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Abstract  

 

Soils form the basis of agroecosystems, generating the fuel, food and fodder needed 

to sustain human life. Soil biological communities contribute to almost all 

ecosystem processes, yet our understanding of how intensive agriculture impacts on 

these communities, and on fauna-function relationships, lags far behind that of 

above-ground systems. This thesis investigates the impacts of intensive agriculture, 

and in particular fertiliser use, on relationships between soil invertebrate abundance, 

community structure and ecosystem function both above-ground and below-ground. 

  

The impacts of fertilisation, including organic and inorganic fertiliser regimes 

applied at different rates, and irrigation were quantified using realistic experimental 

field plots in temperate arable and plantation systems. Furthermore, the effects of a 

gradient of arable management intensity and the value of non-crop habitats in 

providing refugia for soil fauna were investigated using woodland-to-field transects. 

Impacts on soil invertebrates, including soil mites, springtails and nematodes, were 

quantified in terms of changes in abundance and shifts in community structure. 

Measures of ecosystem function included above-ground productivity, plant nutrient 

bioavailability and organic matter decomposition. 

  

Impacts of fertilisers were complex and varied between systems and faunal groups. 

Notably, we observed that inorganic fertiliser application reduced soil mite and 

nematode abundance when applied with irrigation in water-limited, sandy soils. In 

general, astigmatid mites responded less negatively, or even positively, to intensive 

management. We observed strong evidence of non-crop habitats providing refugia 

for soil fauna, and in particular poor dispersers, in intensive arable landscapes. 

  

This thesis advances our understanding of soil invertebrate ecology in intensively-

managed agricultural systems. We discuss our findings in the context of the 

sustainable management of soils under a growing population, and suggest directions 

for future research. 
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Chapter 1 

 

 

General Introduction  

 

 

 

Abstract 

 
Soils form the basis of agroecosystems, generating the feed, food and fuel needed to 

sustain human life. A healthy soil contributes to a vast number of ecosystem 

functions and services, including the cycling of water and nutrients, the storage of 

organic carbon and the provision of habitat for billions of organisms, many of which 

are yet to be identified. As such, human health is intrinsically linked to soil health. 

However, soils are under increasing pressure from a range of anthropogenic 

activities. The mismanagement of soils, sometimes associated with agricultural 

intensification, has accelerated rates of soil erosion globally, such that approximately 

one third of soils are now classified as being moderately to highly degraded. A lack 

of awareness, or regard, for soil health has meant that soil degradation has, until 

recently, been largely ignored. Subsequently, our understanding of the impacts of 

agricultural intensification on below-ground ecosystem functions and processes lags 

far behind that of above-ground systems. Here, we introduce the concepts of soil-

derived ecosystem services and soil natural capital (Chapter 1.1), before briefly 

describing the diversity of the soil fauna and exploring their contribution to the 

provision of ecosystem functions and services (Chapter 1.2), in addition to 

ecosystem disservices (Chapter 1.3). Furthermore, we outline some of the major 

threats to soil fauna, focusing on the impacts of intensive agriculture, in addition to 

the role of invasive species and climate change (Chapter 1.4). Finally, we describe 

some of the major research gaps in soil research (Chapter 1.5) before defining the 

objectives of this thesis (Chapter 1.6). 
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1.1      Soil-derived ecosystem services and soil natural capital 

 
Ecosystems provide a range of goods and services, both above-ground and below-

ground, which help to sustain human life (Daily, 1997; Costanza et al., 1998). 

Several frameworks attempt to quantify the value of these ecosystem goods and 

services to humans. Notably, the Millennium Ecosystem Assessment (2005) 

classifies ecosystem services into four key categories: provisioning, regulating, 

supporting and cultural services, and identifies the importance of soil functioning for 

almost all ecosystem services (Powlson et al., 2011). For example, soil functioning 

plays a key role in the maintenance of the hydrological cycle, including flood 

mitigation, climate regulation and nutrient cycling. Together, these contribute to the 

production of food crops. In addition, soils form the basis of a stable physical 

environment for human settlements, including land used for infrastructure and 

farming.  

 

Several soil-specific frameworks have been developed since the Millennium 

Ecosystem Assessment, offering quantitative assessments of ecosystem goods and 

services provided by the soil based on estimates of natural capital. Notably, 

Dominati et al. (2010) proposed a framework describing soil ecosystem services 

based on ‘inherent’ (e.g. depth, texture, slope, subsoil aggregate size) and 

‘manageable’ (e.g. soil C and N, organic matter, temperature, pH, bulk density, 

topsoil aggregate size) properties of soil natural capital. 

 

Natural capital stocks are defined in terms of mass (e.g. mineral and nutrient stocks, 

soil carbon, soil organisms and soil water), energy (e.g. thermal energy and soil 

biomass), and their organisation (e.g. physio-chemical structure, biological 

organisation, food web structure, spatio-temporal gradients) (Robinson and Lebron, 

2010). Quantifying the value of natural products and services for human need in this 

way allows conservation bodies and policymakers to estimate the economic effects 

of change factors – for example, land use change – to humans, and to realise the 

actual costs of environmental degradation. If losses of natural capital can be 

compensated for by manufactured capital, or labour, no detrimental impacts will be 
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observed (Millennium Ecosystem Assessment, 2005). However, the two cannot be 

infinitely substituted in either direction. For example, in the context of food 

production, a critical level of soil degradation will impair agricultural productivity 

regardless of manufactured capital inputs (Millennium Ecosystem Assessment, 

2005). 

 

Due to the array of natural capital stocks below-ground, soils can contribute 

substantially to a nation’s wealth (Daily et al., 1997). It is now recognised that 

environmental policies need to recognise the importance of preserving soil function 

and reducing soil erosion in order to preserve soil natural capital in the longer term 

(Dominati et al., 2010). However, while many above-ground ecosystem services, 

such as pollination, can be relatively straightforward to value (i.e. the value of insect 

pollinated crops), the valuation of below-ground services is extremely complex. 

Firstly, there are logistical difficulties in measuring soil ecosystem processes due to 

the opacity of the soil and a lack of well-defined methodologies. Secondly, soil 

processes  can be tightly interlinked, with some processes promoting others – for 

example, the decomposition of organic matter sustains soil nutrient cycling, and is 

regulated by soil biota and intrinsic properties of the soil  – posing an additional 

challenge. Costanza et al. (1998) estimated the global value of ecosystem services 

derived from the soil to be worth tens of trillions of US dollars. In a more recent 

study, Brussaard et al. (2007) valued ecosystem services associated with soil biota 

alone to be worth $1.5 trillion.  

 

 

 

1.2     Soil fauna and their contribution to ecosystem services  

 

The soil food web, coined a “poor man’s tropical rainforest” (Usher et al., 1979), is  

characterised by high levels of species diversity, only a fraction of which is thought 

to have been identified (Wurst et al., 2012). In addition, soil organisms exist in vast 

abundance, with the majority inhabiting the upper soil horizons, including the litter 
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layer. One square metre of organic temperate agricultural soil can harbour 1,000 

different species with population densities reaching 10
6
 nematodes and 10

5
 

microarthropods (Altieri, 1999). In coniferous forest soils, enchytraeid worms can 

reach densities of 200,000 individuals m
-2

 (Jeffery et al., 2010). Soil microbial 

organisms are, however, the dominant organisms in soil communities both in terms 

of diversity and biomass (Jeffery et al., 2010), with a single gram of soil supporting 

approximately 10
4
 microbial genotypes (Torsvik et al., 2002) and over 45,000 

genotypes occupying a hardwood forest soil (DeAngelis et al., 2015). 

 

Soil fauna can be classified according to body size. At the smallest scale, soil 

microorganisms (< 0.2 mm diameter) include the microflora (bacteria and fungi) and 

microfauna (including nematodes, protozoans and rotifers), which require water-

filled pores for mobility (Lavelle, 1997; Bonkowski et al., 2011). Soil mesofauna 

range from 0.2-2 mm diameter, and include the microarthropods (soil mites and 

springtails), enchytraeid worms and tardigrades, which inhabit air-filled pores 

(Verhoef and Brussaard, 1990; Lavelle, 1997; Neher et al., 1999). Soil mites include 

both predatory groups, including mesostigmatid (Acari: Mesostigmata) and 

prostigmatid (Acari: Prostigmata) mites, and detritivores, namely oribatid (Acari: 

Oribatida) mites. The astigmatid mites (Acari: Astigmata) were previously classed as 

a suborder of their own, but are now placed as a cohort within the Oribatida (Norton, 

1998; O'Connor, 2009). Oribatid mites and springtails are the most well-studied soil 

microarthropods. At the largest scale, soil macrofauna measure > 2 mm diameter and 

can include earthworms and large arthropods associated with the litter layer, such as 

termites, centipedes, millipedes and woodlice (Lavelle, 1997; Jeffery et al., 2010).  

 

Biological communities are often self-organised (Lavelle et al., 2006) and 

aggregated in distribution, with the greatest population densities occurring in 

resource-rich areas. However, aspects of below-ground community dynamics are 

fundamentally different to those above-ground. For example, above-ground 

biodiversity is influenced by a range of landscape-scale factors, including wider 

habitat heterogeneity and the availability of semi-natural habitat (Steffan-Dewenter 

et al., 2002; Cunningham and Johnson, 2006; Gabriel et al., 2006; Gabriel et al., 
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2010). On the other hand, soil organisms are restricted in space due to their limited 

locomotory capacity. Therefore, below-ground patterns of biodiversity are thought to 

be influenced primarily by local-scale factors, such as microhabitat temperature, 

moisture and the local availability of organic matter (Bardgett et al., 2005; Bardgett, 

2005; Coleman et al., 2004). 

 

Soil fauna contribute to the functioning of every terrestrial ecosystem through a 

combination of direct and indirect actions, including the cycling of nutrients, energy 

and materials (de Ruiter et al., 2002; Table 1.1). However, the relative contribution 

of different organisms to the provision of these services varies widely. It is thought 

that 80-90% soil processes are mediated by soil microbes (Nannipieri and 

Badalucco, 2003; Coleman et al., 2004). The relationship between soil microbial 

biodiversity and ecosystem functioning varies according to the activity rate, biomass 

and community structure (Joergensen and Emmerling, 2006 and references therein). 

Soil mesofauna and macrofauna primarily contribute to soil ecosystem functioning 

indirectly, for example by reducing particle size during the earlier stages of OM 

decomposition, and through the regulation of the soil microbial biomass by grazing 

(Lavelle and Spain, 2001).  
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Table 1.1  Examples of ecosystem services provided by soil fauna, based on the classification of ecosystem services according to the 

Millennium Ecosystem Assessment (2005) 

 

Category  Ecosystem service Soil-specific example Reference  

Regulating  Climate regulation Soil microbial regulation of soil-land-atmosphere carbon exchange (Conrad, 1996; Bardgett et al., 2008) 

Regulating Flood mitigation Infiltration and storage of water in soil through bioturbation and 

burrowing activity of earthworms 

(Stockdill, 1982; Zachmann et al., 1987) 

Regulating  Disease regulation Suppression of plant diseases by soil organisms, including springtails 

and nematodes  

(Curl et al., 1988; Lootsma and Scholte, 

1997; Sabatini and Innocenti, 2001) 

Supporting 

 

Nutrient cycling Decomposition of OM by multiple trophic groups  (González and Seastedt, 2001; Bradford 

et al., 2002) 

  Rates of nutrient mineralisation and plant nutrient uptake affected by 

soil fauna, including springtails and nematodes 

(Bardgett and Chan, 1999) 
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Supporting Soil formation  Soil aggregate stabilisation by earthworm exudates  (Oades, 1993) 

  Contribution to OM layer formation by multiple trophic groups (Lützow et al., 2006) 

Supporting Primary production Biocontrol of plant pests (Akhtar and Malik, 2000) 

  Arbuscular mycorrhizal fungi symbioses promote plant nutrient 

uptake and above-ground productivity 

(Jeffries et al., 2003; Artursson et al., 

2006) 

Cultural  Recreational Use of earthworms as fishing bait   

Cultural Educational Use of earthworms as an educational tool for illustrating concepts 

such as soil porosity, bioturbation and OM recycling 
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An example of the complementarity of faunal roles is illustrated by the process of 

OM decomposition. Epigeic (litter-dwelling) earthworms and other decomposer 

macrofauna help to regulate the early stages of decomposition through the shredding, 

fragmentation and conditioning of plant material (Bardgett and Cook, 1998), 

increasing the surface area for smaller organisms. This earthworm activity quickly 

and directly alters detritivorous soil microarthropod (e.g. springtails) (Monroy et al., 

2011) and microbial (Aira et al., 2008) communities, further promoting the 

decomposition of organic matter. Endogeic (soil-feeding) earthworms mediate later 

stages of decomposition through burrowing activity; modifying the soil structure for 

other soil organisms and transporting microbial populations. Furthermore anecic 

(deep-burrowing) earthworms physically redistribute organic matter by dragging it 

vertically through the soil profile. This process incorporates organic matter into the 

mineral soil, thus accelerating the rate of decomposition (Coleman et al., 2004). 

Microarthropods contribute to the decomposition processes by causing damage to 

plant material which may have been fragmented by earthworm activity, in turn 

further increasing the surface area available for microbial decomposition. 

Furthermore, microarthropods can shape microbial communities directly, through 

selective grazing, and indirectly, by supplying nutrients for microbial populations 

through the production and dispersal of faecal matter. 

 

Within the soil invertebrates, much of the classical literature focuses on the 

contribution of earthworms to ecosystem function due to ease of sampling and their 

role as ecosystem engineers. Earthworms affect ecosystem services both directly and 

indirectly. For example, earthworms play a direct role in the formation of pores and 

channels within the soil profile to promote the cycling and mineralization of nutrients 

within the substrate and the creation of new habitat to promote the coexistence of 

multiple soil invertebrate groups (Maraun et al., 1999), water infiltration, 

bioturbation and the stabilisation of soil aggregates (Eisenhauer, 2010). They also 

distribute P horizontally through the soil profile (Massey et al., 2013). Soil 

microarthropods are one of the least well studied soil faunal groups. While their 

effects are likely to be smaller than those of the macrofauna or microfauna, 

mesofauna indirectly promote functions such as decomposition by increasing the 
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surface area of organic material which the microbial biomass can act upon. This 

thesis will focus primarily on the impacts of intensive agriculture on soil mesofauna, 

and the relationships with ecosystem function. However, other faunal groups will be 

considered where appropriate.  

 

Responses of soil faunal organisms to perturbation, and their recovery from 

disturbance, are likely to be dependent on both physiological traits, including those 

related to dispersal capacity, and life-history strategies. Firstly, the degree of 

exoskeleton sclerotisation affects the susceptibility of soil fauna to changes in the 

external environment, including soil moisture. Since soil moisture can vary with 

agricultural management directly, through the application of irrigation, and 

indirectly, for example through tillage (Frey et al., 1999; De Vita et al., 2007), 

exoskeleton sclerotisation is a key determinant of the ability to tolerate 

environmental perturbation. This will be explored throughout this thesis; particularly 

in Chapter 2. Generally, springtails and prostigmatid mites are more susceptible to 

changes in environmental conditions on account of their reduced cuticular 

sclerotisation (Convey et al., 2003). On the other hand, oribatid and mesostigmatid 

mites have the greatest level of cuticular sclerotisation, and are therefore better able 

to withstand reductions in soil moisture levels (Convey et al., 2003). 

 

While soil moisture can affect fauna directly, as described above, their ecophysiology 

affects their ability to avoid – or escape from – adverse environmental conditions, 

including changes in soil moisture. For example, enchytraeid worms are unable to 

tolerate very low soil moisture levels, but, like earthworms, these organisms have the 

ability to respond to changes in the local environment by burrowing vertically 

through the soil profile to areas of more favourable (i.e. damper) environmental 

conditions (Springett, 1970; Nielsen, 1995a). Unlike enchytraeid worms, soil 

microarthropods lack the ability to burrow, instead relying on existing soil pores 

formed by burrowing organisms (earthworms and enchytraeid worms) for vertical 

movement, or by moving horizontally through the litter layer (Salmon, 2004; 

Cameron et al., 2013).  
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While relatively little is known about how far and how fast soil mesofauna are able 

to disperse by active locomotion, the dispersal capacity of many microarthropod 

species is thought to be limited (Ojala and Huhta, 2001). In particular, detritivorous 

oribatid mites move slowly compared to predatory mesostigmatid mites and 

astigmatid mites. For these slow-moving mites, the additional cuticular thickness is 

of increased importance in order to tolerate existing environmental conditions and 

reduce the risk of desiccation. Dispersion of soil microarthropods can also occur 

passively, by wind and water or by phoresy; ‘hitch-hiking’ on another organism 

(Siepel, 1994). Astigmatid mites in particular rely on phoresy for movement across 

the landscape (Szymkowiak et al., 2007).  

 

Unlike other soil organisms, springtails are unique in possessing a furcular; a tail-like 

appendage located on the ventral side of the fourth abdominal segment (Hopkin, 

2007). The furcular acts as a ‘springing organ’, enabling the springtail to propel itself 

into the air. However, the direction of aerial movement is largely unpredictable and 

this rapid, erratic form of locomotion is mainly employed when individuals are under 

threat from predation or extreme adverse environmental conditions. Under typical 

conditions, springtails, like soil mites, are able to move across the landscape by 

walking. However, the extent to which the legs are developed varies between species 

(Ponge et al., 2006; Chapter 4).  

 

In addition to the ecophysiological traits described above, soil mesofauna exhibit a 

diverse range of group- and species-specific life-history strategies, and this plays a 

significant role in their ability to recover from disturbance. For example, oribatid 

mites tend to undergo slow larval development, with life cycles lasting between 1-2 

years (Behan-Pelletier, 1999). Under low temperatures, generation time can be 

extended to five years (Søvik et al., 2003). In contrast, astigmatid mites are r-

selected colonisers, with short generation times and high fecundity (Norton, 1999; 

Walter and Proctor, 1999; Chapter 2). Consequently, astigmatid mites thrive in 

disturbed sites, including agricultural soils under conventional tillage, where other 

groups struggle to survive (Wardle, 1995; Behan-Pelletier, 1999; Reeleder et al., 

2006).  



- 11 - 

While a wide range of species-specific differences exist; for example, in the ability to 

reproduce by parthenogenesis (Siepel, 1994; Lindberg and Bengtsson, 2005), crude 

differences in ecophysiology and life-history strategy can be observed between 

groups of soil mesofauna at the Suborder level. Therefore, it is possible to make 

predictions about the responses of different groups to perturbation. For example, it is 

likely that groups with good dispersal capacity, short generation times and high 

fecundity (e.g. astigmatid mites) would be less negatively affected by environmental 

perturbation (e.g. the application of a high dose of inorganic fertiliser) than poor 

dispersers with long generation times and low fecundity (e.g. oribatid mites).  

 

 

 

1.3  Soil fauna and ecosystem disservices 

 

In addition to playing a positive role in the functioning of the soil ecosystem through 

the provision of ecosystem services, soil fauna can also contribute to ecosystem 

disservices. Unlike ecosystem services, which describe ecosystem functions with 

positive impacts on human wellbeing, ecosystem disservices describe effects which 

are deemed undesirable, for example pollution, disease and biodiversity loss 

(Swinton et al., 2007).  

 

Whether soil biota promote ecosystem services or disservices can vary depending on 

resource availability. For example, nematodes transport soil microorganisms through 

ingestion and excretion or by adherence to the nematode surface coat (Bird, 2004). 

Thus, nematodes continually vary the structure of microbial communities and their 

activities. However, this service becomes a disservice if microbes are transported to 

resource-poor areas and are rapidly consumed by the nematodes (Fu et al., 2005). In 

the absence of additional food, the nematode transporters then overgraze the limited 

prey available.  
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Furthermore, plant-associated nematodes at low densities cause minimal damage to 

plants through grazing, yet their presence provides resources for predatory fauna. 

However, overgrazing can lead to severe root damage, limiting the uptake of water 

and nutrients. These changes can restrict plant growth above-ground and, in turn, 

reduce food resources for the food web both above-ground and below-ground (Ferris, 

2010). In order to successfully manage soil ecosystems and minimise the impacts of 

ecosystem disservices, we require a better understanding of the intricacies of the soil 

food web.  

 

 

 

1.4  Threats to soil fauna  

 

Relationships between soil organisms and intrinsic ecosystem functions can be 

disrupted through unsustainable land management (Wall and Six, 2015). Here, we 

briefly discuss some of the major threats to soil fauna and soil fauna-ecosystem 

function relationships appropriate to this thesis. Under the umbrella of agricultural 

intensification, the impacts of land use change, tillage and agrochemical use are 

explored. In addition, we also describe two additional threats to agricultural soil 

biodiversity: climate change and invasive species. While the soil food web comprises 

a number of different faunal groups, as discussed in Chapter 1.2, this thesis herein 

focuses on the effects on soil invertebrates and their contribution to ecosystem 

function. Impacts on soil microbes are briefly discussed in the context of soil 

invertebrates. 
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1.4.1     Agricultural intensification  

 

Under a growing human population, increased crop yields are required, exerting 

increasing pressure on our food production systems. In addition, urban areas continue 

to expand into previously rural and semi-rural land (Goddard et al., 2010), concreting 

over potentially fertile soils. If soil is used to support housing, rather than agriculture, 

its ability to deliver biological function is difficult to recover (Haygarth and Ritz, 

2009). Furthermore, other land uses, such as biofuel production, also compete with 

productive farmland for space and resources (Fargione et al., 2008). These pressures 

have resulted in the intensification of crop production on existing agricultural land. 

Agricultural intensification occurs through continuous cultivation, the loss of 

marginal habitats, increased agrochemical use and frequent disturbance (New, 2005; 

Smith et al., 2008b). These factors promote productivity in the short-term, but exert 

increasing pressure on natural ecosystems.  

 

Above-ground, agricultural intensification has been associated with declines in the 

abundance and diversity of a range of taxa, including farmland birds, mammals and 

arthropods (Fuller et al., 1995; Chamberlain et al., 2000; Donald et al., 2001; 

Kremen et al., 2002; Wickramasinghe et al., 2003; Burel et al., 2004; 

Wickramasinghe et al., 2004). A causal factor in the decline in farmland biodiversity 

with increasing intensification is the change in landscape composition and, more 

specifically, the increased homogeneity of agricultural landscapes (Benton et al., 

2003; Bennett et al., 2006). However, rather than the result of one factor, for 

example pesticide use or land use change, reductions in farmland biodiversity are 

likely to result from synergy between multiple changes in land management. This 

suggests that changes in the management of one factor will not act as a ‘cure all’ 

remedy in reducing biodiversity loss.  

 

Despite hosting the majority of biodiversity in agronomic systems in terms of both 

abundance and diversity, relatively little is known about the effects of agricultural 

intensification on communities below-ground in comparison to our knowledge of 
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above-ground systems. With increasing pressure exerted on global land, and 

particularly productive land, an improved understanding of the impacts of 

agricultural intensification on the complex relationships between soil biodiversity 

and ecosystem functioning is crucial if we are to manage soils in a sustainable way. 

 

Soils are generally considered to be relatively stable habitats, buffered from diurnal 

and seasonal changes in abiotic conditions particularly in the presence of vegetative 

cover (Giller, 1996; Ettema, 1998). However, some soil properties are dynamic 

rather than static (e.g. soil moisture content), and are particularly susceptible to 

changes in land use (Robinson and Lebron, 2010). Below-ground, agricultural 

intensification accelerates rates of soil compaction, contamination and erosion and 

increases the vulnerability of the systems to perturbation. Since soil biota are tightly 

linked to soil properties, changes in land use may impair some soil processes and 

thereby contribute to a decline in ecosystem functioning in these systems. Here, we 

describe some of the major threats to soil biodiversity agronomic habitats and discuss 

consequences for ecosystem function. 

