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Abstract 

Mice carrying a Y64H amelogenin mutation phenotypically mimic human 

amelogenesis imperfecta. Affected ameloblasts are characterised by the presence 

of abnormal cytoplasmic vesicles of retained amelogenin.  Protein-protein binding 

studies using recombinant wild type and Y64H amelogenin revealed that the 

mutation increased amelogenin-amelogenin binding. This may drive intracellular 

aggregation of Y64H amelogenin, explaining the abnormal retention. Intracellular 

protein aggregation causes ER stress which triggers the UPR. The UPR attempts 

to restore proteostasis but as a last resort triggers apoptosis. SEM of affected 

enamel showed initially secreted enamel is normal; coincident with UPR in pro-

survival mode. The final outer enamel is abnormal; indicative of UPR induced 

ameloblast apoptosis.   Q-RT-PCR was used to measure ER stress related gene 

expression in affected ameloblasts. Expression levels of ER stress genes increased 

but not significantly (significance was reached in later studies by others in the 

research consortium). Amelogenin expression was shown to be significantly 

reduced in affected ameloblasts; reduced protein expression being a known pro-

survival tactic employed during ER stress.      

A steady-state in vitro mineralisation system was used to examine the effect of the 

Y64H mutation on mineral nucleation by recombinant amelogenins in isolation or in 

conjunction with recombinant 32 kDa enamelin. Data showed that the Y64H 

mutation did not affect the nucleating potential suggesting that the pathological 

mechanism driving AI in affected mice is linked to ER stress rather than dysfunction 

of secreted amelogenin.  

An unexpected finding was that the 32 kDa enamelin (much lauded in the literature 

as a functional species) may be unique to pig amelogenesis and its functional 

significance is therefore debateable 

In summary, the mechanism driving AI in these mice is associated with intracellular 

ER stress. Extracellular dysfunction of mutated enamel proteins has been the focus 

of AI research but the involvement of ER stress provides additional therapeutic 

options for treating AI.     
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Chapter 1 

Introduction 

This section is concerned with a review of the current literature pertaining to 

this thesis. With special reference to dental enamel it provides an introduction to the 

development of the teeth, the structures of the dental tissues, the process of 

biomineralisation, the role of the organic matrix and its proteins in biomineralisation, 

diseases due to protein mutations, and an overview of the crystalline structure of 

the minerals deposited during tooth enamel biomineralisation. 

It is worthwhile to bear in mind the important factors driving research in the 

field of oral biology and dentistry. Although much is known about the development 

and formation of dental tissues in many species, including the underlying 

biochemical processes and genetics, there are still key questions that remain 

unanswered. The modern diet and lifestyle have shown that there are real 

requirements for alternative solutions for caries prevention and repair to the 

common practice of ‘drilling and filling’. Achievements in material science and 

engineering have provided new synthetic materials for caries repair and fillings. 

Composite materials have become the normal solution for hard-wearing, long 

lasting and cosmetically pleasing dental fillers. However, could there be an 

opportunity to include biological materials to encourage enamel to self-repair? If so, 

which biological materials should, or even could be included to optimise repair of 

the dental enamel? Recently, self-assembling peptides that can infiltrate early 

caries lesions and form mineralising scaffolds have been shown to repair early 

lesions (Brunton et al., 2013). Understanding which of the enamel extracellular 

matrix proteins are important for mineral nucleation and growth, and the interplay 

between these proteins could provide further developments in caries lesion repair. 

This insight could be provided through the study of genetic diseases of 

mineralisation that effect normal enamel development. Though relatively rare, 

genetic diseases of enamel formation, amelogenesis imperfecta (AI), can have a 

major effect on wellbeing and quality of life for sufferers. Understanding the 

underlying genetic changes and the resulting structural changes in the enamel may 

shed light on the pathological mechanisms and processes driving AI. Such 

processes may be targets for drug interventions that allow AI to be treated while 

enamel is still developing. This thesis is concerned with a mouse model of AI; the 

genetic mutation involved being linked to the developing enamel matrix protein 



- 20 - 

amelogenin. The broad aim is to understand the role of amelogenin in 

amelogenesis in both normal wild type mice and mice suffering from AI linked to an 

amelogenin mutation. 

 1.1 Biomineralisation 

1.1.1 An introduction to biomineralisation 
Biomineralisation is the production of minerals by living organisms, often used 

to harden or lend mechanical strength to existing tissues. Examples include calcium 

phosphate in bones and teeth, silicates in algae, and carbonates in diatoms and 

invertebrates. Overall, the formation of biomineralised tissues in all species (algae, 

molluscs, mammals and birds) appears to be regulated by the same fundamental 

processes (Boskey, 2003). Organic molecules are often employed as ‘templates’ to 

initiate and control the biomineralisation process. In fact, biomineralisation is known 

to be under strict controls, but the precise processes involved are yet to be fully 

understood. There is plenty of evidence that extracellular matrix proteins in 

mineralised tissues play a major role in the precise location and morphology of 

mineral crystals (Zhu et al., 2007). The mineralised tissues of the human body vary 

enormously according to the crystal size and shape, arrangement of the crystals, 

distribution and amounts of trace ions, and the resulting physiochemical properties 

(such as solubility and porosity). These variations reflect the functional adaptations 

of these mineralised tissues (Boskey, 2003). 

The evidence for biomineralisation goes back millions of years as 

demonstrated by the presence of fossils of bones and shells. Biomineralisation 

involves selecting, extracting and uptake of elements from a local environment, 

and, under strict biological rules, incorporating these elements into functional 

structures. It is an interdisciplinary study at the interface of chemistry, biology and 

material sciences, and impacts on palaeontology, sedimentology, dentistry and 

medicine. The incorporation of inorganic materials into organic tissues offers 

structural support and mechanical strength, but also aids protection, motion, cutting, 

buoyancy, grinding and storage (Mann, 2001; Lowenstam and Weiner, 1989; 

Simkiss and Wilbur, 1989). 

  The skeleton is an excellent example of an integrated biomineralisation 

machine. The structure and organisation of the skeletal tissues derive from a highly 

complex system, specially evolved to withstand mechanical stress. The 

biomineralisation of bone, dentine and dental enamel share many similarities, with 

specific differences for specialised structure and function. The skeletal tissues are 
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composed of calcium phosphate in the form of hydroxyapatite (HAP) 

(Ca10(PO4)6(OH)2), along with proteins. Hydroxyapatite has a complex chemistry in 

biological systems because the mineral is not pure (non-stoichiometric), often being 

calcium deficient and enriched in carbonate (CO3
2-) which replaces phosphate 

(PO4
3-) ions in various lattice sites (Simkiss and Wilbur, 1989).  Carbonate can also 

substitute for hydroxide ions (Barralet et al., 1998) and these substitutions of 

phosphate or hydroxide by carbonate in hydroxyapatite influence the crystallinity 

and crystal size. Bone is used by the body as a reservoir for phosphate, calcium 

and magnesium homeostasis (Palmer et al., 2008). 

 

1.1.2 The chemistry of biomineralisation 
  Biomineralisation takes place in four biological sites: epicellular (cell wall), 

intercellular (in the spaces between cells), intracellular (inside cellular 

compartments) and extracellular (within or on a macromolecular framework outside 

the cell) (Lowestam, 1981). Most biologically controlled mineralisation processes 

occur in intracellular or extracellular sites. 

 There are four fundamental chemical factors governing biomineralisation; 

solubility, supersaturation, nucleation and crystal growth. A crucial factor in 

determining the thermodynamic conditions for precipitation is the solubility of the 

inorganic materials. The extent to which a solution is out of equilibrium is given by 

supersaturation, which also influences the rates of nucleation and growth. These 

four factors are chemically controlled in biomineralisation by co-ordinated ion 

transport and molecular-based promoters and inhibitors (Watabe, 1989). 

Solubility refers to the number of moles of an inorganic salt that will dissolve in 

one litre of solvent at a given temperature. The solubility of an organic salt depends 

on the balance between crystal lattice energy and ion solvation and complexation in 

aqueous solution. Solubility is a key factor in the biological mineralisation of calcium 

phosphates such as hydroxyapatite. Ions such as sodium, magnesium, ammonium, 

potassium, iron, carbonate and fluoride are easily incorporated into the 

hydroxyapatite lattice structure (LeGeros 1991). They have a significant effect on 

hydroxyapatite solubility. An example of this is prevention of tooth enamel erosion 

by fluoride. Weak acids such as fruit acids in food and juices attack the 

hydroxyapatite crystals of enamel. If fluoride is present, the dissolved calcium and 

phosphate ions reprecipitate into the less soluble fluorapatite (FAP). Hydroxyl ions 

in the HAP lattice are substituted by fluoride ions as saliva is always supersaturated 

with respect to FAP (Larsen 1975). This substitution changes the mineral solubility 
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sufficiently to reduce enamel demineralisation and resist caries formation. The 

solubility product (ksp) is a critical factor in determining the thermodynamic limit for 

the onset of inorganic precipitation, When the solubility product is less than the 

activity product (AP) of a solution then precipitation will occur until equilibrium is 

reached (ksp=AP).  

 A solution is supersaturated when it contains molecules at a higher 

concentration than is normally possible under a given set of conditions. When a 

compound is at saturation there is a dynamic equilibrium between ions in the solid 

phase and ions in solution. At supersaturation, this equilibrium is shifted in the 

direction of the free ions in solution.  Supersaturation can be achieved by chemical 

reactions, temperature changes, composition changes and changes in ionic 

activities. Biological systems can fine tune ion transport to achieve the correct 

supersaturation levels for biomineralisation (reviewed by Mann, 2001). 

Supersaturation is highly regulated in biology through the process of boundary 

organised biomineralisation. The activation energy and rate of nucleation are 

determined by the interfacial energy of the critical nucleus and the level of 

supersaturation. These factors can be biologically controlled in biomineralisation 

through the evolutionary design of organic matrices and the membrane regulation 

of ion concentration gradients (Addadi et al., 1985; Currey, 1984). Biological 

systems need to regulate supersaturation levels as increases in supersaturation 

lead to decreases in nucleation activation energy and therefore an increased rate of 

nucleation. This can cause a sudden ‘runaway’ in the crystallisation process and a 

pathological deposition of mineral.  The presence of foreign particles, or a suitable 

surface, can cause increases in nucleation rates at any supersaturation level by so 

called heterogeneous nucleation. The nuclei are stabilised by attachment to these 

external substrates. Biological systems use heterogeneous nucleation and 

overcome any difficulties by regulating the activation energy for nucleation via 

interfacial interactions (Mann, 2007). 

 

1.1.3 The biology of biomineralisation 
Biomineralisation is controlled through the supramolecular organisation of 

organic templating molecules that determine the shape and size of the mineral 

deposits and the chemical mechanisms of their deposition (Weiner and Addadi, 

1991). Structural control involves the preferential nucleation of a specific crystal 

face or axis by molecular recognition at the surface of an organic matrix. 

Morphogenesis involves a patterning process that gives rise to time-dependent 
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vectorial growth. This gives control over the complex formation of biominerals. 

Higher order structures are constructed by a series of integrated processes that 

extend across a range of length scales (Mann, 2001). 

  The organic matrix provides several functions. In some cases such as bone 

and dentine,  it needs a mechanical design to provide strength and toughness for 

activity, so that the final biomineralised tissue is ‘fit for purpose’. It needs to play a 

role in mineral passivation; stabilising minerals on the matrix surface. It needs to be 

involved in mineral nucleation; controlling the location and organisation of 

nucleation sites, and the structure and orientation of the mineral crystals. Finally the 

matrix needs to be involved in spatial delineation and organisation; portioning 

microenvironments to control mineral growth. 

 Even in the simplest support systems, the incorporation of mineral crystals 

into the macromolecular framework must be able to resist compression, bending 

and tension.  Such a framework is usually designed to have the minimal amount of 

material to perform the appropriate function. There are many possible solutions to 

the actual mechanical structure of the organic matrix using this least-weight 

approximation, fine tuning of the final design will be performed by the stresses 

placed upon the matrices during and after synthesis. Matrix rigidity requires cross-

linking of strands on connecting fibres or stacks of sheets. The mineral crystals will 

provide the necessary strength and hardness making the final biomineralised tissue 

suitable for its intended use. 

The constituent macromolecules of organic matrices must be mostly 

hydrophobic. This is because they are produced in an aqueous environment and if 

they were not hydrophobic they would dissolve. However, for controlling biomineral 

nucleation, ions and hydrated species are necessary which would interact with this 

hydrophobic surface. A general model to encompass both the structural and 

functional activities of the matrix would be a structural framework of mostly 

hydrophobic molecules associated with anchored hydrophilic molecules to provide 

a nucleating surface. This model has been proposed from studies on mineralised 

extracellular tissues. Collagen, chitin and cellulose are well-documented framework 

macromolecules. Collagen in particular is key to biomineralisation in bone and 

dentine.  The acidic macromolecules are more difficult to isolate so less information 

is known about them. They are defined as acidic due to the large numbers of 

aspartic acid and glutamic acid residues present, and also threonine and serine 

residues modified with phosphate groups. The acidic macromolecules are often 

glycoproteins; proteins with covalently linked polysaccharide side chains containing 
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sulphate and carboxylic acid residues. In bone and dentine, the framework 

macromolecule is collagen, and the acidic macromolecules include the 

glycoproteins; osteopontin and osteonectin, the proteoglycans chondroitin sulphate 

and keratin sulphate, gamma-carboxyglutamic acid (Gla)-containing proteins and 

osteocalcin. In dental enamel, the major framework protein macromolecule is 

amelogenin, and the acidic macromolecule is enamelin (Mann et al., 2001). 

1.1.4 Biomineralisation in dental enamel 
Mature dental enamel is the hardest substance in the human body due to its 

high mineral content (over 95% by weight) and it is a highly organised structure. 

The formation of enamel, the process known as amelogenesis, is the result of a 

highly orchestrated series of extracellular processes that control the nucleation, 

growth and organisation of forming mineral crystals. Vertebrate biomineralised 

tissues, such as tooth enamel, dentine, cementum and bone, all contain crystalline 

mineral with a similar chemical composition and atomic structure to hydroxyapatite 

(Margolis et al., 2006). 

 Biomineralisation in dental enamel obeys the underlying laws of chemistry 

and depends on the precipitation of the calcium phosphate mineral salts from 

biological fluids, supersaturated with respect to the mineral phase, followed by a 

period of subsequent crystal growth. As described previously this process is 

thought to be initiated and controlled by the extracellular matrix proteins. The ECM 

is presumed to provide the required stereochemical template that provides the initial 

nucleation site for mineral deposition whilst also serving to regulate and direct any 

subsequent crystal growth occurring (Addadi and Weiner, 1985).  

Dental enamel, the main focus of this thesis, is unique in that the ECM is not a 

collagenous matrix like in bone, dentine and cementum but a specialised enamel 

matrix which orchestrates the process of enamel formation. The unique nature of 

the developing enamel proteins is reflected in the mature tissue itself as enamel is 

the most highly mineralised tissue in mammalian biology and in contrast to other 

mineralised tissues; it is acellular and cannot be naturally remodelled. It is assumed 

that enamel biomineralisation can act as a paradigm for biomineralisation in general 

(Currey, 1984; Mann, 2001).  
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1.2 Structure and composition of the tooth. 

1.2.1 Overview of the structure of the tooth 
 The developing tooth is a useful tool for investigating the underlying 

processes involved in biomineralisation in mammalian systems.  Biomineralisation 

in the tooth, as in all skeletal tissues, involves the ordered deposition and controlled 

growth of inorganic crystals on organic protein matrices to form tissues with 

specialised structures and functions. There are a number of components to human 

teeth that are ideal to for these investigations. Teeth comprise of three distinct 

mineralised tissues; enamel, dentine, and cementum, together with the non-

mineralised pulp tissue (figure 1).  

 

Figure 1.  Diagram of the normal tooth (molar) show ing the crown, root and 
gingival margin. (Ten Cate, 1998). 

 

Enamel, the most highly mineralised tissue in the mammalian body, covers 

the crown, the exposed surface of the tooth and provides a hard surface for biting 

and chewing. Dentine, located underneath the enamel layer, is less mineralised 

than enamel but is a useful paradigm for bone construction. Dentine has tiny tubes 

(dentinal tubules) running from the pulp cavity outwards which are filled with the 

odontoblast processes. The dentinal tubules are also involved in pain sensation. 

Their exposure results in tooth sensitivity.  In the centre of the tooth is the pulp 

cavity, which houses the dental pulp. The pulp is a soft tissue organ which includes 

the blood vessels to supply the tooth with nutrients to keep it alive, and nerves 



- 26 - 

which sense pressure and pain. The cementum covers the root dentine in the jaw 

and provides anchorage for the periodontal ligament to keep the tooth in place. 

(Bosshardt and Nanci, 1997; Berkovitz et al., 2009). 

Though not part of the tooth, the periodontum consists of several different cell 

types, namely fibroblasts (cells that secrete the extracellular matrix and collagen of 

connective tissues), cementoblasts (cells that secrete cementum at the root of the 

tooth), osteoblasts (cells that secrete bone tissue), osteoclasts (cells that resorb 

bone tissue), macrophages (immune cells that engulf cell debris and foreign 

particles) and epithelial cells (cells that form the soft tissues). It is a connective 

tissue comprising of collagen, proteoglycans, glycoproteins and oxytalan (pre-

elastin). The extracellular matrix (ECM) of the periodontum consists mainly of fibrils 

of type I collagen, typical of most soft connective tissues.  The fibroblast cells 

secrete and degrade this ECM.  Between the collagen fibrils is a ground substance 

composed of the proteoglycans, glycoproteins and other minor components. Islands 

of epithelial cells can be found within the periodontum. These are known as the ‘cell 

rests of Malassez’ and are remnants of the development processes of the tooth root 

(Ten Cate,  1998). 

The development of the tooth is a multi-stage process during which teeth form 

from embryonic cells, and following the process of odontogenesis, erupt into the 

mouth. Many diverse species have teeth and the underlying processes for tooth 

development are largely conserved across all species. Enamel, dentine and 

cementum must all develop during the appropriate stage of development for healthy 

teeth. In humans, primary teeth start to form between 6 and 8 weeks in utero and 

the permanent dentition begins to form in the 20th week (Ash et al., 2003). 

 The tooth bud is an aggregation of cells, also referred to as the tooth germ, 

that eventually forms the tooth. The tooth bud consists of 3 parts; the enamel organ, 

the dental papillae and the dental follicle. The outer enamel epithelium, the inner 

enamel epithelium, stellate reticulum and the stratum intermedium all work together 

to make up the enamel organ. The inner enamel epithelium cells eventually form 

the ameloblast cells which secrete the enamel matrix proteins. The growth of the 

cervical loop cells into the surrounding tissues forms the Hertwig’s epithelial root 

sheath (HERS) which determines the shape of the tooth root. The dental papillae 

encompass cells that eventually form the odontoblasts cells, the cells that form 

dentine. The junction between the dental papillae and the inner enamel epithelium, 

the dentine-enamel junction (DEJ) determines the shape of the crown. The dental 

follicle gives rise to the cementoblast cells that form the cementum of the tooth, the 
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osteoblast cells that form the alveolar bone around the roots, and the fibroblast cells 

that form the periodontal ligament. The cementum overlays the radicular dentine. 

The periodontal ligament connects the tooth to the alveolar bone (Ten Cate, 1998). 

A histological slide of the tissues and cells in a rabbit molar is shown in figure 2. 

Dentine

Pulp

Ameloblasts

Epithelium

Enamel

Artifactual spaces

Enamel

Ameloblasts

 

Figure 2. Histology of developing tooth with enamel , dentine, ameloblasts, 
and pulp labelled. Tooth bud is in maturation/crown  stage.  Section of a 
non-erupted rabbit molar stained with H&E to show d ifferent tissue 
types. 

 

1.2.2 Overview of enamel composition and structure 
Mature tooth enamel covers the visible parts of the erupted tooth in the mouth. 

It is not present on the roots of the teeth. Physically, tooth enamel is very hard and 

brittle. It relies on the underlying dentine for resilience. The microstructure of 

enamel has evolved to prevent fractures and shear within it. Enamel is translucent 

and the colour of the tooth is dictated by the dentine. Teeth appear to yellow with 

age due to the thinning of the enamel through wear allowing more of the dentine to 

be visible. Chemically, mature enamel is composed of 96-99% by weight 

hydroxyapatite mineral (Ca10(PO4)6OH2), a naturally occurring form of calcium 

apatite, with 3% water and 1% organic matter (non-collagenous protein) 

(Lowenstam and Weiner, 1989). The apatite minerals are a group of phosphate 

minerals formed and utilised in biological systems, defined by their high 

concentrations of OH- ions (hydroxyapatite), F- ions (fluoroapatite) or Cl- ions 
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(chloroapatite) in the mineral crystal (Boivin 2007). Hydroxyapatite is the same 

mineral found in bone and dentine, although the hydroxyapatite crystals in enamel 

are much larger, elongated and less carbonated (Daculsi et al., 1984). The mineral 

content of dentine and bone is less at 65-70% by weight (Goldberg et al., 2011).  

The composition of enamel is variable, between and within teeth, due to 

developmental factors and the effects of exposure in the mouth. Minor constituents 

of mature enamel typically include 3.0% w/w carbonate, 0.4 % w/w chloride, 0.2 % 

w/w magnesium, 0.01 % w/w fluoride and other trace elements (Elliot et al., 1994). 

The exact composition can vary with depth within the tissue. For example, from the 

surface towards the enamel-dentine junction, there is an increase in carbonate and 

magnesium concentration that parallels a decrease in crystallinity (Legfros et al., 

1996,). The concentration of fluoride, in contrast, is highest at the enamel surface 

and declines extremely rapidly with depth (Hallsworth and Weatherell, 1969). 

Margolis and Moreno (1990) calculated that up to 26% of hydroxyl ion sites are 

substituted by fluoride at the outer enamel surface. Developing enamel contains a 

high proportion of proteins which are progressively removed as the tissue matures, 

with the protein content dropping from approximately 20% in the developing enamel 

(Eastoe 1964) to less than 1% (Robinson et al., 1981; Simmer and Fincham, 1995) 

weight for weight. Fluoride is readily incorporated into hydroxyapatite, stabilising the 

lattice and reducing the solubility of the mineral phase (Cooper and de Leeuw, 

2004). 

It is difficult to accurately determine the percentage of water in enamel and its 

distribution between the mineral and organic phases. The mean values of these are 

usually given as 95% weight  and 86% volume (Angmar et al., 1963), but have 

more recently been recalculated as 98% weight  and 96% volume (Elliott et al., 

1998). Water within enamel provides the medium for diffusion of ions in de - and re 

–mineralization, therefore knowledge of the volume fraction is fundamentally 

important. At the start of a caries lesion forming, there is a preferential loss of 

carbonate (Hallsworth et al., 1973) and magnesium (Hallsworth et al., 1972). 

Increased fluoride concentration is found in caries lesions (Hallsworth and 

Weatherell, 1969), with variably elevated levels (maximum detected 21,700 ppm) in 

the surface zone (Pearce et al., 1995). In mature enamel, magnesium-containing 

whitlockite crystals, identified by SEM and electron probe microanalysis, found in 

lamellae have been associated with dissolution and reprecipitation of mineral in 

caries (Kodaka et al., 1992).   
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Figure 3. SEM of bovine enamel showing the arrangem ent of prismatic and 
interprismatic enamel. Prisms are in transverse sec tion. (Image provided 
by S.J. Brookes). 

In humans, the distinction between prismatic and interprismatic enamel is not 

as clear as in bovine enamel (figure 3), with the apical surfaces of the prisms being 

continuous with the apical surfaces of the interprismatic enamel. 

 In rodent incisor enamel, the prisms decussate with interprismatic enamel 

weaving between the ordered layers of prismatic enamel (figure 4). This structural 

difference may allow the rodent incisors to fracture at the biting edge along 

controlled fracture planes corresponding to the rows of decussating prisms running 

transversely across the incisor such that a sharp chisel like biting edge is 

maintained by wear. 

 

 Figure 4.  Scanning electron microscopy (SEM) imag e of mouse enamel 
showing prism decussation. 
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The developing hydroxyapatite crystals forming the prismatic and 

interprismatic enamel appear to have a roughly hexagonal cross-section (figure 5) 

with a width of 60-90 nm, thickness of 25-30 nm and a length that may span the 

entire enamel thickness unbroken (Arends & Jongebloed 1978; Kerebel et al., 

1979).  

 

Figure 5. Transmission electron microscopy (TEM) im age of rat enamel 
crystals in exhibiting am hexagonal cross section. The crystals far left 
are visualised in longitudinal section (image provi ded by S.J. Brookes).   

 

That said, enamel crystal morphology is disputed and the hexagonal shape 

apparent when viewing enamel sections using TEM may be a shadowing artefact 

created by sections taken through rectangular crystals  In any event, the 

hydroxyapatite crystals of mature enamel tend to be less regular in appearance as 

they keep growing to fill all the available space and may have undergone repeated 

episodes of de- and  re-mineralisation though the crystals are still arranged into 

prisms (Warshawsky et al., 1987). 

The enamel forming ameloblasts secrete a proteinaceous extracellular matrix 

(ECM) on the dentine surface, and as they migrate away from the dentine the 

enamel matrix left behind partially mineralises with immature hydroxyapatite 

crystals which grow lengthwise in pursuit of the retreating ameloblasts  (Garant, 

2003).  The amount of ECM secreted therefore defines the thickness of the mature 

tooth enamel. Enamel secretion is associated with circadian rhythms resulting in 

regular, daily cross-striations with a 5 µm periodicity in humans (Fitzgerald and 

Verveniolis, 1998). When viewed microscopically, these cross-striations run parallel 

to the long axis of the tooth. Many researchers have stated that these cross-
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striations are a result of the metabolic activity of the ameloblasts over 24 hour 

periods (Risnes, 1986; Dean, 1987, 1989; Boyde 1989, 1990). Experiments using 

lab primates of known ages injected with markers have shown good correlation of 

the cross-striations with circadian rhythms and therefore a potential tool for 

determining age from crown formation (Mimura, 1939; Bromage, 1991; Dean, 1998; 

Smith, 2006), Despite this evidence, other researchers have claimed these 

correlations to be nothing more than a fluke and a source of error in determining 

age from teeth (Warshawsky et al, 1984; Mann et al., 1990). Analysis of the teeth 

from 5 children exhumed from a 19th Century London crypt was performed by 

Antonine et al., 2009. The age of the children was known but kept from the 

researchers. Microscopic analysis of the permanent dentition of the children 

showed that the formation of the cross-striations do follow circadian rhythms in the 

ameloblast cells, allowing the ages of the children to be correctly identified. 

There are also less frequent incremental striations, the Striae of Retzius (SR), 

which appear as brown lines in the enamel when viewed microscopically. Where 

the SR terminate on the enamel surface, pits appear known as perikymata (Beynon 

and Dean, 1988).  These are most noticeable on the surface enamel of canine 

teeth, and become less visible as the enamel is worn and smoothed. These 

grooves and pits have been used to try to determine times of crown formation, 

enamel growth patterns and even used in archaeology to try to determine the age 

of a human at death (Reid et al., 1998; Antoine et al., 2000; Reid and Ferrell, 2005). 

The SR appear at regular intervals, similar to the daily cross-striations, signifying 

changes in the ameloblasts activity. However, darker banding may occur when 

significant stress of illness has occurred, implying that the SR may also be affected 

by physiological strains, similar to the Andresen lines in dentine (Dean and 

Scandrett, 1996). 

Mature enamel can resist acid attack due to the lack of organic material 

(Weatherall, 1975).  This removal of the organic matrix leaves a strong, tough, 

inorganic surface for mastication, but also means that lost enamel tissue cannot 

regenerate as the ameloblasts completely disappear once the enamel has matured 

and erupted (Sasaki and Garant, 1986). In the mouth, the surface of enamel is in a 

constant flux of demineralisation and remineralisation. Consumption of acidic food 

or beverages such as fruit, juices and carbonated beverages or the presence of 

plaque acids produced by bacterial metabolism cause a reduction in mineral density 

due to demineralisation within the outer surface of the enamel. This can lead to 

erosion and caries respectively. The saliva contains mineral ions at supersaturated 
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levels and can remineralise the outer surface of enamel to some extent though lost 

tissue cannot be replaced (Ten Cate and Duijusters, 1982). 

Once the ameloblasts stop secreting ECM, the ECM in the enamel is removed 

by proteases, creating space for the immature HAP crystallites to undergo 

secondary mineralisation and grow in width and  thickness until the space is largely 

occluded by mineral (Bartlett et al., 2003). This is described in more detail later 

(See section 1.3.4) 

1.3 Tooth development 

1.3.1 Embryological origins 
Teeth are ectodermally-derived organs, similar to hair, nails, scales and 

feathers, whose development relies on epithelial-mesenchymal interactions 

mediated by conserved signalling pathways present in other tissue developmental 

processes. Teeth develop as a combination of ectoderm and mesenchyme based 

upon continuous and dynamic reciprocal signalling interactions (Pipsa and Thesleff, 

2003). The development of most ectodermal organs begins in the same way, with a 

thickening of the epithelium. This is the initiation stage, where in teeth, the dental 

placode forms. The epithelium then buds into the mesenchyme and neural-crest 

derived mesenchyme condenses around the epithelium. This is known as the bud 

stage. Many ectodermally-derived organs share similarity at the bud stage, with 

specificity elicited at the transition in the next stage (Jernvall and Fortelius, 2000). 

The inside of the tooth bud contains the stellate reticulum cells that secrete 

glycoaminoglycans (GAGs). As the GAGs are secreted, water is drawn in between 

the cells, stretching them apart. Cells of the stellate reticulum maintain contact with 

one another via desmosomes, giving them their unique star-shaped appearance as 

they are stretched apart (Yildirim, 2013). In teeth, the next stage is known as the 

cap stage. The cap is formed by growth and folding of the epithelium 

(Koussoulakou et al., 2009). Here the cervical loop is formed which will form the 

stem cell niche in continuously growing teeth, or the Hertwig’s epithelial root sheath 

(HERS) in teeth with limited growth. The inner enamel epithelium (IEE) is formed 

inside the cap bordering the dental papillae, and consists of a layer of columnar 

cells. The outer enamel epithelium (OEE) covers the outer part of the cap and is a 

layer of cuboidal cells located on the periphery of the enamel organ (Marson et al, 

2005). The next stage is the bell stage where more extensive growth and folding of 

the dental epithelium occurs. This folding corresponds to the final cusp pattern of 

the teeth, determining the function of the tooth. The stratum intermedium is a layer 
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of 2 to 3 cells in thickness between the inner enamel epithelium and the stellate 

reticulum. It is first seen early in the bell stage, at approximately 14 weeks in utero.  

The ameloblast cells differentiate from the IEE and the odontoblasts differentiate 

from the dental papillae. This differentiation is regulated by epithelium and 

mesenchyme interactions (D’Souza, 2002, Nanci, 2008,). At this stage, all 

structures are still part of the crown.  The roots are formed during post-natal 

development. The cervical loops undergo structural changes, where the HERS 

fragments into a fenestrated network of epithelial cells named the Epithelial Rests 

of Malassez (ERM).  See figure 6 for an overview of tooth embryological 

development.  

 

Figure 6.  Diagram of the different stages of tooth  development. The initiation, 
bud, cap and bell stages are shown with the involve ment of the different 
tissue and cell types at each stage. 

 

Defining these stages of tooth development is an attempt to describe changes 

that actually occur along a continuum. Development is not really divided into 

developmental “snap shots” and so it can be difficult, even histologically, to identify 

which stage of development a tooth is in. The dental papilla consists of the 

condensed ectomesenchymal cells, and is separated from the enamel organ by the 
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basal lamina. The dental follicle covers the enamel organ and dental papilla, and 

the dental follicle, dental papilla and the enamel organ are collectively known as the 

tooth germ.  The dental papilla is the source of the pulp in a tooth, and the dental 

follicles differentiate to produce the odontoblasts cementoblasts, osteoblasts and 

fibroblasts (Yildirim, 2013).  

 

1.3.2 Overview of amelogenesis 
As described in the previous section, the development of the tooth requires 

epithelial – mesenchymal interactions, reciprocating between the differentiating 

odontoblasts of the dentine and the differentiating ameloblasts of the enamel organ 

(Ruch et al., 1995). The process whereby the ameloblast cells form the tooth 

enamel is known as amelogenesis and this section will describe that process. 

Ameloblasts only become fully functional after the first layer of dentine has formed 

and in turn it has been hypothesised by Nanci, 2008, that the ameloblasts may 

secrete growth factors or other proteins that influence the terminal differentiation of 

the odontoblast cells, possibly by interactions with the basement membrane. 

During amelogenesis, ameloblasts pass through discrete development stages 

that correlate with the various stages of enamel formation. This occurs in 3 stages; 

the secretory stage, the transition stage, and the maturation stage. 

 

1.3.3 The ameloblasts and amelogenesis 
The ameloblast cells secrete extracellular enamel matrix proteins, such as 

amelogenin, enamelin and ameloblastin, which mineralise to form enamel (Simmer 

et al., 2010). The ameloblast cell morphology is changeable and dependent upon 

the stage of activity the cell is in. The ameloblast cell in the secretory stage is 4 µm 

in diameter and 70 µm in length while the ameloblast cell in the maturation stage is 

approximately 40 µm in length (Reith 1970). The secretory end of the ameloblast 

cells ends in a 6-sided pyramidal projection known as the Tomes’ process, giving 

the ameloblast cells in the secretory stage a hexagonal appearance (Avery 2011). 

The angulation of the Tomes process determines the orientation of the enamel 

prisms. The ameloblasts form as a single layer on the newly formed dentine layer 

and progressively move away from the dentine, secreting enamel proteins into the 

space they leave behind as they progress. The ameloblast cells control the ionic 

and organic composition of the enamel by adjusting their secretory and resorbative 
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activities to maintain favourable conditions for biomineralisation (Berkowitz et al., 

2009). 

Once the first layer of dentine is formed, it induces the adjacent 

preameloblasts to complete their differentiation into ameloblasts and secrete 

enamel. The secretory ameloblasts are polarised, tall, columnar cells with Tomes’ 

processes (conical shapes processes) at their distal ends. Tomes’ processes 

interdigitate with the surface of the forming enamel giving it a picket fence 

appearance (Warshawsky et al., 1987). The Tomes’ processes determine the 

orientation of the newly formed (nucleated) enamel hydroxyapatite crystals. The 

organelle content of the secretory ameloblasts is mainly protein synthesising 

organelles such as the Golgi complex and granular Endoplasmic Reticulum. 

Plentiful mitochondria and secretory granules are also present. Junctional 

complexes, tight junctions and desmosomes are present at the distal and proximal 

ends of the ameloblasts. Desmosomes and gap junctions are also present at the 

ameloblasts lateral surfaces. Towards the end of the secretory stage, the Tomes’ 

processes are lost, and the last formed layers of enamel are prismless accordingly 

(Smith 1998). When ameloblasts are forming new enamel, their Golgi apparatus is 

extensive and occupies much of the supranuclear compartment (Nanci et al., 1993; 

Smith and Nanci, 1996). The secretory granules are directed to two spatially 

separate secretory sites, located on the Tomes’ process, an apical extension. Here 

they release their contents constitutively to build up interprismatic and prism enamel 

(Nanci and Warshawsky, 1984).  

It has been postulated that amelogenesis occurs in 5 distinct phases. Phase 1 

is the secretory stage. Here the enamel proteins are synthesised, secreted and 

become partially mineralised (nucleation of the crystals, approximately 30% 

mineralised). Unlike other mineralised tissues such as bone or dentine, there is no 

non-mineralised ‘pre-enamel’ (Hu et al., 2007). The crystals are elongated but 

extremely thin in width and thickness and are supported by the matrix. During this 

stage the metallomatrix proteinase 20 (MMP-20) is co-secreted  which process the 

enamel proteins to generate a complicated spectrum of discrete processing 

products. At some point protein secretion all but stops and the ameloblasts cease 

their migration. It has been hypothesised that the ameloblasts spend approximately 

300 days in the secretory stage before moving into the maturation stage (phase 5) 

and begin degradation (Hillson, 1986). 
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Phase 2 is the assembly of amelogenin into nanospheres (covered in section 

1.3.4.1.2) and phase 3 is the subsequent formation of elongated ribbon like 

crystallites (section 1.3.4.1.2). 

Once the dental enamel reaches its full thickness, the ameloblasts enter a 

brief transitional stage. Their height is decreased, by approximately 50% to 40µm, 

and protein synthesising organelles are dramatically reduced in number (Smith and 

Nanci, 1996). The Tomes’ processes are also removed (Reith, 1970).  Many 

lysosomes and autophagic vacuoles are also present. The transition stage is 

characterised by a reduction in the ameloblast numbers, by as much as 50%, via 

apoptosis. Ameloblast morphology also changes, from that of secretory cells to that 

of one similar to epithelial cells involved in ion transport (Smith, 1998). This is the 

fourth phase and is characterised by the resorption of the organic matrix and its 

replacement with fluid. 

 The fifth phase is the maturation stage and is characterised by the loss of 

enamel ECM proteins and water, and by a massive influx of calcium and phosphate 

mineral ions, which provide for growth of hydroxyapatite crystals (96% 

mineralisation) (Berkowitz et al., 2002)..  Ameloblasts now begin to secrete catalytic 

amounts of the serine protease kallikrein-4, which quickly degrades residual matrix 

proteins leaving behind the crystal architecture previously ‘sketched out’ in the 

secretory stage bathed in fluid (enamel fluid) (Tanabe, 1984). At the beginning of 

the maturation stage the crystals occupy about 30% of the tissue volume but the 

ameloblasts begin pumping mineral ions into the enamel fluid which promotes 

growth in width and thickness of the crystals until they eventually occlude more than 

90% of the tissue volume in readiness for the tooth to erupt into the mouth 

(Robinson and Kirkham, 1986). Ultimately the ameloblasts atrophy and the cellular 

layer is lost entirely from the mature erupted tissue (Kim et al., 2008). Thus, 

throughout amelogenesis, ameloblast cells control the ionic and organic 

composition of the enamel by adjusting their secretory and resorbtive activities to 

maintain favourable conditions for biomineralisation (Berkovitz  et al., 2009).  The 

maturation stage is the phase where most mineralisation occurs, thought he exact 

timings and mechanisms in the process are not yet fully defined due to complexity 

of amelogenesis (Suga, 1989). 

Unlike collagen based calcified tissues, such as bone, enamel matrix proteins 

are almost completely degraded by extracellular enzymes (Smith, 1998). This 

means that enamel achieves its high mineral content through a maturation process. 

The ameloblasts alter between two phenotypes depending on the morphology of 
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their distal ends. Numerous microvillae in the ameloblasts distal ends form either a 

ruffled end (RE), or an even, straight edge (SE). In the rat incisor, 60% of 

maturation ameloblasts are found in the ruffle-ended morphology, 20% are in the 

smooth-ended form, and twenty percent are transitionary (Takano, 1995). The 

extracellular fluid related to the RE ameloblasts is acidic (as low as pH 5.8). The 

extracellular fluid in enamel related to the SE ameloblasts is of more neutral pH (pH 

7.2). In rodent incisors, the SE ameloblasts are only present for a short duration 

(20% of cycle time), before they recreate the RE form. Some mammals have three 

cycles per day (RE – SE – RE, every 8 hours) (Avery, 2002). These two 

morphologies are grouped into alternating bands during maturation. 

Ameloblasts lose their differentiation and become short, cuboidal cells which 

form a multi-layered structure with other layers of the dental organ, known as the 

reduced enamel epithelium (Sasaki, 1984). This structure remains on the surface of 

the newly formed dental enamel until the tooth erupts into the mouth. The reduced 

enamel epithelium separates the enamel from the dental sac, protecting it from 

contact with connective tissues in the dental sac. If contact between the newly 

secreted enamel and the dental sac accidentally occurs, the enamel can be 

resorbed at the contact area resulting in pitting, or the dental sac cells differentiate 

into cementoblasts and secrete cementum on the enamel surface. The reduced 

dental epithelium and the oral epithelium jointly form the dentinogingival junction 

(DGJ) of the erupting tooth. 

The complete removal of the ECM in mature enamel is an interesting 

conundrum in itself. Is it possible that the enamel proteinases are so efficient that 

they remove all but a few very short peptides of the ECM to allow almost complete 

mineralisation of the enamel? It has been proposed that the ameloblast cells 

remove the enamel matrix as efficiently as they secrete it. It is likely that the 

processes of diffusion, pinocytosis and endocytosis cooperate to remove the ECM 

during enamel biomineralisation. 

There is great variation between animal models with regards to enamel 

formation therefore a precise model for human enamel formation remains elusive 

(Boyde 1997). SEM, X-ray crystallography and position sensitive synchrotron X-ray 

diffraction of archeological human tooth samples at varying stages of enamel 

maturation have shown an inverse correlation between mineral content distribution 

and variations in crystallographic parameters as a function of maturation time. 

Mineral density homogeneity increases as the enamel matures while the 

crystallographic parameters are heterogeneous even in fully mature enamel. The 
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rate of mineral formation and mineral organisation are not equal in enamel. Full 

mineralisation of the enamel layer occurs earlier on maturation while the 

organisation of the crystallites is a slower process and continues for longer 

(Simmons et al., 2013). 

1.3.4  Enamel matrix proteins 
To recap, the enamel ECM consists of several different proteins, including the 

major ECM proteins amelogenin (approximately 90%), ameloblastin and enamelin 

and the minor ECM proteins including amelotin, the tuft proteins, sulphated 

proteins, biglycan, and the proteases enamelysin (matrix metalloprotease -20 – 

MMP-20) and kallikrein-4 (KLK-4) (Smith, 1998; Nanci, 2008). 

Historically, the ameloblasts have been described as secreting two broad 

categories of ECM proteins; the amelogenins and the non-amelogenins (reviewed 

by Hu et al., 2005). The importance of the enamel matrix proteins in enamel 

development has been shown through a series of genetic studies.  Both transgenic 

mice expressing mutated amelx (Paine et al., 2001, 2003) and amelx knockout 

mice (Gibson et al., 2001) exhibit major enamel structural defects resulting in 

reduced enamel thickness and altered prism structure. Identification of point 

mutations in enamelin and ameloblastin in amelogenesis imperfecta and gene 

knockout studies of  enamelin and ameloblastin have shown that both are essential 

for enamel development (Fukumoto et al., 2004; Masuya et al., 2005; Poulter et al., 

2014a and b). 

1.3.4.1 Amelogenin 

Developing tooth enamel contains about 30% protein by volume (Fukae et al., 

1983) of which amelogenins comprises 90% (Hammarstrom 1997). The amelogenin 

gene exists on human X (AMELX) and Y (AMELY) chromosomes. AMELX and 

AMELY are  86% homologous and contain 7 exons though AMELX is expressed at 

levels 10 fold higher than that of AMELY (Salido et al., 1992).  

To complicate matters, the amelogenin gene is subject to alternative mRNA 

splicing which generates several nascent amelogenins molecules that can be 

translationally modified by phosphorylation at serine 16 (they are not glycosylated) 

(Fincham et al., 1998). Most of the alternatively spliced variants are produced in 

small amounts (Bartlett and Simmer, 1999) and their significance remains unclear. 

Further heterogeneity is generated by extracellular proteolytic processing of 

nascent amelogenins by MMP-20 immediately following their secretion into the 

matrix. This produces a range of smaller proteins and peptides that form the bulk of 

the developing matrix.  Full-length nascent amelogenin can be found in plenty in the 
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newly secreted, outermost enamel layer. Processing of the amelogenin results in 

smaller fragments being present in the older, deeper enamel layers (Fukae et al., 

1980). 

