
Benchmarking Purely Functional Data Structures

Graeme E Moss

Thesis submitted for the degree of DPhil in Computer Science

University of York

Department of Computer Science

July 1999

iC

iv CONTENTS

2.3 Heaps 32

2.3.1 NaYve Heaps 35

2.3.2 Binomial Heaps 35

2.3.3 Skew Binomial Heaps 37

2.3.4 Bootstrapped Skew Binomial Heaps 38

2.3.5 Pairing Heaps 39

2.3.6 Leftist Heaps 40

2.3.7 Splay Heaps 41

2.4 Summary 41

3 Datatype Usage Graphs 43

3.1 Definition 46

3.2 Evaluation 51

3.2.1 Order of Evaluation 53

3.2.2 Abstract Evaluation 55

3.3 Profile 55

3.4 Shadow Data Structure 60

3.4.1 Shadowing 61

3.4.2 Guarding 65

3.4.3 Phasing 70

3.4.4 Shadow Profiling 74

3.4.5 Definition 76

3.5 Summary 76

4 Implementing Datatype Usage Graphs 77

4.1 From Profile to Benchmark 77

4.1.1 DUG Generation 78

4.1.2 DUG Evaluation 92

4.2 From Application to Profile 95

4.2.1 DUG Extraction 95

4.2.2 DUG Profiling 98

4.3 Technical Details 102

4.3.1 DUG Generation 102

CONTENTS V

4.3.2 DUG Evaluation 106

4.3.3 DUG Extraction
108

4.3.4 DUG Profiling
..............

109

4.4 Testing
......................

110

4.4.1 DUG Generation
............. 110

4.4.2 DUG Evaluation
113

4.4.3 DUG Extraction
113

4.4.4 DUG Profiling
..............

115

4.5 Summary
...................

115

5 Exploring Datatype Usage Space 117

5.1 Exhaustive Exploration 117

5.2 Selective Exploration 119

5.3 Capturing Size 121

5.3.1 Growth and Decay 121

5.3.2 Linear Weights 123

5.3.3 Markov Chains 124

5.4 Inducing Decision Trees 125

5.4.1 The Algorithm 127

5.4.2 Simplifying Decision Trees
132

5.5 Summary
137

6 Auburn: Benchmarking Tool 139

6.1 Design Rationale 139

6.1.1 Dynamic Linking 140

6.1.2 Overhead of DUG Evaluation 140

6.1.3 Describing DUGS
143

6.1.4 ' Re-compilation 143

6.2 Overview of Auburn 144

6.3 ADT Signature 145

6.4 DUG Manager 147

6.4.1 DUG Generating 147

6.4.2 DUG Profiling
................. 148

vi CONTENTS

6.4.3 DUG Describing 149

6.5 Shadow Data Structure 149

6.5.1 Trivial Shadow Data Structure 151

6.5.2 Size-Based Shadow Data Structure 153

6.6 DUG Evaluator 155

6.7 Null Implementation 158

6.8 DUG Extraction 159

6.9 Automation
.............................. 160

6.9.1 Benchmarker
......................... 161

6.10 Summary
............................... 164

7 Results 167

7.1 Benchmarking Three ADTS 167

7.1.1 Setting Up 168

7.1.2 '1ýacing Bugs 169

7.1.3 Fine-Tuning the Implementations 172

7.1.4 Inducing Decision Trees 173

7.1.5 Summary 186

7.2 Evaluating Auburn 186

7.2.1 Real Benchmarks 186

7.3 Locating Inaccuracy in Auburn 189

7.3.1 Insufficient DUG 193

7.3.2 Insufficient Profile 196

7.3.3 Strictness Issues 199

7.3.4 Inaccurate Trees 200

7.4 Summary 202

8 Conclusions 205

8.1 Benchmarking Theory 205

8.2 Benchmarking Practice 206

8.3 Criticism 207

8.4 Future Work 208

8.5 The Future 208

CONTENTS

A Source Code of Implementations

B Modifications to Implementations

C Auburn Reference

Bibliography

vii

209

235

245

257

viii CONTENTS

List of Tables

2.1 Complexities of implementations of queues
10

2.2 Complexities of implementations of sequences supporting random-

access
18

2.3 Complexities of implementations of heaps
.............. 34

4.1 Differences between target and actual profiles

5.1 An example of using Markov chains 124

5.2 A training sample
127

5.3 (a) A training sample. (b) A test sample 134

6.1 The overhead Of DUG evaluation methods 143

6.2 Shadow operations of simple ADTS that can be shadowed by size. . 156

6.3 Rules for guessing the result of a size-based shadow operation. .. 156

6.4 Guards for simple ADTS that can be shadowed by size 157

6.5 Rules for guessing the result of a guard using size-based shadows. 157

7.1 The effect of modifications on performance of queue implementations. 173

7.2 The effect of modifications on performance of random-access se-

quence implementations 174

7.3 The effect of modifications on performance of heap implementations. 175

7.4 The accuracy of various trees applied to the corresponding test

sample 177

7.5 Performance of queue implementations 179

7.6 Performance of random-access sequence implementations 179

7.7 Performance of heap implementations 182

ix

x LIST OF TABLES

7.8 The effect of persistence on the performance of the RealTime and
Batched queue implementations on the test sample 184

7.9 Results of running the queue benchmarks 190

7.10 Results of running the random-access sequence benchmarks. ... 191

7.11 Results of running the heap benchmarks
............... 192

7.12 Correlation coefficients for a benchmark and the evaluation of the

extracted DUG 194

7.13 Correlation coefficients for a benchmark and the evaluation of

DUGS with similar profiles 197

7.14 Times taken to run the Quicksort benchmark using the Naive and
Braun random-access sequence implementations 202

List of Figures

1.1 C program to insert and lookup a node in an ordered, unbalanced

tree 3

1.2 Haskell program to insert and lookup a node in an ordered, unbal-

anced tree 4

1.3 Compact C program to insert and lookup a node in an ordered

unbalanced tree 4

2.1 Queue specification 10

2.2 Specification of a sequence supporting random-access. For the pur-

poses of specification, we treat a random-access sequence as a list. 17

2.3 An example of a threaded skew binary list 20

2.4 Rotations of a binary tree 23

2.5 Rotating binary trees 24

2.6 Smart constructors of balanced trees 25

2.7 The infinite Braun tree 27

2.8 The Braun trees of size four, nine and seven 27

2.9 A list represented as a collection of complete binary trees. 30

2.10 The effect of cons and tail acting on a list represented by a collec-

tion of complete binary trees 31

2.11 A list represented (a) by Myers' random-access list, (b) by Okasaki's

random-access list, and (c) by Myers' list with redundant pointers

removed 32

2.12 Heap specification 33

2.13 The first four binomial trees 35

2.14 Equivalent forms of the binomial tree B 36

2.15 An example of a binomial heap 36

xi

xii LIST OF FIGURES

2.16 A merge of two binomial heaps and the corresponding binary ad-

dition
37

3.1 Two artificial simple applications of queues 44

3.2 Graphs showing how the queue ADT is used by the different appli-

cations given in Figure 3.1 45

3.3 Haskell code giving the signature of a simple list ADTAList 48

3.4 A DUG for the list ADTAList 52

3.5 A shadowing Of ADTAList 63

3.6 Haskell code for SLit-guards of the operations Of AList 69

3.7 Functions implementing an SLig-phasing assigning lists no longer

than the phase argument to phase 1, and those longer to phase 2. 72

3.8 Functions implementing an SLi, t-profiling 75

4.1 Overview of the DUG generation algorithm 78

4.2 Haskell code giving the signature of a simple list ADT 81

4.3 Overview of the DUG generation algorithm (part I) 83

4.4 Overview of the DUG generation algorithm (part II) 84

4.5 Overview of the DUG evaluation algorithm 93

4.6 Definition of a wrapped ADT 99

4.7 A plot of maximum live heap against maximum frontier for DUG

generation 112

4.8 Overhead incurred by modifying an application for DUG extraction,

plotted against size of the extracted DUG
114

4.9 A plot of maximum live heap against maximum frontier for DUG

profiling
116

5.1 Mapping datatype usage space with two attributes 118

5.2 An example of growth and decay phasing on lists 122

5.3 Two linear functions giving weight ratios for lists 123

5.4 Decision tree for an (imaginary) ADT storing a collection of papers. 126

5.5 Generic pruning scheme based on error prediction 133

5.6 Decision tree induced from the training sample of Table 5.3(a). .. 134

6.1 Times taken to compile DUGs as Haskell programs 141

LIST OF FIGURES xiii

6.2 Structure of Auburn
145

6.3 Haskell code giving the signature of a simple list ADT 146

6.4 Output from the GraphViz package viewing the DUG of Figure 3.4.150

6.5 Textual description of the DUG of Figure 3.4
151

6.6 Textual description of the DUG of Figure 3.4 as a Haskell program. 152

7.1 The smallest DUG found by the queue benchmarker that causes an

error in the physicist's queues
170

7.2 The tree induced using the gain criterion on the training sample

for the queue ADT, pruned using the reduced error method 180

7.3 The tree induced using the gain criterion on the training sample

for the random-access sequence ADT, pruned using the reduced

error method 181

7.4 The tree induced using the gain criterion on the training sample

for the heap ADT, pruned using the reduced error method. 182

7.5 Examples of graphs plotting data with different correlation coeffi-

cients
195

7.6 Correlation coefficient for implementation efficiency plotted against

the percentage difference in size, as reported by the shadow profile. 198

A. 1 Bankers queue implementation 209

A. 2 Batched queue implementation 210

A. 3 Bootstrapped queue implementation 210

A. 4 Implicit queue implementation 211

A. 5 Multihead queue implementation 212

A. 6 Physicists queue implementation 213

A. 7 RealTime queue implementation 214

A. 8 AVL random-access sequence implementation (part I) 215

A. 9 AVL random-access sequence implementation (part II) 216

A. 10 Adams random-access sequence implementation (part I) 216

A. 11 Adams random-access sequence implementation (part II) 217

A. 12 Braun random-access sequence implementation 218

A. 13 Elevator random-access sequence implementation 219

A. 14 Naive random-access sequence implementation 220

xiv LIST OF FIGURES

A-15 SkewBin random-access sequence implementation 221

A. 16 Slowdown random-access sequence implementation (part 1).. 222

A. 17 Slowdown random-access sequence implementation (part 11). 223

A. 18 Slowdown random-access sequence implementation (part III). . 224

A. 19 ThreadSkewBin random-access sequence implementation 225

A. 20 Binomial heap implementation 226

A. 21 BootSkewBin heap implementation (part I) 227

A. 22 BootSkewBin heap implementation (part II) 228

A. 23 Leftist heap implementation 229

A. 24 Naive heap implementation 230

A. 25 Pairing heap implementation 231

A. 26 SkewBin heap implementation (part I) 232

A. 27 SkewBin heap implementation (part II) 233

A. 28 Splay heap implementation 234

B. 1 Bankers queue modification 235

B. 2 Batched queue modification 235

B. 3 Bootstrapped-1 queue modification 235

BA Bootstrapped-2 queue modification 236

B. 5 Implicit-1 queue modification 236

B. 6 Implicit-2 queue modification 236

B. 7 Multihead queue modification 237

B. 8 Physicists queue modification 238

B. 9 AVL-1 random-access sequence modification 238

B. 10 AVL-2 random-access sequence modification 239

B. 11 AVL-3 random-access sequence modification 239

B. 12 AVL-4 random-access sequence modification 240

B. 13 Adams random-access sequence modification 241

B. 14 Braun random-access sequence modification 241

B. 15 Elevator-1 random-access sequence modification 241

B. 16 Elevator-2 random-access sequence modification 241

B. 17 Elevator-3 random-access sequence modification 241

B. 18 SkewBin random-access sequence modification 242

LIST OF FIGURES xv

B. 19 ThreadSkewBin random-access sequence modification 243

B. 20 Binomial heap modification 243

B. 21 BootSkewBin heap modification 244

B. 22 Leftist heap modification 244

B. 23 Pairing-1 heap modification 244

B. 24 Pairing-2 heap modification 244

B. 25 SkewBin heap modification 244

C. 1 Help information for auburn 246

C. 2 Help information for a typical dug manager (part 1) 247

C-3 Help information for a typical dug manager (part H) 248

CA Help information for a typical benchmarker (part I) 249
C. 5 Help information for a typical benchmarker (part H) 250
C. 6 Help information for auburnExp 251
C. 7 Help information for makeDugs 252

C. 8 Help information for evalDugs (part I) 253

C-9 Help information for evalDugs (part II) 254

C. 10 Help information for processTimes 255

C. 11 Help information for cleanDugs 255

Acknowledgements

A studentship from the University of York funded this work, and many people
inspired and encouraged me during its development. Firstly, I would like to thank

Chris Okasaki, without whom none of this work would have even started. The

work Chris and others have done in the field of data structures reveal some of

the beauty within Computer Science.

I would also like to thank: Mike Thyer, for countless discussions on many
issues relating to this work and to Computer Science in general; Nathan Charles,

for keeping me sane whilst working in the office; and those who were foolish

enough to ask me about my thesis, for the reminder this gave me about my will
to finish.

Most importantly, I would like to thank my supervisor, Colin Runciman, for

always being willing to listen, advise, and encourage, regardless of however much

other work he had to juggle.

Finally, I would like to thank those who made my stay at York so much more

enjoyable: Andrew, Judith, Suzanne, Tony, Nick, Claire, Helen, Randall, Emma,

Uzma, Catherine, Kristin, and Marie.

xvi

LIST OF FIGURES

Author's Declaration

xvii

I presented a concise and informal version of Chapter 3 at IFL'97 [26] using

version 1.0 of Auburn. All of Chapter 5, bar Section 5.4, appears in the draft

proceedings of IFL'98 [27]. At PADL'99 [28] 1 presented brief and formal versions

of Sections 3.1 and 3.3, a summary of Section 4.1.1, and an illustration of the use

of Auburn version 2.0a.

xviii LIST OF FIGURES

Chapter 1

Introduction

The importance of efficient data structures is reflected through literature span-

ning many years [3,11,51]. Recently, this has included data structures and

complexity models developed specifically for functional languages [14,38,40].

But, in practice, what distinguishes a good data structure from a bad data struc-

ture? What is the main reason whether a data structure is useful? Empirical

performance! Yet most literature has paid little attention to this aspect of data

structures. We tackle this deficiency by developing the theory and practice of
benchmarking functional data structures.

1.1 Functional Languages

Why use functional languages? Given the amount of literature on data structures
for imperative languages, why do we need to bother with functional data struc-

tures? There are strong arguments for the functional style of programming [5,22].

e Succinctness. A functional program is typically shorter than its imperative

equivalent. This helps reduce development and maintenance costs.

9 Clarity. The meaning of a functional program is arguably more immediate,

by being shorter and by using features like algebraic datatypes and higher

order functions.

* Reasoning. The lack of state allows referential transparency, which in turn

allows the meaning of a program to be independent of its surroundings.

1

CHAPTER 1. INTRODUCTION

This simplifies any mathematical reasoning on a program, including for

example, a proof of its correctness. This also simplifies the programmer's

task, by aiding their own mental reasoning about a program.

* Beauty. A functional program feels "cleaner" and more aesthetically pleas-

ing. Through aesthetics, this affects the state of the programmer, their

enthusiasm to work, and thus the quality of their results.

As a small example, Figure 1.1 and Figure 1.2 show C and Haskell versions

respectively of a program to insert and lookup a node in an ordered, unbalanced

tree. The most obvious difference between these programs is the difference in

size. Figure 1.3 shows a more compact C program, but it is still larger than the

Haskell program, and less understandable than the larger C program. The Haskell

program is far clearer than either C program. Because of this size difference, and
because of the lack of pointers, programming the Haskell version is far less error-

prone. The Haskell programmer is free to think about the tree itself, rather than

how the tree is represented.

1.2 Functional Data Structures

Given we want to use a functional language, why do we need data structures

specifically designed for a functional setting? Will not the vast array of imperative

data structures suffice? Unfortunately not, because of the greater demands a
functional language places on its data structures: A functional data structure

cannot be destructively updated. No information can be lost until the program

using the data structure no longer requires it. In particular, when a data structure
is updated, both the new and the old versions of the data structure must be

available for further use.

Some imperative data structures can be brought across to the functional Nvorld

with little change. In most cases the design actually becomes clearer in a func-

tional setting. Figures 1.1 and 1.2 illustrate this well. Okasaki gives another

example by implementing red-black trees in a functional setting [39] and further

writes in the conclusions section:

1.2. FUNCTIONAL DATA STRUCTURES

#include <stdio. h>
#include <stdlib. h>

typedef struct node I
int value;
struct node *left, *right;
node;

typedef node *tree;

int member (int x, tree t) f

while (t != NULL && t->value != x)
t= (x < t->value) ? t->left : t->right;

return (t != NULL);
I

tree mknode Unt x) f
tree t= malloc (sizeof (node));

t->value = x;
t->left = t->right = NULL;
return t;

I

void insert (int x, tree *result) I
tree t= *result , *tptr = result;

if (t == NULL) (
*result = mknode(x);
else f

while (t != NULL && t->value 1= x)
tptr = (x < t->value) ? &t->left : &t->right;
t= *tptr;

I
if (t == NULL) *tptr = mknode(x);

I
I

3

Figure 1.1: C program to insert and lookup a node in an ordered, unbalanced

tree.

4 CHAPTER 1. INTRODUCTION

data Tree a= Empty I Node (Tree a) a (Tree a)

member x Empty = False
member x (Node 1y r)

x<y= member x1
x>y= member xr
otherwise = True

insert x Empty = Node Empty x Empty
insert x (Node 1y r)

x<y= Node (insert x 1) yr
x>y= Node 1y (insert x r)
otherwise = Node 1xr

Figure 1.2: Haskell program to insert and lookup a node in an ordered, unbal-

anced tree.

#include <stdio. h>
#include <stdlib. h>

typedef struct node f
int value;
struct node *left, *right;
node;

typedef node *tree;

tree* find Unt x, tree *tp)
if (*tp 1= NULL)

while (*tp I= NULL && (*tp)->value != x)
tp = (x < (*tp)->value) ? &(*tp)->left : &(*tp)->right;

return tp;
I

int member (int x, tree t) freturn (*find(x, &t) != NULL); j

void insert (int x, tree *tp) (
if ((tp = find(x, tp)) != NULL)

*tp = malloc(sizeof (node));
(*tp)->value = x; (*tp)->left = (*tp)->right = NULL;

Figure 1.3: Compact C program to insert and lookup a node in an ordered

unbalanced tree.

1.3. BENCHMARKING FUNCTIONAL DATA STRUCTURES 5

When existing imperative algorithms can be implemented in func-

tional languages, the results are often much prettier than the original

version. This has been amply demonstrated in the past for various

kinds of balanced binary search trees, including 2-3 trees [47], BB-

trees [21, and "L trees [311.

Over the past six or seven years, many papers have given details of new

functional data structures [7,10,14,32,33,34,40]. However, these papers

only give limited attention to empirical performance. Okasaki writes in an open

problems section of his thesis Purely Functional Data Structures [36], "The theory

and practice of benchmarking [functional] data structures is still in its infancy. "

This thesis develops the theory and practice of benchmarking functional data

structures.

1.3 Benchmarking Functional Data Structures

Suppose we want to measure the efficiencies of some competing data structures.

The standard approach is to find a few applications to act as benchmarks, allowing

us to measure the efficiency of each data structure when used by each benchmark.

Why not do this? Firstly, creating anything but a very artificial benchmark is a

substantial task. Secondly, using the results of just a few benchmarks, especially

artificial ones, can be very misleading. The efficiency of a data structure may

vary heavily according to how it is used, and hence the choice of benchmarks may
determine which data structure appears to be the best-see Section 7.2.1 for an

example of this. Worse, we will not know if our choice of benchmarks is "fair" or

not.

We solve both of these problems by developing a benchmarking tool, Auburn,

that creates a benchmark according to a description of use. By generating a fair

distribution of benchmarks over a wide variety of different uses, we not only find

which data structure is best overall, but also which data structure is best for a

particular use.

Suppose that we have a single application in mind, and we wish to choose one

of many competing data structures to use in our application. Why not simply

6 CHAPTER 1. INTRODUCTION

measure the performance of our application using each data structure in turn?

Unfortunately, this approach does not reveal why the data structures perform as

they do. If our application changes how it uses the data structures, a different

one may now be the most efficient, without us knowing why.
By measuring how our application uses the data structures, and how the data

structures' efficiency varies according to this use, we can know why the best data

structure is best. Therefore, Auburn also creates a description of use from an

application.

1.4 Terminology

In order to understand the following chapters, it is necessary to define a few key

terms.

* Benchmark. A benchmark is an application that can use any one of a
family of competing data structures. A benchmark is used to measure the

performance of such data structures.

* Abstract Datatype. An abstract data type (ADT) is a type with associated

operations manipulating values of that type. A more detailed definition is

given in Section 3.1.

* Implementation. A data structure that gives a concrete realisation of the

type and operations of an ADT is called an implementation.

Version. When an application uses a data structure, at any one point in the

computation, there exist many different instances of the data structure-for

example, a particular list, or a particular queue. Each particular instance

of a data structure is called a version of the data structure.

Persistence. Persistence is the property of allowing the use of any version

of a data structure in its original form after it has been updated. A data

structure that supports persistence is called persistent. A data structure

that is not persistent is called ephemeraL

* Single- Threaded. An application is single-threaded in the use of a data

structure if it does not use any persistence supported by the data structure.

1.5. OVERVIEW 7

Amortisation. When applied to the complexity of an operation, amortisa-

tion implies that the cost of an operation is considered in the context of

a group of operations, rather than in isolation. This allows the cost of an

expensive operation to be spread over many surrounding inexpensive oper-

ations. Note that all complexities are arguably amortised in a lazy language

like Haskell.

1.5 Overview

Chapter 2 reviews some implementations of three different ADTS: queues, random-

access sequences, and heaps. The details of the implementations provide an ex-

ample of the different ways of implementing an ADT. They also add meaning to

the results of benchmarking the implementations in Chapter 7.

Chapter 3 develops the theory of datatype usage upon which Auburn is based.

It defines a datatype usage graph (DUG) recording how a data structure is used
by an application, and a profile surnmarising the most important aspects of a

DUG. This chapter also outlines how we can create a benchmark from a profile,

and extract a profile from an application.
Chapter 4 describes the implementation of the core algorithms of Auburn, as

outlined in theory in Chapter 3. These involve the creation of benchmarks from

profiles through the generation and evaluation Of DUGS, and the extraction of

profiles from applications through the extraction and profiling Of DUCS.

Chapter 5 investigates how we should use Auburn. There are many ways we

could use the algorithms of Chapter 4, but we need any method to be efficient,

to be accurate, and to produce concise, clear results. This chapter presents a few

methods, surnmarising their advantages and disadvantages, and then recommends

one of them.

Chapter 6 outlines the design and use of Auburn. Chapter 4 gives the core

algorithms of Auburn, but there are many other design decisions in how to im-

plement and combine these into one package. Most of the decisions relate to the

language in which we implement Auburn: Haskell.

Chapter 7 reports the results of using Auburn on the data structures of Chap-

ter 2. We examine the accuracy of these results, and the accuracy of Auburn as

8 CHAPTER 1. INTRODUCTION

a whole. We also investigate the source of any inaccuracy in Auburn.

Chapter 8 concludes and lists future Nvork.
Appendix A gives the code for the implementations of the data structures

detailed in Chapter 2 and used in the final round of benchmarking in Chapter 7.

Appendix B gives the modifications of the implementations of Appendix A

used in the fine-tuning section of Chapter 7.

Appendix C details the executables that make up Auburn.

Chapter 2

Implementations of Three ADTs

In Chapter 7, we shall benchmark several implementations of queues, random-

access sequences, and heaps. This chapter delivers the key idea behind each

implementation. We may then interpret the results of the benchmarking in the

light of this review. Without such a review, the results hold little value except

towards choosing one over another; with this review, the practical results of design

choices become visible and provide insight into their effectiveness.

Each section of this chapter begins with a brief description and formal spec-

ification of the ADT. The following subsections review each implementation.

We give references to papers describing the implementations in greater detail.

As we organise the review by data structure, we can easily compare different

implementations of the same data structure. Appendix A gives code for each

implementation.

2.1 Queues

Queues are among the simplest of ADTS. They are sequences supporting insertion

at the rear, and removal from the front. Figure 2.1 gives the specification of

queues. Table 2.1 lists the queue implementations and the complexities of their

operations.

9

10 CHAPTER 2. IMPLEMENTATIONS OF THREE ADTS

type Queue a= [a]

empty :: Queue a
empty = []

snoc:: Queue a -+ a -+ Queue a
snoc [xol ... i Xn-11 X= IX07

... iXn-bX1

head :: Queue a -+ a
head [xo,..., x�-,] = xo (n > 1)

tail :: Queue a -4Queue a
tail [io7

... tXn-11
[XIv

... 7
Xn-11 (n > 1)

Figure 2.1: Queue specification. For the purposes of specification, we treat a

queue as a list.

Queues
Name Lazy Complexities of Operations Reference

NaIve - headltail: 0(l), snoc: O(n) n/a
Simple - snoclheadltail: 0(1)t [20)

Multihead - snoclheadltail: 0(1) [20]

Banker's snoclheadltail: 0(1)1 [37]

Physicist's snoclheadltail: 0(1)t [38]

Real-time v, snoclheadltail: 0(1) [341

Bootstrapped snoclheadltail: 0(1)t [38]

Implicit snoclheadItail: 0(1)t [38]

Table 2.1: Complexities of implementations of queues, including whether lazy

evaluation is required. Complexities marked with f are amortized. Complexities

marked with t also are amortized, but only under single-threaded use. All other

complexities are worst-case.

2.1. QUEUES

NaYve Queues

11

We can represent a queue directlY as a list. The normal head and tail operations

of lists implement head and taiL List catenation of a singleton list implements

snoc.

2.1.2 Batched Queues

Hood and Melville [20] represent a queue as a pair of lists (f, r)-f giving the

front portion of the queue and r giving the reverse of the rear portion of the

queue. The queue of elements aj, a2, a,, is therefore represented by the lists

f= [a 1, ..., a,,,] and r= [a a,, +,], 0<m<n with f empty only when

the queue itself is empty. To insert an element onto the queue, -simply add an

element to the front of r. To remove an element from the queue, take the first

element of f; if this leaves f empty, then let the queue become (reverse r, []).

Every operation except tail takes 0(1) time. If an application of tail causes a

reversal of r, it takes O(n) time; otherwise, it also takes 0(1) time. For any single-

threaded sequence of operations, a reversal of r happens at most once every A(n)

operations, where A(n) is O(n). Therefore we can conclude that A(n) single-

threaded queue operations take O(n) time-an amortized complexity of 0(l).

However, persistence destroys this result. Consider an application of tail that

reverses the rear list. Persistence allows us to repeat this application indefinitely,

each application taking O(n) time. Therefore, in a persistent setting, the best

complexity we can give to tail is O(n).

We take the name of this implementation from [38].

2.1.3 Multihead Queues

Hood and Melville [20] improve on the batched implementation of a queue by

distributing the reversal of the rear list over a number of operations. This gives

real-time queues, that is, the operations run in 0(1) worst-case complexity.

In order to continue performing operations whilst reversing the rear list, the

reversal begins when the rear list r becomes larger than the front list f. The

reversal is spread over the following n operations, where n is the length of the

12 CHAPTER 2. IMPLEMENTATIONS OF THREE ADTS

front list. These n operations create new front and rear lists fýp and r,, p by

removing elements from f and by adding elements to the empty list respectively.

At the same time, r is reversed onto the end of f to create a new front list fn, "',
taking care to use only elements in fýp. The lists fn,,, and r,, p form the new

queue. It is simple to prove that r, p is no longer than fn,,..

To create the list fn,,,, over n operations, reverse f to make f,,,, and at the

same time reverse r to make r,,,. Then move elements from the front of f"', onto

the front of r,,, till an element not in fýp is reached, or when all elements have

been moved. It is sufficient to move only two elements per operation from f to

fmv) from r to r, or from f,, to rr,,. Hence each operation takes 0(1) time.

The name multihead derives from the similarity of the solution to how multi-
head Turing machines can be simulated. Full details are given in [20]. Note that

there are two mistakes in the code given in [20].

* The call cons [v, TI on line 4 should read cons [v, T11.

* The value lendif f -1 on line 9 should read lendif f.

Appendix A gives the corrected implementation.

2.1.4 Banker's Queues

Okasaki [37] presents an implementation of queues with 0(1) amortized com-

plexity. He is able to give an amortized complexity in a persistent setting by

appealing to the proof techniques that he develops in [32,37], and presents in

[38]. Representing a queue as a pair of lists is once again the basis of the im-

plementation. Hood and Melville remove the problem of the O(n) persistent

complexity of the batched implementation by explicitly scheduling a distribution

of the work involved in performing the reversal of the rear list. Okasaki gives a

much simpler solution that uses lazy evaluation to implicitly schedule and share

this distribution of work.

The key idea is not to delay more work than a subsequent sequence of oper-

ations can pay off. Under single-threaded use, traditional amortization allows us

to spread the cost of the reversal of the rear list r of length Irl over the previous
Irl applications of snoc that built r. With non-single-threaded use however, we

1. Q UE UES 13

may have several queues sharing the result of a snoc. This application of snoc

can only bear a constant additional cost before losing its 0(1) complexity. As

an arbitrary number of queues may share the result of the snoc, the batched

implementation of queues cannot have 0(1) complexity in a persistent setting.

Okasaki shifts the burden of the reversal from the preceding sequence of op-

erations to the succeeding sequences of operations-remember that there may be

more than one such sequence because of persistence. This is done by insisting

that a queue must never engage in a reverse whose cost cannot be spread over

operations that occur after the reverse is formed but before its result is required.
The cost of the reverse can then be shared by the operations that occur between

suspending an application of the reverse and executing this suspension. The cost

of the reverse is considered to be a debt, waiting to be paid off. Lazy evalua-

tion plays a key role here in two respects: a function application can be delayed,

and the result of the delayed application can be shared. For further details on

persistent amortization, see [381.

So when can we delay a reverse and still be in a position to pay off its debt

before its result is needed? Suppose we only reverse the rear list r and append it

to the end of the front list f when Irl becomes larger than a constant k times If I.

As we apply tail to the resulting queue, the new front list will shorten. Until we
have removed all of f, the result of the reverse is not required. The number of

applications of tail required to do this is equal to if 1. As Irl is at most a constant
k times If 1, we can share the cost of the reverse over the If I applications of tail

by adding a constant additional cost to each. The operations therefore keep their

0(1) complexity.

For a more formal argument using the banker's method of persistent amorti-

zation proof techniques, see either [37] or [381. The name of this implementation

is derived from the proof technique used to give it its complexity.

2.1.5 Physicist's Queues

In the same way that Okasaki uses the banker's method to give 0(l) amortized
bounds to banker's queues, he uses the physicist's method to give 0(l) amortized
bounds to physicist's queues [38].

14 CHAPTER 2. IMPLEMENTATIONS OF THREE ADTS

The major difference between the banker's and physicist's methods is that the

banker's method allows the debt of particular suspensions of work to be paid off

individually whereas the physicist's method considers the debt of the whole data

structure. The idea behind physicist's queues is to make fewer suspensions. For

a strict language such as Standard ML where suspensions are explicit and costly,

this may reap some rewards. For a lazy language such as Haskell where everything

is suspended, the physicist's queues are unlikely to be any more efficient than the

banker's queues.

2.1.6 Real-Time Queues

A real-time data structure supports all operations in 0(1) worst-case time.

Okasaki gives a real-time implementation of queues in [341. We may derive this

implementation from the banker's queues by splitting up any monolithic chunks

of work into portions taking 0(1) time. These portions are spread evenly over

every operation. This allows each operation to run in 0(1) time.

The only monolithic work suspended by the banker's queues not of 0(1)

complexity is the reversal of the rear list. This is replaced by the function rotate

that incrementally reverses the rear list onto the back of the front list. A constant

portion of the rotation is done each time the queue is updated.

2.1.7 Bootstrapped Queues

Okasaki [38] offers yet another variation on the banker's queues, this time using

the principle of data-structural bootstrapping given by Buchsbaum [8]. The basic

idea behind bootstrapping is to extend the design of an incomplete or inefficient

data structure to use smaller instances of the same data structure.

Recall that banker's queues reverse the rear list onto the end of the front list

every time the rear list becomes too large. After a series of such reversals, the

front list will look something like this:

(((f -ii-reverse ri) 4-i-reverse r2) I+reverse rk)

As append is linear in its left argument, such a series of appends is rather ex-

pensive since some elements are traversed more than once, eg. every element of

1. Q UE UES 15

r, will be traversed k times. Bootstrapped queues remove this inefficiency by

storing the collection freverse rl,. . ., reverse rk} of reversed rear lists separately,

and using them to replace the front list as necessary. This does not then require

any applications of append. But how should we store this collection? Noting the

first-in first-out order in which they are inserted and removed, we shall represent

this collection as a queue of lists. This is where bootstrapping is used: A queue

of lists represents part of a queue. The type of a queue becomes:

data Queue a= Empty

I Queue [a] (Queue [a]) Int [a] Int

where Queue fmf ml.,, r rl.,, is a queue with front list f, queue m of reversed rear
lists, and rear list r; f ml.,, gives the combined length of f and the lists in m; and

ri.. gives the length of r. The recursive type requires a base case for termination,

so an Empty constructor is introduced.

The operations of this implementation run in 0(log* n) time', but a simple

alteration improves this complexity to 0(1). In practice however, this makes
little difference.

2.1.8 Implicit Queues

Okasaki [381 describes another implementation of queues, this time based on the

principle of recursive slowdown. Kaplan and Tarjan first introduced recursive

slowdown in [24]. The key observation underlying the technique arises from

considering a bootstrapped data structure (for an example of bootstrapping, see
Section 2.1.7).

Suppose an operation on a bootstrapped data structure of size n involves a

constant amount of work plus that of calling the same operation a constant c
times on nested data structures of combined size f (n). Let T(n) measure the

time taken by this operation. We have:

T(n) = 0(l) + cT(f (n))

If we solve this recurrence relation for c=1 and f (n) = log n, we find that

T= 0(log* n). This gives the complexity of the bootstrapped queues of Sec-

I logM k= 1092 k, log(') = log log('-') k (i > 1), log* k= minjil log() k< 1)

16 CHAPTER 2. IMPLEMENTATIONS OF THREE ADTS

tion 2.1.7. If however, we solve the relation for c= 1/2 and f (n) = log n, we

find that T(n) = 0(1). Indeed, for c<I and f (n) =n-1, we still find that

T(n) = 0(1). But what does performing, say, half an operation mean? Suppose

we made sure that only one operation was performed on a nested data structure

for every two operations on the enclosing data structure. This could be seen as

performing half an operation on the nested data structure for every one operation

on the enclosing data structure. This is recursive slowdown.

To apply recursive slowdown to queues, we shall represent a queue using a

smaller inner queue on which we perform one operation for every two operations

performed on the enclosing queue. If the inner queue is a queue of pairs, we need

only insert or remove a pair every two insertions or removals respectively on the

enclosing queue. We will keep at least one element at the front of the enclosing

queue. This ensures that the enclosing queue is ready to perform an operation

and that the inner queue is distinctly smaller. This is Okasaki's implementation,

and the type of queues is given by

data Queue a= Shallow (ZeroOrOne a)
I Deep (OneOrTwo a) (Queue (a, a)) (ZeroOrOne a)

data ZeroOrOne a= ZeroInOne I OneInOne a

data OneOrTwo a= OneInTwo aI TwoInTwo aa

Whereas Kaplan and Tarjan explicitly schedule thework involved in recursive

calls to inner data structures, Okasaki uses lazy evaluation to implicitly schedule

this work, hence the name of this implementation. Data structures using implicit

recursive slowdown are typically a lot simpler than their explicit counterparts,

but are amortized rather than worst-case.

2.2 Random-Access Sequences

Figure 2.2 specifies sequences that support access to any element. Table 2.2 lists

some implementations.

2.2. RANDOM-ACCESS SEQUENCES

type RASeq a= [a]

empty:: RA Seq a

empty = []

cons :: a -+ RASeq a RASeq a

cons x [xo) ... 2Xn-11
IXIX07

... 7 Xn-11

head :: RASeq a -+ a
head [xol ...) Xn-11 : -- XO (n >

tail :: RA Seq a -+ RA Seq a

tail[xo,..., x�-1]=[xl,..., x�-1] (n>l)

snoc:: RASeq a -+ a -+ RASeq a

snoc [xo,
....

Xn-11 X= IXO....
e Xn-1, X]

last :: RASeq a -+ a
last [xo,

... I Xn-11 : -- xn-1 (n >

init :: RA Seq a -+ RA Seq a
init [xo,

---, Xn- II= IX0.... 9 xn-21 (n > 1)

lookup:: RASeq a -+ Int -+ RASeq a
lookup [xoj ... iXn-lli=Xi (O<i<n-1)

17

update :: RASeq a --* Int -ý a -+ RASeq a

update [xol
... 9 Xn-11 ix= [xo,

---, xi-i i xt xi+l i ... 7Xn-11
(O<i<n-1)

Figure 2.2: Specification of a sequence supporting random-access. For the pur-

poses of specification, we treat a random-access sequence as a list.

18 CHAPTER 2. IMPLEMENTATIONS OF THREE ADTS

Random-Access Sequences

Name Lazy Complexities of Operations Reference

NaIve Lists - conslheadltail: 0(l), n/a
lookup/update: O(i),

snocliastlinit: O(n)

Threaded - conslheadltail: 0(l), [29]

Skew Binary lookup: 0(min(i, logn)),

Lists update: O(i)

Balanced - conslheadltail: O(logn), [2,31]

Trees lookuplupdate: O(logn),

snocliastlinit: O(logn)

Braun Týees - head: 0(l), cons/tail: O(logn), [21]

lookuplupdate: O(logi),

snoc/lastlinit: O(logn)

Slowdown - conslheadltail: 0(l), [24]

Deques lookuplupdate: 0 (log d),

snoc/lastlinit: 0(1)

Skew Binary - conslheadltail: 0(l), [33]

Lists lookuplupdate: 0(min(i, logn))

Elevator - conslheadltail: 0(i), n/a
Lists lookuplupdate : O(i)

Table 2.2: Complexities of implementations of sequences supporting random-

access, where n is the length of the sequence, i is the index being accessed by a

lookup or update operation, and d is the distance from the index to the nearest end

of the sequence. All complexities are Nvorst-case. None of the implementations

require lazy evaluation.

2.2. RANDOM-ACCESS SEQUENCES

2.2.1 NaYve Lists

19

An ordinary list provides 0(1) access to the front and O(i) access to the ith

element.

2.2.2 Threaded Skew Binary Lists

Myers [29] extends the ordinary list implementation with an efficient lookup op-

eration, whilst preserving the complexities of the other operations.
Myers uses a number system called skew binary that proves very useful in

many data structures [7,32,381. The advantage of this system of representing

numbers is that no more than a single carry is caused by an addition or subtrac-

tion of one. Each digit is either 0 or 1, except the least-significant non-zero digit,

which is either 1 or 2. The i1h digit has weight 2('+') -1 as opposed to the usual
2' of ordinary binary numbers. For example,

(120)2.
= (1 x7+2x3+0x 1)10 = (13)10

(11111)2,
= (31 + 15 +7+3+ 1)10 = (57)10

where ("Ob is the number given by x under base notation b, with 2, standing for

skew binary, 2 for binary and 10 for decimal. With skew binary, addition of one

produces at most one carry, for example,

(120 + 1)2, =
(200)2,

whereas with binary we could have a cascade of carries,

+ 1)2
--'ý

(1000)2

Removing the possibility of such a cascade allows us to perform an addition or

subtraction of one by changing at most two digits, irrespective of the size of the

number.
Myers uses the skew binary number system to add auxiliary pointers to ordi-

nary lists. These provide access to elements further down the list. A list of seven

elements [V7,
... , vi] , with V7 at the front is shown in Figure 2.3. Along with

the value vi of each element in the listwe store the position Pos of vi from the

end of the list, a pointer NEXT to the next element down from vi, and a pointer

20 CHAPTER 2. IMPLEMENTATIONS OF THREE ADTS

mp

Z
NEXT

(POS)2,

Figure 2.3: An example of a threaded skew binary list. The empty list is repre-

sented by [1.

jump to an element further down the list with POS equal to j. The value of j is

determined as follows: take the Pos of vi in skew binary, and reduce the least-

significant non-zero digit by one. For example, element v6 has POS = (20)2. and

hence its jump should point to the element with POS = (10)2,, namely V3- Using

the jump pointers where possible, lookup now runs in 0(min(i, log n)) time.

As with ordinary lists, however, update still runs in O(i) time. There is a series

of pointers to the updated element from every preceding element. Therefore each

of these elements must have their pointers updated.

Maintaining the jump pointers can be done in 0(1) time as follows. Consider

a list with head element s. Let the JUMP of s point to t. Let the JUMP of t point

to u. To cons an element onto the list, compare the distance between s and t,

with the distance between t and u. If the two distances are equal, analogous to

the least significant non-zero digit of a skew binary number being two, we point

jump to u, analogous to carrying one in skew binary. If the two distances are not

equal then we point jump to s.

For example, consider how the JUMP Of V7, was calculated. At the time V7 was

added to the list, the head element was V6. The JUMP Of V6 points to v3, and

the JUMP Of V3 points to The distance between V6 and v3 is the same as the

distance between V3 and Hence the JUMP Of V7 should point to [].

Myers uses pointers to describe and implement his data structures, taking

explicit care to ensure that the structures are persistent. With algebraic data-

types, the persistent property is enforced and no pointers are mentioned. The

type of Myers' list would be given in Haskell by:

100 20 12 11 10 210

2.2. RANDOM-ACCESS SEQUENCES 21

data RASeq a= Empty

I Node a (RASeq a) (RASeq a) Int

The list with head element V, NEXT pointing to the list next, jump pointing to

the list jump, and Pos equal to pos would be given by Elem v next jump pos.
For example, Ir = Elem V7 Empty 16 7 (with a suitable definition Of 16, etc.) gives

the list 17 in Figure 2.3.

Okasaki [32,38] gives an implementation of random-access lists that is essen-

tially an unthreaded version of Myers' implementation. See Section 2.2.6 for a

comparison of these two data structures. Okasaki constructs his lists with alge-
braic data-types. Comparing Okasaki's implementation with Myers' illustrates

well how algebraic data-types can provide clarity and insight.

Okasaki [32] benchmarks Myers' implementation, improving the code slightly
by maintaining the difference between the POS of an element and the Pos of the

element to which JUMP points. This value is called the rank of an element. The

Pos of each element is no longer maintained and the calculation of the Jump

involved in an application of cons is now simpler and more efficient. Appendix A

gives this improved implementation.

2.2.3 Balanced M-ees

Various forms of balanced tree may be used to implement a random-access se-

quence. Most of these implementations offer O(logn) access to any element.
Braun trees are a notable exception and offer improved access to the front of

the sequence whilst maintaining logarithmic access to any element as an upper
bound. They are therefore treated separately in Section 2.2.4.

AVL trees [3,31] are straightforward but tedious to implement. Okasaki

uses an implementation adapted specifically for random-access lists in [33]. Ap-

pendix A gives this implementation.

Adams [21 provides an alternative in the form of BB-trees. Adams' implemen-

tation seems to be quite widely used, so we shall look at it below. Other forms of
balanced trees are documented well in imperative literature and most translate

across easily to the purely functional or persistent worlds.

22 CHAPTER 2. IMPLEMENTATIONS OF THREE ADTS

Adams gives an implementation of sets using BB-trees, which we describe

below. The modifications required for implementing random-access sequences

are minor (see the code in Appendix A).

BB-Trees

Adams represents a BB-tree as follows:

data Set a= Empty

I Branch Int (Set a) a (Set a)

For a non-empty tree Branch n1xr, we have:

*A node containing an element x and the number n of elements in the tree
I

o The left subtree 1

o The right subtree r

The elements are stored in symmetric order; that is, given any non-empty subtree

Branch n1xr, every element in the tree 1 is less than or equal to x, and x
is less than or equal to every element in the tree r. The following balancing

invariant is maintained:

Given a subtree Branch n1xr containing more than two elements,

neither 1 nor r has more than a times the number of elements of the

other.

To restore the balance of a tree after adding or removing an element, whilst

maintaining the order of elements, we need to perform rotations. Figure 2.4

shows the four forms of rotation required and Figure 2.5 shows the corresponding

code. Note that the trees are constructed using the function branch, not the

data constructor Branch, and that branch does not take size as an argument.
The function branch calculates the size of the tree from the sizes of the left and

right subtrees. This avoids unnecessarily verbose code produced by calculating

the size separately each time a tree is constructed (as would be necessary if

Branch was used directly). Adams calls these functions smart constructors. Two

further smart constructors are given:

2.2. RANDOM-ACCESS SEQUENCES

Single Left

Single Right

Double Left

Double Right

Figure 2.4: Rotations of a binary tree.

23

* balBranch, which constructs a balanced tree from a previously balanced

tree that has had at most one element deleted or added to one of its subtrees,
both of which are assumed to be now balanced

9 concat; 3, which constructs a balanced tree from a node and two subtrees

of arbitrary size

Adding or removing a single element to or from a subtree may require a

rotation to restore the balancing invariant. An unbalanced tree with a large left

or right subtree requires a right or left rotation respectively. Let's suppose that

the right subtree r is too large.

24 CHAPTER 2. IMPLEMENTATIONS OF THREE ADTS

branch :: Set a -> a -> Set a -> Set a

branch 1xr= Branch (1 + size 1+ size r) 1xr

size Empty =0

size (Branch nIx r) =n

singleL 1x (Branch
- rl y rr) = branch (branch 1x rl) y rr

singleR (Branch
-1x rl) y rr = branch 1x (branch rl y rr)

doubleL 1x (Branch
-

(Branch
- rll y r1r) z rr) =

branch (branch 1x r1l) y (branch rlr z rr)

doubleR (Branch
-

11 x (Branch
-

lrl y lrr)) zr=

branch (branch 11 x lrl) y (branch lrr z r)

Figure 2.5: Rotating binary trees.