 

 

1.4.1.1 Tillage  

 

Tillage can affect soil faunal communities both directly, through mechanical damage, 

and indirectly, via longer-term changes in soil moisture content, soil organic matter 

and the soil pore profile. Due to their larger body size, soil mesofauna and 

macrofauna are more susceptible to mechanical damage by tillage and changes in the 

habitable pore space (Kladivko, 2001). Within the soil macrofauna, epigeic 

earthworms are more sensitive to tillage than endogeic or anecic earthworms. 

Inhabiting the uppermost soil horizons makes epigeic species vulnerable to mortality 

caused by mechanical action and changes in resource availability (Kladivko, 2001). 

Movement of earthworm populations through tillage can also increase susceptibility 

to predation, for example by insectivorous birds (Giller et al., 1997). 
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In general, microarthropods are also sensitive to tillage, with springtails, oribatid and 

mesostigmatid mites typically undergoing severe population declines in response to 

soil disturbance (Hendrix et al., 1986; Wardle, 1995; Kladivko, 2001). However, 

astigmatid mites have been shown to recover rapidly from disturbance by tillage. 

Astigmatid mites are r-selected colonisers, characterised by short generation times 

and high fecundity (Norton, 1999; Walter and Proctor, 1999). This allows population 

densities to recover, or even increase, more quickly than groups with slow rates of 

development and low fecundity (e.g. oribatid mites) (Wardle, 1995; Behan-Pelletier, 

1999; Reeleder et al., 2006).  

 

Tillage can also have indirect effects on soil invertebrates by modifying the soil 

structure and climate. Tillage physically disrupts the soil pore network through 

mechanical action, with complex effects on the soil microbial biomass (Young and 

Ritz, 2000). Changes in pore size and structure are only likely to have direct effects 

on larger soil invertebrates where body width exceeds pore size; however, these 

changes in the microbial biomass may have indirect bottom-up effects on microbial 

grazers. Furthermore, tillage disrupts the distribution of soil organic matter, with 

reduced soil organic matter observed in the upper horizons of tilled soils. Under 

reduced-till regimes (including no-till), where there is a greater amount of organic 

matter on the soil surface (Hendrix et al., 1986), soils tend to be moister and cooler, 

providing favourable conditions for fungal growth and activity. Conversely, tillage 

disrupts the vertical stratification of the soil, incorporating crop resides through the 

soil profile. Consequently, tillage is associated with slow, fungal-dominated 

decomposition under reduced-till and no-till regimes, with a switch to bacterial-

based pathways in conventionally tilled soils (Beare et al., 1992; Frey et al., 1999). 

These effects are fed up through the food chain, with rapid increases in the ratio of 

bacterial-feeding nematodes to fungal-feeding nematodes under disturbance regimes 

(Parmelee and Alston, 1986; McSorley, 2011). Furthermore, tillage can shift the 

composition of annelid assemblages, with a greater reduction in the abundance of 

metabolically slow earthworms compared to enchytraeids (Parmelee et al., 1990).  
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1.4.1.2 Agrochemical use 

 

In conventionally managed agricultural systems, achieving maximum crop yields is 

largely dependent on agrochemical inputs (Matson et al., 1997) and, in particular, 

inorganic fertilisers. However, soil fauna are sensitive to changes in soil chemistry, 

which influences their abundance and distribution through the soil profile (Edwards 

and Bohlen, 1996). Agrochemicals have been associated with reductions in soil 

fauna (Bünemann et al., 2006; Tabaglio et al., 2009; Thiele-Bruhn et al., 2012). 

Furthermore, shifts in community composition have also been observed. For 

example, de Vries et al. (2006) observed the promotion of a bacterial-dominated 

nematode food web in response to increased N inputs. However, an absence of trends 

has been reported by others (Sarathchandra et al., 2001). This lack of consensus may 

be due to a range of factors. Firstly, the effects of fertilisation are likely to be specific 

to particular soil faunal groups. As described in Chapter 1.2, differences in the 

ecophysiology and life-history strategies of different soil mesofaunal groups are 

likely to result in different responses to agricultural management. For example, it is 

hypothesised that groups with good dispersal capacity, short generation times and 

high fecundity (e.g. astigmatid mites) will recover more quickly following the 

application of fertiliser than those with poor dispersal capacity, long generation times 

and low fecundity (e.g. oribatid mites). 

 

Furthermore, observed effects may be variable between systems, depending on the 

existing soil type and management history. Specifically, effects of fertiliser inputs are 

likely to depend on the N concentration and the duration of use. For example, 

Edwards and Lofty (1982) reported elevated earthworm population sizes under 

moderate nitrogen concentrations (up to 192 kg N ha
-1

), while an excessive amount 

of liquid sludge applied in a single dose had a negative effect.  

 

Few studies have attempted to investigate the effects of agrochemical use on the 

wider soil food web, including predator-prey interactions. Moreover, the effects of 

agrochemical application on soil biodiversity-ecosystem function relationships are 

relatively unknown. These gaps are addressed in greater detail in Chapters 2 and 5. 
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1.4.2      Invasive species 

 

Invasive species pose a threat to the functioning of above-ground and below-ground 

ecosystems, within both terrestrial and aquatic environments. Since its introduction 

in the 1960s, the New Zealand flatworm (Artioposthia triangulata Dendy) has 

attained a widespread distribution across the United Kingdom, particularly across 

Ireland, Scotland and parts of NW England due to similarities to its native climate, 

and now poses a threat to native earthworms (Boag and Yeates, 2001, NBN 

Gateway, 2013). Murchie and Gordon (2003) predict that A. triangulata infestations 

could reduce total earthworm biomass by approximately 20% in agricultural lands, 

with particular effects on the common European earthworm (Lumbricus terrestris 

L.).  

 

A. triangulata preys upon multiple native species, but is a particular threat to large, 

anecic earthworms including L. terrestris, the ‘night crawlers’, which feed on and 

migrate across the soil surface at night. Anecic earthworms form deep burrows 

through the soil profile, improving soil aeration and drainage. Therefore, a reduction 

in L. terrestris populations could affect the water holding capacity of soils, leading to 

localised flooding and crop failure. Additionally, these worms are a key component 

of the diet of multiple bird species, including blackbirds and song thrushes. 

Subsequently, reduced population densities of native earthworms may have bottom-

up effects on higher trophic levels (Alford et al., 1995).  

 

 

1.4.3     Climate change  

 

Climate change factors, including increased temperatures and drought, severely 

threaten food production systems worldwide. Their effects on above-ground faunal 

communities have been explicitly examined (Bezemer and Jones, 1998; Chen et al., 

2005; Dukes et al., 2009; Visser et al., 2009; Bentz et al., 2010; Aslam et al., 2013; 
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Romo and Tylianakis, 2013). However, below-ground effects are again under-

represented within the literature.  

 

It is likely that the direct effects of drought will be of particular concern to soil 

organisms. Soil ecosystems depend on the availability of water for optimal 

functioning and, while soils can buffer the effects of mild drought stress, extended 

periods of moderate to severe drought may not be tolerated so well. For example, 

nematodes rely on soil water-films for dispersal and feeding (Jones 1975); therefore, 

significant reductions in soil moisture content resulting from global climate change 

may have pronounced effects on their performance and survival, restricting feeding 

and ultimately leading to starvation or desiccation.   

 

In the case of pest species, for example the root knot nematode (Meloidogyne spp. 

Goldi), these changes may impact positively on the provision of ecosystem services. 

Drought-induced reductions to pest populations would likely lead to improved crop 

yields and, in turn, economic benefits. However, reductions in other guilds are likely 

to have marked negative effects at the community and ecosystem scale. For example, 

shifts in the ratio of bacterial feeders to fungal feeders may alter rates of 

decomposition, with impacts on carbon sequestration. Since the importance of 

storing carbon below-ground is of increasing importance under proposed climate 

change scenarios (Lal, 2008), these changes could have consequences for the global 

carbon budget. On the other hand, reduced densities of predatory nematodes may 

lead to explosions of pest populations and subsequent damage to productivity.  

 

Soil faunal recovery from climate change events is likely to depend not only on the 

severity of effect, but also on the life history strategies of organisms and their 

dispersal capacity. For example, Lindberg and Bengtsson (2005) found that 

abundances of collembolans, characterised by relatively short generation times 

lasting only a few months, recovered more quickly from the effects of experimental 

drought treatment than oribatid mites, which tend to have longer life cycles spanning 

multiple years (Chapter 1.2). Furthermore, a higher number of oribatid species able 



- 19 - 

to reproduce parthenogenetically recovered within the four-year experimental period 

than those that relied on sexual reproduction. This work suggests that recolonisation 

of land following short-term climate change events is likely to take several years and, 

in the earlier stages of recovery at least, populations are likely to be dominated by 

species with fast generation times and good dispersal capacity such as astigmatid 

mites and some springtail species (Chapters 1.2 and 6).  

 

As with above-ground systems, any impact on the provision of ecosystem services is 

likely to depend on the severity and variability of climate change factors, which are 

expected to vary on both spatial and temporal scales (IPCC, 2013). Since different 

climate change factors are expected to occur simultaneously, direct effects of drought 

on soil fauna are likely to be modified by increased temperature and subsequently the 

relative humidity of the soil. Therefore, future work should be set in a broader 

context to investigate how multiple climate change factors might interact with one 

another to influence the distribution of soil organisms and the provision of ecosystem 

services.  
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1.5  Research gaps  

 

The importance of healthy agricultural soils in the drive for global food security 

under the pressure of a growing population cannot be underestimated. However, this 

challenge is made far more complex by our fragmented understanding of the 

relationships between below-ground biodiversity and ecosystem functioning. In 

particular, clear knowledge gaps exist in terms of the additive effects of multiple 

drivers of soil change. In order to satisfy the multifaceted challenge of sustainable 

food security, a broader, more comprehensive understanding of the drivers of below-

ground agroecosystem dynamics is required. Here, we discuss some of the major 

knowledge gaps in soil diversity-function research. 

 

 

1.5.1    Community and systems approaches 

 

Numerous studies have explored the impacts of land-use change, including changes 

associated with agricultural intensification, on a single species or small group of soil-

dwelling species. These studies offer valuable insights into specific relationships. In 

reality, however, soil organisms do not exist in the environment in isolation. Rather, 

the soil food web is a complex, inter-linking network of interacting organisms. 

Furthermore, soil organisms are characterised by a variety of physiological traits and 

life-history strategies that means they can exhibit a broad range of responses to the 

same environmental perturbation (Chapter 1.2). Consequently, studying the response 

of a single species or group of species to a stressors offers only a small insight into 

the effects on the soil community. Therefore, this thesis examines the impacts of 

intensive agricultural management on relationships between soil mesofauna and 

ecosystem function from a community perspective, including both detritivorous and 

predatory groups.  
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As discussed in Chapter 1.2, crude differences in the ecophysiology and life-history 

strategy of soil mesofauna at the suborder level enable us to make predictions about 

the responses of different groups to perturbation. For example, we can predict that 

groups with good dispersal capacity, short generation times and high fecundity (e.g. 

astigmatid mites) would be less negatively affected by environmental perturbation 

(e.g. the application of a high dose of inorganic fertiliser) than poor dispersers with 

long generation times and low fecundity (e.g. oribatid mites). Therefore, this thesis 

primarily assesses shifts in soil mesofaunal community structure at the suborder 

level, with some species-level work in Chapter 4. 

 

 

1.5.2     Field observations 

 

The soil poses a difficult medium to study due to its opacity and, therefore, sampling 

is typically, to a degree, destructive. In recent years, however, technological 

advancements have allowed researchers to view soil in its undisturbed state. For 

example, X-ray tomography has been used to revolutionise our understanding of 

rhizosphere interactions (Mooney et al., 2012) and soil microhabitat structure 

(Nunan et al., 2006). X-ray tomography has also been used to visualise the horizontal 

and vertical distribution of earthworm burrows in 3D space, which allows for 

predictions to be made as to how burrowing activity can affect the hydraulic 

properties of soil, e.g. water flow (Bastardie et al., 2003). Additionally, this 

technique has been used to examine the trajectories of the root-feeding larvae of 

plant pests (Johnson et al., 2004). A second advancement in the in-situ study of plant 

roots and root-associated soil microorganisms is the use of transparent substrate 

(Downie et al., 2012; Downie et al., 2014).  

 

Methods such as these have the capacity to significantly advance research into soil 

processes. For studies of invertebrate populations, however, field studies using real 

soils in real environments, subjected to climatic effects and so on, are needed in 
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order to make assessments of the effects of agricultural practices on diversity-

function relationships. Therefore, this thesis examines the impacts of intensive 

agricultural management on relationships between soil mesofauna and ecosystem 

function in realistic field settings, including both plantation and arable systems.  

 

Nevertheless, there are issues with field observations. Most importantly, soils are 

opaque and observations of soil dwelling-invertebrates necessitate careful extraction 

from the soil. A number of studies overcome this challenge by sampling the leaf litter 

only (e.g. Lensing et al., 2005), thus avoiding the need for the destructive sampling 

of the bulk soil. However, the spatial stratification of soil-dwelling invertebrates is 

transient, varying with soil properties such as moisture and pH. For example, the 

surface litter layer provides rich habitat for detritivores, including springtails (Irmler, 

2006), and populations will aggregate in areas of high resource availability under 

favourable conditions. However, if soil moisture is reduced or temperature increased, 

springtails will migrate to the upper soil layers in search of damper, cooler conditions 

(Hassall et al., 1986). Thus, sampling only the litter layer can give biased estimates 

of population densities and/or community composition under different environmental 

conditions. Furthermore, the effects of treatment variables may over-estimated, or 

indeed under-estimated, in the case of resource enrichment studies. Consequently, 

the studies described in this thesis explore changes in abundance and community 

structure within the upper 10 cm soil, where the majority of soil microarthropods are 

found (Al-Deeb et al. 2003).  

 

 

1.5.3     Sustainable intensification for soil conservation 

 

Agricultural intensification exerts increasing pressure on soils. Since soils are 

considered to be non-renewable on the scale of human generations, the fundamental 

challenge to food security within a soil framework is to manage soils in a sustainable 

way; maintaining productivity from existing farmland, or smaller amounts of land, 
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while minimising negative environmental impacts and conserving ecosystem 

function. This concept is known as sustainable intensification. In the context of soils, 

maintaining soil health requires a reduction in the rate of soil erosion and 

acidification, and the conservation of soil biodiversity (Kibblewhite et al., 2008). A 

key aspect of agricultural intensification is the use of high levels of synthetic inputs. 

Under the growing threat of diminishing resources, including the phosphorus crisis, 

and increasing costs, this is likely to be unsustainable and farmers may be forced to 

apply smaller amounts of fertiliser.  

 

The role of soil mesofauna in ecosystem function is primarily manifested through 

their impacts on the microbial biomass, which affect rates of decomposition, nutrient 

bioavailability and seedling emergence (Coleman et al., 2004; Mitschunas et al., 

2008). However, the extent to which soil mesofauna can contribute to ecosystem 

function, including productivity, remains unclear (Cole et al., 2004). It is likely that 

these effects will depend on the prior damage caused by agricultural management 

and the composition of the faunal community. The abundance of detritivorous fauna 

(e.g. oribatid mites and springtails) of particular importance here due to their role in 

decomposition and nutrient cycling.  

 

Chapters 3 and 5 of this thesis will explore the relationships between soil mesofauna 

and ecosystem function, and how these relationships change under the application of 

different fertiliser types and N concentrations. This knowledge is particularly 

important under a sustainable intensification framework where, in addition to 

advances in crop breeding (e.g. low N-requiring varieties) and fertiliser use 

efficiency, consideration must be given to the application of varying types and 

quantities of fertilisers for maintaining, or increasing, crop yields while limiting 

adverse effects on the environment.  
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1.6  Objectives of the thesis 

 

This thesis considers the issues raised in Chapter 1.5. Specifically, this thesis:  

1. Investigates the effects of intensive agriculture on soil fauna-function 

relationships using realistic management practices in field systems.  

2. Explores the effects of agricultural management practices on multiple soil 

invertebrate groups simultaneously. 

3. Draws comparisons between the effects of intensive agricultural management 

in multiple systems, with varying soil types. 

4. Makes recommendations for ways in which any negative observed effects of 

intensive agriculture on soil diversity-function relationships can be 

minimised. 

 

 

 

1.7  Thesis outline  

 

This thesis is presented in four main chapters, each addressing one or more of the 

objectives outlined in Chapter 1.6. 

 

In Chapter 2, the contributions of biotic and abiotic factors in controlling temporal 

changes in populations of soil mesofauna are examined over the equivalent of a 

growing season. In particular, we consider the role of climatic variation, fertiliser 

application and predator-prey interactions. Interactions between fertiliser application, 

in varying forms and application rates, and soil parameters are also considered. 

 

In Chapter 3, the impacts of intensive management on the abundance and community 

composition of different soil mesofaunal and microfaunal groups are considered in 

an Australian eucalypt plantation system. In particular, we evaluate the effects of 
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fertilisation and irrigation regimes. Changes in abundance and community structure 

in response to management regimes are related to changes in soil nutrient 

bioavailability as a proxy for ecosystem functioning. 

 

In Chapter 4, we explore changes in soil invertebrate abundance and community 

composition along a gradient of agricultural management intensity from woodland to 

field. The value of different non-crop habitats, including adjacent woodlands, 

hedgerows and grassy margins, as refugia for soil invertebrates are assessed and 

related to the conservation value for above-ground fauna.  

 

In Chapter 5, we investigate the effects of fertiliser use, including different types and 

application rates, on relationships between soil invertebrates and ecosystem function 

above-ground and below-ground. 

 

In Chapter 6, we review the key findings of the four studies described previously and 

discuss their relevance to agricultural soil management more generally. We also 

discuss priorities for future research.  
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Chapter 2 

 

 

Complex drivers of soil mesofaunal population growth: 

density-dependence, environmental variation and 

fertiliser inputs 

 

 

 

Abstract 

 

The population and community dynamics of organisms are a result of the complex 

interplay between stochastic, trophic, seasonal and competitive interactions. Soil 

organisms contribute to a broad range of ecosystem functions, yet our understanding 

of the impacts of intensive management on their population dynamics is far from 

comprehensive. Using a replicated, randomised field trial design, we explored the 

contribution of exogenous and endogenous factors in controlling the temporal 

dynamics of soil mesofaunal populations over the equivalent of a growing season. 

Furthermore, we investigated the impacts of a perturbation, in the form of fertiliser 

application, on these patterns. We observed strong evidence of seasonal patterns of 

abundance, which were modified by variation in the physical environment, and 

trophic and competitive interactions. This study is the first to show that soil 

mesofaunal community dynamics can be affected by perturbation in the form of 

fertiliser application.  
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2.1  Introduction  

 

Intensive agricultural management has accelerated rates of soil erosion globally, such 

that approximately one third of soils are now classified as being moderately to highly 

degraded (FAO, 2015a). A recent FAO report states that, in some areas of the world, 

soils are degrading at such a rate that only 60 years of soil functionality remain. In 

the United Kingdom, it is predicted that only 100 harvests remain in agricultural soils 

(Edmondson et al., 2014). In Chapter 1, we discussed how soil biological 

communities contribute to a wide range of ecosystem functions and services. 

However, there are significant gaps in our understanding of how intensive 

management impacts on these communities. Understanding the impacts of intensive 

management is crucial if we are to manage soil biodiversity in a sustainable way. 

 

Advances in the theory of the population and community dynamics of organisms 

mean that we have broad expectations about the interplay of stochastic, trophic, 

seasonal and competitive interactions. For example, we know that variation in the 

environment, e.g. the quantity or spatial arrangement of food, interacts with 

organisms’ life histories to feed into population dynamics, ultimately influencing 

population size (Sæther, 1997; Beckerman et al., 2003; Benton et al., 2006).  

Different groups of organisms react to the same environmental stochasticity 

differently, with consequences for population size and structure (Coulson et al., 

2001). Consequently, organisms can be seen as biological filters, modifying 

environmental signals into changes in population dynamics (Benton and Beckerman, 

2005). 

 

Furthermore, delayed life history effects can be transmitted from parent to offspring 

(Rossiter, 1991; Mousseau and Fox, 1998; Beckerman et al., 2002). Hence, an 

organism’s performance is likely to depend on current conditions and those 

experienced by previous generations. The strength of parental effects, and 

particularly maternal effects, is again contingent upon the environment. For example, 

high food availability can erase the effects of the environment experienced by 

previous generations (Benton and Beckerman, 2005). In addition, we know that 
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environmental effects depend on species assemblages and the age- or stage-structure 

of the population. For example, Cameron and Benton (2004) found that the stage-

structure of mite populations before a perturbation, such as a harvesting event, can 

alter the structure of the population after the perturbation. Therefore, there is huge 

complexity in the interactions between the environment, the life histories of 

organisms and their biology, which ultimately affects their population dynamics. 

 

Different species respond to variability in the physical environment, e.g. weather 

patterns and other abiotic stressors, and the biotic environment, e.g. food availability 

and predators, in complex ways. For example, soil moisture can be a strong driver of 

soil invertebrate abundance (Badejo and Van Straalen, 1993; Hopkin, 1997; 

Ferguson and Joly, 2002), with peak springtail population densities occurring after 

rainfall events (Badejo et al., 1998). Furthermore, variation in the physical 

environment can affect life history by altering rates of fecundity; for example, 

springtail reproduction can be inhibited under low soil moisture (Van Gestel and Van 

Diepen, 1997; Choi et al., 2002).  

 

The temperature of the surrounding physical environment can also be a key driver of 

fecundity, as shown in fish (Kraus et al., 2000; Pörtner et al., 2001) and arthropods, 

both above-ground (Karlsson and Wiklund, 2005) and below-ground (Ydergaard et 

al., 1997). In addition, temperature can affect juvenile development rate (Kasuga et 

al., 2006). Again, interactions between organisms and their environment can involve 

trade-offs along the life history trajectory. For example, temperature may increase 

fecundity but this can result in a trade-off with size at maturity (Arendt, 2015).  

 

The ecophysiology of different invertebrate groups shapes their responses to 

variation in the physical environment. For example, springtails have limited 

burrowing capacity and, while movement may occur between the litter and humus 

layers in response to changes in environmental conditions (Hassall et al., 1986; 

Sgardelis et al., 1993), under drought conditions individuals are forced to undergo 

horizontal migration, become immobilised until conditions improve (Bauer and 

Christian, 1993) or die. However, other groups, such as enchytraeids, have been 
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shown to respond to changes in soil moisture through vertical migration to deeper, 

moister soil horizons (Nielsen, 1955b; Springett, 1970).  

 

In addition to abiotic factors, biotic controls can also regulate biological communities 

in a complex way. A key question of population ecology is whether populations are 

controlled by resource availability and competition for resources (bottom-up control) 

or by effects of predation at higher trophic levels (top-down control). There is 

considerable evidence that detritus-based food webs are regulated by bottom-up 

forces, with densities of organisms at lower trophic levels controlling the abundance 

of detritivorous and predatory groups (Scheu and Schaefer, 1998; Chen and Wise, 

1999; Laakso and Setälä, 1999). On the other hand, top-down forces can also play a 

role in the regulation of soil food webs (Bengtsson et al., 1997; Hedlund and Öhrn, 

2000; Lenoir et al., 2007). While there is little evidence for top-down trophic 

cascades in soil systems, predator-prey interactions can affect herbivore and 

detritivore communities. For example, detritivorous mesofauna may become prey for 

mesostigmatid mites and some prostigmatid mites, in addition to larger arthropod 

predators, including carabids, centipedes and wolf spiders (Schaefer, 1995; Meek et 

al., 2002; Lewis, 2007). Furthermore, predators above-ground can have trickle down 

effects on the below-ground food web (Wardle et al., 2005).  