Newly secreted amelogenin has a molecular weight of 16-20 kDa (Smith and 

Nanci, 1996) depending on the species and the alternatively spliced isoform in 

question. SDS-PAGE studies show the molecular size to be higher than it actually 

is due to the high proline content (Termine et al.,1980). Using terminology based on 

relative molecular weights determined by SDS-PAGE, the newly secreted major 

amelogenin molecule prior to any processing is referred to as the ’25 kDa parent 

amelogenin.’ An alternative nomenclature for amelogenins is to use a prefix such as 

P for pig, M for mouse etc. and then a number corresponding to the number of 

amino acids contained in the protein. So, P173 would be the full length parent pig 

amelogenin of 173 residues. The corresponding mouse amelogenin would be M180 

(mouse amelogenin contains an extra 7 amino acids). 

Amelogenin primary structure consists of three domains:- 

1) a highly conserved amino terminal sequence of 44-45 amino acids, that 

comprise the tyrosine rich amelogenin peptide (TRAP) containing 6 tyrosine 

residues, with 3 in the ATMP region 

2) a central hydrophobic core of 100-130 residues rich in leucine, proline, 

histidine and glutamine 

3) the amelogenin carboxyl-terminal peptide (ACP) which ends with the acidic 

hydrophilic teleopeptide sequence of 13 amino acids – WPATDKTKREEVD 

 

 Most of the 25 kDa parent amelogenin amino acid sequence (derived from 

cDNA and direct protein sequencing) for human, bovine, porcine, murine and rat is 

highly conserved between species (Lyngstadaas et al., 1990). This suggests great 

functional importance. There are additional residues present in the bovine x-linked 

amelogenin in exon 6, which appear to be derived from tandem duplication of DNA 

within exon 6 (Bonass et al., 1994). The 25 kDa parent amelogenin is the major 

amelogenin present in the outer secretory stage enamel (Fukae et al., 1980; Aoba 

et al., 1992A).  

In pig, the 25 kDa parent amelogenin (P173) is rapidly degraded to give a 

range of products; these are shown in figure 7. Firstly, the C-terminal teleopeptide 

of 12 amino acids is cleaved, leaving a 23 kDa amelogenin of 161 residues (P161) 

(Yamakoshi et al., 1994). 
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  With time the 23 kDa P161 amelogenin is processed from the C-terminal to 

give the 20 kDa P148 (Fukae et al., 1983; Aoba et al., 1992B; Yamakoshi et al., 

1994). The 20 kDa amelogenin accumulates in the deeper enamel layers and 

appears much more stable than the 25 kDa P173 parent or 23 kDa P161 

amelogenin, neither of which is present in the deeper enamel layers (Aoba et al., 

1987A, B, C; Aoba et al., 1992A, B). The 20 kDa amelogenin accumulates within 

the tissue during the secretory stage so we can conclude that its breakdown must 

be fairly slow. Further cleavage occurs between residues 45 (Trp) and 46 (Leu), 

forming a 5 kDa tyrosine-rich amelogenin peptide (TRAP – residues 1-45) (Fincham 

et al., 1981; Yamakoshi et al., 1994) and a larger 13 kDa peptide (residues 46-148) 

(Tanabe 1984;  Aoba  et al., 1987C). The TRAP sequence is highly conserved and 

contains an N-acetyl glucosamine binding motif that may be functionally important 

(Ravindranath et al., 1999). This domain contains 3 tyrosine residues and is also 

known as the amelogenin tri-tyrosyl motif peptide (ATMP) and will be discussed 

separately later. An alternative processing route for P148 involves cleavage 

between residues 62 and 63 which produces an “extended TRAP” (residues 1-62) 

and an 11 kDa fragment (residues 63-148). Both the 11 and 13 kDa fragments are 

extremely soluble (in complete contrast to the other amelogenin fragments) and are 

thought to diffuse out of the developing matrix. Further processing of the TRAP is 

likely as several peptides with molecular weights lower than TRAP have been 

discovered in developing bovine enamel (Brookes et al., 1995).  

 The porcine amelogenin breakdown has been described here as porcine 

material has been used extensively by researchers in the field of enamel biology 

due to its relative abundance compared to human and rodent material. 
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Figure 7.  Extracellular processing of porcine 25 k Da amelogenin, 
showing the breakdown to 23 kDa and 20 kDa daughter  proteins, and the 
further processing via the major and minor routes t hat generate TRAP 
and low molecular weight fragments (adapted from Br ookes et al., 1995) 

 

1.3.4.1.1 The importance of the amelogenin ATMP dom ain 

The ATMP is found at the C-terminus of the TRAP and comprises of amino 

acids 33-45 of the full length parent amelogenin. The importance of the highly 

conserved 13 amino acid ATMP region of amelogenin has been investigated by 

Ravindranath et al. in a series of studies (1999, 2000, 2001, 2003, and 2004). The 

sequence consists of the amino acids PYP SYG YEP MGGW. In their initial study, 

Ravindranath et al. (1999) demonstrated the lectin-like activity of amelogenin by its 

ability to bind N-acetyl-D-glucosamine (GlcNAc) in a dose dependent fashion. 

Lectins are proteins that specifically bind (or cross-link) soluble carbohydrates or 

carbohydrate moieties. Lectins are involved in cell adhesion and have no apparent 

catalytic activity.  

Ravindranath et al. (1999) tested 2 recombinant amelogenins and 6 synthetic 

peptides. The recombinant murine amelogenins were rM179 full length murine 

amelogenin and rM166 murine amelogenin lacking the ACP sequence. The 
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synthetic peptides were TRAP (contains ATMP), LRAP (does not contain ATMP; 

LRAP is the leucine rich amelogenin peptide, and one of the amelogenin splicing 

isoforms that lacks the ATMP sequence due to alternative splicing of amelogenin 

mRNA), ACP, ATMP, T-ATMP (where the third proline of ATMP is mutated to 

threonine (T)) and F-ATMP (where all three tyrosines of ATMP are mutated to 

phenylalanine (F)).  Ravindranath et al. (1999) showed that rM179, rM166 and 

TRAP all exhibited lectin-like behaviour but LRAP and ACP did not. This confirmed 

that the lectin-like activity is located in the ATMP domain. The synthetic ATMP also 

bound to GlcNAc, but was unable to do so if the third proline was mutated to 

threonine (T-ATMP) or if all three tyrosines were mutated to phenylalanine The 

mutation of the third proline to threonine mimics a point mutation seen in human X-

linked AI (Collier et al., 1997) and more importantly for the work presented here, the 

first of the 3 tyrosines is substituted for histidine in the Y64H amelogenin mutation 

carried by the mice studied in this thesis. 

 The hypothesis of this inaugural paper was that amelogenins exhibit lectin-

like behaviour and bind to the sugar residues of enamel matrix glycoproteins 

(EMGs) at the DEJ to facilitate biomineralisation. This could imply a co-chaperone 

role for the EMG’s during amelogenin secretion, or a EMG chaperoning of 

amelogenin to the site of amelogenesis.  

  ATMP has 50% sequence homology with the lectin wheat germ agglutination 

(WGA) i.e.:  

 ATMP = PYP SYG YEP MGGW 

 WGA =  CCS QYG YCG MGGD 

WGA is a lectin that binds tightly to GlcNAc (Peters et al., 1979; Wright, 

1984). Intrapeptide tyrosyl residues (Y) in WGA have also been implicated in sugar 

binding (Wright, 1984). The ATMP region also shows sequence similarity to the 

GlcNAc binding domain of the lectin UEA-II (Yamamoto et al., 1990). In contrast to 

WGA and VEA-II which have multiple sugar binding sites, amelogenin only has the 

single putative binding site (ATMP).  In the follow up paper, Ravindranath et al. 

(2000) hypothesised that amelogenins may interact with peptides that mimic the 

sugar GlcNAc (GlcNAc mimicking peptides, GMPs). The GlcNAc binding motifs of 

several lectins recognise and bind to specific GlcNAc mimicking peptides found in 

cytokeratins (Shikhman et al., 1994). The GMP sequence SFG-SGF-GGY is found 

in the N-terminal region of cytokeratins 14, 16 and 17.  Dosimetric binding of [3H] 

GMP to amelogenin rM179 and rM166 and TRAP was exhibited when the full 

length amelogenin was degraded to TRAP the ligand preference of the ATMP 
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changed from GlcNAc to GMP. The binding of GMP to TRAP was shown to be 20 

fold stronger than the binding of GlcNAc, suggesting that GMP is the preferential 

binding ligand of TRAP. This suggests that proteolytic degradation of amelogenin 

may modulate its lectin-like GMP binding properties.  Cytokeratin 14 (exhibiting a 

GMP in its N-terminal) is synthesized by ameloblasts prior to amelogenin synthesis 

and is seen as a marker for ameloblasts in the developing tooth (Tabata et al., 

1996). The GMP sequence in cytokeratin 14 has been shown to bind to 

amelogenin, and could be a possible candidate for interactions with amelogenins 

during amelogenesis (Ravindranath et al., 2000). However, cytokeratin 14 has not 

been identified in the extracellular matrix so this or any such role may be related to 

an intracellular function as amelogenin is synthesised and secreted by ameloblasts. 

The idea that cytokeratin 14 functions as an amelogenin binding protein was 

reinforced by Ravindranath et al. (2001) who suggested a role as a molecular 

chaperone for cytokeratin 14 during amelogenesis. Confocal laser scanning 

microscopy (CLSM) showed the co-assembly of amelogenin and cytokeratin 14 in 

the perinuclear region of ameloblasts in new-born (day 0) mice. Migration of the co-

assembly to the apical regions was shown from day 1, peaking at days 3-5. 

Dissociation occurred at the Tomes’ processes by day 9. Could cytokeratin 14 be a 

molecular chaperone for the secretion of the nascent amelogenin polypeptide? 

Chaperones are a class of proteins that bind newly synthesised proteins in the 

endoplasmic reticulum, promote correct folding and prevent abnormal aggregation 

between hydrophobic domains of the client proteins (Beissinger and Buchner, 

1998). Certainly, isolated amelogenin is highly aggregative with low solubility under 

physiological conditions and it might be expected that nascent amelogenin would 

require careful chaperoning during its secretion to prevent untimely intracellular 

aggregation which could lead to endoplasmic reticulum stress; a pathological state 

potentially leading to cell death (Yoshida 2001).  

 Cytokeratin 14 has been documented to pair with cytokeratin 5 in basal 

epithelial cells during cell differentiation (Sun et al., 1984). Cytokeratin 14 is a type I 

cytokeratin and cytokeratin 5 is a type II cytokeratin. Cytokeratin 5 is also present in 

ameloblasts (Kasper et al., 1989; Domingues et al., 2000). Cytokeratin 14 and 

cytokeratin 5 pair via the N-terminal regions of both molecules. Similar to other type 

II cytokeratins, cytokeratin 5 carries GlcNAc at its N-terminal region (Omary et al, 

1998).  

 Ravindranath et al. (2003) hypothesised that if amelogenin bound to 

cytokeratin 5 it might define a role for both type I and type II cytokeratins in 
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amelogenesis. ATMP was shown to bind to cytokeratin 5 but not if the GlcNAc 

residues were removed. CLSM showed that cytokeratin 5 co-assembled with 

amelogenin in mouse molar ameloblasts separately from cytokeratin14-amelogenin 

complexes, and migrated to the apical regions of the ameloblasts on postnatal day 

1. Triple signals were noted between postnatal days 3-5, indicating the presence of 

cytokeratin14-amelogenin, cytokeratin 5-amelogenin and cytokeratin14-cytokeratin 

5 complexes. Accumulation of cytokeratin 14-cytokeratin 5 complexes in the 

Tomes’ processes were observed post-natal day 5. Secreted amelogenin was 

observed in the ECM adjacent to the Tomes’ processes, suggesting that following 

the secretion of amelogenin from the ameloblasts, cytokeratin 14 and cytokeratin 5 

formed a co-assembly. The co-assembly was first noted on post-natal day 3 and 

increased up to postnatal day 7, and disappeared thereafter. This was suggestive 

of degradation or cell death.  

 Even though cytokeratin 14 has the GMP motif and has been demonstrated 

within ameloblasts, it has not been identified in the enamel ECM. Ravindranath et 

al. (2004) suggested that ameloblastin may in fact be the preferred ECM binding 

target for ATMP in amelogenin as it has been suggested that the ameloblastin may 

bind to the amelogenins as well as interacting with the growing hydroxyapatite 

crystals (Deutsch et al., 1991). 

 Native ameloblastin is O-glycosylated, but has not been shown to carry a 

GlcNAc region to potentially interact with amelogenin (Uchida et al., 1997).  

Recombinant ameloblastin does not contain GlcNAc or NeuAc (since E.coli are 

unable to make these modifications) but paradoxically it is still bound via the 

amelogenin ATMP motif (Ravindranath et al., 2004). This is explained by the fact 

that ameloblastin carries a complete GMP sequence, interrupted by intervening 

residues. Even though the ameloblastin GMP sequence is fragmented, it might not 

need to be continuous sequence. The GMP binding sequence of cytokeratin 14 is 

also fragmented, yet Ravindranath et al. (2000, 2001) showed it to bind ATMP 

effectively. Folding and coiling of the polypeptide could bring the disparate 

fragments of the GMP peptide together resulting in the formation of an intact 

conformational binding site (Wright 1984, 1990; Murphy et al., 2000).  Ravindranath 

et al. (2004) further suggested a role for ameloblastin in amelogenin binding by 

demonstrating that anti-rM179 amelogenin antibodies detected amelogenin bound 

to recombinant ameloblastin in both western blots and ELISA experiments, that 

ATMP binds to recombinant ameloblastin and native amelogenin retrieved from 

enamel in a dose dependent manner, and that mutations of the third proline in 

ATMP abolishes binding to both recombinant and native ameloblastin.  
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In summary, the amelogenin ATMP domain has lectin–like properties in that it 

binds GlcNAc (a sugar). It also binds amino acid sequences that mimic GlcNAc. 

These so called GlcNAc mimicking peptide sequences (GMPs) are present in 

cytokeratins and ameloblastin and it is possible that amelogenin forms complexes 

with these proteins via the ATMP domain. Significantly single acid mutations in the 

ATMP domain lead to AI indicating the functional importance of this domain in 

amelogenesis and the production of functional enamel (see figure 9). 

1.3.4.1.2. Amelogenin and its role in mineral cryst al formation in tooth 

enamel 

Amelogenins are rich in proline (25-30%), and with high levels of glutamine 

(13%), leucine (10%) and histidine (8%), making them hydrophobic (Eastoe 1964). 

This hydrophobic character appears to be responsible for driving the 

supramolecular assembly of amelogenin monomers into so called “nanospheres” 

which are assumed to be the functional form of the protein during amelogenesis 

(Fincham et al., 1995; Du et al., 2005). Amelogenin mutations giving rise to the 

human X-linked condition amelogenesis imperfecta (AI) have point mutations 

resulting in altered nanosphere dimensions and assembly kinetics (Lench et al., 

1994; Collier et al., 1997). Although amelogenin is hydrophobic, the C-terminal is 

rich in acidic amino acids resulting in the presence of a hydrophilic “C-terminal 

teleopeptide.” The teleopeptide enhances  amelogenin binding to hydroxyapatite in 

vitro (Aoba et al., 1987C), suggesting that the C-terminal region facilitates initial 

orientation of amelogenin along the forming enamel crystallites (Kirkham et al., 

2000).   

Protein function is determined by protein conformation and this in turn is 

driven by the interactions of the specific amino acid side chains; this gives the 

necessary stereochemical parameters required for function. Amelogenin has not 

been crystallised and appears to be devoid of secondary structural features such as 

beta pleated sheets and alpha-helices. The C terminal of full length amelogenin 

(teleopeptide) is highly conserved across all species and in contrast to the rest of 

the molecule is hydrophilic (Fincham et al., 1995; He et al., 2008). 

 Previous reports based on mechanical molecular modelling  have suggested 

the presence of beta-spiral in bovine amelogenin.  A central portion of the 

amelogenin molecule comprises a hydrophobic core of approximately 100 residues 

rich in leucine, proline, histidine and glutamine and theoretically in bovine species 

this core contains a repetitive beta-turn segment and beta-spiral between glutamine 

112 and leucine 138; this beta-spiral has been suggested to interact with calcium 



- 46 - 

ions (Margolis et al., 2006; Palmer et al., 2008). Calcium binding fits well with a role 

for amelogenin in enamel mineralisation. However, if we examine this critically, the 

significance of this proposed calcium binding beta spiral in amelogenin function is 

difficult to accept since amelogenin from non-bovine species lack the repetitive 

sequence and do not exhibit this beta spiral. On firmer ground, it is well 

documented that amelogenins self-assemble into nanospheres in vitro (Fincham et 

al., 1994; Moradian-Oldak, 2007). There are indications that similar structural 

elements exist in vivo in the developing enamel (Fincham et al.,1995B; Robinson et 

al., 1981). The conclusion that the charged C-terminus is exposed on the surface of 

the nanosphere was derived from the observed MMP-20 cleavage sites and a solid-

state NMR study using an alternative slice variant of amelogenin LRAP.  

Amelogenin self-assembly into nanospheres is driven by inter-molecular 

hydrophobic which maintains the hydrophobic end away from water, with the 

hydrophilic end is exposed on the surface. The pH, temperature and protein 

concentrations all affect the size of the assembled structures. (Beniash et al., 2005; 

Habelitz et al., 2006; Moradian-Oldak, 2001)., Aichmayer et al. (2005) have 

provided additional evidence to show that amelogenin nanospheres are composed 

of a hydrophobic and electron dense core surrounded by a less electron dense and 

hydrophilic corona of the charged C-termini by using small angle x-ray scattering 

(SAXS) and dynamic light scattering analyses 

 Studies have shown that the full length amelogenin nanospheres further 

connect into chains of connected nanospheres indicating a hierarchical self-

assembly into larger structures that could act as a template to drive the growth of 

hydroxyapatite crystals (Moradian-Oldak et al., 2006; Wiederman-Bidlack et al., 

2007) . Using solutions with high protein concentration in a hanging drop over 

extended periods of time, co-linear arrays of amelogenin nanospheres were 

observed suggesting that the full length amelogenin could possibly act as scaffold 

onto which hydroxyapatite crystals grow during enamel maturation (Moradian-Oldak 

et al., 2006). 

For effective enamel development, the cleavage and removal of proteolytic 

products in a timely manner are essential. The charged C-terminus of amelogenin 

has significant hydroxyapatite binding affinity with has been proposed to control 

morphology and organisation of the crystals (Moradian-Oldak et al., 2001; Beniash 

et al., 2005). It has been hypothesised that the hydrophilic region of amelogenin 

inhibits crystal growth and nucleation (Aoba et al., 1987B). Several studies have 

investigated this hypothesis further by  removing the C-terminal hydrophilic residue 

of amelogenin  and showing that it does not affect amelogenins ability to inhibit 
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crystal growth of calcium phosphates (octocalcium phosphate and hydroxyapatite) 

in directions perpendicular to the C-axis (Beniash et al., 2005; Iijama and Moradian-

Oldak, 2005).  It was also shown that the crystals that did form in the presence of 

the hydrophilic C-terminus were organised into parallel arrays, whereas the crystals 

formed in the absence of the hydrophilic C-terminus were randomly arranged under 

the same conditions (Beniash et al., 2005).  

Hydrophobic protein expression and secretion into extracellular space is 

commonly seen as a cell-directed activity to provide space for mineral formation 

(Addadi and Weiner, 1992). Hydrophilic proteins, in contrast, are generally regarded 

as molecules that have the potential to promote crystal nucleation and growth by 

defining the position and size of mineral crystallites (Addadi and Weiner, 1992). As 

described previously, Ravindranath et al. (2007) demonstrated that recombinant 

mouse amelogenin binds specifically to recombinant ameloblastin via its ATMP 

tyrosine rich domain (amino acids 33-45). This suggests the possible formation of a 

heteromolecular assembly.  Bouropolous and Moradian-Oldak (2004) examined the 

cooperative effects of amelogenin and a 32 kDa enamelin fragment on the induction 

of synthetic apatite crystals precipitated in 10% gelatine gel and proposed that the 

32 kDa enamelin bound to amelogenin serves as a potential nucleator for apatite 

crystals. These findings propose the idea of a cooperative role for enamel proteins 

to control mineral nucleation. Other studies introduced the idea of cooperative 

mineralisation, with the suggestion that the functional self-assembly of the organic 

matrix molecules can only occur with enamel crystal growth and alignment in situ 

and in a collaborative manner (Margolis et al., 2006). It can be confidently 

hypothesized that the protein components of the developing enamel matrix 

interactive with one another and may function synergistically to produce suitable 

template for biomineralisation and the production of highly ordered enamel tissue. 

 Changes in pH which can induce ionisation of the amine and carboxyl groups 

as well as the functional side chains can affect protein self-assembly. 

Intermolecular interactions of macromolecules are often enhanced at their 

isoelectric point pH, since electrostatic repulsion is minimal and molecules can 

approach each other closely (Aggeli et al., 2003; Zhao et al., 2003). The calculated 

isoelectric points (IPs) are close to physiological pH for monomeric 25 kDa 

amelogenin and the 23 kDa amelogenin being 6.62 and 6.85 respectively. The true 

IP may vary significantly from these theoretical values for these molecules 

depending on the protein higher order structure. When the cooperative assembly 

between two different proteins is required such as amelogenin and enamelin, the 

surface charges of the self-assembled structures becomes important. Electrostatic 
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attraction between different proteins may occur when either the dissolved 

macromolecules or the initially self-assembled nanostructures carry opposite 

charges, providing an opportunity for close protein to protein interaction that could 

stimulate a cooperative self-assembling behaviour. 

 Self-assembly of amelogenin into nanospheres which increase in size with 

increasing pH was observed by atomic force microscopy (AFM) (Wen et al., 2011). 

Elongated structures of 100 nm length and 25 nm widths formed over several days 

for 25 and 23 kDa amelogenins at pH values 6.5 and 7.5, respectively.  A mix of 

both proteins held at pH 7 for 24 hours resulted in self-assembled strings of 200-

300 nm length consisting of fused nanospheres. These protein nanostrings formed 

links and a continuous mesh after 7 days. Electrical conductivity data also showed 

gradual changes with mixed amelogenins, supporting the idea of elongated 

structures forming over extended periods. The idea was proposed that due to the 

difference in isoelectric point, self-assembled nanospheres composed of 23 and 25 

kDa amelogenin have opposite ionic charges at pH values around 7 and thus 

experience ionic attraction that enables cooperative self-assembly (He et al., 2008). 

 

1.3.4.2 Ameloblastin (Amelin/Sheathlin)  

 As mentioned previously ameloblasts secrete the ECM proteins involved in 

enamel development; both the amelogenin and the non-amelogenin proteins. 

Ameloblastin (also known as sheathlin and amelin) (Cerny, 1996) is the most 

abundant of the non-amelogenins, comprising 5-10% of all proteins present in 

secretory stage tooth enamel (Simmer et al., 2010) and like amelogenin and 

enamelin the 65 kDa nascent ameloblastin molecule is subjected to proteolytic 

processing immediately after secretion, with lower molecular weight fragments 

being identified by western blot analysis (Brookes et al., 2001). The ameloblastin 

gene (AMBN) in humans has been localised to chromosome 4q21 and contains 13 

exons (Krebsbach et al., 1996; MacDougall et al., 1997). Ameloblastin and 

amelogenin are sister genes and are believed to have evolved from the ENAM 

gene by gene duplication and neofunctionalisation (Sire et al., 2007). 

Ameloblastin is a glycoprotein that is anionic, rich in glycine, leucine and 

proline. Ameloblastin expression in ameloblast cells is highest during the secretory 

stage and diminishes in the maturation stage. However, ameloblastin expression is 

not exclusive to ameloblasts. It is also expressed in odontoblasts (Nagano et al., 

2003; Hao et al., 2005), osteoblasts (Tamburstuen et al., 2011) and cementoblasts 
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(Nunez et al., 2010). Expression has been noted in dentine and HERS cells (Fong 

et al., 1996; Bosshardt and Nanci, 1997).  

Ameloblastin is secreted from vesicles containing just ameloblastin or more 

usually a mixture of ameloblastin and amelogenin. The localisation of amelogenin 

and ameloblastin in the ECM layer is believed to reflect their individual functions. 

Similar to nascent amelogenin, nascent full length ameloblastin is restricted to the 

newly secreted enamel matrix immediately adjacent to the ameloblasts where the 

enamel crystals are undergoing elongation (Nanci et al., 1996A; 1996B).  

 Ameloblastin is cleaved upon secretion by MMP-20 (Uchida et al., 1997) and 

is processed in the deeper enamel to generate a range of peptides around 13-17 

KDa in size that aggregate (Brookes et al., 2001)  and accumulate around the prism 

peripheries  resulting in a ‘fishnet’-like or honeycomb patterning following 

immunohistochemical localisation (Uchida et al., 1991A) . The remaining C-terminal 

fragment is found in the outer superficial layer only and is rapidly degraded (Uchida 

et al., 1997).  The localisation of ameloblastin N-terminal fragments to the prism 

peripheries led to the suggestion that these molecules play some role in delineating 

the boundary between prismatic and interprismatic enamel (Iwata et al., 2007).    

Ameloblastin contains a number of binding sites for various components. It as 

has been found to contain binding sites for calcium (Yamakoshi et al., 2001), 

heparin (Sonoda et al., 2009) and fibronectin (Beyeler et al., 2010) which suggests 

that ameloblastin may have multiple roles.  

For example, ameloblastin may act as a linkage between ameloblasts and the 

enamel ECM (Cerny et al., 1996; Snead et al., 1996). Fukumoto et al., 2004 

proposed a role for ameloblastin as a cell adhesion molecule necessary for 

maintaining the differentiation state of ameloblasts. Ameloblastin null mice initially 

showed elongation of the dental epithelial cells comparable to wild type mice, but at 

the secretory stage the cells detached from the ECM and lost polarity. The 

ameloblasts eventually became smaller and rounder, and then resumed 

proliferation resulting in the formation of multicellular layers. Expression of 

amelogenin was also reduced in the ameloblastin null mice. Primary cell culture of 

dental epithelial cells with recombinant ameloblastin showed preferential binding of 

ameloblasts to ameloblastin over fibronectin or laminin (Fukumoto et al., 2004). 

Recombinant amelogenin also inhibited proliferation of ameloblastin null 

ameloblasts in culture (Fukumoto et al., 2004). These results were not noted with 

other epithelial cell types, indicating a role for ameloblastin in cell adhesion.  Paine 

et al., 2003 showed that mice over expressing ameloblastin exhibited an 
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amelogenesis imperfecta like phenotype. These results also indicate a role for 

ameloblastin in organising ECM proteins to initiate mineral crystal growth. 

Ameloblastin null mice were also shown to develop tumours with age in the 

Fukumoto et al., 2004 study. The tumour cells were shown to be expressing enamel 

ECM proteins implying that the source of the tumours is likely to be the 

ameloblastin defective ameloblasts.  The most common human odontogenic tumour 

is the ameloblastoma (Kramer et al., 1992) considered to be of dental epithelial 

origins due to similarities between the tumour and the developing tooth (Snead et 

al., 1992; Abiko et al., 2007; Yagishita et al., 2001). Perdigao et al., 2004 reported 

odotonogenic tumours resulting from ameloblastin mutations. The tumours are 

likely to form due to lack of ameloblastin regulation of ameloblast differentiation. 

Until recently, no ameloblastin mutations had been identified that give rise to 

an amelogenesis imperfecta phenotype, although ameloblastin’s chromosome 

location was linked to a local hypoplastic form of AI (MacDougall et al., 1994). 

However, Poulter et al., 2014B identified a deletion of ameloblastin exon 6 in a 

family displaying an amelogenin imperfecta phenotype. The teeth from the patients 

displayed a similar phenotype of a thin dysplastic layer of rough, pitted mineralised 

tissue lacking any discernible crystal structure comparable to a mouse model 

lacking ameloblastin exons 5 and 6 (Wazen et al., 2009; Hu et al., 2008). 

 

1.3.4.3  Enamelin 

 Enamelin falls into the non-amelogenin category along with ameloblastin, 

previously discussed above. Enamelin maps to chromosome 4q21 in humans and 

contains 9 exons (Hu et al., 2001).  It has been suggested that enamelin, 

ameloblastin and amelogenin all arose from a single ancestral gene from which 

gene duplication generated the amelogenin gene which then translocated to the X 

and Y chromosomes, while enamelin and ameloblastin remained on this original 

chromosome (Sire et al., 2007). Comprising less than 1% of all proteins present in 

developing tooth enamel, pig enamelin is secreted as a phosphorylated 186 kDa 

glycoprotein (Fukae et al., 1987). Like amelogenin, enamelin undergoes a series of 

proteolytic cleavages by MMP-20 once secreted (shown in figure 8). Fully mature 

and intact enamelin is present in newly secreted enamel at the mineralisation front 

perhaps suggesting a role for full length nascent enamelin in crystallite elongation 

(Hu et al., 2005; Kim et al., 2005A). Studies on enamelin biochemistry using 

enamelin proteins isolated from developing enamel have focused almost 

exclusively on the pig model due to the availability of pig developing teeth through 
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the meat industry and the thickness of the porcine enamel tissue.  The major 

enamelin protein in pig enamel is the 32 kDa processing product generated by 

proteolytic processing in the deeper enamel (Uchida et al.,1991B) and it is this 

species that is, without exception, used in biochemical studies relating to enamelin 

function due to its relative abundance. The 32 kDa enamelin is phosphorylated and 

glycosylated and has a high affinity for the mineral phase suggesting that its amino 

acid residues and/or the attached phosphate and sugar groups arrange 

stereochemically in a way that is complementary to the mineral surface in terms of 

binding potential.  The exact role of enamelin is unclear but the fact that the 32 kDa 

domain exhibits affinity for mineral surfaces suggests that interaction with mineral is 

an important function (Al-Hashimi et al., 2009; Bouropoulos and Moradian-Oldak., 

2004; Fan et al., 2008;  Fan et al., 2009; Fan et al., 2011; Ilijama et al., 2010; 

Uchida et al., 1991; Yamakoshi et al., 1995; Yamakoshi et al., 1998; Yamakoshi 

2006)  It is possible that this affinity is also directed towards initial clusters of 

mineral ions which provides sufficient stabilisation for nucleation to occur i.e. the 

domain acts as a template for mineral nucleation.   
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Figure 8.  Extracellular processing of porcine enam elin protein showing 
molecular weights of the breakdown products, from t he parent 186 kDa 
protein to the 32 kDa, 25 kDa and 34 kDa fragments.  The 32 kDa 
breakdown product retains the post translational mo difications of 
phosphorylation and glycosylation. 

 

  Autosomal dominant hypoplastic amelogenesis imperfecta is linked to 

mutations in the enamelin gene.  In humans displaying the AI phenotype linked to 

enamelin mutations, those with single allele mutations had hypoplastic, thin, rough 

enamel resulting in yellow, temperature sensitive teeth. Those with both allele 

mutations had teeth with a complete lack of enamel (Ozdemir et al., 2005). A 

chemically induced mouse model (ENU) (Masuya et al., 2005) a gene targeted 

mouse model (Hu et al., 2008) and human gene mutations resulting in AI (Rajpar et 

al., 2001) have all been used to investigate enamelin mutations and indicate a 

fundamental role for enamelin in biomineralisation. The resulting thin enamel 

displaying disorganised mineral crystals seen in human and mouse AI models with 

ENAM null genotypes indicate that enamelin is necessary for optimal enamel 

thickness via crystal formation and prism organisation (Meredith et al., 2009). 
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 A recent study by Hu et al., 2014 describes investigations into the role of 

enamelin in enamel development. Using mice heterozygous and homozygous for 

enamelin mutations, the group aimed to characterise any resulting cellular and 

structural anomalies. They showed that no proper enamel formation occurred as 

there was no mineralisation along the ameloblasts distal membranes in affected 

mice. Β-galactosidase staining specific for enamelin expression showed expression 

in the developing tooth organ, and only in the secretory and early maturation stage 

ameloblasts. Unlike ameloblastin, enamelin expression was not noted in 

odontoblasts or osteoblasts.  In the homozygous Enam-/- mice, the ameloblasts 

were observed to become crowded and to lose contact with the ECM covering the 

dentine. The ameloblasts continued to secrete amelogenin but displayed enlarged 

endoplasmic reticulums. The ameloblasts were able to secrete an amelogenin-rich 

layer onto the dentine despite poorly formed Tomes’ process, but mineralisation of 

this protein layer did not occur and at the secretory stage, no mineral crystal 

ribbons were noted. In the heterozygous Enam+/- mice, the mineral crystals 

appeared to have the correct conformation but were more loosely packed together. 

  The above data show, that although enamelin is much less abundant than 

amelogenin, it is important for the formation and integrity of the enamel ECM and 

the mature mineralised enamel. 

 

1.3.4.4 Minor Enamel Matrix Proteins 

1.3.4.4.1 Kalikrein-4 (KLK-4) 

The human KLK-4 gene has been localised to chromosome 19q13.3-13.4 and 

consists of 6 exons and 5 introns (DuPont et al., 1999; Hu et al., 2000). It encodes 

a 254 amino acid protein with a conserved serine protease catalytic triad, and an 

amino-terminal prepropeptide sequence. In teeth, KLK-4 is secreted by the 

odontoblasts and by late-secretory and maturation stage ameloblasts. KLK-4 

expression correlates with the disappearance of enamel proteins, such as 

amelogenin, from the enamel ECM. KLK-4 is expressed in its latent proenzyme 

form. How it is activated has, as yet, not been fully defined (Lu et al., 2008). KLK-4 

appears to act upon protein fragments of amelogenin, ameloblastin and enamelin 

already created from proteolytic degradation by MMP-20. KLK-4 facilitates the 

removal of these fragments from the enamel layer as part of the maturation stage 

(Lu et al., 2008).  A KLK-4 mutation has been noted in a family with autosomal 

recessive hypomaturation amelogenesis imperfecta (Hart et al., 2004) which 

highlights the importance of proteolytic removal of matrix proteins from the 
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maturation stage enamel.  A KLK-4 null mouse model shows that the enamel 

produced is of normal thickness with the correct organisation of prisms and inter-

prism substructures seen in normal enamel. However, the maturation and 

hardening of the enamel is delayed in these animals, with a defect in the 

mineralisation near the DEJ, causing the enamel to be sheared from the surface of 

crowns during physical use. The teeth show abnormal wear patterns, with chipped 

incisor ends (Hu et al., 2009). 

The expression of proteolytic enzymes such as KLK-4 during enamel 

maturation is necessary for enamel to achieve its high degree of mineralisation. If 

KLK-4, or the other enamel proteinase, MMP-20, is absent or functionally defective 

during enamel secretion, the produced enamel is itself defective or of poor quality 

(Simmer and Hu., 2002; Hu et al., 2003; Hu et al., 2005). Recent studies have 

shown that MMP20 activates KLK4 by cleaving a propeptide. Hence, a MMP20 

mutation can indirectly compromise KLK4 function (Yamakoshi et al., 2013). 

1.3.4.4.2  Matrix Metalloproteinase-20 (MMP-20) 

The human MMP-20 gene has been localised to chromosome 11q22.3-q23 

(Llano et al., 1997) and consists of 10 exons and 9 introns (Caterina et al., 2002). 

Ameloblasts and odontoblasts of the dental papilla express MMP-20 (Hu et al., 

2002). MMP-20 is secreted during the secretory phase (Hu et al., 2002). MMP-20 is 

expressed in its latent proenzyme form. How it is activated has, as yet, not been 

fully defined (Ryu et al., 1999). MMP-20 is secreted into the enamel matrix 

appearing as  a doublet of 41 and 46 kDa on SDS gels following extraction, and 

MMP-20 activity accounts for all of the known cleavage sites in amelogenin that 

occur in the early stages of enamel development (Ryu et al., 1999). MMP-20 is also 

responsible for the cleavage of newly synthesised ameloblastin and enamelin 

(Yamakoshi et al., 2006, Simmer et al., 2009, Simmer et al., 2010). The Mmp-20 

null mouse displays a severely profound tooth phenotype as it is unable to process 

amelogenin correctly, so may possess and altered enamel matrix and crystal prism 

pattern, resulting in hypoplastic enamel that delaminates from the dentine (Caterina 

et al., 2002). The enamel that is present contains little, if any, prism and inter-prism 

substructure, and is very soft in texture (Bartlett et al., 2003; Bartlett et al., 2004). 

1.3.4.4.3 Amelotin 

Amelotin is the newest discovered enamel-specific protein and represents a 

novel component of the maturation stage basal lamina (Dos Santos Neves et al., 

2012).The Amelotin gene in humans has been localised to chromosome 4q13.3, 

has 9 exons and 8 introns, and gives rise to a 22 kDa protein.  Amelotin displays an 

N-terminal signal sequence typical of many secreted proteins, but appears to 
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undergo few, if any, post translational modifications. Investigations are underway to 

determine this restricted protein expression, and to decipher whether amelotin is 

indeed a structural protein of the enamel matrix or in fact, a proteolytic enzyme 

involved in enamel ECM degradation (Iwasaki et al., 2005). 

1.3.4.4.4 Biglycan 

The biglycan gene in humans has been localised to chromosome Xq28, and 

contains 8 exons (Fisher et al., 1991). Biglycan is a small cellular or pericellular 

matrix proteoglycan, and contains 2 glycosaminoglycan (GAG) chains (Iozzo, 1999) 

Biglycan in expressed by ameloblasts and is present in enamel ECM (Goldberg et 

al., 2003) 

 Biglycan expression is not unique to enamel, but it does play a significant role 

in amelogenesis and enamel biomineralisation due to biglycan null mice expressing 

a larger volume of developing enamel in molar teeth, but not incisors. This resulted 

from an increase in amelogenin expression. The mature enamel in biglycan null 

mice was morphologically comparable to wild type mouse enamel once fully 

mineralised.  Therefore, biglycan either directly or indirectly acts as a repressor of 

amelogenin expression during enamel secretion (Goldberg et al., 2002; Goldberg et 

al., 2005). 

1.3.4.4.5 Tuftelin and the tuft proteins 

The human tuftelin gene has been localised to chromosome 1q21. Tuftelin is 

an acidic protein shown to be present in the developing and mature enamel ECM. 

Tuftelin was originally described and classified as an enamel ECM protein, although 

it is not unique to ameloblasts or the enamel ECM (Deutsch et al., 1991). Tuftelin is 

a product of a wide range of cells including cells responsible for mineralising hard 

tissues (including enamel ECM) as well as cells responsible for non-mineralising 

tissues. In vivo localisation shows a minimal degree of amelogenin and tuftelin 

colocalisation in the cell cytoplasm (Deutsch et al., 1995). There is lack of evidence 

to suggest a physiological pathway from the cytoplasm to the ECM, but tuftelin has 

been repeatedly localised to the ECM, where its presence suggests a role in 

amelogenesis (Paine et al., 2000). It has been proposed that the tuftelins act to 

start the mineralisation process of the enamel ECM (Zeichner-David., 2001). 

 Tuftelin-interacting protein II (TFIP-II) has been immunolocalised to the 

Tomes’ processes and the enamel matrix (Paine et al., 2000), however TFIP-II 

appears to be a phosphorylated RNA splicing factor and is primarily localised within 

the cell nucleus (Beausoleil et al., 2004).  
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Previous studies have shown that cell membrane phospholipids accumulate in 

the dentine and enamel ECM during biomineralisation (Goldberg et al., 1999). One 

explanation for this in enamel is that the distal portions of individual Tomes’ 

processes are fragmented during the secretory stages of amelogenesis and the 

contents become trapped in the ECM. For a structure such as enamel with very 

specific matrix proteases that target tooth specific proteins, it is conceivable that 

non-secreted ameloblast-associated proteins can become trapped in the immature 

or mature enamel. This may explain the localisation of tuftelin and TFIP-II in the 

enamel matrix (Goldberg et al.,1998; Goldberg et al.,1999). 

Tuft protein, a different protein to tuftelin, was revealed during the complete 

dissolution of mature enamel from human molars. The presence of a considerable 

amount of insoluble material on the dentine surface was noted, and this material 

was not soluble even in mineral acids or EDTA (with or without 8M urea or 

guanidine chaotropic agents) (Hodson et al., 1952), or boiling in SDS or phenol. 

Analysis showed that this material was proteinaceous with a composition in excess 

of 80% amino acids (Weatherall et al., 1968; Robinson et al., 1975). Microscopy 

showed the material associated with the enamel tufts, blades of organic material 

along the enamel prism boundaries (Beust et al., 1932; Osborn et al., 1969). 

Amizuka et al., (1992) showed the presence of ‘tuft’ proteins in human molars 

with complex prism structures using electron microscopy. Tuft protein is not related 

to the other ECM proteins. Keratin has been identified in the tuft protein by 

immunohistochemistry staining (Robinson et al., 1989), and a fragment of 

ameloblastin has also been detected (Robinson et al., 2000). It is possible that this 

tuft protein material is a mixture of different proteins. Antibodies raised against a tuft 

protein suspension were used to probe sections of rat molar. This showed that the 

expression of the tuft protein followed the secretory pathway from ameloblasts 

(Robinson et al., 1989), and therefore was likely to be ameloblastin (Amizuka et al., 

1992; Robinson et al 2000). As described above N-terminal ameloblastin 

degradation products have been shown to be immunologically related to prism 

boundaries (Uchida et al., 1991B), which fits well with the notion that tuft protein 

contains ameloblastin as the tuft protein is associated with prism boundaries. 

The fact that this tuft protein is very resistant to chemical solubilisation implies 

chemical cross-linking such as that seen in keratin and collagen. Cross-links such 

as ε-γ-glutamyl-lysine occur between glutamine and a primary amine group such as 

lysine (Folk and Finlayson, 1977; Lorand and Conrad, 1984) and these have been 

reported to exist in tuft protein together with transglutamase enzyme responsible for 
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their formation (Robinson and Hudson, 2011). ECM proteins such as amelogenin, 

enamelin and ameloblastin all contain large quantities of lysine and glutamine. 

These cross-links are common in epithelial tissues, with a role in prevention of 

proteolytic degradation and promoting structural stabilisation. Enamel has epithelial 

origins, so it is tempting to speculate that these cross-links play a similar role in this 

tissue. However, enamel matrix proteins are not covalently linked during 

development (as evidenced by the fact that they can be isolated in their monomeric 

form) and considering the developing enamel matrix is designed to be 

proteolytically removed from the tissue, the formation of stabilising cross links  at 

this stage would be counterproductive. 

The effects of the proteinase Kallikrein-4 (KLK-4) on tuft protein are not 

known. Protein degradation such as that elicited by KLK-4 or MMP-20 at the 

dentine-enamel junction could be ruinous to the developing ECM, therefore the 

presence of chemical cross-links would provide a protective effect to the tissue and 

stabilise the interface. This is comparable to the cross-linking of keratin in layers of 

the skin tissue. Myoung et al (2009) proposed a role for the tuft protein in protecting 

the tooth under high functional stresses and in self-healing, consistent with cross-

linking. 

It is likely that tuft protein is a mixture of the degradation products of the 

enamel ECM proteins, along with a form of degradation resistant cross-linked 

material from the dentine. This tuft protein product in turn has a protective effect 

during tooth development, in strengthening and protecting the DEJ, and throughout 

the life of the tooth in acting as a cushioning layer between the prisms and dentine 

and enamel layers, to resist the stresses and strains of normal tooth wear.  

