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Chapter 1

Introduction

The 1mportance of efficient data structures is reflected through literature span-
ning many years {3, 11, 51]. Recently, this has included data structures and
complexity models developed specifically for functional languages [14, 38, 40].
But, in practice, what distinguishes a good data structure from a bad data struc-
ture? What is the main reason whether a data structure is useful? Empirical
performance! Yet most literature has paid little attention to this aspect of data

structures. We tackle this deficiency by developing the theory and practice of

benchmarking functional data structures.

1.1 Functional Languages

Why use functional languages? Given the amount of literature on data structures
for imperative languages, why do we need to bother with functional data struc-

tures? There are strong arguments for the functional style of programming [5, 22].

e Succinciness. A functional program is typically shorter than its imperative

equivalent. This helps reduce development and maintenance costs.

e (larity. The meaning of a functional program is arguably more immediate,

by being shorter and by using features like algebraic datatypes and higher

order functions.

e Reasoning. The lack of state allows referential transparency, which in turn

allows the meaning of a program to be independent of its surroundings.

1



2 CHAPTER 1. INTRODUCTION

This simplifies any mathematical reasoning on a program, including for
example, a proof of its correctness. This also simplifies the programmer’s

task, by aiding their own mental reasoning about a program.

e Beauty. A functional program feels “cleaner” and more aesthetically pleas-
ing. Through aesthetics, this affects the state of the programmer, their

enthusiasm to work, and thus the quality of their results.

As a small example, Figure 1.1 and Figure 1.2 show C and Haskell versions
respectively of a program to insert and lookup a node in an ordered, unbalanced
tree. The most obvious difference between these programs is the difference in
size. Figure 1.3 shows a more compact C program, but it is still larger than the
Haskell program, and less understandable than the larger C program. The Haskell
program is far clearer than either C program. Because of this size difference, and
because of the lack of pointers, programming the Haskell version is far less error-
prone. The Haskell programmer is free to think about the tree itself, rather than

how the tree is represented.

1.2 Functional Data Structures

Given we want to use a functional language, why do we need data structures
specifically designed for a functional setting? Will not the vast array of imperative
data structures suffice? Unfortunately not, because of the greater demands a
functional language places on its data structures: A functional data structure
cannot be destructively updated. No information can be lost until the program
using the data structure no longer requires it. In particular, when a data structure
i1s updated, both the new and the old versions of the data structure must be

available for further use.

Some imperative data structures can be brought across to the functional world
with little change. In most cases the design actually becomes clearer in a func-
tional setting. Figures 1.1 and 1.2 illustrate this well. Okasaki gives another
example by implementing red-black trees in a functional setting [39] and further

writes 1n the conclusions section:

O A T AR A ¢ Y, afd FA o Tl el A F e Ty
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1.2. FUNCTIONAL DATA STRUCTURES 3

#include <stdio.h>
#include <stdlib.h>

typedef struct node {

int value;
struct node *left, *right;
} node;

typedef node *tree;
int member (int x, tree t) {

while (t != NULL && t->value != x)
t = (x < t->value) ? t->left : t->right;
return (t != NULL);
}

tree mknode (int x) {
tree t = malloc (sizeof (node)):

t->value = x:
t->left = t->right = NULL;
return t;

X

void insert (int x, tree *result) {
tree t = *result , *tptr = result;

if (t == NULL) {
*result = mknode(x);
} else {
while (t != NULL && t->value != x) {
tptr = (x < t->value) ? &t->left : &t->right;
t = *tptr;
}
if (t == NULL) *tptr = mknode(x);
}
}

Figure 1.1: C program to insert and lookup a node in an ordered, unbalanced

tree.



CHAPTER 1. INTRODUCTION

data Tree a = Empty | Node (Tree a) a (Tree 2)

member X Empty
member x (Node
| x <y
| x >y
| otherwise

n =~ 1

insert x Empty
insert x (Node
| x <y
| x >y
| otherwise

B = 1

False

y r)
member x 1
member x r
True

Node Empty x Empty

y r)

Node (insert x 1) y r
Node 1 y (insert x r)
Node 1l x r

Figure 1.2: Haskell program to insert and lookup a node in an ordered, unbal-

anced tree.

#include <stdio.

h>

#include <stdlib.h>

typedef struct n
int
struct node *

} node;
typedef node *tr

tree* find (int
if (*tp != NUL
while (*tp !
tp = (x <
return tp;

}

int member (int

void insert (int

ode {
value;

left, *right;
ee:

x, tree *tp) {
L)

= NULL && (*tp)->value != x)
(*tp)->value) ? &(*tp)->left : &(*tp)->right;

x, tree t) {return (*find(x,&t) != NULL);}

x, tree *tp) {

if ((tp = find(x,tp)) != NULL) {

*tp = malloc
(*tp)->value
}
}

Figure 1.3: Compact C program to insert and lookup a node in an ordered

unbalanced tree.

(sizeof (node));
= x; (*tp)->left = (*tp)->right = NULL;
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1.3. BENCHMARKING FUNCTIONAL DATA STRUCTURES 5

When existing imperative algorithms can be implemented in func-
tional languages, the results are often much prettier than the original
version. This has been amply demonstrated in the past for various
kinds of balanced binary search trees, including 2-3 trees [47], BB-
trees [2], and AVL trees [31].

Over the past six or seven years, many papers have given details of new
functional data structures [7, 10, 14, 32, 33, 34, 40]. However, these papers
only give limited attention to empirical performance. Okasaki writes in an open
problems section of his thesis Purely Functional Data Structures [36], “The theory
and practice of benchmarking [functional| data structures is still in its infancy.”

This thesis develops the theory and practice of benchmarking functional data

structures.

1.3 Benchmarking Functional Data Structures

Suppose we want to measure the efficiencies of some competing data structures.
The standard approach is to find a few applications to act as benchmarks, allowing
us to measure the efficiency of each data structure when used by each benchmark.
Why not do this? Firstly, creating anything but a very artificial benchmark is a
substantial task. Secondly, using the results of just a few benchmarks, especially
artificial ones, can be very misleading. The efficiency of a data structure may
vary heavily according to how it is used, and hence the choice of benchmarks may
determine which data structure appears to be the best—see Section 7.2.1 for an

example of this. Worse, we will not know if our choice of benchmarks is “fair” or

not.

We solve both of these problems by developing a benchmarking tool, Auburn,
that creates a benchmark according to a description of use. By generating a fair
distribution of benchmarks over a wide variety of different uses, we not only find

which data structure is best overall, but also which data structure is best for a

particular use.

Suppose that we have a single application in mind, and we wish to choose one

of many competing data structures to use in our application. Why not simply
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measure the performance of our application using each data structure in turn?
Unfortunately, this approach does not reveal why the data structures perform as
they do. If our application changes how it uses the data structures, a different
one may now be the most efficient, without us knowing why.

By measuring how our application uses the data structures, and how the data
structures’ efliciency varies according to this use, we can know why the best data

structure is best. Therefore, Auburn also creates a description of use from an

application.

1.4 Terminology

In order to understand the following chapters, it is necessary to define a few key

terms.

o Benchmark. A benchmark is an application that can use any one of a
family of competing data structures. A benchmark is used to measure the

performance of such data structures.

o Abstract Datatype. An abstract data type (ADT) is a type with associated
operations manipulating values of that type. A more detailed definition is

given in Section 3.1.

e Implementation. A data structure that gives a concrete realisation of the

type and operations of an ADT is called an implementation.

o Version. When an application uses a data structure, at any one point in the
computation, there exist many different instances of the data structure—for

example, a particular list, or a particular queue. Each particular instance

of a data structure is called a version of the data structure.

o Persistence. Persistence is the property of allowing the use of any version
of a data structure in its original form after it has been updated. A data
structure that supports persistence is called persistent. A data structure

that 1s not persistent is called ephemeral.

o Single-Threaded. An application is single-threaded in the use of a data

structure if it does not use any persistence supported by the data structure.
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o Amortisation. When applied to the complexity of an operation, amortisa-
tion implies that the cost of an operation is considered in the context of
a group of operations, rather than in isolation. This allows the cost of an
expensive operation to be spread over many surrounding inexpensive oper-

ations. Note that all complexities are arguably amortised in a lazy language
like Haskell.

1.5 Overview

Chapter 2 reviews some implementations of three different ADTs: queues, random-
access sequences, and heaps. The details of the implementations provide an ex-
ample of the different ways of implementing an ADT. They also add meaning to
the results of benchmarking the implementations in Chapter 7.

Chapter 3 develops the Eheory of datatype usage upon which Auburn is based.
It defines a datatype usage graph (DUG) recording how a data structure is used
by an application, and a profile summarising the most important aspects of a
DUG. This chapter also outlines how we can create a benchmark from a profile,
and extract a profile from an application.

Chapter 4 describes the implementation of the core algorithms of Auburn, as
outlined in theory in Chapter 3. These involve the creation of benchmarks from
profiles through the generation and evaluation of DUGs, and the extraction of
profiles from applications through the extraction and profiling of DUGs.

Chapter 5 investigates how we should use Auburn. There are many ways we
could use the algorithms of Chapter 4, but we need any method to be efficient,
to be accurate, and to produce concise, clear results. This chapter presents a few
methods, summarising their advantages and disadvantages, and then recommends
one of them.

Chapter 6 outlines the design and use of Auburn. Chapter 4 gives the core
algorithms of Auburn, but there are many other design decisions in how to im-
plement and combine these into one package. Most of the decisions relate to the
language in which we implement Auburn: Haskell.

Chapter 7 reports the results of using Auburn on the data structures of Chap-

ter 2. We examine the accuracy of these results, and the accuracy of Auburn as
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a whole. We also investigate the source of any inaccuracy in Auburn.

Chapter 8 concludes and lists future work.

Appendix A gives the code for the implementations of the data structures
detailed in Chapter 2 and used in the final round of benchmarking in Chapter 7.

Appendix B gives the modifications of the implementations of Appendix A
used in the fine-tuning section of Chapter 7.

Appendix C details the executables that make up Auburn.
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Chapter 2

Implementations of Three ADT's

In Chapter 7, we shall benchmark several implementations of queues, random-
access sequences, and heaps. This chapter delivers the key idea behind each
implementation. We may then interpret the results of the benchmarking in the
light of this review. Without such a review, the results hold little value except
towards choosing one over another; with this review, the practical results of design

choices become visible and provide insight into their eflectiveness.

Each section of this chapter begins with a brief description and formal spec-
ification of the ADT. The following subsections review each implementation.
We give references to papers describing the implementations in greater detail.
As we organise the review by data structure, we can easily compare different

implementations of the same data structure. Appendix A gives code for each

implementation.

2.1 Queues

Queues are among the simplest of ADTs. They are sequences supporting insertion
at the rear, and removal from the front. Figure 2.1 gives the specification of

queues. Table 2.1 lists the queue implementations and the complexities of their

operations.
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type Queue a = [a]

empty :: Queue a

empty = []

snoc :: Queue a — a = Queue a

SNOcC (Toy ...y Tn-1] T = [Toy...,Tn-1,7]

head :: Queue a — a

head [.’170, o axn—I] =T (n Z 1)

tail :: Queue a = Queue a

tail [Io, oo 1xn-1] — [.’131, ‘o axn-ll (n 2 1)

Figure 2.1: Queue specification. For the purposes of specification, we treat a

queue as a list.

