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Abstract 

Centrifugal spinning uses high speed spinneret rotation to generate and elongate jets 

of polymeric material in to fine fibres. Variations of this basic technology has been 

used to form ultrafine fibres from: polypropylene (PP), ubiquitous in the nonwovens 

industry and a key material for nonwovens; polycaprolactone (PCL), a biocompatible 

polymer used previously as a biological scaffold; and polyvinylpyrrolidone with 1-

triacontane (PVP/TA), a copolymer found in the cosmetics industry. This work 

demonstrated the melt centrifugal spinning of PP into sub-micron fibres ≤ 500 nm in 

diameter, and PCL fibres ≤900 nm in diameter. The influences of material properties 

and processing conditions on the fibre and webs properties were investigated and 

relationships established. For melt spinning, increasing the rotational speed will 

reduce the average fibre diameter and when solution spinning PCL a binary solvent 

produced finer fibres with increased surface textures. The spinning of PVP/TA into 

fibres demonstrated in this work has been previously unreported. PVP/TA fibres were 

created by centrifugal spinning at low temperatures were as fine as 1.5 µm on average. 

These fibres were used as an adsorbent and showed an affinity for the capture and 

retention of disperse dyes and hydrocarbons on the fibre surface. Carbon nanotube 

composite fibres were created by dispersing the nanotubes in both PP and PCL 

polymers using ultrasonic waves. The addition of carbon nanotubes significantly 

increased the level of beading during spinning in both PP and PCL as their presence 

causing an increase in Rayleigh instabilities. The addition of nanotubes did not 

improve web strength of the products compared to virgin polymer. Overall, centrifugal 

spinning has proven to be a highly versatile technique, capable of producing ultrafine 

fibres from a range of polymer feed materials which have potential to be utilised in a 

range of specialist applications.
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Chapter 1  
Introduction 

 

1.1 Background 

This work considers the production and utilisation of materials known as nanofibres. The 

EU definition of a nanomaterial requires the article in question to be finer than 100 nm in 

at least one direction (European Commission, 2011). Thus, nanofibres are extremely thin 

materials that are substantially finer than conventional textile materials with unique 

properties as a result. Nanofibres are playing an increasingly significant role in high 

technology environments and are showing the potential to be utilised in an ever expanding 

range of applications. The stand-out applications thus far range from repairing human 

tissue and high tech chemical sensors to cheap, disposable and highly selective filter 

materials (Teo and Ramakrishna, 2006 and Ma et al., 2005). The production and 

utilisation of ultrafine fibres is difficult but there are significant advantageous properties 

of such materials. For example, nanofibre webs can be constructed in such a way that 

they have a distinctive pore size and a large surface area to weight ratio of the fibres which 

offers a high level of functionality (Li et al., 2005). Accordingly, researchers are 

increasingly exploring opportunities to exploit these advantageous properties.  

 

Interest in nanofibres has “exploded” in recent years due to the ubiquity of simple 

electrospinning equipment, the principle means of producing such materials. (Teo and 

Ramakrishna, 2006). This low cost technology can convert a huge variety of materials 

into webs comprised of ultrafine fibres (Burger et al., 2006). However, electrospinning 

also has notable drawbacks which are well documented in the literature and include: a 

low throughput; poor uniformity; a limited material thickness and restrictive processing 
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tolerances (Greiner and Wendorff, 2007). For most materials and applications the low 

production rate of electrospinning is the primary barrier to widespread commercialisation 

and further adoption.  

 

In contrast, centrifugal spinning, is proposed to be a simple and commercially viable 

method equally capable of producing nanofibres but with potentially higher throughputs 

(Sarkar et al., 2010). If this technique demonstrates that high throughput production of 

ultrafine fibres is achievable then it would broaden the horizon of commercial 

applications and nanofibres may soon be found in low cost and disposable product market 

sectors. In this study the structure and influence of polymers and the production 

techniques used to produce nanofibres are critically reviewed (Chapter 2), with specific 

emphasis on a version of centrifugal spinning as designed by Fiberio, which forms the 

main part of the experimental study presented in Chapters 3 - 6. The purpose of the 

research was to study the effects of process conditions on fibre properties using polymer 

systems that have not been extensively covered in the literature as well as to explore the 

structure and properties of the as-spun materials in relation to potential applications.  

 

1.2 Fibres, microfibres and nanofibres 

 

Fibres play a key role in life and human endeavour (Morton and Hearle, 1993). Naturally 

occurring fibres were adopted by early man for clothing, tools, weapons, shelter and 

decoration. Cotton, wool and silk have been valued commodities for thousands of years 

and 20th Century developments in polymer science introduced innovative new materials 

such as polyester and nylon filament. All textile products, regardless of construction 

method or desired application, are built using fibres as their primary base component. The 
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Textile Institute (Withers, 1952) defines fibres as: “textile raw material characterised by 

flexibility, fineness and a high ratio of length to thickness.” 

 

Fibres may be natural or synthetic, staple or filament and may be fully homogenous or 

composites of several materials (Morton and Hearle, 1993). Fibres vary significantly in 

terms of the physical and chemical properties which in term are determined by their 

molecular backbones but all require a minimum level of strength and elasticity if they are 

to be useful as a textile material. Most fibrous materials are made from long chain 

polymers which are large macromolecules made through repetitions of smaller chemical 

units: mers. The long chain lengths result in local interactions and entanglements between 

adjacent polymer structures; these interactions and knot points impart mechanical 

strength through arresting polymer chain movement (Young and Lovell, 1991).  

 

Textile fibre lengths vary from short staple fibres a few mm in length to continuous 

filaments many kilometres long (Morton and Hearle, 1993). Along with length, the fibre 

diameter will also act to determine the potential use of a fibre and for most commodity 

products such as wool and cotton it is diameter that determines the value of a product. 

Textile filaments can vary from millimetres in diameter for industrial uses to as fine as 

50 nm and smaller for some electrospun materials and fibres produced through highly 

specialised techniques (Zhou and Gong, 2008; Burger et al., 2006). For any given material 

the fineness of a fibre will determine its absolute strength, flexibility and handling 

properties along with many other parameters that will be discussed later in Section 1.3. 

Fineness is a key indicator determine the potential market for a fibre material. For 

example: crossbred wool is over 30 µm whereas merino wool is much finer, between 15 

and 20 µm in diameter (Rae, 1973). This difference is significant enough that a merino 
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jumper is a luxury item whereas crossbred wool would form a garment that would 

potentially be uncomfortable and is more suited for the production of carpets. Typically, 

the traditional textile fibres found in apparel and domestic and light industrial applications 

have diameters in the range of tens of microns.  

 

Separate to the conventional textiles market is the demand for speciality and high 

performance fibres with desirable properties that are not typical of commodity textile 

materials. With the surge in research and business in technical textiles there have been 

developments in making fibres much more functional in order to meet the demands of the 

application. For this research one significant area is the development and implementation 

of ultrafine fibres. The creation, characterisation and processing of these specific fibres 

has necessitated the development of a set of technologies not seen in the conventional 

textile industry.  

 

As fibres became finer a new set of terms came into use to describe these new materials. 

Microfibres are commonly found in filters and in domestic cleaning cloths and typically 

possess a linear density less than one denier (Ramakrishnan et al., 2009). Finer fibres with 

diameters smaller than 1 µm fall into a new classification known as sub-micron. The term 

nanofibre is introduced to describe the ultrafine fibres produced by techniques such as 

electrospinning. The strict EU definition of a nanomaterial requires a material to be 

typically below 100 nm in at least one direction (European Commission, 2011). As a 

result fibres thinner than 100 nm are said to be true nanofibres. However, there are many 

articles which refer to any sub-micron fibre (<1000 nm) as a nanofibre and it is deemed 

acceptable to use the term nanofibre to report fibres with diameters under 1000 nm 

(Nguyen et al., 2012). Fibres reported in the literature are often highly varied in diameter 
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so where there may be mixture of true nanofibres and sub-micron fibres within a sample 

it is common to refer to all as nanofibres. As only a limited range of materials can be 

fashioned into fibres that are consistently under 100 nm in diameter this means that the 

broader definition is preferred by many academics and many commercial bodies 

(Ramakrishna et al., 2005). For clarification, from herein a fibre ≤1000 nm in diameter 

will be covered by the term nanofibre along with the term ultrafine fibre. Larger fibres 

that are still finer than 1 denier will be termed microfibres. The term fibre will be used 

interchangeably to describe fibres of any diameter.  

 

Figure 1.1 is included to demonstrate the scale of a nanofibre and shows a nanofibrous 

membrane supported by a conventional spunbonded substrate with an average fibre 

diameter of 20 µm. The extreme fineness is well demonstrated in an example given by 

Burger et al. (2006), who pointed out that only 3 g of polymer would be needed to span 

the 380,000 km between the Earth and the Moon using a circular filament 100 nm in 

diameter. 

 

 

Figure 1.1: SEM micrograph of nanofibrous web mounted on a ~20 µm polyester 

spunbond substrate (Grafe and Graham, 2003). 

 

Despite the readily quotable facts and figures the reality of producing and working with 

nanofibres is often done with difficulty, limitations and compromise (Li and Xia, 2004). 
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The form of material given Figure 1.1 is typical of nanofibre production and application 

where the fine nonwoven is mounted on a supporting substrate. The possibility of 

producing nanofibres as conventional filaments for yarn production is yet to be fully 

developed but is being pursued. Combining this difficulty in producing ultrafine fibres 

using conventional spinning lines with the low breaking load of any given fibre makes it 

difficult to process any filaments made into a yarn. As a result it is difficult to form sub-

micron and nanofibres into a textile fabric using conventional weaving for example due 

to the high tension applied to the yarns during processing. As it stands, any report 

detailing the production of fibres of sub-micron diameter and smaller will likely involve 

the production of a thin nonwoven web. 

 

1.3 Nanofibre properties 

 

Conventional fibres were often graded based on fineness. Egyptian cotton, merino wool 

and silks were highly valued as the finer fibres were more flexible, form the highest 

quality yarns and have the best lustre. This desire for fineness continued in the 20th 

Century when low denier nylon stockings were seen as must have items in the post war 

period. Taking this to the extreme and creating fibres which are sub-micron in diameter 

has a significant impact on many material properties. 

 

A key characteristic of nanofibres that is touted in the literature is the high surface area 

to volume ratio (Teo and Ramakrishna, 2006). This means that for a given weight of 

material there is more surface available for reactions, bonding and interaction with the 

environment. In addition to this, nanofibres have unique mechanical and constructive 

behaviour which can make them suitable for a wide variety of new applications. The 
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fineness of nanofibres imparts a low flexural rigidity which allows for close conformation 

with complex geometries such as a human tissue environment in the case of medical 

textiles. 

 

Typically, in textiles, elongating a fibre of fixed volume will increase the length and 

decrease the diameter which will also have the effect of increasing the surface area of the 

fibre. Similarly, creating fibres through melt or solution spinning will increase the surface 

area compared to the polymer pellet. Creating nanofibres from said polymer will increase 

the surface area further still as per the relationship plotted in Figure 1.2. 

 

 

Figure 1.2: The relationship between the diameter of a circular filament and the available 

surface area. Valid for a total volume of 1 cm3 of a 1 g cm-3 density polymer. 

 

 For example a spherical bead made of 1 g of a polymer of density 1 g cm-3 would have a 

surface area of 5.55 cm2. If this bead was extruded into a circular filament 20 µm in 

diameter the surface area of 1 g of material would increase to 0.2 m2. If the filament was 

made finer to 200 nm in diameter then the surface area would increase further to 20 m2. 
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This large surface area means that ultrafine materials potentially offer a high level of 

surface functionality (Teo and Ramakrishna, 2006). The area available for adsorption, 

particle capture or product leeching is much greater than for the bulk materials or 

conventional filaments. High surface areas also increase the environmental response of a 

material. Molecules will diffuse into the centre of the fibre faster and fibres impregnated 

with chemical sensing elements will respond quicker (Li et al., 2008). 

 

The flexibility of a fibre is also controlled by the fibre diameter; as fibres become finer 

they become far less rigid. Morton and Hearle (1993) modelled a fibre as a simple elastic 

beam and stated that stiffness was dependent on shape, density and most significantly, 

thickness. For a circular fibre it was determined that flexural rigidity is given by the 

equation: 

 
𝑓𝑙𝑒𝑥𝑢𝑟𝑎𝑙 𝑟𝑖𝑔𝑖𝑑𝑖𝑡𝑦 =  

1

4𝜋
𝜂

𝐸𝑇2

𝜌
 

Equation 1.1 

 

As: 

 
𝑇 = 𝑙𝑖𝑛𝑒𝑎𝑟 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =  

𝜋𝐷2

4
𝜌 

Equation 1.2 

 

Then: 

 𝑓𝑙𝑒𝑥𝑢𝑟𝑎𝑙 𝑟𝑖𝑔𝑖𝑑𝑖𝑡𝑦 =  
𝜋

64
𝜂𝐸𝐷4𝜌 

 

Equation 1.3 

 

Where 𝐷 is the diameter of the fibre; 𝜂 is the shape factor, which for a circle is 1; 𝐸 is the 

Young’s modulus; 𝜌 is the bulk density and 𝑇 is the linear density.  

 

Equation 1.3 shows that fibre stiffness is proportional to the fourth power of the diameter. 

In the model presented, reducing the diameter of a filament by a factor of 10 would result 

in a fibre 10,000 times more flexible. This gives nanofibres improved flexibility over 

conventional fibres which results in a significantly reduced bending radii affording them 
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superior conformity over conventional fibres. However, the reduction in stiffness also 

means that nanofibre and sub-micron fibre webs are very unlikely to be self-supporting 

and will crumple and collapse easily under any load. The latter point is an example of the 

fineness of a fibre creating a potentially undesirable behaviour.  

 

The small cross sectional area also means the force required to break a fibre is many 

magnitudes smaller than conventional filaments. A single electrospun nylon 6 sub-micron 

fibre with a diameter 800 nm can withstand a breaking load of only 152 µN (Bazbouz and 

Stylios, 2010) compared to 170 mN for a 15 denier filament (20 μm in diameter) of nylon 

6 with a typical tenacity of 0.5 N tex-1 (Richards, 2005; Hearle and Cross, 1970). The 

handling of nanofibres is therefore problematic as even minute forces can deform or break 

the fibres. As a result processing ultrafine filaments through conventional textile 

processes is difficult. This fragility will also affect nonwoven web properties and 

nanofibres will exhibit reduced abrasion resistance and bursting strength. One possible 

solution to circumvent the lack of strength is to mount the fine webs on a supporting 

substrate designed to bear the majority of any external load and to help maintain shape 

and improve the product durability. 

 

Nanofibre products are typically formed into nonwoven webs which are held together by 

entanglements and interactions between the filaments. The fineness and high level of 

conformity gives nanofibres the ability to overlap very closely to create webs which are 

very thin but have very small pore sizes. The fibres will have a random orientation but 

may have a bias introduced during production. As the fibres are laid down on top of each 

other there is usually very little Z direction strength unless this is introduced through 
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subsequent processing. Nonwoven webs produced using nanofibres can be produced to 

be extremely thin and highly porous. 

 

A key feature of ultrafine fibrous webs is that very small pore sizes can be created using 

a minimal amount of material. This means that conventional nonwovens webs need to be 

much thicker to achieve low permittivity to fine molecules. Nanofibre and sub-micron 

fibre webs can be extremely thin for the same filter efficiency and a ‘single’ nanofibre 

layer web can be used to filter out very fine particles (Ziabari et al., 2008). This property 

is critical when nanofibres are applied in filtration applications, discussed further on page 

16. 

 

1.4 Nanofibre applications 

 

With the recent proliferation of the electrospinning technique there has been a significant 

push to find useful applications that can utilise the unique properties inherent to 

nanofibres whilst minimising or neutralising the disadvantages (Burger et al., 2006). The 

high cost of nanofibres compared to conventional filaments means there is a drive to find 

high value added applications which can capitalise on the use of novel nanofibres over 

conventional filaments. As it stands, until the cost of producing and applying nanofibres 

is reduced the bulk of research is focused on technically advanced applications that either 

require only a small volume of nanofibres or can justify the relatively lengthy and 

expensive production process. Up until 2006, two thirds of all patents using nanofibres 

related to medical applications and this heavy bias continues in published academic 

research (Burger et al., 2006). Within the medical field there are two primary focus areas: 

three-dimensional scaffolds for tissue engineering and the delivery of drugs using 
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nanofibres (Andrady 2008). Entering the medical market is seen as an immature research 

area with the potential for huge growth if nanofibre products gain approval for use in 

medical applications (Sridhar et al., 2011). The next major application for the use of 

nanofibres is to apply them as a means of separating and filtering various media (Hutten, 

2007). This is a commercially mature area where fine melt blown fibres have been utilised 

for some time (Hassan et al., 2013). The filtration market is one of mass production and 

is cost driven. If there is to be significant deployment of nanofibrous filters then the 

production costs must be significantly reduced and the quality and consistency of 

nanofibres production must be higher.  

 

In terms of the nanofibre formation, the majority of research articles use nanofibres 

produced through the electrospinning process, the nanofibres are therefore likely to be 

applied as a flat nonwoven. This typically involves the fibres overlaying each other as a 

thin two-dimensional web with fibres linked through fusion or entanglements. At present 

there is very little literature reporting the use of woven and knitted structures made from 

nanofibres due to the difficulty in producing and handling nanofibre yarns (Zhou and 

Gong 2008).  

1.4.1 Medical applications 
 

Textiles have been used in a broad range of medical applications and environments such 

as bandages and dressings, surgical gowns, bedding and hygienic items (Bartels, 2011). 

There has also been a significant increase in the use of specialised textile devices that 

help directly with patient care. Examples of this are highly technical medical products 

such as knitted stents for arteries and airways and braided materials for replacing tendons 

and ligaments. Nanofibres are seen to have great potential as a biomaterial which can 
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interact with living biological systems, such as human tissue. Tissue regeneration and 

engineering has become a complementary method to tissue or organ repair or 

replacement.  

 

Various authors have postulated on using nanofibres as scaffolds to repair skin burns, 

muscle tissue and organ repair (Laine, 2013; Ma et al., 2005). One of the key factors in 

using fibrous tissue scaffolds is the degree of inflammatory response (Nguyen et al., 

2012). Increasing the rate of cell growth can speed recovery and reduce scarring in burn 

injuries. This is done by providing an artificial framework along which cells can 

propagate. Natural connective tissues produced by the body have diameters from tens to 

hundreds of nanometres (Ma et al., 2005). Nanofibres are suited for mimicking this extra 

cellular matrix as the dimensions are similar. This similarity between electrospun fibres 

and the extracellular matrix allows rapid cell growth along the fibres which increases the 

rate of healing. When employing nanofibres the cells have directional support and can 

grow along the fibre length as shown in Figure 1.3. Nanofibrous webs have a high 

porosity and a very high surface area, this enables a high degree of surface functionality 

to be imparted if desired. The flexibility in processing means that different fibre 

morphologies and membrane densities can be produced, tailor made to the specific tissue 

environment (Burger et al., 2006). Using nanofibres as a scaffold in tissue engineering 

constructs will reduce this inflammatory response and also increase cellular attachment 

and proliferation compared to more traditional scaffolds (Smith et al., 2008). 
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Figure 1.3: Confocal microscope image of cardiac muscles extending along poly(lactic 

acid) (PLA) fibres produced by centrifugal spinning (Badrossamay et al., 2010). 

 

Nanofibres are also applied in the area of drug and chemical delivery (Prausnitz and 

Langer, 2008). Drugs are typically administered intravenously, topically or through the 

gastrointestinal system. These techniques have disadvantages in that the drug may need 

to be delivered in a high dose at intervals throughout the day. This high dose of certain 

drugs can be toxic and it is known that with oral delivery there is an initial rapid release 

of drugs in to the bloodstream (Zeng et al., 2003b). For some drugs it is more suitable to 

have a lower but more consistent dosing profile than observed with oral delivery. The 

concept behind nanofibres drug delivery is to provide a high level of control over the 

release rate of a drug over a prolonged period of time. The high surface area and 

biodegradability of certain nanofibres has opened up avenues of research in this area. Two 

distinct approaches have been reported in the literature, for example, Chew et al. (2005) 

encapsulated a protein within the amorphous regions of a fibre and were able to control 

the release of a β-nerve growth factor by electrospinning in a biodegradable 

polycaprolactone scaffold. Alternatively membrane release method has been reported 

where the fibres act as a barrier between the skin and a concentrated gel (Bartels, 2011). 



15 

 

 

In this method the rate of drug delivery is controlled by the pore size and diffusion 

characteristics of a nanofibrous membrane. 

 

In the drug encapsulation system Zong and co-workers (2002) found that the drug 

Mefoxin was completely released from sub-micron PLA fibres after 48 hours which led 

them to conclude that the drug was agglomerating at the fibre surface, increasing the rate 

of release. Katti et al. (2004) also found that Cefazolin, an antibiotic, could be loaded into 

poly (lactide-co-glycolide) fibres at a 30 % concentration without significantly changing 

the fibre diameter. Drugs incorporated into fibres can desorb from the fibre at a controlled 

rate allowing for the creation of drug delivery membranes. Figure 1.4 shows how the 

release profile differs between oral deliver and transdermal membranes. The combination 

of high doping capability and controllable release rates means that drug doped nanofibres 

are potentially useful for transdermal drug delivery. 

 

 

Figure 1.4: Release rates of the drug, Rivastigmine, over time when taken a) orally 

every 12 hours and b) as a transdermal membrane (Smith and Uhl, 2009). 

 

 

There is also the potential for applying nanofibres directly to a conventional medical 

textile materials in order to impart additional functional capability. This is typified 
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through a recent patent filed by Daniels et al. (2012) where conventional filaments are 

covered with a nanofibre sheath, Figure 1.5. The purpose of this enhancement is to induce 

coagulation, reduce blood loss and increasing the effectiveness of the wound dressing.  

 

 

Figure 1.5: Nanostructure enhancement of conventional materials to aid haemostatic 

wound dressing (Daniels et al., 2012). 

 

The research into using nanofibres in medical applications is intensive but is primarily 

focused on electrospun filaments. In comparison there is a paucity of research using 

centrifugal spun fibres in medical applications and it is proposed that centrifugal spinning 

could broaden the range of polymer feedstock that could be converted into ultrafine fibres 

for use in healthcare and therapeutics (Badrossamay et al., 2014). 

 

1.4.2 Filtration and separation 
 

Whilst a great deal of focus has recently been towards using nanofibres in biomedical 

applications the most significant commercial application for fine fibres remains in 



17 

 

 

filtration (Persano et al., 2013). Filtration is currently the largest market for melt blown 

fibres, the most obvious example being the use in the surgical facemask. 

 

Section 1.4.1 touched upon using fibres as a separation medium was when describing 

drug delivery through a separation membrane. In simple terms, filtration efficiency 

increases linearly with decreasing filter thickness, and so having extremely thin, selective 

membranes can create high efficiency filters with low pressure drop. As mentioned 

previously, nanofibrous membranes have small pore sizes and can be used to create 

extremely efficient filters for gas and liquids. Andrady (2008) states that on a per weight 

basis all evidence points to nanofibre mats outperforming conventional filter media. 

 

A fibrous filter consists of fibres, which may be entangled or bonded and which lie 

perpendicular or tangential to the fluid flow direction, depending on method of operation. 

As the stream passes through the filter there are numerous ways in which a particle can 

deposit on a fibre which rely on mechanical or electrostatic interactions. As the fibre 

diameter decreases towards the nanoscale the influence of the various methods of 

interactions changes. Wang and Otani (2012) and Yun et al. (2007) independently show 

that nanofibre mats can achieve the same level of collection efficiency as current 

commercial microfibre filters at a much lower material mass and with a lower pressure 

drop. A lower pressure drop across a filter is a consequence of a lower fluid resistance 

and allows for faster flow rates for the same applied pressure. 

 

One area of filtration where nanofibre mats will be of great use is the filtration of 

extremely fine particles. Micron sized and sub-micron particles are easily collected by 

conventional filter media but to capture nanoparticles efficiently the fibrous filter must 
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be made from finer fibres. In addition, the interfibre spaces are much smaller for finer 

fibres resulting in finer fibres. By controlling the pore size nanofibrous webs can be 

produced to create a highly selective membrane. There has been a high level of research 

effort focussed on accurately controlling the size, shape and uniformity of nanofibrous 

webs for precise separation and drug delivery applications (Ziabari et al., 2008). The 

small pore size and fibre profile means they can more effectively hold a nanoporous 

coating capable of accurate molecular separation.  

 

Nanofibres have the potential to be utilised in all the primary particle capture and 

separation mechanisms including: surface straining, depth straining, depth filtration and 

cake filtration (Sutherland and Purchas, 2002). In surface straining the particle is larger 

than the pores and simply cannot pass through. This separation method is most commonly 

found in membrane materials with uniform pore sizes. Using nanofibres would allow for 

extremely fine pore sizes which could potentially surface strain particles at a very high 

efficiency.  

 

Depth straining is performed by thicker nonwovens with variable pore sizes. The particles 

travel through the pores until they reach one that is too small to pass through, trapping 

the particle at this point. Depth filtration does not rely on pore size separation but captures 

particles using various molecule to fibre interactions where the particle is actively drawn 

to the fibre surface as shown in Figure 1.6. This enables the filtration of particles that may 

be much smaller than the pore sizes.  

 

Cake filtration uses a build-up of particulate on the substrate surface to perform the 

majority of the filtration. This is often used where the cake has potential value. Nanofibres 
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would act as a pre-filter, ensuring that smaller particles from an external cake do not foul 

the main filter media (Homaeigohar and Elbahri, 2014). 

 

An alternative approach focuses on the possibility of direct collection of nanoparticles 

onto the fibres using functionalised surface treatments on the polymer. For example, the 

smaller fibre diameters allow for salt crystals to form, with the nanofibres acting as a 

nucleating agent. The crystals are bound by ionic forces to the surface of the fibres 

removing them from the solution as shown in Figure 1.6. This method of attracting 

particles to the fibre for retention is known as an affinity membrane and nanofibres have 

been used as a binding site for ligands for solid phase extraction (Yoshimatsu et al., 2008). 

 

 

Figure 1.6: SEM micrograph of sodium chloride crystals captured on sub 500 nm fibres 

mounted on a poly(ethylene terephthalate) substrate (Grafe and Graham, 2003). 

 

1.4.3 Other application areas 
 

There are numerous other potential applications for nanofibres. In addition to the previous 

applications outlined above there are more niche examples that have received attention. 
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For example, speciality polymers such as perfluorosulfonic acid are being electrospun 

into nanofibrous mats which act as proton exchange membranes in hydrogen fuel cells 

(Choi et al., 2010). In this form the membrane separates the anode and cathode and 

prevents the exchange of fluids while the perfluorosulfonic acid allows transport of 

protons but not electrons. In another example, electrospun polyacrylonitrile (PAN) fibres 

were carbonised and used in a microbial fuel cell and were found to significantly enhance 

the current density across an anode (Chen et al., 2011). 

 

There is also the potential for use of nanofibres in other high end applications such as 

electrostatic dissipation, photovoltaic devices and electronic and biological sensors 

(Bhardwaj and Kundu, 2010). The area of nanofibre sensor application and development 

has been recently reviewed by Nguyen et al. (2012) who identified this area as one of 

significant growth. 

 

Nanofibre applications are currently limited by high costs due to low throughput 

compared to conventional nonwovens. It is clear from this literature review that current 

research is heavily biased towards finding high value applications for nanofibres. If the 

apparent cost of nanofibres was to be reduced and availability increased then a wider 

range of uses could be explored beyond high technology medical applications and could 

potentially move into domestic and disposable markets where the conformity and high 

surface area could prove useful for next-to-skin and liquid retention applications. 

1.4.4 Nanofibre nanocomposites 
 

Another distinct area in the use of nanofibres is as a medium for carrying an active 

medicinal ingredient. In this format the polymeric nanofibres act as a composite matrix 
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for nanoscale additive fillers. For example, by incorporating circular silver nanoparticles 

in an electrospinning solution a nanofibrous polymer matrix encapsulating the silver 

particles within the fibres will be created. Alongside active agents for drug delivery there 

is also a desire to add other components to sub-micron and nanofibres to improve their 

functionality and change the subsequent properties. These fillers may be simple particles 

or they may have a significantly large aspect ratio. Long and thin additives are of 

particular interest as they can significantly change the tensile behaviour of a fibre. An 

example of this is given by Rojas et al. (2009) who added cellulose nanowhiskers to 

polystyrene, these 10 - 20 nm thick artefacts significantly increased the elastic modulus 

and modified the thermal behaviour. The possibility of using nanofibres in fast response 

sensors is significantly more achievable and commercial the addition of electrically 

conductive filler. Carbon nanofibres are one such filler material that allows for electrically 

insulating polymers to conduct electricity via an internal conducting network material 

(Bouvree et al., 2009). When carbon nanotubes are applied correctly they will enhance 

the strength of the fibre, or film they are encased within (Qian, 2002). The reported 

dramatic increase in tensile strength has earned carbon nanotubes (CNTs) near mythical 

status as a wonder material (Thostenson et al., 2001). Naturally, significant research has 

already been conducted using fibres containing CNTs but the translation of “wonder 

material” properties to useful composite is fraught with difficulties that will be discussed 

later in this work.  

 

1.5 Polymers 

 

All fibrous materials are constructed from polymers. Polymeric materials are one of the 

key ingredients of life, for example deoxyribonucleic acid (DNA); keratinous material 
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(hair); proteins and enzymes are all long chain molecules that are essential for biological 

functions. Polymers are also prevalent in the natural world around us, cellulose, lignin 

and natural rubbers being the obvious examples. More recently, synthetic polymers were 

developed as substitutes for natural materials due to the demands of industry, war and 

natural shortages. Key synthetic polymers include the polyamides, polyesters, 

polyethylene and polypropylene. Various synthetic polymers are of interest in this study 

and it is these fabricated polymers, rather than the natural materials, that will guide the 

discussion below.  

 

Synthetic polymers, such as polypropylene and polyester are produced through a process 

known as polymerisation which involves initiating and propagating the growth of the 

monomeric units into the formation of a polymer (Hirte, 1984). Polymerisation usually 

does not produce polymers that are of constant size but rather the process will yield a 

distribution of molecular weights. The average molecular length of a sample of polymer 

will often determine the properties of the material as the chain length will influence 

solubility, flow behaviour and elasticity of the chains (Ferguson, 1995). 

 

As a rule, fibre forming synthetic polymers can be separated into two classes: 

thermoplastic and thermosetting (Hamley, 2004; Lyons, 2004). Thermoplastic polymers 

have linear chains that can become increasingly mobile as the temperature is increased. 

Thermoplastic “freezing/crystallisation” and melting is an entirely physical, and thus, 

reversible interaction. Thermoset polymers in contrast, cure upon heating and chemically 

change, thus making this transition irreversible.  
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Polymers that are thermoplastic can be easily melt processed and there is a wealth of 

information available on the melt processing of such materials. For non-thermoplastics it 

may be necessary to dissolve the polymers in solvent to induce fluid behaviour and allow 

for the formation of new shapes and conformations.  

 

1.6 Centrifugal spinning 

 

The earliest patent found pertaining to centrifugal spinning was published by Manning 

(1943) which concerned the production of nonwoven materials. Further patents were 

granted in the 1980’s detailing the use of a spinning apparatus using centrifugal spinning, 

Figure 1.7 (Snowden, 1982, Keuchel, 1988). Developments and variants of this 

technology have been reported only sporadically since: more often being used to produce 

filaments from metallic elements (Sedaghat et al., 2006). Therefore, the widespread 

adoption of this form centrifugal spinning by the fibre processing industry did not occur 

and academic and commercial interest in the processing technique dissipated.  

 

Figure 1.7: A schematic from early patent detailing the principle components of 

centrifugal spinning (Keuchel, 1988). 

 

This lack of widespread adoption was likely due to conventional spinning allowing for 

easier control of the drawing process for filament production and rival technologies such 
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as melt blowing and spunbonding dominating the nonwoven production side. However, 

interest was reignited when the potential for producing ultrafine fibres became apparent. 

Electrospinning had demonstrated that webs produced from nanofibres had interesting 

properties and efforts were directed into finding alternative means of producing such 

fibres. In 2009 a paper was published by a group at the Pan-American University, Texas, 

that detailed the production of nanofibres through a process commercialised under the 

name ForcespinningTM (Lozano and Sarkar, 2009). Simultaneously a Harvard research 

group published an article where filaments were created using a technique called rotary 

jet spinning (Badrossamay et al., 2010). In reality both these techniques are versions of 

the principles laid out in the early patents and the term centrifugal spinning has been 

reapplied to these new research techniques. These recent publications and rapid 

commercialisation acted as a trigger for renewed academic and commercial interest in 

this technique and it is now thought that this process could bridge the gap between 

academic research into nanofibres and large scale production (Raghavan et al., 2011). 

 

Producing nanofibres using this technology has advantages over the more established 

electrospinning (Lozano and Sarkar, 2009). There is no need for a high voltage supply 

and as such there no conductivity constraints on the polymer choice. Centrifugal spinning 

increases the production rate dramatically compared to single jet electrospinning. 

Currently electrospinning using the polymer melt is far less attractive than solution 

electrospinning. 

 

This chapter will introduce the principles underpinning centrifugal spinning and will 

discuss literature findings for how production parameters and relevant material 

characteristics relate to fibre formation. This section will also detail the current selection 
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of polymers processed using centrifugal spinning. The advantages of centrifugal spinning 

will be presented and brief comparisons to other nanofibre production techniques will be 

drawn.  

1.6.1 Principle of centrifugal spinning 
 

Centrifugal spinning is a method of producing nanofibres using high speed rotation of a 

radial spinneret (Lozano and Sarkar, 2009). In essence, centrifugal spinning requires only 

high speed rotation of a porous spinneret containing fluid polymer and the fundamental 

elements are drawn in Figure 1.8. 

 

 
Figure 1.8: Simplistic view of the key components of centrifugal spinning (Lozano and 

Sarkar, 2009). 

 

 

The simplicity of the system shown above allows for processing of polymers in either 

solution or melt. Polymer in fluid form escapes the spinneret through fine orifice holes 

under the influence of high speed rotational forces. The polymer stream encounters 

aerodynamic resistance due to the high jet velocity on exit, along with a drawing tension 

due to the centrifugal force on the steam which both act to reduce the jet diameter. The 

polymer then solidifies in the ambient air before coming to rest on the collector. The 

spinning of molten sugar into candy floss is an example of centrifugal spinning and 
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Huttamen and Kellomaki (2011) used a shop bought candy floss machine with an 

operating speed of 2800 rpm to spin fibres from polylactide. 

1.6.2 Fundamental concepts 
 

Within the rotating spinneret there are competing interactions that will determine the flow 

of a fluid through a spinneret orifice: the outward inertia of the fluid; the viscous 

resistance within the orifice and the “hydrostatic pressure”. These three parameters will 

be considered individually with respect to the possible processing parameters. 

 

1.6.2.1 Centrifugal force 

Centrifugal force is the apparent “centre fleeing” force associated with circular motion. It 

is commonly explained as the force which acts in opposition to the centripetal (centre 

seeking) force acting on an object rotating about an axis. However, in classical mechanics 

centrifugal force does not exist, the centre fleeing behaviour is in fact the inertia of 

moving objects. Newton’s first law of motion states that all moving objects continue in 

the same direction of current travel unless they are acted on by an unbalanced force. The 

case of a ball affixed to a central point by a piece of string provides a useful example. 

This is a case of uniform circular motion and provides a useful example for the forces 

experienced in the spinneret. The ball has rotational motion due to the tension in the string 

applying an unbalanced force, causing the path of the ball to divert through an arc.  

 

A bobsled sliding down a course, a rollercoaster performing a loop and the ball on a string 

all exhibit the concepts of inertia and a reactive centripetal force. In the examples given 

centripetal force is the unbalanced action which causes the sled, rollercoaster car or ball 

to deviate from straight line motion.  
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In uniform circular motion the centripetal acceleration component is always directed 

toward the centre and is calculated through. 

 

 
𝑐𝑒𝑛𝑡𝑟𝑖𝑝𝑒𝑡𝑎𝑙 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛, 𝑎𝑐 =

4𝜋𝑅2

𝑡
 

Equation 1.4 

 

 

   

   

 

Where  𝑡  is the time period of one revolution and 𝑅  is the radius of the circle. The 

centrifugal force, 𝐹𝑐 , can be calculated using 𝐹𝑐  =  𝑚 𝑎𝑐  where 𝑚 is the mass of the 

object in question. 

 

In centrifugal spinning the inertia of the fluid is therefore dependent on the rotational 

speed and the radius about which it is rotating. Increasing the speed or the radius of the 

spinneret will result in a higher level of inertia in the fluid. By making the radius of a 

spinneret larger a higher fluid will have a higher inertia at a same rate of rotation. 

 

There is a temptation, given the name of the present topic of discussion, to state that there 

is an outwards acting centrifugal force that “holds the fluid against the sides” or 

“balances” the centripetal force. To reiterate the use of this descriptor is incorrect as the 

fluid is constantly in motion and this outward ‘force’ is actually straight line inertia of the 

mass. 

1.6.2.2 Fluid pressure 

A fluid rotating at sufficient speed within a spinneret will be held against the sides of the 

container by inertia. Depending on the volume of liquid there will also be a variable 

pressure throughout the depth due to hydrostatic pressure. 
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The hydrostatic pressure, 𝑃ℎ is determined by the pressure exerted by the influence of 

gravity and is given by the equation: 𝑃ℎ = 𝜌𝑔ℎ, where 𝜌 is the fluid density, 𝑔 is the 

force due to gravity and ℎ is the height of the fluid column. However, in a batch, spinning 

system where there is no direct injection of fluid the hydrostatic pressure is many 

magnitudes smaller than the inertial force and so is often omitted from calculations. 

However, the principle of hydrostatic pressure can yield a relationship between 

centripetal acceleration and pressure generation.  

 

Consider Figure 1.9, where there is an enclosed tube of length R rotating at speed ω about 

one end with internal fluid of such a volume that the tube has height h: 

 

 

Figure 1.9: Rotating cylinder containing a fluid. 

 

If this tube was stood vertically the pressure at the outer wall, 𝑃1, is found using the 

equation 𝑃1 = 𝑃0 + 𝜌𝑔ℎ. In the rotating situation presented above, where ω is sufficiently 

high that the centripetal acceleration 𝑎𝑐>> 𝑔 the relationship becomes 𝑃1  =  𝑃0  +  𝑝𝑔𝑎𝑐 

with 𝑎𝑐 replacing 𝑔 . However, whereas in the vertical setup the acceleration due to 

gravity, 𝑔, remains constant the centripetal acceleration felt at any point now varies along 

the length of the fluid tower. If 𝑥 is a given position along the length of the spinneret then 

the pressure difference due to hydrostatic effects in a rotating medium ∆𝑃𝑐 is found using 

Equation 1.5. 
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∆𝑃𝑐 = 𝜌 𝜔2 ∫ 𝑥 𝑑𝑥

𝑅

𝑅−ℎ

 
Equation 1.5 

 

In the real spinneret the system becomes more complex as there are now two tube 

diameters to consider because there is an orifice component as well as a reservoir. A 

simplistic diagram depicting a needle tipped spinneret is shown in Figure 1.10. 

 

Figure 1.10: Rotating spinneret with orifice aspect. 

 

However, Pascal’s Law dictates that in any irregular shaped system the hydrostatic 

pressure is independent of the shape. Applying this law to the new system means that the 

inertial pressure felt at the needle tip is merely the sum of the forces felt in an imaginary 

column of fluid that has an equal surface area to the needle. This new term is defined as 

∆𝑃𝑐. As atmospheric pressure applies at both ends of the fluid it cancels so that: 𝑃1 =  ∆𝑃𝑐 . 

Thus, for any spinneret shape Equation 1.5 holds under static fluid conditions to produce 

Equation 1.6: 

 

 
∆𝑃𝑐 = 𝜔2𝜌 (𝑅ℎ −

ℎ2

2
)  

Equation 1.6 
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The implications of Equation 1.6 are that if fluid density, angular velocity or spinneret 

circular diameter increase then ∆𝑃𝑐 increases. In the initial condition when the spinneret 

is full, 𝑅 =  ℎ, the overlying pressure is at a maximum value. As the fluid is depleted, h 

decreases until such a time that that ℎ =  0 rendering ∆𝑃𝑐 = 0. 

 

If continuous systems are realised the polymer may be actively pumped into the spinneret 

at a real pressure. In this case value the initial value for 𝑃0 could be significantly higher 

than ∆𝑃𝑐. However, in the batch system explored here this value remains significant. 

1.6.2.3 Viscous forces 

In centrifugal spinning the centripetal force is present as frictional resistance within the 

spinneret. The contained fluid in the spinning reservoir will experience a combination of 

pushing and frictional centripetal forces. As the spinneret accelerates to operating speed 

the fluid polymer is forced to the walls of the spinneret by the circular velocity forces. At 

orifice points the fluid may escape but must overcome the high resistive forces as it passes 

through the channel. This resistive force is a combination of frictional resistance between 

the polymer and orifice surface and the rheological capillary resistance. This internal 

frictional resistance is more often described using the property of viscosity. Viscosity 

describes the physical behaviour of a liquid that is in motion where the flowing of a 

product is generated by the application of a shear stress. Most plastics are non-Newtonian 

and don’t begin to flow until a yield point is exceeded by the shear rate. Below this yield 

point the shear energy is simply absorbed by the fluid.  

 

Capillary resistance is the force that acts to resist the flow of a fluid down a narrow 

channel and will depend on the capillary profile and the viscoelastic behaviour of the 
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fluid. This resistive capillary force, FS1 is given by Mellado et al. (2011) to be a function 

or surface tension and capillary diameter ac given by Equation 1.7 

 

 𝐹𝑆1 = 𝜎𝑑2 Equation 1.7 

 

Where 𝜎 is the surface tension and 𝑑2  is the capillary radius. This function does not 

consider viscosity despite a thin liquid such as alcohol having obviously less resistance 

to capillary flow than a viscous liquid such honey. The function 𝜎𝑑2 is further limited as 

it only considers the orifice interface whereas the true viscous resistance to capillary flow 

a function of the length and is found using extrapolation of the Hagen-Poiseulle laminar 

flow equation. This new equation is given in Equation 1.8 below (Gooch, 2011):  

 

 
∆𝑃𝜂  =  𝑄

8𝜂𝐿

𝜋𝑑2
4
 

Equation 1.8 

 

 

Where ∆𝑃𝜂 is the pressure drop through a capillary in Pascals; 𝐿 is the capillary length in 

metres and 𝑑2 is the capillary radius in metres. The pressure drop is therefore dependent 

on the volumetric flow rate 𝑄 in m3 s-1. Equation 1.8 makes a variety of assumptions in 

that the pipe is sufficiently long and narrow such that the fluid displays laminar flow 

 

From this it can be seen that increased fluid viscosity or a reduction in capillary diameter 

will increase the resistance to flow within the capillary. Shortening the length of the 

capillary reduces the capillary resistance. In a static situation the flow rate is zero and so 

the viscous force falls to 0. However, the viscous resistance is large at any given flow 

rate. 
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1.6.2.4 Surface tension 

A fluid will have a tendency to occupy the least surface area possible. This phenomenon 

is known as surface tension and comes from the intermolecular cohesive forces that act 

within a fluid. At a boundary the net force is directed away from the edge and acts to pull 

the boundary molecules inwards in order to assume a shape of minimal surface area. It 

was proposed by Padron et al. (2013) that as the solution or melt reaches the orifice exit 

it remains bound to the walls of the spinneret and assumes a form of a pendant drop. They 

propose that the fluid tip is held in place doe to the interfacial surface tension. At the 

orifice edge this surface tension acts as to resist the flow of fluid outwards. The magnitude 

of this force is derived from orifice diameter, surface tension and bead angle via the 

relationship shown in Equation 1.9 (Padron et al., 2013): 

 

 𝐹𝑠2 =  𝜋𝑑2𝜎𝑠𝑖𝑛𝛼 Equation 1.9 

 

Where 𝛼 is the angle between the fluid bead and the orifice plane at the point of contact. 

1.6.2.5 Critical spinning condition 

There have been attempts to define the above interactions in a unifying equation which 

would link the required spinning speed to the parameters. In a simple centrifugal spinner, 

the flow of the polymer through a spinneret orifice will depend primarily on the rotational 

speed and viscous resistance to flow. At a rotational speed of zero the polymer is entirely 

under the influence of gravity and surface tension. As the spinneret accelerates in rotation 

the fluid polymer is forced, by inertia, to the outer walls of the mandrel. At the orifice 

capillary the fluid must have sufficient inertia to overcome the viscous resistance and 

enter the capillary. Once in the capillary, inertia will drive the polymer towards the end 
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of the needle/channel and under steady state conditions it is proposed that a pendant drop 

will form which is held in place by polymer surface tension.  

