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ABSTRACT

Solar prominences are among the most enigmatic structures in the solar
atmosphere whose study is made difficult by their complex evolution and
the multitude of important effects appearing in them. Beside a natural
curiosity, their importance stems from the recognition that almost 80% of
the observed coronal mass ejections (CMEs) - believed to drive the space
weather- have a cold chromospheric core believed to originate from a
prominence, which is why the study of the generation and evolution of
prominences is necessary. The difficulty in studying prominences arises
from the complex dynamics occurring in these magnetic features, but
also because of their intrinsic structure and properties. Significant ad-
vancement in the study of prominences was made when high-resolution
observations of waves, oscillations, and flows became available. Scien-
tists were able to connect theoretical models with observations through
seismological techniques in order to derive quantities and understand
properties (e.g. structure of the magnetic field, transport mechanisms
acting in prominences, internal structure, etc.) that cannot be measured
directly or indirectly. One of the fundamental properties of solar promi-
nences is that due to their relatively low temperature, the plasma is not
fully ionised and its description therefore needs special attention, espe-
cially when compared to the fully ionised coronal plasma that surrounds
prominences. The ionisation degree of prominences is not well known,
but there is plentiful evidence that this cannot be neglected when one
studies the dynamics and stability of these structures. The aim of the
following thesis is to investigate the generation of dissipative instabil-
ity at the boundary between the viscous corona and the partially ionised
prominence plasma, or at the interface between various prominence fine
structure in the incompressible limit. The importance of the partial ion-
isation is investigated in terms of the ionisation fraction or ionisation
degree. By matching the solutions for the transversal component of the
velocity and total pressure at the interface between the prominence and
its surrounding, we derive dispersion relations whose imaginary parts

ii



describe the evolution of the instability. Results are obtained in the limit
of weak dissipation. Using simple analytical methods, we detect the
spectrum of equilibrium flows for which dissipative instabilities appear.
While viscosity tends to destabilize the plasma, the effect of partial ion-
isation (through the Cowling resistivity) will act towards stabilizing the
interface. For ionisation degrees closer to a neutral gas the interface will
be unstable for larger values of equilibrium flow. The same principle
is assumed when studying the appearance of instability at the interface
between prominences and dark plumes. The unstable mode appearing
in this case has a very small growth rate and dissipative instability can-
not explain the appearance of flows in plumes. The same principles will
be applied when studying the generation of dissipative instability in the
case of waves propagating in a magnetic slab. The present study im-
proves our understanding of the complexity of dynamical processes in
solar prominences, and the role partial ionisation can have on the stabil-
ity of the plasma. Our results clearly show that the problem of partial
ionisation introduces new aspects of plasma stability with consequences
on the evolution of solar prominences.
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Chapter 1

Introduction

1.1 The sun

The Sun (Fig. 1.1) has always been worshipped throughout the history of mankind.
Associated or even identified with gods through ancient legends of Greeks, Chinese,
Japanese and many others, the Sun has always been the most spectacular celestial
object, being respected and feared due to its role in maintaining life on Earth.

Our Sun has also been an object of observation since eclipses started to be recorded
and predicted by the Chinese as early as 2000 BC and by the Greeks later on. In the
years that followed, ancient Greek scientists recorded the first visions of sunspots
with naked eye (Theophrastus of Athens, a pupil of Aristotle), and elementary pre-
dictions of planetary motions were made.

The knowledge about our Sun has gone through a series of changes in the last
millennia. In the beginning it was believed that the Sun was orbiting around the
Earth and besides, faulty predictions of the distance between Earth and Sun were
determined. In the mid-centuries Copernicus suggested that the known 6 planets
orbit around the Sun, while Kepler defined his laws of planetary motion. Shortly
after, Galileo - using the recently invented telescope - had clearer visions of sunspots.

In 1666 Newton formulated the classical gravitational law and applied it to the
planetary motions around the Sun. Euler measured exactly the distance from Sun to
Earth at 93 million miles. Later on, in the nineteenth century, eclipses were studied
systematically and prominences were recorded.

1



1.1. THE SUN

Figure 1.1: The Sun seen in the 304 Å bandpass (courtesy of NASA/SDO/AIA and
the AIA science team)

The use of telescopes during eclipses changed considerably the amount and qual-
ity of the knowledge about our Sun. In this way astronomers were able to see clearly
the outer layers of the solar atmosphere (the chromosphere and corona).

The sunspots were now related to geomagnetic storms while the first solar flare
was recorded by Carrington and Hodgson in 1859. The Sun was already considered
as a gaseous sphere and a new element, called Helium, was discovered at an eclipse,
followed by the invention of the spectroheliograph by Hale in 1889.

In the early twentieth century sunspots were identified with strong magnetic
fields. The coronograph was invented in order to be able to observe the corona with-
out an eclipse. Furthermore, emission lines were deduced to be arising from ionized
normal elements (hydrogen and other heavier elements) by the extremely hot corona.

The second half of the 20th century witnessed many astonishing developments
and discoveries, like the existence of the later called Alfvén waves, the necessity of
heating of the solar upper atmosphere, the cool temperature of the sunspots due to
inhibition of convection, the invention of magnetograph, the discovery of solar wind,
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1.1. THE SUN

and of course the amazing pictures and invaluable information provided by solar
telescopes on space satellite missions in high resolution.

The Sun is a hot, dense, auto-gravitational sphere of plasma at the center of our
solar system. It is an ordinary star of spectral type G2V with absolute magnitude
4.8. The Sun is 4.5 billion years old and has a mass of 1.99× 1030 kg meaning more
than 333, 000 times the mass of the Earth. The Sun’s diameter is almost 1.4 million
km which is 109 times larger than the Earth’s diameter. The central 0.25R¯ of the
Sun (barely one 50th of the Sun’s volume) carries half of the solar mass - meaning
non-homogeneous density which has a mean value of roughly a quarter of the Earth’s
mean density.

The surface gravity is 28 times larger than the corresponding Earth’s surface grav-
ity and thus the escape velocity comes out to be about 55 times larger than the escape
velocity from Earth. The Sun is rotating with a mean period of 25.38 days and it
has a mean distance from the Earth of about 150 million km (often also called 1 As-
tromomical Unit, 1AU). The surface temperature averages to 5785 K, while every
second the Sun is losing one billion kg of its mass.

The Sun can be divided into two main regions, the interior and the exterior. Un-
like the exterior, the interior is not directly observable. However, a variety of methods
can be used to study internal structure, such as measurement of neutrino fluxes and
global oscillations for helio-seismology (the study of oscillations at the solar sur-
face). The solar interior is composed of approximately 90% hydrogen, 10% helium
and a very small percentage in the form of heavier atoms, such as oxygen, carbon and
nitrogen and other elements. The majority of this stellar material is a highly ionised
gas due to the high temperature within the interior and has densities similar to liq-
uids on Earth. Although the ionised gas is almost entirely composed of positively
and negatively charged particles, it is electrically neutral and the particles exhibit a
collective behavior. This material state is known as a plasma state and it is the most
extended form of matter in the universe. The interior can be further divided into
three regions (see Fig. 1.2). At the centre is the core (confined to the central 0.25
R¯), where the majority of the Sun’s energy is produced. Half of the mass of the Sun
is contained within the core, which has temperatures of the order 15 million K and
densities of 1.5×105 kg m−3, which is about 150 times the density of water (see Fig.
1.3).

3



1.1. THE SUN

Figure 1.2: The interior of the Sun featuring the core, the radiadive zone and the
convective zone (courtesy of NASA/SDO/AIA and the AIA science team).

Figure 1.3: Temperature and density diagrams of the interior of the Sun shown on the
left and on the right, respectively (where height is given as a fraction of solar radius,
R¯). Both diagrams are adopted from the Dalsgaard Model S for the solar interior.
Vertical lines show the heights of each layer of the solar interior .
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1.1. THE SUN

Figure 1.4: The proton-proton fusion taking place in the solar core, releasing most
of the Sun’s energy (Adopted from a diagram in Horizons by M. Seeds (1991)).

The gravitational attraction of the solar material causes high temperatures and
densities in the core, providing ideal conditions for thermonuclear reactions. Through
a process known as the proton-proton chain (schematically shown by Fig. 1.4), hy-
drogen fuses to form helium, emitting high-energy photons as a by-product. This
reaction is the main source of the energy emitted from the Sun. There are other
fusion processes that contribute to the total energy involving heavier elements, but
these are not so important in the present stage of the evolution of the sun (see, e.g.
Priest 1982).

From the core towards the surface, both temperature and density decrease. The
radiative zone extends from the core of the Sun (0.25 R¯) out to approximately 0.713

R¯. In this region the energy is transported by radiation (hence the name of the
region), where photons spend millions of years before reaching the surface of the
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1.1. THE SUN

Figure 1.5: The Sun is rotating with a mean period of 25.38 days (mean frequency
456 nHz). The period varies with latitude and depth (Glatzmaier, 1981).

Sun.
The photons are absorbed and re-emitted by electrons and neutrons, simultane-

ously releasing energy to the surrounding plasma. Because of the high density, the
process is repeated so many times during these 10 million years, that the initially
high-energy gamma rays enlarge their wavelength due to collisions, until they reach
the surface where they become our familiar visible light.

The temperature in the radiative zone varies from 8 million K (inner radiative
zone) to half a million K (outer radiative zone), while the corresponding density
varies from 20,000 kg m−3 to 200 kg m−3.

Finally, the convective zone extends from the radiative zone out to the surface
and here the energy is transported by convection. There is though, an intermediate
extremely thin layer between radiative and convective zones, the tacholine (Spiegel
and Zahn, 1992), where it is believed that the Sun’s magnetic field is generated (As-
chwanden, 2008) through a dynamo process.

According to this theory, in the convective zone the rotation of the Sun has vari-
able period depending on the latitude. So, the period of the rotation increases by up to
9 days as we move from the Sun’s equator out to the poles (see Fig. 1.5). Combining

6



1.2. THE SOLAR ATMOSPHERE

this with the convective zone’s relatively low temperatures, which accommodates
fewer fully ionized elements, heavier elements may sustain their electrons, which by
turn switches the main energy transfer mechanism from radiative to convective.

In this process, assuming very steep density and temperature gradients, convec-
tive instability occurs and as a result large ’blobs’ of plasma are displaced vertically
that can enlarge enough to lower the density and induce buoyancy. Once the ’blobs’
reach the surface of the Sun, the energy escapes into the solar system.

The rising plasma ”blobs” then cool down and sink back into the convective zone,
being replaced by hotter convectively unstable plasma ’blobs’ from below. The tem-
perature in the convective zone varies from 500,000 K to 6,600 K. The corresponding
densities vary from 20 kg m−3 to 8×10−5 kg m−3.

1.2 The solar atmosphere

The solar atmosphere is the visible, exterior region and is composed of four distinct
layers. Considerable parts of these layers are dominated and connected by the mag-
netic field which provides a wide variety of fine structure in the atmosphere. Each of
the external layers, known as the photosphere, chromosphere, transition region and
the corona, have their own array of distinct magnetic features. Nowadays, these so-
lar regions are rigourously studied in great detail using space-born and Earth-based
telescopes, e.g. the Transition Region and Coronal Explorer (TRACE), Solar and
Heliospheric Observatory (SOHO), Hinode, the Solar Dynamic Observatory (SDO)
and the Interface Region Imaging Spectrograph (IRIS) that are continuously corrob-
orated with terrestrial imaging and spectral instruments that are able to observe the
atmosphere with a relatively high spatial and temporal resolution in visible, EUV,
X-ray and radio wavelengths.

Each atmospheric layer has characteristic wavelengths associated with certain
spectral lines, allowing the regions to be viewed individually. However, these layers
are not separate from each other and are magnetically coupled. The layers are inter-
weaved by the complex network of magnetic field lines originating from below the
surface, reaching high up in to the corona and extending far out into interplanetary
space.

One of the tasks of the observing instruments is to study oscillatory phenomena
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1.2. THE SOLAR ATMOSPHERE

Figure 1.6: The photosphere of the Sun seen in white light - the only visible surface
of the sun observed from the earth (courtesy of SOHO science team).

that occur across the surface and throughout the atmosphere. The oscillations are of
interest as they provide information about the physical state of the local plasma and
the dynamical events that occur within the internal regions (e.g. convection) and the
atmosphere (e.g., nanoflares, flares, coronal mass ejections). We can describe the
oscillatory motions of the magnetic structures by using the equations of magnetohy-
drodynamics (MHD) (see Section 2.1).

1.2.1 The photosphere

The photosphere (see Fig. 1.6) is the lowest layer in the solar atmosphere and its
name can be derived from the Greek language meaning ball of light. This name
was attributed due to the fact that photosphere is the only visible surface of the Sun
observed from the Earth.

Visible light is only part of the emission form photosphere since electromagnetic
waves from all the frequency spectrum are detected to be emitted. The photosphere is
an extremely thin layer (500 km thick) of relatively dense plasma which emits most
of the solar radiation. Temperatures vary from 5800 K (low photosphere) to 4300 K
at the top.

The photosphere has a highly non-uniform magnetic structure. Regions where
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1.2. THE SOLAR ATMOSPHERE

patterns of magnetic elements are arranged, are called active regions, which give
way to areas of large magnetic flux (corresponding to fields of a few thousand G).

In the photosphere we can distinguish irregularly shaped granules which are small
(about 1000 km long) cellular features that cover all the surface of the Sun except
for the areas which are covered by sunspots. Granules are the tops of convection
cells where hot plasma emerges from the interior towards the bright areas, spreads
throughout the surface, cools down, and then sinks back again along the dark lanes.
Each granule lasts for about 20 minutes. The granulation scene is continually chang-
ing as old granules are pushed aside to give way to newly uprisen ones. The flow
inside a granule may reach supersonic speeds (relative to the position of the gran-
ule) of more than 7 km s−1 and create sonic ’booms’ and other noise which produce
waves on the Sun’s surface.

A distinctive feature of the solar photosphere is sunspots. Sunspots are seen as
dark spots on the surface of the Sun. Temperatures in the dark centers of sunspots
drop down to 3700 K (compared to 5700 K for the surrounding photospheric plasma).
They normally live for a few days, although very large ones may last for some
weeks. Sunspots are highly magnetic regions on the solar photosphere with mag-
netic fields thousands of times stronger than the Earth’s magnetic field. Most of the
times, sunspots are appearing as two sets of spots. One set will have positive sign
(where the field emerges) while the other set will have negative sign (where the field
returns into the solar interior). In the darker parts of the sunspots - the umbra - the
field is strongest, while in the lighter part - the penumbra - the magnetic field is
weaker and more horizontal. Sunspots are also the location where massive magnetic
fluxes emerge to the surface (see, e.g. Sobotka, 2003; Solanski, 2003).

Magnetic field (although weaker than in sunspots) can also emerge in, e.g. fac-
ulae which are bright regions that one can easily observe near the solar limb, or the
edge of the disk. They are magnetic regions as well as the sunspots, whose mag-
netic field though is concentrated in much smaller bundles than in sunspots. Where
the sunspots make the Sun look darker, the faculae in contrary make the sun look
brighter.

Magnetic pores are also seen on the photosphere and they are basically small
sunspots with simpler magnetic structure. They may reach the chromosphere and as
they do so they become larger (see, e.g. Sobotka, 2003; Thomas and Weiss, 2004).

9



1.2. THE SOLAR ATMOSPHERE

Magnetic pores have diameters upto 16 Mm. The pores are regions of intense mag-
netic field (∼ 1700 G) and can be seen in the photosphere, but as they expand as
they reach chromospheric territories. Pores’ behavior is very dynamic because of the
constant buffeting from the convective motion of granules at the photospheric level
(Sobotka, 2003). There have recently been observations of photospheric structures
experiencing a vortex style motion, which could act as a driver for a wide variety of
waves and oscillations (Bonet et al. 2008). These waves and oscillations may have
the ability to propagate upwards across the lower solar atmospheric layers along the
length of the pore, which is acting as an MHD waveguide. Most of these waves
though, will be reflected at the transition region due to the steep temperature gradi-
ents in sound or Alfvén speeds. Some of them though, will manage to get into the
corona. The transmitted fraction of the waves may be related to MHD wave heat-
ing or magneto-seismology of the solar corona (see, e.g. Klimchuk, 2006; Erdélyi
and Ballai, 2007). One of the interesting new discoveries associated with magnetic
elements in the lower layers of the solar atmosphere is the proof of the existence of
torsional Alfvén waves (Jess et al. 2009), which have been known to be difficult
to detect. Due to the steep decay in density, upward propagating waves can easily
steepen into shock waves that could provide the heating of the lower parts of the
atmosphere.

1.2.2 The chromosphere

On top of the photosphere we find the chromosphere (a typical image of the chromo-
sphere is shown in Fig. 1.7). The name has also Greek origin and it means ball of
color. It has an average thickness of 2 Mm and presents a steady temperature gradi-
ent starting at 4,000 K at the base and ending at 20,000 K at the top. Resent detailed
observations have suggested that the chromosphere is not a homogeneous layer with
constant thickness surrounding the Sun. It is now believed to be compressed or ex-
panded in specific areas, due to the interactions of the chromosphere with the under-
lying photosphere or the over-lying transition region. In other words the existence or
the absence of an active region or a sunspot on a specific region of the photosphere
not only affects the surrounding temperature, density and pressure but also the height
at which chromosphere will start above the specific region. Moving outwards we de-
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Figure 1.7: The chromosphere of the Sun seen in Hα emission line (courtesy of
NOAA). The dark patches seen here on the surface of the Sun are cool and dense
prominences that appear dark because they are cooler than their surrounding.

tect that mean density and pressure are decreasing. At chromospheric temperatures
the light emitted by hydrogen has a reddish color (Hα emission, i.e. the Balmer emis-
sion line in the spectrum of hydrogen). This reddish emission may also be observed
in prominences that are visible above the solar limb during total eclipses of the sun.
If now we observe the Sun through a spectrograph or a filter which can isolate the Hα

emission, a rich scene of solar figures can be seen, like the chromospheric network of
magnetic field elements, bright plage around sunspots,prominences projecting above
the limb and dark filaments on disk. One key characteristic of the chromosphere
(and technically speaking about regions below the chromosphere) is that it contains
plasma that is not fully ionised. Dynamics in this sort of plasma constitutes the
working environment of the research presented in this Thesis.

The chromosphere is an arena of dynamic activity. In just a few minutes one
can observe the changes in solar flares, prominence and filament eruptions, and the
plasma flow in magnetic loops following the end of a solar flare. We may see the
chromosphere by detecting the light that ionized calcium - Ca II - emits, in the violet
region of the solar spectrum at a wavelength of 393.4 nanometers (the Calcium K-
line).

Recent high-resolution observations have shown the importance and complexity
of waves within the chromosphere. Spicules, usually observed as vertical extensions
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Figure 1.8: The temperature and density profiles of the solar atmosphere. Here the
very steep temperature gradients in the transition region are clearly seen. (Given by
the VALC model of Vernazza et al. (1981))

away from the Sun provide one of the suspects for supplying enough energy into the
corona to ensure the rapid heating which occurs there. As well as this, more hori-
zontal structures, such as mottles, have been found to be energetic, standing sausage
waves.

Besides, waves propagating upwards around sunspots and pores have been shown
to penetrate into the lower transition region, with the capacity to release huge amounts
of energy (see, e.g. De Pontieu et al. 2004, Freij et al. 2014).

Thus we can deduce that the chromosphere is a very dynamic layer of the solar
atmosphere and in a complex, though still not clear way, it collaborates with the
photosphere to transfer energy into the corona, contributing to the mystery of coronal
heating.

1.2.3 The transition region

The thin and very irregular transition region is the most interesting, intriguing and
confusing region of the solar atmosphere primarily because of the huge temperature
gradients which exponentially lift the temperature from 20,000 K to 1,000,000 K
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(see Fig. 1.8) while, at the same time, clear observations of this region and proper
theoretical formulation is still far from accomplished. The very high temperatures
provoke the full ionisation of Hydrogen which in turn is difficult to observe. On the
contrary, ions such as C IV, O IV, and Si IV are easily detected in the light emitted by
the Transition Region. The light that these ions emit is in the ultraviolet part of the
solar spectrum, and this is only accessible from space. The very steep temperature
gradients make the investigation of the role of the transition region in the energy flow
process of the solar atmosphere very difficult to model.

The transition region is the location of various energetic phenomena that have
been observed recently in the form of small-scale ‘sparkles’ which are suspected to
be leftovers of reconnection events of small magnitude, referred to as nano-flares,
taking place in the transition region, and these could be responsible for transferring
energy to heat the surrounding plasma to temperatures of millions of Kelvin. Blink-
ers (see, e.g. Harrison, 1997) are larger-scale events in the transition region, with
diameter of several millions of km. The steep variation of the temperature makes
the transition region a filter region too, some of the waves coming from the lower
regions being reflected, thus forming a chromospheric resonant cavity. Equally, per-
turbations coming from the solar corona in the form of global shocks (as a result of,
e.g. a CME) can generate secondary running waves along the transition region.

1.2.4 The corona

The solar corona (see Fig.1.9) is the outer and the most extended layer of the solar
atmosphere, starting form the transition region and extending out into the solar sys-
tem till the Earth and beyond. It can be seen only during eclipses (looks like the faint
halo which surrounds the Moon during a total solar eclipse) or using a coronograph
which is an instrument to hide exactly the solar disc as the Moon is doing during an
eclipse. Corona is yet another Greek word which means crown as the halo mentioned
above.

The mean density and pressure in the solar corona are very low but the tempera-
tures are estimated to be in excess of 1 million K (see Fig. 1.8). X-ray and (E)UV
observations by high resolutions space satellites (SOHO, TRACE, HINODE, SDO,
etc. ) have given us a new picture about the dynamics of the corona. The magnetic

13



1.2. THE SOLAR ATMOSPHERE

Figure 1.9: The solar corona - looks like the faint halo which surrounds the Moon
during a total solar eclipse (obtained with EIT instrument onboard SoHO)

structure of the corona reveals a complex network of magnetic fields which are con-
tinuously changing and can be separated into two magnetic zones: (i) open regions
of magnetic field, like coronal holes and the solar wind, and (ii) closed magnetic
regions, like coronal loops. Since the Skylab mission it is known that the corona
consists of a variety of coronal loops with strong emissions, and a large range of
lengths, densities, etc. at very high temperature. Since the plasma-beta is much
smaller than 1 in the corona, the plasma is controlled by magnetic forces and one
may use coronal loops to trace coronal magnetic field lines. The characteristics of
coronal loops are ranging in a wide spectrum. The small X-ray bright points which
have time scales of around 8 hours are believed to be loop structures while coronal
loops are thought to be expanding to form large prominences, sometimes upto 100
Mm above the limb and last from few days upto a few months. Some of the loops
are closed with their foot-points being magnetically opposite and are restricted to the
chromospheric and photospheric regions, extending as high as 300 Mm, while other
loops are open, reaching out, deep in the infinite coronal regions and giving way to
the solar wind. Using extrapolation techniques from the photosphere and also using
coronal loop seismology, showed that intensities of the magnetic field inside coronal
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loops vary between a few G up to 100 G (Priest, 1982). Measuring the widths of
emission lines resulted to the conclusion that coronal loops are 5 to 10 times denser
than their environment. This conclusion refers mostly to loops in active regions since
they are more easily observable, especially shortly after a solar flare.

The very high temperature of the corona constitutes one of the biggest mysteries
of the solar system, which remains a problem to be explained in the future. Given the
role of the magnetic field, nowadays is it widely recognized that the heating process
has to be of magnetic nature, the most promising mechanisms that could provide
the required heating being magnetic reconnection and wave dissipation over short
lengths scales (for an overview see, e.g. Klimchuk, 2006, Erdélyi and Ballai, 2007).