 

In fact, soil community composition is likely to be determined by a combination of 

top-down and bottom-up regulatory factors, in addition to abiotic factors. For 

example, Ferguson and Joly (2002) reported that litter-dwelling soil springtail and 

mite communities were determined primarily by climate and density-dependent 

competition for food, assumed from a negative effect of lagged densities, and 

secondarily by predation by macroarthropods. The relative contribution of these 

factors in shaping soil community dynamics is likely to vary between systems and 

depend, for example, on the availability of resources. Indeed, Valiela et al. (2004) 

argue that top–down control becomes more important under low nutrient availability 

in aquatic environments, and there is also evidence for this in soil communities 

(Lenoir et al., 2007). 
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Understanding changes in population abundance over time is a major challenge in 

population biology research (Cushing et al., 1998). The majority of studies 

examining above-ground invertebrate population dynamics assess changes in 

abundance with yearly lags (Turchin, 1990; Perry et al., 1993; Hunter and Price, 

1998). There is strong evidence to suggest that soil communities are relatively stable 

in the longer-term, with little annual variation in abundance or community 

composition (Kampichler and Geissen, 2005; Irmler, 2006). However, due to the 

strong regulatory power of climatic factors in controlling soil faunal populations, 

most groups exhibit marked seasonal changes in abundance in response to seasonal 

changes in environmental conditions. Responses to climatic conditions are further 

determined by the strength and duration of climatic change; for example, Sulkava 

and Huhta (2003) reported greater reductions in microarthropod and enchytraeid 

worm abundances under severe frosts, compared to soils undergoing freeze-thaw 

cycles or constant benign temperatures.  

 

While we have a broad understanding of the interplay of stochastic, trophic, seasonal 

and competitive interactions that affects population dynamics, there is a knowledge 

gap surrounding the temporal dynamics of soil communities and, in particular, the 

effects of perturbation on these dynamics. Therefore the aim of this study was to 

explore how a perturbation at the start of a season, through the application of 

fertiliser, impacted on the temporal dynamics of soil faunal populations.  Using a 

field plot experiment, we investigated the effects of fertiliser inputs, in addition to 

climatic variation and biotic interactions, on changes in soil mesofaunal abundance 

over the equivalent of a growing season. We hypothesised that changes in soil 

mesofaunal abundance would be primarily driven by abiotic factors, mainly through 

resource enrichment, and secondarily by biotic factors, including competition and 

predator-prey interactions. In particular, we predicted that moisture content and soil 

temperature would promote the growth of springtail and soil mite populations 

respectively. It was further hypothesised that inorganic fertiliser inputs would slow 

the rate of population increase, while organic inputs would support the highest 

densities of detritivorous groups (e.g. springtails, oribatid mites and enchytraeid 

worms). Under inorganic fertiliser regimes, it was predicted that taxa with short 

generation times (e.g. springtails) would recover from any adverse effects more 
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quickly than those with longer generation times (e.g. oribatid mites and enchytraeid 

worms).  

 

 

 

2.2   Methods 

 

 

2.2.1   Study site 

 

The field site, comprising 16 4m
2
 plots in a randomised block design, was situated 

on a grassy area at Spen Farm, West Yorkshire, UK (53°51'38.2"N, 1°19'46.7"W). 

The site had been out of cultivation for over 10 years prior to the study, with no 

agrochemicals applied during this period. 

 

 

2.2.2  Experimental design 

 

Each block of four plots comprised the following experimental treatments: standard 

dose ammonium nitrate fertiliser (175 kg N ha
-1

; SD), double dose ammonium nitrate 

fertiliser (350 kg N ha
-1

; DD), pig slurry and straw (175 kg N ha
-1

; O), and an 

untreated control (C). Standard dose fertiliser application rates reflected those 

applied to the same area over the past 10 years (M. Langdale, pers. comm.). A free-

draining, lime-rich clay loam soil type, characterised by a moderate water-holding 

capacity (Aberford type), dominated the field site (NSRI, 2013). 
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2.2.3  Soil sampling 

 

Soil sampling took place during week 0 (9
th

 May 2013), week 1 (immediately prior 

to the application of fertilisation regime; 16
th

 May 2013), and weeks 2 (23
rd

 May 

2013), 3 (30
th

 May 2013), 4 (6
th

 June 2013), 6 (20
th

 June 2013), 8 (4
th

 July 2013), 10 

(18
th

 July 2013), 14 (15
th

 August 2013) and 18 (12
th

 September 2013). At each 

sampling event, six soil cores were collected from each experimental plot using a 

soil corer measuring 8 cm in diameter and 10 cm in depth, and combined to form a 

composite sample. A random number generator was used to select sampling 

locations over a grid of each experimental plot. This process was repeated at each 

sampling event to reduce the chance of sampling the same area on multiple 

occasions. Microarthropods were then extracted into 70% ethanol using a modified 

Tullgren funnel method with increasing light intensity over a six day period. During 

this time, the photoperiod was progressively extended to create a temperature 

gradient designed to drive soil fauna through the soil profile. Individuals were 

counted and identified to order level under a binocular microscope (Leica MZ75).  

 

At each sampling event, two additional soil core samples measuring 8 cm in diameter 

and 10 cm in depth were taken from each sampling site, combined and homogenised. 

The locations of these cores were also selected using a random number generator, 

and this process was repeated at each sampling event. Soil moisture content was 

calculated by drying 25 g soil at 130 C for 72 hours. A 10 ± 0.1 g subsample was 

then sieved, mixed with 50 ml distilled water and the pH of the resulting suspension 

measured.    

 

 

2.2.4  Estimating soil temperature 

 

Soil temperature data were obtained from an automated weather station 

(53°52'7.6"N, 1°19'7.9"W) at Headley Hall, University of Leeds Farms, West 

Yorkshire, UK. The weather station was situated approximately 1 km from the 
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experimental plots. Soil temperature was measured 10 cm below the soil surface 

every minute by an automated temperature sensor. For all environmental variables, 

mean average values were calculated for the week preceding each soil sampling 

event. 

 

 

2.2.5  Statistical analysis 

 

Statistical analyses were conducted using R (R Core Development Team, 2014). 

Linear mixed effects models were used to analyse the effects of treatment on the 

abundance of soil fauna at different time points. Block was included as a random 

factor. Covariates included fertiliser treatment, soil moisture, soil pH and soil 

temperature. Where a non-linear relationship was observed between faunal 

abundance and soil temperature, a polynomial effect of temperature was modelled. A 

first-order autoregressive covariance structure (‘corAR1’) was used to account for 

temporal autocorrelation in the dependent variable using the R package nlme 

(Pinheiro et al., 2015). In each model, the log-transformed abundance of the faunal 

group of interest at t+2 or t+4 weeks was specified as the dependent variable. Using 

two- and four-week lags addressed the irregular sampling intervals (Chapter 2.2.3). 

Log-transformed abundances of relevant predator or prey groups at t were included 

as covariates, selected based on a priori knowledge of the system. The abundance of 

the group of interest at t was also included. 

 

For each analysis, two maximal models were constructed in nlme, including all 

covariates with interactions and random terms, and abundance of the focal group at 

t+2 and t+4 weeks. The ‘dropterm’ function in the R package MASS (Venables and 

Ripley, 2002) was used to explore model structure by simplifying the over-

parameterised full models to create a set of plausible candidate models. Models were 

then compared using second-order Akaike Information Criteria (Burnham and 

Anderson, 2002).  
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2.3  Results 

 

The three best candidate models generated from the analysis of the abundance of 

oribatid mites (Table 2.1), mesostigmatid mites (Table 2.2), prostigmatid mites 

(Table 2.3), astigmatid mites (Table 2.4), springtails (Table 2.5) and enchytraeid 

worms (Table 2.6) are presented.  
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Table 2.1 Model selection table for oribatid mite analysis. The best three candidate models are presented, with the best model indicated in 

bold. All models contained a random blocking term. Abundance at t+2 weeks was used as the dependent term  

 

Model  Log L AICc K wi 

time*treatment + abundance at t + predator abundance at t + treatment * moisture + temperature + treatment * pH -93.02 220.50 14 0.02 

time*treatment + abundance at t + predator abundance at t + temperature + treatment * pH -87.67 212.84 15 0.84 

time*treatment + abundance at t + predator abundance at t   -84.77 216.74 18 0.12 
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Table 2.2 Model selection table for mesostigmatid mite analysis. The best three candidate models are presented, with the best model 

indicated in bold. All models contained a random blocking term. Abundance at t+2 weeks was used as the dependent term  

 

Model  Log L AICc K wi 

time*treatment + abundance at t + prey abundance at t + treatment * moisture + temperature + treatment * pH -124.05 312.99 24 0.05 

time*treatment + abundance at t + prey abundance at t + temperature + treatment * moisture -126.98 305.16 20 0.98 

time*treatment + abundance at t + prey abundance at t  + temperature + treatment * pH -135.07 321.35 20 0.00 
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Table 2.3 Model selection table for prostigmatid mite analysis. The best three candidate models are presented, with the best model indicated 

in bold. All models contained a random blocking term. Abundance at t+2 weeks was used as the dependent term 

 

Model  Log L AICc K wi 

time*treatment + abundance at t + prey abundance at t + treatment*moisture + treatment*pH -174.01 413.74 23 0.16 

time*treatment + abundance at t + prey abundance at t + treatment*moisture -182.60 415.87 19 0.05 

time*treatment + abundance at t + prey abundance at t -186.48 410.45 15 0.79 
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Table 2.4 Model selection table for astigmatid mite analysis. The best three candidate models are presented, with the best model indicated in 

bold. All models contained a random blocking term. Soil temperature was modelled as a quadratic effect. Abundance at t+4 weeks was used as 

the dependent term 

 

Model  Log L AICc K wi 

time * treatment + abundance at t + enchytraeid abundance at t + temperature -145.74 325.94 14 1 

time * treatment + abundance at t + predator abundance at t + treatment*moisture + enchytraeid abundance at t -144.69 340.04 19 0 

time * treatment + abundance at t + enchytraeid abundance at t -156.76 345.04 13 0 
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Table 2.5 Model selection table for springtail analysis. The best three candidate models are presented, with the best model indicated in bold. 

All models contained a random blocking term. Abundance at t+4 weeks was used as the dependent term 

 

Model  Log L AICc K wi 

time*treatment + abundance at t + predator abundance at t + temperature + moisture -114.11 264.23 15 0.96 

time*treatment + moisture + predator abundance at t + temperature -118.69 270.57 14 0.04 

time*treatment + abundance at t + predator abundance at t + temperature -120.66 277.31 15 0.00 

 

 



- 40 - 

 

Table 2.6 Model selection table for enchytraeid worm analysis. The best three candidate models are presented, with the best model indicated 

in bold. All models contained a random blocking term. Abundance at t+4 weeks was used as the dependent term 

 

Model  Log L AICc K wi 

time * treatment + abundance at t + temperature + treatment*moisture -190.28 422.41 17 0.96 

time * treatment + abundance at t + predator abundance at t + temperature + treatment*moisture -190.35 428.69 19 0.04 

time * treatment + abundance at t + predator abundance at t + treatment*moisture -198.71 442.31 18 0.00 
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The abundance of soil mesofaunal groups differed over the course of the study period 

under the unfertilised control treatment (Fig. 2.1). Declines in mite abundance after 

week 14 are likely to be a result of peak soil temperature and low soil moisture in the 

topsoil.   
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Fig. 2.1 Changes in the abundance of (a) oribatid mites, (b) mesostigmatid 

mites, (c) prostigmatid mites, (d) astigmatid mites, (e) springtails and (f) enchytraeid 

worms over the equivalent of a growing season, from 9
th

 May 2013 (Week 0) to 12
th

 

September 2013 (Week 18). Abundance data were estimated from unfertilised plots. 

The solid line represents the mean change in invertebrate abundance between time 

points, with dots representing individual data points 

 

 

2.3.1 Impacts of soil environmental factors and fertiliser treatments  

 

We observed a significant treatment × time interaction on the abundance of astigmatid 

mites (F66 = 3.28, P = 0.03). In particular, changes in population size under O differed 

to DD (t66 = 4.29) and SD (t66 = 2.78, both P < 0.01; Fig. 2.2a). Changes in springtail 

abundance over time varied between O and C (t81 = 2.47, P = 0.02; Fig. 2.2b). 

However, whilst treatment was retained in the best model using AICc, contrast tests 

performed on the best model indicated that the overall effect of fertiliser treatment was 

not statistically significant (P > 0.05).  
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Fig. 2.2 Changes in the abundance of (a) astigmatid mites and (b) springtails 

over the equivalent of a growing season under different fertilisation regimes. 

Abundance data were estimated under different fertilisation regimes: standard dose 

ammonium nitrate fertiliser (Nitram 34.5%N at 175 kg N ha
-1

 (SD); orange), double 

dose ammonium nitrate fertiliser (Nitram 34.5%N at 350 kg N ha
-1

 (DD); red), pig 

slurry and straw (175 kg N ha
-1

 (O); green) and an unfertilised control (C; blue). Data 

are shown from 9
th

 May 2013 (Week 0) to 12
th

 September 2013 (Week 18) 

 

 

We observed a significant treatment × moisture interaction on the abundance of 

enchytraeid worms (F79 = 3.70, P = 0.02; Fig. 2.3), suggesting that the effect of 
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fertiliser treatment was contingent upon soil moisture status. In particular, the effect of 

soil moisture under O differed to that of C (t79 = 2.35, P = 0.02), SD (t79 = 3.15, P < 

0.01) and DD (t79 = 3.72, P < 0.01), with effects on abundance. Furthermore, we 

observed a negative effect of increasing soil temperature on the abundance of 

enchytraeid worms (t79 = -4.31, P < 0.001), with a four-week lag.  

 

 

 

 

Fig. 2.3 Model-predicted changes in enchytraeid worm abundance in response 

to fertiliser treatment under varying soil moisture levels. Abundance data were 

estimated under different fertilisation regimes: standard dose ammonium nitrate 

fertiliser (Nitram 34.5%N at 175 kg N ha
-1

 (SD); orange), double dose ammonium 

nitrate fertiliser (Nitram 34.5%N at 350 kg N ha
-1

 (DD); red), pig slurry and straw (175 

kg N ha
-1

 (O); green) and an unfertilised control (C; blue). Model-predicted data were 

generated from the best model presented in Table 2.6 

 

 

An increase in the abundance of mesostigmatid mites (t76 = 2.45, P = 0.02) under O 

compared to C was associated with enhanced soil moisture with a four-week time lag. 
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Furthermore, overall soil moisture had a positive effect on springtail abundance (t81 = 

2.41, P = 0.02) with a four-week time lag, but this effect did not vary with treatment.  

 

The effect of fertiliser treatment on the abundance of oribatid mites varied with soil 

pH (treatment × pH interaction: F61 = 4.36, P < 0.01; Fig. 2.4) with a two-week time 

lag. Specifically, differences were observed between C and SD (t61 = -3.60, P < 0.001), 

and C and DD (t61 = -2.09, P = 0.04).  

 

 

 

 

Fig. 2.4 Model-predicted changes in oribatid mite abundance in response to 

fertiliser treatment under varying soil pH levels. Abundance data were estimated under 

different fertilisation regimes: standard dose ammonium nitrate fertiliser (Nitram 

34.5%N at 175 kg N ha
-1

 (SD); orange), double dose ammonium nitrate fertiliser 

(Nitram 34.5%N at 350 kg N ha
-1

 (DD); red), pig slurry and straw (175 kg N ha
-1

 (O); 

green) and an unfertilised control (C; blue). Model-predicted data were generated from 

the best model presented in Table 2.1 
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2.3.2  Predator-prey interactions 

 

At a four-week lag, the abundance of predatory mesostigmatid mites was positively 

associated with the abundance of enchytraeid worms (t76 = 2.17, P = 0.03) and oribatid 

mites (t76 = 2.25, P = 0.03). We did not observe any effects of predator abundance on 

the abundance of prey groups. 

 

 

2.3.3  Intraspecific patterns 

 

We observed evidence of larger populations of mesostigmatid mites at t associated 

with smaller populations at t+4 (t76 = -2.99, P < 0.01). The same trend was also 

observed for enchytraeid worms (t79 = -4.49, P < 0.001). However, the abundance of 

astigmatid mites at t was associated with greater abundance at t+2 (t75 = 2.38, P = 

0.02). 

 

 

 

2.4     Discussion 

 

The aim of this study was to investigate the seasonal community dynamics of soil 

invertebrates over the equivalent of a growing season. Additionally, we were interested 

in how these patterns were affected by the application of fertiliser as a form of 

perturbation.  We observed seasonal patterns of abundance, which differed between 

taxa (Chapter 2.4.1). These patterns were modified by a range of seasonal variables 

(Chapter 2.4.2) and trophic and competitive interactions (Chapter 2.4.4).  Furthermore, 

this is the first study to show that soil community dynamics are affected by 

perturbation in the form of fertiliser application (Chapter 2.4.3).  
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2.4.1     Temporal variation in soil mesofaunal abundance 

 

In the absence of fertiliser amendments, the seasonal growth curves of oribatid, 

mesostigmatid and astigmatid mites showed a predictable pattern, similar to those 

observed by Chikoski et al. (2006) and Narula et al. (1996). The population increase 

of springtails followed a similar pattern. It is likely that favourable conditions between 

May and August increased rates of reproduction and juvenile development, resulting in 

a rapid increase in population densities during this period. This is followed by a 

decrease in habitat suitability later in the summer, including an increasingly dry 

topsoil, resulting in low rates of fecundity and increased mortality (Choi et al., 2006). 

Evidence of this late season decline is shown in mite populations after week 14. We 

predict that population densities would have decreased to winter levels within a few 

weeks, with the decline in springtail abundance occurring slightly later. Abundances of 

prostigmatid mites followed a similar trend; however, a sharp decrease in abundance 

was observed in week 10. Unlike the microarthropod groups, the seasonal dynamics of 

enchytraeid worms were noisy, with several peaks in abundance observed throughout 

the sampling period. Since we observed a significant effect of soil temperature on 

enchytraeid abundance (Chapter 2.4.2), this may reflect changes in the vertical 

distribution of enchytraeids in response to changes in soil temperature. 

 

While soil faunal abundances are affected by substantial within-year demographic 

change (Van Straalen et al., 1997), populations are likely to remain relatively stable 

between years under comparable environmental conditions and management regimes. 

For example, using mean annual forest springtail abundance data or abundances from 

the same time point over successive years, Kampichler and Geissen (2005) found that 

forest springtail populations were fairly consistent over a five year period, with little 

directional change in community structure.  
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2.4.2 The role of abiotic factors in shaping soil mesofaunal 

populations 
 

We observed a decrease in enchytraeid worm abundance in response to increased soil 

temperature. We observed a maximum soil temperature of 22 ºC, well below a critical 

temperature affecting mortality (Kools et al., 2008; Johannesen et al., 2013). 

Therefore, this reduction in enchytraeid abundance in the 0-10 cm soil layer is most 

likely to reflect changes in the vertical distribution of enchytraeid populations, with 

individuals undergoing vertical migration to deeper, cooler soil horizons (Briones et 

al., 1998; Uhía and Briones, 2002; Briones et al., 2009). Enchytraeids were extracted 

from the soil using a dry-funnel method, which is likely to have resulted in an 

underestimation of total community abundance with a bias towards hardier species 

able to withstand changes in soil moisture. Since soil temperature has complex, 

species-specific effects on enchytraeid worm abundance (Briones et al., 1997), this 

pattern may not be representative of the whole enchytraeid community at the site.  

 

Contrary to our predictions, we did not observe a significant effect of soil temperature 

on the population growth rates of all soil mite groups. However, it is possible that an 

increase in soil temperature, in excess of those observed in this study, would have 

resulted in a change in population growth. For example, Ydergaard et al. (1997) 

observed that the daily mean number of eggs laid by individual Hypoaspis miles 

(Berlese) females increased from 0.4 at 15 ºC to 2.3 at 25 ºC. Furthermore, the current 

study design only allowed two- and four-week time lags to be examined, but it is 

possible that temperature exerted more instantaneous effects on soil mites.  

 

Soil temperature measurements were not treatment-specific due to the location of the 

weather station. However, some differences in temperature may have occurred 

between treatments. Specifically, the organic treatment is likely to have buffered 

changes in soil temperature due to the insulating effect of the straw-slurry mixture on 

the soil surface, reducing the transfer of heat generated by decomposition to the 

external environment. Phillips and Phillips (1984) showed that a mulched layer 
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reduced evapotranspiration and was effective in moderating variation in soil 

temperature. Since temperature is a determinant of soil microbial and invertebrate 

development, fecundity and activity (Swift, 1979; Johnson and Wellington, 1980; 

Hopkin, 1997; Birkemoe and Leinaas, 2000; Choi et al., 2002; Bardgett, 2005), an 

increase in soil temperature in the O plots would likely enhance habitat suitability for 

soil microarthropod populations. These conditions may have contributed to the 

accelerated rate of springtail population increase observed under the O treatment. 

 

We observed an increase in springtail abundance with increasing soil moisture, as 

expected. The positive relationship between soil moisture and springtail abundance is 

well established (Badejo et al., 1998; Convey et al., 2002; Lindberg et al., 2002; 

Chikoski et al., 2006), while Juceviča and Melecis (2002) observed that reduced soil 

moisture is also associated with reduced springtail species richness. Moreover, Choi et 

al. (2006) found that incorporating soil moisture data into stage-structured population 

models improved estimates of springtail abundance. In comparison to the heavily 

sclerotised Oribatida and Mesostigmata, soft-bodied collembolans have a more 

permeable cuticle and are therefore more sensitive to moisture stress (Convey et al., 

2003). Reduced soil moisture also has negative effects on the abundance and activity 

of soil microorganisms (Griffin, 1963; Wilson and Griffin, 1975; Orchard and Cook, 

1983; Stark and Firestone, 1995; Milcu et al., 2006). Since the availability of food 

resources (e.g. dead particulate organic matter) is a key driver of springtail density 

(Chen and Wise, 1997), increased soil moisture may have indirectly promoted 

springtail abundance through changes in food availability.   

 

 

2.4.3  The role of fertilisers in shaping soil mesofaunal populations 

 

The effects of fertiliser treatment differed between faunal groups. The rate of springtail 

population increase was enhanced under O compared to C and DD. This is likely to be 

due to resource enrichment in these plots, in addition to the temperature hypothesis 
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suggested in Chapter 2.4.2. Furthermore, since the straw was not treated with 

insecticide prior to application, it is also possible that the O plots may have inoculated 

the soil with springtails directly, resulting in a faster rate of population increase.  

 

Inorganic fertiliser inputs had diverse effects on soil mites. Astigmatid mites showed a 

greater increase in abundance under both high-dose and standard-dose ammonium 

nitrate treatments in comparison to the organic treatment, with a notable increase in 

these plots by week 8. The ecology of astigmatid mites is less well understood than 

other soil microarthropod groups. However, it is generally accepted that astigmatid 

mites are comparatively unaffected, or even positively affected, by the impacts of 

intensive agriculture. Subsequently, astigmatid mites can thrive where other 

microarthropod groups struggle to survive; for example, under conventional tillage 

(Reeleder et al., 2006). Two potential explanations are offered for the enhanced 

population increase under the inorganic plots. Firstly, an increase in food availability 

via N enrichment under these plots may have promoted population growth. However, 

since population growth was dampened under the organic treatment, this hypothesis 

assumes species-specific responses of microorganisms to different fertiliser types. A 

more likely explanation is that astigmatid mites responded to a decrease in 

competition, for example by enchytraeids, in plots receiving ammonium nitrate 

fertiliser treatments, allowing populations to increase more rapidly over time. 

Astigmatid mites are r-selected colonisers, with short generation times and high 

fecundity (Walter and Proctor, 1999, Norton, 1999), enabling them to respond more 

rapidly to favourable conditions than K-selected species. 

 

The effect of fertiliser treatment on the abundance of oribatid mites was contingent 

upon the pH of the soil. However, treatment-induced changes in soil pH were not as 

remarkable as predicted (mean pH under SD: 7.55 ± 0.04, DD: 7.50 ± 0.06, C: 7.79 ± 

0.07, O: 7.76 ± 0.05). At these levels, oribatid mite abundance was higher under plots 

receiving inorganic fertiliser than under C, contrary to our expectations.  