 

At a moderate rotational speed, where the polymer inertia exceeds the capillary resistance 

the polymer will travel through the capillary and reach the exit point. This condition was 

termed by Mellado et al. (2011) as the critical rotational speed, ωc; a term also adopted 

by Padron and co-workers (2013). They hypothesise that at the critical rotational speed a 

pendant drop forms, the various forces are balanced and a new surface tension derived 

component must be overcome before the jet can escape. These models have tried to 

balance the forces to create a situation where the internal resistive forces are equal to the 

inertia of the polymer. Mellado et al. (2011) modelled this balancing situation as a 

balancing of centrifugal force to the capillary force, Equation 1.10: 

 

 𝐹𝐶 = 𝐹𝑆1  

 𝜌𝜔𝑐
2𝑅𝑑2

3 = 𝜎𝑑2  

Solving for 𝜔𝐶 
𝜔𝑐 ~ √𝜎 𝜌𝑑2

2𝑅⁄  
Equation 1.10 

 

Where FC  and FS1 are the outward ‘centrifugal force’ and resistive capillary force as 

determined by Mellado et al. (2011). This differs from the equation found by researchers 

working out of the Pan-American Texas University. Padron et al. (2013) also modified 

the equation with respect to surface tension and critical rotation speed, Equation 1.11: 

 

 

 

𝜔𝑐 = √
2𝜋𝑟𝜎𝑠𝑖𝑛𝛼

𝜌𝑉𝑝𝑑𝑅
 

Equation 1.11 
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Both these models consider a steady state critical jet exit condition, 𝜔𝑐,  as being 

completely independent to the fluid viscosity and length of the needle. This oversight 

implies that a material with a high surface tension, such as water, would require a higher 

rotational speed than a viscous melt. It is also incorrectly implied that a fluid travelling 

through a long needle where 𝐿2 ≫ 𝑑2would require the same rotational speed to create a 

jet as a fluid travelling through a hole where 𝐿2 > 𝑑2. However, Xu et al. (2014), working 

from Equation 1.11 added in a viscous component to create the equilibrium condition, 

Equation 1.12: 

 

 
𝜋𝑟𝜎𝑠𝑖𝑛𝛼 +  

𝜋∆𝑃𝑑3

12𝐿2
=  𝜌𝑉𝑝𝑑𝑟𝜔𝑐

2 
 

 

Which yields: 

𝜔𝑐 = √
12𝐿2𝜋𝑟𝜎𝑠𝑖𝑛𝛼 + 𝜋∆𝑃𝑑2

3

12𝜋𝜌𝑉𝑝𝑑𝑅
 Equation 1.12 

 

Where ∆𝑃 is the pressure drop across a capillary orifice of length, 𝐿2 and diameter 𝑑2 

and 𝑉𝑝𝑑 is the volume of the pendant drop. 

 

A search of the literature indicates that there is no conclusive mathematical model 

published that accurately details the jet formation procedure in centrifugal spinning. The 

equations above do not account for the variable pressure experienced by a fluid as it is 

subject to acceleration as detailed in Equation 1.5. Modifying Equation 1.12 to include 

the cumulative pressure component a more accurate relationship equation can be derived, 

Equation 1.13: 

 

 
𝜋𝑑2𝜎𝑠𝑖𝑛𝛼 =  𝜌𝑉𝑝𝑑𝑅𝜔2 +  4

∆𝑃𝐶 − ∆𝑃𝜂

𝜋𝑑2
2  Equation 1.13 
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The theoretical implications of Equation 1.13 are: 

 Increasing the viscosity, η, will increase ∆𝑃𝜂 and therefore requires an increase in 

𝜔; 

 Decreasing the orifice diameter will also increase ∆𝑃𝜂  as it is inversely 

proportional to the fourth power, as per Equation 1.8. Increasing the length of the 

orifice will also increase ∆𝑃𝜂 as the pressure drop is directly related to L2; 

 Increasing the density of the fluid will reduce the required angular velocity to meet 

the critical condition; 

 Increasing the spinneret size, R, will also reduce the required angular velocity. 

 

However, it is the opinion of this author that the critical condition is only satisfied for an 

instant and that the relationship proposed above is only realised in situations of negligible 

aerodynamic and extensional forces. In real centrifugal spinning, any polymer on the 

outer edge of the spinneret will be subjected to large shear forces due to air resistance (a 

solution spinneret (𝑅 = 80 mm) spinning at 10,000 rpm has a surface velocity in excess 

of 80 m s-1) and tension from. This high drag force will disrupt the formation of the 

pendent drop and will initiate jet or droplet formation through shearing. 

1.6.2.6 Jet formation 

Once the critical condition is met the polymer is able to escape from the spinneret. Once 

this occurs the balancing condition, Equation 1.13, no longer applies as there is a new 

drag component, a tensor component, and the surface tension function 𝜋𝑑2𝜎𝑠𝑖𝑛𝛼 is no 

longer acting against the direction of flow. Padron et al. (2013) propose that during jet 

production there are several forces acting on the jet: the force due to inertia, Fcf, and a 

component generated by the Coriolis force, FR, both these forces act roughly along the jet 
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axis and are seen as extensional forces; acting perpendicular to the jet is the force due to 

aerodynamic drag and the Coriolis, Fd; acting to resist the outwards is the viscous force, 

which they denote with Fη. On the jet that is in a mature stage of flight there is a tensor 

component, σε, that acts to elongate the jet further. These forces and directions according 

Padron et al. (2013) are illustrated in Figure 1.11. 

 

Figure 1.11: The various forces acting upon a fibre immediately after leaving the orifice 

(Padron et al., 2013) 

 

Once the jet escapes the spinneret the continuous stream of the jet means that there is now 

a tension acting on the fluid at the tip; this tension will act to pull polymer away from the 

orifice and will also disrupt the expected shape of the polymer jet as it leaves the orifice.  

 

This tension acts to elongate the jet, creating finer fibres. The amount of tension applied 

depends on the rotational speed and the mass of the fluid currently in flight that provides 

the pulling force. Reaching the critical rotational speed and jet initiation does not 

guarantee fibre formation: the polymer jet could indeed form a jet but could break up into 

droplets depending on the fluid properties. The process of jet elongation and fibre 

formation is indeed complex and the previous studies detailed in this section have 
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attempted to establish the controlling factors and relationships but with only limited 

success. 

 

How the polymer jet behaves after escape from the spinneret is dependent on the fluid 

and the processing conditions. As mentioned before there are extensional forces, 

generated by rotational inertia of the fibrous mass, that place the jet under stress This 

stress then causes jet elongation. However there is also a significant drag component that 

works to elongate the fibres. If the balance between extensional and viscoelastic forces is 

favourable then the jet will extend evenly and solidify into a fibre. In an unbalanced 

situation the jet will become disturbed and will break up. When a jet disintegrates the 

polymer stream is no longer subject to an external extensional force and surface tension 

acts to condense the fragment into a spherical droplet. Bead formation during fibre 

production is a common occurrence in melt blowing, electrospinning and centrifugal 

spinning and is largely regarded as undesirable (Fong et al., 1999). The formation of 

droplets in fluid streams is understood to be controlled by Plateau-Rayleigh instabilities 

(Badrossamay et al., 2010). 

 

 

A classical understanding of synthetic fibre spinning suggests that increasing the 

throughput for the same level of draw will create a thicker fibre (Zieminski and Spruiell, 

1988). The principle similarly holds true in centrifugal spinning. Polymer throughput rate 

is linked to the balance of forces introduced in Equation 1.8 and in Equation 1.13. A 

decrease in viscous resistance or an increase in inertial forces will increase the throughput 

rate under identical conditions. Inertia is the most significant force driving the polymer 

through the capillary so the rotational speed will also contribute to the polymer throughput 

rate. In centrifugal spinning, lowering the angular velocity will reduce throughput rate 



38 

 

 

but will inevitably reduce the drawing force applied so a finer diameter may not be 

achieved.  

 

With centrifugal spinning Badrossamay et al. (2010) suggested that the fibres assume a 

roughly tangential path to the collector and that total flight path was slightly larger than 

the collector distance. In work performed by Mellado et al. (2011) it was proposed that 

the final jet diameter could be linked by the relationship, Equation 1.14: 

 

 
𝑑𝑓  ≈  

𝑑2√𝑈√𝜈

√𝑅𝑐
3 𝜔

 
Equation 1.14 

Where 𝑑𝑓  is the final jet diameter; 𝑈  is the jet exit velocity; and ν is the kinematic 

viscosity. 

 

Equation 1.14 suggests that the final jet diameter is influenced significantly by the 

collector distance. Research conducted since then has identified that the viscoelasticity of 

the fluid anchors the jet to the circular rotation of the spinneret (Padron et al., 2013). The 

aerodynamic drag will act on the polymer jet to bend the jet stream away from the 

collector. The path of the fluid jet will assume a flight path that depends upon the fluid 

properties and rotational speed. Padron et al. (2013) using high speed cameras, observed 

that the initial flight path is significantly different based on spinneret speed, Figure 1.12. 

They concluded that the jet actually completes several orbits of the spinneret before it 

reaches the collector; thus, allowing additional time for elongation. 

 



39 

 

 

 
Figure 1.12: Model of fibre jet flight path based on rotational speed (Padron et al., 2013). 

 

 

As the fibres are attenuated by passing a high speed fibre through air there is a significant 

amount of turbulent interaction. Padron et al. (2013) has tried to explain the influences 

on a jet at various points based around the universal continuity equation but ultimately, 

the motion of the jet is chaotic and mathematically explaining the jet interactions from 

abstract coordinates is of limited academic interest given the field in which this 

technology is relevant. In the same work, the empirical observations made by Padron et 

al. are of far more use. 

 

The fibre is not immediately forced to the collection system upon leaving the spinneret, 

rather the polymer stream is pushed outwards but then settles at a radial distance for a 

few spinneret rotations, mimicking the action of a spinning lasso. This is shown in Figure 

1.13. The fibre continues to stretch for 2 - 5 spinneret rotations and this action means that 

the distance and time available for elongation is much greater than that afforded by the 

spinneret to collector distance. Once the fibre has solidified it is forced radially outwards 

by the aerodynamic forces generated by the rotating spinneret (Padron et al., 2013). 
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Figure 1.13: Fibre trajectory of the centrifugal spinning of PEO at 4,000 rpm.

(Padron et al., 2013). 

 

1.6.2.7 Jet breakup 

Of particular concern in ultrafine fibre production is the final fibre diameter distribution 

and the level of defects such as polymer beads. The formation of beaded nanofibres in 

electrospinning is caused by the capillary break up of jets due primarily to surface tension 

(Fong et al., 1999). Balancing the surface tension and viscoelastic properties of the 

material with external processing forces is necessary in order to eliminate jet breakup and 

control the resulting fibre diameter. An imbalance in surface tension and viscosity is what 

causes a slow leak to drip from a tap rather than form a fine constant stream. The same 

principles apply to a jet produced through centrifugal spinning where for any unanchored 

fluid in flight the surface tension will cause the liquid to contract into a sphere. This 

breakup of a stream was described in a seminal paper by Rayleigh (1890) which has 

resulted in this phenomena being known as Rayleigh instabilities. Rayleigh instability 

occurs when the surface tension forces cause the development of necking of the fibre at 

intervals along the fluid stream. The necked regions, if allowed to grow unchecked will 

eventually pinch off the fibre which results in a fluid droplet or droplet escaping. These 

droplets will contract into a sphere due to surface tension.  
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There are forces which act to resist surface tension changes. The first of these are the 

internal friction where the viscosity of a fluid can restrict the movement of chains and 

prevent instabilities forming. The second force is an extensional stress where the jet 

stream is held under tension by the outward movement of polymer further along the 

filament. This extensional force acts on the polymer chains to restrict surface tension 

contractions.  

 

If the viscosity is too low the fluid jets will form beads in a very short distance as they 

leave the spinneret. At slightly higher viscosities the jet may breakup further along the 

length of the jet. At appropriately high viscosities there is enough internal friction to resist 

the formation of perturbations. If fibre production is achieved fluid viscosity will 

determine how much elongation of the jet occurs and therefore the final jet diameter and 

level of beading. Extensional forces also have a smoothing effect, which iron out any 

perturbations that form. It is known that the build-up of extensional stress on a filament 

will retard surface tension driven fibre breakup (Chang et al., 1999). 

 

1.6.3 Processing thermoplastics 
 

Thermoplastic materials have a melting point beyond which the crystal structure becomes 

disordered and the polymers display flow behaviour. The viscosity of a melt will 

primarily depend on the polymer chain mobility and chain length and temperature 

(Bower, 2002; Brandrup et al. 1999) Additional elements may also be added to increase 

or reduce the polymer flow rate at a certain temperature.  

 



42 

 

 

A fluid leaves the spinneret at a temperature, Tp, with an initial intrinsic viscosity, η and 

the melt viscosity of the material increases rapidly as the temperature decreases. This 

viscosity increase becomes clearly obvious as the thermoplastic crystallises at 

temperature, Tc and solidifies. This increase in viscosity changes the behaviour of a 

material in response to applied tension and aerodynamic shear.  

 

For many thermoplastics the point of crystallisation is much higher than room 

temperature so active cooling or jet quenching is not required. Jet attenuation only occurs 

between the range Tc < T < Tp. The high shear rates experienced by the molten jets mean 

that it is highly likely that the polymer solidifies very soon after leaving the spinneret. It 

is thought that attenuation time, and the fineness of fibres could be increased by increasing 

this processing “window”. One option is to increase the processing temperature, Tp by 

using a fluid that is at a higher initial temperature. The second option is to extend the 

window by reducing the rate of heat loss; this is done by elevating the ambient 

temperature. The latter option is much more expensive on an energy cost basis. 

 

When melt spinning the fibre diameter will be depending on the viscoelastic properties 

of the jet and the cooling rate of the polymer. The ambient air is at room temperature in 

this technique. A molten polymer introduced to strong aerodynamic forces will undergo 

cooling and solidify rapidly. 

 

The grade of polypropylene chip for melt blowing has a relatively high melt flow index 

of 1800 g 10 min-1, whereas typical fibre grade polypropylene has a melt flow index of 

35-100 g 10 min-1. This MFI characteristic is controlled though using metal catalysts to 

increase the flow rate by inducing chain scission at spinning temperatures. For most 
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polymers, increasing the temperature will reduce the viscosity as more energy is available 

for generating bond mobility. However, at elevated temperatures the polymers may begin 

to degrade or cross-link which can significantly affect the viscoelasticity as polymer cross 

links hinder mobility.  

1.6.4 Processing polymer solutions 
 

When spinning from solution there are three governing properties that will significantly 

affect the spinning properties of a fluid (Golecki et al., 2014): 

1. Polymer chain length; 

2. Polymer concentration; 

3. Solvent choice. 

 

The polymer concentration is a significant factor in determining the solution viscosity 

and surface tension of a fluid; the greater the concentration of polymer the more 

entanglements and resistance to flow (Ueberreiter and Yamaura, 1997). The factors 

determining the melt viscosity of thermoplastics will also impact on the viscosity of 

polymers in solution as the level of chain entanglement and resistance within a solution 

will depend on the polymer used; chain length; branching and temperature and level of 

excitation. Relatively short chains are less likely to entangle and non-polar chains tend to 

interact to lesser extent than polar chains, whilst these considerations dominate; solvent 

choice will also impact the overall solution properties. 

 

Solvents differ in volatility; intrinsic viscosity and miscibility with the polymer. For 

solution spinning the propensity for fibre formation is often governed by the solvent 

removal rate (Golecki et al., 2014). Whilst the polymer is in solution it is able to flow and 
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elongate, once the solvent is removed the polymer is largely fixed and the diameter will 

remain constant. A polymer jet must transition from solution to fibre and where 

solidification will depend on the solvent evaporation rate. In centrifugal spinning the 

solvent evaporation rate will largely depend on the solvent used. The rate of evaporation 

is linked to the temperature and the volatility of a solvent. It has been stated by Golecki 

et al. (2014) that fibre diameter increases with increasing volatility. Solvents that 

evaporate too rapidly will create a polymer jet that solidifies before elongation is 

complete. Conversely, if the solvent evaporates too slowly the fibre may still be fluid 

when it hits the collector and may disintegrate or spread out into other fibres, losing shape. 

The evaporation rate can be accelerated or retarded by adding a non-solvent. The use of 

a non-solvent/solvent mixture such as by adding methanol to a 

chloroform/polycaprolactone solution can significantly influence the spinning behaviour 

as the evaporation rate and viscosity are affected (Jeun et al., 2005). 

 

Golecki et al. (2014) published research trying to create a model that links the conditions 

for steady state continuous production of fibres as opposed to beads. They proposed 

Equation 1.15 which establishes the condition for continuous jet production over bead 

formation: 

 
𝜔𝜇𝑃2 > 𝐶𝑓𝑖𝑡𝜎 (

𝑅𝑔𝑇

𝑀
)

2 𝐷(𝜌𝑂 − 𝜌̅)2

𝐷𝑎𝑖𝑟𝑅
 Equation 1.15 

 

Where P is the solvent vapour pressure; 𝐶𝑓𝑖𝑡 is a constant; 𝑅𝑔 is the gas constant, 𝑇 is the 

temperature; 𝑀 is the molar mass of the solvent; 𝐷 is the solvent diffusion constant in 

solution; 𝐷𝑎𝑖𝑟 is the solvent diffusion constant for air and 𝜌𝑂 − 𝜌̅ is the change in solvent 

mass concentration.  
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However, many of the factors listed in Equation 1.15 are immeasurable at any given 

moment rendering the equation difficult to use to model fibre production. To date, the 

equations published by researchers do not accurately model the process such that the fibre 

diameters of a new fluid could be predicted without empirical measurements. This 

reinforces the author’s opinion that jet behaviour and fibre formation in centrifugal 

spinning is highly complex and chaotic and that accurately modelling the various 

interactions is difficult and as yet some aspects still uncertain. 

1.6.5 Nonwoven formation 
 

The fibres produced by centrifugal spinning are laid in the form of a nonwoven web. The 

nonwoven web can be free standing or spun directly onto a substrate. Collection systems 

may either be active or static. The static collection system is a support arranged around 

the spinneret to collect and support the fibres as they form a web. In centrifugal spinning, 

the static system may be a series of radial bars or a variation on this such as a cylindrical 

collector (Badrossamay et al., 2010). Active collection systems use secondary forces to 

attract the fibres onto a supporting mesh or fabric. Vacuum collection uses air flow to 

draw the fibres down onto a conveyor for collecting. Fiberio Corporation, United States, 

has developed an electrostatic collection system that uses weak electrostatic forces in the 

range of 45 volts to attract the fibres to a collection plate (Peno et al., 2014). Unlike 

electrospinning there is no need for a grounded collection plate, consequently, fibres can 

be spun into a free standing web or directly onto a supporting textile substrate. 

 

Hutmacher and Dalton (2011) conducted a review on melt electrospinning and concluded 

that for most polymers there has been very little success in producing nanofibres or even 
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sub-micron fibres. In comparison, polypropylene has been melt centrifugally spun and 

produced fibres finer than 200 nm (Raghavan, 2011). 

 

The polymers must be carefully selected to ensure that they can be processed into fibres. 

The challenge in centrifugal spinning is optimising the polymer fluid behaviour and 

processing parameters, as highlighted in Section 1.6.2, to ensure not only ultrafine fibres 

are produced but also prevent jet breakup and shot formation. The rheological parameters 

that are dominant in fibre formation are viscosity and surface tension (Badrossamay et 

al., 2010). Understanding of these fluid properties and appropriate spinning condition 

selection is necessary to ensure successful fibre formation. Incorrect solution 

concentration, polymer temperature or spinneret settings may not result in the formation 

of fibres. 

1.6.6 State of the art 
 

At the time of writing centrifugal spinning has been used to make nanofibres from 

poly(ethylene oxide) (PEO), poly(lactic acid) (PLA), bismuth, polypropylene (PP) and 

polystyrene (PS) along with those already mentioned (Sarkar et al., 2010). However, as 

spinning is primarily dependent on fluid properties and surface tension there is 

theoretically no reason why a wider range of polymers cannot be spun into fibres. 

 

Work has already been conducted on making centrifugal spinning more applicable to 

commercial application. A significant part of this is converting the loose fibres into a flat 

nonwoven that can then be used in a commercial application. Raghavan et al. (2013) has 

demonstrated that the centrifugal spun fibres can be drawn on to a substrate using a 

vacuum conveyor to produce a two layer product much like SMS melt blown products,  
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Figure 1.14. Here the substrate provides the strength and integrity and the nanofibres 

provide the active surface area. 

 

 
 

Figure 1.14: Composite structure composed of PP fibres spun directly onto a substrate 

(Raghavan et al., 2013) 

 

 

The production of a flat nonwoven in roll-to-roll continuous production is seen as 

essential if centrifugal spun fibres are to be used in high volume applications such as 

filtration. The ultrafine fibres can be used to coat a sufficiently strong substrate to give 

the functionality or performance required. The speed of production will depend on the 

level of coating required and the throughput of the polymer. A basic outline of a 

continuous roll-to-roll centrifugal spinner is shown in Figure 1.15. This would allow for 

long runs of substrate to be coated in a continuous process.  
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Figure 1.15: Diagram illustrating the schematic structure of a continuous centrifugal 

spinning line. Patent granted to Kay et al. (2014) on behalf of Fiberio Technology 

Corporation. 

 

 

In the work by Raghavan et al. (2013), they calculated that melt PP production operates 

at 0.04 to 0.08 g min-1 per orifice which can be scaled up using multiple spinnerets and 

orifices. This ease of scaling means that process can be expanded to cover any width of 

material with a high density of coating. There is also the possibility of coating a substrate 

with multiple polymers to create a complex sandwich structure in the same process; this 

can be achieved by feeding different polymers to separate banks of spinneret. 

 

Due to the inherent simplicity of centrifugal spinning there is also the potential to create 

bicomponent fibres. This process would behave very much like bicomponent melt 

blowing but could also work with polymer solutions in addition to thermoplastic 

materials. This would require a modified spinneret design and potentially a direct polymer 

feed system to ensure that both polymers were delivered at a consistent and controllable 

rate. 
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When compared to electrospinning centrifugal spinning can allow for thicker coatings 

due to no restriction on the density of polymer deposition. In addition, there is also easier 

scale-up as there is no electrostatic interference and with centrifugal spinning there is no 

restriction on the electrostatic or conductive properties of the material. 

 

Centrifugal spinning avoids the high energy costs of melt blowing as there is no demand 

for high volumes of hot air. The energy consumption of a commercial system is estimated 

by the Raghavan et al. (2013) to be 13 kWh kg-1 of fibre. In a multiple orifice system 

centrifugal spinning is reported to have a higher throughput than needleless 

electrospinning (Nurwhara et al., 2013).  

 

The processing conditions and mean fibre diameters of polymers that have been processed 

into fibres to date are collated in Table 1.1. This list is by no means comprehensive but 

shows the broad range of materials that can be processed into fibres using centrifugal 

spinning.  
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Table 1.1: Polymer processing reported in the literature using centrifugal spinning 

Polymer Parameters Mean 

Diameter 

References 

Polycaprolactone Solution spun in 

dichloromethane at a 

concentration of 16 %, 

3,000rpm 

9,000 rpm 

 

 

 

264 nm 

220 nm 

(McEachin and 

Lozano, 2012) 

Polyethylene oxide 

(PEO) conjugated with 

BEH-PPV 

Solution spun in chloroform at 

a concentration of 1.5 %, 

5,000 rpm 

 

 

580 nm 

Pardon et al. (2012) 

Nylon 6 Solution spun in formic acid at 

a concentration of: 

20 % 7,000 rpm 

 

 

165+55 nm 

 

 

(Raghavan, 2011) 

15-25 %, 4,000-9,000 rpm  188-825 nm 

 

(Hammami et al., 

2014) 

PVDF Solution spun in 1:1 

dimethylacetamide/acetone, 

7,000rpm 

201+86 nm (Raghavan, 2011) 

Poly(vinyl butryl) with 

carbon nanotubes 

Solution spun in 7:3 

ethanol/methanol, 

3,000-9,000 rpm 

400 nm (Weng et al., 2014a) 

Tin Fluorophosphate Melt spun, 10,000 rpm and  

270 °C 
2.43±1.16 μm (Fang et al., 2014) 

Poly(methyl 

methacrylate) 

Solution spun in chloroform at 

a concentration of 9-11 % 

3,000 – 9,000 rpm 

 

370 to 800 nm (Weng et al., 2014b) 

Polystyrene Melt spun, 3,000 rpm unreported (Sarkar et al., 2010) 

Polypropylene Melt spun, 12,000rpm and  

225 °C 

372+238 nm (Raghavan, 2011) 
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1.7 Other nanofibre production techniques 

 

In addition to centrifugal spinning there are alternative methods to producing nanofibres 

such as melt blowing, electrospinning, flash spinning, template synthesis, phase 

separation, self-assembly and shear precipitation. The nature of these techniques will be 

discussed in this section. 

 

Melt blowing is a major manufacturing technique in the nonwovens sector. It is currently 

the largest commercial method of creating sub-micron fibres by volume and so is also a 

very important method for producing in fine fibres (Zhou and Gong, 2008). Where 

conventional systems use drawing rollers to elongate polymer stream, melt blowing uses 

the drag of pressurised air. Using thermodynamic analysis Shambaugh (1988) estimates 

that ~ 1 % of the energy in the hot air is applied to elongating the fibre and the remaining 

energy dissipates into the ambient air. There are reports of average fibre diameters of 

under 400 nm for polystyrene and polypropylene (Ellison et al.,2007) and polypropylene 

blown with averages of 250 nm claimed by Hills Incorporated, USA (Zhou and Gong, 

2008). 

 

The majority of journal articles that are involved in discussing nanofibres are utilising 

nanofibres produced through electrospinning. If a specified electrostatic force is applied 

to a fluid, it will form a Taylor cone (Burger et al., 2006). If the electrostatic force is 

increased, the shape of the cone will deform and if the force exceeds the surface tension 

within the droplet then a liquid jet is emitted. Electrostatic repulsion between like charged 

polymer chains results in an increase in surface area, reducing the diameter of the expelled 

jet and increasing the length. Electrospinning is able to produce ultrafine fibres as fine as 
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50 nm in diameter but is limited in terms of overall production rate; the ability to process 

thermoplastics and a limitation on the electrical properties of filaments. A diagram, 

illustrating the key components of simple electrospinning equipment is shown in Figure 

1.16. 

 

Figure 1.16: Conventional electrospinning configuration with high voltage supply 

providing an electrostatic charge between the tip and the grounded collector. This 

creates a Taylor cone and a jet in the solution being forced through the needle (Burger et 

al., 2006) 

 

Flash spinning is described by Zhou and Gong (2008) as a modified version of 

spunbonded technology. In flash spinning a polymer solution is created using a solvent 

which evaporates at the spinneret. This rapid evaporation causes the filaments to fibrillate 

which are then collected onto a moving screen forming a web. This system was first 

recognised in a patent in 1963 and since then over 90 patents have been filed improving 

the process. Template synthesis involves forcing polymer fluids through fine pores in a 

membrane (Martin, 1996). A variation of this is template melt extrusion which involves 

forcing a molten polymer through a membrane which is subsequently cooled under 

pressure and processed to produce nanofibres (Nayak et al., 2011). In both cases, the use 

of fibres is limited to highly specialised applications.  
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Fibres with diameters as low as 100 nm were wet spun in a design patented by Velev et 

al. (2010) who dispersed droplets of polymer solution into a coagulating bath under high 

shear forces. As the polymer precipitated out the droplets were elongated into very fine 

fibres, Figure 1.17. It was proposed by Sutti et al. (20011) that this technique could be 

scaled up to provide a high volume of nanofibres but much more research would need to 

be conducted prior to deliver this objective (Sutti et al., 2011). 

 

 

Figure 1.17: Shear spinning of polymer nanofibres (Velev et al., 2010). 

 

A well cited article by Ma and Zhang (1999) described using phase separation to create a 

three-dimensional fibrous network of poly(lactic acid). The interconnectivity and three-

dimensional structure means these materials are best described as highly porous foams as 

opposed to traditional nanofibres. However, phase separation was described by Laine 

(2013) as a laboratory scale procedure at best. 

 

This is by no means an exhaustive list but covers but covers some of the latest ideas in 

alternative nanomaterial production. These techniques are highly specialised and many 

of them are used to produce loose or anchored fibres which are difficult to process or 
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incorporate into products. At present they are not considered as significant from an 

industrial perspective and represent a small fraction of academic research. 

 

1.8 Summary and objectives of work 

 

Nanofibres are materials which could find their way into a large number of high value 

applications. The prospect of spinning varied and unconventional materials into fine 

fibres is of great interest both academically and commercially. Yet research has shown 

that the most popular technique, electrospinning, has processing challenges which have 

limited the ability to scale up some of the research conducted in recent years. These 

include a low production rate, limited choice of material and in particular little progress 

in melt electrospinning. There is also concern over the potential instability of material in 

the electrostatic field. This latter point is significant when spinning conductive materials 

such as carbon nanotubes or sensitive materials such as proteins.  

 

Potentially straddling the capabilities of melt blowing and electrospinning lays centrifugal 

spinning. This is a technology capable of spinning from both solution and melt, producing 

fibres at a moderate production rate with diameters acceptable for use in biomedical and 

filtration applications. Centrifugal spinning as a nanofibre production technique still in 

its infancy and there is still a great deal to be understood. Previous work on centrifugal 

spinning has been focused simply on the production and characterisation of a new 

material with some depth into optimising the conditions. Controlling and understanding 

the production of fibres will allow for more diverse materials to be processed into fibres 

through centrifugal spinning. The overall aim of this work was to establish the effect of 

processing conditions on fibre properties using common thermoplastic and solution spun 
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polymers and to use this information to produce fibres from novel and modified materials 

that may have potential applications. By doing this the prospect of using centrifugal 

spinning as a means of delivering speciality ultrafine fibres was demonstrated. 

 

The polymers used for establishing the effect of various processing parameters on fibre 

properties from both melt and solution were: 

1. Polypropylene; 

2. Polycaprolactone. 

 

Polypropylene is a thermoplastic that is used often in spun bonding and melt blowing. 

Here it will be processed into fibres using centrifugal spinning. The temperature and 

speed of rotation will be varied and linked to the end fibre diameter and fine structure 

assessed.  

 

Polycaprolactone (PCL) is also a thermoplastic polymer but was solution spun in this 

study. This material will be used for a direct comparison between centrifugal spinning 

and needleless electrospinning. Polymer concentration and solvent were varied along 

with spinning conditions and the processing versatility was investigated in addition to the 

end fibre morphology, material fine structure and possible applications. 

 

The second part of the research was to spin fibres from polymeric material that was 

atypical. Fibres were formed using centrifugal from three additional materials: 

3. Polyvinylpyrrolidone with 1-triacontane; 

4. Polycaprolactone doped with carbon nanotubes; 

5. Polypropylene doped with carbon nanotubes 
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Polyvinylpyrrolidone with 1-triacontane is a polymer found in the cosmetics industry and 

is known to be hydrophobic. The processing conditions for fibre formation were 

investigated along with fibre properties. The potential use of these fibres as a dye or oil 

adsorbent was also considered. 

 

Carbon nanotubes are a conducting additive with high tensile strength. These were added 

to polycaprolactone to create a compound material with unique viscosity and flow 

behaviour. The impact of carbon nanotube addition on the spinning and end fibre 

properties was also investigated. 
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Chapter 2  
Methods and technology 

 

2.1 Fiberio L-1000M Forcespinner 

 

 The centrifugal spinner used in this study was a ForcespinningTM Cyclone L-1000M 

supplied by Fiberio Corporation, USA. This is a laboratory scale spinning system capable 

of producing nanofibres from both solution and melt. The bench top equipment is 

designed to replicate the fibres produced using the commercial variant of this technology 

detailed earlier in Section 1.6.6. 

 

The system consists of a central shaft on to which differing spinneret systems can be 

attached. For melt spinning the system was comprised of a tri-orifice disc spinneret 

created from two parallel plates, Figure 2.1 and Figure 2.2. 

 

Figure 2.1: Tri-orifice melt spinning plates for high MFI polymers 

 

 The spinneret also acts as the polymer reservoir; the lower plate has a concave profile to 

accommodate a fixed volume of dry polymer. The radius of the spinning reservoir used 

was 45 mm. There were two orifice diameters available for melt spinning: a high MFI 
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spinneret with orifice diameter 159 μm and a coarser low MFI design with inner orifice 

diameter of 602 μm. Both spinnerets have an orifice length of 6 mm.  

 

 

Figure 2.2: Centrifugal spinner fitted with melt spinneret surrounded by static collector 

bars. 

 

For polymer heating, the spinneret was sandwiched between two disc heaters which bring 

the spinneret and the polymer to a desired temperature. The heater and polymer 

temperatures are monitored through independent thermocouples. Once the desired 

material temperature is reached the heaters are retracted and the spinneret is rotated via a 

high speed stepper motor. For melt spinning the L-1000M can accelerate the spinneret to 

a maximum speed of 20,000 rpm which can be adjusted in 100 rpm increments. 

 

The solution spinneret is a double headed reservoir onto which two needles are fitted as 

orifices, Figure 2.3. 
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Figure 2.3: Top-down view of solution spinneret fitted with 27 gauge needles. 

 

The radius of this spinneret was 80 mm when fitted with 0.5 inch needle tips. The 

diameter of the orifices depended on the gauge of the needle fitted and in this body of 

work ranged from 159 to 260 µm. The spinneret reservoir could accommodate up to 2 

cm3 when full. Once the reservoir is loaded and fitted the spinneret was rotated at high 

speed until a predetermined stop point or allowed to continue until solution exhaustions. 

When solution spinning there was a rotational speed limit of 12,000 rpm applied. 

 

 

Figure 2.4: Solution spinneret configuration with a web produced from PCL in 

chloroform. The double ended syringe spinneret is shown in the centre. 

 

Fibre collection was carried out using a passive system as seen in Figure 2.2 and Figure 

2.4. Posts are arranged in a disc around the spinneret at a distance designed to capture a 



65 

 

 

fibre in flight and provide a support for the web. For some preliminary runs a woven 

filament fabric was inserted on to the inside of the posts to aid in determining if fibre 

formation occurred.  

 

2.2 Scanning electron microscopy 

 

The fineness of the fibres produced in this work require a means of imaging that provides 

sufficient detail to make measurements and investigate the morphology. Conventional 

optical microscopy is limited by the wavelengths of visible light so as objects become 

smaller optical microscopes are unable to differentiate between separate points. This is 

known as the diffraction limit. Ultrafine fibres are so fine that they difficult to resolve 

using a conventional microscope. Scanning electron microscopy (SEM) is a widely used 

technique used to produce high quality images of fine structures beyond the capability of 

conventional optical microscopes. The images are used to establish material dimensions, 

investigate surface topography and to determine elemental make-up using 

complementary energy dispersive X-ray spectroscopy. 

 

By reducing the wavelength of the incident beam the diffraction limit is reduced to allow 

smaller points to be resolved. This stems from the equation:  𝑅𝑚𝑖𝑛 =  
𝝀

𝟐𝒏𝒔𝒊𝒏𝜽
 which 

indicates that an electromagnetic wave of wavelength, 𝜆, travelling in a medium with a 

refractive index, 𝑛 and converging at a spot with angle 𝜃  will form a spot size, Rmin  

(Vernon-Parry, 2000). The fixed wavelength of visible light limits the fineness of the 

focusing spot and the microscopes ability to resolve objects. In comparison, an electron 

has a variable wavelength, 𝜆𝑒 , but this value is many magnitudes smaller than the 
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wavelength of visible light, this smaller wavelength allows for a wider range of possible 

magnifications with an improved depth of field which allows analysis for relatively large 

area analysis of non-flat surfaces such as fibrous webs can be conducted within a single 

focal plane (Vernon-Parry, 2000). 

 

The focussed electron beam penetrates the sample surface and generates a series of 

secondary emissions. These include back scattered electrons, secondary electrons, X-rays 

and cathode luminesce. Back scattering occurs where electrons from the incident beam 

are reflected elastically by atoms in the sample. Secondary electron emission is caused 

by interactions between incident electrons and the valence electrons of atoms in the 

specimen. Secondary electrons strike the detector and are collated into an image. 

 

The narrow electron beam is focused on a spot using a series of lenses. This spot will 

yield only limited information about a small area. To create an SEM micrograph the beam 

scans across the sample collecting information from precise areas which is then collated 

into a typical image. 

 

This study imaged non-conductive materials in an electron beam which required that a 

conductive coating be applied to prevent excessive charging within the image. The 

samples were coated in gold using a sputtering machine prior to imaging. The samples 

were then placed into the SEM analysis chamber and observed under high vacuum. The 

samples were then exposed to an electron beam and an image built up from secondary 

electron emission. A working acceleration voltage of 5 - 15 kV and a typical working 

distance of 100 mm was used for most fibrous samples that were observed in this body 

of work.  
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2.2.1 Procedure 
 

It was important to have a consistent procedure when conducting fibre diameter 

measurements to ensure a fair and unbiased set of results that are representative of the 

whole sample (Lyons, 2004). An ideal fibre distribution measurement would record a 

huge number of fibres from multiple repeats. However, in practice limited resources 

prevent excessive sampling so a more effective technique must be utilised. There is no 

definitive consensus on how many fibres should be measured and there are varying 

techniques in the literature on how fibres are sampled and analysed. The method chosen 

was one modified from Lyons (2004). They reported a technique that uses a consistent 

method of SEM image acquisition where five specific areas of the SEM stub were 

magnified for diameter measurements but neglects to state how many fibres are collected. 

This general procedure was replicated in this work but with a specification to record a 

minimum of 150 fibre diameter measurements for each sample and a minimum of 5 

micrographs taken from each sample unless otherwise stated. 

 

2.3 Rheology measurements 

 

Viscosity measurements allow for a direct comparison between the fluid properties of two 

materials. This study used rotational viscometry and capillary rheometry to measure the 

dynamic viscosity of solutions and thermoplastics respectively. Dynamic viscosity 

measurements are dependent on the configuration and shear stress applied to the polymers 

and therefore the results defined as apparent viscosity, useful for comparison within 

systems but not between systems.  
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2.3.1 Rotational dynamic viscometry 
 

Rotary viscometry is an established technique with its use having been reported in the 

recent literature by Krishnappa and co-workers (2003) and Geng et al. (2005). Rotary 

viscometers work by measuring the torque required to rotate a spindle at a fixed 

revolution rate against a liquid medium. Shear and viscoelastic forces will act on the 

spindle to resist rotation so a more viscous solution will impart more shear resistance. 

The torque required to maintain this rotation is measured through the viscometer and the 

viscosity is calculated using Equation 2.1: 

 

 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦, 𝜂 =  𝜎𝑠/𝛾 Equation 2.1 

 

Where 𝜎𝑠 and 𝛾 are the shear stress and shear strain, respectively, and are calculated using 

Equation 2.2 and Equation 2.3 (Mitschka, 1982; Geng et al., 2005):  

 

 

 

 
𝑠ℎ𝑒𝑎𝑟 𝑟𝑎𝑡𝑒, 𝛾 =  

2𝜔𝑅𝑐2𝑅𝑏2

(𝑅𝑐2 − 𝑅𝑏2)
 

 

Equation 2.2 

 
𝑠ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑠𝑠, 𝜎𝑠  =  

𝑀

2𝜋𝑅𝑏2𝐿
 Equation 2.3 

 

Where ω is the angular velocity of the spindle, 𝑅𝑐, 𝑅𝑏  and 𝐿  are all dimensional 

constants, as shown in Figure 2.5, M is the torque acting the spindle shaft in dyne cm-1. 
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Figure 2.5: Generic dimensional parameters of a rotational viscometer. 

 

Rotational viscosity measurements are often quoted using the centigram system based 

unit of centipoise which is a measure of shear viscosity and is equivalent to 10-3 Pa s-1.  

 

The equipment used in this experiment was a Brookfield D-VE viscometer. The spindle 

factors used to convert torque measurements to viscosity readings were determined by 

the manufacturer. The required volume of polymer was injected using a 10 ml syringe. 

The solution was allowed to settle for a short period and a measurement was taken at an 

appropriate testing speed. The measurement was allowed to stabilise before a reading was 

taken. Unless otherwise stated measurements at each condition were taken from 3 discrete 

solutions. To limit the effect of temperature measurements were only taken when the 

ambient temperature was recorded to be 22 ± 2 °C. 

2.3.2 Melt rheology measurement 
 

The molten flow behaviour of polypropylene and polyvinylpyrrolidone/triacontane was 

investigated using capillary rheometry. This is a technique in melt processing which is 

often used to characterise thermoplastics as it enables material flow and deformation 
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properties to be characterised. The polymer is loaded into a barrel and then heated until 

thermal equilibrium is reached. The polymer is then extruded through a die using a piston. 

Figure 2.6 shows the general arrangement for a common capillary rheometer.  

 

Figure 2.6: Schematic of operating principles of a capillary rheometer. 

 

Due to the viscoelastic nature of polymers significant pressure is generated at the die 

entrance as an external force is applied. The shear viscosity is then calculated using 

Equation 2.1, page 68, inserting values for shear stress and shear rates which are 

calculated using Equation 2.4 and Equation 2.5 (Larsson, 2014): 

 

 
𝑊𝑎𝑙𝑙 𝑠ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑠𝑠, 𝜎𝑠 =

𝑃𝑟

2 𝑙
 

Equation 2.4 

 

 

 
𝑊𝑎𝑙𝑙 𝑠ℎ𝑒𝑎𝑟 𝑟𝑎𝑡𝑒, 𝛾 =  

4 𝑄

𝜋𝑟3
 

Equation 2.5 

 

 

Where: 𝑃 is the pressure drop at the die (N m-2); 𝑄 is the volume flow rate m3 s-1; 𝑟 is the 

capillary radius (m) and 𝑙 is the capillary length (m). 
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Capillary rheometry is often used for measuring and comparing the melt rheology of 

thermoplastic materials. It can be used to observe how the rheology changes with 

temperature and can help to understand and refine the operating conditions when 

centrifugal spinning.  

 

The specific equipment used in this experiment was a RH2000 capillary rheometer 

produced by Bohlin Instruments, UK, with a 16 mm barrel and a 1 mm die. Polymer was 

packed into the chamber, heated to a desired temperature and extruded at a specific flow 

rate by altering the piston speed. A pressure sensor at the die records the pressure once an 

equilibrium condition is reached and the flow has stabilised. Equilibrium was determined 

by recording 16 measurements that are within a specific tolerance, normally 0.5 % of the 

pressure reading. The measurement taken value was an average of the next 8 values 

recorded and is accepted if there is no out-of-tolerance deviation. The specific conditions 

used to measure each polymer is listed in the appropriate chapter. 

 

2.4 Differential scanning calorimetry 

 

Differential scanning calorimetry (DSC) is a well-established method used in a range of 

research and quality control applications. DSC allows thermal transitions within a sample 

to be readily identified and the energetic requirements of said transitions to be calculated. 

2.4.1 Theoretical basis 
 

The thermal changes and transitions of materials can be studied through the technique of 

differential scanning calorimetry (DSC). In DSC the sample sits on a platform adjacent 
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to an empty reference pan. The identical platforms are connected to a common heating 

source. The empty reference pan creates an energy imbalance compared to the sample 

pan. The difference in energy required to heat/cool the sample pan is recorded by a 

computer. This differential energy measurement across a range of temperatures is the 

essence of DSC analysis. 

 

By scanning through a range of temperatures a change in heat flow can be observed as a 

sample undergoes a state change. Thermoplastic behaviour of a sample such as glass 

transitions, melting and crystallisation require or release different amounts of energy 

compared to non-transitional temperature changes and will be visible in a typical DSC 

scan. Melting of crystalline regions in a non-amorphous material requires additional 

energy so there will be an endothermic slope in a DSC scan around the Tmelt of a material. 

Melting is a first order transition and the temperature within a region will not rise until 

the crystals have melted so more energy will be required to keep the pans heating at the 

same rate. This will begin when the smallest crystals begin to melt, at Tonset and the energy 

required will increase and peak where the majority of crystals are melting, creating the 

largest energy difference between the sample and reference pans. When the material is 

fully molten the energy difference will stabilise.  
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Figure 2.7: Typical DSC graph of a copolymer poly (vinyl pyrrolidone) with 1-

triacontene. 