Lazy | Complexities of Operations

Naive head/tail: O(1), snoc: O(n)
snoc/head/tail: O(1)}
snoc/head/tail: O(1)
snoc/head/tail: O(1)}
snoc/head/tail: O(1)!
snoc/head/tail: O(1)
snoc/head/tail: O(1)!
snoc/head/tail: O(1)

Simple
Multihead
Banker’s
Physicist’s

Real-time

Bootstrapped

N N N N lI

Implicit

Table 2.1: Complexities of implementations of queues, including whether lazy
evaluation is required. Complexities marked with { are amortized. Complexities
marked with § also are amortized, but only under single-threaded use. All other

complexities are worst-case.
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2.1.1 Naive Queues

We can represent a queue directly as a list. The normal head and tail operations

of lists implement head and tail. List catenation of a singleton list implements

SNocC.

2.1.2 DBatched Queues

Hood and Melville [20] represent a queue as a pair of lists (f,r)—f giving the
front portion of the queue and r giving the reverse of the rear portion of the
queue. The queue of elements ay,as,...,a, is therefore represented by the lists
f=la,...,an] and r = [a,,...,am41], 0 < m < n with f empty only when
the queue itself is empty. To insert an element onto the queue, simply add an
element to the front of r. To remove an element from the queue, take the first
element of f; if this leaves f empty, then let the queue become (reverse r,[]).

Every operation except tail takes O(1) time. If an application of tail causes a
reversal of r, it takes O(n) time; otherwise, it also takes O(1) time. For any single-
threaded sequence of operations, a reversal of » happens at most once every A(n)
operations, where A(n) is O(n). Therefore we can conclude that A(n) single-
threaded queue operations take O(n) time—an amortized complexity of O(1).
However, persistence destroys this result. Consider an application of ta:l that
reverses the rear list. Persistence allows us to repeat this application indefinitely,
each application taking O(n) time. Therefore, in a persistent setting, the best
complexity we can give to tail is O(n).

We take the name of this implementation from [38].

2.1.3 Multihead Queues

Hood and Melville [20] improve on the batched implementation of a queue by
distributing the reversal of the rear list over a number of operations. This gives
real-time queues, that is, the operations run in O(1) worst-case complexity.

In order to continue performing operations whilst reversing the rear list, the

reversal begins when the rear list 7 becomes larger than the front list f. The

reversal is spread over the following n operations, where n is the length of the
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front list. These n operations create new front and rear lists f,, and ro, by
removing elements from f and by adding elements to the empty list respectively.
At the same time, r is reversed onto the end of f to create a new front list f, ..,
taking care to use only elements in f,,. The lists f,., and r,, form the new
queue. It is simple to prove that r,, is no longer than f,.,.

To create the list f,., over n operations, reverse f to make f,,, and at the
same time reverse r to make r,,. Then move elements from the front of f,., onto
the front of r, till an element not in f,, is reached, or when all elements have
been moved. It is sufficient to move only two elements per operation from f to
frev, from 7 to 7y, Or from fr, to rn,. Hence each operation takes O(1) time.

The name multihead derives from the similarity of the solution to how multi-
head Turing machines can be simulated. Full details are given in [20]. Note that

there are two mistakes in the code given in [20].
e The call cons[v,T] on line 4 should read cons([v,T’].

e The value lendiff-1 on line 9 should read lendiff.

Appendix A gives the corrected implementation.

2.1.4 Banker’s Queues

Okasaki [37] presents an implementation of queues with O(1) amortized com-
plexity. He is able to give an amortized complexity in a persistent setting by
appealing to the proof techniques that he develops in [32, 37|, and presents in
[38]. Representing a queue as a pair of lists is once again the basis of the im-
plementation. Hood and Melville remove the problem of the O(n) persistent
complexity of the batched implementation by ezplicitly scheduling a distribution
of the work involved in performing the reversal of the rear list. Okasaki gives a
much simpler solution that uses lazy evaluation to implicitly schedule and share
this distribution of work.

The key idea is not to delay more work than a subsequent sequence of oper-
ations can pay off. Under single-threaded use, traditional amortization allows us
to spread the cost of the reversal of the rear list r of length |r] over the previous

Ir| applications of snoc that built r. With non-single-threaded use however, we
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may have several queues sharing the result of a snoc. This application of snoc
can only bear a constant additional cost before losing its O(1) complexity. As
an arbitrary number of queues may share the result of the snoc, the batched

implementation of queues cannot have O(1) complexity in a persistent setting.

Okasaki shifts the burden of the reversal from the preceding sequence of op-
erations to the succeeding sequences of operations—remember that there may be
more than one such sequence because of persistence. This is done by insisting
that a queue must never engage in a reverse whose cost cannot be spread over
operations that occur after the reverse is formed but before its result is required.
The cost of the reverse can then be shared by the operations that occur between
suspending an application of the reverse and executing this suspension. The cost
of the reverse is considered to be a debt, waiting to be paid off. Lazy evalua-
tion plays a key role here in two respects: a function application can be delayed,

and the result of the delayed application can be shared. For further details on

persistent amortization, see [38].

So when can we delay a reverse and still be in a position to pay off its debt
before its result is needed? Suppose we only reverse the rear list 7 and append it
to the end of the front list f when |r| becomes larger than a constant k times | f|.
As we apply ta:il to the resulting queue, the new front list will shorten. Until we
have removed all of f, the result of the reverse is not required. The number of
applications of tail required to do this is equal to |f|. As |r|is at most a constant
k times |f|, we can share the cost of the reverse over the |f| applications of tail
by adding a constant additional cost to each. The operations therefore keep their
O(1) complexity.

For a more formal argument using the banker’s method of persistent amorti-

zation proof techniques, see either {37] or [38]. The name of this implementation

is derived from the proof technique used to give it its complexity.

2.1.5 Physicist’s Queues

In the same way that Okasaki uses the banker’s method to give O(1) amortized

bounds to banker’s queues, he uses the physicist’s method to give O(1) amortized

bounds to physicist’s queues [38].
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The major difference between the banker’s and physicist’s methods is that the
banker’s method allows the debt of particular suspensions of work to be paid oft
individually whereas the physicist’s method considers the debt of the whole data
structure. The idea behind physicist’s queues is to make fewer suspensions. For
a strict language such as Standard ML where suspensions are explicit and costly,
this may reap some rewards. For a lazy language such as Haskell where everything
is suspended, the physicist’s queues are unlikely to be any more efficient than the

banker’s queues.

2.1.6 Real-Time Queues

A real-time data structure supports all operations in O(1) worst-case time.
Okasaki gives a real-time implementation of queues in [34]. We may derive this
implementation from the banker’s queues by splitting up any monolithic chunks
of work into portions taking O(1) time. These portions are spread evenly over
every operation. This allows each operation to run in O(1) time.

The only monolithic work suspended by the banker’s queues not of O(1)
complexity is the reversal of the rear list. This is replaced by the function rotate
that incrementally reverses the rear list onto the back of the front list. A constant

portion of the rotation is done each time the queue is updated.

2.1.7 Bootstrapped Queues

Okasaki [38] offers yet another variation on the banker’s queues, this time using
the principle of data-structural bootstrapping given by Buchsbaum [8]. The basic
idea behind bootstrapping is to extend the design of an incomplete or ineflicient
data structure to use smaller instances of the same data structure.

Recall that banker’s queues reverse the rear list onto the end of the front list
every time the rear list becomes too large. After a series of such reversals, the

front list will look something like this:

(- - - ((f Hreverse ry) Hreverse r3) - - - +reverse Ty)

As append is linear in its left argument, such a series of appends is rather ex-

pensive since some elements are traversed more than once, eg. every element of

o o A My et i i
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r; will be traversed k£ times. Bootstrapped queues remove this inefficiency by
storing the collection {reverse ry,..., reverse ri} of reversed rear lists separately,
and using them to replace the front list as necessary. This does not then require
any applications of append. But how should we store this collection? Noting the
first-in first-out order in which they are inserted and removed, we shall represent
this collection as a queue of lists. This is where bootstrapping is used: A queue

of lists represents part of a queue. The type of a queue becomes:

data (Queue a = Empty

| Queue [a] (Queue [a]) Int [a] Int

where Queue £ m fmy,, r Iy, is a queue with front list £, queue m of reversed rear
lists, and rear list r; £fm;,, gives the combined length of £ and the lists in m: and

I'en gives the length of r. The recursive type requires a base case for termination,

so an Empty constructor is introduced.
The operations of this implementation run in O(log* n) time!, but a simple

alteration improves this complexity to O(1). In practice however, this makes

little difference.

2.1.8 Implicit Queues

Okasaki [38] describes another implementation of queues, this time based on the
principle of recursive slowdown. Kaplan and Tarjan first introduced recursive
slowdown in [24]. The key observation underlying the technique arises from
considering a bootstrapped data structure (for an example of bootstrapping, see
Section 2.1.7).

Suppose an operation on a bootstrapped data structure of size n involves a
constant amount of work plus that of calling the same operation a constant ¢

times on nested data structures of combined size f(n). Let T(n) measure the

time taken by this operation. We have:
T(n) = 0(1) +cT(f(n))

If we solve this recurrence relation for ¢ = 1 and f(n) = logn, we find that

T = O(log"n). This gives the complexity of the bootstrapped queues of Sec-

1og!) k = log, k, log! = loglog~V k (i > 1), log* k = min{i|log"? k < 1}
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tion 2.1.7. If however, we solve the relation for ¢ = 1/2 and f(n) = logn, we
find that T(n) = O(1). Indeed, for ¢ < 1 and f(n) = n — 1, we still find that
T(n) = O(1). But what does performing, say, half an operation mean? Suppose
we made sure that only one operation was performed on a nested data structure
for every two operations on the enclosing data structure. This could be seen as
performing half an operation on the nested data structure for every one operation

on the enclosing data structure. This is recursive slowdown.

To apply recursive slowdown to queues, we shall represent a queue using a
smaller inner queue on which we perform one operation for every two operations
performed on the enclosing queue. If the inner queue is a queue of pairs, we need
only insert or remove a pair every two insertions or removals respectively on the
enclosing queue. We will keep at least one element at the front of the enclosing
queue. This ensures that the enclosing queue is ready to perform an operation
and that the inner queue is distinctly smaller. This 1s Okasaki’s implementation,

and the type of queues is given by

data Queue a = Shallow (ZeroOrOne a)
| Deep (OneOrTwo a) (Queue (a,a)) (ZeroOrOne a)
data ZeroOrOne a = ZeroInOne | OnelInOne a

data OneOrTwo a = OneInTwo a | TwoInTwo a a

Whereas Kaplan and Tarjan ezxplicitly schedule the work involved in recursive
calls to inner data structures, Okasaki uses lazy evaluation to implicitly schedule
this work, hence the name of this implementation. Data structures using implicit
recursive slowdown are typically a lot simpler than their explicit counterparts,

but are amortized rather than worst-case.