Enhanced soil moisture under the O treatment was associated with an increase in the 

abundance of mesostigmatid mites, compared to the untreated C treatment. This 
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change in abundance is consistent with a similar study (Table 5.5). Chikoski et al. 

(2006) also observed an increase in the abundance of predatory mites under 

experimental water supplementation. While soil moisture can be a direct determinant 

of microarthropod abundance and distribution (Chapters 2.1 and 2.4.2), direct effects 

are unlikely to be a cause for elevated populations of mesostigmatid mites, which are 

heavily sclerotized with a thick waxy cuticle (Convey et al., 2003). These 

physiological traits render these individuals less susceptible to changes in soil 

moisture.  

 

We observed an increase in the abundance of enchytraeid worms – a key prey group of 

the Mesostigmata (Jeffery et al., 2010; Whalen and Sampedro, 2010) – under the O 

treatment under typical soil moisture levels. Since a predator-prey interaction was 

identified between the predatory mites and enchytraeid worms (Chapter 2.3.2), 

whereby an increase in prey abundance enhanced predator abundances, this suggests a 

bottom-up control from the detritivore level. Alternatively, a bottom-up cascade could 

originate further down the soil food web, due to enhanced microbial biomass in 

response to resource enrichment in these plots. Indeed, changes in soil moisture 

content have been shown to affect interactions between microbes and soil fauna 

(Swift, 1979; Hopkin, 1997).  

 

 

2.4.4 The role of biotic factors in shaping soil mesofaunal 

populations 
 

Under our sampling regime, we did not detect strong evidence of interspecific 

interactions driving prey population dynamics, whereas we did observe strong 

responses to the abiotic environment. However, exposure to perturbation can have 

effects on the age- or stage-structure of the population (Cameron et al., 2013). This 

may have led to directional shifts in the population structure of these communities, 

which were not captured by the study design.  
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The abundance of mesostigmatid mites was associated with an increase in the 

abundance of enchytraeid worms and oribatid mites with a four-week time lag. This 

suggests either a lagged predator-prey interaction or a delayed response of 

mesostigmatid mites to seasonal conditions. Indeed, mesostigmatid mite abundance 

peaked several weeks later than other microarthropod groups (Fig. 2.1). Since our 

sampling regime only allowed for the comparison of two- and four-week lags, it is not 

possible to conclude that this is the true time lag for biotic effects in this system. 

Consequently, trophic interactions may have been better estimated using a wider range 

of lagged densities.  

 

In contrast to the findings of Schaefer (1995) and Hågvar (1995), we did not observe 

an effect of predation on springtail abundance. Soil mesofauna, including springtails, 

are preyed upon by a range of predators, including centipedes, spiders and beetles. 

Since only a subset of the soil predator community was sampled in this study, it is 

likely that predation effects were underestimated. Furthermore, the study was based on 

a productive grassland, where a vast availability of microbes and fungi would be 

expected. Therefore, prey abundances may have recovered too quickly from the effects 

of predation for a change in abundance to be detected, resulting in weak predation 

effects.  

  

Soil mesofauna exhibit a diverse range of group- and species-specific life-history 

strategies. For example, some springtail species have several generations within a year 

(Schaefer, 1995), while the astigmatid mite species Sancassania berlesei (Michael) 

can have a generation time of 7-9 days in the laboratory (Beckerman et al., 2003). 

However, oribatid mites exhibit slow larval development, with life cycles lasting 

between 1-2 years (Behan-Pelletier, 1999). In cool climates, the generation time can be 

extended to five years (Søvik et al., 2003). The duration of the experiment may have 

only been long enough to capture fertiliser-induced mortality and predation, rather than 

population cycles. Therefore, it is more likely that evidence of density-dependence 

would be detected over a longer time series (Hassell et al., 1989).  
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2.5  Conclusions  

 

We observed evidence of the population dynamics of soil mesofauna being modified 

by complex interactions between variation in the physical environment, seasonal 

effects and biotic interactions. Furthermore, this study is the first to demonstrate that a 

perturbation, in the form of fertiliser application, can alter the temporal population 

dynamics of soil mesofauna over the course of a growing season. We observed some 

positive effects of fertiliser inputs, and particularly organic fertilisation, on soil 

mesofaunal abundance via changes in soil properties. Organic fertilisation provides a 

range of additional attributes, for example insulation and organic matter, which may 

become increasingly important for improving resilience in response to a range of 

environmental factors, e.g. drought and flooding. Subsequently, there is a need to 

evaluate how fertiliser-induced changes in soil faunal abundance and community 

structure affect ecosystem functioning (Chapter 5). Furthermore, future work should 

allow the comparison of additional time lags, rather than the two- and four-week time 

lags tested here, in order to gain a more detailed of soil mesofaunal population 

dynamics over the course of a growing season.  
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Chapter 3 

 

Impacts of eucalypt plantation management on soil 

faunal communities and nutrient bioavailability: trading 

function for dependence? 

 

 

 

Abstract  

Short-rotation forestry systems provide a range of ecosystem goods and services, yet 

the effects of intensive management on soil invertebrate community composition and 

ecosystem functioning are relatively unknown. Using an established eucalypt 

plantation study system, we investigated the effects of irrigation, inorganic fertilisation 

and a dual fertilisation and irrigation treatment on soil invertebrate abundance and 

community composition. Additionally, plant root simulator probes were used to 

estimate the effect of these interactions on nutrient bioavailability as a proxy for 

ecosystem functioning. Fertilisation reduced soil mite and nematode abundance when 

applied with irrigation, likely due to the increased solubilisation of inorganic fertilisers 

in water-limited soils. However, differences in soil invertebrate abundances were not 

associated with changes in plant nutrient bioavailability. Our findings suggest that high 

input systems can maintain productivity at the expense of shifts in the soil faunal 

community, which creates a “lock-in” whereby there is a continuous need for artificial 

inputs in order to maintain productivity. Reliance on artificial inputs may reduce the 

soil’s intrinsic capacity to maintain natural ecosystem function in the longer term and 

should therefore be considered in plantation planning and management. 
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3.1  Introduction 

 

Terrestrial ecosystems provide a range of ecosystem goods and services, especially 

from agricultural and forestry systems (Swinton et al., 2007; Jose, 2009; Power, 2010). 

Under proposed climate change scenarios (Collins et al., 2013), the potential to rapidly 

accumulate biomass in crops is of increasing importance due to the value of 

sequestering atmospheric carbon and offsetting greenhouse gas emissions (Schroeder, 

1992; Cannell, 2003). Therefore the value of intensive short-rotation forestry is 

growing in policy interest. Subsequently, there is a need to investigate the potential for 

the sustainable intensification of the short-rotation forestry sector globally (Almeida et 

al., 2004; Weih, 2004; McNeely and Schroth, 2006; Smith et al., 2010). In comparison 

with the agricultural sector, the relationship between intensive short-rotation forestry 

management practices and ecosystem composition and function is poorly understood, 

creating a knowledge gap around how best to manage for productive and sustainable 

systems.  

 

Forestry systems can support diverse communities of organisms both above-ground 

and below-ground, if managed appropriately. In particular, nutrient-rich soils and 

enhanced soil organic matter content provide rich habitat for soil microbial 

communities (Chander et al., 1998; Lee and Jose, 2003) and invertebrate communities, 

including earthworms, enchytraeid worms, springtails, soil mites and nematodes 

(Giller, 1996; Sileshi and Mafongoya, 2006; da Silva Moço et al., 2009). Soil 

organisms contribute to a wealth of different ecosystem functions and processes, 

including decomposition, nutrient cycling and the biological control of invasive 

species (Brussaard et al., 1997; Bardgett et al., 2005; Bardgett, 2005). Moreover, soil 

fauna have been shown to directly increase the availability of soil nutrients (Bardgett 

and Chan, 1999; Wardle et al., 2004).  

 

Previous studies suggest that fertilisation and irrigation may affect soil faunal 

communities in contrasting ways. In a study of long-term management regimes on 

microarthropod communities in a Norway spruce stand, Lindberg and Persson (2004) 
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observed a decline in soil microarthropod abundance in response to fertiliser 

application, while irrigation enhanced population sizes. Negative effects of inorganic 

fertilisers and other agrochemicals on soil biodiversity have been documented in other 

studies (Bünemann et al., 2006; Tabaglio et al., 2009; Thiele-Bruhn et al., 2012). In 

addition, Birkhofer et al. (2008) found that the application of mineral fertilisers and 

synthetic herbicides can modify aboveground-belowground interactions, ultimately 

promoting negative environmental impacts of intensive agriculture. Since increased 

nutrient availability enhances biomass production, it would seem likely that soil faunal 

populations would respond positively to increased resource availability. However, 

observed decreases in abundance in response to the application of inorganic fertiliser 

may be caused by direct toxicity, desiccation from salinity effects or soil acidification. 

Conversely, irrigation regimes generally enhance soil arthropod abundance and 

diversity (Frampton et al., 2000; Lindberg et al., 2002; Tsiafouli et al., 2005), 

primarily due to an increase in resource availability.  

 

Using an established eucalyptus plantation system, we investigated the effects of 

irrigation and fertilisation on soil invertebrate abundance and community composition, 

and the effect of these interactions on the bioavailability of plant primary (N, P, K
+
) 

and secondary (Ca
2+

, Mg
2+

, S) nutrients. We hypothesised that soil invertebrate 

communities would be largest and most diverse under irrigated treatments due to an 

increase in the quality and quantity of organic matter. Furthermore, it was predicted 

that these communities would be smallest and least diverse in plots receiving either 

fertiliser only or a dual fertilisation and irrigation treatment. It was further 

hypothesised that nutrient bioavailability would be highest where soil communities 

were dominated by groups likely to promote decomposition processes (e.g. oribatid 

mites and springtails). 
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3.2  Methods 

 

3.2.1  Site description 

 

The field site (5 ha), located at the Hawkesbury Forest Experiment, University of 

Western Sydney, Australia (33º36'39"S, 150º44’32”E), was converted from native 

pasture to a paddock in 1997. In March 2007, the site was prepared for planting by 

ripping shallow planting lines to 30 cm depth and treating a 1 m wide strip along each 

row with herbicide. In April 2007, Sydney Blue Gum (Eucalyptus saligna Sm.) were 

planted at a density of 1,000 trees ha
−1

 (2.6 × 3.85 m tree spacing) in sixteen plots, 

each containing 160 trees in ten rows of 16 trees. From November 2008, no pesticides 

or herbicides were applied. A sandy-loam soil type characterised by poor water-

holding capacity and moderate-low fertility with low organic matter content, as 

described in Barton et al. (2010), dominated the field site. 

 

 

3.2.2  Experimental design 

 

Fertilisation and irrigation treatments were applied across sixteen plots using a 

randomised block design replicated four times (Fig. 3.1). Each block comprised four 

plots receiving different treatments: irrigation only (I), solid fertiliser only (F), 

irrigation and liquid fertiliser (IL) and an untreated control plot (C). Irrigation 

treatments were applied every four days throughout the year using an in situ watering 

system to deliver the equivalent rainfall of 24,000 L ha
-1

 year
-1

 evenly across the 

designated plots using 65 spray heads. Liquid fertiliser (N:P:K 20:8:7) was applied 

every four days during the growing season (September - April), while solid fertiliser 

(N:P:K 21:6:8) was applied at quarterly intervals throughout the growing season. 

Different fertiliser types were used to reflect typical plantation management. Both 

fertilisation regimes were applied at a rate of 150 kg N ha
-1

 year
-1

.
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Fig 3.1  Layout of the experimental plots at the Hawkesbury Forest Experiment, 

University of Western Sydney, Australia. Letters indicate treatment codes (C: control; 

I: irrigation only; F: solid fertiliser only; IL: liquid fertiliser and irrigation) 
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3.2.3   Soil invertebrate abundance and community composition  

 

In October 2012, three microarthropod samples were collected from five randomly 

selected subplots within each experimental plot using a soil corer measuring 8 cm in 

diameter and 10 cm depth. Microarthropods were extracted into 70% ethanol using a 

modified Tullgren funnel method over an eight day period. During this period, the 

light intensity was progressively increased to create a maximum soil surface 

temperature of 40 ºC. Individuals were enumerated and identified to order level under 

a binocular microscope (Olympus SZX10). Abundance data were cube root 

transformed prior to analysis. 

 

To determine nematode community composition, a further three soil cores measuring 8 

cm in diameter and 10 cm depth were collected from each subplot and combined to 

form a composite sample. This sample was gently homogenized and a subsample 

weighing 50 g ± 0.1 g was taken for extraction of nematodes using a Baermann funnel 

technique over 72 hours. Nematodes were enumerated, transferred to a graticulated 

counting dish and the first 100 individuals from each sample identified to trophic 

group level (bacterial feeders (BF), fungal feeders (FF), predators (Pr), omnivores 

(Om) and plant parasites (PP)) based on the morphology of mouthparts at 100-400 x 

magnification using an inverted microscope (Olympus CKX41). Proportions were 

arcsine square root transformed prior to analysis.  

 

Soil macrofauna (e.g. earthworms and millipedes) and enchytraeid worms were found 

in very low abundance across the site, thus counts were excluded from the analysis. 

 

 

3.2.4   Estimated plant nutrient bioavailability 

 

Plant root simulator (PRS™) probes (Western AG Innovations Inc., Saskatchewan, 

Canada; Bengtson et al., 2007) were used to estimate the bioavailability of multiple 

nutrients (including N, P, K
+
, S, Mg

2+
 and Ca

2+
) in situ. At each sampling site, six 



- 60 - 

probes (three anion and three cation) were inserted to a depth of 10 cm. After 40 days 

the probes were retrieved and returned to the manufacturer for processing. Data were 

square root (N, P, K
+
 and Ca

2+
) or cube root (S and Mg

2+
) transformed prior to 

analysis. The appropriate transformation was selected by testing for goodness-of-fit; 

specifically, checking how well the model-predicted residuals fitted the observed data 

and testing for heteroscedasticity. 

 

 

3.2.5  Soil chemical analysis 

 

Soil chemical analyses were conducted on the remaining composite sample used for 

nematode extraction. Soil moisture content was estimated by drying a 25 ± 0.5 g 

sample at 130 C for 72 hours. A 10 ± 0.1 g subsample was then ball-milled, mixed 

with 50 ml distilled water and the pH of the resulting suspension measured after one 

hour. A further subsample was used to estimate total soil C and N content using a 

LECO TruMac C/N determinator (LECO Corporation, USA) with thermal 

conductivity detection of N2 and CO2. C and N concentrations were determined by 

comparison with known standards. 

 

 

3.2.6  Statistical analysis 

 

All statistical analyses were conducted in R (R Core Development Team, 2014). 

Linear mixed effects models were used to analyse the effects of treatment on the 

community composition of soil fauna, using an offset function to account for soil core 

mass (faunal community analysis) or total nematode abundance (nematode community 

composition analysis). Block was included as a random factor. Covariates included 

soil C, soil N and soil pH. A spherical spatial correlation structure (‘corSpher’) was 

used to model the geographical coordinates of each subplot using the R package nlme 

(Pinheiro et al., 2015), to control for the observed effect of spatial autocorrelation. 
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Abundances of soil invertebrates were also included in plant nutrient bioavailability 

models as covariates. 

 

A maximal model, including all covariates and random terms with interactions, was 

constructed for each analysis in nlme. The ‘dropterm’ function in the R package MASS 

(Venables and Ripley, 2002) was used to explore model structure by simplifying the 

over-parameterised model to create a set of plausible candidate models. Models were 

then compared using second-order Akaike Information Criteria. Pairwise z-tests were 

performed, with P-values corrected using the Tukey method, in the R package 

multcomp (Hothorn et al., 2008).  

 

 

 

3.3  Results 

 

3.3.1  Soil faunal abundance  

 

Total soil mite abundance varied between 199 and 19,893 individuals m
-2

 across all 

treatments and springtail abundance ranged from 0 to 6,963 individuals m
-2

. Total 

nematode abundance ranged from 2,076 to 12,650 individuals kg
-1

 dry soil. Significant 

differences were observed between treatments and these varied across the different 

faunal groups (treatment × group interaction, P < 0.001; Fig. 3.2). Oribatid mites were 

less abundant under IL than under C (z297 = 2.29, P = 0.02) (Fig. 3.2a). Mesostigmatid 

mites were also observed in lower abundance under IL than under C (z297 = 2.71, P < 

0.01) and I (z297 = 2.30, P = 0.02) (Fig. 3.2b). No significant treatment effects were 

observed for springtail abundance. Nematodes were observed in lower abundance 

under IL than under C (z297 = 3.92, P < 0.001), F (z297 = 2.49, P = 0.01) and I (z297 = 

3.37, P < 0.001) (Fig. 3.2c). We observed a significant treatment-induced change in 

soil pH, with lower pH under F (mean pH 5.20, t313= -2.13, P = 0.03) and higher pH 

under I (mean pH 6.57, t313= 21.75) and IL (mean pH 6.49, t313 = 20.34; both P < 
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0.001) treatments compared with C (mean pH 5.33). However, this was not found to 

have a significant effect on soil faunal abundances.  

 

 

 

 

 

Fig. 3.2 Model-predicted estimates (means ± SEs) of the cube root transformed 

abundance of oribatid mites, mesostigmatid mites and nematodes under experimental 

fertilisation and irrigation treatments (C: control (green); F:solid fertiliser only (red); I: 

irrigation only (blue); IL: liquid fertilisation and irrigation (purple)). Data are 

presented on the transformed scale. Annotations denote statistically significant 

differences  
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3.3.2  Nematode community composition 

 

Significant differences in the proportion of nematode trophic groups were also 

observed between treatments and these varied across different trophic groups 

(treatment × trophic group interaction, P < 0.001; Fig. 3.3). The proportion of bacterial 

feeding nematodes observed under I was lower than under C (z377 = -3.27, P = 0.001) 

and IL (z377 = -3.56, P < 0.001) (Fig. 3.3a). Conversely, the proportion of fungal 

feeders was higher under I than under C (z377 = 2.09, P = 0.04; Fig. 3.3b). The 

proportion of plant parasites observed under IL was lower than under F (z377 = -3.30) 

and I (z377 = -3.81; both P < 0.001), and higher under I than C (z377 = 2.10, P = 0.04) 

(Fig. 3.3c). The proportion of omnivores decreased under F, compared to all other 

treatments (z377 = -2.89, P < 0.01; z377 = -3.13, P < 0.01; z377 = -4.02, P < 0.001, for C, 

I and IL respectively; Fig. 3.3d). No significant treatment effects were observed for the 

proportion of predatory nematodes (back-transformed model-predicted mean 

proportion under C: <0.01, F: 0.01, I: <0.01, IL: 0.01; P > 0.05). 
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Fig. 3.3  Model-predicted changes (means ± SEs) in nematode community 

composition under experimental fertilisation and irrigation regimes (C: control 

(green); F: solid fertiliser only (red); I: irrigation only (blue); IL: liquid fertiliser and 

irrigation (purple)). Proportional abundances of each trophic group relative to total 

nematode abundance were arcsine square root transformed prior to analysis and model 

predictions are presented on the transformed scale. The y-axis origin differs between 

plots. Annotations denote statistically significant differences 
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3.3.3  Estimated nutrient bioavailability 

 

The estimated bioavailability of plant primary and secondary nutrients responded 

differently to treatment and soil chemistry (Fig. 3.4). Treatment-induced changes in 

soil microarthropod and nematode abundances were not useful predictors of nutrient 

bioavailability. Fertilisation increased availability of N (t294 = 9.67, P < 0.001; Fig. 

3.4a), P (t302 = 8.39, P < 0.001; Fig. 3.4b), K
+
 (t294 = 7.64, P < 0.001; Fig. 3.4c), S (t294 

= 4.38, P < 0.001; Fig. 3.4d) and Ca
2+

 (t298 = 3.92, P < 0.001; Fig. 3.4e), but decreased 

availability of Mg
2+

 (t298 = 2.76, P = 0.02; Fig. 3.4f). Irrigation increased availability 

of Ca
2+

 (t298 = 4.53), S (t294 = 5.07) and Mg
2+

 (t298 = 4.22; all P < 0.001), but decreased 

availability of N (t294 = 4.47, P < 0.001) and K
+
 (t294 = 2.13, P = 0.03). Dual 

fertilisation and irrigation increased availability of N (t294 = 2.03, P = 0.04), but 

decreased availability of K
+
 (t294 = 2.63, P < 0.01). 
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Fig. 3.4 Model-predicted estimates (means ± SEs) of plant nutrient uptake 

under experimental fertilisation and irrigation treatments (C: control (green); F: 

fertiliser only (red); I: irrigation only (blue); IL: fertilisation and irrigation (purple)) 

over 40 days. n = 4 per treatment. Data were square root (N, P, K
+
 and Ca

2+
) or cube 
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root (S and Mg
2+

) transformed prior to analysis and model predictions are presented on 

the transformed scale. Annotations denote statistically significant differences 

 

 

 

3.4  Discussion 

 

We observed a consistent pattern of decreased abundance under the dual fertilisation 

and irrigation treatment for both soil mites and nematodes, as predicted. However, 

contrary to our predictions, significant changes in abundance were not observed under 

the solid fertiliser treatment. It is likely that the application of irrigation with liquid 

fertiliser increased the solubilisation of fertiliser under the low soil moisture 

conditions observed in this study. Negative effects on soil organisms may have been 

direct, due to ammonium toxicity (Moursi, 1970; Wright, 1975; Wei et al., 2012) or 

desiccation resulting from increased soil osmotic pressure (Jacobs and Timmer, 2005), 

or indirect, due to fertiliser-induced changes in the activity, biomass and composition 

of soil microbial communities. Indeed, reductions in soil microbial biomass (DeForest 

et al., 2004; Wallenstein et al., 2006; Demoling et al., 2008) and activity (Bowden et 

al., 2004; Demoling et al., 2008), as well as altered community composition (Peacock 

et al., 2001; Belay et al., 2002; Marschner et al., 2003; Ramirez et al., 2010), have 

been associated with fertiliser use. This may have driven the observed changes in 

invertebrate abundance and nematode community composition through reduced 

grazing opportunities. It should be noted that using mite groups at order level may not 

have captured underlying shifts in soil mite food web composition due to species-

specific life history strategies, particularly within the Oribatida.  

 

Nematode community composition varied with treatment in a complex way. The 

nematode community was consistently dominated by bacterial feeders; however, the 

proportion of fungal feeders and plant parasites relative to bacterial feeders increased 

under irrigation, indicative of lower rates of decomposition and nutrient turnover 

(Twinn, 1974), greater root biomass or fungal hyphal length. The promotion of a 
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bacterial-dominated food web under the dual fertilisation and irrigation treatment 

compared with irrigation alone is consistent with increased N inputs (de Vries et al., 

2006).  

 

The estimated bioavailability of plant primary nutrients increased with the application 

of solid fertiliser, as expected. Conversely, irrigation alone decreased the availability 

of N and K
+
; however, this trend was reversed for all secondary nutrients, suggesting 

the liberation of water-soluble Mg
2+

, Ca
2+

 and S. Irrigation enhances the transportation 

of dissolved nutrients locked in the soil via mass flow (Silber et al., 2003; Hu and 

Schmidhalter, 2005), thus promoting nutrient uptake. Contrary to our predictions, 

changes in soil invertebrate abundance and community composition were not 

associated with differences in plant nutrient bioavailability. We therefore suggest that 

nutrient inputs compensate for changes in soil ecosystem composition, but that this 

creates a “lock in”. If fertilisation is reduced or stopped in the future, as is likely with 

limited resource availability and rising costs, we hypothesise that productivity will 

decrease rapidly.  