 

In a typical DSC analysis a material scanned at an appropriate temperature will consist of 

a baseline and observable peaks, Figure 2.7. The peak may point up or down depending 

on whether the change is exothermic or endothermic. Comparison of the peak gradient 

compared to the baseline allows plotting of the extrapolated Tonset, which is considered to 

be the minimum point of a major thermal transition. The apex of the peak is when the 

maximum energy difference occurs and so is used to determine the melt point or the 

crystallisation temperature. In a melting transition the area of the endotherm allows for 

the enthalpy of melting and is calculated using the area under the melting curve on the 

DSC graph. If the enthalpy information is available for a single, perfect crystal of the 

same material then a degree of crystallinity can be estimated. 

 

Thermal transitions in a sample are often determined by its thermal history. Rapid 

quenching will generate a differing material crystallinity to natural cooling. This 

difference would be detecting through a change in Tmelt, Tonset and enthalpy. 
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2.4.2 Procedure 
 

The samples were sealed in aluminium pans and then accurately weighed. It is important 

that pan weights are not excessively high or low: Menczel and co-workers (2008) 

recommend using a sample weight of between 3 and 10 mg for most calorimeters in 

operation presently, a recommendation which was observed in this work. Careful pan 

preparation was also important as any impurities on the inside or outside of the pan affects 

the results.  

 

The sample was then heated from a set temperature at a pre-determined rate. A dry purge 

gas, in this case nitrogen, was used to prevent condensation within the cell and to ensure 

a constant atmosphere.  

 

2.5 X-ray diffraction 

 

X-ray diffraction (XRD) has enabled huge advances in the field of crystallography. It is 

discussed extensively in the literature as a means to investigate polymer fine structure and 

crystal orientation. When past researchers have investigated fibre fine structure X-ray 

diffraction is often used as a complementary technique to DSC. 

2.5.1 Theoretical basis 
 

Polymer crystals have a regular structure that is capable of scattering incident radiation 

(Pope, 1997). X-rays have a wavelength such that the gaps between crystal planes act like 
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a diffraction grating when struck by incident X-rays at a correct angle. An incident X-ray, 

of wavelength, λ, is scattered by the amorphous regions and diffracted by crystalline 

regions when it strikes the material (Murthy and Barton, 1999). In a wholly amorphous 

material there is no long range order so the X-rays are diffusely scattered and create no 

significant sharp peaks. A significant amorphous region will result in a broad area known 

as the amorphous halo. In a crystalline sample the lattice planes will diffract the beam at 

an angle that depends on the size of the unit cell. If the X-rays are diffracted at such an 

angle that the overall path difference in neighbouring beams was a multiple of the 

wavelength, then constructive superposition occurs and the reflected beam is very intense. 

Any deviation from the critical angle, θ, will lead to destructive interference and the 

intensity will decrease abruptly. 

 

The spacing between two diffracting planes will determine when superposition of an 

incident beam occurs. Working on this principle, the plane spacing of a diffracting crystal 

is then calculated using Bragg’s law, as given by Pope (1997): 

 

 2𝑑𝑠𝑖𝑛θ = 𝑛λ Equation 2.6 

 

where  𝑑  is the spacing causing the diffraction, θ  is the angle of incidence, λ is the 

wavelength of the incident beam and 𝑛 is the order of diffraction. A semi-crystalline 

polymeric material will most likely return a range of d spacing from which the dimensions 

of the unit cell can be calculated by using Equation 2.7 as given by de Villiers et al. 

(1998): 

 

 1

𝑑2
=

ℎ2

𝑎2
+

𝑘2

𝑏2
+

𝑙2

𝑐2
 

Equation 2.7 
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Where h, k and l are Miller indices of the crystallographic plane selected and a, b and c 

are the dimensions of the resulting unit cell. A unit cell can be considered to have lengths 

a, b and c in the x, y and z directions from an arbitrary reference point. A unit cell is 

capable of defining the point of all other atoms within that crystal from a discrete starting 

position. 

2.5.2 Procedure 
 

To assess the fine structure of the fibres and raw materials powder XRD was conducted 

using a P’AN analytical X’Pert MPD X-ray diffractometer operating at room temperature. 

The X-ray tube target was CuKα radiation (λ = 1.540 Å). Scans were taken in the 

theta:theta orientation scanning in the Bragg angle, 2θ, through 4° to 60° with a step size 

of 0.066°. 
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Chapter 3  
Centrifugal spinning of polypropylene fibres 

 

One of the capabilities of centrifugal spinning is the ability to process thermoplastic 

polymers into sub-micron diameter fibres. This chapter discusses the centrifugal spinning 

of polypropylene (PP); a major thermoplastic polymer for the production of nonwovens. 

Despite the prevalence of PP in the nonwovens industry there are only a limited number 

of papers detailing the centrifugal spinning of PP and available research has been largely 

limited to reports published by Raghavan et al. (2013) and Sweester and Zander (2014). 

This chapter investigated the production of polypropylene fibres by means of melt 

centrifugal spinning and discusses the impact of processing conditions on fibre and web 

characteristics and documents findings when the fibre’s fine structure was scrutinised. 

 

3.1 Introduction 

 

Polypropylene (PP) nonwoven materials account for over half of all nonwoven products 

produced and PP nonwovens generated $16.4 billion in revenue in 2012 which is expected 

to surpass $25 billion by 2019 (Houte, 2014). If centrifugal spinning is to become an 

adopted technology it is important that it is seen to be capable of using polymers familiar 

to the industry. Using centrifugal spinning to produce polypropylene nonwovens would 

be a logical bridge for high volume manufacturers to cross as the resources for processing 

PP exist and the broad scope of applications is established. Using polypropylene also 

affords a direct comparison to the current progress in melt blowing and the 

electrospinning molten polymers. This chapter will demonstrate the spinning of 



79 

 

 

polypropylene using melt centrifugal spinning and will explore the impact of processing 

conditions on fibre characteristics and any observable change in the fibre fine structure. 

In particular it will use a broad range of processing temperatures, an area where there is 

a paucity of research thus far with regards to centrifugal spinning.  

 

Polypropylene is a synthetic polymer ubiquitous as a plastic and industrial filament 

material. PP is a polyolefin and its monomer constituent, propylene, is refined from crude 

oil, and thus the long term prosperity of this filament is intrinsically linked to the 

harvesting and use of oil as a resource (Hirte, 1984). Polypropylene, along with 

polyethylene (PE), is widely used in the packaging, insulation and filtration industries 

along with some uptake in clothing and medical applications. Despite the emergence of 

biosynthetics such as poly(lactic acid), polypropylene products occupied 63 % of the 

overall nonwovens market in 2007 and comprised 83 % of the direct polymer-to-web 

nonwovens market in 2014 (Wiertz, 2014). The extensive demand for polypropylene 

products shows no signs of abating with Exxon Mobil recently investing in a new multi-

billion dollar polypropylene and polyethylene chemical plant in Singapore (Exxon Mobil 

Online, 2013). This continued and widespread use is due to the ease of polymer 

processing coupled with chemical inertness, lightweight and good mechanical properties. 

This was not always the case as early PP and PE grades were susceptible to UV, chemical 

and heat degradation. To overcome this technical deficiency stabilising elements were 

added during polymerisation to increase the stability of the polymers (Carlsson and Wiles, 

1976).  
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Polypropylene is produced through the addition reaction of propylene to create a polymer 

with an ethylene backbone with pendant methyl group as shown in Figure 3.1. The 

chemical mer unit of polypropylene is –CH2-CH(CH3)-.  

 

 

Figure 3.1: Chemical structure of polypropylene CH2-CH(CH3) mer. 

 

Polypropylene can be produced in atactic, syndiotactic or isotactic confirmations which 

determines the chemical and rheological characteristics of the polymer. The isotactic 

form, Figure 3.2, contains all the methyl branches on the same stereo centre. At present, 

the isotactic form is the form more commonly used in the textile and plastics industry. 

 

 

Figure 3.2: Chemical structure of the isotactic form of polypropylene. 

 

Varying grades of polypropylene are used in industry which can vary significantly in 

terms of average chain length and in polydispersity, which is the distribution of chain 

lengths within a sample. The trade of polypropylene is graded using the melt flow index 

(MFI) measure which states the rate of polymer flow through a die for a given pressure 

and temperature. The units for MFI are grams of polymer per 10 minutes (g 10 min-1) and 

is usually quoted alongside the testing conditions. However, the use of MFI is criticised 

by Bremner (1990) as the value is test specific and may not replicate polymer behaviour 
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in processing conditions. Despite this criticism melt flow index continues to persist as a 

recognised index for both polyethylene and polypropylene. The melt flow index of a 

material will primarily be determined by the average molecular weight and from this 

Besco et al. (2014) proposed the relationship given in Equation 3.1: 

 

 𝑘

𝑀𝐹𝐼
=  𝑀𝑤

𝑥  Equation 3.1 

Where 𝑘 is a constant, determined by the polymer and processing parameters, 𝑀𝑤 is the 

weight average molecular weight and 𝑥 is a value related to polydispersity and is usually 

between 3.4 and 3.7. Equation 3.1 can then be used to estimate the average molecular 

weight as shown in Table 3.1. 

 

Table 3.1: Calculated molecular weight from melt flow index (Besco et al., 2014). 

 

Grade of 

Polypropylene 

Melt flow index 

(230 °C / 2.16 kg) 

(g 10 min-1) 

Calculated Mw 

(kDa) 
Application 

Lyondell Basel MF650Y 1800 72.5 Melt blowing 

Borflow HL504FB 35 210.2 Filament spinning 

 

Conventional fibre grade polypropylene used in fibre production has a typical MFI of 30 

- 40 g 10 min-1 which correlates to a molecular weight of around 200 kDa whereas 

commercial melt blown polypropylene will have a typical MFI ranging from 1200 - 1800 

g 10 min-1 which translates into 70 - 100 kDa molecular weight. The long chains in 

conventional polypropylene afford the material superior mechanical properties such as 

higher tensile strength but also significantly increase the viscosity of the molten fluid. 

This higher viscosity makes this grade of polymer unsuitable for melt blowing as the level 

of airflow needed to induce polymer stream elongation is limited. For melt blowing, high 
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MFI polypropylenes are significantly less viscous at a similar processing temperature; the 

shorter chains allow for a much higher rates of flow that are required in order for 

attenuation by aerodynamic forces to occur. Short chain polypropylene is produced by 

introducing chain scission catalysts to crack the long polypropylene macromolecules into 

shorter chains under the influence of elevated temperature. 

 

Polypropylene forms a semi-crystalline structure that can change significantly depending 

on the processing route. Most grades of PP can typically reach a crystallinity of 50-60 %. 

This value is lower than the 75-85 % observed in linear polyethylene due to the pendant 

methyl groups on PP restricting chain registration. The –CH3 side group also causes 

polypropylene molecules to take up a helical form in the crystal lattice, with three repeats 

in one turn of the helix. A three-dimensional representation of this structure is shown 

below in Figure 3.3. 

 

 

Figure 3.3: The helical carbon chain at drawn by Natta and Corradini (1960) and 

represented using a ball and stick molecular model 
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3.2 Spinning polypropylene in to fine fibres 

 

Polypropylene is a thermoplastic and is almost exclusively melt processed to create usable 

products. PP melts are highly stable with rheological properties favourable to the 

production of fibre and films. Solution processing of PP is limited by the difficulty in 

dissolving PP as it requires the use of less benign solvents such as decalin and 

cyclohexane (Blackadder and Le Poidevin, 1976). Further problems with solution 

spinning PP were encountered by Zhou (2007) who was unable to dissolve PP at a 

sufficiently high concentration in a room temperature solvent to enable fibre formation. 

The lack of solution processability has resulted in polypropylene being largely ignored as 

a medium for electrospinning by the research community. So far, production of ultrafine 

PP fibres has been limited to refined melt blowing. Thus, there exists a gap in capability 

that a new technology such as centrifugal spinning could occupy. 

 

Polypropylene has been melt blown into sub-micron fibres of ≤ 500 nm using finely 

optimised commercial equipment. This work is best exemplified by Ellison et al. (2007) 

who created PP fibres with mean diameters of 300 nm and more recently by Uppal et al. 

(2013) who produced fibres 260 nm in diameter. Both authors used a melt blown grade 

of polypropylene with a relatively short chain length. Using a higher molecular weight 

PP, Nayak et al. (2013) produced fibres 438 nm in average diameter by introducing air 

and water into the fluid stream.  

 

The high melt fluidity of melt blowing grade PP has been used as the base material for 

fibres electrospun by Lyons (2004) creating webs as fine as 1.8 µm. Melt electrospinning 

is not capable of producing fibres as fine as solution electrospinning and the 1 µm 
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diameter barrier is identified as a significant hurdle by Lyons et al. (2004). More recently, 

Li et al. (2014) melt electrospun low Mw polypropylene and created webs with diameters 

above 2 µm and Fang et al. (2012) used needleless electrospinning to produce fibres less 

than 2 µm when adding a plasticiser to the polypropylene melt. Currently, the outstanding 

work in the literature was performed by Dalton (2007) who added a plasticiser to a 15 

MFI polypropylene and achieved fibres as fine as 800 nm mean diameter. 

 

Along with the above techniques, centrifugal spinning has been proven capable of 

producing ultrafine fibres from polypropylene. The study by Sarkar et al. (2010) was the 

first published account demonstrating centrifugal spinning of molten polypropylene into 

ultrafine fibres. However, the publication lacked depth and a more comprehensive study 

was reported by Raghavan et al. (2013) who created fibres using various grades of 

polypropylene using the ForcespinningTM variant of centrifugal spinning. They looked at 

four grades of polypropylene and measured the fibre distributions at a fixed temperature 

of 225 °C and found that sub-500 nm average fibres could achieved with a melt blowing 

grade of polypropylene. The full results for this study are detailed in Table 3.2. This result 

agrees with the inverse relationship between molecular weight and fineness of diameter 

as found by Lyons et al. (2004). 

 

Table 3.2: Various polypropylene grades spun through centrifugal spinning by Raghavan 

et al. (2013) and measured fibre diameters. 

Polypropylene grade Melt flow index 

(g 10 min-1) 

Average fibre diameter 

(nm) 

Exxon Mobil homopolymer 3155 36 1230 ± 630 

Lyondell Basell Metocene MF 650 W 500 898 ± 470 

Lyondell Badel Metocene MF650 F 1200 863 ± 451 

Exxon Mobil Achieve 69361G 1550 441 ± 243 
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This was then followed by work by O’Haire et al. (2014) who used centrifugal spinning 

to produce 510 nm mean diameter fibres using homogenous Lyondell Basel MF650Y 

polypropylene (MFI 1800 g 10 min-1). Sweester and Zander (2014) produced 

polypropylene fibres using centrifugal spinning at temperature conditions 200, 230 and 

250 °C. They found that the finest fibres with the least beading were produced at 200 °C 

but conducted no further research in to the effect of temperature. They found that fibre 

diameter decreased as the spinning speed was increased from 6,000 rpm to 10,000 rpm 

cannot say if further increases in speed produce finer fibres. Finally, they were unable to 

produce fibres finer than 1.5 µm average, reporting a mean diameter of 1.91 ± 0.86 µm 

as the finest web observed. This report failed to report the grade of PP used so it is difficult 

to compare it to the results found elsewhere.  

 

3.3 Summary 

 

Melt electrospinning and melt centrifugal spinning are discussed in less detail in the 

literature compared to solution spinning (Lozano and Sarkar, 2009; Sarkar et al., 2010; 

Sweester and Zander, 2014). One consequence of this is that there has been limited 

success in producing nanofibres from polypropylene using both melt blowing and melt 

electrospinning. This is despite polypropylene being a widely used material in the 

nonwovens industry. There has been work performed previously looking at the melt 

centrifugal spinning of polypropylene with some success reported in achieving sub-

micron fibres. However, there is a paucity of publications detailing the effect of polymer 

temperature and spinning speed on end fibre diameter, fibre morphology and internal fine 

structure. Thus far, the work by Sweester and Zander (2014) is the most complete as 
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multiple temperatures are studied, however, they only considered a limited range of 

spinning conditions and were not producing submicron fibres. 

 

3.4 Experimental 

 

Given the limited published data with the effect of polymer temperature on the resultant 

end fibre diameter and fibre morphology, diameter and internal fine structure an 

experimental work was conducted with the following objectives: 

 

1. To characterise the flow behaviour an appropriate grades of polypropylene across 

a range of temperatures; 

2. To successfully melt spin polypropylene using centrifugal spinning and optimise 

the spinning conditions in regards to temperature and rotational speed; 

3. To characterise the fibres produced using microscopy to determine morphology 

and typical fibre diameters and investigate how internal fine structure of material 

changes with spinning conditions. 

 

Given the limited published data in this area, the experimental work was intended to 

identify trends between processing conditions and final mean fibre diameter, enabling 

optimum conditions for consistent ultrafine fibre production to be established. The 

experimental part of this research was designed to identify trends between processing 

conditions and end fibre diameter and to establish the range of conditions that allow for 

consistent ultrafine fibre production.  
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3.4.1 Materials 
 

Different grades of polypropylene are available with varying chain lengths and melt 

viscosity behaviour. For non-direct attenuation techniques, such as melt blowing and 

centrifugal spinning, high MFI grades of polypropylene are required. This chapter used a 

low viscosity polymer suitable for melt blowing and processed into a fibre using melt 

centrifugal spinning. Lyondell MF650Y melt blowing grade polypropylene was used for 

this investigation and has a melting point of 154 °C and a melt flow index of 1800 g 10 

min-1.  

3.4.2 Capillary rheometry 
 

The Malvern RH2000 capillary rheometer was used to assess the shear viscosity of molten 

polypropylene at a range of temperatures. The testing regime performed used constant 

rate of shear tests using a 1 mm wide and 16 mm long capillary die with an entry angle 

of 180°. A preliminary study of the melting behaviour of MF650Y PP indicated that 

consistent flow was difficult to maintain at temperatures below 180 °C, at a test extrusion 

conduction at 160 °C the polymer was observed to be highly viscous and difficult to 

extrude in to fibres. Therefore, the melt viscosity of MF650Y was tested at varying barrel 

and melt temperatures, the range 180 °C to 230 °C was studied working in increments of 

10 °C. The sample was tampered down during pellet loading to remove air, this is 

necessary as the presence of gas reduces the viscous resistance of a melt. A pre-test 

heating and compression cycle was performed where the piston compressed the sample 

to a pressure of 0.06 MPa which was then held for 4 minutes to allow heat to permeate 

through the sample. The test was then performed using piston speeds on 14, 25, 50, 70, 

120 and 200 mm min-1.  
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3.4.3 Centrifugal spinning of fibres 
 

In order to establish the effect of processing conditions on the properties of the fibre and 

web produced the selected polymer grade was spun under a range of conditions. The 

polymer was added to a preheated High MFI tri-orifice spinneret, Figure 3.4. 

 

 

Figure 3.4: Opened tri-orifice melt spinneret for high MFI materials.  

 

 The polypropylene was centrifugally spun into fibres over a temperature range of 170 to 

230 °C using rotational speeds ranging from 11,000 to 16,000 rpm. The polymer 

temperature was measured using a platinum resistance thermometer inserted directly into 

the polymer reservoir. The testing intervals were 10 °C and 1,000 rpm, respectively, for 

the two parameters. The spinnerets were preheated to the desired temperature and then 

100 mg of dry PP was added. The polymer temperature was measured using a 

thermocouple interested directly in to the molten fluid. When the polymer temperature 

reached the required value the spinneret was accelerated to the processing speed. The 

spinneret was rotated at the desired speed for 40 seconds before decelerating and coming 

to rest. Successful fibre production and web quality was noted at each spinning condition.  
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3.4.4 Fibre analysis 

3.4.4.1 Scanning electron microscopy analysis 

SEM was used to assess fibre morphology and to facilitate measurement of average 

diameter and fibre diameter distributions. The SEM equipment and sampling procedure 

and the subsequent fibre measurement technique is detailed in Chapter 2. Each successful 

spinning condition used was imaged using SEM. 

3.4.4.2 Differential Scanning Calorimetry 

The DSC measurements were obtained using a Perkin Elmer Jade DSC through a heat-

cool-heat cycle operating from 0 °C to 240 °C at a rate of 20 °C per minute under a 

nitrogen atmosphere delivered at 30.0 cm3 min-1. DSC measurements were recorder for 

fibres produced at 180, 200 and 220 °C for each rotational speed condition. 

3.4.4.3 X-ray diffraction 

The X-ray diffraction was performed on both the bulk material and on the fibres in order 

to determine structural differences. The bulk material was extruded into a 2 mm thick 

film at 200 °C and allowed to cool in ambient conditions. This process is designed to 

mimic a slower cooling process to replicate polymer crystallisation behaviour in film and 

fibre extrusion. Extrusion in to a film also created a flat surface which is better suited to 

X-ray analysis compared to the granule form. The fibres were pressed into a relatively 

flat surface by overnight compression. Scans were taken in the theta: theta orientation 

scanning in the Bragg angle, 2θ, through 4° to 60° with a step size of 0.066°.  
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3.5 Results and discussion 

3.5.1 Capillary rheometry 
 

The results of the capillary rheometry measurements for MF560Y, Figure 3.5, shows the 

relationship between polymer shear stress and the shear viscosity at a range of 

temperatures. It was difficult to attain a measurement for the fluid at 230 °C for shear 

rates above 50 mm min-1 as the polymer supply would exhaust before an acceptable 

equilibrium was reached. Examination of Figure 3.5 indicates that for a given shear stress, 

the viscosity is lower at higher temperatures as the temperature is increased from 180 to 

230 °C. In addition, at a given temperature the viscosity of polypropylene also reduced 

with increasing shear rate. This behaviour is known as shear thinning and is due to the 

elastic nature of polymeric materials. 

 

It should be noted that the measurements provided here correlate to apparent, not true, 

shear stress and shear viscosity. This is due to die entrance and exit effects that influence 

the final measurement and the magnitudes of these effects are dependent on the geometric 

specification of the die. Thus, the measurements are only valid when quoted in 

conjunction with the measurement conditions. However, when making comparisons 

using the same material, apparent viscosity is sufficient to establish changes in viscosity 

with temperature or shear rate. 
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Figure 3.5: Logarithmic plot of apparent shear viscosity against shear stress for 

MF650Y polypropylene across a range of temperatures 

 

From Figure 3.5 it can be seen that an increase in temperature leads to a marked decrease 

in shear viscosity. The capillary rheometer results in Figure 3.5 agree with the empirical 

results found by Ellison et al. (2007) and also agree with the theoretical relationship for 

intrinsic viscosity 𝜂𝑜, is given by the Arrhenius equation (Bower, 2002):  

 

 
𝜂𝑜 = 𝐴 𝑒𝑥𝑝 (

𝐸𝑣𝑖𝑠

𝑅𝑔𝑇
) 

Equation 3.2 

Where 𝐴 is a pre-exponential constant, 𝑅𝑔 is the gas constant and 𝑇 is the temperature in 

Kelvin. 𝐸𝑣𝑖𝑠 is an activation energy term which is related to molecular weight, chain 

mobility, branching and intermolecular forces.  

 

The Arrhenius equation predicts that as polymer temperature increases the viscosity will 

fall providing there is sufficient energy in the system. This temperature dependence of 

shear viscosity was relevant as it influenced the fibre formation process.  
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This information regarding viscosity change can be linked to equations presented in 

Chapter 3 to determine the effect of temperature on orifice throughput rate: in batch 

centrifugal spinning it is known that for a given volume, the hydrostatic and inertial forces 

are constant at a given speed, Equation 1.6, page 29; assuming the orifice diameter 

remains constant then it can be said that at a fixed condition the shear stress is also 

constant. As the viscosity is reduced by temperature than applying the same shear stress 

will result in a different shear rate at each temperature condition; thus, the throughput of 

a polymer increases with temperature.  

3.5.2 Fibre production 
 

Polypropylene was successfully centrifugally spun into fibrous webs using a range of 

processing conditions. The fibres were produced as a web that was freestanding when 

supported by the collector bars. The polypropylene webs had a high level of loft and were 

not produced as a flat sheet. In fact the webs produced a cone-like shape; the inner edge 

of the ring migrated closer to the spinneret as the spinning progresses. This shape is shown 

in Figure 3.6. The webs also contained discrete areas of non-uniformity which contained 

a more densely packed assembly of fibres compared to the surrounding nonwoven. The 

webs were self-supporting with enough strength to be handled but without a fabric support 

they condensed to form a circular rope upon removal from the spinneret.  
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Figure 3.6: Fibrous web produced from polypropylene using centrifugal spinning. The 

red lines are drawn to show the approximate shape of an inverted frustum. 

 

A summary of the conditions necessary production of centrifugally spun PP webs is 

shown in Table 3.3. The mass of the webs collected was found to be consistently lower 

than the initial in-feed polymer mass which was fixed at 100 mg. This can be partly 

explained by a small residual amount of polymer left in the spinneret which was observed 

upon opening. This links into the relationship given previously in Equation 1.13, page 34: 

as the polymer is exhausted the centrifugal pressure reduces to an extent that production 

ceases due to a drop in cumulative pressure. Deposition of additional fibres exhausted 

after 40 seconds even though residual polymer was still present in the reservoir. 

Extending the spinning time beyond this period made no difference and the residual 

polymer remained. The difference between the in-feed and deposited fibre mass can also 

be explained by the fact that not all the fibres were collected by the main deposition zone. 

It was also observed that some fibres are lost to the outer wall of the equipment during 
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the start of the spinning phase. Without a substrate or established webs, broken fibres are 

not captured by the collector posts. 

 

Table 3.3: Results of fibre production using MF650Y PP at a range of matrix and 

rotational speeds using the high MFI spinneret. 

Temp  

(°C) 

Rotational speed (rpm)  

10,000 11,000 12,000 13,000 14,000 15,000 16,000 17,000 

170 x x - o - o - - 

180 x       b 

190 x       - 

200 x       /b 

210 x       - 

220 o       o/b 

230 o o o o o/b o/b o/b - 

x- fibres were not produced  

o- fibres were produced but a cohesive web was not produced 

- fibrous webs were successfully produced 

b- excessive beading observed 

Fibres were difficult to form at a processing temperature of 170 °C. A large volume of 

polymer was observed to be retained within the spinneret after a spinning cycle. It is 

proposed that at this low temperature, the viscosity is sufficiently high that the flow 

through the capillary is restricted, limiting fibre formation. At 230 °C the ‘quality’ of the 

web deteriorates at all spinning conditions observed. The suggested reason for this is an 

increased level jet breakup, creating shorter continuous lengths preventing web 

establishment. There was a significant decrease in the weight and quality of the webs 

collected as the processing temperature was increased to 230 °C. This change in web 

structure is linked to increasing levels of filament breakup during the spinning. The higher 

temperatures reduce the polymer viscosity sufficiently that the jet is more inclined to 

break into beads and shorter fibres. This prevents a cohesive web from building up as 

there are fewer longer filaments to overlap and form an entangled nonwoven. 
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Increasing the spinning speed to 17,000 rpm also had a negative impact on the volume 

and quality of web produced. At all temperature conditions observed (180, 200 and 220 

°C) it was difficult to build a cohesive web. It is proposed that at this rotational speed the 

drawing due to tension and aerodynamic resistance are sufficiently high that jet formation 

is disrupted and droplets are formed. In addition, it was noted by the author that at 17,000 

rpm and beyond the vibration and noise produced by the centrifugal spinner is excessive 

compared to slightly lower spinning speeds. 

 

The web form shown in Figure 3.6 and the SEM images shown in Figure 3.7 are typical 

images of the webs produced between 180 °C and 220 °C. The observed fibre morphology 

was of smooth fibres with very little surface texture. This type of fibre was found across 

the range of processing conditions. The high magnification SEM images show that the 

polypropylene fibres produced were smooth, approximately cylindrical in shape with 

very few fibre ends observed. This leads to the estimation that the filaments are generally 

continuous in length. In melt processing there was no evaporating component to generate 

any surface deformation; the surface tension of the fluid acts to maintain the cylindrical 

shape and prevents texture formation resulting in smooth and roughly cylindrical fibres 

(Lee and Wadsworth, 1992). However, this surface tension can also create instabilities 

which can lead to periodic wave like filament profiles observed in polypropylene melt 

blown products (Ellison et al., 2007). 
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180 °C and 11,000 rpm 

 
180 °C and 16,000 rpm 

 
190 °C and 11,000 rpm  

 
190 °C and 16,000 rpm  

200 °C and 11,000 rpm 

 

 
200 °C and 16,000 rpm  

Figure 3.7a: SEM image of polypropylene fibres centrifugal spun across the 

temperature spectrum at the two spinning speeds. 
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210 °C and 11,000 rpm  

 
210 °C and 16,000 rpm  

 
220 °C and 11,000 rpm  

 
220 °C and 16,000 rpm 

 

Figure 3.7b: SEM image of polypropylene fibres centrifugal spun across the 

temperature spectrum at two spinning speeds. 

 

There are additional features that are seen in Figure 3.7 that merit discussion. The first is 

that the finer fibres have a visibly smaller bending radius compared to the larger elements. 

To illustrate this, the bending radius of curved fibres was measured and compared against 

filament diameter. The bending radius was found by fitting a circle that best represented 

the point of highest curvature. Only fibres bending beyond 90 degrees were measured. 

The results are shown in Figure 3.8. 
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Figure 3.8: Measurement of bending radius with a graph showing relationship between 

fibre diameter and radius of bend. 

 

It should be noted that the fibres in the SEM micrographs are not subjected to any external 

forces so are unlikely to be at the maximum level of bend possible and that in reality the 

fibres are bending in three dimensions. However, the results do show that the finest fibres 

are more likely to bend in a much smaller curve profile. This links to Equation 1.3, page 

9, which describes flexural rigidity as a function of filament diameter. As the filaments 

become finer they become more flexible as per the rigid rod model presented in Section 

1.3. The more flexible fibres are more easily deformed external forces and collisions 

resulting in tighter coils within the fibre. 

 

Another feature of the polypropylene webs, seen across the spectrum of processing 

conditions is the twinning of fibres. Fibre twinning is the apparent agglomeration of two 

or more fibres into a larger element giving the impression of highly orientated fibre 

structure. A typical image of this phenomenon is shown in Figure 3.9: 
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Figure 3.9: High density of fibre twinning in a PP web formed at 190 °C and 15,000 

rpm 

 

Twinning is the phenomenon of fibres appearing to be aligned and parallel with a bonding 

interaction between them. Twinning can actually occur between more than two fibres as 

observed in Figure 3.9. Twinning has been observed previously in SEM images of melt 

blown PP webs however this is the first report of this phenomenon in centrifugal spun 

fibres (Hassan et al., 2013; Pall and Connors, 1996). These twinned fibres may be 

physically merged or may be brought together by other attractive forces. It is proposed 

here that it is more likely the former and that still molten fibres come into contact with 

other fibres during spinning, resulting in a slight fusing of the fibres. When centrifugal 

spinning several polymer jets will exist in the spinning gap at any given time, all taking 

a roughly similar path to the collector, it is possible that the fibre jets overlap and touch 

following the elongation phase.  

 

Occasional flaws were observed in the web with fibre necking seen in several SEM 

images, Figure 3.10. Necking is a phenomenon observed in the processing of many 

thermoplastics into fibres. It is associated with the cold drawing of plastics where the 

fibre is disrupted by a narrow neck. The length of these necks may be relatively short or 

may be sufficiently long that they are seemingly endless when observed in the SEM. The 
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presence of necking indicates that the attenuation process in centrifugal spinning is not 

applied evenly to all regions of the filament in flight. It is thought the necking occurs as 

a partially solidified jet continues to elongate in a localised region, creating the neck. No 

relationship could be found between the frequency of necking and processing conditions.  

 

 

Figure 3.10: MF650Y PP produced using centrifugal spinning at 200 C at a rotational 

speed of 16,000 rpm. Circled is an example of fibre necking. 

 

Shot or beading was observed in the images of the fibres spun at the higher temperatures. 

There was a marked increase in beading as the temperature was increased from 210 °C to 

220 °C. The beading within a web at this temperature is shown in Figure 3.11. 

 

Figure 3.11: Bead formation in PP fibres spun at 220 °C at a speed of 12,000 rpm. 
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It is thought that a polymer temperature of 220 °C marks the approximate upper limit 

between stable filament production and excessive bead formation due to instability driven 

jet breakup. If the temperature is increased further to 230 °C, a cohesive web cannot be 

produced indicating that the jet is forming a greater number of beads. Numerous 

researchers have postulated the cause of bead formation in melt blown and electrospun 

processes where the cause of breakup is due to surface tension induced jet contraction 

which is unchecked by internal frictions (viscosity). Surface tension acts to minimise the 

surface area and will pull any fluid into a bead (the minimum surface area condition). The 

viscosity of a fluid resists any movement and the various chain entanglements and 

interactions will act to maintain the current state and shape. As per the capillary rheometry 

results the fluid has the lowest viscosity at the highest temperature setting. The result is 

that spinning PP at 220 °C and 230 °C will create fine fibres, but the jets are more inclined 

to collapse into a bead during processing. 

 

 

Figure 3.12: Examples of sub 100 nm fibres observed when centrifugal spinning PP at 

190 °C and 16,000 rpm (left) and 210 °C and 14,000 rpm (right) 

 

The fibre diameters were measured in the SEM micrographs at each production condition. 

Whilst some true nanofibres were observed (Figure 3.12), the majority of fibres were 

larger and the mean diameters were in the sub-micron range for the most part. The mean 

diameter and standard deviation are shown in Table 3.4. 
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Table 3.4: Mean diameter and standard deviation of centrifugal spun polypropylene. 

 

 180 °C 190 °C 200 °C 210 °C 220 °C 

Rotational 

speed (rpm) 
Mean SD Mean SD Mean SD Mean SD Mean SD 

11,000 1.36 0.82 0.78 0.79 0.97 0.57 0.83 0.47 0.83 0.47 

12,000 0.83 0.43 0.82 0.50 0.63 0.40 0.64 0.39 0.75 0.51 

13,000 0.79 0.39 0.62 0.35 0.65 0.40 0.77 0.38 0.77 0.47 

14,000 0.68 0.29 0.56 0.38 0.65 0.40 0.74 0.36 0.77 0.41 

15,000 0.63 0.39 0.58 0.39 0.67 0.34 0.53 0.30 0.50 0.31 

16,000 0.75 0.37 0.47 0.29 0.71 0.44 0.54 0.29 0.69 0.47 

All measurements in µm 

 

Table 3.4 confirms that the average fibre diameter within the webs was typically in the 

sub-micron range. Previous researchers also found a similar range of data when spinning 

polypropylene; Raghavan et al. (2013) melt spun 225 °C polypropylene at 12,000 rpm 

recorded diameters of 863 ± 451 nm. Table 3.4 also shows that the webs contain a broad 

range of fibre diameters which leads to a significantly large standard deviation and the 

coefficient of variation observed was typically over 50 %.  

 

The fibre diameter measurements also show a statistically significant reduction in mean 

diameter as the rotational speed is increased from 11,000 to 15,000 rpm. This was true at 

180 °C ((p > 0.05, F (54.3) > Fcrit (3.88)); 190 °C (p > 0.05, F (78.1) > Fcrit (3.87)); 200 

°C (p > 0.05, F (16.7) > Fcrit (3.88); 210 °C (p > 0.05, F (57.7) > Fcrit (3.86)) and 220 

°C (p > 0.05), F (4.09) > Fcrit (3.86) when the data was analysed using the single variable 

Analysis of Variance (ANOVA). The data in Table 3.4 is also represented graphically in 

Figure 3.13 and the trend for increasing fineness with increasing speed is illustrated. This 
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relationship is expected as the higher angular velocity leads to a higher centrifugal force 

which increases the level of attenuation on the jet. There is a limit to this relationship: 

higher angular velocities will also increase the throughput rate at the orifice which acts to 

increase the volume of the jet and thus the end fibre diameter.  

 

Analysis of the data summarised in Table 3.4 indicated that as the temperature was 

increased from 180 °C to 190 °C the fibre diameter decreased significantly for all but the 

12,000 rpm condition, which was a decrease in the mean but was not found to be 

significant. Beyond 190 °C further differences between the operating temperatures were 

not seen to result in statistically finer fibres. It is proposed that increasing jet temperature 

also increases the fibre attenuation time as previously discussed, page 41, as the higher 

Tp of the hotter polymer jet takes longer to cool to Tc and solidify. However, this was not 

borne out in the results and there was no decrease in diameter observed by Sweester and 

Zander (2014) in the only other pertinent work on this topic. They found an increase in 

fibre diameter from 1.91 to 2.27 µm as the temperature was increased from 200 to 230 °C, 

however, the fibres were also found to be variable and no test for significance was 

conducted on the raw data. 
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Figure 3.13: Graphs showing the mean and the 95 % confidence interval for the fibre 

diameter of PP webs based on rotational speed of centrifugal spinner. Each graph 

indicates an isothermal condition investigated. 
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This high variability in fibre diameter presented problems when trying to establish firm 

relationships between processing speed and fibre diameter. The broad distributions results 

in a relatively high standard deviation with respect to the mean. In order to establish 

reliable data a large number of fibres must be measured. Table 3.4 indicated that the 

diameter distributions of centrifugal spun polypropylene are inherently broad. This high 

In addition, any discussion using mean fibre diameter as the principle measure can 

become meaningless when there is the obvious presence of larger diameter fibres which 

may be orders of magnitude bigger than the smaller elements, Figure 3.7. Due to the 

limited sample size these larger diameter elements can have a significant impact on the 

overall mean diameter recorded. However, very large diameter fibres can represent a 

significant mass fraction of any web produced and so must be included in any 

characterisation methods. The larger fibres are potentially formed during acceleration and 

deceleration of the spinneret. During this period, acceleration forces are non-uniform 

which could lead to a reduction in polymer jet extension. It is thought that once the 

spinneret is spinning at a constant speed the resulting fibre diameter is generally finer and 

more uniform. This is supported by research conducted by McEachin and Lozano (2012) 

who measured fibre diameter and dispersity based on spinning time. They found that fibre 

diameter is typically larger and more varied during shorter run periods. To circumvent 

this effect a wholly continuous, commercial centrifugal spinning machine would have 

much longer spinneret running times which would potentially remove the impact of 

spinneret acceleration/deceleration on web quality. It is proposed that any full-scale 

spinning process would have this ability to consistently introduce polymer into the 

spinneret via a screw and metering pump system. This direct feed would allow the 

polymer flow rate and hydrostatic pressure within the spinneret to be controlled. As a 
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result processing conditions can be tailored and further optimised for maximum 

throughput or desired fibre properties. 

3.5.3 Differential scanning calorimetry 
 

The DSC traces for the virgin PP flake and a selection of PP fibres are shown in Figure 

3.14. The trace for the polymer pellet shows an endothermic peak that has a maximum at 

168.8 °C. This peak is the melting transition of the initial polymer granules; the transition 

has a Tonset of 148.8 °C and an enthalpy of 97.7 J g-1. 
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Figure 3.14: DSC heat flow traces from PP flake and fibres produced at selected 

processing temperatures. 
 

 In comparison to the unprocessed polymer the MF650Y fibres produced through 

centrifugal spinning recorded a melting Tonset ranging from 135 to 139 °C and a peak Tmelt 
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typically less than 150 °C. This downward shift in melt temperature is due to changes in 

the PP crystal configuration during spinning. Smaller crystals are formed in the fibre 

which will melt at a lower temperature than the crystals formed during polymerisation. 

The rapid quenching of the fibres restricts the propagation of crystal sizes which will also 

limit the final crystalline fraction. 

 

Pure crystalline PP has an enthalpy of fusion of 207 J g-1 and so the apparent crystallinity 

of the granules and fibres can be estimated using Equation 3.3 (Longo et al., 2011). 

 
𝐶𝑟𝑦𝑠𝑡𝑎𝑙𝑙𝑖𝑛𝑖𝑡𝑦 (%) =

∆𝐻𝑚

∆𝐻𝑜
 × 100 

Equation 3.3 

 

Where: ∆𝐻𝑚 is the enthalpy of fusion for the polymer as measured through DSC and ∆𝐻𝑜 

is the enthalpy of fusion of 100 % crystalline PP, measured at 207 J g-1. 

 

The enthalpy values recorded for the fibres range from 54.5 to 94.8 J g-1 which 

corresponds to an apparent crystallinity of 26 to 48 %. In comparison the crystallinity of 

the unprocessed granules was estimated as 47 %. Further inspection of the fibre 

endotherm traces yields the presence of a small and broad exothermic peak preceded by 

an endothermic peak. These features, highlighted in Figure 3.15 are only observed in the 

fibres and are erased by the first heating scan.  
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Figure 3.15: DSC trace of PP fibres spun at 210 °C with a 15,000 rpm spinning speed. 

T1 and T2 are endothermic and exothermic peaks prior to the primary melt transition. 

 

Peak T1 is endothermic and has a peak maxima at around 63 - 66 °C, this then moves to 

an exothermic transition, T2, with a peak at 90 - 100 °C. It is proposed that T1 is caused 

by the melting of imperfect crystals and T2 is a crystallisation process Alberola et al. 

(1995). The XRD data presented later in this chapter indicate that the polypropylene fibres 

are comprised of a disordered structure known as a smectic phase. As the fibres are heated, 

partially ordered regions gain enough thermal energy to transition to α-crystals generating 

heat. The presence of a smectic phase means that the enthalpy calculations recorded 

deviate from the true value as the preceding crystallisation transition will increase the 

melting endotherm which is account for in the use of the term apparent crystallinity. 

 

Whilst there is a significant difference in the DSC trace shape and peak locations between 

virgin PP and the fibres there was no observable relationship between the spinning 

conditions and the melting behaviour of the fibres as changes to Tonset, Tpeak and enthalpy 

Exothermic 
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remained inconsistent. The current thinking on the mechanism of smectic phase formation 

will be discussed around the XRD results in Section 3.5.4. 
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Figure 3.16: Normalised DSC endotherms showing the effect of annealing on melting 

behaviour. 

 

The polypropylene fibres were annealed through a secondary process: selected fibres 

were annealed for 1 hour at 120 °C in a laboratory oven and then allowed to cool in 

ambient conditions. No tension was applied to the fibres. The DSC scans of untreated and 

annealed polypropylene fibres are shown in Figure 3.16 along with a second heating scan 

of the annealed fibres. By annealing the fibres the low temperature endothermic and 

exothermic transitions (T1 and T2) observed in the as-spun material are erased, replaced 

by an endothermic transition, T3 that peaks at ~116 °C and then returns to the baseline 

before transitioning to the primary melting peak. Allowing the melted sample to cool and 

reheating in the DSC also yields further change: the T3 peak is now erased, and a new 

secondary peak shoulder, T4, has formed with endothermic maxima at ~138 °C. 

Throughout these phase changes the primary melting endotherm has a Tmelt of 148 °C 
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which indicates that the primary melt transition point is unaffected by the annealing 

process. This follows as the annealing occurs below the temperature required to break 

down the order in the polypropylene. However it is sufficiently high such that the phase 

changes observed in T1 and T2 can occur. Annealing thus provides the energy to allow 

the polypropylene chains to transition from smectic to semi-crystalline. It is also thought 

that the smaller crystals with low melting points ~120 °C also melt. Upon cooling these 

mobile units form into crystals of a discrete size, which results in the new peak T3. The 

influence of annealing on fibre fine structure will be revisited as part of the discussion 

around the XRD results.  

3.5.4 X-ray diffraction 
 

The XRD patterns of polypropylene fibres produced in this work show regions of high 

count volumes at positions across the spectrum.  
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Figure 3.17: XRD spectra of PP centrifugal spun at 180 °C and at 210 °C with spinning 

speeds ranging from 11,000 rpm (black) to 16,000 (navy). Graphs are normalised with 

respect to temperature. The shoulder that occurs ~ 16.45° 2θ at higher temperatures is 

labelled for clarity. 
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This indicates that X-ray superposition occurs at specific angles of beam incidence and 

from that it can be argued that the polypropylene fibres contains long range order in some 

aspects. The patterns produced from typical centrifugal spun MF650Y polypropylene 

fibres, Figure 3.17, have been normalised as the raw data demonstrated differences in 

absolute intensity measured as a result of the sample preparation rather than molecular 

structure. The XRD patterns are normalised to make the height of the highest peak the 

same for all samples. The normalised curves presented show that the peak locations and 

shape were largely consistent for all the fibres regardless of processing temperature. The 

only difference observed in the traces was a slight increase in a shoulder height at 16.45° 

2θ as the processing temperature is increased, this has been labelled for clarity in Figure 

3.17. In terms of processing speed no significant changes in the XRD pattern was 

observed as the spinning speed was increased from 11,000 to 16,000 rpm. The peak 

heights observed in these diffraction patterns have a similar shape and the relative peak 

height remained consistent. Despite the slight shoulder observed at higher temperatures 

it can be surmised that the diffraction patterns produced by the polypropylene fibres were 

largely similar regardless of the processing conditions.  