2.2 Random-Access Sequences

Figure 2.2 specifies sequences that support access to any element. Table 2.2 lists

some implementations.
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type RASeq a = [a]

empty :: RASeq a
empty = []

cons ::a — RASeq a = RASeq a

cons T (Toy...,Tn-1] = {T,ZToy.. ., Tn_1]

head :: RASeq a — a

head [To,...,Zp1] =20 (n>1)

tail :: RASeq a =& RASeq a

tail [xo,. . o ,.’L‘n....l] = [SL'I,. .o ,:L‘n._1] ('n > 1)

snoc :: RASeq a =+ a — RASeq a

snoc [Toy ..., Tn-1] T =[T0,...,Tn-1,7]

last :: RASeq a — a

last [zoy. .., Tn-1] =Tp1 (R 2>1)

init :: RASeq a = RASeq a

init [Toy...,Tn-1] = [Toye-+,Tn-2] (n>1)

lookup :: RASeq a — Int - RASeq a

lookup [zo,...,Zp-1]i=2; (0<i<n-~-1)

update :: RASeq a — Int - a =& RASeq a

update [Toy...yTn-1] 1 T =[Toy.. ), Tic1, T, Tig1ye+3Tn-1] (0<Li<n-1)

Figure 2.2: Specification of a sequence supporting random-access. For the pur-

poses of specification, we treat a random-access sequence as a list.
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Random-Access Sequences

Lazy Complexities of Operations Reference

cons/head/tail: O(1),
lookup/update: O(3),

Nalve Lists

snoc/last/init: O(n)

Threaded
Skew Binary

cons/head/tail: O(1),
lookup: O(min(i,logn)),
update: O(z)
cons/head/tail: O(logn),
lookup /update: O(logn),
snoc/last/init: O(logn)
head: O(1), cons/tail: O(logn),
lookup/update: O(logi),
snoc/last/init: O(logn)

Lists

Balanced
Trees

[2, 31

2 ) S ~ <) =
— S
m l-.. m

Slowdown cons/head/tail: O(1),

Deques lookup/update: O(logd),
snoc/last/init: O(1)

Skew Binary cons/head/tail: O(1),

lookup/update: O(min(i,logn))

Elevator cons/head/tail: O(1),

Lists lookup/update : O(i)

Table 2.2: Complexities of implementations of sequences supporting random-
access, where 7 is the length of the sequence, ? is the index being accessed by a
lookup or update operation, and d is the distance from the index to the nearest end

of the sequence. All complexities are worst-case. None of the implementations

require lazy evaluation.
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2.2.1 Nalve Lists

An ordinary list provides O(1) access to the front and O(z) access to the

element.

2.2.2 Threaded Skew Binary Lists

Myers [29] extends the ordinary list implementation with an efficient lookup op-
eration, whilst preserving the complexities of the other operations.

Myers uses a number system called skew binary that proves very useful in
many data structures [7, 32, 38]. The advantage of this system of representing
numbers is that no more than a single carry is caused by an addition or subtrac-
tion of one. Each digit is either 0 or 1, except the least-significant non-zero digit,
which is either 1 or 2. The i** digit has weight 2{*1) — 1 as opposed to the usual

2¢ of ordinary binary numbers. For example,

(120), = (1 x7+2x3+0x1),, =(13),,
(11111), = (31 + 15+ 743 +1),5 = (57)y

where (z), is the number given by z under base notation b, with 2, standing for
skew binary, 2 for binary and 10 for decimal. With skew binary, addition of one

produces at most one carry, for example,

(120 + 1), = (200),,

whereas with binary we could have a cascade of carries,

(111 4 1), = (1000),

Removing the possibility of such a cascade allows us to perform an addition or
subtraction of one by changing at most two digits, irrespective of the size of the
number.

Myers uses the skew binary number system to add auxiliary pointers to ordi-
nary lists. These provide access to elements further down the list. A list of seven
elements |v7,...,v;], with v; at the front is shown in Figure 2.3. Along with
the value v; of each element in the list, we store the position POS of v; from the

end of the list, a pointer NEXT to the next element down from v;, and a pointer



20 CHAPTER 2. IMPLEMENTATIONS OF THREE ADTS

@@ @ ®' JUMP

N EXT
POS 2,

Figure 2.3: An example of a threaded skew binary list. The empty list is repre-
sented by [].

JUMP to an element further down the list with POS equal to j. The value of 7 is
determined as follows: take the POs of v; in skew binary, and reduce the least-
significant non-zero digit by one. For example, element vg has POS = (20),, and
hence its JUMP should point to the element with POs = (10),,, namely v3. Using
the JUMP pointers where possible, lookup now runs in O(min(i,logn)) time.

As with ordinary lists, however, update still runs in O(z) time. There is a series
of pointers to the updated element from every preceding element. Therefore each
of these elements must have their pointers updated.

Maintaining the JUMP pointers can be done in O(1) time as follows. Consider
a list with head element s. Let the JUMP of s point to t. Let the JUMP of ¢ point
to u. To cons an element onto the list, compare the distance between s and ¢,
with the distance between ¢ and u. If the two distances are equal, analogous to
the least significant non-zero digit of a skew binary number being two, we point
JUMP to u, analogous to carrying one in skew binary. If the two distances are not
equal then we point JUMP to s.

For example, consider how the JUMP of v; was calculated. At the time v; was
added to the list, the head element was vg. The JUMP of vg points to v3, and
the JUMP of v3 points to []. The distance between vs and v; is the same as the
distance between v; and []. Hence the JUMP of v7 should point to [].

Myers uses pointers to describe and implement his data structures, taking
explicit care to ensure that the structures are persistent. \With algebraic data-
types, the persistent property is enforced and no pointers are mentioned. The

type of Myers’ list would be given in Haskell by:
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data RASeq a = Empty
| Node a (RASeq a) (RASeq a) Int

The list with head element v, NEXT pointing to the list next, JUMP pointing to
the list jump, and POS equal to pos would be given by Elem v next jump pos.

For example, 1; = Elem v; Empty 1g 7 (with a suitable definition of 1¢, etc.) gives
the list 1; in Figure 2.3.

Okasaki (32, 38| gives an implementation of random-access lists that is essen-
tially an unthreaded version of Myers’ implementation. See Section 2.2.6 for a
comparison of these two data structures. Okasaki constructs his lists with alge-
braic data-types. Comparing Okasaki’s implementation with Myers’ illustrates

well how algebraic data-types can provide clarity and insight.

Okasaki {32] benchmarks Myers’ implementation, improving the code slightly
by maintaining the difference between the POSs of aI.1 element and the POS of the
element to which JUMP points. This value is called the rank of an element. The
POS of each element is no longer maintained and the calculation of the JuMP

involved in an application of cons is now simpler and more efficient. Appendix A

gives this improved implementation.

2.2.3 Balanced Trees

Various forms of balanced tree may be used to implement a random-access se-
quence. Most of these implementations offer O(logn) access to any element.
Braun trees are a notable exception and offer improved access to the front of
the sequence whilst maintaining logarithmic access to any element as an upper

bound. They are therefore treated separately in Section 2.2.4.
AVL trees {3, 31] are straightforward but tedious to implement. Okasaki

uses an implementation adapted specifically for random-access lists in [33]. Ap-

pendix A gives this implementation.

Adams [2] provides an alternative in the form of BB-trees. Adams’ implemen-
tation seems to be quite widely used, so we shall look at it below. Other forms of
balanced trees are documented well in imperative literature and most translate

across easily to the purely functional or persistent worlds.
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Adams gives an implementation of sets using BB-trees, which we describe
below. The modifications required for implementing random-access sequences

are minor (see the code in Appendix A).

BB-Trees

Adams represents a BB-tree as follows:

data Set a = Empty
| Branch Int (Set a) a (Set a)

For a non-empty tree Branch n 1 x r, we have:
e A node containing an element x and the number n of elements in the tree
e The left subtree 1

e The right subtree r

The elements are stored in symmetric order; that is, given any non-empty subtree
Branch n 1 x r, every element in the tree 1 is less than or equal to x, and x

is less than or equal to every element in the tree r. The following balancing

invariant 1s maintained:

Given a subtree Branch n 1 x r containing more than two elements,

neither 1 nor r has more than o times the number of elements of the

other.

To restore the balance of a tree after adding or removing an element, whilst
maintaining the order of elements, we need to perform rotations. Figure 2.4
shows the four forms of rotation required and Figure 2.5 shows the corresponding
code. Note that the trees are constructed using the function branch, not the
data constructor Branch, and that branch does not take size as an argument.
The function branch calculates the size of the tree from the sizes of the left and

right subtrees. This avoids unnecessarily verbose code produced by calculating

the size separately each time a tree is constructed (as would be necessary if

Branch was used directly). Adams calls these functions smart constructors. Two

further smart constructors are given:
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Figure 2.4: Rotations of a binary tree.

e balBranch, which constructs a balanced tree from a previously balanced

tree that has had at most one element deleted or added to one of its subtrees,

both of which are assumed to be now balanced

e concat3, which constructs a balanced tree from a node and two subtrees

of arbitrary size

Adding or removing a single element to or from a subtree may require a
rotation to restore the balancing invariant. An unbalanced tree with a large left

or right subtree requires a right or left rotation respectively. Let’s suppose that

the right subtree r is too large.
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branch :: Set a => a -> Set a -> Set a

branch 1 x r = Branch (1 + size 1 + sizer) 1 xr

size Empty = 0

size (Branchnl xr) =n

singlelL 1 x (Branch _ rl y rr) = branch (branch 1 x rl) y rr

singleR (Branch _ 1 x rl) y rr = branch 1 x (branch rl y rr)

doubleL 1 x (Branch _ (Branch _ rll y rlr) z rr) =

branch (branch 1 x rll) y (branch rlr z rr)
doubleR (Branch _ 11 x (Branch _ 1rl y 1lrr)) z r =

branch (branch 11 x 1lrl) y (branch 1lrr z r)

Figure 2.5: Rotating binary trees.

e If the left subtree rl of r is smaller than some constant « times the right
subtree rr, then we move rl across to the left subtree ! of the main tree to
try to restore the balancing invariant whilst preserving the order. This is
a single left rotation—see Figure 2.4. The rotation also shifts elements z

and y round to preserve order.

o If the right subtree rl of r is larger than a times the right subtree rr, then
we move only part of rl to restore the balancing invariant. We move the
left subtree rll of rl across to the main left subtree ! whilst preserving the

order of elements—this is what a double left rotation does, see Figure 2.4.

The case of the left subtree [ being too large is treated symmetrically. The
above algorithm can be seen in the code for balBranch in Figure 2.6. The
function concat3 simply traverses the tree, restoring balance as necessary by
calling balBranch.