 

1.3.4.4.6 Sulphated Proteins 

A glycosylated and sulphated ‘non-amelogenin’ protein of 65 kDa has been 

identified in the developing enamel of rats by in vivo radiolabelling studies using 35S 

isotopes. The 65 kDa protein is rapidly degraded following secretion. It has been 

hypothesized that this protein may somehow interact with amelogenin, but this 

remains to be proven and no specific gene has been identified (Smith et al., 1995; 

Nanci et al., 1996A; Nanci et al., 1996B). It is possible that this protein is in fact 

nascent ameloblastin. 
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1.3.5 Non matrix proteins involved in enamel develo pment 
Integral membrane proteins, calcium transport proteins, hard tissue 

mineralisation proteins and collagen were all identified during screening of a cDNA 

expression library to find enamel matrix proteins that interacted directly with 

amelogenin, enamelin or ameloblastin (Wang et al., 2005). These proteins included 

CD63 (LAMP-3), Annexin A2, α-2-HS-glycoprotein (Ahsg) and types I, II and IV 

collagen. CD63, LAMP1 and Annexin A2 are products of ameloblast cells 

(Fukumoto et al., 2004; Tompkins et al., 2006; Wang et al., 2005).  LAMP1 has also 

been identified as a membrane-bound receptor for amelogenin. CD63 and LAMP1 

are both found on the membrane of endosomes and lysosomes (Duffield et al., 

2003; Goldberg et al., 1990; Mayran et al., 2003). Annexin-2 is involved in the 

organisation and dynamics of the endosome membrane.  These interactions 

support the existence of signalling pathways through membrane bound receptors to 

allow the transfer of information from the enamel matrix to the ameloblast to 

influence gene transcription. Their presence also supports the theory of an 

anchoring mechanism for orientating the enamel matrix relative to the ameloblast 

Tomes’ processes and for receptor mediated removal of degraded ECM proteins 

during enamel biomineralisation. 

1.3.5.1 LAMP1 

Lysosomal associated membrane protein 1 (LAMP1) is a transmembrane 

protein expressed mainly by late endosomes and lysosomes and is often used as a 

marker for these organelles (Cook et al., 2004). It is involved in endocytosis, 

pinocytosis and phagocytosis. LAMP1 is present on the plasma membrane of 

presecretory, secretory, and post-secretory ameloblasts and is thought to act as a 

cell surface intermediary that can be shuttled to the lysosome through endocytosis. 

LAMP1 interacts directly with amelogenin (Tompkins et al., 2006) and has been 

shown to interact with the LRAP fragment of amelogenin and full length amelogenin 

on cementoblasts (Zhang et al., 2010). 

1.3.5.2 CD63 (LAMP3) 

CD63 is a member of the transmembrane 4 glycoprotein superfamily, known 

as the tetraspanin proteins. The majority of the family members are cell surface 

proteins, identified by four hydrophobic transmembrane domains. These proteins 

are involved in the mediation of signal transduction events associated with 

activation, growth, motility, and the regulation of cell development. CD63 forms 

complexes with integrins (Yunta and Lazo, 2003). CD63 is found in the cytoplasmic 

membranes of most cell types, and also in late endosomes, lysosomes and 
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secretory vesicles, trafficking between these different compartments. CD63 is 

immunolocalised to the Tomes’ processes of ameloblast cells, and is found 

throughout the cytoplasm of ameloblast cells and neighbouring cells. CD63 is able 

to interact directly with the secreted enamel proteins, and is perhaps likely to play a 

role in amelogenesis related to protein-protein interactions at the Tomes’ 

processes. (Zou et al., 2007). It may also play a role in amelogenin degradation by 

binding to the amelogenin and packaging the protein into vesicles, targeting it for 

removal from the cell cytoplasm (Xu et al., 2008). 

1.3.5.3 Annexin A2 

Annexin A2 is a 39 amino acid calcium and phospholipid binding protein. 

Annexin A2 acts as an autocrine factor to stimulate osteoclast formation and bone 

resorption and is also a necessary component in endosomal activity. Annexin A2 

has been located in the cytosol of ameloblast cells, close to the Tomes’ processes, 

and in the ameloblast secretory vesicles (Goldberg et al., 1990). Annexins are 

thought play a role in tooth development through exocytosis and endocytosis due to 

higher levels of Annexin 2 mRNA being identified in pre-and post-secretory 

ameloblasts, as opposed to secretory ameloblasts (Bartlett et al., 2006). 

1.3.5.4. Integrin 

 Integrins are cell-surface adhesion receptors with roles in cell-cell, cell-matrix 

and cell-pathogen interactions (Zhang and Chen 2012).  Integrins consist of non-

covalently linked α and β subunits. ITGB6 binds to integrin-α5 to form integrin-αvβ6. 

Integrin-αvβ6 is epithelial cell specific and binds to the arginine-glycine-aspartic 

acid (RGD) amino acid motif (Busk et al., 1992).  RGD motifs are often found in 

extracellular matrix proteins such as vitronectin, fibronectin and tenascin-C. The 

recent discovery of a missense mutation in the I-domain of integrin β6 (ITGB) 

resulting in hypomineralised amelogenesis imperfecta, has indicated a role for 

integrins in amelogenesis (Poulter et al., 2014A). The P196T mutation identified 

was in a family of Pakistani origin, presenting with pitted hypomineralised enamel 

with premature enamel failure. No other diseases were associated with this 

mutation.  The particular point mutation resulted in a phenotype similar to that 

observed in mice lacking a functional itgb6 gene. The authors proposed a potential 

mode of action being that the mutation in ITGB6 failed to allow the binding of the 

integrin to the latency associated peptide (LAP) of TGFβ, which resulted in the 

inhibition of MMP-20 expression. This would lead to failure to process the ECM in 

the enamel correctly and hypomineralisation as observed in the human family and 

mouse model (Poulter et al., 2014B). Enamel hypoplasia and skin blistering in 

patients with epidermolysis bullosa are also associated with integrin mutations. Six 
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novel mutations in all 10 genes of ITGBβ4 have been identified with patients with 

epidermolysis bullosa with pyloric atresia (Pulkkinen et al., 1998). 

 
 

1.4. Inherited diseases of enamel 

1.4.1. Amelogenesis Imperfecta 
Amelogenesis imperfecta (AI) is a disease of tooth enamel development 

where the biomineralisation process has failed. AI can cause teeth to be unusually 

small, discoloured, pitted or grooved and prone to rapid wear and breakage. The 

clinical appearance of AI can vary among affected individuals and can affect both 

primary and permanent teeth. AI is genetic in origin and presents as hypoplastic, 

hypomineralised and/or hypermineralised enamel. The prevalence of AI varies from 

1:700 people in Sweden to 1:14,000 people in the USA (Crawford et al., 2007) 

 Mutations in the enamel matrix proteins and in cellular proteins affecting 

ameloblast function underlie many cases of AI. These mutations alter the structure 

of the proteins or prevent protein secretion. Mutations in the following genes are all 

known to cause AI: enamelin (ENAM; chromosome 4 long arm position 21 – 4q21), 

amelogenin (AMELX; X chromosome short arm position 22.3 to 22.1 – Xp22.3-

p22.1), ameloblastin (AMBN; 4q21), tuftelin (TUFT1; 1q21), amelotin (AMELOTIN; 

4q13), kallikrein 4 (KLK4; 19q13.3-q13.4) and MMP-20 (MMP20; 11q22.3-q23). 

 AI can be X-linked, autosomal dominant or recessive. Four major 

manifestations of AI are described using the Witkop classification system; 

hypoplastic (enamel of reduced thickness), hypomaturation (enamel of normal 

thickness, but softer as mineralisation fails to mature), hypocalcified (enamel of 

normal thickness, but softer due to reduced mineral content) and hypomaturation-

hypoplastic with taurodontism (reduced enamel thickness with reduced mineral 

content and teeth present with enlarged and elongated pulp chambers (Witkop, 

1988).  These have been further subclassified into over 14 forms of AI as described 

in the literature (Aldred and Crawford., 1995). There are also cases of AI that 

appear to be sporadic, in people with no family history of the disease. 

Improvements in molecular genetics should help aid identification of further gene 

mutations. 

1.4.1.1 X-linked Amelogenesis Imperfecta 

X-linked AI usually manifests as hypoplastic AI. Five percent of AI is caused 

by mutations in the amelogenin (AMELX) gene. Males with X-linked AI have more 



- 61 - 

severe dental abnormalities than females. Males who inherit the AMELX defects 

have only a very thin layer of enamel, or poorly mineralised, discoloured enamel. 

Females have 2 X chromosomes, and those who inherit only one altered copy of 

the AMELX gene are less severely affected as they have a normal copy of the gene 

on the other X chromosome to produce amelogenin.  Their teeth show structural 

defects such as distinctive patterns of vertical ridges and grooves, or Lyonisation 

due to alternating bands of normal thickness enamel and reduced thickness enamel 

(Balmer et al., 2004). Mutations identified include deletions, single base alterations 

and premature stop codons. Figure 9 shows the amelogenin gene and the locations 

of known mutations that cause AI in humans. The gene mutation and resulting 

protein alteration are given. The resulting AI type is also given. 

Figure 9. Schematic of the amelogenin gene, showing  the genetic 
location of the identified mutations (g), the resul ting protein mutation 
(p), and the clinical enamel phenotype. 

 

1.4.2 The Y64H amelogenin mutation in mice 

1.4.2.1 Wild type and mutant (Y64H) mice teeth 

Human AMELX mutations include total loss of  protein secretion mutations 

causing loss of the C-terminal of amelogenin (Wright et al., 2003), and mutations 
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affecting the amelogenin N-terminal region that include a lectin-like tri-tyrosyl 

domain reported to bind to N-acetyl-D-glucosamine (Ravindranth et al., 1999). 

Mutations in the amelogenin gene are known to cause amelogenesis imperfecta, a 

genetic disease resulting in biomineralisation defects of tooth enamel.  For 

example, Collier et al. (1997) showed that a single amino acid mutation in the 

human amelogenin gene resulted in the substitution of proline at position 70 with 

threonine and is associated with hypoplastic amelogenesis imperfecta in affected 

individuals. The mutation lies in the conserved ATMP motif domain (as described 

previously Chapter 1 Section 1.3.4.1.1) shown below (the proline residue that is 

substituted by threonine in the mutation is highlighted in red):  

 

Human X Y P S Y G Y E P M G G W L H H Q 

Bovine X Y P S Y G Y E P M G G W L H H Q 

Porcine Y T S Y G Y E P M G G W L H H Q 

Murine Y P S Y G Y E P M G G W L H H Q 

Rat Y P S Y G Y E P M G G W L H H Q 

 

Studying human amelogenesis is difficult because unerupted teeth are required 

which invariably means obtaining post mortem material from children (which apart 

from the ethical issues involved results in tissues affected by post mortem changes 

unless unerupted wisdom teeth are available). Fortunately, a mouse model 

phenocopying human hypoplastic amelogenesis imperfecta was available 

(M100888 mutant from RIKEN Institute) and genetic analysis carried out as part of 

this research program (by Dr Martin Barron, University of Manchester) showed that 

the mutation involved the substitution of tyrosine 64 (shown in blue above) with 

histidine (Y64H substitution) (Barron et al., 2010). Given that the murine mutation is 

within the same ATMP domain as the proline 70 mutation reported in human 

amelogenesis imperfect, this mouse model would appear to provide a suitable 

model for study.  

 It is difficult to elucidate the underlying molecular mechanisms associated with 

amelogenesis imperfecta in humans due to the inability to obtain viable, developing 

(unerupted) teeth. Rodent incisors provide a workable alternative as they 

continuously erupt throughout the life of the animal and provide access to all stages 

of enamel development in one tooth. Mice models have been used in gene 

targeting experiments to define the roles of proteins in enamel development. An N-
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ethyl-N-nitrosurea (ENU-) induced mutation in mouse model (M100888 Riken 

Japan) has an x-linked enamel phenotype suggesting mutations in the amelogenin 

gene (amelx; the only ECM protein located on the X-chromosome. This mutation 

was identified by the Leeds-Manchester group as a single amino acid substitution 

involving the replacement of tyrosine 64 with histidine (Y64H mutation) (Barron et 

al., 2010).  The Y64H mutation lies in the highly conserved amelogenin ATMP 

domain (PYPSYGYEPMGGW mutated to PHPSYGYEPMGGW). A P-T mutation of 

the third proline results in hypomaturation amelogenesis imperfecta in humans 

(Collier et al., 1997). This mutation has been shown in vitro to inhibit normal 

amelogenin proteolysis and to abrogate the lectin-like binding by the tri-tyrosyl 

domain (Ravindranath et al., 1999; Li et al., 2001) (see section 1.3.4.1.1). M100888 

was identified during a large screen on mutated mice for dominant abnormal 

phenotypes (Masuya et al., 2005). C57BL/6J male mice (CLEA Japan) were 

administered with ENU [N-ethyl-N-nitrosurea (C3H7N3O2)], a highly potent mutagen, 

at 150-150 mg/kg, and crossed to DBA/2J female mice (CLEA Japan). ENU is an 

alkylating agent the transfers its ethyl group to the DNA nucleotides, preferentially 

to thymine (Coghill et al., 2002). ENU can induce one new mutation for every 700 

loci, but in too high a concentration can be toxic. It was first extensively used by Bill 

Russell for designing mouse strains for studies into the effects of toxins and 

chemicals (Russell et al., 1979). The M100888 ENU mutant was identified during a 

screen of F1 hybrids for dominant phenotypes at 8 weeks of age (Inoue et al., 2004; 

Masuya et al., 2005). Six mouse phenotypes were identified that exhibited 

abnormal incisor surfaces, of which M100888 was one. M100888 was obtained 

from the RIKEN Institute (http://www.gsc.riken.jp/mouse/) and maintained in a 

DBA/2J genetic background at the University of Manchester in accordance with the 

Animals (Scientific Procedures) Act, UK, 1986 (Barron et al., 2010). Gross 

morphology of the affected mice showed uneven, shortened incisors with chalky-

white, opaque, rough and pitted surfaces (figure 10 below). Examination of the 

lower jaw of the affected males shows a large, eroded, discoloured inferior border 

of the mandible. Dissection of the lower incisors showed that the mineralising 

enamel distal to the white opaque zone (where removal of the ECM normally 

occurs) was irregular and discoloured.  Genotypic analysis showed that the T to C 

transition at nucleotide 249 of the Amelx coding sequence resulted in a missense 

mutation Y64H. The Y64H is a mutation of the first tyrosine in the PYP SYG YEP 

MGGW sequence of amelogenin in the C-terminus of the TRAP domain. The 

mutation was present in all the affected males (n=72) and all the affected females 

(n=72) analysed, but was not detected in the wild type littermates (n=160) (Barron 
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et al., 2010). Affected males and homozygous females displayed a more severe 

phenotype that heterozygous females. 

 

Figure 10.  Images showing the wild-type and Amelx mice incisors. Wild-type 
maxillary (panel A) and mandibular (panel B) inciso rs show smooth 
enamel, opalescent and orange/brown in colour. Pane ls C and D show 
the maxillary (C) and mandibular (D) incisors for h eterozygous female 
mutant mice (Amelx X/Y64H), illustrating patches of rough, chalky enamel.  
Panels E and F show the maxillary (E) and mandibula r (F) incisors for 
hemizygous male mutant mice (Amelx Y/Y64H), illustrating the whole of 
enamel surface as rough, opaque and chalky. The mut ant mice teeth 
also show shortened incisors with irregular edges ( C-F). Barron et al., 
2010. Reproduced under Creative Commons Attribution  License.  
Modified from figure 3 published in:’A mutation in the mouse Amelx tri-tyrosyl domain 
results in impaired secretion of amelogenin and phe nocopies human X-linked 
amelogenesis imperfecta’ by Barron et al 2010  Hum. Mol. Genet. (2010) 19 (7): 1230-
1247. Direct link: http://www. ncbi.nlm.nih.gov/pubmed/2 0067920  

 

How does this single amino acid mutation, from tyrosine to histidine at position 64 

of amelogenin give rise to the effects seen in amelogenesis imperfecta?  

 

1.4.2.2 Tyrosine and Histidine Biochemistry 

Amelogenin is secreted by specialist ameloblast cells prior to the tooth 

erupting into the mouth, and interacts with other secreted proteins to form an 

extracellular organic matrix, onto and in to which hydroxyapatite crystals nucleate 

and grow to form the enamel prisms (Moradian-Oldak, 2001; Hu et al, 2002). The 
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tertiary structure of amelogenin still remains to be defined. As described previously 

(section 1.3.4.1.1) the N terminus of amelogenin is a highly conserved region of 45 

amino acids, comprising the so called tyrosine rich amelogenin peptide (TRAP) 

containing 6 tyrosine residues, with the final 3 tyrosine residues lying at the C 

terminal of TRAP defining the ATMP region.  

The tyrosine to histidine change at amino acid 64 (Y64H) clearly has a huge 

impact on amelogenesis as evidenced by the dramatic clinical phenotype in 

affected animals (figure 10 above). Tyrosine can act as a receiver of phosphate 

groups transferred by receptor tyrosine kinases (serine and threonine) during signal 

transduction (Hanks et al., 1988) but there is no evidence that any tyrosine is 

phosphorylated in amelogenin. Tyrosine is most often found in beta-pleated sheet 

structures, as it is hydrophobic and prefers to be buried in hydrophobic protein 

cores (Farber and Mittermaier, 2008). The aromatic side chain in tyrosine is 

involved in protein stacking interactions with other aromatic side chains. Tyrosine 

contains a reactive hydroxyl group that can be involved with interactions with non-

carbon atoms. Tyrosine can be substituted by other aromatic amino acids (Betts 

and Russell, 2003). In contrast, histidine is a polar amino acid that does not 

substitute well with any other amino acid due to its unique biochemical properties.  

Histidine is highly hydrophilic and is most commonly found in alpha helical 

structures. The imidazole ring of the histidine side chain has a pKa near to 

physiological pH which means that subtle shifts in pH will change its net charge. 

This makes histidine the ideal amino acid for charge relay systems such as catalytic 

triads and cysteine and serine proteases (Wolfe et al., 2001). That the imidazole 

side chain changes from neutral to positive depending on pH, means that histidine 

may be hidden in a protein core or be exposed (Betts and Russell, 2003). In effect, 

histidine can act as a variable charge centre whose charge is controlled by pH and 

intuitively the insertion of such a disruptive residue into a protein is likely to affect 

both structure and function.  

In support of this contention, tyrosine to histidine mutations has been noted in 

several proteins. Tang et al., 1999 showed that a tyrosine to histidine mutation at 

position B5 of insulin changes the structure from an extended conformation (T 

state) to a stable alpha helix (R state). This R state is stabilised by non-polar 

interactions between the phenolic molecules and the B5 histidine.  Pegg et al., 

1999, showed that an alteration in the conserved tyrosine residue at position 158 to 

histidine in human O6 – alkylguanine-DNA alkyltransferase renders it insensitive to 

the inhibitor O6- benzylguanine. The presence of the charged residue in the active 

site pocket discourages the binding of hydrophobic residues. The charged residue 
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influences the steric effect, increasing resistance. Bobola et al., 2001, showed that 

a naturally occurring tyrosine to histidine replacement at residue 33 of human 

thymidylate synthase confers a 4 fold increase in resistance to 5-fluoro-2-deoxy 

uridine in mammalian and bacterial cells. 

A tyrosine to histidine mutation has also been shown to play a role in several 

diseases. 

Age related macular degeneration (AMD) has been shown to be caused  by a 

tyrosine to histidine mutation at position 402 located on C1q exon 9, and is located 

in the complement factor H (CFH) protein (SCR7) and contains overlapping binding 

sites for C-reactive protein, heparin and M protein (Giannakis et al., 2003). The 

T402H mutation causes increased inflammation in the outer retina. Subjects 

heterozygous for the mutation have a 2.5 to 4.6 fold increase in AMD. Subjects 

homozygous for the mutation have a 5.6 to 7.4 fold increase in AMD (Klein et al., 

2005). 

 Von Hippel Lindau syndrome results in benign tumours of blood vessels, 

central nervous system, eyes, adrenal glands and renal cell carcinoma. Tyrosine to 

histidine substitutions (Y112H and Y98H in von Hippel-Lindau tumour suppressor 

protein (VHL)) prevent the binding between VHL and the hypoxia inducible 

transcription factor (HIF), resulting in overexpression of angiogenic growth factors 

and local proliferation of blood vessels (Zbar et al., 1996; Ohh et al., 2000).  

It is clear that substitution of tyrosine with histidine can have great effects on 

the biochemistry and stereochemistry of proteins. In some substitutions, the 

stereochemical properties of the substituent may be sufficiently similar that protein 

function is maintained and not every point mutation leads to a noticeable 

phenotypic effect. However, due to its rather unique acid-base properties described 

above, histidine does not substitute particularly well for other amino acids (Betts 

and Russell, 2003). Not every site in a protein is equally vulnerable to mutations. 

Some areas of a protein will remain functional even with multiple sequence 

changes, while other areas cannot be altered at all without serious consequences. 

Active centres of enzymes and residues involved in protein stability are functionally 

important and evolutionary conserved and are especially vulnerable to the effects of 

any mutation (Steward et al., 2003). Although not an enzyme active centre, the 

amelogenin ATMP domain is believed to be functionally important (see section 

1.3.4.1.1) and substitution of tyrosine 64 (in blue below) with histidine adds a third 

histidine to the domain which could dramatically alter amelogenin structure and 

function as observed in Y64H mutant mice.       
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…..Y P S Y G Y E P M G G W L H H Q…… 

 

The discussion sections 4.2 and 4.4 will discuss the results showing the impact of 

the Y64H mutation on the potential of amelogenin (with and without 32 kDa 

enamelin) to nucleate mineral in vitro.  

 

The mutation in amelogenin investigated in the murine model occurs at amino 

acid 64, the third tyrosine in the amelogenin trityrosyl amelogenin peptide (ATMP) 

motif. This third tyrosine is mutated to a histidine amino acid. Figure 11 compares 

the structures of the two amino acids. 

 

Tyrosine                                                       Histidine 

Figure 11.  The structures of tyrosine and histidin e amino acids at 
physiological pH. 

 

Tyrosine is partially hydrophobic so prefers to be buried in protein 

hydrophobic cores (Betts and Russell, 2003). Although essentially hydrophobic, the 

presence of the hydroxyl group allows tyrosine to participate in hydrogen bonding 

with other amino acids or ligands. This allows tyrosine to behave like a polar amino 

acid, such as arginine or lysine. However, tyrosine is overall less polar due to the 

presence of the non-polar C-C and C-H bonds in the phenolic side chain. This side 

chain allows tyrosine to be water soluble, even though it is partially hydrophobic. 

The aromatic side chain means tyrosine is involved in stacking interactions with 

other aromatic side chains. Tyrosine has a reactive hydroxyl group making it likely 

to be involved in interactions with non-carbon atoms. A common role for tyrosine 

(and serine and threonine) within intracellular proteins is phosphorylation. Protein 
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kinases frequently attach phosphates to these 3 residues as part of signal 

transduction pathways. 

Histidine is in fact an amino acid with an ionisable imidazole side chain having 

a pKa of 6.5.  Histidine is generally polar, but due to its chemical properties, it does 

not substitute particularly well with any other amino acid. Because its side chain  

pKa is near to physiological pH histidine is switched between the uncharged 

protonated and the charged un-protonated form on relatively small fluctuations in 

environmental pH. This flexibility has two effects; 1) ambiguity about whether it 

prefers to be buried in the protein core or exposed to solvent, and 2) histidine is the 

ideal residue to serve as a charge relay centre in a range of enzymes as the side 

chain can accept or donate protons.  

For example. in catalytic triads, the basic nitrogen of histidine is used to 

subtract a proton from serine, threonine or cysteine to activate it as a nucleophile. 

 The imidazole ring is aromatic at all pH values. It contains 6 pi electrons; four 

from 2 double bonds and 2 from a nitrogen lone pair. It can form pi stacking 

interactions but is complicated by the potential positive charge incurred when the 

side chain nitrogen is protonated.  

Tyrosine and histidine, along with phenylalanine and tryptophan, are aromatic 

amino acids in that they have aromatic side chains. Aromatic residues are proposed 

to participate in ‘stacking’ interactions (Hunter et al., 2001). Here numerous 

aromatic rings stack on top of one another such that their PI electron clouds are 

aligned. They can also play a role in binding to specific amino acids, such as 

proline. SH3 and WW domains use these residues to bind their polyproline-

containing interaction partners (Weisner et al., 2002).  

Looking at the genetic codes for tyrosine and histidine reveals that this amino acid 

mutation can actually be pin-pointed to a single base pair change. The mutation is a 

uracil to cysteine change in the first position of the RNA codon. Uracil and cysteine 

are both pyramidines, containing one small aromatic ring. 

 

1.4.3 Autosomal dominant amelogenesis imperfecta (A DAI) 
 Autosomal dominant forms of AI map to chromosome 4q11-q21. ENAM, 

AMBN and albumin all map to this same region (Hu et al., 2000; Dong et al. 2000). 

Autosomal dominant inheritance describes the route by which the mutation occurs.  

Two copies of the gene occur on the chromosomes, in this case chromosome 4, but 

autosomal dominant inheritance means that only one copy of the gene needs to be 
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altered for the associated phenotypic disease to manifest i.e. the mutated gene is 

dominant to the wild type gene. 

 Eight mutations have been identified in the ENAM gene which give rise to 

ADAI. These have a variety of phenotypic effects on the enamel. Some mutations 

decrease the amount of enamelin produced (Kida et al., 2002; Hart et al., 2003; Kim 

et al., 2005A) . Others result in a shortened or altered enamelin which results in 

shallow pits and horizontal grooves in the tooth enamel. Kida et al. (2002) identified 

a Japanese family with a single G deletion with a series of 7 G residues at exon 9 – 

intron 9 boundary of the enamelin gene. ENAM mutations result in hypoplastic 

enamel; thin enamel with spaced apart teeth. Figure 12 shows the human 

manifestation of this hypoplastic enamel. 

 

 

Figure 12. Hypoplastic enamel due to a mutation in the enamelin gene 
(photograph courtesy of Roger Shore). 

 

Figure 13 shows the enamelin gene and the locations of known mutations that 

cause AI in humans. The gene mutation and resulting protein alteration are given. 

The resulting AI type is also shown. Exon 2 is not found in humans, but is found in 

the rodent enamelin. 
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Figure 13. Schematic diagram of the enamelin gene s howing the genetic 
location of the identified mutations (g), the resul ting protein mutation 
(p), and the clinical enamel phenotype. and the res ulting enamel 
phenotype. 

 

1.4.4 Autosomal recessive amelogenesis imperfecta ( ARAI) 
 Kallikrein-4 maps to 19q13.4 and a mutation in the gene has been identified 

as causing autosomal recessive hypomaturation AI (Hart et al., 2004). Autosomal 

recessive inheritance means that both copies of the gene need to be  altered for the 

disease to manifest i.e. the wild type gene is dominant to the mutant gene. Three 

mutations have been identified in the MMP-20 gene that results in autosomal 

recessive AI (ARAI).  All three are single point mutations that prevent the secretion 

of functional MMP-20 protein (Kim et al., 2005B; Ozdemir et al., 2005; Kim et al., 

2006) . This results in other organic matrix proteins not being cleaved properly 

during amelogenesis, and results in soft enamel with abnormal crystal structure 

(hypomaturation AI). This causes teeth to be rough, discoloured and prone to 

breakage (Hart et al., 2004; Hu et al., 2005). 

The fact that these mutations in the genes for the enamel matrix proteins and 

proteases leads to defects in enamel formation underpins the importance of these 
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proteins in the biomineralisation process in tooth enamel development. Mutations in 

both the proteins and the proteases involved in amelogenesis lead to enamel 

defects, indicating that both the proteins and proteases are as important as one 

another in this finely orchestrated process. 

 

1.4.5 Other genes implicated in amelogenesis imperf ecta 

Mutations in the ‘family with sequence similarity 20, member A’ gene 

(FAM20A) map to chromosome 17q24.2. FAM20 consists of 3 members. FAM20B 

is a kinase involved in phosphorylation and is expressed during the maturation 

stage of amelogenesis (Koike et al., 2009; O’Sullivan et al., 2011). FAM20C is 

essential for bone development (Hao et al., 2007). FAM20A is expressed in the 

enamel organ and gingiva (O’Sullivan et al., 2011). Mutations in the FAM20A gene 

are associated with hypoplastic AI and gingival overgrowth, resulting in the 

retention of primary dentition and delayed eruption of the permanent dentition 

(O’Sullivan et al., 2011). 

Mutations in the family with sequence similarity 83, member H gene 

(FAM83H) map to chromosome 8 (8q24.3) and code a protein associated with 

intracellular vesicles and trans Golgi organelles (Ding et al., 2009). FAM83H is 

expressed in developing teeth but is not limited to teeth and is expressed in other 

tissues of the body (Kweon et al., 2013). Mutations in FAM83H result in autosomal 

dominant hypocalcified AI (Lee et al., 2011). So far, 16 mutations have been 

identified that are non-sense or frameshift mutations in exon 5, causing premature 

translation termination between Serine 287 and Glutamine 674 (Lee et al., 2011) 

and resulting in a truncated protein (Kim et al., 2008; Lee et al., 2008; Hart et al., 

2009; Wright et al., 2009; El-Sayed et al., 2010; Lee et al., 2011). 

The WD repeat containing protein 72 gene (WDR72) encodes for an 

intracellular protein involved in protein-protein interactions. A point mutation in exon 

15 (c.2358C>G) results in a premature stop codon manifesting as autosomal 

dominant recessive AI (El-Sayed et al., 2009, 2011). El-Sayed et al., 2011 

hypothesised that the late stage of enamel maturation is affected by this mutation 

due to ultrastructural analysis of deciduous teeth revealing a reduction in mineral 

density in erupted teeth and a difference in electron density compared to normal 

enamel. 

Distal-less homeobox 3 gene (encoding DLX3) maps to chromosome 17 (q21-

q22). DLX3 is a homeodomain transcription factor expressed in dental epithelium 

and mesenchyme, as well as the neural crest, hair follicles, placenta and epidermal 

cells (Beanan and Sargent, 2000). A two base-pair deletion results in a premature 
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stop codon, causing an 88 amino acid truncated protein, manifesting as an unique 

syndromic AI known as amelogenesis imperfecta hypomaturation-hypoplastic type 

with taurodontism (AIHHT) displaying teeth with thin, hard enamel and enlarged 

pulp chambers (Dong et al., 2005). 

As more families present with amelogenesis imperfecta phenotypes, it is likely 

that more gene candidates for AI will be discovered. This will all assist with 

expanding the existing knowledge about amelogenesis and the complex blueprint 

for biomineralisation in enamel. 

 

1.4.6 Syndromic and non-syndromic disease of enamel  
Even though the enamel defects noted with AI are more often than not seen in 

isolation, some forms do have associated anomalies within the oral cavity or other 

regions of the body (Cobourne and Sharpe 2013). Hart et al 2013 noted that 

autosomal recessive AI due to an ENAM mutation is associated with open bite of 

the jaws. Dong et al 2005 noted a DLX3 mutation that resulted in autosomal 

dominant AI also resulted in taurodontism.  MacGibbon syndrome is an autosomal 

recessive form of AI, manifesting as hypoplastic, thin or absent enamel and 

nephrocalcinosis (deposition of calcium in the kidneys) (MacGibbon 1972). 

A number of conditions also result in enamel defects as one of the phenotypic 

presentations.  

Syndromes 

Kohlschutter-Tonz syndrome presents as AI, yellow teeth, spasticity and 

developmental delays (Kohlschutter et al., 1974). Tuberous sclerosis results in 

enamel hypoplasia and multiple organ hamatomas (benign tumours) (van 

Slegtenhorst et al., 1997). Focal dermal hypoplasia manifests as enamel 

hypoplasia, skin atrophy and pigmentation, fat herniation, papillomas and 

anomalies of the digits (Grzeschik et al. 2007). Smith Magenis syndrome present as 

enamel dysplasia, facial anamalies, hearing loss and delay in speech (Slager et al., 

2003). Vitamin D-dependent rickets type 1 manifests as enamel hypoplasia with 

yellow-brown discolouration, hypocalcemia, hypophosphatemia, and impaired bone 

formation (Kitanaka et al., 1998). Automimmune polyendocrinopathy is a syndrome 

that results in enamel hypoplasia, chronic mucocutaneous candidiasis and multiple 

autoimmune endocrinopathies (Perinola et al., 1998). 

Tricho-dento-osseus (TDO) syndrome has hypoplastic and hypomature 

enamel, taurodontism and defects of bone, nails and hair (Price et al., 1998; Wright 

et al., 2008). Jalili syndrome is a rare autosomal recessive disease caused by 
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mutation in the conserved domain protein 4 gene (CNNM4) that presents with 

hypoplastic and hypomineralised enamel, and conerod dystrophy of the retina 

(Parry et al., 2009; Polok et al., 2009). Morquio syndrome, also known as 

mucopolysaccharidosis type IV A, is an autosomal recessive lysosomal storage 

disease (Kirirons and Nelson, 1990). It is caused by the accumulation of GAGs, 

such as keratin sulphate and chondroitin-6-sulphate, intracellularly, due to a 

mutation in galactosamine-6-sulphate sulphatase (GALNS) (Fukuda et al.,1992). 

Patients present with dental anomalies akin to hypoplastic AI and widely spaced, 

flared maxillary incisors and pointed posterior teeth, skeletal dysplasia and opacity 

of the corneas (Barker and Welbury, 2000;  Levin et al., 1975). Type III 

Dentinogenesis Imperfecta was first identified in a population in Brandywine, 

Maryland, US. Teeth are opalescent with marked attrition. The pulps of developing 

teeth are larger than normal, but become almost completely obliterated. Scanning 

electron microscopy shows a significant reduction in the number of dentin tubules 

on fractured dentin surfaces. Enamel pitting is also noted in patients with type III DI 

(Levin et al., 1983). 
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Aims and Objectives 

The research carried out in this project complements a larger programme of 

work funded by the Wellcome Trust.  This work uses tooth formation as a paradigm 

to study biomineralisation - specifically the role of the extracellular organic matrix in 

this process.  

The specific objectives for this doctoral thesis were to investigate the in vitro 

hydroxyapatite nucleating potential of enamel proteins (amelogenin and enamelin) 

and how these proteins subsequently regulate crystal growth. Recombinant 

proteins were generated for use in these studies so as to compare the effects of a 

specific mutation in mouse amelogenin (Y to H substitution at positon 64) identified 

by the group.  The mineral produced during these in vitro studies was characterised 

chemically and by electron microscopy so that the relationship between the nature 

of the matrix protein components and resulting mineral chemistry and morphology 

could be explored.  

The main focus is on a Y64H mutation in mouse amelogenin that has 

similarities to a human amelogenin mutation, known to cause amelogenesis 

imperfecta. This mouse mutation was used to investigate whether amelogenesis 

imperfecta is caused by the secreted protein behaving differently to wild type 

amelogenin during nanosphere formation and mineralisation, or whether the 

mutation causes non-secretion of the protein. The latter possibility was explored 

using quantitative real time PCR to determine amelogenin biology at the 

transcriptomic level. 

Below is an outline of the thesis and the areas investigated. 
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A number of hypotheses will be explored as part of this thesis. 

Hypothesis 1: Is the 32 kDa enamelin breakdown product is conserved across all 

species? The majority of studies to date have used the porcine 32kDa enamelin 

product due to its ready availability. To investigate this hypothesis, western blot 

analysis of porcine and rat enamelin will be used, as  will a bioinformatics 

exploration of enamelin sequences across many species. 

Hypothesis 2: The AI phenotype generated as a result of the Y64H amelogenin 

mutation in mice is a result of the mutated protein behaving differently upon 

secretion. To investigate this hypothesis, in vitro nucleation studies will be 

performed to explore the effect of the mutation on the ability of amelogenin, and 

amelogenin in conjunction with enamelin, to nucleate hydroxyapatite mineral. In 

vitro binding studies will also be performed using the wild type and Y64H mutant 

amelogenin to investigate the effect of the mutation on protein-protein interactions. 

Hypothesis 3: The AI phenotype generated as a result of the Y64H amelogenin 

mutation in mice is a result of the mutated protein being retained in the ameloblast 

and not being secreted correctly. Similar mutations in other proteins have resulted 
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in endoplasmic stress in cells, resulting in transcription and translation 

downregulation and ultimately apoptosis of the secretory cells.  Quantitative PCR 

and SEM analysis of wild type and Y64H mutant mice incisors will be performed to 

probe whether ER stress and the unfolded protein response could be responsible 

for the AI phenotype in Y64H mutant mice. 
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Chapter 2 

 
General materials and methods  

This chapter describes the techniques and materials used throughout the 

research including the production and purification of recombinant proteins, gel 

electrophoresis, staining and antibody blotting, production of labelled proteins, and 

culture of cells in vitro. Specific experimental detail relating directly to the 

experiments conducted will be explained in detail in this chapter.  

All chemicals and reagents were from Sigma-Aldrich, Poole, Dorset, UK 

unless otherwise stated. 

2.1 Recombinant protein production 

2.1.1 Production of recombinant 32 kDa enamelin pro tein 
The sequence for the human 32 kDa enamelin protein (figure 14 below) was 

inserted into a pCepPU vector. This contains a BM-40 signal which allows the 

protein to be secreted. The vector was inserted in to human embryonic kidney cells 

(293-EBNA) which were then cultured in serum free medium (Rock et al., 2004; 

Marson et al., 2005). The use of eukaryotic cells maintains the post translational 

modifications of the proteins. Following intracellular transcription and translation, 

the protein was secreted into, and recovered from, the serum free media. The 

recovered protein was confirmed by mass spectrometry and western blot analysis. 

Protein production was performed by Dr J. Maycock at Manchester University. 

 

PWP IPQRPPTAF GRPKFSNEEG NPYYAFFGYH GFGGRPYYSE 

EMFEDEYEKPK EKPPKPEDP PPDDPPPEAS TNTVPDANA TQSOPEGGND 

TSPIGNTGPG PNAG 

Figure 14: The amino acid sequence for the 32 kDa r ecombinant mouse 
enamelin. The amino acids in red and underlined are  the sites of the 
post-translational modifications. 
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2.1.2 Production of recombinant wild type and Y64H mutant 
amelogenin protein 
An overview for the production process for wild type and Y64H mutant 

amelogenin recombinant proteins is shown in figure 15.   

In brief, in Step 1 full length wild type and mutant Y64H mouse amelogenins 

were expressed using a pET28 expression vector (Novagen, Merck KGaA, 

Darmstadt, Germany) modified with a HRV 3C protease site  and HIS tag in 

Rosetta DE3 E.coli cells (Novagen, Merck KGaA, Darmstadt, Germany).  In Step 2, 

the cells were harvested by centrifugation and lysed using 6M guanidine-HCl. Step 

3, the proteins were purified using nickel affinity chromatography (His Trap Nickel 

column, GE Biosciences, Little Chalfont, Bucks, UK) in the presence of 8M urea. In 

Step 4 the histidine tag was removed by incubating the protein with HRV 3C 

protease (A.G. Scientific, Inc., San Diego, California) overnight in 50 mM tris buffer 

(pH 8.0) at a concentration of 25µg/mL. Step 5 was the further purification of the 

cleaved and uncleaved recombinant amelogenin proteins by preparative SDS-

PAGE (Bio-Rad Model 491 Prepcell, Bio-Rad, Hemel Hempstead, UK) using an 8 

cm 12% polyacrylamide gel run at a constant power of 1 Watt. Fractions were 

collected over 300 minutes at a flow rate of 70 µL/min and fractions containing the 

cleaved purified recombinant amelogenin protein were identified by standard SDS 

PAGE. This was step 6. In Step 7 the relevant fractions where the cleaved and 

uncleaved recombinant proteins were located were desalted against 125 mM formic 

acid using a Hi Prep 26/10 desalting column (GE Biosciences, Little Chalfont, 

Bucks, UK). This resulted in step 8; purified, cleaved and uncleaved recombinant 

amelogenin protein. The uncleaved protein was returned to step 4 for further 

cleavage. The cleaved protein was freeze-dried and protein identity confirmed by 

mass spectrometry and western blotting (step 9).  
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Figure 15:  Sequence for recombinant amelogenin pro tein purification. The 
same procedural steps were used for recombinant wil d type and 
recombinant Y64H mutant amelogenin production. 

 

Step 1: The sequences for wild type and mutant amelogenin were inserted 

into a PET28 expression vector with a HRV 3C protease site (Leu-Glu-Val-Leu-

Phe-Gln-Gly-Pro), and transfected into Rosetta DE3 E.coli cells. This was spread 

onto an agar plate and incubated overnight at 37°C.  Resulting colonies were picked 
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with an inoculation loop and incubated in 10 mL tryptone soya broth for 7 hours at 

37°C with shaking (200-300 rpm). This resulting ino culant was used as a starter 

culture or for creating glycerol stocks for future use.  Glycerol stocks were created 

by mixing 0.5 mL starter culture with 0.5 mL 50% glycerol in a cryovial. These were 

stored at -80°C until needed.  

Cells were cultured in 5 x 50 mL culture medium in 2 L conical flasks. The 

medium consisted of 2.5 g yeast extract and 13.5 g tryptone soya broth in 450 mL 

distilled water. This was autoclaved before use and supplemented with 2.5% 1 M 

Na2HPO4, 2.5% 1 M KH2PO2, 5% 1 M NH4Cl, 0.5% 1 M Na2SO4, 0.4% 1 M MgSO4, 

0.1% CaCl2, 0.5% Glycerol, 0.2% Lactose, 0.25% 1 M Glucose, 500 µL of 30 mg/ml 

kanamycin and 500 µL 34 mg/mL chloramphenicol. All supplements were sterilised 

before use. One 10 mL starter culture was added to each flask, and the flask was 

incubated overnight at 37°C with shaking. 

Step 2: The following morning, the cultures were centrifuged at 10,000 rpm for 

10 minutes. The supernatant was discarded and the cell pellet lysed in 6 M 

guanidine hydrochloride-HCl buffer pH8.0 (15 mL of 10 x stock buffer (68.995 g 

NaH2PO4 and 6.0 g tris volumised to 500 mL with distilled water) plus 85.95 g 

guanidine hydrochloride, volumised to 150 mL with distilled water), containing 3 

protease inhibitor tablets per 150 mL buffer (Roche, Welwyn, Herts Uk). The pellets 

were vortexed to smash open the cells. The slurry was then centrifuged for 1 hour 

at 20,000 rpm. After centrifugation, the supernatant was filtered using a disposable 

filter (Nalgene, Thermo Fisher Scientific, Loughborough, UK). 

Step 3: Following centrifugation and filtration as described above, the filtrate 

was loaded onto a 5 mL Hi-Trap chelating column (GE Biosciences, Little Chalfont, 

Bucks., UK) primed with nickel sulphate. The protein attached to the column via the 

HIS tag, a series of 6 histidines. The protein was eluted with 8M urea buffer 

containing 0.4% imidazole (10 ml 10 x tris buffer (30.28 g tris plus 116.8 g sodium 

chloride, volumised to 500 mL with distilled water) plus 2.72 g imidazole and 48.08 

g urea, volumised to 1000 mL with distilled water and the pH adjusted to 8. The 

eluent was then run on the Hi-Prep 26/10 desalting column on the AKTA explorer 

FPLC (GE Biosciences, Little Chalfont, Bucks., UK), using degassed 125 mM 

formic acid as the buffer. 

Step 4: The protein fractions obtained from FPLC were freeze dried using a 

Christ freeze dryer (SciQuip, Shrewsbury, UK). To cleave the HIS Tag, the 

lyophilised protein was resuspended at 2 mg/mL in 50 mM tris-HCl pH 8. Cleavage 

occurred with the addition of HRV 3C protease (human rhinovirus 3C protease, a 



- 81 - 

cysteine protease that cleaves between Gln and Gly) (A.G. Scientific, San Diego, 

California) followed by overnight incubation at 4°C .  Confirmation of cleavage was 

performed by running a small fraction of the cleaved protein on a SDS-PAGE mini-

gel and staining with Coomassie Blue stain (Instant Blue ready to use Coomassie 

stain, Expedeon, Cambridge)(see below).  