 

The inspection of the pattern shape and location of the features yields information 

regarding the order of the system. The XRD traces collected from fibres contain a broad 

hump which occurs between 10 and 30° 2θ. This feature is highlighted in Figure 3.18 and 

occurs where an increase in intensity above the background baseline can be observed. 

This broad increase in diffraction intensity is caused by the scattering of the X-rays by 

the amorphous parts of the PP. Discretely separate from the amorphous halo is the 

presence of more defined peaks that have intensity maxima at 14, 21.5 and 42° 2θ. These 

peaks are created by regions of order within the PP fibres.  
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Figure 3.18: XRD trace of polypropylene fibres produced by melt centrifugal spinning 

at 180 °C and 13,000 rpm. The background count baseline and amorphous halo region 

are explicitly shown. 

 

This two phase structure is expected as most high polymers are actually semi-crystalline: 

comprising long range molecular order amongst areas of disorder. In long chain polymers 

the two phases are considered to be intrinsically linked and through defects in the crystal 

and disordered chain alignment, lack definite boundaries. There are several ways of 

describing and modelling the phase separation of semi-crystalline materials 

 

The XRD peaks of the PP fibres shown above in Figure 3.17 are not sharp enough to be 

linked to the classic crystal structure of PP. By comparing the XRD trace of as-spun PP 

fibres to the diffraction pattern of MF650Y PP that had been pressed into a film and 

cooled slowly there is a clear difference in the shape and form of the trace from the two 

forms of the same material. The XRD traces of pressed film and fibres is shown in Figure 

3.19. 
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Figure 3.19: Normalised XRD traces showing MF650Y slow cooled PP film compared 

to the traces of the centrifugal spun fibres. 

 

The location and shape of the peaks is the major difference between them: film PP has 

primary peaks at 12, 17, 18.5° 2θ with a doublet at 21.5 and 22° 2θ that are not seen in 

the fibre traces. The peaks are also much sharper than those observed for the fibres. These 

peaks are consistent with those observed elsewhere for conventional semi-crystalline 

polypropylene. However, the crystal structure of polymers can vary depending on how 

the chains conform. Crystallisation of PP is known to be complex with the possibility of 

forming three crystalline forms: α-monoclinic, β-pseudo-hexagonal and γ-orthorhombic. 

Van der Meer (2003) models each isotactic PP helix as a triangle and draws the three 

crystal forms with their respective unit cells, Figure 3.21. As-received and slow cooled 

polypropylene is usually found in the α-monoclinic, the structure and dimensions of 

which are shown in Figure 3.22 (Cho et al., 2010). This means that the X-ray diffraction 

patterns observed in the fibrous polypropylene produced in this study are a result of a 

different fine structure being present and this means that the fibrous polypropylene 

produced through melt centrifugal spinning is not crystallising in the same manner as 

conventional polypropylene. This is not the first time such XRD patterns have been 

observed: Raghavan et al. (2013) also observed a similar XRD trace in melt blown 

polypropylene and concluded that this was due to crystal deformation and faults. 
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However, it is known in the art that polypropylene, under the right conditions can form a 

paracrystalline structure known as a smectic phase (Natta and Corradini, 1960). The 

reasons for this and the exact structure of this phenomenon varies throughout the literature 

but a comprehensive hypothesis was supplied by Corradini et al. (1986). They concluded 

that the smectic phase observed was not due to microcrystals or crystal defects but caused 

by amorphic chain alignment in an arrangement more akin to the α-monoclinic unit cell 

than the β or γ-crystal forms. The cause of this structure is rapid quenching and elongation 

of the polymer chains during processing. This rapid quenching is observed in melt 

blowing but would also apply to centrifugal spinning. In the latter technique polymer 

exiting the spinneret is exposed to ambient air which leads to rapid cooling and 

solidification of the jet. The polymer solidifies so rapidly that the chain mobility is limited 

before crystallisation can occur.  

 

The close approximation of the smectic phase to the α-monoclinic unit cell means that 

the fibre can be induced to crystallise through the application of heat. This additional 

thermal energy provides the mobility for the smectic phase to flip to the crystal form. This 

transition is observed via DSC through the low temperature exothermic peak. To evaluate 

this theory that temperature can induce a crystallisation below the melting point an 

annealing process was performed. Selected fibres were annealed for 1 hour at 120 °C and 

then cooled in a laboratory oven prior to XRD analysis. The different trace generated is 

shown in Figure 3.20. 
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Figure 3.20: Annealed polypropylene fibres compared to untreated source fibre. 

 

The annealed fibres exhibit primary peaks at 14.1, 16.8 and 18.6° 2θ which correlate to 

the peaks observed for slow cooled polypropylene film, Figure 3.17. In the position of 

the doublet observed in the film there is now single peak at 21.66° 2θ, proving that 

annealing of the fibres induces crystallisation. The process of annealing raises the fibres 

above the glass transition which increases chain mobility and allows the partially 

orientated fibres to form α-crystals.  

 

The structure formed are known to be α-crystals as the crystal form and size can be 

calculated using Equation 2.6 and Equation 2.7 along with known information regarding 

polypropylene (de Villiers et al., 1998). The structure formed in the PP fibres is likely the 

monoclinic α-crystal but there are also alternative forms of polypropylene, Figure 3.21 

(Van der Meer, 2003). 

As-spun fibre – no annealing 
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Figure 3.21 : Unit cell models of left: α-monoclinic, centre: β-pseudo-hexagonal and right: 

γ-orthorhombic. The grey triangles represent a right handed helix and the blank triangles 

a left handed helix (Van der Meer, 2003). 

 

The polypropylene β-crystal has a triangular unit cell of dimensions a = b = 11.0 Å, c = 

6.5 Å angle γ= 120° (Hirte, 1984). The β-crystals has been previously observed in fibres 

through the presence of peaks in DSC and XRD scans and are known to form in 

polypropylene melts experiencing high elongation and deformation of PP in conjunction 

with rapid solidification (Zhou, 2007). The conditions required for β-crystal formation 

are similar to those applied to the centrifugal spun fibres. The γ-crystal form is considered 

to be rare and usually requires a nucleating agent to be present in the melt (Van der Meer, 

2003). However, the diffraction peaks typical of these structures are not observed in the 

XRD trace of either untreated or annealed fibres. 
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Figure 3.22: α-crystal form of PP in the 001 plane. The view is along the chain axis. 

Sketched from (Hirte, 1984). 

 

The implication for processing is that in order to obtain semi-crystalline polypropylene a 

secondary heating process must occur to allow the chains to move from smectic to 

crystalline phases. This heating could occur within the centrifugal spinner, relying on 

either residual heat or auxiliary heating. Alternatively this could be done in a subsequent 

annealing process as performed in this study. 

 

In summary, the XRD data provided here, combined with the DSC results indicate that 

centrifugally spun PP has a different fine structure compared to generic PP products. This 

new form is caused by the rapid quenching that occurs during melt centrifugal spinning. 

It is thought that rotational speed of the process plays only a marginal role in the 

quenching rate as the minimum speed required for spinning (11,000 rpm) provides a very 

high quenching rate and no trend was found to link the level of smectic phase to operating 

speed. 
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3.6 Conclusions 

 

Fibres were successfully produced from polypropylene using melt centrifugal spinning at 

a range of temperatures and speeds. Fibres as fine as 100 nm were observed but typically 

average diameters of around 500 nm could be achieved. A broad distribution of fibre 

diameters was observed under all processing conditions. This is potentially a symptom of 

the acceleration and deceleration periods typical of the short batch spinning times. It is 

thought that commercial centrifugal spinning equipment would circumvent this problem 

by having much longer periods spinning at optimal speed. 

 

The fine fibre diameters observed means that melt centrifugal spinning can produce PP 

fibres fine enough to be used in highly selective filter membranes. Fibres as fine as 470 

nm average with filaments observed with individual filaments finer than 100 nm being 

observed is comparable and demonstrably finer than the > 800 nm average fibres reported 

for the melt electrospinning of polypropylene. An additional advantage to centrifugal 

spinning PP in the arrangement used here is that there is the option of using the fibres as 

a freestanding web, without a supporting substrate. 

 

The influence of processing conditions was also investigated and the melt viscosity of 

polypropylene was shown to fall as the temperature increases. However, this did not 

translate into a reduction in fibre diameters but the degree of beading did increase at the 

higher processing temperature. This has implications for commercial production as much 

lower energy costs, and a higher quality web could be achieved by reducing the 

processing temperature.  
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X-ray diffraction and thermal analysis indicate that the as-spun polypropylene fibres 

contained a disordered smectic phase as opposed to a partially ordered semi-crystalline 

material typical of melt spun polypropylene filament. This was due to the rapid quenching 

of the polymer jet that occurs during centrifugal spinning. A secondary annealing process 

was applied to convert the fibres from an amorphous-paracrystalline material to a 

conventional semi-crystalline one.  
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Chapter 4  
Centrifugal spun polycaprolactone nanofibers and 

comparisons to the electrospinning technique 

 

As described in Section 1.6.4, centrifugal spinning is capable of producing fibres from 

polymer solutions. Solution processing allows for the use of non-thermoplastic polymers 

which broadens the range of polymers that can be formed into fibres. A review of the 

literature indicated that research is heavily biased towards producing fibres from 

dissolved solutions typically using electrospinning (Persano et al., 2013). This wealth of 

knowledge in regards to producing fibres from polymer solutions allows for a direct 

comparison to be made between fibres produced through centrifugal spinning and 

electrospinning techniques. 

 

This chapter details the centrifugal spinning of polycaprolactone (PCL), a polymer well 

covered in the electrospinning literature and that has also been identified as a potential 

biomaterial or carrier agent in a drug delivery membrane (Zeng et al., 2003a; Ma et al., 

2005). PCL was chosen as the material for this chapter as it features in a growing number 

of publications identifying the potential applications in bioengineering but also that 

establish the relationships governing electrospinning. Whilst there is a large number of 

papers covering the electrospinning of PCL, at present there are only a limited number of 

publications concerning centrifugal spinning this potentially life-saving material with 

little exploration in alternative solvents beyond dichloromethane (McEachin and Lozano, 

2012). Nor has there been direct comparisons by one group to PCL fibres produced using 

needleless electrospinning. 
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Chapter 3 described the spinning of polypropylene using melt centrifugal technology. 

This chapter will cover the solution spinning of polycaprolactone fibres using two 

techniques: centrifugal spinning and needleless electrospinning. The effect of 

concentration and solvent on processing using both techniques was investigated and the 

fibre morphology and fine structure was analysed along with cytotoxicity. 

 

4.1 Introduction 

 

PCL belongs to the group of aliphatic polyester materials where the mer is composed of 

an ester element and an aliphatic (-C2H4-) element, Figure 4.1. PCL is thermoplastic with 

a low melting point due to enhanced chain segment mobility resulting a melting 

temperature of around 59 - 64 °C depending on molecular weight and thermal history. 

This low melting point means that PCL is currently only applied in niche applications 

outside of the apparel and industrial textile chain. Whilst PCL has reasonable mechanical 

performance; with a tensile strength ~38 MPa; it is not favoured for apparel or industrial 

products as commodity materials such as poly(ethylene terephthalate) possesses superior 

mechanical properties along with a much higher melting temperature and lower material 

cost (Wong et al., 2008). 

 

 

Figure 4.1: Chemical structure of the polycaprolactone mer. 
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The property of PCL that is of particular interest to academia and medicine is its inherent 

biocompatibility with human tissue and the ability to biodegradable in vivo. 

Biocompatibility means the fibres be used in a wound or tissue growth setting and not 

trigger inflammation or biological rejection (Badrossamay et al., 2014). The polymer 

biodegrades in vivo as natural enzymes produced by biological tissue are capable of 

breaking the polymer chain through hydrolysis so after a specified period the polymer 

chains are broken down into smaller components and then simply absorbed into the tissue. 

A key advantage of using PCL in vivo is that the biological breakdown does not result in 

an acidic environment unlike alternative materials such as poly(lactic-co-glycolic acid 

(Amalorpava Mary et al., 2013). It has been demonstrated that PCL spun from 

dichloromethane and N,N-dimethylformamide induces no cytotoxic response in human 

or mouse cells (Wutticharoenmongkol et al., 2006). Crucially, recent research in this area 

has concluded that PCL fibres supported cell growth (Zander, 2014). Due to a 

combination of the ease of processing and the useful biological properties, 

polycaprolactone has been proposed as a material for use in external wound dressings or 

implantable cell scaffolds (Choi et al., 2008; Zander, 2014).  

 

For the use as a medical implant it is essential that the fibres are ultrafine in order to 

function as cell scaffolds and that the production steps avoid the use of potentially 

hazardous solvents in fibre spinning where residues may affect successful 

bioimplantation (Woodruff and Hutmacher, 2010). However, for PCL it is still acceptable 

to process the fibres using solution processing, despite the use of organic solvents such 

as chlorinated hydrocarbons as there is typically an insignificant amount of solvent 

retained within the PCL fibres (Nam et al., 2007).  
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Whilst most grades of polycaprolactone are known to be thermoplastic a review of the 

literature indicated that solution processing is the most likely way to achieve sub-micron 

fibres using either electrospinning or centrifugal spinning. This is due to PCL having poor 

melt strength during processing making it unsuitable for high levels of drawing and 

demanding blow and injection moulding procedures (Darwis et al., 1999). Previous work 

conducted on processing PCL into fibres through melt processing was unable to create 

ultrafine fibres: Li et al. (2012) used a CO2 laser to heat the needle tip and melt the 

polymer, producing fibres between 3 and 12 µm; rotational melt spinning of PCL was 

performed by Laine (2013) who achieved fibres with diameters in the range 15 - 70 µm 

and Zander (2014) further confirmed these observation where PCL was melt centrifugally 

spun into fibres 7.05 µm in diameter and then alternatively solution spun PCL polymer 

into 0.81 ± 0.5 µm fibres. 

 

When solution spinning the choice of solvent is of key importance; PCL readily dissolves 

in chlorinated solvents and by changing the polymer concentration a range of fluid 

viscosities can be created from a single PCL grade. This ease of processing via dissolution 

has been critical in allowing the high volume of academic papers detailing the 

electrospinning of polycaprolactone. However, the inclusion of natural additives and 

polymers into electrospun biocompatible fibres has proven difficult due to the potential 

for biological denaturing during processing due to the solvents used (Zeugolis et al., 

2008). Expanding the range of compatible solvents for a given polymer will aid the 

solvent selection process for future research. This is especially pertinent where the fibres 

are intended to include an additive that may be adversely affected by the presence of 

particular solvents and alternatives are needed.  
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Work on the solution centrifugal spinning of PCL was performed by workers during the 

development and reporting of the ForcespinningTM iteration of this technology (Lozano 

and Sarkar, 2009; Sarkar et al., 2010). Polycaprolactone was one of the first polymers 

used in the early ForcespinningTM publications by McEachin and Lozano (2012) where 

PCL of 70,000 – 90,000 Mn was spun into using dichloromethane as a solvent. They found 

that spinning at 9,000 rpm produced an average fibre diameter 220 + 98 nm and used 

DSC and XRD to compare it to the results of the electrospun PCL reported separately by 

Wong et al. (2008). Working from the diameters quoted above it is apparent that a refined 

iteration of centrifugal spinning technology is able to match the fineness of electrospun 

PCL fibres. 

 

The structural advantages that can be achieved using centrifugal spinning were 

appreciated by Badrossamay et al. (2014); who created highly aligned fibres of PCL with 

varying fractions of collagen and gelatin. These “super” aligned fibres, shown in Figure 

4.2, create the possibility of using directional cell growth scaffolds for load bearing areas 

of the body such as knee and shoulder ligaments (Agarwal et al., 2008). 
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Figure 4.2: Aligned fibres of PCL produced from HFIP solvent using centrifugal 

spinning (Badrossamay et al., 2014). 

 

The work by Badrossamay et al. (2014) demonstrated that PCL has the ability to be used 

as a carrier polymer for difficult to spin materials such as collagen to be formed into 

fibres. Further exemplification of this versatility is demonstrated by the centrifugal 

spinning of polycaprolactone with polyvinylpyrrolidone (PVP) by Amalorpava Mary et 

al. (2013). In this work the hydrophilic PVP element was used to increase the rate of 

biodegradation to engineer the persistence of any biological scaffold or drug release 

membrane. As a consequence, understanding how the spinning of PCL can be adapted to 

potentially accommodate other materials would aid future work in this area. 

4.1.1 Choice of solvent 
 

Working with polymer solutions means that the choice of solvent will often play a 

significant role in the spinnability of a fibre in solution (Yang et al., 2004). Key solvent 

parameters for fibre formation are: evaporation rate (volatility); inherent viscosity; 

polarity and compatibility with the polymer (Dhanalakshimi et al., 2015).  
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Chlorinated solvents are commonly used in the electrospinning of PCL Cipitria et al. 

(2011). However, research has indicated that using chloroform may not be the most 

appropriate solvent for achieving fine fibres and that the high volatility may reduce the 

total attenuation time available during jet flight (Van der Schueren et al., 2011). Despite 

this, chlorinated solvents such as chloroform continue to be used to spin PCL fibres using 

electrospinning and centrifugal spinning as the solutions are easy to produce and create 

uniform, bead free webs (McEachin and Lozano, 2012, Zander, 2014). A review by 

Cipitria et al. (2011) has indicated that many researchers are using a mixture of 

chloroform and methanol to produce nanofibres from PCL. The methanol functions as a 

non-solvent for PCL and is done to retard the evaporation of chloroform but can also 

facilitate the spinning of additives that are not miscible in pure chloroform or 

dichloromethane (Venugopal et al., 2005). This inclusion of a solvent into which the 

polymer is not dissolvable creates a binary solvent system. Research has shown that the 

use of chloroform/methanol as a solvent can result in finer PCL fibres when 

electrospinning (Gluck, 2007). PCL fibres produced from chloroform/methanol have 

been observed by some to have surface pores or pock marking on the fibres (Lubasova et 

al., 2010). This surface morphology could have impact on the cell growth properties of a 

material. There is also scant information available on the cytotoxic response of PCL fibres 

spun from chloroform and chloroform/methanol (Pant et al., 2011). 

 

The use of multiple and binary solvents appears often in the literature on electrospinning 

but there is only limited information on the use of these solvent systems in centrifugal 

spinning or on the morphology of solution processed centrifugal spun fibres (Luo et al., 

2010).  
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4.2 Summary 

 

Centrifugal spinning from a polymer solution allowed for an investigation into the various 

effects of polymer concentration and solvent on the formation of fibres. Polycaprolactone 

was chosen as the focus of this chapter as there has been limited research in producing 

PCL fibres using centrifugal spinning and there is only limited information on the use of 

binary solvents on PCL fibre formation with a particular gap in knowledge concerning 

biocompatibility of spinning fibres from chloroform and chloroform solvents. In addition, 

the electrospinning of PCL nanofibres has been well documented allowing for 

comparisons to be made between centrifugal spun and electrospun PCL fibres (McEachin 

and Lozano, 2012). 

 

With solutions there are multiple factors that will influence the viscosity and spinning 

behaviour of a solvent-polymer system and it has been demonstrated by Geng et al. (2005) 

that the addition of a small amount co-solvent or non-solvent into the solution can 

significantly reduce the surface tension with little effect on viscosity. This change in the 

viscosity-surface tension relationship can alter the jet elongation process, resulting in 

finer fibres but with increased potential for jet collapse. The presence of a co-solvent or 

non-solvent can also affect the morphology of electrospun fibres and could possibly 

change the morphology of PCL fibres produced using centrifugal spinning. A review of 

the literature reveals that there is a gap in knowledge with regards to understanding the 

cytotoxic response of cells to PCL fibres formed from chloroform and chloroform based 

binary solvent systems. By further understanding the range of solvents that are 

appropriate for the manufacture of fibres designed to be used in vivo processes can be 

designed and readily adapted to use alternative solvents. This is particularly appropriate 
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when one solvent or solvent system is known to damage or interfere with an additive 

necessary for the application. 

 

4.3 Experimental 

 

The purpose of this chapter was to determine the relationships that govern the centrifugal 

spinning of polycaprolactone fibres with respect to polymer solution concentration and 

solvent composition and to establish how this differs to needleless electrospinning. 

Changes in fibre morphology was also studied along with internal fine structure. The 

suitability of these fibres for biological applications was also assessed. The work was 

conducted with the following objectives: 

 

1. To create solutions of PCL in two solvent systems and measure solution viscosity 

and surface tension changes; 

2. To spin PCL into fibres using centrifugal spinning and needless electrospinning 

and observe the effect of solution concentration on production; 

3. To characterise the fibres produced using microscopy to determine the 

morphology and typical fibre diameters. Changes to the internal fine structure will 

be observed using thermal analysis and X-ray crystallography; 

4. To perform a cell growth study on the centrifugal spun fibres to determine 

cytotoxic response of fibres formed from chloroform and chloroform/methanol 

solvents. 
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4.3.1 Materials 
 

Sigma Aldrich supplied polycaprolactone, Mw 80,000, with a melt flow index 1.9 g 10 

min-1 (80 °C and 0.3 MPa) and was used throughout the study. Laboratory grade 

chloroform >99.9 % and methanol solvents > 98 %, both from Sigma Aldrich, were used 

for the preparation of spinning solutions.  

 

For the cytotoxicity study, 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-

(4-sulfophenyl)-2H-tetrazolium, also known as MTS assay, was supplied by Sigma 

Aldrich was used in conjunction with L929 mouse fibroblast cells supplied by the 

University of Leeds School of Dentistry but are also available via Sigma Aldrich. 

Formazan dye, also known as MTT formazan powder was supplied by Fischer Scientific 

along with Dulbecco’s modified Eagle's medium (DMEM) and dimethyl sulphoxide 

(DMSO) > 98 %. 

4.3.2 Preparation of solutions 
 

The solvent systems used were chloroform and a binary solvent of 4:1 chloroform and 

methanol (v/v) which was premixed prior to solution preparation. A ratio of 3:1 has been 

used previously by Tam and Lim (2004) and by Wang et al. (2009). However it was 

observed that at a ratio of 3:1 it was increasingly difficult to maintain the high 

concentration of solutions in solution and the polymer would precipitate out quickly. Thus 

a chloroform to methanol ratio of 4:1 (4:1 CM) was chosen, as used by Suganya et al. 

(2010). Solutions of PCL in the two solvent systems were prepared with polymer 

concentrations ranging from 6 - 19 % w/v. The PCL was dissolved in a sealed glass jar 

with the aid of a magnetic follower. Moderate heat was applied for less than hour in order 

http://en.wikipedia.org/wiki/Renato_Dulbecco
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to raise the solution temperature to 40 °C in order to fully dissolve the polymer at 

concentrations of 18 and 19 %. The dissolved solutions were left to stir for over 12 hours 

at room temperature before use in subsequent measurements or processing. 

4.3.3 Rheology and surface tension 
 

Solution viscosity measurements were made using rotational viscometry, previously 

discussed on page 68, using a Brookfield LV viscometer. Prepared solutions were added 

to the small sample adapter supplied by the manufacturer which had a nominal internal 

volume of ~10 mL. This adapter uses a common sample holder and holds the measuring 

spindle at a fixed depth allowing for accurate reproduction of experiments. A syringe was 

used to dispense 9.4 mL of polymer solution into the container and required spindle (34) 

was then placed into the solution. The spindle was rotated at 30 rpm unless otherwise 

quoted. The solutions containing PCL concentrations of 7 and 8 % required that a spindle 

speed of 100 rpm was used to satisfy the lower torque limit suggested by the 

manufacturer. This is a higher rate of shear and will result in a slightly lower viscosity 

reading due to the non-Newtonian behaviour of polymer solutions. The results from these 

atypical have been marked with a * to indicate that testing conditions have changed.  

 

In addition to solution viscosity the surface tension was also quantified to determine if 

there is a tangible difference when using the two solvent systems. The surface tension of 

a 12 % PCL solution in both the chloroform and the 4:1 CM binary solvent was measured 

using a K100 tensiometer produced by Kruss, Germany. Around 50 ml of solution was 

decanted into a 67 mm diameter Pyrex dish and then raised to a 10 mm wide platinum 

plate. Slight adjustments of probe vertical height, at a rate of 6 mm of travel per minute 

brought the probe into definite contact with the surface. The force on the probe due to 
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surface tension was then measured over a period of 20 seconds. An absolute value for 

surface tension in mN m-1 was then generated by averaging the results taken over this 

time period. 

4.3.4 Centrifugal spinning of PCL fibres 
 

Fibres were produced using the Fiberio ForcespinningTM L1000M system described in 

Section 2.1. The effect of polymer concentration was assessed on centrifugal spinning 

using a spinning speed of 9,000 rpm. PCL solutions using chloroform and 4:1 

chloroform/methanol were prepared at concentrations of 10-19 % (w/v). Multiple 

solutions were prepared at each condition and numerous spinning trials were conducted 

at each condition. This was to allow direct comparisons with previous work which found 

a speed of 9,000 rpm to be optimum spinning speed for producing fine fibres from 16 % 

in dichloromethane (McEachin and Lozano, 2011) and from methylene chloride at 10 and 

15 % (Zander, 2014). 

 

When spinning, 1 mL of the required solution was added to each end of the dual 30 gauge 

needle spinnerets. This was then accelerated to a rotational speed of 9,000 rpm and 

remained at this condition for a period of 1 minute before decelerating and coming to rest. 

The collection system used was a static arrangement of posts positioned 115 mm from 

the spinneret orifice tips. The free standing web was collected in bulk for subsequent 

analysis. 

 

The ‘quality’ of the web as observed immediately after production was noted. This refers 

to the state and cohesiveness of the web. A web that is substantial and well formed, being 

uniform in height and density throughout the circumference of the collector is deemed 
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‘satisfactory; a web that is poorly formed, asymmetrical and contains fibrous elements 

that are not formed in to a nonwoven is deemed to be poor quality and ‘unsatisfactory’. 

4.3.5 Electrospinning of PCL fibres 
 

For electrospinning the Nanospider NS LAB 200, manufactured by Elmarco, Czech 

Republic, was used. This is a needleless, free surface spinning system fitted with a wire 

electrode as shown in Figure 4.3. 

 

 

Figure 4.3: Interior of Elmarco Nanospider fitted with wire electrode. 

 

The Elmarco Nanospider operates in a vertical arrangement where the polymer solution 

and electrode sits at the bottom, a voltage is applied and the polymer jets travel upwards 

towards a grounded collection plate. The current collection system in the Elmarco is a 

conveying polyester spunbond fabric belt which sits beneath a grounded collection plate. 

The speed of the substrate can be controlled to vary the level of nanofibre deposition. For 

small samples a square of aluminium foil is pinned to the static spunbond substrate. 

 

The Nanospider is compatible with various electrode fittings, including vertical prongs; 

rotating rollers and rotating wires. For this study, rotating wire roller electrodes were 
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used. In this setup, polymer solution is poured into a reservoir into which a partly 

submerged electrode rotates slowly. Multiple Taylor cones form on the surface of the 

rotating electrode, Figure 4.4, which form into jets and fibres. 

 

 

Figure 4.4: Photograph showing 7 % PCL in 4:1 CM solvent being spun from a wire 

electrode using a 60 kV charge at a distance of 172 mm. 

 

The Elmarco Nanospider spinning chamber has no control over ambient conditions. This 

means that the air temperature and humidity inside the spinning chamber may vary 

significantly. There is also a significant extraction flow within the chamber which will 

increase the solvent evaporation rate. 

 

The conditions for the needleless electrospinning of PCL solutions in the concentration 

range 6 - 12 % (w/v), using both chloroform and chloroform/methanol solvents, was 

investigated. Multiple solutions were prepared at each condition and numerous attempts 

were made to produce fibres from each solution. The wire electrode used in this study 

was a 160 mm long electrode that consists of steel wire wrapped around a frame to create 

4 spinning surfaces. This sits within a reservoir to which 25 ml of polymer solution was 

added and a voltage of 60 kV applied to induce jet formation. A preliminary study 

indicated that voltages less than 55 kV would not induce Taylor cone and jet formation 

for the solutions and set-up described. The rotational speed of the electrode was 2.0 rpm 

4-wire electrode 

Jets in flight 

Collector 
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and spinning occurred for 4 minutes or until polymer deposition on the electrode became 

visible. The spinning distance used for all electrospinning samples was 154 mm. The 

electrospun fibres were deposited on to a foil sheet, 150 mm x 200 mm, that was affixed 

to the static collector substrate using pins. 

 

The webs are also assessed for apparent ‘quality’. When electrospinning a ‘satisfactory’ 

web is determined by uniform and consistent web coverage on the foil substrate with 

fibrous matter. An ‘unsatisfactory’ web is defined as one with evidence of significant 

spraying, uneven web coverage or a relatively short jet production window. 

 

4.3.6 Fibre analysis 

4.3.6.1 SEM analysis 

As in previous chapters SEM will be the primary tool in analysing the fibre diameter and 

morphology. The fibre sampling and measurement procedure will follow the method 

listed in Section 2.2.1 with a minimum of 150 fibres taken from multiple points on an 

SEM stub. 

4.3.6.2 Differential scanning calorimetry 

DSC was used to assess any changes to the thermal properties as a consequence of 

spinning polymer into fibres. The DSC measurements were obtained using a Perkin Elmer 

Jade DSC and scanned on a heat-cool-heat cycle from 0 °C to 240 °C at a rate of 20 °C 

per minute under a nitrogen atmosphere delivered at 30.0 cm3 min-1. DSC measurements 

were taken at fibres made from 12, 14 and 16 % using both solvents via centrifugal 

spinning. In addition, electrospun webs produced from 7, 8 and 9 % PCL in 4:1 

Chloroform/Methanol solvent were also measured using DSC.  
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4.3.6.3 X-ray diffraction 

The X-ray diffraction was performed on both the bulk material and on the fibres to 

determine any structural differences. Pelletised virgin PCL is not an ideal form for 

diffraction analysis as flat materials are preferred. This allows for comparisons between 

rapidly quenched fibres and slow cooled PCL film. Bulk PCL was prepared for XRD 

measurement by film casting a 16 % PCL solution in both solvent systems. This ensured 

a flat surface which is better suited to X-ray analysis compared to the pellet form. PCL 

fibres from centrifugal spinning were pressed into a flat shape for fitting to the sample 

mount. Scans were taken in the theta: theta orientation scanning in the Bragg angle, 2θ, 

through 4° to 60° with a step size of 0.066°. XRD measurements were taken at fibres 

made from 12, 14 and 16 % using both solvents via centrifugal spinning. In addition, 

electrospun webs of 7, 8 and 9 % PCL in 4:1 Chloroform/Methanol solvent were analysed 

with XRD without prior preparation due to the two-dimensional nature of the web. 

4.3.7 Cytotoxicity 
 

The cytotoxicity of centrifugal PCL fibres was investigated using fibre samples based on 

12 % PCL in chloroform and 12 % PCL in chloroform/methanol solvent. In addition, a 

PCL fibre web containing carbon nanotubes produced using centrifugal spinning was also 

evaluated as part of a wider study into PCL-CNT fibres, Section 6.3. The solvent was 

removed from the fibres through vacuum drying for 72 hours at 25 °C under 1020 mbar 

of pressure. The samples were sterilised using gamma radiation exposure. 

 

An extract cytotoxicity study was then performed using L929 mouse fibroblast cells 

according to BS EN ISO 10993-5:2009. Extracts of the samples were brought into contact 

with cells on Agar plates and incubated for 48 hours. Phase contrast microscopy images 
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were then taken of the cells in a supernatant to assess cell morphology. A 3-(4,5-

dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium 

(MTS) assay solution was then added and incubated for 4 hours. This was done to provide 

a quantitative measure of cell viability and was determined by measuring the presence of 

a formazan dye using spectrophotometry (Vistica et al., 1991). This dye was created from 

the MTS solution in the presence of cell metabolic activity. In conjunction to the fibre 

cytotoxicity measurements cells were also exposed to a cell culture medium in the form 

of Dulbecco’s modified Eagle's medium (DMEM) and dimethyl sulphoxide (DMSO) as 

positive and negative controls respectively.  

4.4 Results and discussion 

4.4.1 Rheology measurements 
 

The dynamic rotational viscosity measurements for a range of PCL concentrations in 

chloroform and chloroform/methanol solvents are plotted as a scatter diagram in Figure 

4.5. 
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Figure 4.5: Viscosity measurements of PCL dissolved in chloroform (▲) and 4:1 

chloroform/methanol () solvents. 

 

http://en.wikipedia.org/wiki/Renato_Dulbecco
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Figure 4.5 confirms that the viscosity of the solution increased as the PCL concentration 

increased for both solvents. A viscosity increase resulting from higher polymer 

concentration was expected and the shapes of curve recorded can also yield important 

information about levels of polymer entanglement. A long chain polymer in solution can 

be said to be in three regimes, dilute, concentrated and concentrated entangled (Zhang 

and Hsieh, 2008; Gupta et al., 2005).  

 

 

 

 

 

In a dilute condition the chains are unlikely to interact and entangle so the viscosity of the 

solvent dominates. There is little evidence of researchers producing fibres from dilute 

solutions (Gupta et al., 2005). When the number of polymer chains increases to a level 

where there mobility is restricted by the addition of further polymer then it is in the 

concentrated regime. As more polymer is added the solution shifts to the concentrated 

entangled regime, in this regime the addition of polymer has a greater relative effect on 

viscosity as the chains are already highly entangled and free space to accommodate 

further chains is limited compared to more dilute solutions. The viscosity of concentrated 

solutions often follow an exponential curve as seen in Figure 4.5. The concentrated 

regimes play a key role in determining spinnability in centrifugal and electrospinning 

systems. For example, it was found by Shenoy et al. (2005) that PLLA only produces 

continuous filaments from entangled, high concentration solutions.  

 

A comparison of the two solvent systems leads to the conclusion that PCL dissolved in 

the 4:1 chloroform: methanol solvent results in a marginally lower viscosity compared to 

100 % chloroform. This marginal decrease in viscosity was also found in research 

conducted by Gluck (2007) who observed that the viscosity of a chloroform/methanol 

based PCL solution decreased as the fractional content of methanol increased. It is 
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proposed that the non-solvating methanol acts as a fluid barrier between PCL chains and 

reduces the level of entanglements.  

4.4.2 Surface tension 
 

Table 4.1 shows the surface tension at two PCL concentrations when using both solvent 

systems. The surface tension decreased marginally at both PCL concentrations when 4:1 

chloroform/methanol was used as a solvent in comparison to solutions in homogenous 

chloroform. The results found here compare closely to those recorded by Gluck (2007) 

who measured a surface tension of 30.75 mN m-1 in 10 % PCL in 4:1 CM using different 

equipment. Methanol has a surface tension of 22.1 mN m-1 compared to 26.7 mN m-1 for 

chloroform; thus, the addition of methanol may reduce the surface tension of the solution 

through a simple reduction in inherent solvent properties (Yaws and Richmond, 2009). 

 

Table 4.1: Mean and 95 % confidence intervals for the surface tension of PCL solutions.  

 

 

 

 

 

 

 

There is also a decrease in surface tension as the concentration of PCL is increased. This 

relationship has been observed in other PCL solutions using alternative solvent systems 

(Deitzel et al., 2001, Zhang et al., 2005). This relationship also holds true for other 

polymer solutions as Fong et al. (1999) also reported a decrease in surface tension with 

increased concentration of PEO. The explanation for this is that with increasing 

concentration the number of polymeric molecules also increases; the presence of these 

PCL concentration 

(w/v) 
Solvent  Mean surface tension (mN m-1) 

10 % 

10 % 

Chloroform 30.65 ± 0.21 

4:1 CM 29.23 ± 0.13 

12 % 

12 % 

Chloroform 28.19 ±0.09 

4:1 CM 27.55 ± 0.10 
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polymeric chains typically reduces the surface tensions of a fluid (Ueberreiter and 

Yamaura, 1977).  

4.4.3 Centrifugal spinning of PCL 
 

Fibres were produced from both solvent types at a range of solution concentrations. If the 

polymer solution was too dilute the fibres would not spin and the material would spray. 

The fibres were formed into a free standing, voluminous web which was strong enough 

to be handled without breaking. A typical web produced through centrifugal spinning is 

shown below in Figure 4.6. The frustum shape that was observed when spinning PP was 

no longer observed and the fibres were formed in to a much flatter shape.  

 

Figure 4.6: Appearance of typical 14 % PCL web after centrifugal spinning at 9,000 

rpm. 
 

 

The conditions that allowed for successful web production are shown in Table 4.2 which 

indicates that the workable concentration range for centrifugal spinning was 12 % and 

above for the given experimental conditions. Fibres could be potentially spun at 

concentrations beyond 17 % in both solvent systems but there is difficulty in producing a 

solution that remains stable and does not precipitate in this range. Below 12 % 
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concentration the spinning process resulting in significant spraying of the polymer film 

due to jet breakup with poor levels of fibre formation. 

 

Table 4.2: Fibre production using centrifugal spinning of PCL in either chloroform of 4:1 

CM solvent system. 
 

Concentration  

 

Solvent 

10 % 11 % 12 % 13 % 14 % 15 % 16 % 17 % 18 % 19 % 

 

Chloroform 

 

 

x 

 

x 

 

✓ 

 

✓ 

 

✓ 

 

✓ 

 

✓ 

 

✓ 

 

o 

 

o 

4:1 CM x x ✓ ✓ ✓ ✓ ✓ o o o 

  x-indicates that mostly beads were produced. 

  o-indicates that a cohesive web could not be produced. 

 ✓-indicates that a satisfactory and cohesive web was produced 

 

A polymer concentration of 12 % marks the critical entanglement value at which the 

polymer is said to be sufficiently concentrated to permit centrifugal spinning. At this 

concentration and upwards there is sufficient overlap of the PCL chains to allow a 

cohesive jet to form.  

 

The low magnification SEM micrographs presented in Figure 4.7 show dense webs 

containing little beading but also indicate that centrifugal PCL fibres are highly variable 

in diameter.  
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12 % w/v PCL 

 

 
15 % w/v PCL 

 

Figure 4.7: SEM micrograph of 12 % PCL (top) and 15 % PCL (bottom) spun from 

chloroform at 9,000 rpm. Magnification 150X. 
 

It is evident that the webs contained a mixture of fine fibres combined with much larger 

filaments. This variability was observed in fibres produced from both solvent systems. 

This fibre variability is thought to manifest itself due to the short spinning times in the 

lab scale equipment; the acceleration and deceleration of the spinneret will introduce 

variable spinning conditions which will lead to a broad range of fibre sizes. In a 

commercial system is it expected that the system would spin for extended periods on 

continuous operation so the impact of acceleration and deceleration is minimised. It is 



144 

 

 

also evident, particularly in Figure 4.7 that the diameter of any one filament is not 

consistent across a meaningful length; a filament can measure < 1 μm at one point and 

can increase to over 5 μm within a few mm of length, however this is relatively rare and 

the majority of filaments are uniform along the length within an SEM image scan. It is 

thought that this variation is due to uneven elongational loading leading to localised areas 

of deformation. It should be noted that the presence of larger fibres will significantly 

affect the average fibre diameter which could limit the effectiveness of this kind of 

product where high surface area per weight is critical. 

 

Figure 4.8 to Figure 4.10 show high magnification SEM images of fibres produced from 

chloroform allowing for close observation of fibre morphology and the measuring of fibre 

diameter. In terms of morphology the fibres produced are generally round with some 

visible surface morphology.  

 

 

Figure 4.8: Micrograph of 12 % PCL spun from chloroform at 9,000 rpm. Unique 

texture can be observed on the larger fibres in the background. Magnification 1000X. 
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Figure 4.9: Surface texture of PCL fibres spun from chloroform. Fibres are formed from 

13 % PCL solution spun at 9,000 rpm. Magnification 1000X. 

 

 

Figure 4.10: SEM micrograph of 15 % PCL spun from chloroform at 9,000 rpm. 

Magnification 1000X. 

 

Close examination of the fibre surface reveals a texture more evident on the coarser fibres 

which are best described as shallow pores or pits, Figure 4.11. This texture is less 

pronounced or entirely absent on the smaller (>300 nm diameter) fibres as it thought the 

high surface area ratio allows solvent to flash off more uniformly which limits the level 

of surface texture created. The proposed action that creates these features is the dry skin 
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model that is discussed in conjunction with the SEM the results for the fibres spun from 

the 4:1 CM solvent. 

 

 

Figure 4.11: Expanded SEM micrograph of 12 % PCL spun from chloroform showing 

pores on surface. Digitally enlarged from an original magnification of 1000X. 

 

For a meaningful comparison to be made between the two productions systems the 

resulting fibre diameters must be discussed. Table 4.3 presents the mean diameters for 

the polycaprolactone fibres spun using centrifugal spinning.  

 

Table 4.3: Mean fibre diameters of centrifugally spun PCL for the two solvent systems. 

  PCL concentration (%) 

Solvent  12 % 13 % 14 % 15 % 16 % 

Chloroform 

Mean (µm) 1.60 1.73 2.30 2.91 2.96 

SD (µm) 1.24 1.69 1.47 1.73 1.83 

4:1 CM 
Mean (µm) 1.04 1.36 2.16 2.19 2.55 

SD (µm) 0.85 1.47 1.83 2.14 2.58 

 

Table 4.3 shows that for both solvent systems, the finest were produced from the lowest 

concentration solutions (12 %) and the coarser fibres were produced by the highest 
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polymer concentration. This indicates that a reduction in polymer concentration produced 

finer fibres; however, this relationship is limited by fibre breakup at below critical 

entanglement concentrations (>11 – 12 %). Whilst the mean diameter for the fibres 

produced from chloroform/methanol were lower at each condition, statistical analysis 

using ANOVA revealed that significant differences were only observed at the PCL 

concentration of 12 % (p > 0.05, F (13.5) > Fcrit (3.9)) and 15 % (p > 0.05, F (25.9) > 

Fcrit (3.9)) and that the data was not statistically significant at the other concentrations. 

This mix of significant and insignificant data means that it cannot be firmly argued that 

adding methanol to the solvent produced significantly finer fibres. However, it can be 

argued that the additional of methanol does not adversely affect the fineness of a PCL 

web.  

 

Plotting the relationship between PCL concentration and fibre diameter confirmed the 

trend that the fibre diameters increased as the polymer concentration increased. This 

relationship is shown in the graph in Figure 4.12.  
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Figure 4.12: Relationship between initial PCL concentration and resulting fibre diameter. 

Fibres were spun from 27G needle tips at a speed of 9,000 rpm. The graph shows the two 

solvent systems: chloroform () and 4:1 chloroform/methanol () with the bars showing 

the upper and lower 95 % confidence interval. 
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The relationship between here is an agreement with results observed in the 

electrospinning literature and also the recent research on centrifugal spinning; Zander 

(2015) found that the diameter of fibres increased when the PCL in methylene chloride 

concentration was increased from 10 % to 20 % when processing at 6,000 rpm.  

 

It is known from the viscosity measurements on PCL solutions, page 138, that increasing 

the polymer concentration in a solution will act to increase the solution viscosity. The 

viscosity increase renders the solutions more resistant to flow and thus more resistant to 

elongation for a given applied force. The reduced solvent-to-polymer ratio in the higher 

concentration fluids also results in a more rapid solidification process. Additionally there 

is more PCL present in the fluid so the solidifying jet has more solid mass within it, 

increasing the size of the final yet.  

4.4.4 Comparison of centrifugal spun fibres and electrospun 

fibres 
 

Fibre production was only possible within a limited range of polymer concentrations. A 

list of all the successful operating conditions observed to form fibres is found in Table 

4.4. For both solvent systems steady state fibre production occurred when using PCL 

concentrations of 7 - 11 % when using the processing parameters listed on page 134.  

 

At low concentrations the solution viscosity was too low which does not promote steady 

state fibre production. When working in the operating concentration range and the 

rotating wire electrode, the Elamrco Nanospider was able to spin for prolonged periods 

(> 10 minutes) until such a time that the polymer solution began to agglomerate on the 
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wires, destabilising the system. The web produced was a flat, thin membrane supported 

by a substrate and typical of electrospun products. 

 

Table 4.4: Fibre production conditions of electrospinning. 
 

 

Solvent 
PCL concentration (w/v) 

6 % 7 % 8 % 9 % 10 % 11 % 12 % 

Chloroform x ✓ ✓ ✓ o o x 

4:1 CM x ✓ ✓ ✓ o o x 

o- high quality webs were not produced. 

x- no fibres were produced. 

- satisfactory webs were produced. 

 

 

Electrospinning occurred below the critical entanglement concentration (~11 %) and 

instead occurred in a viscosity phase known as semi-dilute entangled (Lu et al., 2013). 

The rheological range that allows electrospinning is relatively narrow and Taylor cone 

formation and jet elongation does not occur if the entanglement is insufficient or the 

solution is considered to be too concentrated. This failure to spin would manifest itself 

through jet breakup (low concentrations) or rapid solidification resulting in large artefacts 

or blobs (high concentrations). 