If the left subtree rl of r is smaller than some constant a times the right

subtree rr, then we move rl across to the left subtree I of the main tree to

try to restore the balancing invariant whilst preserving the order. This is

a single left rotation-see Figure 2.4. The rotation also shifts elements x

and y round to preserve order.

If the right subtree rl of r is larger than a times the right subtree rr, then

we move only part of rl to restore the balancing invariant. We move the

left subtree rll of rl across to the main left subtree I whilst preserving the

order of elements-this is what a double left rotation does, see Figure 2.4.

The case of the left subtree I being too large is treated symmetrically. The

above algorithm can be seen in the code for balBranch in Figure 2.6. The

function concat3 simply traverses the tree, restoring balance as necessary by

calling balBranch.

In a technical report [1], Adams investigates what values of a and a are suf-

ficient for the algorithm above to maintain the balancing invariant. He produces

a graph of suitable combinations of a and a. As used in Figure 2.6, a=5 and

a=2 is one such suitable combination. However, in [2] Adams gives code with

2.2. RANDOM-ACCESS SEQUENCES 25

sigma :: Int

sigma =

alpha :: Int

alpha =2

balBranch :: Set a -> a -> Set a -> Set a

balBranch 1xr

sizeL + sizeR <2= branch 1xr

sizeR > sigma * sizeL =

let (Branch
- rl - rr) =r

in if size rl < (size rr) * alpha

then singleL 1xr

else doubleL 1xr

sizeL > sigma sizeR =

let (Branch 11
-

lr) =1

in if size lr < (size 11) * alpha

then singleR 1xr

else doubleR 1xr

I otherwise = branch 1xr

where sizeL = size 1

sizeR = size r

concat3 :: Ord a => Set a -> a -> Set a -> Set a

concat3 Empty xr= add xr

concat3 1x Empty = add x1

concat3 10(Branch n1 11 x 1r) y rQ(Branch nr rl z rr)

sizeRatio n1 < nr balBranch (concat3 1y rl) z rr

sizeRatio nr < n1 balBranch 11 x (concat3 1r y r)

otherwise branch 1yr

UNIvERSITY
OFYORK
Uý Figure 2.6: Smart constructors of balanced trees. UPARY

26 CHAPTER 2. IMPLEMENTATIONS OF THREE ADTS

a=5 and a=1, which is not suitable. One suspects that the proportion of

unbalanced trees is low and the cost of ensuring all trees are balanced is greater

than the cost taken to navigate the occasional unbalanced tree. However, Adams

does not mention this.

Consider the operation add that adds an element to a set. The operation add
descends the tree by recursively calling itself to add the element at the correct

position (or returning the tree if the element is present already). As it does so,

it may unbalance the tree at each of the nodes lying on its path to the added

element's final position. The balancing smart constructor balBranch is designed

specifically to handle this case by assuming that only a single element has been

added or removed since the tree was last in a balanced state and that all subtrees

of the two trees it joins are balanced.

add :: Ord a => a -> Set a -> Set a

add x Empty = singleton x

add x tQ(Branch -1y r) Ix<y= balBranch (add x 1) yr

I<x= balBranch 1y (add x r)

I otherwise =t

Other set operations are defined similarly.

2.2.4 Braun Trees

Hoogerwoord [21] uses Braun trees [6) to implement flexible arrays. Braun trees

have the following properties:

9 For any node of a Braun tree with left subtree I and right subtree r,
Irl :5 111 :5 Irl + 1.

9 The size of a Braun tree determines its structure exactly.

* Every Braun tree is of minimum height.

Consider the infinite tree of Figure 2.7. Now consider the subtree formed by

Temoving all nodes bar those labelled with numbers in the range [O.. n-11 inclusive.

-This is the Braun tree of size n. For examples of Braun trees, see Figure 2.8. The
to'!
pattern of how the nodes are labelled is best illustrated by the lookup operation.

2.2. RANDOM-ACCESS SEQUENCES

Figure 2.7: The infinite Braun tree.

27

43/, c Zh

Figure 2.8: The Braun trees of size four, nine and seven.

To lookup the n th element of Braun tree T with left subtree I and right subtree

r, use the following rules:

9 If n=0, then return the root element of T.

9 If n is even, then return the ((n/2) - 1)th element of r.

* Otherwise, n is odd, so return the ((n - 1)/2)th element of 1.

The update operation is defined similarly. As every Braun tree is of minimum

height, these operations run in O(logn) time. Treating the trees as lists, it is

possible to define cons and tail to run in O(logn) time, and head in 0(1) time.

Hoogerwoord implements flexible arrays, whereas we want random-access

lists-we shall now explain the difference. When an element is added or re-

moved from the front of a random-access list, the positions of the other ele-

ments in the list shift. If instead positions remain fixed, we have a flexible

array. For example, consider applying cons to the list 11 = [0,..., n] to give

the list 12 [- 1,0, ..., n]. Both a random-access list and a flexible array give

lookup 11 i i. However, a random-access list gives lookup 12 i=i-1, whereas

a flexible array gives lookup 12 i= i- It is simple to extend an implementation

/%

28 CHAPTER 2. IMPLEMENTATION'S OF THREE ADTS

of a random-access list to give flexible array behaviour, and vice versa. The al-

gorithm we have described above, and the code in Appendix A, both implement

random-access lists.

2.2.5 Slowdown Deques

Kaplan and Tarjan [24] introduce the technique of recursive slowdown and use
it to implement many data structures, including double-ended queues (deques).

Section 2.1.8 gives a brief explanation of recursive slowdown. The deques can

also be made to support random access.
A deque is represented by a prefix of up to five elements, an inner central

deque of pairs of elements, and a suffix of up to five elements. A large deque

is therefore made up of many deques nested within each other. The outermost
level contains simple elements in its prefix and suffix, the second level pairs of

elements, the third level pairs of pairs of elements, etc. As with the implicit

queues of Section 2.1.8, we make sure that an operation on the inner deque takes

place every two operations on the outer deque. To do this, we need to make

sure that the prefix and suffix are kept close to being half full to avoid cascades

of operations on nested deques. Kaplan and Tarjan introduce a colour scheme
to identify prefixes and suffixes with dangerously few or many elements: red for

zero or five elements, yellow for one or four elements, and green for two or three

elements. A deque is coloured according to the most dangerous colour of its prefix

or suffix. The following invariant is then maintained:

There is a green deque outside of the outermost red deque. There is

also a green deque between any two red deques.

This ensures that the outermost deque is always in a state ready to accept a new

element or to give up a current element. The details of how to juggle the prefixes

and suffixes to maintain this invariant are complex and not given here. Main-

taining the invariant may require performing an operation on the inner deque.

However, an operation on the inner deque is only necessary if the outer deque is

red. The invariant ensures that when the outer deque is red, the inner deque is

not red, hence preventing a cascade of operations on nested inner deques. The

invariant can be maintained with a constant amount of work per operation. As

2.2. RANDOAI-ACCESS SEQUENCES 29

the invariant guarantees that the deque is ready to perform an operation in 0(l)

time, this proves that the deque allows operations on either end to run in 0(1)

worst-case time.

The operations lookup and update are implemented by descending the series

of nested deques till we reach the prefix or suffix in which the element is stored.

If the element is at most d positions from the nearest end of the deque, then the

element is at O(logd) depth since the number of elements stored in each level

grows exponentially. As the second level contains pairs of elements, the third level

pairs of pairs of elements, and so on, we have to descend this tree-like structure

to reach the element. As this tree is also 0 (log d) deep, the complexity of lookup

and update is O(logd).

2.2.6 Skew Binary Lists

Okasaki [32] notes that complete binary trees are a good structure to use for

random-access, allowing access and update to any node in O(logn) time. How-

ever, these trees are only found in sizes of the form 2k -1 so the problem remains

of how to store lists of arbitrary size. The skew binary number system of Sec-

tion 2.2.2 once more comes to our aid. Recalling that the ith digit represents

2' - 1, this number system is ideal for implementing a list of n elements as a

collection of complete binary trees according to the representation of n in skew
binary (see Figure 2.9). Importantly, the addition or removal of an element in-

volved in the cons and tail operations is also dealt with in 0(1) time thanks

to the main property of skew binary numbers: addition or subtraction of one

produces at most one carry.
The importance of cheap access to the front of the list for cons, head and tail

suggests we order the trees by size, smallest first, and order the elements with
left-to-right pre-order.

By analogy with skew binary addition and subtraction, cons and tail are

implemented as follows:

* To cons an element onto a list, check if the two smallest trees are the same

size. If not, add the new element as a singleton tree. Otherwise, create a
larger complete binary tree with the new element as root and the two trees

30 CHAPTER 2. IMPLEMENTATIONS OF THREE ADTS

Figure 2.9: A list [vi V13] represented as a collection of complete binary trees.

Number of nodes = (13)1o =1x (2 3- 1) +2x (2 2- 1) +0X (21 - 1) = (120)2.

therefore we have one complete binary tree of depth three, two of depth two and

none of depth one.

as children-this preserves the ordering and the skew binary form.

To take the tail of a list, simply remove the leading singleton tree if one

exists. If not, remove the root of the smallest tree and return both its

children to the collection.

These operations are illustrated in Figure 2.10.

The operation head is easy to implement in 0(1) time. Similarly, lookup and

update are reasonably simple to implement if the size of the tree rooted at each

node is stored in the node.

The string representing the number n in the skew binary number system is

0 (log n) long. A list of length n is therefore represented by a collection of 0 (log n)

trees. The largest tree in a list of length n is also O(logn) deep. The operations

lookup and update traverse the list till the tree containing the desired element

is found. This tree is then descended to reach the element. Hence update and

lookup each take O(logn) time. Upon further examination, we can improve this

complexity to 0(min{i, logn}) in the worst case and O(logi) in the expected

case, when indexing the ith element.

Parallels can be drawn between Okasaki's lists and Myers' lists (see Sec-

tion 2.2.2). There are many redundant pointers in Myers' representation, causing

update to be less efficient, running in O(i) time. The shortest path from the head

of the list to any element never uses any of these pointers. By removing them, one

2.2. RANDOM-ACCESS SEQUENCES

IT11 < IT21

T,

A-

T2

cons
II

tail

---------- T2

IT11 --`
IT21

cons
II

tail

I

T, T2 T

31

Figure 2.10: The effect of cons and tail acting on a list represented by a collection

of complete binary trees with the smallest two being T, and T2.

obtains a structure isomorphic to the same list represented with Okasaki's struc-

ture (see Figure 2.11). One can therefore view Okasaki's work as an improvement

of Myers' work to gain a more efficient update.
Alternatively, one may view Myers' lists as threaded versions of Okasaki's

lists. A tree is threaded when every node contains a pointer to the next element

with respect to some traversal order-left-to-right pre-order in this case. This

can be seen in Figure 2.11. For example, node V3 contains a pointer to node V6-

However, for every case where searching through a Myers' list would follow such

a pointer, the search in the equivalent list of Okasaki would have followed at least

one fewer pointer. For example, the search for V6 in Okasaki's list moves from V2

directly to V6; the search for V6 in Myers' list moves from V2 to V6 via V3-

2.2.7 Elevator Lists

Preliminary benchmarking results of the implementations of random-access se-

quences show that the ndfve implementation often wins for small lists, and some
form of tree wins for large lists. We design an implementation of random-access

sequences that is a hybrid of the simple list and the structured tree.

An elevator list is a simple list of floors. Each floor is itself a simple list.

data List a= Floor Int [a] (List a)

32 CHAPTER 2. IMPLEMENTATIONS OF THREE ADTS

(a)

(b) (c)

Figure 2.11: A list [vi,
... , v8] represented (a) by Myers' random-access list, (b)

by Okasaki's random-access list, and (c) by Myers' list with redundant pointers

removed. Note the similarity between (b) and (c).

We label each floor with its size. There is a fixed "separation" between floors:

When the top floor becomes larger than a fixed size, a new floor is built on top.

Ordinary list operations act directly on the top floor. Random-access oper-

ations first descend to the correct floor, by subtracting the floor sizes from the

index, till the index is less than the floor size, and then use ordinary list lookup

and update on this floor.

We represent an empty list by a circular list of empty floors.

empty = Floor 0D empty

For further details, see the code in Appendix A.

2.3 Heaps

Priority queues, or heaps, support an ordered collection of elements. A spec-

ification is given in Figure 2.12. A table of implementations can be found at
Table 2.3.

2.3. HEAPS

type Ord a =ý- Heap a= -< a >-

empty :: Ord a =: ý- Heap a

empty = --o-

insert :: Ord a =: ý. a -+ Heap a -+ Heap a

insert xh= -<x>- Uh

merge:: Ord a =ý. Heap a -4 Heap a -4 Heap a

merge h, h2
= h, U h2

findMin :: Ord a =ý- Heap a -+ a
findMin h=xAxEhA Vy Eh*x <- y (h 0 --o-)

deleteMin :: Ord a =ý, Heap a -+ Heap a
deleteMin h=h- -< findMin h >- (h :A -< >-)

33

Figure 2.12: Heap specification. A bag is delimited with --<>-, U is bag union,

and - is bag difference.

34 CHAPTER 2. IMPLEMENTATIONS OF THREE ADTS

Heaps

Name Lazy Complexities of Operations Reference

Ndive - insert/merge: O(n) n/a

findMinldeleteMin: 0(1)

Binomial - insert/merge: O(logn) [38]

findAlin/deleteAlin: O(logn)

Skew Binomial - insert: 0(l), merge: O(logn) [7]

findMinldeleteMin: O(logn)

Bootstrapped - insert/merge: 0(1) [7]

Skew Binomial findAlin: 0(l), deleteAlin: O(logn)

Pairing - insert/merge: 0(1) [35]

findMin: 0(l), deleteAlin: O(logn)

Leftist - insert/merge: O(logn) [311

findAlin: 0(l), deleteAfin: O(logn)

Splay - insert: 0(logn)t, merge: 0(n)l

findMin/deleteAfin: 0(logn)l

Table 2.3: Complexities of implementations of heaps (priority queues), where

n is the size of the heap (the resulting heap in the case of menye). Complexi-

ties marked with t are amortized under single-threaded use. The complexity of

deleteMin for pairing heaps is only a conjecture for single-threaded amortized

use; this bound has also been conjectured for a persistent version of pairing

heaps under amortized persistent use. If lazy evaluation is used, the complexity

of insert for binomial heaps becomes 0(1) amortized. All other complexities are

worst-case and none of the implementations require lazy evaluation.

2.3. HEAPS

Bo B, B2

0 1

Figure 2.13: The first four binomial trees.

B3

35

2.3.1 NaYve Heaps

An ordered list implements a heap with findMin and deleteMin running in 0(1)

time, and insert and merge running in O(n) time.

2.3.2 Binomial Heaps

Vuillemin presents binomial queues in [51] with every operation running in

O(logn) time. Okasaki [38] preserves this complexity in a purely functional set-

ting. To avoid confusion with ordinary queues, we shall refer to binomial queues

as binomial heaps.

Binomial Trees

The size of a binomial tree determines its shape exactly: the first four are shown
in Figure 2.13. Figure 2.14 shows two equivalent definitions of the binomial tree

B,,. The binomial tree Bi has 2' nodes, 'Cj of which are at depth j, where
'Cj = fl(i - j)! Ij! gives the number of ways of choosing j items from a collection

of i items, disregarding order of choice. The name binomial derives from the

co-efficient of the ith term of a binomial expansion (x + y)' being given by I-'Ci.

Given an ordering of elements, a tree is heap-ordered if for every node n with

parent m, the element stored at n is no smaller than the element stored at m.

36 CHAPTER 2. IMPLEMENTATIONS OF THREE ADTS

B,,

Bn-I no

Figure 2.14: Equivalent forms of the binomial tree B,,.

4

7

Figure 2.15: An example of a binomial heap: [B2, B01. There is no B, tree and
its absence is indicated by a vertical dash.

A binomial heap is a list of heap-ordered binomial trees: [Bio
, Bil I ... ? Bij with

io < i, < ... < i,. The size of a binomial heap determines its structure exactly.
The binomial tree Bi appears in a binomial heap either once or not at all. An

example of a binomial heap can be seen in Figure 2.15.

A useful property of binomial heaps is that the binary representation of the

number of nodes within the heap corresponds exactly with the heap representa-

tion. For example, the heap in Figure 2.15 has five nodes and its binary equivalent
is indeed the number five: "l B2,0 B, and 1 BO" giving "101". The length of

the binary representation of the number n is 0 (log n). Hence a binomial heap of

n elements is a list of length O(logn).

Operations on Binomial Heaps

An example of a merge can be seen in Figure 2.16. Merging binomial heaps is

strongly analogous to binary addition. Trees or digits of equal weight are added

2.3. HEAPS

14 T--o
8

merge

7

4
1

37

Figure 2.16: A merge of two binomial heaps and the corresponding binary addi-

tion.

together to produce a tree or digit of the next heaviest weight. Two binomial

trees of equal weight are added together by making the tree with the larger root

the leftmost child of the other tree.

The operation findMin simply scans the roots of the binomial trees to be

added. The other operations are defined in terms of merge: deleteMin q scans
for the minimum root, removes it, and merges its children with the remainder of

q (the children of the root of a binomial tree always form a binomial heap, as

can be seen in Figure 2.14); insert iq simply merges q with the singleton queue

containing i. As there are O(logn) binomial trees in a binomial heap of size n,

each operation takes O(logn) time.

2.3.3 Skew Binomial Heaps

Brodal and Okasaki [71 adapt the binomial heap implementation to use skew bi-

nary arithmetic (see Section 2.2.2) in place of ordinary binary arithmetic. Recall

that the addition or subtraction of one takes 0(1) time using the skew binary

number system. In the case of heaps, this allows insert to run in 0(1) time. The

38 CHAPTER 2. IMPLEMENTATIONS OF THREE ADTS

other operations maintain their O(logn) complexity.

A skew binomial heap is a list of skew binomial trees. Unfortunately, skew

binomial trees are not as neat as their binomial counterparts. This is because

we must use some form of addition to implement merge. Skew binary addition

is rather awkward in general and so we choose to use ordinary binary addition.

The conflict between using skew binary addition to implement insert and ordinary

binary addition to implement merge reduces the elegance of the implementation.

However, making insert run in 0(1) time allows heaps of optimal complexity to

be built-see Section 2.3.4.

2.3.4 Bootstrapped Skew Binomial Heaps

Brodal and Okasaki [7], after adding the skew binary number system to binomial

heaps, add yet another feature: bootstrapping (see Section 2.1.7). This gives
heaps of optimal complexity: deleteMin runs in O(log n) time and findAlin, insert

and merge run in 0(1) time. It is easy to show these bounds are optimal using

the Q (n log n) bound on sorting n items.

Recall that bootstrapping extends the design of an incomplete or inefficient

data structure by using smaller instances of the same data structure. We shall
let heaps contain other heaps as elements. This allows merge to be implemented

by the more efficient insert.

Suppose we import a heap implementation that runs insert in 0(1) time.

In the Haskell notation, let the type of these heaps be given by Old. Heap a.
We wish to create bootstrapped heaps that can contain other heaps. We might

consider the type:

data Heap a= Heap (Old. Heap (Old. Heap a))

Here we have applied a single level of bootstrapping. But the top-level heap

contains elements of type Old. Heap a. These old heaps contain simple elements

of type a, and so we cannot insert heaps into them; we need to be able to insert

heaps at an arbitrary depth of nesting. We need a recursive definition:

data Heap a= Heap (Old. Heap (Heap a))

2.3. HEAPS 39

However, we do not have anywhere to store the simple elements of type a with

this definition. So instead we store the minimum element at the root as follows:

data Heap a= Empty

I Root a (Old. Heap (Heap a))

The old heap implementation will require an ordering of its elements: boot-

strapped heaps in this case. This is given by an ordering of the roots.
As bootstrapped heaps are old heaps of bootstrapped heaps, we can merge

two bootstrapped heaps by using Old. insert to insert one into the other. As

Old. insert is 0(l), merge is 0(l). We can define insert in terms of merge as

usual, and so insert is still 0(l). The operation findMin simply looks at the

root. The operation deleteMin is implemented in terms of Old. merge, Old-findMin

and Old. deleteMin and therefore remains 0(logn) (assuming that the old heaps

implement these operations in 0(logn) time).

2.3.5 Pairing Heaps

Okasaki [35] presents a functional translation of pairing heaps which were first

described by Fredman, Sedgewick, Sleator, and Tarjan [15]. A heap is represented
by a heap-ordered multi-way tree:

data Heap a= Empty

I Node a [Heap a]

The operation findMin simply looks at the root. Two heaps are merged by making

the heap with the largest root the leftmost child of the other heap. An element
is inserted by merging with a heap containing the single element. Pairing heaps

derive their name from the implementation of deleteMin: the root is removed

and the children are combined in two passes. The first pass working left-to-right

merges successive pairs of children together. The second pass working right-to-left

merges the results of the first pass into one heap.

Although pairing heaps are quite well-known, no one has established tight

bounds on their complexity. It is clear that all operations beside deleteMin run
in 0(1) time. In an ephemeral setting, it has been conjectured that deleteMin

runs in O(logn) amortized time. In a persistent setting however, the above

40 CHAPTER 2. IMPLEMENTATIONS OF THREE ADTS

implementation certainly does not meet these bounds. Consider successively
inserting the elements 0, n into an empty heap. The result will be a heap

with root 0 and children [n,...
' 1]. Now perform deleteAlin on the same heap m

times. Each deleteMin will repeat the same work taking O(n) time each. The

amortized cost of deleteMin is therefore O(n) in a persistent setting.

Okasaki [35] also presents a persistent version of pairing heaps using lazy eval-

uation, which should not be subject to a similar refutation of O(logn) amortized

complexity. However, as with their ephemeral counterparts, a proof is not known.

Appendix A gives the ephemeral version.

2.3.6 Leftist Heaps

A leftist heap [251 is a heap-ordered binary tree satisfying the leftist property:

The r-height of every left child is greater than or equal to the r-height

of its right sibling.

The r-height of a binary tree is the number of internal nodes on the path from the

root to the rightmost external node-this path is called the 7ight spine. One may

prove by induction that the r-height of any leftist heap of size n>0 is bounded

above by 1092 n+1.

Leftist heaps are an example of a data structure that translates across easily
from the imperative to the persistent or functional world. Ndfiez et al. present a
functional implementation in [311.

To merge two leftist heaps, view their right spines as ordered lists. Merging

these ordered lists ensures the resulting tree is heap-ordered. This constructs
the right-spine from top to bottom. On the way back up, the leftist property
is preserved by making the child with the largest r-height the left child. As

each pass runs in time proportional to the combined length of the right spines

of the arguments of merge, the operation runs in 0(logn) time. The remaining

operations are straightforward.

2.4. SUMMARY

2.3.7 Splay Heaps

41

Okasaki [38] presents an implementation of heaps using splay trees [49]. A splay

tree is a binary tree that does not maintain any balance information but con-

sistently re-structures itself in a manner that tends to balance the tree. For

example, as the elements are stored in symmetric order, the deleteMin operation

must remove the leftmost node. After this node is removed, the leftmost path is

ascended, re-structuring the tree as it does so by shifting elements from left sub-

trees over to right subtrees. This tends to shorten the leftmost path, improving

the time taken for subsequent applications of deleteMin.

To insert a node x, the tree is split into nodes smaller than x, and nodes larger

than x. These subtrees then form the left and right children of x respectively.
As the tree is split, it is once again re-structured: if x splits the tree somewhere
in the left subtree of the root, then elements are moved over to the right subtree

and vice versa. This tends to balance the tree.

The operation findMin simply finds the leftmost node. This takes O(logn)

time. If every application of deleteMin is accompanied by at most one application

of findMin, as is often the case, we may amortize the cost of findMin to 0(l).

Otherwise, we may store the minimum element separately from the tree. This

may be done without increasing the complexity of the other operations. As this

causes more work, this is only advisable when findMin is called often.

2.4 Summary

This chapter shows there are many ways to implement the same ADT. But which
implementation is best? Does it depend on how we use the data structure?
Calculating the complexities of the operations gives us a theoretical answer, but

empirical performance may give a different picture.
Therefore, after developing the benchmarking procedures motivated in Sec-

tion 1.3, we benchmark all of the implementations of this chapter in Chapter 7.

42 CHAPTER 2. IMPLEMENTATIONS OF THREE ADTS

Chapter 3

Datatype Usage Graphs

In Section 1.3 we identified a need to qualify the performance of a data structure

by how it is used. We can do this by creating benchmarks whose use of the data

structure is well-defined. This information is useless unless we can find out how an

application uses a data structure. This chapter outlines a theoretical framework

for (a) creating a benchmark from a description of use, and for (b) creating a

description of use from an application. Chapter 6 builds on this framework to

provide a practical tool to do both (a) and (b).

The ADT framework has a solid basis of literature [521 and is very convenient

for abstracting over many data structures-an ADT abstracts over many data

structures implementing the same operations. We shall therefore insist on every

data structure we deal with being an implementation of some ADT.

The ambiguity of the phrase "how an ADT is used" presents an obstacle. With-

out an exact definition of this property, we would find it hard to talk about the

efficiency of an implementation of an ADT according to how it is used, or indeed

about how a particular application uses an ADT. Consider the two applications

of queues in Figure 3.1 (see Section 2.1 for a definition of queues). Inspecting the

code for each application allows us to see what operations are being performed,

in what order, and how the result of one operation may rely on the result of

another. But the task is by no means straightforward. With more complicated

applications, the task would become extremely difficult. We need a simple record

of how an ADT is used by an application.

We use a labelled directed graph. See Figure 3.2 for examples that describe

44 CHAPTER 3. DATATYPE USAGE GRAPHS

apply :: Int -> (a -> a) -> a ->

apply nfq= (iterate f q) Hn

snocTrue :: Queue Bool -> Queue Bool

snocTrue q= snoc q True

appl :: Int -> Bool

appI n= (head . apply (n-1) tail . apply n snocTrue) empty

app2 :: Int -> Bool

app2 n= (and . map (head . tail) . take n. repeat) nSnocs

where nSnocs = apply n snocTrue empty

Figure 3.1: Two artificial simple applications of queues: appl and app2. Note

that app2 uses a where clause to share the value of nSnocs.

how the queue ADT is used by the two applications of Figure 3.1. The nodes

are labelled with partially applied operations of the ADT, with the remaining

arguments supplied by the arcs. There is an arc from u to v if the result of the

operation at u is taken as an argument by the operation at v. The nodes are

numbered according to the order of evaluation. Such a graph is a datatype usage

graph (DUG). We shall make the definition of a DUG precise in the following

section.

A DUG is closely related to both an execution trace [38] and a version graph
[13]. An execution trace without cycles and with every operation returning a

single result is a DUG. A DUG with every operation returning an ADT value is a

version graph. Execution traces have been used as a model on which to explain

persistent amortized complexity via lazy evaluation [381. Version graphs have

been used to explain the design of persistent data structures [12,13,40].

During the run of an application, many different instances of an ADT Will

exist. For example, whilst running queue application appi there will exist at

some time an empty queue, a queue containing just True, a queue containing two

45

appl: 01... n

n+l 2n-I

2n

app2:

n+2

3n-I

3n

I

Node Operation

0 empty

1 ... n Al - snoc 1 True

n+1... 2n -1 Al - tail I

2n Al - head I

Node Operation

0 empty
1 ... n At - snoc I aue

n+1 At - tail I

n+2 At head I

3n -1 At tail I

3n At - head I

Figure 3.2: Graphs showing how the queue ADT is used by the different appli-

cations given in Figure 3.1. Note that node n of app2 corresponds to the value

nSnocs shared by n applications of tail.

46 CHAPTER 3. DATATYPE USAGE GRAPHS

copies of Time, and so on. Each of these particular instances of the ADT is called

a version [38] (as defined in Section 1.4). A node of a DUG is called a version

node if it is labelled with an operation that results in a version. The subgraph

of a DUG containing just the version nodes is called the version graph. This is

consistent with the definition of a version graph given by Driscoll et al. [13].

The rest of this chapter is organised as follows. Section 3.1 defines a DUG

precisely. Section 3.2 defines the evaluation of a DUG, effectively creating a
benchmark. Section 3.3 defines a profile of a DUG, surnmarising the main char-

acteristics. Section 3.4 defines a shadow data structure, useful for creating a DUG

that matches a given profile, and for adding information to a profile.

3.1 Definition

We should first define what we mean by an ADT. An ADT provides operations

to create, manipulate, and observe values of some new type. The only way to

interact with values of this type is through the ADT operations. This allows the

implementation of the ADT to be removed from its use-we may exchange imple-

mentations without changing how we use the ADT. We have therefore abstracted

away from the implementation.

We shall restrict ourselves to container types, that is, ADTS that contain cle-

ments of some other type. For example, a list ADT allows lists of integers, lists

of characters, etc. For any such ADT, we may consider the ADT as defining a

type constructor T. For example, a list ADT may be taken as defining a type

constructor List taking a type t to the type List t. A list of integers would then

have the type List Int. We shall restrict T to be unary. Most common ADTS

satisfy these restrictions.

Definition 3.1 (ADT)

For any type constructor T, and any set of functions F, the pair (T, F) is

an ADT if the following are satisfied:

"T is unary.

" Each function in F takes at least one argument of type T a, or returns

a result of type T a, where a is a type variable.

3.1. DEFINITION 47

For the sake of simplicity we shall further restrict the ADTS considered by giving

the following definitions.

Definition 3.2 (Simple Type)

For any type constructor T of arity one, we say that the type t is simple

over T if t

* Can be formed as type by the grammar

type argument-type -+ type I result-type

argument-type Taa Int

result-type Taa Int I Bool

where a is a type variable

* Contains at least one occurrence of Ta

We shall abbreviate this to saying that t is simple where the context makes
it unambiguous over which type constructor t is simple.

Example 3.2

The following types are simple over the type constructors Queue, List and
Set respectively:

Queue a-+a-4Queue a
o List a -+ Int -+

o Set a

The following are not simple over any type constructor:

o List a -+ Queue a
9 (a -+ a) --+ List a -+ List a

o

Definition 3.3 (Simple ADT)

We define the ADT A= (T, to be simple if the type of each

operation fi is simple.

48 CHAPTER 3. DATATYPE USAGE GRAPHS

module List (List, empty, catenate, cons, tail, head, lookup, isEmpty)

where

empty List a

catenate List a -> List a -> List a

cons a -> List a -> List a

tail List a List a

head List a a

lookup List a Int -> a

isEmpty List a Bool

Figure 3.3: Haskell code giving the signature of a simple list ADT ALW providing

normal list operations, catenation and indexing. The exported type constructor

is List. The type of each operation is simple over List.

Example 3.3

The signature of a simple ADTAList is given in Figure 3.3.

Many ADTs are simple: queues, deques, lists, random-access sequences, heaps,

sets, integer finite maps, etc. However, any higher-order operations such as map,

or any operations converting from one data structure to another such as fromList,

need to be excluded.
When talking about DUGS we shall find it useful to classify the operations

according to the different roles they play. We therefore make the following defi-

nition.

Definition 3.4 (Generator, Mutator, Observer, Role, Version Arity)

For any operation f of type t, where t is of the form

tl -+ t2 -+ *** -+ tm

and is simple over the type constructor T, f is classified as follows:

Generator If t.. =Ta and (Vj, 1<j< m) tj 94-Ta
Mutator If t,, =Ta and (3j, 1<j< m) tj =Ta
Observer If t,, 54 Ta and (3j, 1<j< m) tj =Ta

3.1. DEFINITION

Note that the categorisation is complete and any operation of simple type

is exactly one of: generator, mutator or observer. This is called the role

of the operation. We define the version arity of an operation to be the

number of version arguments taken by that operation. Therefore, every

generator has version arity 0, and every mutator and observer has version

arity greater than or equal to 1.

Example 3.4

Looking at the signature of the simple ADT AList in Figure 3.3, empty is

a generator; catenate, cons and tail are mutators; head, lookup and

isEmpty are observers. Every mutator and observer has version arity 1,

apart from catenate, which has version arity 2.

49

Look at the DUGS in Figure 3.2. The label attached to a DUG node is a partial

application of an ADT operation. For simplicity, the arguments used to partially

apply the operation are restricted to atomic values-nested function applications

are not allowed. The remaining arguments are supplied by the arcs. We shall

now define the functions that label DUG nodes.

Definition 3.5 (Partial Application, Pap(A))

Given a simple ADT A= (T, f,, }), a partial application of fi is any

function of the following form:

AXI *
AX2 * ... * AXk - fi a, a2 a,,,, 0<k<m

Here, m is the arity of fi, each xj occurs exactly once in the sequence
[a,,

..., a,,], and every other element of this sequence is an atomic value.

To avoid duplication, we further insist that xj, .. -7 Xk occur in order in

the sequence [a,,... ', a,,,], that is, xj, occurs before xj, for j, < j2. The set

of all partial applications of any function of a simple ADT A is denoted by

Pap(A).

Example 3.5

For the list ADT AListy whose signature is given in Figure 3.3, the following

functions are in Pap(AList):

50 CHAPTER 3. DATATYPE USAGE GRAPHS

e Al - cons 'a' I

* empty

0 All* A12 *catenate 11 12

Whereas, the following functions are not:

o Al - catenate 11

o All ,
A12 ' catenate 12 11

0 All 'A12 ' cons (lookup 11 2) 12

We may use a partial application to assign a role to a node: For a node v labelled

with a partial application of the operation f, the role of v is defined to be the

role of f. For example, looking at the DUG for appl in Figure 3.2, node 0 is a

generator, nodes 1 to 2n -1 are mutators, and node 2n is an observer.

We are now in a position to give a definition of a DUG. For nodes with more

than one incoming arc, we need to identify which arc corresponds to which argu-

ment. We therefore label every arc to such a node with an argument position.

Definition 3.6 (DUG)

Given a directed graph = (V, 6), a simple ADT A (T, f"j),

a total mapping 77 :V Pap(A), and a bijection aV -+ 11-1VII, let

Sp CS be those arcs incident to a node with more than one incoming arc,

and let -r : Ep -+ N be a total mapping. The 4-tuple (9,77, u,, r) is a DUG

for A, if for every vEV the following properties are satisfied:

1. The arity of q(v) equals the in-degree of v.

2. If v has more than one incoming arc, 7- restricted to the incoming arcs
is a bijection with the set fl.. indegree(v)}.

3. The application of 77(v) to the arguments given by C and T is type

consistent.

4. If v has successor wEV, u(v) < a(w).

5. The type of every argument of q(v) is T a.

3.2. EVALUATION

Properties 1-3 ensure the DUG is well-defined. Properties 4-5 impose re-

strictions on DUGS to make generating DUGs easier: Property 4 orders

the arguments of an operation before the operation itself-note that this

forces the graph to be acyclic-see the problem Choosing the operation
before the arguments of Section 4.1.1 for justification of this restriction;
Property 5 ensures only version arguments are taken from the results of

other operations-see the problem Choosing non-version arguments from

the graph of Section 4.1.1 for justification.

Example 3.6

Once again using the ADT AList, whose signature is given in Figure 3.3, an

example of a DUG is shown in Figure 3.4. A table defines 77. The ordering

or of the evaluation of the nodes is given by: a(vi) = i. Labels assigned

by 7- are written beside the relevant arcs: V5 catenates v, onto the front of

V3, and V7 catenates v, onto the front Of V6. The type variable a can be

substituted by the type Char to obtain type consistency for every function

application.

51

As each operation returns only a single value, we may associate each node with

the value it produces. The nodes of the version graph are associated with versions
formed by either generating a fresh version or by mutating one or more previous

versions. The arcs within the version graph represent the flow of data within
the privacy of the ADT framework. The arcs going out from the version graph

represent the flow of data out of the privacy of the ADT framework.

3.2 Evaluation

We have so far presented a DUG as a record of how an application uses an imple-

mentation of an ADT. We can reverse this process. By creating an evaluator of

DUGS, we create an application that uses an ADT implementation in the manner

given by the DUG it evaluates. We can then use this application as a benchmark

with a known pattern of use.
For example, evaluating the DUG for appi of Figure 3.2 should create an empty

queue, then snoc the value True onto the queue n times, then take the tail of the

52

17 f2

Ldý-ý

71

vo empty

V, Al - cons VI
V2 empty
V3 Al - cons 'h' I
V4 Al - head 1

V, 5 Ali -
A12

- catenate 1,12
V6 Al - tail I
V7 All - A12 - catenate 11 12
V8 Al - tail I

V9 AI - lookup 11

VIO Al - isEmpty I

Figure 3.4: A DUG for the list ADT AList (see Figure 3.3).

queue (n - 1) times, and finally apply head. We will define evaluation by first

defining how we may associate each node with a function application.

Definition 3.7 (Interpretation of Partial Applications)

Let A be any simple ADT. Let f be an operation of A. Let 9E Pap(A)

be any partial application of f. Let I be an implementation of A. The

interpretation of g under 1, denoted by [gl: r, is the -, -alue of g using the

implementation of f in I.

Example 3.7

Let C be the ordinary Haskell implementation of lists, then

9 [Al - cons True llc = \1 -> (True: 1)

o [Al - head llc =\ (x: xs) -> x

o [empty], c = [I

CHAPTER 3. DATATYPE USAGE GRAPHS

Definition 3.8 (Interpretation of Nodes)

Let (9,77, u,, r) be any DUG for the ADT A, let v be any node of 19, and let

3.2. EVALUATION

I be an implementation of A. Let el, ..., ek, k>0, be the arcs incident to

v, ordered by r, from the nodes VI, ... 7 Vk respectively. The interpretation

of v under 1, denoted by [vl: r, is the following expression:

[VIT
--.,:

[77(V)ll jV1127
...

[Vkll

where the right-hand side is an application of the function [77(v)II. Note

that as g is acyclic, this recursive definition is sound.

Example 3.8

Using the DUG shown in Figure 3.4, and the ordinary Haskell implemen-

tation L of lists,

0 [vilc =M -> (IcI: 1))II

'0 [V4]£
-'

(\ (X: XS) -> X) (M ->

3.2.1 Order of Evaluation

53

The order of evaluating the interpretations of the DUG nodes can significantly

affect efficiency. Within functional languages there are two main schemes for

deciding the order of evaluation of an expression: lazy and eager. We shall

accomodate both schemes by using the node ordering of a DUG (! 9177, o,, 7') given

by or in two separate ways.

Lazy Evaluation

If we consider how a function is applied under lazy evaluation, we see that a

closure representing the application is first formed, then its value is perhaps

demanded one or more times, and then it is garbage collected. The formation of

the closure can be a separate incident to its value being demanded. The order

of the formation of the closures can also affect efficiency. Hence we shall order

the forming of the closures of the expressions given by the interpretations of each

DUG node.
Under lazy evaluation, only the work required to form the demanded result

is performed. We must demand a result or no work will be done. Within the

ADT framework, we cannot look within an ADT value, so we instead demand the

54 CHAPTER 3. DATATYPE USAGE GRAPHS

values that are of some other type. Looking at a DUG, only the values given by

the observer nodes have such a type. The order in which we demand these values

will affect efficiency.

Within the current framework we shall insist that the order in which we
demand the evaluation of the observer nodes coincides with the order of the

formation of the closures associated with observer nodes, ie. as soon as we form

a closure for an observer node, we demand it. There is the possibility for an

extension here to allow for these to occur at different times.

Definition 3.9 (Lazy Evaluation of a DUG)
Given a DUG (9,77, c,, r) for an ADT A, and an implementation I of A, tile

lazy evaluation of the DUG with respect to I is the process of performing

the following steps on each node a(i) in order:

9 Form the closure given by [a(i)].,.

e If the node is an observer, demand the value of this closure.

Example 3.9

The lazy evaluation of the DUG of Figure 3.4 would form the closures [vil

for 0<i< 10 in order. When the closures for the observer nodes are
formed, namely [v4l, [vgl, and [viol, their value is demanded at the same

time.

Eager Evaluation

Whereas with lazy evaluation many applications of functions may remain uneval-

uated closures, under eager evaluation they will always be reduced. Hence the

eager evaluation of a DUG will evaluate every node and there is no distinction

between forming a function application and evaluating it.

Definition 3.10 (Eager Evaluation of a DUG)

Given an ordered DUG (V, a), and an implementation
.1 of A, the evalua-

tion. of the DUG with respect to I is the process of taking each node a(i)
in order and evaluating the application given by [a(i)]z.

3.3. PROFILE

Example 3.10

The eager evaluation of the DUG of Figure 3.4 would simply evaluate each

Ivil for 0<i< 10 in order.

3.2.2 Abstract Evaluation

55

The most abstract implementation of an ADT is the ADT itself. We use the

abstract operations to create, manipulate, and observe abstract values. These

abstract values only exist within the abstract world of mathematics, not within

any machine.

Definition 3.11 (Abstract Evaluation)

The abstract evaluation of a DUG for the ADT A is a mapping ý that takes

a node v to the result of evaluating [v]A.

Example 3.11

The abstract evaluation ý of the DUG of Figure 3.4 is given by the following

table, using [xo,
---, xnj to denote a list of elements xo, ..., Xn:

Vi VO VI V2 V3 V4
1

V5
1

V6
I

V7
I

V8 V9
-1

C(vi) H l7c') [] [W] 17
1

1 7c7l'h'] I ['h'] I ['c', 'h'] I ['h'] WI False

3.3 Profile

Recall from the introduction of this chapter that we want to create a benchmark

from a DUG, and that we want to extract a DUG from an application. However,

a DUG may be very large, and hence difficult to give or inspect, so we shall

now define the profile of a DUG. The profile will condense the most relevant

characteristics of a DUG into a few numbers. We can use pseudo-random numbers

to generate a family Of DUGS that on average have a given profile. The initial seed

given to the pseudo-random number generator determines which one is chosen.

We can now create a benchmark from a profile, and extract a profile from an

application.

We should first give some justification of using pseudo-random numbers. Why

do we need a random element to our DUG generation? This is because there are

many DUGS that match a single profile, and without an element of randomness we

rl rl
ULF CHAPTER 3. DATATYPE USAGE GRAPHS

will always pick the same one. But why cannot we just generate this one DUG?

Because fixing ourselves to just one of these invites bias into our results. Such

a bias may favour one ADT implementation over another, unfairly representing

their performance. Picking several of these DUGs at random combats this bias.

So what characteristics do we choose to record in a profile? One obvious

choice is the fraction of persistent applications of operations. An application

of an operation is persistent if one of the version arguments has already been

mutated-that is, a mutator has already been applied to this argument. However,

considering the application of an operation as a whole causes problems with the

generation Of DUGS. Specifically, we will find that it is easier to choose the

arguments independently of each other before applying the operation-see the

problem Choosing the operation before the arguments of Section 4.1.1.

To solve this problem, we split an application into the parts represented by

the arcs: One arc identifies one application. This allows us to identify whether

an application is persistent according to whether the source of the arc has been

previously mutated. With this definition of persistence we can identify which

applications of operations to an argument are persistent independently of the

other arguments. Note that the order associated with the targets of the arcs

indicates the order of the applications.

Definition 3.12 (Mutation, Observation)

For any node v of the version graph of a DUG, a mutation of v is an arc from

v to a mutator node. Note that an n-ary mutator creates n mutations. An

observation is defined similarly. ýIutations and observations inherit the

ordering given to the nodes to which they point.

Example 3.12

Looking at the DUG in Figure 3.4, the arc from V7 to V8 is a mutation,

and the arc from V7 to V9 is an observation. As vq is ordered after v8, the

observation V7 -+ V9 is ordered after the mutation V7 -+ V8-

Definition 3.13 (Persistent, Ephemeral)

For any node v of the version graph of a DUG with node ordering a, a

mutation or observation of v is persistent if it is ordered by cr after the

3.3. PROFILE

earliest mutation of v. This captures the notion of persistence: mutating

or observing the previous value of a mutated data structure. A mutation

or observation that is not persistent is called ephemeral.

Example 3.13

As in Example 3.12, looking at the DUG in Figure 3.4, we see that the

observation V7 -+ vq occurs after the mutation V7 -+ V8. As this mutation

is the only mutation Of V7) it is also the earliest. Thus the observation

occurs after the earliest mutation, and so is persistent. The mutation

VI -+ V7 is also persistent. The observation V3 -+ V4 is ephemeral.

57

Another obvious characteristic Of DUGS is the ratio of how many times we apply

one operation relative to another.

Definition 3.14 (Weight)

For any DUG 1), the weight of a mutator f in D is the number of muta-

tions that apply f to nodes in D. The weight of an observer is defined

similarly. The weight of a generator f is simply the number of nodes that

are generated by f. To unify these two definitions, one might imagine a

single void node with arcs to each generator node.

Example 3.14

The weights of the operations in the DUG in Figure 3.4 are given below.

Role Generator Mutator Observer

Operation empty catenate cons tail head lookup isEmpty
Weight 2 4 2 2 1 1 1

We can localise the weight of a mutator or of an observer to just a subgraph.

This allows us to see how this ratio might change from one region of the DUG to

another.

Definition 3.15 (Weight in V)

For any subgraph W of a version graph, the weight of a mutator f in W

is the number of mutations that apply f to nodes in X The weight of an

observer is defined similarly.

58

Example 3.15

CHAPTER 3. DATATYPE USAGE GRAPHS

Looking at the DUG in Figure 3.4, let the subgraph ?i include just the

nodes vo, Vl ý V2 and v3. The weights of the mutators and observers in W

are given below.

Role Mutator Observer

Operation catenate cons I tail head ý lookup isEmpty

Weight in W 3 2 0 1 0 0

Information such as the average number of mutations of a node is not only useful

for summarising DUGS, it also provides a very convenient way to generate a DUG

with a given profile (see ahead to Section 4.1.1).

From the fraction of mutations that are persistent, we can calculate the aver-

age number of mutations of previously mutated nodes as follows. Let p,,, be the

fraction of mutations that are persistent. Take any node vi that is mutated at
least once. The first mutation of vi is ephemeral, and the remaining ni mutations

are persistent. Averaging over all j mutated nodes, we have

Pm
ni ni

=>
Pm

+ p�,

If we know the fraction m of nodes that are not mutated at all, we can calculate
the average number 17 of mutations of a node:

Ti =Om+ 1+ Pm (1-m)=
1-m (1 -PM) 1 -PM

We call p,,, the persistent mutation factor (PMF), and m the mortality.

