation 

Frontier 

The frontier is presented as a set in Section 4.1.1, but sets are not primitive to 

Haskell. As we also need to remove a node pseudo-randomly (using removeNode), 

we need a set ADT with random retrieval. As we will never try to add the same 

node twice to the frontier, a bag ADT with random retrieval will suffice. A bag 

with random retrieval does not require any examination of the elements, and is 

therefore easier to implement than a set with random retrieval. 

The implementation of this ADT is based on the random-access lists of Okasaki 

[33]. An element is added using cons. An element is randomly retrieved by 

randomly choosing a valid index into the list. The element at this index is then 

removed by updating it with the head of the list, and then taking the tail of the 

result. 

Buffers 

Section 4.1.1 represents the buffers as a function from operations to lists of nodes. 
In practice it is easier to implement the buffers as a list of lists of nodes. As the 
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number of operations is quite small, this is efficient. 

Argument Position in Death 

Section 4.1.1 uses a function versionArgs to allocate the correct argument position 

to the version arguments of an application, recorded in the past of each argument, 

and subsequently in their deaths. As we restrict every node argument to version 

nodes, we actually just record the position of the version argument with respect 

to other version arguments. So, for example, for the application f io vo il i2 VII 

we record the argument position of vi as i. This allows us to define versionArgs 
by: 

versionArgs :: Operation -+ [Int] 

versionArgs f= [l.. ] 

and let the application of zipWith truncate this to the appropriate length. 

Choice Functions 

As indicated in Section 4.1.1, the pseudo-random functions must each take a seed 

as an additional argument, which was left out of the presentation of the algorithm 
for the sake of clarity. These seeds are threaded through every function calling a 

pseudo-random function. The pseudo-random number generator was taken from 

[9]: the "minimal standard random number generator", taken in turn from [421. 

On recommendations of [41], the multiplier is changed as follows: 

a= 48271, q = 44488, r = 3399 

This random-number generator requires a Haskell implementation supporting 
integers in the range [-2 31 

.. 2 31 - 11. All of the functions implementing some 

choice are based on a function rndRng that returns an integer between 0 and a 

given ceiling, inclusive of 0 and exclusive of the ceiling. 

rndRng :: Int -+ Int -ý Int 

rndRng ceiling seed = seed 'mod' ceiling 

A seed is simply an integer ranging over [1.. 2" - 2]. An integer between m and 

n inclusive can be chosen by m+ rndRng (n-m+l). 
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The function chooselnt may choose an integer from: All, which resolves to 

choosing an integer between minBound and maxBound; a Pool, which resolves to 

choosing an integer between 1 and the pool size; a range m:..: n, which resolves to 

choosing an integer between m and n; or a set, which is implemented using a set 

ADT with random-retrieval, implemented simply as an ordered list. 

The function mix is implemented by choosing one element from each list, with 

probability biased according to the length of each list, ensuring an even mixing- 

to mix a list xs of m elements with a list ys of n elements, elements are taken 

with m/(m + n) probability from xs, and with n/(m + n) probability from ys. 
The functions poisson, chance, and chooseOperation use a discrete random 

variable with a particular distribution. The functions chance and poisson are 

combined in the choice of noOfMutns inside the definition of plan to create one 

random variable. The function chooseOperation is a random variable ranging over 

the operations, biased according to the given weights. 
Such a random variable is implemented by creating a cumulative distribution, 

represented as a list of integers ranging between 0 and some large fixed upper 
limit scale. An integer n is chosen between 0 and scale, and the index i of the 

first integer in the list greater than n is the value of the discrete random variable. 
If the random variable has a range of values of some other type than integer, for 

example operation, then an enumeration of the range will allow i to index into 

this enumeration. 
The choice of scale must reflect three points: 

The larger the value of scale, the more accurate the random variables are. 
The smallest change in probability that a scale of n can capture is I/n. 

The larger the value of scale, the more chance of bias in values chosen 
between 0 and scale using rndRng scale seed. Recall that rndRng is imple- 

mented using mod. If a scale of 15 x log (approximately 2/3 of the largest 

possible seed) is used, we would expect more low values than usual, be- 

cause values from 0 to approximately 7x 10" can each be produced by two 

different seeds whereas values above this can each only be produced by one 

seed. In practice we observe this bias as producing values with an average 

of around 0.4 times the largest value. However, with a scale of 230 (half the 
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largest possible seed), we should have no bias, and in practice this produces 

values with an average of 0.5 times the largest value, confirming a lack of 
bias. 

Ideally, the best value of scale would be the ceiling of the range of seeds, 

where rndRng scale seed becomes id. Unfortunately, we experience rounding 

problems with Int using this value of scale (as it is the largest possible value 

of type Int). 

Therefore, a scale of 2 30 was used. 

Weights 

A collection of weights is given in Section 4.1.1 as a set of pairs (Operation, Weight), 

but in practice is implemented as a list [Weight] with the operation given by the 

index, when operations are ordered first according to role and then alphabetically. 

Format Of DUG Files 

Section 4.1.1 represents a DUG by a list of births and deaths. Within the Haskell 

world, this is indeed the representation of a DUG. However, if we wish to store a 

DUG in a file, without the use of a special library, we need to store the DUG as 

a sequence of characters. We also compress the DUG representation to minimise 

the input-output overhead Of DUG evaluation. 
A birth is represented as a sequence of integers: the operation identity tag, the 

identity tags of the nodes used as version arguments, and the integer arguments. 
The births are ordered in the file according to identity tag. Therefore, the identity 

tag of a new born node is given by its position in the file. A death is also 

represented as a sequence of integers: a zero, and the identity tag of the dead 

node. Operation identity tags start at 1 to distinguish a birth from a death. The 

number of integers making up a birth or death is determined by the first integer: 

for a birth it is the number of arguments of the operation plus one, and for a 
death it is two. The other fields of a death given in Section 4.1.1 (outgoing arcs 

and shadow) are not required for DUG evaluation, and can be reconstructed from 

the births for DUG profiling. 
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An integer i is stored as a sequence of characters: 3, X. -I, X, -2, ... ' xo; where 
0<s<4, and i= E"_1 x,, 28'; that is, the non-zero 8-bit bytes representing i n=O 

with most-significant byte first, preceded by the number of these bytes. Note that 

0 is represented simply by 0. If a character is larger than 8 bits, this representation 

could be improved. 

As the identity tags of the nodes start from 1, we use 0 to represent an 

undefined version argument, whose creation is possible through DUG extraction. 

4.3.2 DUG Evaluation 

Two versions Of DUG evaluation were implemented: one wholly in Haskell, and 

one partly in C and partly in Haskell. The former suffers from a very large 

overhead of input-output and bookkeeping, leaving the work done by tile ADT 

operations swamped, sometimes yielding unsatisfactory results. The latter cuts 
down the overhead to a consistently satisfactory level by implementing everything 
bar the ADT operations in C. This requires a version of the Green Card foreign 

language interface [43] that allows C to call Haskell. As such an interface is only 

currently available for one compiler (York nllc13 [53]), the pure Haskell version 

was kept. See Section 6.1.2 for an estimate of the overhead of DUG evaluation 
for each version. 

Typically, a DUG evaluator made with Green Card, evaluating a reasonably 
large DUG file (around 10OKb), is around 20 times faster than the same DUG 

evaluator made without Green Card evaluating the same DUG file. 

Without Green Card 

The Haskell version requires two changes from the algorithm presented in Sec- 

tion 4.1.2. 

Frontier. Section 4.1.2 represents the frontier as a function. We replace this 

with a finite map ADT, implemented by a data structure very similar to the 

Elevator implementation of random-access lists-see Section 2.2.7. 

Inlining. The operation apply0peration is fused with each operation of the ADT 

implementation to remove a layer of interpretation. This creates one right-hand 
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side of evaluateNodes per operation. For example, for the operation lookup of 

Figure 4.2, the following code is used: 

evaluateNodes frontier checksum (Birth nodeld Lookup [v] [i] : dug) 

let result = fromEnum (lookup (frontier v) i) 

in seq result (evaluateNodes frontier (checksum + result) dug) 

Note that resuItTolnt and resuItToNode are now redundant, as is the test for the 

operation being an observer. Note also that the arguments for lookup are pattern 

matched out of the lists stored in a birth. The format of a DUG file is more like 

a list of integers (see Section 4.3.1) and so the pattern matching is more efficient 

than as presented here (the pattern matching is closer to (4: v: i: dug)). 

Strictness. The strictness of different implementations of the same ADT vary in 

general. This could mean that some operations are forced by one implementation 

but not by another. In order to ensure that the DuG evaluator for each ADT 

implementation performs the same amount of bookkeeping, regardless of which 

operations are forced, the bookkeeping is made strict. 
This means demanding the lookup of a version argument in the frontier, with- 

out demanding the argument value, and demanding the value of a non-version 

argument. This is achieved by wrapping up the version arguments in the frontier: 

data Node = Node (T Int) 

and by adding unwrapping of nodes and calls to seq in the definition of evalu- 

ateNodes. For example, the definition above becomes: 

evaluateNodes frontier checksum (Birth nodeld Lookup [vl [i] : dug) 

let V= frontier v 

Node v" =V 
result = fromEnum (lookup v" i) 

in seq V (seq i (seq result (evaluateNodes frontier (checksum + result) dug))) 

Undefined Arguments. DUG extraction makes undefined arguments a possi- 
bility. DUG evaluation gives the value undefined to such arguments. 
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With Green Card 

The DUG evaluator built using Green Card is a small Haskell program containing 

information specific to the ADT implementation used. This Haskell program calls 

a larger, more general C library. Essentially the same algorithm is used in C 

to read in and evaluate the DUG operations, except that the C program must 

somehow call Haskell functions to perform the operations. Before the Haskell 

program calls the C program, it registers each Haskell ADT operation as a stable 

pointer with the C program. During evaluation, the C program uses these Haskell 

references to call the ADT operations. The frontier is implemented as a hash table, 

and input-output is buffered. Note that as the bookkeeping is now in C, it is strict 
(see the Strictness heading above). 

4.3.3 DUG Extraction 

Whilst the DUG extracting version of an application is running, a hash table 

of every node is maintained. The function new-node adds a node to the hash 

table, and the functions new-arc and int-arg update the relevant arguments of the 

target node. After the application has finished, we traverse the hash table for 

every observer node in the order they were created. For each observer node, we 

traverse the graph of its predecessors until we reach a previously written node. 
On the way back to the observer node, we write the birth of every node to the 

DUG file, in depth-first order to ensure all argument nodes are written before 

their operation nodes. 

By maintaining a count of how many arcs exist from each node to currently 

unwritten nodes, when a node is no longer an argument of an unwritten node, we 

write the death of this node, as this node has left the implicit frontier. This check 

is made every time a node v is reached by a graph traversal from an observer 

node, whether v is previously written or not. 

The order in which the nodes are written is maintained, as this defines the 

node identity tags used by anything reading the DUG file. These node identity 

tags must be used when writing version argument identity tags. The order in 

which the nodes were actually evaluated is lost (except for preserving the order of 

evaluation of observers). This is a direct result of the restriction of Definition 3.6 
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constraining the order of evaluation. The actual order of evaluation could be 

reported, as it may be of interest, but this is not currently implemented. 

When a node is added to the hash table, every argument is recorded as unde- 
fined. If a version argument is still undefined after the application has finished, 

we write the argument to the DUG file as being undefined. Currently, we make 

no provision for recording undefined non-version arguments: to do so would be 

costly, without much benefit; undefined non-version arguments are given the value 

0. Note that this includes the non-version arguments of type a, which we cannot 

record for reasons given in Section 4.2.1. 

4.3.4 DUG Profiling 

The only difference between Section 4.2.2 and the actual implementation Of DUG 

profiling is the format of the profile. As already indicated in Section 4.3.1, a 

collection of weights is implemented as a list. Phases are given by a function of 

type Phaseld -+ Phase in Section 4.3.1, whereas in practice they are given by a 

list, as Phaseld is an integer, letting the index of the Phase give the Phaseld. 

DUG extraction makes unevaluated arguments a possibility. The DUG profil- 

ing algorithm must assign a shadow to an unevaluated version argument, in order 

to record the effect of any operations on the argument in the correct phase. The 

shadow data structure is therefore extended to supply the shadow of any uneval- 

uated version argument. Nothing more is known about the version argument, 
for example what other nodes operate on it, yet its effect on the profile must be 

defined somehow. We define its effect separately as follows. The mutations and 

observations are counted (in weights, and in the denominators of PMF and POF), 

because these reflect the evaluation of the operation applied to the unevaluated 

arguments. None of the mutations and observations are considered persistent, on 

the grounds that persistence reflects reuse of a data structure, whereas an un- 

evaluated argument is not even used once. The version argument is not counted 

as a node, on the grounds that it was never evaluated, and therefore in a sense, 
it never existed. 
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4.4 Testing 

How accurate are the implementations of the DUG algorithms? How efficient are 

they? From the point of view of implementation, we address these questions for 

each algorithm individually in this section. More general questions concerning 

the accuracy or usefulness of the benchmarking process as a whole are tackled in 

Chapter 7. 

As the performance of the algorithms can N-ary between ADTS, we conduct 

tests across a few very different ADTS: 

" Queue 

" Random-Access Sequence 

" Set with Random Retrieval 

The queue ADT is the simplest of the three. The random-access sequence ADT 

adds the complexity of operations taking integers as arguments. The Set ADT 

includes operations taking more than one version argument, and quite a complex 

shadow data structure (based on a set itself). We use the York nhc13 compiler 

[53] (release vO. 9.4), running executables in a heap of 801b, on an SGI Indy 

running IRIX 5.3. 

4.4.1 DUG Generation 

Accuracy 

The accuracy Of DUG generation is important, though the benchmarking tech- 

niques introduced in Section 5.4 reduce this importance. To measure the accu- 

racy, we compare the target profile with the actual profile of the DUG generated. 

We do this for 100 DUGS from each of the three ADTS listed above. Table 4.1 lists 

the mean and maximum difference for each profile attribute. Some inaccuracy is 

due to the probabilistic means of generating a DUG. For example, if we want half 

of the 100 mutations to belong to an operation f, we choose f with probability 

0.5 for each mutation. We will not always get 50 mutations belonging to f, but 

this will be the mean. 
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Profile Mean Maximum 

Attribute Difference (%) Difference 

Weight 1.4 31.3 

Mortality 4.4 70.4 

PMF 0.3 7.5 

POF 2.4 35.9 

Table 4.1: The mean and maximum differences between target and actual profiles 
Of 100 DUGS for each of three ADTS. Each DUG has 1000 nodes. We group the 

generation and mutation-observation weights together. Each difference is given 

as a percentage of the possible range. By normalising the weights ratios, the 

range of each weight is [OA], as it is for the other three profile attributes. 

A larger degree of inaccuracy results from the rejection of planned applications 

of operations by the shadow data structure. To take an extreme example, if we 

want a DUG for lists with no cons operations, then we will not get any tail 

operations either, regardless of the target profile. To take another example, the 

largest difference shown in Table 4.1-70.4% difference in mortality-is for the 

random-access sequence ADT. The target PMF for this DUG is 0, and so all nodes 

will have at most a single mutation planned in their future. The target mutation 

weights ratio is 

cons : tail : update =1: 1: 20 

and so 91% of mutations will be applications of update. A list can only be 

generated by empty. However, update cannot be applied to empty. Therefore, 

91% of the lists generated by empty will not be mutated, and therefore contribute 

to the mortality. This increases the actual mortality to a value much larger than 

the target mortality. 
Mortality is also increased by the death of all nodes in the frontier when the 

DUG generation algorithm finishes. This will be high for large PMF values. 

Efficiency 

The efficiency Of DUG generation is not crucial to the benchmarking process. By 

examining the heap profile Of DUG generation, we find that evaluating the future 
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Figure 4.7: A plot of maximum live heap against maximum frontier for DUG 

generation on 50 randomly chosen profiles for each of three ADTS. Each DUG has 

1000 nodes. 

of a new node at the time of creation considerably improves space usage. The 

heap size is linear in the size of the frontier. To demonstrate this, Figure 4.7 plots 

the maximum frontier size against the maximum live heap size for the generation 

of several DUGs across three ADTS listed above. The plot confirms a general trend 

of linearity, though there are some surprisingly large heaps, especially for large 

frontiers. On closer examination we find that every point lying way above the 

interpolated line comes from the generation of a DUG with a target MIF of 0.95. 

The target PMF of every DUG was chosen from [0,0.05,..., 0.951. The DUGS With 

target PMF of 0.9 have points that lie a little above the interpolated line, but still 

way below those with target PMF Of 0.95. 

We can explain this by considering the amount of space allocated to a node in 

the frontier. The future of the node accounts for the majority of this space, that 

is, the list of future operations to apply to the node. This list contains mutators 

and observers. The number of mutators has mean PNIF/(l - PMF). For a PMF of 
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0.9, this is 9; for a PMF of 0.95 however, this is 19, more than twice as many. So, 

in moving from a PMF of 0.9 to a PMF of 0.95, we double the amount of space 

allocated to each node in the frontier, and hence double the maximum live heap. 

This accounts for the sudden leap from points with a PMF of 0.9 to those with a 

PMF of 0.95. 

4.4.2 DUG Evaluation 

Accuracy 

The only form of inaccuracy in DUG evaluation is that strictness issues may lead 

to only part of the DUG actually being evaluated-see Section 7.3.3. 

Efficiency 

The efficiency Of DUG evaluation is very important in obtaining good bench- 

marking results. If the overhead Of DUG evaluation is too great, the accuracy of 

estimating the ratio of work done by different ADT implementations is reduced. 
See Section 6.1.2 for a detailed discussion of this issue. 

4.4.3 DUG Extraction 

Accuracy 

The DUG extraction algorithm accurately captures the DUG of an application, 

except for evaluation order, arguments of type a and the sharing of operations 
taking no arguments. The actual evaluation order has to be changed to suit the 

restriction given in the definition of a DUG, namely that an argument must be 

ordered before its operation. However, this change does preserve the order of 

evaluation of observer nodes, and only affects the POF attribute of the profile. 
Arguments of type a cannot be extracted for reasons given in Section 4.2.1. 

Every result of an operation that takes no arguments and whose type does 

not have a class context will be shared. The application will only evaluate such 

an operation once, and will share the result. If however, the operation takes no 

arguments but has a type with a class context, like the empty of the heap ADT 
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Figure 4.8: Overhead incurred by modifying an application for DUG extraction, 

plotted against size of the extracted DUG-12 different applications running on 
4 different data sets each, over 3 different ADIS, making 48 points in all. 

(see Table 2.3), then the application may re-e,. -aluate the operation, as it restricts 

the operation to a particular instance of the class. 

Efficiency 

Modifying an application to extract a DUG as it runs introduces an overhead. To 

estimate this overhead, Nve time several applications both with and without the 

extraction modification. Figure 4.8 shows the overhead incurred by modifying 

an application for extraction. Over the 48 DUGS extracted, the average added 

overhead is 75%. The percentage overhead varies, significantly according to how 

much work the application does that is not related to the ADT-MoSt Of the 

applications we examine use the ADT intensively, so the figure should be less for 

other applications. 
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4.4.4 DUG Profiling 

Accuracy 
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There is no inaccuracy in DUG profiling, beyond the inaccuracy involved with 

using floating point numbers. 

Efficiency 

As with DUG generation, the efficiency Of DUG profiling is not crucial to the 

benchmarking process. As the profile is only demanded at the end of analysing 

the DUG, care must again be taken to evaluate the information gathered as it 

arrives. A lazier approach would accumulate many suspended computations in 

the heap. The heap size is linear in the size of the frontier, as it is with DUG 

generation. To demonstrate this, Figure 4.9 plots the maximum frontier size 

against the maximum live heap size for the profiling of several DUGs across three 

ADTS listed above. As with DUG generation, the plot confirms a general trend of 
linearity. 

4.5 Summary 

We have defined algorithms for creating a benchmark from a profile, and calcu- 
lating a profile of an application. The former comprises DUG generation and DUG 

evaluation, and the latter comprises DUG extraction and DUG profiling. These 

algorithms are bundled together to form the core of the benchmarking tool pre- 

sented in Chapter 6. 

As well as presenting the algorithms in an abstract manner, we have also 

tackled the issues surrounding a concrete implementation in Haskell. We have also 
tested the algorithms for accuracy and efficiency. We shall test the effectiveness 

of the benchmarking process as a whole in Chapter 7. 
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Figure 4.9: A plot of maximum live heap against maximum frontier for DUG 

profiling of 50 randomly generated DUGS for each of three ADTS. Each DUG has 

1000 nodes. 



Chapter 5 

Exploring Datatype Usage Space 

Chapter 1 motivated the need for benchmarking results qualified by the pattern 

of datatype usage. We proposed to provide these results by constructing a con- 

venient means of obtaining benchmarks with known patterns of use. Chapter 3 

showed (a) how to create a benchmark from a description of use, and (b) how to 

create a description of use from an application. Chapter 4 gave algorithms for 

(a) and (b). But how can we use (a) and (b) to generate and present benchmark- 

ing results qualified by use? The results must not take too long to gather and 

must be simple enough to be understood by the user. This chapter explores this 

problem by looking at several possible approaches to a solution. 

5.1 Exhaustive Exploration 

The most naive solution to providing benchmarking results is to create a bench- 

mark with every possible pattern of use, and provide a lookup table of times 

of each implementation running each benchmark. The user simply obtains the 

pattern of use of their application, and looks up the quickest implementation in 

the appropriate row of the table. 

We shall assume that a pattern of use consists of a list of n athibutes. The 

profile we defined in Section 3.3 that captures the pattern of use has continu- 

ous attributes. Therefore the space covered by the profiles is continuous and 
hence contains an infinite number of points. Therefore we must divide each at- 

tribute using a suitable granularity, for example, by rounding the mortality to 
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Figure 5.1: Mapping datatype usage space with two attributes, X and Y. X and 

Y each capture some aspect of datatype usage (not given here). In general we 

may have many more dimensions to the coordinate system. The table lists points 

in the space against the best data structure for that use. In general we may list 

more about the efficiencies of data structures than whicli is best. An application 

may have datatype usage A, which is nearest to the coordinate (2j). The table 

lists "L as the best data structure for this datatype usage. 

the nearest 0.01. Figure 5.1 shows an example of such a table of results, for pat- 

terns of use containing just two attributes X and Y, and listing just the quickest 

implementation. 

Unfortunately, this approach is not practical. Such a tablewould cover a huge 

number of points, and the total time to collect the results for each point would be 

far too large. For example, consider an ADT with just 5 operations (1 generator, 2 

mutators, and 2 observers). Using the profile defined in Section 3.3, the pattern of 

use consists of 8 attributes, two of which are redundant (the generation weight, 

and one of the mutation-observation weights), leaving just 6. Rounding each 

attribute very coarsely to give just three possible values gives a total of 36 = 

729 distinct profiles. Running even just one benchmark for each profile and 

each implementation would take a long time. The table would also be huge, 

and hence rather unreadable, especially if the user wants an overview of which 

implementation to use when. 

This approach also relies on the accuracy of benchmark generation-that is, 

how well the profile of the generated benchmark matches the desired profile. 
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Although benchmark generation is reasonably accurate (see Section 4.4.1), it 

would be better to remove this dependency. 

Summary. Exhaustive exploration is simple and straightforward, but not prac- 

tical; it takes far too much time to run, generates verbose results, and relies on 

benchmark generation accuracy. 

5.2 Selective Exploration 

Exhaustive exploration is not practical primarily because the number of patterns 

of use is exponential in the number of attributes. Even just 6 attributes taking 

only 3 possible values each results in 3' = 729 distinct patterns of use. 

One way to reduce the number of attributes is to remove insignificant 

attributes-those attributes that have little or no effect on the performance of 

the ADT implementations. Removing such attributes should have little effect on 

the accuracy of the resulting selective exploration when considered as a summary 

of the entire space. 

But how do we measure the effect of an attribute on the performance Of ADT 

implementations? Suppose we measure their performance at a particular point 

p in the datatype usage space. Now let p' be another point obtained from p by 

altering the value of a single attribute A. Suppose we now measure the perfor- 

mance of the ADT implementations at p. If the performance has not changed 

significantly from p to p, then we can conclude, for p and p! at least, that A has 

little effect on performance. By taking a sample of such points, we can conjecture 

which attributes are insignificant. 

But how do we define a significant change in performance? We need some 

means of measuring the correlation between the two sets of performances. The 

standard statistical property correlation coefficient is defined over n pairs of val- 

ues for x and y by: 

r= nExy - ExEy 

, y)2] , ý/[nE X2 X)2][n E y2 - (r 

and measures how well the two sets of data, if plotted, match a straight line. 
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What happens if we use the correlation coefficient over the two sets of perfor- 

mance times? Unfortunately, this measure can be heavily influenced by a very 

Slow ADT implementation. For example, suppose the times (in seconds) for one 

pattern of use were [1,2,4,641, and for another pattern of use, [4,2,1,641 (listing 

the times in the same order for each). The correlation coefficient for these sets 
of times is 0.997, greater than the correlation between [1,2,4,71 and [1,2,4,9]. 

We are more interested in a small change in the performance of the best imple- 

mentations than a large change in the performance of the worst im plenientat ions. 

Therefore it is reasonable to consider using the correlation of the reciprocals of 

the times: 

Times Correlation of 
Reciprocals 

[1,2,4,64] [4,2,1,64] -0.055 
[1,2,3,4] [2,1,3,4] 0.262 

[1,2,3,4] [1,2,3,64] 0.971 

[1,1.1,2,3] 1 [1.1,1,2,4] 0.972 

This means of measuring a significant change in performance seems more reason- 

able. Those attributes with an average correlation above a given value could be 

removed. 
However, both selective and exhaustive exploration assume that the pattern 

of use is captured entirely by the attributes of a profile. Unfortunately, one 
important pattern of use has proved very hard to capture adequately within a 

profile: size. The shadow profile can capture size, but selective and exhaustive 

exploration assume that a benchmark can be created with the given attributes. 
However, it is not possible in general to create a benchmark with a given shadow 

profile, only to calculate the shadow profile of a given benchmark. 