 

We further suggest that soil communities will recover from the effects of mineral 

fertiliser use only in the longer term, since recovery from land use change tends to 

occur over relatively long timescales (Chapter 6.2.3). Rates of population recovery are 

likely to differ between faunal groups depending on dispersal ability and generation 

time, further altering food web composition. For example, the community recovery 

rate of detritivorous oribatid mites is slower than that of predatory mesostigmatid 

mites (Lindberg and Bengtsson, 2006). Coupled with a limited abundance of soil 

macrofauna, this is likely to lead to organic nutrient sources (e.g. leaf litter) taking 

longer to decompose and liberate nutrients than in previously unfertilised treatments, 

particularly if irrigation is also reduced or stopped. 
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3.5  Conclusions 

 

Our findings suggest that the use of a dual fertilisation and irrigation regime reduces 

soil invertebrate abundance either directly, through toxic or osmotic effects, or 

indirectly, via changes in the activity, biomass and composition of microbial 

communities. Despite such changes, estimated plant nutrient bioavailability responded 

positively to the application of fertiliser, suggesting more broadly that artificial inputs 

can supersede the role of soil biota in intensively managed systems. We consider that 

there are several innovative aspects of this research. Firstly, the duration of the 

experimental setup and the use of realistic management practices is uncommon in the 

literature. Secondly, the use of PRS™ probes allowed us to investigate the effects of 

management on nutrient bioavailability in ‘real time’ rather than taking a snapshot of 

soil and plant nutrient pools at a single time point. Thirdly, we consider that this is the 

first study to have linked fertilisation to both soil biotic responses and changes in 

available plant primary and secondary macronutrients in a field study site.  

 

Our findings can be regarded as a snapshot into the study system; while some variation 

would be expected over time, the duration of management suggests that our 

observations are likely to be well-established. In the long-term, continuous reliance on 

artificial inputs to maximise productivity may result in a reduction in the capacity of 

soils to maintain natural ecosystem function. The substitution of ecosystem function 

for inputs creates a risk to the system’s performance in the event that input availability 

becomes constrained. Considering more sustainable soil management options may 

reduce this risk and also increase the resilience of the system. 
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Chapter 4 

 

 

The value of non-crop habitats for soil mesofauna in 

intensive arable landscapes 

 

 

 

 

Abstract  

 

Grassy field margins are a key component of agroecosystem habitat heterogeneity, and 

have been associated with an increase in agricultural biodiversity above-ground. 

However, the effects of field margins and other non-crop habitats on soil invertebrates 

are relatively unknown. In 2013, seven transects representing a gradient of agricultural 

intensification were established in productive fields growing vining peas. Soil 

mesofaunal abundance and springtail community composition were estimated in a 

range of non-crop (adjacent woodlands, hedgerows and grassy margin) and cultivated 

(field edges and field centres) habitats. We observed strong evidence of intensive 

agriculture impacting on soil mesofaunal populations, with reduced abundances of all 

surveyed groups observed in cultivated areas compared to non-crop habitats. 

Furthermore, non-crop habitats, and in particular structurally complex habitats 

(woodlands and hedgerows), supported more diverse springtail communities. We 

discuss the value of non-crop habitat as refugia for soil mesofauna and the importance 

of agricultural habitat heterogeneity for the conservation of biodiversity-function 

relationships. 
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4.1  Introduction  

 

Since the 1950s, the intensification of agricultural systems through continuous 

cultivation, the development of high-yielding varieties, advanced mechanisation and 

increased agrochemical use has dramatically increased crop yields globally. In 

addition, the enlargement and amalgamation of fields has increased the area of land 

available for seeding and allowed for more effective management. Global wheat 

production alone rose from 0.22 billion tonnes (Bt) in 1961 to 0.71 Bt in 2013, while 

the total land used for agriculture increased from 34.18% to 37.64% during the same 

period (FAO, 2014). However, these changes have resulted in a reduction in the 

abundance of natural and semi-natural habitat, particularly around field boundaries 

(Robinson and Sutherland, 2002; Cornulier et al., 2011). Historically, boundary 

habitats (e.g. hedgerows) were used to define land ownership, act as a windbreak to 

protect crops, restrict the entry or exit of livestock and other animals, and provide a 

source of food and fuel (Marshall and Moonen, 2002). Reductions in these habitats 

have been associated with declines in farmland biodiversity, with complex natural 

communities becoming simplified (Robinson and Sutherland, 2002; Benton et al., 

2003; Jeanneret et al., 2003; New, 2005; Goulson et al., 2008). 

 

In 1985, the European Union published a Green Paper addressing the environmental 

impacts of agriculture (CEC, 1985) and reformed Common Agricultural Policy (EEC 

Regulation 797/85). Since then, member states have been permitted to introduce agri-

environment schemes; offering subsidies for environmentally-sensitive land 

management with the long-term aim of reversing the decline of farmland wildlife. In 

1991, the Countryside Stewardship Scheme (CSS) was introduced in the United 

Kingdom, aiming to improve the environmental value of farmland by enhancing 

natural diversity. Under the scheme, existing wildlife habitat can be improved, or new 

areas of habitat created by taking a given amount of land out of cropping (Marshall et 

al., 2006). From 1994 - 2003, 16,101 land management agreements covering 530,620 

ha were enrolled under the CSS (DEFRA, 2005). Additionally, 3,048 km hedgerows 

were restored or maintained under the scheme between 1991 - 2013 within Yorkshire 
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and Humberside alone (DEFRA, 2005). Furthermore, the Hedgerows Regulations 

1997 prevent the uprooting or removal of hedgerows from agricultural, forested or 

common land providing they are at least 30 years old.  

 

A key practice prescribed under the CSS, and subsequent schemes, is the promotion of 

field margins. Field margins are areas of linear, semi-natural habitat associated with 

the field boundary or between the field boundary and crop edge, including grass and 

wildflower strips, bird cover, sterile strips and beetle banks (Marshall and Moonen, 

2002). Field margins are designed to buffer the detrimental effects of agricultural 

intensification by promoting landscape diversity, increasing resource availability for 

native flora and fauna, and acting as corridors for the movement of species from one 

habitat to another (Verboom and Huitema, 1997; Altieri, 1999). Grassy strips in 

particular can also act as an environmental buffer, by protecting watercourses from the 

potential effects of sediment movement (Abu-Zreig et al., 2004; Le Bissonnais et al., 

2004) and agrochemical runoff (Blanco-Canqui et al., 2004; Krutz et al., 2005; Dorioz 

et al., 2006) via increased infiltration at field edges. In the case of inorganic fertilisers, 

this allows for the immobilisation or transformation of nutrients within field 

boundaries and can reduce some of the negative environmental impacts associated 

with conventional agriculture, including the eutrophication of surrounding catchments. 

 

The establishment or re-establishment of field margins have been associated with 

increases in above-ground biodiversity, with a number of studies recognising positive 

effects of field margins and other within-farm non-crop habitats on invertebrate 

(Lagerlöf et al., 1992; Dover and Sparks, 2000; Woodcock et al., 2005; Marshall et 

al., 2006), farmland bird (Wilson et al., 1999; Douglas et al., 2009) and mammal 

populations (Fitzgibbon, 1997; Verboom and Huitema, 1997; Michel et al., 2006). 

Furthermore, margins can act as overwintering habitat for beneficial arthropods, 

including carabids, which move into adjacent crops in the spring (Sotherton, 1984; 

Pfiffner and Luka, 2000) and act as biocontrol agents. Field margins and other areas of 

non-crop habitat have also been identified as important landscape structures for other 

predator and natural enemy populations (Thomas et al., 1991; Dennis and Fry, 1992; 

Thomas et al., 1992; Lys and Nentwig, 1994; Pfiffner and Luka, 2000; Sutherland et 
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al., 2001), most likely due to the increase in habitat complexity. The management of 

field margins further affects their value for farmland biodiversity. In general, minimal 

management, increased vegetative density and a combination of cover types (e.g. grass 

and wildflower strips) increases the value of field margins for a range of taxa (Feber et 

al., 1996; Vickery et al., 2002; Smith et al., 2008b).   

 

However, variation in the effectiveness of non-crop habitat in promoting agricultural 

biodiversity is apparent, both between taxa and studies. For example, Kleijn et al. 

(2001) reported neutral or negative impacts of agri-environment schemes on plants and 

birds in the Netherlands; though some of these effects may have been a result of the 

scale of the analysis. Moreover, field margins commonly harbour pest and pathogen 

species, which may therefore promote ecosystem disservices by hindering crop 

production. 

 

While the value of farmland habitat complexity has been widely studied above-ground, 

effects on below-ground biodiversity are relatively unknown. Using paired transects in 

arable fields with and without a 6 m grassy strip between the hedgerow and crop, 

Smith et al. (2008a) investigated the effects of field margins on soil macrofaunal 

abundance and functional diversity. Abundances of soil feeders (including 

earthworms), litter consumers (including woodlice) and predators (including 

centipedes) all declined with increasing distance from the hedgerow. However, 

beneficial effects were confined to the grassy strip, with no increase in macrofaunal 

abundance in either the field or hedgerow. Positive effects of field margins on 

earthworm abundance are reported elsewhere (Hof and Bright, 2010), although 

Lagerlöf et al. (2002) observed fewer individuals in field boundaries under grass or 

forb cover in comparison to cropped areas, particularly in the field centre. Field 

margins have also been shown to enhance macrofaunal species richness (Smith et al., 

2008b). Despite this, the value of habitat heterogeneity within agricultural systems for 

soil mesofauna has not yet been considered.   
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This study aimed to evaluate the effectiveness of a variety of non-crop habitats as 

refugia for soil mesofauna in an intensive arable landscape. Firstly, we compared 

abundances of different functional groups, including decomposers and predators, 

between woodland, hedgerow, grassy margin and cropped habitats. Where woodland 

was present, it was hypothesised that the abundance of all soil mesofaunal groups 

would decrease with increasing distance from the woodland due to an increase in 

management intensity closer to the centre of the field. It was further hypothesised that 

grassy margin habitats would support greater densities of fauna than the field edge and 

field centre, but be of less value as refuge habitat than hedgerows and adjacent 

woodlands. Secondly, the value of hedgerows for soil mesofauna was compared with 

and without adjacent woodland. In the absence of adjacent woodland, it was 

hypothesised that hedgerows would support the highest numbers of soil mesofauna. 

Thirdly, we examined the effects of habitat complexity on springtail species 

assemblages, to assess whether communities in disturbed habitats (i.e. within-field) 

were separate to or subsets of those found in more complex habitats (i.e. non-cropped 

areas). It was hypothesised that springtail communities found in the most disturbed 

habitats (i.e. the field edge and field centre) would be more similar to those found in 

the grassy margins, and less similar to those found in the least disturbed habitats (i.e. 

hedgerows and adjacent woodlands). Since the range of taxa sampled exhibited a 

variety of habitat preferences and dispersal strategies, this study allowed us to quantify 

the value of different habitats for multiple groups simultaneously.  

 

 

 

4.2  Methods  

 

4.2.1  Study site 

 

The field site was located at Spen Farm, West Yorkshire, UK (53° 51' 44'' N, 1° 20' 

38” W); a productive arable farm of approximately 263 ha. Multiple crops, including 
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cereals and legumes, are grown in rotation. The majority of fields are bounded by 

hedgerows, some of which are likely to be pre-Enclosure. Some small wooded areas 

occur adjacent to hedgerows. Permanent grass margins of 1-2 m width are set out 

between the hedgerows and cropped areas. Across the site, the soil type is 

predominantly Aberford series; a free-draining, lime-rich, loamy soil with moderate 

water holding capacity (NSRI, 2013).  

 

 

4.2.2  Experimental design 

 

In July 2013, seven transects were laid out across seven fields perpendicular to the 

field boundary (Fig. 4.1). All fields were planted with vining peas. In four fields, 

transects were arranged from 2 m into the woodland adjacent to the hedgerow to 32 m 

into the cropped area (Fig. 4.2). In the remaining three fields, where adjacent 

woodland was not present, transects were arranged from the hedgerow to 32 m into the 

cropped area (Fig. 4.3). Transect markers were erected along each transect at 2 m into 

the adjacent woodland from the copse edge (if present; hereafter referred to as 

‘adjacent woodland’), in the centre of both the hedgerow (‘hedgerow’) and grassy 

margin strip (‘grassy margin’), and at 2 m (‘field edge’) and 32 m (‘field centre’) into 

the cropped area. The field edge sites were chosen to represent the transition zone 

between cropped and non-cropped areas. The field centre sites were located 

approximately in the centre of the area designated for cropping, and were likely to be 

representative of the highest intensity of agricultural management within the field.  
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Fig 4.1  Location of field transects at Spen Farm, West Yorkshire, UK. Four 

transects were arranged from 2 m into adjacent woodland to 32 m into the cropped 

area (green lines). Three transects were arranged from the hedgerow to 32 m into the 

cropped area (blue lines) 

 

 

 

    

Fig. 4.2 Sampling design showing approximate layout of transect markers along 

a woodland-to-field transect, occurring in four of the seven fields sampled 
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Fig. 4.3 Sampling design showing approximate layout of transect markers along 

a hedgerow-to-field transect, occurring in three of the seven field sampled 

 

 

4.2.3  Soil invertebrate sampling 

 

Four soil cores were collected from each sampling site using a soil corer measuring 8 

cm diameter and 10 cm depth, and combined to form a composite sample. Soil cores 

were collected from sampling points located at a 30 cm radius of each transect marker 

(Fig. 4.4). Soil mesofauna were extracted into 70% ethanol using a modified Tullgren 

funnel method over a six day period. During this time, the photoperiod was 

progressively extended to create a temperature gradient designed to drive fauna 

through the soil profile. Soil mites and enchytraeid worms were counted, and soil 

mites identified to order level under a binocular microscope (Leica MZ75). 

 

Springtails were transferred to 7 ml plastic tubes and immersed in lactic acid for 48 

hours to reduce pigmentation. Individuals were then transferred to distilled water, 

followed by a series of increasing ethanol concentrations ranging from 70% to 100%, 

in accordance with the protocol described in Hopkin (2007). Individuals were counted 

and identified to species level (Hopkin, 2007) under a binocular microscope (Leica 

MZ75). Where necessary, individuals were slide mounted with Canada balsam and 

identified under a compound microscope. 
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Fig. 4.4 Location of soil core sampling sites at each transect marker 

 

 

4.2.4  Statistical analysis 

 

All statistical analyses were conducted in R (R Core Development Team, 2014). 

General linear mixed effects models were used to analyse the effects of habitat on log-

transformed soil mesofaunal abundances and springtail species richness using the R 

package nlme (Pinheiro et al., 2015). In all analyses, field was included as a random 

factor. A group × habitat interaction term was included in the abundance analysis to 

investigate variation in response to habitat complexity between mesofaunal groups. 

Pairwise z-tests were performed, with P-values corrected using the Tukey method, in 

the R package multcomp (Hothorn et al., 2008). 

 

A separate analysis was performed to analyse the effect of adjacent woodland presence 

or absence on abundances in the hedgerows. Again, abundances were log-transformed 

and a group × binary adjacent woodland interaction term was included.  

 

Non-metric multidimensional scaling (NMDS) was performed using the ‘metaMDS’ 

function in the R package vegan (Oksanen et al., 2015) to analyse changes in springtail 

Transect marker 

30 cm 

Sampling point 
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community composition over the woodland-to-field gradient. Bray-Curtis distances 

were used as a dissimilarity index to find the optimal ordination of species and habitats 

(Oksanen, 2011). A generalised analysis of variance (MANOVA) with 200 random 

permutations was performed using the ‘adonis’ function in the R package vegan 

(Oksanen et al., 2015) to analyse the effects of habitat and the presence of adjacent 

woodland on the ordination of springtail species assemblages. Singletons (species 

represented by a single individual) were removed from the dataset prior to analysis.  

 

 

 

4.3  Results 

 

4.3.1  Soil mesofaunal abundance from woodland-to-field 

 

Total soil mite abundance varied between 531 and 48,012 individuals m
-2

. Springtail 

abundance varied between 0 and 14,766 individuals m
-2

,
 
and species richness varied 

between 0 and 15 across all sites. We observed a significant effect of habitat on soil 

mesofaunal abundance (F156 = 42.67, P < 0.001), which varied between groups (group 

× site interaction F156 = 2.02, P = 0.001).  

 

Contrast tests showed that oribatid mite abundance was higher in each of the non-crop 

habitats than at 2 m and 32 m into the cropped area (adjacent woodland - 2 m z = 2.32, 

P = 0.02; adjacent woodland - 32 m z = 1.95, P = 0.05;  hedgerow - 2 m z = 3.70, P < 

0.001; hedgerow - 32 m z = 3.26, P = 0.001;  grassy margin - 2 m z = 2.68, P < 0.01; 

grassy margin - 32 m z = 2.25, P = 0.02; Fig. 4.5a). No significant differences in 

abundance were observed between the three non-crop habitats or between the two 

within-field sites.  
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The same pattern was observed for the abundance of mesostigmatid mites (adjacent 

woodland - 2 m z = 2.36, P = 0.02; adjacent woodland - 32 m z = 3.61, P < 0.001; 

hedgerow - 2 m z = 3.87, P < 0.001; hedgerow - 32 m z = 5.35, P < 0.001; grassy 

margin - 2 m z = 2.04, P = 0.04; grassy margin - 32 m z = 3.52, P < 0.001; Fig. 4.5b). 

Again, no significant differences in abundance were observed between the three non-

crop habitats or between the two within-field sites. 

 

Astigmatid mite abundance followed a similar pattern to the abundance of oribatid and 

mesostigmatid mites, with higher abundances observed in all non-crop habitats than at 

2 m and 32 m into the cropped area (adjacent woodland - 2 m z = 3.84, P < 0.001; 

adjacent woodland - 32 m z = 1.98, P = 0.05;  hedgerow - 2 m z = 5.10, P < 0.001; 

hedgerow - 32 m z = 2.90, P < 0.01;  grassy margin - 2 m z = 4.50, P < 0.001; grassy 

margin - 32 m z = 2.31, P = 0.02; Fig. 4.5c). However, within-field abundances were 

significantly different, with a greater abundance of astigmatid mites observed at 32 m 

into the crop than at 2 m (z = 2.19, P = 0.03). 

 

Prostigmatid mite abundance was higher in the adjacent woodland than the grassy 

margin (z = 2.20, P = 0.03), and at 2 m (z = 3.56, P < 0.001) and 32 m (z = 4.37, P < 

0.001; Fig. 4.5d) into the cropped area. Moreover, greater abundances were observed 

in the hedgerow than in the grassy margin (z = 2.40, P = 0.02), and at 2 m (z = 4.01, P 

< 0.001) and 32 m (z = 4.95, P < 0.001) into the field. Abundance was greater in the 

grassy margin than at 32 m into the crop (z = 2.55, P = 0.01), but not at 2 m (P > 

0.05). Again, abundance did not vary significantly between the hedgerow and adjacent 

woodland, or between the two within-field sites. 
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Fig 4.5  Model-predicted estimates (means ± SEs) of log-transformed (a) 

oribatid mite, (b) mesostigmatid mite, (c) astigmatid mite and (d) prostigmatid mite 

abundances in cropped and non-cropped habitats (AW: adjacent woodland (dark 

green), H: hedgerow (light green), GM: grassy margin (yellow), FE: field edge 

(orange) and FC: field centre (red)). Data are presented on the transformed scale. 

Annotations denote statistically significant differences  

 

 

Enchytraeid worm abundance was significantly higher in adjacent woodland than all 

other surveyed habitats (adjacent woodland - hedgerow z = 4.40, P < 0.001; adjacent 

woodland - grassy margin z = 5.40, P < 0.001; adjacent woodland - 2 m z = 8.04, P < 

0.001; adjacent woodland - 32 m z = 8.04, P < 0.001; Fig. 4.6). Furthermore, 

abundance was higher in the hedgerow and grassy margin when compared to both 

within-field sites (hedgerow - 2 m z = 4.28, P < 0.001; hedgerow - 32 m z = 4.28, P < 

0.001; grassy margin - 2 m z = 3.11, P = 0.01; grassy margin - 32 m z = 3.11, P = 

0.01). No significant differences in abundance were observed between the hedgerow 

and grassy margin or between the two within-field sites. 

 

 

  

Fig. 4.6 Model-predicted estimates (means ± SEs) of log-transformed 

enchytraeid worm abundance in cropped and non-cropped habitats (AW: adjacent 



- 83 - 

woodland (dark green), H: hedgerow (light green), GM: grassy margin (yellow), FE: 

field edge (orange) and FC: field centre (red)). Data are presented on the transformed 

scale. Annotations denote statistically significant differences 

 

 

Springtail abundance was higher in the adjacent woodland and hedgerow than both 

within-field sites (adjacent woodland - 2 m, z = 2.07, P = 0.04; adjacent woodland - 32 

m, z = 4.48, P < 0.001; hedgerow - 2 m, z = 2.88, P < 0.01; hedgerow - 32 m, z = 5.71, 

P < 0.001; Fig. 4.7a). Furthermore, abundance was higher in the hedgerow than  the 

grassy margin (z = 2.07, P = 0.04). Abundance in the grassy margin was higher than at 

32 m into the crop (z = 3.64, P < 0.001), but not at 2 m (P > 0.05). A significant 

difference was observed between the two within-field sites, with springtail abundance 

at 2 m greater than at 32 m (z = 2.83, P < 0.01). 
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Fig. 4.7 Model-predicted estimates (means ± SEs) of springtail (a) abundance and (b) species richness in cropped and non-cropped 

habitats (AW: adjacent woodland (dark green), H: hedgerow (light green), GM: grassy margin (yellow), FE: field edge (orange) and FC: field 

centre (red)). Abundance data are presented on a log-transformed scale.  Annotations denote statistically significant differences
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4.3.2  The value of hedgerows with and without adjacent  

 woodland 

 

We observed a significant interaction between soil mesofaunal group and the presence 

or absence of adjacent woodland on abundance within the hedgerows (F20 = 3.30, P = 

0.03). Contrast tests showed that the abundance of mesostigmatid mites (z = 2.67, P < 

0.01; Fig. 4.8a), prostigmatid mites (z = 2.51, P = 0.01; Fig. 4.8b) and springtails (z = 

4.62, P < 0.001; Fig. 4.8c) were all higher in hedgerows without adjacent woodland 

than hedgerows with adjacent woodland. 
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Fig. 4.8 Model-predicted estimates (means ± SEs) of log-transformed               

(a) mesostigmatid mite, (b) prostigmatid mite and (c) springtail abundances in 

hedgerows with and without adjacent woodland. Data are presented on the transformed 

scale. Annotations denote statistically significant differences 
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4.3.3 Springtail species richness and diversity from woodland-to- 

field 

 

Springtail species richness was higher in adjacent woodland (z = 2.90, P < 0.01) and 

hedgerow (z = 2.39, P = 0.02) sites than the grassy margin and both of the within-field 

sites (adjacent woodland - 2 m z = 4.46, adjacent woodland - 32 m z = 5.16, hedgerow 

- 2 m z = 4.23, hedgerow - 32 m z = 5.06, all P < 0.01; Fig. 4.7b). Furthermore, 

species richness was higher in the grassy margin than at 32 m into the crop (z = 2.67, P 

= 0.01), but not at 2 m (P > 0.05). No significant differences were observed between 

the two within-field sites.  

 

A significant effect of habitat on springtail community composition was observed (F4 

= 7.75, P < 0.01). However, community assemblage did not significantly differ 

between sites with adjacent woodland and those without (P > 0.05). Furthermore, no 

interactive effect between the two variables was observed (P > 0.05). The optimal 

ordination of species and habitats using NMDS analysis is shown in Fig. 4.9. The 

ordination plot clearly separates within-field sites from hedgerow and adjacent 

woodland sites.  
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Fig. 4.9 Ordination biplot based on NMDS analysis of springtail species data. 