If we calculate the ratio r of mutations to observations, Nve can also estimate
the average number of observations of a node. Making the assumption that a

node was made by a mutator, then the average number of observations of a node

is 1/r. As we have excluded nodes made by generators, this is only an estimate.

From the fraction p,, of observations that are persistent, we can calculate the

average number of observations made before the first mutation at (1 -p,,)/r, and
the average number of observations made after the first mutation at p,, /r. We

call p. the persistent observation factor (POF).

Later we shall wish to calculate the profile of a subgraph of a DUG. As

the weight of a generator cannot be localised to a subgraph, we separate out

3.3. PROFILE 59

generation weights from the weights of mutators and observers. To allow the

calculation of the ratio r of mutations to observations, we group the mutation

and observation weights together to form the mutation- observation weights.

Definition 3.16 (DUG Profile)

The profile of a DUG V with version graph ! 9V is given by the following:

* Generation weights: The ratio of the weights of each generator.

* Mutation- observation weights: The ratio of the weights of each mu-
tator and observer in gv.

" Mortality: The fraction of nodes in gV that are not mutated.

" PMF: The fraction of mutations of nodes in 9v that are persistent.

" POF: The fraction of observations of nodes in gv that are persistent.

Example 3.16

The DUG shown in Figure 3.4 has the following profile:

9 Generation weights: As there is only one generator, empty, this prop-

erty is redundant at: empty = 1.

* Mutation-observation weights: We have

catenate : cons : tail : head : lookup : isEmpty =4: 2: 2: 1: 1: 1

Note that each application of catenate carries double the weight of an

application of one of the other operations because each application of

catenate creates two mutations.

* Mortality: Of the eight version nodes, only one NO is not mutated,

so the mortality is 1/8.

0 PMF: There are eight mutations, one of which (vi -* v7) is persistent,

so the PMF is 1/8.

0 POF: There are three observations, one of which (V7 -ý V9) is persis-

tent, so the POF is 1/3.

If the PMF and POF of a DUG are both zero, then we know that there are no

persistent applications of an operation. Therefore, we make the following defini-

tion.

60 CHAPTER 3. DATATYPE USAGE GRAPHS

Definition 3.17 (Single-Threaded)

An application using an implementation of a simple ADT A in a manner

recorded by the DUG V is single-threaded for A if the PmF and POF of V

are both zero. A single-threaded application does not require a persistent

implementation of the ADT.

Example 3.17

The DUG of application appi shown in Figure 3.2 has PMF and POF both

zero and is therefore single-threaded.

3.4 Shadow Data Structure

To aid the generation of DUGS, and to add information to profiles, we use a shadow

data structure. A shadow data structure maintains a shadow of every version.

This shadow contains information about the version. A shadow data structure

does not depend on any implementation of the ADT, but is instead abstract and

applicable to any implementation of the same ADT.

As a running example, for the ADT AList, whose signature is given in Fig-

ure 3.3, and for which each version is a list, let the shadow of a version contain

the length of the list. Below we give an overview of the uses of a shadow data

structure.

Guarding Against Undefined Function Applications

When generating a DUG from a profile, if we blindly choose to label a node with

any operation, we may create an application that is undefined: for example,

Most list ADTS would not define the value of head empty. Such applications of

partial operations need to be excluded from a DUG generated at random. We

need to have a guard around the partial operation telling us which applications

of the operation we can form. We can use the shadow of a version to store

enough information to allow decisions about whether a particular operation may

be applied to that version. For example, for AList, if we maintain the length of a

list in the shadow, we can prevent the application head empty by only allowing

head to be applied to lists of length 1 or more.

3.4. SHADOW DATA STRUCTURE

Phasing Profiles

61

We can also use the shadow data structure to split a profile into phases. The

shadow of a version node will determine which phase the node is in. This is useful
for giving a more specific profile. For example, we might wish to make a DUG
for AList where the average length of the list is n elements. We can do this if we

make cons more likely than tail on lists shorter than n elements, and vice versa
for lists longer than n elements. This is possible if we maintain the length of the

list in the shadow, and give a different profile for each of the two phases: lists no
longer than n elements, and lists longer than n elements.

Shadow Profiling

The shadow could also store any other useful information about what operations

were performed. This shadow profile information would allow profile information

specific to an ADT to be collected, along with the general profile information

already described in this chapter. For example, by maintaining the length of a
list, we can calculate the average length of a list per mutation or observation.

Note that a shadow data structure is only used for the generation or analysis of
DUGs, and need not be involved in applications using an ADT implementation.

We shall later use a further restriction on DUGS to aid both DUG generation

and DuG extraction: Versions may only contain integer elements. Introducing

this restriction here also simplifies the definition of a shadow data structure. See

Section 4.1.1 for a discussion of this restriction. This restriction implies that the

type variable a in the type of an operation becomes instantiated to Int.

We shall now define a shadow data structure precisely.

3.4.1 Shadowing

We should first define the shadows themselves. The shadows are maintained by

the shadow operations.

Definition 3.18 (Shadow Operation)

For any simple ADT (T, F), and for any generator or mutator fEF, let t

62 CHAPTER 3. DATATYPE USAGE GRAPHS

be the type of f with type variable a instantiated to Int. For any type s,

the function g is an s-shadow of f if g has the type shadow, (t) given by

shadow, (tl -+ t2) = shadow, (ti) -+ shadow. (t2)

shadow, (T Int) =s

shadow, (Int) = Int

The shadows maintained by this shadow operation have type s. There are

no shadows of observers as they do not return versions.

Example 3.18

For any type s, an s-shadoNv of the lookup operation of AList (see Figure 3.3)

has the following type:

shadow, (T Int -+ Int -+ Int -ý T Int) =s -+ Int -+ Int -ý s

Definition 3.19 (Shadowing)

Let A= (T, f,, }) be any simple ADT. Let Jfj
..... fij be the

generators and mutators of A. For any set F= Ifi
......

fi',.) of opera-

tions, and any type s, the pair (s, F) is a shadowing of A if the following

hold:

e Each fij is an s-shadow of fij.

9 There exists a homomorphism 0:: T Int -+ s; that is,

for all fij q xj , ... , xA, , where k>0 is the arity of fi,,

if fij X1 ... xk is well-defined, then the following holds:

F 0 (fij Xl Xk) ý fij «ý XI) ...
(oý Xk)

where for all x,

0 x, if x has type T Int

X, othenvise

Example 3.19

The Haskell code of Figure 3.5 is a shadowing SLij of the ADT AList (see

Figure 3.3). In this case, the type s shadowing List Int is of type Int, and

the homornorphism 0 :: List Int -+ Int is the function that returns the

length of a list.

3.4. SHADOW DATA STRUCTURE

type Shadow = Int

empty-Shadow :: Shadow

empty-Shadow =

catenate-Shadow :: Shadow -> Shadow -> Shadow

catenate-Shadow sO sl = sO + sl

cons-Shadow :: Int -> Shadow -> Shadow

cons-Shadow iO sO = sO +I

tail-Shadow :: Shadow -> Shadow

tail-Shadow sO = sO -I

Figure 3.5: A shadowing of ADT AList (see Figure 3.3).

63

Definition 3.11 assigns an abstract ADT value to every version node of a DUG; the

following definition assigns the shadow of the ADT value.

Definition 3.20 (Shadow Evaluation)

Let V be any DUG for ADT A, and S= (s, F) be any shadowing of A. The

shadow evaluation of V is a mapping C that takes a version node v to the

result of evaluating [v1s, where an operation is interpreted by its shadow.

Example 3.20

Taking the DUG of Figure 3.4 with the shadowing SLi, t of Figure 3.5, the

shadow evaluation C of the DUG is given below:

Vi
i

VO Vl V2 V3 V5 V6 V7 V8

(vi) 0 1 0 1 2 1 2 1

Note from Examples 3.11 and 3.20 that the evaluation of each version node under

SLi, t equals the length of the list produced by the evaluation under AList. This

results from the condition that a shadowing defines a homomorphism from the

ADT values to the shadow values. This is now proved.

64 CHAPTER 3. DATATYPE USAGE GRAPHS

Lemma 3.1 For any DUG V for ADT A, any version node v in V, and any

shadowing S defining a homomorphism 0, if [v]A is well-defined, then 0 [vjA

IVIS.

Proof. - We shall proceed by induction on n, the number of nodes of in the version

graph.

* For n=0 the lemma is satisfied trivially.

We shall assume that the lemma is true for all DUGS with no greater than n

version nodes. We claim the lemma is true for any DUG with n+1 version

nodes. Take such a DUG V. Take any version node v with zero out-degree

within the version graph. There must be at least one such node as the graph

is acyclic. As v has no successors within the version graph, we may remove

v and any successors outside of the version graph from V to obtain another

DUG V. As V has n version nodes, the inductive hypothesis states that

for any version node v' in V, 0 [v']A = [v']s. Therefore we need only prove

that the lemma is true for v. Let el, ..., ek, k>0, be the arcs incident to v,

ordered by r, from the nodes vi, ... 7 Vk respectively. Let f be the operation

from which 77(v) is derived, and let f be the shadow of f given by S.

[VIS
--. ':

[71(V)IS [VIIS
...

[Vk]S

= (AXI ** AXk - fal ... a�,) (0 jull. 4) ...
(0 [Vkl, 4)

Without loss of generality, we shall assume that for 1<i<k, ai = xi.

[VIS
--. ' fl (0 [VIIA)

...
(0 [Vk]A) ak+I a

"': 0 (f [VIIA
...

[Vk]A ak+l a)

Pll *... 'Alk-f a, ... a,,,) Iv,]A
...

[Vk]A)

(77M IVIIA
...

[Vk]A)

: -'4
0 [VIA

13

This lemma shows that we can have access to the shadow of a version, as defined

by the homomorphism of the shadowing, by using just the shadow operations.
We do not need a version to create a shadow, we need only know which operations

created the version. This abstracts us away from any concrete representation of
the version.

3.4. SHADOW DATA STRUCTURE 65

For example, the shadowing of Figure 3.5 defines a homomorphism from a

version, which is a list, to its length. Lemma 3.1 shows we can calculate the

shadow of a version v, namely its length, without having access to v itself. All

we need to know is which operations created v. To construct the length of v, we

use shadows of the same operations, with the same arguments.

3.4.2 Guarding

Using the information stored in the shadows, we wish to define a guard of an

operation f that indicates which applications of f are allowed. We could make a

guard take the same arguments as f and return true or false, according to whether

the application is allowed or not. However, when generating an application at

random, this would force every argument of an operation to be chosen before

passing these arguments to the relevant guard. With an application such as lookup

I i, this means guessing which indices are available for lookup before testing the

validity of the application. This would be very inefficient.

The definition of a DUG already restricts arguments supplied by the result of

another operation to just version arguments. This allows non-version arguments

to be chosen independently of the results of other operations. Suppose we pass

the guard only the version arguments of an operation. The valid ranges of re-

maining arguments could be returned as the result. One argument could then be

chosen from each range with the resulting application guaranteed to be valid. For

example, the guard for lookup could return a range of indices up to the length of

the list.

This works only if we make the further restriction that the guard returns

independent ranges of non-version arguments. Where the ranges of valid non-

version arguments are dependent, the guard must return some independent subset

of ranges. As we have ensured that every non-version argument is of type Int, a

guard may return a range using the type IntSubset.

66 CHAPTER 3. DATATYPE USAGE GRAPHS

Definition 3.21 (IntSubset, member)
The type IntSubset is given by

data IntSubset = All
Pool

Int :..: Int

FiniteSet (Set Int)

None

and represents subsets of integers in the sense made precise by the following

definition of the membership operation:

member

member i All

member i Pool

member i (I :..: u)

member i (FiniteSet s)

member i None

Int -+ IntSubset -+ Bool

Tru e
(1 <i< poolsize)

(I <i< U)

memberFS is

False

where memberps is the membership operation on the type Set Int, and

poolSize is some constant. We assume the availability of a suitable ADT to

manipulate values of type Set Int.

The definition of IntSubset allows the same set to be given in more than one way;

in fact, only the FiniteSet constructor is needed. However, the other constructors

provide dynamic, more efficient, or shorter alternatives:

The set of all possible integers is more efficiently given as All than as
FiniteSet (foldr add empty [minBound.. maxBound]).

* The constant poolSize can be given at run-time of the generation of a

DUG. The constructor Pool therefore gives a set of dynamic size. This

is useful in assessing the effect of equal elements on efficiency of ADT

implementations-see the problem Choosing non-version arguments from

the graph of Section 4.1.1 for further details.

The set 11,
..., n} is more easily and more efficiently given as 1n than

as FiniteSet (foldr add empty [I.. n]).

3.4. SHADOW DATA STRUCTURE 67

e The None is included to complement All and as a shorter alternative to

FiniteSet empty.

Using IntSubset, we can now give the type of a guard.

Definition 3.22 (Guard Type)

Let T be any type constructor of arity one. Let t be any simple type over T

with type variable a instantiated to Int. Let n be the number of arguments

of an operation of type t, v of which are version arguments. For any type

s, the type guard,, (t) is given by

v times

_ý

I [IntSubsetln-v if v<n guard, (t) -s
Bool if v=n

where [a],,, is the type of lists of n elements of type a, and where s represents

the type of shadows. This replaces every version argument with a shadow,

and moves every non-version argument over to the result type. There are

n-v non-version arguments; if n-v=0, then the result type is Bool,

otherwise it is a list of length n-v of elements of type IntSubset.

Example 3.22

Consider the ADT AList, whose signature is in Figure 3.3. For any type s,

any guard of the operation head using shadows of type s must be of type

guard, (T Int -+ Int) =s -+ Bool

If we add the operation update of type

update :: List a -+ Int -+ a -+ List a

to AList, then any guard of update must be of type

guard, (T Int -4 Int -4 Int -4 T Int) =s -4 [IntSubset]2

As the type [a],,, cannot be written in Haskell, one might ask why we have chosen
it over an i-tuple. Unfortunately, Haskell does not support functions over tuples

of arbitrary size. We must work with the result of any guard in general, and

thus we are forced to use lists. However, the type of lists does not express their

68 CHAPTER 3. DATATYPE USAGE GRAPHS

length. Hence lists with types that do specify length were chosen as a compromise

between expressibility and practicality.

We can now define a guard itself. We ensure the guard is of the correct type,

and that it correctly indicates when a function application is well-defined.

Definition 3.23 (Guard)

Let S= (s, F) be a shadowing of the ADT A= (T, F) defining a horno-

morphism 0:: T Int -ý s. For any operation fEF of type t, the function

g is an S-guard of f if the following hold:

e The type of g is guard, (t).

* For all xj,..., x, where xi xi,, are each of type T Int and

Xii, ---, xj, are the rest, we have:

- If I= 0, f X, ... x,, is well-defined if

(0 xij ... (0 xi,) = True

- If I>1, f X, ... x,, is well-defined if

xi, 3 = [si,
---, sil

and for all 1<t<

member xj, st = True

Example 3.23

The Haskell code of Figure 3.6 defines SLig-guards of every operation of

AList. Recall that the homomorphism given by SLjt is the length function.

The guards of empty, catenate, and isEmpty, are trivial as these operations

are total. The guard of cons allows any element to be added to the front

of a list. The guard of tail will return True when and only when the list

whose shadow it is being applied to is non-empty, ie. exactly when it is

safe to apply tail to the list. The guard of head is identical. The guard

of lookup will return the range of indices over which lookup is well-defined:

any index from first to last element inclusive.

3.4. SHADOW DATA STRUCTURE

empty-Guard :: Bool

empty-Guard = True

catenate-Guard :: Shadow -> Shadow -> Bool

catenate-Guard sO sl = True

cons-Guard :: Shadow -> [IntSubset]

cons-Guard sO = [All]

tail-Guard :: Shadow -> Bool

tail-Guard sO = sO>O

head-Guard :: Shadow -> Bool

head-Guard sO = sO>O

lookup-Guard :: Shadow -> [IntSubset]

lookup-Guard sO = [0:..: (sO-1)1

isEmpty-Guard :: Shadow -> Bool

isEmpty-Guard sO = True

69

Figure 3.6: Haskell code for SLit-guards of the operations of ALW (see Figure 3.5).

Note that as Haskell does not have a type for lists of a given length, and as tuples

are awkward to manipulate in the general case, lists of arbitrary length are used.

70 CHAPTER 3. DATATYPE USAGE GRAPHS

We shall generate a DUG by adding one node at a time. We shall choose an

operation and predecessors for a new node, and then decide using the guards

which integer arguments, if any, will produce a new DUG with a valid evaluation.
We now wish to prove that the guards do allow us to make this decision.

Lemma 3.2 Suppose we have a DUG V= (9,77, a,, r) for ADT A, a shadowing
S of A, and an S-guard for every operation of A, with every node of V having a

well-defined evaluation under A. Now propose an extension of V by one node v

using operation f and predecessors vI, ..., vk. The guards can use just the infor-

mation provided by the shadow evaluation of V to give sets of integer arguments.
Choosing any integer from each will provide a well-defined evaluation of v under
A

Proof. Let g be the S-guard of f. If valid, the evaluation of v under A is given
by the result of evaluating the following:

[VIA : -- 77(V) [VIIA
...

[VkIA

=

where xi,. = [VMIA, IX,
",

}k
=1

U {Xj,. }l
=1 = {Xm}n

=1 and k+I = n. As each v,,, is MMM
in V, [Vn]A is well-defined. By Lemma 3.1,0 xi.. =0 [vm]A = Ivm1s. Therefore,

given the shadow evaluation of V, we can determine the value of each 0 xi,,,,

and hence the integer sets given by g (0 xi,) ...
(0 xi,). From Definition 3.23,

choosing any xj xj, from these sets gives awell-defined evaluation of v under
A. 13

Note that, in general, it may not be possible to define a guard that gives every

well-defined application-for example, where the integer arguments cannot be

independently chosen. However, for all of the ADTS in this thesis, it is possible

to define guards which do give every well-defined application.

3.4.3 Phasing

It is useful to be able to identify different phases of an application. The profile

of each phase may be given separately. For example, an application could have

a growth phase where the data structures are being built, and a decay phase

3.4. SHADOW DATA STRUCTURE 71

where the data structures are being examined and taken apart. The profile of

the growth phase would show more applications of building operations than of
deconstructing operations, and vice versa for the decay phase.

Thus a profile split into phases reveals more about an application's use of the

ADT than just the whole profile. Additionally, when generating a DUG according

to profiles for each phase, there is more control over the generation process.

We assign each ADT version to a phase. Note, however, that at any one point
in the computation, there may be many versions in different phases. For example,

using the growth and decay phase example above, there may be some versions
being built in the growth phase, whilst some are being taken apart in the decay

phase.

Information stored in the shadow determines which phase a version is in. The

phases partition the version graph; that is, each version node will belong to a

single phase. The non-version nodes are not shadowed and will not belong to

any phase. We will identify a phase by a value of the type PhaseId which we

will define as a type synonym with Int. The first phase is phase 1. Letting 5 be

the type of a shadow, we may suppose that the following simple function would

suffice:

phaser :: s -+ PhaseId

In general however, the function phaser needs more information than this.

Suppose we are generating DUGS over the list ADT AList- Suppose further that

we want to split the lists into two phases: those below a given length, and those

above. We wish to parameterise the phasing over this length. This is the phase

argument. A function phaseArgRead is required to read in the argument from a

string. A value phaseArgDefault is required to specify the phase argument to use
if none is given.

Definition 3.24 (Phasing)

Let S= (s, P) be a shadowing of some ADT. The 4-tuple

P= (r, phaseArgRead, phaseArgDefault, phaser)

72 CHAPTER 3. DATATYPE USAGE GRAPHS

data PhaseArg = MeanSize Int I NoMeanSize

phaseArgRead :: String -> PhaseArg

phaseArgRead s= MeanSize (read s)

phaseArgDefault :: PhaseArg

phaseArgDefault = NoMeanSize

phaser :: Shadow -> PhaseArg -> PhaseId

phaser -
NoMeanSize =1

phaser s (MeanSize m)

Is <= m=1
I otherwise =2

Figure 3.7: Functions implementing an SLit-phasing assigning lists no longer than

the phase argument to phase 1, and those longer to phase 2. See Example 3.19

for the definition of SLi. t. If no phase argument is given, all nodes are placed in

phase 1.

provides an S-phasing when the following type signatures are correct:

phaseArgRead String r

phaseArgDefault r

phaser s -+ r PhaseId

Note that the type PhaseId is a type synonym for Int.

Example 3.24

The Haskell code of Figure 3.7 defines an SLig-phasing. This phasing

places lists of length less than or equal to the phase argument (an integer)

into phase 1, and the rest into phase 2.

Each part of the DUG profile defined in Section 3.3 can be parameterised over the

phase of a version node, except for generation weights.

3.4. SHADOW DATA STRUCTURE

Definition 3.25 (Phased DUG Profile)

Let V be a DUG for ADT A with version graph! gv. Let S be a shadowing of

A. Let Iii, ..., lip be the subgraphs of ! 9V partitioned by the S-phasing P.

The P-phased DUG profile of V can be calculated by replacing gV with Iii

in Definition 3.16 for every property bar generation weights. The phased

profile of a DUG is therefore:

*A generation weights ratio

*A set of the following properties, one for each phase of the DUG:

mutation-observation weights, mortality, PMF, and POF.

Example 3.25

Using the SLit-phasing PLig of Example 3.24 with a phase argument of 1,

partition the DUG shown in Figure 3.4 into two phases: (1) lists, of length

zero or one, and (2) lists of length two or more. Example 3.20 gives the

length of each list. Let W, contain nodes in phase (1), namely vo, vi) V2,

V31 V6, and V8. Let W2 contain nodes in phase (2), namely v5 and V7. The

PLi, t-phased profile of this DUG is given below:

9 Generation weights-as there is only one generator, empty, this prop-

erty is redundant at: empty = 1.

* Set of profiles of each phase.

73

- For W1, the lists of length zero or one, we have the following

profile:

* Mutation-observation weights:

catenate : cons : tail : head : lookup : isEmpty =
4: 2: 0: 1: 0: 1

* Mortality-of the six version nodes in 711, only one (V8) is

not mutated, so the mortality is 1/6.

* PMF-there are six mutations of nodes in 711, one of which

(V1 --ý V7) is persistent, giving a PMF of 1/6.

* POF-there are two observations of nodes in W1, neither of

which is persistent, giving a POF Of 0.

74 CHAPTER 3. DATATYPE USAGE GRAPHS!!

- For W2, the lists of length two or more, we have the following

profile:

* Mutation-observat ion weights:

catenate : con i: tail: head: lookup : isEmpty =
0: 0: 2: 0: 1: 0

* Nfortality-all version nodes are mutated, so the mortality is

PmF-there are three mutations of nodes in W2, none of whicli

are persistent, giving a PMF of 0.

POF-there is one observation of a node in W2 (v, -+ t-9),

which is persistent, giving a POF of 1.

3.4.4 Shadow Profiling

Shadow profiling allows information to be collected about every operation applie(j
to a version, namely mutations and observations. The shadow of any versioll
that is mutated or observed is the source of this inrormation. For "aniple, if tl,, L.
shadow of a list contained its length, we could suin the lengths of lists involvcý(j

in mutations and observations and return the average. Note that this is not
the same as summing the lengths of every mutatml or observed list: if a list is

mutated or observed more than once, its shadow is used more than once.
We will need to maintain a shadow proffle- The initial value will be givell by

shadowProfileZero. Information will be collected using the function shadowPro-
filer. The final value will be shown using the function shadotrProfileShow.

Definition 3.26 (Shadow Profiling)

Let S= (s, F') be a shadowing Of SOMC ADT. The . 1-tuple

(p, shadowProfileZero, shadowProfder, shadowProfileShow)

provides an S-profiling when the following type signatures are correct:

shadowProfileZero ::
shadowProfiler :: p -+ s -+

shadowProfileShow :: p -+ String

3.4. SHADOW DATA STRUCTURE

data ShadowProfile = ShadowProfile Int Int

shadowProfileZero :: ShadowProfile

shadowProfileZero = ShadowProfile 00

shadowProfiler :: ShadowProfile -> Shadow -> ShadowProfile

shadowProfiler (ShadowProfile sum count) s=

ShadowProfile (sum+s) (count+l)

shadowProfileShow :: ShadowProfile -> String

shadowProfileShow (ShadowProfile sum count) =

"Average size = 11 ++ show (sum/count)

75

Figure 3.8: Functions implementing an SLi, t-profiling. The average length over

every mutation and observation of a list is calculated. See Figure 3.5 for the

definition of SLjt.

Example 3.26

The Haskell code of Figure 3.8 defines an SLi, t-profiling. This shadow

profiling calculates the average length of a list over all mutations and ob-

servations. For the DUG of Figure 3.4, this reports an average length of
12/11. To verify this, here is a table of every mutation and observation,

and the corresponding length of the mutated or observed list:

Mutation/Observation vo -+ v, V2 -+ V3 V3 -4 N VI -ý V5 V3 -+ V5

Version Operated On VO V2 V3 V1 V3

Length 0 0

V5 -+ V6 Vl -+ V7 V6 -+ V7 V7 -+ V8 V7 -4 V9 V8 -+ V10

V5 VI V6 V7 V7 V8

2 11 11 12 2 1

Given a list 1 of shadows of versions that are mutated or observed, one might

view the shadow profile with:

76 CHAPTER 3. DATATYPE USAGE GRAPHS

shadowProfileShow Voldl shadowProfiler shadowProfileZero 1)

3.4.5 Definition

We are now in a position to give a formal definition of a shadow data structure,

which includes shadowing, guarding, phasing, and shadow profiling.

Definition 3.27 (Shadow Data Structure)

For any simple ADT A= (T, F), any shadowing S of A, any set W con-

taining a single S-guard of every operation in F, any S-phasing P, and

any S-profiling 0, the 4-tuple (S, W, P, 0) is a shadow data structure for

A

Example 3.27

Take SLj, t from Figure 3.5, WLi, t containing the SLi,, -guards of Figure 3.6,

PLj, j from Figure 3.7, and OList from Figure 3.8. The 4-tuple

(SList i Mist t 'PList i OList)

is a shadow data structure for the ADTALW, whose signature is given in

Figure 3.3.

3.5 Summary

We now have a formal model capturing how an application uses a data structure:

a DUG. We also have a summary of the most important aspects of this use: a

profile. By generating a DUG from a profile, and by defining the evaluation of a

DUG, we can now create a benchmark from a profile. The shadow data structure

plays an important role in the generation Of DUGs by allowing us to avoid unde-
fined applications of operations. By extracting a DUG from an application and
by calculating its profile, we can also create a profile from an application. The

shadow data structure helps here by adding useful information to the extracted

profile.
However, all of this is defined only in theory. In the following chapter we shall

turn this theory into practice by giving algorithms for the generation, evaluation,

extraction, and profiling of DUGS.

Chapter 4

Implementing Datatype Usage

Graphs

As stated at the start of Chapter 3, we want to be able (a) to create a bench-

mark from a description of use, and (b) to create a description of use from an

application. In Chapter 3, we defined a DUG, describing how a data structure

is used by an application. We then outlined in theory how we can (a) create a

benchmark from a profile of a DUG, and (b) create a profile of a DUG from an

application. In this chapter, Sections 4.1 and 4.2 show how these ideas can be

implemented. Section 4.3 describes the technical details involved in these con-

crete implementations. Section 4.4 evaluates the accuracy and efficiency of these

implementations.

4.1 From Profile to Benchmark

Recall from Section 3.3 that we create a benchmark from a profile as follows:

(1) Use a pseudo-random number generator to create a DUG that probabilisti-

cally has the given profile-that is, the expected profile is the one given.

(2) Use a DUG evaluator to evaluate this DUG using a given implementation of

the ADT.

Section 4.1.1 describes (1), and Section 4.1.2 describes (2).

78 CHAPTER 4. IMPLEMENTING DATATYPE USAGE GRAPHS

To generate a DUG:

while the DUG is too small do

choose an operation

choose version arguments for the operation

choose non-version arguments for the operation

add a node to the DUG

add arcs from the nodes used as arguments to the new node
label the node with the operation and the remaining arguments

Figure 4.1: Overview of the DUG generation algorithm.

4.1.1 DUG Generation

How shall we build a DUG? Figure 4.1 gives a reasonable starting point for an

algorithm.

Problems with DUG Generation

Unfortunately, the simple algorithm of Figure 4.1 encounters some problems.
These are listed below, together with the solutions we choose.

Creating undefined applications. Some applications of operations may not
be well defined. For example, the application head empty is usually not
defined. We need to avoid these applications. We do this by maintaining

extra information-a shadow-about each possible argument of an applica-

tion. A guard protects us from creating an undefined application, by using

the shadow of every argument. Shadows and guards make up part of a

shadow data structure-see Section 3.4.

Allowing undefined arguments. Lazy evaluation evaluates the operation

before the arguments. Therefore, adding a node with (as yet) undefined ar-

guments seems reasonable. However, without knowing the arguments, we

cannot avoid undefined applications using a shadow data structure. There-

fore we never add a node without knowing all the arguments.

4.1. FROM PROFILE TO BENCHMARK 79

Choosing the arguments from the whole graph. We could pick the arguments

from any part of the DUG already formed. However, in practice, because

we must maintain a shadow of every possible argument, this can cost too

much memory. Therefore we restrict choice of arguments to a subgraph,

the frontier. We need only maintain shadows of nodes in the frontier. If

the frontier becomes too large, we remove a node (though it stays in the

DUG).

Choosing non-version arguments from the graph. We could choose non-

version arguments from the results of observers. However, this proves too

restrictive-for example, whilst generating a DUG for the ADT of Figure 4.2,

from where does the argument of type a for the first application of cons

come? There can be no applications of head in the graph yet. But how else

can we generate an argument of type a? As the role played by non-version

arguments is a relatively minor one (for example, no profile properties de-

pend on them), we restrict them to being integers-that is, we instantiate

the type variable a to Int. For simplicity, now that every non-version argu-

ment has type Int, we then choose all non-version arguments independently

of the graph.

But what effect do arguments of type a have on the efficiency of ADT

implementations? For those ADTS that do not examine the elements they

carry (that is, arguments of type a), the only affect these elements can have

is through their size-the larger the element and the more elements held

onto by the ADT implementation, the larger the heap size which in turn

affects efficiency. By restricting ourselves to elements of type Int, we have

no means of measuring this effect.

For those ADTS that do examine the elements they carry, for example, by

comparing them under equality, or by ordering them, the values of these

elements can affect efficiency. For the data structures considered in this

thesis, only equality and ordering is used on elements. Under this use of

elements, one of the main effects on efficiency is through the number of

equal elements. This is controlled through the pool size.

80 CHAPTER 4. IMPLEMENTING DATATYPE USAGE GRAPHS

The range of integer arguments given by the Pool data constructor of
IntSubset (see Definition 3.21) are drawn from 11,

.... p), where p is called

the pool size. The smaller the pool size, the more equal elements will be

inserted. Changing the pool size may effect the efficiency of ADT iMple-

mentations. For example, one implementation of a set ADT may be more

efficient than another at handling many insertions of equal elements.

Apart from this rather crude means of controlling the range of elements,

we currently have no other control of the effect of elements on efficiency.

Choosing the operation before the arguments. We could choose an operation
for the new node before choosing its arguments. However, this proves rather

awkward for generating a DUG to fit some of the profile properties. For

example, persistence and mortality depend on whether the arguments have

been previously mutated or not. Before choosing arguments, 'we would need

to know which have been mutated and which have not, if we are to attempt

to match these properties. Additionally, phasing the profiles increases our
dependence on prior knowledge of the arguments. It is easier if we choose

an argument first, and the operation second. Therefore, for each new node,

we plan which operations each node should be involved in as an argument,

and in which order. See Section 3.3 for a discussion of how the profile

properties are used to plan a node's future.

We choose an argument first, and let the first operation in its future deter-

mine the operation of the new node. However, we must cater for operations

that take more than one node as an argument. Therefore, we place argu-

ments in a buffer according to operation, and wait till it contains as many

nodes as the operation takes arguments, before creating a new node with

this operation. Unfortunately, this has the drawback that it is impossible

to create an application where the same node appears as more than one

argument, for example, catenate v v. However, there does not appear to be

a simple solution to this problem.

* Diverging. If we allow the same operation and arguments to be chosen

repeatedly, and if this application is rejected by the guard, we could diverge.

4.1. FROM PROFILE TO BENCHMARK

module List (List, empty, catenate, cons, tail, head, lookup, isEmpty)

where

empty :: List a

catenate :: List a -> List a -> List a

cons a -> List a -> List a

tail List a List a

head List a a

lookup List a Int -> a

isEmpty List a Bool

81

Figure 4.2: Haskell code giving the signature of a simple list ADT providing

normal list operations, catenation and indexing.

Therefore, once a guard rejects an application, we remove this operation
from the node's future.

The DUG Generation Algorithm

We build a DUG one node at a time. Each node has a future and a past. The future

records which operations we have planned to apply to the node, in order. The

past records which operations we have already applied to the node. The nodes

with a non-empty future together make up the frontier. The first operation in a

future is called the head operation.
As we add a node to the DUG, we take arguments from the frontier. The

frontier therefore is the subgraph on which we are building. We shall bound the

size of the frontier above and below:

Bounding above prevents the frontier from getting too large. If the PMF

is non-zero, we shall need to mutate nodes more than once. This leads to

exponential growth of the frontier, which may need to be capped to prevent

running out of memory. When the frontier exceeds a given limit, we remove

an arbitrary node from the frontier. This will affect the final profile, and

82 CHAPTER 4. IMPLEMENTING DATATYPE USAGE GRAPHS

so should only be used when there is no alternative.

Bounding below ensures there is at least one node to build on, and encour-

ages diversity, especially in the presence of operations with large version

arities.

When a new node is made, we record this as a birth. A list of births, in order,
describes a DUG completely. When a node no longer has a future, we record
its past as a death. A list of deaths also describe a DUG completely'. A list of
births describes a DUG from a global perspective (how was a node added to the

graph) whereas a list of deaths describes a DUG from a local perspective (what

was applied to a node). A list of births is more convenient for evaluating a DUG.

A list of deaths is more convenient for profiling a DUG. Hence, we shall produce
both as we generate the DUG.

Our definition of a DUG restricts non-version nodes from being re-used, and

so each non-version node always has an empty future and an empty past. To save
time and space, we do not record the death of a non-version node--the node is

assumed to die immediately after birth.

An overview of the algorithm is given in Figures 4.3 and 4.4. Fuller details of
the algorithms are given below.

Generating the DUG. The main function generateDug takes an integer and

returns a DUG with this many nodes, in the form of a list of births and deaths.

generateDug :: Int -+ [BirthOrDeath]

A birth records the identity of the node born, the operation used, the version

arguments (identities of other nodes), and the non-version arguments (integers).

A death records the identity of the dead node, the arcs from the dead node, and

the shadow of the dead node.

data BirthOrDeath = Birth Nodeld Operation [Nodeld] [Int]

I Death Nodeld [Arc] Shadow

I This is only true if we consider a generator as taking an imaginary void node as an argument
(see Definition 3.14) and include the death of this node. However, in practice, it is easier to

just use the birth of the generator, which is what we do for DUG profiling.

4.1. FROM PROFILE TO BENCHMARK

To generate a DUG:

while the DUG is too small do

if the frontier is too small then

try to make a new node using a generator (see part 11)

else-if the frontier is too large then

remove a node from the frontier

record the death of this node

else

remove a node from the frontier to act as a version argument

83

place the node in the buffer corresponding to the node's head operation
if this buffer is full then

try to make a new node with the buffer's contents acting as the version

arguments for their common head operation (see part 11)

fi

fi

od

record the death of every node in the frontier and buffers

Figure 4.3: Overview of the DUG generation algorithm (part I).

84 CHAPTER 4. IMPLEMENTING DATATYPE USAGE GRAPHS

To try to make a new node from an operation and some version arguments:

apply the guard of the operation to the shadow of every version argument
if the guard fails then

remove the head operation of each version argument

else

choose some non-version arguments from the result of the guard

make a new node by applying the operation to the arguments

record the birth of this node

add the new node to the DUG

if the operation is not an observer then

plan the future of the new node

else
leave the future of the new node empty

fi
if the new node has a non-empty future then

add the new node to the frontier

else

record the death of this node
fi

remove the head operation of each version argument

fi

record the death of every version argument with an empty future

add every other version argument to the frontier

Figure 4.4: Overview of the DUG generation algorithm (part 11).

4.1. FROM PROFILE TO BENCHMARK 85

The shadow of a node is needed for DUG profiling but not for DUG evaluating,

and so we only include it in a death. Recall that an arc from a node u to a node

v represents the application of an operation at v to the result of the operation

at u. The type Arc records the operation at v, the argument position of u, the

non-version arguments, and the identity of v.

data Arc = Arc ItargetNodeOp :: Operation, sourceNodeArgPosn :: Int,

intArgs :: [Intl, targetNodeld :: Nodeldl

The function generateDug is defined using an auxiliary function-a function that

performs the same task but maintains auxiliary arguments-called generateNodes,

taking the following auxiliary arguments: the current frontier, the current buffers,

the identity of the next node to be created, and the number of nodes left to create.

generateNodes :: INode} -+ Buffers -+ Nodeld -+ Int -+ [BirthOrDeath]

A node is identified by a value of type Nodeld. The node also stores: the node's
future, the node's past, and the node's shadow.

data Node = Node Inodeld :: Nodeld, future :: [Operation],

past :: [Arc], shadow :: Shadowl

Each buffer holds the arguments waiting to be involved in the application of a

particular operation. Therefore the type Buffers is a function taking an operation
f to the buffer for f. A buffer is a list of arguments, in the order they were

added.

type Buffers = Operation -+ [Node]

Initially, the frontier is empty, the buffers are empty, the next node is the first

node, and every node still has to be made.

generateDug noOfNodes = generateNodes J} (Af - []) initialNodeld noOfNodes

Generating a node. At the core of the algorithm lies a loop. Each iteration of

the loop is a call to generateNodes, and each call attempts to add a new node to

the current DUG. If we have no more nodes to make, we record the deaths of the

nodes left in the frontier and buffers. All other nodes had their deaths recorded

as they left the frontier without entering into a buffer.

86 CHAPTER 4. IMPLEMENTING DATATYPE USAGE GRAPHS

generateNodes frontier buffers newNodeld 0=

[Death (nodeld node) (past node) (shadow node)

node +- frontier U range buffers]

If the frontier is too small, we attempt to make a new node using a generator

chosen according to the generation weights of the profile.

generateNodes frontier buffers newNodeld nodesLeft

size frontier < frontierMin =
tryApplication (chooseOperationt genera tionWeigh ts)

frontier buffers newNodeld nodesLeft

The function tryApplication attempts to make a node from an operation and a
list of version arguments. It also carries through the arguments given to gener-

ateNodes.

tryApplication :: Operation -+ [Node] -+ INodel -+ Buffers -+ Nodeld -+ Int -+
[BirthOrDeath]

The function chooseOperation takes some operation weights and returns an oper-

ation pseudo-randomly, biased according to the weights. This requires a random

seed, but we omit that argument here, for the threading of seeds clutters the code.
Therefore, for the purposes of this presentation of code, consider the function as

using hidden state and hence being impure. All such functions are indicated

by at superscript. For details on the implementation of these functions, see
Section 4.3.1.

chooseOperationt :: f(Operation, Weight)) -+ Operation

If the frontier is too large, a node is removed from the frontier. The death of this

node is recorded, and we repeat the main loop with a call to generateNodes.

generateNodes frontier buffers newNodeld nodesLeft

size frontier > frontierMax =
let (node, frontier') = removeNodet frontier

in Death (nodeld node) (past node) (shadow node)

generateNodes frontier' buffers newNodeld nodesLeft

4.1. FROM PROFILE TO BENCHMARK 87

The function removeNodet removes a node at random from the frontier, and

returns this node and the new frontier.

removeNodet :: Node -+ (Node, fNode})

Otherwise, we choose a node v from the frontier as an argument for a new node.

generateNodes frontier buffers newNodeld nodesLeft
I otherwise =

let (v, frontier) = removeNodet frontier

in useArgument v frontier' buffers newNodeld nodesLeft

For each operation f, we keep a buffer of version nodes whose head operation is

f. We add v to the appropriate buffer.

useArgument :: Node -+ lNode} -* Buffers -+ Nodeld -+ Int -+ [BirthOrDeath]

useArgument v frontier buffers newNodeld nodesLeft =
let (f : rest) = future v

buffers' gIg == f=v: buffers

I otherwise = buffers

in checkBuffer operation frontier buffers' newNodeld nodesLeft

If the buffer of f contains the same number of nodes as the version arity of f, we

remove these nodes vs. We then try to make a new node from operation f and

version arguments vs.

checkBuffer :: Operation -+ lNode} -+ Buffers -+ Nodeld -+ Int -+
[BirthOrDeathl

checkBuffer f frontier buffers newNodeld nodesLeft
I length (buffers f) == numberOfVersionArguments f=

let vs = buffers f

buffers' gIg == f= [I

I otherwise = buffers

in tryApplication f vs frontier buffers' newNodeld nodesLeft
I otherwise = generateNodes frontier buffers newNodeld nodesLeft

88 CHAPTER 4. IMPLEMENTING DATATYPE USAGE GRAPHS

Trying an application. Recall that the function tryApplication attempts to

make a new node using an operation f and version arguments vs. We apply the

guard of f to the shadow of every node in vs to find the ranges of possible non-

version arguments. If these ranges are empty, we abandon this application using

the function cleanUpFailure. Otherwise, we make a new node using makeNewNode.

tryApplication f vs frontier buffers newNodeld nodesLeft

case applyGuard f (map shadow vs) of

Failure -+ cleanUpFailure vs frontier buffers newNodeld nodesLeft

IntSubsets iss -+ makeNewNode f vs iss frontier buffers newNodeld nodesLeft

The function applyGuard applies the guard of an operation to a list of shadows,

and returns the ranges of possible non-version arguments.

applyGuard :: Operation -+ [Shadow] -+ NonVersionArgs

If any of the ranges is empty, applyGuard returns Failure.

data NonVersionArgs = IntSubsets [IntSubset] I Failure

The type IntSubset is defined in Section 3.21.

Cleaning up after a failed application. If an application of the guard of

an operation f to the shadows of the nodes vs fails, we change the nodes vs to

reflect this using the function chronicleFail. We record the death of any node

without a future, return the rest to the frontier, and repeat the main loop by

calling generateNodes.

cleanUpFailure :: [Node] -+ {Node} -+ Buffers -+ Nodeld -+ Int -+ [BirthOrDeath]

cleanUpFailure vs frontier buffers newNodeld nodesLeft =
let (dead Nodes, I ive Nodes) = splitWith (null o future) (map chronicleFail vs)

obituary = [Death (nodeld node) (past node) (shadow node) I

node i- deadNodes]
in obituary +F

generateNodes (frontier U liveNodes) buffer newNodeld nodesLeft

The function chronicleFail removes the head operation of each node.

chronicleFail :: Node -+ Node

chronicleFail node = node {future = tail (future node))

4.1. FROM PROFILE TO BENCHMARK 89

Making a new node from a successful application. If an application of

the guard of an operation f to the shadows of the nodes vs succeeds with ranges

of possible non-version arguments iss, we choose non-version arguments is, one

from each set in iss using chooseint. We change vs to reflect this successful

application using chronicleSuccess, record the death of any node without a future,

and return the rest to the frontier, as in cleanUpFailure. The birth of the new

node is recorded. If the operation is not an observer, the new node is given a

future using the operation bear, and placed in the frontier (if its future is not

empty). Otherwise, it dies at birth (but we do not explicitly record the death).

We repeat the loop, obtaining a new node identity, and decreasing the number

of nodes left to generate by 1.

makeNewNode :: Operation -+ [Node] -+ [IntSubset] -+ INode} -+ Buffers -+
Nodeld -+ Int -+ [BirthOrDeathl

makeNewNode f vs iss frontier buffers newNodeld nodesLeft
let is = map (chooseintt poolSize) iss

newNode = if role f == Observer then [] else [bear f vs is]

vs' = zipWith (chronicleSuccess f is newNodeld) vs (versionArgs f)

(dead Nodes, liveNodes) = splitWith (null o future) (vs' +F newNode)

obituary = [Death (nodeld node) (past node) (shadow node) I

node +- deadNodes]

in Birth newNodeld f (map nodeld vs) is : obituary 4+-

generateNodes (frontier U liveNodes) buffer

(nextNodeld newNodeld) (nodesLeft-1)

The function chooseInt chooses an integer from an IntSubset using the given pool

size.

chooselntt :: Int -+ IntSubset -+ Int

To reflect the successful application of an operation f to a node v at argument

position pos with non-version arguments is to create a new node with identity

newNodeld, we remove the head operation, and record the application as an Arc

in the node's past.

chronicleSuccess :: Operation -+ [Int] -+ Nodeld -+ Node -4 Int -+ Node

90 CHAPTER 4. IMPLEMENTING DATATYPE USAGE GRAPHS

chronicleSuccess f is newNodeld v pos =

v [future = tail (future v), past = Arc f pos is newNodeld : past v}

The new node is given an identity tag, a future calculated by the function plan

using information contained in the shadow of the new node, an empty past, and

a shadow.

bear :: Operation -+ [Node] -+ [Int] -+ Node

bear f vs is newNodeld = let newShadow = applyShadow f (map shadow vs) is

in Node newNodeld (plan newShadow) [] newShadow

The function applyShadow applies the shadow of an operation to the shadows of

the version arguments and to the non-version arguments.

applyShadow :: Operation -+ [Shadow] -+ [Intl -+ Shadow

The function versionArgs returns the positions of the version arguments of a given

operation.

versionArgs :: Operation -+ [Int]

Planning the future of a new node. The function plan decides the future

of a new node v using information contained in the shadow of v.

plan :: Shadow -+ [Operation]

The phase of v is given by the shadow of v and the phase arguments.

phase = phaser shadow phaseArgument

The profile of this phase determines the node's future. See Section 3.4.3 for

further details.

phaser :: Shadow -+ PhaseArg -+ Phaseld

mutationObservationWeights :: Phaseld -+ i(Operation, Weight)}

mortality, pmf, pof :: Phaseld -+ Double

We first decide if we shall mutate v or not, using the mortality. If we are to

mutate v, recall from Section 3.3 that the average number of extra mutations of

mutated nodes is p,,, 1(1 -p,,,), where p,,, is the PMF. NVe use a Poisson distribution

with this mean to determine how many extra mutations we shall apply to v.