The size of a data structure can significantly affect the efficiency of an opera- 

tion applied to it. For example, performing the operation snoc on a nalive queue 

takes time proportional to the size of the queue (see Section 2.1.1). 

Summary. Selective exploration improves on tbe impracticality of exbaustive 

exploration when there are sufficiently many insignificant attributes. However, in 
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common with exhaustive exploration, it does not explore the important attribute 

of size explicitly. 

5.3 Capturing Size 

Since neither selective nor exhaustive exploration capture the important attribute 

of size, we look at ways to remove or reduce this insufficiency. 

The size of a data structure is determined by the quantity and order of appli- 

cations of mutators (and by the choice of generator(s)). For example, the more 

applications of cons, the larger the list; and the more applications of cons in suc- 

cession, the larger the list. The quantity aspect is captured by the weights ratio 

of a profile, but the order aspect is lost. For example, a sequence of n applications 

of cons followed by n applications of tail has the same profile as the applications 

cons then tail repeated n times. However, the former sequence of applications 
has average size of list n/2, whereas the latter has average size 3/2. 

We need to capture the order of mutations, but how? We present three 

attempts, with their advantages and disadvantages. 

5.3.1 Growth and Decay 

A simple way to capture order of mutations is to split the profile into phases (see 

Section 3.4.3). Phases partition a DUG, and the profile of each phase is recorded 

separately. The partitioning of the DUG is based on auxiliary shadow information 

stored about each version node (see Section 3.4.1). The shadow information is 

based on the history of the version node's creation-that is, which operations 

created it. 

In particular, we could store the age of a data structure at each version node- 

the age of a version node being the number of mutators used to create it. We 

could partition the DUG into nodes of age A or less, and nodes of age greater 

than A, for some constant A. By setting the ratio of size-increasing operations 
higher in the former phase than in the latter, we can create a DUG with a growth 

phase and a decay phase. The size of data structures tends to increase more in 

the growth phase than in the decay phase. 
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Figure 5.2: An example of growth and decay phasing on lists. The ratio of 

cons : tail is 2: 1 for nodes aged under 30, and 1: 2 for nodes aged 30 to 60. 

Assuming lists are generated by empty, and hence start at size 0, nodes aged 

30 are on average lists of size 10. Nodes aged 60 are on average lists of size 0. 

Assuming an equal distribution of nodes over age, the average size of a list is 5. 

For example, consider phasing a DUG over list operations into nodes aged 30 

or less, and those older. Now set the profile of the former phase (the growth 

phase) to have a weights ratio of cons : tail =2: 1, and the latter phase to have 

cons : tail =I: 2. Also make sure that any nodes aged over 60 are not mutated 
(this can be done by adding a final phase for nodes aged over 60 with mortality 

1). Generating a benchmark with these phased profiles will make the average size 

of a list about 5-see Figure 5.2. 

Hence, for controlling the average size of a data structure when generating 

a benchmark from a profile, growth and decay is useful. Unfortunately, this is 

complicated by the possibility of tile number of nodes varying over age. Both PmF 

and the weights of mutators taking more than one version argument affect the 

increase or decrease of the number of nodes over age. More importantly, imposing 

the structure of growth and decay phases is rather artificial: real applications may 

not fit this pattern at all. 

Summary. Growth and decay phasing does control size better than exhaustive 

or selective exploration. However it is rather artificial, approximate, and does 

not apply very well to real applications. 
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Figure 5.3: Two linear functions giving weight ratios for lists. Each produce an 

equal number of applications of cons and tail, but the left one produces applica- 

tions on larger lists. 

5.3.2 Linear Weights 

The growth and decay method suffers from being rather artificial. Why two 

phases? Why split at a particular age? We can generalise away from these 

choices by approximating each mutator element of the weights ratio by a linear 

function over age. For example, consider making the cons component start high 

and decrease as age increases, whilst making the tail component start low and 
increase as age increases. Also consider making the cons and tail components 

equal and not vary over age. Each of these profiles will produce the same number 

of applications of cons as tail overall, assuming the number of nodes does not 

vary much over age, but the former will produce larger data structures. See 

Figure 5.3. 

The profile of an application is amenable to this method too. By performing 

a linear regression (line of best fit) on the number of times a particular mutator is 

applied to a node against the age of that node, for each mutator, we will estimate 

the trend in the variance of mutator weights over age. 

Unfortunately, this method has other disadvantages. What about a line of 
best fit that cuts the age axis? The portion of the line below the age axis indicates 

a negative weight ratio component. What does this mean? This method would 

need more formalisation and more examination. 

Summary. The linear weights method looks promising, but needs further work. 
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Table 5.1: The effect of varying the likelihood of the next operation being the 

same as the last (odds of n: 1) for cons and fail on lists, whilst keeping the 

overall ratio of cons : tail =1: 1. 

n 2-10 2-9 2-' 2-7 2 -6 2-5 2 -4 2 -3 2 -2 2-1 1 21 

Avg. Size 1.9 3.4 4.2 5.7 11.8 21.4 37.5 81.8 122.5 142.4 1 190.6 

21 221 23 
1 

24 1 21 1 261 27 
1 

28 1 29 210 1 

279.2 424.9 1530.8 1523.11 540.91 657.71 778.4 1844.7 11074.2 11221.51 

5.3.3 Markov Chains 

The ideas of growth and decay, and of linear weights, are both rather ad-hoc. 

A Markov chain [30] is a well-studied method for capturing patterns within se- 

quences of states. The probability of what the next state in the sequence might be 

depends only on what the last state was. We use a Nfarkov chain to parameterise 

the mutation weights ratio over the last operation used to create a node. 

For example, instead of specifying cons : tail =1: 1 for a list profile, Nve 

might specify that 

cons -+ cons : cons -+ fail =n: I 

tail -+ tail : tail -+ cons =n: 1 

for some n. That is, the number of times a cons is followed by another cons is n 

times more than the number of times a cons is followed by a tail, etc. One can 

show that this ultimately yields an overall weights ratio of cons : tail =1: 1. 

Varying n affects the average size of a list. The larger n is, the more likely 

a cons is followed by a cons, and hence the larger the list becomes. Generating 

DUGS with various values for n produces the results shown in Table 5.1. 

We could replace the weights ratio by a list of weights ratios parameterised 

over the last operation, which Nve shall call the Markov weights ratios. However, 

the influence of size on the efficiency of a data structure is often separate from the 

influence of how often one operation is performed. Hence it would be useful to 

separate the Nlarkov weights ratios into the overall weights ratio and other factors 

such as n in the example above. But how do we define these other factors in 
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general? Given that the Markov weights ratios are used to create the benchmarks, 

and are the result of profiling an application, we also need a way to convert 
between the Markov weights ratios, and the overall weights ratio with other 
factors like n, and back again. 

We also need to decide whether to parameterise the weights ratio of mutators 

given the last operation was a generator. Without this we may lose some infor- 

mation, and perhaps even distort a profile, but with it we add more attributes, 

and we wish to keep the number of attributes down to a minimum. 
A Markov chain is often represented by a transition matrix P. The probability 

of moving from state i to state j is given by the probability at row i, column j 

of P. The Markov weights ratios form the rows of P. If P is both irreducible 

and recurrent (see [30]), the average probability pi of being in state i at any time 

is obtained by solving pP = p, where p is the row vector with pi at column i. 

The vector p gives the overall weights ratio. However, in general, P may not be 

irreducible. This method would need more examination. 

Summary. Using Markov chains is more theoretically sound than either growth 

and decay or linear weights, but it increases the number of attributes, which 
brings us back to the problems of exhaustive exploration. It also requires further 

work on translating between or unifying Markov weights ratios and ordinary 

weights ratios. 

5.4 Inducing Decision Tý-ees 

Recall that we wish to derive, from a set of benchmarking trials, rules for de- 

termining the best data structure according to the datatype usage attributes. A 

common way to derive rules about a set of data is to induce a decision tree [441. 

For our purposes, a decision tree is a binary tree with the following properties: 

o Each branch node is labelled with a test of the form A<v, where A is a 
datatype usage attribute, and v is some constant. 

* Each leaf node is labelled with the name of an ADT implementation. 

An example of a decision tree is shown in Figure 5.4. To find the recommended 
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ize <= 20 
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Figure 5.4: Decision tree for an (imaginary) ADT storing a collection of papers. 
Branch nodes are labelled with tests over datatype usage properties: size, lookup, 

and insert. Leaf nodes are labelled with ADT implementations: Stack-, Folder, 

and File. 

implementation for a particular datatype usage, start at the root and follow the 

appropriate branches till you reach a leaf. The implementation given by this leaf 

is the one recommended by this decision tree. 

A decision tree is induced from a training set of the data it is to characterise. 
In our case, this training set is a sample of benchmarks. The sample is generated 
from a random selection of attribute values, but it is the attributes of tile resulting 
benchmarks that are used, thereby including the attributes of both tile profile 

and the shadow profile. Each benchmark in the sample is run, and the winning 

implementation is recorded. From these results, we induce a decision tree T. 

Given any benchmark B from the sample, using only the attributes of B, T will 
decide upon the winning implementation. Table 5.2 gives an example of results 
from which the decision tree of Figure 5.4 can be induced. 

Given a sufficiently large and broad sample, the decision tree induced should 
be able to predict tile winning implementation of any benchmark with good 

accuracy. 

Summary. Inducing a decision tree solves all of the problems of exhaustive and 

selective exploration: size is captured in the shadow profile of the benchmark; the 

accuracy of benchmark generation has much less significance, since we use the 

actual profile rather than the desired profile; and every single benchmark is used 
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Datatype Usage Attributes Best 

insert lookup size Implementation 

0.3 0.5 10.0 Stack 

0.1 0.1 40.0 Folder 

0.4 0.1 45.0 File 

0.3 0.1 36.0 File 

0.3 0.3 30.0 File 

0.1 0.4 42.0 File 

0.1 0.5 33.0 File 
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Table 5.2: A training sample of results from which the decision tree of Figure 5.4 

can be induced. 

to influence the resulting decision tree, giving maximum use of the user's time. 

The only possible drawback concerns the accuracy of the resulting tree on unseen 
benchmarks. We choose to use this method, as it is by far the most promising 

one. 

5.4.1 The Algorithm 

We take an existing algorithm from the literature for constructing a decision tree 

from a sample. We use the algorithm c4.5 [46], which is a descendant Of ID3 

[44]. Both algorithms are widely known and respected in the machine learning 

community. 
The basic idea underlying C4.5 is a simple divide and conquer algorithm 

due to Hunt [23]. Let S be the results of running a sample of benchmarks. 

Let Ik be the competing ADT implementations. There are two cases to 

consider: 

9S contains only results reporting a single implementation Ij as the winner. 
The decision tree for S is a single leaf labelled with Ij. 

*S contains results reporting a mixture of winners. By dividing S into S, 

and S2according to some test, we can recursively construct trees T, and T2 
from S, and S2 respectively. 
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The key to a good implementation of Hunt's algorithm is the choice of test with 

which to split S. 

The set of possible tests is limited by the range of attribute values for bench- 

marks in S. Let [vi, 
... vvn] be the distinct values, in order, of an attribute A 

for benchmarks in S. Consider two consecutive values, vi and vi+,. For any v 

satisfying vi :5v< vi+,, splitting S with the test A<v results in the same 

split. Therefore, there are at most n-1 distinct ways of splitting S using A. We 

consider only the tests A< (vi + vi+, )/2. 

For example, Table 5.2 gives a sample S which contains results reporting a 

mixture of winners. We could choose to split S with the test size < 20, as in 

the decision tree of Figure 5.4. Note that 20 is halfway between the next lowest 

and the next highest value of size in S. This test splits S into two samples, S, 

and S2, from which we induce two decision trm T, and T2 in the same manner. 
The sample S, contains just a single result reporting Stack as the winner. The 

decision tree for S, is a single leaf labelled with Stack. The sample S2 contains 

results reporting a mixture of winners, and so we choose another test to split S2, 

and so on. 

But how do we choose which test to use at each stage? ID3 uses the gain cTi- 

terion to measure the quality of a test, whereas C4.5 uses the gain ratio criterion. 

The latter is a modification of the former, 'so we sliall describe both. 

Gain Criterion 

The gain criterion is based on the following principle of information theory: For 

a message that happens with probability p, the information conveyed by that 

message is - 1092 p bits. For example, the information conveyed by making any 

one of eight equally probable messages is - log2(1/8) or 3 bits. 

Suppose we choose a benchmark from a sample S and announce, correctly, 

that the winning implementation for that benchmark is I. The probability of this 

announcement is IS1111SI, where SI is the subset of S containing the benchmarks 

that give I as the winner. The information conveyed by that announcement is 

therefore -log2(ISIIIISI) bits. 

The expected value of a function f applied to a discrete random variable X 
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is 
E(f (X» = 1: f (x)P(X = x) 

Let X be the winning implementation of a benchmark chosen from S. Let f (I) 

be the information conveyed by an announcement of the value of I. For any 

implementation I 

1092 
si 

and P(X = I) = 
si 

A Isi 

The expected information of an announcement of the winning implementation of 

a benchmark in S is therefore 

in (S) = E(f (k 
LS 

-ii 

1). LS i-ii 
fo X»= -E 1092 

j=l 
( Isl Isl 

This expresses the average amount of information needed to identify the winner 

of a benchmark in S. 

Suppose we split S into S, and S2 using some test Z. Let X=i if a benchmark 

chosen from S lies in Si. Let f (i) be the average amount of information needed 

to identify the winner of a benchmark in Si. For i=1,2 

info (Si) and P(X = i) - 
IS" 
Isl 

Therefore the expected information required to identify the winner of a bench- 

mark in S split by Z into S, and S2 is 

2 Isil 

nf oz (S) =E (f (i)) i nf o (Si) - TS-1 

The difference between the expected information required before and after ap- 

plying the test Z is therefore 

gain(Z) = info(S) - infoz(S) 

Hence gain(Z) measures the information gained by performing the test Z. The 

gain criterion chooses the test with the maximum gain. 
For example, consider the sample S of Table 5.2, which contains one result 

reporting Stack as the winner, one result reporting Folder as the winner, and five 

results reporting File as the winner. 

info (S) =- 
(17 

* 1092 17 + 17 
' 1092 17 + 1092 

= 1.149 bits 
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The test Y, lookup :50.2, splits S into a sample Sly containing one Folder result 

and two File results, and a sample S2y containing one Stack result and three File 

results. 

infoy(S) linfo(S) + linfo(S2y) 
77 

_3 7 
(13 1092 

31 
+ 23 1092 

32 7 
(411092 

41 
+ 14 1092 

41) 

0.857 bits 

gain(Y) = info(S) - infoy(S) 

= 0.292 bits 

The test Z, size < 20, splits S into a sample S, containing just one Stack result, 

and a sample S2Z containing one Folder result and five File results. 

infoz(S) linfo(Sz) + ýinfo(Sf) 
717 

- 
17 1092 11 

- 
ý7 (16 1092 16 +! 1092 16) 

0.557 bits 

gain (Z) = info (S) - infoz(S) 

= 0.592 bits 

Therefore, as the gain from using Z is larger than the gain from using Y, the 

gain criterion would prefer the test Z over the test Y. 

Gain Ratio Criterion 

The algorithm ID3 uses the gain criterion, giving quite good results. However, 

the gain criterion has a strong bias towards tests with many possible outcomes. 

The algorithm c4.5 attempts to remove this bias by modifying the gain crite- 

rion to produce the gain ratio criterion. Even though we only consider tests 

with two outcomes, Quinlan advises that the gain ratio criterion "even appears 

advantageous when all tests are binary" [461. 

Consider the information content of an announcement of the result of a test 
Z applied to a benchmark in S. Let Z split S into the subsets SI, ..., S,,. Let 

Sx be the subset into which Z places a benchmark chosen from S. Let f (X) be 

the information conveyed by an announcement of the value of X. For 1<i :5n 

Isil isil 
f U) 1092 

IS, and P(X=j)= 
isi 
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The expected information of such an announcement is therefore 
n 

splitInfo(Z)=E(f(X))=-E(l. g, 
'Sjl) 'Sjl 

j=l 
Isi Isi 

This expresses the amount of information gained from dividing S into S1, ---, S, 

irrespective of the winning implementations. Therefore the gain ratio defined by 

gainRatio(Z) = 
gain(Z) 

spliffnfo(Zý 

expresses what proportion of the information gained by splitting S using Z is 

relevant to the identification of a winning implementation. However, if the split 

is near-trivial-that is, some Si is almost as large as S-the split information will 
be small, and the gain ratio unstable. Therefore, the gain ratio criterion chooses 

the test with the maximum gain ratio, subject to the constraint that the gain is 

large-at least as great as the average gain over all tests examined. 
For example, consider again the sample S of Table 5.2. The test Y, lookup :5 

0.2, splits S into a sample containing three results and a sample containing four 

results. 
SP"t, nfo(y) - 

(17 1092 + 17 1092 
71) 

0.985 bits 

From the previous section we know that 

gain(Y) = 0.292 bits 

So 

gainRatio(Y) = 
gain(Y) 

= 0.296 
splitInfo(Y) 

The test Z, size <- 20, splits S into a sample containing one result and a sample 

containing six results. 

splitInfo(Z) =- 
(110911 + ýý 1092 ýý 

777 7) 

0.592 bits 

From the previous section we know that 

gain(Z) = 0.592 bits 

So 

gainRatio(Z) 
gain(Z) 

splitInfo(Z) 
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Therefore, assuming both tests have gain at least as large as the average gain 

over all tests examined, as the gain ratio from using Z is larger than the gain 

ratio from using Y, the gain ratio criterion would also prefer the test Z over the 

test Y. 

5.4.2 Simplifying Decision Trees 

The decision tree induced by the algorithm of Section 5.4.1 classifies the results 

of a sample perfectly. Unfortunately, this tree is not an ideal basis for choosing 

an implementation for the following reasons: 

e The tree may be very large and complex. 

e The tree is based on the chosen sample and may be over-specific. 

Therefore we prune the induced tree to obtain a smaller and more accurate tree. 

There are several ways to prune a tree. We examine two, taken from existing 

literature, each based on the pruning scheme given in Figure 5.5. This scheme 

considers all subtrees bottom-up. If replacing a subtree with either one of its 

children or with a single leaf does not increase the predicted error of the subtree, 

it is pruned to this smaller tree. The two pruning techniques we consider differ 

in how they predict the error of a tree. 

Reduced Error Pruning 

Quinlan describes reduced error pruning in [45]. Two separate samples are re- 

quired to perform reduced error pruning: a training sample, from which the 

original tree is induced; and a test sample, used to assm the accuracy of the 

induced tree. 
Referring to the pruning scheme of Figure 5.5, we prune the induced tree using 

the test sample. The predicted error of a subtree on a subset of the test sample 
is simply the number of misclassifications made by the subtree when applied to 

the test sample subset. 

If in addition to recording the winning implementation for a particular bench- 

mark we also record the ratio of the time of every implementation to the time 

of the winning implementation, we may instead define the predicted error of a 
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To prune a tree T using the sample S: 

if T is a branch node with children L and R, and labelled with test Z then 

let Z split S into SL and SR 

prune L using the sample SL to give Lp 

prune R using the sample SR to give Rp 

predict the errors of the following trees on the sample S: 

a branch node with Lp and Rp as children, and labelled with test Z 
Lp 

Rp 

every possible leaf 

take the trees with the lowest predicted error 

return the smallest such tree 

else 
T is a leaf, so return T untouched 

133 

Figure 5.5: Generic pruning scheme based on error prediction. 
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(a) 

(b) 

Datatype Usage Attributes Best 

insert lookup size Implementation 

0.3 0.5 10.0 Stack 

0.1 0.1 40.0 Folder 

0.4 1 0.1 45.0 File 

Datatype Usage Attributes Best 

insert lookup size Implementation 

0.3 0.1 36.0 File 

0.3 0.3 30.0 File 

0.1 0.4 42.0 File 

0.1 0.5 33.0 File 

Table 5.3: To illustrate reduced error pruning, a split of the sample of Table 5.2 

into (a) a training sample, and (b) a test sample. 

subtree to be the average ratio of the implementation given by the subtree as tile 

winner. 

For example, consider the sample S of Table 5.2. We need two samples to 

perform reduced error pruning, so we split the sample into a training sample 

consisting of the first three results, and a test sample consisting of the remaining 
four results. Tables 5.3(a) and 5.3(b) give these samples. Figure 5.6 shows the 

tree we induce from the training sample, using either the gain criterion or the 

gain ratio criterion. 

<-- 0.3 
True 

ý. insert > 0.25 
True Falsc 

Fo5duer Fileý 
r N, ,c 

Figure 5.6: Decision tree induced from the training sample of Table 5.3(a). 



5.4. INDUCING DECISION TREES 135 

To prune this tree, we first prune the left branch L, labelled with the test 

insert > 0.25. Following the pruning scheme of Figure 5.5, we then consider 

the predicted error of L and of each of the three possible leaves. Reduced error 

pruning calculates the predicted error of a replacement for a subtree by applying 

the replacement tree to the subset of the test sample covered by the original 

subtree. In the absence of any ratio information in the sample S, we use the 

number of misclassifications to measure the error of a tree in application. 

The subset of the test sample covered by L contains the first and second 

results of Table 5.3(b), which are both File results. The subtree L misclassifies 

both of these results as Folder. The leaves Folder and Stack also misclassify both 

results. The leaf File however classifies both correctlY. As this tree has the lowest 

predicted error, it replaces L. 

Now we consider the predicted error of the original tree with L replaced by the 

leaf File (call this tree T'), and each of the three leaves, when applied to the whole 

test sample. The tree T' correctly classifies two results as File, but misclassifies 

the other two results as Stack. The leaves Folder and Stack misclassify every 

result of the test sample. The leaf File classifies every result in the test sample 

correctly, and so this replaces the original tree. Therefore, reduced error pruning 

simplifies the original tree to the leaf File. 

Very Pessimistic Pruning 

Quinlan describes pessimistic pruning in [451. He also describes a "far more pes- 

simistic" pruning technique in [46]. The latter technique we call very pessimistic 

pruning, in the absence of any name given by Quinlan. Whereas reduced error 

pruning predicts the error of a tree induced from a training sample by evaluating 

the tree on an additional test sample, very pessimistic pruning uses only a single 

training sample. This is useful when the data for a sample is scarce or expensive 

to collect. 

Very pessimistic pruning estimates the error of a tree based on statistical 

reasoning that "should be taken with a large grain of salt" [461. Consider the 

N cases classified by a leaf, E of which are classified incorrectly. We predict the 

error rate with confidence level CF to be UCp (E, N), the upper confidence limit 
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for the binomial distribution, defined for X- B(N7p) by 

UcF (E, N) = p, ý* P(X < E) = CF 

See [46] for justification of this prediction. 

We predict the number of errors produced by a leaf covering N cases to be 

N- UcF (E, N). We predict the number of errors produced by a tree to be the 

sum of the errors produced by its children. 

For example, consider the sample S of Table 5.2. Using either the gain crite- 

rion or the gain ratio criterion, we induce the tree of Figure 5.4. To apply very 

pessimistic pruning to this tree, we follow the pruning scheme of Figure 5.5 by 

first pruning the right branch R, labelled with the test lookup : ý, 0.2. To prune R, 

we must first prune its left child, RL. However, using the default confidence level 

of 25%, very pessimistic pruning leaves RL untouched. We shall not give details 

here, but instead we will give details of the more interesting case of pruning R. ' 

The subtree R covers all bar the first result of the sample S, containing 

one Folder result, and five File results-call this subset S'. To prune R, we 

consider the predicted error of R, of RL, and of each of the three possible leaves, 

when applied to the sample S'. The leaf File misclassifies; one result out of six. 
Therefore, very pessimistic pruning predicts the error of this leaf as 6' UO. 25 (I j 6) 

6-0.389 = 2.337. The leaf Folder misclassifies five results out of six, so the 

predicted error of this leaf is 6* UO. 25(5,6) = 5.719. The leaf Stack is even 

worse. The tree RL misclassifies two out of three results on its left branch, 

and classifies correctly all three results on its right branch, so the predicted 

error of this tree is 3- UO. 25(1,3) +3- Uo. 25(0,3) = 3.131. The tree R does 

not misclassify any of the results, and contains a leaf covering one result, a leaf 

covering two results, and a leaf covering three results, so the predicted error is 

UO. 25(0ý 1) +2* UO. 25(0,2) +3' UO. 25(0,3) = 2.860. Therefore, very pessimistic 

pruning replaces R with the leaf File, as this has the lowest predicted error. 

We next consider pruning the original tree with R replaced with the leaf File. 

We omit the details here, but very pessimistic pruning does not change this tree. 

Therefore, it is the final result of pruning. 
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5.5 Summary 

In this chapter we have explored ways of using the DUG algorithms of Chap- 

ter 4. Exhaustive exploration is the most na1ve solution, but takes too long to 

run. Selective exploration reduces this time, but does not capture the important 

attribute of size well enough. The growth and decay, linear weights, and Markov 

chains methods each capture size better, but introduce problems of their own. 
Finally, the induction of decision trees solves the problems of the previous meth- 

ods, and looks promising. We evaluate the effectiveness of decision tree induction 

in Chapter 7. The implementation of decision tree induction is straightforward, 

and detailed in [46]. 
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Chapter 6 

Auburn: Benchmarking Tool 

Chapter 4 gave algorithms for (a) creating a benchmark from a description of use, 

and (b) creating a description of use from an application. Chapter 5 illustrated 

how to use these algorithms to benchmark implementations of an ADT. This 

chapter describes the design decisions for a benchmarking kit called Auburn, 

built on the algorithms of Chapter 4, and the principles of Chapter 5. This 

chapter also details how to use Auburn. 