Step 5: The cleaved protein was then run down the PrepCell 491 (Bio-Rad, 

Hemel Hempstead, UK) to separate cleaved and uncleaved protein. In order to 

prepare purified fractions from cleaved amelogenin, preparative SDS- 

polyacrylamide gel electrophoresis was used (discontinuous buffer system 

analytical SDS-PAGE). Separation of individual protein components was carried out 

on the basis of molecular size using SDS-PAGE according to the method of 

Laemmli (1970). The resolving gel (15% acrylamide containing 3% bisacrylamide in 

1.5 M Tris-HCl buffer, pH 8.8, 0.1% SDS) was cast in a 37 mm diameter tube using 

the model 491 Prep Cell (Bio-Rad, Hemel Hempstead, UK) according to the 

manufacturer’s instructions (total volume of gel used = 50 mL). The resolving gel 

contained 20% glycerol, allowing the stacking gel layer to be overlaid immediately. 

The stacking gel comprised of 10 mL 4% acrylamide (3% bisacrylamide in 0.5 M 

Tris-HCl, pH 6.8, 0.1% SDS) and was overlaid with water-saturated butan-2-ol. The 

gel was left to polymerise overnight at room temperature. Maintenance of the gel at 

room temperature during polymerisation of the gel was achieved by circulating 

water between a reservoir and the cooling core within the gel tube using a 

recirculation pump. This prevented excessive heat build up and assisted in the 

formation of uniform gels. The water-saturated butan-2-ol was removed and the top 

of the gel washed with SDS running buffer. Each 2 mL of HRV-3C treated 

recombinant amelogenin was mixed with 500 µL of 4 x SDS sample buffer 

(containing bromophenol blue) (see recipe below) and loaded onto the top of the 

gel. Electrophoresis was performed at 12 watts constant power at room 

temperature with running buffer circulating through the cooling core. Once the 

bromophenol blue dye front of the protein loading reached the bottom of the gel 

(approximately 6 hours) the elution pump was turned on and set to elute at 0.75 

mL/min with the fraction collector collecting samples every 10 minutes. A total of 80 

fractions were collected. After collection, every third fraction was re-electrophoresed 

by diluting 15 µL of the fraction with 5 µL of 4x SDS sample loading buffer 0.625M 

Tris-HCl, 10% glycerol, 2% SDS, 0.00125M bromophenol blue) and running on 

12% SDS-PAGE mini-gels. This allowed the specific fraction location of proteins of 

interest to be identified. Fractions with similar protein molecular weight size content 

were pooled together. These were then desalted using an AKTA explorer FPLC 
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system (GE Biosciences Little Chalfont, Bucks., UK) and a Hi-prep™ 26/10 

desalting column and 0.125 M formic acid. The desalted protein was then freeze-

dried and used for further experiments. 

 

 

Figure 16.  Schematic diagram of the Bio-Rad PrepCe ll 491 in action. 

 

 

Figure 17.  Schematic diagram of the flow inside th e Bio-Rad PrepCell 491. 

 

Step 6: SDS-PAGE gels of the fractions were run and silver stained to 

visualise the proteins Separation of proteins was carried out on the basis of 

molecular size using SDS-PAGE based on the procedure described by Laemmli 
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(1970). Gels were cast in Protean Tetra mini gel rigs (Bio-Rad, Hemel Hempstead, 

UK) according to the manufacturer’s instructions. The resolving gel consisted of 

12% total monomer (acrylamide and N’N’-bis-methylene-acrylamide (bisacrylamide) 

of which 3% was bisacrylamide) in gel buffer (1.5M Tris-HCl, pH 8.8, 0.1% SDS) 

with a stacking gel of 4% total monomer (3% bisacrylamide) in gel buffer (0.5M Tris-

HCl, pH 6.8, 0.1% SDS). Once polymerisation was complete, the gel surface was 

washed well with 1 x SDS running buffer (25 mM Tris, 0.192 M glycine, 0.1% SDS, 

pH 8.3).  Recombinant amelogenin proteins were dissolved in SDS sample buffer 

(160 mM Tris-HCl, pH 6.8, 2% SDS, 26% glycerol, 0.1% bromophenol blue) to a 

concentration of 1 µg/µl and heated at 90°C for 2 m inutes prior to loading. 

Molecular weight markers covering the range 2 to 250 kDa (Precision protein 

standards, Bio-Rad) were loaded at 5 µL per lane. Gels were run at room 

temperature using 1 x SDS running buffer at 200 V constant voltage until the blue 

dye front reached the bottom of the gel (approximately 45 minutes). After removal 

from the glass plates, the gels were either stained in Coomassie blue R250 (Instant 

Blue Stain, Expedeon Ltd, Babraham Hall, Cambs., UK) or silver stained. 

Coomassie blue is a triphenylmethane dye that was first used to visual proteins in 

polyacrylamide gels by Meyer and Lamberts (1965). The Coomassie blue dye binds 

to proteins in the gels by a combination of van der waals bonds and electrostatic 

bonds to form strong non-covalent complexes. The formation of this dye-protein 

complex allows the blue colour to be visualised due to stabilisation of the negatively 

charged anionic form of the dye. The number of dye molecules binding to the 

proteins in the gel is semi-quantitative as the Coomassie blue dye binds more 

strongly to basic amino acids than acidic amino acids. InstantBlue Coomassie stain 

was provided ready to use. The gel was briefly washed with distilled water prior to 

placing into Coomassie stain, sufficient to cover the gel. The gel was incubated in 

Coomassie stain at room temperature with shaking for a minimum of one hour 

(overnight if applicable), Following incubation in Coomassie stain, the stain was 

decanted and the gel briefly washed in distilled water to remove any excess stain 

prior to scanning. For silver staining, the gel was placed into a solution of DL-

Dithiothreitol (DTT) (4 µL 1M DTT in 100 mL distilled water) for 20 minutes. The 

DTT solution was removed and the gel briefly washed in distilled water, before 

staining in a 0.2% solution of silver nitrate for 20 minutes. The silver nitrate solution 

was removed and the gel briefly washed in distilled water. A small amount of 

developer solution (3% sodium carbonate, 0.5% formaldehyde (37%)) was added to 

the gel and discarded when the solution turned black. Further developer was added 

until the bands became visible. The gel was stored in 10% acetic acid. 
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Step 7: The cleaved and uncleaved fractions were pooled separately and run 

down the desalting column. The resulting fractions were pooled and freeze dried. 

The uncleaved samples can be cleaved again with HRV 3C protease (back to step 

4). 

Step 8: The purified, cleaved recombinant wild type and Y64H mutant 

amelogenin proteins were then used in three ways. For confirmation of identity, 

samples of the recombinant amelogenin proteins were subjected to mass 

spectrometry and western blotting (step 9 below). Once the correct identity was 

confirmed, the recombinant amelogenin proteins were used in in vitro mineral 

nucleation studies (section 2.2) and in vitro protein- protein binding studies (section 

2.3). 

Step 9: The identification of the recombinant amelogenin proteins was 

confirmed by mass spectrometry and western blotting. 

2.1.2.1 Mass spectrometry 

The molecular weights of the recombinant proteins were identified by time of 

flight mass spectrometry. A small sample of purified lyophilised protein was sent to 

the mass spectrometry service within the University of Leeds. Dr James McNult ran 

the fractions on Q-TOF MS/MS – tandem electrospray time of flight mass 

spectrometry- to give an accurate molecular weight for the proteins. 

2.1.2.2  Western blotting 

Western blotting uses antibodies raised against specific proteins to permit a 

more specific protein identification following separation on SDS-PAGE. 

Recombinant amelogenin proteins were loaded and run on SDS-PAGE as 

described in step 6 above and transferred onto nitrocellulose membrane (Geneflow, 

Fradley, UK) using a transblot module (Bio-Rad) using Towbin’s transfer buffer 

(0.025M Tris, 0.192M glycine, 10% methanol, pH 8.6) (Towbin et al., 1979). 

Transfer occurred at 100 volts for 1 hour. The nitrocellulose membrane was then 

placed into 3% non-fat milk powder (Bio-Rad, Hemel Hempstead, UK) in tris 

buffered saline (TBS), and incubated overnight at room temperature. This blocks 

non-specific background proteins from reacting with the antibodies. The block was 

removed and the membrane thoroughly washed in TBS containing 0.05% Tween-

20 (TBS-T). Primary antibody (rabbit anti-amelogenin teleopeptide (Eurogentec)) 

was applied at 1:1000-1:3000 dilution in 1% non-fat milk in TBS, and incubated for 

1 hour at room temperature with shaking. The primary antibody was removed and 

the membrane thoroughly washed in TBS-T. The secondary antibody was applied 

at 1:3000 dilution in 1% non-fat milk in TBS. The secondary antibody was selected 
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on the basis of it being species specific to the primary antibody, e.g. goat-anti-rabbit 

secondary antibody.  All secondary antibodies used in this thesis were conjugated 

to horse radish peroxidise (HRP) to permit visualisation following reaction with a 

chromogenic substrate. The membrane was incubated for 1 hour at room 

temperature with shaking in the secondary antibody. The membrane was then 

thoroughly washed before applying the colour developer. One ml of 25 times 

concentrated alkaline phosphatase developer concentrate was mixed with 24 mL 

ddH20 and 0.25 mL reagent A (NBT – nitroblue tetrazolium) and 0.25 mL BCIP (5’-

bromo-4-chloro-3-indoyl phosphate). Cross reacting protein bands stained purple. 

2.2 In vitro mineral nucleation studies using recombinant 
amelogenin and enamelin proteins 

In order to determine the ability of the recombinant amelogenin proteins (wild 

type and Y64H mutant amelogenin) and recombinant 32 kDa enamelin protein to 

nucleate hydroxyapatite mineral, an in vitro steady state agarose gel system was 

used. The system used in this thesis was based on the system used by Hunter and 

Goldberg (1993), although several different methods have been used by 

researchers worldwide to investigate the mineral nucleating properties of 

recombinant ECM proteins (see discussion section 4.2 and appendix 1). The in vitro 

steady state agarose system was used by Hunter and Goldberg to investigate the 

mineral nucleating properties of bone extracellular matrix proteins.  In this particular 

steady state system, the recombinant protein(s) of interest was immobilised in an 

agarose gel plug in a central chamber. Either end of the gel was capped with a 

piece of dialysis membrane. Reservoir chambers were placed on either end of the 

central chamber and the whole block screwed tightly together to prevent leakage of 

buffer. Into one reservoir chamber, buffer containing a supersaturation level of 

phosphate was pumped at a constant rate, and into the opposite reservoir chamber 

buffer containing a supersaturation level of calcium was pumped. The calcium and 

phosphate ions diffused across the agarose gel and where they encountered 

protein, the potential for mineral nucleation occurred. If the recombinant protein was 

able to nucleate mineralisation, a white deposit was visible in the agarose gel. The 

identity of this mineral deposit was interrogated using quantification of phosphate, 

and energy dispersive X-ray spectoscopy (EDX), and the structure of the mineral 

crystals examined by scanning electron microscopy and transmission electron 

microscopy. 
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2.2.1 Steady state agarose gel system 
 Modified dialysis cells were used based on the system of Hunter and 

Goldberg (1993). The devices were constructed out of 1cm thick Perspex. The two 

reservoir chambers had in/out ports for buffer flow and a 1 mL capacity reservoir. 

The central chamber piece had a hole drilled all the way through it, with a 1.0 cm 

diameter and 0.95 mL capacity. All three pieces were held together with galvanised 

screws and wing nuts (figure 18). Each modified dialysis cell contained either a 

negative control (gel and buffer only), positive control (gel, buffer and PGA) or 

recombinant protein (gel, buffer and recombinant protein at certain concentrations). 

Triplicates of the negative controls, positive controls, and recombinant proteins 

(each concentration) were connected together to form the steady state agarose 

system. Each steady state system set up was incubated for 7 days at 37⁰C with a 

constant rate of calcium buffer pumping through one side of the dialysis cells, and a 

constant rate of phosphate buffer pumping through the opposite side of the dialysis 

cells. 

 

Figure 18.  Exploded view of the modified dialysis  cell used for the steady 
state agarose gel system.  The end buffer reservoir  chambers show the 
in/out ports in blue. A buffer reservoir is visible  in each end piece. The 
central gel chamber piece shows the hole through th e middle into which 
agarose gel is poured. 

Buffer reservoirs 

Central gel         
chamber 
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 The system uses metastable, supersaturated (with respect to hydroxyapatite) 

conditions and is very sensitive to concentration changes. Prior to use, all Perspex 

components and glassware were washed in Decon 90 (Decon Laboratories, Hove, 

UK), rinsed with distilled water, acid washed (0.1 M HCl overnight) and further 

rinsed twice with distilled water. The central gel chambers were silinised by dipping 

in dichlorodimethylsilane (DCMS) for a few seconds in a fume hood. They were 

allowed to air dry and rinsed in distilled water. They were then wiped down with lint-

free tissue. Any dust or particles can cause nucleation, giving false positive results. 

 The reservoir of one buffer reservoir end piece was covered by a piece of 

1,000 Dalton molecular weight cut off dialysis membrane (Spectrapor 7 membrane, 

VWR 132105, VWR, Lutterworth, Leics., UK). The central gel chamber was placed 

over this and held in place with 2 screws/nuts. Low melting point sea plaque 

agarose (Bio-Rad, Hemel Hempstead, UK) was dissolved at 2% in distilled water, 

by microwaving, then cooled and maintained at 50-55°C.  It was important to 

maintain the temperature below 60⁰C or the recombinant proteins and PGA positive 

control would be denatured when added to the agarose gel. The 2% agarose 

solution was mixed with an equal volume of double concentrated steady state buffer 

(40 mM HEPES, 300 mM NaCl, pH 7.4), vortexed and maintained at 50-55°C. This 

was the negative control. The positive control was prepared in the same way as the 

negative control but contained 10 µg/mL Poly-L-glutamic acid (PGA – Sigma 

P4886). The test samples (recombinant 32 kDa enamelin at 10 µg/mL, 5 µg/mL, 2.5 

µg/mL and 1 µg/mL) were prepared as per the PGA positive control. Bradford assay 

analysis (Bio-Rad, Hemel Hempstead, UK) allowed the recombinant 32 kDa 

enamelin to be diluted to a stock solution of 100 µg/mL with distilled water. The 

recombinant 32 kDa enamelin was further diluted to the concentration described 

above with steady state buffer (20 mM HEPES, 150 mM NaCl, pH 7.4). For a 

description of the Bradford assay, see section 2.3.3 in the protein-protein binding 

assay section. 

 All samples were carefully sonicated to remove any air bubbles. Once 

prepared, 0.95ml of each sample was pipetted in triplicate into the  central gel 

chambers, so that the solution was slightly higher than the height of the cavity (to 

allow for contraction when cooled). Once cool, another piece of dialysis membrane 

was placed over the central piece and the other end piece place over. The devices 

were assembled with 4 screws/nuts per device and connected in series with 180 

PVC tubing (Saint-Gobain Performance Plastics, Bristol, UK). A calcium buffer (20 
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mM HEPES, 150 mM NaCl, 6.5 mM Ca (NO3)2.4H2O, pH7.4) was pumped through 

the devices on one side, and a phosphate buffer (20 mM HEPES, 150mM NaCl, 

3.9mM Na2HPO4.2H2O, pH7.4) was pumped through the devices on the other side 

counter currently. A peristaltic pump was used at a flow rate of 10 mL/hour (1 

mL/hour/cell). The entire apparatus was incubated at 37°C for 7 days. A schematic 

showing one of the modified dialysis cells is shown in figure 19. 

 

Figure 19. Diagram of a single steady state cell lo oking down onto the top of 
the cell Buffers containing calcium and phosphate a re circulated 
counter currently. The agarose gel in the central g el chamber is 
separated from the buffer reservoir chambers by dia lysis membrane. 
Agarose gel is present in the centre portion only. Diagram provided by 
Ashley Firth, Department of Oral Biology. 

 

2.2.2 Phosphate assay 
The phosphomolybdate method is a common technique for the analysis of 

inorganic phosphate  (Pi  or PO4-3). The assay is based upon the reaction of Pi 

with an excess of molybdic acid (generated by combining sulphuric acid with 

ammonium molydate) which produces the colourless phosphomolybdous acid 

complex. The colour generated is quite stable and follows Beer’s law (the 

absorbance measured is proportional to the concentration of the inorganic 
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phosphate). This method is restricted to measurement of inorganic phosphates. 

Organophosphates do not react with molybdic acid and do not produce colour in the 

assay (Smith and Ames, 1966).  

The degree of mineral deposition in the gels was determined by phosphate 

analysis. After incubation, the steady state system apparatus was dismantled and 

the agarose gels centres removed from the central chamber and photographed. 

Any presence of mineralisation (a milky white precipitate)  was noted. One of each 

triplicate gel sample (positive control, negative control or recombinant protein) was 

used for SEM/TEM studies and two ashed for phosphate analysis. For ashing, the 

individual agarose gels were placed into separate small conical flasks, 5 mL of 

concentrated nitric acid was added and the agarose gel in acid boiled gently until 

less than 1 mL remained. This was then made up to 10 mL with distilled water and 

stored at 4°C in air tight containers until needed.  

Phosphate standards of 0-100 µM were prepared from a stock solution of BDH 

phosphate standard (10 mM). Three hundred µL of blank/standard/sample was 

mixed with 0.7 mL of the colour developer (10% ascorbic acid mixed with 6 parts of 

0.42% ammonium molybdate.4H2O in 0.5M H2O) and incubated at 37°C for 2 

hours. Two hundred  µl aliquots, in triplicate, were placed into the wells of a 96-well 

plate and absorbance (minus blanks reading) read at 820 nm (Dynex plate reader, 

Dynex Technologies, Worthing, UK).  

The standards were used to construct a linear calibration curve from which 

phosphate content of the samples was determined. 

Figures 20 and 21 show the white mineral deposit in situ within the apparatus, 

after incubation of the steady state agarose gel system for 7 days at 37⁰C. 
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Figure 20.  Picture of a dialysis cell fully assemb led, post steady state run. 
Gel is present in the centre and white mineral prec ipitate is visible.  

 

Figure 21. Side view of the fully assembled dialysi s cell after a steady state 
run. A band of white mineral precipitate is clearly  visible in the centre 
gel. 

 

2.2.3 Scanning electron microscopy (SEM) 
 To investigate the morphology of the mineral crystals nucleated in the 

presence or absence of recombinant proteins, electron microscopy (both scanning 

and transmission) was used. The areas of the agarose gels containing the visible 

mineral precipitation were excised using a razor blade, and was then cut in half. 

One piece of agarose gel containing the mineral deposit was prepared for SEM by 

Gel plug in situ 

Mineral   

precipitate 

in gel plug 
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washing with water taken to pH 10 with ammonium hydroxide. The agarose gel 

piece was then incubated in 6% sodium hypochlorite overnight or until the gel 

disappeared. The released mineral crystals were pelleted by centrifugation and 

washed again with water at pH 10. The crystals were finally resuspended in 

absolute ethanol. A 50 µL aliquot was placed onto a SEM stub and allowed to air 

dry before vacuum drying overnight. Samples were sputter coated with 5 nm of gold 

for SEM using a JEOL JSM35 Genie Scanning Electron Microscope (SEM), or 5 nm 

of platinum for SEM using a Leo 1530 field emission gun scanning electron 

microscope (FEGSEM – GEMINI, Oxford Instruments).  

 

2.2.4 Energy dispersive X-ray (EDX) spectroscopy 
The chemical composition of the recovered mineral crystals was analysed 

using energy dispersive X-ray (EDX) spectroscopy using the JEOL JSM35 Genie 

Scanning Electron Microscope. 

 

2.2.5 Transmission electron microscopy (TEM) 
To corroborate the morphologies of the mineral crystals nucleated by 

recombinant proteins seen by SEM analysis, TEM was also used. The second half 

of the agarose gel containing the mineral deposits excised as described in section 

2.2.3  was washed with water at pH 10 and fixed in 2% glutaraldehyde (buffered at 

pH 7.3 by 0.1M sodium cacodylate) for 2 hours at ambient temperature. The fixed 

agarose gel pieces containing mineral deposits were then rinsed four times in 0.1M 

sodium cacodylate buffer (pH 7.3). The fixed agarose gel pieces containing mineral 

deposits were then washed twice with pH 10 water, and dehydrated through a 

series of ethanol solutions; 30 minutes in each of 30%, 50%, and 70% ethanol , two 

times for 30 minutes in 90% ethanol, and three times for 30 minutes in 100% 

ethanol. The fixed agarose gel pieces containing mineral deposits were then 

embedded in LR white resin in beem capsules. 

 Ultra-thin sections of 50-70 nm were cut using an ultra-microtome and 

mounted onto 300-mesh carbon/formavar coated copper EM grids. The sections 

were viewed using a Philips E-400 transmission electron microscope at varying 

magnifications. 
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2.3 Protein- protein binding assays 

To investigate whether the Y64H mutation in amelogenin was a loss of 

function mutation, impacting on the ability of the protein to form the ECM for 

mineralisation, in vitro binding assays were used. The recombinant wild type and 

Y64H mutant amelogenin proteins were used in a modified ligand-binding platform 

(based on a FITC-FITC alternative system to ELISA, Harmer and Samuel., 1989) to 

determine the ability of the recombinant protein to bind to itself and other ECM 

proteins 

 

2.3.1 Production and labelling of recombinant prote ins 
Amelogenin wild type and Y64H mutant recombinant proteins were produced 

as previously described (see general materials and methods section 2.1.2). Correct 

molecular weight was confirmed by mass spectrometry, and the nature of the 

protein was confirmed by western blot analysis. 

 Fluorescein isothiocyanate (FITC) labelling was performed on the 

recombinant proteins, as described in section 2.3.2 below. Analysis of fluorescence 

was performed by SDS-PAGE analysis. 

 Unlabelled and FITC labelled proteins were freeze-dried before use. 

Lyophilised proteins were stored at -20°C prior to use. 

 

2.3.2 Fluorescein labelling of recombinant amelogen in proteins 
Fluorescein isothiocyanate (FITC) (Sigma, Poole, Dorset, UK) was used to 

add a fluorescent tag to recombinant amelogenin proteins for use in protein binding 

experiments.  Protein was dissolved in 0.1M sodium carbonate buffer (pH 9) to give 

a final concentration of 4 mg/mL of protein. FITC was dissolved in anhydrous 

dimethyl sulphoxide (DMSO) to give a final concentration of 1 mg/mL. The FITC 

solution was prepared fresh for every reaction. For every 1 mL of protein solution, 

50 µL of FITC was added slowly in 5 µL increments, while continuously stirring. The 

mixture was then incubated in the dark at 4°C, stir ring continuously. After 6 hours 

incubation, ammonium chloride was added to give a final concentration of 50 mM. 

Incubation continued for a further 2 hours. The FITC-labelled protein was then 

dialysed against PBS for 72 hours at 2-8⁰C, changing the buffer every 24 hours. 

Slide-a-lyser™ cassettes were used for dialysis (Pierce, Thermo Fisher Scientific, 

Loughborough, UK). A 5 µL sample of labelled protein was run on an SDS-PAGE 

mini-gel, and viewed under dark light (dark light reader – Merck KGaA, Darmstadt, 
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Germany) to confirm fluorescence. The labelled protein was then freeze-dried prior 

to further use. 

 

2.3.3 Bradford assay to determine protein concentra tion 
The Bradford assay is a quick and sensitive method for determining 

microgram quantities of protein in a solution. It utilises the principle of protein dye 

binding by measuring the colour change of Coomassie Brilliant Blue G-250 dye in 

response to varying concentrations of protein. The dye binds primarily to basic 

(especially arginine) and aromatic amino acids in the protein sequence. The greater 

the concentration of protein, the more intense blue colour is seen in the reaction 

(Bradford, 1976). 

The Bio-Rad Quick Start Bradford assay (Bio-Rad, Hemel Hempstead, UK) 

was used to confirm the recombinant protein concentrations prior to use in further 

experiments using a 96-well plate format.  Seven concentrations of bovine serum 

albumin (BSA) were used as standards. Concentrations of 0.125, 0.25, 0.5, 0.75, 

1.0, 1.5 and 2.0 mg/mL BSA were used to produce a standard curve.  These, and 

the unknown concentrations of recombinant protein, were mixed 50:50 with the 

Quick Start Bradford reagent. This was incubated for 5 minutes before aliquoting in 

triplicate into the wells of a clear 96-well plate. The plate was read at 595 nm on the 

plate reader (Dynex Technologies, Worthing, UK) and the protein concentrations 

determined by interpolating the absorbance values for the unknown protein 

concentrations against the BSA standard curve values. 

 

 2.3.4  Binding assays 
Several combinations and concentrations of proteins were used to investigate 

recombinant amelogenin protein binding to recombinant amelogenin protein. The 

experimental procedure remained the same for all. Wild type or Y64H mutant 

recombinant amelogenin was dissolved in 0.1M sodium carbonate buffer (pH 9). 

One hundred microlitres of unlabelled protein was placed into the wells of the 

specialized plate in triplicate.  Microfluor 2 (7205 – Thermo Fisher Scientific, 

Loughborough, UK) polystyrene plates were used for all of the binding assay 

studies. These were a black plate to reduce background signal to noise, to improve 

assay sensitivity, to minimize crosstalk and prevent light piping between the wells. 

The plates have a slightly hydrophilic surface for increased binding of biomolecules 
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with a hydrophilic/hydrophobic character, such as proteins. The plates have a 96-

well format. 

The plates were incubated overnight at 4°C. The unb ound, unlabelled protein 

was removed and the plate was washed three times with TBS-T (tris buffered saline 

containing 0.05% Tween-20). The potential for non-specific binding was then 

blocked by applying 100 µL 1% BSA in TBS for 1 hour at room temperature. The 

blocking solution was removed and the plate washed three times with TBS-T. FITC-

labelled wild type or Y64H mutant amelogenin was dissolved in 0.1M sodium 

phosphate buffer (pH7). One hundred microlitres of the FITC-labelled protein was 

applied to the wells of the plate, and the plate was incubated for 2 hours at room 

temperature. The plate was read on an Ascent Fluoroskan plate reader (Thermo 

Fisher Scientific, Loughborough, UK) after washing three times with TBS-T to 

remove any unbound, FITC-labelled protein. After washing, 100 µl distilled water 

was placed into the wells prior to reading. Excitation of fluorescence was achieved 

at 488 nm and emission at 538nm. Ascent software was used to analyse the data. 

The system has sensitivity of 0.01 RFU (relative fluorescence units). 
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2.4 Enamelin breakdown studies  

The majority of studies into enamelin use the 32 kDa enamelin breakdown 

product. As described in the introduction (section 1.3.4.3) the major enamelin 

processing product is the 32 kDa enamelin, and due to the ready availability from 

the meat industry, the porcine 32 kDa enamelin is the most commonly used 

enamelin for enamel ECM studies. To investigate whether the 32 kDa enamelin 

processing product is the major enamelin product across species, the enamel 

organs from pig and rat teeth were extracted and the molecular weights of the 

breakdown products over time investigated by SDS-PAGE and western blotting. 

 

2.4.1 Extraction of the enamel organ from rat incis ors 
Male Wistar rats of approximately 150 g were euthanized by CO2 inhalation 

and the lower incisors dissected from the lower mandibles. The enamel organ was 

gently wiped with damp tissue and left to air dry for one minute to expose the white 

opaque zone. This white opaque zone layer represents the start of the maturation 

stage in amelogenesis resulting from the hugely hydrated porous tissue drying out 

on exposure to air (Hillier et al., 1975). The developing enamel was carefully 

dissected with a scalpel in to the early secretory (S1), secretory (S2), transition (T) 

(all 1.5-2 mm sections apical to the white opaque zone), the white opaque zone 

(early maturation –M1), mid-maturation (M2) and late maturation (M3). All enamel 

sections were stored at ≤-65°C until needed. 

 

2.4.2 Extraction of the enamel organ from pig molar s  
Pigs of approximately 6-months old were euthanized by anaesthetic overdose 

by the University of Leeds animal house. The lower mandibles were removed and 

the molar teeth removed from the lower mandibles. The enamel organ and pulp 

tissues were removed, and the tooth enamel wiped with damp tissue. The soft 

secretory stage enamel was scraped from the tooth with a scalpel, and stored at ≤-

65°C until needed. 

 

2.4.3 Preparation of enamel samples for enamelin br eakdown 
studies 
The series of enamel samples from the rat incisor were extracted by grinding 

the samples with a glass rod in 500 µL of 10% acetic acid. The resulting extracts 
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were then centrifuged at 13,000 rpm for 5 minutes and the supernatants removed. 

The remaining pellet was then resuspended in a further 15 µL 10% acetic acid. The 

extract and supernatant were mixed and then centrifuged at 13,000 rpm for 5 

minutes in a centrifugal filter (Millipore Centricon) to concentrate. The filter was 

washed with 10% acetic acid, inverted into a clean tube and re-centrifuged at 

13,000 rpm for 5 minutes to remove the concentrated protein extracts. This double 

extraction technique solubilised all the ECM proteins effectively as all material was 

solubilised, being equivalent to protein extraction based upon acid demineralisation 

of the tissue. The proteins extracted were then mixed 1 to 1 (volume for volume) 

with 15 µL of doubly concentrated SDS-PAGE sample loading buffer (pH 6.8) 

(described in step 6 section 2.1.2).  Porcine secretory stage enamel was prepared 

in a similar way, using 500 µL of 10% acetic acid and double concentrated SDS-

PAGE sample loading buffer per mg of enamel. 

All samples were denatured by heating at 90°C for 2  minutes, and 10 µL per 

sample loaded per lane on to a 1 mm thick 12% resolving mini-gel (Mini-protean IV, 

Bio-Rad, Hemel Hempstead, UK). Gels were electrophoresed at 200 V until the 

blue dye front reached the bottom of the gel. Gels were stained with Coomassie 

blue G250 (Instant Blue, Expedeon, Cambridge, UK). Duplicate gels were trans-

blotted onto nitrocellulose membrane (Mini-trans blot, Bio-Rad, Hemel Hempstead, 

UK) at 100v for one hour. The membranes were blocked overnight in 5% non-fat 

milk powder in tris-buffered saline (TBS) pH 7. Electrophoresis was performed as 

described in step 6 in section 2.1.2 and western blotting as described in 2.1.2.2 with 

the exceptions noted below. 

 

2.4.4 Western blotting of enamel proteins 
Antibodies to the synthetic peptide EEMFEQDFEKPKEEDPPK, which 

corresponds to the sequence at the centre of the putative rat 32 kDa enamelin, 

were raised in rabbits (Eurogentec, Southampton, UK). There is sequence 

homology between the rat and pig enamelins so that the antibody should recognise 

enamelins from both species.  

The blocked membranes were washed and incubated for one hour at room 

temperature with shaking with 1:1000 anti-enamelin antibody in TBS containing 

0.05% TWEEN-20 (TBST). The blots were washed for 3x5mins TBST and then 

incubated in anti-rabbit IgG peroxidise conjugate (Sigma-Aldrich, Poole, Dorset, 

UK), diluted 1:750 for one hour with shaking at room temperature. The blot was 
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washed 3x5mins in TBST and developed using metal enhanced DAB substrate 

(Sigma-Aldrich, Poole, Dorset, UK) resulting in brown-black staining of the proteins.  

 

2.4.5 Comparison of rat and pig enamelin protein br eakdown 

As described in the introduction section 1.3.4.3 and figure 8, the major 

breakdown product of enamelin is the 32 kDa fragment.  Most of the studies 

performed on enamelin using the 32 kDa breakdown product focused on the 

porcine product due to its ready availability. To investigate whether the 32 kDa 

enamelin breakdown product was produced in the rat secretory enamel with time, a 

proteolytic breakdown study was performed. 

A 150g male Wistar rat was euthanized by schedule 1 killing (CO2 inhalation) 

and the lower incisors removed from the mandible. The secretory zone of the 

enamel was removed from both incisors and placed into a sterile micro-tube 

containing 200 µL Dulbecco’s Phosphate Buffered Salt solution (DPBS – Lonza, 

Slough, UK) containing 130 mg/L calcium chloride. The enamel pieces in DPBS 

were immediately frozen at ≤ -65ºC. The next day, the enamel was thawed, 

crushed and sonicated to form a slurry. A further 200 µL of calcium enhanced 

DPBS was added to form a more diluted slurry. This was divided into six 50 µL 

aliquots in sterile micro- tubes. One tube was placed immediately into the freezer at 

≤ -65ºC, and the remaining tubes were placed into a 37ºC incubator. One tube was 

removed from the incubator and placed into the freezer at 4 hours, 8 hours, 16 

hours, and 32 hour time points. The samples were then run on 15% SDS-PAGE 

mini gels, and analysis performed by Coomassie staining and western blot.  Non-

specific binding was blocked by incubation with non-fat milk solution, followed by 

incubation with rat-specific anti-enamelin antibody (polyclonal antibody raised in 

rabbits – Eurogentec, Southampton, UK). Goat anti-rabbit secondary antibody was 

used, followed by incubation with streptavidin/biotin. The blot was then incubated in 

colour developer until bands appeared (Bio-Rad, Hemel Hempstead, UK). 

Two mg of secretory enamel from a pig molar (euthanized and extracted as 

previously described in section 2.4.2) was crushed into 400 µL of DPBS with 

calcium, and sonicated to form a slurry. The slurry was divided into six 50 µL 

aliquots and incubations and subsequent analysis performed as for the rat enamel 

samples described above.  
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2.5 Quantitative PCR studies to compare the gene pr ofiles of 
mice teeth containing the wild type or Y64H Amelx gene 

To investigate whether the morphological changes expressed in mice with the 

Y64H amelogenin mutation were due to down-regulation of the amelogenin gene, 

non-secretion of the amelogenin protein or apoptosis of the ameloblasts, q-RT-PCR 

investigations of the gene expression profiles for mice expressing wild type 

amelogenin and mice with the Y64H amelogenin mutation were compared. 

 

2.5.1 Collection of mice teeth 
Mice containing the wild type amelogenin or mutant (Y64H) amelogenin genes 

were created by the RIKEN institute. The mice were bred, husbanded and 

phenotyped by our collaborators on the Wellcome Programme at Manchester 

University. Phenotyping was performed on ear samples from the mice by Dr Martin 

Barron at Manchester. Mice were culled and their lower incisors immediately 

extracted and placed into RNALater™ solution (Applied Biosystems, Warrington, 

UK). RNALater™ stabilises and protects the RNA in fresh specimens by rapidly 

permeating the tissue. It eliminates the need to immediately process or freeze 

samples. Tissue samples can be stored for extended periods in RNALater™ 

solution where normally RNA degradation would occur – 1 week at room 

temperature. Samples can be stored indefinitely in RNALater™ at -20°C or below. 

RNALater™ is fully compatible with the TRI-reagent used in the RNA extraction 

process. Samples were frozen in RNALater™ solution in Manchester, and 

transferred to Leeds using a cryocase (Starlabs, Milton Keynes, Bucks., UK) and 

stored at ≤-65°C prior to processing. 

 

2.5.2 RNA extraction 
RNA was extracted from whole mouse lower incisors or sections of mouse 

lower incisor, using the Ambion RiboPure RNA extraction kit (Applied Biosystems, 

Warrington, UK).  Samples were homogenised in TRI reagent, a monophasic 

solution containing phenol and guanidine thiocyanate, which rapidly lyses cells and 

inactivates nucleases. Bromochloropropane (BCP - Sigma) was added, which 

caused the separation of the homogenate into aqueous and organic phases.  RNA 

partitioned into the aqueous phase, while DNA and protein remained in the 

interphase and organic phase. The RNA was isolated from the aqueous phase by 

binding it to a glass fibre filter. The filter was washed twice to remove contaminants, 
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and the RNA was eluted from the filter with low salt buffer. The eluted RNA was 

stored at ≤ -65°C. 

RNA concentrations were determined using the 260/280 absorption method 

using a Shimadzu spectrophotometer (Shimadzu, Milton Keynes, UK). To 

determine the RNA concentration, 5 µL RNA was added to 495 µL distilled water. 

This was read on the spectrophotometer at 260 nm. To determine the RNA 

concentration in µg/mL, the following calculation was used:- 

 

A260 reading x dilution factor x extinction coefficient 

= A260 reading x 10 x 40 = RNA µg/mL 

 

 Genomic DNA contamination was removed using the Invitrogen Turbo DNase 

kit (Invitrogen, Paisley, UK). To 10 µg of RNA, 1 µL of Turbo DNase and 1 µL of 

Turbo buffer were added. The reaction mix was incubated at 37⁰C for 30 minutes. 

After incubation, 2 µL of DNase inactivation reagent was added, and the reaction 

mixture incubated for 2 minutes at ambient temperature, with gentle tapping of the 

tube to mix. The tubes containing the reaction mixture were then centrifuged at 

10,000 rpm for one minute and the supernatant removed to a clean, sterile 

microtube. 

 

2.5.3 Confirmation of RNA purity 
RNA purity was also confirmed by running RNA samples on an agarose gel.  

One g of agarose was dissolved in 72 mL water to which 10 mL of 10x MOPS 

running buffer (40mM 3-(N-morpholino) propansulfonic acid, 2mM sodium acetate, 

1mM EDTA, pH7) and 18 mL 37% formaldehyde were added. This was poured into 

gel caster trays cleaned with RNase Away. Three µg samples of RNA were mixed 

with RNA loading dye (Sigma R4268) and denatured at 65°C for 15 minutes. 

Samples were loaded on the gel and run with 1 x MOPS buffer at 100 V for 1 hour. 

RNA marker 0.28-6.6 KB (Sigma R7644) was also loaded. Gels were imaged on a 

UV light box (GelDoc, Geneflow, Fradley, UK). 

2.5.4 Transcription of RNA to cDNA 
 cDNA was produced from the treated RNA using the Ambion High Capacity 

RNA-to-cDNA kit (Applied Biosystems, Warrington, UK). The kit contents were 

removed from -20⁰C storage and thawed on ice.  A mastermix of the reagents was 
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prepared by mixing 200 µL of the RT buffer with 20 µL of 20 times enzyme mix and 

140 µL of nuclease free water. To 2 µL of the DNase treated RNA from section 

2.5.2, 18 µL of the mastermix was added. Each preparation was then incubated for 

60 minutes at 37⁰C. At the end of the incubation, the preparations were heated to 

95⁰C for 5 minutes. The preparation tubes were then centrifuged at 13,000 rpm for 

1 minute and placed on ice. 

 

2.5.5 Confirmation of cDNA purity 
cDNA purity was determined by performing conventional reverse transcription 

(RT) PCR using the Phire hot start PCR kit (New England Biolabs, Hitchin, Herts., 

UK) This is a hot start DNA polymerase, providing increased sensitivity, specificity 

and yield, and allow assembly of the PCR reactions at room temperature, as 

activation of the polymerase does not occur until the reaction has been heated at 

94°C. For the Phire hot start kit, 10 µL of 5x reac tion buffer was mixed with 1 µL of 

10 mM dNTP’s, 1µL of primer A (forward primer for gene of interest), 1 µL of primer 

B (reverse primer for gene of interest), 1 µL of Phire polymerase, 5 µL of cDNA 

(produced in section 2.5.4) and 31 µL of nuclease free water. These reaction mixes 

were placed into 0.2 mL sterile PCR tubes. The tubes were placed into a Techne 

MJ 100 thermocycler and the following protocol applied: 

Step 1: 98⁰C for 30 seconds 

Step 2: 98⁰C for 5 seconds 

Step 3: 65⁰C for 5 seconds 

Step 4: 72⁰C for 20 seconds 

Step 5: Repeat steps 2, 3 and 4 30 times 

Step 6: 72⁰C for 1 minute 

Step 7: 4⁰C hold 

A positive control cDNA and primers were provided with the Phire kit. 

Forward primer – 3’ ATG CCC CTA CCA CCT CAT C 5’ 

Reverse primer – 3’ ACT TCT TCC CGC TTG GTC TT 5’ 

These primers generated a product of 536 base pairs. 
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PCR products were run on a 2% agarose gel. One g of agarose was mixed 

with 1 x gel-red buffer (Biotium, VWR, Lutterworth, Leics. UK) and heated to 

dissolve. The molten agarose was poured into horizontal gel trays and allowed to 

set. The samples were mixed with gel-red loading buffer and loaded onto the gel. A 

100 base pair (bp) ladder was also loaded to aid identification of bands (Sigma 

P1473). The gel was run at 100v for 1 hour, and imaged on a UV light box (GelDoc, 

Geneflow, Fradley, UK). The gel-red system uses a fluorescent nucleic acid stain 

for visualization of DNA bands within the gel without the need for ethidium bromide, 

thereby providing a safe, non-toxic alternative to traditional DNA imaging.  

 

2.5.6 Quantitative real time polymerase chain react ion (Q-RT-
PCR) 
Conventional PCR detects the amplified DNA product by end point analysis, 

usually by running an agarose gel of the DNA products. Real-time PCR allows 

detection of the amplified product to be detected and measured as it occurs. The 

main advantage of real time over conventional PCR is the ability to accurately 

determine the starting template copy number with high sensitivity. Real time PCR 

can be evaluated without gel electrophoresis, allowing quicker reaction time and 

increased output (Bio-Rad Q-RT-PCR handbook). 

 Q-RT-PCR was performed on a Roche Lightcycler 480 (Roche, Burgess Hill, 

West Sussex, UK) using Taqman gene assays and Taqman master mix (Applied 

Biosystems, Warrington, UK catalogue number 4251372). Each reaction sample 

was prepared as follows: 27 µL of cDNA (prepared as section 2.5.4) mixed with 30 

µL Taqman mastermix and 3 µL Taqman probe (specific for each gene, catalogue 

code given below). All gene assays were set up in triplicate, with a blank (negative) 

control, where water replaces the cDNA in the assay. The assay assembly was 

performed on ice and assembly was performed in 0.2 mL sterile PCR tubes. The 

tubes were briefly centrifuged (1000 rpm for approximately 10 seconds) before 

transferring 20 µL in triplicate into the wells of a sterile 96-well PCR plate 

(StarLabs). The plate was covered with a plate seal to prevent evaporation and 

loaded into the Lightcycler instrument.  The following cycling conditions were used: 
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Step 1: 95⁰C hold for 10 minutes (4.4⁰C per second ramp rate) 

Step 2: 95⁰C for 10 seconds (4.4⁰C per second ramp rate) 

Step 3: 60⁰C for 30 seconds (2.2⁰C per second ramp rate) 

Step 4: 72⁰C for 1 second (4.4⁰C per second ramp rate) 

Step 5: Repeat steps 2, 3 and 4 44 more times 

Step 6: 40⁰C for 30 seconds (4.4⁰C ramp rate) 

Step 7: 4⁰C hold 

Gapdh was used as the endogenous control. Amelogenin (Amelx), Grp-94 

(HSP-90), Bip (HSP-5), Chop and Xbp-1 expression levels were all evaluated. The 

result was a value for the crossing threshold (CT). 

The gene product from the Q-RT-PCR assays resulted in an amplicon of a 

specific number of base pairs. This amplicon was run on agarose gel 

electrophoresis to confirm the expected size. This was performed as described in 

section 2.5.5 as for cDNA PCR product analysis. 

Amelx – Mm01166221_m1 = 74 amplicons 

Grp94 – Mm00441927_m1 = 72 amplicons 

Bip- Mm00517691_m1 = 75 amplicons 

Chop – Mm00492097_m1 = 82 amplicons 

Xbp1 – Mm01187751_m1 = 79 amplicons 

Gapdh – Mm99999915_g1 = 105 amplicons 

 

The perfect optimised Q-RT-PCR reaction would have a linear standard curve 

(R2 >0.98), high amplification efficiency (90-105%) and consistency between 

replicates. To determine if a Q-RT-PCR assay is optimised, it is good practice to 

run serial dilutions of template DNA and use the results to generate a standard 

curve. This is constructed by plotting the log of the starting quantity of template or 

dilution factor against CT values. The equation of the linear regression line, along 

with Pearson’s correlation coefficient (r) or the coefficient of determination (R2) can 

then be used to evaluate assay optimisation. 