4.1. FROM PROFILE TO BENCHMARK 91

noOfMutns I chancet (mortality phase) =0
I otherwise =1+ poissont (pmf phase / (i - pmf phase))

The function chance makes a decision based on the given probability.

chancet :: Probability -+ Bool

The Poisson distribution was chosen because it is well-known, because it ranges

over non-negative integers, and because it is simple. Another similar distribution

would also be appropriate.

poissont :: Mean -+ Int

The profile gives the mutation and observation weights together, to relate fre-

quency of mutators to frequency of observers. We use the ratio of mutators to

observers to calculate the number of observations we shall apply to v. Section 3.3

details how we reach the approximation given in the code below.

mutnObtnWgts = mutationObservationWeights phase

mutnWgts = [(f, w) (f, w) +- mutnObtnWgts, role f Mutatorl

obtnWgts = [(f, w) (f, w) 4- mutnObtnWgts, role f Observer]

noOfObtns = sum [w I (f, w) +- obtnWgts] /

sum [w I (f, w) 4-- mutnWgts]

The number of ephemeral observations and the number of persistent observations

are calculated directly from the POF.

noOfEphmObtns = poissont (noOfObtns * (1 - pof phase))

noOfPersObtns = poissont (noOfObtns * pof phase)

We use the mutation-observation weights to determine which operations to use for

the planned mutations and observations. Note that these operations are not all

the same, despite the use of replicate, because we have hidden the pseudo-random

choice within the impurity of chooseOperation.

mutns = replicate noOfMutns (chooseOperationt mutnWgts)

ephmObtns = replicate noOfEphmObtns (chooseOperationt obtnWgts)

persObtns = replicate noOfPersObtns (chooseOperationl obtnWgts)

92 CHAPTER 4. IMPLEMENTING DATATYPE USAGE GRAPHS

The future of v is therefore the ephemeral obser-t-ations, followed by the first mu-

tation (ephemeral, if it exists), followed by a mixture of the remaining mutations

(persistent) and the persistent obser-*-ations, mixed using the function mixt.

plan shadow = let mixPersOps [] os = os

mixPersOps (m: ms) os =m: mixt ms Os

... definitions of phase through persObtns...
in ephmObtns +F mixPersOps ms postMutnObtns

Biased choices ensure that the function mixt combines the lists evenly (see Sec-

tion 4.3.1).

mixt :: [a] -4 [a] -+ [a]

4.1.2 DUG Evaluation

The process of DUG evaluation is quite straightforward. Unlike DUG generation,

we encounter no theoretical problems. In practice however, efficiency is a problem.

The DUG evaluator sometimes takes more time over input-output and maintaining

a lookup table than it does over performing the ADT operations. Times taken for

DUG evaluation therefore vary little between ADT implementations, preventing us

from accurately measuring their relative efficiencies. In such cases, we can solve

this problem by using aC program to perform the input-output and lookup table

maintenance. This requires an interface to C that allows C to call Haskell. We

use an extension to the Green Card package [43]. See Section 4.3.2 for further

technical details.

Definition 3.9 defines how a DUG should be evaluated lazily. When a non-

version node is born, its result must be demanded immediately. As the result of an

observer is either of type Int or of type Boot, we demand this value by converting
it to an integer, and adding it to the checksum. This checksum is the result of the

DUG evaluation. Different implementations of the same observat ionally- equivalent

ADT evaluating the same DUG should return the same checksum. This may be

used to check the correctness of one implementation against the correctness of

another. An ADT that is not observationally equivalent allows many values for

a single evaluation of an observation. For example, a bag ADT may support an

operation that returns an unspecified element in the bag.

4.1. FROM PROFILE TO BENCHMARK 93

while not at the end of the DUG file do

read the next birth or death

if we read a birth then

apply an operation to integers and nodes in the frontier, as given by the birth

if the operation is an observer then

convert the result to an integer and add it to the checksum

else

add the resulting node to the frontier

fi

else

we read a death, so remove the dead node from the frontier

fi

od

report the checksum

Figure 4.5: Overview of the DUG evaluation algorithm.

An overview of the algorithm is given in Figure 4.5. Fuller details follow,

using the types defined in Section 4.1.1.

The main function takes a list of births and deaths, and returns the checksum

made from evaluating the observations.

evaluateDug :: [BirthOrDeath] -+ Int

We shall read one birth or death at a time. As with DUG generation, we shall

maintain a frontier, containing the nodes awaiting further applications. To define

evaluateDug, we use an auxiliary function evaluateNodes, taking the current fron-

tier and the current checksurn as auxiliary arguments. Each node is identified by

a Nodeld and contains just a version of type T Int, where T is the type constructor

exported by the ADT implementation used to evaluate the DUG.

evaluateNodes :: (Nodeld -+ T Int) -+ Int -+ [BirthOrDeath] -+ Int

Initially, the frontier is empty, and the checksurn is 0.

94 CHAPTER 4. IMPLEMENTING DATAn`PE USAGE GRAPHS

evaluateDug dug = evaluateNodes (, \n - undefined) 0 dug

If there are no more births or deaths to read, we return the checksurn.

evaluateNodes frontier checksum [] = checksurn

A birth of an observer node creates a value either of type Int or of type Bool.

We convert this value to an integer using resuItTolnt and add it to the checksuni.

As we must demand this value immediately, we must explicitly demand its value

using seq, which evaluates its first argument before returning its second argument.

evaluateNodes frontier checksurn (Birth nodeld f vs is : dug)

I role f == Observer =
let result = resultToInt (apply0peration f (map frontier vs) is)

in seq result (evaluateNodes frontier (checksum + result) dug)

If a version node is born, we add the node to the frontier.

evaluateNodes frontier checksurn (Birth nodeld f vs is : dug)

I otherwise =

let frontier' n
In == nodeld = resultToNode (apply0peration f (map frontier vs) is)

I otherwise = frontier n

in evaluateNodes frontier' checksum dug

A death of a version node removes the node from the frontier. Recall that we do

not record the death of a non-version node.

evaluateNodes frontier checksum (Death nodeld arcs shadow : dug) =

let frontier' nIn == nodeld = undefined
I otherwise = frontier n

in evaluateNodes frontier' checksurn dug

The following functions allow the result of an application of any operation to be

manipulated, whether of type T Int, Int, or Bool.

apply0peration :: Operation -+ [T Intl -+ [Intl -+ Result

4.2. FROM APPLICATION TO PROFILE

data Result = Node (T Int) I Int Int I Bool Bool

resultToint :: Result -+ Int

resuItToint (Int i) =i

resultTolnt (Bool b) = fromEnum b

resultToNode :: Result -+ T Int

resultToNode (Node v) =v

4.2 17rom Application to Profile

We create a profile of a DUG from a run of an application as follows:

95

(1) Extract the DUG describing how the run of the application uses an imple-

mentation of the ADT.

(2) Calculate the profile of thiS DUG.

Section 4.2.1 describes (1), and Section 4.2.2 describes (2).

4.2.1 DUG Extraction

The task of extracting a DUG from the run of an application is quite tricky in a
lazy language like Haskell. One approach is to modify the compiler. However,

as this solution depends on the details of a specific compiler, it would not be

portable. An alternative approach is to transform the original program into one

that gives the same result, but also produces a DUG. We adopt this method.

Problems Of DUG Extraction

Here are two key goals we must achieve by transforming the original program,

the problems they pose, and the solutions we choose:

Lazy Evaluation. Whilst recording the operations applied, we must be care-
ful not to evaluate anything that was not evaluated by the original program,

and to evaluate everything in the same order as the original program. Oth-

erwise we may get a different DUG, or the resulting program may fail to

96 CHAPTER 4. IMPLEMENTING D. ATATYPE USAGE GRAPHS

terminate. We only examine something we know has been evaluated to at
least the same degree that we will force.

It is possible that some arguments may not be evaluated at all. In such

circumstances, after the program has finished, we record any such uneval-

uated arguments explicitly in the DUG. The DUG e%miuation and profiling

algorithms must accommodate these special nodes. See Section 4.3.2 and
Section 4.3.4.

Recording the DUG. We must record the DUG somewhere. However, side-

effects are only allowed within the 10 monad in Haskell. It would be highly

undesirable to transform every function to work within the 10 monad. Nei-

ther do we wish to pass information about the DUG as a result from every
function that calls an ADT operation, all the way up to the main function.

This would involve changing a lot of code. We avoid this problem by cheat-
ing. We interface to a side-effecting C function that records the DUG in a
file.

We cannot however, record arguments of type a, as we do not know in

general how to store these. The user could supply a function to convert

any value of type a to, say an integer. However, extracting this value could

evaluate the argument more than previously. Therefore we decide not to

record such arguments.

The DUG Extraction Algorithm

We modify the application and ADT implementation to perform the same task,

but produce a DUG as a side-effect. We do this by wrapping the main function and

every ADT operation. The wrapped main function performs some initialization,

calls the old main function, and then tidies up the results. Each wrapped ADT

operation works with wrapped versions. A version is wrapped with an identity

tag. A wrapped operation uses the identity tags to record which nodes were used

in the creation of the new node using which operation. A wrapped operation also

calls the old operation, and wraps the result into a node with a new identity tag.

For example, the list ADT of Figure 4.2 provides the type constructor List.

The wrapped version datatype for this ADT is given by:

4.2. FROM APPLICATION TO PROFILE

data WrappedList a= Node Int (List a)

The wrapped implementation of cons is given by:

wrappedCons :: a -+ WrappedList a -+ WrappedList a

wrappedCons iv= let nodeld = new-node Cons

in seq nodeld (Node nodeld (cons i (arc v nodeld 1)))

97

where new-node is aC function that returns a new identity tag for a node, after

recording which operation labels this new node. The function arc unwraps and

returns the version argument, after recording the arc from this version node to

the newly created node:

arc :: WrappedList a -+ Nodeld -+ Int -+ List a

arc (Node from v) to position = seq from (seq (new-arc from to position) v)

where new-arc is aC function that returns only unit, after recording the arc,
including argument node identity, result node identity, and the position of the

argument node.
The function wrappedCons is only evaluated when cons would have been eval-

uated in the original program. It forces the evaluation of the identity of the new

node, and then returns the wrapped result.
However, we do not record any of the arguments yet, as we do not know that

they will be evaluated. We wrap the version argument with a call to arc. When

the version argument would have been evaluated by the original program, we

can examine the identity of the argument. The function arc does this, and then

records the arc.
We do not wrap the argument to cons of type a for reasons given in the

problems Of DUG extraction above, but we can wrap arguments of type Int. The

wrapped implementation of lookup is given by:

wrappedLookup :: WrappedList a -+ Int -ý a

wrappedLookup vi= let nodeld = new-node Lookup

in seq nodeld (lookup (arc v nodeld 0) (intArg i nodeld 1))

The function intArg records the integer argument in the label of this node at the

given argument position, and returns the integer argument:

98 CHAPTER 4. IMPLEMENTING DATATYPE USAGE GRAPHS

intArg :: Int -ý Nodeld Int -4 Int

intArg int node position seq int (seq (int-arg int node position) int)

where int-arg is aC function that returns only unit, after recording the relevant

details.

A general definition of a wrapped ADT is given in Figure 4.6. Further details

are somewhat technical. For example, interfacing to the C functions requires use

of a package called Green Card [43]. We leave these details to Section 4.3.3.

4.2.2 DUG Profiling

As with DUG evaluation, we read one birth or death at a time. The algorithm is

quite straightforward.

The type of a profile is consistent with Section 4.1.1, except that there 'was

an implicit profile in Section 4.1.1, whereas here it is an explicit argument. For

example, the code mortality phase in Section 4.1.1 becomes mortality (phases profile

phase) in this section, and similarly with the other profile properties.

data Profile = Profile IgenerationWeights :: {(Opera tion. Weight)),

phases :: (Phaseld -+ Phase)}

data Phase = Phase imutationObservationWeights :: i(Operation. Weight)},

mortality :: Double, pmf :: Double, pof :: Double)

To calculate the generation weights and the mutation-observation weights, we
keep a note of the number of nodes made by each operation (qualified by phase

in the case of mutations and observations). To calculate the mortality, we need

to keep both the number of nodes not mutated, and the total number of nodes.
From this we can calculate the proportion of nodes not mutated: that is, the

mortality. Similarly, we need to keep a numerator and denominator for the PMF

and the POF. All this information is kept in a value of type ProfileData.

data ProfileData =
ProfileData IgWgts :: {(Operation, Weight)),

phaseDatas :: (Phaseld -+ PhaseData))

data PhaseData =

4.2. FROM APPLICATION TO PROFILE

data T' a= Node Int (T a)

fi'W :: WT(ti, l) WT(ti, ni)

fiw a1... ani-1

let nodeld new-node wN(fi)

in seq nodeld wR(fi wA(al) ... wA(ani-1))

where

WT(t)
Twa, if t=Ta

t, otherwise

WOO gives the data constructor that names fj

WR(e)
Node nodeld e, if e has type Ta

e, otherwise

arc aj nodeld j, if aj has type T' a

WA (aj) intArg aj nodeld j, if aj has type Int

aj, otherwise

99

Figure 4.6: Definition of a wrapped ADT. For an ADT exporting type constructor
T and operations fi :: ti, l ti, no the wrapped ADT exports type construc-

tor T' and operations fi'.

100 CHAPTER 4. IMPLEMENTING DATATYPE USAGE GRAPHS

PhaseData jmoWgts :: i(Operation, Weight)), unmutated :: Int, total :: Int,

persMus :: Int, mus :: Int, persObs :: Int, obs :: Int}

InitiallY, the generation -sveights and mutation-observation weights are all zero,

as are the remaining fields.

profile :: [BirthOrDeath] -+ Profile

profile = let emptyProfileData =
ProfileData J(f, O) If +- operations, role f == Generator}

(Ap - emptyPhaseData)

emptyPhaseData =
PhaseData f(f, O) If +- operations, role f /= Generator}

000000

in calculateProfile o foldl gatherProfile em ptyProfile Data

The function gatherProfile is folded over the list of births and deaths to calculate
the final profile data.

gatherProfile :: ProfileData -+ BirthOrDeath --+ ProfileData

The function calculateProfile converts the final profile data into a profile.

calculateProfile :: ProfileData -+ Profile

calculateProfile (ProfileData gWgts phaseDatas) =
Profile gWgts (calculatePhase o phaseDatas)

calculatePhase :: PhaseData -+ Phase

calculatePhase (PhaseData moWgts unmutated total persMus mus persObs obs) =
Phase moWgts (fromintegral unmutated/fromIntegral total)

(fromIntegral persMus/fromlntegral mus)
(fromIntegral persObs/from Integral obs)

Births of generators are used to calculate the generation weights. The other
births are ignored, as the deaths are sufficient to calculate the rest of the profile.

gatherProfile (ProfileData gWgts phaseDatas) (Birth n op vs is)

I role op == Generator = ProfileData (addWgt gWgts op) phaseDatas
I otherwise = ProfileData gWgts phaseDatas

4.2. FROM APPLICATION TO PROFILE

The function addWgt increases the weight of an operation by one.

addWgt :: I(Operation, Weight)} -+ Operation -+ I(Operation, Weight)}

addWgt wgts op = jif f == op then (f, w+l) else (f, w) I (f, w) +-- wgts}

The death of a node v affects the profile of the phase to which v is assigned.

gatherProfile (ProfileData gWgts phaseDatas) (Death n past shadow) =
let phase = phaser shadow phaseArgument

oldPhaseData = phaseDatas phase

newPhaseDatas pIp == phase = gatherPhase oldPhaseData past
I otherwise = phaseDatas p

in ProfileData gWgts newPhaseDatas

101

The function gatherPhase returns a new phase data using the past of the dead

node v.

gatherPhase :: PhaseData -* [Arc] -+ PhaseData

gatherPhase (PhaseData moWgts unmutated total persMus mus persObs obs)

past =

let ops = map targetNodeOp past

ms = length [op I op +- ops, role op == Mutator]

os = length [op I op +- ops, role op == Observer]

postMutnObs = length [op I op +- dropWhile ((/= Mutator) o role) ops,

role op == Observer]

newMoWgts = foldl addWgt moWgts ops

newUnmutated = if ms == 0 then unmutated +1 else unmutated

newTotal = total +1

newPersMus = persMus + max (ms-1) 0

newMus = mus + ms

newPersObs = persObs + postMutnObs

newObs = obs + os

in PhaseData newMoWgts newUnmutated newTotal newPersMus newMus

newPersObs newObs

The calculation of the phase is quite straightforward: ops is the list of operations

applied to v, ms is the number of mutations of v, os is the number of observations

102 CHAPTER 4. IMPLEMENTING DATATYPE USAGE GRAPHS

of v, and postMutnObs is the number of observations occurring after the first mu-

tation (ie. the persistent observations). The new mutation-observation weights

ratio is calculated by adding every operation in ops. If the number of mutations

is zero, then v is not mutated. The number of persistent mutations is one less

than the number of mutations, if any. The number of persistent observations has

already been calculated.

4.3 Technical Details

The algorithms presented in this chapter are implemented in Haskell to create

the tool of Chapter 6. However, for both efficiency and practical reasons, some

refinements of this code were necessary. That is, some of the code is too slow, and

some is not primitive to Haskell (eg. sets). We shall now detail the key points of

these refinements.

4.3.1 DUG Generation

Frontier

The frontier is presented as a set in Section 4.1.1, but sets are not primitive to

Haskell. As we also need to remove a node pseudo-randomly (using removeNode),

we need a set ADT with random retrieval. As we will never try to add the same

node twice to the frontier, a bag ADT with random retrieval will suffice. A bag

with random retrieval does not require any examination of the elements, and is

therefore easier to implement than a set with random retrieval.

The implementation of this ADT is based on the random-access lists of Okasaki

[33]. An element is added using cons. An element is randomly retrieved by

randomly choosing a valid index into the list. The element at this index is then

removed by updating it with the head of the list, and then taking the tail of the

result.

Buffers

Section 4.1.1 represents the buffers as a function from operations to lists of nodes.
In practice it is easier to implement the buffers as a list of lists of nodes. As the

4.3. TECHNICAL DETAILS 103

number of operations is quite small, this is efficient.

Argument Position in Death

Section 4.1.1 uses a function versionArgs to allocate the correct argument position

to the version arguments of an application, recorded in the past of each argument,

and subsequently in their deaths. As we restrict every node argument to version

nodes, we actually just record the position of the version argument with respect

to other version arguments. So, for example, for the application f io vo il i2 VII

we record the argument position of vi as i. This allows us to define versionArgs
by:

versionArgs :: Operation -+ [Int]

versionArgs f= [l..]

and let the application of zipWith truncate this to the appropriate length.

Choice Functions

As indicated in Section 4.1.1, the pseudo-random functions must each take a seed

as an additional argument, which was left out of the presentation of the algorithm
for the sake of clarity. These seeds are threaded through every function calling a

pseudo-random function. The pseudo-random number generator was taken from

[9]: the "minimal standard random number generator", taken in turn from [421.

On recommendations of [41], the multiplier is changed as follows:

a= 48271, q = 44488, r = 3399

This random-number generator requires a Haskell implementation supporting
integers in the range [-2 31

.. 2 31 - 11. All of the functions implementing some

choice are based on a function rndRng that returns an integer between 0 and a

given ceiling, inclusive of 0 and exclusive of the ceiling.

rndRng :: Int -+ Int -ý Int

rndRng ceiling seed = seed 'mod' ceiling

A seed is simply an integer ranging over [1.. 2" - 2]. An integer between m and

n inclusive can be chosen by m+ rndRng (n-m+l).

104 CHAPTER 4. IMPLEMENTING DATATYPE USAGE GRAPHS

The function chooselnt may choose an integer from: All, which resolves to

choosing an integer between minBound and maxBound; a Pool, which resolves to

choosing an integer between 1 and the pool size; a range m:..: n, which resolves to

choosing an integer between m and n; or a set, which is implemented using a set

ADT with random-retrieval, implemented simply as an ordered list.

The function mix is implemented by choosing one element from each list, with

probability biased according to the length of each list, ensuring an even mixing-

to mix a list xs of m elements with a list ys of n elements, elements are taken

with m/(m + n) probability from xs, and with n/(m + n) probability from ys.
The functions poisson, chance, and chooseOperation use a discrete random

variable with a particular distribution. The functions chance and poisson are

combined in the choice of noOfMutns inside the definition of plan to create one

random variable. The function chooseOperation is a random variable ranging over

the operations, biased according to the given weights.
Such a random variable is implemented by creating a cumulative distribution,

represented as a list of integers ranging between 0 and some large fixed upper
limit scale. An integer n is chosen between 0 and scale, and the index i of the

first integer in the list greater than n is the value of the discrete random variable.
If the random variable has a range of values of some other type than integer, for

example operation, then an enumeration of the range will allow i to index into

this enumeration.
The choice of scale must reflect three points:

The larger the value of scale, the more accurate the random variables are.
The smallest change in probability that a scale of n can capture is I/n.

The larger the value of scale, the more chance of bias in values chosen
between 0 and scale using rndRng scale seed. Recall that rndRng is imple-

mented using mod. If a scale of 15 x log (approximately 2/3 of the largest

possible seed) is used, we would expect more low values than usual, be-

cause values from 0 to approximately 7x 10" can each be produced by two

different seeds whereas values above this can each only be produced by one

seed. In practice we observe this bias as producing values with an average

of around 0.4 times the largest value. However, with a scale of 230 (half the

4.3. TECHNICAL DETAILS 105

largest possible seed), we should have no bias, and in practice this produces

values with an average of 0.5 times the largest value, confirming a lack of
bias.

Ideally, the best value of scale would be the ceiling of the range of seeds,

where rndRng scale seed becomes id. Unfortunately, we experience rounding

problems with Int using this value of scale (as it is the largest possible value

of type Int).

Therefore, a scale of 2 30 was used.

Weights

A collection of weights is given in Section 4.1.1 as a set of pairs (Operation, Weight),

but in practice is implemented as a list [Weight] with the operation given by the

index, when operations are ordered first according to role and then alphabetically.

Format Of DUG Files

Section 4.1.1 represents a DUG by a list of births and deaths. Within the Haskell

world, this is indeed the representation of a DUG. However, if we wish to store a

DUG in a file, without the use of a special library, we need to store the DUG as

a sequence of characters. We also compress the DUG representation to minimise

the input-output overhead Of DUG evaluation.
A birth is represented as a sequence of integers: the operation identity tag, the

identity tags of the nodes used as version arguments, and the integer arguments.
The births are ordered in the file according to identity tag. Therefore, the identity

tag of a new born node is given by its position in the file. A death is also

represented as a sequence of integers: a zero, and the identity tag of the dead

node. Operation identity tags start at 1 to distinguish a birth from a death. The

number of integers making up a birth or death is determined by the first integer:

for a birth it is the number of arguments of the operation plus one, and for a
death it is two. The other fields of a death given in Section 4.1.1 (outgoing arcs

and shadow) are not required for DUG evaluation, and can be reconstructed from

the births for DUG profiling.

106 CHAPTER 4. IMPLEMENTING DATATYPE USAGE GRAPHS

An integer i is stored as a sequence of characters: 3, X. -I, X, -2, ... ' xo; where
0<s<4, and i= E"_1 x,, 28'; that is, the non-zero 8-bit bytes representing i n=O

with most-significant byte first, preceded by the number of these bytes. Note that

0 is represented simply by 0. If a character is larger than 8 bits, this representation

could be improved.

As the identity tags of the nodes start from 1, we use 0 to represent an

undefined version argument, whose creation is possible through DUG extraction.

4.3.2 DUG Evaluation

Two versions Of DUG evaluation were implemented: one wholly in Haskell, and

one partly in C and partly in Haskell. The former suffers from a very large

overhead of input-output and bookkeeping, leaving the work done by tile ADT

operations swamped, sometimes yielding unsatisfactory results. The latter cuts
down the overhead to a consistently satisfactory level by implementing everything
bar the ADT operations in C. This requires a version of the Green Card foreign

language interface [43] that allows C to call Haskell. As such an interface is only

currently available for one compiler (York nllc13 [53]), the pure Haskell version

was kept. See Section 6.1.2 for an estimate of the overhead of DUG evaluation
for each version.

Typically, a DUG evaluator made with Green Card, evaluating a reasonably
large DUG file (around 10OKb), is around 20 times faster than the same DUG

evaluator made without Green Card evaluating the same DUG file.

Without Green Card

The Haskell version requires two changes from the algorithm presented in Sec-

tion 4.1.2.

Frontier. Section 4.1.2 represents the frontier as a function. We replace this

with a finite map ADT, implemented by a data structure very similar to the

Elevator implementation of random-access lists-see Section 2.2.7.

Inlining. The operation apply0peration is fused with each operation of the ADT

implementation to remove a layer of interpretation. This creates one right-hand

4.3. TECHNICAL DETAILS 107

side of evaluateNodes per operation. For example, for the operation lookup of

Figure 4.2, the following code is used:

evaluateNodes frontier checksum (Birth nodeld Lookup [v] [i] : dug)

let result = fromEnum (lookup (frontier v) i)

in seq result (evaluateNodes frontier (checksum + result) dug)

Note that resuItTolnt and resuItToNode are now redundant, as is the test for the

operation being an observer. Note also that the arguments for lookup are pattern

matched out of the lists stored in a birth. The format of a DUG file is more like

a list of integers (see Section 4.3.1) and so the pattern matching is more efficient

than as presented here (the pattern matching is closer to (4: v: i: dug)).

Strictness. The strictness of different implementations of the same ADT vary in

general. This could mean that some operations are forced by one implementation

but not by another. In order to ensure that the DuG evaluator for each ADT

implementation performs the same amount of bookkeeping, regardless of which

operations are forced, the bookkeeping is made strict.
This means demanding the lookup of a version argument in the frontier, with-

out demanding the argument value, and demanding the value of a non-version

argument. This is achieved by wrapping up the version arguments in the frontier:

data Node = Node (T Int)

and by adding unwrapping of nodes and calls to seq in the definition of evalu-

ateNodes. For example, the definition above becomes:

evaluateNodes frontier checksum (Birth nodeld Lookup [vl [i] : dug)

let V= frontier v

Node v" =V
result = fromEnum (lookup v" i)

in seq V (seq i (seq result (evaluateNodes frontier (checksum + result) dug)))

Undefined Arguments. DUG extraction makes undefined arguments a possi-
bility. DUG evaluation gives the value undefined to such arguments.

108 CHAPTER 4. IMPLEMENTING DATATITE USAGE GRAPHS

With Green Card

The DUG evaluator built using Green Card is a small Haskell program containing

information specific to the ADT implementation used. This Haskell program calls

a larger, more general C library. Essentially the same algorithm is used in C

to read in and evaluate the DUG operations, except that the C program must

somehow call Haskell functions to perform the operations. Before the Haskell

program calls the C program, it registers each Haskell ADT operation as a stable

pointer with the C program. During evaluation, the C program uses these Haskell

references to call the ADT operations. The frontier is implemented as a hash table,

and input-output is buffered. Note that as the bookkeeping is now in C, it is strict
(see the Strictness heading above).

4.3.3 DUG Extraction

Whilst the DUG extracting version of an application is running, a hash table

of every node is maintained. The function new-node adds a node to the hash

table, and the functions new-arc and int-arg update the relevant arguments of the

target node. After the application has finished, we traverse the hash table for

every observer node in the order they were created. For each observer node, we

traverse the graph of its predecessors until we reach a previously written node.
On the way back to the observer node, we write the birth of every node to the

DUG file, in depth-first order to ensure all argument nodes are written before

their operation nodes.

By maintaining a count of how many arcs exist from each node to currently

unwritten nodes, when a node is no longer an argument of an unwritten node, we

write the death of this node, as this node has left the implicit frontier. This check

is made every time a node v is reached by a graph traversal from an observer

node, whether v is previously written or not.

The order in which the nodes are written is maintained, as this defines the

node identity tags used by anything reading the DUG file. These node identity

tags must be used when writing version argument identity tags. The order in

which the nodes were actually evaluated is lost (except for preserving the order of

evaluation of observers). This is a direct result of the restriction of Definition 3.6

4.3. TECHNICAL DETAILS 109

constraining the order of evaluation. The actual order of evaluation could be

reported, as it may be of interest, but this is not currently implemented.

When a node is added to the hash table, every argument is recorded as unde-
fined. If a version argument is still undefined after the application has finished,

we write the argument to the DUG file as being undefined. Currently, we make

no provision for recording undefined non-version arguments: to do so would be

costly, without much benefit; undefined non-version arguments are given the value

0. Note that this includes the non-version arguments of type a, which we cannot

record for reasons given in Section 4.2.1.

4.3.4 DUG Profiling

The only difference between Section 4.2.2 and the actual implementation Of DUG

profiling is the format of the profile. As already indicated in Section 4.3.1, a

collection of weights is implemented as a list. Phases are given by a function of

type Phaseld -+ Phase in Section 4.3.1, whereas in practice they are given by a

list, as Phaseld is an integer, letting the index of the Phase give the Phaseld.

DUG extraction makes unevaluated arguments a possibility. The DUG profil-

ing algorithm must assign a shadow to an unevaluated version argument, in order

to record the effect of any operations on the argument in the correct phase. The

shadow data structure is therefore extended to supply the shadow of any uneval-

uated version argument. Nothing more is known about the version argument,
for example what other nodes operate on it, yet its effect on the profile must be

defined somehow. We define its effect separately as follows. The mutations and

observations are counted (in weights, and in the denominators of PMF and POF),

because these reflect the evaluation of the operation applied to the unevaluated

arguments. None of the mutations and observations are considered persistent, on

the grounds that persistence reflects reuse of a data structure, whereas an un-

evaluated argument is not even used once. The version argument is not counted

as a node, on the grounds that it was never evaluated, and therefore in a sense,
it never existed.

110 CHAPTER 4. IMPLEMENTING DATATYPE USAGE GRAPHS

4.4 Testing

How accurate are the implementations of the DUG algorithms? How efficient are

they? From the point of view of implementation, we address these questions for

each algorithm individually in this section. More general questions concerning

the accuracy or usefulness of the benchmarking process as a whole are tackled in

Chapter 7.

As the performance of the algorithms can N-ary between ADTS, we conduct

tests across a few very different ADTS:

" Queue

" Random-Access Sequence

" Set with Random Retrieval

The queue ADT is the simplest of the three. The random-access sequence ADT

adds the complexity of operations taking integers as arguments. The Set ADT

includes operations taking more than one version argument, and quite a complex

shadow data structure (based on a set itself). We use the York nhc13 compiler

[53] (release vO. 9.4), running executables in a heap of 801b, on an SGI Indy

running IRIX 5.3.

4.4.1 DUG Generation

Accuracy

The accuracy Of DUG generation is important, though the benchmarking tech-

niques introduced in Section 5.4 reduce this importance. To measure the accu-

racy, we compare the target profile with the actual profile of the DUG generated.

We do this for 100 DUGS from each of the three ADTS listed above. Table 4.1 lists

the mean and maximum difference for each profile attribute. Some inaccuracy is

due to the probabilistic means of generating a DUG. For example, if we want half

of the 100 mutations to belong to an operation f, we choose f with probability

0.5 for each mutation. We will not always get 50 mutations belonging to f, but

this will be the mean.

4.4. TESTING ill

Profile Mean Maximum

Attribute Difference (%) Difference

Weight 1.4 31.3

Mortality 4.4 70.4

PMF 0.3 7.5

POF 2.4 35.9

Table 4.1: The mean and maximum differences between target and actual profiles
Of 100 DUGS for each of three ADTS. Each DUG has 1000 nodes. We group the

generation and mutation-observation weights together. Each difference is given

as a percentage of the possible range. By normalising the weights ratios, the

range of each weight is [OA], as it is for the other three profile attributes.

A larger degree of inaccuracy results from the rejection of planned applications

of operations by the shadow data structure. To take an extreme example, if we

want a DUG for lists with no cons operations, then we will not get any tail

operations either, regardless of the target profile. To take another example, the

largest difference shown in Table 4.1-70.4% difference in mortality-is for the

random-access sequence ADT. The target PMF for this DUG is 0, and so all nodes

will have at most a single mutation planned in their future. The target mutation

weights ratio is

cons : tail : update =1: 1: 20

and so 91% of mutations will be applications of update. A list can only be

generated by empty. However, update cannot be applied to empty. Therefore,

91% of the lists generated by empty will not be mutated, and therefore contribute

to the mortality. This increases the actual mortality to a value much larger than

the target mortality.
Mortality is also increased by the death of all nodes in the frontier when the

DUG generation algorithm finishes. This will be high for large PMF values.

Efficiency

The efficiency Of DUG generation is not crucial to the benchmarking process. By

examining the heap profile Of DUG generation, we find that evaluating the future

112 CHAPTER 4. IMPLEMENTING DATATYPE USAGE GRAPHS

450

400
+

4--o

350

Z 300
.0

250

200

150

100

50

1+ +

0
0 100 200 300 400 500 600 700 800 900 1000

Max Frontier (number of versions)

Figure 4.7: A plot of maximum live heap against maximum frontier for DUG

generation on 50 randomly chosen profiles for each of three ADTS. Each DUG has

1000 nodes.

of a new node at the time of creation considerably improves space usage. The

heap size is linear in the size of the frontier. To demonstrate this, Figure 4.7 plots

the maximum frontier size against the maximum live heap size for the generation

of several DUGs across three ADTS listed above. The plot confirms a general trend

of linearity, though there are some surprisingly large heaps, especially for large

frontiers. On closer examination we find that every point lying way above the

interpolated line comes from the generation of a DUG with a target MIF of 0.95.

The target PMF of every DUG was chosen from [0,0.05,..., 0.951. The DUGS With

target PMF of 0.9 have points that lie a little above the interpolated line, but still

way below those with target PMF Of 0.95.

We can explain this by considering the amount of space allocated to a node in

the frontier. The future of the node accounts for the majority of this space, that

is, the list of future operations to apply to the node. This list contains mutators

and observers. The number of mutators has mean PNIF/(l - PMF). For a PMF of

4.4. TESTING 113

0.9, this is 9; for a PMF of 0.95 however, this is 19, more than twice as many. So,

in moving from a PMF of 0.9 to a PMF of 0.95, we double the amount of space

allocated to each node in the frontier, and hence double the maximum live heap.

This accounts for the sudden leap from points with a PMF of 0.9 to those with a

PMF of 0.95.

4.4.2 DUG Evaluation

Accuracy

The only form of inaccuracy in DUG evaluation is that strictness issues may lead

to only part of the DUG actually being evaluated-see Section 7.3.3.

Efficiency

The efficiency Of DUG evaluation is very important in obtaining good bench-

marking results. If the overhead Of DUG evaluation is too great, the accuracy of

estimating the ratio of work done by different ADT implementations is reduced.
See Section 6.1.2 for a detailed discussion of this issue.

4.4.3 DUG Extraction

Accuracy

The DUG extraction algorithm accurately captures the DUG of an application,

except for evaluation order, arguments of type a and the sharing of operations
taking no arguments. The actual evaluation order has to be changed to suit the

restriction given in the definition of a DUG, namely that an argument must be

ordered before its operation. However, this change does preserve the order of

evaluation of observer nodes, and only affects the POF attribute of the profile.
Arguments of type a cannot be extracted for reasons given in Section 4.2.1.

Every result of an operation that takes no arguments and whose type does

not have a class context will be shared. The application will only evaluate such

an operation once, and will share the result. If however, the operation takes no

arguments but has a type with a class context, like the empty of the heap ADT

114 CHAPTER 4. IMPLEMENTING DATATYPE USAGE GRAPHS

300

250

200

150
Iti ce c)

100

50

A

++

++

0 50 100 150 200 250
Dug Size (1000s of nodes)

Figure 4.8: Overhead incurred by modifying an application for DUG extraction,

plotted against size of the extracted DUG-12 different applications running on
4 different data sets each, over 3 different ADIS, making 48 points in all.

(see Table 2.3), then the application may re-e,. -aluate the operation, as it restricts

the operation to a particular instance of the class.

Efficiency

Modifying an application to extract a DUG as it runs introduces an overhead. To

estimate this overhead, Nve time several applications both with and without the

extraction modification. Figure 4.8 shows the overhead incurred by modifying

an application for extraction. Over the 48 DUGS extracted, the average added

overhead is 75%. The percentage overhead varies, significantly according to how

much work the application does that is not related to the ADT-MoSt Of the

applications we examine use the ADT intensively, so the figure should be less for

other applications.

4.5. SUMMARY

4.4.4 DUG Profiling

Accuracy

115

There is no inaccuracy in DUG profiling, beyond the inaccuracy involved with

using floating point numbers.

Efficiency

As with DUG generation, the efficiency Of DUG profiling is not crucial to the

benchmarking process. As the profile is only demanded at the end of analysing

the DUG, care must again be taken to evaluate the information gathered as it

arrives. A lazier approach would accumulate many suspended computations in

the heap. The heap size is linear in the size of the frontier, as it is with DUG

generation. To demonstrate this, Figure 4.9 plots the maximum frontier size

against the maximum live heap size for the profiling of several DUGs across three

ADTS listed above. As with DUG generation, the plot confirms a general trend of
linearity.

4.5 Summary

We have defined algorithms for creating a benchmark from a profile, and calcu-
lating a profile of an application. The former comprises DUG generation and DUG

evaluation, and the latter comprises DUG extraction and DUG profiling. These

algorithms are bundled together to form the core of the benchmarking tool pre-

sented in Chapter 6.

As well as presenting the algorithms in an abstract manner, we have also

tackled the issues surrounding a concrete implementation in Haskell. We have also
tested the algorithms for accuracy and efficiency. We shall test the effectiveness

of the benchmarking process as a whole in Chapter 7.

116

400

350

300

1-1 . ID
250

ýI: 200

150

100

50

A

CHAPTER 4. IMPLEMENTING DATAnPE USAGE GRAPHS

++

++

++

+
ji,

++

0 100 200 300 400 500 600 700 800 900 1000
Max Fronticr (numbcr of vcrsions)

Figure 4.9: A plot of maximum live heap against maximum frontier for DUG

profiling of 50 randomly generated DUGS for each of three ADTS. Each DUG has

1000 nodes.

Chapter 5

Exploring Datatype Usage Space

Chapter 1 motivated the need for benchmarking results qualified by the pattern

of datatype usage. We proposed to provide these results by constructing a con-

venient means of obtaining benchmarks with known patterns of use. Chapter 3

showed (a) how to create a benchmark from a description of use, and (b) how to

create a description of use from an application. Chapter 4 gave algorithms for

(a) and (b). But how can we use (a) and (b) to generate and present benchmark-

ing results qualified by use? The results must not take too long to gather and

must be simple enough to be understood by the user. This chapter explores this

problem by looking at several possible approaches to a solution.

5.1 Exhaustive Exploration

The most naive solution to providing benchmarking results is to create a bench-

mark with every possible pattern of use, and provide a lookup table of times

of each implementation running each benchmark. The user simply obtains the

pattern of use of their application, and looks up the quickest implementation in

the appropriate row of the table.

We shall assume that a pattern of use consists of a list of n athibutes. The

profile we defined in Section 3.3 that captures the pattern of use has continu-

ous attributes. Therefore the space covered by the profiles is continuous and
hence contains an infinite number of points. Therefore we must divide each at-

tribute using a suitable granularity, for example, by rounding the mortality to

118 CHAPTER 5. EXPLORING DATATITE USAGE SPACE

Datatype Usage Space

Ay
24, 40 9 9

A

: (2,1)

x
04 IN

0123

Datatype Usage Best
x y Data Structure

0

2

0

1

Naive

AVL

Figure 5.1: Mapping datatype usage space with two attributes, X and Y. X and

Y each capture some aspect of datatype usage (not given here). In general we

may have many more dimensions to the coordinate system. The table lists points

in the space against the best data structure for that use. In general we may list

more about the efficiencies of data structures than whicli is best. An application

may have datatype usage A, which is nearest to the coordinate (2j). The table

lists "L as the best data structure for this datatype usage.

the nearest 0.01. Figure 5.1 shows an example of such a table of results, for pat-

terns of use containing just two attributes X and Y, and listing just the quickest

implementation.

Unfortunately, this approach is not practical. Such a tablewould cover a huge

number of points, and the total time to collect the results for each point would be

far too large. For example, consider an ADT with just 5 operations (1 generator, 2

mutators, and 2 observers). Using the profile defined in Section 3.3, the pattern of

use consists of 8 attributes, two of which are redundant (the generation weight,

and one of the mutation-observation weights), leaving just 6. Rounding each

attribute very coarsely to give just three possible values gives a total of 36 =

729 distinct profiles. Running even just one benchmark for each profile and

each implementation would take a long time. The table would also be huge,

and hence rather unreadable, especially if the user wants an overview of which

implementation to use when.

This approach also relies on the accuracy of benchmark generation-that is,

how well the profile of the generated benchmark matches the desired profile.

5.2. SELECTIVE EXPLORATION 119

Although benchmark generation is reasonably accurate (see Section 4.4.1), it

would be better to remove this dependency.

Summary. Exhaustive exploration is simple and straightforward, but not prac-

tical; it takes far too much time to run, generates verbose results, and relies on

benchmark generation accuracy.

5.2 Selective Exploration

Exhaustive exploration is not practical primarily because the number of patterns

of use is exponential in the number of attributes. Even just 6 attributes taking

only 3 possible values each results in 3' = 729 distinct patterns of use.

One way to reduce the number of attributes is to remove insignificant

attributes-those attributes that have little or no effect on the performance of

the ADT implementations. Removing such attributes should have little effect on

the accuracy of the resulting selective exploration when considered as a summary

of the entire space.

But how do we measure the effect of an attribute on the performance Of ADT

implementations? Suppose we measure their performance at a particular point

p in the datatype usage space. Now let p' be another point obtained from p by

altering the value of a single attribute A. Suppose we now measure the perfor-

mance of the ADT implementations at p. If the performance has not changed

significantly from p to p, then we can conclude, for p and p! at least, that A has

little effect on performance. By taking a sample of such points, we can conjecture

which attributes are insignificant.

But how do we define a significant change in performance? We need some

means of measuring the correlation between the two sets of performances. The

standard statistical property correlation coefficient is defined over n pairs of val-

ues for x and y by:

r= nExy - ExEy

, y)2] , ý/[nE X2 X)2][n E y2 - (r

and measures how well the two sets of data, if plotted, match a straight line.

120 CHAPTER 5. EXPLORING DATATYPE USAGE SPACE

What happens if we use the correlation coefficient over the two sets of perfor-

mance times? Unfortunately, this measure can be heavily influenced by a very

Slow ADT implementation. For example, suppose the times (in seconds) for one

pattern of use were [1,2,4,641, and for another pattern of use, [4,2,1,641 (listing

the times in the same order for each). The correlation coefficient for these sets
of times is 0.997, greater than the correlation between [1,2,4,71 and [1,2,4,9].

We are more interested in a small change in the performance of the best imple-

mentations than a large change in the performance of the worst im plenientat ions.

Therefore it is reasonable to consider using the correlation of the reciprocals of

the times:

Times Correlation of
Reciprocals

[1,2,4,64] [4,2,1,64] -0.055
[1,2,3,4] [2,1,3,4] 0.262

[1,2,3,4] [1,2,3,64] 0.971

[1,1.1,2,3] 1 [1.1,1,2,4] 0.972

This means of measuring a significant change in performance seems more reason-

able. Those attributes with an average correlation above a given value could be

removed.
However, both selective and exhaustive exploration assume that the pattern

of use is captured entirely by the attributes of a profile. Unfortunately, one
important pattern of use has proved very hard to capture adequately within a

profile: size. The shadow profile can capture size, but selective and exhaustive

exploration assume that a benchmark can be created with the given attributes.
However, it is not possible in general to create a benchmark with a given shadow

profile, only to calculate the shadow profile of a given benchmark.

The size of a data structure can significantly affect the efficiency of an opera-

tion applied to it. For example, performing the operation snoc on a nalive queue

takes time proportional to the size of the queue (see Section 2.1.1).

Summary. Selective exploration improves on tbe impracticality of exbaustive

exploration when there are sufficiently many insignificant attributes. However, in

5.3. CAPTURING SIZE 121

common with exhaustive exploration, it does not explore the important attribute

of size explicitly.

5.3 Capturing Size

Since neither selective nor exhaustive exploration capture the important attribute

of size, we look at ways to remove or reduce this insufficiency.

The size of a data structure is determined by the quantity and order of appli-

cations of mutators (and by the choice of generator(s)). For example, the more

applications of cons, the larger the list; and the more applications of cons in suc-

cession, the larger the list. The quantity aspect is captured by the weights ratio

of a profile, but the order aspect is lost. For example, a sequence of n applications

of cons followed by n applications of tail has the same profile as the applications

cons then tail repeated n times. However, the former sequence of applications
has average size of list n/2, whereas the latter has average size 3/2.

We need to capture the order of mutations, but how? We present three

attempts, with their advantages and disadvantages.

5.3.1 Growth and Decay

A simple way to capture order of mutations is to split the profile into phases (see

Section 3.4.3). Phases partition a DUG, and the profile of each phase is recorded

separately. The partitioning of the DUG is based on auxiliary shadow information

stored about each version node (see Section 3.4.1). The shadow information is

based on the history of the version node's creation-that is, which operations

created it.

In particular, we could store the age of a data structure at each version node-

the age of a version node being the number of mutators used to create it. We

could partition the DUG into nodes of age A or less, and nodes of age greater

than A, for some constant A. By setting the ratio of size-increasing operations
higher in the former phase than in the latter, we can create a DUG with a growth

phase and a decay phase. The size of data structures tends to increase more in

the growth phase than in the decay phase.

122 CHAPTER 5. EXPLORING DATATYPE USAGE SPACE

Weight Ratio

Grow Phase : Decay Phase

Size
10 [pfiýi6 "

tail

tail cons Age

................. ,, Decay Phase i

......... ... ý6.. Vs.,

........ Size", ---

Age

30 60- 30 60'

Figure 5.2: An example of growth and decay phasing on lists. The ratio of

cons : tail is 2: 1 for nodes aged under 30, and 1: 2 for nodes aged 30 to 60.