Section 6.1 discusses the overall design of Auburn. Section 6.2 gives an 

overview of how the different parts of Auburn fit together. Sections 6.3-6.8 

describe each part of Auburn, both the design decisions and the instructions for 

use by hand. Section 6.9 shows how Auburn can almost completely automate 
benchmarking. 

Appendix C gives a reference for the Auburn executables. 

6.1 Design Rationale 

Auburn should provide the following functionality: 

0 DUG generation 

0 DUG evaluation 

0 DUG profiling 

0 DUG extraction 
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6.1.1 Dynamic Linking 

Can we bundle each task above into one executable for all ADTS? Unfortunately 

not, for the following reasons. A DUG evaluator must link with the various im- 

plementations for the different ADTs Auburn encounters. Without some form of 

dynamic linking, which current Haskell implementations do not provide, we must 

re-compile a DUG evaluatcir for each new ADT and its implementations. 

Can we bundle the remaining tasks into one executable for all ADTS? Unfortu- 

nately not, since DUG generation and DUG profiling must link with a user-defined 

shadow data structure, specific to an ADT. The procm Of DUG extraction, how- 

ever, does not require any linking with code specific to an ADT, and can be 

compiled once for all ADTS. 

Decision: Generate an executable specific to each ADT for the generation, eval- 

uation, and profiling Of DUGS, and define one executable for all ADTS for DUG 

extractiom 

6.1.2 Overhead Of DUG Evaluation 

When an implementation of an ADT evaluates a DUC, there is some overhead: 

general bookkeeping, input, and output. The larger the overhead, the smaller 

the proportion of the whole time taken by the ADT operations, and hence the less 

accurate the estimation of the work done by them. Therefore we want to keep 

the overhead of DUc evaluation as small as possible. 
We consider three alternative methods for DUG evaluation. 

1. Generate the DUG, and translate each node directly into a Haskell call to 

an ADT operation. Output and compile the Haskell program. To evaluate 

the DUG, run the program. The only overhead of DUG evaluation comes 
from the mechanism for demanding the results of the observations. 

2. Generate and evaluate the DUG within the same executable. The generation 

of the DUG forms most of the overhead Of DUG evaluation. 

3. Read the DUG from a previously generated file. Reading the file and general 
bookkeeping form most of the overhead of DUG evaluation. 
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0 200 400 600 800 1000 
Size of Dug (number of nodes) 

Figure 6.1: Times taken to compile different DUGS (as Haskell programs) of var- 
ious sizes over three different ADTS. 

In order to compare these three methods, we measure the overheads for a random 

selection Of DUGS for three ADTS: queue, random-access sequence, and set with 

random retrieval (as in Section 4.4). We use the York nhcl3 compiler [53] (release 

vO. 9.4) running executables in a heap of 8OMb on an SGI Indy running IRIX 5.3. 

Method 1 generates Haskell programs that take too much space and time to 

compile. Figure 6.1 shows the compilation times Of DUGS of various sizes. The 

relationship is roughly linear. The largest DUG we can compile in a heap of 

80Mb takes over 15 minutes to compile and has 800 nodes. This compares with 

taking about 1 second to generate the same DUG in a heap of 4Mb. The more 

DUGS we evaluate, the better conclusions we can form about the efficiency of the 

implementations. Since compiling a DUG is so slow, we reject Method 1. 

For Method 2, the overhead Of DUG evaluation is the cost Of DUG generation. 
We cannot measure the cost Of DUG generation directly, because we must pro- 

cess the DUG in some way in order for lazy evaluation to force its generation. 
Therefore, we make three different timings: 
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1. The time taken to generate and output the DUG as a binary file 

2. The time taken to generate and output the DUG as a Haskell program 

3. The time taken to generate and output the DUG as a binary file and also 

as a Haskell program 

We can estimate the time taken to generate the DUG by adding Time 1 and Time 

2 and then subtracting Time 3. 

To estimate the Cost Of DUG evaluation, we read the DUG from a binary file, 

and evaluate the DUG with each implementation, including the null implemen- 

tation. The null implementation performs very little work (see Section 6.7). By 

measuring the time taken to evaluate with the null implementation, we obtain an 

estimate of the overhead involved in evaluating with some real implementation. 

By subtracting this estimate of the overhead, we obtain an estimate of the actual 

cost of evaluating with some real implementation. 

For some DUG D and some implementation I, let 9 be the time taken'to 

generate D, let eN be the time taken to evaluate D with the null implementation, 

and let ej be the time taken to evaluate D with implementation I. For Method 2, 

the overhead of DUG evaluation is the time taken to generate the DUG divided. 

by the total time to generate and evaluate the DUG, that is gl(g + el - eN)- 

Note that we subtract the null implementation time, since this includes all of the 

overhead of reading the DUG from a file, which would not be done in Method 2. 

For Method 3, the overhead of DUG evaluation is eNlej. 
Additionally, for Method 3, we also time DUG evaluation using the C-11askell 

hybrid described in Section 4.1.2. 

Note that we are only estimating the overhead, as for instance, the overhead 

of the mechanism for extracting the results of the observations is present in both 

Method 2 and Method 3, but subtracting the null implementation time removes 

this overhead from our estimate of the overhead of Method 2. However, making 

a closer estimate is very hard, as lazy evaluation makes it very hard to separate 

tasks and measure them individually. 

Table 6.1 gives the results. An overhead as large as 98% would make the 

benchmarking results rather inaccurate. Similarly, even 87% may be unaccept- 

able. We therefore choose to evaluate DUGs by reading them from files, using tile 
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ADT Method 2 Method 3 Method 3 

(Haskell) (C/Haskell) 

Queue 98.1 87.4 40.3 

RASeq 96.5 82.4 25.6 

Heap 99.0 90.3 29.0 

Average 97.9 86.7 31.6 

Table 6.1: Average percentage overhead for each method Of DUG evaluation over 

every combination Of 10 DuGs and 7 implementations for each of the three ADTS. 

C-Haskell hybrid where possible (some compilers do not support the necessary 
language extension). 

Decision: Separate DUG generation and DUG profiling froM DUG evaluation. A 

DUG is generated, written to a file, and then read and evaluated. 

6.1.3 Describing DUGS 

Since we have decided to store DUGS in a compressed format in a file, we need 
another format for DUGS which the user can understand. Both a textual and a 

visual description serve this purpose well. Since we are compiling DUG generation 

and DUG profiling for each ADT, we decide to bundle these functions and the 
textual and visual description functions into one executable. 

Decision: Generate a DUG manager for each ADT which performs the following 

tasks: DUG generation, DUG profiling, and DUG description (both textual and 

visual). 

6.1.4 Re-compilation 

DUG Manager 

Generating and compiling a DUG manager for each ADT re-compiles a lot of 

similar functions. These common functions should be compiled just once, so we 

place them in a library. 
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Decision: Create a library of the functions common to every DUG manager. A 

DUG manager contains only the definitions of functions specific to the ADT-it 

imports the rest from the library. 

DUG Evaluator 

We could generate one DUG evaluator for all implementations of an ADT, using 

either Haskell's class system, or generate one copy of the DUG Maluating function 

for each implementation. However, this would have to be re-compiled if a new 

implementation were introduced, or if an implementation was changed. It is 

simpler to generate one DUG evaluator for each implementation. 

Decision: Generate a DUG evaluator specific to each implementation of each 
ADT. 

6.2 Overview of Auburn 

Auburn uses a signature (Section 6.3) to identify an ADT. From the signature of 

an ADT, Auburn can provide a DUG manager (Section 6.4) specific to that ADT. 

The DUG manager can generate a DUG from a profile (Section 6.4.1), calculate 

a profile from a DUG (Section 6.4.2), and create a visual or textual description 

of a DUG (Section 6.4.3). In order to generate a DUG from a profile, the DUG 

manager requires a shadow data structure (Section 6.5) for the same ADT. From 

a signature, Auburn can provide a trivial shadow data structure (Section 6.5.1), 

or guess at a size-based shadow data structure (Section 6.5.2). 

From the signature of an ADT and the name of an implementation of the 

ADT, Auburn can also provide a DUG evaluator (Section 6-6) specific to the ADT 

and the implementation. From the same signature, Auburn can provide a null 
implementation of the ADT (Section 6.7), performing as little work as possible. 

This is useful for estimating the overhead of DUG evaluation. 

From the signature of an ADT, the name of an implementation Of the ADT 

and the name of an application using that implementation, Auburn can provide 

a DuG extracting version of the application (Section 6.8). The application works 
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Imports 

Creates 

7 si Man 

S, ýi: g: _:: S ýha d:: o: w:, Siq-Eval- M 

Auburn_Xan] Auburn_Bmar burn_EvalFMapj 
1577 lines 1327 lines 62 lines 

Figure 6.2: Structure of Auburn. 

exactlY as before, but also produces a DUG of how it uses the implementation of 
the ADT. 

Auburn also provides automation tools (Section 6.9) for generating and using 

all of the above, saving a lot of user effort. 

The Auburn package contains a main executable auburn (Sections 6.3-6.8) 

and other executables to automate the use of auburn (Section 6.9). Figure 6.2 

shows the components of Auburn, and how they relate to each other. The figure 

gives the size of any component that is not generated; the size is the number of 
lines of Haskell. 

Appendix C gives the help information provided with each Auburn executable. 

6.3 ADT Signature 

The whole process of benchmarking described in Chapters 3-5 is based on com- 

paring different implementations of the same ADT. The definition and implemen- 

tation of DUGS in Chapters 3 and 4 refers primarily to the ADT, and secondly to 

the implementations. Therefore, Auburn needs a description of the ADT to work 

with. 
An ADT is identified by giving its signature. An ADT signature looks just like 

an implementation but contains no code-just an export declaration, and one 

type signature for each exported operation. Figure 6.3 gives an example of a 

signature. The ADT must be simple, as given by Definition 3.3. 



146 CHAPTER 6. AUBURN. BENCHAIARKING TOOL 

module List (List, empty, catenate, cons, tail, head, lookup, isEmpty) 

where 

empty List a 

catenate List a -> List a -> List a 

cons a -> List a -> List a 

tail List a List a 

head List aa 

lookup List a Int -> a 

isEmpty List a Bool 

Figure 6.3: Haskell code giving the signature of a simple list ADT providing 

normal list operations, catenation and indexing. 

Auburn can generate a signature of the simple operations common to any set 

of implementations with: 

auburn -c jImplementation Files} ISignature File) 

For example, 

auburn -c NaiveList AVLList List 

creates a signature file List. sig from the simple operations common to the 

implementations stored in the files NaiveList. hs and AVLList. hs. Operations 

that are not simple, or not exported by every implementation, are not included. 

If an implementation exports every operation in a signature, but also exports 

an operation that is not included in the signature, the implementation can still 

evaluate a DUG made for that signature, though of course only the operations 

included in the signature will be used. An application importing the imple- 

mentation may have its DUG extracted, so long as the application only imports 

operations found in the signature. 
The signature file of an ADT is used by Auburn to perform every task specific 

to that ADT: DUG generation, DUG evaluation, DUG profiling, DUG extraction, 

and DUG description. 
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6.4 DUG Manager 

A DUG manager processes DUGS; generating, profiling, and describing them. 

Auburn can generate a DUG manager specific to an ADT from the signature of 

the ADT: 

auburn -m ISignature File} 

For example, 

auburn -m List 

makes a DUG manager List-Man. hs from the signature file List. sig. 

As discussed in Section 6.1.4, the generated file contains all of the code relevant 

to the ADT. The remaining code is imported from a library. The generation of 

a DUG manager is straightforward. The DUG manager may be compiled (linking 

with a shadow data structure, see Section 6.5) to produce an executable. 

6.4.1 DUG Generating 

The DUG manager can generate a DUG from a profile with: 

Sig-Man -g JProfile} ISeed} -o IDUG File} 

where the seed is used for pseudo-random number generation. The DUG is written 

to a file; using the flag -oP pipes the DUG to standard output. The profile is given 

using a Haskell data structure as follows: 

Profile IGen. Wgt. Ratiol jPhases} 

where jPhases} is a list of phased profiles, starting from phase 1 in order, each 

given using the following Haskell data structure: 

Phase IMut-Obs. Wqt. Ratio} IMortality} IPMF} IPOF} 

Each weight ratio is a list of numbers. For example, [1,2,31 represents the 

ratio 1: 2: 3. The order of the operations within the ratios is primarily by role 
(generator, mutator, and observer) and then alphabetically. Invoking help with 

the -h flag gives this order. 

For example, using a DUG manager generated from the signature of Figure 6.3, 
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List-Man -g "Profile [I] [Phase [2,1.5,1,2.5,3,11 0 0.2 0.3111 123 

-o example. dug 

generates a DUG in the file example. dug, using a single-phased profile: the gen- 

eration weight ratio is redundant as there is only one generator; the mutation- 

observation weight ratio is 

catenate : cons : tail : head: lookup: isEmpty = 2: 1.5: 1: 2.5 : 3: 1; 

the mortality is 0; the PMF is 0.2; and the POF is 0.3. The DUG generator is given 

a seed 123 for pseudo-random number generation. 
Other flags modify the behaviour of DUG generation: 

-a fPhase Argument} 

See Section 3.4.3. The default is no phase argument. 

-b JPOOI Size} 

See Section 4.1.1, Choosing non-version arguments from the graph. The 

default is 10. 

-fL IMinimum Frontier Size} 

See Section 4.1.1, The DUG Generation Algorithm. The default is 1. 

-fU IMaximum Frontier Size} 

See Section 4.1.1, The DUG Generation Algorithm The default is 10. 

-n lNumber of Nodes) 

The number of nodes in the generated DUC. The default is 10000. 

Sections 4.1.1 and 4.3.1 detail the implementation Of DUG generation. 

6.4.2 DUG Profiling 

The DUG manager can calculate a profile of a DUG with: 

Sig-Man -p JProfile File} {DUG File} 

The profile may be piped to standard output using tile -pp flag. The profile is 

written in the form given in Section 6.4.1, along with the shadow profile (Sec- 

tion 3.4.4), the maximum frontier size, and the mean frontier size. The initial 

frontier size is always zero. 
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For example, 

List-Man -p example. profile example. dug 

places the profile of example. dug in the file example. prof ile. 

As with DUG generating, a phase argument can be given using the -a flag. 

6.4.3 DUG Describing 

AS DUG files are compressed binary files-to reduce input and output overhead in 

DUG evaluation-Auburn also provides visual and textual descriptions of a DUG. 
The visual description of a DUG is suitable for the GraphViz package of AT&T 

[17], and produced by: 

Sig-Man -d IGraph File} IDUG File} 

The textual description of a DUG is very simple, and produced by: 

Sig-Man -t IText File} IDUG File} 

As with DUG generation and DUG profiling, output can be piped to standard 

output using similar flags: -dP and -tP for visual and textual descriptions re- 

spectively. 

For example, the DUG of Figure 3.4 can be converted to a file viewable through 

GraphViz (see Figure 6.4) or converted to a text file (see Figure 6.5). Note that 

the textual description resembles Haskell code. Indeed, adding the -H flag makes 

the textual description a Haskell program that evaluates the DUG-see Figure 6.6. 

6.5 Shadow Data Structure 

A shadow data structure aids the generation Of DUGS, and adds information to 

profiles-see Section 3.4. The shadow data structure must export the following: 

9 The type of a shadow 

* The shadow operations 

* The shadow of an unevaluated version argument (see Section 4.3.4) 
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Figure 6.4: Output from the GraphViz package viewing the DUC of Figure 3.4 

(the orientation, the spacing and the font size were altered so the output could fit 

on this page). The functions 77, a, andr-see Definition 35-arc indicated on the 

graph. Each node is labelled with the partial application given by 71 (the name 

of an operation and a list of non-version arguments), and the node's position in 

the order of evaluation, given by or. The arc labels given byr are placed next to 

the relevant arcs. 
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ni = empty 

n2 = cons 99 ni 

n3 = empty 

n4 = cons 104 n3 

n5 = head n4 

n6 = catenate n2 n4 

n7 = tail n6 

n8 = catenate n2 n7 

n9 = tail n8 

nlO = lookup n8 I 

nil = isEmpty n9 
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Figure 6.5: Textual description of the DUG of Figure 3.4. Each line describes the 

birth of a node. 

o The guards 

* The type of a shadow profile 

9 The shadow profile functions 

* The type of a phase argument 

* The phase functions 

Given only the signature of an ADT, it is impossible to generate a suitable shadow 
data structure for an ADT in general. However, Auburn can generate a trivial 

shadow data structure, or guess at one based on size. 

6.5.1 Trivial Shadow Data Structure 

A trivial shadow data structure stores no information in the shadow, allows every 
operation application, gives an empty shadow profile, and puts every version in 
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import-List 

oso 0 

nI List Int 

n1 empty 

n2 List Int 

n2 cons 99 nI 

n3 List Int 

n3 empty 

n4 List Int 

n4 cons 104 n3 

n5 head n4 

osl fromEnum n5 osO 

n6 List Int 

n6 catenate n2 M 

n7 List Int 

n7 tail n6 

n8 List Int 

n8 catenate n2 n7 

n9 List Int 

n9 tail n8 

nIO = lookup n8 I 

os2 = fromEnum n1O : ost 

n1l = isEmpty n9 

os3 = fromEnum n1l : os2 

main = print (sum (reverse os3)) 

Figure 6.6: Textual description of the DUG of Figure 3.4 as a Haskell program. 
Running this program evaluates the DUG it describes, 
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Phase 1. It is useful for providing a base on which to build a non-trivial shadow 
data structure. For example, the types of every function required are present. 

Auburn builds a trivial shadow data structure from a signature file with: 

auburn -sT (Signature Filel 

For example, 

auburn -sT List 

generates a trivial shadow data structure in the file List-Shadow. hs. 

The generation of a trivial shadow data structure is quite straightforward, so 

we do not give any implementation details here. 

6.5.2 Size-Based Shadow Data Structure 

A size-based shadow data structure stores the size of a version in its shadow. 
This size is then used: (1) to guard against undefined applications; (2) to phase 

versions into those no larger than a given size, and those larger; and (3) to 

calculate the average and standard deviation of the size of every version across 

all mutations and observations. Example 3.27 is an instance of such a shadow 
data structure. 

Auburn can only guess at a size-based shadow data structure, using the types 

of the ADT operations, as given by the signature. For most of the common 

ADTs Auburn guesses correctly: queues, lists, random-access sequences, catenable 

sequences, and heaps. However, some ADTs require a more sophisticated shadow 

data structure, for example, sets and finite maps (the size of a set varies according 

to which element is added or removed, and this is not captured by the type of an 

operation). 

Auburn sets the size of an unevaluated version argument to 0, on the basis 

that none of the elements of an unevaluated version are examined. 
Auburn guesses at a size-based shadow data structure by using the signature 

file with: 

auburn -sS ISignature Filel 

For example, using the signature List. sig of Figure 6.3, 
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auburn -sS List 

guesses (correctly) at a size-based shadow data structure for lists, and places it 

in the file List-Shadow. hs. 

Guessing Size-Based Shadow Data Structures 

The method for guessing the definitions of the shadow operations and the guards 

of a size-based shadow data structure is tailored for the Simple ADTS that can 

be shadowed by size. The phasing and the shadow profiling remain constant for 

every ADT-for further details of these, see Example 3.27. 

Consider the following Simple ADTS: sequences (with or without access to 

front or rear, random access, and catenation), heaps, sets, finite maps (with fixed 

key type to make the ADT simple), and bags. Of these, sets, finite maps, and bags 

cannot be shadowed by size. Of the rest, all have their size-based shadow data 

structure guessed correctly by Auburn'. Table 6.2 shows the desired definitions 

of the shadow operations of all these ADTS. Table 6.3 condenses these definitions 

into rules for Auburn to use. Table 6.4 shows the desired definitions of guards 

of the same ADTS. Table 6.5 condenses these definitions into rules for Auburn to 

use. 
For example, for the signature of Figure 6.3, Auburn defines the type of 

shadows with 

data Shadow = Shadow fsize :: Intl 

and defines the shadow of the cons operation as 

cons-Shadow :: Int -> Shadow -> Shadow 

cons-Shadow A (Shadow fsize=sO)) = Shadow fsize=sO+ll 

and defines the guard of the head operation using 

head-Guard :: Shadow -> Bool 

head-Guard (Shadow fsize=sOD = sO>O 

'It may be possible to form an ADT signature that models a sequence or a heap in a way 

that makes Auburn guess incorrectly, but that is not the case for the ADT signatures given in 

this thesis. 
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and defines the guard of the cons operation using 

cons-Guard :: Shadow -> [IntSubset] 

cons-Guard (Shadow Isize=sOD = [Pool] 

Note that Auburn uses Pool instead of All to select an argument where there 

are no restrictions. This enables the user to control Pool arguments with the 

pool size (see Section 4.1.1). 

6.6 DUG Evaluator 

Auburn can generate a DUG evaluator specific to an ADT and an implementation 

of that ADT. 

auburn -e jImplementation Namel ISignature Filel 

For example, 

auburn -e NaiveList List 

produces a DUG evaluator in the file List-Eval-NaiveList. hs importing the 

module NaiveList which should implement the ADT whose signature is given in 

List. sig. 
The DUG evaluator takes two arguments: the name of the DUG file to evaluate, 

and the number of internal repetitions of this evaluation (useful for increasing the 

time of evaluation to a measurable size). 

Sig -Eval-Implementation 
IDUG file} JNo. of Repetitions} 

For example, 

List -Eval-NaiveLi st example. dug 10 

evaluates the DUG exaraple. dug 10 times using the implementation NaiveList. 

As Section 4.3.2 and Section 6.1 mention, the overhead of a DUG evaluator 
implemented entirely in Haskell can sometimes be unacceptable. Moving the 

algorithm into C and calling the Haskell ADT operations from within C reduces 

this overhead significantly. The C routines are interfaced to Haskell using Green 
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Operation No. of Arguments Result of 

Ta a Int Shadow Operation 

empty 0 0 0 0 

singleton 0 0 1 1 

tail/ init / deleteMin 1 0 0 SO-1 

update 1 1 1 $0 

4i-/merge 2 0 0 S0+Sj 

consIsnoclinsert 1 10 1 S,, +l 

Table 6.2: Shadow operations of simple ADTS that can be shadowed by size. 

shadow operation takes shadow arguments so, si, ---, Sk- 

No. of Arguments Condition Result of 
Ta a Int Shadow Operation 

0 M n n 

1 M 0 30-1 

I 
IM I n_ n=OVm>O so +... + SI-I 

I IM In 
n>OAm=O so+... +si-, +n 

Table 6.3: Rules for guessing the result of a size-based shadow 

operation. A shadow operation takes shadow arguments so, sl, ... ' Sk- 
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Operation No. of Arguments Type of Result of 

Ta a Int Result Guard 

tail/ init/ deleteMin 1 0 0 Ta so >0 

head/findMin 1 0 0 a so >0 

size 1 0 0 Int Tru e 

isEmpty 1 0 0 Bool Tru e 

empty 0 0 0 Ta True 

4-/-/merge 2 0 0 Ta Tru e 

singleton 0 0 1 Ta [Pool] 

consl snocl insert 1 0 1 Ta [Pool] 

lookup 1 1 0 a [0-80 - 11 

update 1 1 1 Ta [Pool, O.. so - 1] 
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Table 6.4: Guards for simple ADTS that can be shadowed by size. A guard takes 

arguments so, sl, ..., 
Sk- 

No. of Arguments Type of Result of Guard 

Ta a Int Result 

1 0 0 Taora so >0 
1 0 0 Any True 

I M n Any Replace a with Pool 

and Int with O.. so -1 
Table 6.5: Rules for guessing the result of a guard using size-based shadows. A 

guard takes arguments so, si, ---I Sk- 
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Card [43], extended to allow C to call Haskell (included with the nlic13 compiler 
[53)). Supplying the flag -G informs Auburn to use Green Card in creating the 

DUG evaluator. For example, 

auburn -G -e NaiveList List 

produces a DUG evaluator in the file List-Eval-NaiveList. gc importing the 

Haskell module NaiveList, and the C library Auburn-evaldug. c. 

Sections 4.1.2 and 4.3.2 detail the implementation of a DUG e,. -aluator. 

6.7 Null Implementation 

Auburn can generate a null implementation of an ADT. 

auburn -n ISignature File} 

A null implementation performs very little work but provides operations of the 

correct type. Evaluating a DUG with the null implementation gives an estimate 

of the overhead of DUG evaluation, allowing a better estimate of the actual work 

done by the operations of other implementations. 

For example, 

auburn -n List 

produces a null implementation in the file List-Null. hs of the ADT whose sig- 

nature is in the file List. sig. 

A null implementation defines the exported type constructor as a nullary data 

constructor Null. For example, for the type constructor List of Figure 6.3, the 

null implementation defines 

data List a= Null 

Each operation ignores its arguments but returns some value of tile correct type. 

But what value do we return of type a? We avoid this problem by noting that 

as we only use the null implementation to evaluate DUCS With the type variable 

a instantiated to Int, we define operations over versions of type T Int. 
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For List Int the null implementation returns Null, for Int it returns 7, and 
for Bool it returns True'. For example, the lookup operation is implemented by 

lookup :: List Int --+ Int -+ Int 

lookup --= 

As the bookkeeping in DUG evaluation is strict (see Section 4.3.2), evaluating a 

DUG with this very lazy implementation will force all of the bookkeeping without 

performing much more work, giving a good estimate of the work done by the 

bookkeeping. 

6.8 DUG Extraction 

Auburn can transform an application that imports an implementation of an ADT 

into a similar application that performs the same work whilst also producing a 

DUG of the way it uses the ADT implementation. 

auburn -x jImplementation File} (Main File} ISignature Filej 

Auburn wraps the implementation module and the main module to produce the 

DUG as a side-effect (see Sections 4.2.1 and 4.3.3). 

But how do we implement this? The application may consist of many modules, 

some of which will import the ADT. We do not want to change every such 

module, so we must keep the same module name for the wrapped implementation. 