Standard curves were performed for each gene assay and endogenous 

control for each cDNA sample. The standard curve was performed using a 1:10 

serial dilution of the cDNA. A 1 in 5 dilution of the ‘stock’ cDNA was performed to 
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give a starting concentration of 20 ng/µL cDNA. This was diluted further 1 in 10 to 

give 2 ng/µL cDNA. This was diluted further 1 in 10 to give 0.2 ng/µL. A further 1 in 

10 dilution was performed to give 0.02 ng/µL. This was diluted further 1 in 10 to 

give 0.002 ng/µL. Each dilution was used in the q-RT-PCR assay as described 

above. The result should be a linear increase in the CP (crossing point) values for 

the log of each dilution. All standard curves should be parallel to one another. 

Standard curves gave the efficiency of the gene expression (should be 2).  

Relative quantification was employed to compare changes in multiple 

samples. It compared the levels of two target sequences in a single sample, and 

expresses the final result as a ratio of gene levels. This number is only meaningful 

when compared between samples. 

 

           Relative ratio = Concentration target gene 

                                    Concentration reference gene 

 

The reference gene is usually a constitutively expressed gene or 

housekeeping gene. This is also known as an endogenous control and provides the 

basis for normalising sample-to-sample differences. Different experimental 

conditions should not affect the expression levels of housekeeping genes. For the 

Q-RT-PCR experiments in this thesis, two housekeeping genes were used; Gapdh 

and Actin B. Gapdh expression remained invariable with all experimental 

conditions, but Actin B expression varied. Due to this, Gapdh was selected as the 

housekeeping gene to normalise the data to. 

The Livak method (2-∆∆CT) is a widely used and easy to perform method for 

relative gene expression analysis (Livak and Schmittgen, 2001). . Firstly, the CT 

value of the target gene is normalised to the CT value of the reference 

(housekeeping) gene, for both the calibrator (wild type) and test (mutant) samples. 

 

∆CT (test/mutant) = CT (test gene) – CT (reference gene / Gapdh) 

∆CT (calibrator/wild type) = CT (test gene) – CT (reference gene/Gapdh) 
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Secondly, the ∆CT of the test/mutant is normalised to the calibrator/ wild type ∆CT. 

∆∆CT = ∆CT test (mutant) - ∆CT calibrator (wild type) 

Finally, the expression ratio is calculated:- 

2-∆∆CT = normalised expression ratio 

This is the fold increase or decrease of the test gene in the test (mutant) 

sample relative to the calibrator (wild type) sample. Normalising the expression of 

the test gene to a housekeeping gene compensated for any difference in the 

amount of sample tissue. The Livak method assumes a reaction efficiency of 2 for 

the equation 2-∆∆CT 

For the Q-RT-PCR analysis performed in this thesis, ∆CT was calculated by 

subtracting the CT value from the endogenous control away from the CT value of 

the gene of interest. 

e.g.  ∆CT = CT Amelx – CT Gapdh 

 

∆∆CT was calculated by subtracting the ∆CT value of the wild type (calibrator) 

away from the ∆CT value of the mutant (test) for the gene of interest 

E.g. ∆∆CT Amelx = ∆CT mutant Amelx - ∆CT wild type Amelx 

 

Changes in gene expression were calculated using the Livak method (2-∆∆CP).  

e.g. up or down regulation of Amelx = 2-∆∆CP Amelx 

This was normalised relative expression.  
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2.6 Scanning electron microscopy (SEM) of mice inci sors 

Mandibular incisor teeth from wild type female, female mice heterozygous for 

the Y64H amelogenin mutation and male mice homozygous for the Y64H 

amelogenin mutation were dissected from the mandible following cervical 

dislocation. The enamel organ was removed using a lint-free tissue. The incisors 

were placed into polypropylene tubes to allow easier mounting onto SEM stubs. 

The incisors were ground with fine carborundum paper to obtain transverse 

sections through the incisor approximately 2 mm from the tip. The teeth were 

etched with 30% phosphoric acid for 20 seconds to remove any smear layer. The 

phosphoric acid was removed by thorough washing with distilled water and dried 

overnight under vacuum. The incisors were sputter coated with gold and imaged 

using a Hitachi S-3400N scanning electron microscope operate at an accelerating 

voltage of 20 kV and an emission current of 94 µA. The images were taken under 

backscatter conditions at 450 and 1600 times magnification. 
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Chapter 3 

Results 

3.1 Recombinant protein production 

Amelogenin and enamelin are both present in the developing enamel matrix 

and presumably may interact functionally. To investigate whether the Y64H 

mutation of amelogenin affects the interaction of the protein with enamelin, 

microplate based protein binding assays were used. To investigate whether the 

Y64H mutation of amelogenin affects the proteins ability to nucleate mineralisation, 

steady-state agarose gel assays were used. Recombinant human 32 kDa enamelin 

was provided courtesy of Dr J. Maycock and data arising from its production are not 

presented here. However, wild-type and Y64H mutant amelogenin were both 

produced for this thesis; the results of which are presented in the following  

sections. 

 

3.1.1 Recombinant amelogenin protein production  
Wild-type and mutant (Y64H) amelogenin were produced using a prokaryotic 

system using E.coli (section 2.1.1).  These recombinant proteins contained a HIS 

tag (a sequence of 6 histidines) to aid their purification from the bacterial proteins 

using a nickel affinity column in conjunction with FPLC (proteins with the His tag 

bind preferentially to the nickel column). Figure 22 shows how the recombinant 

amelogenin was purified from the crude E. coli lysate using nickel column 

purification and the removal of the HIS tag by HRV 3C protease enzyme. Cleavage 

of the HIS tag was not 100% efficient and preparative SDS-PAGE was carried out 

to separate the cleaved protein from uncleaved protein and the liberated HIS tag. 

Figure 23 shows the results of the preparative SDS-PAGE and isolation of the 

cleaved amelogenin from the uncleaved amelogenin still carrying the HIS tag. The 

fractions containing the cleaved amelogenin were subsequently pooled and 

desalted ready for use. See section 2.1.2. and figure 15 for a schematic of the 

production and purification process. 
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Figure 22. Coomassie stained SDS-PAGE gel of variou s fractions of 
recombinant amelogenin protein obtained throughout the protein 
purification process. Molecular weight markers are displayed in the left 
hand lane.  The cell lysate contained all the prote ins recovered from the 
E.coli. The post His Trap column shows the protein recovered from the 
nickel chromatography His Trap column.  “Post desal t” shows the 
protein recovered from the desalting column.” Cleav ed protein” shows 
the protein after it had been cleaved overnight at 4°C with HRV 3C. Note 
that cleavage was not 100% efficient with much of t he protein remaining 
uncleaved.  
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Figure 23.  Silver-stained SDS-PAGE gel showing fra ctions of cleaved 
recombinant amelogenin obtained by preparative SDS- PAGE. MW is the 
molecular weight ladder and starting protein is the  partially cleaved 
sample. Every third fraction obtained from the prep -cell was run on the 
gel allowing the fractions containing cleaved prote in only to be 
identified and pooled.  Similar gels were obtained for the wild type and 
mutant amelogenin. 

 

Pooled fractions were desalted and freeze dried. A sample was provided for 

mass spectrometry analysis to confirm the removal of the HIS tag and the correct 

molecular weight. Figure 24 shows the mass spectrometry profile for wild-type 

amelogenin, with a molecular weight of 20590 Da (predicted molecular weight 

20590.65 Da), and figure 25 shows the mass spectrometry profile for Y64H mutant 

amelogenin, with a molecular weight of 20564 (predicted molecular weight 

20564.62 Da).
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Figure 24.  Mass spectrometry profile for recombina nt wild type amelogenin showing a molecular weight of 20590 Daltons. 
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Figure 25.  Mass spectrometry profile of recombinan t Y64H mutant amelogenin showing a molecular weight  of 20564 Daltons. 
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3.2 The ability of recombinant amelogenin and recom binant 32 
kDa enamelin to nucleate mineral in vitro using a steady-
state agarose gel system 

The mineral nucleating properties of extracellular matrix proteins have already 

been demonstrated by Hunter and Goldberg using a modified dialysis cell system 

(Hunter and Goldberg, 1993; Hunter and Goldberg, 1994; Hunter et al., 1996). This 

system was used here to investigate the hydroxyapatite nucleating potential of 

recombinant human 32 kDa enamelin and recombinant mouse amelogenins (wild type 

and mutant), independently and in combination, given that they are both present in the 

developing enamel. Using both the recombinant wild type and Y64H mutant recombinant 

amelogenin proteins separately and in combination with the 32 kDa recombinant 

enamelin protein in the steady-state agarose gel system allowed the effects of the Y64H 

mutation in amelogenin on mineral nucleation to be investigated. 

 

3.2.1 Visual characterisation of nucleated mineral deposits at the 
gross level 
After 7 days incubation at 37°C, gel plugs retrieve d from the steady-state cells 

containing PGA or recombinant protein typically contained white bands of mineral 

precipitate. Figure 26 panels A, B and C shows three representative images of bands 

obtained when using 10 µg/mL recombinant 32 kDa enamelin as a potential nucleator.  

Panel A shows an instance where mineral seemed to have precipitated around the 

periphery of the gel. Panel B demonstrated the variability in band thickness seen within 

triplicates in the same experiment. Panel C shows a further instance where variability 

was less marked. Each panel consists of triplicate gel plugs for an experiment, with each 

panel representing an experiment performed on separate assay occasions. 
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Figure 26.  Panels A, B and C. Typical images of re covered agarose gel plugs 
showing recombinant 32 kDa enamelin nucleated miner al precipitation. Note 
the variability of mineral patterns obtained.  Each  panel represents the 
triplicates from a different steady-state assay run . 

 

Any variations in colour in the photographs are due to different settings being used 

on the digital camera, and are not due to colour variations in the gels. It would have 

been preferable to standardise the digital photography but these photographs are for 

illustrative purposes only and are not presented as quantitative data.   

  

A B C 



- 113 - 

 

 Variability was also seen when using 10 µg/mL PGA (positive control) as the 

potential nucleator. Figure 26 shows representative images for gel plugs recovered after 

7 days incubation at 37⁰C in the steady state agarose gel system when 10 µg/mL PGA 

positive control was used as the mineral nucleator. Panel A shows very broad, 

somewhat diffuse bands of mineral. Panel B shows 2 separate bands of mineral and 

panel C shows bands that only extend partially across the gel plugs. 

   

Figure 27.  Panels A, B and C.  Images for bands of  mineral precipitation obtained 
when using 10 µg/mL PGA positive control as the nuc leating agent. Variation 
in band thickness and patterns are evident. Each pa nel represents the 
triplicates from a different steady-state assay run . 

  

A B C 
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Liesegang rings are precipitation geometries (Stern, 1954) that were previously 

seen when PGA was used in a gel-diffusion system (Hunter and Goldberg (1994). 

Likewise, Liesegang rings were periodically observed in the gel plugs recovered when 

10 µg/mL PGA positive control was used as the mineral nucleator in this study (figure 

28). Though in contrast, the mineral precipitates formed in the presence of recombinant 

32 kDa enamelin, or in negative controls, did not exhibit Liesegang rings.  

 

   

Figure 28. Images for agarose gels containing 10 µg /mL PGA positive control as 
the mineral nucleator. Liesegang rings are evident.  

 

 Figure 29 shows that mineral precipitation occurred to some degree even in the 

negative controls. Each panel shows the triplicate plugs form a single experimental run. 

The steady-state agarose gel system is a very delicately balanced system and any very 

slight changes in the buffer concentrations and ratios, or the presence of any 

heterogeneous nucleator such as lint or dust, can trigger spontaneous precipitation of 

mineral, as seen in the negative controls exemplified in figure 29. In the recovered gel 

plugs containing PGA or recombinant 32 kDa enamelin protein nucleated samples, 

however, the amount of mineral precipitation was visibly greater than the negative 

controls. 
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Figure 29. Panels A, B and C. Images obtained for n egative control agarose gel 
plugs. It is clear that spontaneous nucleation occu rred even in the absence 
of a nucleating agent. 

 

 

 

A B C 
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3.2.2 Quantification of mineral deposition in agaro se gels containing  
recombinant 32 kDa enamelin 
The amount of mineral precipitation in the presence of various concentrations of 

recombinant 32 kDa enamelin was determined by measuring the phosphate content of 

the recovered agarose gel plugs following ashing (section 2.2.2). The phosphate content 

was calculated against standard curves prepared using known concentrations of 

phosphate that were run with each assay. Linear regression was then used to allow the 

back-calculation of phosphate concentration in the experimental samples. Figure 30 

shows a typical standard curve obtained with the phosphate assay. 

 

 

Figure 30. Typical standard curve data generated fo r phosphate analysis assay. 
Concentrations from 0 to 100 µM phosphate were used  for the standard 
curve.  

 

The steady-state agarose gel system to assess the nucleating potential of 

10 µg/mL recombinant 32 kDa enamelin was performed on five separate occasions. The 

steady-state mineralisation assay to investigate the nucleating potential of recombinant 

32 kDa enamelin at concentrations of 5.0  µg/mL, 2.5  µg/mL and 1.0  µg/mL was 

R2 = 0.9928
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performed on three separate occasions. All assay occasions included duplicates of 

positive and negative controls. Results shown in figure 31 are for mean values. A 

students two-tailed T-test was performed on the data to test for statistical significance 

(p<0.05). 

Figure 31 shows the degree of mineral precipitation in the gel plugs in terms of the 

phosphate present. The positive control (10 µg/mL PGA), recombinant 32 kDa enamelin 

at 1 µg/mL and recombinant 32 kDa enamelin at 10 µg/mL were statistically significantly 

different to the negative control i.e. PGA and recombinant 32 kDa enamelin at 1.0 and 

10 µg/ml nucleate mineral. Recombinant 32 kDa enamelin at 2.5 µg/mL and 5.0 µg/mL 

were not significantly different to the negative control i.e. recombinant 32 kDa enamelin 

at 2.5 and 5 µg/mL did not nucleate more mineral above the borderline level of the 

negative control. 

The phosphate content of the mineral deposits recovered from the gel plugs using 

recombinant 32 kDa enamelin at 1.0 µg/mL, 2.5 µg/mL and 5.0 µg/mL as the mineral 

nucleating agent were all statistically significantly lower than the phosphate content of 

the gel plugs using 10 µg/mL PGA as the positive control. The phosphate content of gel 

plugs containing recombinant 32 kDa enamelin at 10 µg/ml was not statistically 

significantly different to the phosphate content of the gel plugs containing 10 µg/mL PGA 

as the positive control. 
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Figure 31. Graph showing mean levels of phosphate p recipitation for 
negative control, positive control and recombinant 32 kDa enamelin at 
various concentrations in the steady state agarose gel nucleation assay. 
Negative control (no nucleating agent) and positive  control (10 µg/mL PGA) 
n=28, 1 µg/ml, 2.5 µg/ml and 5 µg/ml recombinant 32  kDa enamelin n=6, 10 
µg/ml recombinant 32 kDa enamelin n=10. Statistical  significance = p<0.05. 
Error bars for the standard deviations are also sho wn. 
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3.2.3  Quantification of mineral deposition in agar ose gels containing 
wild type of Y64H recombinant amelogenin 
Figure 32 shows the data obtained from the steady-state agarose gel system when 

10 µg/mL recombinant wild-type amelogenin or 10 µg/mL recombinant mutant 

amelogenin was included in the agarose gels. Negative controls of agarose gel alone 

and positive controls of 10 µg/mL PGA were also included. Three separate experimental 

runs each including triplicates of each sample and controls were run. Duplicate gels 

were ashed to obtain phosphate assay data. 

 

Figure 32. Graph showing the phosphate content of g els containing no added 
nucleating agent (negative control), 10 µg/mL PGA ( positive control),  10 
µg/mL recombinant wild type amelogenin or recombina nt Y64H mutant 
amelogenin. Statistical significance = p<0.05. n=6.  Error bars for the standard 
deviations are shown.   

 

This data showed that both 10 µg/mL recombinant wild type and Y64H mutant 

amelogenin were unable to nucleate hydroxyapatite crystal formation in vitro. The fact 

that the levels of phosphate detected were lower than the negative control containing no 

protein (p<0.05), suggested that amelogenin may in fact have suppressed nucleation.  
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3.2.4 Quantification of nucleating potential of eit her wild type or Y64H 
recombinant amelogenin in combination with recombin ant 32 
kDa enamelin 
As amelogenin and enamelin do not occur independently in the ECM, the steady-

state agarose gel experiment was performed using samples comprising of a combination 

of recombinant amelogenin and recombinant 32 kDa enamelin together in the agarose 

gel. Ten µg/mL of recombinant wild type amelogenin or recombinant Y64H mutant 

amelogenin were mixed with 5 µg/mL recombinant 32 kDa enamelin and run in triplicate 

in the steady-state system. Controls of 5 µg/mL recombinant 32 kDa enamelin, 10 µg/mL 

PGA and negative controls of blank agarose gels were also run in triplicate. The 

experiment was performed on three separate occasions. 

Figure 33 shows the amount of phosphate recovered from mineral deposits 

recovered from the agarose gels in the presence or absence of amelogenin/recombinant 

32 kDa enamelin combinations for the three experimental runs. The results suggest that 

the presence of recombinant 32 kDa enamelin with either recombinant wild type 

amelogenin or recombinant Y64H mutant amelogenin reduced the apparent inhibition of 

nucleation shown by wild type or mutant amelogenin alone (figure 32). No significant 

differences were seen in the amount of phosphate recovered between recombinant wild 

type amelogenin in combination with recombinant 32 kDa enamelin or recombinant 

Y64H mutant amelogenin in combination with recombinant 32 kDa enamelin compared 

with the negative control. No significant difference was seen in the amount of phosphate 

recovered from the mineral deposits between the recombinant wild type amelogenin and 

recombinant Y64H mutant amelogenin, in the presence of recombinant 32 kDa 

enamelin.  

Together with the data presented in figure 32 (the effect of recombinant wild type 

amelogenin  and  recombinant Y64H mutant amelogenin alone on nucleation) the data 

implies that the Y64H mutation in the amelogenin protein does not affect the nucleation 

potential of amelogenin.  
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Figure 33. Graph showing phosphate precipitated in negative control gels (no 
nucleating agent), positive control gels (10 µg/mL PGA) , gels containing 10 
µg/mL recombinant wild type amelogenin + 5 µg/ml re combinant 32 kDa 
enamelin, 10 µg/mL recombinant Y64H mutant amelogen in + 5 µg/mL 
recombinant 32 kDa enamelin, and 5 µg/mL recombinan t 32 kDa enamelin. 
N=6. Statistical significance = p<0.05.  Standard d eviations are shown. 
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3.2.5 Characterisation of nucleated mineral deposit s using scanning 
electron microscopy (SEM)  
SEM was performed on the mineral nucleated in the agarose plugs to investigate 

the morphology of the mineral crystals formed by recombinant 32 kDa enamelin alone 

and in conjunction with recombinant wild-type and recombinant Y64H mutant 

amelogenin. The following section presents representative images obtained using SEM.  

The top panel in figure 34 shows crystals nucleated in the presence of  10 µg/mL 

recombinant 32 kDa enamelin imaged at 24750 times magnification. This shows that the 

crystals exhibited a flat, planar morphology measured in the micron range, at 

approximately 6 µm in length. The bottom panel shows crystals nucleated in the 

presence of 10 µg/mL recombinant 32 kDa enamelin imaged at 66740 times 

magnification. The flat  crystal plates are clearly visible. 

The top panel in figure 35 shows crystals nucleated in the presence of  5 µg/mL 

recombinant 32 kDa enamelin imaged at 12950 times magnification. This shows that the 

crystals exhibited an oblate morphology measured in the micron range, at approximately 

6 µm in length. The bottom panel shows crystals nucleated with 5 µg/mL recombinant 32 

kDa enamelin imaged at 50000 times magnification. The flat crystal plates are clearly 

visible. 

Figures 34 and 35 for the SEM data for the crystals nucleated in the presence of 

10 µg/mL and 5 µg/ml recombinant 32 kDa enamelin display very similar morphology of 

the crystals, with large plates of mineral crystal of approximately 6 microns in length. 

This was in spite of the fact that when the agarose gels recovered from the steady state 

agarose gel system were analysed by the phosphomolybdate phosphate assay, the 

amount of mineralisation recovered for the 5 µg/mL enamelin gel plugs was not 

statistically significantly different to the negative controls. Therefore, although the levels 

of mineral nucleated were different for the agarose gel plugs containing either 10 µg/mL 

or 5 µg/mL recombinant 32 kDa enamelin protein, the crystal morphologies were 

comparable. 
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Figure 34. SEM data for crystals nucleated in the p resence of 10 µg/mL 
recombinant 32 kDa enamelin. Panel A shows the crys tal morphology 
imaged at 24750 times magnification. Panel B shows the crystal morphology 
imaged at 66740 times magnification. 

Panel A 

Panel B 
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Figure 35. SEM data for crystals nucleated in the p resence of  5 µg/mL 
recombinant 32 kDa enamelin.  Panel A shows the cry stal morphology 
imaged at 12850 times magnification. Panel B shows the crystal morphology 
imaged at 50690 times magnification. 

Panel A 

Panel B 
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 Although recombinant 32 kDa enamelin at 2.5 µg/mL did not nucleate mineral 

deposition in the steady state agarose gel system any better than negative controls 

(when analysed by the phosphomolybdate phosphate assay), the mineral crystals that 

were recovered are shown in figure 36. Mineral nucleated in the presence of 

recombinant 32 kDa enamelin at 2.5  µg/mL exhibited two distinct morphologies; both of 

them different to the flat crystals nucleated in the presence of 10 µg/mL or 5 µg/mL 

recombinant 32 kDa enamelin (as shown in figure 36). The upper two images (panels A 

and B) show the presence of small spherical clusters (approximately 10 nm in length). 

These are very similar in appearance to globular clusters of calcium phosphate seen by 

Wada et al (1996) during their investigations into in vitro mineralisation nucleated by 

dentine ECM proteins. In contrast, smaller, needle like crystals were also observed as 

shown in the bottom two images (panels C and D). 
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Figure 36. SEM data for mineral crystals from the s teady state agarose gel system 
nucleated in the presence of 2.5 µg/ml recombinant 32 kDa enamelin.  Panel 
A shows the crystal morphology imaged at 24750 time s magnification. Panel 
B shows the crystal morphology imaged at 89840 time s magnification. Panel 
C shows the crystal morphology imaged at 25390 time s magnification. Panel 
D shows the crystal morphology imaged at 65400 time s magnification. Note 
the presence of clusters of small spheres in panels  A and B. Panels C and D 
show smaller crystals exhibiting a different morpho logy. 

 

 Figure 37 shows crystals nucleated in the presence of 1 µg/mL recombinant 32 

kDa enamelin. Again the large plate like crystals of approximately 6 microns are visible 

that are more akin to the crystals nucleated with 10 µg/mL and 5 µg/mL recombinant 32 

kDa enamelin. When the gel plugs containing the mineral nucleated in the presence of 1 

µg/mL recombinant 32 kDa enamelin was analysed by the phosphomolybdate 

phosphate assay, these showed the mineral content to be statistically significantly 

increased compared to the negative controls. This was also true for the 10 µg/mL 

recombinant 32 kDa enamelin gel plugs and resulting mineral. 

A B 

C D 
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Figure 37. SEM data for crystals nucleated in the p resence of 1 µg/mL 
recombinant 32 kDa enamelin. Panel A shows the morp hology of the crystals 
imaged at 24600 times magnification. Panel B shows the morphology of the 
crystals imaged at 64410 times magnification. 

Panel A 

Panel B 
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Figure 38 shows SEM images of commercially available hydroxyapatite, not 

exposed to the steady state agarose gel system, for comparison of morphology. These 

mineral deposits were not obtained from the steady state agarose gel system. 

Commercial hydroxyapatite was mounted onto a SEM stub and sputter-coated with gold 

as for the mineral deposits obtained in the steady state agarose gel system (section 

2.2.3). Large plates-like crystals of approximately 18 µm in length are visible in the top 

image (panel A), but the surfaces of these large plates are covered in much smaller, 

needle like crystals. The bottom image (panel B), taken at higher magnification, shows 

these smaller crystals more clearly. These crystals are much smaller, approximately 0.3 

µm in length, than those obtained from the steady state agarose gel system and 

nucleated in the presence of recombinant 32 kDa enamelin, or indeed PGA. 
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Figure 38. SEM images for commercially available hy droxyapatite not exposed to 
the steady state agarose gel system. Panel A shows the commercially 
available hydroxyapatite imaged at 12850 times magn ification. Panel B 
shows the commercially available hydroxyapatite ima ged at 52850 times 
magnification. 

Panel A 

Panel B 
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Figure 39 shows crystals nucleated in the presence of the positive control (10 µg/mL) 

PGA. The crystals had a pointed appearance and appeared to radiate out of central 

areas. They were stellate in appearance. The bottom two images  (panels C and D) of 

the figure show large plate like structures, similar to those nucleated in the presence of 

recombinant 32 kDa enamelin. These were approximately 1200 µM in length. 

  

  

Figure 39. SEM data for the morphology of the miner al crystals nucleated in the 
presence of 10 µg/ml PGA recovered after 7 days exp osure to the steady 
state agarose gel system. Panel A shows the crystal s  imaged at 12850 times 
magnification. Panel B shows the mineral crystals i maged at 51250 times 
magnification. Panel C shows the mineral crystals i maged at 24750 times 
magnification. Panel D shows the mineral crystals i maged at 67150 times 
magnification. 

 

Figure 40 shows the images of crystals obtained for the negative controls, agarose 

gel without any additional nucleator. A much smoother, bubbly appearance was seen 

without any distinct crystal morphology. 

A B 

C D 
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Figure 40. SEM data for mineral crystals recovered from the negative control 
agarose gels. These were agarose gel plugs without the addition of any 
recombinant protein or PGA, but that had been expos ed to the mineralisation 
solutions in the steady state agarose gel system. P anel A shows the mineral 
crystals imaged at 10010 times magnification. Panel  B shows the mineral 
crystals imaged at 68530 times magnification. 

Panel A 

Panel B 
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3.2.6 Characterisation of nucleated mineral deposit s by energy 
dispersive X-ray spectroscopy (EDX)  
EDX was used to determine the elemental composition of the nucleated mineral in 

the agarose gel plugs following their retrieval after the steady state run. Figures 41-44 

show the EDX results for commercially available hydroxyapatite; the agarose gel blank 

(agarose gel not exposed to mineralising solutions); the negative controls (agarose only, 

no nucleator added); PGA positive controls and samples containing recombinant 32 kDa 

enamelin at 10 µg/mL respectively.   

The  calcium to phosphate (Ca:P) ratios for material nucleated in the presence of 

PGA (figure 44) and recombinant 32 kDa enamelin (figure 45) were very similar to the 

EDX data obtained for commercial hydroxyapatite (figure 41)  – all exhibiting a Ca:P 

molar ratio typical of hydroxyapatite (1.66). The Ca:P ratio of 1.05 ± 0.32  obtained 

following EDX analysis of negative controls (figure 43) indicated that the bulk of any 

crystalline material deposited was unlikely to be hydroxyapatite. The Ca:P ratio of 0.60 ± 

0.12 obtained for the blank samples (figure 42) shows very little similarity to 

hydroxyapatite. This was expected as the blank was not exposed to mineralising solution 

and these figures represent the background ratio of calcium and phosphorus in the 

agarose gel.  

 

Figure 41. EDX data for commercially available hydr oxyapatite (not exposed to the 
steady state agarose gel system). A Ca:P ratio of 1 .52 was observed ( within 
10% of the theoretical value of 1.66 for pure hydro xyapatite). 
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Figure 42. EDX data for agarose blank (agarose gel not exposed to mineralising 
solutions).  Mean Ca:P from 5 steady state agarose gel runs  =  0.60 ± 0.12. 

 

 

 

Figure 43. EDX data for negative control agarose ge ls (gels exposed to 
mineralising solutions). Mean Ca:P from 5 steady st ate agarose gel runs = 
1.05 ± 0.32 . 
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Figure 44.  EDX data for the mineralised crystals n ucleated in the presence of 10 
µg/mL PGA positive control for 7 days at 37 ⁰C under steady state conditions. 
Mean Ca:P from 5 steady state agarose gel assay run s = 1.73 ± 0.12 (within 
10% of theoretical value for hydroxyapatite). 

 

 

Figure  45. EDX data for the mineralised crystals n ucleated in the presence of 10 
µg/mL recombinant 32 kDa enamelin protein for 7 day s at 37⁰C under steady 
state conditions.  Mean Ca:P from 5 steady state ag arose gel assay 5 runs = 
1.61 ± 0.03 (within 10% of theoretical value for hy droxyapatite). 
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3.2.7 Characterisation of nucleated mineral deposit s by transmission 
electron microscopy (TEM)  

Transmission electron microscopy was used to investigate the morphology at high 

resolution of individual mineral crystals isolated from the agarose gel plugs containing 

recombinant protein or PGA positive control following incubation in the steady-state 

agarose gel system.  

Figures 46 and 47 below show TEM images of mineral crystals nucleated in the 

presence of 5.0 µg/mL recombinant 32 kDa enamelin protein. These crystals had a flat, 

planar appearance with a jagged edge. This crystal appearance is very similar to what 

was seen in SEM; that the crystals nucleated by recombinant 32 kDa enamelin have a 

flat, oblate  morphology.  

 

Figure 46.  TEM image of crystals nucleated in the presence of recombinant 32 
kDa (5 µg/mL). Note the large, flat planar appearan ce of the crystals. The 
crystal at the bottom of the screen measures approx imately 4 µm by 0.7 µm. 
Image taken at 28,000 times magnification. 
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Figure 47. TEM image of 2 overlapping crystals nucl eated in the presence of 
recombinant 32 kDa enamelin (5 µg/mL). The smaller crystal measures 
approximately 0.4 µm by 1.3 µm and the larger cryst al 0.7 µm by 1.6 µm. 
Image taken at 60,000 times magnification. 

 

In comparison, the crystals nucleated in the presence of the 10 µg/mL PGA 

positive controls exhibited a much more ‘rosette’ like appearance. This can be seen in 

figures 48 and 49. The crystals appeared smaller (1 micron radius), more feather–like 

and to radiate around a central core. This also confirmed the SEM appearance of these 

crystals. 
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 Figure 48. TEM image of crystals nucleated in the presence of  PGA (10 
µg/mL) following incubation in the steady state aga rose gel system. The 
crystal rosette has a diameter of approximately 2 µ m. Image taken at 28,000 
times magnification. 

 

 Figure 49.  TEM image of crystals nucleated in the  presence of PGA (10 
µg/ml) positive control recovered following incubat ion in the steady state 
agarose gel system.  The top crystal has a maximum diameter of 3.5 µm. 
Image taken at 60,000 times magnification. 
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Figure 50 shows a TEM image of commercially available hydroxyapatite crystals. 

These were not obtained from the steady state agarose system. Rather a solution of 

commercial hydroxyapatite was dried onto a TEM grid. These were far smaller than the 

crystals nucleated by recombinant 32 kDa enamelin or PGA, and had a much more 

needle-like appearance. 

 

Figure 50. Image of commercially available hydroxya patite crystals. The crystals 
are more rod like with a length of approximately 0. 2 µm. Image taken at 
60,000 times magnification. 

 

These nucleation studies showed that recombinant 32 kDa enamelin is capable of 

nucleating and supporting hydroxyapatite crystal growth at concentrations of 1 µg/mL 

and 10 µg/mL. The degree of nucleation of hydroxyapatite was highly variable between 

experimental runs using the steady state agarose gel system , even in the positive 

control (PGA). EDX analysis confirmed that the crystals nucleated by PGA and 10 µg/mL 

recombinant 32 kDa enamelin had a similar Ca:P ratio to that of commercially available 

hydroxyapatite and near to the theoretical value for the molar ration of this mineral. SEM 

analysis showed that both crystals nucleated in the presence of PGA and commercially 

available hydroxyapatite crystals have a similar rosette-like appearance with needle like 
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crystals radiating from a central core. SEM analysis showed that the crystals nucleated 

in the presence of recombinant 32 kDa recombinant 32 kDa enamelin were much larger 

with a flat, layered appearance. TEM analysis confirmed the crystal appearance seen in 

SEM. 

Recombinant wild-type and recombinant Y64H mutant amelogenin were both 

apparently unable to nucleate hydroxyapatite in vitro.  No significant difference was seen 

in the phosphate levels obtained for wild type or mutant amelogenin, alone or with 5 

µg/mL recombinant 32 kDa enamelin, suggesting that the Y64H mutation in the 

amelogenin protein does not affect the protein’s role in hydroxyapatite nucleation. 

 

3.3 Studies of 32 kDa enamelin biochemistry in the developing 
enamel matrix  

To date, most studies of enamelin biochemistry and function have used the 32 kDa 

porcine enamelin processing product due to the ready availability of pig developing 

enamel and the relatively high concentration of the 32 kDa species in the enamel matrix. 

There is a tacit assumption that the 32 kDa enamelin is the functional enamelin subunit. 

It is unclear how applicable this data is to other species since enamelin biochemistry is 

poorly described in non-porcine species. To investigate the hypothesis that the 32 kDa 

fragment of enamelin is the functional enamelin subunit in all species, the enamelin 

proteome in developing rat enamel was compared to the porcine enamelin proteome 

using SDS-PAGE and western blotting assays (see materials and methods section 2.4). 

Rat incisors were extracted from male Wistar rats as described in section 2.4.1.  Pig 

teeth were extracted from juvenile pigs as described in section 2.4.2. Developing enamel 

was removed and sectioned into secretory and maturation stage samples for SDS and 

Western blot analysis. In addition, a bioinformatics analysis was carried out to 

investigate the cross-species conservation of the proteolytic cleavage sites present in 

pig enamelin that are responsible for the generation of the 32 kDa enamelin cleavage 

product in pigs. 
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3.3.1 Characterisation of the enamelin proteome in secretory and 
maturation stage rat and pig enamel 

Rat incisor enamel samples from secretion (S1, S2) through to the maturation 

stage (M1, M2, M3 – early, mid and late maturation stage respectively) were subjected 

to SDS PAGE and analysed for enamelin content by western blot probing with an anti-

enamelin antibody. Pig secretory stage enamel was analysed in the same way for 

comparison. The resulting gels and blots are shown in figure 51. Protein bands (stained 

blue on the gels) migrating below 25 KDa correspond to the amelogenins, confirmed by 

the western blot analysis. In the case of the rat samples, the loss of the amelogenins 

from maturation stage samples was evident. Enamelin was present in the developing 

enamel matrix at very low concentrations and was only detectable on the blots; it was 

not detectable by Coomassie staining on the gels. In rat, the enamelin antibody cross 

reacted predominantly with a range of high molecular weight proteins centred around 70 

kDa. Critically, there was little staining in the 32 kDa region. In rat maturation stage 

enamel samples there was a shift in  cross reactivity to a slightly lower molecular weight 

(approximately 50 kDa) as enamelin shares the fate of amelogenin and is degraded and 

removed from the tissue but even here, no obvious 32 kDa processing product was 

present. In complete contrast, the predominant enamelin molecule present on the blot of 

pig secretory stage enamel was at the lower molecular weight of 32 kDa (marked by * in 

figure 51, pig blot) generated, as described widely in the literature, by proteolytic 

processing of a larger precursor enamelin.  
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Figure 51 Shows SDS-PAGE (top panels) of rat enamel  from secretory through to 
the maturation stage and pig secretory enamel. The blue stained bands 
migrating below 25KDa are attributable to amelogeni ns. The corresponding 
western blots (bottom panels), probed with anti-ena melin antibody show 
higher molecular weight enamelin bands in the rat e namel samples. These 
bands migrate at around 70 kDa. In contrast, the pi g secretory enamel 
contains a prominent enamelin band migrating at 32 kDa (marked *) .The 
results indicate that rat amelogenesis does not inv olve the generation of a 
predominant 32 KDa enamelin molecule.  
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3.3.2 The effect of continued proteolytic processin g on the enamelin 
proteome in secretory stage rat enamel 

The results described above indicated that rat amelogenesis proceeds in the 

absence of a discrete 32 kDa processing product. To investigate whether the rat enamel 

matrix proteolytic enzymes could cleave rat enamelin with time to generate a 32 kDa 

enamelin homologue, rat secretory stage enamel was incubated in vitro for varying 

lengths of time. Secretory stage enamel from a rat incisor was removed and crushed in 

10% acetic acid. An aliquot was taken at time = 0, and the remaining enamel placed into 

a 37ºC incubator. Further aliquots were taken at 4, 8, 16 and 32 hours to investigate the 

proteolytic breakdown of the enamelin protein over time by the endogenous proteases in 

the enamel matrix. Figure 52 shows a Coomassie stained gel of these aliquots. The 

predominant bands are below 25 kDa, corresponding to the amelogenins as shown by 

the corresponding western blot. There was an obvious loss of full length parent 

amelogenin as it is degraded with time to lower molecular weight processing products. 

A corresponding western blot probed with anti-enamelin antibody showed that the 

enamelin proteins shifted to a slightly lower molecular weight with time consistent with 

limited proteolytic processing but again no 32 kDa enamelin was generated. 
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 Figure 52.  SDS PAGE and enamelin Western blot usi ng anti-enamelin antibodies 
of rat secretory stage enamel matrix allowed to deg rade over a period of 32 
hours.  Enamelin components shift to a lower molecu lar weight but no 
obvious 32 kDa species is generated. 
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3.3.3 Bioinformatics analysis of enamelin protein s equences across 
multiple species 

The data presented above strongly suggested that rat amelogenesis, unlike pig 

amelogenesis, does not involve the generation of a 32 kDa enamelin molecule. To 

investigate possible reasons for this, bioinformatics databases were scrutinised and the 

homology of the cleavage sites responsible for generating the pig 32 kDa enamelin 

component were identified and compared to the homologous site in other species.     

Figures 53 and 54 show the N-terminus cleavage site and C-terminus  cleavage 

site responsible for generating the 32 kDa enamelin in pig (Yamakoshi et al., 2006). In 

descending order, the homologous sequences for  human, mouse, rat, chimpanzee, dog 

and guinea pig are shown.  A full comparison of the enamelin sequences for 295 species 

is shown in Appendix 2 but this limited data below set illustrates the point that the 

combination of both cleavage sites responsible for generating the N and C-terminals of 

the 32 KDa enamelin in pig (as indicated by the blue line cutting between the amino 

acids P-L and R-S respectively) are absent in all other species. It appears therefore that 

the generation of the 32 KDa enamelin in pig amelogenesis may be unique as other 

species do not exhibit the specific cleavage sites present in pig that are responsible for 

the generation of the 32 KDa enamelin.  

 

Figure 53.  Bioinformatics analysis of the amino ac id sequences around the 
cleavage sites for generating the N terminus sequen ce cleavage site of 
enamelin (shown by blue line).  

 

  

154 TQTPQAFPPFGNGLFPYQQP LWHVPHRIP-PGYGRPPTSNEEGGNPYFGFFGYHGFGGRP 212 PIG 

153 AQPPQAFPPFGNGLFPYQQP PWQIPQRLPPPGYGRPPISNEEGGNPYFGYFGYHGFGGRP 212 HUMAN 

158 AQPPQPFPPFGNGLYPYPQP PWPIPQRGPPTAFGRPKFSNEE-GNPYYAFFGYHGFGGRP 216 MOUSE 

228 AQPPQPFPPFGNGLYPYQQP PWPIPQTGPPTGFGRPKFSNEE-GNPYYAYFGYHGFGGRP 286 RAT 

153 AQPPQAFPPFGNGLFPYQQP PWQIPQRLPPPGYGRPPMSNEEGGNPYFGYFGYHGFGGRP 212 CHIMP 

155 GQPPQAFPPFGNGLFLYQQP PWQVPHRVP-PGYGRPPASNEEGGNPYFGYFGYQGFGGRP 213 DOG 

155 AQPPQPFPPFNNGLFPFQQP PWPIPQRMPPPGYGRPPLSNEDGGNPYFGFFGYPGFGGRP 214 GUINEA PIG 
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Figure 54.  Bioinformatics analysis of the amino ac id sequences around the 
cleavage sites responsible for generating the N C t erminals of the 32 kDa 
enamelin in pig. The relevant cleavage sites in pig  appear to be unique and 
are not shared by other species.  

 

3.4 Recombinant wild type and Y64H mutant amelogeni n protein 
binding/aggregation studies 

In vitro experiments were performed to determine whether the Y64H mutation in 

recombinant amelogenin affected its aggregative properties (the basis of nanosphere 

formation). Wild type and Y64H mutant recombinant amelogenin proteins were used to 

coat 96-well microtitre  plates and act as a ‘bait’ to capture wild type or Y64H mutant 

recombinant amelogenin proteins, labelled with the fluorescent tag fluorescein (FITC). 

BSA bait protein was used as a control to examine non-specific amelogenin binding. The 

level of binding interaction (i.e. aggregation) was assessed by reading the fluorescence. 

 

3.4.1 Adsorption and blocking of recombinant amelog enin proteins to 
microtitre plates 
Binding experiments were performed by adsorbing a bait protein of interest 

(unlabelled amelogenin or BSA) onto microtitre plate wells. Any remaining exposed well 

surface was blocked with a blocking protein and then the binding partner (labelled 

amelogenin) added (section 2.3). Blocking was essential to prevent the labelled 

amelogenin simply adsorbing to the wells and giving a false positive result. It was 

equally important that the binding partner did not bind to the blocking protein.   Several 

different blocking solutions were initially investigated with 1% BSA in TBS proving to be 

the most suitable (data not shown).  

264 NDTSPTGTSGQGPNPR SNPTGQNGP----AVNVSGQGVPRSQSPWGPRQTIIHENYPNPN 319 PIG 

265 NDTSPTGNSTPGLNTG NNPPAQNGIGPLPAVNASGQGGPGSQIPWRPSQPNIRENHPYPN 324 HUMAN 

269 NDTSPIGNTGPGPNAG NNPTVQNGVFPPPKVNVSGQGVPKSQIPWRPSQPNIYENYPYPN 328 MOUSE 

342 NDSSPVGNTGPGPNAG NNPTVLNGVFPLPKVNVSGQGVPKNQIPWRPSQPNIYENYPYPN 401 RAT 

265 NDTSPTGNSTPGLNTG NNPPAQNGIGPLPAVNASGQGGPGSQIPWRPSQPNIRENHPYPN 324 CHIMP 

266 NDTSPTGNSGPGPNTV SNPTAQNGVISPATVNISGQGVPRTQISWGPNQPNIHENYPNPN 325 DOG 

262 NDTGPTLNSIPGLNTG NNPTVQNGIFPLPTVNFSGQVIPGSQIPWKPNQPNIYGSYPKPN 321 GUINEA PIG 
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3.4.2 FITC-labelled protein binding 
Following bait protein adsorption, the wells were aspirated, washed and blocked. 

FITC labelled binding partner (either labelled wild type or labelled Y64H mutant 

recombinant amelogenin) was then added and allowed to bind to the bait protein. The 

wells were aspirated and washed to remove unbound FITC labelled protein and the 

degree of binding determined by reading the fluorescence on a fluorimeter.  

The results are shown in figure 55. Reading left to right the first column shows the 

fluorescence associated with FITC labelled wild type recombinant amelogenin binding 

with unlabelled wild type recombinant amelogenin bait initially bound to the well (WT-

WT). The second column shows the fluorescence associated with FITC labelled Y64H 

mutant recombinant amelogenin binding with unlabelled wild type recombinant 

amelogenin bait initially bound to the well (WT-MUT). From this data it was clear that the 

Y64H mutant recombinant amelogenin apparently showed a greater binding affinity 

(approximately 3 times greater) to wild type recombinant amelogenin than wild type 

recombinant amelogenin did to itself. The next two columns show the fluorescence 

associated with FITC labelled wild type recombinant amelogenin binding with unlabelled 

Y64H mutant recombinant amelogenin bait initially bound to the well (MUT-WT) and the 

fluorescence associated with FITC labelled Y64H mutant recombinant amelogenin 

binding with unlabelled Y64H mutant recombinant amelogenin bait initially bound to the 

well (MUT-MUT). From this data it was clear that the Y64H mutant recombinant 

amelogenin apparently showed a greater binding affinity (approximately 3 times greater) 

to Y64H mutant recombinant amelogenin than wild type recombinant amelogenin does.  