Points indicate sampling sites. Text indicates species, labelled with first letters of the   

genus and species names. From L-R: Fq = Folsomia quadrioculata, Ae = 

Allonychiurus edinensis, Dv = Desoria violacea, Iv = Isotoma viridis, Sf = 

Supraphorura furcifera, Vc = Vertagopus cinereus, Oa = Onychiurus ambulans, Im = 

Isotomiella minor, Wp = Willosia platani, Pn = Parisotoma notabilis, Oc = 

Oncopodura crassicornis, Ca = Cyphoderus albinus, Bs = Ballistura schoetti, Nm = 

Neanura muscorum, Tm = Tomocerus minor, Sq = Stenaphorura quadrispina, En = 

Entomobrya nivalis, Fs = Folsomia spinosa, Ov = Orchesella villosa, Lv = 

Lepidocyrtus violaceus, Dp = Deuterosminthurus pallipes, Hi = Heterosminthurus 

insignis, Lla = Lepidocyrtus lanuginosus, Ma = Metaphorura affinis, Pm = 

Proisotoma minima, Lcy = Lepidocyrtus cyaneus, Lcu = Lepidocyrtus curvicollis, Em 

= Entomobrya multifasciata, Sd = Stenaphorura denisi, Dt = Desoria tigrina, Ip = 

Isotomurus palustris, Hn = Heteromurus nitidus, Lli = Lepidocyrtus lignorum, Ps = 

Psuedoistoma sensibilis, Cb = Ceratophysella bengtssoni, Hp = Hypogastrura 

purpurascens, Va = Vertagopus arboreus, Pa = Pseudosinella alba, Bh = Bourletiella 

hortensis, Sp = Sminthurides parvulus 

 

 

 

4.4 Discussion 

 

4.4.1 Soil mesofaunal abundance and community composition  

across a hedgerow-margin-field transition 

 

All soil faunal groups surveyed were more abundant in hedgerows and adjacent 

woodland than within the cropped area, both at the field edge and field centre. For the 

majority of microarthropod groups, the cropped area proffered a hostile environment 

and abundances were low across within-field samples. Several factors are likely to 

have influenced this, including increased disturbance and agrochemical use (Chapter 
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1.4.1), and associated changes in the microbial biomass. Furthermore, reduced 

vegetative cover in crop fields during fallow months can leave the soil surface more 

susceptible to temperature fluctuations. For example, Pfiffner and Luka (2000) 

observed that the 0-5 cm soil surface layer became frozen during winter in cultivated 

areas, but not in semi-natural habitats. We would therefore expect increased mortality 

of non-burrowing groups (e.g. soil mites) in the cropped areas during the winter 

months, and also during the hottest summer months, due a reduced capacity to buffer 

extreme temperature changes. While we also observed an extremely low abundance of 

enchytraeid worms across the cropped area, it is possible that within-field abundances 

were underestimates of real population densities. Unlike soil microarthropods, 

enchytraeids are able to undergo vertical migration in response to changes in soil 

moisture and temperature (Nielsen, 1955a; Springett, 1970), so it is feasible that higher 

population densities were present in cultivated soils at deeper soil horizons.  

 

Data collected using a similar protocol in 2012 showed that soil bulk density at 0-40 

cm depth was lower in hedgerows than at the field edge (Lee et al., 2013), indicating 

an increase in soil compaction and a reduction in the habitable soil pore space in 

cultivated soils. Since the majority of soil mesofaunal groups utilise existing soil pores 

and channels, including those created by earthworm activity, soil pore size is a key 

determinant of the distribution of fauna within the soil profile (Whitford, 1996; Larsen 

et al., 2004). Increased soil bulk density would likely restrict the movement of many 

soil organisms, particularly larger-bodied individuals and poor above-ground 

dispersers, and also reduce soil water holding capacity (Gupta and Larson, 1979). 

Subsequently, mechanical disruption of the soil profile through tillage is likely to 

further reduce habitat suitability of within-field sites for soil mesofauna.   

 

Our results show a decline in habitat suitability between the non-cropped and cropped 

areas, with reduced soil faunal population densities observed at the field edge and in 

the centre of the field. However, a notable exception to this pattern was observed; 

astigmatid mites were more abundant at 32 m than at 2 m. Unlike the other mite 

groups, the Astigmata can thrive in disturbed environments, including agroecosystems, 

and are not inhibited by tillage (Wardle, 1995; Behan-Pelletier, 1999; Kladivko, 2001; 
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Reeleder et al., 2006). Indeed, populations appear to recover more quickly from 

disturbance, most likely due to their short generation times and high fecundity as r-

selected colonisers (Norton, 1999; Walter and Proctor, 1999). Moreover, it is likely 

that reduced interspecific competition in the field centre would have further enhanced 

astigmatid abundance.  

 

In addition to changes in abundance, cropped areas also hosted depauperate springtail 

communities, suggesting a decrease in habitat suitability with increasing distance from 

the field boundary. NMDS analysis clearly separated within-field springtail species 

assemblages from those found in the least disturbed habitats. Ponge et al. (2006) 

categorised common springtail species into slow-dispersers and fast-dispersers 

according to their ability to actively move across the landscape using locomotory 

appendages (i.e. legs and jumping apparatus (furcula)). For example, species with 

short legs, a poorly-developed furcula and incomplete visual apparatus are considered 

poor dispersers (Hopkin, 1997). These physiological traits have been associated with 

woodland-dwelling species, which are more susceptible to changes in land use due to 

limited locomotory capacity and poor protection from desiccation (Salmon and Ponge, 

2012). In contrast, fast-dispersers – those species with longer legs, a well-developed 

furcula and complete visual apparatus – are likely to undergo longer, more frequent 

migrations across the landscape in response to changes in resource availability.  

 

Several species clustered on the left-hand side of Fig. 4.9 are classified as slow-

dispersers (e.g. S. quadrispina, F. quadrioculata, C. albinus, O. crassicornis, P. 

notabilis, I. minor), while those observed in field centres are classified as fast-

dispersers (e.g. P. sensibilis, S. parvulus, V. arboreus) (Ponge et al., 2006). Since no 

species were found exclusively in cropped areas, we suggest that springtails associated 

with these sites at the time of sampling were able to migrate across the habitat matrix 

through the growing season in response to changes in resource availability as the 

vining pea crop developed. Given the similarity in springtail and mite abundance 

patterns across the habitat gradient, we further suggest that soil mite communities may 

follow a similar trend to that observed for springtails. For example, we would expect 

the least motile oribatid mite species to be confined to the woodland and hedgerow 
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habitats, with more motile, fast-moving mesostigmatid and astigmatid mite species 

(Chapter 1.2) able to move into the cropped area in response to changes in resource 

availability. However, relatively little is known about the locomotory capacity of soil 

mites and therefore a similar analysis to that described here for springtail species 

diversity is required to confirm this hypothesis. This area of future study is discussed 

in more detail in Chapter 6.2.3. 

 

 

4.4.2 The value of non-crop habitats as refugia for soil  

mesofauna 

 

The value of non-crop areas as refugia for soil mesofauna, and the grassy margin in 

particular, differed between taxa. Due to the increased structural diversity of plant 

species in hedgerows and adjacent woodlands versus grassy margins (pers. obs.), a 

denser, more complex litter layer is likely to form on the soil surface. Additionally, 

more complex root systems occur (Forman and Baudry, 1984). These vegetative 

conditions are likely to provide a favourable microclimate for soil fauna, with 

increased food resources for decomposers and grazers, and therefore enhanced prey 

populations for predatory groups. Furthermore, hedgerows modify micro-

environmental conditions both above-ground and below-ground; for example, through 

a reduction in soil water evaporation, which helps to maintain higher levels of soil 

moisture in surrounding soils (Forman and Baudry, 1984).  

 

In contrast, the grassy margins sampled in this study were botanically species-poor, 

dominated by perennial grasses and a small number of arable weeds. These habitats 

are likely to receive a moderate level of disturbance, although soil disturbance is likely 

to be significantly less than annually ploughed or harrowed within-field sites. 

Additionally, grassy margins may act as agrochemical sinks, accumulating fertilisers, 

pesticides and herbicides, which allows for nutrient transformation to occur before 

leaving the field (Marshall and Moonen, 2002). It is possible that these factors 

contributed to reduced abundances of prostigmatid mites and springtails in the grassy 
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margins compared to the hedgerows studied; explored in greater detail in Chapter 

6.2.2. Consequently, it is surprising that we did not observe a difference in the 

abundance of other mite groups, particularly detritivorous oribatid mites, between the 

more complex non-crop habitats sampled (hedgerows and adjacent woodland) and the 

grassy margins. 

 

While grassy margins supported reduced abundances of springtail species, those 

present were a combination of slow-dispersing and fast-dispersing species. Studies 

have shown that hedgerows can be important habitats for the recolonization of arable 

fields by springtails (Alvarez et al., 2000), and our findings suggest that grassy 

margins may also act as important refuge habitat for fast-dispersing springtails when 

within-field habitat suitability is low; for example during fallow periods. In addition, 

these areas are likely to support the abundance of some above-ground arthropod 

predators. For example, Loricera pilicornis (Fabricius) is a specialist springtail-

feeding beetle (Meek et al., 2002). In particular, it is an effective predator of H. nitidus 

(Hintzpeter and Bauer, 1986), which was associated with hedgerow and grassy margin 

habitats in this study. Thus, it is likely that enhanced populations of H. nitidus also 

promoted the abundance of L. pilicornis.  

 

Within the microarthropod groups sampled, abundances of Oribatida, Mesostigmata 

and Astigmata were not significantly different between the adjacent woodland, 

hedgerow and grassy margin habitats. This suggests that less complex semi-natural 

habitats are comparable to more complex, well-established habitats as refugia for these 

groups. Enchytraeid worm abundance was higher in wooded areas than all other 

surveyed habitats, suggesting that adjacent woodland habitats were more valuable to 

enchytraeids than any other group. However, hedgerows and grassy margins offered a 

middle ground, with higher abundances observed in these habitats than in cropped 

areas. While the ecology of enchytraeids is poorly understood, enhanced population 

densities have been reported in woodland soils, compared with agricultural habitats 

(van Vliet et al., 1995). The increased complexity of woodlands, including a well-

established litter layer and diverse plant root system, is likely to have promoted habitat 

suitability for enchytraeids due to an increase in soil moisture content and enhanced 
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food availability (e.g. microbes and decaying organic matter). Furthermore, the 

adjacent woodland habitats sampled in this study were likely to have been exposed to 

minimal levels of agrochemical runoff due to the buffering capacity of the grassy 

margin. Since enchytraeid worms are highly sensitive to anthropogenic disturbance 

(van Vliet et al., 1997) and environmental toxicity (Römbke, 2003), physical and 

biochemical stability are likely to be important drivers of habitat suitability for this 

group. 

 

The surrounding habitat affected the value of hedgerows as refugia for soil fauna. 

Hedgerows with adjacent woodland harboured reduced abundances of springtails, 

mesostigmatid mites and prostigmatid mites than those without, suggesting that the 

value of hedgerows increases as the complexity of the surrounding habitat declines. 

While some hedgerows were dominated by a single plant species, typically hawthorn, 

they were generally species-rich with multiple shrub species and a well-established 

ground layer. This suggests that the majority of hedgerows sampled were relatively 

old. Since the age of non-crop habitat affects its value for biodiversity (Denys and 

Tscharntke, 2002) and there may be a time lag for effect (Pfiffner and Luka, 2000; 

Smith et al., 2008b), older hedgerows are likely to be more effective for maintaining 

biodiversity over time. Therefore, we would expect recently established hedgerows to 

have harboured reduced soil invertebrate populations. 

 

Relative population densities of above-ground invertebrates are often lower in non-

crop habitat during the summer than in the winter, with populations migrating out of 

the margins and into the crop in response to changes in within-field habitat suitability 

(Douglas et al., 2009). Soil sampling occurred in July, when the vining pea crop was 

well-established but not yet harvested. If the dynamics of below-ground communities 

mirror above-ground communities, exhibiting a similar change in habitat preference 

and moving into the crop during the spring and summer, we would expect further 

reduced population densities during fallow months. Residual populations are likely to 

be extremely small and dominated by specialists (e.g. astigmatid mites). Thus, the role 

of non-crop habitat may become even more important for soil fauna during fallow 

months; the timing of which will vary depending on the when the crop is sown. 
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However, the extent to which soil organisms can move across the landscape, through 

both space and time, is relatively unknown and necessitates further research if the 

value of non-crop habitat for recolonisation is to be determined (Chapter 6.2.2). A 

comparative study examining the effects of different levels of intensive agricultural 

management on the seasonal migration preferences of both above-ground and below-

ground fauna is needed to assess whether this is valid (Chapter 6.2.3). 

 

Furthermore, the type of crop grown within the field may affect the value of non-crop 

habitat for soil mesofauna. In the study described here, vining peas were grown in all 

seven sampled fields. While legumes can provide additional plant N through symbiotic 

fixation, the presence of legumes has been shown to decrease springtail numbers in the 

surrounding soil (Milcu et al., 2006). Consequently, for springtails at least, it is 

suggested that non-crop habitat might harbour a higher proportion of existing soil 

mesofauna when a legume is grown instead of a cereal crop grown under similar 

management practices. Furthermore, cropping, and in particular crop rotation, can 

have significant effects on rhizosphere bacterial communities (Alvey et al. 2003), with 

potential bottom-up effects on mesofauna. As such, it is hypothesised that different 

mesofaunal species assemblages would be observed under continuous cereal cropping 

versus legume cropping or rotation management.  

 

 

4.4.3 The importance on non-crop habitats in conserving  

ecosystem function and biodiversity 

 

Since intensive farmland does not provide high-quality habitat for the majority of 

invertebrates (Morris and Webb, 1987), non-crop habitats act as important refuges for 

agricultural biodiversity and are therefore of considerable conservation value. 

Furthermore, this study shows that non-crop habitats, where present, support the 

majority of soil mesofaunal populations in intensively managed agricultural systems. 

Data collected in 2012 showed a similar decline in soil mesofaunal abundance 

between cropped and non-cropped areas. Despite this, crop yield remained high across 
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the field. As in Chapters 3 and 5, we suggest that productivity is maintained by 

artificial inputs, and in particular nitrogen fertilisers. However, observed changes in 

within-field soil biodiversity and bulk density suggest that there is likely to be a 

decline in the buffering capacity of the soil in the longer term, for example in response 

to drought events. Furthermore, changes in the soil structure reduce the potential for 

reservoirs of soil fauna in adjacent non-crop habitats to re-colonise cropped areas if the 

intensity of farming is reduced or if fields are left to naturally regenerate.  

 

 

 

4.5 Conclusions 

 

We conclude that hedgerows and grassy strips are important components of within-

farm habitat and should be promoted where possible. The addition of non-crop habitat 

is likely to be more important in the least diverse systems, i.e. fields with little or no 

adjacent non-crop habitat. However, further research is required to assess the 

effectiveness of promoting non-crop habitats adjacent to the field boundary versus 

within-field diversity, such as intercropping, in the maintenance of soil invertebrate 

communities in the longer term. Above-ground, semi-natural habitat is an important 

determinant of biodiversity at multiple spatial scales (Benton et al., 2003). However, 

below-ground communities are governed predominantly by local abiotic conditions 

rather than landscape-scale factors (Bardgett et al., 2005), so the function of 

neighbouring habitat is less likely to affect the value of within-farm habitat 

heterogeneity. Nevertheless, multiple landowners within a local area should be 

encouraged to adopt management schemes in concert in order to reap benefits to soil 

biodiversity on a landscape scale. 
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Chapter 5 

 

 

Effects of organic and inorganic fertilisers on 

relationships between soil mesofauna and ecosystem 

function above-ground and below-ground 

 

 

 

Abstract 

 

Soil fauna play a key role in ecosystem functioning above-ground and below-ground. 

However, relatively little is known about the effects of fertiliser use on relationships  

between soil fauna and ecosystem function. Understanding the impacts of artificial 

inputs on these relationships is crucial if soils are to be managed in a sustainable way. 

Using a classical litterbag technique, we investigated the interaction between fertilisers 

and soil faunal community complexity on the decomposition of organic matter. 

Additionally, we examined the effects of fertiliser inputs on relationships between soil 

mesofaunal abundance and above-ground productivity. We did not observe evidence 

of fertiliser-induced changes in litter decomposition. Above-ground, however, oribatid 

mite abundance was associated with enhanced crop yield in untreated plots and under 

moderate levels of fertilisation, but this relationship was disrupted in high input 

systems. Our findings suggest that the application of ammonium nitrate fertiliser in 

excess of crop requirements may compromise intrinsic relationships between soil 

fauna and above-ground ecosystem function. 
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5.1 Introduction  

 

The diversity and composition of soil faunal communities contribute to the functioning 

of ecosystems both above-ground and below-ground. Decomposition – the 

fragmentation, redistribution and mineralisation of plant residues, fallen leaf litter and 

faecal material to bioavailable plant nutrients and soil organic matter – is one of the 

most widely studied ecosystem processes below-ground. The role of soil biota in litter 

fragmentation and decomposition has been studied in a range of systems, including 

forests (Heneghan et al., 1998; Barajas-Guzmán and Alvarez-Sánchez, 2003; Powers 

et al., 2009; Yang and Chen, 2009), grasslands (Hopkins et al., 1990), deserts (Santos 

and Whitford, 1981; Belnap et al., 2005) and microcosms (Cragg and Bardgett, 2001). 

Since decomposition regulates nutrient cycling and bioavailability, the rate of 

decomposition is a key determinant of soil fertility and, in turn, above-ground 

productivity. Over the past few decades, studies have identified a range of factors 

regulating the rate of decomposition, including local air temperature (Bothwell et al., 

2014), land management (Burgess et al., 2002; Throop and Archer, 2007), resource 

quality (e.g. nitrogen, lignin and plant phenol content) (Conn and Dighton, 2000; 

Loranger et al., 2002; Smith and Bradford, 2003) and a number of edaphic variables, 

including soil temperature (Xiao et al., 2014), moisture (Jarvis et al., 2007) and pH 

(Swift, 1979).  

 

Additionally, decomposition rate is determined by the diversity and structure of the 

local decomposer community, including bacteria and fungi, oribatid mites, springtails 

and earthworms (Ayres et al., 2009; Bardgett, 2005). At the largest scale, earthworms 

physically redistribute organic matter from the litter layer throughout the soil horizon 

(Nielsen and Hole, 1964; Scullion and Malik, 2000; Chapter 1.2). Furthermore, 

earthworms indirectly enhance decomposition rates by shredding plant material, 

thereby increasing the surface area upon which the soil microbial biomass can act, and 

by altering abiotic conditions; for example, increasing soil moisture through burrowing 

and the formation of nutrient-rich casts (Bardgett, 2005). Detritivorous mesofauna also 

stimulate microbial decomposition by further reducing litter particle size, in turn 

manipulating decomposition rate and nutrient availability (Heneghan et al., 1999; 
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Bradford et al., 2002). The extent to which soil mesofauna affect litter decomposition 

is climate-dependent, with fauna increasing the rate of decomposition unless 

temperature and moisture levels constrain their activity (Wall et al., 2008). 

 

The relative contribution of decomposer groups is commonly tested by replicating the 

classical litterbag technique using a range of pore sizes, designed to selectively 

exclude groups of soil organisms based on classification by body size. Such studies 

have typically shown that soil faunal community diversity is positively associated with 

the rate of litter loss due to the complementarity of functional roles (Wise and 

Schaefer, 1994; Setälä et al., 1996; González and Seastedt, 2001; Wang et al., 2010), 

but see Barajas-Guzmán and Alvarez-Sánchez (2003). However, these patterns can be 

affected by successional stage and litter type (Milcu and Manning, 2011), suggesting 

that litter quality can impact on fauna, and that these effects can in turn affect the rate 

at which the material is broken down.  

 

In unmanaged terrestrial ecosystems, decomposition provides the primary source of 

bioavailable plant nutrients (Whittaker et al., 1979). However, in conventionally-

managed agricultural systems, achieving maximum crop yields is largely dependent on 

agrochemical inputs (Matson et al., 1997).  Synthetic inputs affect yields in interaction 

with a range of widely studied factors including climate (temperature, rainfall and 

solar radiation) (Monteith and Moss, 1977; Fischer, 1985; Lobell and Field, 2007; 

Asseng et al., 2011; Aslam et al., 2013), soil quality (e.g. pore size, organic matter 

content and chemical composition) (Letey, 1985; Kumar and Goh, 1999; Lal, 2004), 

soil fauna (Crossley Jr et al., 1992; Pashanasi et al., 1992; Li et al., 2002), pests and 

diseases (Oerke, 2006).  

 

Long-term studies suggest that up to half of major grain crop yields can be attributed 

to the use of artificial inputs, particularly nitrogen fertilisers. In the United States, a 

study of long-term nitrogen fertilisation at the Magruder Plots, Oklahoma State 

University, estimated that a relatively low application rate of 37-67 kg N ha
-1

 yr
-1

 

accounted for approximately 40% wheat yield over a 71 year period (Stewart et al., 

2005). In the United Kingdom, the Broadbalk Experiment at Rothamsted, 

Hertfordshire, has shown that long term NPK fertilisation contributes to at least a 



- 100 - 

doubling of winter wheat yield when compared to untreated plots (Rasmussen et al., 

1998). This gap is further increased through the use of improved crop varieties and 

additional agrochemicals such as fungicides and herbicides (Goulding et al., 2008). 

While the effects of agrochemicals on soil biodiversity are thought to be generally 

negative (Bünemann et al., 2006; Tabaglio et al., 2009; Thiele-Bruhn et al., 2012), 

little is known about how their application modifies relationships between soil fauna 

and simultaneous ecosystem functions, both above-ground and below-ground. A 

particular lacuna of knowledge is in the relationship between artificial inputs and the 

interactions between different faunal classes, and how this relates to ecosystem 

function in the field.  

 

Using a factorial field plot experiment, we aimed to investigate the effects of organic 

and inorganic fertiliser application on relationships between soil fauna and ecosystem 

function, both above-ground and below-ground. Barley yield was used as a proxy for 

above-ground ecosystem function, while a classical litterbag study was used to assess 

the effects of treatment on decomposition below-ground. Alongside an increase in 

barley yield under both the inorganic and organic fertiliser treatments in comparison to 

the untreated plots, we predicted that increased soil faunal complexity would be 

associated with increased litter decomposition. Furthermore, it was hypothesised that 

litter loss would be negatively affected by the application of inorganic fertiliser, while 

the organic treatment would enhance decomposition due to localised changes in soil 

conditions.    

 

  

 

5.2  Methods 

 

5.2.1  Experimental design 

 

The field site, comprising 16 4 m
2
 plots in a randomised block design, was situated at 

the edge of a productive agricultural field at Stockbridge Technology Centre, North 



- 101 - 

Yorkshire, UK (53º49’30”N, 1º8’60”W). The area had been under arable rotation, 

comprising a combination of commercial cereal and vegetable crops, for over ten years 

prior to the study (Table 5.1). The land was always ploughed prior to seeding or 

planting, and left fallow during the winter months unless winter wheat was grown. All 

crops were grown according to the Code of Good Agricultural Practice. Fertilisation 

rate was commonly 180 kg N ha
-1

 yr
-1

.  

 

Plots were physically separated from one another with polycarbonate sheeting (Liv 

Supplies, Hull, UK), to depth and height each 20 cm, to restrict movement of soil 

fauna between experimental plots. Each block of four plots comprised the following 

experimental treatments: standard dose ammonium nitrate fertiliser (Nitram 34.5%N at 

175 kg N ha
-1

; SD), double dose ammonium nitrate fertiliser (Nitram 34.5%N at 350 

kg N ha
-1

; DD), pig slurry and straw (175 kg N ha
-1

; O), and an untreated control (C). 

A Qurondon soil series dominated the field site; a stoneless, rapidly permeable sandy 

loam soil, with poor water-holding capacity and low organic matter content (Bradley 

and Allison, 1979; Cranfield University, 2015).  
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Table 5.1 Cultivation crops and practices at the field site, Stockbridge 

Technology Centre, North Yorkshire, for ten years preceding the study.  