 

By comparing Table 4.4 with Table 4.2, page 142, the argument can be made, in 

conjunction with the results found in the literature (McEachin and Lozano, 2012; Deitzel 

et al. 2001), that centrifugal spinning requires a significantly higher concentration 

solution than the needleless electrospinning technique when using a comparable solvent-

polymer system. In the literature, typical PCL electrospinning in chlorinated solvents 

works at a concentration range between 7 and 10 % (Deitzel et al., 2012; Zeng et al., 

2003) whereas in centrifugal spinning this concentration figure is typically higher, 

ranging from 12 %, as found by Amalorpava Mary et al. (2013), to as high as 18 % 
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(McEachin and Lozano, 2012). Based on these previous studies and the data collected 

here it can be argued that centrifugal spinning and electrospinning require the polymer 

viscosity to be in different regimes. Centrifugal spinning only occurred when the solution 

concentration was greater than the ce identified in the viscosity results (~11 %). In 

comparison electrospinning requires a lower viscosity to produce fibres in steady state 

conditions. In practical terms, the closed spinneret used in centrifugal spinning means 

there is no premature polymer solidification which has been identified as a potential 

problem in free-surface electrospinning. Aside from the practical aspects of polymer build 

up on the free surface there is also the postulated reason that the lower concentration range 

is necessary for Taylor cone formation. 

4.4.4.1 Morphology of electrospun webs 

When spinning from homogenous chloroform the electrospun webs were fused together 

in a non-uniform way to form the film like structures, Figure 4.13 to Figure 4.15. These 

webs were deemed satisfactory as they are predominantly fibrous and appeared uniform 

to the human eye.  

  

Figure 4.13: 1000X (left) and 150X (right) SEM micrographs of 9 % PCL spun from 

chloroform using needleless electrospinning. 
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Figure 4.14: 1000X (left) and 150X (right) SEM micrographs of 8 % PCL spun from 

chloroform using needleless electrospinning. 

 

  
 

Figure 4.15: 1000X (left) and 150X (right) SEM micrographs of 7 % PCL spun from 

chloroform using needleless electrospinning. 

 

However, this merging of fibres to form areas of film detracts from some of the desired 

‘advantageous’ properties and is undesirable for most likely applications. It is proposed 

that this phenomena was due to the jet only partially solidifying before it reaches the 

collector. The solvent remaining in the web spreads and causes neighbouring fibres to 

fuse together. The level of web fusion was observed to reduce as the PCL concentration 

increased, being lowest in the 9 % solution. This fusion was not seen in centrifugal 

spinning. It is proposed the higher initial polymer to solvent ratio combined with a longer 

jet drying step results in fibres that reach the collector fully solidified. 
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Incomplete solvent evaporation also created different fibre morphology when compared 

to the centrifugal spun fibres. The fibres are less spherical, adopting a flatter, almost 

cottonesque appearance. There was also localised bonding between neighbouring fibres 

observed in all the concentration ranges. This fibre fusion occurred over entire areas of 

the web at the 7 % concentration, Figure 4.15, where patches of the web became film like. 

4.4.4.2 Analysis of Fibre diameters of electrospun webs 

The mean fibre diameters of the PCL fibres produced using needleless electrospinning 

are shown in Figure 4.16. 
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Figure 4.16: Mean diameters and 95 % confidence interval of fibres produced using 

electrospinning. The solvents used were chloroform () and 4:1 chloroform/methanol 

(). 

 

The observed range of fibre diameters, Figure 4.16, suggested the fibre diameter reached 

a minimum as the concentration passed from 7 % to 8 %. This indicates that as with 

centrifugal spinning, the initial PCL concentration also influenced the mean fibre 

diameters in electrospun webs. The average diameters varied from ~500 nm average to 

~1 μm depending on concentration and conditions. This is only marginally finer than what 

was achieved using centrifugal spinning; however electrospinning produced much more 
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uniform fibre distributions within the webs evident through the narrower coefficient of 

variations as shown in Table 4.5 and Table 4.6. 

 

Table 4.5: Descriptive statistics of fibres produced from chloroform using electrospinning 

and centrifugal spinning. 

 

 

Table 4.6: Descriptive statistics of fibres produced from 4:1 CM solvent using 

electrospinning and centrifugal spinning. 

  PCL Concentration (%) 

  7 8 9 10 11 12 13 14 15 16 

Electrospun Mean 0.74 0.47 0.70 - -      

SD 0.42 0.22 0.48 - -      

CV 0.57 0.46 0.70 - -      

Centrifugal 

spun 

Mean     - - 1.04 1.36 2.16 2.19 2.57 

SD    - - 0.86 1.47 1.83 2.14 2.58 

CV    - - 0.83 1.08 0.85 0.98 1.00 

 

Electrospinning of PCL could be further optimised to produce finer fibres using needless 

electrospinning. However, there is the potential for films to form when electrospinning 

PCL as seen in Figure 4.23 and Figure 4.24. This film formation has to be considered in 

any optimisation process as it could have potentially negative consequences on certain 

web properties making it unsuitable for certain applications. 

4.4.5 The use of binary solvent  
 

The data presented previously Figure 4.12, page 147, and Figure 4.16, page 152, shows 

that whilst the use chloroform/methanol solvent produced finer mean diameters compared 

to fibres spun from chloroform, these were not always significant, particularly in the 

  PCL Concentration (%) 

  7 8 9 10 11 12 13 14 15 16 

Electrospun Mean  1.02 0.62 0.89 - -      

SD  0.36 0.34 0.59 - -      

CV 0.35 0.56 0.67 - -      

Centrifugal 

spun 

Mean     - - 1.60 1.73 2.30 2.91 2.96 

SD    - - 1.24 1.69 1.51 1.73 1.83 

CV    - - 0.78 0.97 0.66 0.59 0.62 
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centrifugal spun products. However, reduction in fibre diameter through the addition of 

methanol has previously reported by Gluck (2007) when electrospinning PCL. This 

reduction in diameter was linked to retardation in the rate of evaporation with increasing 

methanol content; the jets remain fluid for longer allowing for more elongation.  

 

Thus far only the morphology of PCL centrifugal spun from chloroform has been 

presented and discussed. Sections 4.4.5.1 and 4.4.5.2 presents the morphological features 

of PCL fibres produced from 4:1 chloroform/methanol using centrifugal spinning and 

electrospinning respectively. Section 4.4.5.3 explores the mechanism of mechanism of 

pore formation. 

4.4.5.1 Chloroform/methanol in centrifugal spun webs 

In section 4.4.3 it was shown that fibres centrifugal spun from chloroform displayed some 

pore formation on the fibres, Figure 4.8 to Figure 4.11. SEM analysis of the fibres 

produced from 4:1 chloroform/methanol, Figure 4.17 to Figure 4.20, revealed that 

spinning PCL from this solvent system significantly increased the number of magnitude 

of these surface pores and it appears the level of texture is increased through the use of 

methanol as a co-solvent. This agrees with the conclusion drawn elsewhere that surface 

deformation is more severe when using binary solvent systems (Luo et al., 2010). 



155 

 

 

 

Figure 4.17: SEM micrograph of 12 % PCL spun from 4:1 CM at 9,000 rpm. Deep surface 

features are observed on the larger diameter fibres. Magnification 2000X. 

 

 

Figure 4.18: SEM micrograph of 13 % PCL spun from 4:1 CM at 9,000 rpm. 

Magnification 2000X. 
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Figure 4.19: SEM micrograph of 15 % PCL centrifugal spun from 4:1 CM 9,000 rpm. 

Magnification 2000X. 
 

 
 

Figure 4.20: SEM micrograph of 16 % PCL centrifugal spun from 4:1 CM at 9,000 rpm. 

Magnification 2000X. 

 

Figure 4.17 to Figure 4.20 shows that as the polymer concentration is increased the 

surface texture shifts from one of deep pores to one of shallow surface crinkling. Solutions 

of 15 % and 16 % w/v showed a significant reduction in surface texture. The polymer jet 

is much more viscous and solidifies quicker, resisting deformation. This reduction in pore 

formation with increasing polymer concentration was also observed by Zeng et al., 

(2003a). 
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Figure 4.21: SEM micrograph of pore formation on a 12 % PCL fibre centrifugally spun 

from 4:1 CM at 9,000 rpm. Magnification 1000X. 

 

 
Figure 4.22: SEM micrographs of pore formation on a bead of 12 % PCL. 

Magnification 1500X. 

 

So far, PCL has been successfully centrifugal spun from a single solvent system but there 

have been no reportable publication, to date, that has established the effect of a secondary 

non-solvent on the fibre formation process when using this polymer. In addition, there is 

only limited information on the effect of binary solvent systems on the surface tension. 

To the authors knowledge this is the first time textures such as those observed here have 

been reported in centrifugally spun fibres from this polymer. 
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4.4.5.2 Electrospinning from chloroform/methanol 

Low magnification SEM micrographs of the webs formed from 4:1 CM solvent are shown 

in Figure 4.23 where it was observed that the webs electrospun from a 4:1 CM solvent 

showed comparatively little film formation compared to the homogenous chloroform 

system as shown previously in Figure 4.13 to Figure 4.15, page 150. 

 

 
8 %  

 
9 %  

Figure 4.23: SEM micrographs of the webs produced by electrospinning on the 

Nanospider of 8 % (left) and 9 % (right) PCL in 4:1 chloroform/methanol solvent. 

Magnification 500X. 

 

This reduction in observed film formation suggests that the fibres are reaching the 

collector with increased solidification. It is suggested that a co-solvent can change the 

evaporation behaviour of the solution (Luo et al., 2010). The consequence of this is that 

the webs can be produced that retain the desirable properties of nanofibres but by varying 

solvent levels the process could be tailored to create a range of mechanical and filtration 

behaviours depending on the required application. The fibres also appeared more regular 

but did demonstrate pore formation on the larger elements and have a surface texture as 

observed in the high magnification images presented in Figure 4.24. 
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7 % w/v 

 
8 % w/v 

Figure 4.24: SEM image of 7 % and 8 % PCL in 4:1 CM spun using the wire roller 

electrode. Magnification 3000X. 

 

The electrospun webs were different in form and appearance compared to the centrifugal 

spun webs. Here the webs were mounted flat onto a spunbond substrate. The morphology 

of the fibres showed shared some similar surface features but overall had a different fine 

scale appearance.  

4.4.5.3 Pore formation mechanism 

It is known from the literature that the addition of a second solvent can change the surface 

morphology of the fibres (Bognitzki et al., 2001). This can lead to the formation of pores 

within the surface of the fibre as observed in this section of work. Pore formation has 

been previously observed in electrospun PLLA by Zeng et al. (2003a) and by 

Badrossamay et al. (2010) who also identified the porous structure in PLA fibres web 

using a form of centrifugal spinning. Attempts have been made to explain the formation 

of unique texture in fine fibres: Krishnappa et al. (2003) noted that electrospun 

polycarbonate fibres spun from a binary solvent exhibited puckering to form a surface 

structure they likened to a raisin. They attributed this to a hypothetical dry skin model 

where the outer solvent evaporates off, creating a skin that must collapse inwards as the 

interior solvent evaporates, leaving a void, Figure 4.25. They argued that the use of binary 
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solvents increases the level of phase separation which results in a high solvent vapour 

pressure which deforms the surface.  

 

 

Figure 4.25: The dry skin model of binary solvent spinning of polycarbonate resulting in 

textured fibres (Krishnappa et al., 2003). 

 

However, the dry skin model does not explain the creation of structures seen in Figure 

4.21and Figure 4.22 where the pores are shallow and create a dimpling effect similar to 

that of a golf ball. The pores here are typically circular in shape with a depth that appears 

to be less than the pore radius. These shallow pores appear to have been formed on the 

fibre surface rather than the escape of a solvent interior. The circular pore shape is 

typically seen on the larger fibres and is also seen on a number of beads, typified in Figure 

4.17, Figure 4.22 and Figure 4.26. Circular pores were also reported in the work by 

Badrossamay et al., (2010). 
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Figure 4.26: SEM micrograph of pores on an artefact in 12 % PCL in 

chloroform/methanol. Magnification 4000X. 

 

The finer fibres formed through centrifugal spinning PCL in chloroform/methanol have 

an elongated pore shape with a pore depth that decreases in conjunction with the fibre 

diameter, Figure 4.20. This can be explained by the phase separation of the two solvents 

during spinning. The methanol agglomerates into regions on the fibre surface, as it 

evaporates it leaves behind an imprint that remains in the rapidly solidifying polymer. In 

regions of high deformation (finer fibres) these imprints become elongated in the 

direction of fibre extension and reduce in absolute size as the jet shrinks during stretching. 

The very large fibre elements and beads will have undergone less extensional deformation 

and as a result the imprints are not deformed and remain circular. 
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4.4.6 Differential scanning calorimetry  
 

DSC was used to measure the thermal properties of the fibres produced using the 

techniques listed above and the initial pellet. Selected DSC traces are drawn in and the 

Tonset, Tmelt measured are reported, where relevant as part of the discussion. 

 

Figure 4.27: DSC thermograms for centrifugal spun PCL fibres (top) alongside virgin 

PCL pellet and electrospun PCL fibres (bottom). 
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The PCL fibres produced through centrifugal spinning had a single melting endotherm 

with a Tonset at around 52 °C to 55 °C with a Tmelt occurring at ~62.4 °C. The DSC traces 

of the centrifugal spun showed little deviation between processing conditions and were 

largely similar regardless of starting concentration. No significant differences were 

observed between solvent systems. The unprocessed pellet and electrospun fibre 

endotherms are apparently similar but had a slightly lower Tonset and a Tmelt that reached 

a maxima at around 60.1 °C. This suggests that the centrifugal spun fibres had a slightly 

larger average crystallite size which would result in a higher Tmelt. However, this higher 

Tmelt was not observed for all centrifugal spun fibres.   

 

Apart from this shift in Tmelt it can be argued from that the fine structure of centrifugal 

spun PCL is largely similar to both virgin PCL and electrospun PCL fibres. As the fibres 

are not melt processed they had a very similar thermal history so had melting peaks with 

a similar onset, similar shape and marginally different Tmelt points. Whereas melt 

centrifugal spun polypropylene (Chapter 3) quenched quickly in cool air and generated a 

radically different DSC trace; solution processed material takes longer to solidify fully 

which results in a similar fibre fine structure compared with the virgin material. 

 

In comparison to other work, McEachin and Lozano (2012) found that centrifugal spun 

PCL created an endothermic shoulder at around 40 °C. They attribute this to a disordered 

mesophase much like the one observed in polypropylene previously in this work. This 

peak was not found in this work and it is thought that the choice of solvent may have 

influenced this difference. They used dichloromethane (DCM) as a solvent which has a 

vapour pressure of 350 Torr whereas chloroform has a vapour pressure of 150 Torr. The 

rapid evaporation of DCM could result in equally rapid solidification, resulting in a 
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mesophase structure. This discrepancy in findings indicates that the fine structure of the 

PCL fibre is determined by the solvent system it was produced from and could be 

potentially tailored to produce fibres with variable crystal forms. 

4.4.7 X-ray diffraction of PCL samples 
 

The diffraction patterns of film cast PCL and selected PCL fibre samples are shown in 

Figure 4.28.  
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Figure 4.28: Wide angle X-ray diffraction traces of PCL film and centrifugal spun fibres 

using 12, 14 and 16 % polymer concentrations in both solvent options. 
 

 

The XRD patterns of the PCL fibres produced through centrifugal spinning, Figure 4.28, 

show consistently sharp peaks in definite regions across the spectrum. This indicates that 

unlike melt spun polypropylene; PCL fibres contain definite crystal regions without a 

subsequent annealing step. The normalised curves presented show that the peak locations 

and shape was largely consistent for all the PCL flake and fibres regardless of starting 

concentration or solvent. The XRD traces of PCL spun using needleless electrospinning 

display a similar pattern with peaks in near identical positions, Figure 4.29. 



165 

 

 

 

10 20 30 40 50

N
o
rm

al
is

ed
 c

o
u
n
t

Bragg angle (2)

7% espun from wire

8% espun from wire

9% espun from wire

 

Figure 4.29: Wide angle X-ray diffraction traces of PCL electrospun from the wire roller 

using 7, 8 and 9 % polymer concentrations in chloroform solvent. 

 

The peaks lie on top of an amorphous hump that occurs between 15° and 25° 2θ. The 

crystalline regions are identified by the sharp peaks at 21.4° 2θ and 23.8° 2θ along with 

a minor peak at 30° 2θ. This combination of order and disorder suggests that PCL is a 

semi-crystalline material with crystalline regions interspersed with amorphous regions. 

By using Equation 2.6 and Equation 2.7 with the peak positions 21.4°, 23.8° and 30° 2θ 

the unit cell dimensions of the PCL fibres can be calculated (Hartman et al., 2010). The 

precise peak positions confirm that the PCL fibres produced through both techniques 

forms an orthorhombic crystal with dimensions: a = 7.47 Å, b= 4.97 Å and c =17.30 Å.  

 

The XRD traces of PCL fibres allowed for an estimation of crystallinity for the as-spun 

materials using the method described by Young and Lovell (1991). The XRD curve is 

separated into two distinct regions representing the amorphous and crystalline 

components (Statton, 1963).  
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Figure 4.30: XRD trace of PCL fibres with notation marking crystalline peak are and 

height and amorphous halo area. 

 

Once the peak areas are separated, as shown in Figure 4.30, the total areas can be 

compared and the crystallinity estimated using Equation 4.1.  

 

 
𝑋𝑐 =

𝐴𝑐

𝐴𝑎 + 𝐴𝑐
× 100 Equation 4.1 

Where 𝑋𝑐 is the estimated crystallinity, Ac is the area of the crystalline peaks and Aa is 

the area of the amorphous halo. The peak areas were calculated using curve fitting and 

integration software provided in the software package OriginPro 8.1. 

 

In addition the relative peak heights of the crystalline regions, h1 and h2 in Figure 4.30, 

and can be taken as a ratio to determine if there is a change in crystal formation. The full 

width at half maximum for the crystalline regions was also measured which yields 

information regarding crystallite size. The relative peak heights, full widths at half 

maximum and estimated crystallinity are listed for the centrifugal spun webs in Table 4.7. 

 

Ac 

Aa 

h1 

h2 
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Table 4.7: Peak positions and estimates of crystallinity from XRD results on centrifugal 

spun PCL fibres. 

 

No patterns or marked changes were observed between processing conditions and the 

parameters calculated in Table 4.7. There is only slight variation in the location of the 

peaks and the relative heights of the primary peak for the centrifugal spun fibres. This 

agrees with the DSC data which suggested that the fine structure of the material was 

largely independent of spinning speed or processing conditions regardless of processing. 

The estimated crystallinity was found to vary but the calculation technique is known to 

be only a rough guide. The crystallinity estimates for centrifugal spun PCL webs are 

similar to the 42 - 60 % Xc values found by Hartman et al. (2010) for film cast and 

electrospun PCL webs suggesting there is little variation between centrifugal spinning 

and electrospinning on the fine structure formation in PCL fibres. 

Concentration Solvent Peak relative 

height 

FWHM of h1 

(° 2θ) 

Estimated 

Crystallinity 

12 % Chloroform 3.62 0.59 51 % 

14 % Chloroform 4.33 0.66 41 % 

16 % Chloroform 3.51 0.54 49 % 

12 % CM 3.67 0.67 48 % 

14 % CM 3.61 0.61 51 % 

16 % CM 3.49 0.48 59 % 
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4.4.8 Cytotoxicity 
 

The phase contrast microscope images for the five samples are shown in Figure 4.31. 

These images show the shape of cells in a supernatant containing elements of the fibres 

or chemical reference.  

A- 12 % PCL in chloroform B- 12 % PCL in chloroform/methanol 

C- 12 % PCL + 0.25 % CNTs in 

chloroform 

D- DMEM culture medium 

E- DMSO 

 

Figure 4.31: Phase contrast microscopy images showing cell morphology after 

cytotoxicity study. 
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With these images it is not the number of cells that is critical but the shape. Elongated, 

elliptical cells are typical of cells that are attempting to spread and divide into their 

surroundings. This only occurs when cells are tolerant to the environment in which they 

are located. In comparison, round and more clearly defined cells are more likely observed 

in cytotoxic environments (Theriault et al., 2012). The images generated from 

cytotoxicity wells using the centrifugal spun fibres demonstrated cell spreading, a sign of 

an acceptable environment for cell growth. In contrast, the cells shown in samples D and 

E, Figure 4.32, show less spreading, with a more rounded cell perimeter indicating that 

the cells are less tolerant of the environment. On this occasion, the positive control, 

DMEM did not permit cell proliferation and spreading as observed in phase contrast 

microscopy. However, in the subsequent assay the cells were found to be viable.   

 

A semi-quantitative means of assessing cell growth can be done using a colourimetry 

assay. An increasing number of viable cells convert MTS to the dye formazan through 

metabolic activity. This increase in colour can be detected using spectrophotometry. The 

quantitative formazan absorbance measurements for the three fibres studied are shown in 

Figure 4.32 alongside the results from cells exposed to references DMEM and DMSO. 

 



170 

 

 

 

Figure 4.32: MTS cytotoxicity assessment of PCL fibres compared to DMEM and 

DMSO. A, B are the PCL fibres produced from 12 % chloroform/methanol and 12 % 

chloroform using centrifugal spinning respectively, and C are the 12 % PCL+ 0.5 % 

CNT fibres produced from chloroform. 

 

Figure 4.32 indicates that the PCL fibres induced a less toxic cellular response in the 

mouse fibroblast cells. There was no significant change in toxicity when using either 

chloroform or chloroform/methanol as a solvent. Sample C in Figure 4.32 is the PCL-

CNT composite fibre (discussed further in Chapter 6) and there was no significant change 

in toxicity with the addition of carbon nanotubes. The fibres and the DMEM were all 

significantly more tolerant compared to DMSO. DMSO is a cytotoxic compound and is 

seen as a negative control whereas DMEM is a cell culture medium and is seen as a 

positive control (Da Violante et al., 2002). There were no significant differences between 

the fibres and only the PCL-CNT fibres showed a significant improvement in cell viability 

over the reference culture medium, DMEM. The demonstrated tolerance in vitro means 

that PCL fibres spun from both chloroform and chloroform/methanol could be applied as 

an external cellular scaffold for wounds or for in vivo applications.  
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4.5 Conclusions 

 

The experimental section of this chapter demonstrated that solutions of PCL can be spun 

into fibres using needleless electrospinning and solution centrifugal spinning. PCL fibres 

were spun from both chloroform and 4:1 chloroform/methanol solvents at varying 

concentrations depending on the processing technique used. Electrospinning was possible 

at a significantly lower concentration range compared to centrifugal spinning. Combining 

in the viscosity results and it was observed that the electrospinning of PCL only occurred 

when the solution was in the entangled regime up until the 11 % w/v mark; whereas, 

centrifugal spun fibres are ideally produced at higher concentrations (c > ~11 %), most 

likely the concentrated entangled regime. In both production systems the fibre diameters 

observed was linked to the initial solution concentration and for centrifugal spinning an 

increase in PCL concentration increased the fibre diameter. However, the overarching 

principles are the same for both techniques as incorrect solution rheology resulted in 

beading when the viscosity was too low or excessive large diameter fibres when the 

viscosity was too high. The finest fibres were produced using the electrospinning 

technique, with a mean fibre diameter of 470 nm recorded compared to a mean fibre 

diameter observed as fine as 1040 nm for centrifugal spinning. 

 

By changing the solvent the spinning conditions and fibre morphology was significantly 

varied for both electrospun and centrifugal spun PCL fibres. Film formation was visibly 

reduced when electrospinning from chloroform/methanol. When spinning fibres from 

chloroform resulted in some pore formation being observed but this was limited to larger 

diameter fibres and shot. However, with the addition of a non-solvent such as methanol 

this pore formation can be exaggerated and a high level of surface pores can be introduced 
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due the fibres due to differences in solvent evaporation properties. This texture has not 

been previously reported in fibres produced using centrifugal spinning. Using methanol 

as a non-solvent also reduced the diameters of the fibres with both centrifugal spinning 

and electrospinning.  

 

This chapter also noted differences in web construction which could impact on utilisation; 

centrifugal webs had much greater loft than the electrospun webs and the latter formed as 

densely packed webs laid on to a flat substrate whereas centrifugal spun webs are self-

supporting cylinder with no substrate. There were also differences in the web morphology 

as revealed by SEM analysis; the electrospun webs also showed higher levels of film 

formation which was not seen in the centrifugal spun webs which was caused by residual 

solvent remaining in the jet. 

 

This research has also shown that fibre production can be adapted from one system to 

another with some adjustments to solution properties. As a result it is possible that a broad 

selection of polymers currently being spun using electrospinning could be transferred to 

centrifugal spinning. 

 

The fine structure was analysed using DSC and XRD and the results indicated that the 

crystal structure was entirely typical of solution processed PCL. There were no notable 

differences in the fibre fine structure between the fibrous PCL produced using either 

technique. The results correlate with reports elsewhere detailing the fine structure of 

electrospun and film cast PCL.  
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The extract cytotoxicity study of the PCL fibres showed that the fibres produced by 

centrifugal spinning from chloroform and chloroform/methanol solvents. The results of 

this experiment indicates that centrifugal spun fibres formed using these solvents could 

be applied to cell growth scaffolds and other medical devices where cell compatibility is 

required. The versatility of centrifugal spinning allows for production of fibres from a 

range of solvents. Research presented here demonstrates that the solvent can be varied to 

what is found in found in the literature and non-solvent can be added to achieve novel 

textural effects on the fibre surface. The potential for using a biologically acceptable 

solvent in the future would allow the inclusion of potentially sensitive additive such as 

proteins and drug compounds.  
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Chapter 5  
Hydrophobic fibres produced via centrifugal 

spinning 

 

5.1 Introduction 

 

It is known that the production of textile products can have a significant impact on the 

environment (Carneiro et al., 2010). In particular, wet processing uses and ‘contaminates’ 

significant volumes of water. The treatment of dye house wastewater is thus necessary 

before the water effluent can be returned to the water system. Dye house wastewater is 

typically coloured due to the presence of residual dye that remains unfixed during the 

dyeing process. Colour in particular is undesirable in the public water system and even 

very low concentrations of colorant remain visible and therefore dye molecules must be 

removed or reduced in concentration even if non-toxic (Mishra and Tripathy, 1993; 

Christie, 2001). Most national environmental authorities have low tolerance limits to the 

colour and opacity of water released into lakes and rivers; thus there is a requirement of 

industry to eliminate or limit the release of colour into municipal water systems. Post-

processing, the water must therefore be cleared of coloured agents (dyes) either by 

removing the molecules or by destroying them. Currently, the treatment of textile effluent 

is made more complex by the large range of dye types used in the industry. Dyes vary 

significantly in structure depending on the substrate multiple treatment processes are 

needed to deal with the entire range of dyes. In addition to dyes, the textile effluent stream 

may contain organic and inorganic substances both soluble and insoluble. These could be 

sizing agents, dispersants or salts added to aid the finishing procedure. These additives 

also require treatment before textile effluent is safe to re-enter the water supply. 
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There is a wide variety of physical, chemical and biological treatment methods that can 

be applied depending on the class of dye within the waste effluent. An overview of these 

techniques is presented in Figure 5.1. 

 

 

Figure 5.1: Diagram illustrating the principal dye effluent treatment methods (Saratale 

et al., 2011) 

 

Dye effluent treatment techniques fall into two processing streams: destruction of the dye 

through chemical or biological breakdown or separation using a physical treatment 

system. In chemical and biological treatment the dye effluent rests in a treatment tank 

where the chromophore is broken down by enzymes and microorganisms in a biological 

system or by UV radiation, reactions with ozone or electrolysis. These methods can have 

an excellent colour removal efficiency rate but may require accurate and expensive 

control of tank conditions to permit breakdown and prevent enzyme denaturing 

(Anjaneyulu et al., 2005). Biological purification requires an oxygenated aeration pond 

operating at a precise optimal temperature and pH. An additional concern is that although 

the chromophore is broken and the colour element lost, harmful aspects of the dyes such 

as heavy metals and degradation products can remain in the effluent. 
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In the physical treatment stream the dyes are instead separated out from the liquor using 

a range of treatment methods. Filtration and reverse osmosis separate larger particulate 

out from the effluent by capturing the dye particles in a fibrous filter media or on one side 

of a selective membrane (Hutten, 2007). Coagulation and flocculation work to cluster and 

agglomerate the dye molecules together which then settle to the bottom or rise to the top 

where they are collected as a cake (Hutten, 2007). This can create a problem in terms of 

the large amount of highly concentrated sludge that must then be disposed of. Adsorption 

is a physical capture where dye molecules are retained on a larger substrate using surface 

interactions. This technique is useful for capturing resilient or hard to destroy dye types. 

 

Disperse dyes present a particular problem as they are not effectively treated by the 

typical chemical and biological processing that are often applied to ionic dye classes 

(Carneiro et al., 2010). Disperse dyes are used primarily to colour polyester fabrics but 

are used on other synthetic polymers such as nylon and cellulose acetate. Worldwide 

disperse dye consumption reached 570,000 tonnes annually in 2011 (Ghaly et al., 2014) 

and there are estimates that in some cases up to 20 % of initial dye may be lost to effluent 

(WRAP.ORG, 1997). Therefore, there are potentially large volumes of disperse dyes 

being released into the water system each year. To compound the problem disperse dyes 

are also difficult to break down using biological and chemical means (Ramakrishna and 

Viraraghavan, 1997). Disperse dyes are a synthetic dye class that are almost exclusively 

non-polar, hydrophobic and are only partially soluble in water. Many synthetic dyes are 

xenobiotic and are not easily digested by enzymes (Christie, 2001). In addition, 

anthraquinone based disperse dyes are resistant to degradation due to a stable fused 

aromatic ring structure (Hartgerink et al., 2001). This resistance to biological breakdown 
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has led to the bioaccumulation of some disperse dyes. Finding an effective way to remove 

disperse dyes from water is therefore important to the textile industry.  

 

The effectiveness of biological and chemical treatment methods for the removal of 

disperse dyes has been shown to be incomplete as there are reports of ineffective 

treatments with the treatment of azo based disperse dyes by white rot fungus removing 

less than 50 % of the dye after 12 days (Zhang, 2003). 

5.1.1 Adsorption 
 

A common approach to molecular separation of contaminants from water is to bind the 

target molecules to a solid material which can then be easily separated from the effluent. 

This process is known as adsorption and involves the capture of an adsorbate on to the 

surface of an adsorbent material. The particles are retained on the adsorbent surface 

through a combination of covalent, ionic, polar/hydrophobic or van der Waals bonding 

forces (Rattee and Breuer, 1974; Bottani and Tascon, 2008). As adsorption is a surface 

interaction it is desirable to have materials with high surface areas to capture more 

adsorbate on a per weight basis (Yagub et al., 2014). 

 

Figure 5.2: Diagram illustrating the fundamental principle of dye adsorption. 

 

The efficiency of the adsorption process is influenced by, the adsorbate concentration, the 

level of adsorbate to adsorbent interaction, the affinity for the adsorbate towards the liquor, 
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the total surface area of the adsorbent available, the particle size and level of adsorbate 

agglomeration of the adsorbent and the ambient conditions in the system. The temperature 

and pH can significantly change the level of adsorption for all dye classes but the latter 

particularly determines the efficiency of ionic and cationic dye capture (Mezohegyi et al., 

2012). The level of adsorption will also depend on the contact time. Fast acting adsorption 

systems can reach equilibrium in a few minutes whilst others can take several days (Crini, 

2006). 

 

Current adsorbents include activated carbon, peat and fly ash together with other naturally 

derived adsorbents such as rice hulls and maize cob although most have disadvantages 

associated with effectiveness, cost and disposal concerns (Robinson et al., 2001; Allen et 

al., 2004).  

 

Adsorption onto activated carbon has been proven to be an effective and versatile 

technique for the removal of ionic dyes but there is less literature available which assesses 

removal rates of disperse dyes from aqueous solution (Shen et al., 2009; Faria et al., 2004). 

In their review, Yagub et al. (2014) indicated that activated carbon lacks the selectivity 

to capture insoluble and low solubility dye molecules. 

 

A review of the published research into disperse dye removal also highlighted the 

variability in the apparent performance of activated carbon (Yue et al., 2007). 

Ramakrishna found that 5 g L-1 of granular activated carbon only removed 48 % of 50 

mg L-1 C. I. Disperse Red 1 after 24 hours (Ramakrishna and Viraraghavan, 1997). While 

Wang reported that removal of C. I. Disperse Red 167 using activated carbon generated 

from waste bamboo culms at a dye concentration of 30.0 mg L-1 and a 5 g L-1 adsorbent 
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loading removed only 52 % under optimum acidic conditions after 26 hours (Wang, 2012). 

In the same work a commercial carbon product, Filtersorb, (Calgon Carbon, PA, USA) 

was reported to remove only ~66 % of the same dye under identical conditions. Other 

researchers have found that a pH of 7 is the optimum for adsorption of disperse dyes and 

that poor adsorption occurred when materials are ionised, so strong acid and strong alkali 

should be avoided (Gerçel et al., 2008). In addition it is a relatively expensive process 

(Pollard et al., 1992) due to the cost of producing activated carbon, the lack of suitable 

and inexpensive regeneration procedures for these adsorbents and reuse results in a steep 

reduction in performance and a 10 - 15 % loss of sorbent (Robinson et al., 2001). The 

level of adsorption is affected by temperature, contact time, concentrations of adsorbate 

and adsorbent, the level of interaction between the adsorbate and adsorbent and the 

presence of other dyes and additives in addition to the pH (Anjaneyulu et al., 2005, Shen 

et al., 2009). 

5.1.2 Dye adsorption theory 
 

Any adsorption system can be quantified in terms of the rate of adsorption and the 

equilibrium point between the liquid and solid phases. This quantification is done by 

linking the empirical results to a theoretical model. These models have strict criteria 

depending on how molecules are proposed to collect on to the surface of the adsorbent. 

In order to fully understand the adsorption mechanism between the dye molecules and 

the adsorbent it is important to establish the most appropriate correlation for the 

equilibrium curves. These curves are obtained empirically by measuring the adsorption 

isotherm of a disperse dye onto a substrate. The adsorption of disperse dyes is thought to 

assume a monolayer (Gercel et al., 2008). There are a range of adsorption models such as 

the Nernst, BET and Crombie-Quilty but the two most established and widely used 



183 

 

 

functions for describing monolayer adsorption, particularly in disperse dye-adsorbent 

systems are the Langmuir and Freundlich equations.  

 

This work is concerned with the adsorption of disperse dyes on to the surface of a fibre 

for potential capture and recovery. The adsorption mechanism in this case differs to the 

disperse dyeing of poly(ethylene terephthalate) (PET) by disperse dyes where the PET is 

said to essentially dissolve the disperse dye in the solid ‘solution’ of the fibre (Yang et 

al., 2001) in which case alternative models such as Nernst apply (Giles, 1971). For the 

monolayer capture of molecules on the surface the literature suggested that the removal 

of disperse dyes from effluent has previously been modelled using the Langmuir model 

(McKay, 1982; Gercel et al., 2008). There are only limited reports of the Freundlich 

isotherm being an accurate model for disperse dye adsorption (Ramakrishna and 

Viraraghavan, 1997). 

 

The Langmuir model assumes that there is a finite number of ‘active sites’ onto which 

adsorption can occur. For reactive dyeing, these sites can be related the number of 

functional groups at the surface of the polymer; for disperse dyeing, onto hydrophobic 

materials these ‘active sites’ may be regions where hydrophobic bonds are most likely to 

occur (Shamey, 2009; Peters, 1963) The Langmuir isothermal model has been 

demonstrated to apply to disperse dye adsorption on to activated carbon and biomass 

(McKay, 1982; Gercel et al., 2008). This section will test whether the Langmuir 

isothermal model applies to the adsorption on a disperse dye on to PVP/TA fibre produced 

in this section. 
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5.1.2.1 Langmuir model 

The Langmuir isotherm model describes adsorption taking place onto a limited number 

of energetically equivalent homogenous sites (Chung et al., 2015). The Langmuir model 

assumes that the attractive intermolecular forces decrease with distance and predicts the 

existence of monolayer coverage of the adsorbate on the outer surface of the fibres. A 

further assumption is that once a molecule occupies a site, no further adsorption can occur 

there; thus a sorbent has a finite capacity and a saturation value can be reached. At a high 

enough dye concentration all sites will become occupied and the material surface is 

saturated, resulting in a plateau. The Langmuir equation is as follows, Equation 5.1: 

 

 
𝑄𝑒 =

𝐶𝑒𝐾𝐿𝑄0

1 +  𝐶𝑒𝐾𝐿
 

Equation 5.1 

 

Where 𝑄0 is the maximum capacity of the adsorbent, 𝐾𝐿 is the isotherm constant and 𝑄𝑒 

and 𝐶𝑒 are the adsorbate capture mass and the solution concentration respectively when 

the system is at equilibrium. Qe is the mass of dye on the fibre and is calculated using 

Equation 5.2: 

 

 

𝑄𝑒 =  (𝐶0 − 𝐶𝑒)
𝑉𝑙

𝑚𝑓
 

 

Equation 5.2 

 

Where C0 is the starting concentration, Vl is the liquor volume and mf is the mass of the 

adsorbent, in this case, fibres. Calculation of KL and Q0 from collected data allows for the 

Langmuir model to be plot alongside in order to test for fit. The values for KL and Q0 can 

be found through linearisation of Equation 5.1 as shown in Equation 5.3: 
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𝑄𝑒 =

𝐶𝑒𝐾𝐿𝑄0

1 +  𝐶𝑒𝐾𝐿
 

 

Becomes: 1

𝑄𝑒
=

1
𝐶𝑒𝐾𝐿𝑄0

1+ 𝐶𝑒𝐾𝐿

 
 

Linearised: 1

𝑄𝑒
=

1

𝑄0
+

1

𝑄0𝐾𝐿𝐶𝑒
  

Equation 5.3 

 

Equation 5.3 is in the form of 𝑦 = 𝑚𝑥 +  𝑐 where the intercept is 
1

𝑄0
 and the gradient is 

given by 
1

𝑄0𝐾𝐿
 when a graph of 

1

𝑄𝑒
 is plotted against 

1

𝐶𝑒
. Thus, 𝑄0 is found by taking the 

reciprocal of the intercept when the values of 
1

𝑄𝑒
 are plotted against 

1

𝐶𝑒
 and 𝐾𝐿 is found by 

multiplying the gradient of the straight line by the now established value for 𝑄0 and taking 

the reciprocal.  

 

5.1.3 Polyvinylpyrrolidone with 1-triacontane 
 

This chapter demonstrates the production of fibres from polyvinylpyrrolidone and 1-

triacontane (PVP/TA) using centrifugal spinning and the possible use of these fibres as 

an adsorbent material for disperse dyes. PVP/TA is a copolymer combination of two 

separate polymers, polyvinylpyrrolidone and triacontane, which are formed together 

through a grafting process. The two constituent polymers are both significantly different 

in characteristics compared to the PVP/TA copolymer.  

 

It the homogenous form polyvinylpyrrolidone (PVP) is a highly polar water soluble 

polymer which is used in a wide variety of applications due to its biological compatibility, 

adhesive, dispersive and film forming capabilities (Robinson, 1990). Currently PVP is 
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also used as a dye scavenger in print washing and domestic laundry (Boardman and Jarvis, 

2000). In this application the soluble PVP will complex with unfixed reactive dyes 

preventing these dyes from fixing and cross staining other garments. However, due to its 

aqueous solubility and polarity homogenous PVP cannot be applied as either a solid state 

adsorbent or as a capture mechanism for disperse dyes. 

 

Triacontene is an unsaturated C30 oligomer which is insoluble in water and has a melting 

point of around 62 °C. It reacts via the terminal double bound to become a saturated 

alkane. In this form the melting point rises to 65.5 °C (Dorset and Snyder, 1999). 

Triacontene and triacontane are hydrophobic chains with the potential for strong 

interactions with non-polar compounds (Liu et al., 2010, Pesek et al., 1997).  

 

It is possible to combine PVP with triacontene to from a new structure and the alkylated 

polyvinylpyrrolidone is currently marketed under the brand name Ganex WP660. 

Alkylated polyvinylpyrrolidone polymers first patented in the 1960s by GAF chemicals 

(Shore, 1995). Information on the production process of PVP/TA is not documented but 

it is likely that polyvinylpyrrolidone/triacontane is a copolymer of vinyl pyrrolidone and 

1-triacontene (Mulder, 2000). PVP/TA is waxy compound most frequently used in 

cosmetics and sunscreen in order to impart water resistance (Liu et al., 1999). 

 

Though it is known to be a graft chain copolymer the exact structure is not immediately 

clear. At present there are two forms given for alkylated PVP copolymers, as shown in 

Figure 5.3. The difference between the two is whether or not part of the C30 chain 

contributes towards the principal polymer backbone, Figure 5.3. If this is the case the 

rigidity properties of the backbone would be changed significantly. 
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Figure 5.3: The two possible forms of PVP/TA as found in the literature. The PVP 

backbone-graft triacontane form I proposed by Petter et al. (1989) and Kopolow et al. 

(1991) and the possible PVP backbone-copolymer or graft form II proposed by 

Zoltowski et al. (2003). 

 

Additionally, the graft density or pattern of the grafts is not known. The current view is 

that the triacontene chains radiate outwards from a central backbone of polyvinyl 

pyrrolidone in a branch formation with sufficient density that the ability of the linear 

backbone for form a random coil is hindered (Hamley, 2004). These structures are also 

known as brush copolymers.  

 

 
Figure 5.4: Graft copolymer model produced from description by Hamley (2004). 

 

Due to its hydrophobicity PVP/TA is insoluble in water but soluble in non-polar solvents 

such as toluene. The longer chain length of the alkylated unit means PVP/TA has a higher 

melting point and hydrophobicity than in materials with a shorter graft unit such as a 

PVP/eicosene (C20H39) graft. It was found by Kopolow et al. (1991) to have a hydrophilic-

lipophilic balance value of 6. Materials with a value of >10 are said to be water insoluble 

I II 
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and hydrophobic (Kopolow et al., 1991). In addition to water insolubility, PVP/TA was 

shown to be strongly hydrophobic by Brugnara et al. (2004). They attribute this to the 

presence of strongly hydrophobic groups on the material surface. By grafting triacontene 

onto the PVP, a water insoluble and hydrophobic material is produced in the form of 

PVP/TA. This material may have potential affinity for the non-polar disperse dyes and 

could be used as a potential absorbent material. As adsorption is dependent on high 

surface area a conversion of the PVP/TA flake into ultrafine fibres is desirable and could 

significantly increase the amount of dye adsorbed. 

 

A thorough literature review indicates there is a paucity of reported concerning the 

processing of PVP/TA fibres. In addition, typical reports in the literature indicate that 

when fibres are used in dye effluent clean up, it is more often in the form as a separating 

membrane rather than as an adsorbent medium. There has been some interest in using 

electrospun and melt blown webs as fine filters and separation membranes for dyes (Meng 

et al., 2013; Akbari et al., 2002). Work has also been conducted using nanofibrous TiO2 

webs as a photocatalyst to degrade basic dyes (Rezaee et al., 2009, Kavitha and 

Palanisamy, 2011). Some traditional textile fibres have been previously used in effluent 

treatment as typified by Khan et al. (2005) where cotton and wool were tested as an 

adsorbent. They observed surprisingly high values for adsorption of methylene on both 

cotton and wool. However, conflicting results meant that this author is reluctant to accept 

these findings. Currently there has been little research conducted on using ultrafine fibres 

as a new type of adsorbent for colour removal (Suzuki, 1991). The high surface 

functionality of these fibres means they are capable of “trapping” a large proportion of 

compatible dye molecules per unit weight.  
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Oil and fat based staining of textiles can be aesthetically unpleasing but may also 

significantly reduce the effectiveness of functional garments (Laughlin and Gold, 1990). 

Various additives are incorporated to garment laundry cycles to assist in the lifting and 

capture of oils from textile surfaces. The hydrophobicity of PVP/TA may lend it to 

capturing and retaining oils and fats in aqueous conditions. Fats that are released from 

textiles during laundering could be bound to the surface of the PVP/TA which would 

prevent them from re-adhering or cross staining other garments.  

 

5.2 Summary 

 

Activated carbon (AC) is the principal material for adsorbing a wide range of textile dyes. 