Binding of either FITC labelled wild type or Y64H mutant  recombinant amelogenin to the 

BSA bait showed no fluorescence, indicating that binding of either amelogenin type to 

BSA did not occur; this indicated that specific amelogenin-amelogenin interactions were 

being detected. Interestingly, the interaction shown in column 3 (between FITC-Y64H 

mutant recombinant amelogenin to unlabelled wild type recombinant amelogenin bait  

(MUT-WT)) was much less than FITC-wild type recombinant amelogenin to unlabelled 

Y64H mutant recombinant amelogenin (WT-MUT shown in column 2). Both columns 

represent interactions between wild type and mutant proteins; the difference being in 

which protein (wild type or Y64H mutant) that was initially bound to the well to act as bait 

protein.  When Y64H mutant amelogenin acted as bait, the resulting binding was 

reduced compared to the results obtained when wild type amelogenin acted as the bait. 
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Figure 55.  Results of FITC binding experiments sho wing 100 µg/mL of unlabelled 
wild type amelogenin, Y64H mutant amelogenin or BSA  bound to a 96-well 
microtitre plate and interrogated with 100 µg/mL of  either wild type or mutant 
FITC-labelled amelogenin. N =6. Standard deviation error bars are shown 
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      3.5 Q-RT-PCR of ER stress genes and amelogeni n in wild type 
and Y64H mutant mice incisors  

3.5.1 Comparison of the expression of ER stress gen es in enamel 
organs of wild type and Y64H mutant amelogenin mice . 

Immunocytochemical investigation of ameloblasts expressing the Y64H mutant 

amelogenin (carried out by Dr Martin Barron, University of Manchester) revealed the 

presence of abnormal vesicles packed with amelogenin protein. Figure 71 (Discussion 

section 4.7) shows a typical TEM image of affected ameloblasts including following 

probing with anti-amelogenin antibodies. This abnormal retention of protein in the ER 

can lead to the phenomenon of ER stress which raised the possibility that the 

mechanism underpinning amelogenesis imperfecta in the Y64H mutant mice was based 

on cellular ER stress rather than functional failure of mutant amelogenin in the 

extracellular enamel matrix.  To investigate this radical hypothesis further q-RT-PCR 

was used to determine levels of amelogenin and proteins known to be expressed by 

cells attempting to combat ER stress in wild type and Y64H mutant mouse incisor 

enamel organs.  

 

3.5.2 RNA extraction from mice enamel organs 

Mice expressing the Y64H amelogenin mutation were bred by our Wellcome Trust 

collaborators at the University of Manchester (Materials and Methods Section 2.5). The 

mandibular incisors from five male animals carrying the Y64H amelogenin mutation and 

four male animals carrying wild type amelogenin were extracted. Each tooth was treated 

as a separate entity. The enamel organ was dissected from the incisors and the RNA 

extracted as described in Section 2.5.2. 

Figure 56 shows an image of an agarose gel of the RNA extracted from two wild-

type and two mutant mice incisors. The 28S and 18S subunits were visible indicating 

successful RNA extraction. 
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Figure 56. Image of an agarose gel of the extracted  mouse tooth RNA. RNA 
markers are shown on the left, then the RNA for two  wild-type mouse incisor 
enamel organs and then the RNA for two mutant mouse  incisors. 

 

This RNA was treated to remove any genomic DNA contamination and transcribed 

into cDNA using a commercially available kit as per Section 2.5.4. Figure 57 shows an 

image of an agarose gel for the cDNA created using the extracted RNA using reverse 

transcription PCR (RT-PCR) for two wild type and two Y64H mutant extracted enamel 

organs. 

 

 

 

28S subunit 

18S subunit 
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Figure 57. Image of an agarose gel showing the cDNA  PCR product achieved after 
performing RT-PCR on the RNA extracted from mice en amel organs using 
the Phire Hot-Start PCR kit from New England Biotec h. Full-length 
amelogenin product at 540bp can be seen for both th e wild type and Y64H 
mutant amelogenin cDNA. 

 

3.5.3  Quantitative real time PCR of the transcribe d cDNA 

 

cDNA obtained as described above was used as the template for quantitative real time 

PCR (q-RT-PCR) analysis. Primers for the amelogenin gene (Amelx), marker genes for 

ER stress proteins (Bip, Grp94, chop, Xbp1) and a housekeeping gene (Gapdh) were 

used determine the effects of the Y64H mutation on gene expression of amelogenin and 

proteins associated with ER stress. Following DNA amplification, each gene was 

expected to produce DNA of a particular size, known as an amplicon. This is shown in 

figures 57 and 58 after horizontal agarose gel electrophoresis of the q-RT-PCR products 

(amplicons) and the differences in molecular weights (base pairs). Figure 58 is a 

representative gel for a wild-type mouse enamel organ and figure 59 is a representative 

gel for a Y64H mutant mouse enamel organ. Figure 60 shows the amplicons for Amelx 

across all the mice enamel organs, both mutant and wild type, investigated. 
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Figure 58. Horizontal gel electrophoresis of q-RT-P CR amplicons from Wild-type 
amelogenin mice incisors enamel organs. BP= base pa irs for the New 
England Biolabs low molecular weight DNA ladder. 

 

Figure 59.  Horizontal gel electrophoresis of q-RT- PCR amplicons from Y64H 
amelogenin mice incisors enamel organs. BP= base pa irs for the New 
England Biolabs low molecular weight DNA ladder. 
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Figure 60. Agarose gel stained with Biotium Gel-red  stain and viewed under UV 
light on GelDoc, showing RT-PCR product for extract ed RNA with 
amelogenin forward and reverse primers. 

 

Standard curves were performed for each gene using a dilution series of cDNA. A linear 

response is required to show efficiency of amplification. Figure 61 shows a standard 

curve for GAPDH housekeeping control gene, as generated by the Lightcycler 4800. 

 

 

Figure 61. Standard curve for Gapdh control. This curve is typical of the data 
obtained from the Light Cycler 4800 (see appendix f or an example of the data 
obtained). The curve has an efficiency of 1.892 (ex pected value is 
approximately 2), a slope of -3.610, a Y Intercept of 31.52, with an error of 
0.0203. 
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Standard curves were run for each gene of interest and with each cDNA sample, 

using a 1 in 10 dilution range. Plotting the log of concentration against the CP values 

resulted in a linear fit comparable to the Gapdh control in figure 61.  

 

Figure 62 shows the amplification curves for Gapdh extracted from mice enamel 

organs containing wild type Amelx. This is a typical example of the amplification curves 

obtained throughout the study. The cycle number at which the amplification increases is 

known as the crossing point or CP. This is the point at which the levels rise above 

background/threshold. The graph show that the negative controls (concentration 0) stay 

at threshold. A representative q-RT-PCR report from the Lightcycler is shown in 

Appendix 3. 

 

 

Figure 62. Typical graph generated by the LightCycl er 4800 to show the CP values 
and amplification of samples. In this case, cDNA tr anscribed from mice 
carrying wild type Amelx is amplified for Gapdh. 

 



- 154 - 

Table 1 Shows the CT values for all 11 Y64H amelogenin mutant mice enamel 

organs and the 6 genes investigated. Where no data is shown, no data was generated. 

Figures 62 shows representative fold changes in gene expression for each individual 

Y64H mutant amelogenin mouse enamel organs for each of the 6 genes. 

 

Table 1.  CT values for all Mutant (M) and wild-type (WT) AMELX mice incisors for 6   
genes. N/D = not detected. 

  Gapdh Amelx Grp94 Bip Chop Xbp1 
1A M 35.16 29.31 33.86 34.37 40.00 34.77 
1B M 34.20 27.72 33.50 33.53 40.00  35.19 
2A M 33.59 27.48 34.49 34.93 40.00 35.19 
2B M 32.75 25.84 31.06 32.71 25.88 33.62 
3A M 34.07 28.87 33.83 35.75 40.00 39.20 
4B M 33.14 28.63 33.38 34.25 40.00 35.25 

5A WT 35.81 29.49 35.35 36.88 40.00 39.78 
5B WT 31.81 23.29 30.93 32.73 40.00 32.63 
6A WT 34.62 28.59 34.01 35.34 N/D 36.01 
6B WT 31.78 24.22 31.75 32.94 39.51 33.20 
7A M 33.93 27.16 33.97 34.53 40.00 33.69 
7B M 32.87 24.56 33.68 33.40 40.00 35.65 

8A WT 32.17 25.00 31.65 33.74 40.00 33.39 
8B WT 38.59 30.46 36.05 37.58 40.00 35.49 

33A WT 34.48 26.81 32.60 34.19 40.00 35.93 
33B WT 32.38 24.92 33.19 33.04 40.00 34.90 
34A M 36.39 30.35 31.07 35.87 40.00 39.68 
34B M 34.73 28.05 36.00 36.22 39.27 32.13 

 

 

Figure 63 shows a graph representing the crossing point data for all the mice 

incisor enamel organs examined with the panel of 6 genes, represented as a fold 

difference compared to Gapdh housekeeping control. Each gene is the mean of 11 

replicates.  From this data it is clear to see that Amelx is statistically significantly down-

regulated in Y64H mutant mice enamel organs, while Chop is statistically significantly 

up-regulated. 
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Figure 63. Overall fold change ( ∆∆CT) for Y64H mutant amelogenin enamel organs 
compared to wild type amelogenin enamel organs (n=1 0) Grubbs outlier test 
applied. Student’s two-tailed T test applied to det ermine upregulation and 
down-regulation to gapdh housekeeping control. 

 

Several statistical methods were employed to investigate any upregulation or 

downregulation of the CT levels of the genes of interest, comparing gene expression in 

the enamel organs of wild type mice and mice carrying the Y64H amelogenin mutation. 

Non-parametric analysis was performed using SPSS (IBM) software. The student 2-

tailed T test performed on the ∆∆CT values (Y64H amelogenin mutant compared to wild 

type) showed that Amelx was statistically significantly down-regulated in the Y64H 

amelogenin mutant enamel organs and Chop statistically significantly up-regulated in the 

Y64 amelogenin mutant enamel organs (p<0.05 in both cases). However, the Chop data 

should be viewed with caution as the difference observed is accounted for by the results 

obtained from a particular sample which skewed the mean values (sample 2BM, table 

1). In general Chop was at very low levels in most samples as evidenced by the CT 

value of 40 obtained. 

In summary, the q-RT-PCR data showed that amelogenin expression was 

significantly down regulated in Y64H mutant amelogenin ameloblasts. Down regulation 

of general protein synthesis is a classical UPR survival response.   Chop (a marker for 
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apoptosis) was also significantly upregulated although the reliability of this data is 

questionable as this result is based on a single sample exhibiting a high expression of 

chop.  

3.6 SEM analysis of Y64H mutant amelogenin mouse in cisors 

In an attempt to better understand the mechanism by which the Y64H mutation 

affects amelogenesis, the micro-ultrastructure of the resulting affected mature enamel 

was investigated using SEM.    

Wild type female mouse incisors, Y64H mutant amelogenin heterozygous female 

mouse incisors and male Y64H mutant amelogenin homozygous mouse incisors were 

prepared as described in Chapter 2 section 2.6 and imaged using a Hitachi S3400N 

scanning electron microscope using backscatter mode. 

Figure 64 shows a typical wild type female mouse incisor in transverse section. 

The characteristic decussating interlocking weave pattern of the enamel prisms 

emanating from the dentine layer is clear. Figure 65 shows a higher magnification of the 

enamel layer, displaying the ordered disposition of the enamel prisms.  

 

Figure 64. SEM image of a female wild type mouse in cisor imaged at 450 times 
magnification. The decussating interlocking weave p attern of the enamel 
prisms emanating from the dentine layer is clear. T he enamel layer is even in 
thickness at approximately 75 microns (shown with r ed arrow). 

Enamel 

Dentine 
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Figure 65. Higher magnification SEM image of the wi ld type female mouse incisor 
enamel layer shown in figure 63.  The decussating i nterlocking weave pattern 
of the enamel prisms emanating from the dentine lay er is clear. 

Figure 66 shows a typical SEM image of a female mouse incisor that is 

heterozygous for the Y64H amelogenin mutation in transverse section. The 

characteristic decussating interlocking weave pattern of the prisms is evident in the inner 

enamel adjacent the dentine. However, in contrast to wild type enamel, the ordered 

enamel structure is disturbed in the mature outer enamel tissue layer.  

 

Figure 66. SEM image of a section through an erupte d mouse incisor of a female 
animal heterozygous for the Y64H amelogenin mutatio n. Imaged at 450 times 
magnification. The decussating interlocking weave p attern of the enamel 
prisms emanating from the dentine layer is clear in  the inner enamel, but is 
lost in the outer enamel layer, shown by the red ar row. 

Enamel 

Dentine 
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Figure 67 shows a higher magnification of enamel layer of the section through the 

incisor from the female mouse heterozygous for the Y64H amelogenin mutation with the 

loss of enamel structure clearly visible at the interface between the normal inner enamel 

and structurally abnormal outer enamel layer.  

 

Figure 67.   Higher magnification SEM image of the section through the incisor 
from the Y64H mutant amelogenin heterozygous female  mouse incisor 
enamel layer shown in figure 65.  Note the interfac e between the normal 
decussating interlocking weave pattern of the ename l prisms and the 
abnormal outer enamel layer. 

Figure 68 shows the outer edge of the enamel layer of the section through the 

mouse incisor from a female mouse heterozygous for the Y64H mutant amelogenin 

where pieces of enamel at the outer edge are absent suggesting that the outer abnormal 

enamel is mechanically inferior to the underlying enamel and has sheared off in the 

mouth has retained a normal structure. However, it is also possible that the enamel was 

missing prior to eruption i.e. the enamel was never present to begin with. 
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Figure 68. SEM image of a section through an inciso r from a Y64H mutant 
amelogenin heterozygous female mouse. This image sh ows the pieces of the 
outer enamel structure have broken away leaving an uneven edge (shown 
with white arrows) suggesting the abnormal enamel i s mechanically 
compromised during mastication. 

 

Figure 69 shows a SEM image of a section through an incisor from a male mouse 

homozygous with respect to the Y64H amelogenin mutation, imaged at 450 times 

magnification. The mature enamel layer is thin, at approximately 30 microns or less, and 

lacks the characteristic decussating prism structure. Figure 70 shows a higher 

magnification of the enamel layer, clearly showing that the normal prism structure is 

missing.  

 

 

 

Uneven enamel 
edge 
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Figure 69.  SEM image of a section through an incis or from a Y64H mutant 
amelogenin homozygous male mouse imaged at 450 time s magnification. 
The enamel layer (thickness shown with white arrows ) is shown above the 
darker dentine layer, but the characteristic prism structure is not visible. 

 

 

Figure 70.  SEM image (times 1600 magnification) of  the enamel layer for the male 
homozygous Y64H amelogenin mutant mouse incisor. Th e characteristic 
prism structure is not visible. 

 

Enamel 

Dentine 
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In summary, the SEM analysis revealed that heterozygous female mice carrying 

the Y64H mutation appeared to secrete an initial enamel layer that was normal in 

appearance. However, with time, the ability of the ameloblasts to secrete a visually 

normal enamel layer was lost and the final outer enamel layer secreted was structurally 

abnormal. In contrast, the ameloblasts in affected male mice were only able to secrete a 

thin enamel layer that was devoid of normal structure. 
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Chapter 4 

General discussion 

This chapter will discuss the results presented in the previous chapter, and how 

these results fit with and expand our current understanding of the processes involved in 

amelogenesis. 

The research presented in this thesis was undertaken as part of a larger 

multicentre research program and the discussion will explain how the research 

presented here contributed to the overall project outcomes. It is difficult to discuss the 

results presented here without reference to the work of other members of the research 

group and particular attention will be paid to  acknowledging the work of others where it 

is included in order to better contextualise the results presented in this thesis.   

The overall aim of the larger research project was to use amelogenesis as a 

paradigm for biomineralisation. A major focus of the research was to understand the role 

of amelogenin in amelogenesis by studying the effects of an amelogenin mutation in 

mice that resulted in an obvious biomineralisation defect.  Initially, the hypothesis was 

that any amelogenin mutation would disrupt amelogenin function in terms of mineral 

nucleation/crystal growth including how any protein-protein interactions may be affected, 

potentially allowing the affected amelogenin domain to be linked to a specific function. 

To this end, the effect of the Y64H mutation on the ability of amelogenin to nucleate 

mineral de novo and in vitro was investigated using recombinant wild type and mutated 

amelogenin in isolation or in combination with the 32 kDa enamelin  (previously reported 

to cooperatively enhance the nucleation potential of amelogenin (Bouropoulos and 

Moradian-Oldak, 2004)). An unexpected outcome of this work was the realisation that 

the 32 kDa enamelin used almost exclusively for enamelin biochemical and functional 

studies worldwide may be unique to pig amelogenesis and not play as large a role in 

amelogenesis in other species as previously thought.  During the course of the research 

it became clear that the Y64H amelogenin was actually blocking the intracellular 

secretory pathway in ameloblasts and that ER stress driven ameloblast apoptosis was a 

major factor in the disease mechanism operating in affected mice. This section 

discusses the existing literature and how the present results relate to these previous 

studies and also develops hypothesis to be tested in future studies. The thesis map in 
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the aims and objectives section provides a summary to the content and structure of the 

Discussion.      

 

4.1  Effect of the Y64H mutation on the nucleating potential of 
amelogenin 

 

This effect of the Y64H mutation on the nucleation potential of amelogenin in the 

presence and absence of 32 kDa enamelin was investigated using a steady-state 

agarose gel based in vitro nucleation system.  The interpretation of data in this area is 

difficult to appraise due to the fact that the same protein can exhibit opposite behaviors 

(i.e. promote nucleation or inhibit nucleation) depending on the experimental conditions 

used The situation was best summed by Hunter et al 1996 who in their Discussion 

section admitted that:  

“….the diversity of experimental systems used [to study promotion/inhibition of 

nucleation] makes any overall conclusions very difficult to find.”        

That aside, it is clear that certain biochemical features are associated with proteins 

thought to control skeletal biomineralisation. The steady-state agarose gel system was 

first used by Hunter and Goldberg in 1993 to investigate the nucleation of hydroxyapatite 

by bone sialoprotein (BSP) and later extended to other proteins which at least allows 

comparisons to be made against a fixed experimental baseline.  

BSP is a major phosphorylated protein in mammalian bone and has been 

proposed to have a role in mineral initialisation (Hunter and Goldberg, 1993). Mature 

BSP is a 33 kDa protein and is predominantly made up of glutamic acid and glycine 

residues (32% of all residues). The glutamic acid residues occur in clusters of up to 10 

consecutive repeats. BSP is highly acidic (pKa approximately 3.9) and contains no α 

helices or ß sheet, or structural domains. BSP has extensive post-translational 

modifications amounting to approximately 50% of the native protein. Tye et al., (2003) 

used the steady state agarose gel system to identify which regions of BSP are required 

for hydroxyapatite nucleation. The conformation of the wild type and mutant proteins 

were studied by circular dichroism and X-ray scattering which revealed that a sequence 

of at least 8 contiguous glutamic acid residues are required for the nucleation of 

hydroxyapatite by BSP. Hunter and Goldberg drew the conclusion that polycarboxylate 
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sequences (i.e. glutamate and aspartate) represent a general site for growth modulating 

interactions between proteins and biological crystals. The carboxyl groups that terminate 

the side chains of both glutamate and aspartate are negatively charged (see figure 71 

below) at physiological pH and when linked by peptide bonds into long chains (as they 

appear in BSP) can provide a negatively charged array that could potentially bind 

calcium ions through ionic interactions in a suitable stereochemical arrangement to 

trigger mineral nucleation. 

 

 

Figure 71. Structure of glutamate and aspartate pol ycarboxylate sequence 

 

 Like BSP, dentine phosphoprotein was found to promote nucleation in the agarose 

gel system (though less potently) (Hunter et al 1996). Dentine phosphoprotein is 

extremely acidic due to its very high content of polyaspartic acid residues (Richie and 

Wang, 1996), again supporting the notion that polycarboxylic acids are a feature of 

nucleating proteins.   

 However, it is clear that the presence of polycarboxylic acids per se is not enough 

to give a protein nucleating potential. The acidic phosphorylated bone protein 

osteopontin is a phosphorylated sialoprotein similar to BSP but in contrast exhibits 

domains of polyaspartic acid rather than polyglutamic acid. Although these amino acids 

are structurally and chemically similar, osteopontin proved to be a potent inhibitor of 

mineral nucleation in the agarose gel system (Hunter et al 1996).     Desphosphorylation 

and chemical modification of osteopontin showed that the ability of osteopontin to inhibit 

nucleation required phosphate and carboxylic acid groups, and possibly the conserved 

sequence of contiguous aspartic acid sequences (Hunter and Goldberg 1994). 
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Another acidic bone protein, osteocalcin, contains three gamma carboxyglutamic 

acid residues that participate in the binding of calcium ions. On calcium binding a major 

conformational change occurs that greatly increases the ά helical content of the protein 

(Hauschka 1986). Using the steady-state agarose gel system osteocalcin was found to 

delay nucleation (Hunter et al 1996).   

It is clear that predicting the mineral nucleating behaviour of a protein from its 

amino acid sequence is difficult. It is clear that polycarboxylic acids and phosphorylation 

are common features associated with bone and dentine biomineralisation; regardless of 

whether the protein in question promotes or inhibits nucleation. The potency of 

polyglutamic acid sequences as a nucleator is evidenced by the now common use of 

long chains of glutamic acid synthesised chemically for use as a positive control in 

mineral nucleation experiments.   PGA at 10 µg/mL was used as the positive control for 

assessment of mineral nucleation in the steady state agarose gel system used in this 

thesis. 

How do enamel proteins compare in terms of phosphorylation and polycarboxylic 

acid content?  Enamelin contains 2 phosphorylated serine residues and 3 glycosylated 

asparagine residues which are located in the domain that forms the 32 kDa fragment in 

pig enamelin following cleavage of the full length protein. Like the mineralised tissue 

proteins described above, the 32 kDa enamelin is acidic (isoelectric point of 5.27) but 

contains only two examples of diglutamic acid units (Hu and Yamakoshi. 2003). The 32 

kDa enamelin protein used in the experiments presented in this thesis was produced in a 

eukaryotic system and the resulting protein should have all the appropriate post-

translational modifications such as phosphorylation and glycosylation (Hu and 

Yamakoshi, 2003). Given these modifications, the 32 kDa enamelin has the potential 

capacity to interact with mineral and influence growth (Robinson et al., 1998; 

Bouropoulos and Moradian-Oldak, 2004; Fan et al., 2008; Fan et al., 2009B; Al-Hashimi 

et al., 2009). 

Table 2 shows a comparison of the key features of extracellular matrix proteins that have 

been used to investigate hydroxyapatite nucleation potential. 
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Table 2 . Table to show comparison of common features of proteins that have been 
examined for hydroxyapatite nucleating potential. Note that the frequency of aspartic 
acid and glutamic acid invertebrate proteins is on average around 6% (Mann, 2001) 

 

Protein 

(Porcine) 

PKa MW 

kDa 

PTM Tertiary 

Structure 

Aspartic 

Acid 

Glutamic 

Acid 

 

Shown to 

nucleate 

HAP? 

Bone 

sialoprotein 

21 

3.91 331 50%1 No1 5.4%1 19%1 Yes2 

Phosphoryn3 Acidic 33 yes Yes with 

Ca2+ 

20% 5% Yes 

Osteocalcin3 5.5 6 Yes Yes 4% 8% No 

Osteopontin 

(Bone 

sialoprotein 

1)2 

Acidic 32.6 Yes Yes 15% 9% No 

Osteonectin3 5.9 44 Yes Yes8 8% 11% No 

32 kDa 

Enamelin 

5.3 325 Yes5 No (Mainly 

ά helices)6 

3%4 9.4%4 No 

Amelogenin 6.57 25 Yes Β sheet 

(bovine) 

 

1.5% 2.5% No 

1 Oldberg et al., 1988; 2 Hunter and Goldberg, 1993; 3 Hunter et al., 1996; 
4 Hu and Yamakoshi 2003; 5  Yamakoshi, 1995; 6 Fan et al, 2008; 

 7 He et al., 2008; 8 Fujisawa et al., 1996 

 

 In contrast to enamelin, which exhibits at least some similarities with the 

mineralised tissue proteins discussed above; amelogenin is not particularly acidic 

(isoelectric point 6.5) and has a low glutamic and aspartic acid content.  Indeed, Hunter 

et al (1999) reported that recombinant mouse amelogenin in agarose gels failed to 

induce or inhibit in vitro nucleation at protein concentrations ranging from 1-300 µg/mL. 
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However, Tarasevich et al. (2007) tested recombinant mouse amelogenin, rM179 in vitro 

and found that the protein nucleated mineral up to a protein concentration of 6.5 µg/mL 

in free solution.  At higher concentrations the nucleating potential decreased until at 130 

µg/mL nucleating potential was essentially zero. However, higher concentrations of 

amelogenin are not necessarily inhibitory because on close examination of the 

Tarasevich’ s 2007 publication it is apparent that the mineralising solutions remained 

metastable and did not nucleate mineral in the absence of protein; in other words this 

experimental system was not suitable for determining whether higher concentrations of 

amelogenin are able to inhibit nucleation simply because even in the absence of 

amelogenin, nucleation does not occur. To show if these higher concentrations of 

amelogenin are able to inhibit nucleation they would need to be added to a system that 

is able to induce nucleation in the absence of the added amelogenin. Previous studies 

have shown that proteins may inhibit mineralisation by the sequestering of mineral ions.  

The binding of calcium ions to proteins and proteoglycans lowered the concentration of 

calcium in solution and inhibited nucleation ([Hunter and Szigety, 1985; Hunter et al., 

1994). Protein concentration in vitro being able to influence mineralisation suggests that 

amelogenins function in vivo may be dependent on concentration, with roles such as 

nucleator being promoted at low concentration and other roles such as growth modifier 

occurring at high concentration. The concentration of recombinant amelogenin protein 

used in the steady-state agarose gel system in this thesis was 10 µg/mL, above the limit 

of 6.5 µg/mL amelogenin shown by Tarasevich et al., (2007) where amelogenin switches 

from a nucleator to an inhibitor. The experiments in section 2.2 agree with this theory, 

with 10 µg/mL recombinant amelogenin eliciting an inhibitory effect on mineral nucleation 

in the steady state agarose gel system. 

Bouropoulos and Moradian-Oldak (2004) showed that crude amelogenin extracts 

(comprising nascent amelogenin and its processing products) added to gelatine gels in 

amounts far exceeding 6.5 µg/ml (i.e. 0.75 or 1.5% (w/w)= 7.5-15 mg/mL) had an  

inhibitory effect on in vitro hydroxyapatite nucleation. They also tested the nucleation 

potential of the 32 kDa enamelin at 18 µg/mL in the same system and reported that it too 

inhibited nucleation. However, when amelogenin at 1.5% (w/w) was used in conjunction 

with 32 kDa enamelin, nucleation was accelerated. This striking result suggested a 

synergistic role for amelogenin and the 32 kDa enamelin in terms of hydroxyapatite 

nucleation.    
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Based on this, the nucleating potential of wild type and Y64H mutant recombinant 

amelogenin was tested in the absence and presence of recombinant 32 kDa enamelin. 

When deciding on relevant amelogenin concentrations to use in the present work 

several things needed to be considered:  

1) How the concentrations used in the in vitro system compare to those in vivo:  

Secretory stage enamel is approximately comprised of equal volumes of protein 

(mostly amelogenin), water and mineral meaning that in vivo amelogenin concentration 

approaches 100% (v/v) or 1350 mg/mL (assuming an average density of 1.35g/cm3 for 

protein (Fischer et al 2004)). Researchers studying amelogenin have been frustrated 

by the low solubility of amelogenin at physiological pH which is around 200 µg/mL in 

calcium-phosphate solution (Tan et al 1998). This explains why Tarasevich et al. (2007) 

used amelogenin concentrations of only up to 130 µg/mL in calcium-phosphate 

solution. Bouropoulos and Moradian-Oldak (2004) used amelogenin at much higher 

concentrations of 7.5 and 15 mg/mL but here amelogenin was added to gelatine gels 

and presumably the amelogenin was only partially solubilised in these gels and as such 

closer to the situation found in vivo where the amelogenin must exist as a hydrated 

protein gel.  In general, amelogenin experiments are conducted using solutions that are 

orders of magnitude more dilute than in vivo concentrations but dispersing the 

amelogenin in gelatine or agarose (as is the case in this thesis) may be a better 

approximation to in vivo conditions compared to experiments conducted with 

amelogenin free in solution.    

2) The availability of amelogenin to use in in vitro mineralisation experiments: 

 In vitro mineralising experiments, including the system described in this thesis, have to 

be designed with the knowledge that amounts of recombinant protein available are 

likely to be a limiting factor. Scaling down the experimental mineralising system helps 

to some extent, but this is countered by an increase in measuring error as volumes 

decrease. Using amelogenin at in vivo-like concentrations was simply not practical due 

to limited availability of protein and the solubility issues described above. An 

amelogenin concentration of 10 µg/mL dispersed in agarose gel was used in this study 

as this was the maximum amount that could be sustained in terms of recombinant 

protein production that also aligned with concentrations used previously in the 

literature, enabling the results to be interpreted with reference to what has gone before.  



- 169 - 

4.2 Nucleation potential of wild type and Y64H muta nt 
recombinant amelogenin  

 At 10µg/mL both wild type and Y64H mutant recombinant amelogenin significantly 

inhibited nucleation of hydroxyapatite mineral in vitro compared with a PGA positive 

control with no significant difference in levels of inhibitory activity between the two 

amelogenin forms. Under these experimental conditions at least, Y64H mutation did not 

alter the nucleating potential of amelogenin in the agarose gel based system used here; 

both proteins significantly inhibit nucleation relative to the negative control by 

approximately 50%. This inhibitory effect was consistent with previous reports for wild 

type amelogenin studied in a gel based experimental system (Bouropoulos and 

Moradian-Oldak 2004 - see above) but conflicts with Hunter et al (1999) who as 

described above examined the nucleating potential of recombinant amelogenin and 

found it neither nucleated nor inhibited in their agarose gel based system (similar to the 

system used in this thesis).  

Bouropoulos and Moradian-Oldak (2004) also reported that wild type amelogenin 

and 32 kDa enamelin at 18 µg/mL inhibited nucleation in isolation. However, together 

they synergistically promoted nucleation. To test if the Y64H mutation disturbed this 

synergistic relationship, the nucleating potential of the 32 kDa enamelin alone and in 

combination with either WT or Y64H amelogenin was determined. 

 

4.3 Nucleation potential of recombinant 32 kDa enam elin 

Initially, the nucleating potential of 32k Da enamelin alone was determined in the 

present study. Recombinant 32 kDa enamelin was available in limited amounts due to 

the relatively inefficient expression system used. For that reason its nucleating ability 

was tested at concentrations between 1-10 µg/mL. In contrast to Bouropoulos and 

Moradian-Oldak (2004), the 32 kDa enamelin used here induced significant nucleation at 

1 and 10 µg/mL compared to the negative control whereas 32 kDa enamelin at 2.5 and 5 

µg/mL was not significantly different to the negative control (figure 30 Section 3.3.2). 

This apparently conflicting phenomenon, where protein concentration can reverse 

nucleation behaviour is well known. For example dentine phosphoprotein at 100 µg/mL 

inhibited mineral formation but promoted it at <1 µg/mL (Boskey et al., 1990).   
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Increasing the protein concentration could conceivably reduce nucleation due to calcium 

binding by the protein causing a drop in supersaturation levels but it is difficult to 

reconcile this with the parabolic-like response exhibited by the 32 kDa enamelin in this 

thesis. Furthermore, the steady state agarose gel apparatus used is designed to provide 

constant composition conditions and any enamelin calcium binding sites would be 

saturated and levels of supersaturation would remain fixed at the predetermined level. 

One possible explanation for this parabolic response is that any quaternary structure 

existing between two or more 32 kDa enamelin monomers varies with concentration 

which in turn affects the conformation of the 32 kDa enamelin and its ability to nucleate. 

However, there is no evidence to date that supports this hypothesis. 

The Ca:P molar ratio of enamelin nucleated mineral was 1.61±0.03 (see figure 43 

Section 3.2.6); close to the theoretical value for hydroxyapatite(1.66). Polyglutamate, the 

positive control nucleated mineral with a Ca:P of 1.73±0.12; again close to the 

theoretical value for hydroxyapatite of 1.66. In complete contrast any mineral deposits 

formed in the absence of protein (agarose only) had a non-apatitic ratio of 1.05±0.32 

which clearly shows the potential of both 32k Da enamelin (at permissive concentrations 

of 1 and 10 µg/mL) and polyglutamate to nucleate apatitic mineral. Brushite has a Ca:P 

of 1.0 though this information alone does not allow this phase to be identified as brushite 

unequivocally.  Brushite is dicalcium phosphate dehydrate (CaHPO4.2H2O) is a phase of 

calcium phosphate that is relatively soluble in simulated physiological solutions (Kumar 

et al., 1999). However, brushite in solution is only stable in acidic solutions less than pH 

6.5 (Cheng and Pritzker, 1983). Below pH 4.3, brushite is more stable than 

hydroxyapatite. In theory, brushite should form at pH 7.4 at 37⁰C when the 

concentrations of the total calcium and phosphate ions exceeds 5 mM (Koutsoukos et 

al., 1980), such as the conditions used in the steady state agarose gel system in this 

thesis. 

It is clear from the SEMs that the crystal morphology of mineral nucleated is 

affected by the recombinant 32 kDa enamelin.  As described in section 3.2.5, the 

morphology of the crystals was affected but the  concentration of the recombinant 32 

kDa enamelin in the agarose gel plugs. Recombinant enamelin at 1 µg/mL, 5 µg/mL and 

10 µg/mL nucleated mineral crystals with a  large plate like appearance of approximately 

6 microns. Mineral crystals nucleated in the presence of recombinant enamelin at 2.5 

µg/mL exhibited two morphologies, both different to those seen for the crystals nucleated 
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in the presence of recombinant 32 kDa enamelin at 1 µg/mL, 5 µg/mL or10 µg/mL. 

These two morphologies were small spherical clusters of approximately 10 nm in length 

or needle like crystals. TEM images of the mineral nucleated in the presence of 5 µg/mL 

recombinant 32 kDa enamelin showed the crystals to be large (approximately 4 microns 

in length) and flat. Mineral crystals nucleated in the presence of PGA (10 µg/mL) were 

shown by both TEM and SEM analysis to be rosette like in appearance, radiating from a 

central area. Individual crystals were smaller, approximately 1 micron in radius, than 

those nucleated in the presence of recombinant 32 kDa enamelin. 

4.4 Nucleation potential of 32 kDa enamelin in comb ination with 
either wild type or Y64H mutant recombinant ameloge nin  

 When recombinant 32 kDa enamelin at 5 µg/mL was combined with either wild 

type or Y64H mutant amelogenin the inhibitory effects previously observed for all the 

amelogenin proteins observed in isolation (relative to precipitation in the negative 

control) were lost. This result does not support  the results obtained by Bouropoulos and 

Moradian-Oldak (2004) where 18 µg/mL enamelin + 15 mg/mL amelogenin accelerated 

nucleation but at least the trend was the same in that  32 kDa enamelin combined with 

either WT or Y64H synergistically reduced inhibition of nucleation in the system used 

here. In explaining the difference in results obtained by Bouropoulos and Moradian-

Oldak (2004) attention can be drawn to the fact that they used higher concentrations of 

32 kDa enamelin (18 µg/mL compared to 1-10 µg/mL used here) and the amelogenin 

was a crude guanidine-HCl extract containing several amelogenin processing products 

and probably other non-amelogenin contaminates such as ameloblastin that would have 

been co-extracted with the amelogenins.  

In summary, the crucial finding here is that the results obtained with 32 kDa 

enamelin combined with either WT or Y64H amelogenin were not significantly different 

i.e. within the limits dictated by the in vitro nucleation system used to be able to discern 

any effect of the Y64H mutation on the nucleating behaviour of amelogenin (in the 

presence or absence of 32 kDa enamelin).  

The overall conclusion to be drawn from these in vitro nucleation experiments is 

that the amelogenin imperfecta phenotype observed in mice carrying the Y64H 

amelogenin mutation is not due to the Y64H amelogenin behaving differently from the 
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wild type molecule in terms of its behaviour with respect to mineral nucleation (in the 

presence or absence of 32 kDa enamelin). 

 

4.5 The assumed role of the 32 kDa enamelin in amel ogenesis  

The calcium binding constant of amelogenin is estimated to be significantly lower 

than other enamel ECM proteins (Ka= <4.5 x 102 M-1 versus Ka = 1.0 x 104 M-1) 

(Yamakoshi et al., 2001). This suggests that an interaction between amelogenin and the 

non-amelogenins such as enamelin may be necessary for enamel mineralisation 

Historically enamelin has been regarded as the non-amelogenin most likely to play 

a role in mineral nucleation (Robinson et al., 1998; Bouropoulos and Moradian-Oldak, 

2004) and as such is a candidate molecule that may act in tandem with amelogenin to 

promote nucleation; a contention supported by the results obtained by Bouropoulos and 

Moradian-Oldak, (2004) using 32 kDa enamelin in combination with amelogenin as 

described above.  Enamelin is a phosphorylated glycoprotein, specific to enamel. It 

constitutes only 1-5% of the ECM, but plays a key role in enamel formation, evidenced 

by enamelin mutations resulting in amelogenesis imperfecta (Rajpar et al., 2001; Mardh 

et al., 2002; Kida et al., 2002;  Hart et al., 2003; Kim et al., 2005A; Gutierrez et al., 2007; 

Gopinath et al., 2008; Simmer et al., 2013). The gene sequences for many species 

including mouse (Hu et al., 1998), pig (Hu et al. 1997) and human (Hu et al., 1998) 

enamelin are known (Al-Hashimi et al 2009). However, studies at the protein levels have 

focused almost exclusively on porcine enamelin owing to the ready availability of porcine 

developing enamel from the meat industry. Upon secretion, the porcine 186 kDa 

enamelin protein is subjected to extensive proteolytic cleavage. Enamelins with 

molecular weights of 155, 142, 89, 45, 32, and 25 kDa have been isolated from 

developing porcine enamel (Fukae et al., 1996).  The 32 kDa fragment extends from 

Leu174 to Arg279 of the full length enamelin molecule, and its carbohydrate moieties have 

been elucidated (Fukae et al., 1996; Dohi et al., 1998; Yamakoshi, 1995). The 32 kDa 

enamelin is hydrophilic, has an acidic PI of 5.3 is rich in proline, glycine, threonine and 

glutamic acid (Hu and Yamakoshi, 2003), has 2 phosphorylated serines (Ser191 and 

Ser216) and 3 glycosylated asparagines (Asn245, Asn252 and Asn264) (Yamakoshi, 1995). 

This is the most abundant enamelin product found in the developing tissue and the most 

stable, accumulating in the deeper, older layers of the developing porcine enamel. 
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Immunohistochemistry studies have shown that the porcine 32 kDa enamelin 

accumulates in the inner layer of crystallite-containing prism and interprismatic areas of 

the enamel matrix (Uchida et al., 1991B).  The 32 kDa enamelin also caused elongation 

of hydroxyapatite crystals in vitro in agarose gels, indicating a role in controlling crystal 

nucleation and/or growth (Hu et al., 2008). Crucially, Bouropoulos and Moradian-Oldak 

(2004) showed that the combination of the 32 kDa enamelin with amelogenins promoted 

the nucleation of hydroxyapatite crystals. Fan et al. (2008) applied circular dichroism 

(CD) and Fourier transform infrared (FTIR) spectroscopy to study secondary structural 

preferences of the porcine 32 kDa enamelin in the presence and absence of calcium 

ions. In the absence of calcium, 32 kDa enamelin showed a high content of α-helix 

(81.5%). Although the 32 kDa enamelin had a calcium association constant of 1.55 (± 

0.13) x 103 M-1 (which is a relatively low affinity) CD showed that with increasing calcium 

ion concentration, the enamelin undergoes a conformational change to β-sheet. This 

may allow a preferable interaction of the 32 kDa enamelin with hydroxyapatite crystal 

surfaces.  

Fan et al. 2009A used the extracted 32 kDa enamelin fragment from developing 

porcine enamel, along with a recombinant amelogenin (rP172 – analogous to full-length 

porcine amelogenin, only lacking the first methionine and a phosphate on Ser16) to 

elucidate the role of  protein interactions in vivo. Dynamic light scattering showed that 

the 32 kDa enamelin caused partial dissociation of amelogenin nanospheres in a dose-

dependent manner at pH 8.0. If this data is examined critically, attention should be 

drawn to the fact that the full length amelogenin is only present in newly secreted 

surface enamel while 32 kDa enamelin is generated with time in the deeper enamel by 

proteolysis of larger precursor proteins (Uchida et al. 1991B). In other words the full 

length amelogenins are unlikely to interact with the 32 kDa enamelin in vivo because 

they are temporally and spatially separated in the developing tissue. However, Fan et al 

later repeated their work using the 20 kDa amelogenin processing product (P148) which 

does co-localise with the 32 kDa enamelin. In this case they reported that the 32 kDa 

enamelin increased the size of amelogenin nanospheres indicating a conformation 

change that may influence interactions with the mineral interface (Fan et al., 2011).  

These data  emphasise the volume of research already conducted using  the 32 

kDa enamelin molecule and the 32 kDa enamelin continues to be the enamelin of choice 

in experiments designed to study the role of enamelin in amelogenesis.   
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However, one unexpected finding arising from this thesis forces us to completely 

revaluate the role, if any, of the 32 kDa enamelin as a discrete entity in amelogenesis. 

This controversial finding is discussed in detail next section. 

4.6 Is the 32 kDa enamelin required in amelogenesis ?  

One of the aims of this study was to see whether enamel matrix proteins (enamelin 

and amelogenin) nucleate crystal growth in vitro and how mutations in amelogenin might 

affect any nucleating potential exhibited.  In the case of enamelin, several nucleation and 

protein–protein interaction studies have been carried out using the 32 kDa enamelin 

processing product purified from developing pig enamel (Uchida et al., 1991A and B; 

Dohi et al., 1998; Bouropoulos and Moradian-Oldak, 2004; Habelitz et al., 2006; Fan et 

al., 2008; Hu et al., 2008; Iljima et al., 2010). The 32 kDa enamelin is the most abundant 

enamelin-derived protein in pig secretory stage enamel and although still present as a 

tiny fraction of the total protein is the obvious target for purifying enamelin protein for use 

in in vitro studies. The focus on the 32 kDa enamelin is also linked to widespread belief 

that the 32 kDa moiety is functionally important. This perception was most emphatically 

stated by Al-Hashimi et al in their 2009 publication:  

“Evolutionary analysis of mammalian enamelin, the largest enamel protein, 

supports a crucial role for the 32-kDa peptide and reveals selective adaptation in rodents 

and primates.” 

 They noted that the amino acid sequence comprising the 32 kDa enamelin peptide 

was highly conserved across 36 species especially in terms of its phosphorylation, 

glycosylation and “proteolytic sites”. On this basis a recombinant peptide corresponding 

to the human 32 kDa enamelin sequence was constructed and used in the nucleation 

studies described in this thesis. However, during the course of these studies it became 

apparent that there is a crucial difference between the amino acid sequences of pig 

enamelin and enamelin in other species. Although cleavage sites within the 32 kDa 

sequence are well conserved between species, the cleavage sites that are cleaved to 

release the 32 kDa fragment from its larger precursor are not well conserved at all. 