Magnetic reconnection is the mechanism that stays at the core of energetic events
such as flares and coronal mass ejections (CMEs) and it is a mechanism that releases
the magnetic tension that is later transformed into heat by (DC) current dissipation.
The frequency though of such events is low. In contrast, waves dissipated over short
scales through processes such as phase mixing or resonant absorption can transfer
their kinetic energy into heat (often labeled as AC mechanisms). It is believed that
closed magnetic structures are heated by magnetic reconnection, while the dominant
heating mechanism in open structures is wave heating.

1.3 Prominences

Prominences (an illustrative example of a prominence seen in the wings of Hα is
shown in Fig. 1.10) play a central role in our investigation and that is why we are
going to present their characteristics and properties in detail.

Solar prominences are clouds of relatively cool (≤ 104 K) and dense gas (∼ 10−12

kg m−3) being situated in a much tenuous and much hotter corona. These differences
in temperature and densitiy support the theory that prominences are of chromospheric
nature (see, e.g. Engvold 1998, Lin 2005, Okamoto et al. 2007, Martin et al. 2008;
Berger et al. 2008).

Prominences have typical lengths of 105 km, heights of 5 × 104 km and widths
of 6× 103 km. Prominences appear bright at the limb but on the disk they form dark
ribbons called filaments. The different appearance of prominences can be explained
in terms of the background (bright when the background is the interplanetary space
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Figure 1.10: An active prominence in an active region and a nearby solar flare seen
in Hα (courtesy of TRACE)

and dark when the background is the much hotter corona or chromosphere, see also
Fig. 1.7). The magnetic fields thread them through, balance the force of gravity and
inhibit the heat flow from the surrounding corona, where the temperature is at least
two orders of magnitude higher.

It is known that prominences exist above polarity inversion lines dividing two re-
gions of opposite magnetic polarity in the photosphere, therefore they are embedded
in a larger coronal arcade that connects the two opposite polarity regions. Promi-
nences can be classified into two categories:

• Quiescent prominences, which have a stable structure and can last for many
months and they appear in regions far away from active solar regions

• Active prominences, that are associated with solar filaments and are dynamic
structures with violent motions with lifetimes of minutes or hours

Prominences were first seen by naked eye in the 13th century during an eclipse
and they were explained as clouds on the moon. Five centuries later and during an-
other eclipse, they were described as red flames and in the 19th century with the help
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of photography they were correctly assigned as shiny masses of gas.
Quiescent prominences show very delicate composure in the body of the filament,

revealing that they consist of very thin threads (called fibrils) partially filled with cold
plasma. Even though vertical figures of filaments can be seen in limb prominences
(Dunn 1960), there is also evidence for the existence of horizontal fine structures
within prominences (Schmieder and Mein 1989; Schmieder et al. 1991; Tandberg-
Hanssen 1995). For instance, Simon et al. (1986) observed the velocities in quiescent
filaments in Hα and C IV. From the Hα emission lines the filament was concluded
to be consisting of many small-scale loops whose foot-points occupied various po-
sitions but surely not along the filament axis. Demoulin et al. (1987) concluded a
thickness of the order of 103 and a length of the order of 104 km for the threads that
compose a filament. Engvold et al. (1987) observed a quiescent prominence seen
in projection against the disk, and considering the interface between the prominence
and the surrounding corona, it was concluded that the prominence may be composed
of thin magnetic flux ropes inclined at an angle of 20 degrees to the prominence long
axis.

More recent high resolution Hα observations from ground-based Swedish Solar
Telescope and Dutch Open Telescope both in Palma, have given detailed description
of the fibrils to have an average width of 210 km and the length varying form 3500 to
28000 km (see, e.g. Lin et al. 2005; Heinzel and Anzer, 2006). From the theoretical
aspect, even though several models were set up to explain the vertical filamentary
structure of prominences, only a few models (Ballester and Priest, 1989; Degenhardt
and Deinzer, 1993) were proposed to represent the horizontal fibril structure of solar
prominences. Ballester and Priest (1989) proposed a model for the horizontal fib-
ril structure of prominences, representing fibrils with slender flux tubes containing
hot plasma throughout most of their length, and cool plasma near the summits (the
regions of the prominence with lower temperature).

A prominence can be formed in as little as a day and it can last as long as a few
months (quiescent prominences) or as little as a few minutes in the case of active
prominences (Priest, 1982). Active prominences are found in active regions and are
associated with solar flares. They can behave in a violent way according to their
type which can be surges, sprays (erupting filaments) and loop prominences. The
magnetic field is high (100 G) and the temperature is much higher than in a quiescent
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prominence.
Near the end of their existence, prominences may have an instability which may

cause eruption and sometimes together with coronal mass ejection or even solar
flares. Quiescent prominences have very simple structure and may last for a few
months. It all starts as a small active region filament located either along the mag-
netic inversion line between the two polarity regions of an active region or at the end
of an active region where it meets the surrounding region of opposite polarity (Priest,
1982).

As the active region dissolves, the prominence becomes longer and thicker and
turns into a quiescent prominence; it never stops moving, and it is heading towards
the nearest pole.

1.3.1 Physical parameters of solar promineneces

In comparison with active prominences, the quiescent ones have low temperatures
(about 7000 K), weak magnetic field (5-10 G) and densities of the order of approxi-
mately 10−12 kg m−3 . Their size can reach 60 to 600 Mm in length, 15 to 100 Mm
in height and 6 to 20 Mm in width. The magnetic field may vary according to the
position and height within the prominence.

Sometimes both kinds of prominences-especially if their height exceeds 50,000
km, can become erupting prominences, with some material escaping the Sun and the
rest returning back to the chromosphere. In more than half of the cases, after an
eruption a prominence returns back to the initial quiescent form.

Observing solar prominences in the Hα, UV, EUV lines, one can detect down-
flows and up-flows of plasma (Berger et al. 2008), and even horizontal flows. Ve-
locities vary from 2 km s−1 to 35 km s−1. In active prominences though speeds can
reach 200 km s−1 and sometimes this represents the displacement of plasma dur-
ing the formation of the prominence. Counter-streaming flows (oppositely directed
flows) were also observed (Zirker et al. 1998).

Observations also show that all the parameters within an individual prominence
(magnetic flux, temperature, density and pressure) vary with time and position (Pat-
sourakos and Vial, 2002). The same variability is applicable for their lifetime, sta-
bility and eruptive behavior - they vary from prominence to prominence even if the
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configurations look similar.
Their structure is highly non-uniform and extremely delicate with thousands of

fibrils (Tandberg-Hansen, 1967). The magnetic field is not isolated but suffers from
the interaction of the common interface with the magnetic field of the surrounding
corona.

Finally, prominences have been observed to oscillate with large amplitude oscil-
lations mainly due to the influence of a nearby violent activity, like a solar flare or a
Coronal Mass Ejection (CME) that could easily trigger a global coronal wave (some-
times labeled as EIT waves). Quiescent prominences though are also oscillating with
smaller amplitudes (Harvey, 1969).

The observed oscillations (as standing or propagating MHD waves), are collab-
orated with theoretical models in order to derive valuable information about the in-
trinsic values of prominence parameters, e.g. the magnetic field’s magnitude and
structure, transport coefficients and the dynamics inside a prominence.

1.4 Prominence oscillations

Oscillations have been detected all around the regions of the sun with the outstanding
example of the 5-minute period oscillation of the photosphere.

The whole sun is oscillating with large period oscillations and that can be ob-
served by means of a telescope. The magnetic features in the corona though, are
oscillating with a much shorter period. In order to obtain an estimate of physical pa-
rameters like temperature, density, magnetic flux and pressure in the complex struc-
ture of the corona, observable properties of waves and oscillations are compared to
theoretical values and models enabling conclusions about the above mentioned pa-
rameters, whose direct computations (observational or theoretical) is very difficult to
produce (see, e.g. Roberts et al. 1984; Uchida, 1967).

The first recorded prominence oscillation occurred more than 50 years ago (More-
ton and Ramsey, 1960), but due to the difficulty of the inversion of the physical pa-
rameters, the specific research did not progress until the 90’s. In that decade we were
able to use detailed, high-resolution images from the observational point of view, as
well as the progress in setting up reliable theoretical models that use the observed
quantities like phase speed, period, damping time and flow speed and through an in-
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version technique, estimates were drawn about temperature, density, magnetic flux
and pressure. The launch of high-resolution satellites has changed dramatically our
understanding capabilities of the complex dynamical and energetic phenomena in
the solar atmosphere, and solar prominences in particular, see Oliver and Ballester,
(2002) and Engvold, (2001) for detailed reviews on prominence oscillations obser-
vations and theory.

From the observational aspect, prominence oscillations can be separated in two
categories with respect to the amplitude of periodic variations: large amplitude and
small amplitude oscillations. The first category arises when the whole prominence
is shaken by a wave propagating on the Sun’s surface, e.g. coronal global waves
that are large scale waves propagating in the low corona being generated by a large
flare and/or a CME (see, e.g. Ballai, 2007). In this category falls the so called
winking filament, which refers to the optical effect of an event in which the line of
sight velocity is large enough to make the emission of the material fall outside the
sensitivity range of the instrument at the maxima of the oscillatory movement. When
these large amplitude waves are generated, the prominence loses the equilibrium
state and starts shaking with an amplitude of sometimes more than 20 km s−1 in a
horizontal vibration (see, e.g. Eto et al. 2002; Okamoto et al. 2004). This may
continue for several periods until it is damped.

Due to the large vibrating speed, the emission-transmission wavelength of the
prominence is changing, and this helps the observational point of view to become
clearer, e.g. in Hα filter, the filament is only visible when the prominence is at rest
(at maximum displacement), whereas at the center of the oscillation (minimum dis-
placement) the velocity (amplitude of the oscillation) is maximum and the filament
becomes invisible. The periods vary from 30 minutes to 2 hours (Jing et al. 2006;
Isobe and Tripathi, 2006). Jing et al. (2006), also suggested that a sub-flare at the end
of a filament may cause an oscillation. For large amplitude oscillations there is lack
of theoretical models to correspond the dynamics and the physical parameters of the
oscillating medium. The reason is that these oscillations are very rare. Combining
with the fact that high resolution observations became available only in the last 2

decades, the records of such oscillations are just not enough to set up reliable theo-
retical models. Some attempts have been made to introduce such models (Tripathi et
al. 2009) but we still have a long way to progress.
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The second class of oscillations is frequently observed and may show spatial
structure (can be even confined to a small region or a fibril). The amplitude of these
oscillations is smaller, sometimes near the noise level, and seems to be related to
proper modes of the structure. The amplitude varies between 0.1 km s−1 and 3 km
s−1, even though sometimes, larger amplitudes have been recorded (Terradas et al.
2002). For small amplitude oscillations though, because of the great frequency they
occur, a variety of models have been designed. Using the linearized MHD equations,
the analytical investigation of these modes reduces the solution of the dynamical
system to a set of differential equations with boundary solutions.

Short amplitude oscillations may not affect the whole prominence but only a part
of it. The small amplitude oscillations can be categorized in five categories according
to the magnitude of their period, P , as seen in the following table:

Category Period References

Very short period P≤1 min Balthasar et al. (1993)

Short period 1 min≤P≤10 min Tsubaki & Takeuchi (1986);
Thompsson & Schmieder
(1991); Yi et al. (1991)

Intermediate period 10 min≤P≤40 min Lin and Engvold (2002)

Long period 40 min≤P≤8 h Suematsu et al. (1990); Ter-
radas et al. (2002)

Ultra long period P≥8 h Fullon et al. 2004

Two-dimensional, high-resolution observations (Yi et al. 1991; Yi and Engvold,
1991) have shown that single fibrils or sets of fibrils may oscillate independently with
their own periods, with a range of 3 to 20 minutes. Therefore, one of the mysteries
of prominence seismology is whether periodic changes in prominences should as a
principle depend on their fine fibril structure or not. Most of the observed oscillations
and waves in fibrils showed some sort of damping, an effect that received special
attention in solar prominences (see further down this chapter).

We should keep in mind though, that the period by itself cannot give exact inter-
pretation of any physical parameter, since various combinations of physical parame-
ters may result to identical periods. That is where phase velocities and wavelengths
of the standing and the propagating waves come in the equation. Combining veloc-
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ities, wavelengths and periods, one may use inversion techniques to estimate values
of physical parameters (Oliver and Ballester, 2002; Terradas et al. 2002; Engvold,
2008).

In addition to the information about periodicities, observations also allow the
determination of other parameters of the oscillatory motion, e.g. wavelength and
phase speeds. Malville and Schindler (1981) studied a loop prominence and detected
periodic changes with a wavelength of 37,000 km, which together with a period of 75
minutes, results in a phase speed of about 8 km s−1. Later, Thompson and Schmieder
(1991) detected periodic motions in a filament fibril with periods between 3.5 and 4.5
minutes. Using these values and at the same time computing the wavelength of the
observed motion to be approximately 50,000 km, they resulted a phase speed of 200
km s−1. Later, Molowny-Horras et al. (1997) observed periodic velocity variations
with period of 7.5 minutes. The linear variation of the Fourier phase with position
allowed them to determine wavelengths of the order of 20,000 km, resulting in a
phase speed of 44 km s−1. Wavelength analysis of the same data showed the presence
of a train of waves with periods of 7.5 minutes and a duration of about 12 minutes.
The time occurrence of this train increased linearly with position, which agrees with
the assumption of a propagating disturbance.

Yet another observed parameter of the prominence oscillations is damping time-
that is the the time until the oscillation completely dissolves. The damping times
in prominence oscillations are observed to be always smaller than 10 periods of the
corresponding oscillation, and this is of particular interest since it gives partial inside
information about the the structure of the oscillating medium, here the prominence
plasma (see e.g. Molowny-Horas et al. 1999; Terradas et al. 2002). The large
damping times observed in prominences will give us a very good support for our
assumptions that the dissipation in prominences is weak.

Landman et al. (1977) observed prominence oscillations with a period of 22
minutes, that remained coherent for just 3-4 cycles. The same property was later seen
by Tsubaki and Takeuchi (1986) who observed Doppler oscillations with periods of
around 2.7-3.5 minutes, which were damped in roughly 3-4 cycles. Molowny-Horras
et al. (1997) used wavelength analysis to determine periodicities of 7.5 minutes and
the oscillations lasted for about 12 minutes. In the following year, Molowny-Horras
et al. (1998) placed the slit on a filament (rather than on a limb prominence) and
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found period motion with periods of 2.7 and 12.5 minutes, with a lifetimes of 10 and
20 minutes, respectively. Terradas et al. (2002) used two-dimensional Doppler maps
applied to a limb prominence and found that the 75 minutes periods were present
over very large regions of the prominence, leading to the conclusion that what they
observed was more likely a global oscillation of the prominence. The oscillations
were damped with damping times of the order of 3 periods.

All these determinations of damping times could help scientists to use seismo-
logical techniques to determine physical damping mechanisms that act upon waves
and oscillations in solar prominences. Significant advances were made to determine
which non-ideal mechanisms are responsible for explaining the damping of waves
and oscillations in solar prominences.

The first attempts to describe the observed damping involved the use of various
transport mechanisms (such as viscosity, thermal and electrical conductivity, optical
thin radiation) but neither of these mechanisms proved to explain the damping for
the whole range of observed wavelengths (see, e.g. Ballai, 2003; Carrbonell et al.
2004). It was clear that some other mechanisms are needed, the most probable being
resonant absorption, damping due to friction between various species of the ionised
plasma, or dissipation of perpendicular currents (e.g. Cowling resistivity).

1.5 Theoretical models for oscillating prominences

Theoretical modeling of dynamical phenomena in solar prominences were driven by
observations since mid-1960s. Historically, Hyder (1966) was the first who discussed
winking filaments, and concluded that the prominence internal magnetic field created
a restoring force, leading the oscillation in a vertical direction. It was also found that
oscillations are damped due to the viscosity of coronal plasma, through which the
prominence moves.

Kleczek and Kuperus (1969), discussed prominence oscillations as transverse
motions of the prominence with the magnetic tension driving the oscillation. Later,
Roberts (1991) used simplified models for small amplitude oscillations in a promi-
nence, which was assumed to be like a point of mass, suspended on an elastic string,
reflecting the local deformation of the magnetic field, which supports the prominence
against gravity. The model could explain the vertical oscillations of the prominence
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as a whole, and the derived periods were found in agreement to the observed 10-20
minute range. Another model considered a prominence oscillating in a similar fash-
ion of a mass vibrating on a taut string. The frequency which depended on the mass,
density, length and natural wave-speed of the string was estimated, and the resulting
estimation of the period, which was around 30 minutes, was in agreement with the
observed intermediate period oscillations.

More recent and more sophisticated theoretical investigation on small amplitude
prominence oscillations, use linearized MHD equations, including a magnetic field,
which in turn is establishing magnetic tension and magnetic pressure as restoring
forces to the oscillation, in addition to gas pressure. This results to the presence of
3 types of waves, namely the slow magnetoacoustic waves, the fast magnetoacoustic
waves, and Alfvén waves. These models solve a set of differential equations together
with the correct prominence-corona boundary conditions. The variety of theoretical
structures is due to the three different choices of the equilibrium state.

1.5.1 Isothermal plasma slab of finite width

Here the prominence is modeled as a magnetic slab of finite width filled with isother-
mal plasma. Basically there are two categories of models used:

(1) Models which do not consider the underlying arcade and external coronal medium:
Oliver et al. (1992) studied the oscillating modes of the Kippenhahn and Schluter
(1957) prominence model and concluded that the three MHD modes have different
directions of propagation: fast magnetoacoustic modes perform vertical motions,
slow magnetoacoustic modes perform motions parallel to the magnetic field (i.e.
transverse to the prominence), and Alfvén modes perform motions along the filament
axis. Therefore, investigating the polarization of the velocity could help identify each
discrete mode. Unfortunately, if the magnetic field possess an additional longitudi-
nal component along the prominence axis (due to boundary conditions), the velocity
vector turns into a complex combination of the 3 modes, which become impossible
to distinguish (Joarder and Roberts, 1993b). On the other hand, Joarder and Roberts
(1993a), based on a Menzel (1951) prominence model, added gravity to the model,
which resulted in periods with up to 50% variation from the corresponding periods
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without gravity.
(2) Models in which the external coronal medium has an effect: Joarder and Roberts,
(1992a), worked on a model that assumed adiabatic perturbations of a cool, dense,
rectangular slab in a hot corona, with an imposed homogeneous magnetic field par-
allel to the long axis of the slab. Their analysis recovered many kinds of periods,
including long period oscillations (up to 10 hours), intermediate (around one hour)
and short period oscillations (a few minutes). The same authors (Joarder and Roberts,
1992b), considered the case where the magnetic field is perpendicular to the slab, a
case which was analytically solvable, and the solution gave distinguished modes as
internal and external modes. The resulting oscillating periods were consistent with
the observed parameters of the coronal and prominence plasma. Oliver et al. (1993b)
analyzed the Poland and Anzer (1971) equilibrium model, working on both the in-
ternal and external modes, ending up with the conclusion that the fundamental mode
was a hybrid mode (both internal and external). This hybrid mode was labeled as
string mode by Joarder and Roberts, (1993b), who found that if a magnetic field
is imposed on an angle in the finite slab, then the 3 modes are no longer distinct.
Regnier et al. (2001), used the Joarder and Roberts, (1993b) model to compare the
frequencies between theoretical and observational data, and estimated the angle be-
tween the magnetic field and the longitudinal axis. The magnitude of the magnetic
field was also calculated in terms of slab density.

1.5.2 Single fibril model

This model is based on the fine structure of the prominence. Using an earlier model,
Joarder and Roberts (1992), Joarder et al. (1997), assumed a magnetic field parallel
to the fibril, which was regarded as a thin thread with a finite length and width.
Distinction between external and internal modes was again achieved. This model
will be partly used in our investigation, too.

Diaz et al. (2002), studied the propagation of fast modes in a model that the fibril
is considered to be a cylindrically symmetric flux tube, concluding that all sausage
modes possess a cut-off frequency, while the fundamental kink and fluting modes do
not. In addition, it was shown that the frequency of the sausage modes is invariant
to the fibril width. Furthermore, the modes occupying a frequency below the cut-off
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value, were found to be of such spatial structure, that perturbations are limited to
the dense part of the fibril, leading to the absence of induction of the oscillations to
nearby fibrils.

1.5.3 Models treating equilibrium configurations as a line-current

The effect of a finite time needed for perturbations to travel between a prominence
and photosphere was studied by Schutgens (1997a). Later, the same author (Schut-
gens 1997b) concluded that the fundamental mode has a longer period in a normal
polarity model, rather than in an inverse polarity model. Furthermore, Schutgens and
Tóth (1999), showed that in an inverse polarity prominence, the horizontal oscilla-
tions are damped by the emission of slow waves, while the vertical oscillations are
damped by the emission of fast waves.

All these models show that the discussion of dynamical phenomena in solar
prominences is far from being understood, the complexity of these amazing solar
features makes the problem rather difficult to tackle. However, simple models (in-
cluding key ingredients) are able to recover observed parameters rather well.

1.6 Motivation for prominence study

Decades of study have shown that it is very difficult to characterize prominence prop-
erties. They show differences in morphology, lifetime, position on the solar disk,
complexity of their magnetic field environments, etc. They are not uniform in shape
and show a fine, dynamic structure at the limit of the instrumental resolution. This
high variability makes their classification difficult and also results in a wide range
of physical conditions deduced from observations that poorly constrain the models
of prominence formation and disappearance (Vial, 1998). At the same time, under-
standing the origin of such variety and attaining better knowledge of these structures
and their environment during the different phases of their life, can provide valuable
information on the physics of the solar atmosphere. In fact, prominences are com-
monly found in the solar atmosphere, which indicates that it is easy to find favorable
conditions for their formation and stability. This tells us that prominences are mani-
festations of a common physical process found in the solar atmosphere.

26



1.6. MOTIVATION FOR PROMINENCE STUDY

The research in prominence physics is driven by several questions, whose an-
swers are still eluding (Parenti, 2014):

• Stability: In the quiescent state, prominences are interesting for their puzzling
equilibrium condition that allows their mass to be supported in the tenuous
corona. Clearly the magnetic field plays a major role, but still we do not
have sufficient observational information to identify the different mechanisms
and/or magnetic configurations responsible for their stability. The present The-
sis aims to address a few questions related to this problem, in particular how
the stability of a prominence is influenced by the presence of plasmas flows
and by the fact that the plasma is partially ionised.

• Mass motion: Mass flows inside a prominence can also have a role in the equi-
librium, mass support, and mass refurnishing. Observations reveal a variety of
mass motions inside prominences, even though the spatial resolution of instru-
ments may limit their diagnostic capability. However, only a few prominence
models include such observed dynamics. The equilibrium flow of the plasma
is going to be a fundamental ingredient in our analysis and will paly a crucial
role in the onset of instabilities.

• Radiative losses: Partially-ionized prominence plasma is an interesting lab-
oratory for testing our knowledge of the radiation-transfer mechanisms in an
optically-thick medium. In addition, non-local thermodynamic conditions (NLTE)
generally exist in these plasmas. Even if the prominence density is high (and
so the mean free path of electrons is small), collisions are unable to compete
with radiation in populating the energy levels of the atoms, so that the Local
Thermodynamic Equilibrium Condition (LTEC) does not hold. The incoming
radiation due to the environmental solar emission is, in fact, another element
affecting the prominence physical conditions. Proper treatment of radiative
transfer in prominences is also important for quantifying the amount of radia-
tive losses: this mechanism acts as a cooling mechanism in the energy equi-
librium equation. In quiescent conditions, the prominence radiation is steady,
requiring a source of still unknown heating to maintain energy balance in the
structure.