As Haskell compilers use the convention that a module appears in a file of the 

same name, we must replace the existing implementation module with the new 

wrapped module. Instead of trying to insert the new definitions into the old 

implementation module, we rename the old implementation module, place it in 

a different file, and import it. The import is qualified to avoid name clashes. 
Similarly, instead of trying to insert the new definition of main into the main 

file, we import the old definition into a new main file. In order to import the 

old main module into the wrapped main module, we must rename the main 
2Returning 0 for Int may invoke an optimisation in the compiler, reducing the bookkeeping 

work for the null implementation. However, we wish to use the bookkeeping of the null imple- 

mentation as an estimate of the bookkeeping of other implementations. Similarly, we do not 

return False for Bool, since f romEnum evaluates this to 0. 
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module from Main. As Haskell also has the convention that the Main module 

may be implicitly defined in a file of any name, we may need to add a module 
declaration and an export declaration, exporting the old main function. The new 

main module imports the old main module, qualified to avoid name clashes. 
The wrapped modules files use Green Card. They import C functions frorn 

an Auburn library Auburn-extractdug. c. Auburn creates backups of the re- 

named files to prevent accidental loss and to aid recovery. Auburn can revert the 

implementation and main files to the original versions with: 

auburn -u jImplementation File} lHain File) {Signature File) 

For example, 

auburn -x NaiveList mean List 

moves NaiveList. hs to Old-NaiveList. hs, and mean. hs to Old-mean. hs. 

The module NaiveList is an implementation of an ADT whose signature is 

in List. sig. The main module in mean. hs defines an application that im- 

ports this implementation. Auburn also creates the files NaiveList. gc an d 

mean. gc and creates backups of the old files at auburn-backup. NaiveList. hs 

and auburn-backup. mean. hs. The new main file mean. gc defines an imple- 

mentation that imports the new implementation NaiveList. gc. These compile 

and link with the C file Auburn-extractdug. c, the files Old-NaiveList. hs and 

Old-mean. hs, and with any other files the old main file imported, to produce a 

DUG-extracting executable mean. This runs as before, but also produces a DUG 

in the file app. dug. Also, 

auburn -u NaiveList mean List 

removes the files NaiveList. gc and mean. gc, and restores the files NaiveList. hs 

and mean. hs from their backups. 

6.9 Automation 

Auburn provides tools to automate most of the work involved in a benclimarking 

experiment. 
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1. Making the executables: auburnExp 

2. Making DUGS: makeDugs 

3. Timing the evaluations Of DUGs: evalDugs 

4. Gathering the times of evaluations: processTimes 

5. Cleaning up after Tools 2,3, and 4: cleanDugs 

6. Tracing bugs in ADT implementations 

7. Gathering benchmarking results 
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Tools 2 through 5 are used by Tools 6 and 7. The implementation of Tools 2 

through 5 is straightforward. The user will probably not need to use them directly, 

but instead use Tools 1,6, and 7. For further details of Tools 2 through 5, see 
Appendix C. 

Tool 1, auburnExp, is quite simple. It creates a makefile, for use with the 

GNU make utility [16]. This automates the building, compiling, and linking of 

all the executables needed by the other tools. 

Tools 6 and 7 are implemented within the same executable, which we shall 

now describe in detail. 

6.9.1 Benchmarker 

Auburn can generate a benchmarker specific to an ADT and some of its imple- 

mentations with the following: 

auburn -b jImplementation Modules} ISignature File} 

For example, 

auburn -b NaiveList AVLList List 

creates a benchmarker in the file List-Bmark. hs. 

The benchmarker serves two purposes: (1) tracing bugs in ADT implementa- 

tions, and (2) gathering benchmarking results. 
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Tracing Bugs 

A benchmarker can search for the smallest DUG that causes an error when eval- 

uated by the ADT implementations. A DUG causes an error when any implemen- 

tation fails to evaluate the DUG-for example, because of a run-time error-or if 

any two implementations return different checksums. 

Sig-Bmark -q ISeed} 

The benchmarker uses the seed to direct the random search. The benchmarker 

generates a series Of DUGS. If a DUG causes an error, the benchmarker reports 

the error and the DUG, and then generates a smaller DUG. It is possible that the 

benchmarker generates a DUG that is smaller than the smallest DUG that causes 

an error. Therefore, if a DUG does not cause an error, the benchmarker then 

generates a larger DUG. 

The benchmarker displays a DUG as a Haskell program using the DUG manager 

with the flags -t and -H-see Section 6.4.3. This program does not require a DUG 

file to read, as the DUG is contained within the program. Hence it may be copied 

into a file, and compiled on its own, perhaps with the tracing facility of the 

compiler turned on. 

If a DUG causes an error, and it is the smallest Such DUG found so far, this 

fact is also reported. This allows the user to let the benchmarker run for as long 

as they like, scan the output for the last report of a smallest DUG, and hence find 

the smallest erroneous DUG found overall. A neater solution using some forrn 

of interrupt signal handling would be preferable, but Haskell does not support 

exception handling. 

See Section 7.1.2 for an example of using a benchmarker to find bugs. 

Gathering Benchmarking Results 

A benchmarker can compute, gather, and analyse benchmarking results; that is, 

it can measure how well different ADT implementations perform across different 

datatype usages. Specifically, the benchmarker provides the following function- 

ality: 



6.9. A UTOMATION 163 

* Generate a set Of DUGS with randomly chosen profiles, measure the perfor- 

mance of each ADT implementation evaluating each DUG, and record the 

results as a sample. 

ISig}-Bmark -g fSeed} -o ISample Filel 

The seed is used to direct the choice of profiles and the generation of DUGS. 

* Induce a decision tree from a sample, perhaps using one of two pruning 

techniques. 

ISig}-Bmark -s fSample File} -i [ -r I -P ] -w (Tree File} 

The flag -r requests reduced-error pruning whereas the flag -P requests 

very pessimistic pruning-see Section 5.4.2. 

* Report the accuracy of a given decision tree on a given sample. 

ISig}-Bmark -s ISample Filej -t ITree Filel -c fReport File} 

e Use a decision tree to decide which implementation suits a given profile. 

ISig}-Bmark -t ITree File} -d JProfile Filej 

These flags may be combined. An accuracy report may be written to standard 

output using the flag -cP. Similarly modified flags (using the postfix P) exist for 

reading or writing a tree or a sample from standard input or to standard output. 

Random Sampling 

Tracing bugs and gathering benchmarking results both require the benchmarker 

to create a DUG from a randomly chosen profile. Each profile attribute is chosen 

fairly from a list of about 20, with the list varying according to the attribute. Ev- 

ery weight ratio component is chosen from [0,0.05,..., 1]. The mortality is chosen 

from [0,10-1,10-3.71, 
..., 10-1]. The PMF is chosen from [0,2-20,2-19,..., 2-2 ]. 

The POF is chosen from [0,0-05, 
., 11. These lists may be changed by the user. 

Auburn uses these lists by default to attempt a fair distribution of benchmarks 

over the datatype usage space. The quality of "fairness" must reflect the "typical" 
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application and therefore any such attempt is primarily guided by experience. On 

this basis, we shall now attempt to justify our choice of lists. 

Using a uniform distribution for each weight ratio component treats each 

operation equally and in particular allows for no use of an operation. Making 

a zero weight even more likely than 1 in 20 may be justified on the grounds 

that applications often neglect an operation completely. The mortality and PmF 

attributes should be very low. For example, for a list ADT, a mortality of 0.5 

implies that, on average, a list is mutated only once before being discarded. 

Similarly, a PMF of 0.5 implies that, on average, an empty list gives rise to over 

1000 different lists after just 20 successive mutations. Given the need to keep 

these attributes generally low, with the occasional high value, it is natural to use 

an exponential scale. The POF however may take anyvalue between 0 and 1 and 

so is given a uniform distribution. 

The benchmarker excludes any impossible or unsuitable profiles. For exam- 

ple, a profile where the mutation weights are all 0 without mortality being 1 

is impossible, and a profile where the observation weights are all 0 is possible 

but undesirable as it forces no work. Two other types of unsuitable profiles 

are excluded by default, both relating to operations that increase or decrease 

size. A profile with a greater sum of size-decreasing operation weights than size- 
increasing operation weights is often impossible without persistent mutation, and 
highly undesirable otherwise. A profile with all size-increasing operation weights 

0 is also highly undesirable. The benchmarker excludes both of these types of 

profile by default. The user may add or remove other such exclusions of profiles. 
Note that, as with generating a shadow data structure, it is impossible to tell 

the effect of an operation on size just from its type. Therefore, when generating a 
benchmarker, Auburn guesses which operations increase size and which decrease 

size, in the same manner as it does for generating a size-based shadow data 

structure (see Section 6.5.2). 

6.10 Summary 

Auburn can generate a benchmark from a description of use and a extract a 
description of use from an application, as motivated in Section 1.3. Moreover, 
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Auburn can automate calls to these functions to find small benchmarks revealing 
bugs in implementations and also to produce a summary, in the form of a decision 

tree, of which implementation is best according to the datatype usage. 
Chapter 7 gives examples of using Auburn in this way, and evaluates Auburn's 

performance and accuracy. 
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Chapter 7 

Results 

Chapter 6 presented a benchmarking tool, Auburn, built on Chapters 3-5. This 

chapter uses Auburn and evaluates its accuracy at predicting the best data struc- 

ture. 

Section 7.1 uses Auburn on the data structures reviewed in Chapter 2 to 

produce a summary of which data structure is best when. Section 7.2 uses sev- 

eral. real applications as benchmarks to test the advice produced by Auburn in 

Section 7.1. Section 7.3 examines the possible sources of inaccuracy in Auburn. 

Technical Note. All benchmarks in this chapter, whether real or generated by 

Auburn, are compiled using the York nhcl3 compiler [53] (release vO. 9.4), and 

run in a heap of 80Mb, on an SGI Indy running IRIX 5.3. As with the remainder 

of this thesis, we use Auburn version 2.3. All benchmarks are run, repeating 

internally if necessary, till the total time is at least 1 second. Each benchmark is 

timed just once, to an accuracy of 0.01 seconds, given as the "user time" by the 

standard UNIX command time. 

7.1 Benchmarking Three ADTS 

In Chapter 2, we reviewed several implementations of three ADTS: queues, 

random-access sequences', and heaps. We shall now use Auburn to benchmark 

these implementations. There are five stages in our experiment: 
'As some implementations of the random-access sequence ADT do not support the operations 

snoc, last and init, we remove these operations from the ADT for the purpose of benchmarking. 
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o Set up the Auburn executables. 

* Check the correctness of the implementations. 

* Fine-tune the implementations. 

e Run and time the implementations. 

* Induce decision trees from the times. 

7.1.1 Setting Up 

CHAPTER 7. RESULTS 

For each of the three ADTS, setting up the Auburn executables is straightforward. 

* We make a directory for the ADT, say queue. Into this directory, we place 

each implementation of the ADT. Auburn creates a makefile in this directory 

with 

auburnExp 

9 We make the Auburn executables with 

make SIG=Queue 

which instructs Auburn to create a common signature from all implemen- 

tations with names ending in Queue (see Section 6.3). When prompted to 

check the guess at a size-based shadow data structure, we continue with 

make 

as Auburn guesses correctly for each of the three ADTS, and so we need not 

modify the shadow data structure. 

All of the executables needed for our experiment are now a%-ailable: the DUG 

manager, the DUG evaluators, and the benchmarker. Tile benchniarker uses the 

default profile space described in Section 6.9.1. 
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7.1.2 rJE'racing Bugs 
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Before we benchmark the implementations, we should ensure that we have coded 

them correctly. Although type checking may remove most accidental errors, some 

may remain. It is also possible that the implementation presented in the literature 

contained a mistake. We can use Auburn to check that the implementations do 

not produce any run-time errors and that they produce the same results as each 

other. Section 6.9.1 describes this in further detail. For example, we may enter 

a command such as 

Queue-Bmark -q seed 

where seed is an initial value for the pseudo-random number generator. The 

benchmarker may then output a report like the following: 

Tracer: Potential bug found. The following implementations: 

PhysicistsQueue 

either did not evaluate the dug correctly, or gave a different 

checksum. to the implementation 'BankersQueuel. 

Given that Physicistsqueue is the only implementation to differ in checksurn 

from the implementation BankersQueue, we can be fairly sure that the error is 

in PhysicistsQueue. However, a report like the following: 

Tracer: Potential bug found. The following implementations: 

BatchedlQueue, BatchedQueue, BootstrappedlQueue, 

Bootstrapped2Queue, BootstrappedQueue, ImplicitlQueue, 

Implicit2Queue, ImplicitQueue, MultiheadlQueue, MultiheadQueue, 

NaiveQueue, PhysicistsQueue, RealTimeQueue 

either did not evaluate the dug correctly, or gave a different 

checksum to the implementation 'BankersQueuel. 

tells us that the bug is probably in BankersQueue. 

Along with the above report, the benchmarker outputs the DUG responsible as 

a Haskell program (see Section 6.9.1). To find the bug, we choose to compile the 

DUG with the York nhc13 compiler [53] with tracing enabled [50]. Note however 

that we may use any other tracer or debugger, or we may simply inspect the DUG. 
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import PhysicistsQueue 

import Prelude hiding (head, tail) 

oso 0 

nl Queue Int 

ni empty 

n2 isEmpty ni 

ost fromEnum, n2 : osO 

n3 Queue Int 

n3 snoc nl 7 

main = print (sum (reverse osi)) 

CHAPTER 7. RESULTS 

Figure 7.1: The smallest DUG found by the queue benchmarker that causes an 

error in the physicist's queues. The queue benchmarker searched for about an 

hour. I 

We let the benchmarker run for a long time, trying to find the smallest DUG 

that causes an error. The smaller the DUG, the easier it is to find the bug. Out 

of 23 implementations, we find 4 contain bugs. All of these bugs result from 

accidental errors. We shall now describe 2 of these bugs. 

Physicist's Queues 

The queue benchmarker finds that the DUG of Figure 7.1 causes our first imple- 

mentation of physicist's queues (see Section 2.1.5) to evaluate with a cliecksurn 

different to the other queue implementations. Using the tracer of nhc13, we 

quickly find that the physicist's queue is e-vraluating isEmpty nI to False. As nl 

is empty, we would instead expect isEmpty ril to evraluate to True. Examining 

the code for isFmpty 

isEmpty (Queue (x: w) f lenF r lenR) = True 

isEmpty 
-= 

False 
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we find that the two cases are swapped, returning True when the answer is False, 

and vice versa. To fix the bug, we just swap True with False. 

Bootstrapped Queues 

The queue benchmarker finds a subtle bug in the bootstrapped queue implemen- 

tation (see Section 2.1.7). It can only find DUGS of a reasonable size-above 20 

nodes-that contain the bug. The smallest DUG that it finds on a fairly large 

run, taking several hours, has 22 nodes. We omit the DUG here as it is rather 
large. The DUG evaluator for bootstrapped queues reports the error tail Empty. 

In order to understand the bug, it is necessary to understand part of the code 

implementing bootstrapped queues. A bootstrapped queue has a front list, a 

middle queue of lists, and a rear list. The code also stores the size of the front 

and middle combined, and the size of the rear. 

data Queue a= Empty 

I Queue [a] (Queue W) Int [a] Int 

So, Queue fmf mN r rN has front f, middle m, rear r, and the size of the front 

and middle combined is f mN, and the size of the rear is rN. 
We compile the DUG with tracing, and look for the root of the problem. The 

error results from a call to tail on an empty queue. The source of the tail is 

in the DUG itself. The shadow data structure prevents such a call in a DUG, and 

so the error must lie in the empty queue. The tracer reveals that a call to tail 

on a queue with I element in the front and 3 elements in the rear produces the 

empty queue. However, the front-middle size field, fmN, is 5, where it should be 

1. This error leads to the queue becoming empty. 

We step back through the trace of the queue till f mN agrees with the size of 

f and m combined. At this point, a list is pulled out of m. Before the pull, f mN 

agrees with f and m; after the pull, it does not. Before the pull, m contains two 

lists, one of 2 elements, and one of 4 elements; after the pull removes the list of 

2 elements, m is empty, whereas it should contain the list of 4 elements. 
Therefore, we find that fmN is correct, but that the queue has lost some 

elements from its middle. Let m, be the middle queue before the pull, and M2 be 

the empty middle queue after the pull. Examining the trace Of M2, we find a check 
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on the size of the front and rear Of M2. The front and rear of m, each contain one 

list, but the pull leaves M2 with an empty front. However, the f mN field for M2 is 

1. This error leads to the queue being discarded as empty. 

But why is the fmN field Of M2 not 0? Further back in the trace Of M2, we find 

that the pull copies the f mN Of M2 from mi. However, after a pull, the combined 

size of the front and middle of the middle should be one less. This is the bug: 

The implementation of pull on a queue 

Queue f (Queue mf mm mfmN mr mrN) fmN r rN 

does not reduce mf mN. 

7.1.3 Fine-Tuning the Implementations 

When coding an implementation, there are many design decisions to make. For 

example, we might have the option to use a strictness flag on an integer field. 

This may make a significant difference to the performance of the implementatiom. 

Auburn helps us to make such design decisions. Auburn can compare the overall, 

performance of an implementation, with and without a minor modification, on a 
large sample of benchmarks. 

We make several minor modifications to the implementations of the three 

ADTS. We use the benchmarker of each ADT to time each implementation and its 

modifications over a sample of 100 benchmarks. The benchmarker can report the 

overall performance of an implementation I by checking the accuracy of the tree 

with a single leaf 1. A "decision tree" made from a single leaf I always chooses 

I. Therefore, the accuracy of this tree reports how many times this choice is 

correct-that is, how many times I is the winner-and the average ratio I to the 

actual winner. 
For example, to find the overall efficiency of implementation BankersQueue 

on the sample sample, use 

echo BankersQueue I Queue-Bmark -tP -s sample -cP 

This gives the number of times BankersQueue was the best implementation, 

and more importantly, the mean ratio of the time for BankersQueue compared 

to the time of the best implementation. By comparing the mean ratio of an 
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Modification Description Effect on 
Performance 

Use? 

Bankers Add strictness flags -2% x 
Batched Remove reverse [x] from snoc +10% V/ 
Bootstrapped Merge calls to head and tail in +0% x 

checkF 
Implicit-1 Use TwoInTwo instead of a pair in +4% V/ 

the inner queue. 
Implicit-2 Merge calls to head and tail in +12% 1/ 

tail. 

Multihead Change to Okasaki's implementa- -6% x 

tion. 

Physicists Add strictness flags. +1% x 

Table 7.1: The effect of modifications on performance of queue implementations 

over a sample of 100 benchmarks. 

implementation with and without a modification, we have an estimate of the 

overall effect of the modification. 
Each implementation may have several or no modifications. We choose the 

best combination of modifications for each implementation. Tables 7.1,7.2 and 7.3 

show the results of the fine-tuning. The effect on performance is calculated by 

Average ratio after modification 
Average ratio before modification 

100% 

We decide to use the modification if the effect on performance is significant- 

above 3%. Note that the benchmarker uses the default profile space described in 

Section 6.9.1. Appendix B details each modification in full. 

An interesting point to note from the results, is that adding strictness flags 

makes very little difference. 

7.1.4 Inducing Decision M-ees 

For each ADT, we use the benchmarker to time the implementations chosen from 

the fine-tuning of Section 7.1.3. We have several options for inducing the decision 
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Modification Description Effect on 
Performance 

Use? 

AVL-l Replace < and == with compare in -21% x 

lookup and update. 

AVL-2 Replace < and == with compare in -21% x 

lookup and update, with LT first. 

AVL-3 Place < first in lookup and +1% x 

update. 
AVL-4 Split case on a pair into two, in +21% V/ 

cons and tail. 

Adams Maintain the balance invariant -1% x 

perfectly. 

Braun Merge calls to head and tail in +4% 

tail. 

Elevator-1 Change floor separation from 10 +5% x 

to 3. 

Elevator-2 Change floor separation from 10 +13% V, 
to 5. 

Elevator-3 Change floor separation from 10 -32% x 

to 25. 

SkewBin Add strictness flags. +1% x 

ThreadSkewBin Add separate constructor for rank +63% 

1 elements. 

Table 7.2: The effect of modifications on performance of random-access sequence 

implementations over a sample of 100 benchmarks. 
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Modification Description Effect on 
Performance 

Use? 

Binomial Add strictness flags. -2% x 

BootSkewBin Add strictness flags. +0% x 

Leftist Specialise insert. +19% V/ 
Pairing-1 Replace <= with < in merge. -10% x 

Pairing-2 Specialise insert. +8% V/ 
SkewBin Add strictness flags. -1% x 

Table 7.3: The effect of modifications on performance of heap implementations 

over a sample of 100 benchmarks. 

tree. Do we prune the tree? If so, using which method? We want the tree that 

most accurately represents the efficiencies of the implementations according to 

datatype usage. But how do we know which tree is the best? We want to make 

a general recommendation, for any ADT. 

Choosing the Best Decision Tree 

One way to estimate the accuracy of a tree is through collecting an additional 

sample of benchmarking results, and examining the accuracy of each tree on the 

unseen results. How large a sample do we collect for the induction of decision 

trees, and how large an additional sample for testing these trees? We decide to 

take as large a sample as we can fit in an overnight batch for the induction of 

decision trees, on the basis that a user will not want to take much longer than 

this. We take a much larger sample for the purpose of testing these trees, on the 

basis that we want to test the trees as much as possible. 

We take a training sample of 200 DUGS for each ADT from which to induce 

the decision trees. These samples take about 10 hours to collect in total. We 

take a further test sample of 500 DUGS for each ADT with which to test the trees. 

These samples take about 25 hours to collect in total. For example, the following 

command: 

Queue-Bmark -g seed -n 200 -o final. sample 
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generates a sample of size 200, writing the sample to the file f inal. sample. We 

use a heap of 80Mb for the DUG evaluator compiled using nhc13, which takes 

heap flags within +RTS and -RTS flags, and 'we pass these flags as follows: 

Queue-Bmark -g seed -n 200 -o final. sample 

-e 11-r 1 -R 5 -o V'+RTS -H80M -RTSVIII 

The flags -r 1 -R 5 are the default flags passed to the tool evalDugs describing 

how to run the DUG evaluator-for further details see Appendix C. All other 

settings are the default, including using the default profile space described in 

Section 6.9.1. 

From each training sample, we induce two trees: one using the gain criterion 

and the other using the gain ratio criterion. As well as keeping these trees, we 

also prune each of them using both reduced error pruning and very pessimistic 

pruning. For example, the following command: 

Queue-Bmark -s final. sample -i -r -G -w re. tree 
'! I 

induces a tree from the sample in f inal - sample using the gain criterion, prunes 

the tree using the reduced error method, and writes the tree to re. tree. 

For each of the three ADTS, Table 7.4 shows the accuracy of each of the six , 

resulting trees applied to the test sample. 

Recommendation for the Most Accurate Tree. We want to make a general 

recommendation for which tree to use when we want the best prediction of tile 

most efficient competing implementation. 

For queues and heaps, the accuracy of the original tree is about the same as the 

accuracy of either of the pruned trees. However, for random-access sequences, the 

mean ratio of the trees pruned using the reduced error method is significantly 
higher than the original trees or the trees pruned using the very pessimistic 

method. Further, the mean ratio is lower when using the gain ratio criterion. 
There is little to choose between the accuracy of the original tree and the tree 

pruned using the very pessimistic method, but the latter is smaller. Therefore, 

based on this evidence, to produce an accurate tree, we recommend using the 

gain ratio criterion, followed by pruning using the very pessimistic method. 
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ADT Pruning Criterion Size Success 

Rate (%) 

Mean 

Ratio 

None Gain 25 1 83 1.023 

Gain Ratio 29 79 1.026 

Queue Reduced Gain 5 86 1.011 

Error Gain Ratio 61 80 1.023 

Very Gain 16 87 1.010 

Pessimistic Gain Ratio 17 84 1.015 

None Gain 25 79 1.174 

Gain Ratio 28 77 1.099 

RASeq Reduced Gain 6 75 1.506 

Error Gain Ratio 9 75 1.207 

Very Gain 23 79 1.172 

Pessimistic Gain Ratio 22 78 1.093 

None Gain 19 83 1.054 

Gain Ratio 23 84 1.047 

Heap Reduced Gain 4 77 1.059 

Error Gain Ratio 5 84 1.035 

Very Gain 17 83 1.054 

Pessimistic Gain Ratio 17 85 1.045 
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Table 7.4: The accuracy of various trees applied to the corresponding test sample. 

The size of a tree is the number of branch nodes. A success is a correct prediction 

of the winning implementation. The mean ratio is calculated from the ratios of 

the times taken by the predictions to the times taken by the winners. 
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Recommendation for the Smallest Accurate I)ree. Although the accuracy 

of a tree is very important, it is also important for the tree to be small. The 

smaller the tree, the easier it is to analyse the tree, matching the design of the 

implementation to the resulting empirical performance. Therefore we also want to 

make a general recommendation for which tree to use when, %ve want a prediction 
from a small but accurate tree. 

In every case, pruning using the reduced error method produces the smallest 

trees. Of these trees, using the gain criterion produces a tree that is a little 

smaller. Therefore, to produce a small but fairly accurate tree, we recommend 

using the gain criterion, followed by pruning using the reduced error method. 

Benefits of Using Trees 

How much do we gain from choosing an implementation according to the datatype 

usage? How does using a tree compare with choosing the same implementation 

regardless of datatype usage? Tables 7.5,7.6 and 7.7 show the average ratio of 

each implementation over the corresponding training samples. 

For queues, the Batched implementation wins most often on the test sample 

with a very good mean ratio of 1.02. So in the case of queues, there is little to 

gain from choosing the implementation according to datatype usage-one should 
just choose the Batched implementation regardless. However, the most accurate 

tree still manages to improve on this uniform selection with a mean ratio of 1.01, 

as does the smallest tree with a mean ratio of 1.011. 