Assuming lists are generated by empty, and hence start at size 0, nodes aged

30 are on average lists of size 10. Nodes aged 60 are on average lists of size 0.

Assuming an equal distribution of nodes over age, the average size of a list is 5.

For example, consider phasing a DUG over list operations into nodes aged 30

or less, and those older. Now set the profile of the former phase (the growth

phase) to have a weights ratio of cons : tail =2: 1, and the latter phase to have

cons : tail =I: 2. Also make sure that any nodes aged over 60 are not mutated
(this can be done by adding a final phase for nodes aged over 60 with mortality

1). Generating a benchmark with these phased profiles will make the average size

of a list about 5-see Figure 5.2.

Hence, for controlling the average size of a data structure when generating

a benchmark from a profile, growth and decay is useful. Unfortunately, this is

complicated by the possibility of tile number of nodes varying over age. Both PmF

and the weights of mutators taking more than one version argument affect the

increase or decrease of the number of nodes over age. More importantly, imposing

the structure of growth and decay phases is rather artificial: real applications may

not fit this pattern at all.

Summary. Growth and decay phasing does control size better than exhaustive

or selective exploration. However it is rather artificial, approximate, and does

not apply very well to real applications.

5.3. CAPTURING SIZE

Weight Ratio

tail

ge
cons

123

Age

Figure 5.3: Two linear functions giving weight ratios for lists. Each produce an

equal number of applications of cons and tail, but the left one produces applica-

tions on larger lists.

5.3.2 Linear Weights

The growth and decay method suffers from being rather artificial. Why two

phases? Why split at a particular age? We can generalise away from these

choices by approximating each mutator element of the weights ratio by a linear

function over age. For example, consider making the cons component start high

and decrease as age increases, whilst making the tail component start low and
increase as age increases. Also consider making the cons and tail components

equal and not vary over age. Each of these profiles will produce the same number

of applications of cons as tail overall, assuming the number of nodes does not

vary much over age, but the former will produce larger data structures. See

Figure 5.3.

The profile of an application is amenable to this method too. By performing

a linear regression (line of best fit) on the number of times a particular mutator is

applied to a node against the age of that node, for each mutator, we will estimate

the trend in the variance of mutator weights over age.

Unfortunately, this method has other disadvantages. What about a line of
best fit that cuts the age axis? The portion of the line below the age axis indicates

a negative weight ratio component. What does this mean? This method would

need more formalisation and more examination.

Summary. The linear weights method looks promising, but needs further work.

124 CHAPTER 5. EXPLORING D. 4TAn`PE USAGE SPACE

Table 5.1: The effect of varying the likelihood of the next operation being the

same as the last (odds of n: 1) for cons and fail on lists, whilst keeping the

overall ratio of cons : tail =1: 1.

n 2-10 2-9 2-' 2-7 2 -6 2-5 2 -4 2 -3 2 -2 2-1 1 21

Avg. Size 1.9 3.4 4.2 5.7 11.8 21.4 37.5 81.8 122.5 142.4 1 190.6

21 221 23
1

24 1 21 1 261 27
1

28 1 29 210 1

279.2 424.9 1530.8 1523.11 540.91 657.71 778.4 1844.7 11074.2 11221.51

5.3.3 Markov Chains

The ideas of growth and decay, and of linear weights, are both rather ad-hoc.

A Markov chain [30] is a well-studied method for capturing patterns within se-

quences of states. The probability of what the next state in the sequence might be

depends only on what the last state was. We use a Nfarkov chain to parameterise

the mutation weights ratio over the last operation used to create a node.

For example, instead of specifying cons : tail =1: 1 for a list profile, Nve

might specify that

cons -+ cons : cons -+ fail =n: I

tail -+ tail : tail -+ cons =n: 1

for some n. That is, the number of times a cons is followed by another cons is n

times more than the number of times a cons is followed by a tail, etc. One can

show that this ultimately yields an overall weights ratio of cons : tail =1: 1.

Varying n affects the average size of a list. The larger n is, the more likely

a cons is followed by a cons, and hence the larger the list becomes. Generating

DUGS with various values for n produces the results shown in Table 5.1.

We could replace the weights ratio by a list of weights ratios parameterised

over the last operation, which Nve shall call the Markov weights ratios. However,

the influence of size on the efficiency of a data structure is often separate from the

influence of how often one operation is performed. Hence it would be useful to

separate the Nlarkov weights ratios into the overall weights ratio and other factors

such as n in the example above. But how do we define these other factors in

5.4. INDUCING DECISION TREES 125

general? Given that the Markov weights ratios are used to create the benchmarks,

and are the result of profiling an application, we also need a way to convert
between the Markov weights ratios, and the overall weights ratio with other
factors like n, and back again.

We also need to decide whether to parameterise the weights ratio of mutators

given the last operation was a generator. Without this we may lose some infor-

mation, and perhaps even distort a profile, but with it we add more attributes,

and we wish to keep the number of attributes down to a minimum.
A Markov chain is often represented by a transition matrix P. The probability

of moving from state i to state j is given by the probability at row i, column j

of P. The Markov weights ratios form the rows of P. If P is both irreducible

and recurrent (see [30]), the average probability pi of being in state i at any time

is obtained by solving pP = p, where p is the row vector with pi at column i.

The vector p gives the overall weights ratio. However, in general, P may not be

irreducible. This method would need more examination.

Summary. Using Markov chains is more theoretically sound than either growth

and decay or linear weights, but it increases the number of attributes, which
brings us back to the problems of exhaustive exploration. It also requires further

work on translating between or unifying Markov weights ratios and ordinary

weights ratios.

5.4 Inducing Decision Tý-ees

Recall that we wish to derive, from a set of benchmarking trials, rules for de-

termining the best data structure according to the datatype usage attributes. A

common way to derive rules about a set of data is to induce a decision tree [441.

For our purposes, a decision tree is a binary tree with the following properties:

o Each branch node is labelled with a test of the form A<v, where A is a
datatype usage attribute, and v is some constant.

* Each leaf node is labelled with the name of an ADT implementation.

An example of a decision tree is shown in Figure 5.4. To find the recommended

126 CHAPTER 5. EXPLORING DATATYPE USAGE SPACE

ize <= 20
False

look-up <= 0.
True

ku

Ic

0.2 insert <-- 0.2

op <= 0

True False False

Figure 5.4: Decision tree for an (imaginary) ADT storing a collection of papers.
Branch nodes are labelled with tests over datatype usage properties: size, lookup,

and insert. Leaf nodes are labelled with ADT implementations: Stack-, Folder,

and File.

implementation for a particular datatype usage, start at the root and follow the

appropriate branches till you reach a leaf. The implementation given by this leaf

is the one recommended by this decision tree.

A decision tree is induced from a training set of the data it is to characterise.
In our case, this training set is a sample of benchmarks. The sample is generated
from a random selection of attribute values, but it is the attributes of tile resulting
benchmarks that are used, thereby including the attributes of both tile profile

and the shadow profile. Each benchmark in the sample is run, and the winning

implementation is recorded. From these results, we induce a decision tree T.

Given any benchmark B from the sample, using only the attributes of B, T will
decide upon the winning implementation. Table 5.2 gives an example of results
from which the decision tree of Figure 5.4 can be induced.

Given a sufficiently large and broad sample, the decision tree induced should
be able to predict tile winning implementation of any benchmark with good

accuracy.

Summary. Inducing a decision tree solves all of the problems of exhaustive and

selective exploration: size is captured in the shadow profile of the benchmark; the

accuracy of benchmark generation has much less significance, since we use the

actual profile rather than the desired profile; and every single benchmark is used

5.4. INDUCING DECISION TREES

Datatype Usage Attributes Best

insert lookup size Implementation

0.3 0.5 10.0 Stack

0.1 0.1 40.0 Folder

0.4 0.1 45.0 File

0.3 0.1 36.0 File

0.3 0.3 30.0 File

0.1 0.4 42.0 File

0.1 0.5 33.0 File

127

Table 5.2: A training sample of results from which the decision tree of Figure 5.4

can be induced.

to influence the resulting decision tree, giving maximum use of the user's time.

The only possible drawback concerns the accuracy of the resulting tree on unseen
benchmarks. We choose to use this method, as it is by far the most promising

one.

5.4.1 The Algorithm

We take an existing algorithm from the literature for constructing a decision tree

from a sample. We use the algorithm c4.5 [46], which is a descendant Of ID3

[44]. Both algorithms are widely known and respected in the machine learning

community.
The basic idea underlying C4.5 is a simple divide and conquer algorithm

due to Hunt [23]. Let S be the results of running a sample of benchmarks.

Let Ik be the competing ADT implementations. There are two cases to

consider:

9S contains only results reporting a single implementation Ij as the winner.
The decision tree for S is a single leaf labelled with Ij.

*S contains results reporting a mixture of winners. By dividing S into S,

and S2according to some test, we can recursively construct trees T, and T2
from S, and S2 respectively.

128 CHAPTER 5. EXPLORING DATATYPE USAGE SPACE

The key to a good implementation of Hunt's algorithm is the choice of test with

which to split S.

The set of possible tests is limited by the range of attribute values for bench-

marks in S. Let [vi,
... vvn] be the distinct values, in order, of an attribute A

for benchmarks in S. Consider two consecutive values, vi and vi+,. For any v

satisfying vi :5v< vi+,, splitting S with the test A<v results in the same

split. Therefore, there are at most n-1 distinct ways of splitting S using A. We

consider only the tests A< (vi + vi+,)/2.

For example, Table 5.2 gives a sample S which contains results reporting a

mixture of winners. We could choose to split S with the test size < 20, as in

the decision tree of Figure 5.4. Note that 20 is halfway between the next lowest

and the next highest value of size in S. This test splits S into two samples, S,

and S2, from which we induce two decision trm T, and T2 in the same manner.
The sample S, contains just a single result reporting Stack as the winner. The

decision tree for S, is a single leaf labelled with Stack. The sample S2 contains

results reporting a mixture of winners, and so we choose another test to split S2,

and so on.

But how do we choose which test to use at each stage? ID3 uses the gain cTi-

terion to measure the quality of a test, whereas C4.5 uses the gain ratio criterion.

The latter is a modification of the former, 'so we sliall describe both.

Gain Criterion

The gain criterion is based on the following principle of information theory: For

a message that happens with probability p, the information conveyed by that

message is - 1092 p bits. For example, the information conveyed by making any

one of eight equally probable messages is - log2(1/8) or 3 bits.

Suppose we choose a benchmark from a sample S and announce, correctly,

that the winning implementation for that benchmark is I. The probability of this

announcement is IS1111SI, where SI is the subset of S containing the benchmarks

that give I as the winner. The information conveyed by that announcement is

therefore -log2(ISIIIISI) bits.

The expected value of a function f applied to a discrete random variable X

5.4. INDUCING DECISION TREES 129

is
E(f (X» = 1: f (x)P(X = x)

Let X be the winning implementation of a benchmark chosen from S. Let f (I)

be the information conveyed by an announcement of the value of I. For any

implementation I

1092
si

and P(X = I) =
si

A Isi

The expected information of an announcement of the winning implementation of

a benchmark in S is therefore

in (S) = E(f (k
LS

-ii

1). LS i-ii
fo X»= -E 1092

j=l
(Isl Isl

This expresses the average amount of information needed to identify the winner

of a benchmark in S.

Suppose we split S into S, and S2 using some test Z. Let X=i if a benchmark

chosen from S lies in Si. Let f (i) be the average amount of information needed

to identify the winner of a benchmark in Si. For i=1,2

info (Si) and P(X = i) -
IS"
Isl

Therefore the expected information required to identify the winner of a bench-

mark in S split by Z into S, and S2 is

2 Isil

nf oz (S) =E (f (i)) i nf o (Si) - TS-1

The difference between the expected information required before and after ap-

plying the test Z is therefore

gain(Z) = info(S) - infoz(S)

Hence gain(Z) measures the information gained by performing the test Z. The

gain criterion chooses the test with the maximum gain.
For example, consider the sample S of Table 5.2, which contains one result

reporting Stack as the winner, one result reporting Folder as the winner, and five

results reporting File as the winner.

info (S) =-
(17

* 1092 17 + 17
' 1092 17 + 1092

= 1.149 bits

130 CHAPTER 5. EXPLORING DATATYPE USAGE SPACE

The test Y, lookup :50.2, splits S into a sample Sly containing one Folder result

and two File results, and a sample S2y containing one Stack result and three File

results.

infoy(S) linfo(S) + linfo(S2y)
77

_3 7
(13 1092

31
+ 23 1092

32 7
(411092

41
+ 14 1092

41)

0.857 bits

gain(Y) = info(S) - infoy(S)

= 0.292 bits

The test Z, size < 20, splits S into a sample S, containing just one Stack result,

and a sample S2Z containing one Folder result and five File results.

infoz(S) linfo(Sz) + ýinfo(Sf)
717

-
17 1092 11

-
ý7 (16 1092 16 +! 1092 16)

0.557 bits

gain (Z) = info (S) - infoz(S)

= 0.592 bits

Therefore, as the gain from using Z is larger than the gain from using Y, the

gain criterion would prefer the test Z over the test Y.

Gain Ratio Criterion

The algorithm ID3 uses the gain criterion, giving quite good results. However,

the gain criterion has a strong bias towards tests with many possible outcomes.

The algorithm c4.5 attempts to remove this bias by modifying the gain crite-

rion to produce the gain ratio criterion. Even though we only consider tests

with two outcomes, Quinlan advises that the gain ratio criterion "even appears

advantageous when all tests are binary" [461.

Consider the information content of an announcement of the result of a test
Z applied to a benchmark in S. Let Z split S into the subsets SI, ..., S,,. Let

Sx be the subset into which Z places a benchmark chosen from S. Let f (X) be

the information conveyed by an announcement of the value of X. For 1<i :5n

Isil isil
f U) 1092

IS, and P(X=j)=
isi

5.4. INDUCING DECISION TREES 131

The expected information of such an announcement is therefore
n

splitInfo(Z)=E(f(X))=-E(l. g,
'Sjl) 'Sjl

j=l
Isi Isi

This expresses the amount of information gained from dividing S into S1, ---, S,

irrespective of the winning implementations. Therefore the gain ratio defined by

gainRatio(Z) =
gain(Z)

spliffnfo(Zý

expresses what proportion of the information gained by splitting S using Z is

relevant to the identification of a winning implementation. However, if the split

is near-trivial-that is, some Si is almost as large as S-the split information will
be small, and the gain ratio unstable. Therefore, the gain ratio criterion chooses

the test with the maximum gain ratio, subject to the constraint that the gain is

large-at least as great as the average gain over all tests examined.
For example, consider again the sample S of Table 5.2. The test Y, lookup :5

0.2, splits S into a sample containing three results and a sample containing four

results.
SP"t, nfo(y) -

(17 1092 + 17 1092
71)

0.985 bits

From the previous section we know that

gain(Y) = 0.292 bits

So

gainRatio(Y) =
gain(Y)

= 0.296
splitInfo(Y)

The test Z, size <- 20, splits S into a sample containing one result and a sample

containing six results.

splitInfo(Z) =-
(110911 + ýý 1092 ýý

777 7)

0.592 bits

From the previous section we know that

gain(Z) = 0.592 bits

So

gainRatio(Z)
gain(Z)

splitInfo(Z)

132 CHAPTER 5. EXPLORING DATATYPE USAGE SPACE

Therefore, assuming both tests have gain at least as large as the average gain

over all tests examined, as the gain ratio from using Z is larger than the gain

ratio from using Y, the gain ratio criterion would also prefer the test Z over the

test Y.

5.4.2 Simplifying Decision Trees

The decision tree induced by the algorithm of Section 5.4.1 classifies the results

of a sample perfectly. Unfortunately, this tree is not an ideal basis for choosing

an implementation for the following reasons:

e The tree may be very large and complex.

e The tree is based on the chosen sample and may be over-specific.

Therefore we prune the induced tree to obtain a smaller and more accurate tree.

There are several ways to prune a tree. We examine two, taken from existing

literature, each based on the pruning scheme given in Figure 5.5. This scheme

considers all subtrees bottom-up. If replacing a subtree with either one of its

children or with a single leaf does not increase the predicted error of the subtree,

it is pruned to this smaller tree. The two pruning techniques we consider differ

in how they predict the error of a tree.

Reduced Error Pruning

Quinlan describes reduced error pruning in [45]. Two separate samples are re-

quired to perform reduced error pruning: a training sample, from which the

original tree is induced; and a test sample, used to assm the accuracy of the

induced tree.
Referring to the pruning scheme of Figure 5.5, we prune the induced tree using

the test sample. The predicted error of a subtree on a subset of the test sample
is simply the number of misclassifications made by the subtree when applied to

the test sample subset.

If in addition to recording the winning implementation for a particular bench-

mark we also record the ratio of the time of every implementation to the time

of the winning implementation, we may instead define the predicted error of a

5.4. INDUCING DECISION TREES

To prune a tree T using the sample S:

if T is a branch node with children L and R, and labelled with test Z then

let Z split S into SL and SR

prune L using the sample SL to give Lp

prune R using the sample SR to give Rp

predict the errors of the following trees on the sample S:

a branch node with Lp and Rp as children, and labelled with test Z
Lp

Rp

every possible leaf

take the trees with the lowest predicted error

return the smallest such tree

else
T is a leaf, so return T untouched

133

Figure 5.5: Generic pruning scheme based on error prediction.

134 CHAPTER 5. EXPLORING DATATYPE USAGE SPACE

(a)

(b)

Datatype Usage Attributes Best

insert lookup size Implementation

0.3 0.5 10.0 Stack

0.1 0.1 40.0 Folder

0.4 1 0.1 45.0 File

Datatype Usage Attributes Best

insert lookup size Implementation

0.3 0.1 36.0 File

0.3 0.3 30.0 File

0.1 0.4 42.0 File

0.1 0.5 33.0 File

Table 5.3: To illustrate reduced error pruning, a split of the sample of Table 5.2

into (a) a training sample, and (b) a test sample.

subtree to be the average ratio of the implementation given by the subtree as tile

winner.

For example, consider the sample S of Table 5.2. We need two samples to

perform reduced error pruning, so we split the sample into a training sample

consisting of the first three results, and a test sample consisting of the remaining
four results. Tables 5.3(a) and 5.3(b) give these samples. Figure 5.6 shows the

tree we induce from the training sample, using either the gain criterion or the

gain ratio criterion.

<-- 0.3
True

ý. insert > 0.25
True Falsc

Fo5duer Fileý
r N, ,c

Figure 5.6: Decision tree induced from the training sample of Table 5.3(a).

5.4. INDUCING DECISION TREES 135

To prune this tree, we first prune the left branch L, labelled with the test

insert > 0.25. Following the pruning scheme of Figure 5.5, we then consider

the predicted error of L and of each of the three possible leaves. Reduced error

pruning calculates the predicted error of a replacement for a subtree by applying

the replacement tree to the subset of the test sample covered by the original

subtree. In the absence of any ratio information in the sample S, we use the

number of misclassifications to measure the error of a tree in application.

The subset of the test sample covered by L contains the first and second

results of Table 5.3(b), which are both File results. The subtree L misclassifies

both of these results as Folder. The leaves Folder and Stack also misclassify both

results. The leaf File however classifies both correctlY. As this tree has the lowest

predicted error, it replaces L.

Now we consider the predicted error of the original tree with L replaced by the

leaf File (call this tree T'), and each of the three leaves, when applied to the whole

test sample. The tree T' correctly classifies two results as File, but misclassifies

the other two results as Stack. The leaves Folder and Stack misclassify every

result of the test sample. The leaf File classifies every result in the test sample

correctly, and so this replaces the original tree. Therefore, reduced error pruning

simplifies the original tree to the leaf File.

Very Pessimistic Pruning

Quinlan describes pessimistic pruning in [451. He also describes a "far more pes-

simistic" pruning technique in [46]. The latter technique we call very pessimistic

pruning, in the absence of any name given by Quinlan. Whereas reduced error

pruning predicts the error of a tree induced from a training sample by evaluating

the tree on an additional test sample, very pessimistic pruning uses only a single

training sample. This is useful when the data for a sample is scarce or expensive

to collect.

Very pessimistic pruning estimates the error of a tree based on statistical

reasoning that "should be taken with a large grain of salt" [461. Consider the

N cases classified by a leaf, E of which are classified incorrectly. We predict the

error rate with confidence level CF to be UCp (E, N), the upper confidence limit

136 CHAPTER 5. EXPLORING DATATYPE USAGE SPACE

for the binomial distribution, defined for X- B(N7p) by

UcF (E, N) = p, ý* P(X < E) = CF

See [46] for justification of this prediction.

We predict the number of errors produced by a leaf covering N cases to be

N- UcF (E, N). We predict the number of errors produced by a tree to be the

sum of the errors produced by its children.

For example, consider the sample S of Table 5.2. Using either the gain crite-

rion or the gain ratio criterion, we induce the tree of Figure 5.4. To apply very

pessimistic pruning to this tree, we follow the pruning scheme of Figure 5.5 by

first pruning the right branch R, labelled with the test lookup : ý, 0.2. To prune R,

we must first prune its left child, RL. However, using the default confidence level

of 25%, very pessimistic pruning leaves RL untouched. We shall not give details

here, but instead we will give details of the more interesting case of pruning R. '

The subtree R covers all bar the first result of the sample S, containing

one Folder result, and five File results-call this subset S'. To prune R, we

consider the predicted error of R, of RL, and of each of the three possible leaves,

when applied to the sample S'. The leaf File misclassifies; one result out of six.
Therefore, very pessimistic pruning predicts the error of this leaf as 6' UO. 25 (I j 6)

6-0.389 = 2.337. The leaf Folder misclassifies five results out of six, so the

predicted error of this leaf is 6* UO. 25(5,6) = 5.719. The leaf Stack is even

worse. The tree RL misclassifies two out of three results on its left branch,

and classifies correctly all three results on its right branch, so the predicted

error of this tree is 3- UO. 25(1,3) +3- Uo. 25(0,3) = 3.131. The tree R does

not misclassify any of the results, and contains a leaf covering one result, a leaf

covering two results, and a leaf covering three results, so the predicted error is

UO. 25(0ý 1) +2* UO. 25(0,2) +3' UO. 25(0,3) = 2.860. Therefore, very pessimistic

pruning replaces R with the leaf File, as this has the lowest predicted error.

We next consider pruning the original tree with R replaced with the leaf File.

We omit the details here, but very pessimistic pruning does not change this tree.

Therefore, it is the final result of pruning.

5.5. SUMMARY 137

5.5 Summary

In this chapter we have explored ways of using the DUG algorithms of Chap-

ter 4. Exhaustive exploration is the most na1ve solution, but takes too long to

run. Selective exploration reduces this time, but does not capture the important

attribute of size well enough. The growth and decay, linear weights, and Markov

chains methods each capture size better, but introduce problems of their own.
Finally, the induction of decision trees solves the problems of the previous meth-

ods, and looks promising. We evaluate the effectiveness of decision tree induction

in Chapter 7. The implementation of decision tree induction is straightforward,

and detailed in [46].

138 CHAPTER 5. EXPLORING DATATYPE USAGE SPACE

Chapter 6

Auburn: Benchmarking Tool

Chapter 4 gave algorithms for (a) creating a benchmark from a description of use,

and (b) creating a description of use from an application. Chapter 5 illustrated

how to use these algorithms to benchmark implementations of an ADT. This

chapter describes the design decisions for a benchmarking kit called Auburn,

built on the algorithms of Chapter 4, and the principles of Chapter 5. This

chapter also details how to use Auburn.

Section 6.1 discusses the overall design of Auburn. Section 6.2 gives an

overview of how the different parts of Auburn fit together. Sections 6.3-6.8

describe each part of Auburn, both the design decisions and the instructions for

use by hand. Section 6.9 shows how Auburn can almost completely automate
benchmarking.

Appendix C gives a reference for the Auburn executables.

6.1 Design Rationale

Auburn should provide the following functionality:

0 DUG generation

0 DUG evaluation

0 DUG profiling

0 DUG extraction

140 CHAPTER 6. AUBURN: BENCHINIARKING TOOL

6.1.1 Dynamic Linking

Can we bundle each task above into one executable for all ADTS? Unfortunately

not, for the following reasons. A DUG evaluator must link with the various im-

plementations for the different ADTs Auburn encounters. Without some form of

dynamic linking, which current Haskell implementations do not provide, we must

re-compile a DUG evaluatcir for each new ADT and its implementations.

Can we bundle the remaining tasks into one executable for all ADTS? Unfortu-

nately not, since DUG generation and DUG profiling must link with a user-defined

shadow data structure, specific to an ADT. The procm Of DUG extraction, how-

ever, does not require any linking with code specific to an ADT, and can be

compiled once for all ADTS.

Decision: Generate an executable specific to each ADT for the generation, eval-

uation, and profiling Of DUGS, and define one executable for all ADTS for DUG

extractiom

6.1.2 Overhead Of DUG Evaluation

When an implementation of an ADT evaluates a DUC, there is some overhead:

general bookkeeping, input, and output. The larger the overhead, the smaller

the proportion of the whole time taken by the ADT operations, and hence the less

accurate the estimation of the work done by them. Therefore we want to keep

the overhead of DUc evaluation as small as possible.
We consider three alternative methods for DUG evaluation.

1. Generate the DUG, and translate each node directly into a Haskell call to

an ADT operation. Output and compile the Haskell program. To evaluate

the DUG, run the program. The only overhead of DUG evaluation comes
from the mechanism for demanding the results of the observations.

2. Generate and evaluate the DUG within the same executable. The generation

of the DUG forms most of the overhead Of DUG evaluation.

3. Read the DUG from a previously generated file. Reading the file and general
bookkeeping form most of the overhead of DUG evaluation.

6.1. DESIGN RATIONALE

1200

1000

800

r. 600

400

200

n

III

+

+

+

�4

+
+

+

++

�.
4

+III

141

0 200 400 600 800 1000
Size of Dug (number of nodes)

Figure 6.1: Times taken to compile different DUGS (as Haskell programs) of var-
ious sizes over three different ADTS.

In order to compare these three methods, we measure the overheads for a random

selection Of DUGS for three ADTS: queue, random-access sequence, and set with

random retrieval (as in Section 4.4). We use the York nhcl3 compiler [53] (release

vO. 9.4) running executables in a heap of 8OMb on an SGI Indy running IRIX 5.3.

Method 1 generates Haskell programs that take too much space and time to

compile. Figure 6.1 shows the compilation times Of DUGS of various sizes. The

relationship is roughly linear. The largest DUG we can compile in a heap of

80Mb takes over 15 minutes to compile and has 800 nodes. This compares with

taking about 1 second to generate the same DUG in a heap of 4Mb. The more

DUGS we evaluate, the better conclusions we can form about the efficiency of the

implementations. Since compiling a DUG is so slow, we reject Method 1.

For Method 2, the overhead Of DUG evaluation is the cost Of DUG generation.
We cannot measure the cost Of DUG generation directly, because we must pro-

cess the DUG in some way in order for lazy evaluation to force its generation.
Therefore, we make three different timings:

142 CHAPTER 6. AUBURN. BENCIIIIIARKING TOOL

1. The time taken to generate and output the DUG as a binary file

2. The time taken to generate and output the DUG as a Haskell program

3. The time taken to generate and output the DUG as a binary file and also

as a Haskell program

We can estimate the time taken to generate the DUG by adding Time 1 and Time

2 and then subtracting Time 3.

To estimate the Cost Of DUG evaluation, we read the DUG from a binary file,

and evaluate the DUG with each implementation, including the null implemen-

tation. The null implementation performs very little work (see Section 6.7). By

measuring the time taken to evaluate with the null implementation, we obtain an

estimate of the overhead involved in evaluating with some real implementation.

By subtracting this estimate of the overhead, we obtain an estimate of the actual

cost of evaluating with some real implementation.

For some DUG D and some implementation I, let 9 be the time taken'to

generate D, let eN be the time taken to evaluate D with the null implementation,

and let ej be the time taken to evaluate D with implementation I. For Method 2,

the overhead of DUG evaluation is the time taken to generate the DUG divided.

by the total time to generate and evaluate the DUG, that is gl(g + el - eN)-

Note that we subtract the null implementation time, since this includes all of the

overhead of reading the DUG from a file, which would not be done in Method 2.

For Method 3, the overhead of DUG evaluation is eNlej.
Additionally, for Method 3, we also time DUG evaluation using the C-11askell

hybrid described in Section 4.1.2.

Note that we are only estimating the overhead, as for instance, the overhead

of the mechanism for extracting the results of the observations is present in both

Method 2 and Method 3, but subtracting the null implementation time removes

this overhead from our estimate of the overhead of Method 2. However, making

a closer estimate is very hard, as lazy evaluation makes it very hard to separate

tasks and measure them individually.

Table 6.1 gives the results. An overhead as large as 98% would make the

benchmarking results rather inaccurate. Similarly, even 87% may be unaccept-

able. We therefore choose to evaluate DUGs by reading them from files, using tile

6.1. DESIGN RATIONALE 143

ADT Method 2 Method 3 Method 3

(Haskell) (C/Haskell)

Queue 98.1 87.4 40.3

RASeq 96.5 82.4 25.6

Heap 99.0 90.3 29.0

Average 97.9 86.7 31.6

Table 6.1: Average percentage overhead for each method Of DUG evaluation over

every combination Of 10 DuGs and 7 implementations for each of the three ADTS.

C-Haskell hybrid where possible (some compilers do not support the necessary
language extension).

Decision: Separate DUG generation and DUG profiling froM DUG evaluation. A

DUG is generated, written to a file, and then read and evaluated.

6.1.3 Describing DUGS

Since we have decided to store DUGS in a compressed format in a file, we need
another format for DUGS which the user can understand. Both a textual and a

visual description serve this purpose well. Since we are compiling DUG generation

and DUG profiling for each ADT, we decide to bundle these functions and the
textual and visual description functions into one executable.

Decision: Generate a DUG manager for each ADT which performs the following

tasks: DUG generation, DUG profiling, and DUG description (both textual and

visual).

6.1.4 Re-compilation

DUG Manager

Generating and compiling a DUG manager for each ADT re-compiles a lot of

similar functions. These common functions should be compiled just once, so we

place them in a library.

144 CHAPTER 6. AUBURN. BEATCHMARKING TOOL

Decision: Create a library of the functions common to every DUG manager. A

DUG manager contains only the definitions of functions specific to the ADT-it

imports the rest from the library.

DUG Evaluator

We could generate one DUG evaluator for all implementations of an ADT, using

either Haskell's class system, or generate one copy of the DUG Maluating function

for each implementation. However, this would have to be re-compiled if a new

implementation were introduced, or if an implementation was changed. It is

simpler to generate one DUG evaluator for each implementation.

Decision: Generate a DUG evaluator specific to each implementation of each
ADT.

6.2 Overview of Auburn

Auburn uses a signature (Section 6.3) to identify an ADT. From the signature of

an ADT, Auburn can provide a DUG manager (Section 6.4) specific to that ADT.

The DUG manager can generate a DUG from a profile (Section 6.4.1), calculate

a profile from a DUG (Section 6.4.2), and create a visual or textual description

of a DUG (Section 6.4.3). In order to generate a DUG from a profile, the DUG

manager requires a shadow data structure (Section 6.5) for the same ADT. From

a signature, Auburn can provide a trivial shadow data structure (Section 6.5.1),

or guess at a size-based shadow data structure (Section 6.5.2).

From the signature of an ADT and the name of an implementation of the

ADT, Auburn can also provide a DUG evaluator (Section 6-6) specific to the ADT

and the implementation. From the same signature, Auburn can provide a null
implementation of the ADT (Section 6.7), performing as little work as possible.

This is useful for estimating the overhead of DUG evaluation.

From the signature of an ADT, the name of an implementation Of the ADT

and the name of an application using that implementation, Auburn can provide

a DuG extracting version of the application (Section 6.8). The application works

6.3. ADT SIGNATURE 145

Imports

Creates

7 si Man

S, ýi: g: _:: S ýha d:: o: w:, Siq-Eval- M

Auburn_Xan] Auburn_Bmar burn_EvalFMapj
1577 lines 1327 lines 62 lines

Figure 6.2: Structure of Auburn.

exactlY as before, but also produces a DUG of how it uses the implementation of
the ADT.

Auburn also provides automation tools (Section 6.9) for generating and using

all of the above, saving a lot of user effort.

The Auburn package contains a main executable auburn (Sections 6.3-6.8)

and other executables to automate the use of auburn (Section 6.9). Figure 6.2

shows the components of Auburn, and how they relate to each other. The figure

gives the size of any component that is not generated; the size is the number of
lines of Haskell.

Appendix C gives the help information provided with each Auburn executable.

6.3 ADT Signature

The whole process of benchmarking described in Chapters 3-5 is based on com-

paring different implementations of the same ADT. The definition and implemen-

tation of DUGS in Chapters 3 and 4 refers primarily to the ADT, and secondly to

the implementations. Therefore, Auburn needs a description of the ADT to work

with.
An ADT is identified by giving its signature. An ADT signature looks just like

an implementation but contains no code-just an export declaration, and one

type signature for each exported operation. Figure 6.3 gives an example of a

signature. The ADT must be simple, as given by Definition 3.3.

146 CHAPTER 6. AUBURN. BENCHAIARKING TOOL

module List (List, empty, catenate, cons, tail, head, lookup, isEmpty)

where

empty List a

catenate List a -> List a -> List a

cons a -> List a -> List a

tail List a List a

head List aa

lookup List a Int -> a

isEmpty List a Bool

Figure 6.3: Haskell code giving the signature of a simple list ADT providing

normal list operations, catenation and indexing.

Auburn can generate a signature of the simple operations common to any set

of implementations with:

auburn -c jImplementation Files} ISignature File)

For example,

auburn -c NaiveList AVLList List

creates a signature file List. sig from the simple operations common to the

implementations stored in the files NaiveList. hs and AVLList. hs. Operations

that are not simple, or not exported by every implementation, are not included.

If an implementation exports every operation in a signature, but also exports

an operation that is not included in the signature, the implementation can still

evaluate a DUG made for that signature, though of course only the operations

included in the signature will be used. An application importing the imple-

mentation may have its DUG extracted, so long as the application only imports

operations found in the signature.
The signature file of an ADT is used by Auburn to perform every task specific

to that ADT: DUG generation, DUG evaluation, DUG profiling, DUG extraction,

and DUG description.

6.4. DUG MANAGER 147

6.4 DUG Manager

A DUG manager processes DUGS; generating, profiling, and describing them.

Auburn can generate a DUG manager specific to an ADT from the signature of

the ADT:

auburn -m ISignature File}

For example,

auburn -m List

makes a DUG manager List-Man. hs from the signature file List. sig.

As discussed in Section 6.1.4, the generated file contains all of the code relevant

to the ADT. The remaining code is imported from a library. The generation of

a DUG manager is straightforward. The DUG manager may be compiled (linking

with a shadow data structure, see Section 6.5) to produce an executable.

6.4.1 DUG Generating

The DUG manager can generate a DUG from a profile with:

Sig-Man -g JProfile} ISeed} -o IDUG File}

where the seed is used for pseudo-random number generation. The DUG is written

to a file; using the flag -oP pipes the DUG to standard output. The profile is given

using a Haskell data structure as follows:

Profile IGen. Wgt. Ratiol jPhases}

where jPhases} is a list of phased profiles, starting from phase 1 in order, each

given using the following Haskell data structure:

Phase IMut-Obs. Wqt. Ratio} IMortality} IPMF} IPOF}

Each weight ratio is a list of numbers. For example, [1,2,31 represents the

ratio 1: 2: 3. The order of the operations within the ratios is primarily by role
(generator, mutator, and observer) and then alphabetically. Invoking help with

the -h flag gives this order.

For example, using a DUG manager generated from the signature of Figure 6.3,

148 CHAPTER 6. AUBURN: BENCHINIARKING TOOL

List-Man -g "Profile [I] [Phase [2,1.5,1,2.5,3,11 0 0.2 0.3111 123

-o example. dug

generates a DUG in the file example. dug, using a single-phased profile: the gen-

eration weight ratio is redundant as there is only one generator; the mutation-

observation weight ratio is

catenate : cons : tail : head: lookup: isEmpty = 2: 1.5: 1: 2.5 : 3: 1;

the mortality is 0; the PMF is 0.2; and the POF is 0.3. The DUG generator is given

a seed 123 for pseudo-random number generation.
Other flags modify the behaviour of DUG generation:

-a fPhase Argument}

See Section 3.4.3. The default is no phase argument.

-b JPOOI Size}

See Section 4.1.1, Choosing non-version arguments from the graph. The

default is 10.

-fL IMinimum Frontier Size}

See Section 4.1.1, The DUG Generation Algorithm. The default is 1.

-fU IMaximum Frontier Size}

See Section 4.1.1, The DUG Generation Algorithm The default is 10.

-n lNumber of Nodes)

The number of nodes in the generated DUC. The default is 10000.

Sections 4.1.1 and 4.3.1 detail the implementation Of DUG generation.

6.4.2 DUG Profiling

The DUG manager can calculate a profile of a DUG with:

Sig-Man -p JProfile File} {DUG File}

The profile may be piped to standard output using tile -pp flag. The profile is

written in the form given in Section 6.4.1, along with the shadow profile (Sec-

tion 3.4.4), the maximum frontier size, and the mean frontier size. The initial

frontier size is always zero.

6.5. SHADOW DATA STRUCTURE 149

For example,

List-Man -p example. profile example. dug

places the profile of example. dug in the file example. prof ile.

As with DUG generating, a phase argument can be given using the -a flag.

6.4.3 DUG Describing

AS DUG files are compressed binary files-to reduce input and output overhead in

DUG evaluation-Auburn also provides visual and textual descriptions of a DUG.
The visual description of a DUG is suitable for the GraphViz package of AT&T

[17], and produced by:

Sig-Man -d IGraph File} IDUG File}

The textual description of a DUG is very simple, and produced by:

Sig-Man -t IText File} IDUG File}

As with DUG generation and DUG profiling, output can be piped to standard

output using similar flags: -dP and -tP for visual and textual descriptions re-

spectively.

For example, the DUG of Figure 3.4 can be converted to a file viewable through

GraphViz (see Figure 6.4) or converted to a text file (see Figure 6.5). Note that

the textual description resembles Haskell code. Indeed, adding the -H flag makes

the textual description a Haskell program that evaluates the DUG-see Figure 6.6.

6.5 Shadow Data Structure

A shadow data structure aids the generation Of DUGS, and adds information to

profiles-see Section 3.4. The shadow data structure must export the following:

9 The type of a shadow

* The shadow operations

* The shadow of an unevaluated version argument (see Section 4.3.4)

150 CHAPTER 6. AUBURN. BENCHMARKING TOOL

Figure 6.4: Output from the GraphViz package viewing the DUC of Figure 3.4

(the orientation, the spacing and the font size were altered so the output could fit

on this page). The functions 77, a, andr-see Definition 35-arc indicated on the

graph. Each node is labelled with the partial application given by 71 (the name

of an operation and a list of non-version arguments), and the node's position in

the order of evaluation, given by or. The arc labels given byr are placed next to

the relevant arcs.

6.5. SHADOW DATA STRUCTURE

ni = empty

n2 = cons 99 ni

n3 = empty

n4 = cons 104 n3

n5 = head n4

n6 = catenate n2 n4

n7 = tail n6

n8 = catenate n2 n7

n9 = tail n8

nlO = lookup n8 I

nil = isEmpty n9

151

Figure 6.5: Textual description of the DUG of Figure 3.4. Each line describes the

birth of a node.

o The guards

* The type of a shadow profile

9 The shadow profile functions

* The type of a phase argument

* The phase functions

Given only the signature of an ADT, it is impossible to generate a suitable shadow
data structure for an ADT in general. However, Auburn can generate a trivial

shadow data structure, or guess at one based on size.

6.5.1 Trivial Shadow Data Structure

A trivial shadow data structure stores no information in the shadow, allows every
operation application, gives an empty shadow profile, and puts every version in

152 CHAPTER 6. AUBURN. BENCIIIIIARKING TOOL

import-List

oso 0

nI List Int

n1 empty

n2 List Int

n2 cons 99 nI

n3 List Int

n3 empty

n4 List Int

n4 cons 104 n3

n5 head n4

osl fromEnum n5 osO

n6 List Int

n6 catenate n2 M

n7 List Int

n7 tail n6

n8 List Int

n8 catenate n2 n7

n9 List Int

n9 tail n8

nIO = lookup n8 I

os2 = fromEnum n1O : ost

n1l = isEmpty n9

os3 = fromEnum n1l : os2

main = print (sum (reverse os3))

Figure 6.6: Textual description of the DUG of Figure 3.4 as a Haskell program.
Running this program evaluates the DUG it describes,

6.5. SHADOW DATA STRUCTURE 153

Phase 1. It is useful for providing a base on which to build a non-trivial shadow
data structure. For example, the types of every function required are present.

Auburn builds a trivial shadow data structure from a signature file with:

auburn -sT (Signature Filel

For example,

auburn -sT List

generates a trivial shadow data structure in the file List-Shadow. hs.

The generation of a trivial shadow data structure is quite straightforward, so

we do not give any implementation details here.

6.5.2 Size-Based Shadow Data Structure

A size-based shadow data structure stores the size of a version in its shadow.
This size is then used: (1) to guard against undefined applications; (2) to phase

versions into those no larger than a given size, and those larger; and (3) to

calculate the average and standard deviation of the size of every version across

all mutations and observations. Example 3.27 is an instance of such a shadow
data structure.

Auburn can only guess at a size-based shadow data structure, using the types

of the ADT operations, as given by the signature. For most of the common

ADTs Auburn guesses correctly: queues, lists, random-access sequences, catenable

sequences, and heaps. However, some ADTs require a more sophisticated shadow

data structure, for example, sets and finite maps (the size of a set varies according

to which element is added or removed, and this is not captured by the type of an

operation).

Auburn sets the size of an unevaluated version argument to 0, on the basis

that none of the elements of an unevaluated version are examined.
Auburn guesses at a size-based shadow data structure by using the signature

file with:

auburn -sS ISignature Filel

For example, using the signature List. sig of Figure 6.3,

154 CHAPTER 6. AUBURN: BENCIMIARKING TOOL

auburn -sS List

guesses (correctly) at a size-based shadow data structure for lists, and places it

in the file List-Shadow. hs.

Guessing Size-Based Shadow Data Structures

The method for guessing the definitions of the shadow operations and the guards

of a size-based shadow data structure is tailored for the Simple ADTS that can

be shadowed by size. The phasing and the shadow profiling remain constant for

every ADT-for further details of these, see Example 3.27.

Consider the following Simple ADTS: sequences (with or without access to

front or rear, random access, and catenation), heaps, sets, finite maps (with fixed

key type to make the ADT simple), and bags. Of these, sets, finite maps, and bags

cannot be shadowed by size. Of the rest, all have their size-based shadow data

structure guessed correctly by Auburn'. Table 6.2 shows the desired definitions

of the shadow operations of all these ADTS. Table 6.3 condenses these definitions

into rules for Auburn to use. Table 6.4 shows the desired definitions of guards

of the same ADTS. Table 6.5 condenses these definitions into rules for Auburn to

use.
For example, for the signature of Figure 6.3, Auburn defines the type of

shadows with

data Shadow = Shadow fsize :: Intl

and defines the shadow of the cons operation as

cons-Shadow :: Int -> Shadow -> Shadow

cons-Shadow A (Shadow fsize=sO)) = Shadow fsize=sO+ll

and defines the guard of the head operation using

head-Guard :: Shadow -> Bool

head-Guard (Shadow fsize=sOD = sO>O

'It may be possible to form an ADT signature that models a sequence or a heap in a way

that makes Auburn guess incorrectly, but that is not the case for the ADT signatures given in

this thesis.

6.6. DUG EVALUATOR 155

and defines the guard of the cons operation using

cons-Guard :: Shadow -> [IntSubset]

cons-Guard (Shadow Isize=sOD = [Pool]

Note that Auburn uses Pool instead of All to select an argument where there

are no restrictions. This enables the user to control Pool arguments with the

pool size (see Section 4.1.1).

6.6 DUG Evaluator

Auburn can generate a DUG evaluator specific to an ADT and an implementation

of that ADT.

auburn -e jImplementation Namel ISignature Filel

For example,

auburn -e NaiveList List

produces a DUG evaluator in the file List-Eval-NaiveList. hs importing the

module NaiveList which should implement the ADT whose signature is given in

List. sig.
The DUG evaluator takes two arguments: the name of the DUG file to evaluate,

and the number of internal repetitions of this evaluation (useful for increasing the

time of evaluation to a measurable size).

Sig -Eval-Implementation
IDUG file} JNo. of Repetitions}

For example,

List -Eval-NaiveLi st example. dug 10

evaluates the DUG exaraple. dug 10 times using the implementation NaiveList.

As Section 4.3.2 and Section 6.1 mention, the overhead of a DUG evaluator
implemented entirely in Haskell can sometimes be unacceptable. Moving the

algorithm into C and calling the Haskell ADT operations from within C reduces

this overhead significantly. The C routines are interfaced to Haskell using Green

156 CHAPTER 6. AUBURN. BENCHMARKING TOOL

Operation No. of Arguments Result of

Ta a Int Shadow Operation

empty 0 0 0 0

singleton 0 0 1 1

tail/ init / deleteMin 1 0 0 SO-1

update 1 1 1 $0

4i-/merge 2 0 0 S0+Sj

consIsnoclinsert 1 10 1 S,, +l

Table 6.2: Shadow operations of simple ADTS that can be shadowed by size.

shadow operation takes shadow arguments so, si, ---, Sk-

No. of Arguments Condition Result of
Ta a Int Shadow Operation

0 M n n

1 M 0 30-1

I
IM I n_ n=OVm>O so +... + SI-I

I IM In
n>OAm=O so+... +si-, +n

Table 6.3: Rules for guessing the result of a size-based shadow

operation. A shadow operation takes shadow arguments so, sl, ... ' Sk-

6.6. DUG EVALUATOR

Operation No. of Arguments Type of Result of

Ta a Int Result Guard

tail/ init/ deleteMin 1 0 0 Ta so >0

head/findMin 1 0 0 a so >0

size 1 0 0 Int Tru e

isEmpty 1 0 0 Bool Tru e

empty 0 0 0 Ta True

4-/-/merge 2 0 0 Ta Tru e

singleton 0 0 1 Ta [Pool]

consl snocl insert 1 0 1 Ta [Pool]

lookup 1 1 0 a [0-80 - 11

update 1 1 1 Ta [Pool, O.. so - 1]

157

Table 6.4: Guards for simple ADTS that can be shadowed by size. A guard takes

arguments so, sl, ...,
Sk-

No. of Arguments Type of Result of Guard

Ta a Int Result

1 0 0 Taora so >0
1 0 0 Any True

I M n Any Replace a with Pool

and Int with O.. so -1
Table 6.5: Rules for guessing the result of a guard using size-based shadows. A

guard takes arguments so, si, ---I Sk-

158 CHAPTER 6. AUBURN. BENCIIIIIARKING TOOL

Card [43], extended to allow C to call Haskell (included with the nlic13 compiler
[53)). Supplying the flag -G informs Auburn to use Green Card in creating the

DUG evaluator. For example,

auburn -G -e NaiveList List

produces a DUG evaluator in the file List-Eval-NaiveList. gc importing the

Haskell module NaiveList, and the C library Auburn-evaldug. c.