27



1.7. OVERVIEW OF THIS THESIS

• Magnetic field: The lack of extensive magnetic-field measurements in promi-
nences limits our knowledge of the physics of the coronal magnetic field and
its interaction with the plasma. We often assume that the observed prominence
plasma- emission morphology traces the magnetic field lines. One of the para-
doxes in prominence studies is that prominences at the limb can show a vertical
fine bright structure, while disk observations and the few magnetic field mea-
surements suggest that the field is almost horizontal. Solving this conundrum
will help to understand the coronal magnetic environment and to identify the
dominant physical process in the solar atmosphere. Here we will restrict our
analysis to the horizontal field configuration. This will simplify considerably
our mathematical approach.

• Formation and disappearance: Prominences as a whole can be very stable for
a few months, or can be part of large-scale dynamic and energetic events like
solar flares and CMEs (see, e.g. van Driel-Gesztelyi and Culhane, 2009, for a
review). These enormous eruptions (about 3× 1012 kg) perturb the interplane-
tary medium, and their effects can be seen on Earth. For example, they are the
origin of geomagnetic storms, which can affect everyday life through electric
blackouts, and since nowadays we depend so much on technology, such solar
activity is a concern. It is shown that solar eruptions may influence the tech-
nology of satellites for telecommunication and human space activity. That is
why Space Weather was developed very fast during the last decade, becoming
a new branch of science which aims to forecast the activity of our sun and any
resulting consequences for humans. The disappearance of prominences can be
ultimately connected to their stability; our analysis will try to find answers to
questions on the causes of these instabilities.

1.7 Overview of this thesis

After being introduced to the Sun and its structure, the mysteries and the eternal
problem of coronal heating, the properties of prominences and prominence oscilla-
tions together with theoretical models which help us understand the structure of the
coronal plasma, we are going to investigate the stability of the boundary between
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the prominence and the surrounding coronal plasma or the interface between vari-
ous prominence structures. The boundary separates two sort of plasmas with very
different physical properties (temperature, density, ionisation degree, etc.)

The aim of this thesis is to contribute to the theoretical understanding of the dis-
sipative instability at the interfaces between the partially ionized prominence plasma,
and the surrounding coronal plasma or at the interface between fibrils/plumes in qui-
escent prominences. The interface between these two media is going to be considered
as a tangential discontinuity, at which continuity conditions have to be imposed.

The outline of the thesis is as follows: In Chapter 2 the basic magnetohydro-
dynamic (MHD) equations are introduced, as well as the wave equations, which
describe the different MHD modes. We also review some theoretical results on mag-
netic interface and magnetic slab models under specific assumptions.

Since the main model of the Thesis is based on the concept of partially ionised
plasma, in Chapter 3 we introduce the governing equations for this sort of plasma,
in the case of a single and two-fluid approach and we will review the changes in the
wave propagation that appear in partially ionized plasmas.

In Chapter 4 we investigate the dissipative instability at the boundary, between
the viscous corona and the partially ionized prominence plasma at the incompress-
ible limit. The importance of the partial ionization is investigated in terms of the
ionization factor. The same principle is going to be applied in the case of an interface
separating two plasmas described in the two-fluid approximation.

We do that by matching solutions for the transversal component of the velocity
and total pressure at the interface of the mentioned boundary, and derive a dispersion
relation whose imaginary part describes the evolution of the instability. Results are
obtained in the limit of weak dissipation.

In Chapter 5 we extend previous results to the investigation of dissipative instabil-
ity in a Cartesian slab. Given the dispersion character of the plasma, we will discuss
separately the conditions of appearance of dissipative instability for body and kink
waves modeling various cases in solar prominences. All these models will assume
that one of the media (or both) have an equilibrium flow that is chosen to be directed
along the interface, parallel to the ambient magnetic field.

Finally, in Chapter 6 we summarize the results of this work and present the con-
clusions, giving a brief discussion of future developments and possible applications
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of the results.
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Chapter 2

Magnetohydrodynamics

The electromagnetic force is generally known to create structures: e.g. stable atoms
and molecules, crystalline solids. Furthermore, studying the resulting impact of the
electromagnetic force is forming the sciences of chemistry and solid-state physics,
which are both developed to understand basically static structures.

The binding energies of such structured systems are bigger in magnitude than
the ambient thermal energy. However, imposing a large enough temperature, they
decompose due to the increased thermal energy: e.g. crystals melt, molecules dis-
associate. If the temperature is near or exceeds the corresponding atomic ionization
energy, the atoms will then decompose into negatively charged electrons and posi-
tively charged ions. These ions not free: they are actually strongly affected by each
others’ electromagnetic fields. However, since the charges are no longer bound, their
system becomes capable of exhibiting collective behavior of great complexity and
they form a plasma.

The plasma complexity is both temporal and spatial. The plasma is predomi-
nately described by the excitation of a multitude of collective dynamical features.
Since interatomic bonds are breaking before ionizing under huge temperatures, most
plasmas on earth begin as gases, and actually sometimes the definition of plasma is a
gas which is ionized enough, to exhibit plasma-like behavior. Note that plasma-like
behavior ensues after an extremely small fraction of the gas has undergone ioniza-
tion. Therefore, partially ionized gases share most of the characteristic features with
fully ionized gases. Plasmas which were produced by ionizing neutral gases, con-
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tain in principle equal numbers of positive and negative ions. In this case, the oppo-
sitely charged ions are strongly coupled, and tend to electrically neutralize each other
on macroscopicly. These plasmas are named quasi-neutral (”quasi” since they are
not absolutely neutral and this fact is dynamically affecting certain types of plasma
modes).Higly positively or negatively charged plasmas, which may even consist of
ions of only one sign, mostly exist in laboratory experiments: their equilibrium is
ensured by a strong magnetic field, about which the charged fluid rotates. In a neu-
tral gas the dynamics is described by the collisions of the neutral particles with large
force but with short range. In plasma though, the charged particles are attracted to
each other or repelled away from each other under the Coulomb force.

Besides, the displacement of the charged particles leaves magnetic field traces
behind, which in turn is affecting nearby charged particles with a weak long-range
force. This leads to the conclusion that in an ionized gas, charged particles are in-
teracting with each other many times, resulting in the collective behavior of plasma.
Of course, for collective behavior to be ensured, the number of collisions between
charged and neutral particles should be much smaller than the number of collisions
between charged particles.

It is remarkable that 95% of the baryonic content of the known Universe is com-
posed of plasma (Priest, 1982). This number is flattering the science of plasma
physics (and plasma physicists), but from the other hand is so difficult to disprove.
However, it is essential to show off the prevalence of the plasma state, which is con-
sidered as the 4th state of matter. In earlier times of the Universe, everything was
plasma. Currently stars, nebulae, and even interstellar space, are filled with plasma.
The Solar System is also a host for plasma, since it is penetrated by the solar wind,
while the Earth is completely surrounded by plasma trapped within its magnetic field
(called plasma sphere).

Plasmas can have at least two definitions:

• Microscopic definition: Plasma is a quasi-neutral gas of charged and neutral
particles which show collective behavior.

• Macroscopic definition: For a valid macroscopic model of magnetized plasma
dynamical configurations, size, duration, density, and magnetic field strength
should be large enough to establish fluid behavior and to average out the micro-
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scopic phenomena (i.e. collective plasma oscillations and cyclotron motions of
electrons and ions).

Finally, a plasma is defined as an ionized gas where the Debye-length (λD) is
much smaller than any other length-scale in the dynamical system. The Debye-length
is a measure of the distance, over which negatively charged particles, deviate from
positively charged particles (Boyd and Sanderson, 1969). The charge imbalance
(due to thermal fluctuations), may create electric fields, which cause the acceleration
of charged particles, which leads to instant neutralization. Thus, for the plasma to
sustain its ionized state, this neutralization should be restricted to a fraction of the
particles, meaning that the deviation of positive and negative particles should be
relatively easy due to the small size of the Debye length.

2.1 MHD equations

There are three different popular models in which a plasma can be described. Al-
though apparently these models are independent, one particular model can be derived
from another one

• Theory of motion of single charged particles in given magnetic/electric field

• Kinetic theory of a collection of such particles, describing plasmas from mi-
croscopic point of view with the help of particle distribution functions

• Fluid theory (magnetohydrodynamics or MHD) describes the plasma in terms
of averaged macroscopic functions depending on position and time

For our present purposes, we will concentrate only on the last model as it is the model
which requires the least special mathematics to be introduced.

The motion of the plasma is affected and even guided by a magnetic field. Thus
a combination of hydrodynamics and electromagnetic theory is required to describe
the plasma dynamics. When charged particles (in terms of the sign of their charge)
and neutrals are treated separately then the mathematical formalism used is called the
”multi-fluid” MHD. In contrast, the plasma can be treated as a single fluid whose dy-
namics are described by its macroscopic properties (density, temperature, pressure,
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magnetic flux etc). In this case we can speak about ”single-fluid” MHD. The MHD
description of continuous plasmas is based on the combination of simplified form of
Maxwell’s equations, Ohm’s law and the equations of mass continuity, motion and
energy. The system of equations can be further simplified if the electromagnetic field
is eliminated between Maxwell’s and Ohm’s laws, and we obtain one single equa-
tion called the induction equation which relates the plasma velocity and magnetic
induction vectors.

In order to formulate the MHD equations, we assume the following:

• Most of the plasma properties are assumed isotropic.

• All the equations must be written in an inertial frame

• All speeds involved in the MHD description are much smaller than the speed
of light. This assumption is easy to satisfy as the highest speeds we will deal
with are Alfvén waves in the solar corona, whose speed is of the order of a
thousand km s−1

• All time scales are longer than inverse cyclotron frequency. In the solar corona
B = 10 G, n = 5×1014 m−3 the cyclotron frequency is of the order of 1.5×104

Hz, meaning that waves and oscillations described within the framework of
MHD must have periods larger than 10−4 s.

• Characteristic times are much longer than the collision times and the charac-
teristic spatial scales are larger than the mean free path, i.e.

λ À lii =
7.2× 107T 2

n
,

where the temperature is measured in K and number density in m−3. For the
typical conditions in the solar corona this gives a lower threshold of 105-106

m, while in the solar prominence (T = 104 K, n = 1015-1017 m−3) this equates
to lengths larger than a few centimeters to meters.

• In a single-fluid plasma description, the estimated quantities of the plasma are
the sum of the corresponding quantities of ions, electrons and neutrals.
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• Since the variations length-scales are much larger than the typical plasma
lengths, we may assume that plasma is treated as a continuum.

Let us consider the gas dynamic equations for the evolution of the plasma param-
eters, such as density ρ, pressure p or the velocity field v. The first equation comes
from the mass continuity (conservation of mass in the fluid motion), which can be
written in two equivalent forms,

∂ρ

∂t
+∇ · (ρv) = 0, (2.1)

Dρ

Dt
+ ρ∇ · v = 0, (2.2)

where
D

Dt
=

∂

∂t
+ v · ∇

is the Lagrangian time-derivative (moving with the fluid). This equation states that
in a closed system no mass can be created and/or annihilated.

Let us consider the case when ρ = const. From the mass conservation equation
we obtain that ∇ · v = 0 which constitutes the incompressible limit. Our analysis
will extensively use this approximation.

The balance of forces is expressed through the equation of momentum, which
has its roots within Newton’s second law

ρ
Dv
Dt

= −∇p + [j× B] + ρg + F, (2.3)

where F represents any force that is non-inertial (Coriolis force, viscous force, etc.).
In this equation j is the current, B is the magnetic field induction vector, and g is the
constant gravitational acceleration. The presence of the magnetic field is evidenced
by the Lorentz force in the momentum equation (the second term on the RHS). The
current density is given by the Ampere’s law

j =
1

µ0

∇×B,

meaning that the only current we take into account is the one that is generated by the
magnetic field. Here µ0 is the permeability of free space. The effect of the Lorentz
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force on the plasma can be seen after decomposing the vectorial product following
the well-known vector identity

j×B = (B · ∇)
B

µ0

−∇
(

B2

2µ0

)
. (2.4)

The first term on the right hand side of this equation represents the effect of a tension
parallel to the magnetic field and the second one the gradient of a scalar magnetic
pressure. The Lorentz force has therefore two effects on the plasma: to shorten mag-
netic field lines through the tension force and also to compress the plasma through
the pressure term. It is often convenient to rearrange Eq. (2.3) taking into account
this decomposition (neglecting gravity and non-inertial forces),

ρ
Dv
Dt

= −∇P + (B · ∇)
B

µ0

, (2.5)

where the quantity P = p + B2/(2µ0) is called the total pressure (the sum of kinetic
and magnetic pressures).

The equation that connects the magnetic field and fluid is the induction equation

∂B

∂t
= ∇× (v ×B) + R, (2.6)

where the quantity R is the resistive term. In our analysis this will very much con-
nected to the partial ionised character of the plasma and will be discussed later in
this Chapter. In an ideal plasma R = 0 and Eq. (2.6) reduces to a simple diffu-
sion equation. Under these conditions, Alfvén’s frozen-in flux theorem holds: in a
perfectly conducting plasma, magnetic field lines behave as if they move with the
plasma (by the vorticity-magnetic field analogy this is directly comparable with the
classical vorticity theorem of Helmholtz and Kelvin).

The thermodynamical quantities are connected through the energy equation

dp

dt
− γp

ρ

dρ

dt
= −(γ − 1)L (2.7)

where the energy loss function L has contributions from heat flux due particle con-
duction, radiation, ohmic dissipation and any other sources or sinks (such as viscous
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dissipation, wave heating in the corona or nuclear energy generation in the solar in-
terior). In ideal MHD this is set to zero, which corresponds to the adiabatic approxi-
mation. In any case, this energy loss function is small compared with the other terms
when the time-scale changes in pressure, density and temperature are much smaller
than the time scales for radiation, conduction or heating; this is often valid for rapid
changes associated with wave motions or instabilities. In Eq. (2.7) the quantity γ is
the adiabatic index.

Finally, the MHD equations must be supplemented by two closure equations.
One refers to the magnetic field, and it expresses the solenoidal condition

∇ ·B = 0, (2.8)

which means that there are no magnetic charges and all magnetic field lines are
closed. The second equation is the equation of state

p =
ρRT

µ̃
= nkBT, (2.9)

where R is the gas constant and µ̃ is the mean atomic weight (the average mass per
particle in units of the proton mass, which for fully ionised hydrogen takes the value
0.5, while in many coronal applications is taken as 0.6), n the particle density and kB

the Boltzmann constant.

2.2 MHD waves

Oscillations in solar structures (like prominences and sunspots) have been observed
and theoretically modeled in order to understand the Sun’s dynamics and physical
parameters. These oscillations are interpreted in terms of MHD waves. In general,
sound waves in gas, are propagating due to a pressure gradient along the direction of
the medium. The gradient is negative in the direction of propagation and this propa-
gation takes place in order to restore equilibrium. Waves can carry energy along the
direction of propagation, but because of the small amplitude, the disturbance in the
gas is limited. If now the gas is permeated by a magnetic field (i.e. plasma), the pres-
sure gradient disturbs the magnetic lines. The propagating wave is then interacting
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with the magnetic field, which in turn is metabolizing, exerting a restoring force, and
simultaneously affecting the wave. In order to present the nature of possible waves
arising in a plasma, we will consider an equilibrium state, and then we will impose a
small perturbation in order to enable us to see whether linear disturbances are prop-
agating in a wave manner. In particular, since this Thesis will deal with quiescent
prominences and their small amplitude oscillations, we consider non-linear effects
to be non- important. Thus the MHD equations are linearized and under specific
assumptions, the linearized set can be even analytically solved.

2.2.1 Linearised ideal MHD equations

The model of consideration here is a homogeneous unbounded medium, where a
uniform magnetic field is imposed along the x-axis, the equilibrium is static, and the
effect of gravity is neglected . The equilibrium magnitudes ρ0, p0, T0, and B0 for
the corresponding physical quantities of density, pressure, temperature and magnetic
field, are all constant. Every physical parameter can be expressed as the sum of the
equilibrium value and the magnitude of the linear perturbation as

B = B0 + B1(r, t), (2.10)

v = v1(r, t), (2.11)

p = p0 + p1(r, t), (2.12)

ρ = ρ0 + ρ1(r, t), (2.13)

T = T0 + T1(r, t). (2.14)

Here the index ”1” denotes the perturbated quantities. Since perturbations are much
smaller than their equilibrium counterpart, products and squares of perturbed quan-
tities are negligibly small. Then substituting the above equations into the set of ideal
MHD equations (2.1) and (2.5)–(2.9) will lead to a new set of linearized MHD equa-
tions

∂ρ1

∂t
+ ρ0∇ · v1 = 0, (2.15)

ρ0
∂v1

∂t
= −∇p1 +

1

µ0

(∇× B1)× B0, (2.16)
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∂p1

∂t
− γp0

ρ0

∂ρ1

∂t
= 0, (2.17)

∂B1

∂t
= ∇× (v1 ×B0), (2.18)

∇ ·B1 = 0, (2.19)

p1

p0

− ρ1

ρ0

− T1

T0

= 0. (2.20)

These equations will be combined to describe the possible oscillating modes in mag-
netised plasma and their properties.

2.2.2 MHD waves

In the absence of magnetic field and assuming that all changes in perturbations are
adiabatic, Eq. (2.17) reduces to

∂p1

∂t
= c2

S

∂ρ1

∂t
. (2.21)

Here, cS is the sound speed and is defined by the relation

c2
S =

γp0

ρ0

. (2.22)

Sound waves are propagating isotropically with the same speed cS , and the gas sur-
rounding the source of these waves will undergo variations in pressure, density and
temperature, with motions in the gas being aligned with the direction of the wave
propagation.

In a magnetized fluid the dynamics is much more complex due to the presence
of magnetic fields. In a perfect conductor, the magnetic field lines and the fluid
motions are frozen together, so that any attempt to initiate a sound wave will result in
variations in the magnetic field. The motion of the gas, caused by the sound waves,
will move the magnetic field lines, causing magnetic forces to arise. These forces
may, in return, affect the gas, and so affect the propagation of sound waves. As a
consequence, sound may no longer be able to propagate with the speed cS , and the
directionality of the magnetic field renders wave propagation anisotropic (see, e.g.
Roberts 1991). In addition to the sound wave, the presence of the magnetic field will
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Figure 2.1: The variation of plasma-beta (defined by Eq. (2.24)) in the solar atmo-
sphere. The plot has been adapted from Gary (2001)

generate the propagation of magnetic disturbances. The most obvious one is the so
called Alfvén wave that are pure magnetic waves and they generate gas motions in
the direction perpendicular to the ambient magnetic field, i.e. they are transversal
waves. They propagate along the field with a speed vA defined by:

v2
A =

B2
0

µ0ρ0

. (2.23)

The relative magnitude of these two characteristic speeds defines a key quantity in
plasma physics called the plasma-β defined as the ratio of the kinetic and magnetic
pressure, i.e.

β =
p0

B2
0/2µ0

=
2c2

S

γv2
A

. (2.24)

According to whether plasma beta is smaller or larger than 1, the plasma dynamics
is driven mainly by thermodynamic or magnetic forces, so for plasmas where β < 1

(e.g. solar corona, prominences, top of the chromosphere) the dynamics is driven by
magnetic forces, while in any region where β > 1 (bottom of the chromosphere, pho-
tosphere) the motion is controlled by thermodynamic forces (e.g. pressure gradient).
The variation of this important parameter with the height in the solar atmosphere is
shown in Fig. 2.1.

In addition to these two characteristic speeds, we can also define two combined
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speeds that will appear in our discussion, being related to the propagation speed of
mixed waves, one being the fast speed (related to the propagation of fast magne-
toacousic waves) and the other being the slow speed (or tube speed), related to the
propagation of slow waves. These quantities are defined as

c2
f = c2

S + v2
A, c2

T =
c2
Sv2

A

c2
f

. (2.25)

The fast speed is both super-sonic and super-Alfvénic, while the tube speed is both
sub-sonic and sub-Alfvénic.

The solar atmosphere is a highly structured and inhomogeneous medium. In
order to review the possible modes arising in such plasmas, let us take a simple
configuration where the ambient magnetic field is homogeneous and parallel to the
z-axis. We can distinguish two directions of our dynamics, one parallel to the field
and one perpendicular to it. The linearized ideal MHD equations can be reduced to
two equations in the two directions (see, e.g. Roberts, 1991), i.e.

ρ0

(
∂2

∂t2
− v2

A

∂2

∂z2

)
v⊥ +∇⊥

(
∂P

∂t

)
= 0, (2.26)

and

ρ0

(
∂2

∂t2
− c2

T

∂2

∂z2

)
vz +

c2
S

c2
f

∂

∂z

(
∂P

∂t

)
= 0, (2.27)

with the total pressure varying as

∂P

∂t
= ρ0v

2
A

∂vz

∂z
− ρ0c

2
f∇ · v. (2.28)

Here ∇⊥ denotes the component of the gradient operator that is perpendicular to the
direction of the magnetic field, i.e. perpendicular to the z-axis for our case and the
components of the velocity vector are v = (v⊥, vz).

The system of equations (2.26)–(2.28) is considerably complicated, however sim-
ple solutions can be obtained in particular cases. In an incompressible plasma (∇ ·
v = 0) involving no flow perturbations along the field (vz = 0) and no total pressure
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variations, the only remaining equation is

(
∂2

∂t2
− v2

A

∂2

∂z2

)
v⊥ = 0. (2.29)

This means that motions in the plane perpendicular to the ambient magnetic field are
solutions of the one-dimensional wave equation and the solution of this equation are
the Alfvén waves which are transverse vibrations of each field-line.

General solutions of the system (2.26)–(2.28) can be obtained after Fourier ana-
lyzing the perturbations. For a Cartesian geometry perturbations will be assumed to
have the form

f(x, y, z, t) = f(x) exp i(ωt− kyy − kzz). (2.30)

Here ω is the angular frequency of the waves (here assumed to be a real quantity) and
ky and kz are the wavenumbers in the y and z directions, respectively. In this case
the system (2.26)–(2.28) reduces to a single ordinary differential equation (see, e.g.
Roberts 1981b)

d

dx

[
ρ0(x)(k2

zv
2
A(x)− ω2)

m2(x) + k2
y

dvx

dx

]
= ρ0(x)(k2

zv
2
A(x)− ω2)vx (2.31)

where
m2(x) =

(k2
zc

2
S(x)− ω2)(k2

zv
2
A(x)− ω2)

c2
f (k

2
zc

2
T (x)− ω2)

, (2.32)

where m2 (often called the magnetoacoustic parameter) can be a negative or positive
quantity (the type of the solutions of Eq. (2.31) depends on the sign of this parame-
ter). We should mention here that all waves which we will deal with will satisfy the
condition that ω2 6= k2

z(v
2
A, c2

T ). If this condition is not satisfied the above equation
will allow two singular points which correspond to the Alfvén and cusp singularities
(see, e.g. Sakurai et al. 1991). These singularities are connected to the resonant
transfer of energy between interacting systems, a mechanism that is widely used in
the process of plasma heating or wave damping (see, e.g. Ruderman and Roberts
2002, Goossens et al. 2012,Goossens, Erdelyi & Ruderman (2012).

The solution of Eq. (2.31) is a very complicated one, and only in a few cases can
be analyzed analytically. In order to study realistic waves propagation we must turn
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our attention to simple cases and build complex configurations based on previous
knowledge.