Critically, Al-Hashimi focused their attention on internal cleavage sites that are 

hydrolysed during the degradation of pig 32 kDa enamelin but neglected the fact that the 

cleavage sites required to release the 32 kDa enamelin (i.e. cleavage between proline 

and leucine to generate the new N terminus, and arginine and serine for generating the 
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terminals of the 32 kDa enamelin) are absent from non-porcine species. The sequence 

alignment of 290 enamelin sequences shown in Appendix 3 shows that the residues 

comprising the cleavage sites responsible for generating the N and C terminals of the 

pig 32 kDa enamelin are only present in the pig. It is believed that MMP20 is responsible 

for liberating the 32 kDa moiety in porcine enamel (Yamakoshi et al., 2006). MMP20 

does not cleave all peptide bonds as evidenced by the fact that it generates a spectrum 

of discrete processing fragments from amelogenin and enamelin and it is unclear how 

flexible MMP20 might be in terms of releasing the 32 kDa enamelin fragment from 

enamelins that do not exhibit the specific cleavage sites used to liberate the porcine 32 

kDa enamelin. The amino acids corresponding to the pig 32 kDa cleavage sites (proline/ 

leucine and arginine / serine) are proline / proline and glycine / asparagine in rat. 

Assuming narrow specificity for the protease that releases the pig 32 kDa enamelin, it is 

reasonable to assume that rat amelogenesis does not involve the participation of a 

discrete 32 kDa enamelin since the specific cleavage sites responsible for its generation 

are absent. To test this, developing rat enamel matrix was compared to developing pig 

enamel matrix by SDS PAGE and western blot probing with a rabbit anti-enamelin 

antibody recognising a region within the 32 kDa enamelin sequence.                     

The anti-enamelin probed Western blots of rat and porcine developing enamel 

(Chapter 3 Section 3.3.1 figure 51) showed that rat amelogenesis does not involve the 

generation of a 32 kDa enamelin molecule. This supports the hypothesis outlined above, 

that based on sequence analysis, only the pig enamelin molecule contains the specific 

cleavage sites required to generate the 32 kDa enamelin.    

The different kinetics of enamel production in the rat and the pig may cause this 

difference in the predominant enamelin species produced. Rat enamel takes 

approximately one week to progress through the secretory stage, at which point the 

matrix is removed at the maturation stage. It could be possible that the proteases 

present at the secretory stage are not active enough to process the rat enamelin to the 

32 kDa level. As the enamel is much thicker in pig teeth, and remains in the secretory 

stage for much longer, the proteases have longer to interact with, and breakdown the 

enamelin. To test this, rat enamel matrix proteins were homogenised and incubated for 

various time periods to encourage enamelin proteolysis. However, no 32 kDa enamelin 

molecules were generated.   

The data strongly indicates that rat amelogenesis occurs without the generation of 

a discrete 32 kDa enamelin processing product. The sites of porcine 32 kDa enamelin 
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post translational modifications (N-linked glycosylation and phosphorylation) are well 

conserved among all species (including pig, mouse, rat and human) indicating a 

functional role for these modifications  (Al-Hashimi et al., 2009). The larger enamelins of 

non-porcine species will of course contain the 32 kDa sequence domain, and these post 

translational modifications, and the biochemical activity associated with these 

modifications may be critical in terms of the function of enamelins larger than 32 kDa. 

However, the functional behaviour of the phosphorylated/glycosylated 32 kDa domain 

may be quite different when it is within larger enamelins due to the influence of the 

additional sequences flanking the 32 kDa domain.   

Given that the generation of the 32 kDa enamelin processing product is not 

essential for amelogenesis in rat, and that its production in pig appears to be an 

anomaly, the use of discrete 32 kDa moieties in enamelin functional studies should be 

viewed with caution and results interpreted with the caveat that the 32 kDa enamelin 

processing product is not common to amelogenesis in non-porcine species. In fact, the 

anomalous production of the 32 kDa enamelin in pig amelogenesis may explain why pig 

enamel only attains a mineral content of ~60% by volume which is significantly lower 

than other species (Kirkham et al., 1988). The pig 32 kDa enamelin has the highest 

affinity for hydroxyapatite of all enamel proteins and is a potent inhibitor of 

hydroxyapatite crystal growth following its adsorption (Tanabe et al., 1990).  Pig 

amelogenesis may therefore be compromised to some degree due to the release and 

accumulation of 32 kDa enamelin from its larger enamelin precursor. Pig enamel 

remains perfectly functional even though it exhibits a reduced mineral density compared 

to other species and therefore there is little evolutionary pressure to eradicate the 

production of the 32 kDa enamelin during pig amelogenesis.  

The above discussion questions the validity of using 32 kDa enamelin (either 

purified from pig tissues or produced as a recombinant protein as in this thesis) in 

studies designed to explore the function of enamelin. An obvious criticism of the work 

examining the effect of recombinant 32 kDa enamelin in the nucleation assays reported 

in Chapter 3 section 3.2 is that the 32 kDa enamelin may not be relevant in 

amelogenesis in general and the enamelin function is associated with enamelin(s) with 

molecular weights greater than 32 kDa. Isolating sufficient amounts of full length 

enamelin from developing enamel is not practical due to its very low concentration in the 

matrix and as yet no one has managed to produce a recombinant full length enamelin 

presumably due to the technical issues related to producing large recombinant DNA 

molecules.   Given these limitations, studying the functionality of discrete enamelin 
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domains such as the 32 kDa sequence may be the only option at present but clearly the 

caveat must be made that the behaviour of this domain may be different when it is a 

component part of larger enamelins.  

4.7 Intracellular effect(s) of the Y64H amelogenin mutation on 
the ameloblast secretory pathway  

 

 The in vitro nucleation data presented in Chapter 3 section 3.2 and discussed 

above would indicate that the wild type and Y64H mutant amelogenins behave in a 

similar fashion in terms of mineral nucleation/inhibition. During the course of the wider 

research program it became clear that it was the ameloblasts themselves that were 

affected by the mutation; i.e. the disease mechanism underpinning amelogenesis 

imperfecta in Y64H mutant mice appeared to be related to a deleterious effect of 

amelogenin on ameloblast cell biology rather than the dysfunctional behaviour of 

mutated protein in the enamel matrix. SDS PAGE and western blotting data obtained 

within the research group showed that the enamel matrix of male Y64H mutant mice 

exhibited a paucity of full length amelogenin (Barron et al., 2010). The obvious 

conclusions from this data are that full length amelogenin was not expressed or the 

normal secretory pathway was stalled in ameloblasts carrying the Y64H amelogenin 

mutation, resulting in a failure to secrete amelogenin.  In the present study, the question 

was posed as to whether or not failure to detect Y64H full length amelogenin in the 

developing enamel matrix of affected teeth was due to a failure in protein trafficking out 

of the cell or a failure in gene transcription. Quantitative RT PCR was therefore carried 

out to determine levels of amelogenin transcript in affected animals. The PCR data 

presented in figure 64 section 3.5.3 suggested that amelogenin is expressed (albeit at 

lower levels) in Y64H mutant mice leaving the possibility that Y64H amelogenin is not 

secreted correctly.  Figure 72 shows an electron transmission micrograph of Y64H 

mutant mouse ameloblasts labelled immunochemically for amelogenin (courtesy of Dr 

Martin Barron Manchester) of displaying abnormally engorged vesicles packed with 

amelogenin which suggested that that amelogenin is accumulating in cells; i.e. the 

secretory pathway is indeed blocked.    
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Figure 72.  This figure shows the secretory amelobl ast cells of a male Y64H mouse 
as seen by immunoelectron microscopy. The cytoplasm  is abnormally 
engorged with vacuoles strongly immunoreactive for amelogenin (see black 
dots in the top right insert). The scale bar is 2 µ m; N = nuclei. (Barron et al., 
2010). Reproduced under Creative Commons Attributio n License.  Modified 
from figure 3 published in:’A mutation in the mouse  Amelx tri-tyrosyl domain results in 
impaired secretion of amelogenin and phenocopies hu man X-linked amelogenesis imperfecta’ 
by Barron et al 2010 Hum . Mol. Genet. (2010)19 (7): 1230-1247.  Direct link: http://www. 
ncbi.nlm.nih.gov/pubmed/20067920   

 

It is well known that mutated proteins can misfold and undergo abnormal 

aggregation as they transit the endoplasmic reticulum (ER) in a range of cell types 

(Steward et al., 2003).  The ER is an organelle where newly synthesised proteins begin 

their journey on the secretory pathway out of the cell. During ER trafficking, proteins are 

modified as any post translational modifications are carried out and proteins fold 

(assisted by chaperone proteins) to attain the correct conformation.  The abnormal 

retention of proteins in the ER results in ER stress which triggers the so called unfolded 

protein response (UPR) (Ron and Walter. 2007). The UPR attempts to restore 
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proteostasis, but if unsuccessful, will eventually direct the cells towards apoptosis and 

ultimately cell death. Mutant proteins can therefore lead to disease due to reduced 

secretion of protein or in extreme cases, death of cells and tissues.  ER stress and the 

UPR is associated with diseases such as Huntington’s disease, Alzheimer’s, diabetes 

(type 2), cystic fibrosis, atherosclerosis, connective tissue disease and cancer (reviewed 

by Schroder and Kaufmann 2005). Given the evidence presented in this thesis together 

with that of the wider group, it appeared that ameloblast ER stress, due to retention of 

Y64H mutant amelogenin, could also be the driver for amelogenesis imperfecta in the 

affected mice. One possible reason for retention of Y64H amelogenin in the ER might be 

that amelogenin carrying the mutation is more highly aggregative than its wild type 

counterpart. 

To explore this possibility, the interaction of Y64H amelogenin with other Y64H 

amelogenin molecules and with wild type amelogenin molecules was investigated. This 

would indicate if Y64H amelogenin is more prone to aggregation.  

 

4.8 Effect of the Y64H mutation on amelogenin-amelo genin 
interactions 

The amelogenin binding studies reported in Chapter 3 section 3.4 shows the 

binding of solubilised FITC labelled wild type and FITC labelled Y64H mutant 

amelogenin to unlabelled wild type and Y64H mutant amelogenin and BSA (control) 

immobilised to cell culture plates.  To aid discussion of these results the data is 

reproduced here along with an additional cartoon figure that represents the results 

pictorially (figure 73).  

The first thing to note was that neither labelled mutant or WT amelogenin bound to 

immobilised BSA which was included as a control protein to test if amelogenin bound 

other proteins non-specifically under these experimental conditions (figure 55 section 

3.4.2). In contrast, labelled mutant amelogenin and labelled WT bound to immobilised 

Y64H and WT amelogenins (columns A & B in figure 55 section 3.4.2). This immediately 

indicated that both of these amelogenins have the ability to interact specifically and we 

are not just observing a general protein binding phenomenon. FITC- labelled Y64H 

mutant amelogenin appeared to bind to both immobilised WT and Y64H amelogenin to a 

greater extent than free labelled WT (with fluorescence readings being approximately 2-
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3 times higher in all cases).  Interestingly, labelled WT amelogenin did not show any 

increase in binding to Y64H mutant amelogenin immobilised on the plate whereas in the 

reciprocal case, solubilised labelled Y64H amelogenin showed increased binding to 

immobilised WT amelogenin. The reasons for this are unclear but may be related to the 

higher affinity that the mutant protein appears to have for itself. The data can be 

explained if we assume that bait (immobilised) proteins are adsorbed to the wells as 

monolayers.  Adsorption is carried out at pH 9.6 which favours binding of protein to the 

plastic well but inhibits protein-protein interactions. This is illustrated in figure 73 below 

where the adsorbed unlabelled WT and unlabelled Y64H mutant bait proteins are 

depicted as monolayers bound to the wells. In well 1, labelled WT amelogenin from 

solution is binding unlabelled bait (bound) WT but the affinity is such that a relatively 

small amount binds; illustrated here pictorially as a monolayer. In well 2 we have the 

same bait binding to labelled mutant amelogenin. The greater binding affinity of the 

mutant amelogenin to itself means that labelled mutant proteins build up by mutant-

mutant interaction; illustrated pictorially as a thicker layer which would give rise to a 

greater fluorescence signal. In well 3, we have the same binding partners as in well 2 but 

here the mutant is the bait protein and the binding partner is the labelled WT amelogenin 

in solution. The fluorescent signal is about 3 times less than well 2 and comparable with 

well 1. This is simply explained by the lower affinity that WT amelogenin has for itself. An 

initial layer of labelled WT amelogenin binds the mutant bait amelogenin but no more 

labelled WT binds to this initial partnership.    Finally, in well 4 in which unlabelled mutant 

bait protein is binding labelled mutant protein a large fluorescent signal is returned 

(comparable to well 2). Again this is explained by the high affinity of the mutant for itself. 

An initial layer of the labelled mutant binds the bait followed by further growth of the layer 

ad more labelled mutant protein binds the initially bound material.          
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Figure 73. Results of FITC binding experiments show ing 100 µg/mL of unlabelled 
wild type amelogenin or Y64H mutant amelogenin boun d to a 96-well 
microtitre plate and interrogated with 100 µg/mL of  either wild type or mutant 
FITC-labelled amelogenin. N =6. Standard deviation error bars are shown. 
The cartoon below the graph depicts the hypothesis of the protein-protein 
interactions. 

 

That the Y64H amelogenin mutation increases amelogenin-amelogenin binding 

may be important in terms of pathogenic mechanisms. Previous studies have indicated 

that wild type amelogenins interact prior to secretion and form complexes containing up 

to 6 monomers (Brookes et al 2006). Following secretion, amelogenins assemble (i.e. 

aggregate) further to generate nanospheres comprising 100 or more amelogenin 

nanospheres (Fincham et al 1998), which represent the normal extracellular habit for 

amelogenin  as described in the Introduction (section 1.3.4.1.2). In Y64H amelogenin 

mutant mice, the mutant amelogenin accumulates in the ER and the ameloblasts 

become engorged with vesicles packed with amelogenin. Given that Y64H amelogenin 
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appears to exhibit a greater propensity to interact with other Y64H amelogenin 

molecules, the obvious hypothesis is that Y64H amelogenin molecules interact 

inappropriately during their passage through the ER, by aggregating and blocking the 

secretory pathway, triggering the UPR and thus exposing the ameloblasts to the 

possibility of apoptosis.  

 

4.9 ER stress, UPR and apoptosis in Y64H ameloblast s 

Genetic information required to generate proteins from the 20 amino acids is stored 

in the chromosomes in the nucleus of the cell as DNA. This information is transcribed 

into messenger RNA (mRNA) which carries the information to the ribosomes which 

translate the mRNA into a protein containing the specified amino acids in the specified 

order. Ribosomes synthesising proteins destined for import into intracellular organelles 

(e.g. mitochondria) or proteins destined for secretion into the extracellular medium 

associate with the outer membrane of the endoplasmic reticulum (ER) and as the protein 

chain is synthesised it is translocated into the ER where, as it is trafficked through the 

ER lumen, it undergoes further modification (e.g. glycosylation, phosphorylation etc.) 

and 'quality control' checks (Ellgaard and Helenius., 2003).  Once proteins are ready to 

exit the ER they are packaged into vesicles known as transition vesicles, which bud off 

from the ER and travel to the Golgi apparatus. The vesicles fuse with the Golgi and 

proteins are sorted and packaged into new vesicles which bud off and carry the cargo to 

the correct destination (Pfeffer and Rothman, 1987).  In the case of secretory proteins 

such as amelogenin, vesicles migrate to the cell membrane and release the protein to 

the outside of the cell (figure 74).   



- 183 - 

 

Figure 74.  Schematic diagram of protein synthesis,  intracellular trafficking and secretion.
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 Newly synthesised proteins entering the ER undergo a series of post-translational 

modifications such as N-linked glycosylation, signal peptide cleavage, and di-sulphide 

bond formation (Bateman et al., 2009). These modifications dictate how the proteins fold 

and direct the protein to attain the correct secondary and tertiary structures. 

 Protein folding is assisted by chaperones, co-chaperones, foldases and 

oxidoreductases. These assistant proteins prevent misfolded proteins from aggregating 

via exposed hydrophobic sequences and provide and environment conducive to correct 

protein folding. Enzymes such as protein disulphide isomerases (PDI) catalyse 

disulphide bond formation and exchange. Other ancillary proteins are involved in 

securing and delivering the energy requirement for protein folding and in maintaining the 

correct redox state to permit the reversible formation of disulphide bonds in the ER 

lumen (Boot-Handsford and Briggs, 2010). 

 The ER quality control mechanisms ensure that misfolded proteins do not 

accumulate or progress along the secretory pathway. Instead they are kept in the ER 

and targeted for degradation (Anelli and Sitia, 2008). This occurs by two mechanisms. 

Firstly, the protein can be returned to the cytoplasm where it is ubiquinated which targets 

it for degradation by proteasomes during ER-associated degradation (ERAD) (Brodsky, 

2007). Alternatively, portions of the ER become engorged with misfolded protein and are 

budded off to become an autophagosome. This fuses with a lysosome and the contents 

are degraded. This usually occurs with proteins that have aggregated or become 

multimers, and are unable to undergo ERAD (Bernales et al., 2007). This quality control 

system is operative in all cells at all times as up to 30% of proteins fail to attain their 

correct conformation (Shubert et al 2000) and must be disposed of by the systems 

described above.  

Proteins abnormally accumulating in the ER trigger so called ER stress; a condition 

also caused by many different stimuli including heat shock, energy deprivation, hypoxia, 

metabolic dysfunction and drugs such as tunicamycin, which inhibits N-linked 

glycosylation, and thapsigargin which disrupts ER calcium ion balance. When ER stress 

is due to accumulating unfolded or misfolded protein within the ER, ER stress goes on to 

trigger the so called unfolded protein response (UPR) in an attempt to restore protein 

folding homeostasis (Boot-Handsford and Briggs, 2010). The UPR is a conserved 

cellular mechanism that protects cells against accumulation and aggregation of 

misfolded proteins during synthesis. It achieves this by stopping protein translation and 
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upregulating the expression of chaperones that drive protein folding (Hetz, 2012). When 

the aggregation of misfolded or damaged protein exceeds the capacity of the UPR, it 

can no longer protect the ER from stress and activation of apoptosis is triggered 

(Gardner et al., 2013). 

 The level of ER stress experienced by a cell is related to the amounts of protein 

passing through the cell’s ER. Professional secretory cells such as hepatocytes, insulin 

producing beta cells of the pancreas, and antibody-producing lymphocytes are 

particularly susceptible to ER stress, as are other strongly secretory cells such as 

chondrocytes, osteoblasts, and fibroblasts (Rutkowski and Kaufman, 2007). It is logical 

therefore, to assume that ameloblasts, the specialised ECM secreting cells in tooth 

enamel development, are also highly susceptible to ER and in fact secretory ameloblasts 

in wild type mice have been shown to ubiquitously express genes characteristic of an 

activated UPR (Tsuchiya et al., 2008). The UPR triggers a number of cell responses with 

the aim of relieving ER stress and restoring proteostasis; typical responses include; 

increasing the volume of the ER, increasing chaperone synthesis and damping down 

transcription of client proteins transiting the ER (Ron and Walter, 2007).  Under 

persistent exposure to ER stress, the cells may reduce the stress to acceptable levels 

via the UPR, though this is not without consequence. In fact, if the levels of ER stress 

become unacceptable a signalling cascade is triggered by IRE-1 mediated JNK 

phosphorylation and through the activity of Chop, and may result in the cell undergoing 

apoptosis, which may have pathogenic consequences. This can occur in metabolic 

diseases such as type II diabetes, where ER stress is crucial in insulin resistance. This 

increases demand on the insulin-producing beta cells of the pancreas. The increased 

insulin load causes elevated and persistent ER stress which can result in beta cell 

apoptosis and the subsequent need for insulin therapy (Lin et al., 2008; Zhang and 

Kaufman, 2008). 

 The unfolded protein response (UPR) has developed to counteract any stresses 

that occur in the ER due to the misfolding of proteins. The UPR is a complex 

homeostatic mechanism that has developed in mammalian cells to maintain the protein 

folding equilibrium within the ER (Boot-Handford and Briggs, 2010).  

 In order to overcome the problems associated with ER stress, a four-pronged 

response pathway has developed. This is discussed below with reference to the data 

presented in this thesis and obtained elsewhere in the research program.   
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1) Transcriptional and Translational attenuation 

The first response to ER stress is to reduce the general secretory load by 

transcriptional (Wu and Kaufman. 2006) and translational attenuation (Scheuner et al., 

2001). The synthesis of new protein is decreased to prevent further accumulation of 

unfolded protein in the ER. Interestingly, the data present in section 3.5.3 suggests that 

amelogenin transcription is significantly attenuated in Y64H mice which appears to be an 

attempt to reduce the secretory load. However, as evidenced by the intracellular 

accumulation of Y64H amelogenin in affected ameloblasts, this strategy in not sufficient 

to relieve the ER stress. The issue may be that amelogenin is synthesised in huge 

amounts (it is the major secretory product of ameloblasts) and though transcription is 

reduced the amount of protein translated is still evidently enough to overcome this initial 

line of defence against ER stress.  

2) Upregulation of ER chaperone proteins 

The second response to ER stress is the upregulation of ER chaperone protein 

genes such as binding immunoglobulin protein (BiP) (also known as 78 kDa glucose-

regulated protein (GRP-78) or heat shock 70 kDa protein 5 (HSPA5)) and enzymes (e.g. 

protein disulphide isomerase, sarco/endoplasmic reticulum calcium ATPase) to increase 

the protein folding capability of the ER (Harding et al., 2003).  

BiP is multifunctional; it is a classic chaperone molecule whose expression is 

increased when proteins misfold. BiP binds exposed hydrophobic regions on the 

misfolded proteins in an attempt to direct them towards the normal folding pathway by 

reducing the potential for aggregation driven by interactions between exposed 

hydrophobic regions on the misfolding proteins (Bertlotti et al., 2001). In respect of this 

thesis, the question asked was: is BiP expression upregulated in ameloblasts affected by 

Y64H amelogenin mutation, as the UPR attempts to relieve ER stress? To answer this, 

BiP mRNA expression levels from wild type and Y64H affected ameloblasts were 

compared by quantitative RT-PCR. The results shown in figure 62 show that BiP 

expression was elevated but this did not reach statistical significance in this set of 

experiments. However, the qualitative detection of BiP mRNA on sections of early 

secretory stage ameloblasts from wild type females and female Y64H mice 

heterozygous for the mutation (using in situ hybridisation) showed very obvious 

increased levels of BiP mRNA in Y64H ameloblasts. This work was carried during the 
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research program by Dr Martin Barron and is reproduced in figure 75 to emphasise the 

result. 

Figure 75. In situ hybridisation: BiP protein in ea rly secretory stage 
ameloblasts from wild type and Y64H affected female  mice. The darker blue 
staining, indicats clear upregualted BiP expression  in affected ameloblats 
(arrowed).  Reproduced under Creative Commons Attri bution License.  
Modified from figure 3 published in:  “Endoplasmic reticulum stress in amelogenesis 
imperfecta and phenotypic rescue using 4-phenylbuty rat”e; by Brookes et al 2014 
Hum. Mol. Genet. (2014) 23 (9): 2468-2480.  Direct link: 
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3976337 /)      

 

The in situ hybridisation results in figure 75 suggested that BiP expression was 

indeed increased in ameloblasts affected by the Y64H amelogenin mutation indicating 

that affected ameloblasts were upregulating chaperone production in an attempt to 

increase the probability of correct protein folding in the ER. An obvious question here is: 

why is the increase in BiP mRNA levels so much more convincing using in situ 

hybridisation compared to quantitative RT PCR?  The likely answer is due to the fact that 

quantitative RT PCR is carried out on dissected tissue samples; i.e. the secretory stage 

mouse incisor enamel organs, measuring a few millimetres in length and a couple of 

hundred microns in thickness. The levels of BiP mRNA were measured relative to the 

Gapdh gene, a so called “housekeeping” gene we assume is expressed at constant 

levels in all cells. The ameloblasts are a single monolayer of cells within the enamel 

organ and are therefore a minority of the total cell population. Hence, any increase in Bip 

expression occurring in affected ameloblasts is lost to some extent (i.e. diluted/ 

averaged out) against the lower levels of Bip expression in the non-ameloblast cells of 

the enamel organ. This demonstrates a potential pit fall when using quantitative RT PCR 

to measure gene expression in a sub population of cells within a larger tissue or organ 

and emphasises why it is important to support the PCR data by using a technique such 

as in situ hybridisation which is more sensitive to changes in gene expression within 

single cells.         
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 It is worth noting that not all ameloblasts in the Y64H amelogenin affected female 

mouse shown in figure 75 are stained heavily for BiP (this further reinforces the point 

made above how quantitative RT-PCR can only provide ensemble gene expression data 

that are averaged over all cells present in the sample). This staining pattern is to be 

expected since as described in the Introduction (section 1.3.4.1); the amelogenin gene is 

present on the sex chromosomes. Thus females heterozygous for the Y64H mutation 

have 2 copies of the amelogenin gene; one on each chromosome. During early 

embryogenesis one of the X-chromosomes is randomly inactivated so that 50% of the 

ameloblasts present in an affected heterozygous female are totally normal (expressing 

wild type amelogenin) while the remaining 50% are affected as they express Y64H 

mutated amelogenin. This is a very important point and will be referred to later.  

Later in the UPR there is an increase in the transcription of ERAD components to 

increase the ability of the cell to eliminate misfolded proteins via the ubiquitin-

proteasome pathway (Zhang and Kaufman, 2008). However, this was not investigated in 

the Y64H amelogenin mutant mice.  

From the above discussion it is clear that the UPR attempts to relieve stress by 

reducing general protein synthesis, increased the cell’s ability to dispose of misfolded 

protein and has increased the ability of the ER to direct proteins away from misfolding 

via hydrophobic interactions towards the correct folding pathway via the increased 

production of chaperones. If these measures fail to relieve stress the UPR switches from 

a pro-survival mode and directs the cell towards death via apoptosis (Fribley et al 2009).  

3) NFκβ activation 

The third response is NFκβ activation for the mediation of immune and anti-

apoptotic responses (Baeuerle and Baltimore; 1996). This is known as the ER overload 

response (EOR) as it is triggered by accumulation of membrane proteins in the ER. 

NFκβ activation was not investigated as part of this thesis with regards to the Y64H 

amelogenin mutation, as amelogenin is not a membrane protein. NFκβ activation is a 

highly complex situation with differing and opposing effects dependent on the cell type. 

4) Apoptosis  

If the UPR cannot relieve ER stress, it goes on to drive cells towards apoptosis 

which protects the organism by removing damaged cells that are expressing the problem 

mutation (Ron and Walter; 2007). Naturally, if the stressed cells comprise a significant 
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bulk of the tissue or organ then the effects can be catastrophic. Apoptosis is important in 

tissue homeostasis maintenance (Zhang et al, 2002). Dysregulation of apoptosis has 

been implicated in many diseases such as increased apoptosis in neurodegenerative 

disease, diabetes and AIDS, and altered apoptosis in cancer and autoimmune disease 

(Boot-Handsford and Briggs, 2010; Tsai and Weissman, 2010).  

There are 3 molecular signalling pathways known to be involved in modulating the 

various UPR responses described above and these will now be discussed with reference 

to data presented in this thesis and obtained elsewhere in the research program.   

 

4.9.1 Modulation of the UPR  
 The ER responds to increases in misfolded protein levels via three pathways 

activated respectively by the transmembrane ER-stress inducing proteins inositol 

requiring enzyme-1 (IRE1), pancreatic ER eukaryotic initiation factor (eIf)-2a kinase 

(PERK), and activating transcription factor - 6 (ATF-6). These three proteins are all 

associated with the luminal side of the ER inner membrane and continually monitor the 

status of the ER cargo as it transits the ER (Boot-Handsford and Briggs, 2010). Figure 

76 is a schematic for the proteins involved in the unfolded protein response in their 

unstressed state. The multifunctional nature of the folding chaperone BiP is exemplified 

again because BiP also plays a key role in detecting misfolded proteins in the ER. Under 

normal conditions with basal levels of misfolded proteins entering the ER, BiP is found 

associated with the 3 transmembrane receptors IRE1, PERK and ATF-6. While BiP 

remains bound to these receptors they are dormant and the UPR is not active. However, 

as levels of misfolded protein increase BiP binds to the exposed hydrophobic domains of 

the misfolded protein and the transmembrane receptors are activated (Bertolotti et al., 

2009). The consequences of activating these receptors are described next.       

Figure 77 shows a schematic for the proteins involved in the UPR in the stressed 

state, when the UPR is activated. BiP is removed from the cell surface receptors to act 

as a chaperone for the unfolded protein. The results from Q-RT-PCR analysis of wild-

type and Y64H mutant amelogenin mice incisors showed an increase in Chop and a 

decrease in Amelx expression. This suggests that the PERK pathway has been 

activated, 



- 190 - 

ATF6
IRE1

PERK

SEC61
BiP

RibosomeCorrect Protein
Folding

Unstressed

ER

BiP
BiP

 

Figure 76. Diagram to show the protein receptors of  the unfolded protein response (UPR) when the cell is in an unstressed 
state – UPR not activated. 
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 Figure 77.  Diagram to show the activation of the protein receptors in the unfolded protein response when the cell is in a 
stressed state – UPR activated.
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4.9.1.1 The IRE1 Pathway  

Dissociation of BiP (HSPA5/GRP78), the resident HSP70 orthologue in the 

ER, from IRE1 (figure 77) due to detection of unfolded or misfolded protein initiates 

the splicing of XBP1. Spliced XBP1 is a potent transcriptional activator that 

increases expression of a subset of UPR genes involved in the efficient protein 

folding, maturation and degradation in the ER (Lee et al., 2003; Schroder and 

Kaufman., 2005). This is described in more detail below, but the main outcome from 

this pathway is to switch off translation of protein in the ER lumen and reduce ER 

stress. 

 Once the binding equilibrium between BiP and IRE1 is disturbed by the 

presence of misfolded protein in the ER, IRE1 oligomerises in the plane of the ER 

membrane, triggering autocatalytic phosphorylation of the cytoplasmic domain and 

activation of its ribonuclease activity. IRE1 is an endoribonuclease that catalyses 

the unconventional splicing of mRNA coding for x-box binding protein 1 (XBP1). 

Spliced XBP1 upregulates the transcription of several genes involved in the initial 

UPR responses described above, i.e. up regulation of chaperones and proteins 

involved in ERAD (Todd et al., 2008). IRE1 also catalyses cleavage and destruction 

of a subset of mRNA’s linked to the rough ER, reducing the entry of new proteins 

into the ER lumen. The activated, phosphorylated form of IRE1 also interacts with 

tumour necrosis factor receptor associated factor 2 (TRAF2), activating JUN N-

terminal kinase (JNK), which has downstream involvement in apoptosis and 

autophagy (Ogata et al., 2006; Szegezdi et al., 2006; Oh and Lim, 2009).  

GRP94 is the only HSP90-like protein resident in the ER. GRP94 is a 

ubiquitously expressed chaperone protein with increased expression in the 

secretory tissues. The most important role for GRP94 is in directing the folding 

and/or assembly of secreted and membrane proteins. GRP94 is more selective 

than other ER chaperones. Its clients include integrins, immunoglobulins, IGF and 

TLR. The only common feature between them all is the presence of disulphide 

bonds. In vitro As the ER workload increases, the level of GRP94 transcription is 

co-regulated with other chaperones to increase the protein folding efficiency and to 

decrease the chance of misfolded proteins leaving the ER. 

BiP and GRP94 are the most abundant ER proteins, and not just when the ER 

is undergoing stress. GRP94 follows BiP in folding immunoglobulins and 

thyroglobulins. IGF interacts with GRP94 and not BiP. Different proteins may have 

different chaperone requirements. GRP94 cooperation with BiP is not an inherent 

property of GRP94’s mode of action. GRP94 has not been shown to act with lectin 

chaperones. Mammalian cells show a compensatory relationship between 
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chaperones. BiP knockout, BiP cleavage by subtilase, or BiP mutations cause 

expression of GRP94, PDI, calreticulin and Ep57. Silencing of calreticulin increases 

the expression of GRP94 and PDI, and calreticulin null embryonic fibroblast show 

increased levels of GRP94 and other ER proteins. However, GRP94 null cells do 

not demonstrate increased expression of other chaperones. BiP +/- mice show an 

adaptive transcriptional response with induction of chaperones including GRP94. 

GRP94 +/- mice do not show increased levels of BiP, calnexin or calreticulin. 

GRP94 has roles in protein folding, calcium binding and targeting proteins to the 

ERAD. 

The results shown in this thesis (section 3.5.3) show that XBP1 and GRP94 

were indeed upregulated in Y64H mice. Although statistical significance was not 

reached in the data reported here, later analyses using increased numbers of 

animals and carried out by Dr Martin Barron University of Manchester (Brookes et 

al., 2014) showed that the upregulation was significant. Amelogenin transcription 

was found to be statistically down regulated in this thesis (figure 62). The reason for 

the difference between the data reported here and the data obtained in Manchester 

(in terms of reaching mathematical significance) is unclear. However, the work 

presented here was carried out early in the research program and it may be as 

simple as the dissection technique improved with practice and the diluting effect of 

non-ameloblast cells (see section 2.5.2) was less of an issue.   Regardless, these 

data strongly suggest activation of the IRE1 branch of the UPR is present in Y64H 

mice. It would appear that the UPR is attempting to relieve the ER stress caused by 

Y64H amelogenin retention in the ER by reducing the transcription of new 

amelogenin in the ameloblasts.     

 

4.9.1.2 The PERK pathway 

Dissociation of BiP from PERK aims to reduce protein load in the ER by 

switching off protein synthesis through phosphorylation of the  �-subunit of 

eukaryotic translation-initiation factor 2� (eIF2�) which in turn increases translation 

of activating transcription factor 4 (ATF4) mRNA (Harding et al., 1999).  ATF4 

activates the expression of several UPR target genes involved in antioxidant 

responses, such as the transcription factor Nrf2, apoptosis, and autophagy (Harding 

et al., 2003; Cullinan and Diehl, 2004). 

 PERK is a transmembrane protein with a C-terminal cytoplasmic domain with 

serine/threonine kinase activity, and an ER luminal domain that binds BiP in its 

inactivated state, similar to IRE1. BiP dissociates from PERK as the levels of 
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misfolded protein increases in the lumen of the ER, leading to autophosphorylation, 

oligomerisation and activation of the kinase domain. PERK signals downstream 

effectors such as GADD34 and CHOP.  Activated PERK phosphorylates and 

inactivates eukaryotic translation initiation 2α (eIF2α). This is required for 80S 

ribosome assembly. As a consequence of this, a down regulation of protein 

synthesis occurs, decreasing the flow of newly synthesised unfolded protein into the 

ER.  Interestingly, some mRNAs such as that encoding ATF4, a 39 kDa 

transcription factor, have a more efficient translation when eIF2α is phosphorylated. 

ATF4 mRNA has a series of 5’ open reading frames that result in inefficient 

translation under non-stressed conditions (Lu et al., 2004). Phosphorylated eIF2α 

alters the reading dynamics of these open reading frames, resulting in increased 

ATF4 synthesis. ATF4 is a member of the cAMP-response element binding (CREB) 

family. It activates genes involved in the UPR such as the chaperones BiP and 

GRP94, genes involved in oxidative stress suppression, and genes involved in 

amino acid transport and metabolism. ATF4 also triggers the expression of CHOP 

(CCAAT/enhancer-binding protein homologous protein) which has been associated 

with ER-stress induced apoptosis (Zinszner et al., 1998).  

CHOP is also known as growth arrest and DNA damage-inducible gene 153 

(GADD153) and is a component of the ER stress apoptosis pathway. CHOP is a 29 

kDa protein consisting of 169 amino acids in humans and 168 amino acids in 

rodents.  The GADD genes are induced by genotoxic stress and growth arrest 

signals. C/EBP’s form a family of transcription factors that regulate genes involved 

in physiological processes such as immune functions, cell proliferation and 

differentiation. CHOP protein consists of 2 functional domains – an N terminal 

transcriptional activation domain and a C terminal basic leucine zipper (bzip) 

domain, made up of a basic amino acid rich DNA binding region and a leucine 

zipper dimerization motif. CHOP contains 2 serines at positions 79 and 82 that are 

capable of acting as substrates of the p38 Map kinase family. The bzip domain is 

important for CHOP induced apoptosis. C/EBP members are capable of forming 

homodimers and heterodimers. CHOP is a heterodimer. CHOP is able to inhibit 

C/EBP’s function and act as an activator of other genes. 

CHOP is ubiquitously expressed at very low levels and is present in the 

cytosol. Under stress conditions, CHOP is induced and accumulates in the nucleus. 

CHOP has been identified in stress conditions such as UV radiation, genotoxic 

stress, and nutrient depletion. CHOP expression is mainly regulated at the 

transcriptional level. Transcriptional upregulation occurs in response to ER stress. 

BiP acts as a sensor of unfolded proteins. Under normal ‘non-stressed’ conditions, 

BiP binds to the luminal domains of the stress transducers PERK, IRE1α and 
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IRE1β to prevent homodimerisation transport to Golgi. During stress, BiP binds to 

the unfolded proteins instead thereby releasing the transducers into their active 

state. 

The PERK/eIF2α signalling pathway induces CHOP in ER stress and is 

dominant over ATF6 and IRE1/XBP1 signalling pathways. For maximum CHOP 

induction though, all three pathways are necessary. Activated PERK 

phosphorylates SER51 on Eif2α which causes blocking of the Mer-tRNA binding to 

ribosome by decreasing Eif2β turnover, resulting in a decrease in the general 

translation due to decreased recognition of AUG initiation codon. ATF4 mRNA is 

still translated due to small upstream open reading frames (ORF’s). ATF4 can bind 

to the ATF/CRE consensus sequence 5’-TGACGTCA-3’ and the amino acid 

regulatory element (AARE) core sequence 5’-ATTGCATCA-3’. BiP-free Patf6α (p) 

and pATFβ (p) are transported the Golgi for cleavage by Site-1 and Site-2 

proteases. The cleaved N-terminal domains Patf6α(N) and Patf6β(N) are 

transported to the nucleus, where they bind to the ERSE due to their bZip domains. 

This binding with ERSE activates NF-Y trimer. Activated IRE1α and IRE1β cleave 

XBP-1 mRNA, which removes a 26-nucleotide intron, triggering an ORF switch to 

yield bZip and transactivation domains, binding ERSE and UPRE sequences in 

interaction with NF-Y.  

CHOP expression is also regulated by mRNA stability. CHOP mRNA 5’ UTR 

consists of highly conserved UORF’s which repress CHOP translation. CHOP 

undergoes phosphorylation by Map Kinases during ER stress. CHOP 

overexpression results in cell cycle arrest and/or apoptosis. BiP overexpression 

results in decreased CHOP induction and thus decreased apoptosis. CHOP null 

mice have reduced apoptosis in response to ER stress. All these show that CHOP 

is important in ER stress induced apoptosis. 

The results (section 3.5.3) suggested that Chop is upregulated in Y64H mice 

(with the caveat mentioned in section 3.5.3). However, later work carried by Martin 

Barron as a continuation of the work described here showed that Chop  is 

significantly upregulated in  Y64H mice. This data strongly suggests activation of 

the PERK branch of the UPR in Y64H mice. Since Chop induces apoptosis it 

appears that the UPR acting in Y64H is unable to relieve ER stress via survival 

strategies and instead signals cell death as the final solution to the problem.  
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4.9.1.3 The ATF6 pathway 

 ATF6 is a 90 kDa transmembrane protein with a cytoplasmic domain which 

contains a transcription factor with a bZIP motif, and a luminal domain that binds to 

BiP. When an increase in unfolded protein in the ER lumen is detected, Bip 

dissociates and the Golgi-localisation sequences in the ER luminal domain of ATF6 

are exposed (Shen et al., 2005). ATF6 then translocates to the Golgi where the 

protein is cleaved by site 1 and site 2 proteases (Ye et al., 2000). This releases the 

50 kDa cytosolic domain as an active transcription factor, known as ATF650. ATF650 

moves to the nucleus where it activates genes involved in ER quality control such 

as BiP, XBP1, ERAD components and apoptosis inducing Chop.  

We have already discussed the upregulation of XBP1 and Chop with 

reference to the IRE1 and PERK pathways described above.  That upregulation of 

BiP was also observed (page Figure 63 Section 3.5.3). Although not statistically 

significance in the data reported here, later analyses carried out by Dr Martin 

Barron, University of Manchester, (Brookes et al., 2014) showed that BiP 

upregulation was significant . This data strongly suggests activation of the ATF6 

branch of the UPR in Y64H mice is activated. As described above BiP is bound to 

IRE1, RERK and AFT6 in non-stressed cells but the presence of misfolded proteins 

in the ER causes BiP to dissociate from  IRE1, RERK and AFT6 resulting in their 

activation. Once free, BiP acts a chaperone and binds to hydrophobic regions on 

the misfolded proteins in an attempt to reduce protein aggregation. Upregulation of 

BiP is another classic UPR response designed to relieve ER stress. 

In summary, the UPR in the Y64H ameloblasts attempts to relieve the ER stress as 

evidenced by the upregulation of prosurvival factors (BiP, XBP1 and GRP94). 

However, the clear upregulated expression of Chop suggests that the UPR cannot 

rescue the cells from ER stress and commits the cells to apoptosis. It appears 

therefore that ameloblast ER stress and subsequent apoptosis is the pathological 

driver for this form of amelogenesis imperfecta. The validity of this hypothesis is 

explored in the next section by surveying the literature with regard to other 

connective tissue diseases caused by ER stress arising from protein mutations.  

 

4.9.2 ER stress induced diseases  
Mutations identified in ECM structural proteins and their associated post-

translational processing enzymes show that the resulting pathology depends upon 

the function of the protein, the nature of the actual mutation (premature termination, 
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nonsense) and its distribution in the body’s tissues.  The most commonly explored 

ECM mutations and diseases focus on collagen and its associated proteins and 

enzymes; with emphasis on secretion, proteolytic cleavage of the teleopeptide and 

fibril formation. The effects on the ECM resulting from these mutations are due to 

intracellular degradation of the mutant protein prior to secretion and/or release of 

faulty proteins that disrupt the ECM. 

Liang et al., 2014 investigated Col2a1 mutations in 13 mouse models to study 

the resulting phenotypes and possible mechanisms involved in various 

chondrodysplasias (lethal such as hypochondrodysplasia or deforming such as 

Stickler syndrome) or hip and knee joint diseases. All of the above are triggered by 

mutations in the Col2A1 gene encoding the α1 chain of procollagen type II and 

display the common symptoms of a disordered growth plate and slowed 

endochondral ossification. The researchers showed that the severity of the disease 

depended on the mutation type (large deletion vs. point deletion), mutation position 

(Y chromosome or X chromosome) and heterozygous or homozygous (i.e. whether 

some normal type II collagen remained). The mutations in the α1 chain of 

procollagen type II  gene ultimately lead to apoptosis via a series the UPR in the 

cells. Gaiser et al., 2002, and Arita et al., 2002 reported accumulation of the 

mutated collagen in the endoplasmic reticulum with an associated decrease in the 

amount of collagen type II secreted into the ECM.  Further investigations by  Chung 

et al., 2009 and Esapa et al., 2012 showed that these retained mutant collagen II 

molecules could induce ER stress and activate the unfolded protein response 

(UPR) which works to remove the misfolded collagen and maintain homeostasis. 

This is a direct parallel to what is observed in the Y64H amelogenin  mutation. 

Osteogenesis imperfecta (OI) is a disorder of the connective tissues caused 

by mutation in the genes encoding collagen type 1 (COL1A1 and COL1A2). 