*Vegetable cultivation comprised mixed carrot, onion, cabbage and lettuce crops 

 

Year  Crop(s) grown 

2003 Potatoes  

2004 Winter wheat 

2005 Vegetables* 

2006 Vegetables* 

2007 Vegetables* 

2008 Vegetables* 

2009 Spring barley 

2010 Winter wheat 

2011 Potatoes 

2012 Spring barley 

 

 

 

5.2.2  Soil sampling 

 

Soil sampling took place during week 0 (9
th

 May 2013), week 1 (immediately prior to 

seed sowing and the application of the fertiliser treatments; 16
th

 May 2013), week 2 

(23
rd

 May 2013), week 3 (30
th

 May 2013), week 4 (6
th

 June 2013), week 6 (20
th

 June 

2013), week 8 (4
th

 July 2013), week 10 (18
th

 July 2013), week 14 (15
th

 August 2013) 

and week 18 (12
th

 September 2013). At each sampling event, soil cores were collected 

from six sampling locations within each experimental plot using a soil corer measuring 

8 cm diameter and 10 cm depth, and combined to form a composite sample. A random 

number generator was used to select sampling locations over a grid of each 

experimental plot. This process was repeated at each sampling event to avoid sampling 

the same area on multiple occasions.  
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Microarthropods were then extracted into 70% ethanol using a modified Tullgren 

funnel method over a six day period. During this time, the photoperiod was 

progressively extended to create a temperature gradient designed to drive soil fauna 

through the soil profile. All individuals were counted and soil mites identified to order 

level under a binocular microscope (Leica MZ75).  

 

At each sampling event, additional soil core samples were taken at each sampling site 

and used to calculate soil moisture by drying 25 g soil at 130 C for 72 hours. A 10 ± 

0.1 g subsample was then sieved, mixed with 50 ml distilled water and the pH of the 

resulting suspension measured.    

 

 

5.2.3  Estimation of decomposition 

 

Litterbags measuring 8 cm
2
 were constructed from nylon mesh (Northern Mesh, 

Oldham, UK) of different pore sizes to allow for the selective exclusion of different 

faunal groups based on body size; 5 mm mesh allowed entry of all faunal groups, 2 

mm mesh excluded macrofauna (e.g. earthworms and myriapods) and 100 µm mesh 

excluded mesofauna (e.g. soil mites, springtails and enchytraeid worms) and 

macrofauna, while allowing entry of microfauna (e.g. nematodes) and microflora 

(bacteria and fungi). Bags were filled with 10 ± 1 g chopped (1 cm length) and 

homogenised dried barley litter, sealed and planted approximately 5 cm below the soil 

surface. Two bags of each size were buried in each plot. Litterbags were evenly spaced 

along the top grid row of each plot (Fig. 5.1) in a randomised order.  
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Fig. 5.1 Location of litterbags and barley crop in each 2x2 m experimental plot. 

Soil cores were taken from the cropped area. Litterbags were buried in a randomised 

order along the top grid row 

 

 

Litterbags were retrieved after 18 weeks (126 days) and dried at 40 C until no change 

in mass was observed, which typically occurred between 2-4 days. Root material, soil 

aggregates and stones were carefully removed and litter was brushed with a small 

paintbrush to remove soil attached to the surface of the straw. Furthermore, care was 

taken to ensure that litter loss during burial, harvesting and analysis was minimal. For 

example, litterbags were placed into individual paper bags during transportation and 

drying, and contents were handled in a tray during processing in the laboratory. The 

remaining mass was calculated, and decomposition estimated using the original and 

remaining litter masses. While decomposition involves multiple processes of 

fragmentation and breakdown, we hereby refer to litter loss as decomposition. 
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5.2.4  Estimation of crop yield 

 

Barley (Hordeum vulgare L. cv. Quench) seed was sown at a planting density of 

approximately 350 seeds m
-2

, in line with commercial sowing rates, immediately after 

the baseline samples were taken at week 0. Seed was sown across the bottom four grid 

rows of each experimental plot (Fig. 5.1). Avoiding the top grid row, where the 

litterbags were buried, prevented barley roots penetrating the mesh and increasing 

resource availability within the litterbags. Throughout the study period, plots were 

weeded by hand and no pesticides or herbicides were applied. At week 18, after the 

final soil samples were taken, the crop was harvested and barley production estimated 

using three 20 cm
2 

quadrats per plot in a random sampling design. Root and shoot 

material was harvested and dried at 40 C, and yield estimated from weighed seed.  

 

 

5.2.5  Statistical analysis 

 

All statistical analyses were conducted in R (R Core Development Team, 2014). 

Linear mixed effects models were used to analyse the interactive effects of fertiliser 

treatment and soil fauna on litter decomposition and barley production. For the 

decomposition analysis, the arcsine square root transformed proportion of litter 

remaining at harvest was used as the dependent variable. Covariates included mesh 

size, soil moisture content and soil pH. For the yield analysis, covariates included soil 

mesofaunal abundance, soil moisture and soil pH, averaged across samples taken 

during the early barley tillering phase (Weeks 2-6); a key determinant of grain 

development and final crop yield (Engledow and Wadham, 1923; Hucl and Baker, 

1989; Blake et al., 2006).  

 

A maximal model, including all covariates and random terms with interactions, was 

constructed for each analysis using the R package nlme (Pinheiro et al., 2015). The 

‘dropterm’ function in the R package MASS (Venables and Ripley, 2002) was used to 

inform sets of biologically plausible candidate models. Models were then compared 
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using second-order Akaike Information Criteria (Burnham and Anderson, 2002). For 

each analysis, a best model was selected from the set of candidate models (Tables 5.1 

and 5.2). Pairwise z-tests were performed, with P-values corrected using the Tukey 

method, in the R package multcomp (Hothorn et al., 2008).  

 

Linear mixed effects models were also used to analyse the effect of fertiliser treatment 

on additional plant characteristics (plant height; fresh and dried root masses; fresh and 

dried shoot masses). In all analyses, block was included as a random factor. 
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Table 5.2 Model selection table for decomposition analysis. The three best candidate models are presented, with the best model indicated in 

bold. Litter mass at harvest was used as the dependent term. All models contained a random blocking term 

 

Model  d.f. Log L AICc K wi 

Treatment + size + treatment*pH 81 68.22 -110.57 12 0.01 

Treatment*size + pH 84 65.35 -108.59 9 0.03 

Size + pH 87 65.22 -100.14 6 0.96 
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Table 5.3 Model selection table for yield analysis. The three best candidate models are presented, with the best model indicated in bold. All 

models contained a random blocking term. Estimated barley yield ha
-1

 was used as the dependent term 

 

Model  d.f. Log L AICc K wi 

Count*group*treatment + treatment*pH + treatment*moisture  37 25.59 249.79 58 0.99 

Count*group*treatment + treatment*moisture  41 -38.72 330.32 54 <0.01 

Count*group*treatment  45 -80.36 374.05 50 <0.01 
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5.3  Results  

 

5.3.1  Decomposition  

 

We did not observe a significant effect of increased faunal complexity or soil pH (both 

P > 0.05) on litter decomposition. Treatment was excluded during the model selection 

process (Table 5.2). 

 

 

5.3.2  Yield  

 

Estimated crop yield differed between experimental treatments (F37 = 64.99, P < 

0.001; Fig. 5.2), with all fertiliser treatments producing a higher estimated yield than 

the unfertilised control (SD - C: t37 = 5.15, DD - C: t37 = 7.51, O - C: t37 = 4.83; all P < 

0.001). Estimated yield was higher under O (t37 = 6.06) and SD (t37 = 6.09; both P < 

0.001) than DD.  

 

 

 

 



- 110 - 

Fig 5.2  Model-predicted estimates (means ± SEs) of spring barley yields under 

different experimental fertiliser treatments (C: unfertilised control (blue); SD: standard 

dose ammonium nitrate fertiliser (Nitram 34.5%N at 175 kg N ha
-1

; orange), DD: 

double dose ammonium nitrate fertiliser (Nitram 34.5%N at 350 kg N ha
-1

; red); O: 

pig slurry and straw (175 kg N ha
-1

; green)). Estimated yields are extrapolated from 

yields per 2 m
2
 plot (mean ± SE yield under C: 0.93 ± 0.01 kg; SD: 2.00 ± 0.03 kg; 

DD: 1.80 ± 0.17 kg; O: 2.30 ± 0.03 kg). Annotations denote statistically significant 

differences  

 

 

5.3.3  Plant characteristics  

 

Plant height was higher under all fertilised treatments than under the unfertilised 

control (SD - C: t41 = 5.06, DD - C: t41 = 3.71, O - C: t41 = 6.51; all P < 0.001, Fig. 

5.3a). Furthermore, plant height was greater under O than DD (t41 = 2.81, P < 0.01).  

 

Above-ground, fresh shoot mass was higher under all fertilised treatments than under 

the unfertilised control (SD - C: t41 = 4.59, DD - C: t41 = 5.66, O - C: t41 = 4.73; all P < 

0.001, Fig. 5.3b); however, there were no significant differences between fertilised 

treatments. Dry shoot mass followed the same pattern (SD - C: t41 = 4.90, DD - C: t41 

= 4.70, O - C: t41 = 5.76; all P < 0.001, Fig. 5.3c).  

 

Below-ground, fresh root mass was higher under all fertilised treatments than under 

the unfertilised control (SD - C: t41 = 2.26, P = 0.03; DD - C: t41 = 4.81, P < 0.001; O - 

C: t41 = 2.15, P = 0.04, Fig. 5.3d). Furthermore, fresh root mass was also greater under 

DD than both SD (t41 = 2.55, P = 0.01) and O (t41 = 2.66, P = 0.01). Dry root mass 

followed the same pattern (SD - C: t41 = 1.98, P < 0.05; DD - C: t41 = 4.71, P < 0.001; 

O - C: t41 = 2.17, P = 0.04; DD - SD: 2.73, P < 0.01; DD - O: t41 = 2.54, P = 0.02, Fig. 

5.3e). 
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Fig 5.3  Measurements (mean ± SE) of plant characteristics under experimental 

fertiliser treatments (C: unfertilised control (blue); SD: standard dose ammonium 

nitrate fertiliser (Nitram 34.5%N at 175 kg N ha
-1

; orange), DD: double dose 

ammonium nitrate fertiliser (Nitram 34.5%N at 350 kg N ha
-1

; red); O: pig slurry and 

straw (175 kg N ha
-1

; green)). Annotations denote statistically significant differences 
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Estimated yield was influenced by mesofaunal abundance during the tillering period, 

which varied between treatments (count * group * treatment interaction: F37 = 4.48, P 

< 0.001; Table 5.4). In particular, contrast tests showed that a decreased abundance of 

oribatid mites under the DD treatment was associated with a decrease in estimated 

barley yield (t37 = 2.16, P = 0.04; Fig. 5.2). We also observed effects of soil moisture 

(soil moisture * treatment interaction: F37 = 190.83, P < 0.001) and soil pH (soil pH * 

treatment interaction: F37 = 75.638, P < 0.001) on estimated yield, which again varied 

between treatments.  
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Table 5.4 Model-predicted abundances (mean ± SE) of soil mesofaunal groups during the barley tillering period under different fertiliser 

treatments (C: unfertilised control; SD: standard dose ammonium nitrate fertiliser (Nitram 34.5%N at 175 kg N ha
-1

), DD: double dose 

ammonium nitrate fertiliser (Nitram 34.5%N at 350 kg N ha
-1

); O: pig slurry and straw (175 kg N ha
-1

)) 

 

 

 Treatment  

C SD DD O 

Oribatid mite abundance (individuals m
-2

) 1419.14 ± 220.33 1193.67 ± 378.63 1167.14 ± 192.91 1432.40 ± 202.92 

Mesostigmatid mite abundance (individuals m
-2

) 106.10 ± 21.66 194.52 ± 63.35 225.47 ± 26.40 380.21 ± 38.54 

Astigmatid mite abundance (individuals m
-2

) 172.42 ± 49.16 97.26 ± 21.05 137.05 ± 41.71 340.42 ± 167.51 

Prostigmatid mite abundance (individuals m
-2

) 97.26 ± 23.39 79.58 ± 21.05 66.32 ± 30.95 119.37 ± 44.14 

Springtail abundance (individuals m
-2

) 168.00 ± 35.73 243.16 ± 80.19 168.00 ± 30.20 605.68 ± 265.10 
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Fig 5.4  Model-predicted spring barley yields under different experimental 

fertiliser treatments with varying soil mite abundances. Fertiliser treatments are 

colour-coded (C: unfertilised control (blue); SD: standard dose ammonium nitrate 

fertiliser (Nitram 34.5%N at 175 kg N ha
-1

; orange), DD: double dose ammonium 

nitrate fertiliser (Nitram 34.5%N at 350 kg N ha
-1

; red); O: pig slurry and straw (175 

kg N ha
-1

; green)) 

 

 

 

5.4 Discussion 

 

5.4.1 Decomposition 

 

Decomposition rate is determined by a range of climatic and edaphic factors, resulting 

in substantial variation in average litter losses between studies. The litter losses 

observed in this study fell within the range observed in other systems over a similar 

time period (Oladoye et al., 2008; Peng et al., 2014). However, we did not observe a 

significant increase in litter loss associated with increasing soil faunal community 

complexity, as observed in other studies (Vossbrinck et al., 1979; Wise and Schaefer, 

1994; Setälä et al., 1996; González and Seastedt, 2001; Bradford et al., 2002; Smith 

and Bradford, 2003). Since litter loss was approximately equal across all mesh sizes 

(macromesh: 71.15%, mesomesh: 73.68%, micromesh: 70.73%), we conclude that the 

decomposition process was dominated by the activities of the soil microbial 

community in this system, with little contribution of soil mesofauna or macrofauna. 

Indeed, mesofaunal abundances observed within the plots (Table 5.4) were lower than 

expected. Oribatid and mesostigmatid mite population densities were comparable to 

those observed under the IL treatment in Chapter 3 and at 32 m into cultivated field in 

Chapter 4. Under a simultaneous treatment regime at a different site (Chapter 2), 

abundances of springtails were approximately ten times greater than those observed 

here.  
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Additionally, we did not observe any evidence of earthworm activity in the 0-10 cm 

soil layer over the course of the study. The distribution of earthworm populations is 

governed by a range soil properties, including soil moisture content and the availability 

of organic matter (Lavelle, 1988; Edwards and Bohlen, 1996; Fonte et al., 2009), in 

addition to anthropogenic factors, such as land-use type and management intensity 

(Curry, 2004; Smith et al., 2008c). The sandy nature of the soil type at the site, with 

low organic matter content and poor water holding capacity, is likely to have decreased 

habitat suitability for earthworms. Since earthworms are typically the dominant soil 

macrofaunal decomposers, a lack of earthworm activity in the macromesh bags may 

have further reduced the strength of a mesh size effect. It is likely that continuous, 

high-intensity agricultural management, coupled with the soil characteristics listed 

above, depleted soil mesofauna and macrofauna, which resulted in a depauperate 

system dominated by microorganisms. 

 

Estimating decomposition using the litterbag technique has been subject to criticism 

due to the potential for additional litter loss or leaching from larger mesh sizes through 

handling and rainfall (Bradford et al. 2002) and changes in microclimate within the 

litterbag (Vossbrinck et al. 1979) such as increased soil moisture, which could further 

vary with mesh size. Furthermore, this technique artificially alters resource 

availability, potentially promoting soil faunal population growth which could lead to 

elevated estimates of decomposition. However, we would expect no bias in these 

effects between fertiliser regimes, thus our results are likely to be consistent across 

treatments.  

 

Litter decomposition was not significantly different between treatments, suggesting 

that the activity of soil microorganisms was equal between treatments. We propose 

two possible explanations for this. Firstly, fertiliser inputs may not have exerted 

adverse effects on the soil microbial biomass through the direct (e.g. ammonium 

toxicity) or indirect (e.g. soil acidification) effects suggested in Chapter 5.1. However, 

reductions in soil microbial biomass (DeForest et al., 2004; Wallenstein et al., 2006; 

Demoling et al., 2008) and activity (Bowden et al., 2004; Demoling et al., 2008), as 

well as altered community composition (Peacock et al., 2001; Belay et al., 2002; 

Marschner et al., 2003; Ramirez et al., 2010), have been widely reported in response 
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to fertiliser use. Alternatively, it is possible that any negative effects were offset by the 

increase in local resource availability, via enhanced root biomass, in the fertilised plots 

over time. The microbial biomass may have recovered rapidly following the fertiliser 

application in week 0, with compensatory microbial activity resulting in an increase in 

decomposition in these plots over time, versus the control plots which may have 

shown a steadier rate of decomposition. Since litterbags were retrieved at one time 

point only, we are unable to conclude whether these trends are reflective of long-term 

decomposition dynamics in this system. Future work should consider the effects of 

fertiliser and other agrochemical treatments on decomposition rates over time. 

 

 

5.4.2  Barley yield 

 

Above-ground, estimated barley yield was significantly enhanced under all three 

fertiliser treatments in comparison to the unfertilised control. Furthermore, plant 

height and root and shoot masses also followed this pattern, with the unfertilised 

control treatment producing the shortest and smallest plants, both above-ground and 

below-ground. 

 

We observed that the relationship between detritivorous oribatid mites and estimated 

barley yield was either neutral or positive under the C, O and SD treatments. However, 

this positive impact of increasing soil nutrients on oribatid mite abundance was 

reversed under the high input regime. Here, we observed that a decreased abundance 

of oribatid mites was associated with a negative effect on barley yield. In contrast, both 

fresh and dry root masses were lower under DD than SD and O, suggesting that the 

negative impacts of this high ammonium nitrate dose on oribatid mites were not offset 

by enhanced root growth and a likely associated increase in the microbial biomass.  

 

Detritivorous fauna can contribute to plant nutrient uptake and growth via changes in 

the biomass and structure of the soil microbial community (Laakso et al., 2000). Since 

the abundance and distribution of oribatid mites are closely related to their food 

availability (Maraun and Scheu 2000), abundance tends to be higher in arable soils 
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where crop residues or green manure are enhanced (Kautz et al. 2006, Ponce et al. 

2011).  

 

However, soil microarthropods are sensitive to ammonia (Moursi 1962, 1970). 

Furthermore, Bosch-Serra et al. (2014) observed that the abundance of oribatid mites 

decreases in response to fertilisation in excess of crop requirements. The standard dose 

fertiliser treatments used in this study contained 175 kg N ha
-1

; within the optimum 

range of N concentrations for utilisation during the early stages of crop development. 

However, the high dose ammonium nitrate treatment was applied at double the 

standard rate of N fertilisation. Therefore, it is likely that fertiliser applied in excess of 

crop requirements may have resulted in an accumulation of ammonia in the soil and 

some localised leaching. Furthermore, a lack of soil organic matter in the study soil 

would likely reduce the denitrification capacity of the soil (Burford and Bremner, 

1975), exacerbating these effects.  

 

The Oribatida exhibit a wide range of life-history strategies (Maraun and Scheu, 

2000), and egg development can range from <40 to >250 days between families 

(Luxton, 1981). Subsequently, populations may not have been able to recover from the 

effects of fertiliser toxicity over the course of the study period. Since the experimental 

plots were physically separated from one another using polycarbonate sheeting, we 

suggest that decreased oribatid mite abundance resulted from mortality rather than 

emigration. Consequently, we conclude that oribatid mites, as detritivores, contributed 

to productivity in untreated plots and plots under moderate levels of fertilisation, but 

that this relationship was disrupted in high input plots in this study. Some 

microarthropod detritivores, including springtails, stimulate N mineralisation (Bardgett 

and Chan, 1999; Partsch et al., 2006) and can promote plant growth indirectly by 

grazing upon, and therefore upregulating the activity of, the microbial biomass 

(Kreuzer et al. 2004). However, the mechanisms behind this are not fully understood 

and it is unclear whether oribatid mites affect plant growth in this way. The role of 

oribatid mites in promoting plant growth should be explored; for example, in a 

microcosm experiment using soils inoculated with varying densities of oribatid mites 

and microbes in previously defaunated soils. This suggestion is further explored in 

Chapter 6.2.4. 
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5.5  Conclusions  

 

We observed some evidence of high dose fertiliser treatments modifying the 

relationships between soil invertebrates and above-ground ecosystem functioning. 

Despite this, productivity remained high, although not as high as under moderate 

fertilisation. Under continuous supply, this substitution of function for inputs might be 

manageable, but it implies a substitution of natural function that may create a lock-in, 

whereby reliance on continuous artificial inputs is required for productivity to be 

maintained. If the cost of inorganic fertilisers increases, this is likely to force farmers 

to apply less N but raises questions over the potential for processes to recover. We did 

not observe evidence that fertilisation inputs affected relationships between soil fauna 

and ecosystem functioning below-ground. However, the depauperate nature of the 

study soil suggests that damage from intensive agriculture may have already taken 

effect, disrupting relationships between soil invertebrates and the decomposition of 

organic matter.  

 

In Chapter 2, we observed some detrimental effects of inorganic fertilisers on soil 

mesofauna and positive effects of organic fertiliser. In addition, organic fertilisation 

provides a range of environmental attributes, for example organic matter and increased 

moisture, which may become increasingly importance for improving resilience in 

response to a range of environmental factors (e.g. drought and flooding). However, 

achieving high productivity using organic inputs relies on access to large amounts of 

organic material, which may not be feasible in many large-scale systems.  Hence, we 

suggest that combinations of organic and inorganic fertilisers may offer a compromise 

that contributes to both high productivity and resilience to environmental change, and  

that these should be explored. Some trade-offs between biodiversity and productivity 

are discussed in Chapter 6. 
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Chapter 6 

 

                    General Discussion 
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In Chapter 1, the key objectives of this thesis were established. Specifically, this thesis 

aimed to: 

1. Investigate the effects of intensive agriculture on soil fauna-function 

relationships using realistic management practices in field systems.  

2. Explore the effects of agricultural management practices on multiple soil 

invertebrate groups simultaneously. 

3. Draw comparisons between the effects of intensive agricultural management in 

multiple systems, with varying soil types. 

4. Make recommendations for ways in which any negative observed effects of 

intensive agriculture on soil diversity-function relationships can be minimised. 

 

We first evaluate the extent to which this thesis achieved these aims and explore the 

implications for this research in a wider context. Subsequently, in Chapter 6.2, we 

suggest priorities for future research based on the findings of this thesis and gaps in the 

wider literature. 

 

 

 

6.1  Review of main findings 

 

6.1.1  Negative impacts of fertiliser use on soil biodiversity  

 

Agricultural intensification has involved changes in management practices, including 

the continuous cultivation of arable land, the development of high-yielding crop 

varieties, advanced agricultural mechanisation and increased agrochemical use. These 

changes have contributed to a dramatic increase in crop yields globally (FAO, 2014). 

Agricultural intensification can exert negative effects on biological systems above-

ground and below-ground, with consequences for agroecosystem function. In a soils 
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context, the regulation of ecosystem function by soil fauna is progressively substituted 

for by regulation via artificial inputs (Giller et al., 1997). 

 

The use of agrochemicals in intensive agricultural management have been associated 

with adverse impacts on soil faunal abundance and community structure (Joy and 

Chakravorty, 1991; Bünemann et al., 2006; Tabaglio et al., 2009; Thiele-Bruhn et al., 

2012). In Chapter 1, a knowledge gap was identified around how fertilisation affects 

multiple soil faunal groups and, additionally, the consequences of these changes for 

agroecosystem function. Consequently, within this thesis, the effects of organic and 

inorganic fertiliser regimes on multiple soil faunal groups were tested in a number of 

agricultural systems, including both arable and plantation systems. We observed some 

negative effects and some neutral effects of inorganic fertilisers on soil fauna, with 

variation between taxa and sites.  

 

We observed that, at least in water-limited sandy soils, the negative impacts of 

inorganic fertiliser on soil invertebrates were exacerbated by the addition of irrigation 

(Chapter 3). We suggest that this is due to the increased solubilisation of fertiliser. In 

areas of higher rainfall, or in moister soils, we would expect that the application of 

fertiliser without irrigation would have also exerted observable negative effects. The 

study soil was characterised by low organic matter content and low water-holding 

capacity (Barton et al., 2010), similar to the study soil of Chapter 5. As these soils 

become saturated with water, excess ammonia is leached into the soil profile (Pathan 

et al., 2002; Yao et al., 2012), coming into contact with the soil fauna. Therefore, 

incorporating organic matter into these soils, for example through mulching, may have 

the potential to reduce these effects and increase the nitrification capacity of the soil 

(Burford and Bremner, 1975; Yao et al., 2012), thereby reducing effects on soil fauna.  