In a technical report [1], Adams investigates what values of o and a are suf-
ficient for the algorithm above to maintain the balancing invariant. He produces
a graph of suitable combinations of ¢ and a. As used in Figure 2.6, o = 5 and

a = 2 is one such suitable combination. However, in [2] Adams gives code with
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sigma :: Int

sigma = 5
alpha :: Int
alpha = 2

balBranch :: Set a -> a => Set a =-> Set a
balBranch 1 x r
| sizel + sizeR < 2 = branch 1 x r
| sizeR > sigma * sizel =
let (Branch _ rl _ rr) =r
in if size rl < (size rr) * alpha
then singlelL 1 x r
else doublelL 1 x r
| sizeL > sigma * sizeR =
let (Branch _ 11 _ 1r) =1
in if size 1lr < (size 11) * alpha
then singleR 1 x T
else doubleR 1 x T
| otherwise = branch 1 x r

where sizelL = size 1

sizeR = size r

concat3 :: Ord a => Set a -> a ~> Set a -> Set a
concat3 Empty x r = add x r
concat3 1 x Empty = add x 1
concat3 1@(Branch nl 11 x 1lr) y r@(Branch nr rl z rT)
| sizeRatio * nl < nr = balBranch (concat3 1 y rl) z rr

| sizeRatio * nr < nl = balBranch 11 x (concat3 1lr y r)

| otherwise = branch 1 y r

Figure 2.6: Smart constructors of balanced trees.
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oc = 5 and a = 1, which is not suitable. One suspects that the proportion of
unbalanced trees is low and the cost of ensuring all trees are balanced is greater
than the cost taken to navigate the occasional unbalanced tree. However, Adams
does not mention this.

Consider the operation add that adds an element to a set. The operation add
descends the tree by recursively calling itself to add the element at the correct
position (or returning the tree if the element is present already). As it does so,
it may unbalance the tree at each of the nodes lying on its path to the added
element’s final position. The balancing smart constructor balBranch is designed
specifically to handle this case by assuming that only a single element has been
added or removed since the tree was last in a balanced state and that all subtrees

of the two trees it joins are balanced.

add :: Ord a => a -> Set a -> Set a

add x Empty = singleton x

add x t@(Branch _ 1 yr) | x <y = balBranch (add x 1) y r
| y < x = balBranch 1 y (add x r)

| otherwise =t

Other set operations are defined similarly.

2.2.4 Braun 1rees

Hoogerwoord [21] uses Braun trees [6] to implement flexible arrays. Braun trees

have the following properties:

e For any node of a Braun tree with left subtree ! and right subtree r,

| < U < frf+ 1.
e The size of a Braun tree determines its structure exactly.

e Every Braun tree is of minimum height.

Consider the infinite tree of Figure 2.7. Now consider the subtree formed by
e ;reg}oving all nodes bar those labelled with numbers in the range [0..n—1] inclusive.
’i""itf'l‘pis is the Braun tree of size n. For examples of Braun trees, see Figure 2.8. The

paftern of how the nodes are labelled is best illustrated by the lookup operation.
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Figure 2.7: The infinite Braun tree.

P A B

Figure 2.8: The Braun trees of size four, nine and seven.

To lookup the n'® element of Braun tree T with left subtree [ and right subtree

r, use the following rules:
e If n =0, then return the root element of T.
‘e If n is even, then return the ((n/2) — 1)'* element of r.
e Otherwise, n is odd, so return the ((n — 1)/2)'" element of I.

The update operation is defined similarly. As every Braun tree is of minimum
height, these operations run in O(logn) time. Treating the trees as lists, it 1s
possible to define cons and tail to run in O(logn) time, and head in O(1) time.

Hoogerwoord implements flexible arrays, whereas we want random-access
lists—we shall now explain the difference. When an element is added or re-
moved from the front of a random-access list, the positions of the other ele-
ments in the list shift. If instead positions remain fixed, we have a flexible
array. For example, consider applying cons to the list [; =[0,...,n] to give

the list I, = [-1,0,...,n]. Both a random-access list and a flexible array give

lookup l; 1 = i. However, a random-access list gives lookup l; i = ¢ — 1, whereas

a flexible array gives lookup l; 1 = i. It is simple to extend an implementation
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of a random-access list to give flexible array behaviour, and vice versa. The al-

gorithm we have described above, and the code in Appendix A, both implement

random-access lists.

2.2.5 Slowdown Deques

Kaplan and Tarjan [24] introduce the technique of recursive slowdoun and use
it to implement many data structures, including double-ended queues (deques).
Section 2.1.8 gives a brief explanation of recursive slowdown. The deques can
also be made to support random access.

A deque is represented by a prefix of up to five elements, an inner central
deque of pairs of elements, and a suffix of up to five elements. A large deque
is therefore made up of many deques nested within each other. The outermost
level contains simple elements in its prefix and suffix, the second level pairs of
elements, the third level pairs of pairs of elements, etc. As with the implicit
queues of Section 2.1.8, we make sure that an operation on the inner deque takes
place every two operations on the outer deque. To do this, we need to make
sure that the prefix and suflix are kept close to being half full to avoid cascades
of operations on nested deques. Kaplan and Tarjan introduce a colour scheme
to identify prefixes and suffixes with dangerously few or many elements: red for
zero or five elements, yellow for one or four elements, and green for two or three

elements. A deque is coloured according to the most dangerous colour of its prefix

or suffix. The following invariant is then maintained:

There is a green deque outside of the outermost red deque. There is

also a green deque between any two red deques.

This ensures that the outermost deque is always in a state ready to accept a new
element or to give up a current element. The details of how to juggle the prefixes
and suflixes to maintain this invariant are complex and not given here. Main-
taining the invariant may require performing an operation on the inner deque.
However, an operation on the inner deque is only necessary if the outer deque is
red. The invariant ensures that when the outer deque is red, the inner deque is

not red, hence preventing a cascade of operations on nested inner deques. The

invariant can be maintained with a constant amount of work per operation. As
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the invariant guarantees that the deque is ready to perform an operation in O(1)
time, this proves that the deque allows operations on either end to run in O(1)
worst-case time.

The operations lookup and update are implemented by descending the series
of nested deques till we reach the prefix or suffix in which the element is stored.
If the element is at most d positions from the nearest end of the deque, then the
element is at O(logd) depth since the number of elements stored in each level
grows exponentially. As the second level contains pairs of elements, the third level
pairs of pairs of elements, and so on, we have to descend this tree-like structure
to reach the element. As this tree is also O(logd) deep, the complexity of lookup
and update is O(logd).

2.2.6 Skew Binary Lists

Okasaki [32] notes that complete binary trees are a good structure to use for
random-access, allowing access and update to any node in O(logn) time. How-
ever, these trees are only found in sizes of the form 2*¥ — 1 so the problem remains
of how to store lists of arbitrary size. The skew binary number system of Sec-
tion 2.2.2 once more comes to our aid. Recalling that the ** digit represents
2! — 1, this number system is ideal for implementing a list of n elements as a
collection of complete binary trees according to the representation of n in skew
binary (see Figure 2.9). Importantly, the addition or removal of an element in-
volved in the cons and tail operations is also dealt with in O(1) time thanks
to the main property of skew binary numbers: addition or subtraction of one
produces at most one carry.

The importance of cheap access to the front of the list for cons, head and tail
suggests we order the trees by size, smallest first, and order the elements with
left-to-right pre-order.

By analogy with skew binary addition and subtraction, cons and {tail are

implemented as follows:

e To cons an element onto a list, check if the two smallest trees are the same
size. If not, add the new element as a singleton tree. Otherwise, create a

larger complete binary tree with the new element as root and the two trees
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Figure 2.9: A list [v,,...,v;13] represented as a collection of complete binary trees.
Number of nodes = (13);p =1 x (2 =1)+2x (22 -1) +0 x (2! = 1) = (120),,,
therefore we have one complete binary tree of depth three, two of depth two and

none of depth one.

as children—this preserves the ordering and the skew binary form.

e To take the tail of a list, simply remove the leading singleton tree if one
exists. If not, remove the root of the smallest tree and return both its

children to the collection.

These operations are illustrated in Figure 2.10.
The operation head is easy to implement in O(1) time. Similarly, lookup and
update are reasonably simple to implement if the size of the tree rooted at each

node is stored in the node.

The string representing the number n in the skew binary number system is
O(logn) long. A list of length n is therefore represented by a collection of O(logn)
trees. The largest tree in a list of length n is also O(logn) deep. The operations
lookup and update traverse the list till the tree containing the desired element
is found. This tree is then descended to reach the element. Hence update and
lookup each take O(logn) time. Upon further examination, we can improve this
complexity to O(min{i,logn}) in the worst case and O(logi) in the expected

case, when indexing the i*® element.
Parallels can be drawn between Okasaki’s lists and Myers’ lists (see Sec-
tion 2.2.2). There are many redundant pointers in Myers’ representation, causing

update to be less efficient, running in O(7) time. The shortest path from the head

of the list to any element never uses any of these pointers. By removing them, one
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Figure 2.10: The effect of cons and {ail acting on a list represented by a collection

of complete binary trees with the smallest two being 77 and T5.

obtains a structure isomorphic to the same list represented with Okasaki’s struc-
ture (see Figure 2.11). One can therefore view Okasaki’s work as an improvement
of Myers’ work to gain a more efficient update.

Alternatively, one may view Myers’ lists as threaded versions of Okasaki’s
lists. A tree is threaded when every node contains a pointer to the next element
with respect to some traversal order—Ileft-to-right pre-order in this case. This
can be seen in Figure 2.11. For example, node v3 contains a pointer to node vs.
However, for every case where searching through a Myers’ list would follow such
a pointer, the search in the equivalent list of Okasaki would have followed at least
one fewer pointer. For example, the search for vg in Okasaki’s list moves from v,

directly to vg; the search for vg in Myers’ list moves from v, to vg via vs.

2.2.7 Elevator Lists

Preliminary benchmarking results of the implementations of random-access se-
quences show that the naive implementation often wins for small lists, and some

form of tree wins for large lists. We design an implementation of random-access

sequences that 1s a hybrid of the simple list and the structured tree.

An elevator list is a simple list of floors. Each floor is itself a simple list.

data List a = Floor Int [a] (List a)
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Figure 2.11: A list [vy,...,vg] represented (a) by Myers’ random-access list, (b)
by Okasaki’s random-access list, and (c) by Myers’ list with redundant pointers

removed. Note the similarity between (b) and (c).

We label each floor with its size. There is a fixed “separation” between floors:

When the top floor becomes larger than a fixed size, a new floor is built on top.

Ordinary list operations act directly on the top floor. Random-access oper-
ations first descend to the correct floor, by subtracting the floor sizes from the
index, till the index is less than the floor size, and then use ordinary list lookup

and update on this floor.

We represent an empty list by a circular list of empty floors.

empty = Floor 0 [] empty

For further details, see the code in Appendix A.