Sections 4.1.2 and 4.3.2 detail the implementation of a DUG e,. -aluator.

6.7 Null Implementation

Auburn can generate a null implementation of an ADT.

auburn -n ISignature File}

A null implementation performs very little work but provides operations of the

correct type. Evaluating a DUG with the null implementation gives an estimate

of the overhead of DUG evaluation, allowing a better estimate of the actual work

done by the operations of other implementations.

For example,

auburn -n List

produces a null implementation in the file List-Null. hs of the ADT whose sig-

nature is in the file List. sig.

A null implementation defines the exported type constructor as a nullary data

constructor Null. For example, for the type constructor List of Figure 6.3, the

null implementation defines

data List a= Null

Each operation ignores its arguments but returns some value of tile correct type.

But what value do we return of type a? We avoid this problem by noting that

as we only use the null implementation to evaluate DUCS With the type variable

a instantiated to Int, we define operations over versions of type T Int.

6.8. DUG EXTRACTION 159

For List Int the null implementation returns Null, for Int it returns 7, and
for Bool it returns True'. For example, the lookup operation is implemented by

lookup :: List Int --+ Int -+ Int

lookup --=

As the bookkeeping in DUG evaluation is strict (see Section 4.3.2), evaluating a

DUG with this very lazy implementation will force all of the bookkeeping without

performing much more work, giving a good estimate of the work done by the

bookkeeping.

6.8 DUG Extraction

Auburn can transform an application that imports an implementation of an ADT

into a similar application that performs the same work whilst also producing a

DUG of the way it uses the ADT implementation.

auburn -x jImplementation File} (Main File} ISignature Filej

Auburn wraps the implementation module and the main module to produce the

DUG as a side-effect (see Sections 4.2.1 and 4.3.3).

But how do we implement this? The application may consist of many modules,

some of which will import the ADT. We do not want to change every such

module, so we must keep the same module name for the wrapped implementation.

As Haskell compilers use the convention that a module appears in a file of the

same name, we must replace the existing implementation module with the new

wrapped module. Instead of trying to insert the new definitions into the old

implementation module, we rename the old implementation module, place it in

a different file, and import it. The import is qualified to avoid name clashes.
Similarly, instead of trying to insert the new definition of main into the main

file, we import the old definition into a new main file. In order to import the

old main module into the wrapped main module, we must rename the main
2Returning 0 for Int may invoke an optimisation in the compiler, reducing the bookkeeping

work for the null implementation. However, we wish to use the bookkeeping of the null imple-

mentation as an estimate of the bookkeeping of other implementations. Similarly, we do not

return False for Bool, since f romEnum evaluates this to 0.

160 CHAPTER 6. AUBURN: BENCHMARKING TOOL

module from Main. As Haskell also has the convention that the Main module

may be implicitly defined in a file of any name, we may need to add a module
declaration and an export declaration, exporting the old main function. The new

main module imports the old main module, qualified to avoid name clashes.
The wrapped modules files use Green Card. They import C functions frorn

an Auburn library Auburn-extractdug. c. Auburn creates backups of the re-

named files to prevent accidental loss and to aid recovery. Auburn can revert the

implementation and main files to the original versions with:

auburn -u jImplementation File} lHain File) {Signature File)

For example,

auburn -x NaiveList mean List

moves NaiveList. hs to Old-NaiveList. hs, and mean. hs to Old-mean. hs.

The module NaiveList is an implementation of an ADT whose signature is

in List. sig. The main module in mean. hs defines an application that im-

ports this implementation. Auburn also creates the files NaiveList. gc an d

mean. gc and creates backups of the old files at auburn-backup. NaiveList. hs

and auburn-backup. mean. hs. The new main file mean. gc defines an imple-

mentation that imports the new implementation NaiveList. gc. These compile

and link with the C file Auburn-extractdug. c, the files Old-NaiveList. hs and

Old-mean. hs, and with any other files the old main file imported, to produce a

DUG-extracting executable mean. This runs as before, but also produces a DUG

in the file app. dug. Also,

auburn -u NaiveList mean List

removes the files NaiveList. gc and mean. gc, and restores the files NaiveList. hs

and mean. hs from their backups.

6.9 Automation

Auburn provides tools to automate most of the work involved in a benclimarking

experiment.

6.9. A UTOMATION

1. Making the executables: auburnExp

2. Making DUGS: makeDugs

3. Timing the evaluations Of DUGs: evalDugs

4. Gathering the times of evaluations: processTimes

5. Cleaning up after Tools 2,3, and 4: cleanDugs

6. Tracing bugs in ADT implementations

7. Gathering benchmarking results

161

Tools 2 through 5 are used by Tools 6 and 7. The implementation of Tools 2

through 5 is straightforward. The user will probably not need to use them directly,

but instead use Tools 1,6, and 7. For further details of Tools 2 through 5, see
Appendix C.

Tool 1, auburnExp, is quite simple. It creates a makefile, for use with the

GNU make utility [16]. This automates the building, compiling, and linking of

all the executables needed by the other tools.

Tools 6 and 7 are implemented within the same executable, which we shall

now describe in detail.

6.9.1 Benchmarker

Auburn can generate a benchmarker specific to an ADT and some of its imple-

mentations with the following:

auburn -b jImplementation Modules} ISignature File}

For example,

auburn -b NaiveList AVLList List

creates a benchmarker in the file List-Bmark. hs.

The benchmarker serves two purposes: (1) tracing bugs in ADT implementa-

tions, and (2) gathering benchmarking results.

162 CHAPTER 6. AUBURN: BEINCHMARKING TOOL

Tracing Bugs

A benchmarker can search for the smallest DUG that causes an error when eval-

uated by the ADT implementations. A DUG causes an error when any implemen-

tation fails to evaluate the DUG-for example, because of a run-time error-or if

any two implementations return different checksums.

Sig-Bmark -q ISeed}

The benchmarker uses the seed to direct the random search. The benchmarker

generates a series Of DUGS. If a DUG causes an error, the benchmarker reports

the error and the DUG, and then generates a smaller DUG. It is possible that the

benchmarker generates a DUG that is smaller than the smallest DUG that causes

an error. Therefore, if a DUG does not cause an error, the benchmarker then

generates a larger DUG.

The benchmarker displays a DUG as a Haskell program using the DUG manager

with the flags -t and -H-see Section 6.4.3. This program does not require a DUG

file to read, as the DUG is contained within the program. Hence it may be copied

into a file, and compiled on its own, perhaps with the tracing facility of the

compiler turned on.

If a DUG causes an error, and it is the smallest Such DUG found so far, this

fact is also reported. This allows the user to let the benchmarker run for as long

as they like, scan the output for the last report of a smallest DUG, and hence find

the smallest erroneous DUG found overall. A neater solution using some forrn

of interrupt signal handling would be preferable, but Haskell does not support

exception handling.

See Section 7.1.2 for an example of using a benchmarker to find bugs.

Gathering Benchmarking Results

A benchmarker can compute, gather, and analyse benchmarking results; that is,

it can measure how well different ADT implementations perform across different

datatype usages. Specifically, the benchmarker provides the following function-

ality:

6.9. A UTOMATION 163

* Generate a set Of DUGS with randomly chosen profiles, measure the perfor-

mance of each ADT implementation evaluating each DUG, and record the

results as a sample.

ISig}-Bmark -g fSeed} -o ISample Filel

The seed is used to direct the choice of profiles and the generation of DUGS.

* Induce a decision tree from a sample, perhaps using one of two pruning

techniques.

ISig}-Bmark -s fSample File} -i [-r I -P] -w (Tree File}

The flag -r requests reduced-error pruning whereas the flag -P requests

very pessimistic pruning-see Section 5.4.2.

* Report the accuracy of a given decision tree on a given sample.

ISig}-Bmark -s ISample Filej -t ITree Filel -c fReport File}

e Use a decision tree to decide which implementation suits a given profile.

ISig}-Bmark -t ITree File} -d JProfile Filej

These flags may be combined. An accuracy report may be written to standard

output using the flag -cP. Similarly modified flags (using the postfix P) exist for

reading or writing a tree or a sample from standard input or to standard output.

Random Sampling

Tracing bugs and gathering benchmarking results both require the benchmarker

to create a DUG from a randomly chosen profile. Each profile attribute is chosen

fairly from a list of about 20, with the list varying according to the attribute. Ev-

ery weight ratio component is chosen from [0,0.05,..., 1]. The mortality is chosen

from [0,10-1,10-3.71,
..., 10-1]. The PMF is chosen from [0,2-20,2-19,..., 2-2].

The POF is chosen from [0,0-05,
., 11. These lists may be changed by the user.

Auburn uses these lists by default to attempt a fair distribution of benchmarks

over the datatype usage space. The quality of "fairness" must reflect the "typical"

164 CHAPTER 6. AUBURN. BENCHAIARKING TOOL

application and therefore any such attempt is primarily guided by experience. On

this basis, we shall now attempt to justify our choice of lists.

Using a uniform distribution for each weight ratio component treats each

operation equally and in particular allows for no use of an operation. Making

a zero weight even more likely than 1 in 20 may be justified on the grounds

that applications often neglect an operation completely. The mortality and PmF

attributes should be very low. For example, for a list ADT, a mortality of 0.5

implies that, on average, a list is mutated only once before being discarded.

Similarly, a PMF of 0.5 implies that, on average, an empty list gives rise to over

1000 different lists after just 20 successive mutations. Given the need to keep

these attributes generally low, with the occasional high value, it is natural to use

an exponential scale. The POF however may take anyvalue between 0 and 1 and

so is given a uniform distribution.

The benchmarker excludes any impossible or unsuitable profiles. For exam-

ple, a profile where the mutation weights are all 0 without mortality being 1

is impossible, and a profile where the observation weights are all 0 is possible

but undesirable as it forces no work. Two other types of unsuitable profiles

are excluded by default, both relating to operations that increase or decrease

size. A profile with a greater sum of size-decreasing operation weights than size-
increasing operation weights is often impossible without persistent mutation, and
highly undesirable otherwise. A profile with all size-increasing operation weights

0 is also highly undesirable. The benchmarker excludes both of these types of

profile by default. The user may add or remove other such exclusions of profiles.
Note that, as with generating a shadow data structure, it is impossible to tell

the effect of an operation on size just from its type. Therefore, when generating a
benchmarker, Auburn guesses which operations increase size and which decrease

size, in the same manner as it does for generating a size-based shadow data

structure (see Section 6.5.2).

6.10 Summary

Auburn can generate a benchmark from a description of use and a extract a
description of use from an application, as motivated in Section 1.3. Moreover,

6.10. SUMMARY 165

Auburn can automate calls to these functions to find small benchmarks revealing
bugs in implementations and also to produce a summary, in the form of a decision

tree, of which implementation is best according to the datatype usage.
Chapter 7 gives examples of using Auburn in this way, and evaluates Auburn's

performance and accuracy.

166 CHAPTER 6. AUBURN: BENCHAIARKING TOOL

Chapter 7

Results

Chapter 6 presented a benchmarking tool, Auburn, built on Chapters 3-5. This

chapter uses Auburn and evaluates its accuracy at predicting the best data struc-

ture.

Section 7.1 uses Auburn on the data structures reviewed in Chapter 2 to

produce a summary of which data structure is best when. Section 7.2 uses sev-

eral. real applications as benchmarks to test the advice produced by Auburn in

Section 7.1. Section 7.3 examines the possible sources of inaccuracy in Auburn.

Technical Note. All benchmarks in this chapter, whether real or generated by

Auburn, are compiled using the York nhcl3 compiler [53] (release vO. 9.4), and

run in a heap of 80Mb, on an SGI Indy running IRIX 5.3. As with the remainder

of this thesis, we use Auburn version 2.3. All benchmarks are run, repeating

internally if necessary, till the total time is at least 1 second. Each benchmark is

timed just once, to an accuracy of 0.01 seconds, given as the "user time" by the

standard UNIX command time.

7.1 Benchmarking Three ADTS

In Chapter 2, we reviewed several implementations of three ADTS: queues,

random-access sequences', and heaps. We shall now use Auburn to benchmark

these implementations. There are five stages in our experiment:
'As some implementations of the random-access sequence ADT do not support the operations

snoc, last and init, we remove these operations from the ADT for the purpose of benchmarking.

168

o Set up the Auburn executables.

* Check the correctness of the implementations.

* Fine-tune the implementations.

e Run and time the implementations.

* Induce decision trees from the times.

7.1.1 Setting Up

CHAPTER 7. RESULTS

For each of the three ADTS, setting up the Auburn executables is straightforward.

* We make a directory for the ADT, say queue. Into this directory, we place

each implementation of the ADT. Auburn creates a makefile in this directory

with

auburnExp

9 We make the Auburn executables with

make SIG=Queue

which instructs Auburn to create a common signature from all implemen-

tations with names ending in Queue (see Section 6.3). When prompted to

check the guess at a size-based shadow data structure, we continue with

make

as Auburn guesses correctly for each of the three ADTS, and so we need not

modify the shadow data structure.

All of the executables needed for our experiment are now a%-ailable: the DUG

manager, the DUG evaluators, and the benchmarker. Tile benchniarker uses the

default profile space described in Section 6.9.1.

7.1. BENCHMARKING THREE ADTS

7.1.2 rJE'racing Bugs

169

Before we benchmark the implementations, we should ensure that we have coded

them correctly. Although type checking may remove most accidental errors, some

may remain. It is also possible that the implementation presented in the literature

contained a mistake. We can use Auburn to check that the implementations do

not produce any run-time errors and that they produce the same results as each

other. Section 6.9.1 describes this in further detail. For example, we may enter

a command such as

Queue-Bmark -q seed

where seed is an initial value for the pseudo-random number generator. The

benchmarker may then output a report like the following:

Tracer: Potential bug found. The following implementations:

PhysicistsQueue

either did not evaluate the dug correctly, or gave a different

checksum. to the implementation 'BankersQueuel.

Given that Physicistsqueue is the only implementation to differ in checksurn

from the implementation BankersQueue, we can be fairly sure that the error is

in PhysicistsQueue. However, a report like the following:

Tracer: Potential bug found. The following implementations:

BatchedlQueue, BatchedQueue, BootstrappedlQueue,

Bootstrapped2Queue, BootstrappedQueue, ImplicitlQueue,

Implicit2Queue, ImplicitQueue, MultiheadlQueue, MultiheadQueue,

NaiveQueue, PhysicistsQueue, RealTimeQueue

either did not evaluate the dug correctly, or gave a different

checksum to the implementation 'BankersQueuel.

tells us that the bug is probably in BankersQueue.

Along with the above report, the benchmarker outputs the DUG responsible as

a Haskell program (see Section 6.9.1). To find the bug, we choose to compile the

DUG with the York nhc13 compiler [53] with tracing enabled [50]. Note however

that we may use any other tracer or debugger, or we may simply inspect the DUG.

170

import PhysicistsQueue

import Prelude hiding (head, tail)

oso 0

nl Queue Int

ni empty

n2 isEmpty ni

ost fromEnum, n2 : osO

n3 Queue Int

n3 snoc nl 7

main = print (sum (reverse osi))

CHAPTER 7. RESULTS

Figure 7.1: The smallest DUG found by the queue benchmarker that causes an

error in the physicist's queues. The queue benchmarker searched for about an

hour. I

We let the benchmarker run for a long time, trying to find the smallest DUG

that causes an error. The smaller the DUG, the easier it is to find the bug. Out

of 23 implementations, we find 4 contain bugs. All of these bugs result from

accidental errors. We shall now describe 2 of these bugs.

Physicist's Queues

The queue benchmarker finds that the DUG of Figure 7.1 causes our first imple-

mentation of physicist's queues (see Section 2.1.5) to evaluate with a cliecksurn

different to the other queue implementations. Using the tracer of nhc13, we

quickly find that the physicist's queue is e-vraluating isEmpty nI to False. As nl

is empty, we would instead expect isEmpty ril to evraluate to True. Examining

the code for isFmpty

isEmpty (Queue (x: w) f lenF r lenR) = True

isEmpty
-=

False

7.1. BENCHMARKING THREE ADTS 171

we find that the two cases are swapped, returning True when the answer is False,

and vice versa. To fix the bug, we just swap True with False.

Bootstrapped Queues

The queue benchmarker finds a subtle bug in the bootstrapped queue implemen-

tation (see Section 2.1.7). It can only find DUGS of a reasonable size-above 20

nodes-that contain the bug. The smallest DUG that it finds on a fairly large

run, taking several hours, has 22 nodes. We omit the DUG here as it is rather
large. The DUG evaluator for bootstrapped queues reports the error tail Empty.

In order to understand the bug, it is necessary to understand part of the code

implementing bootstrapped queues. A bootstrapped queue has a front list, a

middle queue of lists, and a rear list. The code also stores the size of the front

and middle combined, and the size of the rear.

data Queue a= Empty

I Queue [a] (Queue W) Int [a] Int

So, Queue fmf mN r rN has front f, middle m, rear r, and the size of the front

and middle combined is f mN, and the size of the rear is rN.
We compile the DUG with tracing, and look for the root of the problem. The

error results from a call to tail on an empty queue. The source of the tail is

in the DUG itself. The shadow data structure prevents such a call in a DUG, and

so the error must lie in the empty queue. The tracer reveals that a call to tail

on a queue with I element in the front and 3 elements in the rear produces the

empty queue. However, the front-middle size field, fmN, is 5, where it should be

1. This error leads to the queue becoming empty.

We step back through the trace of the queue till f mN agrees with the size of

f and m combined. At this point, a list is pulled out of m. Before the pull, f mN

agrees with f and m; after the pull, it does not. Before the pull, m contains two

lists, one of 2 elements, and one of 4 elements; after the pull removes the list of

2 elements, m is empty, whereas it should contain the list of 4 elements.
Therefore, we find that fmN is correct, but that the queue has lost some

elements from its middle. Let m, be the middle queue before the pull, and M2 be

the empty middle queue after the pull. Examining the trace Of M2, we find a check

172 CHAPTER 7. RESULTS

on the size of the front and rear Of M2. The front and rear of m, each contain one

list, but the pull leaves M2 with an empty front. However, the f mN field for M2 is

1. This error leads to the queue being discarded as empty.

But why is the fmN field Of M2 not 0? Further back in the trace Of M2, we find

that the pull copies the f mN Of M2 from mi. However, after a pull, the combined

size of the front and middle of the middle should be one less. This is the bug:

The implementation of pull on a queue

Queue f (Queue mf mm mfmN mr mrN) fmN r rN

does not reduce mf mN.

7.1.3 Fine-Tuning the Implementations

When coding an implementation, there are many design decisions to make. For

example, we might have the option to use a strictness flag on an integer field.

This may make a significant difference to the performance of the implementatiom.

Auburn helps us to make such design decisions. Auburn can compare the overall,

performance of an implementation, with and without a minor modification, on a
large sample of benchmarks.

We make several minor modifications to the implementations of the three

ADTS. We use the benchmarker of each ADT to time each implementation and its

modifications over a sample of 100 benchmarks. The benchmarker can report the

overall performance of an implementation I by checking the accuracy of the tree

with a single leaf 1. A "decision tree" made from a single leaf I always chooses

I. Therefore, the accuracy of this tree reports how many times this choice is

correct-that is, how many times I is the winner-and the average ratio I to the

actual winner.
For example, to find the overall efficiency of implementation BankersQueue

on the sample sample, use

echo BankersQueue I Queue-Bmark -tP -s sample -cP

This gives the number of times BankersQueue was the best implementation,

and more importantly, the mean ratio of the time for BankersQueue compared

to the time of the best implementation. By comparing the mean ratio of an

7.1. BENCHMARKING THREE ADTS 173

Modification Description Effect on
Performance

Use?

Bankers Add strictness flags -2% x
Batched Remove reverse [x] from snoc +10% V/
Bootstrapped Merge calls to head and tail in +0% x

checkF
Implicit-1 Use TwoInTwo instead of a pair in +4% V/

the inner queue.
Implicit-2 Merge calls to head and tail in +12% 1/

tail.

Multihead Change to Okasaki's implementa- -6% x

tion.

Physicists Add strictness flags. +1% x

Table 7.1: The effect of modifications on performance of queue implementations

over a sample of 100 benchmarks.

implementation with and without a modification, we have an estimate of the

overall effect of the modification.
Each implementation may have several or no modifications. We choose the

best combination of modifications for each implementation. Tables 7.1,7.2 and 7.3

show the results of the fine-tuning. The effect on performance is calculated by

Average ratio after modification
Average ratio before modification

100%

We decide to use the modification if the effect on performance is significant-

above 3%. Note that the benchmarker uses the default profile space described in

Section 6.9.1. Appendix B details each modification in full.

An interesting point to note from the results, is that adding strictness flags

makes very little difference.

7.1.4 Inducing Decision M-ees

For each ADT, we use the benchmarker to time the implementations chosen from

the fine-tuning of Section 7.1.3. We have several options for inducing the decision

174 CHAPTER 7. RESULTS

Modification Description Effect on
Performance

Use?

AVL-l Replace < and == with compare in -21% x

lookup and update.

AVL-2 Replace < and == with compare in -21% x

lookup and update, with LT first.

AVL-3 Place < first in lookup and +1% x

update.
AVL-4 Split case on a pair into two, in +21% V/

cons and tail.

Adams Maintain the balance invariant -1% x

perfectly.

Braun Merge calls to head and tail in +4%

tail.

Elevator-1 Change floor separation from 10 +5% x

to 3.

Elevator-2 Change floor separation from 10 +13% V,
to 5.

Elevator-3 Change floor separation from 10 -32% x

to 25.

SkewBin Add strictness flags. +1% x

ThreadSkewBin Add separate constructor for rank +63%

1 elements.

Table 7.2: The effect of modifications on performance of random-access sequence

implementations over a sample of 100 benchmarks.

7.1. BENCHMARKING THREE ADTS 175

Modification Description Effect on
Performance

Use?

Binomial Add strictness flags. -2% x

BootSkewBin Add strictness flags. +0% x

Leftist Specialise insert. +19% V/
Pairing-1 Replace <= with < in merge. -10% x

Pairing-2 Specialise insert. +8% V/
SkewBin Add strictness flags. -1% x

Table 7.3: The effect of modifications on performance of heap implementations

over a sample of 100 benchmarks.

tree. Do we prune the tree? If so, using which method? We want the tree that

most accurately represents the efficiencies of the implementations according to

datatype usage. But how do we know which tree is the best? We want to make

a general recommendation, for any ADT.

Choosing the Best Decision Tree

One way to estimate the accuracy of a tree is through collecting an additional

sample of benchmarking results, and examining the accuracy of each tree on the

unseen results. How large a sample do we collect for the induction of decision

trees, and how large an additional sample for testing these trees? We decide to

take as large a sample as we can fit in an overnight batch for the induction of

decision trees, on the basis that a user will not want to take much longer than

this. We take a much larger sample for the purpose of testing these trees, on the

basis that we want to test the trees as much as possible.

We take a training sample of 200 DUGS for each ADT from which to induce

the decision trees. These samples take about 10 hours to collect in total. We

take a further test sample of 500 DUGS for each ADT with which to test the trees.

These samples take about 25 hours to collect in total. For example, the following

command:

Queue-Bmark -g seed -n 200 -o final. sample

176 CHAPTER 7. RESULTS

generates a sample of size 200, writing the sample to the file f inal. sample. We

use a heap of 80Mb for the DUG evaluator compiled using nhc13, which takes

heap flags within +RTS and -RTS flags, and 'we pass these flags as follows:

Queue-Bmark -g seed -n 200 -o final. sample

-e 11-r 1 -R 5 -o V'+RTS -H80M -RTSVIII

The flags -r 1 -R 5 are the default flags passed to the tool evalDugs describing

how to run the DUG evaluator-for further details see Appendix C. All other

settings are the default, including using the default profile space described in

Section 6.9.1.

From each training sample, we induce two trees: one using the gain criterion

and the other using the gain ratio criterion. As well as keeping these trees, we

also prune each of them using both reduced error pruning and very pessimistic

pruning. For example, the following command:

Queue-Bmark -s final. sample -i -r -G -w re. tree
'! I

induces a tree from the sample in f inal - sample using the gain criterion, prunes

the tree using the reduced error method, and writes the tree to re. tree.

For each of the three ADTS, Table 7.4 shows the accuracy of each of the six ,

resulting trees applied to the test sample.

Recommendation for the Most Accurate Tree. We want to make a general

recommendation for which tree to use when we want the best prediction of tile

most efficient competing implementation.

For queues and heaps, the accuracy of the original tree is about the same as the

accuracy of either of the pruned trees. However, for random-access sequences, the

mean ratio of the trees pruned using the reduced error method is significantly
higher than the original trees or the trees pruned using the very pessimistic

method. Further, the mean ratio is lower when using the gain ratio criterion.
There is little to choose between the accuracy of the original tree and the tree

pruned using the very pessimistic method, but the latter is smaller. Therefore,

based on this evidence, to produce an accurate tree, we recommend using the

gain ratio criterion, followed by pruning using the very pessimistic method.

7.1. BENCHNIARKING THREE ADTS

ADT Pruning Criterion Size Success

Rate (%)

Mean

Ratio

None Gain 25 1 83 1.023

Gain Ratio 29 79 1.026

Queue Reduced Gain 5 86 1.011

Error Gain Ratio 61 80 1.023

Very Gain 16 87 1.010

Pessimistic Gain Ratio 17 84 1.015

None Gain 25 79 1.174

Gain Ratio 28 77 1.099

RASeq Reduced Gain 6 75 1.506

Error Gain Ratio 9 75 1.207

Very Gain 23 79 1.172

Pessimistic Gain Ratio 22 78 1.093

None Gain 19 83 1.054

Gain Ratio 23 84 1.047

Heap Reduced Gain 4 77 1.059

Error Gain Ratio 5 84 1.035

Very Gain 17 83 1.054

Pessimistic Gain Ratio 17 85 1.045

177

Table 7.4: The accuracy of various trees applied to the corresponding test sample.

The size of a tree is the number of branch nodes. A success is a correct prediction

of the winning implementation. The mean ratio is calculated from the ratios of

the times taken by the predictions to the times taken by the winners.

178 CHAPTER 7. RESULTS

Recommendation for the Smallest Accurate I)ree. Although the accuracy

of a tree is very important, it is also important for the tree to be small. The

smaller the tree, the easier it is to analyse the tree, matching the design of the

implementation to the resulting empirical performance. Therefore we also want to

make a general recommendation for which tree to use when, %ve want a prediction
from a small but accurate tree.

In every case, pruning using the reduced error method produces the smallest

trees. Of these trees, using the gain criterion produces a tree that is a little

smaller. Therefore, to produce a small but fairly accurate tree, we recommend

using the gain criterion, followed by pruning using the reduced error method.

Benefits of Using Trees

How much do we gain from choosing an implementation according to the datatype

usage? How does using a tree compare with choosing the same implementation

regardless of datatype usage? Tables 7.5,7.6 and 7.7 show the average ratio of

each implementation over the corresponding training samples.

For queues, the Batched implementation wins most often on the test sample

with a very good mean ratio of 1.02. So in the case of queues, there is little to

gain from choosing the implementation according to datatype usage-one should
just choose the Batched implementation regardless. However, the most accurate

tree still manages to improve on this uniform selection with a mean ratio of 1.01,

as does the smallest tree with a mean ratio of 1.011.

Similarly, for heaps, the Pairing implementation wins most often on the test

sample with a very good mean ratio of 1.08. So, as with queues, choosing the

Pairing implementation regardless of datatype usage is close to the optimal choice.
Still, the most accurate tree improves on this with a mean ratio of 1.035, as does

the smallest tree with a mean ratio of 1.059.

However, for random-access sequences, the results are more mixed. The "L

and ThreadSkewBin implementations come first most often, but the "L imple-

mentation has a better overall performance, and the Elevator implementation has

the best overall performance with a mean ratio of 2.12. The most accurate tree

manages a mean ratio of 1.093, and the smallest tree manages a mean ratio of

7.1. BENCHMARKING THREE ADTS 179

Implementation Training Sample Test Sample

Winner (%) Mean Ratio Winner (%) Mean Ratio

Bankers 0 1.70 0 1.72

Batched 72 1.02 72 1.02

Bootstrapped 0 1.99 0 2.00

Implicit 16 1.16 17 1.18

Multihead 0 2.30 0 2.33

Naive 3 16.11 3 19.15

Physicists 0 2.12 0 2.14

RealTime 10 1.19 9 1.22

Table 7.5: Average ratio of the time taken by each queue implementation com-

pared to the winner over the training sample of 200 benchmarks and the test

sample of 500 benchmarks.

Implementation 1hining Sample Test Sample

Winner (%) Mean Ratio Winner (%) Mean Ratio

AVL 38 1.69 36 2.21

Adams 0 4.18 0 6.05

Braun 0 5.24 0 5.67

Elevator 10 2.00 8 2.12

Naive 6 7.88 10 7.54

SkewBin 0 2.54 0 2.69

Slowdown 0 2.86 0 3.26

ThreadSkewBin 46 2.95 46 8.09

Table 7.6: Average ratio of the time taken by each random-access sequence im-

plementation compared to the winner over training sample of 200 benchmarks

and the test sample of 500 benchmarks.

180

size <= 8.69

CHAPTER 7. RESULTS

Yes \ No

Batched (27/12)

tail <= 0.122)(tail <-- 0.29

Yes I No I Yes

Implicit(67/9)) (mortality<-- 0.016

No

RealTime (38/7)

Yes \ No

tail<=0.267' (Batched(156/28)

Yes No

Batched (201/7) RealTime (11/8)

Figure 7.2: The tree induced using the gain criterion on the training sample for

the queue ADT, pruned using the reduced error method.

1.506, each much better than the best uniform choice of a single implementation.

Therefore, based on these results, the best implementation of queues is

Batched, and the best implementation of heaps is Pairing, regardless of how

these data structures are used. However, for random-access sequences, the best

implementation does vary according to how the data structure is used. These

results are discussed below in greater detail.

Results

Using the recommendations above for accurate and small trees, the accurate trees

are too large to show and discuss. However, Figures 7.2,7.3 and 7.4 show the

smallest trees. Each leaf is annotated with (NIE), where N is the number of
benchmarks in the test sample covered by this leaf, and E is the number of

misclassifications by this leaf. A benchmarker produces an accuracy report (see

;
1. BENCHMARKING THREE ADTS

size <= 97.728

Yes No

lookup <= 0.079 AVL (139/32)

Yes No

Naive (87/46) update <= 0.08

Yes No

ThreadSkewBin (65/1) size <= 28.014

Yes No

tail <= 0.071

Yes No

AVL (27/7) cons <= 0.202

Yes No

AVL (18/2) Elevator (21/16)

181

Figure 7.3: The tree induced using the gain criterion on the training sample for

the random-access sequence ADT, pruned using the reduced error method.

182 CHAPTER 7. RESULTS

Implementation Training Sample Test Sample

Winner (%) Mean Ratio, Winner (%) Mean Ratio

BinomialHeap 0 4.95 0 4.56

BootSkewBinHeap 0 4.64 0 4.52

Leftistfleap 0 1.99 0 1.98

NaiveHeap 26 1.30 20 1.28

PairingHeap 74 1.09 80 1.08

SkewBinHeap 0 5.40 0 5.01

SplayHeap 0 8.35 0 7.08

Table 7.7: Average ratio of the time taken by each heap implementation compared

to the winner over training sample of 200 benchmarks and the test sample of 500

benchmarks.

Figure 7.4: The tree induced using the gain criterion on the training sample for

the heap ADT, pruned using the reduced error method.

7.1. BENCHMARKING THREE ADTS 183

Section 6.9.1) giving these annotations, which help to interpret the trees. The

significance of a leaf can be estimated from the number and proportion of winning
implementations that it classifies correctly.

For example, the deeper of the two leaves labelled with the RealTime queue
implementation in Figure 7.2 only classifies 3 of the 11 winning implementations

correctly. Hence this is not a very significant leaf. On the other hand, the top-

most leaf labelled with the ThreadSkewBin random-access sequence implementa-

tion in Figure 7.3 classifies 64 out of 65 winning implementations correctly. Hence

this is a very reliable leaf. Therefore it is a very significant leaf in the analysis of

the tree. Recall that each test sample contains 500 different benchmarks.

Analysis of the Queue Decision Tree. Looking at Figure 7.2, there are

only two significant cases where the Batched implementation consistently loses

to another implementation:

4P Small size, fair tail weight (Implicit). This may be the result of the Im-

plicit implementation evaluating all operations on small queues without

additional function calls. The Batched implementation on the other hand,

must always make at least one extra function call in evaluating tail on a

queue of any size.

Fair size, large tail weight (RealTime). It is not clear why the RealTime

implementation should beat the Batched implementation so consistently for

this region of the profile space. Okasaki writes that the RealTime imple-

mentation is "the fastest known real-time implementation when used per-

sistently". However, his comment concerns an implementation in a strict
language (SML) where explicit laziness is costly, and it is not clear if the

same applies to an implementation in Haskell. To examine the effect of

persistence, we check the accuracy of a tree that splits up the test sample

according to the PMF. Table 7.8 shows the results. It is clear from these

results that the PMF does not have a significant role to play in deciding

which implementation wins. Using POF instead Of PMF produces similar

results. Therefore, this case remains unexplained.

184 CHAPTER 7. RESULTS

PMF Winner (%)

RealTime Batched

0< PMF < 0.0001 10 63

0.0001 < PMF < 0.001 12 69

0.001 < PMF < 0.01 5 79

0.01 < PMF <1 9 67

Table 7.8: The effect of persistence on the performance of the RealTime and

Batched queue implementations on the test sample.

Analysis of the Random-Access Sequence Decision Tree. Almost all of

the leaves in Figure 7.3 are significant-that is, almost all of them have a low

proportion of errors. The Elevator leaf has a high proportion of errors, and the

remaining leaves on the subtree from the test tail < 0.071 show AVL to win over

half of the cases (36 out of 66). We consider the other leaves in turn.

o Large size (AVL). The AVL and Adams implementations are the most tree-

like implementations, which gain strength as the size increases, because

of their logarithmic complexity. The "L implementation benefits from

balancing specialised to adding or removing an element at the left-that is,

from cons or taiL It is not clear if the Adams implementation could use a
similar improvement.

* Fair size, small lookup weight (Naive). This is a little surprising. If few

update operations are done, then wewould expect the Naive implementation

to win. But what if there are quite a lot of update operations? AVe might

expect the Naive implementation to lose. The leaf's annotation does show

quite a few errors, but there is another reason: An update will only be fully

evaluated if it is forced. The only observations in the absence of lookup

are head and isEmpty, and because the Naive implementation is so lazy,

these observers will only force updates on the first element. The other
implementations are not as lazy, and so do not benefit as much. The issue

of strictness is examined in more detail in Section 7.3.3.

7.1. BENCHMARKING THREE ADTS 185

Fair size, fair lookup weight, small update weight (ThreadSkewBin). The

annotation shows this leaf is very reliable, with 64 out of the 65 cases

correct. The ThreadSkewBin implementation deliberately implements an

efficient lookup operation, at the expense of an inefficient update operation.

Small size, fair lookup weight, fair update weight (ThreadSkewBin). Al-

though ThreadSkewBin implements update to take O(i) time, where i is

the index of the element updated, for small lists, this is not very different

from the logarithmic complexity of the "L implementation. The simplic-
ity of the ThreadSkewBin implementation makes it win on small lists, even

with many update applications.

* Fair size, fair lookup weight, fair update weight (A VL). With enough update

operations, and a reasonably sized sequence, the AVL implementation beats

the ThreadSkewBin implementation.

Analysis of the Heap Decision Tree. As with queues, Figure 7.4 shows

that a single implementation (Pairing) dominates the results. Once again, there

are only two significant cases where another implementation beats the Pairing

implementation.

9 Large PMF (Naive). More than half of the benchmarks with a large PMF

are won by the Naive implementation. Okasaki advises in [38] that Pairing

heaps are not efficient under persistent use.

Small size, but not very small size (Naive). The Naive implementation

wins for small heaps, which is typical of a naive implementation of an ADT.

Surprisingly though, the Pairing implementation wins significantly for very

small heaps. This may be the result of the newtype constructor in Naive

causing an extra function call, as compared with the Pairing implementa-

tion.

It is surprising that Splay heaps perform so poorly. We shall see in Section 7.2.1

that Splay heaps perform much better for some real benchmarks. Why do they

perform so badly under Auburn-generated benchmarks? Perhaps there is an

aspect of datatype usage that Auburn does not control but fixes in a region

186 CHAPTER 7. RESULTS

where Splay heaps perform badly. Two possible candidates include the minimum
frontier size, which affects the applications of non-unary mutators like merge,

and the pool size, which affects the number of equal elements in a heap. The

benchmarker cannot record either of these factors currently, only profile and

shadow profile attributes.

7.1.5 Summary

Given these results from Auburn, which implementation should we use for queues,

random-access sequences, and heaps? For queues, we recommend you always use
Batched queues. For random-access sequences, we make the following recommen-
dations: use AVL trees if your lists are quite large (an average length of above
100); use Naive lists if you are not doing many lookup or update operations; use
ThreadSkewBin lists if you are doing quite a few lookup operations, but not do-

ing many update operations, or if your lists are quite small (an average length of
below 30); otherwise, use AVL trees. For heaps, we recommend that you always

use Pairing heaps.

7.2 Evaluating Auburn

We use Auburn to produce advice about the choice of implementation of three

ADTS in Section 7.1.4. But how good is this advice?
Ultimately, the value of Auburn's advice lies in how well it predicts which

implementation is the best. To test this, we construct several real benchmarks-

real in that they produce useful results. We time each benchmark with each
implementation, to find which implementation really is the best. By comparing
this with Auburn's prediction, based on the profile of the benchmark, we cali

estimate Auburn's accuracy in practice.

7.2.1 Real Benchmarks

All of the benchmarks are based on either sorting a list or processing a graph.
There are four benchmarks for each ADT, and four data sets for each benchmark.

This gives a total of 16 different uses of each ADT. We describe each benchmark

7.2. EVALUATING AUBURN 187

very briefly. References to literature give further details of the algorithms, and

the source code is available from the Auburn web page [4].

Queue Benchmarks

The queue benchmarks are the hardest to find.

9 Shellsort. It is possible to implement Shell's sort [48] using queues [26].

* Breadth-First Search (M). Breadth-first search of a graph is a common

use of queues, see [11] (page 469).

Since we could find no more benchmarks, and since varying the increments used ý
by Shellsort varies how the algorithm uses the queue dramaticallY, we let three

sets of increments provide three of the four queue benchmarks.

Random-Access Sequence Benchmarks

An array is one of the most commonly used data structures, even in functional

programs, so benchmarks are not hard to find. However, we also wish to include

algorithms that use the sequences as lists, as in [33].

Bucketsort. This sort uses random-access operations heavily, see [111 (page

180).

9 Quicksort. Sorting a list using a functional implementation of Quicksort
[19] does not use any random-access operations.

Depth-First Search (DFS). Implementing a graph as a random-access list of

adjacent vertices [11] (page 465) allows any graph algorithm to use random-

access lists. We choose one of the simplest graph algorithms, depth-first

search [11] (page 477).

Kruskal's Minimum-Cost Spanning Tree (KMCST). Kruskal implements a

minimum cost spanning tree algorithm [11] (page 504) using a disjoint-set

data structure [11] (page 440) which we implement using a random-access
list.

188

Heap Benchmarks

CHAPTER 7. RESULTS

A few common algorithms use a priority queue, or a heap. Many of these however

use additional operations like decreaseKey. This operation reduces the key of any

element in the heap by a given amount. We replace this operation with an insert

of the element with a lower key, and a guard against reading the same element

more than once. This is not the most efficient implementation of decreaseKey,

but it does give us real benchmarks using heaps in a variety of ways. Very few

algorithms use the merge operation: We could find only one.

9 Heapsort. This is a simple sorting algorithm [111 (page 147).

* Mergeable Minimum-Cost Spanning Tree (MAIC). This is the only heap

benchmark to use the operation merge [11] (page 418).

* Dijkstra's Shortest Paths (DSP). We replace decreaseKey with insert as

explained above in the modified Dijkstra algorithm [11] (page 530).

* Prim's Minimum-Cost Spanning Tree (PAIC). Similarly, we replace de-

creaseKey with insert in Prim's algorithm [111 (page 505).

Results

Tables 7.9,7.10 and 7.11 give the results of running each benchmark, including:

the winning implementation; the ratio of the implementation predicted to win by

the recommended accurate tree; the ratio of the implementation predicted to win

by the recommended small but accurate tree; the ratio of the implementation

with the best overall performance in the training samples of Section 7.1.4 (see

Tables 7.5,7.6 and 7.7); and the average ratio of all implementations.

The ratios of the implementations predicted by the two trees that Auburn

produced from the training samples in Section 7.1.4 indicate Auburn's accuracy.
To aid the interpretation of this figure, the ratio of the implementation with

the best overall performance in the training samples gives the difference between

Auburn's prediction and a uniform choice made regardless of datatype usage.
Further, the average ratio of all implementations gives the difference between

Auburn's prediction and a random choice of implementation.

7.3. LOCATING INACCURACY IN AUBURN 189

For queues, the uniform choice (of Batched queues) has a very good average

ratio of 1.068, yet both of Auburn's trees predict a better implementation on

average. All three are much better than a random choice.

For random-access sequences, the uniform choice (of AVL trees) has an average

ratio of 1.837, indicating that the best implementation varies significantly across

the benchmarks, as we would expect from the results of Section 7.1.4. Both of
Auburn's predictions perform better on average than the uniform choice, and

much better than the random choice.

For heaps, like queues, the uniform choice (of Pairing heaps) has a very good

ratio of 1.022, and neither of Auburn's trees can improve on this. However,

apart from one very bad prediction (PMC benchmark on data set 3), Auburn's

predictions are still much better than a random choice.

For a discussion of the worst of Auburn's predictions, see Section 7.3.4.

Summary. The summary of Section 7.1.4 advised that we use always use
Batched queues and Pairing heaps, regardless of datatype usage, and that we use

a different random-access sequence implementation according to specific aspects

of the datatype usage. This advice gives very good results for the real bench-

marks of this section, making choices within 10% of the best implementation for

queues and heaps, and within 30% of the best implementation for random-access

sequences.

7.3 Locating Inaccuracy in Auburn

Section 7.2.1 showed that the advice of Section 7.1.4 is good, but not perfect.
What is the source of any inaccuracy in Auburn's results? What can go wrong?

Here are the main possibilities:

* The DUG does not capture datatype usage sufficiently.

* The profile of a DUG does not capture datatype usage sufficiently.
i

Strictness issues cause the work that is actually done to be less than the

work that is reportedly done.

190 CHAPTER 7. RESULTS

Benchmark

Name

Data

Set

Winning

Impn.

Acc.

Tree

Ratio

Small

Tree

Ratio

Unfm.

Ratio

Avg.

Ratio

BFS 1 Batched 1.046 1.046 1.000 1.054

BFS 2 Batched 1.000 1.000 1.000 1.052

BFS 3 Batched 1.000 1.000 1.000 1.175

BFS 4 Batched 1.000 1.000 1.000 1.060

Shellsortl 1 Implicit 1.110 1.054 1.110 1.525

Shellsortl 2 Implicit 1.098 1.040 1.098 1.805

Shellsortl 3 Implicit 1.079 1.026 1.079 4.632

Shellsortl 4 Implicit 1.080 1.025 1.080 4.961

Shellsort2 1 Implicit 1.087 1.054 1.087 1.454

Shellsort2
.2

Implicit 1.081 1.052 1.081 1.414

Shellsort2 3 Implicit 1.068 1.038 1.068 2.546

Shellsort2 4 Implicit 1.065 1.037 1.065 2.431

Shellsort3 1 Implicit 1.000 1.000 1.126 1.388

Shellsort3 2 Implicit 1.000 1.000 1.116 1.357

Shellsort3 3 Implicit 1.093 1.042 1.093 1.719

Shellsort3 4 Implicit 1.093 1.040 1.093 1.713

Average 1.009 1.028 1.068 1.955

Table 7.9: Results of running the queue benchmarks.

7.3. LOCATING INACCURACY IN AUBURN

Benchmark

Name

Data

Set

Winning

Impn.

Acc.

Tree

Ratio

Small

Tree

Ratio

Unfrn.

Ratio

Avg.

Ratio

Bucketsort 1 AVL 1.000 1.000 1.000 2.018

Bucketsort 2 AVL 1.000 1.000 1.000 2.405

Bucketsort 3 AVL 1.000 1.000 1.000 6.139

Bucketsort 4 AVL 1.000 1.000 1.000 3.186

DFS 1 AVL 1.000 1.203 1.000 1.748

DFS 2 Adams 1.002 1,002 1.002 2.316

DFS 3 AVL 1.000 1.000 1.000 3.075

DFS 4 AVL 1.000 1.000 1.000 5.992

KMC 1 ThreadSkewBin 1.000 1.000 1.181 1.404

KMC 2 ThreadSkewBin 1.000 L930 2.063 1.932

KMC 3 ThreadSkewBin 1.000 2.357 1.699 1.672

KMC 4 ThreadSkewBin 1.557 1.954 1.954 1.599

Quicksort 1 Naive 1.000 1.000 4.856 3.193

Quicksort 2 Naive 1.000 1.000 3.069 2.310

Quicksort 3 Braun 1.889 1.889 1.826 1.828

Quicksort 4 Naive 1.000 1.000 4.740 3.088

Average 1.091 1.271 1.837 2.744

191

Table 7.10: Results of running the random-access sequence benchmarks.