2.2.3 Waves in a uniform atmosphere

In the case of a uniform atmosphere all equilibrium quantities are constant and there-
fore all characteristic speeds will be constants. This simplification will make the
system (2.26)–(2.28) easily solvable (see, e.g. Lighthill 1960). Denoting ∆ = ∇ · v,
the governing equations reduce to (see Roberts, (1981):

∂4∆

∂t4
− c2

f

∂2

∂t2
∇2∆ + c2

T c2
f

∂2

∂z2
∇2∆ = 0. (2.33)

Applying the already-mentioned Fourier analysis we can derive the so-called disper-

sion relation that describes the wave properties and is given by

ω4 − c2
fk

2ω2 + c2
T c2

fk
2
zk

2 = 0, (2.34)

where k = (k2
x + k2

y + k2
z)

1/2 is the magnitude of the wavevector k. This dispersion
relation describes compressive waves (∆ 6= 0) labeled as magneto-acoustic waves.

A much more suitable way of writing Eq. (2.34) is the form

(k2
zv

2
A − ω2)(m2 + k2

x + k2
y) = 0, (2.35)

which reveals the existence of two different set of waves. First, the solution of this
equation are the Alfvén waves, corresponding to ω2 = k2

zv
2
A, and there are magne-

toacoustic waves whose dispersion relation is given by

m2 + k2
x + k2

y = 0, (2.36)

where it is clear that for magnetoacoustic waves m2 < 0 for real wavenumbers.
Looking at the definition of m2 it is obvious that the phase speed, ω2/k2

z lies either
between c2

T and the minimum of c2
S and v2

A (corresponding to slow waves) or it is
greater than the maximum of c2

S and v2
A, these being the fast modes. Both fast and

slow waves are driven by tension and pressure forces with density and pressure vari-
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Figure 2.2: Analysis of the 3 MHD waves in a polar diagram. Adopted from Den-
mark Solar System school. Lectures On Space Plasma Physics 2007.

ations. Furthermore, the slow wave has much bigger temperature variations than the
fast one.

Alfvén waves are incompressible (they they do not perturb density or pressure),
and so k · v = 0, meaning that the velocity perturbation is normal to the direction of
propagation. They propagate only along the filed line with the speed vA.

Although our analysis is true for propagation along the magnetic field, similar
analysis can be carried for propagation at an arbitrary angle with respect to the ambi-
ent magnetic field. The propagation properties of these three waves can be analyzed
in the diagram shown in Fig. 2.2 where we plot the variation of the phase speed with
respect to the propagation angle. The diagram shows that the fast mode can propa-
gate in all directions having the maximum phase speed in the direction perpendicular
to the field. The slow mode, on the other hand, has a similar diagram to the Alfvén
waves, i.e. it cannot propagate in a perpendicular direction to the field. In the case
of vanishing field (vA = 0), the slow wave disappears and the fast wave becomes the
sound wave. For more details about the properties of these waves can be found in
Priest (1982).

2.3 Waves in structured media

One of the fundamental properties of magnetic fields in the solar atmosphere is that
they are not diffuse, instead they tend to accumulate into individual structures that can
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2.3. WAVES IN STRUCTURED MEDIA

already be observed in a direct way. Mathematically the structuring of the magnetic
field imposed on the problem of wave propagation creates some difficulty which can
be solved using the property of continuity of solutions at boundaries. The present
thesis contains calculations of such type, therefore we will attempt to cover the basic
properties of such configurations

2.3.1 Waves at a single interface

The simplest magnetic configuration that is based on the idea of magnetic field struc-
turing is the case of a tangential discontinuity between two uniform semi-infinite
media. This idealistic structuring is realized by a density jump across an interface
situated at z = 0. The equilibrium magnetic field is homogeneous and unidirectional
having the form B0 = B0x̂. This problem, under solar physics conditions, was inves-
tigated by Roberts (1981a), which completed the work of previous authors including
Parker (1964, 1974, 1978); Hasegawa and Chen (1974, 1976); Wentzel (1978), who
studied simplifications. The key result obtained by Roberts (1981a) is that the den-
sity interface can, under certain conditions, admit two sets of surface wave. In this
subsection we will closely follow the derivation given by Roberts (1981a).

Let us consider an atmosphere in a static equilibrium in the absence of gravita-
tional forces. The continuity of stresses at the interface implies that the total pressure
has to be continuous across the interface, i.e.

d

dx

(
p +

B2

2µ0

)
= 0. (2.37)

We recall that linear perturbations about this equilibrium state are governed by the
system

∂ρ1

∂t
+∇ · (ρ0v) = 0, (2.38)

ρ0
∂v

∂t
= −∇

(
p1 +

1

µ0

B0 ·B1

)
+

1

µ0

(B0 · ∇)B1 +
1

µ0

(B1 · ∇)B0, (2.39)

∂B1

∂t
= ∇× (v ×B0), (2.40)

∂p1

∂t
+ v · ∇p0 = c2

S

(
∂ρ1

∂t
+ v · ∇ρ0

)
. (2.41)
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By considering the components of the momentum equation we arrive at the Eqs.
(2.26)–(2.27). After Fourier analyzing the perturbations we arrive to an equation
similar to (2.31)

d

dz

[
ρ0(z)(k2

zv
2
A(z)− ω2)

m2(z) + k2
y

dvz

dz

]
− ρ0(z)(k2

zv
2
A(z)− ω2)vz = 0. (2.42)

Let us consider that the plasma is permeated by the magnetic field of the form

B0(z) =





Be z > 0,

B0 z < 0,
(2.43)

with Be 6= B0. Then, the continuity of the total pressure across the interface becomes

pe +
B2

e

2µ0

= p0 +
B2

0

2µ0

. (2.44)

Since the plasma is piecewise uniform in the two regions, equation (2.44) applies
independently on each side of the interface, as long as the solutions are continuous
across z = 0.

We are interested in waves which propagate along the interface. In addition we
suppose waveguiding at infinity. We thus impose the condition that vz vanishes at
z → ±∞. Imposing this constraint on either side of the interface gives

vz(z) =





αee
−z
√

m2
e+l2 z > 0,

α0e
−z
√

m2
0+l2 z < 0,

(2.45)

where the amplitude coefficients α0 and αe are determined by the boundary condi-
tions. The quantities me and m0 are the two values of m (defined by Eq. (2.32)
evaluated in the two regions.

At the interface we require the continuity of total (gas plus magnetic) pressure
perturbation, which now is given by

P = p1 +
B0

µ0

B1x. (2.46)

It is easily shown that the connection between the total pressure and the z component
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of the velocity vector is given by

P (z) =
iρ0

ω
(k2v2

A − ω2)
1

m2
0 + l2

dvz

dz
. (2.47)

Imposing pressure and displacement continuity across the interface gives rise to the
dispersion relation for surface waves at a magnetic interface. Roberts (1981a) derived
the dispersion relation describing waves at the interface in the form

ρ0(k
2v2

A − ω2)
√

m2
e + l2 + ρe(k

2v2
Ae − ω2)

√
m2

0 + l2 = 0. (2.48)

This dispersion relation is already more complicated than the dispersion relation
we derived for magnetoacustic waves propagating in a uniform an un-structured
medium. A detailed analysis of the properties of the dispersion relation reveals that
(Roberts, 1981a)

• If one side of the interface is field free, then the interface supports a slow mode
surface wave, with a phase speed less than the minimum of cT and the sound
speed in the field free region.

• If the gas in the magnetized side of the interface is cooler than the field free
region then a fast mode surface wave is also supported, with a phase speed
greater than the sound speed in the magnetized region and less than the mini-
mum of the sound and Alfvén speeds in the field free region.

Without the lost of generality we can assume that l = 0 and equation (2.48) can
be written as

ω2

k2
=

ρ0v
2
Ame + ρev

2
Aem0

ρ0me + ρem0

(2.49)

Our analysis will deal to a large extent with incompressible modes that correspond to
the limit of γ →∞ (or equivalently cS →∞), in which case the dispersion relation
of the only possible Alfvén surface wave is given by

ω2

k2
=

ρ0v
2
A + ρev

2
Ae

ρ0 + ρe

(2.50)

Very often this speed is labeled also as the ”kink speed” and it is a very important
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quantity for modern magnetic loop oscillations and the seismological techniques de-
rived in the last decade.

2.3.2 Waves in magnetic slabs

The next step in building up a more complex configuration where the structuring of
the magnetic field is taken into account is the case of wave propagation in a magnetic
slab described in Cartesian geometry. Obviously this model is an idealistic one,
but it gives good estimates for quantities of interest and highlights the effects of
geometrical constrain of wave propagation (waves are guided along this slab). It is
well known that once a wave is ”forced” to propagate in a region with well defined
geometrical size, it becomes dispersive and the dispersive character is determined by
the relative size of the waveguide compared to the wavelength of the wave.

Considering a magnetic slab, which has a width z0, with equilibrium described
by quantities with an index ”0” for the plasma inside the slab (|z| < z0) and by
quantities having an index ”e” describing the plasma outside the slab (|z| > z0).
The structure is taken as infinite in the y-direction, and for simplicity we restrict
our analysis to two-dimensional analysis, i.e. vy=0 and l=0. Let us consider waves
that are confined to the inhomogeneity |z| < z0, thus the inhomogeneity acts as a
wave guide with disturbances outside the slab (|z| > z0) being laterally evanescent,
i.e. vz → 0 as |z| → ∞. Inside and outside the slab the normal component of the
velocity is determined by an equation of the type

∂2vz(z)

∂z2
−m2

0,evz(z) = 0, (2.51)

where m0 and me are now referring to the internal and external regions respectively.
The solution of the above equation can be written as

vz(z) =





aee
−me(z−z0) z > z0

a0 cosh m0z + b0 sinh m0z |z| < z0

bee
me(z+z0) z < −z0,

(2.52)

and these solutions are chosen in such a way that waves are evanescent at large dis-
tances from the slab. Note that the amplitude coefficients a0, b0, ae, be are constants
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Figure 2.3: Sketch of the kink and sausage modes supported by a magnetic waveg-
uide.

that need to be determined after applying the continuity conditions at the two inter-
faces.

Applying the requirement of continuity conditions of the normal component of
the velocity and total pressure across the boundaries together with the requirement
that the system of equations formed for the coefficients appearing in Eq. (2.52) has
non-trivial solutions leads to the desired dispersion relations

(k2v2
A0 − ω2)me =

ρe

ρ0

ω2m0


 tanh

coth


 m0x0, (2.53)

where the two cases correspond to sausage and kink modes, respectively. Sausage
modes propagate in such a way that the symmetry axis of the slab is not perturbed,
while in the case of kink waves the symmetry axis of the slab is perturbed (see Fig.
2.3). Since Eq. (2.53) is a transcendental equation, it possess a wide range of so-
lutions and within the context of solar plasma physics has been derived by Edwin
and Roberts (1982, 1983). Although an extensive solution of this equation looks
complicated, idividual applications to, e.g. photospheric or coronal structures result
to an easier configuration. According to the standard nomenclature, solutions corre-
sponding to m2

0 > 0 are labeled as surfaces waves, while waves with m2
0 < 0 are

body waves. There are different solutions because the waves behave spatially in a
different way inside the structure; surface waves have their maximum amplitude on
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the boundary and are not oscillatory inside the slab, while body waves show an os-
cillatory pattern inside the slab (see Fig. 2.4). Note that the m2

e > 0 restriction is

Figure 2.4: Sketch of the surface and body modes supported by a magnetic waveg-
uide.

needed in order to have evanescent solutions outside the slab, a condition that leads
to the existence of a cut-off frequency, over which the modes become leaky.

In an unstructured homogeneous plasma one expects three sort of waves, the slow
magnetoacoustic waves, the fast magnetoacoustic waves, and the set of transversal
Alfvén waves. During the analysis we uncoupled the transversal Alfvén waves, and
thus they will not be considered further. However we should state that the slow and
fast waves found in infinite plasmas are affected in a complicated procedure which
depends on the relative magnitudes of sound and Alfvén speeds inside and outside
the slab. In some cases, for example, that of a cold plasma (for which vAe > vA,
often applied for coronal structures) only two sets of body waves occur whereas
under photospheric conditions where vAe < vA, the slow mode can always propagate
(either as a surface or body mode) but the fast mode may only propagate in a structure
that us cooler than its surrounding (i.e. ce > c0).

The possible propagation modes can be discussed separately for coronal or pho-
tospheric conditions as will determine the relative magnitude of characteristic speeds.
A characteristic dispersion diagram is shown in Fig. 2.5, where the possible modes
arising in coronal slabs is shown (Adapted from Edwing and Roberts 1982). The dis-
persive character of these modes is evidenced through the dependence of their phase

50



2.3. WAVES IN STRUCTURED MEDIA

speed (ω/k) with the dimensionless quantity kx0, i.e. the wavelength of the modes
(keeping the geometrical size of the slab constant). It is also remarkable that slow
modes are confined in a small frequency band. This band is very narrow and close to
zero when typical prominence and coronal values are used.

Figure 2.5: The dispersive diagram of modes arising in a coronal magnetic slab. Note
that no surface modes are able to propagate in these structures (adapted from Edwin
and Roberts 1982)

In the special case of γ →∞ (i.e. the incompressible case), then using

ρe =
c2
S0 + 1

2
γv2

A0

c2
Se

ρ0, (2.54)

one can deduce that m0,me ≈ k, in which case Eq. (2.53) becomes

k2v2
A0

ω2
= 1 +

ρe

ρ0


 tanh

coth


 m0x0kx0. (2.55)

As a final comment, this model can be applied to some solar structures, such
as prominences, which are roughly slabs in which their length and height are much
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larger than their width. In Joarder and Roberts (1992a, 1992b, 1993) and Oliver et
al. (1992), a prominence is described as an infinite sheet of plasma with finite width
2a in the x-direction, while the y- and z-directions are Fourier-analyzed and the re-
sulting eigenfrequencies are discussed and the output is compared with observational
data. This idea has been pushed forward including more realistic prominence models
(Oliver et al. 1993) and a smooth transition region (Oliver and Ballester 1996). The
model has been extended to arrays of slabs modelling the multi-fibril structure of
prominences by Berton and Heyvaerts 1987, Marcu et al. (2006).
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Chapter 3

MHD equations in partially ionized
plasma

3.1 Partially ionized plasma

At room temperature, most gases are essentially un-ionised. The particles constitut-
ing the gas are generally electrically neutral atoms and/or molecules. These particles
occupy a random kinetic energy which is too small compared to the energy binding
the outer shell electrons to the nucleus, and therefore, the internal electronic struc-
ture of atoms is unaffected by collisions. Nevertheless, increasing the temperature
can make the collisions energetic enough to disrupt the internal structure of atoms
and thus may lead to the production of free electrons and ions.

The lowest temperature at which a gas shows a significant degree of ionisation
depends on the particular atom or molecule, as well as on the pressure. For example
cesium becomes significantly ionised at 1,500 K, while for argon, a similar degree
of ionosation can be reached at 6,000 K. At the other extreme, nearly all gases are
highly ionised at temperatures in excess of about 20,000 K. It is important to note that
these values are deduced assuming an equilibrium. There are many non-equilibrium
situations (e.g. low pressure discharge) where a significant degree of ionisation may
be present at much lower gas temperatures.

From a phenomenological point of view, an ionised gas is distinguished from a
room temperature gas by its ability to conduct electricity and particles making up the
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ionised gas can interact with external magnetic and/or electric fields. The possibility
of coupling between fluids and electromagnetic forces gives rise to a multitude of
new physical phenomena.

At temperatures we could meet deep down in the solar interior or the tempera-
tures in flaring active regions in the solar corona, the gases are fully ionised, and the
simpler gases such as H and He are completely stripped off all their electrons. The
particles in such gases have no atomic structure and they interact according to simple
electrostatic force laws. The description of fully ionised gases, in this respect, is con-
siderably simplified and dynamical changes in such gases can be described within the
framework of MHD, whose equations were presented in Chapter 2. Partially ionised
gases consist of electrons, ions and neutral species (more precisely, a partially ionised
gas contains six kinds of particles: photons, electrons, ground-level atoms, excited
atoms, positive and negative ions), that is why the description of dynamical changes
in such media is much more cumbersome.

In the solar atmosphere, the photosphere and lower part of the chromosphere is
partially ionised plasma. Since prominences are believed to be of chromospheric
origin, it is natural to assume that the plasma in these structures is also in partially
ionised state. Indeed, neutral hydrogen emission lines in the Lyman continuum have
been observed in prominences (the presence of neutrals will attenuate the intensity
of the lines), by Chiuderi Drago et al. (2001) who have estimated that the number
of neutrals in a prominence plasma may be as big as ten times the corresponding
amount of electrons or as small as ten times smaller, indicating the size of variation
for the ionization degree. Thus, apart from the electrical forces between electrons and
ions in a prominence plasma, an important factor dominating the plasma dynamics
is the collisions between electrons, neutrals and ions, and therefore, the set of MHD
equations (2.1)-(2.9) should be modified, in order to accommodate this extra physical
effect.

More importantly the collisions between neutrals and ions, and less importantly
the collisions between electrons with ions or neutrals, are causing the Joule heat-
ing dissipation, which evidently leads the magnetoacoustic waves in the plasma to
undergo a stronger frictional damping, rather than in a fully ionized plasma, where
the collisions between the electrons and the ions have much smaller impact. Kho-
dachenko et al. (2004, 2006) have shown that the effect of neutral-ion collision,
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is a much stronger factor in the damping of MHD waves than viscosity or thermal
conductivity effects.

In this chapter, the MHD equations will be modified to account for the ion-neutral
collision effect, therefore obtaining the governing equations for partially ionized
prominence plasma. The assumptions and derivation is based on an earlier study
by Khodachenko et al. (2004) and Forteza et al. (2007).

Let us denote the temperature, density, number density, pressure and velocity
of the electrons in a partially ionized prominence plasma by Te, ρe, ne, pe and ve

respectively. Then, the same parameters for the neutrals are denoted by Tn, ρn, nn, pn

and vn, while for the ions we use Ti, ρi, ni, pi and vi. Since we are dealing with a
hydrogen plasma (one electron and one ion), it is obvious that ni = ne. We can
define the mass densities as ρi = nimi, ρn = nnmn, ρe = neme, where mi,me,mn

are the masses of an ion, an electron and a neutral, respectively (obviously mi ≈ mp,
where mp is the proton mass). Then, the total density, total pressure and the velocity
of the centre of mass are defined by

ρ = ρe + ρi + ρn ≈ ρi + ρn, (3.1)

p = pe + pi + pn = 2pi + pn, (3.2)

v =
Σα=e,i,nραvα

ρ
≈ ξivi + ξnvn, (3.3)

assuming that ρe|ve| ¿ ρi|vi| and that ρe|ve| ¿ ρn|vn|. Furthermore, the relative
densities of ions and neutrals are defined as

ξi =
ρi

ρ
≈ ni

ni + nn

, (3.4)

ξn =
ρn

ρ
≈ nn

ni + nn

. (3.5)

Then, the plasma ionization degree is defined by the ionization fraction

µ̃ =
1

1 + ξi

. (3.6)

In reality, it represents the average mass per particle in units of the proton mass mp.
In this concept, Eq.(3.6) suggests that for a fully ionized plasma µ̃ = 0.5, while
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for a neutral plasma µ̃ = 1, indicating that in a partially ionized plasma we have
0.5 < µ̃ < 1. One may also express the relative densities in terms of the ionization
factor as ξi = 1/µ̃− 1 and ξn = 2− 1/µ̃.

In our analysis we assume that the number of ions, electrons and neutrals in the
plasma is constant, and the effects of particle ionization and recombination will not
influence the density of the plasma during the timescale of the physics we study (this
is a necessary but not sufficient requirement for an ionisation equilibrium). Further-
more, assuming strong thermal coupling between ions, electrons and neutrals, their
temperatures are all equal, i.e. Te = Tn = Ti = T . Thus, the equations of continuity,
momentum and energy conservation do not have to be separated for the 3 compo-
nents (neutrals, electrons and ions), instead, a set of one-fluid MHD equations may
be considered for the whole partially ionized plasma.

3.2 Continuity equation

In order to derive the continuity equation for partially ionised plasma we need to add
up the partial continuity equations of the three species, i.e. the equations

∂ρe

∂t
+∇ · (ρeve) = 0, (3.7)

∂ρi

∂t
+∇ · (ρivi) = 0, (3.8)

∂ρn

∂t
+∇ · (ρnvn) = 0. (3.9)

Taking into account the definitions of density and the center of mass velocity (given
by Eqs. (3.1) and (3.3), respectively), we obtain the continuity equation for partially
ionized plasmas as

∂ρ

∂t
+∇ · (ρv) = 0. (3.10)

3.3 Momentum equation

Assuming that the lengths-scales involved in our investigation are shorter than the
gravitational scale-height, we can neglect the effect of gravity, so the momentum
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equation takes the general form

nαmα
dαvα

dt
= −∇pα + nαZαe(E +

1

c
vα × B) +

∑

β

Rβα. (3.11)

Here dα

dt
≡ ∂

∂t
+vα·∇ and Zα is the charge of the particle implicated in the momentum

equation (for our hydrogen plasma Ze = −1, Zn = 0, Zi = 1). In the above equation
the quantity Rβα represents the momentum interchange between species α and β

(α 6= β) and is given by

Rβα = nαmαν ′αβ(vβ − vα). (3.12)

Taking into account the principle of conservation of momentum in a collision, we
arrive at

Rβα = −Rαβ. (3.13)

In the expression of Rβα the quantity ν ′αβ is the effective collisional frequency and it
can be calculated using

ν ′αβ =
mβ

mα + mβ

ναβ, (3.14)

where ν ′αβ = ν ′βα. Since α 6= β, there are only six possible collisional frequen-
cies ναβ , but due to the symmetry of the problem ναβ = νβα, therefore only three
collisional frequencies need to be defined as

νei = 5.89× 10−24nilnΛCZ2

(kBT )3/2
, (3.15)

νen = nn

√
8kBT

πmen

Σen, (3.16)

νin = nn

√
8kBT

πmin

Σin, (3.17)

where Σen ∼ 7 × 10−16 cm2 and Σin ∼ 5 × 10−15 cm2, denote the electron-neutral
and ion-neutral collisional cross-sections, mαn = mαmn/(mα + mn) with α = e, i

and ln ΛC is the Coulomb logarithm, which is usually between the values of 5 and
22, and depends weakly on temperature and density (Priest, 1984).
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Let us define the quantities

ααβ = nαmαν ′αβ, (3.18)

and
αn = αin + αen. (3.19)

We can introduce the relative ion-neutral velocity, w, and the electric current density,
j, as

w = vi − vn (3.20)

and
j = nie(vi − ve), (3.21)

respectively, then we may write three separate equations for the momentum conser-
vation of electrons, ions and neutrals as

nime
deve

dt
= −∇pe − nie(E +

1

c
ve × B) + (αei + αen)

j
nie

− αenw, (3.22)

nimi
divi

dt
= −∇pi + nie(E +

1

c
vi × B)− αei

j
nie

− αinw, (3.23)

and
nnmn

dnvn

dt
= −∇pn − αen

j
nie

+ (αin + αen)w. (3.24)

It should be noted that in the momentum equation of neutrals the Lorentz force does
not appear, as it has effect only on charged particles. Adding together the above
equations, and combining them with Eqs. (3.2), (3.20) and (3.21), we can obtain a
single momentum equation describing the whole partially ionized plasma:

nimi
divi

dt
+ nnmn

dnvn

dt
= −∇p +

1

c
j× B, (3.25)

which simplifies to

ρ
dv
dt

= −∇p +
1

c
j× B−∇ · (ξiξnww), (3.26)

where d/dt ≡ ∂/∂t+v·∇. The last term on the RHS of Eq. (3.26) is caused by inertia
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of species making up the plasma, and usually its magnitude under solar conditions
is negligible. In the absence of an equilibrium flow, this term also disappears when
restricting our analysis to the linear part. An expression for w will be given later,
when discussing Ohm’s law.