2.3 Heaps

Priority queues, or heaps, support an ordered collection of elements. A spec-

ification is given in Figure 2.12. A table of implementations can be found at

Table 2.3.
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type Ord a = Heap a =<a>

empty :: Ord a = Heap a
emply = <>

insert :: Ord a = a — Heap a — Heap a

insert t h=<z>U h

merge :: Ord a = Heap a — Heap a — Heap a
merge hl h2 = hl L hg

findMin :: Ord a = Heap a — a
findMinh=x AN z€h ANVyehez <y (h#<>)

deleteMin :: Ord a = Heap a — Heap a
deleteMin h = h— <findMin h> (h # <>)

Figure 2.12: Heap specification. A bag is delimited with <>, U is bag union,

and — is bag difference.
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Name Lazy Complexities of Operations Reference

insert/merge: O(n) n/a
findMin/deleteMin: O(1)

Naive

Binomial insert/merge: O(logn) 38]
findMin/deleteMin: O(logn)
Skew Binomial insert: O(1), merge: O(logn) 7]

findMin/deleteMin: O(logn)
Bootstrapped insert/merge: O(1) 7]
findMin: O(1), deleteMin: O(logn)

Skew Binomial

Pairing insert/merge: O(1) [35]
findMin: O(1), deleteMin: O(logn) -

Leftist insert/merge: O(logn) [31]
findMin: O(1), deleteMin: O(logn) -

Splay insert: O(logn)?, merge: O(n)? [38]
- findMin/deleteMin: O(logn)? -

Table 2.3: Complexities of implementations of heaps (priority queues), where
n is the size of the heap (the resulting heap in the case of merge). Complexi-
ties marked with I are amortized under single-threaded use. The complexity of
deleteMin for pairing heaps is only a conjecture for single-threaded amortized
use; this bound has also been conjectured for a persistent version of pairing
heaps under amortized persistent use. If lazy evaluation is used, the complexity
of insert for binomial heaps becomes O(1) amortized. All other complexities are

worst-case and none of the implementations require lazy evaluation.
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Figure 2.13: The first four binomial trees.

2.3.1 Naive Heaps

An ordered list implements a heap with findMin and deleteMin running in O(1)

time, and insert and merge running in O(n) time.

2.3.2 Binomial Heaps

Vuillemin presents binomial queues in [51] with every operation running in
O(logn) time. Okasaki [38] preserves this complexity in a purely functional set-

ting. To avoid confusion with ordinary queues, we shall refer to binomial queues

as binomial heaps.

Binomial Trees

The size of a binomial tree determines its shape exactly: the first four are shown
in Figure 2.13. Figure 2.14 shows two equivalent definitions of the binomial tree
B,. The binomial tree B; has 2! nodes, *C; of which are at depth j, where
'C; =1il(i — j)!/J! gives the number of ways of choosing j items from a collection
of ¢+ items, disregarding order of choice. The name binomial derives from the
co-efficient of the i*® term of a binomial expansion (z + y)" being given by ®~*C;.

Given an ordering of elements, a tree is heap-ordered if for every node n with

parent m, the element stored at n is no smaller than the element stored at m.



36 CHAPTER 2. IMPLEMENTATIONS OF THREE ADTS

Figure 2.14: Equivalent forms of the binomial tree B,.

Figure 2.15: An example of a binomial heap: [B,, By]. There is no B, tree and

its absence is indicated by a vertical dash.

A binomial heap is a list of heap-ordered binomial trees: [B;,, B;,,...,B;,] with
9 < 11 < -++ <1, The size of a binomial heap determines its structure exactly.
The binomial tree B; appears in a binomial heap either once or not at all. An
example of a binomial heap can be seen in Figure 2.15.

A useful property of binomial heaps is that the binary representation of the
number of nodes within the heap corresponds exactly with the heap representa-
tion. For example, the heap in Figure 2.15 has five nodes and its binary equivalent
is indeed the number five: “1 By, 0 B; and 1 By” giving “101”. The length of
the binary representation of the number n is O(logn). Hence a binomial heap of

n elements is a list of length O(logn).

Operations on Binomial Heaps

An example of a merge can be seen in Figure 2.16. Merging binomial heaps is

strongly analogous to binary addition. Trees or digits of equal weight are added
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Figure 2.16: A merge of two binomial heaps and the corresponding binary addi-

tion.

together to produce a tree or digit of the next heaviest weight. Two binomial
trees of equal weight are added together by making the tree with the larger root
the leftmost child of the other tree.

The operation findMin simply scans the roots of the binomial trees to be
added. The other operations are defined in terms of merge: deleteMin ¢ scans
for the minimum root, removes it, and merges its children with the remainder of
g (the children of the root of a binomial tree always form a binomial heap, as
can be seen in Figure 2.14); insert ¢ ¢ simply merges g with the singleton queue

containing ¢. As there are O(logn) binomial trees in a binomial heap of size n,

each operation takes O(logn) time.

2.3.3 Skew Binomial Heaps

Brodal and Okasaki (7] adapt the binomial heap implementation to use skew bi-
nary arithmetic (see Section 2.2.2) in place of ordinary binary arithmetic. Recall
that the addition or subtraction of one takes O(1) time using the skew binary

number system. In the case of heaps, this allows insert to run in O(1) time. The
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other operations maintain their O(logn) complexity.

A skew binomial heap is a list of skew binomial trees. Unfortunately, skew
binomial trees are not as neat as their binomial counterparts. This is because
we must use some form of addition to implement merge. Skew binary addition
1s rather awkward in general and so we choose to use ordinary binary addition.
The conflict between using skew binary addition to implement insert and ordinary
binary addition to implement merge reduces the elegance of the implementation.

However, making insert run in O(1) time allows heaps of optimal complexity to

be built—see Section 2.3.4.

2.3.4 Bootstrapped Skew Binomial Heaps

Brodal and Okasaki [7], after adding the skew binary number system to binomial
heaps, add yet another feature: bootstrapping (see Section 2.1.7). This gives
heaps of optimal complexity: deleteMin runs in O(logn) time and findMin, insert
and merge run in O(1) time. It is easy to show these bounds are optimal using
the Q(nlogn) bound on sorting n items.

Recall that bootstrapping extends the design of an incomplete or inefhicient
data structure by using smaller instances of the same data structure. \We shall
let heaps contain other heaps as elements. This allows merge to be implemented

by the more efficient insert.
Suppose we import a heap implementation that runs insert in O(1) time.

In the Haskell notation, let the type of these heaps be given by 0ld.Heap a.

We wish to create bootstrapped heaps that can contain other heaps. We might

consider the type:

data Heap a = Heap (0ld.Heap (0ld.Heap a))

Here we have applied a single level of bootstrapping. But the top-level heap
contains elements of type 01d.Heap a. These old heaps contain simple elements
of type a, and so we cannot insert heaps into them; we need to be able to insert

heaps at an arbitrary depth of nesting. We need a recursive definition:

data Heap a = Heap (0l1d.Heap (Heap a))
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However, we do not have anywhere to store the simple elements of type a with

this definition. So instead we store the minimum element at the root as follows:

data Heap a = Empty
| Root a (01d.Heap (Heap a))

The old heap implementation will require an ordering of its elements: boot-
strapped heaps in this case. This is given by an ordering of the roots.

As bootstrapped heaps are old heaps of bootstrapped heaps, we can merge
two bootstrapped heaps by using Old.insert to insert one into the other. As
Old.insert is O(1), merge is O(1). We can define insert in terms of merge as
usual, and so insert is still O(1). The operation findMin simply looks at the
root. The operation deleteMin is implemented in terms of Old.merge, Old.findMin
and Old.deleteMin and therefore remains O(logn) (assuming that the old heaps

implement these operations in O(logn) time).

2.3.5 Pairing Heaps

Okasaki [35] presents a functional translation of pairing heaps which were first

described by Fredman, Sedgewick, Sleator, and Tarjan [15]. A heap is represented

by a heap-ordered multi-way tree:

data Heap a = Empty
| Node a [Heap a]

The operation findMin simply looks at the root. Two heaps are merged by making
the heap with the largest root the leftmost child of the other heap. An element
is inserted by merging with a heap containing the single element. Pairing heaps
derive their name from the implementation of deleteMin: the root is removed
and the children are combined in two passes. The first pass working left-to-right
merges successive pairs of children together. The second pass working right-to-left
merges the results of the first pass into one heap.

Although pairing heaps are quite well-known, no one has established tight
bounds on their complexity. It is clear that all operations beside deleteMin run
in O(1) time. In an ephemeral setting, it has been conjectured that deleteMin

runs in O(logn) amortized time. In a persistent setting however, the above
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implementation certainly does not meet these bounds. Consider successively
inserting the elements 0,1,...,n into an empty heap. The result will be a heap
with root 0 and children [n,...,1]. Now perform deleteMin on the same heap m
times. Each deleteMin will repeat the same work taking O(n) time each. The

amortized cost of deleteMin is therefore O(n) in a persistent setting.

Okasaki [35] also presents a persistent version of pairing heaps using lazy eval-
uation, which should not be subject to a similar refutation of O(logn) amortized
complexity. However, as with their ephemeral counterparts, a proof is not known.

Appendix A gives the ephemeral version.

2.3.6 Leftist Heaps

A leftist heap [25] is a heap-ordered binary tree satisfying the leftist property:

The r-height of every left child is greater than or equal to the r-height
of its right sibling.

The r-height of a binary tree is the number of internal nodes on the path from the
root to the rightmost external node—this path is called the right spine. One may
prove by induction that the r-height of any leftist heap of size n > 0 is bounded
above by log, n + 1.

Leftist heaps are an example of a data structure that translates across easily
from the imperative to the persistent or functional world. Niifiez et al. present a

functional implementation in [31].

To merge two leftist heaps, view their right spines as ordered lists. Merging
these ordered lists ensures the resulting tree is heap-ordered. This constructs
the right-spine from top to bottom. On the way back up, the leftist property
1s preserved by making the child with the largest r-height the left child. As
each pass runs in time proportional to the combined length of the right spines
of the arguments of merge, the operation runs in O(logn) time. The remaining

operations are straightforward.
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2.3.7 Splay Heaps

Okasaki [38] presents an implementation of heaps using splay trees [49]. A splay
tree is a binary tree that does not maintain any balance information but con-
sistently re-structures itself in a manner that tends to balance the tree. For
example, as the elements are stored in symmetric order, the deleteMin operation
must remove the leftmost node. After this node is removed, the leftmost path is
ascended, re-structuring the tree as it does so by shifting elements from left sub-
trees over to right subtrees. This tends to shorten the leftmost path, improving
the time taken for subsequent applications of deleteMin.

To tnsert anode z, the tree is split into nodes smaller than z, and nodes larger
than z. These subtrees then form the left and right children of z respectively.
As the tree is split, it is once again re-structured: if z splits the tree somewhere
in the left subtree of the root, then elements are moved over to the right subtree
and vice versa. This tends to balance the tree.

The operation findMin simply finds the leftmost node. This takes O(logn)
time. If every application of deleteMin is accompanied by at most one application
of findMin, as is often the case, we may amortize the cost of findMin to O(1).
Otherwise, we may store the minimum element separately from the tree. This

may be done without increasing the complexity of the other operations. As this

causes more work, this is only advisable when findMin is called often.