However, the effectiveness of AC at removing disperse dyes is not as high as for other 

dye classes (Yue et al., 2007). Adsorption relies on a high available surface area which 

could mean that ultrafine fibres make effective adsorbent materials. There is scope for a 

new hydrophobic, adsorbent material that could be used to selectively remove disperse 

dyes from waste effluent. By spinning a hydrophobic polymer into fine fibres, the material 

would have a high surface area that could capture disperse dyes through hydrophobic 

interactions. PVP/TA is a graft copolymer about which little is reported in the literature 

but it is known to be hydrophobic and insoluble and accordingly offers significant 

potential. PVP/TA could also have a high affinity for oils and fats due to the hydrophobic 

interactions between these materials, however, this aspect needs to be established. No 
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reports of producing fibres from PVP/TA have been found after an extensive literature 

search.  

 

5.3 Experimental 

 

This chapter discusses the formation of PVP/TA fibres using centrifugal spinning. This 

section also assesses the effectiveness of PVP/TA fibres as a dye adsorbent. To achieve 

this, the objectives for this work were as follows: 

 

1. To assess and confirm the structure of WP660 PVP/TA using mass spectrometry; 

2. To spin WP660 PVP/TA into fibres using melt centrifugal spinning and establish 

processing parameter/fibre property relationships; 

3. To characterise the fibres produced using microscopy to determine morphology 

and typical fibre diameters; 

4. To assess the ability of PVP/TA fibres to adsorb disperse dyes compared to a 

commercial form of activated carbon; 

5. Compare the affinity of synthetic sebum and fats on to PVP/TA fibres and on to 

cotton during a domestic washing cycle using mass spectroscopy.  

5.3.1 Materials 
 

The polyvinylpyrrolidone with1-triacontene copolymer was supplied as a waxy brittle 

flake by Sigma Aldrich (UK) under the commercial name Ganex or Antaron WP660. This 

material can also be found under alternative names such as triacontyl PVP and is CAS 

registered as 2-pyrrolidinone, 1-ethenyl, polymer with 1-triacontene (Stone et al., 2002). 
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5.3.2 Time-of-Flight Secondary Ion Mass Spectrometry (ToF-

SIMS) 
 

In order to confirm the chemical structure of PVP/TA, analysis was carried out using 

Time-of-Flight Secondary Ion Mass Spectrometry (ToF SIMS). Secondary ion mass 

spectrometry is the measuring of the mass of ionised particles that are emitted from a 

surface after it has been bombarded with energetic primary particles (Vickerman, 2009). 

The time for ionised particles to travel through an electric field and reach a detector is 

directly linked to the mass to ionisation ratio (m/z). Mass spectrometry is a powerful 

technique that measures the specific mass of a molecule which allows for the molecular 

weight of hydrocarbons to be distinguished. ToF-SIMS is a static, semi-quantitative mode 

of mass spectrometry which allows for detection of different ionised molecules 

sequentially and does not need to scan through and detect specific molecular weights like 

alternative methods of mass spectroscopy, offering higher sensitivity for a given exposure 

time (Vickerman, 2009). This ability to identify components was essential when 

establishing which components of the staining agents had affinity for the PVP/TA. Unless 

otherwise stated, samples were mounted on a stage with an ionisation area of 200 µm and 

bombarded with Bi3+ for 400 seconds and spectra recorded for both positive and negative 

secondary ions in the range 20 to 700 m/z. 

5.3.3 Capillary rheometry 
 

The Malvern RH2000 capillary rheometer was used to assess the shear viscosity of Ganex 

WP660 across a narrow range of temperatures. A constant rate of shear test was 

performed using the 1 x 16 mm capillary die previously described. The apparent melt 

viscosity of PVP/TA was tested at varying barrel/die temperatures. Barrel temperatures 

of 65, 70, 75 and 80 °C were used for this study. A pre-testing heating and compression 
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cycle was performed prior to each extrusion. The test was then performed using 

increasing piston speeds at steps 50, 70, and 120 mm min-1. 

5.3.4 Fibre production 
 

Fibre production was carried out using the ForcespinningTM L1000M centrifugal spinner 

(Fiberio, TX, USA) operated in a configuration using a fine tri-orifice spinneret (High 

MFI) and a coarse tri-orifice spinneret (Low MFI) as described previously in Chapter 2. 

These spinnerets were chosen as they are designed to work with thermoplastic products. 

The collection system used in both systems was a static arrangement of posts positioned 

115 mm from the spinneret circumference. Centrifugal spinning using this arrangement 

created a freestanding fibrous web. Successful fibre production was assessed at each 

speed for each spinneret. A minimum of two webs were created at each operating 

condition. 

 

A preliminary DSC study of PVP/TA flake was carried out to determine the Tonset and 

Tmelt of the material. From this study it was found that PVP/TA has a peak melting 

temperature of around 69 °C with a Tonset ~46.5 ᴼC. The melt spinning temperature range 

was predicted to be above 65 °C.  

 

To determine the temperature range that PVP/TA will melt spin a study was undertaken 

where the temperature was varied and the spinning speed and material loading was held 

constant. The in-built thermocouple was used to measure the Tpolymer. The effect of 

polymer temperature on spinning was measured by varying the Tpolymer from 60 °C to 85 

°C with selected temperature points and by spinning at 6,000 to 16,000 rpm. This was 

done using only the low MFI spinneret. A preliminary study revealed that a material 



193 

 

 

loading of 200 – 300 mg was required to achieve a web of sufficient quality. From 

observations made during early investigations a loading of 200 mg of PVP/TA was 

selected as the higher amount produced a web with too much loft and was not always 

exhausted during the specified time.  

 

The second phase of this work was to study the effect of rotational speed. For this a series 

of experiments were conducted where the Tpolymer remained constant at 72 °C and the 

rotational speed was varied. The spinneret was then rotated at speeds ranging from 3,000 

to 16,000 revolutions per minute for 45 seconds. This experiment was conducted using 

both the fine and coarse melt spinnerets. Multiple attempts were made to spin fibres at 

each rotational speed and temperature condition. 

5.3.5 Fibre analysis 

5.3.5.1 Scanning electron microscopy imaging 

The fibre dimensions were examined using a Jeol JSM-6610LV Electron Microscope, 

Japan. Image analysis software, Image J, was used to assess morphology and the average 

fibre diameters were found using the following method. A minimum of 50 images were 

taken from each SEM stub, with two stubs created per sample, as each trial is conducted 

in duplicate this is a total of 4 stubs and 200 fibre measurements per operating condition.  

5.3.5.2 Differential scanning calorimetry (DSC) 

The thermal properties of polymer samples were assessed using a Perkin Elmer Jade DSC. 

Samples in the mass range 8 - 15 mg were weighed on a balance accurate to 0.1 mg and 

were prepared in non-hermetic aluminium pans which were heated from -10 °C to 250 

°C at a rate of 20 °C min-1 with a nitrogen gas supply of 20.0 mL min-1.  
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5.3.5.3 X-ray diffraction 

The fine structure of PVP/TA flakes and fibres investigated using a P’AN analytical 

X’Pert MPD X-ray diffractometer operating at room temperature. The flake was scanned 

as found and the webs were pressed flat into a thin disc. The X-ray tube target was CuKα 

radiation (λ=1.540 Å). Scans were obtained in the theta:theta orientation scanning in the 

Bragg angle, 2θ, through 4° to 60° with a step size of 0.066°.  

 

5.3.6 Adsorption study experiment 
 

Adsorption isotherms for PVP/TA fibres and a commercial disperse dye were obtained 

using a bottle point adsorption experiment (Cooney, 1998). The fibres used were 

produced using the LMFI spinneret at 72 °C and rotating at 11,000 rpm. This was 

benchmarked against a commercial activated carbon, 1 mm granular Norit supplied by 

Darco, United States. The charcoal was washed repeatedly in deionised water until the 

water ran clear and the charcoal was then dried at 50 °C for 24 hours. The disperse dye 

used was Dianix Blue AC-E produced by Dystar Textilfarben (DEU) and was used 

without further treatment or purification. Blue AC-E is commercial product composed of 

a mixture of anthraquinone dyes and dispersing agents.  

 

A series of dispersions of concentrations 25, 50, 100, 150, 200, 300 and 400 mg L-1 with 

1 g L-1, of Triton X100 wetting agent, were prepared. PVP/TA fibre and dried activated 

charcoal were added in 0.5 g masses to 250 ml beakers into which 100ml of each dye 

solution was added. The pH was adjusted to 7 using dilute hydrochloric acid and dilute 

sodium hydroxide in order to avoid the ionisation at acid or alkali conditions that can 

affect hydrophobic interactions (Gerçel et al., 2008). This was covered with laboratory 
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film and stirred for 3 days using a magnetic impeller. This period was selected to ensure 

equilibrium was reached. After this period a volume of liquid was passed through a 

0.45µm syringe filter to remove the PVP/TA fibres and impurities from the activated 

carbon. The filtrates were mixed 50:50 with HPLC grade acetone and the λ max was 

measured using a JASCO UV-VIS spectrophotometer. 

 

UV-VIS spectrophotometry is a well-established technique to observe changes in colour 

through an increase in absorbance in the ultraviolet and visible spectra. It was used in this 

chapter to assess the amount of dye removed from solution. Solutions are placed in a glass 

or quartz cuvette compared against a reference sample containing an identical solvent or 

solvents. The spectrophotometer compared the absorbencies of the two solutions across 

a range of wavelengths and generates an absorbance spectrum derived solely from the 

compound of interest, in this case, disperse dyes. The generic principle of operation is 

shown in Figure 5.5. UV-VIS spectroscopy is known to be versatile and resilient and 

empirical measurements have shown that absorbance values are not significantly affected 

by elements such as temperature and time effects.  

 

 

Figure 5.5: Schematic of a UV-VIS split beam spectrophotometer (Fundamentals of 

UV-visible spectroscopy, Agilent, 2015). 
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Measuring fixed concentrations of solutions allows a calibration curve to be produced 

which allows for the measured absorbance value of an unknown sample to be converted 

into concentration. The concentration calibration curve for Dianix Blue AC-E is shown 

in Figure 5.6 and was used to calculate the concentration in mg L-1 of an unknown solution 

can be obtained by referencing the UV-Vis absorbance to the concentration gradient. 
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Figure 5.6: UV-Visible absorbance versus concentration calibration curve of Dianix 

Blue A-CE in 50:50 distilled water/acetone. 

 

5.3.7 Soil retention 
 

The affinity of PVP/TA fibres to oily products was assessed using a procedure to apply 

oily materials to the webs and assessing the level of retention of the compounds after 

washing with detergent. The application and washing of the fibres was done using the 

AATCC 130-2000 test method with modifications. Quantification and comparison of oil 

levels was done using Time-of-Flight Secondary Ion Mass Spectroscopy (ToF-SIMS). 

Two fatty products were applied to the fibres and the procedure was also conducted on a 

plain cotton griege fabric to allow for comparisons with a hydrophilic material that is 

typically found in domestic laundry.  
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PVP/TA fibres produced through centrifugal spinning at 11,000 rpm and 72 °C using the 

LMFI spinneret were used in this portion of the study. A scoured but unbleached woven 

cotton fabric of 220 g m-2
 was used as a reference fabric. The two staining agents were 

simulated sebum oil and Mazola® branded corn oil, the specifications for both being 

listed in Table 5.1. The sebum oil was supplied by Unilever, UK and the corn oil was 

purchased locally in accordance with AATCC 130-2000. A granular reference detergent 

was used for the laundry cycle containing non-brightening agents and satisfied AATCC 

standard specifications. 

 

Table 5.1: Composition of synthetic sebum oil and Mazola® corn oil (Bey, 2007). 

 

 

 

 

 

 

 

 

 

 

Sebum oil 

32.8 % beef tallow 

18.0 % lanoline 

18.0 % free fatty acids 

12.0 % hydrocarbon mixture 

11.6 % cutina 

3.7 % cholesterol 

3.6 % fatty acid triglycerides 

Corn oil 

Saturated fats 

13 % Palmitic acid 

2 % Stearic acid 

 

Unsaturated Fats 

52 % Linoleic acid 

31 % Oleic 

1 % Linolenic acid 
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Samples of 0.5 g of PVP/TA fibres and cotton conditioned to 21 ± °C and 65 ± 2 % 

relative humidity were laid flat into an area roughly 50 x 50 mm. The corn oil was applied 

by adding 5 drops from a pipette to the centre of the fabric. The sebum oil was heated to 

a temperature of 32 °C and then pipetted in a similar manner. The corn oil and sebum 

stained samples were then placed in an environment chamber heated to 21 °C and 32 °C 

respectively. A glass plate and weight totalling 2.27 kg was then added to the material. 

The samples were left to stand under pressure for a time of 60 ± 5 seconds. For the 

washing procedure, two beakers containing 500 ml of distilled water and 2.5 g of 

reference detergent were prepared and heated to 40 °C. The stained samples were washed 

in each beaker sequentially under mild agitation for 5 minutes before being rinsed in 500 

ml of distilled water at room temperature. The samples were removed and allowed to dry 

in ambient conditions.  

 

ToF-SIMS was used to assess the presence of compounds on the fibres. Analysis was 

done at Intertek, United Kingdom. The test area was 200 µm and samples were 

bombarded with Bi3+ for 134 seconds and spectra recorded for both positive and negative 

secondary ions in the range 20 to 700 m/z. Analysis was conducted on the stained 

PVP/TA and cotton prior to and following washing. In addition, virgin unstained cotton, 

virgin PVP/TA, raw sebum oil, coil oil and the detergent were also analysed using ToF-

SIMS to detect the pertinent excitation peaks. The fibrous samples were analysed as is 

but the corn oil was dissolved in isohexane and spun cast on aluminium foil and the sebum 

was spread with a spatula on to aluminium foil. 
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5.4 Results and discussion 

5.4.1 Melt rheology of PVP/TA 
 

The results of the capillary rheology measurements are shown in Figure 5.7. As with 

polypropylene the shear viscosity reduces with increasing shear rate which is typical shear 

thinning behaviour.  
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Figure 5.7: Linear plot of shear viscosity of WP660 across a range of temperatures. 

 

The results also show that as the temperature increases from 65 °C to 75 °C the apparent 

viscosity of the fluid reduces significantly. A further increase to 85 °C reduced the 

apparent viscosity from 8.54 to 1.3 Pa S-1. An attempt was made to measure the viscosity 

at 90 °C but the viscosity was so low that the fluid drained from the barrel without any 

external pressure. The melt viscosity of PVP/TA is therefore highly sensitive to 

temperature, at a shear rate of 1504 s-1 the viscosity ranged from a mean value of 59.1 Pa 

s-1 at 65 °C to as low as 1.3 Pa s-1 at 85 °C. 
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5.4.2 Centrifugal spinning of PVP/TA fibres 
 

PVP/TA was successfully formed into fibrous webs using centrifugal spinning. At 

optimum spinning speeds the web produced appears even and uniform throughout its 

width. Using the ForcespinningTM technique fibres were produced using both the coarse 

(Low MFI) and fine (High MFI) spinnerets. However, the quantity and quality of the 

fibres produced was highly sensitive to the operating conditions with particular attention 

to temperature. The results of an experimental series, performed using the coarse 

spinneret, are shown in Table 5.2. 

 

Table 5.2: Effect of temperature of fibre formation during spinning trials using the 

coarse spinneret 

x-fibres were not produced  

o-fibres were produced but a cohesive web was not produced 

b-excessive beading 

-cohesive web successfully produced 

   

Table 5.2 indicates that fibres were not produced in useful quantities at 62, 65 and 68 °C 

at any spinning speed. This was linked to the higher melt viscosity preventing the proper 

formation of a polymer jet. At 72 and 75 °C fibre production reached a maximum in terms 

of apparent yield and web quality. At 82 and 85 °C temperature the spinning behaviour 

was adversely affected and spinning resulted in an excessive number of beads. This was 

caused by an increase in the fluidity of the melt that was observed with capillary 

Temperature 

(°C) 
Rotational speed (rpm) 

6,000 8,000 10,000 12,000 14,000 15,000 16,000 

62 x x x x x x x 

65 x x x x x x b 

68 x o o o o /b o/b 

72 x     b o/b 

75 x     b b 

82 b /b /b /b /b b b 

85 b b b b b b b 
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rheometry. At high temperatures the internal friction of the fluid is at such a low level 

that it does adequately retard surface tension contractions and so there is jet collapse and 

so beads form. This indicates that for the spinning of PVP/TA there is a narrow operating 

range for fibre formation that must be adhered to if the process is to be successful. 

 

Fibres were not produced at spinning speeds at 6,000 rpm and below when using the 

coarse spinneret at any temperature. Spraying or escape of polymer was not observed and 

a large volume was found to be retained within the spinneret. At working temperatures 

the fluid requires sufficient rotational speed to overcome the frictional forces within the 

spinneret.  

 

5.4.2.1 Fibre morphology 

Figure 5.9 shows a range of typical SEM micrographs of fibres produced from the low 

MFI spinneret. The fibres produced were cylindrical and smooth with very little surface 

texture observed, Figure 5.8.  

 

 

Figure 5.8: SEM micrograph showing fibre texture on PVP/TA fibre spun at 72 °C and 

12,000 rpm using the coarse spinneret. An end break is shown. 
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This is typical of fibres that are produced through melt spinning as there is no solvent to 

flash off. There was no skin-core effect observed in this study unlike in the PCL fibres 

previously discussed in Chapter 4. 

 

 
a) 

 
b) 

 
c) 

 
d) 

Figure 5.9: SEM micrographs of Ganex WP660 fibres produced using a low MFI 

spinneret at a) 8,000, b) 10,000, c) 12,000 and d) 14,000 rpm, respectively. Fibres were 

spun at a starting polymer temperature of 72 °C. 

 

Figure 5.9 also shows that the fibrous webs are highly variable in diameter with very fine 

fibres found in the same regions as coarser fibres ~10 μm in diameter. This is similar to 

the broad fibre distributions observed in PP and PCL centrifugally spun webs and 

indicates that centrifugal spinning is inherently variable. 
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Figure 5.10: SEM micrograph of fibres in a web produced from high MFI spinneret at 

15,000 rpm. The sample exhibited a large number of fibre ends with the breakages 

typical of a brittle fracture. 

 

Figure 5.10 shows a unique feature that has been observed in the PVP/TA fibres and has 

not been observed on either polypropylene or polycaprolactone. This is the high 

frequency of fibre breakage, resulting in much shorter fibres Instances of filament 

breakage have been observed in fibrous webs produced using all the successful spinning 

conditions listed in Table 5.2 indicating that it is typical of the bulk material properties 

rather than specific processing conditions. The break points are smooth and at almost 

right angles to the direction of the polymer as seen in Figure 5.8 presented previously. A 

further example of this type of breakage is shown in Figure 5.11. 
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Figure 5.11: High magnification SEM micrograph showing an end breakage on 

PVP/TA fibre spun at 72 °C and 14,000 rpm using the coarse spinneret. Magnification 

5000X. 

 

Examination of the SEM images indicates that the type of breakage was typical of the 

population with no signs of fibrillation and there is a slight imperfection on one edge of 

the break cross section. These factors, when combined, suggest that the breaks are caused 

by brittle tensile fractures (Shore, 1995). In this form of fracture the material displays no 

plastic deformation before breaking. The fibre breaks observed in the SEM images are 

consistent with the fracture model given in Figure 5.12.  

 

Figure 5.12: Model of a brittle fracture showing a fibre (a) with a surface flaw. When 

the extensional force is sufficient, the crack will propagate (b) until eventually the fibre 

breaks (c) leaving a characteristic clean break for most of the fibre width. 
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This may be either a feature created during fibre formation or through subsequent 

handling. SEM micrographs of undisturbed just spun fibres indicate that fibre break up 

does occur to some degree during web formation. This is due to the polymer jet cooling 

to solidify the fibre. The tension applied to the filament due to centrifugal and 

aerodynamic forces act to break the filament at its weakest point. The short fibres are then 

captured by the fibres that have already been deposited. An SEM stub prepared directly 

from the as spun web indicated that breaks are formed during the fibre spinning process. 

Further investigation revealed that fibre breakage also occurs during subsequent handling 

and prolonged periods of fibre handling leads to a high level of fibre breakage. This is a 

spinning behaviour not described previously in any of the literature pertaining to 

centrifugal spinning and is thought to be related to the properties of this polymer. In 

PVP/TA fibres this is due to a lack of elasticity due to poor chain entanglement and weak 

lateral forces between the relatively short polymers. 

 

Attempts were made to test individual fibre strength of the PVP/TA fibres and of PVP/TA 

extrusions but the very low strength of these products made them very difficult to handle 

and mount. 

5.4.2.2 Fibre diameters 

The average fibre diameters were calculated from the full set of SEM images produced at 

each condition. Descriptive statistics are shown in Table 5.3 and are formed into a graph 

in Figure 5.13. 
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Table 5.3: Average fibre diameters for PVP/TA fibres made through centrifugal spinning 

from 7,000-16,000 rpm using two different spinnerets and 72 °C. 

  Rotational speed (rpm) 

Spinneret 
Diameter 

(µm) 
7000 8000 9000 10000 11000 12000 13000 14000 15000 16000 

 

Low MFI  

Mean  7.88  5.02  5.38  4.23 4.01  3.43 2.81  2.33 x x 

SD 6.16 3.12 4.31 3.04 3.00 2.20 1.69 1.47 x x 

 

High MFI  

Mean  x x x x x 1.83  1.43  1.52  1.46  b 

SD x x x x x 1.66 1.02 1.20 0.87 b 

An x indicates that no fibres were produced 

A b indicates that excessive beading/spraying occurred 

 

When using the fine met spinneret fibres would not below 12,000 rpm at a polymer 

temperature of 72 °C. This is due to the capillary forces of the fine spinneret not being 

exceeded by the inertial forces forcing polymer out of the spinneret. Accordingly, it is 

difficult to compare the fibres produced from both spinnerets at low speeds. However, 

there was some overlap in conditions which allowed comparisons to be made between 

the coarse and fine spinneret. Single factor ANOVA revealed that the fibres produced 

using the high MFI spinnerets were significantly finer than fibres produced using the low 

MFI spinneret. This was true at 12,000 ((p < 0.05, F (77.5) > Fcrit (3.9)); 13,000 (p < 

0.05, F (32.2) > Fcrit (3.9)) and 14,000 (p < 0.05, F (4.3) > Fcrit (3.9)) rpm which covered 

all the spinning conditions where there was parameter overlap. 
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Figure 5.13: The relationship between rotational speed and mean diameter, with 95 % 

confidence interval show for centrifugal spun PVP/triacontene copolymer fibres for two 

spinneret types: low MFI () and high MFI (). 
 

For fibres produced from the low MFI spinneret there is a clear relationship between 

rotational speed and average fibre diameter. As the rotational speed was increased the 

average fibre diameter reduced. This relationship does not continue indefinitely, at speeds 

15,000 rpm upwards the level of beading became significant and web quality reduced 

significantly. This increase in fibre fineness with spinning speed is more evident than 

with the spinning of polypropylene (Chapter 3). The polymer-spinneret combination used 

here allows for fibre formation at speeds as low as 7,000 rpm. This spinning speed imparts 

a much lower extensional force resulting in fibres significantly larger than the fibres spun 

at higher rotational speeds.  

 

However, the relationship between spinning speed and fibre diameter was less evident 

using the finer spinneret. With this spinneret a high spinning speed in excess of 12,000 

(×1000) 
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rpm is required to initiate fluid flow through the capillary. At these spinning speeds it was 

proposed that further speed increases are less significant and that the forces acting on the 

fluid jet are at a near maximum. 

5.4.3 Molecular structure 
 

Time-of-Flight Secondary Ion Mass Spectrometry was performed on both the fibre and 

the raw flake to investigate the polymer structure and determine if there is any change in 

this structure through melt processing. The positive and negative spectra for the WP660 

flake and fibres are presented in Appendix A-1 to A-4. A table detailing the key peaks 

identified from the resulting spectra are shown in Table 5.4. 

 

The PVP/TA flake has peaks at 41+ m/z and 69+ m/z which are generated by species 

C3H5
+ and C4H5O+species, respectively, which are ions of the fragmented pyrrolidone 

ring. A negative ion species was found at 84- m/z which corresponds to C4H4NO-. Larger 

pyrrolidone based species are found at 112+ m/z which equate to CH2-CH-ring+ elements. 

The 207+ m/z peak from and CH2-CH-C(ring)-CH-CH-ring+ indicates that two 

pyrrolidone ring units are found next to each other within the PVP/TA polymer chain. A 

dissociated C30 chain would generate a negative ion at 421- m/z. This peak is evident in 

the spectra of both the flake and fibre. It can be said that that the hydrocarbon can be 

cleaved away from the parent structure and remain wholly intact. This follows as a bond 

on a tertiary carbon is more likely to rupture than those in the secondary carbon chain.  

 

The next significant peak set is in the positive ion spectrum at 494+ m/z and subsequently 

at 28 m/z intervals: 522+ m/z; 550+ m/z; 578+ m/z and 606+ m/z. The 494+ ion observed 

was larger than the cleaved hydrocarbon chain so this peak represents a C30 chain and 
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pyrrolidone ring fragment. The subsequent periodicity in 28+ m/z intervals is due to 

additions of –CH2-CH2- from the polyvinylpyrrolidone backbone. 

 

The spectrum for PVP/TA fibres were largely identical to those observed for the PVP/TA 

flake except for a slightly lower overall intensity. It can therefore be argued that no 

significant chemical change occurs during fibre formation. The structure for WP660 that 

ToF-SIMS supports is that put forward by Petter (1989) and others where the compound 

is constructed with a PVP backbone that has been modified by the long chain C30 alkane 

chains. In this study the ToF SIMS spectral data only supports chain addition directly 

onto the pyrrolidone ring.  

 

In the proposed structures given previously in Figure 5.3 it is only possible for the WP660 

to be a graft structure. It was thought possible that a block copolymerisation would allow 

for the polymer to have local regions of hydrophobic and hydrophilic properties within 

its length. In the new structure the alkane chains are thought to be entirely along the length 

of the polymer backbone, completely masking the PVP chemistry and making the 

material entirely hydrophobic.  

 

Comparison of the ToF SIMS spectra produced for the PVP/TA flake and PVP/TA fibre 

show little deviation in peak location and relative intensities. The close matching of the 

flake spectra to the centrifugal spun fibres suggests that there is no dissociation of 

polymer chains during the melting process and that the PVP/TA structure remains intact.  
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Table 5.4: List of key fragments identified in PVP/TA flake in the positive and negative ion spectral mode. 

 

 
m/z Fragment structure Ion assignment Intensity, cps 

41+ 

 

C3H5
+ 1.2 x 106 

69+ 

 

C4H5O+ 1.2 x 106 

84- 

 

C4H6NO- 9 x 105 

98+ 

 

C5H8NO+ 4 x 105 

112+ 

 

C6H10NO+ 8 x 104 

207+ 

 

C10H15N2O2
+ 5 x 103 

421- 
 

C30H60- 5 x 103 

494+ 

 

C33H66NO+ 8 x 103 
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5.4.4 Differential scanning calorimetry 
 

Whilst the ToF-SIMS results observed no notable change in the surface polymer structure 

during spinning it is possible that there is a change in the bulk crystallinity and internal 

organisation during processing. The internal fine structure of PVP/TA fibre was 

investigated by analysing the thermal and diffracting properties of the material. This 

section will discuss the DSC measurements taken from the PVP/TA flake and the 

centrifugal spun fibres. 

 

Figure 5.14: DSC thermograms of PVP/TA flake and fibres spun at low rotational 

speeds using the coarse spinneret. 
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Figure 5.15: DSC thermograms of PVP/TA flake and fibres spun at high rotational 

speeds using the fine spinneret. 

 

The DSC traces presented in Figure 5.14 and Figure 5.15 show that the flake has a broad 

melting endotherm with Tonset at 55 °C and a Tmelt at 72 °C. The trace is unremarkable and 

is typical of the melting endotherm of a solid made up of one crystal configuration. The 

DSC thermograms of the PVP/TA fibres present a significantly different shape and 

associated thermal behaviour. The endotherm has a double peak which is most clearly 

seen in the fibres produced at lower rotational speeds (8,000-10,000 rpm). This secondary 

peak occurs between 50 – 60 °C and also lowers the Tonset to around 48 °C. This double 

endotherm indicates that PVP/TA polymers spun into fibres display a clear α and β double 

peak not observed in the flake. The major α peak is the main melt transition and is found 

at around 76 - 80 °C which is preceded by a smaller β peak at 57 - 62 °C that represents 

a pre-melt transition. Double melting peaks in DSC are attributed to either: 

i. Two distinct crystal morphologies and configurations; 

ii. Recrystallisation behaviour during the DSC scan (Barham et al., 1988); 

iii. Material is actually a binary blend of two different grade products (Blundell, 1987) 

 



213 

 

 

The double peak profile is erased by heating as it does not appear in a subsequent heating 

scan. The absence of a β-peak for the flake material suggests that proposals  

(ii) and (iii) are not applicable in this case. Therefore it is reasonable to say that within 

the PVP/TA there are two crystal conformations, the primary α-crystal that is found in 

the flake and the fibre and the secondary β-crystal form which melts at a lower 

temperature and is found in more significant quantities as the fibre. This β-crystal may 

occupy the same unit cell as the α-crystal but a different crystal macro form is created. 

The second crystal form found in the fibres is a consequence of elongation during 

solidification and is therefore not found PVP/TA products that have crystallised 

unstressed. However, there is also a possibility that Morton and Hearle (1993) suggest 

that the β peak is caused by chain repeats being in alignment with neighbouring units 

interspersed with disorder. 

 

It can be observed from the DSC traces that the relative size of the β peak reduces as the 

fibre diameter becomes finer. Another notable measurement is the significant increase in 

enthalpy, and therefore an increase in overall crystallinity, with increased rotational speed 

(Table 5.5). 

 

Table 5.5: Measured Enthalpy (ΔH) calculated from DSC traces. 

  Rotational speed (RPM) 

 - 8,000 9,000 10,000 11,000 12,000 13,000 14,000 15,000 

Low MFI 

Spinneret 

 

 

48.2 94.2 110.9 97.3 120.2 123.9 - - 

High MFI 

Spinneret 

 

 

- - - - 121.4 123.4 119.1 126.2 

Flake 131.1         

          Enthalpy in J g-1 
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From these two observations it can be argued that the higher drawing applied to the finer 

fibres reduces the rate of formation of this secondary crystallite form. The enthalpy 

measurements also indicate a higher degree of crystallinity in the flake that attainable in 

the fibre form. This can be explained as rapid cooling of the fibres during spinning 

limiting the amount of crystallisation whereas the flake is allowed to crystallise slowly as 

it forms during polymerisation. 

5.4.5 X-ray diffraction 
 

The X-ray diffraction patterns of both PVP/TA flake and the fibres produced show two 

dominant peaks superimposed onto a broad and weak halo which stretches from 10 to 30° 

2θ. These are shown in Figure 5.16. 
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Figure 5.16: XRD plots of PVP/TA flake and fibres produced at varying rotational 

speeds using the low MFI spinneret (left) and the high MFI spinneret (right). The key 

peaks are centred around 21.6°, 24.0° and 36.4°. 

 

The X-ray diffraction patterns of both PVP/TA flake and the fibres produced show two 

dominant peaks superimposed onto a broad and weak halo which stretches from 10 to 30° 

2θ. This hump is indicative of an amorphous region (Caminiti et al., 2000). It is known 

that pure PVP displays low levels of order in an X-ray diffraction analysis suggesting that 

homogenous PVP is entirely amorphous (Razzak et al., 1999, Sethia and Squillante, 

2004). The clear peaks shown in the XRD patterns for PVP/TA are a strong indicator of 
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long range order. The PVP/TA diffraction pattern has peaks at 21.6, 24.0 and 36.4° 2θ 

along with additional secondary peaks between 25 and 40° 2θ. This diffraction pattern 

correlates with that of linear polyethylene. This is a long carbon chain which takes up a 

highly ordered form and is known to be around 80 % crystalline. Polyethylene forms an 

orthorhombic crystal with peaks found around 21.5, 23.9 and 36° 2θ. This is analogous 

to a unit cell of dimensions a = 7.4241 Å; b = 4.9491 Å; and c = 2.5534 Å relative to the 

crystallographic planes of (110), (200) and (020) (Bertie and Whalley, 1964). By 

assuming that PVP/TA conforms to the same unit cell applying Equation 2.6 and Equation 

2.7 to the PVP/TA peaks at 21.6, 24.0 and 36.4° 2θ results in a unit cell of dimensions (a, 

b, c) of 7.424 Å, 4.936 Å, and 2.544 Å under the same crystallographic planes. The close 

match suggests that PVP/triacontene is a semi-crystalline material with crystals that have 

the same dimensions of low density polyethylene. It should be noted that the peaks for 

PVP/TA are much broader than linear high density polyethylene and resemble the 

patterns for branched low density polyethylene found by Ueno and co-workers (1991). 

 

Table 5.6: Full width at half maximum calculated for the PVP/TA flake and fibres for 

the peak located around 21.6° 2θ. 

 

 

 

 

 

 

 

 

Rotational Speed 

(rpm) 

Full width at half maximum 

(°of 2θ) 

Fine Spinneret (High 

MFI) 

Coarse Spinneret 

(Low MFI) 

8,000 N/D 0.746 

9,000 N/D 0.710 

10,000 N/D 0.766 

11,000 N/D 0.610 

12,000 0.707 1.076 

13,000 0.814 0.720 

14,000 0.956 N/D 

15,000 0.944 N/D 

FWHM value of flake is 0.485°, N/D not done 
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The flake has a thinner peak width than the XRD measurements of the fibre forms. Peak 

width can be established through subtraction of the amorphous region and subsequent 

calculation of the full width half maximums (FWHM). Table 5.6 documents the 

calculated FWHM at each spinning condition. The FWHM is significantly higher in the 

fibre than in the original flake. As crystallite size is inversely proportional to the peak 

width as dictated by the Scherrer relationship it can be deduced that there is a smaller 

crystal size in the fibre than in the flake (Meng et al., 2013). This is a consequence of 

spinning into a fibre; the extensional strain applied during spinning changes the crystal 

dimensions significantly. This is substantiated by the DSC results presented earlier where 

a second crystal form was also observed in the drawn fibres. This was explained by Glenz 

and co-workers who stated that a drawn sample can have a crystal size and shape 

completely independent of the undrawn material (Glenz et al., 1971). Through 

interpretation of the XRD results it can be said that the crystals formed within PVP/TA 

flake and fibres are smaller than crystals within HDPE observed elsewhere (Langford and 

Wilson, 1978). This follows as PVP/TA a short crystal conformation with the C30 chain 

length (and the presence of a non-crystallising copolymer (PVP) within a branched 

molecule will result in shorter regions of chain overlap and a much smaller number of 

unit cells in the a, b and c directions in any one crystal. 

 

A combination of crystallising triacontene chains and amorphous PVP backbone creates 

definite regions of order and disorder. The C30 chains extend radially out from the PVP 

chain and will inevitably interact with neighbouring hydrocarbon chains. PVP is entirely 

amorphous and will not crystallise but the grafted on C30 chains can move into 

registration and form crystal unit cells identical to those found in polyethylene. This 

method of graft copolymer crystallisation on an amorphous backbone was also observed 
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by Inomata et al. (2005) where the structure was described as interdigitating packing. A 

representation of this structure is shown in Figure 5.17. 

 

 

Figure 5.17: Model for crystallisation of graft copolymers (Neugebauer et al., 2005) 

 

Applying this model to PVP/TA, the long carbon chains create short length crystals which 

are perpendicular to the polymer backbone. Deviations in backbone chain registration and 

variations in chain length would allow for a single copolymer brush to enter both 

crystalline and amorphous regions and would incorporate further defects and disorder into 

the crystal system. This view can be complemented by the possibility that the polymers 

pack together to form a ‘laterally crystalline’ structure similar to that found in 

polyacrylonitrile (PAN) (Bell and Dumbleton, 1971). More detail is given to this 

proposed structure in work done by Arndt et al. (1991) who found that side chains will 

only crystallise at sufficient distance away from the backbone. They estimated this 

distance to be 6 CH2 units which led to the updated model which states that the amorphous 

component is comprised of the backbone and disordered side chain.  
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From the XRD results it is concluded that within PVP/TA there are short blocks of 

crystals dispersed between a non-crystallizing PVP and disordered or imperfect regions 

within the copolymer. This two phase structure is often observed in polymer blends or in 

copolymer chains (Kumar et al., 2014). In terms of macro-fibre structure, Morton and 

Hearle (1993) stated that in a two-component system of crystallisable polymer dispersed 

between blocks of non-crystallising polymer, if the crystallising blocks are of fixed length 

then the structure is likely to be a true representation of the fringed micelle model. 

However, in this brush copolymer the molecule is best described as a backbone chain 

entirely surrounded by graft elements which limit the possibility of the random chain 

passing through multiple crystals as proposed in the fringed micelle model. Other models 

such as the fringed fibril do not fit easily with grafted chain polymers as chain folding of 

the side grafts is restricted by short length of the C30 chain and the anchoring of the PVP 

backbone (Samanta et al., 2009). This lack of chain folding will ultimately limit the 

crystal size which will confirm the hypothesis put forward previously that the crystals of 

PVP/TA are much smaller than those found in PE (which can chain fold) This view can 

be complemented by the possibility that the polymers pack together to form a “laterally 

crystalline” structure similar to that found in polyacrylonitrile (PAN) (Bell and 

Dumbleton, 1971). This could explain the brittle fractures observed in section 5.4.2.1, it 

is hypothesised that these lateral crystals do not contribute to tensile strength and elasticity 

like crystallised regions in long linear chains such as polypropylene. 

5.4.6 Dye adsorption assessment 
 

The calibration curve for Dianix Blue AC-E was shown previously in Figure 5.6. To 

calculate the concentration of an unknown solution the UV-Vis absorbance is divided by 

the gradient of the graph in Figure 5.6 to generate a measured concentration in mg L-1. 
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The concentration of the treated effluent allows for calculation for the mass of dye 

removed by the PVP/TA fibres and the activated carbon. Table 5.7 provides the summary 

data for both materials at each dye concentration. The colour removal percentage as 

calculated using 
𝑪𝟎−𝑪𝒆

𝑪𝟎
 × 100. PVP/TA was an effective adsorbent, capable of 97.1 percent 

dye removal of an original dye concentration of 25 mg L-1. The PVP/TA was able to 

adsorb more dye Dianix Blue A-CE than the commercial AC, at a dye concentration of 

300 mg L-1 the PVP/TA and AC adsorbed 59.1 % and 49.9 % of the dye, respectively. 

The mass of dye adsorbed onto the material (𝑸𝒆), was calculated as (𝑪𝟎 − 𝑪𝒆)
𝑽

𝒎
. The fibres 

were able to capture 35.44 mg of dye per gram of material compared to 29.95 for the 

commercial A-CE. 

 

Table 5.7: Percentage of disperse dye removed by PVP/TA and Norit AC and amount of 

dye adsorbed onto the fibres at each starting concentration (Co). 

 

 
Co (mg L-1) 

25 50 100 150 200 300 

 

PVP/TA fibre 

Removal (%) 

Qe (mg g-1) 

 

 

 

 

97.1 

4.8 

 

 

83.2 

8.3 

 

 

73.3 

14.7 

 

 

76.6 

22.9 

 

 

70.4 

27.7 

 

 

59.1    

35.4 

Norit AC 

Removal (%) 

Qe (mg g-1) 

 

 

95.9 

4.8 

 

88.3 

8.8 

 

78.5 

15.7 

 

73.2 

22.0 

 

64.5 

25.3 

 

49.9 

30.0 

 

 

The adsorption isotherms can only be calculated under equilibrium conditions. 

Preliminary kinetic studies indicate that after 6 hours no more additional dye is adsorbed 

onto either PVP/TA or AC; thus 72 hours was sufficient to reach equilibrium. 
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The Langmuir model for both materials was calculated by plotting 
1

𝑄𝑒
 against 

1

𝐶𝑒
 as per 

Equation 5.3 and shown in Figure 5.18. 

  

Figure 5.18: Linearised Langmuir model for PVP/TA fibres and activated carbon. 

 

The constants 𝐾𝐿, 𝑄0 were then calculated from the slope and the gradient to produce the 

models shown in Table 5.8. 

 

Table 5.8: Calculated Langmuir isotherm equations for PVP/TA fibre and activated 

carbon. 

Sample  Langmuir isothermal equation 

PVP/TA fibre 
 

𝑄𝑒 =
𝐶𝑒 ∗ 1.252

1 +  (𝐶𝑒 ∗ 0.0321)
 

Norit AC 
 

𝑄𝑒 =
𝐶𝑒 ∗ 2.129

1 +  (𝐶𝑒 ∗ 0.0737)
 

 

The Langmuir models are plotted against the empirical data recorded in Figure 5.19 and 

Figure 5.20. 
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 The linearised Langmuir model fits the empirical data closely with R2 values of 0.982 

and 0.967 for the activated charcoal and PVP/TA fibre, respectively. This suggests that 

both the PVP/TA fibre and the Norit AC adsorb disperse dyes as a monolayer with a fixed 

amount of adsorption sites. Previous work has demonstrated that the Langmuir isothermal 

accurately models the adsorption on to AC (McKay, 1982; Gercel et al., 2008). This work 

suggests that the mechanism that attracts disperse dyes to AC also acts to attract and retain 

disperse dyes on the surface of PVP/TA.  

 

 

 

 
Figure 5.19: Mass of dye adsorbed (Qe) plotted against equilibrium concentration (Ce) 

for PVP/TA fibre along with plots of Langmuir isothermal. 
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Figure 5.20: Mass of dye adsorbed (Qe) plotted against equilibrium concentration 

(Ce) for activated carbon along with plots of Langmuir isothermal. 

 

Both materials have a high surface area but one explanation for the higher adsorption by 

PVP/TA over AC is that the PVP/TA has a greater number of potential adsorption sites. 

This is due to the presence of non-polar long chain hydrocarbon branches creating a 

hydrophobic surface that the disperse dyes can bond to.  

 

5.4.7 Soil retention  
 

The positive and negative ToF-SIMS spectra ranging 0 to 400 m/z for the full set of 

samples are included in Appendix A-5 to A-17 which are also rescaled at intervals to help 

identify peaks. However, selected raw data, without adjustment, are included in Figure 

5.21 for reference.  

 

The ToF SIMS spectra of the samples showed a large range of overlapping and common 

peaks making it difficult to distinguish between the fibres and the staining agent. 

However, various compounds unique to sebum and to corn oil could be identified and 
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linked to real molecules based on molecular weight. In the sebum oil spectra, peaks were 

observed at 141-, 169- and 197- m/z in the negative ion which equate to decane, dodecane 

and tetradecane, respectively which form the ‘mixed hydrocarbons’ constituent in the 

synthetic sebum. Larger fatty acids, oleic acid and stearic acid, formed dominant peaks at 

255- and 283- m/z, respectively; these fatty acids are found in beef tallow, the primary 

component and likely to be found in the free fatty acids. Additional key peaks for the 

sebum oil occurred in the positive ion at 383+ and 579+ m/z which correlate to the 

cholesterol and a polyglycerol fatty acid ester, the latter being a key component in Cutina, 

which makes up 11 % of the synthetic sebum (Diederich et al., 2014). 

 

The components of corn were all identified in the negative ion phase. Peaks pertaining to 

palmitic acid, linolenic acid and linoleic acid were observed at 255-, 277- and 279- m/z 

with the larger oleic acid and stearic acid generating peaks at 281- and 283-, respectively. 

The intensity of the peaks observed relates strongly to their relative proportions in corn 

oil.  
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Figure 5.21: Selected ToF-SIMS spectra for assessing soil retention on fibres. 
 

ToF-SIMS is only semi-quantitative and absolute intensity data cannot be used in 

isolation to determine how much of a compound is present. However, changes in relative 

proportion can be observed by changes in peak intensity relative to other major peaks. 

The relative peak intensities of the listed peaks before and after washing were compared 

to indicate the substantivity of the oily materials for PVP/TA and cotton. The use of 

relative peak height analysis has been used previously by Blestos et al. (1991) and by 

Graham et al. (2006) and normalises differences in sample interaction and reveals more 
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than absolute intensities. Typically, a common reference peak is chosen that features in 

all spectra and for this work the peaks at 25- m/z (C2H-) and 41+ m/z (C3H5
+) were used 

as reference peaks for the negative and positive ions, respectively. These were chosen as 

they were high intensity peaks present in both virgin cotton and the PVP/TA fibre. The 

height of the aforementioned peaks was compared to these reference points and the 

change in relative height calculated. The results are shown in Table 5.9 and Table 5.10 

for sebum oil and corn oil respectively. 
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Table 5.9: Relative peak heights of compounds observed on sebum oil stained and washed 

cotton fabric and centrifugal spun PVP/TA fibres, produced at 12,000 rpm, 72 °C using 

the coarse spinneret. 