Similarly, for heaps, the Pairing implementation wins most often on the test 

sample with a very good mean ratio of 1.08. So, as with queues, choosing the 

Pairing implementation regardless of datatype usage is close to the optimal choice. 
Still, the most accurate tree improves on this with a mean ratio of 1.035, as does 

the smallest tree with a mean ratio of 1.059. 

However, for random-access sequences, the results are more mixed. The "L 

and ThreadSkewBin implementations come first most often, but the "L imple- 

mentation has a better overall performance, and the Elevator implementation has 

the best overall performance with a mean ratio of 2.12. The most accurate tree 

manages a mean ratio of 1.093, and the smallest tree manages a mean ratio of 
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Implementation Training Sample Test Sample 

Winner (%) Mean Ratio Winner (%) Mean Ratio 

Bankers 0 1.70 0 1.72 

Batched 72 1.02 72 1.02 

Bootstrapped 0 1.99 0 2.00 

Implicit 16 1.16 17 1.18 

Multihead 0 2.30 0 2.33 

Naive 3 16.11 3 19.15 

Physicists 0 2.12 0 2.14 

RealTime 10 1.19 9 1.22 

Table 7.5: Average ratio of the time taken by each queue implementation com- 

pared to the winner over the training sample of 200 benchmarks and the test 

sample of 500 benchmarks. 

Implementation 1hining Sample Test Sample 

Winner (%) Mean Ratio Winner (%) Mean Ratio 

AVL 38 1.69 36 2.21 

Adams 0 4.18 0 6.05 

Braun 0 5.24 0 5.67 

Elevator 10 2.00 8 2.12 

Naive 6 7.88 10 7.54 

SkewBin 0 2.54 0 2.69 

Slowdown 0 2.86 0 3.26 

ThreadSkewBin 46 2.95 46 8.09 

Table 7.6: Average ratio of the time taken by each random-access sequence im- 

plementation compared to the winner over training sample of 200 benchmarks 

and the test sample of 500 benchmarks. 
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Yes \ No 

Batched (27/12) 

tail <= 0.122 )( tail <-- 0.29 

Yes I No I Yes 

Implicit(67/9)) (mortality<-- 0.016 

No 

RealTime (38/7) 

Yes \ No 

tail<=0.267' (Batched(156/28) 

Yes No 

Batched (201/7) RealTime (11/8) 

Figure 7.2: The tree induced using the gain criterion on the training sample for 

the queue ADT, pruned using the reduced error method. 

1.506, each much better than the best uniform choice of a single implementation. 

Therefore, based on these results, the best implementation of queues is 

Batched, and the best implementation of heaps is Pairing, regardless of how 

these data structures are used. However, for random-access sequences, the best 

implementation does vary according to how the data structure is used. These 

results are discussed below in greater detail. 

Results 

Using the recommendations above for accurate and small trees, the accurate trees 

are too large to show and discuss. However, Figures 7.2,7.3 and 7.4 show the 

smallest trees. Each leaf is annotated with (NIE), where N is the number of 
benchmarks in the test sample covered by this leaf, and E is the number of 

misclassifications by this leaf. A benchmarker produces an accuracy report (see 
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size <= 97.728 

Yes No 

lookup <= 0.079 AVL (139/32) 

Yes No 

Naive (87/46) update <= 0.08 

Yes No 

ThreadSkewBin (65/1) size <= 28.014 

Yes No 

tail <= 0.071 

Yes No 

AVL (27/7) cons <= 0.202 

Yes No 

AVL (18/2) Elevator (21/16) 
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Figure 7.3: The tree induced using the gain criterion on the training sample for 

the random-access sequence ADT, pruned using the reduced error method. 
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Implementation Training Sample Test Sample 

Winner (%) Mean Ratio, Winner (%) Mean Ratio 

BinomialHeap 0 4.95 0 4.56 

BootSkewBinHeap 0 4.64 0 4.52 

Leftistfleap 0 1.99 0 1.98 

NaiveHeap 26 1.30 20 1.28 

PairingHeap 74 1.09 80 1.08 

SkewBinHeap 0 5.40 0 5.01 

SplayHeap 0 8.35 0 7.08 

Table 7.7: Average ratio of the time taken by each heap implementation compared 

to the winner over training sample of 200 benchmarks and the test sample of 500 

benchmarks. 

Figure 7.4: The tree induced using the gain criterion on the training sample for 

the heap ADT, pruned using the reduced error method. 
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Section 6.9.1) giving these annotations, which help to interpret the trees. The 

significance of a leaf can be estimated from the number and proportion of winning 
implementations that it classifies correctly. 

For example, the deeper of the two leaves labelled with the RealTime queue 
implementation in Figure 7.2 only classifies 3 of the 11 winning implementations 

correctly. Hence this is not a very significant leaf. On the other hand, the top- 

most leaf labelled with the ThreadSkewBin random-access sequence implementa- 

tion in Figure 7.3 classifies 64 out of 65 winning implementations correctly. Hence 

this is a very reliable leaf. Therefore it is a very significant leaf in the analysis of 

the tree. Recall that each test sample contains 500 different benchmarks. 

Analysis of the Queue Decision Tree. Looking at Figure 7.2, there are 

only two significant cases where the Batched implementation consistently loses 

to another implementation: 

4P Small size, fair tail weight (Implicit). This may be the result of the Im- 

plicit implementation evaluating all operations on small queues without 

additional function calls. The Batched implementation on the other hand, 

must always make at least one extra function call in evaluating tail on a 

queue of any size. 

Fair size, large tail weight (RealTime). It is not clear why the RealTime 

implementation should beat the Batched implementation so consistently for 

this region of the profile space. Okasaki writes that the RealTime imple- 

mentation is "the fastest known real-time implementation when used per- 

sistently". However, his comment concerns an implementation in a strict 
language (SML) where explicit laziness is costly, and it is not clear if the 

same applies to an implementation in Haskell. To examine the effect of 

persistence, we check the accuracy of a tree that splits up the test sample 

according to the PMF. Table 7.8 shows the results. It is clear from these 

results that the PMF does not have a significant role to play in deciding 

which implementation wins. Using POF instead Of PMF produces similar 

results. Therefore, this case remains unexplained. 
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PMF Winner (%) 

RealTime Batched 

0< PMF < 0.0001 10 63 

0.0001 < PMF < 0.001 12 69 

0.001 < PMF < 0.01 5 79 

0.01 < PMF <1 9 67 

Table 7.8: The effect of persistence on the performance of the RealTime and 

Batched queue implementations on the test sample. 

Analysis of the Random-Access Sequence Decision Tree. Almost all of 

the leaves in Figure 7.3 are significant-that is, almost all of them have a low 

proportion of errors. The Elevator leaf has a high proportion of errors, and the 

remaining leaves on the subtree from the test tail < 0.071 show AVL to win over 

half of the cases (36 out of 66). We consider the other leaves in turn. 

o Large size (AVL). The AVL and Adams implementations are the most tree- 

like implementations, which gain strength as the size increases, because 

of their logarithmic complexity. The "L implementation benefits from 

balancing specialised to adding or removing an element at the left-that is, 

from cons or taiL It is not clear if the Adams implementation could use a 
similar improvement. 

* Fair size, small lookup weight (Naive). This is a little surprising. If few 

update operations are done, then wewould expect the Naive implementation 

to win. But what if there are quite a lot of update operations? AVe might 

expect the Naive implementation to lose. The leaf's annotation does show 

quite a few errors, but there is another reason: An update will only be fully 

evaluated if it is forced. The only observations in the absence of lookup 

are head and isEmpty, and because the Naive implementation is so lazy, 

these observers will only force updates on the first element. The other 
implementations are not as lazy, and so do not benefit as much. The issue 

of strictness is examined in more detail in Section 7.3.3. 
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Fair size, fair lookup weight, small update weight (ThreadSkewBin). The 

annotation shows this leaf is very reliable, with 64 out of the 65 cases 

correct. The ThreadSkewBin implementation deliberately implements an 

efficient lookup operation, at the expense of an inefficient update operation. 

Small size, fair lookup weight, fair update weight (ThreadSkewBin). Al- 

though ThreadSkewBin implements update to take O(i) time, where i is 

the index of the element updated, for small lists, this is not very different 

from the logarithmic complexity of the "L implementation. The simplic- 
ity of the ThreadSkewBin implementation makes it win on small lists, even 

with many update applications. 

* Fair size, fair lookup weight, fair update weight (A VL). With enough update 

operations, and a reasonably sized sequence, the AVL implementation beats 

the ThreadSkewBin implementation. 

Analysis of the Heap Decision Tree. As with queues, Figure 7.4 shows 

that a single implementation (Pairing) dominates the results. Once again, there 

are only two significant cases where another implementation beats the Pairing 

implementation. 

9 Large PMF (Naive). More than half of the benchmarks with a large PMF 

are won by the Naive implementation. Okasaki advises in [38] that Pairing 

heaps are not efficient under persistent use. 

Small size, but not very small size (Naive). The Naive implementation 

wins for small heaps, which is typical of a naive implementation of an ADT. 

Surprisingly though, the Pairing implementation wins significantly for very 

small heaps. This may be the result of the newtype constructor in Naive 

causing an extra function call, as compared with the Pairing implementa- 

tion. 

It is surprising that Splay heaps perform so poorly. We shall see in Section 7.2.1 

that Splay heaps perform much better for some real benchmarks. Why do they 

perform so badly under Auburn-generated benchmarks? Perhaps there is an 

aspect of datatype usage that Auburn does not control but fixes in a region 
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where Splay heaps perform badly. Two possible candidates include the minimum 
frontier size, which affects the applications of non-unary mutators like merge, 

and the pool size, which affects the number of equal elements in a heap. The 

benchmarker cannot record either of these factors currently, only profile and 

shadow profile attributes. 

7.1.5 Summary 

Given these results from Auburn, which implementation should we use for queues, 

random-access sequences, and heaps? For queues, we recommend you always use 
Batched queues. For random-access sequences, we make the following recommen- 
dations: use AVL trees if your lists are quite large (an average length of above 
100); use Naive lists if you are not doing many lookup or update operations; use 
ThreadSkewBin lists if you are doing quite a few lookup operations, but not do- 

ing many update operations, or if your lists are quite small (an average length of 
below 30); otherwise, use AVL trees. For heaps, we recommend that you always 

use Pairing heaps. 

7.2 Evaluating Auburn 

We use Auburn to produce advice about the choice of implementation of three 

ADTS in Section 7.1.4. But how good is this advice? 
Ultimately, the value of Auburn's advice lies in how well it predicts which 

implementation is the best. To test this, we construct several real benchmarks- 

real in that they produce useful results. We time each benchmark with each 
implementation, to find which implementation really is the best. By comparing 
this with Auburn's prediction, based on the profile of the benchmark, we cali 

estimate Auburn's accuracy in practice. 

7.2.1 Real Benchmarks 

All of the benchmarks are based on either sorting a list or processing a graph. 
There are four benchmarks for each ADT, and four data sets for each benchmark. 

This gives a total of 16 different uses of each ADT. We describe each benchmark 
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very briefly. References to literature give further details of the algorithms, and 

the source code is available from the Auburn web page [4]. 

Queue Benchmarks 

The queue benchmarks are the hardest to find. 

9 Shellsort. It is possible to implement Shell's sort [48] using queues [26]. 

* Breadth-First Search (M). Breadth-first search of a graph is a common 

use of queues, see [11] (page 469). 

Since we could find no more benchmarks, and since varying the increments used ý 
by Shellsort varies how the algorithm uses the queue dramaticallY, we let three 

sets of increments provide three of the four queue benchmarks. 

Random-Access Sequence Benchmarks 

An array is one of the most commonly used data structures, even in functional 

programs, so benchmarks are not hard to find. However, we also wish to include 

algorithms that use the sequences as lists, as in [33]. 

Bucketsort. This sort uses random-access operations heavily, see [111 (page 

180). 

9 Quicksort. Sorting a list using a functional implementation of Quicksort 
[19] does not use any random-access operations. 

Depth-First Search (DFS). Implementing a graph as a random-access list of 

adjacent vertices [11] (page 465) allows any graph algorithm to use random- 

access lists. We choose one of the simplest graph algorithms, depth-first 

search [11] (page 477). 

Kruskal's Minimum-Cost Spanning Tree (KMCST). Kruskal implements a 

minimum cost spanning tree algorithm [11] (page 504) using a disjoint-set 

data structure [11] (page 440) which we implement using a random-access 
list. 



188 

Heap Benchmarks 
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A few common algorithms use a priority queue, or a heap. Many of these however 

use additional operations like decreaseKey. This operation reduces the key of any 

element in the heap by a given amount. We replace this operation with an insert 

of the element with a lower key, and a guard against reading the same element 

more than once. This is not the most efficient implementation of decreaseKey, 

but it does give us real benchmarks using heaps in a variety of ways. Very few 

algorithms use the merge operation: We could find only one. 

9 Heapsort. This is a simple sorting algorithm [111 (page 147). 

* Mergeable Minimum-Cost Spanning Tree (MAIC). This is the only heap 

benchmark to use the operation merge [11] (page 418). 

* Dijkstra's Shortest Paths (DSP). We replace decreaseKey with insert as 

explained above in the modified Dijkstra algorithm [11] (page 530). 

* Prim's Minimum-Cost Spanning Tree (PAIC). Similarly, we replace de- 

creaseKey with insert in Prim's algorithm [111 (page 505). 

Results 

Tables 7.9,7.10 and 7.11 give the results of running each benchmark, including: 

the winning implementation; the ratio of the implementation predicted to win by 

the recommended accurate tree; the ratio of the implementation predicted to win 

by the recommended small but accurate tree; the ratio of the implementation 

with the best overall performance in the training samples of Section 7.1.4 (see 

Tables 7.5,7.6 and 7.7); and the average ratio of all implementations. 

The ratios of the implementations predicted by the two trees that Auburn 

produced from the training samples in Section 7.1.4 indicate Auburn's accuracy. 
To aid the interpretation of this figure, the ratio of the implementation with 

the best overall performance in the training samples gives the difference between 

Auburn's prediction and a uniform choice made regardless of datatype usage. 
Further, the average ratio of all implementations gives the difference between 

Auburn's prediction and a random choice of implementation. 
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For queues, the uniform choice (of Batched queues) has a very good average 

ratio of 1.068, yet both of Auburn's trees predict a better implementation on 

average. All three are much better than a random choice. 

For random-access sequences, the uniform choice (of AVL trees) has an average 

ratio of 1.837, indicating that the best implementation varies significantly across 

the benchmarks, as we would expect from the results of Section 7.1.4. Both of 
Auburn's predictions perform better on average than the uniform choice, and 

much better than the random choice. 

For heaps, like queues, the uniform choice (of Pairing heaps) has a very good 

ratio of 1.022, and neither of Auburn's trees can improve on this. However, 

apart from one very bad prediction (PMC benchmark on data set 3), Auburn's 

predictions are still much better than a random choice. 

For a discussion of the worst of Auburn's predictions, see Section 7.3.4. 

Summary. The summary of Section 7.1.4 advised that we use always use 
Batched queues and Pairing heaps, regardless of datatype usage, and that we use 

a different random-access sequence implementation according to specific aspects 

of the datatype usage. This advice gives very good results for the real bench- 

marks of this section, making choices within 10% of the best implementation for 

queues and heaps, and within 30% of the best implementation for random-access 

sequences. 

7.3 Locating Inaccuracy in Auburn 

Section 7.2.1 showed that the advice of Section 7.1.4 is good, but not perfect. 
What is the source of any inaccuracy in Auburn's results? What can go wrong? 

Here are the main possibilities: 

* The DUG does not capture datatype usage sufficiently. 

* The profile of a DUG does not capture datatype usage sufficiently. 
i 

Strictness issues cause the work that is actually done to be less than the 

work that is reportedly done. 
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Benchmark 

Name 

Data 

Set 

Winning 

Impn. 

Acc. 

Tree 

Ratio 

Small 

Tree 

Ratio 

Unfm. 

Ratio 

Avg. 

Ratio 

BFS 1 Batched 1.046 1.046 1.000 1.054 

BFS 2 Batched 1.000 1.000 1.000 1.052 

BFS 3 Batched 1.000 1.000 1.000 1.175 

BFS 4 Batched 1.000 1.000 1.000 1.060 

Shellsortl 1 Implicit 1.110 1.054 1.110 1.525 

Shellsortl 2 Implicit 1.098 1.040 1.098 1.805 

Shellsortl 3 Implicit 1.079 1.026 1.079 4.632 

Shellsortl 4 Implicit 1.080 1.025 1.080 4.961 

Shellsort2 1 Implicit 1.087 1.054 1.087 1.454 

Shellsort2 
.2 

Implicit 1.081 1.052 1.081 1.414 

Shellsort2 3 Implicit 1.068 1.038 1.068 2.546 

Shellsort2 4 Implicit 1.065 1.037 1.065 2.431 

Shellsort3 1 Implicit 1.000 1.000 1.126 1.388 

Shellsort3 2 Implicit 1.000 1.000 1.116 1.357 

Shellsort3 3 Implicit 1.093 1.042 1.093 1.719 

Shellsort3 4 Implicit 1.093 1.040 1.093 1.713 

Average 1.009 1.028 1.068 1.955 

Table 7.9: Results of running the queue benchmarks. 
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Benchmark 

Name 

Data 

Set 

Winning 

Impn. 

Acc. 

Tree 

Ratio 

Small 

Tree 

Ratio 

Unfrn. 

Ratio 

Avg. 

Ratio 

Bucketsort 1 AVL 1.000 1.000 1.000 2.018 

Bucketsort 2 AVL 1.000 1.000 1.000 2.405 

Bucketsort 3 AVL 1.000 1.000 1.000 6.139 

Bucketsort 4 AVL 1.000 1.000 1.000 3.186 

DFS 1 AVL 1.000 1.203 1.000 1.748 

DFS 2 Adams 1.002 1,002 1.002 2.316 

DFS 3 AVL 1.000 1.000 1.000 3.075 

DFS 4 AVL 1.000 1.000 1.000 5.992 

KMC 1 ThreadSkewBin 1.000 1.000 1.181 1.404 

KMC 2 ThreadSkewBin 1.000 L930 2.063 1.932 

KMC 3 ThreadSkewBin 1.000 2.357 1.699 1.672 

KMC 4 ThreadSkewBin 1.557 1.954 1.954 1.599 

Quicksort 1 Naive 1.000 1.000 4.856 3.193 

Quicksort 2 Naive 1.000 1.000 3.069 2.310 

Quicksort 3 Braun 1.889 1.889 1.826 1.828 

Quicksort 4 Naive 1.000 1.000 4.740 3.088 

Average 1.091 1.271 1.837 2.744 
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Table 7.10: Results of running the random-access sequence benchmarks. 
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Benchmark 

Name 

Data 

Set 

Winning 

Impn. 

Acc. 

'Iýee 

Ratio 

Small 

Tree 

Ratio 

Unfm. 

Ratio 

Avg. 

Ratio 

DSP 1 Pairing 1.000 1.021 1.000 1.061 

DSP 2 Splay 1.028 1.106 1.028 1.086 

DSP 3 Splay 1.004 1.004 1.004 1.326 

DSP 4 Splay 1.012 1.040 1.012 1.067 

Heapsort 1 Naive 1.009 1.009 1.009 1.343 

Heapsort 2, Splay 1.077 1.077 1.077 1.798 

Heapsort 3 Naive 1.008 1.008 1.008 1.387 

Heapsort 4 Splay 1.171 1.171 1.171 3.371 

MMC 1 Leftist 1.027 1.005 1.027 1.106 

MMC 2 Pairing 1.000 1.002 1.000 1.050 

MMC 3 Pairing 1.000 1.000 1.000 1.144 

MMC 4 Naive 1.006 1.000 1.006 1.009 

PMC 1 Pairing 1.007 1.007 1.000 1.068 

PMC 2 Pairing 1.019 1.019 1.000 1.075 

PMC 3 Splay 3.363 1.018 1.018 1.446 

PMC 4 Pairing 1.007 1.007 1.000 1.055 

Average 1.171 1.031 1.022 1.337 

Table 7.11: Results of running the heap benchmarks. 
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* The induction and pruning processes produce inaccurate trees. 

We shall now deal with these individually in detail. 

7.3.1 Insufficient DUG 

We define the DUG in Chapter 3 to capture the datatype usage of a data structure 
by an application. We base the whole of this thesis on this definition of a DUG. 

But does it capture datatype usage sufficiently? We can test this as follows. 

We take a real application or benchmark, and run it using each ADT imple- 

mentation, measuring the efficiency of each. We extract the DUG from each run. 

We then run a DUG evaluator on each DUG using the corresponding ADT imple- 

mentation. We then compare the efficiencies of the implementations when used 

by the application with the efficiencies of the implementations when used by the 

DUG evaluators. 

If the DUG captures all of the relevant. information for influencing the effi- 

ciency of an ADT implementation, we would expect the' relative efficiencies of the 

implementations to be the same. For example, the order of the implementations, 

most efficient first, should be the same for the application as for the DUG eval- 

uator. Further, the efficiencies should correlate linearly. Note that the relative 

efficiencies need not be exactly the same, as the total amount of work done differs 

between the application and the DUG evaluator. However, this is only a constant 

difference, which should therefore produce a linear relationship. 

We take the 12 benchmarks of Section 7.2.1 using all 4 data sets, giving 16 

different uses of a data structure for each of the 3 ADTS. Ideally we would take one 

DUG for each implementation, because the DUG varies between implementations 

due to strictness (Section 7.3.3). However, the total number Of DUGS for each ADT 

would be the number of implementations multiplied by 16, which is too many 

to handle. Hence we only take a DUG from one of the implementations, and let 

every implementation evaluate this representative DUG. This will not affect the 

results much, as the DUGS only vary by at most 2% across implementations, and 

usually not at all. Also, this simplification will more likely worsen our results 

than improve them. 

For each comparison of relative efficiencies of implementations, we calculate 
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ADT Correlation 

Worst Mean Best 

Queue 0.482 0.924 1.0 

RASeq 0.983 0.998 1.0 

Heap -0.261 0.579 0.989 

Table 7.12: Correlation coefficients for efficiencies of implementations, comparing 

a benchmark with a DUG evaluator. The DUG evaluator is evaluating the DUG 

extracted from the benchmark. 

the correlation coefficient (as defined in Section 5.2). Table 7.12 gives these. To 

aid our understanding of how good or bad a correlation coefficient is, Figure 7.5 

gives graphs for a range of examples-the better the graph looks like a line, the 

closer the relationship is to being linear. 

From Table 7.12, we see that the queue ADT and the random-access sequence 

ADT show good correlations between the behaviour of implementations when used 

in an application and when used in a DUG evaluator. However, the heap ADT -- 
shows worse results. 

The correlations for the queue ADT are mostly very good, with 70% being 

above 0.99. However, there were a few low correlations. What makes these 

correlations low? They all come from the same benchmark, breadth-first search. 

In fact, every correlation for this benchmark is less than 0.5, regardless of the 

data set used. It is not clear why the performance of the implementations differs 

so much between benchmark and DUG evaluation in this case. It is possible that 

there is some peculiar run-time behaviour due to garbage collection, as we find 

with the Quicksort benchmark in Section 7.3.4. 

For the heap ADT, the main reason for the bad results comes from the in- 

ability of the DUG extraction to record the elements inserted into the heap (see 

Section 4.2.1). Therefore, all elements are recorded as being 0. This affects tile 

efficiency of the different implementations greatly because every element in the 

heap has the same value. To test this suspicion, we replace the elements of the 

extracted DUGS with random values, and re-run the experiment to obtain new 

correlation coefficients. We find that the mean correlation coefficient increases 
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cients. 
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to 0.780, significantly improving on the previous mean of 0.579. If DUG extrac- 

tion could record the elements' values, we suspect the correlation would rise even 
further. 

7.3.2 Insufficient Profile 

Just as we design the DUG to capture datatype usage, we design the profile of a 

DUG to capture the most important aspects of datatype usage, where we measure 

importance with regard to the effect on ADT implementation efficiency. We base 

the whole of Auburn on this premise. We can test its validity as follows. 

We can generate several DUGS from the same profile, thereby having similar 

profiles, and compare the efficiencies of implementations evaluating the different 

DUGS. If the profile of a DUG does capture datatype usage sufficiently, then the 

results should be similar. However, all of the DUGs are generated using Auburn, 

and so this test is rather limited in scope. 

Therefore, we take the profiles Of DUGS extracted from real benchmarks, and 

generate a few DUGS from each profile. We then compare the efficiencies of the 

implementations at evaluating the DUGs and at running the benchmarks. We 

take the same 12 benchmarks across 4 different data sets each that we used in 

Section 7.3.1, giving the same 16 different uses of a data structure for each of the 

3 ADTS. For each DUG extracted, we generate 3 more DUGs. Table 7.13 shows 

the mean correlation coefficients. 

The correlation between DUGS generated from the same profile is very high for 

each ADT. However, the correlation between the benchmark and the generated 

DUGS is much lower, though still quite high. This indicates that some impor- 

tant aspects of datatype usage are not being carried through from a benchmark, 

through a profile, into a generated DUG. 

The most probable reason for this is the lack of size information. This is 

captured in the shadow profile, but this does not influence the generated DUGS. 

To test this, let's look at some examples of loiv correlations between benchmark 

and generated DUG. 

Take the Bucketsort benchmark for the random-access sequence ADT. Run- 

ning on the third data set, the correlations between the benchmark and two, of 
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ADT Mean Correlation 

between between Overall 

DUG & Benchmark DUG & DUG 

Queue 0.859 0.923 0.891 

RASeq 0.704 0.969 0.836 

Heap 0.694 0.999 0.846 

Table 7.13: Correlation coefficients for the efficiencies of implementations, com- 

paring a benchmark with a DUG evaluator. The DUG evaluator is evaluating 

DUGS with similar profiles to the profile of the DUG extracted from the bench- 

mark. The mean correlation between the benchmark and one run of the DUG 

evaluator is separated from the mean correlation between the different runs of 
the DUG evaluator. 

the three DUGs are very low, at -0.118 and 0.0109. The shadow profile for the 

benchmark reports an average size of 667. The shadow profiles for the two DUGS 

report average sizes of 12 and 15. However, the shadow profile for the third 

DUG reports an average size of 88. The correlation between this DUG and the 

benchmark is much higher at 0.794. Therefore, for this example at least, a higher 

correlation coincides with a closer average size. 