2.4 Summary

This chapter shows there are many ways to implement the same ADT. But which
implementation is best? Does it depend on how we use the data structure?
Calculating the complexities of the operations gives us a theoretical answer, but
empirical performance may give a different picture.

Therefore, after developing the benchmarking procedures motivated in Sec-

tion 1.3, we benchmark all of the implementations of this chapter in Chapter 7.
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Chapter 3

Datatype Usage Graphs

In Section 1.3 we identified a need to qualify the performance of a data structure
by how it is used. We can do this by creating benchmarks whose use of the data

structure is well-defined. This information is useless unless we can find out how an

application uses a data structure. This chapter outlines a theoretical framework

for (a) creating a benchmark from a description of use, and for (b) creating a

description of use from an application. Chapter 6 builds on this framework to

provide a practical tool to do both (a) and (b).

The ADT framework has a solid basis of literature [52] and is very convenient
for abstracting over many data structures—an ADT abstracts over many data

structures implementing the same operations. We shall therefore insist on every

data structure we deal with being an implementation of some ADT.

The ambiguity of the phrase “how an ADT is used” presents an obstacle. With-
out an exact definition of this property, we would find it hard to talk about the
efficiency of an implementation of an ADT according to how it is used, or indeed
about how a particular application uses an ADT. Consider the two applications
of queues in Figure 3.1 (see Section 2.1 for a definition of queues). Inspecting the

code for each application allows us to see what operations are being performed,

in what order, and how the result of one operation may rely on the result of
another. But the task is by no means straightforward. With more complicated

applications, the task would become extremely difficult. We need a simple record

of how an ADT is used by an application.

We use a labelled directed graph. See Figure 3.2 for examples that describe

A
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apply :: Int => (a -> a) => a => a

apply n £ q = (iterate £ @) !! n

snocTrue :: Queue Bool -> Queue Bool

snocTrue q = snoc q True

appl :: Int -> Bool

appl n = (head . apply (n-1) tail . apply n snocTrue) empty

app2 :: Int -> Bool
app2 n = (and . map (head . tail) . take n . repeat) nSnocs

where nSnocs = apply n snocTrue empty

Figure 3.1: Two artificial simple applications of queues: appl and app2. Note

that app2 uses a where clause to share the value of nSnocs.

how the queue ADT is used by the two applications of Figure 3.1. The nodes
are labelled with partially applied operations of the ADT, with the remaining
arguments supplied by the arcs. There is an arc from u to v if the result of the
operation at u is taken as an argument by the operation at v. The nodes are
numbered according to the order of evaluation. Such a graph is a datatype usage
graph (DUG). We shall make the definition of a DUG precise in the following

section.

A DUG is closely related to both an ezecution trace [38] and a version graph
[13]. An execution trace without cycles and with every operation returning a
single result is a DUG. A DUG with every operation returning an ADT value is a
version graph. Execution traces have been used as a model on which to explain
persistent amortized complexity via lazy evaluation [38]. Version graphs have

been used to explain the design of persistent data structures [12, 13, 40].

During the run of an application, many different instances of an ADT will
exist. For example, whilst running queue application appl there will exist at

some time an empty queue, a queue containing just True, a queue containing two
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empty
Al - snoc [ True
Al - tail |
A - head |

emply
1...n | Al-snoc [ True
Al - tail |
Al - head 1

M- tail ]
M - head |

Figure 3.2: Graphs showing how the queue ADT is used by the different appli-

cations given in Figure 3.1. Note that node n of app2 corresponds to the value

nSnocs shared by n applications of ta:l.
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copies of True, and so on. Each of these particular instances of the ADT is called
a version [38] (as defined in Section 1.4). A node of a DUG is called a version
node if it is labelled with an operation that results in a version. The subgraph
of a DUG containing just the version nodes is called the version graph. This is
consistent with the definition of a version graph given by Driscoll et al. {13].
The rest of this chapter is organised as follows. Section 3.1 defines a DUG
precisely. Section 3.2 defines the evaluation of a DUG, effectively creating a
benchmark. Section 3.3 defines a profile of a DUG, summarising the main char-
acteristics. Section 3.4 defines a shadow data structure, useful for creating a bua

that matches a given profile, and for adding information to a profile.

3.1 Definition

We should first define what we mean by an ADT. An ADT provides operations
to create, manipulate, and observe values of some new type. The only way to
interact with values of this type is through the ADT operations. This allows the

implementation of the ADT to be removed from its use—we may exchange imple-
mentations without changing how we use the ADT. We have therefore abstracted
away from the implementation.

We shall restrict ourselves to container types, that is, ADTs that contain ele-
ments of some other type. For example, a list ADT allows lists of integers, lists
of characters, etc. For any such ADT, we may consider the ADT as defining a
type constructor T. For example, a list ADT may be taken as defining a type
constructor List taking a type t to the type List t. A list of integers would then

have the type List Int. We shall restrict T to be unary. Most common ADTSs

satisfy these restrictions.

Definition 3.1 (ADT)
For any type constructor T', and any set of functions F, the pair (T, F) is

an ADT if the following are satisfied:
e T is unary.

e Each function in F' takes at least one argument of type T a, or returns

a result of type T a, where a is a type variable.
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For the sake of simplicity we shall further restrict the ADTs considered by giving

the following definitions.

Definition 3.2 (Simple Type)

For any type constructor T of arity one, we say that the type t is simple

over T if t

e Can be formed as type by the grammar

argument_type — type | result_type
Tal|a)Int
T a|a| Int| Bool

type

argument_type

|

result _type

where a is a type variable
e Contains at least one occurrence of T a

We shall abbreviate this to saying that ¢ is simple where the context makes

it unambiguous over which type constructor ¢ is simple.

Example 3.2

The following types are simple over the type constructors Queue, List and

Set respectively:

o Queue a = a — Queue a
o List a — Int — a

o Set a

The following are not simple over any type constructor:

o List a = Queue a
e (a = a)— List a — List a

® a

Definition 3.3 (Simple ADT)
We define the ADT A = (T, {f1,..., fn}) to be simple if the type of each

operation f; is simple.
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module List (List,empty,catenate,cons,tail,head,lookup,isEmpty)
where
empty :: List a

catenate :: List a -> List a -> List a

cons :: a => List a -> List a
tail :: List a -> List a

head »: List a -> a

lookup :: List a -> Int -> a

isEmpty :: List a -> Bool

Figure 3.3: Haskell code giving the signature of a simple list ADT Aj;,; providing
normal list operations, catenation and indexing. The exported type constructor

is List. The type of each operation is simple over List.

Example 3.3

The signature of a simple ADT A, is given in Figure 3.3.

Many ADTs are simple: queues, deques, lists, random-access sequences, heaps,
sets, integer finite maps, etc. However, any higher-order operations such as map,
or any operations converting from one data structure to another such as fromList,

need to be excluded.
When talking about DuGs we shall find it useful to classify the operations
according to the different roles they play. We therefore make the following defi-

nition.

Definition 3.4 (Generator, Mutator, Observer, Role, Version Arity)

For any operation f of type f, where ¢t is of the form
= 2l = =1,
and is simple over the type constructor T, f is classified as follows:

Generator Ilft, =T aand (Vj,1<j<m)t;# T a
Mutator Ift,=Taand (35,1<j<m)t;=Ta
Observer Ilftp,#Taand (35,1<j<m)t;=Ta
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Note that the categorisation is complete and any operation of simple type
is exactly one of: generator, mutator or observer. This is called the role
of the operation. We define the version arity of an operation to be the
number of version arguments taken by that operation. Therefore, every
generator has version arity 0, and every mutator and observer has version

arity greater than or equal to 1.

Example 3.4
Looking at the signature of the simple ADT A, in Figure 3.3, empty 1s
a generator; catenate, cons and tail are mutators; head, lookup and

isEmpty are observers. Every mutator and observer has version arity 1,

apart from catenate, which has version arity 2.

Look at the DUGs in Figure 3.2. The label attached to a DUG node is a partial
application of an ADT operation. For simplicity, the arguments used to partially
apply the operation are restricted to atomic values—nested function applications

are not allowed. The remaining arguments are supplied by the arcs. We shall

now define the functions that label DUG nodes.

Definition 3.5 (Partial Application, Pap(A))
Given a simple ADT A = (T, {f1,..., fn}), a partial application of f; is any

function of the following form:

/\.’131'/\332'...')\55;;'_)(} a s ... Qpp, 0<k<m

Here, m is the arity of f;, each z; occurs exactly once in the sequence
lai,...,an|, and every other element of this sequence is an atomic value.
To avoid duplication, we further insist that z;, ..., x occur in order in
the sequence [ay, ..., any), that is, z;, occurs before z;, for j; < jo. The set

of all partial applications of any function of a simple ADT A is denoted by
Pap(A).

Example 3.5

For the list ADT Ay, whose signature is given in Figure 3.3, the following

functions are in Pap(ALis):
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e A -cons’a’l
e empty

o \i-Aly- catenate Iy 1,
Whereas, the following functions are not:

o M\l - catenatel

® All . /\l2 - catenate 22 ll

e Ay Al cons (lookup 1 2) I,

We may use a partial application to assign a role to a node: For a node v labelled
with a partial application of the operation f, the role of v is defined to be the
role of f. For example, looking at the DUG for appl in Figure 3.2, node 0 is a
generator, nodes 1 to 2n — 1 are mutators, and node 2n is an observer.

We are now in a position to give a definition of a DUG. For nodes with more
than one incoming arc, we need to identify which arc corresponds to which argu-

ment. We therefore label every arc to such a node with an argument position.

Definition 3.6 (DUG)
Given a directed graph G = (V,£), a simple ADT A = (T, {f1,..., fa}),
a total mapping  : V — Pap(A), and a bijection o : YV — {1..|V|}, let
Ep C € be those arcs incident to a node with more than one incoming arc,
and let 7 : £p — N be a total mapping. The 4-tuple (G,n,0,7) is a DUG

for A, if for every v € V the following properties are satisfied:

1. The arity of n(v) equals the in-degree of v.

2. If v has more than one incoming arc, 7 restricted to the incoming arcs

is a bijection with the set {1..indegree(v)}.

3. The application of n(v) to the arguments given by € and 7 is type

consistent.

4. If v has successor w € V, o(v) < a(w).

5. The type of every argument of n(v) is T a.
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Properties 1-3 ensure the DUG is well-defined. Properties 4-5 impose re-
strictions on DUGs to make generating DUGs easier: Property 4 orders
the arguments of an operation before the operation itself~—note that this
forces the graph to be acyclic—see the problem Choosing the operation
before the arguments of Section 4.1.1 for justification of this restriction;
Property 5 ensures only version arguments are taken from the results of

other operations—see the problem Choosing non-version arguments from

the graph of Section 4.1.1 for justification.