Collagen 1 is the principal structural protein of bone and consists of fibrils of 2 

collagen 1 alpha 1 chains a  and 1 collagen 1 alpha 2 chain. The OI phenotype, like 

AI, depends upon the nature of the mutation and ranges from mild risk of bone 

fractures to perinatal lethality. Lisse et al., (2008) used an ENU-mouse model with a 

dominant mutation in the C-propeptide domain of collagen 1. Heterozygous mice 

displayed a severe to lethal phenotype associated with ER stress, and caspase 3 

and 12 activation within the osteoblasts. Immunofluorescence studies showed 

retention of the pro alpha (1) collagen chains in the ER. QPCR studies using 

primary calvarial osteoblasts showed elevated levels of BiP (1.5 to 2.2 fold 

increase), HSP47 (1.5 to 2.28 fold increase) and CHOP (3.7 fold increase). 

Caspase 12 is a specific mediator of the ER stress induced UPR in skeletal tissues 
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(Nakagawa and Yuan, 2000) and its elevation in these models is an indicator for 

apoptosis. 

There is also a growing body of evidence for the role of ER-stress and the 

UPR in age related disorders. The pathogenesis is the destruction of critical cells 

due to the formation of highly insoluble aggregated of the misfolded proteins and 

evidence has been shown for retinitis pigmentosa (Saliba et al., 2002), Alzheimer’s 

disease (Mann et al., 1985), prion disease (Forloni et al., 1993), Huntingdon’s 

disease (Zuleta et al,. 2012) Parkinson’s disease (Gorbatyuk et al., 2012), cancer 

(Mahadevan and Zanetti., 2011) and glaucoma (Anholt and Carbone, 2013). Some 

of these diseases will be discussed next. 

Retinosis pigmentosa (RP) is a group of inherited diseases that, due to the 

progressive death of rod and cone photoreceptors, causes progressive blindness 

(Dryja et al., 1990). Autosomal dominant RP is caused by mutations in rhodopsin. 

The most common mutation in the US is a P23H mutation resulting in protein 

misfolding and the accumulation of retained protein in the ER (Mendes et al., 2005), 

sometimes causing aggregates to form visible intracellular inclusions (Saliba et al., 

2002). This is comparable to the histidine substitution investigated in this thesis and 

the accumulation of amelogenin aggregates in the ameloblasts. Large amounts of 

rhodopsin is produced by the rod photoreceptors and mutant rhodopsin induces the 

UPR highlighting the use of this cascade in photoreceptors for dealing with 

misfolding stress (Lin et al., 2008; Athanisiou et al., 2013). Interestingly, the P23H 

mutation in rhodopsin activates both the UPR and the heat shock response (HSR); 

both of which activate the proteasome downstream for destruction of misfolded 

proteins (Kosmaoglou et al., 2009). Treatment of P23H mutants in rats with 

Arimaclomol, an inducer of the HSR, has been shown to improve vision and protect 

against photoreceptor destruction (Lewin et al., 1998; Parfit et al., 2014). Ablation of 

CHOP did not protect the photoreceptors against P23H mutant rhodopsin triggered 

cell death (Adekeye et al., 2014). 

Primary open angle glaucoma (POAG) is the most common form of glaucoma 

and is a hereditary, autosomal dominant mutation linked to chromosome 1q23-q25, 

known as MYOC. (Anholt and Carbone, 2013).  MYOC encodes a 55kDa secretory 

glycoprotein, myocilin, Myocilin, like amelogenin, is normally secreted into an ECM 

where it interacts with various ECM proteins such as fibronectin, laminin, collagen 

and fibrillin-1 (Myung et al., 2003). Mutant myocilin has been shown to accumulate 

in the ER and induce the UPR (Sidrauski et al., 1998; Mori et al., 2000). Myocilin 

secretion in adult eyes is normally at a low level but can be activated by stress, 

especially by high levels of circulating cortisol, a well-known risk factor for glaucoma 

and a link to diabetes (Anholt and Carbone, 2013). Excessive production of normal 
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myocilin, production of misfolded myocilin or any protein associated with MYOG, 

has been shown to form aggregates that in susceptible patients (those with a 

genetic predisposition to glaucoma) overwhelm the UPR to eliminate them via the 

proteasome. These causes ER stress and activate apoptosis of the TM cells that 

regulate intraocular pressure. Thus POAG may result in adult onset protein 

aggregation followed by neurodegeneration similar to Parkinson’s, Alzheimer’s and 

AI related to the Y64H amelogenin mutation.  A transgenic mouse containing the 

common Y437H MYOC mutation was created to study POAG (Zode et al., 2014). 

Adult mice with the mutation showed the glaucoma phenotype such as increased 

intraocular pressure, retinal ganglion cell death and axonal degeneration. The 

resulting mutant myocilin was not secreted into the aqueous humor as normal 

myocilin is, but accumulated in the ER of the TM cells. This is comparable to the 

accumulation of the Y64H amelogenin in the ER of ameloblasts. Chronic persistent 

ER stress resulted in TM cell death and increased intraocular pressure. Using the 

chemical chaperone phenylbutyric acid (PBA) prevented the glaucoma phenotype 

in the transgenic Y437H mice. PBA works by promoting secretion of the mutant 

myocilin into the aqueous humor and by reducing accumulation of the protein in the 

ER, hence preventing TM cell death (Zode et al., 2014; Shepard et al., 2007). 

It is clear that in mutations in ECM proteins can result in potentially 

pronounced phenotypes associated with a range of pathologies. Interpreting the 

phenotype in the context of what is now understood of ER stress and its resulting 

consequences prompted an ultrastructural characterisation of the enamel 

phenotype in the mice affected by the Y64H amelogenin mutation to investigate 

whether this might provide further evidence of the etiology of the biomineralisation 

defects associated with the mutation. 

4.10 Scanning Electron Microscopy of wild type and Y64H 
amelogenin mutant mouse incisors 

To confirm whether the hypothesis that the ameloblasts in mice containing the 

Y64H amelogenin mutation do deal with the mutation via the UPR, the resulting 

effect impact upon the enamel phenotype, was investigated. It was hypothesized 

that the enamel in wild type mice incisors would appear completely normal, and that 

male mice homozygous for the Y64 mutation would have very poorly formed 

enamel. Female mice heterozygous for the Y64H mutation were expected to exhibit 

enamel, which at first was correctly formed, but then poorly formed once the switch 

from cell survival to apoptosis occurred in the UPR. 

Imaging of transverse sections through erupted mice incisors corroborates the data 

from the immunohistochemistry staining and q-PCR analysis. The SEM in Figure 78 
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shows that in the wild-type tooth, enamel matured normally (see figures 63 and 64 

in section 3.6). It can therefore be inferred that wild type amelogenin protein was 

secreted normally during the earlier secretory stage of amelogenesis. The enamel 

is secreted in an incremental fashion from the dentinenamel junction. The prisms 

exhibit the characteristic interwoven decussating pattern and the enamel is of 

normal thickness. The schematic shows the life history of the ameloblasts as they 

incrementally secrete enamel during secretion and enter the maturation stage. 

During this the UPR is helping the cell cope with the large secretory load of 

amelogenin by operating in prosurvival mode (as discussed in section 4.9).   
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Figure 78. Scanning electron microscopy image of a transverse section 
through a normal wild type mouse incisor (top panel ). A corresponding 
schematic to show the progress of enamel formation is shown below 
(middle panel). Note that even in wild type amelobl asts some 
amelogenin misfolds and the UPR acts to promote cel l survival. The 
UPR is active in wild type ameloblasts (Kubota et a l., 2005). 
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By contrast, SEM analysis across a Y64H amelogenin female (heterozygous) 

mouse incisor displays the effects of the mutation on the phenotype (figure 79, and 

figures 65 and 66 in section 3.6). In heterozygous females about 50% of the 

ameloblast will be normal and 50% will be affected by the mutation (due to X-

chromosome silencing)  The initially secreted inner enamel closest to the 

dentinoenamel junction displays the characteristic interwoven pattern of prisms and 

looks normal; the affected ameloblasts are coping with the ER stress due to the 

UPR acting in pro-survival mode and are surviving (though their secretory activity is 

impaired as the Y64H amelogenin is accumulating intracellularly). However, their 

mere survival ensures the integrity of the ameloblast enamel layer and the 

unaffected ameloblasts evidently secrete enough amelogenin to produce normal 

looking enamel.  Eventually the apparently normal enamel secretion is disturbed 

and the last enamel to be deposited (the outer enamel) is structurally abnormal and 

hypoplastic. It is hypothesised that the UPR switches from pro-survival to pro-

apoptotic mode and affected ameloblasts die. This effectively destroys 50% of the 

ameloblasts and disrupts the ameloblast layer resulting in abnormal enamel 

secretion.    
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Figure 79. Scanning electron microscopy image of a transverse section 
through a female heterozygous mutant mouse incisor (top panel). A 
corresponding schematic to show the progress of ena mel formation is 
shown below (middle panel). Note that in affected a meloblasts misfolded 
amelogenin stimulates the UPR. Initially the UPR pr omotes cell survival 
and the initial enamel layer appears normal. With t ime, the continuing 
ER stress switches the UPR to promote apoptosis whi ch leads to 
disruption of the ameloblast layer and malformation  of the outer enamel 
layer.  
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In males with the amelogenin mutation, all the ameloblasts are expressing the 

mutant amelogenin which isn't being secreted at all so there is very little enamel laid 

down. Any amelogenin that does get secreted is mutated so may not work properly 

in the matrix anyway (but the main point is that full length amelogenin is not even 

getting out of the cells to have a chance of forming the enamel). At first the 

ameloblasts are enduring the ER stress and the UPR is helping them to do this 

(e.g. by reducing amelogenin transcription). This is supported by figure 72 from Dr. 

Martin Barron where the ameloblasts in the early secretion stage look 

phenotypically normal apart from being engorged with vesicles. Eventually the UPR 

trips into apoptotic mode and all the ameloblasts die hence only a thin layer of 

enamel is produced that is far from normal in structure (because there is no full 

length amelogenin being secreted and the cells die early).  

If these hypotheses are true, there are chemicals available that have been 

shown to have the ability to relieve ER stress by relieving the blockage in secretion 

or by inhibiting UPR induced apoptosis. If the mice were treated with such 

chemicals, it may free up the secretory pathway which would allow the ameloblasts 

to live but then we would see for the first time the effect of the mutation on how 

amelogenin behaves functionally once it is in the matrix. In males this would be a 

big question as all the amelogenin would be mutated. But it would remain to be 

seen if just restoring the secretory route would cure amelogenesis imperfecta. 

Other drugs might inhibit apoptosis and in the heterozygous females especially this 

would help by preventing the breakup of the ameloblast monolayer so leaving the 

50% of the wild type ameloblasts to go on secreting a normal enamel layer 

(Brookes et al., 2014). 
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4.11 Summary 

The work presented in this thesis was mainly concerned with the Y64H mutation in 

amelogenin, and how this impacted upon the normal structure-function status of the 

protein and results in amelogenesis imperfecta. The results presented in this thesis 

allow us to hypothesise that this single amino acid change caused a potential 

conformational change in amelogenin structure. Y64H amelogenin was shown to 

bind more strongly to itself. This in turn could cause the protein to aggregate 

abnormally in the ER, stall the secretory process and lead to ER stress. The normal 

structure of the ameloblast ER and Golgi apparatus is highly disturbed as a result 

with abnormal cytoplasmic vesicles packed with amelogenin. This triggers the 

unfolded protein response, which as indicated by the q-RT-PCR studies, reduced 

amelogenin transcription and elevated transcription of the UPR proapoptotic 

transcription factor Chop. Nucleation studies showed that the mutated amelogenin 

was able to nucleate hydroxyapatite mineral as well as the native protein. No 

significant difference was seen in the phosphate levels obtained for wild type or 

mutant amelogenin, alone or with 5 µg/mL enamelin, implying that the mutation in 

the amelogenin protein does not affect the proteins role in hydroxyapatite 

nucleation.  

In vitro nucleation studies using a steady-state system showed that nucleation 

of hydroxyapatite mineral deposits was achieved with recombinant 32 kDa 

enamelin protein. Comparison to known hydroxyapatite nucleators showed that 

enamelin protein had some features in common, whereas amelogenin did not 

(Table 2). The amount of mineral deposited with wild type or Y64H mutant 

amelogenin under the same experimental conditions was similar, with or without the 

Y64H mutation and with or without the presence of recombinant 32 kDa enamelin. 

Therefore the overall conclusion from these in vitro nucleation experiments was that 

the amelogenin imperfecta phenotype observed in mice carrying the Y64H 

amelogenin mutation is not due to the Y64H amelogenin behaving differently from 

the wild type molecule in terms of its behaviour with respect to mineral nucleation. 

Experiments were performed to investigate the importance of the 32 kDa 

enamelin processing product as a discrete entity during amelogenesis. The 32 kDa 

enamelin entity has been shown to be the predominant enamelin in pig enamel, and 

is the most widely studied enamelin protein due to its abundance and ease of 

collection. SDS-PAGE and western blot analysis of rat secretory enamel showed 

that the 32 kDa fragment was not the dominant enamelin species in the rat. 

Bioinformatics alignment of the amino acid sequences of enamelin from several 
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species showed that the cleavage sites for the 32 kDa enamelin are only present in 

the pig. Therefore, the 32 kDa enamelin fragment should be used with caution 

when investigating amelogenesis in general or in relation to other species. 

Amelogenin has been well documented to assemble and form nanospheres, 

thought to be important for nucleation of hydroxyapatite. The presence of vacuoles 

full of unsecreted amelogenin in the ameloblasts of the Y64H amelogenin mutant 

mouse suggested premature/increased aggregation of the mutant protein (Barron et 

al., 2010). Protein-protein interaction studies in vitro using recombinant wild-type 

protein and Y64H mutant amelogenin showed that the Y64H amelogenin- Y64H 

amelogenin binding was 2 to 3 times greater than wild type amelogenin-wild type 

amelogenin binding.  This led to the conclusion that the Y64H amelogenin 

molecules could aggregate within the ameloblasts and block the secretory pathway 

in mice carrying the mutation. This in turn would activate elevated levels of ER 

stress, triggering the UPR and driving the ameloblasts towards apoptosis. This 

hypothesis was supported by the data from quantitative PCR studies that showed 

that amelogenin was statistically significantly downregulated in the Y64H mutant 

mice, implying that the ER stress response and UPR is active, reducing protein 

synthesis to relieve ER stress and prevent apoptosis. The upregulation of Chop and 

Bip were also noted, although not statistically significant (p<0.05) in this study (later 

shown to be, Brookes et al., 2014) indicating that the IRE1 and PERK pathways of 

the UPR were underway in the Y64H mice. 

SEM analysis of the wild type and Y64H mice incisors showed that it was 

possible to identify where the UPR was unable to cope with the high levels of 

unsecreted, aggregated mutant amelogenin, and drives the ameloblasts towards 

apoptosis. This results in the structurally abnormal, hypoplastic enamel, typical of 

the AI phenotype.  

The work presented in this thesis supports the work of Brookes et al., 2014 

confirming that the Y64H amelogenin mutation is not a loss of function mutation but 

rather one that triggers ER stress, reduction of protein secretion and apoptosis of 

ameloblast cells. In the published study, mice with the Y64H mutation displayed the 

morphological characteristics of malformed tooth enamel displayed in the human 

equivalent amelogenesis imperfecta. The presence of the mutation caused the 

intracellular accumulation of the unsecreted protein, triggering apoptosis of the 

ameloblasts via ER stress and the UPR. They proposed that 4-phenylbutyrate, a 

drug already licensed for treatment of in-born errors of the urea cycle, could be a 

potential treatment for AI. Sodium phenylbutyrate is a histone deacytylase inhibitor 
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(HDACI). It is currently being investigated as a potential treatment for cystic fibrosis, 

cancer, motor neurone disease and haemoglobinopathies Sodium phenylbutyrate is 

a short chain aromatic fatty acid that undergoes β-oxidisation in vivo to form 

phenylacetate (PAA). PAA binds with glutamine to form phenacetylglutamine which 

is excreted via the urea cycle (Iannitti and Palmieri, 2011).  It has also been 

proposed that sodium phenylbutyrate acts as a chemical chaperone. Kubota et al., 

2006 investigating the signalling pathways involved in Parkinson disease, looked at 

the effects of phenylbutyrate on the accumulation of Parkin-associated endothelin 

receptor-like receptor (Pael-R). Several findings allowed the authors to conclude 

that phenylbutyrate was able to suppress ER stress by reducing the amount of 

misfolded protein collecting in the ER. These findings included; restoration of 

normal Pael-R expression and reduction of ER-stress with phenylbutyrate 

treatment, activation of ER-stress pathways and neuronal cell death with 

phenylbutyrate treatment, and the restoration of yeast viability in cells which failed 

to trigger an ER stress response under ER stress conditions following treatment 

with phenylbutyrate. Other studies investigating the effects of phenylbutyrate 

treatment include reversal of memory and learning deficits in Alzheimer disease 

mice models, proposing the use of phenylbutyrate to restore memory function in 

Alzheimer patients (Ricobaraza et al., 2009), the use of phenylbutyrate to prevent 

the accumulation of the toxic branched-chain amino acids and α-keto acids in 

Maple Syrup Urine disease (Brunetti-Pierri et al. 2011), efficacy of phenylbutyrate in 

the prevention of lipid-induced insulin resistance and β-cell dysfunction  in 

overweight or obese men (Xiao et al., 2011). Phenylbutyric acid was also used to 

treat mice models for POAG with a Y437H mutation in MYOC (described in section 

4.10.2). 

A number of hypotheses were explored as part of this thesis. 

Hypothesis 1: Is the 32 kDa enamelin breakdown product is conserved across all 

species? The majority of studies to date have used the porcine 32kDa enamelin 

product due to its ready availability. To investigate this hypothesis, western blot 

analysis of porcine and rat enamelin were used, as was a bioinformatics exploration 

of enamelin sequences across many species. The data presented in this thesis 

showed that the 32 kDa enamelin breakdown product was not the major fragment in  

rat enamel. A bioinformatics search of enamelin sequences also revealed that the 

32 kDa enamelin product was not conserved across all species. This has 

significance for the use of the porcine 32 kDa enamelin breakdown product as a 

model for full length enamelin in in vitro studies. 
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Hypothesis 2: The AI phenotype generated as a result of the Y64H amelogenin 

mutation in mice is a result of the mutated protein behaving differently upon 

secretion. To investigate this hypothesis, in vitro nucleation studies were performed 

to explore the effect of the mutation on the ability of amelogenin, and amelogenin in 

conjunction with enamelin, to nucleate hydroxyapatite mineral. In vitro binding 

studies were also be performed using the wild type and Y64H mutant amelogenin to 

investigate the effect of the mutation on protein-protein interactions. The steady 

state agarose gel nucleation studies showed that the Y64H mutation in amelogenin 

did not affect the way the amelogenin nucleated mineral, either alone or with the 

presence of 32 kDa enamelin. This implies that the mutant amelogenin does not 

behave differently with regards to ability to nucleate mineral in an in vitro system. 

The use of an in vitro microplate binding assay to investigate protein-protein 

interactions showed that the Y64H amelogenin bound with more affinity to itself and 

wild type amelogenin, that wild type amelogenin bound to itself. This may result in 

the Y64H mutant amelogenin forming aggregates that were contained in vesicles in 

the ameloblasts. 

Hypothesis 3: The AI phenotype generated as a result of the Y64H amelogenin 

mutation in mice is a result of the mutated protein being retained in the ameloblast 

and not being secreted correctly. Similar mutations in other proteins have resulted 

in endoplasmic stress in cells, resulting in transcription and translation 

downregulation and ultimately apoptosis of the secretory cells.  Quantitative PCR 

and SEM analysis of wild type and Y64H mutant mice incisors were performed to 

probe whether ER stress and the unfolded protein response could be responsible 

for the AI phenotype in Y64H mutant mice. The q-PCR data presented in this thesis 

showed that ER stress was a possible result of the AI genotype. A down-regulation 

in Amelx was noted, indicative of transcriptional and translational attenuation. 

Upregulation of genes involved in the UPR were also noted. 
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Future perspectives  

 

In the 2014 paper, Brookes et al., performed in vitro transfection studies using 

COS-7 cells and wild-type or Y64H amelogenin. A significant increase in apoptosis 

was noted in the cells transfected with Y64H amelogenin. This was abolished by 

the addition of 0.5mM phenylbutyrate. In vivo studies conducted consisted of 

feeding wild type and Y64H mice a diet containing 7g/kg sodium – 4- 

phenylbutyrate. The appearance of incisor teeth in Y64H female mice improved 

with the poor quality enamel being replaced over the course of the experiment by 

translucent, orange coloured enamel similar to the wild type counterparts. 

Histological examination of the incisors showed that the wild-type mice exhibited tall 

secretory stage ameloblasts associated with an eosinophilic enamel ECM. 

Untreated female Y64H showed a reduced secretory zone and thickness of ECM 

with intracellular eosinophilic staining indicating retained matrix protein.  

Phenylbutyrate treated Y64H female incisors showed a reversal of these 

anomalies, with a return to the phenotype displayed by the wild type incisors. 

Western blot analysis of the phenylbutyrate treated male Y64H secretory stage 

ECM showed that amelogenin secretion was still impaired, indicating that the 

phenylbutyrate is unable to restore normal secretory function in affected 

ameloblasts. To probe whether the phenylbutyrate elicited an effect on the UPR, 

the levels of caspase-3, a marker for apoptosis, were compared in the ameloblasts 

of affected mice with and without treatment. No phenylbutyrate treatment resulted in 

large numbers of ameloblasts testing immunopositive for caspase-3, whereas 

treatment with phenylbutyrate reduced the caspase-3 levels to those observed in 

the wild type. This implies that the phenylbutyrate treatment worked by reducing 

apoptosis in the Y64H affected mice ameloblasts. 

The study of hydroxyapatite nucleation in vitro has shown that amelogenin is 

incapable of nucleating hydroxyapatite, and that enamelin is capable of nucleating 

hydroxyapatite production. The two proteins together are capable of hydroxyapatite 

nucleation. The presence of the Y64H mutation in the recombinant amelogenin was 

shown to not effect hydroxyapatite nucleation. Further studies could use this in vitro 

nucleation system to investigate whether known mutations in the 32 kDa enamelin, 

shown in humans to trigger amelogenesis imperfecta, change the ability of the 

enamelin protein to nucleate hydroxyapatite. This would involve producing 

recombinant enamelin protein containing the mutations and repeating the 
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experimental work shown in this thesis with the mutated protein. It would also be 

interesting to see how other proteins identified in vivo in the ECM behave in the in 

vitro steady-state agarose gel nucleation system with regards to nucleating 

hydroxyapatite production. It would be interesting to include recombinant 

ameloblastin, alone and in conjunction with amelogenin and/or enamelin in the 

steady state agarose gel system. This could help elucidate the essential protein 

combination necessary for optimised hydroxyapatite production. 

The q-RT-PCR experiments performed within this thesis have shown a 

decrease in the production of amelogenin in mouse incisors containing the Y64H 

amelogenin mutation. This could be due to activation of the Unfolded Protein 

Response (UPR) removing the mutated protein via apoptosis, or by the UPR 

switching off or slowing down production of the mutated protein while it deals with 

the mutated protein already produced. The q-RT-PCR experiments also showed an 

increase in the amount of CHOP, a stress protein in the UPR pathway. Further 

studies could be performed to investigate this down production of amelogenin, 

using histology and immunochemistry staining of slices of tooth. Q-RT-PCR 

experiments using other genes involved in the UPR pathways could give a fuller 

picture of what is happening to the mutated amelogenin protein. 

Protein uptake and binding studies seemed to show that the mutated Y64H 

amelogenin protein is ‘stickier’, binding to itself and wild-type amelogenin protein 

more strongly. Expansion of these studies could elucidate what is actually 

happening to the protein once it is secreted. Surface Plasmon Resonance (SPR) 

would be able to identify differences in the binding strengths and affinities of these 

proteins. SEM studies could show any differences in nanosphere formation due to 

the amelogenin mutation. 

Identification of a true molecular chaperone for amelogenin would be 

extremely useful for describing the secretory pathway for amelogenin in the 

ameloblast cells. Due to amelogenin and ameloblastin being co-localised on the 

same gene, and being located together, it is highly probable that ameloblastin is the 

molecular chaperone for amelogenin. Co-localisation studies using ELISA, IHC and 

histological staining would help to show if this is a realistic hypothesis. 

It would be beneficial to repeat the proteolytic degradation studies with 

maturation stage enamel from rat incisors to see if the serine proteases present in 

the maturation stage enamel could lead to proteolytic processing and reveal the 

presence of the 32 kDa enamelin processing product in rat, and not just porcine 

enamel. 
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The work in this thesis helps us to understand better the role of the major ECM 

proteins, amelogenin and enamelin, in the development of tooth enamel. There is 

still a long way to go to fully understand the complex interplay of these proteins with 

each other, either in matrix formation or in a chaperoning role during protein 

secretion, and their interaction with hydroxyapatite mineral crystals to form mature 

enamel. The mature tooth enamel is a unique and amazing biomineralised tissue. 

Understanding as much as we can about its production can only help us in our 

quest to design and produce better products for its care and repair, and this effects 

nearly every one of us. 
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List of Abbreviations 

ADJ                                                                                  Amelodental junction 

Ag                                                                                                            Silver 

AI                                                                       Amelogenesis Imperfecta 

ALB                                                                                                      Albumin 

ALP                                                                              Alkaline phosphatase 

AMBN                                                                                           Ameloblastin 

AMG                                                                                               Amelogenin 

APS                                                                             Ammonium persulphate 

ATMP                                                         Amelogenin trityrosyl motif peptide 

BSA                                                                           Bovine Serum Albumin 

CK                                                                                                   Cytokeratin 

CT            Crossing Threshold 

D                                                                                                           Daltons 

DEJ                                                                         Dentino-enamel junction 

DH20                                                                                          Distilled water 

DMSO                                                                               Dimethyl sulphoxide 

DNA                                                                               Deoxyribonucleic acid 

DPP                                                                             Dentinephosphoprotein 

DTT                                                                                          DL-dithiothreitol 

ECM                                                                                   Extracellular matrix 

EDTA -Na2                            Ethylenediaminetetra-acetic acid (disodium salt) 

EDX                                                                            Energy dispersive X-ray 

ELISA                                                    Enzyme linked immunosorbant assay 

EMD                                                                          Enamel matrix derivative 

EMGs                                                                   Enamel matrix glycoproteins 

ER                                                                               Endoplasmic Reticulum 

ERAD                                   Endoplasmic Reticulum Associated Degradation 
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FITC                                                                 Fluorescein Isothiocyanate 

GAG                                                                                   Glycosaminoglycan                  

GlcNAc                                                                       N-Acetyl-D-glucosamine 

GMp1                                                                      GlcNAc mimicking peptide 

HAP                                                                                          Hydroxyapatite 

HCl                                                                                        Hydrochloric acid 

HDPL                                                  Human Dental Peridontal Ligament 

HEPES                           (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HERS                                                               Hertwig’s epithelial root sheath 

HMW                                                                             High molecular weight 

Hr                                                                                                              Hour 

Hrs                                                                                                        Hours 

IgG                                                                                       Immunoglobulin G 

kDa                                                                                                  Kilodaltons 

KLK-4                                                                                              Kallikrein-4 

LAMP’s                                          Lysosomal associated membrane proteins 

LB                                                                                              Loading buffer 

LRAP                                                            Leucine rich amelogenin peptide 

Mg                                                                                                      Milligram 

mL                                                                                                  Millilitre 

MMP                                                                          Matrix Metalloproteinase 

MMP-20                                          Matrix Metalloproteinase 20 – enamelysin 

MUT                                                                                                     Mutant 

MW                                                                                        Molecular Weight 

NaCl                                                                                        Sodium chloride 

Ng                                                                                               Nanogram         

PAGE                                                        Polyacrylamide gel electrophoresis 

PBS                                                                             Phosphate buffered salt 

PCR                                                                        Polymerase chain reaction 

PDL                                                                                  Periodontal ligament  
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PGA                                                                                  Poly L-glutamic acid 

PTM                                                                  Post-translational modification 

Q-RT-PCR                        Quantitative real time polymerase chain reaction 

RGD                                                                      Arginine-glycine-aspartate 

RNA                                                                                        Ribonucleic acid 

Rpm                                                                           Revolutions per minute 

RT                                                                                  Room temperature 

RT-PCR                              Reverse transcriptase polymerase chain reaction 

SDS                                                                          Sodium dodecyl sulphate 

SEM                                                                Scanning electron microscope 

TBS                                                                                 Tris buffered saline 

TBS-T                                               Tris buffered saline – Tween 20 (0.05%) 

TEM                                                            Transmission electron microscope 

TIMP’s                                                 Tissue inhibitors of metalloproteinases 

TRAP                                                           Tyrosine rich amelogenin peptide 

Tris                                                             Tris-(hydroxymethyl)-methylamine 

µg                                                                                                     Microgram 

µL                                                                                                       Microlitre 

UPR                                                                    Unfolded Protein Response 

UV                                                                                                Ultraviolet 

WT                                                                                                 Wild type 
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Appendix 1 
Comparison of mineral nucleating systems 

Protein Conc. of 

protein 

Optimal conc. for 

hydroxyapatite 

Conditions Buffers Publication Comments Time/ 

temperature 

BSP 1-10 µg/mL 2 µg/mL 2% agarose, 150 mM 

NaCl, 0.01% NaN3, 10 

mM Tris-HCl pH 7.4. 

Flow = 1 mL/h per gel.  

CaCl2 and 

NaPo4 (5.5 mM 

and 7.5 mM 

each tested) 

Hunter and 

Goldberg, 

PNAS (1994)  

 37°C for 5 days 

Osteopontin 1-10 µg/mL No HAP seen 2% agarose, 150mM 

NaCl, 0.01% NaN3, 10 

mM Tris-HCl pH 7.4. 

Flow = 1 mL/h per gel.  

CaCl2 and 

NaPo4 (5.5mM 

and 7.5mM 

each tested) 

Hunter and 

Goldberg, 

PNAS (1994) 

 37°C for 5 days 

BSP 0.3 ng/mL-

100 µg/mL 

0.3 µg/mL 1% agarose, 150mM 

NaCl, 20 mM Hepes 

pH 7.4, 0.01%NaN3 

CaCl2 and 

NaPo4 (6.5 mM 

and 3.9 mM 

each tested) 

Hunter and 

Goldberg,  J. 

Biochem 

(1996)  

3500 mwco 

dialysis 

membrane 

37°C for 5 days 

  



- 252 - 

Protein Conc. of 

protein 

Optimal conc. for 

hydroxyapatite 

Conditions Buffers Publication Comments Time/ 

temperature 

Osteopontin 0.3 ng/mL-

100 µg/ml 

No HAP seen 1% agarose, 150mM 

NaCl, 20 mM Hepes 

pH 7.4, 0.01% NaN3 

CaCl2 and 

NaPo4 (6.5 mM 

and 3.9 mM 

each tested) 

Hunter and 

Goldberg  J. 

Biochem 

(1996)  

3500 mwco 

dialysis 

membrane 

37°C for 5 days 

DPP 0.3 ng/mL-

100 µg/mL 

10 µg/mL 1% agarose, 150 mM 

NaCl, 20 mM Hepes 

pH 7.4, 0.01% NaN3 

CaCl2 and 

NaPo4 (6.5mM 

and 3.9mM 

each tested) 

Hunter and 

Goldberg  J. 

Biochem 

(1996)  

3500mwco 

dialysis 

membrane 

37°C for 5 days 

Osteocalcin 0.3 ng/mL-

100 µg/mL 

No HAP seen 1% agarose, 150 mM 

NaCl, 20mM Hepes 

pH 7.4, 0.01% NaN3 

CaCl2 and 

NaPo4 (6.5mM 

and 3.9mM 

each tested) 

Hunter and 

Goldberg  J. 

Biochem 

(1996)  

3500mwco 

dialysis 

membrane 

37°C for 5 days 

BSP - 

untreated 

5 µg/mL higher calcium-

phosphate levels seen 

1% agarose, 150mM 

NaCl, 10mM Tris-HCl, 

0.01% NaN3 flow= 

1ml/h/gel 

CaCl2 and 

NaPo4 (6.0mM 

each, pH7.4) 

Hunter and 

Goldberg, J. 

Biochem 

(1994)  

AP not needed 

for nucleation 

37°C for 5 days 
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Protein Conc. of 

protein 

Optimal conc. for 

hydroxyapatite 

Conditions Buffers Publication Comments Time/ 

temperature 

0 5 µg/mL  1% agarose, 150mM 

NaCl, 10mM Tris-HCl, 

0.01% NaN3 flow= 

1ml/h/gel 

CaCl2 and 

NaPo4 (6.0mM 

each, pH7.4) 

Hunter and 

Goldberg, J. 

Biochem 

(1994)  

 37°C for 5 days 

Calreticulin 20 µg/mL No HAP seen 1% agarose, 150mM 

NaCl, 10 mM Tris-HCl, 

0.01% NaN3 flow= 1 

mL/h/gel 

CaCl2 and 

NaPo4 (6.0mM 

each, pH7.4) 

Hunter and 

Goldberg, J. 

Biochem 

(1994)  

No HAP 

nucleation  

37°C for 5 days 

Osteopontin 100 µg/mL No HAP seen 1% agarose, 150mM 

NaCl, 10 mM Tris-HCl, 

0.01% NaN3 flow= 1 

mL/h/gel 

CaCl2 and 

NaPo4 )7.5mM 

each, pH 7.4) 

Hunter GK, 

Kyle CL, 

Goldberg HA, 

J.Biochem 

(1994) 

Osteopontin is 

effective 

inhibitor of HAP 

37°C for 5 days 

BSP - native 0.087 µg/mL HAP seen  1% agarose, 150mM 

NaCl, 20mM Hepes 

pH 7.4, 0.01% NaN3 

CaNO3 (7.1mM) 

and NaPo4 

(4.3mM) 

Tye CE, 

Hunter GK, 

Goldberg HA, 

JBC (2003) 

Glutamic acid 

rich region of 

BSP maybe a 

requisite for 

HAP nucleation 

37°C for 5 days 
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Protein Conc. of 

protein 

Optimal conc. for 

hydroxyapatite 

Conditions Buffers Publication Comments Time/ 

temperature 

BSP- rat 

recombinant 

1.7-3.4 

µg/mL 

Less HAP than native 1% agarose, 150mM 

NaCl, 20mM Hepes 

pH 7.4, 0.01% NaN3 

CaNO3 (7.1mM) 

and NaPo4 

(4.3mM) 

Tye CE, 

Hunter GK, 

Goldberg HA, 

JBC (2003) 

Glutamic acid 

rich region of 

BSP maybe a 

requisite for 

HAP nucleation 

37°C for 5 days 

BSP-poly E 

to poly A 

3 µg/mL Decreased HAP 1% agarose, 150mM 

NaCl, 20 mM Hepes 

pH 7.4, 0.01% NaN3 

CaNO3 (7.1 mM) 

and NaPo4 (4.3 

mM) 

Tye CE, 

Hunter GK, 

Goldberg HA, 

JBC (2003),  

Glutamic acid 

rich region of 

BSP maybe a 

requisite for 

HAP nucleation 

37°C for 5 days 

BSP - poly E 

to poly D 

3 µg/mL  1% agarose, 150 mM 

NaCl, 20 mM Hepes 

pH 7.4, 0.01% NaN3 

CaNO3 (7.1mM) 

and NaPo4 

(4.3mM) 

Tye CE, 

Hunter GK, 

Goldberg HA, 

JBC (2003) 

Glutamic acid 

rich region of 

BSP maybe a 

requisite for 

HAP nucleation 

37°C for 5 days 
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Protein Conc. of 

protein 

Optimal conc. for 

hydroxyapatite 

Conditions Buffers Publication Comments Time/ 

temperature 

Osteocalcin 100 µg/mL No HAP seen 1% agarose, 150 mM 

NaCl, 20 mM Hepes 

pH7.4, 0.01% NaN3 

flow= 1 mL/h/gel 

CaCl2 and 

NaPo4 (6.5mM 

and 3.9mM, pH 

7.4) 

Hunter GK, 

Goldberg HA , 

J.Biochem 

(1996) 

3500mwco 

dialysis 

membrane + 10 

µg/mL PGA 

used as positive 

control 

37°C for 5 days 

Osteopontin 100 µg/mL No HAP seen - potent 

inhibitor 

1% agarose, 150 mM 

NaCl, 20mM Hepes 

pH7.4, 0.01% NaN3 

flow= 1 mL/h/gel 

CaCl2 and 

NaPo4 (6.5mM 

and 3.9mM, pH 

7.4) 

Hunter GK, 

Goldberg HA, 

J.Biochem 

(1996) 

3500mwco 

dialysis 

membrane + 10 

µg/mL PGA 

used as positive 

control 

37°C for 5 days 

Osteonectin 100 µg/mL No HAP seen 1% agarose, 150mM 

NaCl, 20mM Hepes 

pH7.4, 0.01% NaN3 

flow= 1 mL/h/gel 

CaCl2 and 

NaPo4 (6.5 mM 

and 3.9 mM, pH 

7.4) 

Hunter GK, 

Goldberg HA, 

J.Biochem 

(1996) 

3500mwco 

dialysis 

membrane + 10 

µg/mL PGA 

used as positive 

control 

37°C for 5 days 
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Protein Conc. of 

protein 

Optimal conc. for 

hydroxyapatite 

Conditions Buffers Publication Comments Time/ 

temperature 

BSP 0.3 µg/mL  1% agarose, 150mM 

NaCl, 20mM Hepes 

pH7.4, 0.01% NaN3 

flow= 1 mL/h/gel 

CaCl2 and 

NaPo4 (6.5mM 

and 3.9 mM, pH 

7.4) 

Hunter GK, 

Goldberg HA, 

J.Biochem 

(1996) 

3500mwco 

dialysis 

membrane + 10 

µg/mL PGA 

used as positive 

control 

37°C for 5 days 

DPP 10 µg/mL  1% agarose, 150mM 

NaCl, 20mM Hepes 

pH7.4, 0.01% NaN3 

flow= 1 mL/h/gel 

CaCl2 and 

NaPo4 (6.5 mM 

and 3.9 mM, pH 

7.4) 

Hunter GK, 

Goldberg HA, 

J.Biochem 

(1996) 

3500mwco 

dialysis 

membrane + 10 

µg/mL PGA 

used as positive 

control 

37°C for 5 days 

Chondrocalci

n 

100 µg/mL No HAP seen 1% agarose, 150mM 

Nacl, 20mM Hepes 

pH7.4, 0.01%NaN3 

flow= 1 mL/h/gel 

CaCl2 and 

NaPo4 (6.5 mM 

and 3.9 mM, pH 

7.4) 

Hunter GK, 

Goldberg HA, 

J.Biochem 

(1996 

3500mwco 

dialysis 

membrane + 10 

µg/mL PGA 

used as positive 

control 

37°C for 5 days 
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Protein Conc. of 

protein 

Optimal conc. for 

hydroxyapatite 

Conditions Buffers Publication Comments Time/ 

temperature 

BSA 0-500 µg/mL No HAP 96 well plate – 100 µl  

0.5% agarose, 10mM 

Na2HPo4, 50 mM 

Hepes, 10mM CaCl2, 

pH 7.4 

150 µl of 150 

mM NaCl, 50 

mM Hepes, 

10mM CaCl2 

ph7.4 

Couchoural D 

et al, 

J.Inorganic 

Biochem 

(1999) 

96 well plate 

format with 

phosphate 

buffer in gel, 

overlaid with 

calcium 

37°C for 4 hours 

Type 1 

collagen 

(calf skin) 

0-500 µg/mL No HAP 96 well plate – 100 µL 

0.5% agarose, 10 mM 

Na2HPo4, 50 mM 

Hepes, 10 mM CaCl2, 

pH 7.4 

150 µL of 150 

mM NaCl, 50 

mM Hepes, 10 

mM CaCl2 

pH7.4 

Couchoural D 

et al, 

J.Inorganic 

Biochem 

(1999) 

96 well plate 

format with 

phosphate 

buffer in gel, 

overlaid with 

calcium 

37°C for 4 hours 

Fibronectin 

(human 

plasma) 

0-100 µg/mL No HAP 96 well plate – 100 µL  

0.5% agarose, 10 mM 

Na2HPo4, 50mM 

Hepes, 10mM CaCl2, 

pH 7.4 

150 µL of 150 

mM NaCl, 50 

mM Hepes, 10 

mM CaCl2 

pH7.4 

Couchoural D 

et al, 

J.Inorganic 

Biochem 

(1999) 

96 well plate 

format with 

phosphate 

buffer in gel, 

overlaid with 

calcium 

37°C for 4 hours 
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Protein Conc. of 

protein 

Optimal conc. for 

hydroxyapatite 

Conditions Buffers Publication Comments Time/ 

temperature 

PGA (Sigma 

P-4886) 

0-30 µg/mL HAP at 5 µg/mL 96 well plate – 100 µL  

0.5% agarose, 10 mM 

Na2HPo4, 50 mM 

Hepes, 10 mM CaCl2, 

pH 7.4 

150 µL of 150 

mM NaCl, 50 

mM Hepes, 10 

mM CaCl2  

pH7.4 

Couchoural D 

et al, 

J.Inorganic 

Biochem 

(1999) 

96 well plate 

format with 

phosphate 

buffer in gel, 

overlaid with 

calcium 

37°C for 4 hours 

Phosphoryn 0-20 µg/mL Increased HAP at 20 

µg/mL 

96 well plate – 50 µL 

0.5% agarose, 150 

mM NaCl, 50 mM 

Hepes, pH7.5, plus 

10mM phosphate 

100 µL of 150 

mM NaCl, 50 

mM Hepes, 10 

mM CaCl2, 

pH7.5 

Fujisawa R et 

al, Biochimica 

et Biophysica 

(1996)  

96 well plate 

format with 

phosphate 

buffer in gel, 

overlaid with 

calcium 

25°C for 24 hours 

Osteonectin 

(synthetic) 

0-20 µg/mL Increased HAP at 20 

µg/mL 

96 well plate – 50 µL 

0.5% agarose, 150 

mM NaCl, 50 mM 

Hepes, pH7.5, plus 10 

mM phosphate 

100 µL of 150 

mM NaCl, 50 

mM Hepes, 10 

mM CaCl2, 

pH7.5 

Fujisawa R et 

al, Biochimica 

et Biophysica 

(1996)  

96 well plate 

format with 

phosphate 

buffer in gel, 

overlaid with 

calcium 

25°C for 24 hours 
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Protein Conc. of 

protein 

Optimal conc. for 

hydroxyapatite 

Conditions Buffers Publication Comments Time/ 

temperature 

BSA 0-20 µg/mL Decreased HAP 96 well plate – 50 µl 

0.5% agarose, 150 

mM NaCl, 50 mM 

Hepes, pH7.5, plus 10 

mM phosphate 

100 µL of 150 

mM NaCl, 50 

mM Hepes, 10 

mM CaCl2, 

pH7.5 

Fujisawa R et 

al, Biochimica 

et Biophysica 

(1996)  

96 well plate 

format with 

phosphate 

buffer in gel, 

overlaid with 

calcium 

25°C for 24 hours 

BSP - 

decarboxylat

ed 

5 µg/mL Abolishes HAP 

formation 

1% agarose, 150 mM 

NaCl, 10 mM Tris-HCl, 

0.01% NaN3 flow= 1 

mL/h/gel 

CaCl2 and 

NaPo4 (6.0 mM 

each, pH7.4) 

Hunter and 

Goldberg,  

Biochem 

(1994)  

Modification of 

carboxylate 

groups 

abolishes HAP 

formation 

37°C for 5 days 
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Appendix 2 

Typical profile for Q-RT-PCR from the LightCycler 
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Appendix 3 
Bioinformatics data for 290 enamelin sequences 

C-terminus and N-terminus highlighted  
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Appendix 4 

Poster presentation at Faculty of Medicine Postgraduate Research day at 

Weetwood Hall  November 4th 2009. Winner of best laboratory poster and peoples 

choice award. 
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Poster presentation at Leeds Dental Institute Research day November 18th 2009. 

Winner of best poster prize. 

 