3.4 The energy equation

The energy of the system is made up from the partial energies in each type of species.
The energy equation for individual species (neglecting thermal conduction) can be
written as

∂pα

∂t
+ vα · ∇pα + γpα∇ · vα = (γ − 1)Qα, α = e, i, n (3.27)

where Qα = ΣβQαβ with Qαβ being the heat generated in a gas of particles of
species α as a result of collisions with particles of species β. After adding the energy
equations of individual species we obtain

∂p

∂t
+

∑
α

(vα · ∇pα + γpα∇ · vα) = (γ − 1)
∑
α

Qα, (3.28)

Combining Eqs. (3.20) and (3.21) with the relation

Qαβ + Qβα = −Rβα · (vαvβ), (3.29)

we can write the sum on RHS of Eq.(3.29) as

Qe + Qi + Qn =
αe

e2n2
i

j2 + αnw
2 − 2

αen

eni

w · j. (3.30)

After some algebra, the energy equation for the whole partially ionized plasma is as
follows:

dp

dt
+ γp∇ · v + γ∇ · (2ξnpiw− ξipnw)− γj · ∇(

pi

eni

) = (γ − 1)qJoule, (3.31)
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and combining this with the continuity equation (3.10) yields

dp

dt
− γp

ρ

dρ

dt
+ γ∇ · (2ξnpiw− ξipnw)− γj · ∇(

pi

eni

) = (γ − 1)qJoule. (3.32)

In practice our investigations will require only linear description in homogeneous
equilibrium (i.e. the last two terms on the LHS of Eq. (3.32) will cancel) and the
changes in the plasma will occur in an adiabatic way, i.e. the RHS of the above
equation will also vanish.

3.5 Equation of state

This equation determines the temperature, given the number density, n, and the pres-
sure, p, by adding the following equations of state for electrons, ions and neutrals,
respectively

pe = nekBT = nikBT, (3.33)

pi = nikBT, (3.34)

pn = nnkBT. (3.35)

Therefore, the equation of state for the whole partially ionized plasma becomes

p = pe + pi + pn = (2ni + nn)kBT = nkBT. (3.36)

3.6 Ohm’s law

Traditionally, Ohm’s law is the relation that connects the current density, the electric
field and the contribution of the current density due to the motion of a charged particle
in the presence of a magnetic field (Lorentz force contribution) written in a frame of
reference that is not moving together with the charged particle. Given the particular
composition of the partially ionised plasma, we can expect that the Ohm’s law will
be much more complex.

The momentum transfer between various species will influence the generated
current density. In order to assess this contribution let us multiply Eqs. (3.22) and
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3.6. OHM’S LAW

(3.23) by ξn and Eq. (3.24) by −ξi and add them together to obtain

w = − G
αn

+
ξn

cαn

j× B +
αen

αn

j
eni

− ξnξi

αn

ρ

(
divi

dt
− dnvn

dt

)
, (3.37)

where the pressure function G is defined by (Braginskii 1965)

G = ξn∇(pe + pi))− ξi∇pn. (3.38)

Instead of using partial pressures of various components of the fluid, let us use the
pressure of the mixture, so we write

pe = pi =
ξi

1 + ξi

p, (3.39)

and
pn =

ξn

1 + ξi

p, (3.40)

which means that the pressure function can be defined as

G = 2ξn∇
(

ξi

1 + ξi

p

)
− ξi∇

(
ξn

1 + ξi

p

)
. (3.41)

Furthermore, taking into account Eqs. (3.3), (3.20) and (3.21) we have

ve = v + ξnw− j
eni

. (3.42)

Now, considering together Eqs. (3.22), (3.37), and (3.42), neglecting the derivatives
of vi and vn in Eq. (3.37), one can obtain

E∗ ≡ E +
1

c
v× B

=
εG−∇pe

eni

+
j
σ

+
1− 2εξn

enic
j× B +

ξn

cαn

[
G× B− ξn

c
(j× B)× B

]
(3.43)
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where ε = αen/αn ¿ 1 and σ is the electrical conductivity defined as

σ =
nie

2

me [ν ′ei + (1− ε)ν ′en]
≈ nie

2

me(ν ′ei + ν ′en)
(3.44)

while the Joule heating term qJoule appearing in Eq. (3.31) may be defined using Eq.
(3.43) as

qJoule ≡ E∗ · j =
εG−∇pe

ni

· j +
j2

σ
+

ξn

cαn

(j× B) ·G +
ξ2
n

c2αn

(j× B)2. (3.45)

3.7 Induction equation

The induction equation connects the magnetic field and the plasma fluid penetrated
by this magnetic field. In the case of a partially ionised plasma, one has to keep
in mind that only the charged particles are affected by the magnetic field, while the
collective motion of the plasma is ensured by collisions between ions and neutrals.
In the absence (or very low frequency) of collisions, the neutrals would fall out of
the plasma.

In order to derive the induction equation, we will apply the curl operator to Eq.
(3.43) and we will insert this expression into Faraday’s law:

∇× E = −1

c

∂B
∂t

,

to obtain

∂B
∂t

= ∇× (v× B)− c

e
∇×

(
εG−∇pe

ni

)
−∇× (η∇× B)

−∇×
(

ξn

αn

G× B
)
− c

µ0e
∇×

[
1− 2εξn

ni

(∇× B)× B
]

+∇×
{

ξ2
n

µ0αn

[(∇× B)× B]× B
}

, (3.46)
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where η is the coefficient of magnetic diffusivity, defined as

η =
c2

µ0σ
. (3.47)

where c is the speed of light and σ is the electrical conducivity coefficient defined
in Eq.(3.44). The coefficient appearing in the last term of Eq. (3.46) is also used as
(see, e.g. Khodachenko et al. 2004)

ξ2
n

µ0αn

=
ηC − η

|B|2 , (3.48)

where ηC is the Cowling resistivity defined as

ηC =
c2(1 +

ξ2
nB2

0σ

αnc2
)

4πσ
. (3.49)

The RHS terms of Eq. (3.46) correspond to the convective term, Biermann’s battery,
Ohm’s diffusion, diamagnetic current term, Hall’s diffusion and ambipolar diffusion,
respectively. The Biermann’s battery term is negligible, unless there are big pressure
gradients present. Ohm’s diffusion varies with electron-ion collisions, while ambipo-
lar diffusion is mainly based on the effect of ion-neutral collisions. Hall’s diffusion is
also rooted in ion-neutral collisions and it is present even in the fully ionized plasma.
The diamagnetic current term represents the effect of combination between magnetic
field and pressure gradient, and it is more effective for partially ionized plasma, since
for neutral or full ionization, the term G vanishes.

3.8 Summary of single-fluid MHD equations for par-
tially ionised plasma

Given the nature of the plasma in which we are interested, the equations which will
be used to describe the dynamics will contain information about the degree of the ion-
isation. Under solar conditions and in a linear regime, the quantity w from Eq.(3.37)
can be neglected (Khodachenko et al. 2004).

The plasma dynamics will be fully described by the linearised version of Eqs.
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(3.10), (3.26), (3.32),(3.36), (3.45), and (3.46). This system contains 9 equations
involving 9 quantities. In order to formulate the set of MHD equations for an ideal
plasma we neglect the non-adiabatic terms. Furthermore, in a prominence the con-
ditions of temperature and density, and the presence of strong magnetic field, bound
the electrons and ions to the magnetic field, and as a result the product of ion-
gyrofrequency with collision time ωiτ À 1, thus turning the Hall effect into a negli-
gible term in Ohm’s law (Leake et al. 2005).

Assuming a plasma in spatially homogeneous equilibrium with no pressure gra-
dients, and neglecting gravity, viscosity, inertia of species, the Biermann’s battery
and Hall’s diffusion terms, the set of MHD equations for partally ionized plasma is

∂ρ

∂t
+∇ · (ρv) = 0, (3.50)

ρ
dv
dt

= −∇p +
1

µ0

[(∇×B)×B], (3.51)

dp

dt
+ γp∇ · v− γ

j
eni

· ∇pi = −(γ − 1)[ρL(ρ, T )−∇ · (κ · ∇T )− qJoule], (3.52)

∇× B = 0, (3.53)

∂B
∂t

= ∇× (v× B) + η∇2B− Ξ∇× (∇p× B)

+
ηC − η

|B|2 ∇× {[(∇× B)× B]× B}, (3.54)

p =
ρRT

µ̃
, (3.55)

where Ξ is defined as:
Ξ =

ξiξ
2
n

(1 + ξi)αn

. (3.56)

It should be pointed out that, in order to study MHD waves in partially ionised
plasmas, other approaches could be taken. For instance, Zaqarashvili et al. (2011)
have considered the two-fluid approach, one fluid made of the charged particles (ions
and electrons) and the other one made by neutrals. In order to obtain the set of MHD
equations applicable to this case, they start from three fluid equations (Braginskii
1965; Goedbloed and Poedts 2004) plus Maxwell’s equations. After neglecting the
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electron inertia and viscosity effects, they derived a set of two-fluid MHD equations
for partially ionised plasmas. Once derived, this set of equations can be used for
the study of MHD waves in the two-fluid approach. The interest of this approach is
related to the time-scales of the phenomena under study since for timescales longer
than the ion-neutral collision time, the system can be considered as a single-fluid.
However, when the time-scales are near or shorter than the ion-neutral collision time,
two-fluid equations should be considered. Indeed considering typical prominence
values T = 104 K, ni = 2.3×1016 m−3, nn = 1.2×1016 m−3 (Fontenla et al. 1990),
we obtain an ion-collision time of the order of 1

4
s, a time-scale much shorter than the

period of any wave that we will deal with. That is why our single fluid approach is
fully justified. However, instabilities can develop even at this scale, microinstabilities
can develop into large scale, now observable instabilities. An illustrative example of
such instability will be discussed in the following chapter.
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Chapter 4

Dissipative instability in partially
ionised prominence plasmas 1

4.1 Introduction

Solar prominences are among the most enigmatic structures in the solar atmosphere
whose study is made difficult by their complex evolution and the multitude of im-
portant effects appearing in them. Prominences are believed to be of chromospheric
origin (Priest, 1982), and some of them show a long-term stability. When formed,
prominences maintain their high density and low temperature despite being sur-
rounded by the million degree solar corona. Their stability and thermal shielding
are provided by the magnetic field. The core of almost 80% of the observed CMEs
(the drivers of space weather) is made of a cold chromospheric core believed to orig-
inate from a prominence, which is why the study of the generation and evolution of
prominences is necessary.

Solar prominences are complex dynamical systems whose intrinsic structure and
properties make the study of these magnetic features rather complicated.

Some of the peculiar properties of prominences are listed in Chapter 1. For our
analysis, the characteristic that is important is the dynamical background of promi-
nences, flows, which are observed on all time and spatial scales. A particular feature

1The content of this chapter is based on the publication by Ballai, Oliver and Alexandrou 2015,
Astron. Astrophys., 577, 82
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in these observations is the presence of counter-streaming flows, i.e. oppositely di-
rected flows (Zirker et al., 1998; Lin et al., 2003). Because of the physical conditions
of the filament plasma, all these flows seem to be field-aligned. For a detailed review
of the observed flows in solar prominences, see Labrosse et al. (2010) and Mackay
et al. (2010).

Significant advancement in the study of prominences was made when high-resolution
observations of waves, oscillations, and flows became available. Scientists were able
to connect theoretical models with observations through seismological techniques in
order to derive quantities and processes (structure of the magnetic field, transport
mechanisms acting in prominences, internal structure, etc.) that cannot be measured
directly or indirectly (for a detailed discussion of seismological techniques and re-
sults see the review by Arregui et al. 2012). There is also some evidence that velocity
oscillations are more easily detected at the edges of prominences or where the ma-
terial seems fainter, while they are sometimes harder to detect at the prominence
main body (Tsubaki and Takeuchi, 1986; Tsubaki et al., 1988; Suematsu et al., 1990;
Thompson and Schmieder, 1991; Terradas et al., 2002).

As mentioned earlier, prominences are not fully ionised gases due to their relative
low temperature. In this environment the dynamics of the plasma is described by
modified MHD equations, listed in Chapter 3. The ionisation degree of prominences
is not well known, but there is plentiful evidence that this cannot be neglected when
one studies the dynamics and stability of these structures (Patsourakos and Vial 2002,
Gilbert et al. 2007, Labrosse et a. 2010, Zaqarashvili et al. 2011, Khomenko and
Collados 2012, etc.).

The problem of prominence stability is paramount for other effects such as CME
eruption due to the connection between these two solar atmospheric structures. In
a recent series of papers Ryutova et al. (2010), Berger et al. (2010), Terradas et al.
(2012) highlighted a number physical processes taking place in solar prominences
that can be connected to instabilities, such as Rayleigh-Taylor instabilities (RTI) and
Kelvin-Helmholtz instabilities (KHI) under the effect of plasma flows. The effect
of partial ionisation on the stability of prominences was investigated earlier by, e.g.
Diaz et al. (2012), who analysed the appearance of RTI in partially ionised promi-
nence plasma. These authors found that the linear growth rate is lowered by both
the compressibility of the gas and ion-neutral collisions, even though the appearance
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threshold of this instability is not altered. They also found that the ion-neutral col-
lisions have a strong impact on the RTI growth rate, which can be decreased by an
order of magnitude compared to the case corresponding to the collisionless limit.
They conclude that their results could explain the existence of prominence fine struc-
ture with lifetimes of the order of 30 minutes, a duration that classical theories cannot
explain.

In the same year, Soler et al. (2012) investigated the KHI of compressible and
partially ionised prominence plasma. They considered the stability of an interface
separating two partially ionised plasmas in the presence of a shear flow. In the in-
compressible limit the KHI was present for any value of the flow, regardless of the
degree of ionisation. When extended to a compressible limit, the instability threshold
was very much sensitive to the collision frequency and density contrast between the
two layers of their model. In particular the density contrast is an important parameter
in their model. In classical theories the flow speed at which the KHI is set is always
super-Alfvénic; however, the results of these authors show that for a high density
contrast the threshold can be even sub-Alfvénic thanks to the ion-neutral coupling.

In addition to these instabilities there is another, rather unexpected instability
that can arise at the interface between two media called dissipative instability and it
is strongly connected to the phenomenon of negative energy waves. This instabil-
ity always occurs for flows lower than the KHI value. Under normal conditions the
interface between two media allows the propagation of two modes traveling in oppo-
site directions. For flow speeds larger than a critical value, the propagation direction
of the two waves becomes identical, and the wave whose phase speed is smaller be-
comes a negative energy wave (Ryutova, 1988). The dissipative mechanisms acting
in the two regions can amplify this negative energy mode leading to dissipative in-

stability, and the growth rate of this instability is proportional to the combination of
dissipative coefficients. Under solar conditions the problem of negative energy waves
has been studied by many authors (e.g. Ruderman and Goossens 1995, Ruderman et
al. 1996, Joarder et al. 1997, Terra-Homem et al. 2003, etc). In the present study we
consider this problem, but the two regions separated by the interface are the viscous
corona and the partially ionised prominence plasma.
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The concept of negative energy waves is based on the energy equation

dE

dt
= −D, (4.1)

where E is the linear part of the energy and D is the dissipative function. The two
functions appearing in the above relation depend on the choice of the frame of ref-
erence. If we choose a coordinate system where D > 0, then the variation of the
energy with time is negative, meaning that the energy of the system decays as a re-
sult of dissipation. In this case E > 0 for positive energy waves, and dissipation
leads to the damping of the wave, i.e. to a decay in its amplitude. However, if E < 0

the wave is called a negative energy wave and dissipation leads to an amplification
of the wave amplitude resulting to an instability.

4.2 Governing equations and basic assumptions

4.2.1 Equilibrium

We assume two semi-infinite layers of collisional and incompressible plasma sepa-
rated by an interface modeling the interface between the solar prominence and solar
corona.

The interface between the corona (labeled with index “1”) and the solar promi-
nence (labeled with index “2”) is situated at z = 0 in a two-dimensional (x−z) Carte-
sian reference system. The homogeneous magnetic field (B0 = B0x)in both regions
is along the x-axis with B01 6= B02 (although this is not an essential requirement, as
we will deal with Alfvén speeds rather than magnetic fields). The unperturbed state
is characterised by an MHD tangential discontinuity at z = 0, and all equilibrium
quantities are constant at both sides of the discontinuity. We assume that there is
an equilibrium flow in the positive x-direction(v0 = v0x) in the prominence (for the
z > 0 region), while in the corona (corresponding to z < 0) the equilibrium is static
(see Fig. 4.1). The above equilibrium describes the interface between a prominence
and the surrounding quiet corona. Although these two solar regions can be neighbors
for a very long time (in the case of quiescent prominences their stability is shown
to be of the order of several months) they present a very different set of physical
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parameters describing them. Solar prominences are cool and dense plasma material,
thought to be of chromospheric origin that are surrounded by the very hot and very
tenuous solar corona. Accordingly, it is customary to consider that the density of the
prominence is two orders of magnitude larger than the density of the corona and the
temperature two orders of magnitude lower than the coronal temperature. Gravity is
neglected and so the RTI is not present in our problem.

4.2.2 Basic assumptions

The determination of transport mechanisms acting in solar plasmas is a very difficult
task. After all, the dominant dissipative mechanism depends not only on the loca-
tion where the dynamics occurs, but also on the nature of the physical mechanisms
that needs describing. Under prominence conditions Ballai (2003) and Carbonell et
al. (2004) showed that none of the classical dissipative processes (assuming a fully
ionised plasma) are able to describe realistic damping of observed waves in promi-
nences, except thermal conduction. Recent studies (e.g. Khodachenko et al. 2004,
Arber et al. 2007, Forteza et al. 2007, 2008) also showed that the dominant transport
mechanism in solar prominences is probably due to the partially ionised character
of the plasma. Soler et al. (2009b) found that resonant absorption is dominant over
ion-neutral effects in the damping of the kink mode in prominence threads. In the
present study the appearance of resonant absorption is prevented by assuming a sharp
transition between the prominence and corona.

In partially ionised plasmas the classical Coulomb resistivity is several orders of
magnitude smaller than the Cowling resistivity, and the viscosity of the plasma is
provided by the friction between various particles making up the plasma (neutrals,
ions, protons). The second consideration also implies that the dynamics in solar
prominences has to be described in a multi-fluid plasma. However, if the resistiv-
ity of the plasma is dominant (as is assumed here) the plasma is described within
the framework of single-fluid MHD. In the present paper we will assume that these
restrictive conditions are satisfied, i.e. we are going to use a single-fluid description.

As stated in Chapter 3, in partially ionised prominence plasmas the Coulomb re-
sistivity is many orders of magnitude smaller than the Cowling anisotropic resistivity
(see e.g. Cowling 1957, Khodachenko et al. 2004). Indeed, their difference is given
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Figure 4.1: The interface between the corona (labeled with index “1”) and the solar
prominence (labeled with index “2”) is situated at z = 0 in a two-dimensional (x −
z) Cartesian reference system. Regions 1 and 2 correspond to z < 0 and z > 0,
respectively. The equilibrium flow is denoted by v0 for region 2 and is parallel to the
interface. In region 1 equilibrium flow is static. Magnetic fields differ in magnitude
in the two regions but they are both parallel to the interface
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by ηC (the Cowling resistivity), defined by Eq. (3.49). The parameters η, µ0, ξn are
all defined in section 3.7. The frictional coefficient αn, defined by Eq. (3.19), in the
case of a plasma assumed to be composed entirely of H is given by

αn = 2ξn(1− ξn)
ρ2

mp

√√√√kBT

πmp

Σin, (4.2)

where mp is the proton (ion) mass, ρ is density, kB is the Boltzmann constant, and
Σin ≈ 5×10−19 m2 is the ion-neutral collisional cross-section. The number densities
of electrons and ions are assumed to be approximately equal. The quantity ξn plays
an important role in our discussion as it contains information about the ionisation
degree of the plasma. By definition this quantity reflects the number of neutrals in
the gas mixture, and is defined by Eq.(3.5).

The degree of ionisation can be characterised by the ionisation fraction defined
by Eq. (3.6). According to this definition, a fully ionised gas corresponds to µ̃ = 0.5,
while a neutral gas is described by µ̃ = 1.

Our aim here is to study the appearance and evolution of instabilities at the in-
terface of two media, therefore we neglect the effects of particle ionisation and re-
combination in the solar prominence. Here we assume a strong thermal coupling
between the species, which means electrons, ions, and neutrals have the same tem-
perature (i.e. Te = Ti = Tn = T ). Therefore, the three-component gas can be
considered as a single fluid. The concept of a three-component gas mixture will in-
troduce new types of transport mechanisms, whose importance in the context of solar
prominences was discussed in detail in the pioneering work of Forteza et al. (2007).
Since we limit ourselves to linear dissipation, we will neglect effects connected to
the inertia of different particles, also the transversal drift of charged particles due to
the Hall term, and consider that thermodynamic quantities (pressure, temperature)
are relatively smooth functions of the spatial coordinates, i.e. the relative densities
of neutrals and ions are constants. Therefore, when describing the dynamics in so-
lar prominences we will restrict our model to transport mechanisms that arise in the
induction equation (see further down this chapter).

Temperatures in the solar corona can reach millions of degrees K, therefore the
plasma can be considered to be completely ionised. In this important solar region

72



4.2. GOVERNING EQUATIONS AND BASIC ASSUMPTIONS

ωciτi À 1 (where ωci is the ion cyclotron frequency and τi is the ion mean collisional
time), therefore ions can gyrate many times around magnetic field lines between col-
lisions. Under typical coronal conditions this product is of the order of 105. Provided
the characteristic scales are larger than the mean free path of ions, viscosity in the
solar corona is mainly due to ions and the viscosity gyrating around the magnetic
field is given by the Braginskii’s stress tensor (Braginskii 1965), whose linearized
expression takes the form of a sum of 5 terms each with different physical mean-
ing (see, e.g. Ruderman et al. 2000, Mocanu et al. 2008). The very first term in
this sum is the so-called parallel (or compressional) viscosity. It controls the varia-
tion along magnetic field lines of the velocity component parallel to field lines. The
parallel viscosity is due to the collision-induced random-walk diffusion of particles.
The next two terms describe the perpendicular viscosity (or shear viscosity) which
controls the variation perpendicular to magnetic field lines of the velocity compo-
nents perpendicular to the field lines. Finally, the last two terms are known as the
gyroviscosity and they do not describe viscosity at all, since the associated viscous
stresses are always perpendicular to the velocity, implying that there is no dissipation
(i.e. viscous heating) associated with this effect. Instead, these terms generate dis-
persion rather than dissipation. The value of the gyroviscosity is independent on the
collisional frequency. As established by Ruderman et al. (1996), a property of the
highly anisotropic viscosity is that it allows a jump in the velocity across a magnetic
surface, since a strong magnetic field causes ions to rotate around the magnetic field
lines, thus preventing the diffusion of particles across the field lines. This also im-
plies that there is no momentum transport across the magnetic surfaces, and different
layers of plasma can move with respect to each other without friction.

Under coronal conditions the first term, called parallel or compressional viscos-
ity, is dominant (by several orders of magnitude) and controls the variation along
magnetic field lines of the velocity component parallel to field lines. The parallel
viscosity is due to the collision-induced random-walk diffusion of particles and is
given by

η0 =
ρ0T0kBτi

mp

, (4.3)

where ρ0 and T0 are the density and temperature of the medium. In practice it is more
convenient to work with the kinematic coefficient of viscosity defined as ν = η0/ρ0.
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Observations show that quiescent prominences are made of chromospheric ma-
terial and they live in a relatively stable position for a long time. High-resolution
observations very often show that the edges of prominences are not still; small- and
large-scale features appear and disappear frequently. We will explain these modifi-
cations in the interface between the two media by instabilities that develop due to the
amplification of waves propagating along the interface. These instabilities can later
grow into e.g. turbulence or macro-instabilities that can disrupt the interface between
the two media.