Example 3.6

Once again using the ADT Ay, whose signature is given in Figure 3.3, an
example of a DUG is shown in Figure 3.4. A table defines 7. The ordering
o of the evaluation of the nodes is given by: o(v;) = i. Labels assigned
by 7 are written beside the relevant arcs: vs catenates v, onto the front of
v3, and vy catenates v; onto the front of vg. The type variable a can be

substituted by the type Char to obtain type consistency for every function

application.

As each operation returns only a single value, we may associate each node with
the value 1t produces. The nodes of the version graph are associated with versions
formed by either generating a fresh version or by mutating one or more previous
versions. The arcs within the version graph represent the flow of data within
the privacy of the ADT framework. The arcs going out from the version graph

represent the flow of data out of the privacy of the ADT framework.

3.2 Evaluation

We have so far presented a DUG as a record of how an application uses an imple-
mentation of an ADT. We can reverse this process. By creating an evaluator of
DUGs, we create an application that uses an ADT implementation in the manner
given by the DUG it evaluates. We can then use this application as a benchmark

with a known pattern of use.

For example, evaluating the DUG for app1 of Figure 3.2 should create an empty

queue, then snoc the value True onto the queue n times, then take the tail of the
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Al-cons’c’ |

emply

Al-cons’h’ |

Al - head |

9 Aly - Al - catenate Iy 1,
Al - tail ]

Aly - Al - catenate l; s

@ @ A - tail |

Al - lookup | 1
Al - isEmpty 1

Figure 3.4: A DUG for the list ADT Ay, (see Figure 3.3).

queue (n — 1) times, and finally apply head. We will define evaluation by first

defining how we may associate each node with a function application.

Definition 3.7 (Interpretation of Partial Applications)
Let A be any simple ADT. Let f be an operation of A. Let g € Pap(.A)
be any partial application of f. Let Z be an implementation of 4. The
interpretation of g under Z, denoted by [g]z, is the value of g using the

implementation of f in Z.

Example 3.7
Let £ be the ordinary Haskell implementation of lists, then

o [Al-cons True ljc =\1 -> (True:l)
o [AM-head l] = \(x:x8) -> x
o [empty], =[]

Definition 3.8 (Interpretation of Nodes)
Let (G,n,0,7) be any DUG for the ADT A, let v be any node of G, and let
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7 be an implementation of A. Let ey,...,ex, K > 0, be the arcs incident to
v, ordered by 7, from the nodes v, ..., v respectively. The interpretation

of v under Z, denoted by [v]z, is the following expression:

[vlz = [n(v)]z [vilz ... [vklz

where the right-hand side is an application of the function [n(v)]z. Note

that as G is acyclic, this recursive definition is sound.

Example 3.8

Using the DUG shown in Figure 3.4, and the ordinary Haskell implemen-

tation L of lists,

o [u]lc=(\1 -> (°c’:1)) []
o [vg]e =(\(x:x8) -> x) ((\1 -> (°h’:1)) [])

3.2.1 Order of Evaluation

The order of evaluating the interpretations of the DUG nodes can significantly

affect efficiency. Within functional languages there are two main schemes for
deciding the order of evaluation of an expression: lazy and eager. We shall

accomodate both schemes by using the node ordering of a buG (G, n, 0, 7) given

by o in two separate ways.

Lazy Evaluation

If we consider how a function is applied under lazy evaluation, we see that a
closure representing the application is first formed, then its value is perhaps
demanded one or more times, and then it is garbage collected. The formation of
the closure can be a separate incident to its value being demanded. The order
of the formation of the closures can also affect efficiency. Hence we shall order
the forming of the closures of the expressions given by the interpretations of each
DUG node.

Under lazy evaluation, only the work required to form the demanded result
is performed. We must demand a result or no work will be done. Within the

ADT framework, we cannot look within an ADT value, so we instead demand the
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values that are of some other type. Looking at a DUG, only the values given by
the observer nodes have such a type. The order in which we demand these values

will affect efficiency.

Within the current framework we shall insist that the order in which we
demand the evaluation of the observer nodes coincides with the order of the
formation of the closures associated with observer nodes, ie. as soon as we form
a closure for an observer node, we demand it. There is the possibility for an

extension here to allow for these to occur at different times.

Definition 3.9 (Lazy Evaluation of a DUG)
Given a DUG (G, n,0,7) for an ADT A, and an implementation Z of A, the
lazy evaluation of the DUG with respect to Z is the process of performing

the following steps on each node o(i) in order:

e Form the closure given by [o(7)]z.

e If the node is an observer, demand the value of this closure.

Example 3.9
The lazy evaluation of the DUG of Figure 3.4 would form the closures [v;]
for 0 < 7 < 10 in order. When the closures for the observer nodes are
formed, namely [v4], [vo], and [v0], their value is demanded at the same

time.

Eager Evaluation

Whereas with lazy evaluation many applications of functions may remain uneval-
uated closures, under eager evaluation they will always be reduced. Hence the
eager evaluation of a DUG will evaluate every node and there is no distinction

between forming a function application and evaluating it.

Definition 3.10 (Eager Evaluation of a buG)

Given an ordered DUG (D, o), and an implementation Z of A, the evalua-
tion of the DUG with respect to Z is the process of taking each node o(%)

in order and evaluating the application given by [o(3)]z.
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Example 3.10

The eager evaluation of the DUG of Figure 3.4 would simply evaluate each

[v;] for 0 < 7 < 10 in order.

3.2.2 Abstract Evaluation

The most abstract implementation of an ADT is the ADT itself. We use the

abstract operations to create, manipulate, and observe abstract values. These

abstract values only exist within the abstract world of mathematics, not within

any machine.

Definition 3.11 (Abstract Evaluation)

The abstract evaluation of a DUG for the ADT A is a mapping £ that takes

a node v to the result of evaluating [v] 4.

Example 3.11

The abstract evaluation £ of the DUG of Figure 3.4 is given by the following

table, using [zy,...,Z,] to denote a list of elements zy, ...

---
) [0 ] ter [0 | ow) [ [ pew [ ey | e, ]| ] 0| Fals

3.3 Profile

Recall from the introduction of this chapter that we want to create a benchmark
from a DUG, and that we want to extract a DUG from an application. However,
a DUG may be very large, and hence difficult to give or inspect, so we shall
now define the profile of a DuG. The profile will condense the most relevant
characteristics of a DUG into a few numbers. We can use pseudo-random numbers
to generate a family of DUGs that on average have a given profile. The initial seed

given to the pseudo-random number generator determines which one is chosen.

We can now create a benchmark from a profile, and extract a profile from an

application.

We should first give some justification of using pseudo-random numbers. Why
do we need a random element to our DUG generation? This is because there are

many DUGs that match a single profile, and without an element of randomness we
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will always pick the same one. But why cannot we just generate this one DUG?
Because fixing ourselves to just one of these invites bias into our results. Such
a bias may favour one ADT implementation over another, unfairly representing
their performance. Picking several of these DUGs at random combats this bias.

So what characteristics do we choose to record in a profile? One obvious
choice is the fraction of persistent applications of operations. An application
of an operation is persistent if one of the version arguments has already been
mutated—that is, a mutator has already been applied to this argument. However,
considering the application of an operation as a whole causes problems with the
generation of DUGs. Specifically, we will find that it is easier to choose the
arguments independently of each other before applying the operation—see the
problem Choosing the operation before the arguments of Section 4.1.1.

To solve this problem, we split an application into the parts represented by
the arcs: One arc identifies one application. This allows us to identify whether
an application is persistent according to whether the source of the arc has been
previously mutated. With this definition of persistence we can identify which
applications of operations to an argument are persistent independently of the
other arguments. Note that the order associated with the targets of the arcs

indicates the order of the applications.

Definition 3.12 (Mutation, Observation)
For any node v of the version graph of a DUG, a mutation of v is an arc from
v to a mutator node. Note that an n-ary mutator creates n mutations. An
observation is defined similarly. Mutations and observations inherit the

ordering given to the nodes to which they point.

Example 3.12
Looking at the DUG 1n Figure 3.4, the arc from v; to vg is a mutation,
and the arc from v; to vy is an observation. As vg is ordered after vg, the

observation v; — vg is ordered after the mutation v; — vs.

Definition 3.13 (Persistent, Ephemeral)
For any node v of the version graph of a buG with node ordering o, a

mutation or observation of v is persistent if it is ordered by o afler the
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earliest mutation of v. This captures the notion of persistence: mutating

or observing the previous value of a mutated data structure. A mutation

or observation that is not persistent is called ephemeral.

Example 3.13
As in Example 3.12, looking at the DUG in Figure 3.4, we see that the

observation v7; — vg occurs after the mutation v; — vg. As this mutation
is the only mutation of vz, it is also the earliest. Thus the observation
occurs after the earliest mutation, and so is persistent. The mutation

v; — v7 1s also persistent. The observation vz — v4 is ephemeral.

Another obvious characteristic of DUGSs is the ratio of how many times we apply

one operation relative to another.

Definition 3.14 (Weight)

For any DUG D, the weight of a mutator f in D is the number of muta-
tions that apply f to nodes in D. The weight of an observer is defined
similarly. The weight of a generator f is simply the number of nodes that

are generated by f. To unify these two definitions, one might imagine a

single void node with arcs to each generator node.

Example 3.14

The weights of the operations in the buG in Figure 3.4 are given below.

We can localise the weight of a mutator or of an observer to just a subgraph.

This allows us to see how this ratio might change from one region of the DUG to

another.

Definition 3.15 (Weight in #)

For any subgraph H of a version graph, the weight of a mutator f in ‘H
is the number of mutations that apply f to nodes in H. The weight of an

observer is defined similarly.
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Example 3.15
Looking at the DUG in Figure 3.4, let the subgraph H include just the

nodes vy, v, V2 and vs. The weights of the mutators and observers in H

are given below.

cons

cons

Information such as the average number of mutations of a node is not only useful

for summarising DUGS, it also provides a very convenient way to generate a DUG
with a given profile (see ahead to Section 4.1.1).

From the fraction of mutations that are persistent, we can calculate the aver-
age number of mutations of previously mutated nodes as follows. Let p,, be the
fraction of mutations that are persistent. Take any node v; that 1s mutated at
least once. The first mutation of v; is ephemeral, and the remaining n; mutations

are persistent. Averaging over all j mutated nodes, we have

If we know the fraction m of nodes that are not mutated at all, we can calculate

the average number 77 of mutations of a node:

—_ DPm _l“m
p—0m+(1+1_pm) (1-m)= -

We call p,, the persistent mutation factor (PMF), and m the mortality.

If we calculate the ratio r of mutations to observations, we can also estimate
the average number of observations of a node. Making the assumption that a
node was made by a mutator, then the average number of observations of a node
is 1/r. As we have excluded nodes made by generators, this is only an estimate.
From the fraction p, of observations that are persistent, we can calculate the
average number of observations made before the first mutation at (1 —p,)/r, and
the average number of observations made after the first mutation at p,/r. We
call p, the persistent observation factor (POF).