Description 
Ion 

(m/z) 
Species 

Sebum oil on cotton Sebum oil on PVP/TA 

Stained Washed Change Stained Washed Change 

Nonane 127- C9H19- 0.125 0.085 -32 % 0.031 0.033 +5 % 

Decane 141- C10H21- 0.104 0.062 -40 % 0.020 0.030 +50 % 

Undecane 155- C11H23- 0.1 0.033 -67 % 0.017 0.018 +4 % 

Dodecane 169- C12H25
- 0.090 0.031 -95 % 0.018 0.020 +9.5 % 

Tridecane 183- C13H27
- 0.075 0.032 -55 % 0.015 0.014 -3 % 

Tetradecane 197- C14H29
- 0.075 0.023 -96 % 0.013 0.023 +78 % 

Oleic acid 255- C15H31 

CO2
- 0.667 0.200 -63 % 0.174 0.140 -19 % 

Stearic acid 283- 
C18H36 

O2- 
0.567 0.254 -60 % 0.117 0.038 -68 % 

Cholesterol 383- C27H46O- 0.038 0.010 -72 % 0.034 0.007 -80 % 

Polyglycerol 

fatty acid 

ester 

579+ 
C30H58 

O10
-
   

0.045 0.009 -78 % 0.005 0.002 -66 % 

 

Table 5.10: Relative peak heights of compounds observed on corn oil stained and washed 

cotton fabric and centrifugal spun PVP/TA fibres, produced at 12,000 rpm, 72 °C using 

the coarse spinneret. 

Description 
Ion 

(m/z) 
Species 

Corn oil on cotton Corn oil on PVP/TA 

Stained Washed Change Stained Washed Change 

Palmitic acid 255- C15H31CO2
- 0.200 0.116 -42 % 0.043 0.087 +104 % 

Linolenic acid 277- C18H30O2
- 0.067 0.004 -95 % 0.006 0.003 -47 % 

Linoleic acid 279- C18H32O2
- 0.407 0.014 -96 % 0.058 0.270 +364 % 

Oleic acid 281- C18H34O2
- 0.313 0.116 -62 % 0.039 0.196 +397 %  

Stearic acid 283- C18H36O2- 0.053 0.021 -60 % 0.009 0.004 -60 % 

 



227 

 

 

Table 5.9 and Table 5.10 indicate that both the sebum and corn oil have little affinity for 

cotton and are easily lifted from the surface by detergent resulting in significant 

reductions in relative peak intensity after washing. The intensity of dodecane, tetradecane, 

linolenic acid and linoleic acid relative to the reference peak was reduced by over 95 % 

when the stained cotton was washed. The oleic (281- m/z) and stearic acid (283- m/z) 

compounds are present in both the sebum and corn oil and were both reduced by roughly 

the same amount ~61 % during the wash cycle indicating agreement between the sets of 

results.  

 

In comparison, the hydrophobic PVP/TA fibres recorded relative intensity gains and less 

significant losses for some compounds after washing. ToF-SIMS is a surface specific 

technique with a penetration depth of only 1 - 2 nm; thus, the gains in intensity observed 

were attributed to the surface agents being more conspicuous to the bombarding 

ionisation after losing less substantive neighbouring fatty material during washing. These 

gains in relative intensity were generally confined to the lower molecular weight elements 

(C9 to C14 in length) whereas the larger glycerides and fatty acids were less substantive. 

Stearic acid (283- m/z) and the polyglycerol fatty acid ester (579+ m/z) were reduced on 

intensity by 68 % and 66 % respectively when the PVP/TA was washed; stearic acid can 

be deprotonated which imparts hydrophilicity which would significantly reduce the 

hydrophobic-hydrophobic affinity with the PVP/TA and polyglycerol fatty acid esters are 

known to have a hydrophilic moiety which again reduces the affinity for PVP/TA and 

increases the affinity for water (Sakamoto, 2004). Overall, the PVP/TA fibres showed a 

lower reduction in relative peak intensity compared to the cotton reference suggesting 

that the oils are substantive for the fibres with one exception: the reduction in cholesterol 

(383+ m/z) on PVP/TA with washing was greater than observed on cotton. Cholesterol 
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possesses a secondary alcohol and is amphiphilic; having both hydrophilic and 

hydrophobic ends; this hydrophilic component could decrease the substantivity of the 

compound on to PVP/TA.  

 

The indications are that when the stained cotton was washed there was a moderate 

reduction in sebum and corn oil content which is lifted from the surface by the detergent 

and water; cotton is hydrophilic and has little affinity for the oil applied to the surface. 

The relative height of the sebum oil – PVP/TA peak pair was much lower after washing 

indicating that the sebum oil was lifted off the fibre surface by the detergent. In 

comparison, the corn oil retained relative peak intensity and actually increased compared 

to the unwashed sample. The ToF-SIMS results suggest that corn oil was not easily 

washed off the PVP/TA fibres and there was a relatively strong attraction between the 

two hydrophobic products. The discrepancy between the sebum and corn oil could be due 

to the effects and interactions of the different compounds in the synthetic sebum oil. Some 

of the compounds present, such as triglycerides and cutina are amphiphilic and may have 

behaved as emulsification agents and may also be saponified. These different compounds 

could also interact to create species of such molecular size that they interfere with the 

relative peak heights. In addition, the different compounds will have a different 

interaction with the PVP/TA and with each other which could reduce the affinity of one 

or more of the compounds for the PVP/TA fibres. 

 

Overall, the ToF-SIMS results presented here suggest that PVP/TA fibres have a high 

level of affinity for the non-polar hydrocarbons (nonane to tetradecane), which remained 

after washing indicating that the PVP/TA fibre had some oleophilic characteristics which 

could potentially be useful in preventing staining in domestic clothing such as cotton. 
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However, the ToF-SIMS results for the sebum oil indicated that this attraction is not 

clearly defined and more research needs to be done to quantify this relationship accurately 

and establish the correct conditions for fibre-oil attraction, capture and retention.  

 

5.5 Conclusions 

 

Polyvinylpyrrolidone/triacontene was successfully melt spun into ultrafine fibres using a 

commercially available centrifugal spinning system. Increasing the rotational speed 

reduced the average fibre diameter so that average diameters between 1 – 2 µm were 

achieved with individual fibres observed as fine as 0.3 µm. The melt viscosity of PVP/TA 

is highly sensitive to temperature and successful fibre production was achieved when 

using a spinning temperature of 72 °C. At this temperature, relatively high production 

rates of 200 mg min-1 per orifice could be achieved. At this production rate, significant 

volumes of this material could be produced economically using commercial centrifugal 

spinning equipment. 

 

A review of the literature and XRD and ToF-SIMS analysis revealed that PVP/TA is in 

the form of a radial brush copolymer which forms a semi-crystalline structure where the 

triacontane branches interlock and form small crystals around an amorphous backbone. 

This view suggests that the individual PVP/TA chains will incorporate several regions of 

crystalline and non-crystalline regions within its length. The radial triacontene branches 

also impart hydrophobicity and mask the hydrophilic backbone. This hydrophobic 

behaviour could potentially be useful in adsorption applications and this research tested 

the effectiveness of PVP/TA fibres as a dye adsorbent and as an oil capturing adsorbent. 

This is the first time that PVPT/TA fibres have been considered as an adsorbent for 
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disperse dyes. The PVP/TA fibres had an adsorption capacity of 35.4 mg g-1 of Dianix 

Blue A-CE under neutral conditions. The fibres adsorbed slightly more Dianix Blue A-

CE than a commercial adsorbent but more importantly have demonstrated the potential 

of fine fibrous adsorbents. These fibres could then be incorporated into existing materials 

to create functional, adsorbent fabrics. As an aside, all the common adsorbent materials 

are in granular or powder form which limits their ability to be incorporated into a 

nonwoven material for ease of handling. There is potential to incorporate adsorbent fibres 

on to the supporting substrates in filtration mechanism. When used as a filtration 

membrane the fibres may also assist in filtration by removing larger particulates and 

acting as a pre-filter (Hutten, 2007). An adsorbent filter media differs from the adsorbent 

systems described previously in that the adsorbent is fixed and the solution is passed 

through it as opposed to being dispersed in the liquor. Incorporating PVP into a filter 

media can be achieved by spinning a thin layer directly onto the supporting substrate. 

 

In addition to the adsorption of hydrophobic dyes, the PVP/TA fibres produced also 

demonstrated a high affinity for non-polar hydrocarbons which suggests that fibres of this 

nature could be applied as oleophilic capture agents in domestic and industrial laundering 

applications. However, more experimental work must be done on this to demonstrate 

efficacy and establish firm relationships. 
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Chapter 6  
Creation of nanofibre composites containing 

carbon nanotubes through centrifugal spinning 

 

6.1 Introduction 

 

Nanofibre nanocomposite materials were previously discussed in Section 1.34; these are 

ultrafine fibres that contain ultrafine fillers. This chapter expands on that concept and 

specifically looks at the incorporation of carbon nanotubes within fine polymeric fibres 

produced through centrifugal spinning.  

 

Carbon nanotubes (CNTs) are a new form of material that have received growing 

academic and commercial interest in recent years since their discovery was documented 

in a seminal paper by Iijima (1991). Carbon nanotubes have unique mechanical and 

electronic properties which make them scientifically interesting and potentially useful as 

filler material in specialist and commercial applications (Thostenson et al., 2001). The 

high levels of research activity in both nanotubes and nanofibre production made it 

inevitable that the two topics would coalesce and the creation of nanofibres containing 

carbon nanotubes would be explored (Jeong, 2007).  

 

The addition of nanotubes to a polymer comes at a cost in terms of processing: CNTs are 

especially difficult to disperse and significantly change the melt rheology of the polymer 

matrix, making fibre formation more troublesome. Using centrifugal spinning to create 

fibres containing CNTs would be a forward step in furthering the technology and would 

demonstrate that centrifugal spinning has sufficient versatility to process a broad range 
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of feed materials. This chapter demonstrates the dispersion of carbon nanotubes in PCL 

and PP and centrifugal spinning into fibres. 

6.1.1 Carbon nanotubes 
 

Iijima (1991) first observed carbon nanotubes and described them graphitic sheets rolled 

to form a capped or hollow tube, Figure 6.1. A sheet of graphitic carbon is a network of 

carbon atoms where each carbon atom is linked to three neighbouring C atoms through 

sp2 hybridisation which does not allow for the presence of hydrogen in the structure 

(Vaisman et al., 2006). The nanotubes are constructed in such a way that the length of the 

tube is orders of magnitudes greater than the diameter, giving carbon nanotubes a high 

aspect ratio in one dimension which influences the mechanical behaviour (Demczyk et 

al., 2002). 

 

Figure 6.1: Idealised form of carbon nanotubes. A single-walled nanotube is essentially 

a rolled up graphitic sheet (Vaisman et al., 2006). 

 

Nanotubes are generally produced in two forms: single-walled (SWNT) and multi-walled 

(MWNT). The former consists of a single tube made from one graphene sheet and is 

considered to be the simplest and most ideal form of nanotube. The multi-walled form is 

a series of carbon nanotubes of incrementing sizes in a telescopic rod or Russian doll 

configuration. The MWNT form is considered less ideal due to a drop in theoretical 

conductivity and tensile strength as the graphitic layers interact with each other, reducing 

the ‘purity’ compared to single-walled tubes (Moisala et al., 2006). However, the MWNT 
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form is encountered often in the literature due to lower production costs (Boronat et al., 

2012). A TEM of a multi-walled nanotube that reveals multiple tube layers which encase 

a hollow lumen is presented in Figure 6.2. 

 

 

Figure 6.2: TEM of a multi-walled carbon nanotube (Thostenson et al., 2001). 

 

Individual carbon nanotubes have phenomenal tensile properties and the strength of a 

single nanotube was found to be 150 GPa (Demczyk et al., 2002). Nanotubes are often 

compared to steel in the literature as they are conveniently found to be over 50 times 

stronger than conventional steel when normalised for density (Zhang et al., 2009). A 

single-walled CNT will typically measure less than 10 nm in width but has a 

comparatively large length resulting in a very high aspect ratio. The two-dimensional 

structure of carbon nanotubes is extremely stable to mechanical loading due to the 

resilient and uniform hexagonal carbon structure. There are varying reports on the exact 

tensile behaviour of CNTs but a pristine SWNT has a theoretical elastic modulus in excess 

of 1 TPa (Thostenson et al., 2001). This high stiffness, coupled with an empirical tensile 

strength of over 0.15 TPa makes carbon nanotubes an ideal filler material (Demczyk et 

al., 2002). The high aspect ratio of CNTs means that even adding low concentrations to a 

matrix can still achieve significant improvements in mechanical performance (Boronat et 

al., 2012). 
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The sp2 carbon hybridisation of graphitic planes give the constituent carbon atoms a pz 

orbital (Moisala et al., 2006; Reich et al., 2004). The free electrons in this orbital are not 

bound to a single carbon and are therefore mobile along the nanotube. It is this aspect that 

allows carbon nanotubes to be such effective electrical conductors. It has been 

documented that the current carrying capacity of a carbon nanotube is over 1000 times 

that of copper on a weight-weight basis (Thostenson et al., 2001). Adding nanotubes to 

non-conducting fillers can create electrical networks within the filler to allow for 

conduction of electrical charge (Moisala et al., 2006). Electron conduction can only occur 

if nanotubes are overlapping or sufficiently close; isolated carbon nanotubes within a 

polymer matrix will be electrically insulated and will not significantly change the bulk 

resistance of a composite. In order for electrical conduction the nanotubes must be present 

in such a number and dispersion that a complete overlapping network of conducting 

pathways is formed throughout the material. This critical level of CNT loading is known 

as the percolation threshold and will depend on: the carbon nanotube form and quality; 

the polymer matrix used; the fibre or film formation process and the method of nanotube 

dispersion (Reich et al, 2004; Seo and Park, 2004). In the literature the CNT percolation 

threshold reported is around 1 % (w/w) but is reported to be as high as 2 % in poorly 

dispersed compounds (Seo and Park, 2004). Through vigorous mixing and using 

surfactant aided dispersion the percolation threshold has been recorded as low as 0.2 % 

CNT loading, however, figures such as this are rare (Tkalya et al., 2012). 

 

Along with mechanical and electrical properties CNTs also have very high thermal 

conductivity. Berber and co-workers (2000) found that a single isolated carbon nanotube 

had a thermal conductivity rating of ~6600 Watt per metre Kelvin (W m-1 K-1) which is 

much higher than that observed in metallic material such as pure aluminium which has a 
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rating of ~210 W m-1 K-1. In comparison an insulating polymer such as polypropylene 

has a very low thermal conductivity of ~0.11 W m-1 K-1 and is considered to be thermally 

insulating (Han and Fina, 2011). Plastics and synthetic polymers are known to be poor 

transmitters of heat and see a significant change in thermal conductance if CNTs were 

added as filler (Han and Fina, 2011). This poor thermal conductivity has a detrimental 

effect when these polymers are considered for use as electrical heat sinks for example and 

could also limit the use of fibres in temperature sensors. The potential for increasing the 

thermal conductivity has received less attention in the research literature despite the 

addition of nanotubes being shown to increase the thermal stability and reduce the 

flammability of polypropylene (Kashiwagi et al., 2002).  

 

The exact mechanical, electrical and thermal properties of carbon nanotubes will depend 

on the number of graphitic walls; the diameter or chirality of the tubes; the length and the 

number of faults (Reich et al., 2004; Terrones, 2003) 

6.1.2 Carbon nanotube composites 
 

Using CNTs in a matrix is a specific form of composite termed a nanocomposite. These 

are multi-phase material where one or more components have dimensions less than 100 

nm and currently there is a large amount of interest in the inclusion of materials such as 

sheet graphene and carbon nanotubes (CNTs) into the polymeric material (Boronat et al., 

2012; Coleman et al., 2006). This compounding is done in order to utilise the properties 

of the former with the stability and flexibility of the latter. 

 

The mechanical behaviour of both a solid and a fluid will be significantly altered through 

the addition of carbon nanotubes. The addition of CNTs is known to improve strength 
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over the parent polymer and may also improve web strength. Qian et al. (2002) found that 

addition of 1 % w/w of multi-walled nanotubes to polystyrene film increased the mean 

strength to 1620 MPa from 1190 MPa. This added increase in mechanical strength may 

help to improve the absolute strength of nanofibres and may lead to fibres webs being 

used in more demanding applications (Giraldo et al., 2008). The high stiffness of 

nanotubes can also increase the Young’s modulus and breaking load of a composite 

compared to the virgin matrix material, Figure 6.3 (Bazbouz and Stylios, 2008). The 

efficiency of load transfer and subsequent mechanical performance will depend on the 

quality of the nanotube and the interfacial interaction with the matrix. 

 

 

Figure 6.3: Increase in elastic modulus, tensile strength and stiffness through the 

introduction of MWNTs into Nylon 6 fibres (Bazbouz and Stylios, 2008). 

 

CNT addition is not always done simply to alter the mechanical behaviour or make 

insulators conduct: it has been demonstrated that nanotube addition can change the 

chemical behaviour and chemical response of a nanofibre (Weng et al., 2014b, Wiertz, 

2014) and so there has been interest in developing nanocomposites using CNTs in order 

to create smart materials. For example, it has been observed that the electrical 

conductivity of a nanocomposite may change depending on the environment (Virji et al., 
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2004). A further example is the creation of rapid response sensors which utilise the 

variable electrical properties of carbon nanotubes embedded in a conductive polymer 

nanocomposite (CPC) (Seo and Park, 2004, Kang et al., 2006). Highly sensitive strain 

gauges could be created by exploiting the piezoresistive behaviour exhibited by carbon 

nanotubes (Zhao et al., 2013, Kang et al., 2006). Gas and vapour sensors have also been 

proposed which utilise electrochemical induced resistive changes in CPCs made from 

CNTs in a range of matrixes including PMMA (Kang et al., 2006); 

polypropylene/polycaprolactone (Pötschke et al., 2012); chitosan (Bouvree et al., 2009) 

and polypyrrole (Jang and Bae, 2007). The high surface area of nanofibres minimises the 

delay between surface contact and permeation and electrochemical changes in the bulk 

material. 

6.1.2.1 CNTs and rheology 

Along with changing the mechanical properties of a solid the addition of carbon 

nanotubes changes the flow behaviour of a fluid. Carbon nanotubes are known to have a 

significant effect on the rheology of polymer solutions and melts (Tiwari et al., 2009). 

The CNTs severely restrict polymer mobility and act as localised anchor points as 

interfacial interactions restrict chain movement (Song and Youn, 2005; Jin et al., 2001). 

The magnitude of the effect depends on the level of CNT loading; CNT length and form; 

the degree of CNT dispersion, polymer molecular weight and the interfacial interactions 

present between the CNTs and the polymer (Song and Youn, 2005). There is also a 

marked increase in the storage modulus (the amount of shear force that can be absorbed 

by a liquid before it begins to flow) of a fluid with the addition of carbon nanotubes (Jin 

et al., 2001). The high aspect ratio of carbon nanotubes means that using them as filler in 

a fluid matrix will increase the viscosity significantly even at low loading levels (Seo and 

Park, 2004). 
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The reasons presented here mean that the addition of CNTs is a significant factor for fibre 

spinning as the viscosity of a solution and a melt will be significantly altered which links 

back to the requirements for steady state spinning presented earlier. It was noted by one 

author that adding carbon nanotubes to polymers can make fibre spinning difficult if not 

impossible (Ko et al., 2003). The addition of nanotubes into polymer solutions or melts 

reduces the elasticity of a fluid which will influence how fibres are formed and how likely 

jet breakup is to occur (Bangarusampath et al., 2009). 

 

In regards to centrifugal spinning techniques thus far, there have been few papers 

published that document the production of fibres containing carbon nanotubes (Weng et 

al., 2014a; O’Haire et al., 2014). As a result there is scope to contribute to understanding 

the processing of such materials. Centrifugal spinning is considered versatile in terms of 

the input material so is capable of producing fibres from compound materials which are 

not suited to other processing techniques. The high aspect ratio of carbon nanotubes 

means that using them as filler in a fluid matrix will increase the viscosity significantly 

even at low loading levels (Seo and Park, 2004). 

 

Polymer mats containing carbon nanotubes have been successfully centrifugal spun by 

Weng and co-workers in two papers using functionalised carbon nanotubes to solution 

spun using poly(vinyl butyral) (Weng et al., 2014a) and poly(methyl methacrylate) 

(Weng et al., 2014b). In addition to carbon nanotubes, a nanocomposite of PET/graphene 

has also been successfully formed into nanofibres using centrifugal spinning (Padron et 

al., 2012).  
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6.1.3 Dispersion of carbon nanotubes 
 

Carbon nanotubes are extremely difficult to mix homogeneously with a matrix material 

(Haslam and Raeymaekers, 2013). Dispersing CNTs requires a much more vigorous 

action than when dispersing conventional particulate or fibre filler. This is due to the long 

aspect ratio of CNTs and the resulting large surface area that combine to make nanotubes 

attract, entangle and agglomerate with each other. The current practice of CNT suppliers 

to deliver dry, entangled bundles further aggravates the issue.  

 

It is known that nanotube agglomeration and poor dispersion result in diminished 

composite performance in the mechanical behaviour, electrical conductivity and thermal 

conductivity (Lee et al., 2008; Moisala et al., 2006; Song and Youn, 2005). In their paper, 

Song and Youn (2005) found that effective carbon nanotube dispersion increased the 

tensile strength of a composite whereas a poor dispersion had a detrimental effect on final 

tensile strength compared to the initial matrix material and also reported that effective 

dispersion increased electrical and thermal conductivity over poorly dispersed carbon 

nanotube materials.  

 

Prior research has sufficiently established that nanotubes must be thoroughly dispersed 

before use in order to utilise the benefits and minimise the difficulty of using carbon 

nanotubes. For example, it has been shown by Siddiqui et al. (2011) that improving the 

dispersion of CNTs significantly reduced the measured viscosity of an epoxy resin 

compared to poorly mixed CNTs at the same loading level.  
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Figure 6.4: CNT composites containing 0.1 % MWNT after a sonication time of a) 20 

minutes and b) 90 minutes (Yu et al., 2007). 

 

Mechanical methods of carbon nanotube dispersion are common in the literature (Tkalya 

et al., 2012; Andrews et al., 2002). Ultrasonic mixing has been identified as an effective 

way to deagglomerate the bundles and disperse them in a solution through the agitation 

induced by an ultrasonic pressure wave (Yu et al., 2007). This is typically done using a 

sonic probe or a sonic bath, Figure 6.4. Ultrasonicators are proven to work well with 

liquids of low viscosity but, it is argued, become less effective in highly viscous polymer 

solutions, mechanical mixing being more suitable (Huang and Terentjev, 2012).  

 

In order to successfully disperse nanotubes in polymer solutions suitable for fibre 

spinning carbon nanotube dispersion usually occurs in the solvent prior to dissolution of 

the polymer. Ultrasonic mixing has also been shown to damage the nanotubes: the 

dispersing shockwaves shorten the length of the tubes and introduce defects; thus 

reducing the mechanical and electrical properties (Huang and Terenrjev, 2012; Ma et al., 

2010). For solution processing the polymer and CNT dispersion in solvent can be directly 

formed into fibres or films using electrospinning or solution cast moulding.  
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For melt processing there are two primary options for deagglomeration and dispersion of 

nanotubes, the first being to melt compound using a heated high shear system such as an 

extruder. It is thought by Ma et al. (2010) that dispersing nanotubes through melt mixing 

is less aggressive on the nanotubes and does not shorten or break individual tubes. The 

second principal method of dispersion is to dissolve and mix the polymer into a solvent 

containing nanotubes already dispersed through sonication. The solvent is then 

evaporated away leaving behind a polymer nanotube composite. The resulting dried 

polymer film can then be broken up and fed into a melt spinning system. The solvent 

dispersion method is a lengthy process but has advantages over melt compounding using 

shear mixing using twin screw extrusion (O’Haire et al., 2014; Hardy, 2008). 

 

With all dispersion methods there is an optimum mixing time which is the amount of time 

required to achieve an even dispersion with as little damage to the tubes as possible. This 

optimum time will depend on the average nanotube length, tendency to agglomerate, 

intensity of the sonication treatment and the viscosity of the solution (Huang et al., 2012). 

Deciding on an optimum mixing time depends on the desired level of dispersion and 

amount of damage to the CNTs that is acceptable.  

 

One of the difficulties in mixing carbon nanotubes into polymeric materials is the absence 

of a quick and reliable technique to assess the level of dispersion. As of yet, there is no 

definitive method for quantifying the level of dispersion in the literature (Haslam and 

Raeymaeker, 2012). Usually TEM is used to scan through a thin slice of material where 

objects of differing densities create a contrast within the image which can allow individual 

CNTs or bundles to be observed. This technique is often used to qualitatively assess the 

dispersion level using subjective measures and broad terms.  
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There have been attempts at creating a reliable method for quantitatively assessing the 

nanotube dispersion; Bellayer et al. (2005) proposed using measuring the nearest 

neighbour distances to generate a dispersion index. However, this method is no longer 

applicable if agglomerates are still present. An alternative indexing method for assessing 

mildly dispersed nanotubes is particle size analysis, as proposed by Haslam and 

Raeymaekers (2013). They created a composite measure that considers agglomerate size 

and dispersion values measured from TEM images. These values are then averaged to 

create the composite index 𝑐𝑜𝑚𝑝𝑖𝑛𝑑𝑒𝑥  which varies between 0 for completely 

undispersed agglomerate to 1 for entirely dispersed discrete elements. This method is 

useful as it includes agglomerate size along with the level of exfoliation to quantify 

nanotube dispersion. This method is criticised by Pfeifer and Bandaru (2014) who 

comment that the concept of a maximum particle size is flawed along with the principle 

of setting a maximum dispersion level of 1. As of yet there is no widely accepted method 

for quantitatively assessing the dispersion of carbon nanotubes using TEM slices. 

 

The disadvantage of TEM analysis is that only a very small area is measured at any time 

and this may not be indicative of the true material. An additional is that TEM can only 

observe material that is electron transparent which requires extremely thin slices, the 

preparation of these slices can disrupt the composite and pull out individual nanotubes 

(Pyrz and Buttrey, 2008). To overcome some of the shortcomings of TEM other 

techniques have been used to measure the bulk dispersion. Villmow et al. (2008) uses 

transmission light microscopy to assess dried films of CNTs in poly(lactic acid) and create 

a dispersion index for different mixing times using a volume fraction relationship of 

species greater than an arbitrary size. The advantage of this technique is that it allows 

large areas to be observed in a given image but is only able to resolve and measure larger 
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agglomerations. This lack of resolution in light microscopes means that individual 

exfoliated nanotubes (the ideal dispersion state), with diameters in the range of tens of 

nanometres cannot be identified and may be overlooked (Haslam and Raeymaekers, 

2013). 

 

The transmission methods mentioned previously require the sample to be prepared into a 

solid film for observation and measurement. This is time consuming and not always 

suitable, as a result there has been work on quantifying the level of dispersion in a bulk 

liquid using dynamic light scattering (DLS) (Krause et al., 2010). Disadvantages of DLS 

are the assumption of spherical particle behaviour which does not ideally represent the 

high aspect ratio CNTs and a limit on the measurable viscosity range tolerated which 

makes it difficult to measure dispersions in polymer solutions. At present, there is no 

firmly accepted means of measuring the dispersion of CNTs in a medium; however, TEM 

analysis is the most widely utilised technique. 

6.1.4 Polycaprolactone-nanotube composites 
 

Polycaprolactone-carbon nanotube (PCL-CNT) composite fibres were produced as part 

of this work using centrifugal spinning. The combining of polycaprolactone with carbon 

nanotubes has been explored from various angles in the literature: Castro et al. (2009) 

created a PCL-CNT composite based gas vapour sensors in the form of a thin film and 

PCL-CNT structures have also been proposed as an improved bone scaffold by Mattioli-

Belmonte et al. (2012). Both these products were created by dissolution mixing but 

alternative compounding methods have been proposed. As PCL is thermoplastic there are 

examples of shear mixing the carbon nanotubes into the molten polymer (Bone et al., 

1999). There are limited reports of creating PCL-CNT composite fibres, the most recent 
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example produced fibres by electrospinning a PCL-CNT compound that was created the 

polymerisation process (Saeed et al, 2006). At present, there is scant or no information 

on using the centrifugal spinning technique to produce PCL-CNT nanocomposites fibres. 

The advantage of using centrifugal spinning is the potential to process higher viscosity 

materials compared to electrospinning as evidenced in Chapter 4. In addition, centrifugal 

spinning is not affected by the dielectric properties of the material, a variable in 

electrospinning, which is changed dramatically by the introduction of carbon nanotubes 

(Sarkar et al., 2010). The successful spinning of PCL-CNT fibres using centrifugal 

spinning demonstrates the versatility of the technique and created fibres for potential 

utilisation in high value applications. 

6.1.5 Polypropylene-nanotube composites 
 

It was demonstrated in Section 3.9 that the web strength of untreated and annealed 

polypropylene fibres produced via centrifugal spinning was poor. This lack of strength 

means that the unsupported PP fibres would be unsuitable for applications that demand 

modest strength and fibre cohesion. It has been shown that the addition of nanotubes to 

polypropylene (PP-CNT) can increase the modulus of both PP films and fibres (Andrews 

et al., 2002; Lee et al., 2008). However, this beneficial effect is not found in all the 

literature as it was reported by Andrews et al. (2002) that the addition of low loadings of 

nanotubes can reduce the tensile strength of a film. These findings were supported by 

results published by Moore et al. (2004) who found that adding nanotubes to high MFI 

polypropylene actually decreased the mechanical strength of the resulting fibres at any 

nanotube loading level tested compared to virgin PP.  
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PP-CNT composite fibres are produced through centrifugal spinning as part of this 

chapter to investigate the feasibility of such processing.  

6.1.6 Carbon nanotube orientation 
 

The effective mechanical loading and conduction along a one-directional element such as 

a fibre is facilitated by the orientation of carbon nanotubes along the fibre axis (Fischer 

et al., 2005). This anisotropic arrangement means that the mechanical loading 

performance of the nanotubes can be optimised in the directional of expected stress. 

Aligned carbon nanotubes have been observed to have a fivefold improvement in elastic 

modulus and ultimate tensile strength compared to randomly orientated material 

(Thostenson and Chou, 2002). 

 

Carbon nanotubes are more likely to form into an orientated configuration upon the 

application of shear forces and have been shown to align in extruded filaments (Kearns 

and Shambaugh, 2002). It would be of use to learn if carbon nanotubes orientate in the 

fibre axis direction during centrifugal spinning, where the fluid experiences very high 

shear rates during extension. As part of this work the nanotube orientation in PP-CNT 

composite fibres is compared to film cast products using polarised Raman microscopy. 

 

6.2 Summary 

 

Carbon nanotubes are materials with unique properties having exceptional electrical 

conductivity and mechanical performance. It is not conclusive as to whether the fibre and 

web strengths of nonwovens are increased via the addition of carbon nanotubes. 
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Nanotubes have been observed to make fibres conduct but the percolation threshold varies 

throughout the literature. Carbon nanotubes are difficult materials to work with, they are 

difficult to disperse and the high aspect ratio of nanotubes means that they are highly 

resistant to flow and will change the viscosity of a fluid they are added to. This change in 

flow behaviour means that the spinning of fibres becomes increasingly difficult as the 

nanotube loading is increased. It is proposed that centrifugal spinning is versatile enough 

to be able to produce fibres with a significant CNT loading. Production of 

nanocomposites using centrifugal spinning represents a development in the technique and 

there has only been limited work in this area thus far (O’Haire et al., 2014; Weng et al., 

2014a; Weng et al., 2014b).  

 

6.3 Experimental 

 

In order to build on work conducted in the previous chapters the creation of CNT 

composites using PP and PCL was investigated. The addition of CNTs even at small 

loadings could increase the strength of this material which may mean it could be used in 

more demanding applications or as a freestanding substrate. However, there is also the 

difficulty in dispersion of CNTs that must be addressed. The practical aims of this chapter 

were as follows: 

 

1. To create compounds of CNTs in polycaprolactone and polypropylene for 

subsequent processing via solution and melt centrifugal spinning, respectively; 

2. Assess the level of dispersion in both PCL and PP composite films using TEM 

and image analysis; 

3. To measure the effect of CNT addition on the solution and melt rheology; 
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4. To assess the impact of nanotube addition on fibre production; 

5. To characterise the fibres produced using microscopy to determine fibre 

morphology and typical fibre diameters; 

6. Assess the orientation of the carbon nanotubes using polarised Raman microscopy; 

7. To measure any changes in the web properties with regards to tensile strength and 

electrical conductivity. 

6.3.1 Materials 
 

Polypropylene of grade MF650Y, (melt flow index 1800 g 10 min-1) and Sigma Aldrich 

supplied polycaprolactone, Mw 80,000, with a melt flow index 1.9 g 10 min-1 (80 °C and 

0.3 MPa) were used in this section, These polymers were used previously used in Chapter 

3 and Chapter 4 respectively. The solvents used for polymer dissolution were decalin 

(99.9 %), chloroform, (>98 %) and methanol (>99.8 %), all supplied by Sigma Aldrich, 

UK. 

 

The carbon nanotubes used were multi-walled carbon nanotubes purchased from 

Southwest Nanotechnologies, USA under the product name Nanocyl N7000. These 

MWNTs had a reported average diameter of 5.5 nm; an average length of 1.5 µm and 

carbon purity in excess of 95 %. Typically MWNTs are more economical to use in pilot 

studies as they have diminished tensile and conduction properties but still display similar 

behaviour to SWNTs in terms of dispersion and impact on rheology. The Nanocyl 

MWNTs are delivered as a highly agglomerated dry powder as shown in Figure 6.5. 
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Figure 6.5: SEM micrographs of the Nanocyl N7000 untreated nanotubes showing dense 

bundles at medium and very high magnifications. Magnification X1000 (left) and X25000 

(right). 

 

6.3.2 Compound preparation 
 

The PCL-CNT compounds were solution spun and mixing and dispersion of the 

nanotubes was done using dissolution and sonication. In this preparation method the PCL 

was added to a 4:1 chloroform/methanol solvent that contained a prescribed amount of 

dispersed carbon nanotubes. The additives were added in such quantities that the final 

CNT concentration in the solid composite ranged from 0.25 to 3 % (w/w). The CNTs 

were added to a 4:1 v/v chloroform: methanol mixture; stirred for 30 minutes and 

subsequently treated in an Ultrawave U95 ultrasonic bath with a power of 35 W (range 

30-40 kHz) for 15 minutes. A brief preliminary study indicated that a PCL concentration 

of 10 - 12 % (w/v) would yield the best fibre forming properties once CNTs were added. 

Based on this information PCL-CNT composites with polymer concentrations of 10 % 

and 12 % (w/v) were created with nanotube loadings ranging between 0.25 and 4 % w/w. 

Polymer dissolution and mixing occurred at room temperature (RT) over a period 

exceeding 4 hours and was aided by a magnetic follower. The PCL-CNT compound 

solution was then subjected to a further 30 minutes in the ultrasonic bath with water at 
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RT. The solutions were then taken directly to analysis or fibre production with no further 

treatment.  

 

The PP-CNT compounds were prepared by a dissolution-evaporation procedure 

identified as being more effective at dispersing carbon nanotubes (O’Haire et al., 2014). 

By compounding using a solvent the liquid solution can then be subjected to ultrasonic 

treatment to aid dispersion of the carbon nanotubes. This procedure was used to make 

compounds of 0.25, 0.5, 1, 2, 3 and 4 % CNT loading using Nanocyl N7000 nanotubes. 

The relevant weight of CNTs was added to 30 mL of decalin and stirred using a magnetic 

follower for 30 minutes. The suspension was then sonicated for 15 minutes in a room 

temperature Ultrawave U95 35 W ultrasonic bath. MF650Y grade polypropylene was 

then added to create a solution with a polymer concentration 6.67 % weight to volume. 

Dissolution was aided by a magnetic follower and by heating the solution to 90 °C using 

a hotplate. The polymer solution was left stirring for 3 hours to ensure dissolution of the 

polypropylene. Further sonication then occurred for 30 minutes in Ultrawave U95 35 W 

ultrasonic bath heated to 90 °C. Following sonication the solution was allowed to cool to 

70 °C and then poured on to glass plates where the compounds formed a gel which was 

then set aside for a minimum of 3 days at RT for decalin evaporation. The dried material 

was then placed overnight in a vacuum oven at 90 °C. The PP-CNT residue was a light 

grey material which was highly porous and very brittle. This material was then collected 

by scratching it off the surface of the watch glass. The dried powder was then pressed 

into a disc using a hot press at 200 °C with 4 bar of pressure. The dried powder and hot 

pressed samples are shown in Figure 6.6. 
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Figure 6.6: Cast and dried polypropylene-CNT powder (left) before conversion into 

composite form (right). 

 

6.3.3 TEM imaging 
 

Transmission electron microscopy was used to establish the level of dispersion on a 

microscopic scale. Fibre cross sections were assessed for nanotube orientation and 

dispersion by embedding in epoxy resin before slicing using a Reichert-Jung Ultra-

microtome. The fibres were embedded and sliced in such a way that it was likely to be 

able to image a fibre cross section. For fibres that were found to be unsuitable for ultra-

microtome slicing an image was instead taken from solidified film constructed of the 

same material of the compound. The slices were then placed on to a copper TEM grid 

plate and analysed using a Phillips CM2000 FEGTEM. The images were collected in a 

bright field configuration and an accelerating voltage of 100 kV was used. 

6.3.4 Viscosity measurement 
 

The viscosity of PCL-nanotube solutions in 4:1 CM were assessed using rotational 

viscometry as previously used on homogenous polycaprolactone solutions in Chapter 4. 

As before, viscosity measurements were made using of a Brookfield LV viscometer. 

Prepared solutions of 10 and 12 % PCL with a range of nanotubes dispersed within were 

added to the small sample adapter supplied by the manufacturer; this has a nominal 
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internal volume of ~10 cm3. A syringe was used to dispense 9.4 cm3 of polymer solution 

into the container and required spindle (34) was then placed into the solution. The spindle 

is then rotated at 60 rpm for all the samples. At each condition, 3 measurements were 

taken from a single solution. 

 

The melt rheology of PP-CNT compounds were assessed using capillary rheometry. The 

samples assessed were PP-CNT compounds with nanotube loadings of 0, 0.5, 1 and 2 % 

nanotube loadings prepared using the dissolution step outlined previous. Small volumes 

of PP-CNT (~4 g) were loaded into a Bohlin Instruments (UK) RH2000 capillary 

rheometer fitted with a 1 x 16 mm capillary die. The polymer compound was heated to a 

temperature of 210 °C and extruded at shear rates of 1504 s-1 and 2510 s-1. The shear 

stress was calculated using a pressure sensor above the die and the shear viscosity of the 

samples calculated from the shear stress and shear rate as per Equation 2.1. 

6.3.5 Conductivity 
 

The conductivity of both the fibres and bulk material was assessed by measuring the 

internal resistance. For PCL-CNT the films were prepared by pouring ~ 0.5 cm3 of 

polymer solution into an open mould 15 mm x 50 mm x 2 mm which was then allowed 

to solidify through evaporation. The films were solidified in such a way that two pieces 

of 1 mm diameter bare copper wire was encased within the film at a set distance of 30 

mm. The PP composite films were prepared using thermoplastic processing. The copper 

wire was then used to provide a connection interface across the cross section of the film 

from which the bulk conductivity can be calculated.  
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Figure 6.7: Set-up of composite film and copper contacts 

 

The PP-CNT powders prepared previously were hot pressed to form disks ~ 0.3 mm in 

diameter. These disks were then cut into shapes 15 mm x 50 mm using laser cutting. 

Heated copper wires were then pressed into the films to create connection points.  

 

For measuring the conductivity of the fibres a similar technique was used. The fibres were 

arranged into a flat tape 15 mm in width. Copper contacts were pressed into the surface 

of the web using an insulated laboratory vice. The resistance across a set distance was 

then measured. 

 

The samples were dried at 30 °C in a vacuum oven for 24 hours to remove any residual 

solvent and normalise the level of moisture in the samples. A Velleman DVM 1200 high 

impedance digital multimeter was connected to the copper wires to measure the resistance.  

 

Bulk conductivity was then calculated from the measured resistance by using the 

following equation: 

 
𝛷 =

𝑙

𝑅𝛺𝐴
 

Equation 6.1 
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Where 𝛷 is the conductivity in Siemens per metre (S m-1), 𝑙 is the length of the conductor 

in metres; 𝑅𝛺 is the resistance in ohms and A is the cross sectional area in m2. As the 

resistance measured is dependent on the length and the area of the film these parameters 

will be measured and controlled prior to conductivity calculations. 

6.3.6 Centrifugal spinning 
 

Attempts were made to convert PCL-CNT and PP-CNT composite material into fibres 

using solution and melt centrifugal spinning, respectively.  

 

For solution spinning the PCL-CNT composite material ~2 cm3 of solution was injected 

into the double headed spinneret chamber. The spinneret was then fitted with ½ inch 30G 

(ø = 159 µm) or 27G (ø = 210 µm) needles and then mounted into the fitting and spun at 

9,000 rpm for 1 minute. As in Chapter 5, the fibres were collected using the radial posts 

at a distance of 115 mm.  

 

The melt centrifugal spinning of PP-CNT composite material was done by adding 100 

mg of the compound material into the high MFI and low MFI spinnerets. The polymer 

was then heated to a temperature of 210 ºC. Fibres were produced at a spinneret rotation 

speed of 14,000 rpm with a total spinning time of 40 seconds. The fibres were collected 

as a web on the radial posts at a spinning distance of 115 mm.  

6.3.7 Fibre analysis 

6.3.7.1 Scanning electron microscopy imaging 

In addition to TEM image analysis the fibre morphology investigation and diameter 

measurement at each processing condition was facilitated using scanning electron 
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microscopy. As in previous chapters SEM will be the primary tool in analysing the fibre 

diameter and morphology. The fibre sampling and measurement procedure will follow 

the method listed previously in Section 2.4.2. Where possible, the method detailed on 67 

was possible. However, due to practical considerations the prescribed number of fibres 

could not be measured in all the samples. However, a minimum of 80 fibre diameters 

measured per sample was always exceeded in order to determine average fibre diameter. 

6.3.7.2 Raman microscopy 

Polarised Raman microscopy was used to measure the alignment of the nanotubes within 

the centrifugal spun PCL and PP based composite fibres. Raman microscopy is a 

molecule analysis technique which relies on the anti-Stokes Raman scattering of radiation 

when atoms are hit with incident photons of set frequency. These scattered photons will 

have an energy shift that depends on the type of bond structure triggers the inelastic 

scattering interaction. 

 

Polarised Raman microscopy was performed at Intertek, UK, using a Horiba LabRAM 

HR confocal Raman microscope with 633 nm laser excitation; a 400 µm confocal 

aperture; 150 µm entrance slit; a 300 gr mm-1 grating and a TE-cooled CCD detector. The 

spectral scan was centred on 1500 cm-1 creating a scanning range of 2300 to 400 cm-1. 

 

The laser was polarised by inserting a half wavelength splitter grating between the laser 

source and the sample; this allows the fibre to be exposed to radiation whose wavelength 

was polarised in either the Z direction or the X direction. By placing a similar grating 

before the detector, the reactive Raman signal was also polarised in the Z or X directions. 

This experiment used both grating systems thus creating the ZZ and XX polarisation 

conditions. 
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PCL and PP fibres with carbon nanotubes were prepared for examination using Raman 

microscopy. Fibres from both polymers containing 0.5 % and 2 % MWNTs were selected 

for measurement. These were produced using the low MFI spinneret with a polymer 

temperature of 210 °C and a rotational speed of 14,000 rpm. In addition, cast films of PP 

and PCL with the same nanotube loadings were also analysed to demonstrate unaligned 

MWNT systems. A PP + 2 % extrudate produced using the capillary rheometer equipped 

with a 1 mm x 16 mm die and using an extrusion speed of 25 mm min-1 with a die 

temperature of 210 °C. Homogenous PP fibres produced through centrifugal spinning 

with the low MFI spinneret at 210 °C and 14,000 rpm was also analysed to detect the PP 

specific peaks.  

 

The films and extrudate were stable enough in the laser to not require fixing in place. 

However, the fibres demonstrated a high amount of drift under the laser beam and were 

held in place using a Raman invisible glass coverslip. A 100X, metallurgical 

objective was used to analyse the extruded and film samples. A 100X Glycerol immersion 

objective was used to analyse the fibres beneath the coverslip. The beam was then 

focussed on an appropriately orientated fibre using a 1 μm spot size as shown in Figure 

6.8. 
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Figure 6.8: Raman spot size and focussing on a PP-CNT fibre with 0.5 % CNT content 

 

A spot size of 1 µm allows for individual fibres to be irradiated and Raman scattering 

observed. The samples were observed for 2 cycles with a scan time of 30 or 120 seconds 

depending on the stability of the sample. Measurements were made in the ZZ polarity 

followed by the XX polarity. A repeat measurement was made in the ZZ direction, a 

notable change in the intensity of the spectra indicated that the sample had moved and the 

test series was discarded.  