Take the Prim's minimum-cost spanning tree benchmark for the heap ADT. 

Running on the third data set, the correlations between the benchmark and all 

three DUGs are very low, at -0-250, -0.244 and -0.242. The average size for the 
benchmark is 239. The average size for the DUGs are 14,16 and 33. Again, this 

example shows low correlations for distant average sizes. 

In fact, almost every low correlation coincides with a large difference in av- 

erage size. To show this, Figure 7.6 plots the correlation coefficient against the 

percentage size difference (calculated as the difference in size, expressed as a per- 

centage of the larger size). Most of the low correlations have a high size difference, 

and most of the low size differences have high correlations. From this we deduce 

that an important datatype usage characteristic not caught in the profile is size. 
However, there are a lot of points with large size differences and high correla- 
tions, and from this we deduce that size is not always an important datatype 
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usage characteristic. 

7.3.3 Strictness Issues 

When an implementation evaluates a DUG, only the observations are demanded. 

As a result, some of the generations and mutations may not be forced. This 

depends on the strictness of the ADT implementation evaluating the DUG. This 

discrepancy between what is reportedly evaluated (ie. the DUG) and what is 

actually evaluated can cause the following crucial problem: The profile of a DUG 

may no longer represent the important aspects of the actual datatype usage. 

To estimate the average proportion of a DUG not evaluated, we evaluate 10 

DUGS for each of the three ADTS, queue, random-access sequence, and heap, and 

all of their implementations. For any DUG Do, we extract the DUG D, actually 

evaluated, by transforming a DUG evaluator for DUG extraction. We then repeat 

this process, obtaining D2, D3, etc. till we obtain a fixed point, that is, till 

Di = Dj+j. 

For each ADT, and for every combination Of DUG and implementation, we 

reach a fixed point on the second iteration, that is, D, = D2- 

Every Do has 1000 nodes. For queues, the mean difference in size from Do to 

D, is 5 nodes, and the maximum difference is 43 nodes. For any DUG Do, each 

queue implementation evaluates Do to the same degree, that is, D, is the same 

across all the implementations. We can account for the differences between the 

sizes of Do and D, entirely by the following two factors: 

* Unless we apply an observation to the result of a mutation, the mutation 

is not evaluated. 

9 The empty generator takes no arguments, so the DUG extraction shares 

every application of empty (see Section 4.4.3). 

For random-access sequences, the mean difference in size from Do to D, is 

55 nodes, and the maximum difference is 694 nodes. Apart from the two factors 

given above for queues, these differences in sizes also result from an additional 
factor: Consider n successive applications of cons to an empty list; if we apply 
head to the result of these applications, a sufficiently lazy implementation of 
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lists will only evaluate the last application of cons. For the implementations of 

a random-access sequence that we consider, only the Naive implementation is 

lazy enough for this factor to cause any additional difference. Most of the large 

differences in size comes from the two factors listed above for queues. 

For heaps, the mean difference in size from Do to D, is 37 nodes, and the 

maximum difference is 160 nodes. We can account for these differences in the 

same manner as random-access sequences, except that DUG extraction does not 

share every application of the empty generator. This results from the Ord context 

on empty. The context makes the DUG evaluator repeatedly e%-aluate empty 

applications. 

Comparing the profile of Do with the profile of DI, averaging across all of 
the DUGS of the three ADTS, each of the weights differ by less than 0.01, the 

mortality differs by about 0.05, the PMF differs by about 0.01, and the POF 

differs by about 0.35. So only the POF differs greatly. This is because neither 

DUG evaluation nor DUG extraction preserve the order of evaluation of mutations, 

only the order of evaluation of observations; DUG evaluation cannot enforce the 

order of mutations because of the privacy of the ADT framework combined with 

laziness (see Section 3.2.1); DUG extraction changes the order of mutations to fit 

the definition of a DUG (see Section 4.3.3). 

What these experiments do not reveal, is how the degree of evaluation of indi- 

vidual nodes differs across implementations. For example, the Naive implementa- 

tion of random-access sequences is lazy enough not to evaluate fully applications 

of update, unless an application of lookup or head demands it. This causes a 

surprising result in the analysis of the random-access sequence decision tree-see 

Section 7.1.4. 

7.3.4 Inaccurate '11-ees 

Some of Auburn's predictions of the best implementations for the real benchmarks 

of Section 7.2.1 are quite inaccurate. Is there any reason for these inaccuracies 

specific to the induction or pruning of trees? 

Consider the predictions for the implementations of random-access 

sequences-see Table 7.10. The small tree predicts the winning impleinenta- 
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tion for 10 out of the 16 combinations of benchmark and data set. For the KMC 

benchmark however, it predicts the wrong implementation for three out of the 

four data sets. Looking at the profile of the KMC benchmark running on data 

set three, we find 

update = 0, lookup = 0.046, size = 63 

The small tree for random-access sequences in Figure 7.3 predicts the Naive 

implementation as the winner for this profile. This prediction would probably 
be correct for a smaller size, or a smaller lookup weight, but this detail has 

been pruned out of the tree. The most likely deciding factor between Naive and 
ThreadSkewBin is the combination of lookup and size. A more accurate tree 

of the same size might be obtained if the decision tree could employ tests on 

arithmetic combinations of attributes. For example, lookup * size < 1. However, 

as Quinlan points out in Section 10.2 of [46], introducing the possibility of such 

tests can slow down the process of induction by an order of magnitude. 
For another example of the need for combinations of attributes, consider the 

DFS benchmark running on data set 1. The profile for this run shows 

update = 0.469, lookup = 0.531, size =9 

The small tree for random-access sequences in Figure 7.3 predicts the 

ThreadSkewBin implementation as the winner for this profile. Again, the most 
likely deciding factor between the "L and ThreadSkewBin implementations for 

this region of the profile space is the combination of update and size. For any of 

the other data sets, the size is above the 28.014 used in a test in the small tree, 

and the tree correctly predicts "L as the winner. This test is accurate so long 

as update is not very high, as it is with the profile above. However, again, this 

detail has been pruned out of the tree. A more accurate test might be something 
like update * size < 5. 

There are only two other bad predictions by Auburn: the PMC benchmark 

running on data set 3, and the Quicksort benchmark running on data set 3. The 

bad prediction for the PMC benchmark came from using the recommended ac- 

curate tree. This tree is too large to analyse (with 17 tests), and so we do not 
discuss this prediction. The bad prediction for the Quicksort benchmark reflects 
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Sampling Time (s) 

Interval (s) Naive Braun 

360 249 243 

60 196 240 

10 100 1 
243 

Table 7.14: Times taken to run the Quicksort benchmark using the Naive and 
Braun random-access sequence implementations. The benchmark was compiled 
for heap profiling, and run using different heap sampling intervals. The heap size 
is set at 80Mb, and a constructor profile is requested. 

a very pathological result: For a benchmark with no random-access operations, 

the Braun tree is almost twice as fast as the Naive list! After compiling the 

benchmark with heap profiling, running the benchmark for each implementation 

with different sampling rates reveals some odd behaviour. From Table 7.14, we 

see that for a large sampling interval, the Braun tree is faster. As the sampling 

interval decreases, the Braun time remains fixed, but the Naive time reduces 
dramatically. When the run-time system takes a sample of the heap, it also per- 
forms a garbage collection. Therefore, as the heap sampling interval decreases, 

more garbage collections happen. In the original run of the benchmark without 

profiling, no garbage collections happened at all when using the Naive implemen- 

tation. Given this, the most probable explanation is that without many garbage 

collections, the Naive implementation suffers from some space problem. This 

result is peculiar to the compiler nhc13. Using the compiler IIBC [18], Naive is 

much faster than Braun, regardless of how many garbage collections happen, as 

expected. 

7.4 Summary 

For several competing implementations of three ADTS, we have used Auburn to 

check for their correctness, to fine-tune the code, and to give advice on when to 

use which, according to the datatype usage. The user of Auburn has to do very 
little to achieve all this, as most of it is automated. 
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Furthermore, we have found Auburn's advice to be quite good when applied 

to real benchmarks, making choices within 10% of the best implementation for 

queues and heaps, and within 30% of the best implementation for random-access 

sequences. We have also examined possible sources of inaccuracy in Auburn's 

advice, and identified the main problems: the inability Of DUG extraction to 

record the values of type a (where the type of a version is T a), the lack of 
information on the degree of evaluation of individual applications of operations, 

and the lack of information about the space behaviour of a benchmark. 



204 CHAPTER 7. RESULTS 



Chapter 8 

Conclusions 

In Chapter 1, we noted that the empirical performance of functional data struc- 
tures has been neglected in the existing literature. From this we decided to the 

develop the theory and practice of benchmarking functional data structures. We 

shall now summarise the progress of this thesis towards this goal. 

8.1 Benchmarking Theory 

There is no previous literature on how to benchmark functional data structures 
in a structured manner. Neither is there any attempt to define "the use of a data 

structure", despite its importance in the efficiency of data structures. 

In Chapter 3, we have presented a formally defined model, a DUG, to capture 
how an application uses a data structure. Chapter 3 also defined the profile of a 

DUG, summarising the most importance aspects of datatype usage. This allows 

us to talk about the efficiency of data structures with reference to a few important 

aspects of datatype usage. 

Previously, anyone wanting to benchmark some data structures would have to 

create the benchmarks manually, mostly without knowing how these benchmarks 

used the data structures. In Chapter 4, we have presented a method for creating 

a benchmark from a profile of the datatype usage. 

Some compilers support time profiling that records how often a function is 

called. However, there is no way to extract other aspects of datatype usage. In 

Chapter 4 we have presented a method for extracting a profile from an application. 
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In Chapter 5 we discussed how to use the algorithms of Chapter 4 to bench- 

mark some competing data structures in a structured manner. After proposing 

a few alternatives, -sve chose to use the induction of a decision tree from the re- 

sults of a random sample of generated benchmarks. The decision tree presents a 

summary of which data structure is best according to the datatype usage. 

In summary, previous attempts to benchmark data structures relied on hand- 

picked benchmarks, giving results biased towards an unknown datatype usage. 
This thesis describes a way to automate the production of results qualified by ýa 

description of datatype usage. 

8.2 Benchmarking Practice 

As stated above, previously, the only way to measure the efficiencies of competing 
data structures was to find, code, and test benchmarks yourself. In Chapter 7 

we applied this method to several implementations of three different ADTs. This 

proved to be very time-consuming and very tedious. Further, it is not clear how 

each benchmark uses a data structure. So the results of this manual benchmark 

ing tell us little more than which implementation was best for those particular 
benchmarks. 

To improve on this situation, Nve have built a too], called Auburn, which takes 

much less time to use, and produces much more useful results. In Chapter 7, we 
have used Auburn on the same implementations of the same three ADTS. Using 

Auburn took much less effort than the manual creation of benchmarks. We have 

produced a decision tree for each ADT, and from these we gave advice on when 
to use which implementation. This advice accurately predicted the results of the 

manual benchmarking. 

We also showed in Chapter 7 that Auburn is very useful for finding bugs in 

the coding of implementations, and for testing the effect of minor modifications 

to this code. 
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8.3 Criticism 
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Taking a step back, we can ask the following question: Does this thesis achieve its 

goals? We list the main points both in favour of and against this thesis, starting 

with those in favour. 

4P Benchmarking functional data structures is a subject with very little cover- 

age in the existing literature, and this thesis makes some key steps towards 

understanding the important issues, including how to define datatype us- 

age, and how to use this definition to conduct a benchmarking experiment. 

* Auburn is a useful tool for benchmarking new and existing data structures. 

We have demonstrated this for 23 different data structures across 3 different 

ADTs. 

* Anyone wanting to use a queue, a random-access list, or a heap may use Sec- 

tion 7.1.5 to decide when to use which implementation. This will improve 

the efficiency of their application. 

Here are the main points against this thesis: 

9 Auburn is not very user friendly and rather involved. For example, the user 

has to learn about and check the shadow data structure and profile space. 

Section 7.3 revealed some inaccuracies in Auburn, in particular its treat- 

ment of strictness, space behaviour, and values of type a (where a version 
has type T a) - 

* We do not consider the effect on the benchmarking results of changing 
language, operating system, or compiler. In particular, the advice of Sec- 

tion 7.1.5 may not apply to other systems. 

* Neither do we consider the effect on the benchmarking results of changing 

the profile distribution. Is the distribution we use fair? 

We consider these criticisms in the following section. 
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8.4 Future Work 

CHAPTER S. CONCLUSIONS 

Drawing on the previous section, here are the main areas for future Nvork. 

Relax the restrictions on the operations that Auburn can benchmark. In 

particular, include higher-order operations, and operations over more than 

one type. For example, Auburn cannot currently benchmark the following 

operations: 

fold :: (a -4 b -+ b) -+ b -+ RASeq a -+ b 

fromList :: [a] -+ RASeq a 

* Add tests on combinations of attributes to decision trees. This should 
improve the accuracy of the decision trees, but may slow down the induction 

process considerably. 

9 Examine the effect of changing language, operating system, and compiler on 

the benchmarking results Auburn produces. In particular, does the advice 

of Section 7.1.5 apply to other systems? 

* Examine the fairness of the profile distribution. 

9 Incorporate space information into Auburn's benclimarking procedures. 

Currently Auburn only measures time. 

* Examine the accuracy of Auburn in greater detail, explain the inaccuracies 

satisfactorily, and make appropriate improvements to Auburn to reduce 

these inaccuracies. 

8.5 The Future 

I have a dream that one day we will have a library of implementations of data 

structures, recommended according to datatype usage. This thesis is one step 

towards that dream. 
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Source Code of Implementations 

Figures A. 1 through A. 28 give the implementations of the data structures in 

Chapter 2 used in the benchmarking of Section 7.1.4. 

module BankersQueue (Queue, empty, snoc, tail, head, isEmpty) where 

import Prelude hiding (head, tail) 

data Queue a= Queue [a] Int [a] Int 

empty = Queue 0000 

snoc (Queue f lenf r lenr) x= queue f lenf (x: r) (lenr+l) 

tail (Queue (x: f) lenf r lenr) = queue f (lenf-1) r lenr 

head (Queue (x: f) lenf r lenr) =x 

queue f lenf r lenr 
lenr <= lenf = Queue f lenf r lenr 
otherwise = Queue (f++reverse r) (lenf+lenr) [1 0 

isEmpty (Queue 0 lenf r lenr) = True 
isEmpty 

-= False 

Figure A. 1: Bankers queue implementation. 
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module BatchedQueue (Queue, empty, snoc. tail, bead, isEmpty) where 

import Prelude hiding (head, tail) 

data Queue a= Queue [a] [a] 

empty = Queue 00 

snoc (Queue 0 
-) x Queue Cxl 0 

snoc (Queue f r) x Queue f (x: r) 

tail (Queue (x: f) r) - queue fr 

head (Queue (x: f) r) -x 

isEmpty (Queue D r) = True 
isEmpty 

-= 
False 

queue 0r= Queue (reverse r) 
queue fr= Queue fr 

Figure A. 2: Batched queue implementation. 

module BootstrappedQueue (Queue, empty, snoc, head, tail, isEmpty) where 

import Prelude hiding (head, tail) 

data Queue a Empty 
Queue [a] (Queue [a]) Int [a] Int 

empty = Empty 

snoc Empty x- Queue [xl Empty I (1 0 
snoc (Queue fm lenFM r lenR) x- queue fm lenFM (x: r) (leaR+l) 

tail (Queue Wf) m lenFM r lenR) - queue fm (lenFM-1) r lenR 

head (Queue (x: f) m lenFM r lenR) -x 

queue fm lenFM r lenR 
lenR <= lenFM - checkF fm lenFM r lenR 
otherwise - checkF f (snoc m (reverse r)) (lenFM+lenR) 00 

checkF D Empty lenFM r lenR - Empty 
checkF 0 m, lenFM r lenR Queue (head m) (tail m) lenFM r lenR 
checkF fm lenFM r lenR Queue fm lenFM r lenR 

isEmpty Empty - True 
isEmpty 

-- False 

Figure A. 3: Bootstrapped queue implementation. 
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module ImplicitQueue (Queue. empty, snoc, tail, head, isEmpty) where 

import Prelude hiding (head, tail) 

data ZeroOrOne a ZeroInOne OneInOne a 
data OneOrTwo a OneInTwo a TwoInTwo aa 
data Queue a Shallow (ZeroOrOne a) 

Deep (OneOrTwo a) (Queue (OneOrTwo a)) (ZeroOrOne a) 

empty = Shallow ZeroInOne 

snoc (Shallow ZeroInOne) x= Shallow (OneInOne x) 
snoc (Shallow (OneInOne x)) y= 

Deep (TwoInTwo x y) (Shallow ZeroInOne) ZeroInOne 

snoc (Deep fm ZeroInOne) x= Deep fm (OneInOne x) 
snoc (Deep fm (OneInOne x)) y= 

Deep f (snoc m (TwoInTwo x y)) ZeroInOne 

tail (Shallow (OneInOne x)) = Shallow ZeroInOne 
tail (Deep (TwoInTwo x y) m r) = Deep (OneInTwo y) mr 
tail (Deep (OneInTwo x) (Shallow ZeroInOne) r) = Shallow r 
tail (Deep (OneInTwo x) m r) = pull mr 

pull (Shallow (OneInone xy)) r= Deep xy (Shallow ZeroInOne) r 
pull (Deep (TwoInTwo xy z) m iR) oR = 

Deep xy (Deep (OneInTwo z) m iR) oR 
pull (Deep (OneInTwo xy) (Shallow ZeroInOne) iR) oR 

Deep xy (Shallow iR) oR 
pull (Deep (OneInTwo xy) m iR) oR = Deep xy (pull m iR) oR 

head (Shallow (OneInOne x)) x 
head (Deep (OneInTwo x) m r) x 
head (Deep (TwoInTwo x y) m r) =x 

isEmpty (Shallow ZeroInOne) = True 
isEmpty 

-= 
False 

Figure AA: Implicit queue implementation. 
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module MultiheadQueue (Queue, empty, snoc, tail, bead. isEmpty) where 

import Prelude hiding (head, tail) 

data Queue a= Queue Bool Int Int [a] [a] [a] [a] [a] [a] 

empty = Queue False 000 [1 [1 [1 [1 [1 

snoc (Queue False 0 copy ht lh h' t' hr) x- 
onestep (onestep (Queue True 00h (x: t) h00 [D) 

snoc (Queue False lendiff copy ht lh h' t' hr) x 
Queue False (lendiff-1) 0h (x: t) [] [] [] [] 

snoc (Queue recopy lendiff copy ht lh h' t' hr) x 
onestep (onestep 

(Queue True (lendiff-1) copy ht lh h' (x: tl) hr)) 

tail (Queue False 0 copy (x: h) t lh h' t' hr) 
onestep (onestep (Queue True 00hth [I 

tail (Queue False lendiff copy (x: h) t lh h' t' hr) 
Queue False (lendiff-1) 0ht [I [I [I [I 

tail (Queue recopy lendiff copy ht (x: lh) h' t' hr) 
onestep (onestep (Queue True lendiff (copy-1) ht lh h' t' hr)) 

head (Queue False lendiff copy (x: h) t lh h' t' hr) x 
head (Queue recopy lendiff copy ht (x: lh) h' t' hr) x 

onestep qQ(Queue False lendiff copy ht lh h' t' hr) -q 
onestep (Queue recopy lendiff 0 [1 0 lh h' t, hr) 

Queue False lendiff 0 h' t' [I [] [] [] 
onestep (Queue recopy lendiff I [] 0 lh h' t' Whr)) 

Queue False (lendiff+1) 0 (x: hl) t' [] [] [] [] 
onestep (Queue recopy lendiff copy [I [I lh h' t' (x: bLr)) 

Queue True (lendiff+1) (copy-1) 00 lh Wh') t' hr 
onestep (Queue recopy lendiff copy 0 WO lh h' t' hr) 

Queue True (lendiff+l) copy 0 [1 lh Whl) t' hr 
onestep (Queue recopy lendiff copy (x: h) (y: t) lh h' t' hr) 

Queue True (lendiff+1) (copy+1) ht lh (y: hl) t' (x: hr) 

isEmpty (Queue False lendiff copy (x: h) t lh h' t' hr) False 
isEmpty (Queue recopy lendiff copy ht (x: lh) h' t' hr) False 
isEmpty -= True 

Figure A. 5: Multihead queue implementation. 
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module PhysicistsQueue (Queue, empty, snoc, tail, head, isEmpty) where 

import Prelude hiding (head, tail) 

data Queue a- Queue [a] [a] Int [a] Int 

empty = queue 000G0 

snoc (Queue wf lenF r lenR) x= queue wf lenF (x: r) (lenR+l) 

tail (Queue (x: w) f lenF r lenR) = queue wP (lenF-1) r lenR 
where (xl: fl) =f 

head (Queue (x: w) f lenF r lenR) =x 

queue wf lenF r lenR 
lenR <= lenF = checkW wf lenF r lenR 

otherwise = checkW f (f++reverse r) (lenF+lenR) 00 

checkW [I f lenF r lenR Queue ff lenF r lenR 
checkW wf lenF r lenR Queue wf lenF r lenR 

isEmpty (Queue [I f lenF r lenR) = True 
isEmpty -= 

False 

Figure A. 6: Physicists queue implementation. 
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module RealTimeQueue (Queuesempty, snoc, tail, head, isEmpty) where 

import Prelude hiding (head, tail) 

data Queue a= Queue [a] [a] [a] 

empty Queue a 
empty Queue D00 

snoc :: Queue a -> a Queue a 
snoc (Queue fr s) x queue f (x: r) s 

tail :: Queue a -> Queue a 
tail (Queue (x: f) r s) = queue frs 

head :: Queue a -> a 
head (Queue (x: f) r s) =x 

queue :: [a] -> [a] -> [a] -> Queue a 
queue fr (x: s) = Queue frs 
queue frD= Queue P [I P 

where P= rotate fr 

rotate :: [a] -> [a] [a] -> [a] 
rotate 0 (y: r) a=ya 
rotate (x: f) (y: r) ax: rotate fr (y: a) 

isEmpty :: Queue a -> Bool 
isEmpty (Queue 0r s) = True 
isEmpty 

-= 
False 

Figure A. 7: RealTime queue implementation. 
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module AVLRASeq (RASeq, empty, cons, tail, update, head, isEmpty, lookup) 
where 

import Prelude hiding (tail, head, lookup) 

data Balance =LIBIR 
data RASeq a= Empty 

I Node Balance Int (RASeq a) a (RASeq a) 

empty = Empty 

cons x xs = case ins xs of (b, t) -> t 
where 
ins Empty = (True. Node B0 Empty x Empty) 
ins (Node bn1y r) 

case ins 1 of 
(False, 11) -> (False, Node b (n+l) 11 y r) 
L'11) -> 

case b of 
R (False, Node B (n+l) 11 y r) 
B (True, Node L (n+l) 11 y r) 

case 11 of 
Node bm 11 z rl 

(False, Node B m. 11 z (Node B (n-m) r, y 

tail xs = case del xs of (b, t) -> t 
where 
del (Node b01x r) = (True, r) 
del (Node bn1x r) = 

case del 1 of 
(False, 11) -> (False, Node b (n-1) 11 x r) 
L'11) -> 

case b of 
L (True, Node B (n-1) 11 x r) 
B (False, Node R (n-1) 11 x r) 

case r of 
Node Rm 111 y r" 

(True, Node B (n+m) (Node B (n-1) 11 x 1)') 
y r") 

Node -m 111 y r" -> 
(False, Node L (n+m) (Node R (n-1) 11 x V)) 

y r)') 

Figure A. 8: AVL random-access sequence implementation (part I). 
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update (Node bn1x r) iy 
i == n= Node bn1yr 
i<n= Node bn (update 1i y) xr 
otherwise = Node bn1x (update r U-n-1) y) 

head (Node b01x r) =x 
head (Node bn1x r) = head 1 

isEmpty Empty = True 
isEmpty 

-= 
False 

lookup (Node bn1x r) i 
i == nX 
i<n lookup 1i 
otherwise lookup r (i-n-1) 

Figure A. 9: AVL random-access sequence implementation (part II). 