4.2.3 Governing linearised equations

The equations describing the dynamics of the plasma are the incompressible dissipa-
tive and linear MHD equations. In both regions the equations

∇ · v = 0, ∇ · b = 0 (4.4)

are valid (the above equations are met before in section 2.2.2 and Eq. (2.8), respec-
tively. In the solar prominence we assume a field-aligned equilibrium flow (v0). The
momentum equation (Eq. 2.3) becomes

ρ2
∂v2

∂t
+ v0

∂v2

∂x
= −∇P2 +

B02

µ0

∂b2

∂x
. (4.5)

In the solar corona the equilibrium is static, but the momentum equation is supple-
mented by the viscous force, i.e.

ρ1
∂v1

∂t
= −∇P1 +

B02

µ0

∂b1

∂x
+ V . (4.6)

In the solar prominence the dominant dissipative effect is the Cowling resistivity,
therefore the induction equation becomes

∂b2

∂t
+ v0

∂b2

∂x
= B02

∂v2

∂x
+R. (4.7)
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In the corona, the flow and dissipative effects do not modify the induction equation,
so we can write

∂b1

∂t
= B01

∂v1

∂x
. (4.8)

In the above equations vi and bi (i = 1, 2) are the perturbations of velocity and
magnetic field, Pi are the total pressures (the sum of kinetic and magnetic pressures),
and the dissipative terms in Eqs. (4.6) and (4.7) are given by (see, e.g. Ruderman et
al. 1996)

V = ν
[
b̃(b̃ · ∇)− 1

3
∇

] [
b̃ · ∇(b̃ · v1)

]
,

R = η∇2b2 +
(ηC − η)

|B02|2 ∇× {[(∇× b2)×B02]×B02} , (4.9)

where b̃ is the unit vector in the direction of the magnetic field, i.e. b̃ = B01/B01.
Because of the orientation of the equilibrium magnetic field, the interface be-

tween the corona and solar prominence can be considered a tangential discontinuity.
We write the equation of the perturbed interface as z = ζ(x, t). We assume that at
|x| → ∞ and |z| → ∞ all perturbations vanish. At the interface surface waves will
be able to propagate, as suggested in an earlier investigation by Roberts (1981). Ac-
cording to his results, in the absence of any equilibrium flow, incompressible Alfvén
waves can propagate with a phase speed that lies between the Alfvén speeds in the
two regions, which is given by

ω

kx

= ±
(

ρ1v
2
A1 + ρ2v

2
A2

ρ1 + ρ2

)1/2

= ±
(

v2
A1 + dv2

A2

1 + d

)1/2

, (4.10)

where d = ρ2/ρ1 À 1 is the density contrast parameter, kx is the parallel component
of the wavevector to the interface, and vA1 = B01/

√
µ0ρ1 and vA2 = B02/

√
µ0ρ2 are

the Alfvén speeds in the two regions. This dispersion relation describes the propaga-
tion of the two waves along the interface in opposite directions.

For a stable interface at z = 0 we have to impose the linearised kinetic boundary
condition and the condition of the continuity of normal component of stresses. If
vi = (vxi, 0, vzi), then these conditions read

vz1 =
∂ζ

∂t
, vz2 =

∂ζ

∂t
+ v0

∂ζ

∂x
, (4.11)
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and
P1 + ρ1νb̃ · ∇(b̃ · v) ≡ P1 − ρ1ν

∂vz1

∂z
= P2. (4.12)

We note here that at the tangential discontinuity used in the present paper there is
no mass transfer between the two media, meaning that the state of the plasma in
each region is not disturbed by the presence of the other medium. The system of
equations (4.4)–(4.9) together with the boundary conditions at the interface will form
the starting equations for our discussion on dissipative instability generated at the
interface between the two media.

4.3 Dispersion relation of surface waves propagating
at the tangential discontinuity

Since we are going to deal with an eigenvalue problem we will perform a normal
mode analysis and take all perturbations proportional to exp[i(kxx − ωt)], where ω

is a complex frequency that can be written as ω = Re(ω) + iIm(ω). This particular
form of perturbations reduces the boundary conditions (see Eq. 4.11) to

vz1 = −iωζ, vz2 = −iΩζ, (4.13)

where Ω = ω − kxv0 is the Doppler-shifted frequency of waves in the solar promi-
nence.

When computing the components of the resistive terms given by Eq. (4.9) to-
gether with the solenoidal condition (Eq. 4.4), we can obtain that all dissipative
terms containing the classical Coulomb resistivity cancel for the equilibrium consid-
ered here, therefore the dissipation in the partially ionised prominence is described
by the Cowling resistivity alone.

Let us introduce the viscous and resistive Reynolds numbers as

Rv =
vA1

kxν
, Rr =

vA2

kxηC

. (4.14)

Under coronal and prominence conditions both Reynolds numbers are very large and
therefore waves will propagate with little damping over a period, meaning that in our
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subsequent calculations we will consider that |Re(ω)| À |Im(ω)|. The very large
Reynolds numbers also allow us to consider dissipative terms much smaller than
other terms belonging to ideal MHD, meaning that in our calculations all terms con-
taining ν2 or η2

C are neglected. The interaction between flows and waves propagating
at the interface between the two media is ensured by dissipation that could play the
role of energy sink. Later we will see that, contrary to our expectations, dissipation
does not always act towards decreasing the wave amplitude; for specific values of
flows or ionisation degree, the interplay between flows, dissipation, and waves could
lead to an increase of the waves’ amplitude, i.e. unstable behavior.

In region 1 the viscous MHD equations can be reduced to a system of coupled
equations for the normal component of the velocity vector vz1 and total pressure P1

of the form
dvz1

dz
= − ik2

xω

ρ1(DA1 + 2iνk2
xω)

P1, (4.15)

(
1− iνω

DA1

d2

dz2

)
vz1 = − iω

ρ1DA1

dP1

dz
, (4.16)

where DA1 = ω2 − k2
xv

2
A1. Taking into account that Rv À 1, we can eliminate the

total pressure from these two equations to arrive at a single relation for vz1, i.e.

d2vz1

dz2
− k2

x

(
1− 3iνk2

xω

DA1

)
vz1 = 0. (4.17)

It is easy to see that vz1 will vanish as z → −∞. In order to use the boundary con-
ditions (Eqs. 4.11 and 4.12) we will also need to find the value of the total pressure.
In order to calculate its expression we write the equation for the z-component of the
velocity from Eq. (4.7) as

d2vz1

dz2
− α2vz1 = 0, (4.18)

where

α = kx

(
1− 3iνk2

xω

DA1

)1/2

≈ kx

(
1− 3iνk2

xω

2DA1

)
.

Equation (4.18) allows us to explicitly find the expression of the z-component of the
velocity in the solar corona. With the help of Eqs. (4.11) and (4.15) we can find that
the total pressure in region 1 estimated at the interface between the two regions can
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be written as

P1 =
ρ1DA1

kx

(
1− iνωkx

2DA1

)
ζ. (4.19)

For the prominence we now have an equilibrium flow in the positive x direction.
Considering again the equations that relate the z-component of the velocity vector
and total pressure we obtain the systems

(
DA2 +

iηCk4
xv

2
A2

Ω

)
vz2 = − iΩ

ρ2

dP2

dz
, (4.20)

and (
DA2 +

iηCk4
xv

2
A2

Ω

)
dvz2

dz
= −iΩ

ρ2

P2, (4.21)

where DA2 = Ω2− k2
xv

2
A2. Eliminating the total pressure from the above two expres-

sions we obtain an equation for vz2 valid in the solar prominence of the form

d2vz2

dz2
− k2

xvz2 = 0. (4.22)

Using Eqs. (4.11) and (4.21) we can write that the total pressure at the promi-
nence evaluated at the interface behaves as

P2 = −ρ2(DA2 + iηCΩk2
x)Ωζ

Ω + iηCk2
x

≈ −ρ2ζ

Ω
(DA2Ω + ik4

xv
2
A2ηC). (4.23)

The expressions of the two total pressures in the two regions are inserted in Eq.
(4.12), which leads to the dispersion relation of the form

D(ω) = Dr + iDi = 0, (4.24)

where
Dr = DA1 + dDA2,

Di = νk2
xω +

dk4
xηCv2

A2

Ω
. (4.25)

In deriving the dispersion relation (4.24) we took into account that a perturbation
method is used meaning that terms proportional to ν2 and η2

C are neglected.
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4.3.1 Instability conditions

Since we assumed that the damping of waves propagating along the interface is weak,
we can write the frequency of waves as ω = Re(ω) + iIm(ω) with |Re(ω)| À
|Im(ω)|. This assumption is in line with our previous statement regarding the high
Reynolds numbers of solar plasmas and the working supposition that terms contain-
ing squares and products of dissipative coefficients can be neglected. According
to the dependence of perturbations on the variable t assumed earlier, Im(ω) > 0

corresponds to an overstability, i.e. to a situation where the amplitude of waves prop-
agating along the interface grows as exp(ωit). Following the method developed by
Cairns (1979), we write the dispersion relation as

Dr(ω, kx) = −iνk2
xω −

idk4
xηCv2

A2

Ω
. (4.26)

The solution of the equation Dr = 0 will result in the real part of the frequency ω.
In ideal MHD the interface between the two regions is always stable; however, the
introduction of dissipation may lead to instability. The dispersion relation for the
ideal case leads to

Re(ω)± =
kxv0d

1 + d
± kx

1 + d

[
d(v2

KH − v2
0)

]1/2
. (4.27)

Equation (4.27) describes two waves propagating along the interface in opposite di-
rections. The quantity vKH is the Kelvin-Helmholtz (KH) threshold velocity, given
by

v2
KH =

1 + d

d
(v2

A1 + dv2
A2), (4.28)

and it plays a very important role in the discussion of stability of waves propagating
in a flowing plasma. It is obvious from Eq. (4.27) that the plasma becomes KH unsta-
ble for flows that satisfy the condition v2

0 > v2
KH . We estimate the value of vKH for

the system under investigation. If we consider typical coronal and prominence values
for density and Alfvén speeds (d = 100, vA1 = 315 km s−1, vA2 = 28 km s−1, all
taken from Joarder and Roberts (1992)), we obtain vKH ≈ 423 km s−1. Observations
in the solar prominences do not show equilibrium flows that are larger than vKH ; in
reality, these speeds are more likely to be of the order of a tenth of vKH or smaller.
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This means that under prominence conditions the plasma at the interface between the
solar corona and solar prominences is always KH stable. In the absence of any flow,
the two solutions of Eq. (4.27) describe two modes propagating in the opposite direc-
tion with equal speeds

∣∣∣vKH

√
d/(1 + d)

∣∣∣. In the presence of a flow (for our problem
the flow is present in the prominence while the coronal plasma is at rest), waves are
drifted by the flow. Since the flow direction points in the positive direction, the flow
affects the two waves in a different way and the symmetry of the two modes is lost.
It can be easily shown that the difference between the phase speeds of the two waves
is 2v0d/(1+d). For flow speeds larger than vKH/

√
(1+d), the direction of the wave

propagating in the negative direction is inverted and the backward mode becomes
the forward mode. The two modes can amplify each other leading to instability. If
we plot the two frequencies obtained in Eq.(4.27) with respect to an increasing flow
speed, we obtain that the KHI occurs when the oscillation frequencies of the forward
and backward propagating surface modes merge for increasing flow velocity. The
merging point then indicates the threshold of KHI for the single interface. In the
present analysis we consider flows that are less than the KH threshold.

Since we assume that the damping is weak, the imaginary part of the frequency
can be given by

Im(ω) ≈ − k2
x

∂Dr/∂Re(ω)

(
νωr +

dk2
xηCv2

A2

Ωr

)
, (4.29)

where Ωr = Re(ω)− kxv0.
Using Eqs. (4.27) and (4.29), it is straightforward to show that the imaginary part

of the frequencies is

Im(ω)+ = − νk2
x

2(1 + d)

(
v0d

Γ
+ 1

)
+

d(d + 1)k2
xv

2
A2ηC

2(v0Γ− dΓ2)
, (4.30)

and

Im(ω)− =
νk2

x

2(1 + d)

(
v0d

Γ
− 1

)
− d(d + 1)k2

xv
2
A2ηC

2(v0Γ + dΓ2)
, (4.31)

where Γ =
√

d(v2
KH − v2

0). With the help of Eqs. (3.5), (3.6) and (3.49), we can
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write the Cowling resistivity as

ηC = 109T
−3/2
2 +

v2
A2mn(2µ− 1)

2ρ2(1− µ)Σin

(
πmp

kBT2

)1/2

. (4.32)

The two values for the imaginary part of the frequency become

Im(ω)+ = − νk2
x

2(1 + d)

(
v0d

Γ
+ 1

)
+

d(d + 1)k2
xmn(2µ− 1)v4

A2

4(v0Γ− Γ2)(1− µ)ρ2Σin

(
πmp

kBT

)1/2

(4.33)

and

Im(ω)− =
νk2

x

2(1 + d)

(
v0d

Γ
− 1

)
−

d(d + 1)k2
xmn(2µ− 1)v4

A2

4(v0Γ + Γ2)(1− µ)ρ2Σin

(
πmp

kBT

)1/2

. (4.34)

We now discuss the sign of these frequencies for a range of flow speeds changing
in the interval 10-60 km s−1 and for an ionisation degree varied between the cases
corresponding to full ionisation (µ = 0.5) and neutral plasma (µ = 1). A simple
graphical analysis clearly shows that for the spectrum of flows considered here and
for any ionisation degree, the imaginary part of the surface waves that propagate
in the positive direction (i.e. in the direction of the flow) is negative, leading to a
classical physical damping. In contrast, the imaginary part of the wave propagating
backward (in the negative direction) can become positive for flow speeds larger than
48 km s−1 (see Fig. 4.2). A positive imaginary part of the frequency is connected to
an instability. A contour plot of the imaginary part of the frequency for the backward
propagating wave is shown in Fig. 4.3, where the role of the partial ionisation and
plasma flows becomes evident. The region above the Im(ω) = 0 curve corresponds
to the region where the wave is unstable, while in the region beneath the curve the
wave is stable and damped. It is clear that the flow will destabilize the interface;
for a given value of ionisation fraction there is a flow value at which the interface
becomes unstable (a similar conclusion can be drawn from earlier studies by, e.g.
Ruderman and Goossens 1995). The variation of the zero-level with respect to the
ionisation fraction shows that as the plasma becomes more dominated by neutrals,
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Figure 4.2: Variation of the imaginary part of the frequency for the backward propa-
gating wave with the flow speed and the ionisation fraction. The flow changes in the
interval 10-60 km s−1 and the ionisation fraction varies between 0.5 (fully ionised
plasma) and 1 (neutral gas). The horizontal curve drawn at the Im(ω) = 0 helps to
visualize the transition of Im(ω)− from the positive to the negative domain.
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Figure 4.3: Contour plot of the variation of the imaginary part of the frequency for
backward propagating waves. The region below the zero level curve corresponds to a
stable regime and waves will have a classical damping, while the interface described
by the quantities in the region above the curve is unstable.

the plasma interface becomes more stable, so that for an ionisation degree of 0.93
the interface becomes stable and waves will damp owing to dissipation. Figure 4.2
also shows that the presence of neutrals stabilizes the plasma as the instability sets
in for higher values of flows (here with a density ratio of 100, kx = 5 × 10−6 m−1,
ν = 1010 m2 s−1, T = 104 K, ρ2 = 5 × 10−11 kg m−3). It is instructive to identify
the role of each dissipative process in the appearance of instability. While the partial
ionisation in the solar prominence has the effect of stabilisation of the interface, the
viscosity in the solar corona will destabilize the discontinuity and the value of the
flow at which waves become unstable has little variation with the ionisation fraction
and significant dependence can be observed for larger values of µ. We note that the
unstable behavior of the backward wave is also connected to the very high density
contrast between the solar prominence and corona. For a density contrast of one

83



4.3. DISPERSION RELATION OF SURFACE WAVES PROPAGATING AT
THE TANGENTIAL DISCONTINUITY

order of magnitude the unstable backward wave becomes stable and the imaginary
part of the dispersion relation describes classical physical damping.

Finally, we explore the connectivity between the dissipative instability discussed
earlier and negative energy waves. As specified in the Introduction, the term of
negative energy wave refers to the situation when the wave energy decreases with the
increase of the wave amplitude. The energy of a wave with amplitude A averaged
over one wavelength can be given as

E =
1

4
ω

∂Dr

∂ω
|A|2, (4.35)

where Dr is the dispersion relation of the wave. In this case the energy of the wave
is the phase-averaged difference between the energy of the system when the wave
is present, and its energy when the wave is absent. A criterion that can be used to
determine the nature of waves is the formula suggested by Cairns (1979) where a
wave is considered to have negative energy if the quantity

C = Re(ω)
∂Dr

∂ω
< 0. (4.36)

The function Dr is undetermined up to a multiplicative constant whose sign has to
be determined from the condition that in the absence of any flows in the system,
C > 0. Comparing this with Eq. (4.29), it is obvious that the condition for the
appearance of dissipative instability is identical with the condition of negative energy
wave generation because the expression

νRe(ω)2 +
dk2

xηCv2
A2Re(ω)

Ωr

is always positive.
Another possibility for exploiting the effect of partial ionisation on the stability at

a magnetic interface is to model the interface between two partially ionised plasmas
of prominences and dark plumes. Observations by Berger et al. (2010) revealed
the existence of dark plumes within the prominence showing turbulent up-flows in
prominences of the order of 15-30 km s−1. These up-flows are believed to generate
instabilities. In the Ca II H-line plumes are seen dark in contrast to the prominence
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material, which suggests that the plasma in the plumes is hotter and probably less
dense than the prominence material. The width of the plumes ranges between 0.5
Mm and 6 Mm, and their maximum heights are between 11 Mm and 17 Mm. The
typical plume lifetime is between 6 and 15 minutes.

Considering the same prominence/plume parameters as in Soler et al. (2012), we
obtain that the interface between these two partially ionised media becomes unstable
for almost all values of flows (below the KH threshold) for an ionisation degree of
the prominence larger than the ionisation degree of the plume, but the growth rate
of this instability is very low, meaning that the dissipative instability (at least in
this simplified framework) cannot explain the generation of up-flows in plumes by
instability.

4.4 Dissipative instabilities in the two-fluid approach

The problem of dissipative instability at a tangential discontinuity in a partially
ionised plasma can be discussed in a different context, too. As specified in Chap-
ter 3, for frequencies of waves that are below the ion-neutral frequencies the plasma
cannot be treated as a single fluid, and a multi-fluid approach will be needed. Here
we are going to treat the charge particles as an ion-eletron fluid, while neutrals will
be described by a set of separate equations. Neutrals will interact with the electron-
ion fluid through collisions. These collisions will ensure that neutrals stay in the fluid
and the constituents of the plasma have collective dynamics. As earlier, the electron
inertia is neglected. The momentum transfer between particles takes place through
the collisions between ions and neutrals.

Similarly the equilibrium described earlier in this Chapter, we are going to con-
sider that the equilibrium model is composed of two partially ionised half-space
plasma regions separated by a discontinuity. The plasma is permeated by a homoge-
neous magnetic field oriented in the x direction and the interface is situated at z = 0.
The equilibrium plasma parameters are homogeneous and constants in both regions.
We denote by the indices 1 and 2 the regions corresponding to z < 0 and z > 0, re-
spectively (see Fig. 4.4). The equilibrium flows are denoted by v01 and v02 and they
are parallel to the interface. The set of coupled differential equations governing the
dynamics of linear waves in a two-fluid plasma in the incompressible limit is given
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Z 

PROMINENCE (REGION 2)

V02

B0

INTERACE

X

B0

V01

PROMINENCE (REGION 1)

Figure 4.4: We denote by the indices 1 and 2 the regions corresponding to z < 0 and
z > 0, respectively which correspond to two partially ionised plasmas of different
ionisation fraction. The equilibrium flows are denoted by v01 and v02 and they are
parallel to the interface. Magnetic fields are identical in the two regions and parallel
to the interface.
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by (see, e.g. Zaqarashvili et al. 2011)

ρ0i

(
∂vi

∂t
+ v0 · ∇vi

)
= −∇pie +

1

µ0

(∇× b)×B0 − αin(vi − vn) (4.37)

ρ0n

(
∂vn

∂t
+ v0 · ∇vn

)
= −∇pn − αin(vn − vi) (4.38)

∂b

∂t
= ∇× (v0 × b) +∇× (vi ×B0) (4.39)

∇ · vi = ∇ · vn = ∇ · b = 0, (4.40)

where vi = (vix, 0, viz) and vn = (vnx, 0, vnz) are the components of the velocity
perturbation of ions and neutrals, pie and pn are the pressure perturbations of the
ion-electron and neutral fluids, b = (bx, 0, bz) is the magnetic field perturbation, ρ0i

and ρ0n are the equilibrium densities of ions and neutrals, while αin is the ion-neutral
friction coefficient. This friction ensures that collision between ions and neutrals
take place. In the absence of this process, neutrals would not be able to stay in the
system. Accordingly, in the absence of collisions the momentum equations would
decouple. The last terms on the RHSs of Eqs. (4.37) and (4.38) express the transfer
of momentum from ions to neutrals (and vice-versa) through the diffusion of one
species into the other. Due to the collison and momentum transfer between species,
the set of equations (4.37)–(4.40) is non-ideal, particles can loose energy through
collisions.

Equations (4.37) and (4.38) are the linearized momentum equations of the ion-
electron fluid and neutrals, respectively. Equation (4.39) clearly shows that the mag-
netic field is able to interact only with the charged part of the plasma fluid. Several
simplifications were assumed in these equations. First of all, collisions of electrons
with ions and neutrals are neglected because of the small momentum of electrons. We
assume adiabatic perturbations and thus non-adiabatic mechanisms are neglected. In
order to keep the discussion as simple as possible we are also going to neglect any
dissipative mechanism that could appear in the induction equation, here we are going
to concentrate on the effect of collisions on the appearance of dissipative instabili-
ties. These simplifications will enable us to study the problem of plasma stability
analytically.
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We express the ion-neutral friction coefficient as

αin = ρ0iρ0nγin (4.41)

where γin is the ion-neutral collision rate coefficient per unit mass. The friction co-
efficient vanishes in both the fully ionized and fully neutral cases. Instead of using
γin, we are going to use the collision frequency, which has a more practical physical
meaning. Thus we define the ionneutral, νin, and neutralion, νni, collision frequen-
cies as

νin = ρ0iγin, νni = ρ0nγin (4.42)

and the two collisional frequencies are connected through ρ0nνin = ρ0iνni. In conse-
quence, in the remaining part of the present Chapter we are going to use only νin.

We employ the same normal mode analysis as in the case of single fluid descrip-
tion, however, here the continuity of the normal component of the momentum across
the discontinuity would require an equivalent relation written for ions and neutrals.
Similarly, the continuity of the stresses at the interface (see Eq. 4.12) would translate
into the balance of the total pressure of charged particles and the kinetic pressure of
neutrals.

The dispersion relation for waves propagating along the interface in the incom-
pressible limit can be obtained as (see, e.g. Watson et al. 2004, Soler et al. 2012)

[ρ0n1Ω1(Ω1 + iνin1) + ρ0n2Ω2(Ω2 + iνin2)]×
{
ρ0i1

[
Ω1(Ω1 + iχ1νin1)− k2v2

A1

]
+ ρ0i2

[
Ω2(Ω2 + iχ2νin2)− k2v2

A2

]}
= 0,

(4.43)
where χ1,2 = ρ0n1,2/ρ0i1,2, and Ω1,2 = ω−kv01,2 are the Doppler-shifted frequencies
in the two media. We need to mention here that, in order to obtain the above result,
we assumed that the ion-neutral collisional frequencies are much smaller than the
frequency of the waves, meaning that all terms containing squares or products of
the collisional frequency were neglected. It can be shown that this approximation is
equivalent with the assumption of weak damping.