 

We have suggested that this thesis supports the argument that inorganic fertilisers 

exert negative effects on soil fauna through direct ammonia toxicity, as suggested by 

Moursi (1970), and Chapter 6.2 contains suggestions as to how this could be more 

explicitly tested. However, we have also observed evidence of fertiliser-induced soil 
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acidification, which led to reductions in oribatid mite abundance (Chapter 2). While 

the mechanism by which fertiliser applications impact on soil fauna was not explicitly 

tested in this thesis, this finding lends some support to the hypothesis that fertiliser-

induced soil acidification negatively impacts on soil organisms. In Chapter 3, however, 

models containing pH were excluded during the model selection process. This 

suggests that the mechanism, or dominance of mechanisms, by which fertiliser use 

affects soil fauna may differ between systems. The inclusion of data containing soil 

physical and chemical properties (e.g. soil composition, including OM content) in 

these analyses may help to suggest which mechanisms dominate in systems with 

different soil properties. 

 

We observed evidence of populations of soil organisms recovering to baseline levels 

within the equivalent of a growing season following a single application of nitrogen 

fertiliser at the start of the season (Chapter 2). This is the first study to show that 

fertiliser applications can modify temporal changes in the abundance of soil fauna. 

However, this study took place in soil that had been out of cultivation for over a 

decade. In a more intensively managed system, with a history of frequent 

perturbations, recovery would be expected to take longer. Under long-term, continuous 

cultivation, we would also expect to see stronger, more immediate effects on soil fauna 

with greater differences in average abundance between treatments; similar to Chapter 3 

where fertilisation regimes had been in place for over five years.  

 

Soil food webs can be characterised by a high degree of species diversity (Usher et al., 

1979; Torsvik et al., 2002; Bardgett et al., 2005; Wurst et al., 2012). In this thesis, we 

did not specifically investigate whether fertiliser inputs had species-specific effects on 

soil organisms. Thus, we are only able to draw broad comparisons between mite 

groups, springtails and enchytraeid worms. While we would expect inputs to have 

broadly similar effects across species within the same group, some taxa exhibit 

substantial variation in tolerance to environmental stressors, e.g. springtails (Irmler, 

2006), and species-specific effects are therefore more likely to occur within these taxa. 

Furthermore, some groups, such as the Oribatida, have a wide range of life-history 

strategies (Behan-Pelletier, 1999; Søvik et al., 2003). Therefore, studying effects on 
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broad level taxonomic groups may not have captured underlying shifts in soil mite 

food web composition in response to treatment.  

 

Soil invertebrate research can be broadly separated into two approaches. Firstly, 

detailed, species-level work may be carried out using a single study taxa, typically 

springtails or earthworms. Alternatively, abundances of a subset of fauna groups, e.g. 

soil microarthropods, can be estimated. While neither of these approaches allows for 

both a comprehensive and detailed analysis of the community to be performed,, 

difficulties in taxonomic identification and the labour-intensive nature of soil 

invertebrate community characterisation means that combining these approaches is 

uncommon. Throughout this thesis, attempts were made to gain a comprehensive 

overview of changes across the soil mesofaunal community (Chapters 2, 3, 4, and 5) 

and also nematodes (Chapter 3). Furthermore, we attempted to combine these 

approaches by a) estimating the abundance of all soil mesofaunal groups observed and 

b) undertaking species identification of a study taxa (springtails), with which we were 

able to make predictions of species-level trends (Chapter 4). In the future, 

advancements in DNA barcoding will allow rapid, reliable, financially-viable methods 

of characterising the entire soil biota, enabling a wider range of taxa to be 

characterised simultaneously. At present, however, this approach is prohibitively 

expensive and the database for soil mesofaunal species is incomplete (Orgiazza et al., 

2015.  

 

 

6.1.2 Relating changes in soil biodiversity to ecosystem function 

 

Throughout this thesis, a range of measures were used to estimate the effects of arable 

management on soil fauna-ecosystem function relationships. Changes in soil mite and 

nematode abundance and trophic structure were related to the estimated bioavailability 

of plant nutrients (Chapter 3). Furthermore, changes in soil fauna along a gradient of 

agricultural intensity were discussed in the context of yield in the previous year 

(Chapter 4). Finally, plant growth and organic matter decomposition were used as 
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measures of above-ground and below-ground ecosystem respectively (Chapter 5). 

However, the relation of changes in soil faunal community abundance and structure in 

terms of ecosystem function are complex and still remain unclear.  

 

We observed some evidence of high-dose fertiliser treatments disrupting relationships 

between soil fauna (oribatid mites) and ecosystem function (yield) (Chapter 5). 

Without a procedural control where mites were removed from the soil, it is not 

possible to estimate the extent to which oribatid mites, through their contribution to 

decomposition and nutrient cycling, affected yield under each fertiliser treatment. 

However, this result does suggest that there is a relationship between the abundance of 

detritivorous mites during the early tillering phase and subsequent yield, which is 

disrupted in high-input systems. It is more likely that this is the result of a shared 

driver – for example, high fertiliser doses impacting on soil mesofauna through lower 

trophic levels – than a direct causal relationship. Despite this, we observed limited 

evidence of treatment effects on soil fauna-ecosystem function relationships elsewhere 

in this thesis (Chapter 3). We have argued that these patterns suggest that, in intensive 

arable systems, artificial inputs substitute for the role of soil fauna in regulating 

agroecosystem function (Giller et al., 1997). However, future work should compare 

these results to defaunated soils in order to evaluate the extent to which this is valid. 

Further discussion of this topic is contained in Chapter 6.2.4. 

 

  

6.1.3  Evaluating the potential for mitigating negative effects of 

 intensive arable management 

 

Throughout this thesis, we have observed evidence of intensive agricultural 

management severely reducing population densities of soil invertebrates, particularly 

after several years of continuous management. This was most starkly illustrated in 

Chapter 4, where we observed clear decreases in abundance along a gradient of 

increasing management intensity. However, this work has also identified a number of 

different ways in which these effects can potentially be reduced.  
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The first option is a ‘land sparing’ approach; encouraging, or continuing to encourage, 

the setting aside of areas of existing farmland for conservation purposes at the farm or 

landscape scale. Areas of non-crop habitat have benefits for above-ground agricultural 

diversity (Lagerlöf et al., 1992; Dover and Sparks, 2000; Woodcock et al., 2005; 

Michel et al., 2006) as well as below-ground (Hof and Bright, 2010, Smith et al. 

2008b, see also Chapter 4), and so are likely to benefit both above-ground and below-

ground communities. In Chapter 4, the value of non-crop habitats for soil mesofauna 

was shown to vary between taxonomic groups. However, one or more non-crop 

habitats adjacent to an arable field supported increased numbers of all groups sampled, 

in addition to springtail species diversity, when compared with cropped areas. Non-

cropped areas, including grassy margins, act as refugia for soil mesofaunal 

communities and are likely to aid the re-establishment of populations if land is left 

fallow or the intensity of management decreases (Chapter 6.2.3). 

 

The second option is a ‘land sharing’ approach, where impacts on soil fauna are 

considered when designing agricultural management regimes and steps are taken to 

reduce the risk of these inputs. We observed some positive effects of organic fertiliser 

inputs on soil invertebrate abundance (Chapter 2). Organic fertilisation was later 

shown to produce equivalent yields to ammonium nitrate fertiliser (Chapter 5). While 

this result is not consistent with findings on a larger scale – organic yields are typically 

25-50% lower than conventional yields (Kirchmann and Bergström, 2013) – our 

findings do support the large body of work identifying benefits of organic agricultural 

management for soil conservation (Watson et al., 2002; Peigné et al., 2007; 

Verbruggen et al., 2010).  

 

Farming practices that result in low yields will not be able to support the needs of a 

growing population, thus organic fertilisation is not a viable option for sustainable 

intensification on a global scale. In particular, organic fertilisation requires large 

amounts of organic material, including animal manures and green matter, which 

individual farms do not typically produce in sufficient quantities to use as a sole 
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method of fertilisation on a large scale. However, as suggested in Chapter 5, there may 

be scope for combining organic and inorganic fertiliser types to limit adverse effects 

on soil fauna while maintaining productivity. We suggest that the most ‘at risk’ soils, 

including those with low organic matter, would benefit most from such an approach. 

Since there is a lack of experimental evidence evaluating the potential for organic and 

non-organic fertiliser combinations for soil sustainability, this is an area that requires 

further research. Specifically, the benefits for soil mesofauna under different 

proportions of fertilisers and the subsequent effects for ecosystem function should be 

assessed alongside trade-offs in productivity under these fertiliser regimes. A larger-

scale version of the sampling design used in Chapter 5, using multiple sites with 

different soil types, could be usefully applied here. 

 

 

 

6.2  Future directions and wider perspectives 

 

6.2.1  The importance of soil conservation  

 

Soils are under increasing pressure from a range of anthropogenic activities. One third 

of soils are moderately to highly degraded due to unsustainable management (FAO, 

2015a). Globally, soils are degrading at such a rate that, in many parts of the world, 

only decades of soil functionality remain. In Chapter 1, we discussed the breadth of 

functions that soil fauna contribute to, including the cycling of water and nutrients, 

productivity and the suppression of plant diseases. Therefore, it is clear that soil fauna-

function relationships need to be conserved before populations are unable to recover. 

In an agricultural context, the capacity of a system to recover will depend on a 

combination of factors, including the resilience of the existing biotic community, the 

shape of the surrounding landscape, including the proportion of non-crop and corridor 

habitats, and the duration and intensity of management. As suggested by Godfray et al. 

(2010), there is a risk that measures of ecosystem health that are more difficult to 
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quantify will be ignored in favour of more easily measureable characteristics that may 

not be appropriate. Due a lack of taxonomic knowledge of below-ground systems and 

the challenges of characterising change (Chapter 1), there is a danger that changes in 

soil biodiversity will be ignored until it is too late. This is particularly pertinent when 

it is thought that a huge number of soil-dwelling species, with potential benefits to 

human health in terms of pharmaceuticals and also indirectly through ecosystem 

services, are as of yet unidentified.  

 

Some progress has been made recently to recognise the importance of soil for 

providing ecosystem services. For example, the UN Convention on Biological 

Diversity recognises the importance of soil biota for ecosystem health and has 

launched an initiative targeting the conservation and sustainable management of soil 

biodiversity, including agricultural systems. Furthermore, the FAO has declared 2015 

the International Year of Soils, aiming to promote awareness of the importance of soil 

health in sustaining human life, while supporting a number of national and 

international policies supporting sustainable soil management. These changes in mind-

set are vitally important if the preservation of soils and soil biodiversity is to be 

recognised as a fundamental component of sustainable intensification. However, it is 

imperative that the link between soil health and human health is communicated 

clearly, and that the preservation of intrinsic soil fauna-function relationships becomes 

a priority for sustainable intensification.  

 

 

6.2.2  Evaluating the potential for non-crop habitat as  

 refugia for soil mesofauna in intensive arable landscapes 

 

In Chapter 4, the value of different non-crop habitats (adjacent woodland, hedgerows 

and grassy margins) for soil mesofauna was investigated. We observed that grassy 

margins were useful habitats for oribatid, mesostigmatid and astigmatid mites, and 

enchytraeid worms. The potential for grassy margins to act as refugia for farmland 



- 129 - 

diversity has been well studied (Verboom and Huitema, 1997; Altieri, 1999; Smith et 

al., 2008a; Douglas et al., 2009; Hof and Bright, 2010). However, other options for the 

inclusion of non-crop habitat in intensive agricultural systems exist and a comparative 

study should be undertaken in order to evaluate their potential for conserving soil 

fauna-function relationships .  

 

For example, an alternative to linear areas of non-crop habitat at the field edge, as is 

the case with field margins, may be the establishment of ‘islands’ of non-crop habitat 

within an arable field. Thomas et al. (1991) observed that island habitats provided 

useful overwintering ground for rove and ground beetles, with evidence of these 

natural enemies migrating up to 60 m into the field during the summer months. 

Furthermore, a follow-up study showed that these non-crop habitat islands harboured 

densities of these beneficial invertebrates similar to neighbouring field margins within 

three years of establishment. However, despite their potential for promoting 

abundances of above-ground invertebrates, the value of island habitats in arable fields 

has not yet been investigated for soil fauna. 

 

In order to identify the optimal spatial distribution of non-crop habitat for the 

conservation of soil mesofauna, a replicated, comparative field study should be 

undertaken. Whether soil mesofauna mirror the temporal dynamics of above-ground 

invertebrates by migrating into the field through the spring and summer months in 

response to an increase in resource availability, and whether migration effects are more 

or less associated with different spatial arrangements of non-crop habitat, is also of 

interest (Chapter 4). Thus, the proposed study should monitor changes in abundance 

across the habitat matrix over time, with increased sampling effort during late spring, 

summer and early autumn.  

 

A key factor determining the value of the spatial arrangement of non-crop habitats in 

an arable field is the extent to which they act as agrochemical sinks. In Chapter 4, we 

observed that, unlike the other mesofaunal groups studied, numbers of prostigmatid 

mites and springtails were not statistically different between grassy margins and the 
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field edge. They were, however, observed in higher abundance in hedgerows and 

adjacent woodland, where lower levels of agrochemical runoff would be expected. 

Since one of the functions of field margins is to act as an agrochemical sink and 

protect neighbouring watercourses from the effects of agrochemical runoff (Blanco-

Canqui et al., 2004; Krutz et al., 2005; Dorioz et al., 2006), it was suggested that these 

responses may be due to differences in the ammonia toxicity limits of different 

taxonomic groups. The extent to which the soil below the field margins studied in this 

study was contaminated is unknown. However, in order to determine whether grassy 

margins are accumulating agrochemicals and therefore impacting on some soil faunal 

groups, for example those with reduced sclerotisation (Chapter 1.2), toxicity analysis 

of the soil along the woodland-to-field transect should be carried out and related to the 

relative threshold limits of different mesofaunal groups. We suggest that the latter 

could be tested in the laboratory, by exposing laboratory-reared, clonal soil mesofaunal 

populations to environments containing different concentrations of ammonia and 

assessing mortality. 

 

 

6.2.3  Recovery of soil mesofaunal populations in the field  

 following perturbation 

 

The value of non-crop habitat in promoting the abundance of soil mesofauna across 

the field, as opposed to localised increases in abundance in soils associated with non-

crop habitats, also depends on the migration capacity of these organisms. Since the 

distribution of soil organisms across a landscape will affect the ecosystem functions 

and processes that they contribute to, this is of a wider concern. However, there is a 

significant gap in our understanding of how far and how fast soil fauna, and 

particularly soil mesofauna, move across the landscape, both horizontally and 

vertically.  
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The motility of soil mesofauna varies between groups. For example, r-selected 

astigmatid mites and predatory mesostigmatid mites are able to move faster than 

oribatid mites (Chapter 1.2). Furthermore, motility can vary between species of the 

same group. For example, springtail species can be classified as fast-dispersers and 

poor-dispersers depending on the development of the legs, furcular and visual 

apparatus (Ponge et al., 2006). However, how far and how fast organisms can move 

across the landscape, and whether species-specific differences in mobility among the 

soil mite groups exist, are important areas for future research. There may be potential 

for using transparent soil media here to track the movement of fauna in 3D space over 

time. 

 

An improved understanding of the dispersal capacity of soil mesofauna would also 

help to make predictions about the recovery of populations following a perturbation; 

for example, tillage or a fertiliser event. In Chapter 2, the recovery of soil mesofauna 

to baseline levels (abundance prior to perturbation) following a fertiliser application 

occurred within the equivalent of a single season. However, this study took place in an 

uncultivated soil. How soil mesofaunal populations recover in the longer-term, for 

example following continuous cultivation, is relatively unknown.  

 

Where long-term intensive cultivation has significantly impacted soil mesofaunal 

populations (as in Chapters 4 and 5), it is likely that the recovery of soil fauna in an 

affected system would take several years or decades and, at first, be dominated by 

specialists. For example, changes in nematode community composition in the decade 

following the cessation of fertilisation can be slow, with higher trophic levels taking 

the longest to recover (Verschoor et al., 2001).   Similarly, the community recovery of 

springtails following a forest fire has been shown to take over a decade, with only fast-

dispersing species recovering to baseline abundance within this initial 10-year period 

(Malmström, 2012).  

 

Such differences in recovery rates following perturbation are likely to be dependent 

upon both the life-history and dispersal capacity of organisms. Indeed, Lindberg and 



- 132 - 

Bengtsson (2005) observed that soil microarthropod species with larger habitat ranges 

recovered more quickly following experimental drought events than those restricted to 

smaller areas of habitat. Furthermore, oribatid mites recovered more slowly than 

springtails, likely due to differences in life-history and locomotion as discussed here 

and in Chapter 1.2. This finding lends some support to the idea that non-crop habitat 

dispersed throughout the wider habitat, for example through the establishment of 

several small ‘islands’ or an intercrop approach, may be useful for the recolonisation 

of species with slow rates of development, low fecundity and small habitat ranges. 

This would include the majority of oribatid mites (Chapter 1.2). While grassy margins 

such as those sampled in Chapter 4 may harbour high densities of mesofauna relative 

to the cultivated field, we therefore hypothesise that they are less likely to be valuable 

for the re-establishment of populations within the field.  

 

Intercropping methods – growing two or more crops together, usually in alternating 

rows – may also aid re-establishment of soil faunal populations following years of 

intensive management by increasing habitat heterogeneity throughout the field rather 

than in one or two areas. Intercropping practices are widely used by African farmers, 

but less commonly nowadays in Western agriculture (Machado, 2009). Intercropping 

can reduce soil erosion while maintaining productivity if a high-yielding crop (e.g. a 

cereal) is grown alongside a soil-conserving crop (e.g. a legume), particularly if grown 

perpendicular to a topographical or weather gradient. The use of a leguminous crop 

acts as a living mulch, reducing soil evapotranspiration and, therefore, the need for 

irrigation. Intercropping has been shown to increase soil organic carbon content, likely 

due to an increase in plant root biomass (Manna and Singh, 2001; Cong et al., 2015). 

Crucially, intercropping in this way has the potential to reduce the need for, or amount 

of, future fertiliser inputs due to the natural N-fixation (Danso et al., 1987; Peoples et 

al., 1995; Shah et al., 2003). Therefore, this practice has potential for supplementing 

or replacing N fertiliser inputs in some systems, with predicted knock-on effects for 

soil fauna. 

 

Increased microbial diversity (Chai et al., 2005) and activity (Manna and Singh, 2001) 

have been observed in intercropped systems. Several reasons may exist for this, 
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including increased habitat heterogeneity, variation in crop rooting depths, and 

changes in soil nutrient and moisture availability. While the literature on the impacts 

of intercropping practices on soil invertebrates is limited, intercropped systems have 

been shown to promote springtail population densities in comparison to wheat 

monocultures, reflecting increases in soil moisture and soil organic matter content 

under intercropped regimes (Gravesen et al., 2008).  

 

While the methods suggested in Chapters 6.2.2 and 6.2.3 may benefit soil organisms, 

and ultimately soil health, it is essential that any trade-offs with yield are investigated. 

Existing research suggests that cereal yields are enhanced when intercropped with a 

leguminous plant (Jensen, 1996; Li et al., 2001). Furthermore, yields have been shown 

to be more stable under intercropping systems (Sileshi et al., 2012). However, 

introducing areas of non-crop habitat to a conventionally managed field reduces the 

area available for production, while intercropping may reduce the total economic value 

of crop per hectare depending on the crops grown. A comprehensive analysis of trade-

offs between ecosystem functions and services is essential to determine whether a 

reduction in overall farming intensity increases the overall benefits to the system 

through an increase in biodiversity and intrinsic biodiversity-ecosystem service 

relationships. 

 

 

6.2.4  Trading function for dependence? 

 

This thesis investigated whether the use of agrochemical inputs results in the trading of 

intrinsic relationships between soil mesofauna and ecosystem function (e.g. 

decomposition) for dependence. The term dependence has been used to describe a 

“lock-in” whereby the continual use of artificial inputs impacts negatively on soil 

fauna, resulting in mortality and a need for equal, or greater, amounts of fertilisers to 

be applied in order to maintain productivity. In the event that fertiliser resources 
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become constrained, through reductions in availability and/or restrictive costs, this 

creates a risk to the resilience of the system.  

 

This thesis has gone some way to address this question. In Chapter 3, the impacts of 

fertiliser-induced changes in soil mesofauna on the estimated bioavailability of plant 

primary and secondary nutrients were explored. Contrary to our expectations, we did 

not observe evidence of treatment-induced changes in faunal abundance impacting on 

plant nutrient bioavailability, and it was suggested that these soils were already in a 

state of ‘dependence’. In Chapter 5, changes in soil mesofaunal abundance in response 

to different fertiliser regimes were examined in relation to crop yields and 

decomposition. We observed evidence of high levels of inorganic fertiliser disrupting 

relationships between oribatid mites and productivity. However, this was only true for 

doses of ammonium nitrate fertiliser applied at double the typical dose for this crop-

site combination (350 kg N ha
-1

). 

 

Consequently, there is insufficient evidence presented here to conclude that intrinsic 

relationships between soil mesofauna and ecosystem function are traded for 

dependence under intensive agricultural management. In order to test this hypothesis 

more rigorously, the studies described in Chapters 3 and 5 should be replicated to 

include a defaunated control treatment. Defaunation of a soil system in the field can be 

achieved using steam fumigation or chemical fumigation methods, although the latter 

may present risks to the wider ecosystem. Alternatively, defaunation could be more 

easily performed using a mesocosm experiment. For example, soil monoliths could be 

extracted, subjected to deep-freezing to defaunate the soil and sealed with 2 mm mesh 

(as used in the litterbag study in Chapter 5) to prevent immigration of soil mesofauna 

from the surrounding soil, and replanted. This approach would help to present a clearer 

idea of the contribution of soil mesofauna to the ecosystem functions assessed 

throughout this thesis, thus adding confidence to assertions of treatment-induced 

changes to intrinsic relationships.  
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6.3 Summary  

 

Intensive, and unsustainable, agricultural management has accelerated rates of soil 

erosion globally, such that approximately one third of soils are now classified as being 

moderately to highly degraded (FAO, 2015a). In some areas of the world, the FAO 

predict that, under current rates of soil degradation, only 60 years of soil function 

remain. In the United Kingdom, it is expected that only 100 harvests remain in 

agricultural soils (Edmondson et al., 2014). The work carried out in this thesis 

suggests that intensive agricultural management, including the use of inorganic 

fertilisers, has negative impacts on soil invertebrate communities and further suggests 

that these changes may have consequences for ecosystem function. If agricultural 

management continues to be unsustainable, and fertiliser use increases as expected 

(FAO, 2015b), this poses a threat to the resilience of the system as a whole. If it 

occurs, recovery is likely to be slow and favour species with short generation times 

and good dispersal capacity; further altering community structure.  

 

However, there is room for optimism. There are a number of ways in which 

management can be made more sustainable, and awareness of the importance of this is 

increasing among academics, stakeholders, policy directors and the public. 

Nevertheless, research and policy need to progress rapidly in order to preserve 

arguably the most important natural resource on the planet for the health of future 

generations. In terms of research, it is vital that a collaborative, multidisciplinary 

approach is undertaken, integrating a range of soil expertise, including ecologists, 

hydrologists, microbiologists and soil physicists, in addition to terrestrial scientists. 

Each side of the soil surface is intrinsically linked; above-ground processes are 

sustained by the soil and below-ground processes are influenced by those above-

ground. In order to expand our understanding of the impacts of agriculture on natural 

ecosystems, it is imperative that the two fields of research recognise one another more 

openly and work together towards a more sustainable future. 
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