module AdamsRASeq (RASeq, empty. cons, tail, update, head, isEmpty. lookup) 
where 

import Prelude hiding (head, tail, lookup) 

data RASeq a Empty 
Branch Int Int (RASeq a) a (RASeq a) 

empty = Empty 

isEmpty Empty = True 
isEmpty 

-= 
False 

lookup (Branch n nl 1x r) i 
i< nl lookup 1i 
i == nl x 
otherwise = lookup r (i-nl-I) 

update (Branch n nl 1x r) iy 
i< nl Branch n nl (update 1i y) xr 
i == nl Branch n nl 1yr 
otherwise - Branch n nl 1x (update r (i-nl-l) y) 

cons x Empty = Branch 10 Empty x Empty 
cons x (Branch 

--1y r) = balBranch (cons x 1) yr 

tail (Branch Empty y r) -r 
tail (Branch 1y r) - balBranch (tail 1) yr 

head (Branch 
- Empty y r) -y 

head (Branch 
-1y r) = head 1 

Figure A. 10: Adams random-access sequence implementation (part I). 
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branch 1xr= Branch (I + sizeL + size r) sizeL 1xr 
where sizeL = size 1 

singleL 1x (Branch 
-- rl y rr) = branch (branch 1x rl) y rr 

doubleL 1x (Branch 
-- 

(Branch 
-- rll y r1r) z rr) 

branch (branch 1x r1l) y (branch rlr z rr) 

singleR (Branch 
-- 

11 x lr) yr= branch 11 x (branch lr y r) 

doubleR (Branch 
-- 

11 x (Branch 
-- 

lrl y lrr)) zr 
branch (branch 11 x lrl) y (branch lrr z r) 

sigma = 

size Empty -0 
size (Branch nn 

balBranch 1xr 
sizeL + sizeR <2= branch 1xr 
sizeR > sigma sizeL = 

let (Branch rl - rr) =r 
in if size rl < size rr 

then singleL 1xr 
else doubleL 1xr 

sizeL > sigma sizeR 
let (Branch 11 

- 
lr) 1 

in if size lr < size 11 
then singleR 1xr 
else doubleR 1xr 

otherwise = branch 1xr 

where sizeL = size 1 
sizeR = size r 

Figure A. 11: Adams random-access sequence implementation (part II). 
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module BraunRASeq (RASeq, empty. cons, tail, update, head, isEmpty, lookup) 

where 

import Prelude hiding (tail, head, lookup) 

data FLASeq a Empty 
Node (RASeq a) a (RASeq a) 

empty = Empty 

cons x Empty = Node Empty x Empty 
cons x (Node 1y r) - Node (cons y r) x 

tail (Node 1x r) = join 1r 

where join Empty t- Empty 
join (Node 1x r) t- Node tx (join 1 r) 

update (Node 1x r) 0y- Node 1yr 

update (Node 1x r) ny 
n 'mod' 2-0- Node 1x (update rM 'divl 2)-l) 

otherwise - Node (update 1 ((a-I) ldivl 2) y) xr 

head (Node 1x r) -x 

isEmpty Empty = True 
isEmpty t= False 

lookup (Node 1x r) 0x 
lookup (Node 1x r) nn 'mod' 2 -- 0- lookup rM Idiv' 2)-1) 

otherwise - lookup 1 M-1) IdivI 2) 

Figure A. 12: Braun random-access sequence implementation. 
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module ElevatorRASeq (RASeq, empty, cons, tail, update, head, isEmpty, lookup) 
where 

import Prelude hiding (tail, head, lookup) 

data RASeq a= Floor Int [a] (RASeq a) 

floorSep =5 

empty = Floor 00 empty 

cons x sQ(Floor n xs yss) 
n< floorSep = Floor (n+1) (x: xs) yss 
otherwise = Floor 1 [x] s 

tail (Floor n (x: xs) yss) 
n>I= Floor (n-1) xs yss 
otherwise = yss 

update (Floor n xs yss) iy 
n <= i= Floor n xs (update yss (i-n) y) 
otherwise = Floor n (updateList xs i y) yss 

updateList (x: xs) 0y=y: xs 
updateList (x: xs) ny=x: updateList xs (n-1) y 

head (Floor n (x: xs) yss) =x 

isEmpty (Floor nD yss) = True 
isEmpty 

-= 
False 

lookup (Floor n xs yss) i 
n <= i= lookup yss U-n) 

otherwise = lookupList xs i 
lookupList (x: xs) 0=x 
lookupList (x: xs) n= lookupList xs (n-1) 

Figure A. 13: Elevator random-access sequence implementation. 
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module NaiveRASeq (RASeq, empty. cons, tail, update, head, isEmpty, lookup) 
where 

import Prelude hiding (tail, head, lookup) 

newtype RASeq a= RASeq [a] 

empty = RASeq 

cons x (RASeq xs) = RASeq (x: xs) 

tail (RASeq (x: xs)) = RASeq xs 

update (RASeq xs) ny- RASeq (updateList xs n y) 
updateList (x: xs) 0y-y: xs 
updateList (x: xs) ny-x: updateList xs (n-1) y 

head (RASeq (x: xs)) -x 

isEmpty (RASeq [1) - True 
isEmpty 

-- 
False 

lookup (RASeq xs) i- xs 11 i 

Figure A. 14: Naive random-accm sequence implementation. 
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module SkewBinRASeq (RASeq, empty, cons, tail, update, head, 
isEmpty, lookup) where 

import Prelude hiding (tail, head, lookup) 

data RATree a Leaf aI Node (RATree a) a (RATree a) 
data RASeq a Nil 

Root Int (RATree a) (RASeq a) 

empty - Nil 

cons x (Root sizel 1 (Root size2 r rest)) 
I sizel == size2 = Root (I+sizel+size2) (Node 1x0 rest 

cons x xs = Root I (Leaf x) xs 

tail (Root size (Leaf x) rest) = rest 
tail (Root size (Node 1x r) rest) 

Root size' 1 (Root size' r rest) 
where size' = size 'div' 2 

update (Root size t rest) iy 
i< size = Root size (treeUpdate size ti y) rest 
otherwise = Root size t (update rest U-size) y) 

treeUpdate size (Leaf x) 0y= Leaf y 
treeUpdate size (Node 1x r) 0y= Node 1yr 
treeUpdate size (Node 1x r) iy 

i <= size' = Node (treeUpdate size' 1 U-1) y) xr 
otherwise = Node 1x (treeUpdate size' r (i-l-sizel) y) 

where size' = size 'div' 2 

head (Root size (Leaf x) rest) =x 
head (Root size (Node 1x r) rest) =x 

isEmpty Nil = True 
isEmpty 

-= 
False 

lookup (Root size t rest) i 
i< size = treeLookup size ti 
otherwise = lookup rest (i-size) 

treeLookup size (Leaf x) 0=x 
treeLookup size (Node 1x r) 0=x 
treeLookup size (Node 1x r) i 

i <= size' = treeLookup size' 1 U-1) 

otherwise = treeLookup size' r U-1-sizel) 

where size' = size 'div' 2 

Figure A. 15: SkewBin random-access sequence implementation. 
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module SlowdownRASeq (RASeq, empty, cons, tail, update, head, 
isEmpty, lookup) where 

import Prelude hiding (tail, head, lookup) 

data RASeq a RedOrGreen (Prefix (Pairs a)) (RASeq a) 
Yellows [Prefix (Pairs a)] (RASeq a) 
Deepest (Prefix (Pairs a)) 

data Pairs a Elem aI Pair (Pairs a) (Pairs a) 
data Prefix a Zero I One aI Two aaI Three aaaI Four aaaa 

pcons a Zero - One a 
Pcons a (One b) - Two ab 
Pcons a (Two b c) = Three abc 
Pcons a (Three bc d) - Four abcd 

phead (One a) =a 
phead (Two a b) -a 
phead (Three ab c) a 
phead (Four abc d) a 

ptail (One a) = Zero 
ptail (Two a b) - One b 
ptail (Three ab c) - Two bc 
ptail (Four abc d) - Three bcd 

inPrefix size pi-i< plength size p 

primcons x (Deepest p) - Deepest (pcons x p) 
primcons x (RedOrGreen p (Yellows ps rest)) 

Yellows (pcons xp: ps) rest 
primcons x (RedOrGreen p rest) Yellows Epcons x p] rest 
primcons x (Yellows [p] rest) RedorGreen (pcons x p) rest 
primcons x (Yellows (p: ps) rest) - 

RedOrGreen (pcons x p) (Yellows ps rest) 

primhead (Deepest p) - phead p 
primhead (RedOrGreen p rest) - phead p 
primhead (Yellows (p: ps) rest) - phead p 

primtail (Deepest p) - Deepest (ptaii p) 
primtail (RedOrGreen p, (Yellows ps rest)) 

Yellows (ptail p: ps) rest 
primtail (RedOrGreen p rest) Yellows [ptail p] rest 
primtail (Yellows [p] rest) RedOrGreen (ptail p) rest 
primtail (Yellows (p: ps) rest) - 

RedOrGreen (ptail p) (Yellows ps rest) 

Figure A. 16: Slowdown random-access sequence implernentation (part 1). 
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fix (Deepest (Four abc d)) = 
RedOrGreen (Two a b) (Deepest (One (Pair c d))) 

fix (Yellows ps rest) = Yellows ps (fix rest) 
fix (RedOrGreen Zero (Deepest Zero)) = Deepest Zero 
fix (RedOrGreen Zero rest) = RedOrGreen (Two a b) (primtail rest) 

where Pair ab= primhead rest 
fix (RedOrGreen (Four abc d) rest) 

RedOrGreen (Two a b) (primcons (Pair c d) rest) 
fix xs = xs 

empty = Deepest Zero 

update xs ix= update' I xs ix 

update' size (Deepest p) ix= Deepest (pupdate size pi x) 
update' size (RedOrGreen p rest) ix 

inPrefix size pi= 
RedOrGreen (pupdate size pi x) rest 

otherwise = 
RedOrGreen p (update, (size*2) rest (i - plength size p) x) 

update' size (Yellows 0 rest) ix= 
Yellows [] (update' size rest i x) 

update' size (Yellows (p: ps) rest) ix 
inPrefix size pi= Yellows (pupdate size pix: ps) rest 
otherwise = Yellows (p: ps') rest' 

where (Yellows ps' rest') = update' (size*2) (Yellows ps rest) 
U- plength size p) x 

pupdate size (One a) ix= One (pupdatel aix (size Idiv' 2)) 

pupdate size (Two a b) ix 
i< size = Two (pupdatel aix (size 'div' 2)) b 

otherwise = Two a (pupdatel bU- size) x (size 'div' 2)) 

pupdate size (Three ab c) ix 
i< size 
Three (pupdatel aix (size 'div' 2)) bc 

i< size*2 = 
Three a (pupdatel b (i - size) x (size 'div' 2)) c 

otherwise = 
Three ab (pupdatel c (i - size*2) x (size 'divl 2)) 

pupdate size (Four abc d) ix 
i< size 

Four (pupdatel aix (size 'div' 2)) bcd 
i< size*2 = 
Four a (pupdatel bU- size) x (size 'div' 2)) cd 

i< size*3 = 
Four ab (pupdatel c (i - size*2) x (size 'div' 2)) d 

otherwise = 
Four abc (pupdatel dU- size*3) x (size 'div' 2)) 

Figure A. 17: Slowdown random-access sequence implementation (part II). 
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pupdatel (Elem a) 0x mid - Elem x 
pupdatel (Pair xs ys) ix mid 

i< mid = Pair (pupdatel xs ix (mid Idivl 2)) ys 
otherwise = Pair xs (pupdatel ys U-mid) x (mid Idivl 2)) 

cons x xs = fix (primcons (Elem x) xs) 
head xs = case primhead xs of Elem x -> x 
tail xs = fix (primtail xs) 

isEmpty (Deepest Zero) - True 
isEmpty 

-= 
False 

lookup xs i= lookup' I xs i 

lookup' size (Deepest p) i- plookup size pi 
lookup' size (RedOrGreen p rest) i 

inPrefix size pi- plookup size pi 
otherwise - lookup' (size*2) rest (i - plength size p) 

lookup' size (Yellows 0 rest) i- lookup' size rest i 
lookup' size (Yellows (p: ps) rest) i 

inPrefix size pi plookup size pi 
otherwise 
lookup' (size*2) (Yellows ps rest) (i-plength size p) 

plength size Zero =0 
plength size (One a) - size 
plength size (Two a b) - size*2 
plength size (Three ab c) size*3 
plength size (Four abc d) size*4 

plookup size (One a) i- plookupl ai (size 'div' 2) 
plookup size (Two a b) i 

i< size plookupl ai (size Idivl 2) 
otherwise plookupl bU- size) (size Idiv' 2) 

plookup size (Three ab c) i 
i< size - plookupl ai (size Idivl 2) 
i< size*2 - plookupl bU- size) (size 'div' 2) 
otherwise - plookupl c (i - size*2) (size Idiv' 2) 

plookup size (Four abc d) i 
i< size - plookupl ai (size Idivl 2) 
i< size*2 = plookupl bU- size) (size Idiv' 2) 
i< size*3 - plookupl cU- size*2) (size Idivl 2) 
otherwise - plookupl dU- size*3) (size Idiv' 2) 

plookupl (Elem a) 0 mid -a 
plookupl (Pair xs ys) i mid 

i< mid - plookupl xs i (mid Idivl 2) 
otherwise - plookupl ys U-mid) (mid 'divl 2) 

Figure A. 18: Slowdown random-access sequence implementation (part 111). 
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module ThreadSkewBinRASeq (RASeq, empty, cons, tail, update, head, 
isEmpty, lookup) where 

import Prelude hiding (tail, head, lookup) 

data RASeq a Empty 
Cons a (RASeq a) 
Node a (RASeq a) Int (RASeq a) 

empty = Empty 

lookup (Cons x xs) 0=x 
lookup (Cons x xs) i= lookup xs U-1) 
lookup (Node x xs r xsI) 0=x 
lookup (Node x xs r xsI) i 

i<r= lookup xs (i-1) 

otherwise = lookup xsI U-r) 

update (Cons x xs) 0y= Cons y xs 
update (Cons x xs) iy= Cons x (update xs (i-1) y) 
update (Node x xs r xsl) 0y= Node y xs r xsl 
update (Node x xs r xsl) iy= 

case update xs U-1) y of 
xsQ(Cons - 

(Cons 
- xsl)) -> Node x xs 3 xs' 

xsQ(Node --- 
(Node 

--- xsl)) -> Node x xs r xs' 

cons x xsQ(Node xt xsl rl (Node x2 xs2 r2 xs3)) 
I rl - r2 = Node x xs (I+rl+r2) xs3 

cons x xsQ(Cons - 
(Cons 

- xsl)) = Node x xs 3 xs' 
cons x xs = Cons x xs 

head (Cons x xs) =x 
head (Node x xs r xsl) =x 

isEmpty Empty = True 
isEmpty xs = False 

tail (Cons x xs) = xs 
tail (Node x xs r xsl) = xs 

Figure A. 19: ThreadSkewBin random-access sequence implementation. 
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module BinomialHeap (Heap, empty, isEmpty, insert, merge, findMin, 
deleteMin) where 

data Ord a => Tree a- Node Int a [Tree a] 
newtype Ord a => Heap a- Heap [Tree a] 

rank (Node rx0-r 

root (Node rx c) =x 

link tIO(Node r x1 cl) t2Q(Node - x2 c2) 
if x1 <= x2 then Node (r+1) xI (t2: cl) 
else Node (r+1) x2 (tl: c2) 

insTree t [I = [t] 
insTree t tsQ(tl: ts') 

if rank t< rank t' then t: ts else insTree (link t t') ts' 

mrg tsI 0= tsl 
mrg 0 ts2 = ts2 
mrg tsl(D(tl: tsll) ts2C(t2: ts2l) 

rank tl < rank t2 - tl : mrg ts1' ts2 
rank t2 < rank tI - t2 : mrg tsl ts2l 
otherwise = insTree (link tI t2) (mrg tsIl ts2l) 

removeMinTree [t] - (t, [1) 

removeMinTree (t: ts) - 
if root t< root t' then (t, ts) else (t', t: ts') 
where (t', ts') - removeMinTree ts 

empty - Heap 

isEmpty (Heap ts) - null ts 

insert x (Heap ts) - Heap UnsTree (Node 0x [1) ts) 

merge (Heap tsl) (Heap ts2) - Heap (mrg tsl ts2) 

findMin (Heap ts) root t 
where (t, 

-) removeMinTree ts 

deleteMin (Heap ts) - Heap (mrg (reverse tsl) ts2) 
where (Node 

_x tsl, ts2) - removeMinTree ts 

Figure A. 20: Binomial heap implementation. 
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module BootSkewBinHeap (Heap, empty, isEmpty, insert, merge, findMin, 
deleteMin) where 

data Ord a => Heap a Empty 
Root a (OldHeap (Heap a)) 

instance Ord a => Eq (Heap a) where 
Empty == Empty = True 
(Root x -) == (Root yx == y 

- == -= 
False 

instance Ord a => Ord (Heap a) where 
compare (Root x -) 

(Root y _) = compare xy 

empty = Empty 

isEmpty Empty = True 
isEmpty 

-= 
False 

merge p Empty =p 
merge Empty q=q 
merge (Root x p) (Root y q) 

X <= y= Root x (oldInsert (Root y q) p) 
otherwise = Root y (oldInsert (Root x p) q) 

insert x Empty = Root x oldEmpty 
insert xp- merge (Root x oldEmpty) p 

findMin (Root x -) =x 

deleteMin (Root x p) 
oldIsEmpty p Empty 
otherwise = Root y (oldMerge ql q2) 

where Root y ql oldFindMin p 
q2 oldDeleteMin p 

Figure A. 21: BootSkewBin heap implementation (part I). 



228 APPENDIX A. SOURCE CODE OF IMPLEMENTATIONS 

newtype Ord a -> OldHeap a- OldHeap [Tree a] 
data Ord a => Tree a= Node Int a [a] [Tree a] 

rank (Node rx xs 0-r 

root (Node rx xs 0-x 

link t1Q(Node r xI xsI cl) t2Q(Node - x2 xs2 c2) 
if xI <= x2 then Node (r+I) xI xsI (t2: cl) 
else Node (r+1) x2 xs2 (tl: c2) 

skewLink x tl t2 - 
let Node ry ys c- link tI t2 
in if x <- y then Node rx (y: ys) c else Node ry (x: ys) c 

insTree t0= (t] 
insTree t tsC(tl: ts') 

if rank t< rank t' then t: ts else insTree (link t t') ts' 

mrg tst 0- tsl 
mrg 0 ts2 = ts2 
mrg tslQ(tl: tsll) ts2042: ts2l) 

rank tl < rank t2 - tI : mrg tsIl ts2 
rank t2 < rank tl - t2 : mrg tsl ts21 
otherwise - insTree (link tl t2) (mrg tsIl ts2l) 

normalize 0=0 
normalize (t: ts) - insTree t ts 

removeMinTree [t] - (t, 

removeMinTree (t: ts) - 
if root t< root t' then (t, ts) else (t', t: ts') 
where (t', ts') - removeMinTree ts 

oldEmpty - OldHeap 

oldIsEmpty (OldHeap ts) - null ts 

oldInsert x (OldHeap (tl: t2: ts)) I rank tl -- rank t2 
OldHeap (skewLink x ti t2 : ts) 

oldInsert x (OldHeap ts) - OldHeap (Node 0x ts) 

oldMerge (OldHeap tsI) (OldHeap ts2) - 
OldHeap (mrg (normalize tsl) (normalize ts2)) 

oldFindMin (OldHeap ts) - root t 
where (t, 

-) - removeMinTree ts 

oldDeleteMin (OldHeap ts) - foldr oldInsert (Old. Heap ts') xs 
where (Node 

-x xs tst, ts2) - removeMinTree ts 
ts' - mrg (reverse tsl) (normalize ts2) 

Figure A. 22: BootSkewBin licap implementation (part 11). 
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module LeftistHeap (Heap, empty, isEmpty, insert, merge, findMin, 
deleteMin) where 

data Heap a Empty 
Node Int (Heap a) a (Heap a) 

empty = Empty 

isEmpty Empty = True 
isEmpty 

-= 
False 

insert x Empty = Node 1 Empty x Empty 
insert x hQ(Node s1y r) 

X <= Y= Node 1hx Empty 
otherwise = node 1y (insert x r) 

findMin (Node 
--x -) = 

deleteMin (Node s1x r) = merge 1r 

merge h Empty =h 
merge Empty h=h 

merge hIC(Node sl 11 xl rl) h2Q(Node s2 12 x2 r2) 
xl <= x2 = node 11 xl (merge rl h2) 

otherwise = node 12 x2 (merge r2 hl) 

node hx Empty = Node Ihx Empty 

node Empty xh= Node 1hx Empty 

node hl@(Node sl ---)x 
h2Q(Node s2 

sl <= s2 = Node (sl+l) h2 x hl 

otherwise = Node (s2+1) hi x h2 

fromList = foldr insert empty 

Figure A. 23: Leftist heap implementation. 
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module NaiveHeap (Heap, empty, isEmpty, insert, merge, findHin, 
deleteMin) where 

newtype Ord a => Heap a- Heap [a] 

empty = Heap 

isEmpty (Heap [1) - True 
isEmpty False 

insert w (Heap h) = Heap (insert' v h) 
insert' w0= [w] 
insert' w vlQ(v: vs) v <= v-v: V1 

otherwise -v: insert' v vs 

findMin (Heap (v: vs)) -v 

deleteMin (Heap (v: vs)) - Heap vs 

merge (Heap ws) (Heap vs) - Heap (merge, vs vs) 
merge' 0 vs - vs 
merge' ws 0- ws 
merge' vlQ(w: ws) vlC(v: vs) 

w <= v=w: merge' ws vl 
otherwise -v: merge' vl vs 

Figure A. 24: Naive heap implementation. 
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module PairingHeap (Heap, empty, isEmpty, insert, merge, findMin, 
deleteMin) where 

data Heap a Empty 
Node a [Heap a] 

empty = Empty 

isEmpty Empty = True 
isEmpty 

-= 
False 

insert x Empty = Node x0 
insert x h2Q(Node x2 hs2) 

x <= x2 = Node x [h2l 

otherwise = Node x2 (Node x El: hs2) 

findMin (Node x -) =x 

deleteMin (Node 
_ 

hs) = mergePairs hs 

merge h Empty =h 
merge Empty h=h 

merge hlQ(Node xl hsl) h2Q(Node x2 hs2) 

xl <= x2 = Node xl (h2: hsl) 

otherwise = Node x2 (hl: hs2) 

mergePairs G= Empty 
mergePairs [a] =a 
mergePairs (a: b: hs) = merge (merge a b) (mergePairs hs) 

Figure A. 25: Pairing heap implementation. 
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module SkewBinHeap (Heap, empty, isEmpty. insert, merge, findHin, 
deleteMin) where 

newtype Ord a => Heap a= Heap [Tree a] 
data Ord a -> Tree a= Node Int a [a] [Tree a] 

rank (Node rx xs 0-r 

root (Node rx xs c) -x 

link t1Q(Node r xI xsI cl) t20(Node - x2 xs2 c2) 
if xI <= x2 then Node (r+I) xI xsI (t2: cl) 
else Node (r+I) x2 xs2 (tl: c2) 

skewLink x tI t2 - 
let Node ry ys c- link tI t2 
in if x <= y then Node rx (y: ys) c else Node ry (x: ys) c 

insTree t0= [t] 
insTree t tsQ(t': ts9 

if rank t< rank t' then t: ts else insTree (link t t') ts' 

mrg tsi 0= tsl 
mrg [I ts2 - ts2 

mrg tsIO(tl: tsll) ts2Q(t2: ts2l) 
rank tI < rank t2 - tI : mrg tsIl ts2 
rank t2 < rank ti - t2 : mrg tsl ts2l 
otherwise - insTree (link tI t2) (mrg tst' ts2l) 

normalize 0-D 
normalize (t: ts) - insTree t ts 

removeMinTree [t] - (t, 

removeMinTree (t: ts) - 
if root t< root V then (t, ts) else (t', t: ts') 
where (tI, ts') - removeMinTree ts 

Figure A. 26: SkewBin heap implementation (part 1). 
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empty = Heap [I 

isEmpty (Heap ts) = null ts 

insert x (Heap (tl: t2: ts)) rank tl rank t2 
Heap (skewLink x tl t2 ts) 

insert x (Heap ts) = Heap (Node 0x ts) 

merge (Heap tsl) (Heap ts2) = 
Heap (mrg (normalize tsl) (normalize ts2)) 

findMin (Heap ts) = root t 
where (t, 

-) = removeMinTree ts 

deleteMin (Heap ts) = foldr insert (Heap ts') xs 
where (Node 

-x xs tsI, ts2) = removeMinTree ts 
ts' = mrg (reverse tsl) (normalize ts2) 

Figure A. 27: SkewBin heap implementation (part II). 
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module SplayHeap (Heap, ezpty, isE=pty, insert. t*rgo, fiv4, tim, 
delateMin) where 

data Heap a Empty 
Nods (Heap a) a (Heap a) 

empty - Empty 

isEmpty Empty - True 
isEmpty -- False 

insert xh- Nods Ixr 

where U, r) - partition xh 

partition pivot Empty - (Empty, E=Pty) 

partition pivot hC(Node Ix r) 
x <- pivot 

case r of 
Empty (h. Empty) 
Nods rl y rr -> 

if y <- pivot 
then lot (small, big) - partition pivot rr 

in (Nods (Node Ix rl) y s=411, big) 

else let (small, big) - partition pivot rl 
in (Node Ix szall, Xode big y r-r) 

otherwise 
case 1 of 

Empty (Empty, h) 
Node 11 y lr -> 

if Y <0 pivot 
then lot (small, big) - partition pivot Ir 

in (Nods 21 y azall. Xods big x r) 
else lot (small, big) - partition pivot 11 

in (small. Nods big y (Nods Ir x 0) 

findMin (Nods Empty z r) -x 
findMin (Nods Ix r) - find. 4in I 

deleteMin (Nods Empty x r) -r 
deleteMin (Nods (Nods Empty x Ir) y r) - Nods Ir yr 
deleteMin (Nods (Nods 11 x Ir) y r) - 

Node (deleteMin 11) x (Nods Ir y0 

merge Empty hnh 
merge (Nods 1x r) h- Nods (rArge s=11 1) x (mdrgs big r) 

where (small, big) - partition zh 

Figure A-28: Splay heal) Implementation. 
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Modifications to Implementations 

Figures B. 1 through B. 25 give the modifications of Tables 7.1,7.2 and 7.3, by 

showing the output of the UNIX dif f command. Figure B. 7 gives the modifica- 
tion Multilicad in the form of the modified implementation, as almost all of the 

code is modified. 
5c5 
< data Queue a- Queue [a] Int [a] Int 

> data Queue a- Queue [a] Unt [a] Unt 

Figure BA: Bankers queue modification. 

llcll, 12 
< snoc (Queue f r) x queue f (x: r) 

> snoc (Queue 0 
-) x Queue [XI 0 

> snoc (Queue f r) x Queue f (x: r) 

Figure B. 2: Batched queue modification. 