192 CHAPTER 7. RESULTS

Benchmark

Name

Data

Set

Winning

Impn.

Acc.

'Iýee

Ratio

Small

Tree

Ratio

Unfm.

Ratio

Avg.

Ratio

DSP 1 Pairing 1.000 1.021 1.000 1.061

DSP 2 Splay 1.028 1.106 1.028 1.086

DSP 3 Splay 1.004 1.004 1.004 1.326

DSP 4 Splay 1.012 1.040 1.012 1.067

Heapsort 1 Naive 1.009 1.009 1.009 1.343

Heapsort 2, Splay 1.077 1.077 1.077 1.798

Heapsort 3 Naive 1.008 1.008 1.008 1.387

Heapsort 4 Splay 1.171 1.171 1.171 3.371

MMC 1 Leftist 1.027 1.005 1.027 1.106

MMC 2 Pairing 1.000 1.002 1.000 1.050

MMC 3 Pairing 1.000 1.000 1.000 1.144

MMC 4 Naive 1.006 1.000 1.006 1.009

PMC 1 Pairing 1.007 1.007 1.000 1.068

PMC 2 Pairing 1.019 1.019 1.000 1.075

PMC 3 Splay 3.363 1.018 1.018 1.446

PMC 4 Pairing 1.007 1.007 1.000 1.055

Average 1.171 1.031 1.022 1.337

Table 7.11: Results of running the heap benchmarks.

7.3. LOCATING INACCURACY IN AUBURN 193

* The induction and pruning processes produce inaccurate trees.

We shall now deal with these individually in detail.

7.3.1 Insufficient DUG

We define the DUG in Chapter 3 to capture the datatype usage of a data structure
by an application. We base the whole of this thesis on this definition of a DUG.

But does it capture datatype usage sufficiently? We can test this as follows.

We take a real application or benchmark, and run it using each ADT imple-

mentation, measuring the efficiency of each. We extract the DUG from each run.

We then run a DUG evaluator on each DUG using the corresponding ADT imple-

mentation. We then compare the efficiencies of the implementations when used

by the application with the efficiencies of the implementations when used by the

DUG evaluators.

If the DUG captures all of the relevant. information for influencing the effi-

ciency of an ADT implementation, we would expect the' relative efficiencies of the

implementations to be the same. For example, the order of the implementations,

most efficient first, should be the same for the application as for the DUG eval-

uator. Further, the efficiencies should correlate linearly. Note that the relative

efficiencies need not be exactly the same, as the total amount of work done differs

between the application and the DUG evaluator. However, this is only a constant

difference, which should therefore produce a linear relationship.

We take the 12 benchmarks of Section 7.2.1 using all 4 data sets, giving 16

different uses of a data structure for each of the 3 ADTS. Ideally we would take one

DUG for each implementation, because the DUG varies between implementations

due to strictness (Section 7.3.3). However, the total number Of DUGS for each ADT

would be the number of implementations multiplied by 16, which is too many

to handle. Hence we only take a DUG from one of the implementations, and let

every implementation evaluate this representative DUG. This will not affect the

results much, as the DUGS only vary by at most 2% across implementations, and

usually not at all. Also, this simplification will more likely worsen our results

than improve them.

For each comparison of relative efficiencies of implementations, we calculate

194 CHAPTER 7. RESULTS

ADT Correlation

Worst Mean Best

Queue 0.482 0.924 1.0

RASeq 0.983 0.998 1.0

Heap -0.261 0.579 0.989

Table 7.12: Correlation coefficients for efficiencies of implementations, comparing

a benchmark with a DUG evaluator. The DUG evaluator is evaluating the DUG

extracted from the benchmark.

the correlation coefficient (as defined in Section 5.2). Table 7.12 gives these. To

aid our understanding of how good or bad a correlation coefficient is, Figure 7.5

gives graphs for a range of examples-the better the graph looks like a line, the

closer the relationship is to being linear.

From Table 7.12, we see that the queue ADT and the random-access sequence

ADT show good correlations between the behaviour of implementations when used

in an application and when used in a DUG evaluator. However, the heap ADT --
shows worse results.

The correlations for the queue ADT are mostly very good, with 70% being

above 0.99. However, there were a few low correlations. What makes these

correlations low? They all come from the same benchmark, breadth-first search.

In fact, every correlation for this benchmark is less than 0.5, regardless of the

data set used. It is not clear why the performance of the implementations differs

so much between benchmark and DUG evaluation in this case. It is possible that

there is some peculiar run-time behaviour due to garbage collection, as we find

with the Quicksort benchmark in Section 7.3.4.

For the heap ADT, the main reason for the bad results comes from the in-

ability of the DUG extraction to record the elements inserted into the heap (see

Section 4.2.1). Therefore, all elements are recorded as being 0. This affects tile

efficiency of the different implementations greatly because every element in the

heap has the same value. To test this suspicion, we replace the elements of the

extracted DUGS with random values, and re-run the experiment to obtain new

correlation coefficients. We find that the mean correlation coefficient increases

7.3. LOCATING INACCURACY IN AUBURN

X

X

Correlation coefficient = 0.482

)4

)IE

WI

X 11

zX

Correlation coefficient = 0.715

Correlation coefficient = 0.958 Correlation coefficient = 0.995

195

Figure 7.5: Examples of graphs plotting data with different correlation coeffi-

cients.

196 CHAPTER 7. RESULTS

to 0.780, significantly improving on the previous mean of 0.579. If DUG extrac-

tion could record the elements' values, we suspect the correlation would rise even
further.

7.3.2 Insufficient Profile

Just as we design the DUG to capture datatype usage, we design the profile of a

DUG to capture the most important aspects of datatype usage, where we measure

importance with regard to the effect on ADT implementation efficiency. We base

the whole of Auburn on this premise. We can test its validity as follows.

We can generate several DUGS from the same profile, thereby having similar

profiles, and compare the efficiencies of implementations evaluating the different

DUGS. If the profile of a DUG does capture datatype usage sufficiently, then the

results should be similar. However, all of the DUGs are generated using Auburn,

and so this test is rather limited in scope.

Therefore, we take the profiles Of DUGS extracted from real benchmarks, and

generate a few DUGS from each profile. We then compare the efficiencies of the

implementations at evaluating the DUGs and at running the benchmarks. We

take the same 12 benchmarks across 4 different data sets each that we used in

Section 7.3.1, giving the same 16 different uses of a data structure for each of the

3 ADTS. For each DUG extracted, we generate 3 more DUGs. Table 7.13 shows

the mean correlation coefficients.

The correlation between DUGS generated from the same profile is very high for

each ADT. However, the correlation between the benchmark and the generated

DUGS is much lower, though still quite high. This indicates that some impor-

tant aspects of datatype usage are not being carried through from a benchmark,

through a profile, into a generated DUG.

The most probable reason for this is the lack of size information. This is

captured in the shadow profile, but this does not influence the generated DUGS.

To test this, let's look at some examples of loiv correlations between benchmark

and generated DUG.

Take the Bucketsort benchmark for the random-access sequence ADT. Run-

ning on the third data set, the correlations between the benchmark and two, of

7.3. LOCATING INACCURACY IN AUBURN 197

ADT Mean Correlation

between between Overall

DUG & Benchmark DUG & DUG

Queue 0.859 0.923 0.891

RASeq 0.704 0.969 0.836

Heap 0.694 0.999 0.846

Table 7.13: Correlation coefficients for the efficiencies of implementations, com-

paring a benchmark with a DUG evaluator. The DUG evaluator is evaluating

DUGS with similar profiles to the profile of the DUG extracted from the bench-

mark. The mean correlation between the benchmark and one run of the DUG

evaluator is separated from the mean correlation between the different runs of
the DUG evaluator.

the three DUGs are very low, at -0.118 and 0.0109. The shadow profile for the

benchmark reports an average size of 667. The shadow profiles for the two DUGS

report average sizes of 12 and 15. However, the shadow profile for the third

DUG reports an average size of 88. The correlation between this DUG and the

benchmark is much higher at 0.794. Therefore, for this example at least, a higher

correlation coincides with a closer average size.

Take the Prim's minimum-cost spanning tree benchmark for the heap ADT.

Running on the third data set, the correlations between the benchmark and all

three DUGs are very low, at -0-250, -0.244 and -0.242. The average size for the
benchmark is 239. The average size for the DUGs are 14,16 and 33. Again, this

example shows low correlations for distant average sizes.

In fact, almost every low correlation coincides with a large difference in av-

erage size. To show this, Figure 7.6 plots the correlation coefficient against the

percentage size difference (calculated as the difference in size, expressed as a per-

centage of the larger size). Most of the low correlations have a high size difference,

and most of the low size differences have high correlations. From this we deduce

that an important datatype usage characteristic not caught in the profile is size.
However, there are a lot of points with large size differences and high correla-
tions, and from this we deduce that size is not always an important datatype

198

100

90

80

70

60

50

40

30

20

10

0

CHAPTER 7. RESULTS

II+

+
+++

++

++

+++
++4

+++ ++
++

++14-
+

-4

++

+

+

A-1

+T

-0.4 -0.2 0 0.2 0.4 0.6 0.8
Correlation Coefficient

Figure 7.6: Correlation coefficient for implementation efficiency plotted against
the percentage difference in size, as reported by the shadow profile.

7.3. LOCATING INACCURACY IN AUBURN 199

usage characteristic.

7.3.3 Strictness Issues

When an implementation evaluates a DUG, only the observations are demanded.

As a result, some of the generations and mutations may not be forced. This

depends on the strictness of the ADT implementation evaluating the DUG. This

discrepancy between what is reportedly evaluated (ie. the DUG) and what is

actually evaluated can cause the following crucial problem: The profile of a DUG

may no longer represent the important aspects of the actual datatype usage.

To estimate the average proportion of a DUG not evaluated, we evaluate 10

DUGS for each of the three ADTS, queue, random-access sequence, and heap, and

all of their implementations. For any DUG Do, we extract the DUG D, actually

evaluated, by transforming a DUG evaluator for DUG extraction. We then repeat

this process, obtaining D2, D3, etc. till we obtain a fixed point, that is, till

Di = Dj+j.

For each ADT, and for every combination Of DUG and implementation, we

reach a fixed point on the second iteration, that is, D, = D2-

Every Do has 1000 nodes. For queues, the mean difference in size from Do to

D, is 5 nodes, and the maximum difference is 43 nodes. For any DUG Do, each

queue implementation evaluates Do to the same degree, that is, D, is the same

across all the implementations. We can account for the differences between the

sizes of Do and D, entirely by the following two factors:

* Unless we apply an observation to the result of a mutation, the mutation

is not evaluated.

9 The empty generator takes no arguments, so the DUG extraction shares

every application of empty (see Section 4.4.3).

For random-access sequences, the mean difference in size from Do to D, is

55 nodes, and the maximum difference is 694 nodes. Apart from the two factors

given above for queues, these differences in sizes also result from an additional
factor: Consider n successive applications of cons to an empty list; if we apply
head to the result of these applications, a sufficiently lazy implementation of

200 CHAPTER 7. RESULTS

lists will only evaluate the last application of cons. For the implementations of

a random-access sequence that we consider, only the Naive implementation is

lazy enough for this factor to cause any additional difference. Most of the large

differences in size comes from the two factors listed above for queues.

For heaps, the mean difference in size from Do to D, is 37 nodes, and the

maximum difference is 160 nodes. We can account for these differences in the

same manner as random-access sequences, except that DUG extraction does not

share every application of the empty generator. This results from the Ord context

on empty. The context makes the DUG evaluator repeatedly e%-aluate empty

applications.

Comparing the profile of Do with the profile of DI, averaging across all of
the DUGS of the three ADTS, each of the weights differ by less than 0.01, the

mortality differs by about 0.05, the PMF differs by about 0.01, and the POF

differs by about 0.35. So only the POF differs greatly. This is because neither

DUG evaluation nor DUG extraction preserve the order of evaluation of mutations,

only the order of evaluation of observations; DUG evaluation cannot enforce the

order of mutations because of the privacy of the ADT framework combined with

laziness (see Section 3.2.1); DUG extraction changes the order of mutations to fit

the definition of a DUG (see Section 4.3.3).

What these experiments do not reveal, is how the degree of evaluation of indi-

vidual nodes differs across implementations. For example, the Naive implementa-

tion of random-access sequences is lazy enough not to evaluate fully applications

of update, unless an application of lookup or head demands it. This causes a

surprising result in the analysis of the random-access sequence decision tree-see

Section 7.1.4.

7.3.4 Inaccurate '11-ees

Some of Auburn's predictions of the best implementations for the real benchmarks

of Section 7.2.1 are quite inaccurate. Is there any reason for these inaccuracies

specific to the induction or pruning of trees?

Consider the predictions for the implementations of random-access

sequences-see Table 7.10. The small tree predicts the winning impleinenta-

7.3. LOCATING INACCURACY IN AUBURN 201

tion for 10 out of the 16 combinations of benchmark and data set. For the KMC

benchmark however, it predicts the wrong implementation for three out of the

four data sets. Looking at the profile of the KMC benchmark running on data

set three, we find

update = 0, lookup = 0.046, size = 63

The small tree for random-access sequences in Figure 7.3 predicts the Naive

implementation as the winner for this profile. This prediction would probably
be correct for a smaller size, or a smaller lookup weight, but this detail has

been pruned out of the tree. The most likely deciding factor between Naive and
ThreadSkewBin is the combination of lookup and size. A more accurate tree

of the same size might be obtained if the decision tree could employ tests on

arithmetic combinations of attributes. For example, lookup * size < 1. However,

as Quinlan points out in Section 10.2 of [46], introducing the possibility of such

tests can slow down the process of induction by an order of magnitude.
For another example of the need for combinations of attributes, consider the

DFS benchmark running on data set 1. The profile for this run shows

update = 0.469, lookup = 0.531, size =9

The small tree for random-access sequences in Figure 7.3 predicts the

ThreadSkewBin implementation as the winner for this profile. Again, the most
likely deciding factor between the "L and ThreadSkewBin implementations for

this region of the profile space is the combination of update and size. For any of

the other data sets, the size is above the 28.014 used in a test in the small tree,

and the tree correctly predicts "L as the winner. This test is accurate so long

as update is not very high, as it is with the profile above. However, again, this

detail has been pruned out of the tree. A more accurate test might be something
like update * size < 5.

There are only two other bad predictions by Auburn: the PMC benchmark

running on data set 3, and the Quicksort benchmark running on data set 3. The

bad prediction for the PMC benchmark came from using the recommended ac-

curate tree. This tree is too large to analyse (with 17 tests), and so we do not
discuss this prediction. The bad prediction for the Quicksort benchmark reflects

202 CHAPTER 7. RESULTS

Sampling Time (s)

Interval (s) Naive Braun

360 249 243

60 196 240

10 100 1
243

Table 7.14: Times taken to run the Quicksort benchmark using the Naive and
Braun random-access sequence implementations. The benchmark was compiled
for heap profiling, and run using different heap sampling intervals. The heap size
is set at 80Mb, and a constructor profile is requested.

a very pathological result: For a benchmark with no random-access operations,

the Braun tree is almost twice as fast as the Naive list! After compiling the

benchmark with heap profiling, running the benchmark for each implementation

with different sampling rates reveals some odd behaviour. From Table 7.14, we

see that for a large sampling interval, the Braun tree is faster. As the sampling

interval decreases, the Braun time remains fixed, but the Naive time reduces
dramatically. When the run-time system takes a sample of the heap, it also per-
forms a garbage collection. Therefore, as the heap sampling interval decreases,

more garbage collections happen. In the original run of the benchmark without

profiling, no garbage collections happened at all when using the Naive implemen-

tation. Given this, the most probable explanation is that without many garbage

collections, the Naive implementation suffers from some space problem. This

result is peculiar to the compiler nhc13. Using the compiler IIBC [18], Naive is

much faster than Braun, regardless of how many garbage collections happen, as

expected.

7.4 Summary

For several competing implementations of three ADTS, we have used Auburn to

check for their correctness, to fine-tune the code, and to give advice on when to

use which, according to the datatype usage. The user of Auburn has to do very
little to achieve all this, as most of it is automated.

7.4. SUMMARY 203

Furthermore, we have found Auburn's advice to be quite good when applied

to real benchmarks, making choices within 10% of the best implementation for

queues and heaps, and within 30% of the best implementation for random-access

sequences. We have also examined possible sources of inaccuracy in Auburn's

advice, and identified the main problems: the inability Of DUG extraction to

record the values of type a (where the type of a version is T a), the lack of
information on the degree of evaluation of individual applications of operations,

and the lack of information about the space behaviour of a benchmark.

204 CHAPTER 7. RESULTS

Chapter 8

Conclusions

In Chapter 1, we noted that the empirical performance of functional data struc-
tures has been neglected in the existing literature. From this we decided to the

develop the theory and practice of benchmarking functional data structures. We

shall now summarise the progress of this thesis towards this goal.

8.1 Benchmarking Theory

There is no previous literature on how to benchmark functional data structures
in a structured manner. Neither is there any attempt to define "the use of a data

structure", despite its importance in the efficiency of data structures.

In Chapter 3, we have presented a formally defined model, a DUG, to capture
how an application uses a data structure. Chapter 3 also defined the profile of a

DUG, summarising the most importance aspects of datatype usage. This allows

us to talk about the efficiency of data structures with reference to a few important

aspects of datatype usage.

Previously, anyone wanting to benchmark some data structures would have to

create the benchmarks manually, mostly without knowing how these benchmarks

used the data structures. In Chapter 4, we have presented a method for creating

a benchmark from a profile of the datatype usage.

Some compilers support time profiling that records how often a function is

called. However, there is no way to extract other aspects of datatype usage. In

Chapter 4 we have presented a method for extracting a profile from an application.

206 CHAPTER 8. CONCLUSIONS

In Chapter 5 we discussed how to use the algorithms of Chapter 4 to bench-

mark some competing data structures in a structured manner. After proposing

a few alternatives, -sve chose to use the induction of a decision tree from the re-

sults of a random sample of generated benchmarks. The decision tree presents a

summary of which data structure is best according to the datatype usage.

In summary, previous attempts to benchmark data structures relied on hand-

picked benchmarks, giving results biased towards an unknown datatype usage.
This thesis describes a way to automate the production of results qualified by ýa

description of datatype usage.

8.2 Benchmarking Practice

As stated above, previously, the only way to measure the efficiencies of competing
data structures was to find, code, and test benchmarks yourself. In Chapter 7

we applied this method to several implementations of three different ADTs. This

proved to be very time-consuming and very tedious. Further, it is not clear how

each benchmark uses a data structure. So the results of this manual benchmark

ing tell us little more than which implementation was best for those particular
benchmarks.

To improve on this situation, Nve have built a too], called Auburn, which takes

much less time to use, and produces much more useful results. In Chapter 7, we
have used Auburn on the same implementations of the same three ADTS. Using

Auburn took much less effort than the manual creation of benchmarks. We have

produced a decision tree for each ADT, and from these we gave advice on when
to use which implementation. This advice accurately predicted the results of the

manual benchmarking.

We also showed in Chapter 7 that Auburn is very useful for finding bugs in

the coding of implementations, and for testing the effect of minor modifications

to this code.

8.3. CRITICISM

8.3 Criticism

207

Taking a step back, we can ask the following question: Does this thesis achieve its

goals? We list the main points both in favour of and against this thesis, starting

with those in favour.

4P Benchmarking functional data structures is a subject with very little cover-

age in the existing literature, and this thesis makes some key steps towards

understanding the important issues, including how to define datatype us-

age, and how to use this definition to conduct a benchmarking experiment.

* Auburn is a useful tool for benchmarking new and existing data structures.

We have demonstrated this for 23 different data structures across 3 different

ADTs.

* Anyone wanting to use a queue, a random-access list, or a heap may use Sec-

tion 7.1.5 to decide when to use which implementation. This will improve

the efficiency of their application.

Here are the main points against this thesis:

9 Auburn is not very user friendly and rather involved. For example, the user

has to learn about and check the shadow data structure and profile space.

Section 7.3 revealed some inaccuracies in Auburn, in particular its treat-

ment of strictness, space behaviour, and values of type a (where a version
has type T a) -

* We do not consider the effect on the benchmarking results of changing
language, operating system, or compiler. In particular, the advice of Sec-

tion 7.1.5 may not apply to other systems.

* Neither do we consider the effect on the benchmarking results of changing

the profile distribution. Is the distribution we use fair?

We consider these criticisms in the following section.

208

8.4 Future Work

CHAPTER S. CONCLUSIONS

Drawing on the previous section, here are the main areas for future Nvork.

Relax the restrictions on the operations that Auburn can benchmark. In

particular, include higher-order operations, and operations over more than

one type. For example, Auburn cannot currently benchmark the following

operations:

fold :: (a -4 b -+ b) -+ b -+ RASeq a -+ b

fromList :: [a] -+ RASeq a

* Add tests on combinations of attributes to decision trees. This should
improve the accuracy of the decision trees, but may slow down the induction

process considerably.

9 Examine the effect of changing language, operating system, and compiler on

the benchmarking results Auburn produces. In particular, does the advice

of Section 7.1.5 apply to other systems?

* Examine the fairness of the profile distribution.

9 Incorporate space information into Auburn's benclimarking procedures.

Currently Auburn only measures time.

* Examine the accuracy of Auburn in greater detail, explain the inaccuracies

satisfactorily, and make appropriate improvements to Auburn to reduce

these inaccuracies.

8.5 The Future

I have a dream that one day we will have a library of implementations of data

structures, recommended according to datatype usage. This thesis is one step

towards that dream.

Appendix A

Source Code of Implementations

Figures A. 1 through A. 28 give the implementations of the data structures in

Chapter 2 used in the benchmarking of Section 7.1.4.

module BankersQueue (Queue, empty, snoc, tail, head, isEmpty) where

import Prelude hiding (head, tail)

data Queue a= Queue [a] Int [a] Int

empty = Queue 0000

snoc (Queue f lenf r lenr) x= queue f lenf (x: r) (lenr+l)

tail (Queue (x: f) lenf r lenr) = queue f (lenf-1) r lenr

head (Queue (x: f) lenf r lenr) =x

queue f lenf r lenr
lenr <= lenf = Queue f lenf r lenr
otherwise = Queue (f++reverse r) (lenf+lenr) [1 0

isEmpty (Queue 0 lenf r lenr) = True
isEmpty

-= False

Figure A. 1: Bankers queue implementation.

209

210 APPENDIX A. SOURCE CODE OF IMPLEMENTATIONS

module BatchedQueue (Queue, empty, snoc. tail, bead, isEmpty) where

import Prelude hiding (head, tail)

data Queue a= Queue [a] [a]

empty = Queue 00

snoc (Queue 0
-) x Queue Cxl 0

snoc (Queue f r) x Queue f (x: r)

tail (Queue (x: f) r) - queue fr

head (Queue (x: f) r) -x

isEmpty (Queue D r) = True
isEmpty

-=
False

queue 0r= Queue (reverse r)
queue fr= Queue fr

Figure A. 2: Batched queue implementation.

module BootstrappedQueue (Queue, empty, snoc, head, tail, isEmpty) where

import Prelude hiding (head, tail)

data Queue a Empty
Queue [a] (Queue [a]) Int [a] Int

empty = Empty

snoc Empty x- Queue [xl Empty I (1 0
snoc (Queue fm lenFM r lenR) x- queue fm lenFM (x: r) (leaR+l)

tail (Queue Wf) m lenFM r lenR) - queue fm (lenFM-1) r lenR

head (Queue (x: f) m lenFM r lenR) -x

queue fm lenFM r lenR
lenR <= lenFM - checkF fm lenFM r lenR
otherwise - checkF f (snoc m (reverse r)) (lenFM+lenR) 00

checkF D Empty lenFM r lenR - Empty
checkF 0 m, lenFM r lenR Queue (head m) (tail m) lenFM r lenR
checkF fm lenFM r lenR Queue fm lenFM r lenR

isEmpty Empty - True
isEmpty

-- False

Figure A. 3: Bootstrapped queue implementation.

211

module ImplicitQueue (Queue. empty, snoc, tail, head, isEmpty) where

import Prelude hiding (head, tail)

data ZeroOrOne a ZeroInOne OneInOne a
data OneOrTwo a OneInTwo a TwoInTwo aa
data Queue a Shallow (ZeroOrOne a)

Deep (OneOrTwo a) (Queue (OneOrTwo a)) (ZeroOrOne a)

empty = Shallow ZeroInOne

snoc (Shallow ZeroInOne) x= Shallow (OneInOne x)
snoc (Shallow (OneInOne x)) y=

Deep (TwoInTwo x y) (Shallow ZeroInOne) ZeroInOne

snoc (Deep fm ZeroInOne) x= Deep fm (OneInOne x)
snoc (Deep fm (OneInOne x)) y=

Deep f (snoc m (TwoInTwo x y)) ZeroInOne

tail (Shallow (OneInOne x)) = Shallow ZeroInOne
tail (Deep (TwoInTwo x y) m r) = Deep (OneInTwo y) mr
tail (Deep (OneInTwo x) (Shallow ZeroInOne) r) = Shallow r
tail (Deep (OneInTwo x) m r) = pull mr

pull (Shallow (OneInone xy)) r= Deep xy (Shallow ZeroInOne) r
pull (Deep (TwoInTwo xy z) m iR) oR =

Deep xy (Deep (OneInTwo z) m iR) oR
pull (Deep (OneInTwo xy) (Shallow ZeroInOne) iR) oR

Deep xy (Shallow iR) oR
pull (Deep (OneInTwo xy) m iR) oR = Deep xy (pull m iR) oR

head (Shallow (OneInOne x)) x
head (Deep (OneInTwo x) m r) x
head (Deep (TwoInTwo x y) m r) =x

isEmpty (Shallow ZeroInOne) = True
isEmpty

-=
False

Figure AA: Implicit queue implementation.

212 APPENDIX A. SOURCE CODE OF IMPLEMENTATIONS

module MultiheadQueue (Queue, empty, snoc, tail, bead. isEmpty) where

import Prelude hiding (head, tail)

data Queue a= Queue Bool Int Int [a] [a] [a] [a] [a] [a]

empty = Queue False 000 [1 [1 [1 [1 [1

snoc (Queue False 0 copy ht lh h' t' hr) x-
onestep (onestep (Queue True 00h (x: t) h00 [D)

snoc (Queue False lendiff copy ht lh h' t' hr) x
Queue False (lendiff-1) 0h (x: t) [] [] [] []

snoc (Queue recopy lendiff copy ht lh h' t' hr) x
onestep (onestep

(Queue True (lendiff-1) copy ht lh h' (x: tl) hr))

tail (Queue False 0 copy (x: h) t lh h' t' hr)
onestep (onestep (Queue True 00hth [I

tail (Queue False lendiff copy (x: h) t lh h' t' hr)
Queue False (lendiff-1) 0ht [I [I [I [I

tail (Queue recopy lendiff copy ht (x: lh) h' t' hr)
onestep (onestep (Queue True lendiff (copy-1) ht lh h' t' hr))

head (Queue False lendiff copy (x: h) t lh h' t' hr) x
head (Queue recopy lendiff copy ht (x: lh) h' t' hr) x

onestep qQ(Queue False lendiff copy ht lh h' t' hr) -q
onestep (Queue recopy lendiff 0 [1 0 lh h' t, hr)

Queue False lendiff 0 h' t' [I [] [] []
onestep (Queue recopy lendiff I [] 0 lh h' t' Whr))

Queue False (lendiff+1) 0 (x: hl) t' [] [] [] []
onestep (Queue recopy lendiff copy [I [I lh h' t' (x: bLr))

Queue True (lendiff+1) (copy-1) 00 lh Wh') t' hr
onestep (Queue recopy lendiff copy 0 WO lh h' t' hr)

Queue True (lendiff+l) copy 0 [1 lh Whl) t' hr
onestep (Queue recopy lendiff copy (x: h) (y: t) lh h' t' hr)

Queue True (lendiff+1) (copy+1) ht lh (y: hl) t' (x: hr)

isEmpty (Queue False lendiff copy (x: h) t lh h' t' hr) False
isEmpty (Queue recopy lendiff copy ht (x: lh) h' t' hr) False
isEmpty -= True

Figure A. 5: Multihead queue implementation.

213

module PhysicistsQueue (Queue, empty, snoc, tail, head, isEmpty) where

import Prelude hiding (head, tail)

data Queue a- Queue [a] [a] Int [a] Int

empty = queue 000G0

snoc (Queue wf lenF r lenR) x= queue wf lenF (x: r) (lenR+l)

tail (Queue (x: w) f lenF r lenR) = queue wP (lenF-1) r lenR
where (xl: fl) =f

head (Queue (x: w) f lenF r lenR) =x

queue wf lenF r lenR
lenR <= lenF = checkW wf lenF r lenR

otherwise = checkW f (f++reverse r) (lenF+lenR) 00

checkW [I f lenF r lenR Queue ff lenF r lenR
checkW wf lenF r lenR Queue wf lenF r lenR

isEmpty (Queue [I f lenF r lenR) = True
isEmpty -=

False

Figure A. 6: Physicists queue implementation.

214 APPENDIX A. SOURCE CODE OF IMPLEMENTATIONS

module RealTimeQueue (Queuesempty, snoc, tail, head, isEmpty) where

import Prelude hiding (head, tail)

data Queue a= Queue [a] [a] [a]

empty Queue a
empty Queue D00

snoc :: Queue a -> a Queue a
snoc (Queue fr s) x queue f (x: r) s

tail :: Queue a -> Queue a
tail (Queue (x: f) r s) = queue frs

head :: Queue a -> a
head (Queue (x: f) r s) =x

queue :: [a] -> [a] -> [a] -> Queue a
queue fr (x: s) = Queue frs
queue frD= Queue P [I P

where P= rotate fr

rotate :: [a] -> [a] [a] -> [a]
rotate 0 (y: r) a=ya
rotate (x: f) (y: r) ax: rotate fr (y: a)

isEmpty :: Queue a -> Bool
isEmpty (Queue 0r s) = True
isEmpty

-=
False

Figure A. 7: RealTime queue implementation.

215

module AVLRASeq (RASeq, empty, cons, tail, update, head, isEmpty, lookup)
where

import Prelude hiding (tail, head, lookup)

data Balance =LIBIR
data RASeq a= Empty

I Node Balance Int (RASeq a) a (RASeq a)

empty = Empty

cons x xs = case ins xs of (b, t) -> t
where
ins Empty = (True. Node B0 Empty x Empty)
ins (Node bn1y r)

case ins 1 of
(False, 11) -> (False, Node b (n+l) 11 y r)
L'11) ->

case b of
R (False, Node B (n+l) 11 y r)
B (True, Node L (n+l) 11 y r)

case 11 of
Node bm 11 z rl

(False, Node B m. 11 z (Node B (n-m) r, y

tail xs = case del xs of (b, t) -> t
where
del (Node b01x r) = (True, r)
del (Node bn1x r) =

case del 1 of
(False, 11) -> (False, Node b (n-1) 11 x r)
L'11) ->

case b of
L (True, Node B (n-1) 11 x r)
B (False, Node R (n-1) 11 x r)

case r of
Node Rm 111 y r"

(True, Node B (n+m) (Node B (n-1) 11 x 1)')
y r")

Node -m 111 y r" ->
(False, Node L (n+m) (Node R (n-1) 11 x V))

y r)')

Figure A. 8: AVL random-access sequence implementation (part I).

216 APPENDIX A. SOURCE CODE OF IMPLEMENTATIONS

update (Node bn1x r) iy
i == n= Node bn1yr
i<n= Node bn (update 1i y) xr
otherwise = Node bn1x (update r U-n-1) y)

head (Node b01x r) =x
head (Node bn1x r) = head 1

isEmpty Empty = True
isEmpty

-=
False

lookup (Node bn1x r) i
i == nX
i<n lookup 1i
otherwise lookup r (i-n-1)

Figure A. 9: AVL random-access sequence implementation (part II).

module AdamsRASeq (RASeq, empty. cons, tail, update, head, isEmpty. lookup)
where

import Prelude hiding (head, tail, lookup)

data RASeq a Empty
Branch Int Int (RASeq a) a (RASeq a)

empty = Empty

isEmpty Empty = True
isEmpty

-=
False

lookup (Branch n nl 1x r) i
i< nl lookup 1i
i == nl x
otherwise = lookup r (i-nl-I)

update (Branch n nl 1x r) iy
i< nl Branch n nl (update 1i y) xr
i == nl Branch n nl 1yr
otherwise - Branch n nl 1x (update r (i-nl-l) y)

cons x Empty = Branch 10 Empty x Empty
cons x (Branch

--1y r) = balBranch (cons x 1) yr

tail (Branch Empty y r) -r
tail (Branch 1y r) - balBranch (tail 1) yr

head (Branch
- Empty y r) -y

head (Branch
-1y r) = head 1

Figure A. 10: Adams random-access sequence implementation (part I).

217

branch 1xr= Branch (I + sizeL + size r) sizeL 1xr
where sizeL = size 1

singleL 1x (Branch
-- rl y rr) = branch (branch 1x rl) y rr

doubleL 1x (Branch
--

(Branch
-- rll y r1r) z rr)

branch (branch 1x r1l) y (branch rlr z rr)

singleR (Branch
--

11 x lr) yr= branch 11 x (branch lr y r)

doubleR (Branch
--

11 x (Branch
--

lrl y lrr)) zr
branch (branch 11 x lrl) y (branch lrr z r)

sigma =

size Empty -0
size (Branch nn

balBranch 1xr
sizeL + sizeR <2= branch 1xr
sizeR > sigma sizeL =

let (Branch rl - rr) =r
in if size rl < size rr

then singleL 1xr
else doubleL 1xr

sizeL > sigma sizeR
let (Branch 11

-
lr) 1

in if size lr < size 11
then singleR 1xr
else doubleR 1xr

otherwise = branch 1xr

where sizeL = size 1
sizeR = size r

Figure A. 11: Adams random-access sequence implementation (part II).

218 APPENDIX A. SOURCE CODE OF IMPLEMENTATIONS

module BraunRASeq (RASeq, empty. cons, tail, update, head, isEmpty, lookup)

where

import Prelude hiding (tail, head, lookup)

data FLASeq a Empty
Node (RASeq a) a (RASeq a)

empty = Empty

cons x Empty = Node Empty x Empty
cons x (Node 1y r) - Node (cons y r) x

tail (Node 1x r) = join 1r

where join Empty t- Empty
join (Node 1x r) t- Node tx (join 1 r)

update (Node 1x r) 0y- Node 1yr

update (Node 1x r) ny
n 'mod' 2-0- Node 1x (update rM 'divl 2)-l)

otherwise - Node (update 1 ((a-I) ldivl 2) y) xr

head (Node 1x r) -x

isEmpty Empty = True
isEmpty t= False

lookup (Node 1x r) 0x
lookup (Node 1x r) nn 'mod' 2 -- 0- lookup rM Idiv' 2)-1)

otherwise - lookup 1 M-1) IdivI 2)

Figure A. 12: Braun random-access sequence implementation.

219

module ElevatorRASeq (RASeq, empty, cons, tail, update, head, isEmpty, lookup)
where

import Prelude hiding (tail, head, lookup)

data RASeq a= Floor Int [a] (RASeq a)

floorSep =5

empty = Floor 00 empty

cons x sQ(Floor n xs yss)
n< floorSep = Floor (n+1) (x: xs) yss
otherwise = Floor 1 [x] s

tail (Floor n (x: xs) yss)
n>I= Floor (n-1) xs yss
otherwise = yss

update (Floor n xs yss) iy
n <= i= Floor n xs (update yss (i-n) y)
otherwise = Floor n (updateList xs i y) yss

updateList (x: xs) 0y=y: xs
updateList (x: xs) ny=x: updateList xs (n-1) y

head (Floor n (x: xs) yss) =x

isEmpty (Floor nD yss) = True
isEmpty

-=
False

lookup (Floor n xs yss) i
n <= i= lookup yss U-n)

otherwise = lookupList xs i
lookupList (x: xs) 0=x
lookupList (x: xs) n= lookupList xs (n-1)

Figure A. 13: Elevator random-access sequence implementation.

220 APPENDIX A. SOURCE CODE OF IMPLEMENTATIONS

module NaiveRASeq (RASeq, empty. cons, tail, update, head, isEmpty, lookup)
where

import Prelude hiding (tail, head, lookup)

newtype RASeq a= RASeq [a]

empty = RASeq

cons x (RASeq xs) = RASeq (x: xs)

tail (RASeq (x: xs)) = RASeq xs

update (RASeq xs) ny- RASeq (updateList xs n y)
updateList (x: xs) 0y-y: xs
updateList (x: xs) ny-x: updateList xs (n-1) y

head (RASeq (x: xs)) -x

isEmpty (RASeq [1) - True
isEmpty

--
False

lookup (RASeq xs) i- xs 11 i

Figure A. 14: Naive random-accm sequence implementation.

221

module SkewBinRASeq (RASeq, empty, cons, tail, update, head,
isEmpty, lookup) where

import Prelude hiding (tail, head, lookup)

data RATree a Leaf aI Node (RATree a) a (RATree a)
data RASeq a Nil

Root Int (RATree a) (RASeq a)

empty - Nil

cons x (Root sizel 1 (Root size2 r rest))
I sizel == size2 = Root (I+sizel+size2) (Node 1x0 rest

cons x xs = Root I (Leaf x) xs

tail (Root size (Leaf x) rest) = rest
tail (Root size (Node 1x r) rest)

Root size' 1 (Root size' r rest)
where size' = size 'div' 2

update (Root size t rest) iy
i< size = Root size (treeUpdate size ti y) rest
otherwise = Root size t (update rest U-size) y)

treeUpdate size (Leaf x) 0y= Leaf y
treeUpdate size (Node 1x r) 0y= Node 1yr
treeUpdate size (Node 1x r) iy

i <= size' = Node (treeUpdate size' 1 U-1) y) xr
otherwise = Node 1x (treeUpdate size' r (i-l-sizel) y)

where size' = size 'div' 2

head (Root size (Leaf x) rest) =x
head (Root size (Node 1x r) rest) =x

isEmpty Nil = True
isEmpty

-=
False

lookup (Root size t rest) i
i< size = treeLookup size ti
otherwise = lookup rest (i-size)

treeLookup size (Leaf x) 0=x
treeLookup size (Node 1x r) 0=x
treeLookup size (Node 1x r) i

i <= size' = treeLookup size' 1 U-1)

otherwise = treeLookup size' r U-1-sizel)

where size' = size 'div' 2

Figure A. 15: SkewBin random-access sequence implementation.

222 APPENDIX A. SOURCE CODE OF IMPLEMENTATIONS

module SlowdownRASeq (RASeq, empty, cons, tail, update, head,
isEmpty, lookup) where

import Prelude hiding (tail, head, lookup)

data RASeq a RedOrGreen (Prefix (Pairs a)) (RASeq a)
Yellows [Prefix (Pairs a)] (RASeq a)
Deepest (Prefix (Pairs a))

data Pairs a Elem aI Pair (Pairs a) (Pairs a)
data Prefix a Zero I One aI Two aaI Three aaaI Four aaaa

pcons a Zero - One a
Pcons a (One b) - Two ab
Pcons a (Two b c) = Three abc
Pcons a (Three bc d) - Four abcd

phead (One a) =a
phead (Two a b) -a
phead (Three ab c) a
phead (Four abc d) a

ptail (One a) = Zero
ptail (Two a b) - One b
ptail (Three ab c) - Two bc
ptail (Four abc d) - Three bcd

inPrefix size pi-i< plength size p

primcons x (Deepest p) - Deepest (pcons x p)
primcons x (RedOrGreen p (Yellows ps rest))

Yellows (pcons xp: ps) rest
primcons x (RedOrGreen p rest) Yellows Epcons x p] rest
primcons x (Yellows [p] rest) RedorGreen (pcons x p) rest
primcons x (Yellows (p: ps) rest) -

RedOrGreen (pcons x p) (Yellows ps rest)

primhead (Deepest p) - phead p
primhead (RedOrGreen p rest) - phead p
primhead (Yellows (p: ps) rest) - phead p

primtail (Deepest p) - Deepest (ptaii p)
primtail (RedOrGreen p, (Yellows ps rest))

Yellows (ptail p: ps) rest
primtail (RedOrGreen p rest) Yellows [ptail p] rest
primtail (Yellows [p] rest) RedOrGreen (ptail p) rest
primtail (Yellows (p: ps) rest) -

RedOrGreen (ptail p) (Yellows ps rest)

Figure A. 16: Slowdown random-access sequence implernentation (part 1).

223

fix (Deepest (Four abc d)) =
RedOrGreen (Two a b) (Deepest (One (Pair c d)))

fix (Yellows ps rest) = Yellows ps (fix rest)
fix (RedOrGreen Zero (Deepest Zero)) = Deepest Zero
fix (RedOrGreen Zero rest) = RedOrGreen (Two a b) (primtail rest)

where Pair ab= primhead rest
fix (RedOrGreen (Four abc d) rest)

RedOrGreen (Two a b) (primcons (Pair c d) rest)
fix xs = xs

empty = Deepest Zero

update xs ix= update' I xs ix

update' size (Deepest p) ix= Deepest (pupdate size pi x)
update' size (RedOrGreen p rest) ix

inPrefix size pi=
RedOrGreen (pupdate size pi x) rest

otherwise =
RedOrGreen p (update, (size*2) rest (i - plength size p) x)

update' size (Yellows 0 rest) ix=
Yellows [] (update' size rest i x)

update' size (Yellows (p: ps) rest) ix
inPrefix size pi= Yellows (pupdate size pix: ps) rest
otherwise = Yellows (p: ps') rest'

where (Yellows ps' rest') = update' (size*2) (Yellows ps rest)
U- plength size p) x

pupdate size (One a) ix= One (pupdatel aix (size Idiv' 2))

pupdate size (Two a b) ix
i< size = Two (pupdatel aix (size 'div' 2)) b

otherwise = Two a (pupdatel bU- size) x (size 'div' 2))

pupdate size (Three ab c) ix
i< size
Three (pupdatel aix (size 'div' 2)) bc

i< size*2 =
Three a (pupdatel b (i - size) x (size 'div' 2)) c

otherwise =
Three ab (pupdatel c (i - size*2) x (size 'divl 2))

pupdate size (Four abc d) ix
i< size

Four (pupdatel aix (size 'div' 2)) bcd
i< size*2 =
Four a (pupdatel bU- size) x (size 'div' 2)) cd

i< size*3 =
Four ab (pupdatel c (i - size*2) x (size 'div' 2)) d

otherwise =
Four abc (pupdatel dU- size*3) x (size 'div' 2))

Figure A. 17: Slowdown random-access sequence implementation (part II).

224 APPENDIX A. SOURCE CODE OF IMPLEMENTATIONS

pupdatel (Elem a) 0x mid - Elem x
pupdatel (Pair xs ys) ix mid

i< mid = Pair (pupdatel xs ix (mid Idivl 2)) ys
otherwise = Pair xs (pupdatel ys U-mid) x (mid Idivl 2))

cons x xs = fix (primcons (Elem x) xs)
head xs = case primhead xs of Elem x -> x
tail xs = fix (primtail xs)

isEmpty (Deepest Zero) - True
isEmpty

-=
False

lookup xs i= lookup' I xs i

lookup' size (Deepest p) i- plookup size pi
lookup' size (RedOrGreen p rest) i

inPrefix size pi- plookup size pi
otherwise - lookup' (size*2) rest (i - plength size p)

lookup' size (Yellows 0 rest) i- lookup' size rest i
lookup' size (Yellows (p: ps) rest) i

inPrefix size pi plookup size pi
otherwise
lookup' (size*2) (Yellows ps rest) (i-plength size p)

plength size Zero =0
plength size (One a) - size
plength size (Two a b) - size*2
plength size (Three ab c) size*3
plength size (Four abc d) size*4

plookup size (One a) i- plookupl ai (size 'div' 2)
plookup size (Two a b) i

i< size plookupl ai (size Idivl 2)
otherwise plookupl bU- size) (size Idiv' 2)

plookup size (Three ab c) i
i< size - plookupl ai (size Idivl 2)
i< size*2 - plookupl bU- size) (size 'div' 2)
otherwise - plookupl c (i - size*2) (size Idiv' 2)

plookup size (Four abc d) i
i< size - plookupl ai (size Idivl 2)
i< size*2 = plookupl bU- size) (size Idiv' 2)
i< size*3 - plookupl cU- size*2) (size Idivl 2)
otherwise - plookupl dU- size*3) (size Idiv' 2)

plookupl (Elem a) 0 mid -a
plookupl (Pair xs ys) i mid

i< mid - plookupl xs i (mid Idivl 2)
otherwise - plookupl ys U-mid) (mid 'divl 2)

Figure A. 18: Slowdown random-access sequence implementation (part 111).

225

module ThreadSkewBinRASeq (RASeq, empty, cons, tail, update, head,
isEmpty, lookup) where

import Prelude hiding (tail, head, lookup)

data RASeq a Empty
Cons a (RASeq a)
Node a (RASeq a) Int (RASeq a)

empty = Empty

lookup (Cons x xs) 0=x
lookup (Cons x xs) i= lookup xs U-1)
lookup (Node x xs r xsI) 0=x
lookup (Node x xs r xsI) i

i<r= lookup xs (i-1)

otherwise = lookup xsI U-r)

update (Cons x xs) 0y= Cons y xs
update (Cons x xs) iy= Cons x (update xs (i-1) y)
update (Node x xs r xsl) 0y= Node y xs r xsl
update (Node x xs r xsl) iy=

case update xs U-1) y of
xsQ(Cons -

(Cons
- xsl)) -> Node x xs 3 xs'

xsQ(Node ---
(Node

--- xsl)) -> Node x xs r xs'

cons x xsQ(Node xt xsl rl (Node x2 xs2 r2 xs3))
I rl - r2 = Node x xs (I+rl+r2) xs3

cons x xsQ(Cons -
(Cons

- xsl)) = Node x xs 3 xs'
cons x xs = Cons x xs

head (Cons x xs) =x
head (Node x xs r xsl) =x

isEmpty Empty = True
isEmpty xs = False

tail (Cons x xs) = xs
tail (Node x xs r xsl) = xs

Figure A. 19: ThreadSkewBin random-access sequence implementation.