6.3.7.3 Tensile testing 

The mechanical behaviour of the 14 % PCL and 12 % + 0.5 % PCL-CNT compounds 

were analysed for tensile behaviour using a Zwick Z010 testing machine. The webs were 

condensed into a strip and cut into lengths 125 mm long and weighed before testing. The 

testing parameters were a 100 mm min-1 crosshead speed using an initial 75 mm gauge 

length with the force measured using a 200 N load cell. The results were then normalised 

for sample weight and a conversion was made from Newtons (N) to a measure for web 

tenacity (cN tex-1). Centrifugal spun webs of minimum linear density of 200 mg m-1 with 
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no obvious weak points were selected for tensile testing. A total of 5 webs from each rope 

were assessed from 3 webs at a given condition.  

 

6.4 Results and discussion 

6.4.1 Carbon nanotube dispersions 
 

Carbon nanotube composites were successfully produced from both PCL and PP with 

CNT loadings as high as 4 %. TEM imaging was then used to produce images detailing 

compounds with CNT loadings as high as 1 %. Compounds of both polymers were 

observed to be too brittle for ultra-microtoming when the CNT content was increased to 

2 % and beyond.  

6.4.1.1 TEM of PCL-CNT  

With the PCL-CNT compounds it was not possible to create TEM images of the fibre 

form due to fibre-matrix delamination during slicing which resulted in resin slices that 

did not contain any fibres. This can be seen in Figure 6.9. 

 

Figure 6.9: 12 % PCL- 0.5 % CNT microtome slices with voids in the place of fibres. 
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As a result the dispersion of CNTs within PCL fibres could not be characterised in this 

work. Alternative methods such as dynamic light scattering and cross-sectional SEM 

generated unsatisfactory results in preliminary testing. 

6.4.1.2 TEM of PP-CNT  

The PP-CNT fibres could be successfully sliced and imaged when embedded in epoxy. 

However, there was some distortion of the fibre due to the cutting action. This is seen in 

the left hand image in Figure 6.10. 

 

Figure 6.10: CNTs dispersed in centrifugal spun polypropylene fibre with 0.5 % CNTs 

(PP-CNT) 

 

Figure 6.10 is a compound image showing increasing magnifications of the PP-CNT fibre 

cross section. This image shows the slight difference in contrast between polypropylene 

and carbon nanotube which emphasises the need for subsequent image processing. Figure 

6.10 demonstrates that agglomerated nanotubes exist alongside individual nanotubes 

within the PP-CNT fibres. The exfoliation of individual tubes is also shown in Figure 

6.11 
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Figure 6.11: TEM micrograph showing individual nanotubes in left: PP-CNT (0.25 %) 

fibres and right; PP-CNT (0.5 %) fibres. 

 

The TEM slices shown in Figure 6.11 also show how it is difficult to distinguish between 

agglomerates and sets of overlapping nanotubes. The nanotube bundles shown in this 

image are linked but are not as tightly packed as other agglomerates. For example a dense 

bundle is shown in Figure 6.12 

 

 

Figure 6.12: Densely packed agglomerate in PP-CNT (0.5 %) fibres. 

 

This figure, along with those preceding it, show that the presence poorly dispersed 

agglomerates does not prevent PP-CNT from forming fibres. However, agglomerates and 
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stacked bundles as seen in Figure 6.12 are unlikely to impart advantageous properties to 

the material due to poor interfacial properties with the matrix.  

 

It was also observed that large bundles and fibres were distributed randomly within the 

fibres with no visible degree of order. Figure 6.13 shows that a fibre boundary at an 

appropriate magnification and shows that the nanotubes do not accumulate in any 

particular region. 

 

 

Figure 6.13: TEM image of PP-CNTs fibres with a 0.5 % loading. 

 

This is expected as the physical attributes of nanotubes make them unlikely to migrate 

within highly viscous polymer solutions; the high aspect ratio of CNTs mean they 

entangle with each other and the polymer chains restricting movement locally during 

spinning. This agrees with observations reported by Dror et al. (2003) who also found 

that the distribution throughout the cross section of a fibre was random. However, more 

research needs to be done to discount any relationships as area as there is only limited 

published work available that looks at nanotube distribution within the cross section.  

 

Fibre/epoxy boundary 

Fibre core 
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The TEM images presented here show that even after dissolution and sonication there 

remains a significant number of carbon nanotube agglomerates. These agglomerates limit 

the number of nanotubes that are free to act within the polymers to conduct or to reinforce.  

6.4.2 Viscosity and rheology measurements 
 

The PCL-CNT solutions were assessed using dynamic rotational viscosity measurements 

to confirm the nanotubes effect on solution rheology. This is an extension of the viscosity 

work performed previously. The results are listed in Table 6.1 and are drawn in a graph 

shown in Figure 6.14. 

 

Table 6.1: Apparent rotational viscosity of 10 and 12 % PCL in 4:1 chloroform/methanol 

with differing dry weight loading of carbon nanotubes. 

PCL content 

(% w/v) 

CNT loading 

(% w/w) 

Mean viscosity 

(cP) 

10 0 440 

10 0.25 508 

10 1 571 

10 1.5 640 

10 2 662 

10 3 820 

10 4 977 

12 0 918 

12 0.25 979 

12 0.5 1017 

12 1 1108 

12 1.5 1201 

12 3 1280 
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Figure 6.14: Mean viscosity of PCL-CNT solutions in 4:1 chloroform/methanol with 

nanotube loading. 

 

Table 6.1 and Figure 6.14 show that as the content of CNT increases the viscosity of the 

fluid also increases. At a 10 % PCL concentration, the addition of 4 % CNT to the dry 

mass increases the viscosity by more than 100 %. The rigid nanotubes and agglomerates 

act as anchor points, restricting the movement of the PCL chains requiring a higher shear 

stress to achieve the same level of flow. Similar results were also observed for the melt 

processed compounds. The capillary rheometer measurements of the PP-CNT composites 

are shown below in Table 6.2.  

 

Table 6.2: Apparent melt viscosity of PP-CNT composites. 

CNT addition 

(w/w) 

Temperature 

(°C) 

Shear rate  

(s-1) 

Shear viscosity  

(Pa s-1) 

0 % 200 1504 10.2 

0 % 200 2105 8.46 

0.5 % 200 1504 12.2 

0.5 % 200 2105 9.15 

1 % 200 1504 n/a 

1 % 200 2105 n/a 

2 % 200 1504 n/a 

2 % 200 2105 n/a 
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Table 6.2 shows that with a nanotube content of 0.5 % the melt rheology increased to 

12.2 Pa S-1 from 10.2 Pa S-1 at a shear rate of 1504 s-1. Measurements could not be 

obtained at CNT concentrations of 1 % and greater. The pressure readings were highly 

variable and an acceptable equilibrium state could not be achieved at either shear rate. 

The variable pressure readings with high CNT loading are thought to be caused by melt 

instabilities (Palza et al., 2010). It is proposed that the addition of high numbers of carbon 

nanotubes increase the magnitude of these instabilities for a given shear rate (Lin-Gibson 

et al., 2004, Kharchenko et al., 2004).  

 

The PP-CNT viscosity results presented in Table 6.2, along with the solution viscosity 

changes for PCL-CNT solutions, Table 6.1, page 266, agree with the consensus of 

research conducted on compound viscosity behaviour. For example, Bangarusampath 

(2009) documented a similar relationship when nanotubes were added to a poly(ether-

ether ketone) solution and the PP-CNT data agrees with the work conducted by Seo and 

Park (2004) who noted a viscosity increase when nanotubes were added. The viscosity 

increases as the nanotubes acts as a rigid rod within the polymer solution. These rigid 

rods are not capable of bending and so to move one part of the nanotube requires the 

disturbance of all neighbouring elements along the tube. The tubes can be said to act to 

restrict the movement of the neighbouring polymer chains: increasing the number chains 

linearly increases the number of potential sticking points.  

6.4.3 Conductivity 
 

The conductivity of the fibres could not be measured as the resistance was beyond the 

working range of the bench top ohmmeter. This high web resistance may be due to the 
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fibres forming a network that was insufficiently unconnected for linear conduction or 

issues relating to high contact resistance between fibres or between the web and the 

contact point (Zhang and Rutledge, 2012).  

 

The bulk conductivity of films made from both polymers was measurable. The 

conductivity of a material was calculated from the measured resistance using the equation 

given on page 257. The results of the conductivity measurements are presented in Figure 

6.15. 
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Figure 6.15: Conductivity of 10 % PCL-CNT films (left) and PP-CNT films (right) with 

CNT loading. 

 

Figure 6.15 indicates that there was a significant change in the level of conductivity with 

the bulk materials transitioning from insulating to conductive at a mass fraction in excess 

of 2 % for both polymer types. The conductivity of PCL-CNTs was measured to be over 

0.25 S m-1 with a 3 % nanotube loading and the conductivity of PP-CNTs also jumped 

significantly to 0.18 S m-1 at the same level of nanotube loading.  
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The point at which a material is sufficiently loaded with a filler to induce conduction is 

known as the percolation threshold. Below the percolation threshold the nanotubes are 

not present in sufficient quantities to produce an overlapping network for electron travel 

and conductivity of the PCL-CNT and PP-CNT films was in the order of 10-5 S m-1. 

 

The CNT percolation threshold measured here exceeds the values reported by Bauhofer 

and Kovacs (2009) and Seo and Park (2004) who looked at bulk conductivity of PCL 

(threshold ~1.5 %) and PP (threshold 1 - 2 %), respectively. However, there are various 

factors that can affect the percolation threshold such as nanotube quality, dispersion 

method and sample preparation. Loading requirements in excess of 3 % have been 

measured by others when using polypropylene (threshold ~4 %) have been observed 

elsewhere (Zhao et al., 2013). 

6.4.4 PCL-CNT fibres 
 

Fibres were successfully produced from PCL-CNT composite materials using centrifugal 

spinning. Fibres were created using a range of polymer concentrations and nanotube 

loadings. Table 6.3 details the results of spinning trails conducted on PCL-CNT materials. 
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Table 6.3: Results of spinning trials on 10 - 16 % PCL with CNT loadings between 0 

and 4 % dry weight. 

 PCL concentration (w/v) 

CNT loading 

(w/w) 
10 % 12 % 14 % 16 % 

0 % x    

0.25 %    o 

0.5 %    o 

1 %   o x 

2 % o o o x 

3 % o x x x 

4 % o x x x 

x- no fibres were produced 

o- poor quality webs produced 

-fibres formed  

 

Adding carbon nanotubes to the solution modified the base concentration range of PCL 

that could be formed into fibres using the prescribed spinning conditions. Spinning fibres 

of PCL and CNTs required a lower polymer concentration to be used than homogenous 

PCL. When there were no carbon nanotubes added spinning could be performed from 

solutions with concentrations as high as 16 % and with low nanotube addition (0.25 %) 

it was still possible to spin a web, albeit of unsatisfactory yield, with a very low volume 

of fibrous material actually produced. However, with increasing loading of carbon 

nanotubes this became increasingly difficult and successful fibre production with 0.5 and 

1 % loading required a reduction in base solution concentration to as low as 10 and 12 % 

PCL. This is attributed to increasing solution viscosity as the nanotubes are added to the 

solution. It has been noted that on occasion, the spinneret was not exhausted of solution 

when spinning the higher nanotube loadings. One theory is that the higher viscosity meant 

that the internal frictional resistance was increased and the solution would not flow down 

the needle in such a way that steady state fibre production was achieved. However, given 

that higher viscosity solutions were successfully spun in PCL solutions, Chapter 4, it is 

more likely that blockages are perhaps caused by larger, undispersed agglomerates 

blocking the needle. It has been reported previously that PCL could not be electrospun 
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with high concentrations (≤2 %) of carbon nanotubes; the authors suggested that the 

carbon nanotubes increase the shear viscosity which changes the elongational behaviour 

of the fluid (Saeed et al., 2006). Just as the addition of nanotubes makes solid composites 

more brittle it will also affect fluids in the same way, making them less likely to from 

fibres and more likely to breakup during spinning. 

6.4.4.1 Fibre morphology and diameters 

In terms of fibre morphology the PCL-CNT composites displayed comparable texture to 

the PCL fibres produced from chloroform/methanol in Chapter 4. The PCL-CNT fibres 

produced here were also spun from 4:1 chloroform/methanol and so the surface pitting is 

present as shown in Figure 6.16 and Figure 6.17. This indicates that the presence of 

nanotubes has little effect on the evaporation behaviour of the solvent and the dry skin 

model proposed is still valid for PCL-CNT fibre spinning. Figure 6.16 also shows the 

high level of variability in the fibres with diameters as fine as 300 nm observed in the 

same web as fibres > 15 μm. 

 

Figure 6.16: 10 % PCL with 0. 5 % CNTs spun from chloroform/methanol at 9,000 rpm. 
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Figure 6.17: 12 % PCL with 1 % CNTs spun from chloroform/methanol at 9,000 rpm. 

 

 

This variability shown here is typical of all the webs produced from PCL-CNTs. The 

variation was also seen in the high standard deviations found from the fibre 

measurements, Table 6.4. 

 

Table 6.4: Mean diameter and standard deviation of PCL-CNT fibres produced through 

centrifugal spinning at 9,000 rpm. 

Nanotube 

loading (w/w) 
  

PCL concentration (w/v) 

10 % 12 % 

 Mean (µm) SD (µm) Mean (µm) SD (µm) 

0 % N/A N/A 1.04 0.86 

0.25 % 1.08 0.66 2.22 2.48 

0.5 % 1.52 1.25 1.37 1.71 

1 % 1.32 1.20 1.52 1.22 

 

Comparisons can be made between the homogenous PCL fibres and PCL-CNTs fibres 

where both are produced from a base concentration of 12 %. Without CNTs the mean 

PCL fibre diameter was 1.04 µm. This was significantly less than the PCL-CNT fibres 

produced from the same base polymer concentration with CNT loadings of 0.25 % and 1 
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%. However, there was no statistical significance measured between the 0 % and 0.5 % 

CNT loading conditions in the PCL fibres. The ANOVA statistics were p < 0.05, F (12.98) 

> Fcrit (3.93) for 0.25 % CNT addition; p > 0.05, F (2.34) < Fcrit (3.90) for 0.5 % CNT 

addition; and p < 0.05, F (7.35) > Fcrit (3.90) for 1 % CNT addition. This varying 

statistical significance is attributed to the very high variance (> 100 %) of the PCL-CNT 

fibres due to the presence of relatively large fibres. This increased within group variance, 

making it less likely that significance is found. No data was available for a 10 % PCL 

concentration with 0 % CNT loading so no additional comparisons could be drawn. The 

measurements confirm the observation made earlier that there was a large level of 

variability within the samples. The mean fibre diameters and 95 % confidence intervals 

data are plotted in a chart in shown in Figure 6.18. 
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Figure 6.18: Mean diameters and 95 % confidence intervals of PCL-CNT composites 

depending on nanotube loading. At PCL concentration of 10 % () and 12 % (). 
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This chart shows that there was no obvious relationship between nanotube loading and 

fibre diameter. However, the high variability of PCL-CNTs suggest that more data should 

be collected in order to establish the true relationship. 

6.4.4.2 Bead formation 

The nanotubes increase the rate of jet breakage and high loadings reduce the jet into beads. 

This change in fluid stability is also evident at lower CNT loadings as shown by the 

formation of beads and slugs within the filaments as shown in Figure 6.19. 

 

  

Figure 6.19: Beads on string fibres centrifugal spun from, left, 10 % PCL w/v with 0.5 % 

CNTs rand right, 12 % PCL w/v with 0.5 % CNTs, both from 4:1 CM. 

 

The beads-on-string fibres are created by the change in surface tension-viscosity balance 

with nanotube addition. The nanotubes change the elongational flow behaviour which 

results in non-uniform elongation and an increase in Plateau-Rayleigh instabilities. The 

addition of nanotubes is known to change the elastic behaviour of a fluid (Erik and Tsu-

Wei, 2003). This intensifies the size of the Rayleigh instabilities compared to the 

unmodified PCL polymer; this leads to an increase in perturbation size. At low CNT 

loadings this manifests itself as a bead-on-string. This interaction on the jet is drawn in 

Figure 6.20: 
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Figure 6.20: The formation of beaded fibres  

 

 

In Figure 6.20, jet a) is a newly formed jet that is undergoing elongation through inertial 

and aerodynamic forces. Due to an imbalance between viscosity and surface tension the 

elongation is not distributed evenly and a narrow neck forms between two regions of 

material mass, b). Surface tension causes the polymer material to contract and form a 

stretched droplet. Solvent evaporates and a beaded fibre is formed, c). 

 

An alternative explanation is proposed by Jeong et al. (2007) who propose that beads are 

formed around nanotube agglomerations. However, this seems unlikely as the largest 

nanotube bundle observed in TEM was 0.2 μm in diameter whereas the beads were 

observed to be in excess of 50 μm in diameter which would imply that a small flaw would 

generate a bead many magnitudes in size. This is possible through nucleation, however, 

as beads and beads-on-string have been observed before in CNT free PCL fibres then it 

can be said that the elements observed in this web are more likely due to rheological 

changes resulting from the presence of nanotubes rather than specific agglomerates acting 

as nucleation points for beads (Zhang et al., 2005). 
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At higher nanotube loading the level of spraying increased as evidenced by spraying on 

the surface of the collector bars, as shown in Figure 6.21: 

 

Figure 6.21: 10 % PCL with 2 % CNT loading showing high level of spraying alongside 

fibre production 

 

The increased number of beads produced during spinning indicates that polymer was able 

to travel through the needles but the fluid jet was breaking up before solidification could 

occur. With high nanotube loading the viscosity increased and the solution elasticity 

decreased (Pilehrood et al., 2012). With a decrease in solution elasticity, the surface 

tension acts to break up the jet into beads increasing the rate of bead occurrence. A high 

rate of bead formation is undesirable as it leads to a less cohesive web and less directional 

strength per weight. 

 

The results collected here have shown PCL-CNT fibres are coarser and more varied than 

PCL fibres produced under the same conditions with more bead-on-string structures due 

to increased Rayleigh instabilities. The higher mean fibre diameters are due to the higher 

fluid viscosities of the PCL-CNT that cause further resistance to elongation. However, as 

sub-micron fibres were still observed, the primary reason for coarser fibre diameters in 

the webs was the increased presence of thick fibre regions as the nanotubes increase flow 

instabilities resulting in non-uniform elongation.  
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6.4.5 PP-CNT fibres 
 

Fibres were successfully produced from PP-CNT composite materials using melt 

centrifugal spinning. However, could not be produced under all spinning conditions used. 

Fibre and web production was only satisfactory when processing compounds with lower 

nanotube loadings. The results of the spinning trials are shown in Table 6.5. 

 

Table 6.5: Result of spinning trials for PP-CNT composites conducted at 14,000 rpm and 

210 °C. 

CNT loading 

w/w 

Fibre production by spinneret 

High MFI              Low MFI 

0 %   

0.25 %   

0.5 %   

1 %   

2 % /o o 

3 % x s 

4 % x s 

x- no fibres were made 

o- poor web quality 

s- spraying of polymer 

-fibres formed 

 

Under the prescribed conditions the spinning of fibres from PP-CNTs only occurred at 

nanotube loadings of 1 % and lower. This was due to the carbon nanotubes changing the 

spinning behaviour of polypropylene. When the nanotube loading was increased to 2 % 

and upwards isolated fibres were observed but consistent web formation could not be 

achieved using the fine spinneret. An example of sparse unsatisfactory fibre production 

when processing compounds containing high nanotube loading is shown in Figure 6.22. 
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Figure 6.22: Isolated fibres produced when spinning 2 % PP-CNT using the fine spinneret 

 

The creation of isolated fibres showed that whilst the conditions were available for fibre 

formation the likelihood of jet breakup increased with higher levels of nanotubes that 

inhibit web formation. This jet breakup hypothesis is backed up by evidence of shot and 

polymer beads observed on the spinneret wall. At loadings of 3 % and upwards most of 

the compound remained in the spinneret and was unable to pass through the capillary 

during spinning and, as with the PCL-CNT solutions the higher viscosity means that the 

internal frictional resistance is increased and the solution will not flow down the needle 

in such a way that steady state fibre production is achieved. However, given that higher 

viscosity solutions were successfully spun in Chapter 4, it is increasingly likely that 

blockages were caused by larger, undispersed agglomerates creating local regions of high 

viscosity, thereby blocking the needle or orifice. An alternative theory is that the carbon 

nanotubes increase the shear viscosity and elongational behaviour of the fluid. Just as the 

addition of nanotubes makes solid composites more brittle it also acts to reduce the 

elasticity of fluids (Boronat et al., 2012; Coleman et al., 2006 and Spitalsky et al., 2010). 

Whereas the polymer concentration of PCL can be reduced to accommodate for nanotube 
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addition, the viscosity of molten polypropylene cannot be so easily reduced which 

restricts the tolerance of fibre processing to nanotube addition.  

6.4.5.1 Fibre morphology 

Typical SEM images taken of the PP-CNT fibres are shown in Figure 6.23 to Figure 6.25. 

Each web is shown at low and high magnification to show the general web form. Fibre 

diameter measurements were taken from a set of high magnification images at each 

processing condition.  

 

  

Figure 6.23: SEM micrographs of PP + 0.25 % CNT fibres spun using the fine 

spinneret. Magnification X100 (left) and X1000 (right). 

 

  

Figure 6.24: SEM micrographs of PP + 0.5 % CNT fibres spun using the coarse 

spinneret at 14,000 rpm. Magnification X100 (left) and X1000 (right). 
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Figure 6.25: SEM micrographs of PP + 2 % CNT spun using the coarse spinneret at 

14,000 rpm. Magnification X100 (left) and X1000 (right). 

 

The images reveal that there was a marked increase in beading compared to the 

homogenous PP fibres produced in Chapter 3. The fibres were also highly variable with 

a high proportion of coarse fibres. The diameter of the fibres varied significantly in a short 

distance along the filament length compared to homogenous PP fibres. Both these 

observations were particularly true for the webs created at 2 % CNT loading, as shown in 

Figure 6.25. It is possible that some of these “slugs” present in the fibre are formed by 

the same process as beads-on-string fibres in PCL-CNT composites fibres discussed 

previously. The high viscosity of PP-CNT composites limit the surface tension 

contraction, resulting in thick regions within the fibre between which necking occurs. 

 

 Aside from the formation of the aforementioned “slugs”, the surface of the PP-CNT 

fibres spun using centrifugal spinning were largely smooth and featureless displaying 

morphologies typical of melt spun PP fibres. However, unique fibres, with an unusual 

form and morphology, were observed. These artefacts are shown in Figure 6.26.  
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Figure 6.26: SEM micrographs showing crimped and textured fibres in (left) 0.25 % and 

(right) 0.5 % PP-CNT fibres, both spun using the fine spinneret. 

 

These unique fibres were relatively fine but had an irregular shape and occupied a highly 

irregular conformation such as spirals and tight coils. It was first hypothesised that these 

features were caused by Rayleigh instabilities. However, further research suggests these 

elements are more likely to be formed by melt flow instabilities. The common types of 

instability found in melt extrusion are sharkskin, melt fracture and spurt instabilities 

which all create surface texture (Sandler et al., 2004). These are instabilities experienced 

when a melt, such as polypropylene, undergoes high shear and extensional deformation 

as it passes through the orifice. Of the three instabilities mentioned previously the features 

observed are more likely to be spurt instabilities, also known as helical instabilities 

(Agassant et al., 2006). Spurt instabilities create a periodic fault on the polymer jet as the 

fluid slips in the spinneret. This periodic fault is then converted into the segmented 

structures seen by elongation. The SEM micrograph in Figure 6.27 shows an artefact that 

is proposed to be an unelongated filament that displayed signs of extrusion instability.  
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Figure 6.27: SEM micrograph illustrating the effect of coarse spurt instability and the 

associated unelongated form of helical, segmented elements. Both images observed in PP 

+ 0.5 % CNT samples spun from the coarse spinneret. 

 

It has been shown by Palza et al. (2010) that the addition of CNTs increases the likelihood 

of spurt instabilities by reducing the critical shear rate at which slippage occurs. Thus, the 

introduction of CNTs alters the shear and elongational behaviour of the fluid creating 

perturbations at the orifice resulting in surface roughness and texture. Through elongation 

the surface ridges are separated and the frequency of these features per unit length 

decreases. It is thought that the instabilities cause the coiling of a filament as the features 

may be asymmetric and as the filament extends the instability may unbalance the jet and 

cause crimping and coiling (Lin-Gibson et al., 2004). These features are few in number 

and are not as disruptive to web cohesion as beads and shot but they are an interesting 

phenomenon that have not previously been observed in the literature pertaining to 

centrifugal spinning.  

6.4.5.2 Fibre diameters 

Analysis of the fibre diameter, measured from the SEM micrographs, indicated that the 

PP-CNT fibres were also highly variable. Descriptive statistics of the fibre measurements 

obtained from SEM images are shown in Table 6.6. 

Elongation 
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Table 6.6: Statistical analysis of PP-CNT fibres produced using centrifugal spinning 

when using the fine spinneret, rotating at 14,000 rpm. 

Compound 

Mean fibre 

diameter 

(µm) 

SD 

(µm) 
Proportion of 

fibres <1 µm (%) 

Proportion of 

fibres  >5 μm (%) 

Homogenous PP 0.65 0.22 91.19 0 

PP + 0.25 % 1.37 1.26 50.7 3.90 

PP + 0.5 % 1.27 1.90 66.2 3.18 

PP + 1 % 2.2 2.0 22.1 33.4 

PP + 2 % 5.04 5.22 9.3 38.3 

 

 

Table 6.6 shows that as the percentage of CNTs is increased in the PP fibres there is a 

shift towards coarser fibres: with a nanotube loading of zero the proportion of sub-micron 

fibres was over 90 %. With the addition of 0.25 % of dry weight in carbon nanotubes this 

proportion fell to 50 % and the number of coarse fibres began to increase. From this it 

can be said that PP-CNT compounds can be spun into fine fibres, however, the process is 

highly variable and the number of flaws, in the form of “slugs” and thick regions 

increases. At high nanotube concentrations the proportion of fibres measured to be greater 

than 5 μm in diameter increased to over one third. The presence of coarser fibres alters 

the mean diameter of the web. Figure 6.28 shows the mean fibre diameters for PP-CNT 

fibres based on nanotube loading. 
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Figure 6.28: Mean diameter and 95 % confidence intervals for PP-CNT fibres based on 

nanotube loading. 

 

Figure 6.28 shows that there is an increase in average fibre diameter as the filler content 

of CNTs is increased. Assessment of the SEM micrographs and subsequent measurements 

suggests that this increase in mean fibre diameter is due to the increasing presence of 

thicker filaments within the webs. As with PCL-CNT products; the addition of carbon 

nanotubes alters the rheological properties of the polymer, resulting in higher resistance 

to elongation and melt flow instabilities which result in a large number of beads but also 

coarse fibres. It has already been shown in Figure 6.23 to Figure 6.25 that a significant 

number of beads form during spinning of PP-CNT fibres.  

 

These images can be contrasted to homogeneous PP fibres spun under identical conditions 

where webs with zero beading smooth, regular fibres was realised as per the SEM images 

documented previously on page 116. The PP-CNT compounds produced webs with 

significantly more droplet formation. In particular the SEM analysis showed that the 

highest degree of shot formation and bead defects was present when processing high 
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nanotube loadings. The reasons for this are similar to bead formation during the 

processing of the PCL-CNT compounds: nanotubes increase the viscosity and decrease 

the elasticity of the polymer melts, this increases the formation of instabilities. These 

instabilities result in a higher rate of jet breakup. Beads have a detrimental impact on web 

strength as they offer no directional load bearing ability and add significantly to the fabric 

weight.  

6.4.6 Raman microscopy 

6.4.6.1 PCL-CNT fibres 

The PCL and PCL–CNT fibres were found to be prone to deformation and movement 

during scanning. This was also true of the PCL and PCL-CNT films. Poor Raman spectra 

were recorded in both the ZZ and XX polarisations and the results were deemed 

unsatisfactory. 

6.4.6.2 PP-CNT fibres 

FT Raman spectroscopic analysis of the 0.25 % PP-CNT fibre did not produce good 

quality spectra which was probably due to a low proportion of nanotubes within the fibre. 

The Anti-Stokes Raman scattering is a weak interaction which can be hard to distinguish 

if a high intensity is not present. However, in PP-CNT fibres with a 0.5 % and a 2 % CNT 

loading high quality data was recorded. In addition the PP-CNT film and extrusion also 

produced satisfactory spectra. The Raman spectra that were successfully recorded are 

shown in Figure 6.29 



287 

 

 

 
 

  

 

 

Figure 6.29: Raman spectra for PP-CNT fibres and homogenous PP prepared through 

centrifugal spinning (Low MFI spinneret) and PP-CNT extrudate at film. 
 

In previous work, the alignment of the nanotubes was observed by examining the relative 

strength of the radial breathing mode peak (RBM) at around 280 cm-1 (Kannan et al., 

2007). However, the radial breathing modes, associated with pristine large diameter 

tubes, is too weak to be observed in MWNTs (Murphy et al., 2006). 
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The measurements in all PP-CNT materials show two primary peaks at 1640 cm-1 and at 

1350 cm-1 which are absent in the Raman spectra of pure PP fibres. This indicates that 

these peaks correspond to Raman interactions specific to the carbon nanotubes. A review 

of the literature indicated that these peaks are linked to the G-band and D-band resonant 

excitations in carbon nanotubes (Fischer et al., 2005).  

 

Nanotubes have been shown to have a primary excitation peak at a Raman shift at 1593 

cm-1 by Pimenta et al. (1998). This is known as the tangential G’ vibration mode and is 

typically found at 1592 - 1594cm-1. This is a vibration observed in all sp2 hybridised 

carbon materials and is caused by in-plane vibration of the carbon atoms. The D band, 

found at 1320– 1370 cm-1, is caused by the first order scattering process of sp2 carbons 

by the presence of neighbouring in-plane atom vacancies and other defects. As the D band 

vibration is generated by non-ideal nanotube forms it is seen as an indicator of disorder 

in the nanotubes (Murphy et al., 2006). For MWNTs this level of disorder and 

defectiveness, and thus the D band intensity, is high compared to pristine SWNTs. 

 

Rao et al. (2000) showed in their research into MWNT orientations that the intensity of 

the tangential Raman band (G’) and disorder band (D) is sensitive to the polarisation 

geometry, with intensity being highest when the polarised radiation geometry is the ZZ 

(fibre axis) configuration.  

 

With this in mind, Figure 6.29 indicates that the MWNTs are strongly orientated in the 

direction of the nanofibre axis. This agrees of results found elsewhere for fibres produced 

containing CNTs, for example, Bhattacharyya et al. (2003) demonstrated that the intensity 

of the G’ band, linked to the orientation of CNTs, increased with draw ratio. The 
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mechanism for this phenomenon is relatively simple and can be compared to the weather 

wane in the wind, however in this case the directional flow of moving polymer will 

interact with and rotate the nanotubes in such a way that the resistance to flow in 

minimised. When centrifugal spinning fibres the polymer flow is in the direction of 

elongation which will orientate the nanotubes along the fibre axis whilst the polymer is 

still fluid. 

6.4.7 Tensile properties of the webs 
 

Only 14 % PCL and PCL-CNT 12 % + 0.5 % CNT were subjected to tensile testing, these 

two materials were analysed as these conditions produced the most consistent webs with 

sufficient yield and quality necessary for sample preparation. Descriptive statistics are 

given in Table 6.7 and typical stress and elongation profiles judged to be indicative of the 

properties and variations of the webs are shown in Figure 6.30. 

 

 

Figure 6.30: Typical tenacity curves for the webs centrifugal spun from PCL with and 

without the addition of CNTs. 
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Table 6.7: Tensile results for PCL fibres with and without CNTs 

 Tenacity 

(cN tex-1) 

Elongation at 

Break (%) 

Young’s Modulus 

(cN tex-1) 

Mean SD Mean SD Mean SD 

14 % PCL 0.61 0.21 45 % 40 % 3.0 1.1 

12 % PCL + 

0.5 % CNTs 
0.51 0.17 55 % 42 % 2.3 1.5 

 

 

The tensile results shown in Table 6.7 indicate there was no increase in tenacity or 

modulus between 14 % PCL and 12 % PCL + 0.5 % CNTs. It can be argued that the PCL-

CNT webs actually resulted in a reduction in the elastic modulus and total breaking load 

on a per weight basis. This can be explained through the increase in jet breakup observed 

during processing of the compound solution leading to a web with more beads and shorter 

fibre entanglements per unit weight. As the beading does not contribute to load bearing it 

will lead to a reduction in web strength regardless of any increase in individual fibre 

strength. 

 

6.5 Conclusions 

 

Carbon nanotubes were successfully dispersed into polycaprolactone and polypropylene 

polymers through a dissolution and sonication treatment procedure. The addition of CNTs 

increased the solution and melt viscosity in the PCL-CNT and PP-CNT systems, 

respectively, which had implications for fibre formation. The CNTs were observed 

through TEM and the presence of poorly dispersed agglomerates was observed alongside 

individual nanotubes.  

The PCL-CNT and PP-CNT compounds were successfully formed into fibres using 

centrifugal spinning. Fibres with a range of nanotube loadings were spun from 10 and 
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12 % PCL solutions using a spinning speed of 9,000 rpm. High levels of nanotubes (> 1 

%) in PCL resulted in significantly more spraying which reduced the web quality 

compared to homogenous PCL. This was due to the increase in solution viscosity which 

altered the spinning behaviour of the jet and encourages a high degree of fibre break up. 

Lower nanotube loadings (0.25 – 1 %) also affected the spinning behaviour and the 

solutions had a propensity to form beads-on-string structures which were caused by 

Rayleigh instabilities and are seen as an intermediate stage between smooth fibre 

formation and jet breakup. Despite the presence of beads, the ability to spin fibres 

containing 4 % carbon nanotubes highlights the versatility of centrifugal spinning. Apart 

from an increase in the rate of beading the surface morphology of the fibres remained 

largely unchanged from those previously observed. The PCL-CNT fibres also displayed 

the high level of pore formation and texture that was observed in homogenous PCL 

formed from 4:1 chloroform/methanol.  

 

The PP-CNT fibres were generated by spinning at 12,000 rpm with a polymer temperature 

of 200 °C. This was done using both the fine and coarse melt spinnerets. As the CNT 

loading increased it became increasingly difficult to form fibres under the operating 

conditions used and neither spinneret could successfully produce fibres containing 2 % 

and upwards of carbon nanotubes. This was due to an increase in the melt viscosity with 

increasing CNT content. The PP-CNT webs also contained some fibres with a distressed 

appearance and are determined to have been caused by spurt melt instabilities during 

processing. The PP-CNT fibres had a slightly disturbed morphology which differed from 

the smooth filaments produced from homogenous polypropylene. 
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An experiment revealed that none of the fibres produced in this work were recorded as 

being electrically conductive due to contact issues. However, the polymer films created 

from the bulk compounds were shown to conduct with sufficient nanotube loading. A 

percolation threshold was observed in the bulk material as being between 2 and 3 % of 

CNT loading. It may be that the fibres were conductive, however if it is difficult to form 

an electrical contact with the fibres then the potential applications are limited. 

 

In both the PCL-CNT and PP-CNT fibres it was observed through polarised Raman 

microscopy that the nanotubes are orientated in the direction of the fibre axis in PP-CNT 

nanofibres. The nanotubes will influence the direction properties of the polymer and are 

orientated during the elongation flow experienced during fibre spinning.  

 

There was no significant or consistent change in the tensile properties of the webs with 

the addition of carbon nanotubes. 12 % PCL + 0.5 % CNT webs were compared to 

homogenous 14 % PCL webs with both samples produced through centrifugal spinning. 

There was no increase in tensile strength or modulus for the former samples. This 

assessment of web strength is more a reflection of the number of fibre entanglements, 

defects and cohesion within the web and may not be a sensitive indicator of absolute fibre 

strength. The data obtained indicated there was actually a decrease in tensile performance 

on a per-weight basis observed with the addition of CNTs which can be attributed to an 

increase in bead and fibre defects within the webs which reduce the strength of the 

nonwoven. However, for more detailed analysis, more testing would need to be done, 

including tensile measurements of a single fibre. 
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Chapter 7  
Conclusions and further work 

 

7.1 Conclusions 

 

A review of the literature indicated that nanofibres and nanofibre webs have the potential 

to be applied to an ever increasing range of applications due to their desirable properties. 

However, current applications utilising nanofibres remains limited to high value and 

specialist applications due to the high costs of nanofibre production. This high cost is due 

to the low throughput rates of the principal production route, electrospinning, and the 

difficulty in subsequent handling and processing of nanofibres. 

 

It is proposed that centrifugal spinning has the capacity to produce nanofibres at a much 

lower operating cost; thus opening up a new range of applications. It has been 

demonstrated in the literature that centrifugal spinning is highly versatile, producing 

freestanding or supported webs from a range of materials. However, the research in this 

study indicates that the fibres produced are highly variable and the interactions that 

control fibre diameter are not entirely understood. The nature of centrifugal spinning 

means that the rotational speed determined not only the extensional force but also the 

throughput for a given polymer jet. This has implications for modelling and process 

optimisation. Various authors have attempted to generate models that link the nanofibre 

diameter to processing conditions. As of yet, there is no model that can successfully 

predict the spinning performance of a new material. This work contributed to 

understanding by proposing Equation 1.13 which adapts existing thinking but 

incorporates an element to account for cumulative pressure.  
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Ultrafine fibres were produced from polypropylene, polycaprolactone and a copolymer 

of polyvinylpyrrolidone and 1-triacontene. Centrifugal spinning was also used to produce 

composite fibres with carbon nanotubes embedded in both polypropylene and 

polycaprolactone. 

 

The polypropylene was melt processed into fibres using centrifugal spinning. The low 

viscosity grade of polymer used readily formed nanofibres in the temperature range 180 

– 230 °C. The average diameters of the PP fibres was as fine as 500 nm with individual 

filaments observed as below 250 nm. A relationship between rotational speed and fibre 

diameter was observed where the fibres become finer with increasing spinneret rotational 

speed. The processing temperature was shown to influence the fluid viscosity and fibres 

became finer as polymer temperature increased. However this relationship was only valid 

across a narrow processing range and at higher temperatures there was no marked increase 

in fibre fineness but the level of deleterious beading increased. This beading was caused 

by jet breakup at the lower melt viscosities. Polypropylene fibres produced through 

centrifugal spinning were found to be constructed from a smectic phase, indicating a form 

of pseudo-crystallinity. By annealing at a temperature below the melting point the webs 

the fine structure was converted to become semi-crystalline which was observed using 

DSC and XRD. 

 

Polycaprolactone formed ultrafine fibres when processed using centrifugal spinning. In 

this work package the solvent was varied and fibres formed using both chloroform and 

chloroform/methanol as solvent. The latter was found to form the finest fibres with 

filaments as fine as 400 nm diameter average produced using the prescribed conditions. 

The work also showed that decreasing the polymer concentration also decreased the final 
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diameter within the fibre web. In contrast, the same material could only be electrospun at 

concentrations significantly lower than those suitable for centrifugal spinning using free 

surface electrospinning and the parameters studied. The polycaprolactone fibres had a 

unique surface structure whereby the fibres were marked with shallow pores. This effect 

was caused by rapid solvent evaporation during spinning. The PCL fibres were 

quantitatively found be non-cytotoxic and were compatible with the cell culture medium 

DMEM, which is designed to facilitate the growth and spread of cells. This indicates that 

PCL fibres produced through centrifugal spinning would be suitable for future medical 

implants and cell growth scaffolds.  

 

Polyvinylpyrrolidone and 1-triacontene (PVP/TA) was formed into fibres using melt 

centrifugal spinning. This work is the first reported instance of forming fibres from this 

material. Fibres of average diameter ~1 μm were formed when using the fine spinneret. 

The fibres were observed to have poor mechanical performance and were unsuitable for 

handling as a web. The fibres were applied as a dye adsorbing media for the treatment of 

disperse dye effluent. The PVP/TA was found to be as effective as a commercial activated 

carbon adsorbent. The PVP/TA fibres demonstrated an affinity for corn oils which could 

be exploited to improve stain removal during laundering. 

 

Varying concentrations of carbon nanotubes were dispersed in both polypropylene and 

polycaprolactone to produce nanocomposite fibrous materials. Sonication proved to be 

an acceptable means of dispersion with individual nanotubes observed alongside larger 

agglomerates within the TEM slices. These compounds were then formed into fibres 

through melt and solution centrifugal spinning.  
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Fibres were produced with nanotube loadings of 2 % and 0.5 % w/w in polycaprolactone 

and polypropylene, respectively. Higher nanotube loadings could not be formed into 

fibres. This was due to the increase in viscosity with increasing nanotube content which 

alters the spinning behaviour of the fluids. This rheological change manifests itself in 

increased beading due to jet breakup and the formation of bead-on-string filaments. The 

fibres were found to be non-conductive. This is because they were formed with nanotube 

loadings below the percolation threshold measured in the bulk materials. The nanotubes 

were observed to be orientated in the direction of fibre axis through Raman microscopy. 

The addition of carbon nanotubes did not increase the tenacity of the webs. However, this 

work highlighted the versatility of centrifugal spinning in producing fibres from materials 

with atypical polymeric flow behaviour. 

 

With all materials studied, the process of centrifugal spinning produced broad fibre 

distributions with thick fibres produced in tandem with the finer fibres. This is linked to 

the chaotic extensional behaviour of jets in turbulent air along with the variable levels of 

jet elongation as the spinneret accelerates to and from the desired operating speed. This 

variability would have implications for final product end-use and makes process 

optimisation less precise.  

7.2 Suggestions for further work 

 

As many applications require that nanofibres can be produced at commercially viable 

rates it would be of use to produce webs using industrial centrifugal spinning to test if the 

relationships found in this work hold true for continuously produced nonwoven webs. 

Industrial processing allows for a new material structure to be used whereby the fibres 

are drawn onto a two-dimensional substrate through the use of vacuum suction. This 
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would be useful for further investigation into the potential use of polypropylene 

nanofibres produced through centrifugal spinning as it is a material well suited for 

filtration applications and high volume manufacturing. Flat sheets could be distributed on 

a vacuum collector and the web pore size distribution and filtration efficiency could then 

be assessed and compared to the base substrate and commercial filter products produced 

using competing technologies, for example melt blowing. 

  

An initial study indicated that PVP/TA fibres have potential as an adsorbent for the 

removal of polar and non-polar species from solution. Further work using this material as 

a filter media would expand into assessing the performance capability when adsorbing 

various dye classes and soiling agents with a view to improving effluent treatment and 

the optimisation of the adsorption process. 

 

The dispersion of the CNTs in the PP and PCL fibres could be better assessed by 

preparing TEM slides in a way which would maintain the integrity of the fibre-epoxy 

composite and slicing along the fibre axis which would allow for a better understanding 

of nanotube dispersion, migration and orientation during spinning. The absolute fibre 

strength would be done using isolated fibre breakages for other suitable tests which would 

yield information concerning potential mechanical benefits to incorporating nanotubes 

into polymeric fibres. 
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Appendix 

 

 

 

A-1: ToF-SIMS spectra for WP660 flake (positive ion) 
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A-2: ToF-SIMS spectra for WP660 flake (negative ion) 
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A-3: ToF-SIMS spectra for WP660 fibres centrifugal spun (positive ion)  
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A-4:ToF-SIMS spectra for WP660 fibres centrifugal spun (negative ion). 
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A-5: ToF-SIMS spectra for the reference cotton fabric 
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A-6: ToF-SIMS spectra for the sebum oil on foil 
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A-7: ToF-SIMS spectra for the sebum oil on cotton 
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A-8: ToF-SIMS spectra for washed sebum oil on cotton 



311 

 

 

 

A-9: ToF-SIMS spectra for sebum oil on PVP/TA fibres 
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A-10: ToF SIMS spectra for washed sebum oil on PVP/TA 
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A-11: ToF-SIMS spectra for corn oil 
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A-12: ToF-SIMS spectra for corn oil on cotton 
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A-13:ToF-SIMS spectra for washed corn oil on cotton 
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A-14: ToF-SIMS spectra for corn oil on PVP/TA fibres 
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A-15: ToF-SIMS spectra for corn oil on PVP/TA 
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A-16: ToF-SIMS spectra for the reference detergent 

 