The dispersion relation given by Eq. (4.43) allows the discussion of the entire
mixture in terms of its constituents, the first parenthesis of the above equation refers
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to neutrals only, while the second term describes the dispersion relation of ions. We
should keep in mind that an unstable behavior of any of the contituents would auto-
matically imply the unstable behavior of the whole mixture.

Let us first discuss the neutrals. We can write the dispersion relation of neutrals
as

ρ0n1Ω
2
1 + ρ0n2Ω

2
2 = −i(ρ0n1Ω1νin1 + ρ0n2Ω2νin2) (4.44)

Following the same procedure as in the case of a single-fluid plasma (section 4.3),
first we can determine the solutions of the ideal part of the dispersion relation, i.e.

ω1,2 = k
ρ0n1v01 + ρ0n2v02

ρ0n1 + ρ0n2

± ik

√
ρ0n1ρ0n2

ρ0n1 + ρ0n2

|v01 − v02|. (4.45)

Due to the positive imaginary part of the forward mode (the upper sign in Eq. 4.45)
the neutral fluid will be unstable, while the backward propagating mode will be sta-
ble. This peculiar behavior of neutrals under prominence conditions was discussed
earlier by, e.g. Soler et al. (2012) and it corresponds to the standard hydrodynamic
KH instability. We should also notice that the growth rate of the instability is inde-
pendent on the collision rate.

Let us now concentrate on the backward mode that is KH stable. The presence
of collisions with ions will affect the propagation characteristics of the modes by
attenuating their amplitude. We apply the same procedure as before and assume that
the dispersion relation can be expanded in series around the value of the frequency
determined by Eq. (4.45). As a result, we can obtain that the imaginary part of the
frequency is given by

Im(ω) = ∓ρ0n1νin1 + ρ0n2νin2

ρ0n1 + ρ0n2

. (4.46)

This expression is determined by the collisional rate between the two species. In the
case of forward modes, the collisions will tend to damp the amplitude of the wave
(Im(ω) < 0) and this has to be considered together with the fact that these modes
are KH unstable. Considering both effects, the growth/decay rate of the forward
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propagating modes becomes

ω̃ = k

√
ρ0n1ρ0n2

ρ0n1 + ρ0n2

|v01 − v02| − ρ0n1νin1 + ρ0n2νin2

ρ0n1 + ρ0n2

. (4.47)

Let us apply this relation in connection to the modes that could appear in prominence
dark plumes. Observations by Berger et al. (2008, 2011) and Ryutova et al. (2010)
revealed that dark plumes are turbulent up-flows in prominences which usually de-
velop Kelvin-Helmholtz vortex rolls. Ca II absorption lines in prominence plumes
show these as dark features, in contrast to the prominence material, which suggests
a hotter plasma in the plumes compered to their environment and they are also less
dense than their surrounding material. The width of plumes ranges between 0.5 Mm
to 6 Mm and their maximum heights are between 11 Mm and 17 Mm. The mean flow
speed is about 15 km s−1, although velocities up to 30 km s−1 are also measured. The
typical plume lifetime is between 400 s and 890 s.

Let us now consider that medium 1 represents the prominence plasma and medium
2 the plume. For density, we use typical parameters for the quiescent prominence, i.e.
ρ01 = 5×10−11 kg m−3, while the density of the plume is considered to be one order
of magnitude lower, i.e. ρ02 = 5 × 10−12 kg m−3. The degree of the ionisation is
unknown, but for illustration purposes let us assume that half of the prominence ma-
terial is neutral, i.e. ρ0n1 = 2.5× 10−11 kg m−3. For the plume (being hotter plasma)
we assume that a quarter of its material is still neutral, so ρ0n2 = 1.25 × 10−12 kg
m−3. Further, we are going to assume that the prominence plasma in equilibrium is
at rest, i.e. v01 = 0, while in the plume is 20 km s−1. For the collisional frequency,
let us suppose that νin2 = ανin2. Although the rate of collisions is proportional to
T 1/2 (i.e. the number of collisions in the plume is higher than in the prominence),
due to the less dense material, α will be always less than 1. For prominence values
(T = 104 K and density given above) the ion-neutral collisional frequency is 4 s−1. It
is easy to see that, for any value of α, the sign of Eq. (4.47) is negative, meaning that
the damping due to collisions can prevent the unstable growth of the modes (due to
neutrals) propagating along the interface between the prominence and dark plumes.

Let us now turn our attention to the other solution of Eq. (4.46). The imaginary
part of the frequency corresponding to the backward wave is positive, meaning that
these waves are subject to dissipative instability and the growth rate of the waves is
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independent on the value of plasma flow.
Now we consider the ions present in the system, and their dispersion relation can

be written as

ρ0i1

(
Ω2

1 − k2v2
A1

)
+ ρ0i2

(
Ω2

2 − k2v2
A2

)
= −i (ρ0i1Ω1χ1νin1 + ρ0i2Ω2χ2νin2) .

(4.48)
Once we apply the same procedure as in the case of a single fluid, we can find

the root of the real part of the dispersion relation to be

ω1,2 = k
ρ0i1v01 + ρ0i2v02

ρ0i1 + ρ0i2

± kΓi

ρ0i1 + ρ0i2

, (4.49)

where
Γi =

√
ρ0i1ρ0i2

[
v2

KHi − (v01 − v02)
2
]
, (4.50)

with the Kelvin-Helmholtz speed, vKHi defined in a similar way as earlier in the
chapter. In the presence of a magnetic field, vKHi is super-Alfénic, i.e. larger than
any equilibrium flow that could be observed in prominence structures. This also
means that the values of ω1,2, defined by Eq. (4.49) are always real.

We can repeat applying the same technique in order to find the imaginary part of
the frequency for ions and we obtain that

Im(ω)i = ∓ 1

2Γi(ρ0i1 + ρ0i2)
×

[ρ0i1ρ0i2(v02 − v01)(χ1νin1 − χ2νin2)± Γ1(ρ0i1χ1νin1 + ρ0i2χ2νin2)] . (4.51)

This increment is independent on the wavenumber. Again, a positive imaginary part
of the frequency would be equivalent to an instability, while a negative Im(ω) cor-
responds to a physical damping. Using the characteristic values for the prominence
and plume we have that ρ0i1 = 2.5 × 10−11 kg m−3, ρ0i2 = 3.75 × 10−12 kg m−3,
χ1 = 1, χ2 = 0.33 and we investigate the variation of the imaginary part of the fre-
quency with respect to the strength of the equilibrium flow and parameter α. Figure
4.5 shows this behavior when the flow varies in the interval 20-45 km s−1 and the
parameter α takes values 0.1 (solid line), 0.5 (dashed line) and 1 (dash-dotted line),
respectively. Although these plots do not show significant variation with respect to
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Figure 4.5: The variation of imaginary part of the frequency belonging to the ion
fluid with the background flow for three different values of collisional frequency
(here quantified by the parameter α). The solid line corresponds to α = 0.1, the
dashed line to α = 0.5, and the dash-dotted line to α = 1. Waves are unstable
for those values of v0 and α for which the imaginary part of the frequency becomes
positive.
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α, the imaginary part of the frequency becomes positive for flows in excess of 35
km s−1. In this investigation we used vA1 = 89 km s−1 and vA2 = 280 km s−1,
respectively. It is also clear that the higher the collisional frequency in the plume, the
higher is the flow required for the backward propagating waves to become dissipative
unstable.

The expression of Im(ω)i also allows us to find that the plasma becomes unstable
for any flows that satisfy the condition

v0 > vKHi
ρ0i1χ1 + αρ0i2χ2[

(χ1 − αχ2)
2 + (χ1ρ0i1 + αχ2ρ0i2)

]1/2
. (4.52)

Comparing Eqs. (4.47) and (4.52), we can see that the backward waves will be
dissipative unstable regardless the value of the flow, because the imaginary part of
the frequency corresponding to neutrals is flow independent.

The mixture of three species of plasma therefore shows a very complex pattern
where the Kelvin-Helmholtz unstable behavior of neutrals is stabilized by the damp-
ing due to collisions with ions (in the case of forward propagating waves), but the
whole plasma becomes unstable (due to the ions and neutrals) for flows that are rather
large. However this large value of flow is not a surprise given the simplicity of our
model. We are aware that the simple model employed here misses several key ef-
fects for plume dynamics. For example, the interface considered here does not allow
the appearance of body waves, that could be important for the stability of plumes.
Furthermore, the flow of particles not strictly parallel to the magnetic field might de-
crease significantly the instability threshold, as it was shown by Prialnik et al. (1986)
in the case of KH instability. It remains to be seen how the effect of compressibility
will change the stability criteria, bearing in mind that the effect of compressibility is
to stabilize the plasma.

4.5 Conclusions

In the present Chapter we explored the stability of a tangential discontinuity. In
the first instance we considered the interface between the viscous and fully ionised
coronal plasma and the partially ionised solar prominence, in which the dominant
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dissipative effect is the Cowling resistivity. In the second model we used a two-fluid
approach modeling the interface between the prominence and a dark plume.

The magnetic fluids were assumed to be incompressible and the prominence/dark
plume equilibrium was considered to be dynamical, with a homogeneous flow paral-
lel to the interface. Assuming a weak damping, we obtained the dispersion relation
of Alfvénic waves propagating along the interface. The presence of dissipative ef-
fects on both sides of the interface renders the dispersion relation to be complex with
the imaginary part of this quantity describing the decay or the growth of waves. Our
results show that in the first case the forward propagating wave is always stable, with
the amplitude of the wave decaying because of dissipation, however, for the back-
ward propagating wave there is a threshold of the flow (below the KHI threshold) for
which the wave becomes unstable. A careful analysis proves that the partial ionisa-
tion has a stabilizing effect on the interface for any value of the ionisation fraction and
the unstable behavior can be connected to the viscous nature of the coronal plasma.
We also showed that partial ionisation has little effect on the threshold where waves
become unstable. For a plasma where neutrals are abundant, the instability appears
for higher values of flows, i.e. neutrals have a stabilizing effect. The appearance
of the dissipative instability in the case of a two-fluid approach is more complex,
as individual species can become unstable, leading to the instability of the whole
mixture.

The above results were obtained under the strict restriction of incompressible
plasma and a sharp tangential discontinuity between the two plasma layers. The
first model was used to study the generation of dissipative instability at the interface
of two partially ionised plasmas modeling the prominence and dark plumes. The
unstable mode obtained in this case shows a very low growth rate, meaning that this
type of instability (at least in this simplified model) cannot explain the appearance of
turbulent up-flows in plumes that can be attributed to instability.
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Chapter 5

Dissipative instability in a partially
ionised prominence plasma slab2

After clarifying the problem of generation of dissipative instability at the tangential
discontinuity between two media (where at least one of the media is partially ionised)
we are going to extend our investigation to the problem of dissipative instability gen-
eration in a magnetic slab, i.e. structures that have at least one dimension bounded.

As presented in the Introduction, the magnetic field in the solar atmosphere tends
to accumulate into entities (flux tubes, coronal loops) of finite transversal size (ra-
dius) and very often this size is determined by the balance of various forces acting
upon these structures. Due to very high values of Reynolds numbers (the frozen-in
condition is very well satisfied) observed waves and oscillations are perfect tracers
of these magnetic structures. Once waves are ”forced” to propagate in finite size
waveguides, their phase speed becomes dependent on the wavelength at which they
propagate, i.e. they become dispersive (in optics this phenomenon is also called
waveguide dispersion). Depending on the particular dependence of the phase veloc-
ity on the wavelength, we can differentiate between positive and negative dispersion.
In the first case waves propagate faster with increasing the wavelength, while in the
case of waves with negative dispersion an increasing wavelength means a decreasing
phase speed. The properties of dispersive waves were studied in details in a series
of seminal papers by Edwin and Roberts (1982, 1983) in a static equilibrium and by

2The present chapter is based on the study by Alexandrou et al. Dissipative instability in a partially
ionised prominence plasma slab, 2015, Astron. Astrophys. (submitted)
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Terra-Homem et al. (2003) in a dynamic equilibrium. The behavior of waves was
found to be different in the regimes of long and short wavelengths (compared to the
vertical size of the waveguide), and different under photospheric and coronal condi-
tions (the difference is reflected by the value of the plasma-beta in these regions).

In the present chapter we are going to investigate how the dispersion of waves
will influence the dissipative instability threshold. The current discussion is a natural
continuation of the previous Chapter and the same physical principles can be applied
here, as well. In addition to the previous Chapter, here we investigate what is the
effect of the wavelength of the waves in the generation of dissipative instability.

5.1 The equilibrium configuration

In the present Chapter the structuring of the magnetic field is modeled by a three-
layer model, where a magnetic slab of thickness z0 lying along the x-axis is sand-
wiched between two semi-infinite planes, with interfaces situated at z = 0 and
z = z0, respectively. The magnetic field in the three regions are taken to be iden-
tical and parallel to the x axis, i.e. B0 = B0x̂, where x̂ is the unit vector in the x

direction. Depending on the possible roles played by different regions in the equi-
librium configuration, we can study the appearance of dissipative instability in three
different models (see Fig. 5.1). In the first model the equilibrium set-up describes
the case of a partially ionised prominence slab fibril immersed into the fully ionised
and viscous solar corona. The second and third models consist of a partially ionised
prominence fibril sandwiched by an interfibril partially ionised prominence plasma
and the difference between the latest two models resides in the structure of the equi-
librium flow. In the second model we assume that the prominence plasma flows with
a piecewise constant flow in the direction of the magnetic field, while in the third
model, the interfibril prominence plasma shows a constant counterflow with respect
to the flow direction in the prominence. In all models studied here the quantities
describing the state of the plasma in the external medium (i.e. outside the slab) are
labeled by an index ”2”, while inside the slab the plasma is described through quan-
tities with an index ”1”. For simplicity we assume that the fluids in the two regions
are incompressible in all models, a generalization of this restriction would be a rather
straightforward task. A discussion on the nature of transport processes that can act
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Figure 5.1: Magnetic slab of thickness z0 lying along the x-axis lies between two
semi-infinite planes, with interfaces situated at z = 0 and z = z0.. The magnetic
field in the three regions are taken to be identical and parallel to the x axis. The first
model represents a partially ionised prominence slab fibril (shown as P) immersed
into the fully ionised and viscous solar corona (shown as C in Fig. 5.1). The second
and third models consist of a partially ionised prominence fibril (shown as F in Fig.
5.1) sandwiched by an interfibril partially ionised prominence plasma (shown as IF).
The latest two models engage oposite directions in their equilibrium flows.
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under these conditions was presented in an earlier study by Ballai et al. (2015) and
discussed in details in Chapter 4. Here we are going to employ the same considera-
tions and assume that the viscosity is the dominant transport mechanism in the solar
corona and it is described by the first term in Braginskii’s viscosity tensor, while
the transport mechanisms in the prominence appear only in the induction equation,
meaning that transport due to the friction of different species of particles is neglected.
By assuming this simplification we supposed that the oscillations under investigation
have longer periods than the ion-neutral collision time-scale.

We employ the same governing equations as in the previous chapter. Rewriting
Eq.(4.15) from section 4.3 , we can deduce that inside the slab the total pressure and
the z component of the velocity vector are connected by

(Ω + iηC1k
2)P1 =

iρ01

k2
(DA1 + iηC1Ωk2)

dvz

dz
, (5.1)

where Ω = ω − kv0 is the Doppler-shifted frequency, DA1 = Ω2 − k2v2
A1 and ηC1

is the coefficient of the Cowling resistivity in region 1. In the above calculations we
assumed that in the dissipative terms we can consider d2/dz2 ¿ k2. This simplifica-
tion is fully justified as the plasma movement takes place in the transversal direction
following the oscillatory motion of the Alfvénic wave (the plasma is incompressible).

Although we are discussing three different models, the common part of these
models is that the plasma slab is filled with partially ionised prominence plasma
whose dynamics is described by Eq. (4.10). In what follows we are going to discuss
the equations describing the external medium separately for each model.

In model 1 (see Fig. 5.1) (prominence slab surrounded by fully ionised viscous
corona) the governing equation for perturbations in the viscous and fully ionised
solar corona is (see Ballai et al. 2015)

P2 =
iρ02(DA2 + 2iνk2ω)

k2ω

dvz

dz
, (5.2)

where ν = η0/ρ02 is the kinematic coefficient of viscosity and the coefficient η0 was
defined earlier in Chapter 4.

For model 2 (partially ionised plasma slab surrounded by another partially ionised
interfibril prominence plasma in a different state of ionisation) the governing equa-
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tion is
(ω + iηC2k

2)P2 =
iρ02

k2
(DA2 + iηC2ωk2)

dvz

dz
, (5.3)

where now DA2 = ω2− k2v2
A2 and ηC2 is the Cowling resistivity in region 2. Finally

in the case of model 3 (the interfibril partially ionised plasma exhibits counterflow)
the governing equation is

(Ω̃ + iηC2k
2)P2 =

iρ02

k2
(D̃A2 + iηC2Ω̃k2)

dvz

dz
, (5.4)

where Ω̃ = ω + kv0 and D̃A2 = Ω̃2 − k2v2
A2.

The solutions of these equations must be connected at the boundaries of the re-
gions. We will be concerned with those disturbances that are laterally evanescent,
i.e. vz(z) → 0 as |z| → ∞, meaning that the energy of the disturbance is essentially
confined to the interior of the slab. As a result, the z-component of the velocity can
be given as (for details see, e.g. Edwin and Roberts 1982, Ballai et al. 2015)

vz =





βee
−k(z−z0) for z > z0,

α0 cosh(kz) + β0 sinh(kz) for 0 < z < z0,

αee
kz for z < 0.

(5.5)

The constant coefficients α0, β0, αe, βe can be determined after joining the solutions
at the boundaries. According to the standard classification, the only modes that can
appear in this structure are surface modes, that could be sausage or kink, depending
whether vz is an odd or even function of z.

Given the particular orientation of the equilibrium magnetic field, the interfaces
between the prominence slab and its environment can be considered as tangential
discontinuities. Let us assume that the equation of the perturbed discontinuity is
ζ(x, t) = 0. The requirements that the normal component of the velocity and normal
component of the stress tensor are continuous imply that the linearized kinematic
boundary condition reduces to

[[vz − v0 · ∇ζ]] = 0, (5.6)

while the continuity of the stress tensor reduces in the case of homogeneous back-
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ground to
[[P ]] = 0, (5.7)

where [[, ]] denotes the jump of a quantity across the discontinuity in the sense that
the jump of an arbitrary function g(z) is defined as

[[g(z)]] = lim
ε→0+

[g(z + ε)− g(z − ε)] .

The z-component of the velocity and ζ can be related by

vz =
∂ζ

∂t
+ v0 · ∇ζ.

Using the above property, the kinematic boundary condition becomes

[[
vz

ω − k · v0

]]
= 0 (5.8)

In the case of models 2 and 3, the continuity of the stress tensor simplifies to the
requirement that the total pressures on the two sides of the discontinuity are equal,
however in the case of model 1 the viscosity of the corona is modifying this require-
ment, so now the continuity of the normal component of the stress tensor can be
written as

P1 = P2 − 2ρ02ν
∂vz2

∂z
, (5.9)

that has to be evaluated at the interfaces situated at z = 0 and z = z0.

5.2 Dispersion relation of surface waves propagating
in the slab

In our derivation we assumed that all perturbations oscillate with the same frequency
ω that is a complex quantity that can be written as ω = Re(ω) + iIm(ω). We
introduce the viscous and resistive Reynolds numbers as

Rr =
vA1

kηC

, Rv =
vA2

kν
. (5.10)
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Similarly to the method used in the previous Chapter, since both Reynolds numbers
are very large and therefore waves propagating with little damping over a period,
in our subsequent calculations we will consider that |Re(ω)| À |Im(ω)|, i.e. in
our calculations all terms containing ν2 or η2

C (or their product) are neglected. The
interaction of flows and waves in a dissipative medium will generate the new physics
our study deals with. Later we will see that, contrary to our expectations, dissipation
does not always act towards decreasing the wave amplitude; for specific values of
flows or ionisation degree, the interplay between flows, dissipation, and dispersion
could lead to an increase of the waves’ amplitude, i.e. unstable behavior.

The dispersion relation of these waves can be obtained by imposing the boundary
conditions on the total pressure and normal component of velocity. For the sinh term,
the dispersion relation of sausage waves reads

d

(
DA1 +

iηCk4v2
A1

Ω

)
+ (DA2 + 4iνk2ω) tanh(kz0) = 0, (5.11)

while the cosh term leads to the dispersion relation of kink waves

d

(
DA1 +

iηCk4v2
A1

Ω

)
+ (DA1 + 4iνk2ω) coth(kz0) = 0. (5.12)

We can rearrange these relations in the form

DA2





tanh(kz0)

coth(kz0)



 + dDA1 + ik2


4νω





tanh(kz0)

coth(kz0)



 +

ηCk2v2
A1d

Ω


 = 0.

(5.13)
Following the same consideration and imposing the right boundary conditions at the
two interfaces, the dispersion relation for the second model becomes

DA2





tanh(kz0)

coth(kz0)



 + dDA1 + ik4


ηC1v

2
A1d

Ω
+

ηC2v
2
A2

ω





tanh(kz0)

coth(kz0)






 = 0,

(5.14)
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and somehow similar dispersion relation for the third model as

D̃A2





tanh(kz0)

coth(kz0)



 + dDA1 + ik4


ηC1v

2
A1d

Ω
+

ηC2v
2
A2

Ω̃





tanh(kz0)

coth(kz0)






 = 0.

(5.15)
These dispersion relations will be investigated analytically and numerically in the
next section to determine the range of flows and thickness of the slab for which the
incompressible surface waves propagating in the slab are unstable.

5.3 Dissipative instability

Since the Reynolds numbers definedin Eq. (5.10) are very large, it is realistic to as-
sume that the damping of waves propagating in the magnetic slab is weak. Accord-
ing to the chosen dependence of variables with time, a perturbation with Im(ω) > 0

corresponds to an instability, i.e. to the case when the amplitude of waves grows
exponentially with time according to exp(Im(ω)t). Here we restrict ourselves to
the linear phase of instabilities. Linear growth rates provide us with characteristic
timescales for the instability to operate. However, nonlinear studies are needed to
assess the real impact of the instability on the evolution of the plasma parameters.
This topic, however, would require numerical analysis, which would be outside the
scope of the present Thesis.

Following the method developed by Cairns (1979), the imaginary part of the
frequency can be calculated as

Im(ω) ≈ − DI

∂DR/∂ω
(5.16)

whereDR andDI are the real and imaginary parts of the dispersion relations (see Eqs.
5.13–5.15) and this expression should be evaluated at the value of the frequency that
corresponds to the solution of the real part of the dispersion relation, i.e. a root of the
equation DR = 0.