Later we shall wish to calculate the profile of a subgraph of a DUG. As

the weight of a generator cannot be localised to a subgraph, we separate out
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generation weights from the weights of mutators and observers. To allow the
calculation of the ratio r of mutations to observations, we group the mutation

and observation weights together to form the mutation-observation weights.

Definition 3.16 (pDuG Profile)

The profile of a DUG D with version graph Gy is given by the following:

e (Generation weights: The ratio of the weights of each generator.

o Mutation-observation weights: The ratio of the weights of each mu-

tator and observer in Gy.
e Mortality: The fraction of nodes in Gy that are not mutated.
e PMF: The fraction of mutations of nodes in Gy that are persistent.
e POF: The fraction of observations of nodes in Gy that are persistent.

Example 3.16

The DUG shown in Figure 3.4 has the following profile:

o Generation weights: As there is only one generator, empty, this prop-

erty 1s redundant at: empty = 1.

o Mutation~observation weights: We have
catenate : cons : tail : head : lookup : isEmpty =4:2:2:1:1:1

Note that each application of catenate carries double the weight of an

application of one of the other operations because each application of

calenate creates two mutations.

o Mortality: Of the eight version nodes, only one (vg) is not mutated,

so the mortality is 1/8.

e PMF: There are eight mutations, one of which (v; — v7) is persistent,

so the PMF is 1/8.

e POF: There are three observations, one of which (v; — vg) is persis-

tent, so the POF is 1/3.

If the PMF and POF of a DUG are both zero, then we know that there are no

persistent applications of an operation. Therefore, we make the following defini-

tion.
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Definition 3.17 (Single-Threaded)
An application using an implementation of a simple ADT A in a manner
recorded by the DUG D is single-threaded for A if the PMF and POF of D
are both zero. A single-threaded application does not require a persistent

implementation of the ADT.

Example 3.17

The DUG of application app1l shown in Figure 3.2 has PMF and POF both

zero and is therefore single-threaded.

3.4 Shadow Data Structure

To aid the generation of DUGSs, and to add information to profiles, we use a shadow
data structure. A shadow data structure maintains a shadow of every version.
This shadow contains information about the version. A shadow data structure
does not depend on any implementation of the ADT, but is instead abstract and
applicable to any implementation of the same ADT.

As a running example, for the ADT A, whose signature is given in Fig-
ure 3.3, and for which each version is a list, let the shadow of a version contain
the length of the list. Below we give an overview of the uses of a shadow data

structure.

Guarding Against Undefined Function Applications

When generating a DUG from a profile, if we blindly choose to label a node with
any operation, we may create an application that is undefined: for example,
most list ADTs would not define the value of head empty. Such applications of
partial operations need to be excluded from a DUG generated at random. We
need to have a guard around the partial operation telling us which applications
of the operation we can form. We can use the shadow of a version to store
enough information to allow decisions about whether a particular operation may
be applied to that version. For example, for Ay, if we maintain the length of a
list in the shadow, we can prevent the application head empty by only allowing

head to be applied to lists of length 1 or more.
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Phasing Profiles

We can also use the shadow data structure to split a profile into phases. The
shadow of a version node will determine which phase the node is in. This is useful
for giving a more specific profile. For example, we might wish to make a DUG
for Ay where the average length of the list is n elements. We can do this if we
make cons more likely than tail on lists shorter than n elements, and vice versa
for lists longer than n elements. This is possible if we maintain the length of the
list in the shadow, and give a different profile for each of the two phases: lists no

longer than n elements, and lists longer than n elements.

Shadow Profiling

The shadow could also store any other useful information about what operations
were performed. This shadow profile information would allow profile information
specific to an ADT to be collected, along with the general profile information
already described in this chapter. For example, by maintaining the length of a

list, we can calculate the average length of a list per mutation or observation.

Note that a shadow data structure is only used for the generation or analysis of
DUGs, and need not be involved in applications using an ADT implementation.
We shall later use a further restriction on buGs to aid both DuG generation

and DUG extraction: Versions may only contain integer elements. Introducing
this restriction here also simplifies the definition of a shadow data structure. See

Section 4.1.1 for a discussion of this restriction. This restriction implies that the

type variable a in the type of an operation becomes instantiated to Int.

We shall now define a shadow data structure precisely.

3.4.1 Shadowing

We should first define the shadows themselves. The shadows are maintained by

the shadow operations.

Definition 3.18 (Shadow Operation)

For any simple ADT (T, F), and for any generator or mutator f € F, let ¢



62 CHAPTER 3. DATATYPE USAGE GRAPHS

be the type of f with type variable a instantiated to Int. For any type s,
the function ¢ is an s-shadow of f if g has the type shadow,(t) given by

shadow,(t; = t;) = shadow,(t;) — shadow,(t;)
shadow,(T Int) = s
shadow,(Int) = Int

The shadows maintained by this shadow operation have type s. There are

no shadows of observers as they do not return versions.

Example 3.18

For any type s, an s-shadow of the lookup operation of Ay, (see Figure 3.3)

has the following type:

shadow,(T Int 5> Int =+ Int 5T Int)=s—> Int = Int = s

Definition 3.19 (Shadowing)
Let A = (T,{f1,..-,fn}) be any simple ADT. Let {f,,-.., fi.} be the

generators and mutators of A. For any set F' = {f{,..., fi } of opera-

tions, and any type s, the pair (s, F') is a shadowing of A if the following
hold:

e Each f;. is an s-shadow of f;;.
e There exists a homomorphism ¢ :: T' Int — s; that is,
for all f;;, x1,...,Zx, where k > 0 is the arity of f;;,

if fi; o1 ... xx is well-defined, then the following holds:

¢ (fiyzr ... ze)=F, (¢ 1) ... (¢ )

where for all z,

¢»’:c—{¢x’ if = has type T Int

x, otherwise

Example 3.19

The Haskell code of Figure 3.5 is a shadowing Szi, of the ADT AL (see
Figure 3.3). In this case, the type s shadowing List Int is of type Int, and

the homomorphism ¢ :: List Int — Int is the function that returns the

length of a list.
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type Shadow = Int

empty_Shadow :: Shadow
empty_Shadow = 0

catenate_Shadow :: Shadow =-> Shadow -> Shadow

catenate_Shadow s0 sl = s0 + sl

cons _Shadow :: Int -> Shadow -> Shadow

cons_Shadow 10 sO0 = s0 + 1

tail_Shadow :: Shadow -~> Shadow
tail_Shadow sO = s0 - 1

Figure 3.5: A shadowing of ADT Ay (see Figure 3.3).

Definition 3.11 assigns an abstract ADT value to every version node of a DUG; the

following definition assigns the shadow of the ADT value.

Definition 3.20 (Shadow Evaluation)
Let D be any DUG for ADT A4, and S = (s, F) be any shadowing of \A. The

shadow evaluation of D is a mapping ( that takes a version node v to the

result of evaluating [v]s, where an operation is interpreted by its shadow.

Example 3.20
Taking the DUG of Figure 3.4 with the shadowing Sy, of Figure 3.5, the

shadow evaluation ¢ of the DUG is given below:

cwalol1 ]2 2 1]2 s

Note from Examples 3.11 and 3.20 that the evaluation of each version node under

Srist equals the length of the list produced by the evaluation under Agi;. This
results from the condition that a shadowing defines a homomorphism from the

ADT values to the shadow values. This is now proved.
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Lemma 3.1 For any DUG D for ADT A, any version node v in D, and any

shadowing S defining a homomorphism @, if [v] 4 is well-defined, then ¢ [v]4 =
[’Uﬁs.

Proof: We shall proceed by induction on n, the number of nodes of in the version

graph.
e For n = 0 the lemma is satisfied trivially.

e We shall assume that the lemma is true for all DUGs with no greater than n
version nodes. We claim the lemma is true for any DUG with n + 1 version
nodes. Take such a DUG D. Take any version node v with zero out-degree
within the version graph. There must be at least one such node as the graph
is acyclic. As v has no successors within the version graph, we may remove
v and any successors outside of the version graph from D to obtain another
puGc D'. As D’ has n version nodes, the inductive hypothesis states that
for any version node v’ in D/, ¢ [v']4 = [v']s. Therefore we need only prove
that the lemma is true for v. Let e;,...,ex, kK 2 0, be the arcs incident to v,
ordered by 7, from the nodes v,..., vt respectively. Let f be the operation

from which n(v) is derived, and let f’ be the shadow of f given by S.

[vls = [n()ls [u)s ... lvels
— (Al‘l tvee® ATk 'f' a ... am) (q’) [Ul]A) (é ['Uk]A)

Without loss of generality, we shall assume that for 1 < i <k, a; = z;.

[vls = f'(¢[n]a) ... (¢ [ve]a) gk .. am

¢ (f [vida --- [ve]a axsr -.. am)

d ((Azy-... Az fay ... ap) [u1]la --. [ve)a)
¢ (n(v) [ula .. [v]a)

¢ [v]4

O

This lemma shows that we can have access to the shadow of a version, as defined
by the homomorphism of the shadowing, by using just the shadow operations.
We do not need a version to create a shadow, we need only know which operations

created the version. This abstracts us away from any concrete representation of

the version.
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For example, the shadowing of Figure 3.5 defines a homomorphism from a
version, which is a list, to its length. Lemma 3.1 shows we can calculate the
shadow of a version v, namely its length, without having access to v itself. All
we need to know is which operations created v. To construct the length of v, we

use shadows of the same operations, with the same arguments.

3.4.2 Guarding

Using the information stored in the shadows, we wish to define a guard of an
operation f that indicates which applications of f are allowed. We could make a
guard take the same arguments as f and return true or false, according to whether
the application is allowed or not. However, when generating an application at
random, this would force every argument of an operation to be chosen before
passing these arguments to the relevant guard. With an application such as lookup
| i, this means guessing which indices are available for lookup before testing the
validity of the application. This would be very ineflicient.

The definition of a DUG already restricts arguments supplied by the result of
another operation to just version arguments. This allows non-version arguments
to be chosen independently of the results of other operations. Suppose we pass
the guard only the version arguments of an operation. The valid ranges of re-
maining arguments could be returned as the result. One argument could then be
chosen from each range with the resulting application guaranteed to be valid. For
example, the guard for lookup could return a range of indices up to the length of
the list.

This works only if we make the further restriction that the guard returns
independent ranges of non-version arguments. Where the ranges of valid non-
version arguments are dependent, the guard must return some independent subset
of ranges. As we have ensured that every non-version argument is of type Int, a

guard may return a range using the type IntSubset.
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Definition 3.21 (IntSubset, member)
The type IntSubset is given by

data IntSubset = All

Pool

Int ... Int
FiniteSet (Set Int)

None

and represents subsets of integers in the sense made precise by the following

definition of the membership operation:

member .2 Int — IntSubset — Bool
member 1 All = True

member 1 Pool = (1 <1 < poolSize)
member 1 (I :..:u) = (<1< u)

member 1 (FiniteSet s) = membergs i s

member 1 None = False

where memberps is the membership operation on the type Set Int, and
poolSize is some constant. We assume the availability of a suitable ADT to
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