27c27,28 
< checkF m lenFM r lenR - Queue (head m) (tail m) lenFM r lenR 

> checkF (Queue (iX: iF) iM iLenFM iR iLenR) lenFM r lenR 
> Queue iX (queue iF iM (iLenFM-1) iR iLenR) lenFM r lenR 

Figure B. 3: Bootstrapped-1 queue modification. 
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27c27 
< checkF [I m lenFM r leaR - Queue (head m) (tail m) lenN r lenR 

> checkF [] m lenFM r lenR - pull m lenFM r leaR 
28a29,32 

> pull (Queue (iX: iF) iM iLenFM A iLenR) lenFM r lenR 
> Queue U (queue iF iM (iLenFM-1) A iLenR) lenFM r leaR 

Figure BA: Bootstrapped-2 queue modification. 

8C8 
< Deep (OneOrTwo a) (queue (a, a)) (ZeroOrOne a) 

> Deep (OneOrTwo a) (queue (OneOrTwo a)) (ZeroOrOne a) 
l8c18 
< snoc (Deep fm (OneInOne x)) y 
< Deep f (snoc m (x, y)) ZeroInOne 

> snoc (Deep fm (OneInOne x)) y- 
> Deep f (snoc m (TwoInTwo x y)) ZeroInOne 
24,25c24 
< tail (Deep (OneInTwo x) m r) - Deep (TwoInTwo y z) (tail m) r 
< where (y, z) = head m 

tail (Deep (OneInTwo x) m r) - Deep (head m) (tail m) r 

Figure B. 5: Implicit-I queue modification. 

24,25c24,32 
< tail (Deep (OneInTwo x) m r) - Deep (TwoInTwo y z) (tail m) r 
< where (y, z) - head m 

> tail (Deep (OneInTwo x) m r) - pull mr 

> pull (Shallow (OneInOne (x, y))) r 
> Deep (TwoInTwo x y) (Shallow ZeroInOne) r 
> pull (Deep (TwoInTwo (x, y) z) m iR) oR - 
> Deep (TwoInTwo x y) (Deep (OneInTwo z) m A) oR 
> pull (Deep (OneInTwo (x, y)) (Shallow ZeroInOne) A) oR 
> Deep (TwoInTwo x y) (Shallow iR) oR 
> pull (Deep (OneInTwo (x, y)) m iR) oR 
> Deep (TwoInTwo x y) (pull m iR) oR 

Figure B. G: Implicit-2 queue modification. 
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module MultiheadQueue (Queue, empty, snoc, tail, head, isEmpty) where 

import Prelude hiding (head, tail) 

data RotationState a 
Idle 
Reversing Int [a] [a] [a] [a] 
Appending Int [a] [a] 
Done [a] 

data Queue a= Queue Int [a] (RotationState a) Int [a] 

exec (Reversing ok (x: f) P (y: r) rl) 
Reversing (ok+l) f (x: fl) r (y: rl) 

exec (Reversing ok [I fl [y] rl) = Appending ok P (y: rl) 
exec (Appending 0P rl) = Done rl 
exec (Appending ok (x: fl) r') = Appending (ok-1) P (x: rl) 
exec state = state 

invalidate (Reversing ok fPr r') Reversing (ok-1) fVr r' 
invalidate (Appending 0P (x: r')) Done r' 
invalidate (Appending ok P r') = Appending (ok-1) P r' 
invalidate state = state 

exec2 lenf f state lenr r= 
case exec (exec state) of 

Done newf Queue lenf newf Idle lenr r 
newstate Queue lenf f newstate lenr r 

check lenf f state lenr r= 
if lenr <= lenf then exec2 lenf f state lenr r 
else let newstate = Reversing 0fDr0 

in exec2 (lenf+lenr) f newstate 00 

empty = Queue 00 Idle 00 

isEmpty (Queue lenf f state lenr r) = Uenf == 0) 

snoc (Queue lenf f state lenr r) x= 
check lenf f state (lenr+l) (x: r) 

head (Queue 
- 

(x: fl) )=x 

tail (Queue lenf (x: fl) state lenr r) = 
check (lenf-1) P (invalidate state) lenr r 

Figure B. 7: Multihead queue modification. 
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5c5 
< data Queue a- Queue [a] [a] Int [a] Int 

> data Queue a- Queue [a] [a] lInt [a] Unt 

Figure B. 8: Physicists queue modification. 

41,44c4l, 45 
< update (Node bn1x r) iy 
<i-n- Node bn1yr 
<i<n- Node bn (update 11 y) xr 
< otherwise - Node bn1x (update r (i-n-1) 

> update (Node bn1x r) iy 
> case compare in of 
> EQ Node bn1yr 
> LT Node bn (update 1i y) xr 
> Node bn1x (update r U-n-1) y) 
55,58c56,60 
< lookup (Node bn1x r) i 
<i-nX 
<i<n lookup 1i 
< otherwise lookup r (i-n-1) 

> lookup (Node bn1x r) i 
> case compare in of 
> EQ x 
> LT lookup 1i 

lookup r U-n-1) 

Figure B. 9: AVL-1 random-access sequence modification. 
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41,44c4l, 45 
< update (Node bn1x r) iy 
<i == n= Node bn1yr 
<i<n= Node bn (update 1i y) xr 
< otherwise = Node bn1x (update r U-n-1) y) 

> update (Node bn1x r) iy 
> case compare in of 
> LT Node bn (update 1i y) xr 
> EQ Node bn1yr 
> Node bn1x (update r (i-n-1) y) 
55,58c56,60 
< lookup (Node bn1x r) i 
<i == nX 
<i<n lookup 1i 
< otherwise lookup r (i-n-1) 

> lookup (Node bn1x r) i 
> case compare in of 
> LT lookup 1i 
> EQ x 

lookup r U-n-1) 

Figure B. 10: AVL-2 random-access sequence modification. 

42d4l 
<in= Node bn1yr 
43a43 
>in= Node bn1yr 
56d55 
<inX 
57a57 
>nX 

Figure B. 11: AVL-3 random-access sequence modification. 
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< case (ins 1, b) of 
< ((False, ll), b) (False, Node b (n+l) 11 y r) 
< ((True, ll), R) (False, Node B (n+l) 11 y r) 
< ((True, ll), B) (True, Node L (n+l) 11 y r) 
< ((True, Node bm 11 z r'), L) -> 
< (False, Node Bm 11 z (Node B (n-m) rl y r)) 

> case ins 1 of 
> (False, 11) -> (False, Node b (n+1) 11 y r) 
> (-, 11) -> 
> case b of 
>R (False, Node B (n+I) 11 y r) 
>B (True, Node L (n+I) 11 y r) 

> case 11 of 
> Node bm 11 z r' 
> (False, Node Bm 11 z 
> (Node B (n-m) r, y r)) 
29,38c33,44 
< case (del l, b) of 
< ((False, ll), b) (False, Node b (n-1) 11 x r) 
< ((True, 11), L) (True, Node B (n-1) 11 x r) 
< ((True, 11), B) (False, Node R (n-1) 11 x r) 
< ((True, 11), R) 
< case r of 
< Node Rm 11, y r" 
< (True, Node B (n+m) (Node B (n-1) 11 x 111) 
<y r") 
< Node Bm 111 y r" -> 
< (False, Node L (n+m) (Node R (n-1) 11 x 110) 
<y r") 

> case del 1 of 
> (False, 11) -> (False. Node b (n-1) 1 1x r) 
> Lx) -> 
> case b of 
> L (True, Node B (n-1) 11 x r) 

B (False, Node R (n-1) 11 x r) 

case r of 
Node Rm 112 y r's 

(True, Node B (n+m) 
(Node B (n-1) 11 x 111) 

Node 
-m 

111 y r" 
(False, Node L (n+m) 

(Node R (n-1) 11 x 111) 
y r") 

Figure B. 12: AVLA random-access sequence modification. 
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47a48,50 
> alpha Int 
> alpha 2 

57c6O 
< in if size rl < size rr 

> in if size rl. < size rr * alpha 
62c65 
< in if size lr < size 11 

> in if size lr < size 11 * alpha 

Figure B. 13: Adams random-access sequence modification. 

16,17cl6,18 
< tail (Node Empty x t) = Empty 
< tail (Node 1x r) = Node r (head 1) (tail 1) 

> tail (Node 1x r) = join 1r 
> where join Empty t= Empty 
> join (Node 1x r) t= Node tx (join 1 r) 

Figure B. 14: Braun random-access sequence modification. 

8c8 
< floorSep = 10 

> floorSep =3 

Figure B. 15: Elevator-1 random-access sequence modification. 

8c8 
< floorSep = 10 

> floorSep =5 

Figure B. 16: Elevator-2 random-access sequence modification. 

8C8 
< floorSep = 10 

> floorSep = 25 

Figure B. 17: Elevator-3 random-access sequence modification. 
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7c7 
< Root Int (RATree a) (RASeq a) 

> Root lInt (RATree a) (RASeq a) 

Figure B. 18: SkewBin random-access sequence modification. 
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6a7 
> Cons a (RASeq a) 
12a14,15 
> lookup (Cons x xs) 0=x 
> lookup (Cons x xs) i= lookup xs U-1) 
18a22,23 
> update (Cons x xs) 0y= Cons y xs 
> update (Cons x xs) iy= Cons x (update xs (i-1) y) 
20c25,28 
< update (Node x xs r xsI) iy= cons x (update xs U-1) y) 

> update (Node x xs r xsl) iy 
> case update xs U-1) y of 
> xsQ(Cons - 

(Cons 
- xsl)) -> Node x xs 3 xs' 

> xsQ(Node --- 
(Node 

--- xs')) -> Node x xs r xsl 
25c33,34 
< cons x xs = Node x xs 1 xs 

> cons x xsQ(Cons - 
(Cons 

- xsl)) = Node x xs 3 xs' 
> cons x xs = Cons x xs 
27a37 
> head (Cons x xs) =x 
34a45 
> tail (Cons x xs) = xs 

Figure B. 19: ThreadSkewBin random-access sequence modification. 

3c3 
< data Ord a => Tree a= Node Int a [Tree a] 

data Ord a => Tree a= Node Unt a [Tree a] 

Figure B. 20: Binomial heap modification. 
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45c45 
< data Ord a Tree a- Node Int a [a] [Tree a] 

> data Ord a Tree a- Node Unt a [a] [Tree a] 

Figure B. 21: BootSkewBin heap modification. 

14cl4,17 
< insert xh- merge (Node I Empty x Empty) h 

> insert x Empty = Node I Empty x Empty 
> insert x hQ(Node s1y r) 
>x <= y= Node Ihx Empty 
> otherwise = node 1y (insert x r) 

Figure B. 22: Leftist heap modification. 

26c26 
< xi <= x2 = Node xi (h2: hsl) 

> xi < x2 - Node xl (h2: hsl) 

Figure B. 23: Pairing-1 heap modification. 

14cl4,17 
< insert xh- merge (Node x [1) h 

> insert x Empty = Node x 
> insert x h2Q(Node x2 hs2) 
>x <= x2 - Node x Ch2l 
> otherwise = Node x2 (Node x [l: hs2) 

Figure B. 24: Pairing-2 heap modification. 

4c4 
< data Ord a Tree a- Node Int a [a] [Tree a] 

> data Ord a Tree a- Node lInt a [a] ETree a] 

Figure B. 25: SkewBin licap modification. 



Appendix C 

Auburn Reference 

There are various executables produced by Auburn, with various flags for mod- 

ifying their behaviour. Rather than give a lengthy explanation of these, we just 

quote the help information for each executable, that is, the output they produce 

when supplied with the flag -h. Here is a list of the help pages in order: auburn, a 

DUG manager, a benchmarker, auburnExp, makeDugs, evalDugs, processTimes, 

cleanDugs. 
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Usage: auburn [options] sigfile[. sig] 
Options: 

APPENDIX C. AUBUILV REFERENCE 

-c IMP-MOD1[. hs] IMP-MOD2[. hsl ... IMP-MODn[. hsl 
Write a signature of the common operations exported by the 
the implementation modules IKP-MODI, IMP-MOD2, ... IKP-MODn. 

-sT Write a trivial shadow data structure. 
-sS Write a best guess at size-based shadow data structure. 
-m Write a dug manager. 
-e IMP-MOD1 IMP-MOD2 ... IMP-MODn 

Write a dug evaluator for each implementation module in 
IMP-MOD1, IMP-MOD2, ..., IMP-MODn. 

-n Write a null implementation. 

-x IMP-MODE. hs] MAIN[. hs] 

-XI IMP-MOD[. hs] 

-xM MAIN[. hs] 
Write wrapped, dug-extracting versions of the implementation 
module IMP-MOD and/or the main module stored in file MAIN. 
Warning: The files they wrap will be backed up before being 
overwritten, but they may be restored using 1-ul. The wrapped 
program will behave as before but will also extract and write a 
dug as it is run. The wrapped files use Green Card. 

-u IMP-MOD[. gcl MAIN[. gcl 
-uI IMP-MODC. gc] 
-UM MAIN[. gcl 

Unwrap the implementation module IMP-MOD and/or the main module 
stored in file MAIN which were previously wrapped with I-x'. 

-pT Write a script 'makeProfiles. hs' to make profiles (bass version). 
-PS Write a best guess at a version of 'makeProfiles. hs' based on 

a size-based shadow data structure. 
-b IMP-MOD1 IMP-MOD2 ... IMP-MODn 

Write a benchmarker covering implementation modules 
IMP-MOD1, IMP-MOD2, ..., IMP-MODn. 

(General. ) 
-h Show this help. 
-V Show version info. 
-G Use Green Card to construct dug evaluator. 

Figure CA: Help information for auburn. 
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Usage: Queue-Man [options] [dug-file 
Options: 

-g PROFILE SEED 
Generate a dug using the given profile, and the given seed for 
pseudo-random number generation. Any dug file given on the 
command line is ignored. The seed should lie between 1 and 
2147483646 inclusive. 

PROFILE is of the form: 
Profile GWGTS PHASES 

where GWGTS is the generator weights, and PHASES is a Haskell list 
with each element of the form: 

Phase MOWGTS MORTALITY PMF POF 
where MOWGTS is the mutator and observer weights, with the remaining 
arguments giving the mortality, the persistent mutation f actor and 
persistent observation factor. 

Operator weights are given as a Haskell list of decimals and are 
ordered within the list firstly by role and then lexically, ie. 

empty, snoc, tail, head, isEmpty. 

Note that you will probably need to enclose arguments containing 
spaces or parantheses in quotes to avoid confusing the shell. 

-a PHASEARG 
When using a profile to generate a dug with '-g', or when 
producing a profile of a dug with '-pl or '-pP', use the phase 
argument PHASEARG. PHASEARG is read in by 'phaseArgRead' 
defined in the shadow data structure and is used by 'phaser' to 
determine the phasing of nodes. 

-r FILE 

-rP 
Read a textual dug file, as outputted by 1-t' or '-tP', from FILE 
or from standard input. 

-p FILE 

-PP 
Write a profile of the dug to FILE or to standard output. 

-N 
Normalise the profile written with I-pl or '-pP' with the profile 
given with 1-g' (the averages of the weights are made equal for 
easier comparison). If the dug is read rather than generated, make 
the averages of the weights equal to one. 

Figure C. 2: Help information for a typical dug manager (part I). 
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-o FILE 

-op 
Write the dug to FILE or'to standard output. 

-d FILE 

-dP 
Write a visual depiction of the dug suitable for the 'dotty' 
package of AT&T to FILE or to standard output. 

-t FILE 
-tp 

-H 

-h 

Write a text description of the dug to FILE or to standard output. 

When used with '-to or '-tP', make the text description of the dug 
a valid Haskell program. 

This help. 

The following options are only applicable when used with I-gl: 
-b POOLSIZE 

The size of the pool from which to draw integer arguments. 
Default: 10 

-fL MINFS 
The minimum size of the frontier. 
Default: I 

-fU MAUS 
The maximilm size of the frontier. A value of 0 indicates no maximum. 
Default: 0 

NODES 
The number of nodes to generate. 
Default: 10000 

Note that outputting a large amount of data to a file is significantly 
slower than to standard output, eg. we recommend writing a sizeable 
dug to standard output and re-directing this to a file if necessary. 

Figure C. 3: Help information for a typical dug manager (part 
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Usage: Queue-Bmark [options] 
Options: 

Print this help. 

Decision Tree Inducer 

--------------------- 

A sample of benchmarking results may be obtained via at most one of the 
following flags: 

-g SEED 
Generate a random sample, using ImakeDugs', 'evalDugs', and 
eprocessTimes'. The seed should lie between 1 and 2147483646 
inclusive. 

-s FILE 

-sp 
Read in a sample from FILE or standard input. 

A decision tree may be obtained via at most one of the following flags: 

-i 
Induce a decision tree from the sample. 

-t FILE 

-tP 
Read in a tree from FILE or standard input. 

At least one of the following flags must be supplied to request output: 
-c FILE 
-cp 

Check the accuracy of the decision tree on the sample. Output the 
report to FILE or to standard output. 

-o FILE 
-op 

Write the sample to FILE or to standard output. 
-w FILE 

-wP 
Write the decision tree to FILE or to standard output. 

-d FILE 

-dP 
Using the profile taken from FILE or standard input, use the decision 
tree to decide which implementation suits the profile. Write the 
decision to standard output. 

The following flags can be used to modify the behaviour of the '-il flag: 
-G 

Use the gain criterion, rather than the default gain ratio criterion. 
-p SIZE 

Prune any leaves no larger than SIZE on the induced tree. 
Default: 0. 

Figure CA: Help information for a typical benchmarker (part I). 
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-a 

-r 

-x 

Induce a decision tree on one half of the sample, prune this 
tree to different maximum leaf sizes, and choose the pruned tree 
with least error when applied to the other half of the sample. 

Perform reduced error pruning on the induced tree, by using half 
of the sample for induction and half for testing. 

When used with '-a' or '-r', use the number of misclassifications as 
the measure of error. Without '-xI, the mean ratio of the predicted 
winner is used (the larger the mean. the worse the prediction). 

-P 
Perform very pessimistic pruning on the induced tree. 

-C CF 
When pruning with '-PI, use confidence level CF (0 < CF < 1). The 
smaller CF is, the more pruning is done. 
Default: 0.25. 

The f ollowing f lags modif y the behaviour of the f lags above: 
-V 

Verbose. Show some of the output of generating a sample with '-g'. 
-V 

Very verbose. Show all of the output of generating a sample with 1-g'. 
-n SIZE 

Specify the SIZE of a sample generated with 4-g' (number of profiles 
chosen). 
Default: 100. 

-M OPTIONS 
Pass OPTIONS to ImakeDugs' when generating a sample with '-g'. 
Default: 

-e OPTIONS 
Pass OPTIONS to 'evalDugs' when generating a sample with '-g'. 
Default: 11-r 1 -R 511. 

-I IMP1 IMP2 ... IMPn 
when generating a sample, use the JLDT implementations named 
IMP1, IMP2, ... ' IMPn. When reading a sample, restrict the ratios 
read to these implementations. 

-A AM ATT2 ... ATTa 
When reading a sample, restrict the profile attributes read to 
those named ATT1, ATT2, ... ' ATTn. 

ADT Implementation Tracer 

------------------------- 

-q SEED 
Run the tracer. The seed should lie between 1 and 214T483646 
inclusive, and is used to generate random dugs, printing any dug 
that causes an error. 

The flags '-vl, '-VI, '-ml, and '-I' also modify the behaviour of I-q'. 

Figure C. 5: Help information for a typical benclimarker (part 11). 
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Creates a GNU makefile in the current directory to manage an 
experiment using Auburn. 

Flags: 

-1 LIBRARY 
Use Auburn library held in directory LIBRARY, 

eg. '-l /usr/local/lib/auburn'. 
Default: /usr/gem/lib/auburn 

-q 
Quiet running: do nothing but print everything. 

-h 
Show this help. 

Figure C. 6: Help information for auburnExp. 
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Makes dugs from the profiles given in files of the form 
'dug-$Tprofile). profile' in the current directory. The dUg3 are 
stored in dug code files of the form 'dug-$(profile)-S(seed). dug, 
with their -actual- profiles stored in files of the form 
gdug-$fprofilel-$(seed). profilel. 

Flags: 

(Where more than one value is passed, eg. with I-pl. the string 
passed should be a perl expression that evaluates to an array, 
eg. 11(1,2,4)11, or "(I. A)" or even "(1-3,5-7)". The following 
also seem to work fine: "411, "1,3", "3.. 5". ) 

-S SIG 
Name of signature which the dug manager uses, eg. '-a Queue'. 
Default: signature of first manager in current directory. 

-p PROFILES 
Names of profiles, eg. '-p 
Default: all profiles in current directory. 

-S N 
Number of different seeds per profile, eg. I-S 31. 
Default: 3. 

-o OPTIONS 
Options to pass to the dug manager. The options vill immediately 
follow the dug manager and precede its arguments, so flags for the 
Haskell run-time system can be included either using '+RTS' and 
'-RTS' (GHC and nhc do this) or directly (HBC does this). 
Eg. '_o "+RTS -p -RTS"' for GHC with profiling, and 

1-o 11-111 for HBC (as a minus must precede flags passed to an 
executable), and 

1-o, 11-m -111 for HBC with profiling. 
Default: 

-0 OPTIONS 
Additional options to pass to the dug manager. Multiple I-O's 
accumulate options. The options will follow the base options 
given by I-ol. 
Eg. '-0 "-n 1000"I and '-0 "-b 100"' together with 1-o "-"' pass 
the options '- -n 1000 -b 1001 to the dug manager, telling it to 
generate dugs of size 1000 nodes using a pool size of 100. 

-z SEED 
Initial seed (between I and 2147483646 inclusive). 
Default: Obtained from the system clock. 

-q 
Quiet running: do nothing but print everything. 

-h 
Show this help. 

Figure C. 7: Help information for makeDugs. 
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Runs and times the dug evaluators on dug code files (of the form 
'dug-$fprofilej-$fseed1. dug1 as outputted by ImakeDugs') in the 
current directory. Writes total times (over all seeds) to files of 
the form Idug-$fprofilel-$fimplementationl. timel. 

Flags: 

(Where more than one value is passed (with 1-il, I-pl and '-d'), the 
string passed should be a perl expression that evaluates to an 
array, eg. 11(1,2,4)11, or "(1-4)" or even '1(1-3,5-7)". The 
following also seem to work fine: M", "1,311,113-51'. Note that some 
characters need to be quoted, eg. ". ", so 1-d test. dug' becomes 
'-d 1"test. dug"11. ) 

-s SIG 
Name of signature which the dug evaluators use, eg. 1-s Queue'. 
Default: signature of first evaluator in current directory. 

-i IMPS 
Names of implementations, 
eg. '-i "(NaiveQueue, SimpleQueue, BankersQueue, Queue-Null)"'. 
Default: all implementations for chosen signature in current directory. 

-p PROFILES 
Names of profiles, eg. t-p 
Default: all profiles in current directory. 

-d DUGS 
Dugs to be evaluated. 
Default: all dugs in current directory matching 'dug-$fprofilel-*. dug'. 

-r N 
Number of separate timed runs per dug, eg. 1-r 31. 
Default: 3. 

-R N 
Number of internal repeated evaluations per timed run, eg. '-R 101. 
Default: 10. 

Figure C. 8: Help information for evalDugs (part I). 
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-t COMMAND 
Time command to produce time information in POSIX standard 1003.2. 
specifically: 

real %e 
user %U 
Sys %S 

(Actually, only requirement is that the output contains the string 
"user %U" where '%Ul is the user time. ) 

Most UNIX time commands use this form of output. GNU time does if 
passed the flag '-pl. The user time may contain a colon 9: 1 
separating minutes from seconds, eg. 112: 32.541. 
Eg. '-t 11gnutime -p". 
Default: "time". 

-T TIME 
Timeout dug evaluators after TIME seconds. Useful for preventing 
excessively slow runs of a dug evaluator. Using a TIME of 0 
prevents any timeouts. 
Default: 600. 

-o OPTIONS 
Options to pass to each dug evaluator. The options will 
immediately follow the dug evaluator and precede its arguments, so 
flags for the Haskell run-time system can be included either using 
'+RTS' and '-RTS' (GHC and nhc do this) or directly (HBC does 
this). 
Eg. '_o "+RTS -p -RTS"' for GHC with profiling, and 

9-o 11-m"' for HBC with profiling. 
Default: "". 

-C 
Ignore checksum errors. 

-q 
Quiet running: do nothing but print everything. 

-h 
Show this help. 

Figure C. 9: Help information for evalDugs (part 11). 
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Processes times outputted by 'evalDugs' (files of the form 
Idug-$fprofilel-$fimplementationl. timeI in the current directory). 
Outputs resulting processed times in file Idugs. times' using summary 
information found in 'dugs. profiles'. 

Flags: 

(Where more than one value is passed, eg. with 1-il and '-pl, the 
string passed should be a perl expression that evaluates to an 
array, eg. 11(1,2,4)11, or "(1-4)" or even "(1-3,5-7)". ) 

-i IMPS 
Names of implementations, 
eg. 1-i "(NaiveQueue, SimpleQueue, BankersQueue, Queue-Null)"'. 
Default: all implementations for chosen signature in current directory. 

-p PROFILES 
Names of profiles, eg. '-p "(1-8)") 
Default: all profiles in current directory. 

-f FORMAT 
Format string used by 'printfl to output the times, eg. '-f 8.3f'. 
Default: 118.3f". 

-F 
Use brief format. Useful for automatic processing of results. 
One number per line. First line contains number of 
implementations used. Remaining lines contain ratios, in the 
expected order. 

-S 
Sort profiles by string comparison, rather than by the default 

numerical comparison. 

-q 
quiet running, do nothing but print everything. 

-h 
Show this help. 

Figure C. 10: Help information for processTimes. 

Cleans up all dug and profile files in current directory, that is, 
all files of the form 'dug-*. profile' 'dug-*. dug' 'dug-*. time', and 
Idugs. times' and 'dugs. profiles'. 

Flags: 

-q 
Quiet running: do nothing but print everything. 

-h 
Show this help. 

Figure C. 11: Help information for cleanDugs. 
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