Let us first concentrate on the sausage modes, the solution for kink modes being
easily generated. In the first two models the difference resides only in the choice of
the transport mechanism, therefore it is obvious that the real part (corresponding to

102



5.3. DISSIPATIVE INSTABILITY

the ideal case) will be identical. In this case, it is straightforward to show that the
root of real part of the dispersion relation becomes

ω± =
dkv0

d + tanh(kz0)
± k

d + tanh(kz0)

√
d tanh(kz0)(v2

KH − v2
0) =

dkv0

d + tanh(kz0)
± kΓ

d + tanh(kz0)
, (5.17)

where we introduced Γ =
√

d tanh(kz0)(v2
KH − v2

0) and vKH is the Kelvin-Helmholtz
speed for propagation in the slab defined here as

v2
KH =

(d + tanh(kz0))(v
2
A1d + v2

A2 tanh kz0)

d tanh(kz0)
. (5.18)

This speed plays a special role in the determination of the nature of instabilities that
can appear in the magnetic slab. First of all, the Kelvin-Helmholtz instabilities (KHI)
appear only for those flows that are greater than vKH . When waves are restricted to
propagate in the slab, even vKH is dispersive and it varies not only with the density
ratio (as in the case of an interface) but also with the relative magnitude of the wave-
length compared to the transversal size of the slab. For the third model the solution
of the real part of the dispersion relation reduces to

ω± =
k(dv01 − v02 tanh(kz0)

d + tanh(kz0)
± kΓ̃

d + tanh(kz0)
(5.19)

where now Γ̃ =
√

d tanh(kz0)[v2
KH − (v01 + v02)2] while the Kelvin-Helmholtz (KH)

speed is given by the same equation (see Eq.(5.18)).
Given the importance of vKH , it is instructive to estimate the magnitude and

variation of this quantity for the three models. The KH speed varies not only with
the dimensionless quantity kz0 but also with the density contrast between the plasma
inside and outside the slab. Observations show that the wavenumber of waves in
prominences, k, varies between 10−8 and 10−6 m−1 (Forteza et al. 2007). As a
characteristic Alfvén speed in the prominence we choose vA1 = 28 km s−1 (see
Joarder and Roberts 1982). For model 1 we assume three values of the external
Alfvén speed (198 km s−1, 280 km s−1, 343 km s−1) that - under the assumption
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of identical field strength- would result in a density contrast (d) of 50, 100 and 150,
respectively. For model 2 and 3 we choose the case of a dark plume where the
internal Alfvén speed is vA1 = 200 km s−1 that is surrounded by the prominence
with a density contract of d = 0.05, 0.1 and 0.5, respectively, resulting in Alfvén
speeds of 44, 63 and 141 km s−1, respectively (Soler et al. 2012).

A key parameter in our discussion is the product kz0, where z0 is the width of
the slab. Since our analysis refers to two possible scenarios (prominence slab sur-
rounded by coronal plasma and prominence slab surrounded by prominence plasma),
the value of this parameter will be different. In the first case we are going to assume
(hypothetically) that the entire prominence can be considered as one single plasma
slab, in which case we are going to consider that z0 is the width of the prominence.
The typical width of prominences varies between 4 and 30 Mm (Lin 2005), meaning
that the product kz0 falls in the interval 10−2 and 30. For the second scenario, we are
going to consider that z0 refers to the width of a thread that has typically a thickness
of 100-600 km, meaning that the dimensionless parameter kz0 will be in the interval
10−3 and 6× 10−1.

One very important aspect to note is that regardless of the model employed, the
KH speed is always super-Alfvénic. Under prominence conditions these speeds
amount to values that are of the order of a few hundreds km s−1. For the KHI to
set in, the plasma equilibrium flow has to be larger than these speeds, however, flows
of these magnitudes cannot be currently observed in solar prominences. This would
also mean that in prominences the plasma is always Kelvin-Helmholtz stable. The
variation of the threshold speed at which waves at propagating in the slab become KH
unstable (shown here on logarithmic scale) is shown in Fig.(5.2) for model 1 with the
threshold being larger for larger wavelengths for both modes. For both sort of waves
the range of speeds obtained clearly show that the existence of flows larger than vKH

are not possible to observe, meaning that the prominence in this model is indeed KH
stable. For large values of kz0 (wide slab) the value of the Kelvin-Helmholtz speeds
reaches the value obtained for a single interface (see, e.g. Ballai et al. 2015 and also
in Chapter 4). It is also clear that the threshold were waves become KH unstable
increases with the density contrast between the prominence and the solar corona.

In the case of models 2 and 3, the range of kz0 is different and observations
restrict us to the situation when the wavelength of waves is larger than the width of
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5.3. DISSIPATIVE INSTABILITY

Figure 5.2: The variation of the Kelvin-Helmholtz speed with the dimensionless
quantity kz0 for model 1 on logarithmic scale for three different values of the density
contrast between the solar prominence and neighboring solar corona.

Figure 5.3: Similar to Fig 5.1, but here the variation of vKH with the dimensionless
quantity kz0 refers to models 2 and 3.
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the slab (see Fig. 5.3). In the case of sausage waves vKH shows a minimum in the
kx0 ¿ 1 domain (thin slab) that is attained for kz0 = tanh−1 vA1d/vA2d and here the
threshold value is vKH =

√
2(v2

A1 + v2
A2). For kink waves the KH threshold shows

a 1/kz0-type monotonic decrease. For small values of the dimensionless quantity
kz0, the KH threshold for kink waves is much larger than the corresponding value
for sausage modes, while they tend to become equal for kz0 ≈ 1. This result shows
that for long wavelengths, sausage waves can become much easily KH unstable than
sausage waves, however, the range of speeds obtained here is inconsistent with the
values observed for background flows, meaning that prominence threads (at least
described in this model) are KH stable.

Now using the definition of Im(ω) together with the dispersion relations Eqs.(5.13)
– (5.15) we can obtain, after straightforward calculations, that the imaginary parts of
the frequency in the first model is given by

ωI = ∓ k2

2Γ

[
4ν tanh(kz0)(dv0 ± Γ)

d + tanh(kz0)
− ηCv2

A1d(d + tanh(kz0))

v0 tanh(kz0)∓ Γ

]
, (5.20)

where the Cowling resistivity in the solar prominence is given by

ηC = 109T−3/2
p +

(2µ− 1)v2
A1mp

2(1− µ)ρ1Σin

(
πmp

kBTp

)1/2

, (5.21)

with Tp being the temperature in the prominence (inside the slab), and Σin ≈ 5 ×
10−19 m2 the ion-neutral collisional cross section. Similar to Chapter 4, we assumed
that the plasma is made up of hydrogen and, therefore, the mass of ions is equal to
the mass of protons.

For model 2, following the same technique, the imaginary part of the frequency
becomes

Im(ω) ≈ ∓k2(d + tanh(kz0))

2Γ

[
− ηC1v

2
A1d

v0 tanh(kz0)∓ Γ
+

ηC2v
2
A2 tanh(kz0)

dv0 ± Γ

]
,

(5.22)
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while in the case of model 3, the same quantity can be written as

Im(ω) ≈ ∓k2(d + tanh(kz0))

2Γ̃

[
− ηC1v

2
A1d

tanh(kz0)(v01 + v02)∓ Γ̃
+

ηC2v
2
A2 tanh(kz0)

d(v01 + v02)± Γ̃

]
.

(5.23)
The corresponding values of the imaginary part of the frequency can be obtained for
kink waves in a straightforward manner.

Now let us investigate graphically the regions where the plasma becomes unsta-
ble. As we specified earlier, the flows that are currently observed in solar promi-
nences are of the order of a few tens of km s−1. In the case of model 1 we first
plot the contour plot (see Fig.(5.4)) showing the regions where the imaginary part
of the frequency is changing sign for a given value of the ionisation factor (here we
adopted ν = 0.95). The regions on the right to the curves correspond to a com-
bination of parameters that make the imaginary part of the frequency positive, i.e.
backward propagating waves are unstable. For values of equilibrium flows that are
closer to observed values (the lower end of the flow interval considered here) it is
possible to obtain two values of kz0 where Im(ω) is changing sign. In these cases,
the domain of kz0 where waves are unstable is bounded by these two values. The
plots were obtained for three different values of density contrast. It is obvious that
the threshold value for sausage modes depends on the value of density contrast only
for larger values of flows. In the case of kink modes the instability threshold does
not show any dependence on the density contrast. This behavior could be explained
in terms of the internal motion of the plasma in the two wave modes. In the case
of kink waves the slab oscillates without disturbing the internal structure of the slab,
while in the case of sausage modes the internal plasma structure is compressed and
relaxed according to the oscillating pattern of sausage modes. While the instability
of sausage modes sets in for smaller values of kz0, i.e. long wavelength limit, kink
waves become unstable only when their wavelength is comparable or shorter than
the width of the slab.

Let us investigate how the instability threshold varies with the ionisation degree.
We choose a particular value of the equilibrium flow of 30 km s−1 and let µ vary
between 0.5 and 1, corresponding to the ionisation state of the plasma (see Fig 5.5).
We also fix three values of density contrast (d=50, 100, 150) between the prominence
and solar corona. It is obvious that in the case of sausage modes the threshold of
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Figure 5.4: Contour plot of the variation of Im(ω) in the case of sausage (solid lines)
and kink (dashed) modes in terms of background equilibrium flow and the value of
the dimensionless parameter kz0 for model 1. Here µ = 0.95.
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Figure 5.5: Contour plot of the variation of Im(ω) in the case of sausage (solid
lines) and kink (dashed) modes in terms of ionisation degree and the value of the
dimensionless parameter kz0 for model 1. Here v0 = 30 km s−1. The region where
instability occurs is shown by the plus symbols.
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instability depends on the ionisation degree for very limited interval of kz0. For this
particular value of flow and density contrast, the backward propagating wave will be
unstable only for wavelengths that are larger than the width of the slab, in particular
kz0 < 0.15. We can also observe that real dependence on the ionisation degree
occurs only near the ends of the interval. Density differences between the two media
are also influencing the instability threshold, Fig. (5.4) also shows that as the density
contrast increases, the threshold moves towards the direction of increased ionisation.

Let us now discuss the second model that represents the instability of waves prop-
agating in prominence dark plumes. In this model the plasma inside and outside the
slab is partially ionised and the plasma inside the slab exhibits an equilibrium flow.
These structures are hotter and less dense than their environment, therefore d < 1.
We assume that the plasma in the plume is nearly completely ionised, therefore we
choose µ1 = 0.55. The ionisation degree of the prominence (region 2) is unknown
and we let the ionisation degree to vary in the interval 0.55-0.95. Let us first discuss
the sausage modes appearing in these structures. The domains where the imaginary
part of the frequency becomes positive is shown in Fig. (5.6). First to note is that the
values of the equilibrium flow at which the backward mode is unstable for all three
values of the density contrast is too high, realistic flows can be obtained only for
density contrasts that are very small (of the order of 10−2). Figure (5.6) shows three
vertical lines corresponding to those combinations of v0 and kz0 for which the three
quantities in the denominators of Im(ω) (given by Eq.(5.22)) become zero. The mid-
dle vertical line shows the threshold where waves start becoming KH unstable and
the values of kz0 during which these waves will continue to be KH unstable (lasts
till kz0 ≈ 0.5). The KH instability appears only for very small values of density
contrast, Although the convention for this model was that kz0 < 1, we decided to
plot the variation of Im(ω) for larger values in order to evidence the saturation of
the threshold. Waves with very long wavelengths will be stable and they decay due
to Cowling resistivity. Waves with wavelengths satisfying the condition kz0 ≥ 0.33

will start becoming unstable. As density increases, the domain where waves are un-
stable shifts towards smaller wavelengths, the maximum domain of kz0 is reached
for external plasmas with higher ionisation degree.

In the case of kink waves (see Fig. 5.7) the instability sets in again for very
large values of flows. In contrast to sausage modes, the KHI threshold falls outside
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Figure 5.6: Contour plot of the variation of Im(ω) in the case of sausage modes in
terms of the ionisation degree of the external medium and the value of the dimen-
sionless parameter kz0 for model 2. The region where instability occurs is shown by
the plus symbols.
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Figure 5.7: Contour plot of the variation of Im(ω) in the case of kink modes in terms
of the ionisation degree of the external medium and the value of the dimensionless
parameter kz0 for model 2. The region where instability occurs is shown by the plus
symbol.

112



5.3. DISSIPATIVE INSTABILITY

Figure 5.8: The same as in Fig. (5.5) but now the contour plots show the variation of
Im(ω) in the case of sausage modes in terms of the ionisation degree of the external
medium and the value of the dimensionless parameter kz0 for model 3.

the range of kz0 chosen for this model (kz0 < 1). Figure (5.7) also shows that for
a very small density contrast the plasma becomes stable, while for larger density
fraction the plasma shows instability only for values of the ionisation degree that is
closer to a fully ionised plasma. This means that the neutrals in the mixture will
have a stabilizing effect. For very long wavelengths the backward wave is stable
and waves will damp. The very high level of the flow at which these modes become
unstable shows that we can safely consider these modes as stable in the realistic
limit, equilibrium flows of a few hundreds of km s−1 are currently not observed in
solar prominences.

Finally, let us look at the appearance of the dissipative instability in the case of
the third model. Now the dispersion relation of the waves is given by Eq.(5.15) and
the imaginary part of the frequency by Eq. (5.23). Again, we are going to discuss
separately sausage and kink modes, respectively. The variation of the imaginary part
of the frequency for backward modes in the case of sausage modes is shown by Fig.
(5.8). Comparing the variation of Im(ω) of this model with the variation shown by
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Figure 5.9: The same as in Fig. (5.5) but now the contour plots show the variation
of Im(ω) in the case of kink modes in terms of the ionisation degree of the external
medium and the value of the dimensionless parameter kz0 for model 3.

Fig. (5.6) (the sausage modes corresponding to the second model), we can see that
the differences are significant. First of all the plasma dynamics is below the KH
threshold for any density contrast and ionisation degree. Secondly, the presence of
a counterflow in the external region reduced considerably the range of flows where
the Alfvénic waves propagating along the interface are dissipative unstable; in ob-
taining Fig. (5.6) we used an internal and external flow of 50 km s−1. For very small
values of density contrast (d = 0.05 in our case) the plasma is unstable for any ion-
isation degree provided the wavenumber satisfies the condition kz0 < 0.21. For any
wavenumber above this value, the perturbations along the tangential discontinuity
will propagate under the influence of damping processes. As the density contrast in-
creases, the threshold where the plasma becomes dissipative unstable varies with the
ionisation degree and the dimensionless parameter kz0, so that the larger the density
contrast (densities in the two regions approach each other) the easier for a system
with a highly ionised plasma environment to become dissipative unstable. The vari-
ation of Im(ω) in the case of kink modes propagating in model 3 is similar to the
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results obtained in the case of kink modes in model 2 (see Fig. 5.9). Again, for very
large wavelengths all waves will exhibit physical damping, there is a cut-off value of
the wavenumber at which these modes become dissipative unstable and this cut-off
value increases with decreasing the density ratio. As the density contrast increases
the domain of ionisation degree, where the backward mode is unstable, increases,
however the growth of the ionisation degree is not too large. Plasmas with very large
number of neutrals will be stable and modes decay due to physical damping.

5.4 Conclusions

The present Chapter focused on the conditions that need to be satisfied for the gen-
eration of dissipative instabilities for waves propagating in a partially ionised plasma
slab surrounded by the corona or another partially ionised prominence environment.
The geometrical restrictions imposed on waves confer them a dispersive character
and different characteristics could be recovered for the symmetric and asymmetric
waves (sausage and kink waves).

The nature of the dissipative instability means that it appears for flow speeds
lower than the Kelvin-Helmholtz instability (KHI), the value of the Kelvin-Helmholtz
speed is playing a special role in our discussion. The threshold where this instability
occurs varies with the density ratio of the slab plasma and its surrounding but also
with the wavelength of the waves compared to the width of the slab. Simple analysis
showed that the KHI is unlikely to occur in the plasmas we dealt with, as the value of
this threshold makes (especially for wavelengths that are much larger than the width
of the slab) them always higher than any observed plasma background flow in the
solar prominence.

We have investigated three models (a whole partially ionised prominence em-
bedded in a viscous corona, and a partially ionised plume surrounded by a partially
ionised prominence, with different dynamical equilibrium). In our analysis we fo-
cussed on the effect of three variables (values of the equilibrium flow, the dimen-
sionless parameter kz0 and the degree of ionisation) on the instability threshold. For
model 1 we obtained that when the ionisation degree is kept constant (and close to
the value of a plasma abundant in neutrals), waves with very large wavelength are
damped, the unstable behavior starts at specific wavelengths. The smaller the density
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ratio between the prominence and corona, the more unstable the plasma becomes
for waves that have smaller wavelengths. Flows at which this transition occurs were
obtained to be in line with the observed values. When fixing the value of the equi-
librium flow, we found out that waves will be unstable for rather large wavelength
and real dependence on the ionisation degree occurs near the end of the interval. We
also obtained that the instability thresholds for kink waves are not depending on the
density contrast.

For model 2 the dissipative instability occurs for rather large (thus highly un-
realistic) values of the equilibrium flow, regardless of whether we are dealing with
sausage or kink modes. For sausage modes the regimes where waves are dissipative
unstable and KH unstable are very close. In the case of kink modes the KHI sets
in only for wavelengths that are smaller than the width of the slab. Realistic values
of flow speeds can be easily obtained once we assume that the surrounding plasma
presents a counterflow (model 3) and here the instability threshold for both types
of waves is very much dependent on the wavelength of the mode and the ionisation
degree of the plasma. In the case of kink waves with very large wavelengths, the
instability is inhibited, waves undergo a normal physical damping.

Obviously, the very large values of the flows required for the instability to occur in
model 2 can be considerably reduced once other factors (nonparallel magnetic field,
compressibility, etc.) are taken into account. However, this remains to be studied in
a forthcoming work.
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Chapter 6

Conclusions

The problem of prominence stability/instability is one of the most important ques-
tions in solar physics, as prominences contribute to the evolution of space weather.
Given the complexity of the field in these structures, simplistic models can be con-
structed, that mimic the real configurations. The plasma dynamics are even more
complicated by the fact that the prominence plasma is not fully ionised and it is very
likely that is not even in ionisation equilibrium.

The present Thesis is dedicated to the investigation of the generation of dissi-
pative instabilities at the interface between partially ionised prominence plasmas
and their environment. These interfaces were considered to be tangential discon-
tinuities. In the first instance we considered the interface between the viscous and
fully ionised coronal plasma and the partially ionised solar prominence in which
the dominant dissipative effect is the Cowling resistivity. This situation was dis-
cussed in the one-fluid and two-fluid limits. In the second model we used single
fluid model to discuss the generation of dissipative instabilities in a partially ionised
plasma slab surrounded by a viscous fully ionised plasma or by another partially
ionised prominence plasma. The nature of the dissipative instability means that they
appear for flow speeds lower than the Kelvin-Helmholtz instability (KHI), the value
of the Kelvin-Helmholtz speed is playing a special role in our discussion.

The magnetic fluids were assumed to be incompressible and the prominence/dark
plume equilibrium was considered to be dynamical, with a homogeneous flow paral-
lel to the interface. Assuming a weak damping, we obtained the dispersion relation

117



of Alfvénic waves propagating along the interface. The presence of dissipative ef-
fects on both sides of the interface renders the dispersion relation to be complex with
the imaginary part of this quantity describing the decay or the growth of waves.

Our results show that in all single models considered the forward propagating
wave is always stable, with the amplitude of the wave decaying because of dissipa-
tion, however, for the backward propagating wave there is a threshold of the flow
(below the KHI threshold) for which the wave becomes unstable.

In the case of a one-fluid plasma the study of the dissipative instability at a single
interface reveals that:
(i) the partial ionisation has a stabilizing effect on the interface for any value of the
ionisation fraction and the unstable behavior can be connected to the viscous nature
of the coronal plasma
(ii) the partial ionisation has little effect on the threshold where waves become un-
stable. For a plasma where neutrals are abundant, the instability appears for higher
values of flows, i.e. neutrals have a stabilizing effect
(iii) The model was used to study the generation of dissipative instability at the inter-
face of two partially ionised plasmas modeling the prominence and dark plumes. The
unstable mode obtained in this case shows a very low growth rate, meaning that this
type of instability (at least in this simplified model) cannot explain the appearance of
turbulent up-flows in plumes that can be attributed to instability.

The appearance of the dissipative instability in the case of a two-fluid approach is
more complex, as individual species can become unstable, leading to the instability
of the whole mixture. In particular, we found that
(i) the instability can be connected to one single species, and this makes the whole
plasma unstable
(ii) forward propagating waves belonging to neutrals are subject to a hydrodynamic
KH instability, but the growth of modes can be inhibited by the damping due to the
collisions between neutrals and ions
(iii) backward propagating waves connected to ions can become dissipative unstable

The single interface model was extended to account for the effect of disper-
sion, i.e. when waves’ propagation speed depends on their wavelength. A one
fluid partially ionised plasma slab was considered to be sandwiched between two
semi-infinite fully ionised plasma regions representing the solar corona, and by two
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semi-infinite partially ionised prominence with different equilibrium properties than
the plasma in the slab. Again, we studied the conditions that have to be satisfied in
order that the dissipative instability appears in the Alffvén waves propagating along
the magnetic slab. Different treatment was applied for sausage and kink modes, re-
spectively. In our analysis we focussed on the effect of three variables (values of the
equilibrium flow, the dimensionless parameter kz0 and the degree of ionisation) on
the instability threshold. Our analysis shows that
(i) the threshold where the dissipative instability occurs varies with the density ratio
of the slab plasma and its surrounding but also with the wavelength of the waves
compared to the width of the slab. The values of this threshold reveals that KHI will
set in for very high values of flows, values that have never been observed, meaning
that the plasmas discussed in our models are always KH stable
(ii) in the case of a prominence slab surrounded by the viscous corona we obtained
that when the ionisation degree is kept constant (and close to the value of a plasma
abundant in neutrals), waves with very large wavelength are damped, the unstable
behaviour starts at specific wavelengths. The smaller is the density ratio between the
prominence and corona, the plasma becomes unstable for waves that have smaller
wavelengths. Flows at which this transition occurs were obtained to be in line with
the observed values. When fixing the value of the equilibrium flow, we found out
that waves will be unstable for rather large wavelength and real dependence on the
ionisation degree occurs near the end of the interval. We also obtained that the insta-
bility thresholds for kink waves are practically independent on the density contrast.
(iii) in the case of a prominence dark plume surrounded by a cooler and denser promi-
nence the dissipative instability occurs for rather large (thus highly unrealistic) val-
ues of the equilibrium flow,for both sausage and kink modes. For sausage modes the
regimes where waves are dissipative unstable and KH unstable are very close. In the
case of kink modes the KHI sets in only for wavelengths that are smaller than the
width of the slab
(iv) in the case of a counterflow in the external prominence region (backround flows
opposite for the two regions), realistic values of flow speeds at which dissipative
instability occurs can be easily obtained, and here the instability threshold for both
types of waves is very much dependent on the wavelength of the mode and the ioni-
sation degree of the plasma. In the case of kink waves with very large wavelengths,
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the instability is inhibited, waves undergo a physical damping.

6.1 Future possible research avenues

The simplistic models employed in the present Thesis show that the appearance of the
dissipative instability is realistic and these models can be easily expanded. First of
all, compressibility can be added, especially keeping in mind that the compressibility
can have a stabilizing effect on the appearance of instabilities, at least in the case of
KHI (Soler et al. 2012). It remains to be seen whether this is true for the kind of
instability discussed by us.

In order to keep the simplicity in mathematics, the background magnetic field
was assumed to be aligned with the interface. In solar prominences this is not always
the case, and a model incorporating a tilted magnetic field is another possible way to
expand the present research. This obviously will alter the KH threshold and might
bring especially the flows required in model 2 to a more realistic level.

Our analysis was restricted to the linear part of the instability, more particularly to
the generation of the instability. A possibility to expand the present research is to per-
form an initial value study, and follow the generation and evolution of the instability.
For this numerical investigation is needed as the amplitude of perturbations can grow
to the limit where nonlinear analysis will be needed. It remains to be seen whether
dissipative instability can lead to the unstable behavior of the whole prominence.

Finally, the present research can be continued by a possible study of the nature
of the dissipative instability in establishing whether this instability is an absolute or
convective instability.
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