226 APPENDIX A. SOURCE CODE OF IMPLEMENTATIONS

module BinomialHeap (Heap, empty, isEmpty, insert, merge, findMin,
deleteMin) where

data Ord a => Tree a- Node Int a [Tree a]
newtype Ord a => Heap a- Heap [Tree a]

rank (Node rx0-r

root (Node rx c) =x

link tIO(Node r x1 cl) t2Q(Node - x2 c2)
if x1 <= x2 then Node (r+1) xI (t2: cl)
else Node (r+1) x2 (tl: c2)

insTree t [I = [t]
insTree t tsQ(tl: ts')

if rank t< rank t' then t: ts else insTree (link t t') ts'

mrg tsI 0= tsl
mrg 0 ts2 = ts2
mrg tsl(D(tl: tsll) ts2C(t2: ts2l)

rank tl < rank t2 - tl : mrg ts1' ts2
rank t2 < rank tI - t2 : mrg tsl ts2l
otherwise = insTree (link tI t2) (mrg tsIl ts2l)

removeMinTree [t] - (t, [1)

removeMinTree (t: ts) -
if root t< root t' then (t, ts) else (t', t: ts')
where (t', ts') - removeMinTree ts

empty - Heap

isEmpty (Heap ts) - null ts

insert x (Heap ts) - Heap UnsTree (Node 0x [1) ts)

merge (Heap tsl) (Heap ts2) - Heap (mrg tsl ts2)

findMin (Heap ts) root t
where (t,

-) removeMinTree ts

deleteMin (Heap ts) - Heap (mrg (reverse tsl) ts2)
where (Node

_x tsl, ts2) - removeMinTree ts

Figure A. 20: Binomial heap implementation.

227

module BootSkewBinHeap (Heap, empty, isEmpty, insert, merge, findMin,
deleteMin) where

data Ord a => Heap a Empty
Root a (OldHeap (Heap a))

instance Ord a => Eq (Heap a) where
Empty == Empty = True
(Root x -) == (Root yx == y

- == -=
False

instance Ord a => Ord (Heap a) where
compare (Root x -)

(Root y _) = compare xy

empty = Empty

isEmpty Empty = True
isEmpty

-=
False

merge p Empty =p
merge Empty q=q
merge (Root x p) (Root y q)

X <= y= Root x (oldInsert (Root y q) p)
otherwise = Root y (oldInsert (Root x p) q)

insert x Empty = Root x oldEmpty
insert xp- merge (Root x oldEmpty) p

findMin (Root x -) =x

deleteMin (Root x p)
oldIsEmpty p Empty
otherwise = Root y (oldMerge ql q2)

where Root y ql oldFindMin p
q2 oldDeleteMin p

Figure A. 21: BootSkewBin heap implementation (part I).

228 APPENDIX A. SOURCE CODE OF IMPLEMENTATIONS

newtype Ord a -> OldHeap a- OldHeap [Tree a]
data Ord a => Tree a= Node Int a [a] [Tree a]

rank (Node rx xs 0-r

root (Node rx xs 0-x

link t1Q(Node r xI xsI cl) t2Q(Node - x2 xs2 c2)
if xI <= x2 then Node (r+I) xI xsI (t2: cl)
else Node (r+1) x2 xs2 (tl: c2)

skewLink x tl t2 -
let Node ry ys c- link tI t2
in if x <- y then Node rx (y: ys) c else Node ry (x: ys) c

insTree t0= (t]
insTree t tsC(tl: ts')

if rank t< rank t' then t: ts else insTree (link t t') ts'

mrg tst 0- tsl
mrg 0 ts2 = ts2
mrg tslQ(tl: tsll) ts2042: ts2l)

rank tl < rank t2 - tI : mrg tsIl ts2
rank t2 < rank tl - t2 : mrg tsl ts21
otherwise - insTree (link tl t2) (mrg tsIl ts2l)

normalize 0=0
normalize (t: ts) - insTree t ts

removeMinTree [t] - (t,

removeMinTree (t: ts) -
if root t< root t' then (t, ts) else (t', t: ts')
where (t', ts') - removeMinTree ts

oldEmpty - OldHeap

oldIsEmpty (OldHeap ts) - null ts

oldInsert x (OldHeap (tl: t2: ts)) I rank tl -- rank t2
OldHeap (skewLink x ti t2 : ts)

oldInsert x (OldHeap ts) - OldHeap (Node 0x ts)

oldMerge (OldHeap tsI) (OldHeap ts2) -
OldHeap (mrg (normalize tsl) (normalize ts2))

oldFindMin (OldHeap ts) - root t
where (t,

-) - removeMinTree ts

oldDeleteMin (OldHeap ts) - foldr oldInsert (Old. Heap ts') xs
where (Node

-x xs tst, ts2) - removeMinTree ts
ts' - mrg (reverse tsl) (normalize ts2)

Figure A. 22: BootSkewBin licap implementation (part 11).

229

module LeftistHeap (Heap, empty, isEmpty, insert, merge, findMin,
deleteMin) where

data Heap a Empty
Node Int (Heap a) a (Heap a)

empty = Empty

isEmpty Empty = True
isEmpty

-=
False

insert x Empty = Node 1 Empty x Empty
insert x hQ(Node s1y r)

X <= Y= Node 1hx Empty
otherwise = node 1y (insert x r)

findMin (Node
--x -) =

deleteMin (Node s1x r) = merge 1r

merge h Empty =h
merge Empty h=h

merge hIC(Node sl 11 xl rl) h2Q(Node s2 12 x2 r2)
xl <= x2 = node 11 xl (merge rl h2)

otherwise = node 12 x2 (merge r2 hl)

node hx Empty = Node Ihx Empty

node Empty xh= Node 1hx Empty

node hl@(Node sl ---)x
h2Q(Node s2

sl <= s2 = Node (sl+l) h2 x hl

otherwise = Node (s2+1) hi x h2

fromList = foldr insert empty

Figure A. 23: Leftist heap implementation.

230 APPENDIX A. SOURCE CODE OF IMPLEMENTATIONS

module NaiveHeap (Heap, empty, isEmpty, insert, merge, findHin,
deleteMin) where

newtype Ord a => Heap a- Heap [a]

empty = Heap

isEmpty (Heap [1) - True
isEmpty False

insert w (Heap h) = Heap (insert' v h)
insert' w0= [w]
insert' w vlQ(v: vs) v <= v-v: V1

otherwise -v: insert' v vs

findMin (Heap (v: vs)) -v

deleteMin (Heap (v: vs)) - Heap vs

merge (Heap ws) (Heap vs) - Heap (merge, vs vs)
merge' 0 vs - vs
merge' ws 0- ws
merge' vlQ(w: ws) vlC(v: vs)

w <= v=w: merge' ws vl
otherwise -v: merge' vl vs

Figure A. 24: Naive heap implementation.

231

module PairingHeap (Heap, empty, isEmpty, insert, merge, findMin,
deleteMin) where

data Heap a Empty
Node a [Heap a]

empty = Empty

isEmpty Empty = True
isEmpty

-=
False

insert x Empty = Node x0
insert x h2Q(Node x2 hs2)

x <= x2 = Node x [h2l

otherwise = Node x2 (Node x El: hs2)

findMin (Node x -) =x

deleteMin (Node
_

hs) = mergePairs hs

merge h Empty =h
merge Empty h=h

merge hlQ(Node xl hsl) h2Q(Node x2 hs2)

xl <= x2 = Node xl (h2: hsl)

otherwise = Node x2 (hl: hs2)

mergePairs G= Empty
mergePairs [a] =a
mergePairs (a: b: hs) = merge (merge a b) (mergePairs hs)

Figure A. 25: Pairing heap implementation.

232 APPENDIX A. SOURCE CODE OF IMPLEMENTATIONS

module SkewBinHeap (Heap, empty, isEmpty. insert, merge, findHin,
deleteMin) where

newtype Ord a => Heap a= Heap [Tree a]
data Ord a -> Tree a= Node Int a [a] [Tree a]

rank (Node rx xs 0-r

root (Node rx xs c) -x

link t1Q(Node r xI xsI cl) t20(Node - x2 xs2 c2)
if xI <= x2 then Node (r+I) xI xsI (t2: cl)
else Node (r+I) x2 xs2 (tl: c2)

skewLink x tI t2 -
let Node ry ys c- link tI t2
in if x <= y then Node rx (y: ys) c else Node ry (x: ys) c

insTree t0= [t]
insTree t tsQ(t': ts9

if rank t< rank t' then t: ts else insTree (link t t') ts'

mrg tsi 0= tsl
mrg [I ts2 - ts2

mrg tsIO(tl: tsll) ts2Q(t2: ts2l)
rank tI < rank t2 - tI : mrg tsIl ts2
rank t2 < rank ti - t2 : mrg tsl ts2l
otherwise - insTree (link tI t2) (mrg tst' ts2l)

normalize 0-D
normalize (t: ts) - insTree t ts

removeMinTree [t] - (t,

removeMinTree (t: ts) -
if root t< root V then (t, ts) else (t', t: ts')
where (tI, ts') - removeMinTree ts

Figure A. 26: SkewBin heap implementation (part 1).

233

empty = Heap [I

isEmpty (Heap ts) = null ts

insert x (Heap (tl: t2: ts)) rank tl rank t2
Heap (skewLink x tl t2 ts)

insert x (Heap ts) = Heap (Node 0x ts)

merge (Heap tsl) (Heap ts2) =
Heap (mrg (normalize tsl) (normalize ts2))

findMin (Heap ts) = root t
where (t,

-) = removeMinTree ts

deleteMin (Heap ts) = foldr insert (Heap ts') xs
where (Node

-x xs tsI, ts2) = removeMinTree ts
ts' = mrg (reverse tsl) (normalize ts2)

Figure A. 27: SkewBin heap implementation (part II).

234 APPENDIX A. SOURCE CODE OF 1. %IIILF-%IF. \M%TIO. VS

module SplayHeap (Heap, ezpty, isE=pty, insert. t*rgo, fiv4, tim,
delateMin) where

data Heap a Empty
Nods (Heap a) a (Heap a)

empty - Empty

isEmpty Empty - True
isEmpty -- False

insert xh- Nods Ixr

where U, r) - partition xh

partition pivot Empty - (Empty, E=Pty)

partition pivot hC(Node Ix r)
x <- pivot

case r of
Empty (h. Empty)
Nods rl y rr ->

if y <- pivot
then lot (small, big) - partition pivot rr

in (Nods (Node Ix rl) y s=411, big)

else let (small, big) - partition pivot rl
in (Node Ix szall, Xode big y r-r)

otherwise
case 1 of

Empty (Empty, h)
Node 11 y lr ->

if Y <0 pivot
then lot (small, big) - partition pivot Ir

in (Nods 21 y azall. Xods big x r)
else lot (small, big) - partition pivot 11

in (small. Nods big y (Nods Ir x 0)

findMin (Nods Empty z r) -x
findMin (Nods Ix r) - find. 4in I

deleteMin (Nods Empty x r) -r
deleteMin (Nods (Nods Empty x Ir) y r) - Nods Ir yr
deleteMin (Nods (Nods 11 x Ir) y r) -

Node (deleteMin 11) x (Nods Ir y0

merge Empty hnh
merge (Nods 1x r) h- Nods (rArge s=11 1) x (mdrgs big r)

where (small, big) - partition zh

Figure A-28: Splay heal) Implementation.

Appendix B

Modifications to Implementations

Figures B. 1 through B. 25 give the modifications of Tables 7.1,7.2 and 7.3, by

showing the output of the UNIX dif f command. Figure B. 7 gives the modifica-
tion Multilicad in the form of the modified implementation, as almost all of the

code is modified.
5c5
< data Queue a- Queue [a] Int [a] Int

> data Queue a- Queue [a] Unt [a] Unt

Figure BA: Bankers queue modification.

llcll, 12
< snoc (Queue f r) x queue f (x: r)

> snoc (Queue 0
-) x Queue [XI 0

> snoc (Queue f r) x Queue f (x: r)

Figure B. 2: Batched queue modification.

27c27,28
< checkF m lenFM r lenR - Queue (head m) (tail m) lenFM r lenR

> checkF (Queue (iX: iF) iM iLenFM iR iLenR) lenFM r lenR
> Queue iX (queue iF iM (iLenFM-1) iR iLenR) lenFM r lenR

Figure B. 3: Bootstrapped-1 queue modification.

235

236 APPENDIX B. MODIFICATIONS TO MIPLEMENTtITIOINIS

27c27
< checkF [I m lenFM r leaR - Queue (head m) (tail m) lenN r lenR

> checkF [] m lenFM r lenR - pull m lenFM r leaR
28a29,32

> pull (Queue (iX: iF) iM iLenFM A iLenR) lenFM r lenR
> Queue U (queue iF iM (iLenFM-1) A iLenR) lenFM r leaR

Figure BA: Bootstrapped-2 queue modification.

8C8
< Deep (OneOrTwo a) (queue (a, a)) (ZeroOrOne a)

> Deep (OneOrTwo a) (queue (OneOrTwo a)) (ZeroOrOne a)
l8c18
< snoc (Deep fm (OneInOne x)) y
< Deep f (snoc m (x, y)) ZeroInOne

> snoc (Deep fm (OneInOne x)) y-
> Deep f (snoc m (TwoInTwo x y)) ZeroInOne
24,25c24
< tail (Deep (OneInTwo x) m r) - Deep (TwoInTwo y z) (tail m) r
< where (y, z) = head m

tail (Deep (OneInTwo x) m r) - Deep (head m) (tail m) r

Figure B. 5: Implicit-I queue modification.

24,25c24,32
< tail (Deep (OneInTwo x) m r) - Deep (TwoInTwo y z) (tail m) r
< where (y, z) - head m

> tail (Deep (OneInTwo x) m r) - pull mr

> pull (Shallow (OneInOne (x, y))) r
> Deep (TwoInTwo x y) (Shallow ZeroInOne) r
> pull (Deep (TwoInTwo (x, y) z) m iR) oR -
> Deep (TwoInTwo x y) (Deep (OneInTwo z) m A) oR
> pull (Deep (OneInTwo (x, y)) (Shallow ZeroInOne) A) oR
> Deep (TwoInTwo x y) (Shallow iR) oR
> pull (Deep (OneInTwo (x, y)) m iR) oR
> Deep (TwoInTwo x y) (pull m iR) oR

Figure B. G: Implicit-2 queue modification.

237

module MultiheadQueue (Queue, empty, snoc, tail, head, isEmpty) where

import Prelude hiding (head, tail)

data RotationState a
Idle
Reversing Int [a] [a] [a] [a]
Appending Int [a] [a]
Done [a]

data Queue a= Queue Int [a] (RotationState a) Int [a]

exec (Reversing ok (x: f) P (y: r) rl)
Reversing (ok+l) f (x: fl) r (y: rl)

exec (Reversing ok [I fl [y] rl) = Appending ok P (y: rl)
exec (Appending 0P rl) = Done rl
exec (Appending ok (x: fl) r') = Appending (ok-1) P (x: rl)
exec state = state

invalidate (Reversing ok fPr r') Reversing (ok-1) fVr r'
invalidate (Appending 0P (x: r')) Done r'
invalidate (Appending ok P r') = Appending (ok-1) P r'
invalidate state = state

exec2 lenf f state lenr r=
case exec (exec state) of

Done newf Queue lenf newf Idle lenr r
newstate Queue lenf f newstate lenr r

check lenf f state lenr r=
if lenr <= lenf then exec2 lenf f state lenr r
else let newstate = Reversing 0fDr0

in exec2 (lenf+lenr) f newstate 00

empty = Queue 00 Idle 00

isEmpty (Queue lenf f state lenr r) = Uenf == 0)

snoc (Queue lenf f state lenr r) x=
check lenf f state (lenr+l) (x: r)

head (Queue
-

(x: fl))=x

tail (Queue lenf (x: fl) state lenr r) =
check (lenf-1) P (invalidate state) lenr r

Figure B. 7: Multihead queue modification.

238 APPENDIX B. MODIFICATIONS TO IMPLEMENTATIONS

5c5
< data Queue a- Queue [a] [a] Int [a] Int

> data Queue a- Queue [a] [a] lInt [a] Unt

Figure B. 8: Physicists queue modification.

41,44c4l, 45
< update (Node bn1x r) iy
<i-n- Node bn1yr
<i<n- Node bn (update 11 y) xr
< otherwise - Node bn1x (update r (i-n-1)

> update (Node bn1x r) iy
> case compare in of
> EQ Node bn1yr
> LT Node bn (update 1i y) xr
> Node bn1x (update r U-n-1) y)
55,58c56,60
< lookup (Node bn1x r) i
<i-nX
<i<n lookup 1i
< otherwise lookup r (i-n-1)

> lookup (Node bn1x r) i
> case compare in of
> EQ x
> LT lookup 1i

lookup r U-n-1)

Figure B. 9: AVL-1 random-access sequence modification.

239

41,44c4l, 45
< update (Node bn1x r) iy
<i == n= Node bn1yr
<i<n= Node bn (update 1i y) xr
< otherwise = Node bn1x (update r U-n-1) y)

> update (Node bn1x r) iy
> case compare in of
> LT Node bn (update 1i y) xr
> EQ Node bn1yr
> Node bn1x (update r (i-n-1) y)
55,58c56,60
< lookup (Node bn1x r) i
<i == nX
<i<n lookup 1i
< otherwise lookup r (i-n-1)

> lookup (Node bn1x r) i
> case compare in of
> LT lookup 1i
> EQ x

lookup r U-n-1)

Figure B. 10: AVL-2 random-access sequence modification.

42d4l
<in= Node bn1yr
43a43
>in= Node bn1yr
56d55
<inX
57a57
>nX

Figure B. 11: AVL-3 random-access sequence modification.

240 APPENDIX B. AlODIFICATIONS TO IMPLEMENTATIONS

< case (ins 1, b) of
< ((False, ll), b) (False, Node b (n+l) 11 y r)
< ((True, ll), R) (False, Node B (n+l) 11 y r)
< ((True, ll), B) (True, Node L (n+l) 11 y r)
< ((True, Node bm 11 z r'), L) ->
< (False, Node Bm 11 z (Node B (n-m) rl y r))

> case ins 1 of
> (False, 11) -> (False, Node b (n+1) 11 y r)
> (-, 11) ->
> case b of
>R (False, Node B (n+I) 11 y r)
>B (True, Node L (n+I) 11 y r)

> case 11 of
> Node bm 11 z r'
> (False, Node Bm 11 z
> (Node B (n-m) r, y r))
29,38c33,44
< case (del l, b) of
< ((False, ll), b) (False, Node b (n-1) 11 x r)
< ((True, 11), L) (True, Node B (n-1) 11 x r)
< ((True, 11), B) (False, Node R (n-1) 11 x r)
< ((True, 11), R)
< case r of
< Node Rm 11, y r"
< (True, Node B (n+m) (Node B (n-1) 11 x 111)
<y r")
< Node Bm 111 y r" ->
< (False, Node L (n+m) (Node R (n-1) 11 x 110)
<y r")

> case del 1 of
> (False, 11) -> (False. Node b (n-1) 1 1x r)
> Lx) ->
> case b of
> L (True, Node B (n-1) 11 x r)

B (False, Node R (n-1) 11 x r)

case r of
Node Rm 112 y r's

(True, Node B (n+m)
(Node B (n-1) 11 x 111)

Node
-m

111 y r"
(False, Node L (n+m)

(Node R (n-1) 11 x 111)
y r")

Figure B. 12: AVLA random-access sequence modification.

241

47a48,50
> alpha Int
> alpha 2

57c6O
< in if size rl < size rr

> in if size rl. < size rr * alpha
62c65
< in if size lr < size 11

> in if size lr < size 11 * alpha

Figure B. 13: Adams random-access sequence modification.

16,17cl6,18
< tail (Node Empty x t) = Empty
< tail (Node 1x r) = Node r (head 1) (tail 1)

> tail (Node 1x r) = join 1r
> where join Empty t= Empty
> join (Node 1x r) t= Node tx (join 1 r)

Figure B. 14: Braun random-access sequence modification.

8c8
< floorSep = 10

> floorSep =3

Figure B. 15: Elevator-1 random-access sequence modification.

8c8
< floorSep = 10

> floorSep =5

Figure B. 16: Elevator-2 random-access sequence modification.

8C8
< floorSep = 10

> floorSep = 25

Figure B. 17: Elevator-3 random-access sequence modification.

242 APPENDIX B. MODIFICATIONS TO IMPLEMENTATIONS

7c7
< Root Int (RATree a) (RASeq a)

> Root lInt (RATree a) (RASeq a)

Figure B. 18: SkewBin random-access sequence modification.

243

6a7
> Cons a (RASeq a)
12a14,15
> lookup (Cons x xs) 0=x
> lookup (Cons x xs) i= lookup xs U-1)
18a22,23
> update (Cons x xs) 0y= Cons y xs
> update (Cons x xs) iy= Cons x (update xs (i-1) y)
20c25,28
< update (Node x xs r xsI) iy= cons x (update xs U-1) y)

> update (Node x xs r xsl) iy
> case update xs U-1) y of
> xsQ(Cons -

(Cons
- xsl)) -> Node x xs 3 xs'

> xsQ(Node ---
(Node

--- xs')) -> Node x xs r xsl
25c33,34
< cons x xs = Node x xs 1 xs

> cons x xsQ(Cons -
(Cons

- xsl)) = Node x xs 3 xs'
> cons x xs = Cons x xs
27a37
> head (Cons x xs) =x
34a45
> tail (Cons x xs) = xs

Figure B. 19: ThreadSkewBin random-access sequence modification.

3c3
< data Ord a => Tree a= Node Int a [Tree a]

data Ord a => Tree a= Node Unt a [Tree a]

Figure B. 20: Binomial heap modification.

244 APPENDIX B. MODIFICATIONS TO IMPLEIVENTATIONS

45c45
< data Ord a Tree a- Node Int a [a] [Tree a]

> data Ord a Tree a- Node Unt a [a] [Tree a]

Figure B. 21: BootSkewBin heap modification.

14cl4,17
< insert xh- merge (Node I Empty x Empty) h

> insert x Empty = Node I Empty x Empty
> insert x hQ(Node s1y r)
>x <= y= Node Ihx Empty
> otherwise = node 1y (insert x r)

Figure B. 22: Leftist heap modification.

26c26
< xi <= x2 = Node xi (h2: hsl)

> xi < x2 - Node xl (h2: hsl)

Figure B. 23: Pairing-1 heap modification.

14cl4,17
< insert xh- merge (Node x [1) h

> insert x Empty = Node x
> insert x h2Q(Node x2 hs2)
>x <= x2 - Node x Ch2l
> otherwise = Node x2 (Node x [l: hs2)

Figure B. 24: Pairing-2 heap modification.

4c4
< data Ord a Tree a- Node Int a [a] [Tree a]

> data Ord a Tree a- Node lInt a [a] ETree a]

Figure B. 25: SkewBin licap modification.

Appendix C

Auburn Reference

There are various executables produced by Auburn, with various flags for mod-

ifying their behaviour. Rather than give a lengthy explanation of these, we just

quote the help information for each executable, that is, the output they produce

when supplied with the flag -h. Here is a list of the help pages in order: auburn, a

DUG manager, a benchmarker, auburnExp, makeDugs, evalDugs, processTimes,

cleanDugs.

245

246

Usage: auburn [options] sigfile[. sig]
Options:

APPENDIX C. AUBUILV REFERENCE

-c IMP-MOD1[. hs] IMP-MOD2[. hsl ... IMP-MODn[. hsl
Write a signature of the common operations exported by the
the implementation modules IKP-MODI, IMP-MOD2, ... IKP-MODn.

-sT Write a trivial shadow data structure.
-sS Write a best guess at size-based shadow data structure.
-m Write a dug manager.
-e IMP-MOD1 IMP-MOD2 ... IMP-MODn

Write a dug evaluator for each implementation module in
IMP-MOD1, IMP-MOD2, ..., IMP-MODn.

-n Write a null implementation.

-x IMP-MODE. hs] MAIN[. hs]

-XI IMP-MOD[. hs]

-xM MAIN[. hs]
Write wrapped, dug-extracting versions of the implementation
module IMP-MOD and/or the main module stored in file MAIN.
Warning: The files they wrap will be backed up before being
overwritten, but they may be restored using 1-ul. The wrapped
program will behave as before but will also extract and write a
dug as it is run. The wrapped files use Green Card.

-u IMP-MOD[. gcl MAIN[. gcl
-uI IMP-MODC. gc]
-UM MAIN[. gcl

Unwrap the implementation module IMP-MOD and/or the main module
stored in file MAIN which were previously wrapped with I-x'.

-pT Write a script 'makeProfiles. hs' to make profiles (bass version).
-PS Write a best guess at a version of 'makeProfiles. hs' based on

a size-based shadow data structure.
-b IMP-MOD1 IMP-MOD2 ... IMP-MODn

Write a benchmarker covering implementation modules
IMP-MOD1, IMP-MOD2, ..., IMP-MODn.

(General.)
-h Show this help.
-V Show version info.
-G Use Green Card to construct dug evaluator.

Figure CA: Help information for auburn.

247

Usage: Queue-Man [options] [dug-file
Options:

-g PROFILE SEED
Generate a dug using the given profile, and the given seed for
pseudo-random number generation. Any dug file given on the
command line is ignored. The seed should lie between 1 and
2147483646 inclusive.

PROFILE is of the form:
Profile GWGTS PHASES

where GWGTS is the generator weights, and PHASES is a Haskell list
with each element of the form:

Phase MOWGTS MORTALITY PMF POF
where MOWGTS is the mutator and observer weights, with the remaining
arguments giving the mortality, the persistent mutation f actor and
persistent observation factor.

Operator weights are given as a Haskell list of decimals and are
ordered within the list firstly by role and then lexically, ie.

empty, snoc, tail, head, isEmpty.

Note that you will probably need to enclose arguments containing
spaces or parantheses in quotes to avoid confusing the shell.

-a PHASEARG
When using a profile to generate a dug with '-g', or when
producing a profile of a dug with '-pl or '-pP', use the phase
argument PHASEARG. PHASEARG is read in by 'phaseArgRead'
defined in the shadow data structure and is used by 'phaser' to
determine the phasing of nodes.

-r FILE

-rP
Read a textual dug file, as outputted by 1-t' or '-tP', from FILE
or from standard input.

-p FILE

-PP
Write a profile of the dug to FILE or to standard output.

-N
Normalise the profile written with I-pl or '-pP' with the profile
given with 1-g' (the averages of the weights are made equal for
easier comparison). If the dug is read rather than generated, make
the averages of the weights equal to one.

Figure C. 2: Help information for a typical dug manager (part I).

248 A PPEIVDIX C. A UB URN REFERENCE

-o FILE

-op
Write the dug to FILE or'to standard output.

-d FILE

-dP
Write a visual depiction of the dug suitable for the 'dotty'
package of AT&T to FILE or to standard output.

-t FILE
-tp

-H

-h

Write a text description of the dug to FILE or to standard output.

When used with '-to or '-tP', make the text description of the dug
a valid Haskell program.

This help.

The following options are only applicable when used with I-gl:
-b POOLSIZE

The size of the pool from which to draw integer arguments.
Default: 10

-fL MINFS
The minimum size of the frontier.
Default: I

-fU MAUS
The maximilm size of the frontier. A value of 0 indicates no maximum.
Default: 0

NODES
The number of nodes to generate.
Default: 10000

Note that outputting a large amount of data to a file is significantly
slower than to standard output, eg. we recommend writing a sizeable
dug to standard output and re-directing this to a file if necessary.

Figure C. 3: Help information for a typical dug manager (part

249

Usage: Queue-Bmark [options]
Options:

Print this help.

Decision Tree Inducer

A sample of benchmarking results may be obtained via at most one of the
following flags:

-g SEED
Generate a random sample, using ImakeDugs', 'evalDugs', and
eprocessTimes'. The seed should lie between 1 and 2147483646
inclusive.

-s FILE

-sp
Read in a sample from FILE or standard input.

A decision tree may be obtained via at most one of the following flags:

-i
Induce a decision tree from the sample.

-t FILE

-tP
Read in a tree from FILE or standard input.

At least one of the following flags must be supplied to request output:
-c FILE
-cp

Check the accuracy of the decision tree on the sample. Output the
report to FILE or to standard output.

-o FILE
-op

Write the sample to FILE or to standard output.
-w FILE

-wP
Write the decision tree to FILE or to standard output.

-d FILE

-dP
Using the profile taken from FILE or standard input, use the decision
tree to decide which implementation suits the profile. Write the
decision to standard output.

The following flags can be used to modify the behaviour of the '-il flag:
-G

Use the gain criterion, rather than the default gain ratio criterion.
-p SIZE

Prune any leaves no larger than SIZE on the induced tree.
Default: 0.

Figure CA: Help information for a typical benchmarker (part I).

250 A PPEIVDIX CA UB URN REFERENCE

-a

-r

-x

Induce a decision tree on one half of the sample, prune this
tree to different maximum leaf sizes, and choose the pruned tree
with least error when applied to the other half of the sample.

Perform reduced error pruning on the induced tree, by using half
of the sample for induction and half for testing.

When used with '-a' or '-r', use the number of misclassifications as
the measure of error. Without '-xI, the mean ratio of the predicted
winner is used (the larger the mean. the worse the prediction).

-P
Perform very pessimistic pruning on the induced tree.

-C CF
When pruning with '-PI, use confidence level CF (0 < CF < 1). The
smaller CF is, the more pruning is done.
Default: 0.25.

The f ollowing f lags modif y the behaviour of the f lags above:
-V

Verbose. Show some of the output of generating a sample with '-g'.
-V

Very verbose. Show all of the output of generating a sample with 1-g'.
-n SIZE

Specify the SIZE of a sample generated with 4-g' (number of profiles
chosen).
Default: 100.

-M OPTIONS
Pass OPTIONS to ImakeDugs' when generating a sample with '-g'.
Default:

-e OPTIONS
Pass OPTIONS to 'evalDugs' when generating a sample with '-g'.
Default: 11-r 1 -R 511.

-I IMP1 IMP2 ... IMPn
when generating a sample, use the JLDT implementations named
IMP1, IMP2, ... ' IMPn. When reading a sample, restrict the ratios
read to these implementations.

-A AM ATT2 ... ATTa
When reading a sample, restrict the profile attributes read to
those named ATT1, ATT2, ... ' ATTn.

ADT Implementation Tracer

-q SEED
Run the tracer. The seed should lie between 1 and 214T483646
inclusive, and is used to generate random dugs, printing any dug
that causes an error.

The flags '-vl, '-VI, '-ml, and '-I' also modify the behaviour of I-q'.

Figure C. 5: Help information for a typical benclimarker (part 11).

251

Creates a GNU makefile in the current directory to manage an
experiment using Auburn.

Flags:

-1 LIBRARY
Use Auburn library held in directory LIBRARY,

eg. '-l /usr/local/lib/auburn'.
Default: /usr/gem/lib/auburn

-q
Quiet running: do nothing but print everything.

-h
Show this help.

Figure C. 6: Help information for auburnExp.

252 APPENDIX C. AUBURN REFERENCE

Makes dugs from the profiles given in files of the form
'dug-$Tprofile). profile' in the current directory. The dUg3 are
stored in dug code files of the form 'dug-$(profile)-S(seed). dug,
with their -actual- profiles stored in files of the form
gdug-$fprofilel-$(seed). profilel.

Flags:

(Where more than one value is passed, eg. with I-pl. the string
passed should be a perl expression that evaluates to an array,
eg. 11(1,2,4)11, or "(I. A)" or even "(1-3,5-7)". The following
also seem to work fine: "411, "1,3", "3.. 5".)

-S SIG
Name of signature which the dug manager uses, eg. '-a Queue'.
Default: signature of first manager in current directory.

-p PROFILES
Names of profiles, eg. '-p
Default: all profiles in current directory.

-S N
Number of different seeds per profile, eg. I-S 31.
Default: 3.

-o OPTIONS
Options to pass to the dug manager. The options vill immediately
follow the dug manager and precede its arguments, so flags for the
Haskell run-time system can be included either using '+RTS' and
'-RTS' (GHC and nhc do this) or directly (HBC does this).
Eg. '_o "+RTS -p -RTS"' for GHC with profiling, and

1-o 11-111 for HBC (as a minus must precede flags passed to an
executable), and

1-o, 11-m -111 for HBC with profiling.
Default:

-0 OPTIONS
Additional options to pass to the dug manager. Multiple I-O's
accumulate options. The options will follow the base options
given by I-ol.
Eg. '-0 "-n 1000"I and '-0 "-b 100"' together with 1-o "-"' pass
the options '- -n 1000 -b 1001 to the dug manager, telling it to
generate dugs of size 1000 nodes using a pool size of 100.

-z SEED
Initial seed (between I and 2147483646 inclusive).
Default: Obtained from the system clock.

-q
Quiet running: do nothing but print everything.

-h
Show this help.

Figure C. 7: Help information for makeDugs.

253

Runs and times the dug evaluators on dug code files (of the form
'dug-$fprofilej-$fseed1. dug1 as outputted by ImakeDugs') in the
current directory. Writes total times (over all seeds) to files of
the form Idug-$fprofilel-$fimplementationl. timel.

Flags:

(Where more than one value is passed (with 1-il, I-pl and '-d'), the
string passed should be a perl expression that evaluates to an
array, eg. 11(1,2,4)11, or "(1-4)" or even '1(1-3,5-7)". The
following also seem to work fine: M", "1,311,113-51'. Note that some
characters need to be quoted, eg. ". ", so 1-d test. dug' becomes
'-d 1"test. dug"11.)

-s SIG
Name of signature which the dug evaluators use, eg. 1-s Queue'.
Default: signature of first evaluator in current directory.

-i IMPS
Names of implementations,
eg. '-i "(NaiveQueue, SimpleQueue, BankersQueue, Queue-Null)"'.
Default: all implementations for chosen signature in current directory.

-p PROFILES
Names of profiles, eg. t-p
Default: all profiles in current directory.

-d DUGS
Dugs to be evaluated.
Default: all dugs in current directory matching 'dug-$fprofilel-*. dug'.

-r N
Number of separate timed runs per dug, eg. 1-r 31.
Default: 3.

-R N
Number of internal repeated evaluations per timed run, eg. '-R 101.
Default: 10.

Figure C. 8: Help information for evalDugs (part I).

254 APPENDIX C. AUBURN REFERENCE

-t COMMAND
Time command to produce time information in POSIX standard 1003.2.
specifically:

real %e
user %U
Sys %S

(Actually, only requirement is that the output contains the string
"user %U" where '%Ul is the user time.)

Most UNIX time commands use this form of output. GNU time does if
passed the flag '-pl. The user time may contain a colon 9: 1
separating minutes from seconds, eg. 112: 32.541.
Eg. '-t 11gnutime -p".
Default: "time".

-T TIME
Timeout dug evaluators after TIME seconds. Useful for preventing
excessively slow runs of a dug evaluator. Using a TIME of 0
prevents any timeouts.
Default: 600.

-o OPTIONS
Options to pass to each dug evaluator. The options will
immediately follow the dug evaluator and precede its arguments, so
flags for the Haskell run-time system can be included either using
'+RTS' and '-RTS' (GHC and nhc do this) or directly (HBC does
this).
Eg. '_o "+RTS -p -RTS"' for GHC with profiling, and

9-o 11-m"' for HBC with profiling.
Default: "".

-C
Ignore checksum errors.

-q
Quiet running: do nothing but print everything.

-h
Show this help.

Figure C. 9: Help information for evalDugs (part 11).

255

Processes times outputted by 'evalDugs' (files of the form
Idug-$fprofilel-$fimplementationl. timeI in the current directory).
Outputs resulting processed times in file Idugs. times' using summary
information found in 'dugs. profiles'.

Flags:

(Where more than one value is passed, eg. with 1-il and '-pl, the
string passed should be a perl expression that evaluates to an
array, eg. 11(1,2,4)11, or "(1-4)" or even "(1-3,5-7)".)

-i IMPS
Names of implementations,
eg. 1-i "(NaiveQueue, SimpleQueue, BankersQueue, Queue-Null)"'.
Default: all implementations for chosen signature in current directory.

-p PROFILES
Names of profiles, eg. '-p "(1-8)")
Default: all profiles in current directory.

-f FORMAT
Format string used by 'printfl to output the times, eg. '-f 8.3f'.
Default: 118.3f".

-F
Use brief format. Useful for automatic processing of results.
One number per line. First line contains number of
implementations used. Remaining lines contain ratios, in the
expected order.

-S
Sort profiles by string comparison, rather than by the default

numerical comparison.

-q
quiet running, do nothing but print everything.

-h
Show this help.

Figure C. 10: Help information for processTimes.

Cleans up all dug and profile files in current directory, that is,
all files of the form 'dug-*. profile' 'dug-*. dug' 'dug-*. time', and
Idugs. times' and 'dugs. profiles'.

Flags:

-q
Quiet running: do nothing but print everything.

-h
Show this help.

Figure C. 11: Help information for cleanDugs.

256 A PPE. NDIX C. A UB URN REFERENCE

Bibliography

[1] Stephen R. Adams. Implementing sets efficiently in a functional language.

Technical Report CSTR 92-10, Department of Electronics and Computer

Science, University of Southampton, 1992. (p 24)

[2] Stephen R. Adams. Efficient sets-a balancing act. Journal of Functional

Programming, 3(4): 553-562,1993. (pp 5,18,21,24)

[3] G. M. Adel'son-Velskii and Y. M. Landis. An algorithm for the organization

of information. Doklady Akademia Nauk SSSR, 146: 263-266,1962. English

translation in Soviet Math. DokI., 3: 1259-1262. (pp 1,21)

[4] The Auburn Home Page.

http: //www. cs. york. ac. uk/fp/auburn/. (p187)

[5] John Backus. Can programming be liberated from the von Neumann style?
A functional style and its algebra of programs. Communications of the ACM,

i
21(8): 613-641, August 1978. (p 1)

[6] W. Braun and M. Rem. A logarithmic implementation of flexible arrays.
Memorandum MR83/4. Eindhoven University of Technology, 1983. (p26)

[7] Gerth S. Brodal and Chris Okasaki. Optimal purely functional priority

queues. Journal of Functional Programming, 6(6): 839-857, December 1996.

(pp 5,19,34,37,38)

[8] Adam L. Buchsbaum. Data-structural bootstrapping and catenable deques.

PhD thesis, Department of Computer Science, Princeton University, June

1993., Technical Report TR-423-93. (p 14)

[9] F. Warren Burton and Rex L. Page. Distributed random number generation.
Journal of Functional Programming, 2(2): 203-212, April 1992. (p 103)

257

258 BIBLIOGRAPHY

[10] Tyng-Ruey Chuang and Benjamin Goldberg. Real-time deques, multilicad

Turing machines, and purely functional programming. In Procecdings of the

Conference on Functional Programming Languages and Computer Architec-

ture, pages 289-298, Copenhagen, June 1993. ACM Press. (P 5)

[11] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduc-

tion to Algorithms. MIT Press, 1990. (pp 1,187,188)

[12] Paul F. Dietz. Fully persistent arrays. In Proceedings of the First Work-

shop on Algorithms and Data Structures, volume 382 of LNCS, pages 67-74.

Springer-Verlag, August 1989. (p 44)

[13] James R. Driscoll, Neil Sarnak, Daniel D. Sleator, and Robert E. Tarjan.

- Making data structures persistent. Journal of Computer and System Sci-

ences, 38(l): 86-124, February 1989. (pp44,46)

[14] Martin Erwig. Functional programming with graphs. In Proceedings of the

1997ACM SIGPLAN International Conference on Functional Programming,

pages 52-65. ACNI Press, June 1997. (PP 1,5)

[15] Michael L. Fredman, Robert Sedgewick, Daniel D. K. Sleator, and Robert E.
Tarjan. The pairing heap: a new form of self-adjusting heap. Algorithinica,

l(l): 111-129,1986. (p 39)

[16) Gnu make utility.

http: //www. gnu. org/software/make/make. html. (PIGI)

[171 GraphViz: Tools for viewing and interacting with graph diagrams.

http: //www. research. att. com/sw/tools/graphviz/. (p149)

[18] The HBC compiler.

http: //www. cs. chalmers. se/-augustss/hbc/hbc. html. (p202)

[19] C. A. R. Hoare. Quicksort. Computer Journal, 5(l): 10-15,1962. (p 187)

[20] Robert Hood and Robert Melville. Real-time queue operations in pure LISP.
Information Processing Letters, 13(2): 50-54, November 1981. (pp 10,11,

12)

BIBLIOGRAPHY 259

[211 Rob R. Hoogerwoord. A symmetric set of efficient list operations. Journal

of Functional Programming, 2(4): 505-513, October 1992. (pp 18,26)

[22] John Hughes. Why functional programming matters. The Computer Jour-

nal, 32(2): 98-107, April 1989.

[23] E. B. Hunt, J. Martin, and P. J. Stone. Expe7iments in Induction. Academic

Press, New York, 1966. (p 127)

[24] Haim Kaplan and Robert E. Tarjan. Persistent lists with catenation via

recursive slow-down. In Proceedings of the 27th Annual A CM Symposium on
Theory of Computing, pages 93-102, May 1995. (pp 15,18,28)

[25] Donald E. Knuth. Searching and Sorting, volume 3 of The Art of Computer

Programming. Addison-Wesley, second edition, 1973. (p 40)

[26] Graerne E. Moss and Colin Runciman. Auburn: A kit for benchmarking

functional data structures. In Proceedings of IFL97, volume 1467 of LNCS,

pages 141-160, September 1997. (ppxvii, 187)

[27] Graeme E. Moss and Colin Runciman. Exploring datatype usage space.
In Draft Proceedings of IFL'98, University College London, UK, September

1998. (p xvii)

[28] Graerne E. Moss and Colin Runciman. Automatic benchmarking of func-

tional data structures. In Proceedings of PADL'99, LNCS, 1999. To be

published. (P xvii)

[291 Eugene W. Myers. An applicative random-access stack. Information Pro-

cessing Letters, 17(5): 241-248, December 1983. (pp 18,19)

[30] J. R. Norris. Markov Chains. Cambridge University Press, 1997. (pp 124,

125)

[31] Manuel Nýifiez, Pedro Palao, and Ricardo Pefia. A second year course on data

structures based on functional programming. In Functional Programming

Languages in Education, volume 1022 of Lecture Notes in Computer Science,

pages 65-84. Springer-Verlag, December 1995. (pp 5,18,21,34,40)

260 BIBLIOGRAPHY

[32] Chris Okasaki. Amortization, lazy eN-aluation, and persistence: lists with

catenation via lazy linking. In IEEE Symposium on Foundations of Com-

puter Science, pages 646-654, October 1995. (pp 5,12,19,21,29)

[33] Chris Okasaki. Purely functional random-access lists. In Conference Record

of FPCA '95, pages 86-95. ACNI Press, June 1995. (pp5,18,21,102,187)

[34] Chris Okasaki. Simple and efficient purely functional queues and deques.

Journal of Functional Programming, 5(4): 583-592, October 1995. (pp 5,

10,14)

[35] Chris Okasaki. Functional data structures. In Advanced Functional Program-

ming, volume 1129 of Lecture Notes in Computer Science, pages 131-158.

Springer-Verlag, August 1996. (pp 34,39,40)

[36] Chris Okasaki. Purely Functional Data Structures. PhD thesis, School of
Computer Science, Carnegie Mellon University, September 1996. (p 5)

[37] Chris Okasaki. The role of lazy evaluation in amortized data structures.
In Proceedings of the International Conference on Functional Programming,

pages 62-72. ACNI Press, May 1996. (pp 10,12,13)

[38] Chris Okasaki. Purely Functional Data Structures. Cambridge University

Press, 1998. (pp 1,10,11,12,13,14,15,19,21,34,35,41,44,46,185)

[39] Chris Okasaki. Red-black trees in a functional setting. Joumal of Funciional

Programming, 1999. To appear. (p 2)

[40] Melissa E. O'Neill and F. Warren Burton. A new method for functional

arrays. Journal of Functional Programming, 7(5): 487-513, September 1997.

(pp 1,5,44)

[41] Steve Park. Private communication, April 1996. (p 103)

[42] Steve Park and Keith Miller. Random number generators: Good ones are
hard to find. Communications of the A CM, 31(10): 1193-1201, October 1988.

(p 103)

BIBLIOGRAPHY 261

[43) Simon Peyton Jones, Thomas Nordin, and Alastair Reid. Green Card: A

foreign-language interface for Haskell. In Haskell Workshop, Amsterdam,

June 1997. Published by Oregon Graduate Institute of Science & Technology.

(pp 92,98,106,158)

[441 J. R. Quinlan. Induction of decision trees. Machine Learning, l(l): 81-106,

1986. (pp 125,127)

[45] J. R. Quinlan. Simplifying decision trees. International Journal of Man-

Machine Studies, 27: 221-234,1987. (pp 132,135)

[46] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann,
1993. (pp 127,130,135,136,137,201)

[47] C. M. P. Reade. Balanced trees with removals: An exercise in rewriting and

prooL Science of Computer Programming, 18(2): 181-204,1992. (P 5)

[48] D. L. Shell. A high-speed sorting procedure. Communications of the A CM,

2(7): 30-32,1959. (p 187)

[49] Daniel D. K. Sleator and Robert E. Tarjan. Self-adjusting binary search

trees. Joumal of the ACM, 32(3): 652-686, July 1985. (p 41)

[50] Jan Sparud and Colin Runciman. Tracing lazy functional computations using

redex trails. In Proceedings of PLILP'97, volume 1292 of Lecture Notes in

Computer Science, pages 291-308,1997. (p 169)

[51) Jean Vuillemin. A data structure for manipulating priority queues. Com-

munications of the ACM, 21(4): 309-315, April 1978. (pp 1,35)

[52] Raymond T. Yeh, editor. Data Structuring, volume IV of Current Trends in

Programming Methodology. Prentice-Hall, 1978. (p 43)

[53] York Functional Programming Group.

http: //www. cs. york. ac. uk/fp/. (pp 106,110,141,158,167,169)

