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Abstract 

Objectives: To apply and refine conventional and developing cardiac magnetic 

resonance (CMR) imaging tissue characterisation techniques, with the aim of 

applying them to better understand cardiac remodelling in  health, disease and as 

an outcome surrogate in clinical trials. 

Background: Cardiac structure, function and perfusion are routinely assessed with 

a range of imaging modalities in both research and clinical practice. Cardiac 

magnetic resonance (CMR) imaging is emerging as the gold standard tool for many 

of these assessments. The use of gadolinium containing contrast agents in CMR 

protocols allows the detection of myocardial scar and focal fibrosis and provides 

important prognostic information. The developing field of T1 mapping allows 

measurement of the extracellular volume, a surrogate for fibrosis that offers further 

insights into diffuse myocardial change not previously possible.  

Methods: CMR tissue characterisation techniques were applied in sequential 

studies of: ischaemic cardiomyopathy, health, athletic cardiac adaptation and in a 

randomised controlled study examining the effects of spironolactone in heart 

failure with preserved ejection fraction.    

Results & Conclusions: Late gadolinium enhancement (LGE) imaging is of limited 

application in predicting functional recovery of dysfunctional segments in 

ischaemic cardiomyopathy (Chapter 3). Modified Look-Locker Inversion recovery 

(MOLLI) T1 and extracellular mapping techniques can be applied reproducibly in 

health and following either bolus or split dose gadolinium administration 

(Chapters 4 & 5). T1 mapping provides important insights into athletic cardiac 

remodelling that may allow its application in distinguishing between athletic and 

myopathic change (Chapter 6). Individuals with heart failure with preserved 

ejection fraction (HF-PEF) have diffuse myocardial fibrosis as measured with T1 

mapping. Early results of a randomised controlled study suggest that the beneficial 

effects of spironolactone in HF-PEF may in part be due to regression of diffuse 

myocardial fibrosis (Chapter 7). 
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1. Chapter 1 

General Introduction  

1.1 Introduction 

Cardiovascular magnetic resonance (CMR) imaging is well established in clinical 

practice for the assessment of cardiac structure, function and perfusion[1]. The 

excellent spatial resolution and reproducibility of CMR[2] mean that it is ideal for 

accurate quantification of cardiac function, whilst first pass adenosine perfusion 

imaging is becoming established as a key clinical modality for ischaemia detection 

and quantification[3, 4].  

For both clinical and research use the ability to accurately characterise myocardium 

is of increasing importance, not only for accurate diagnosis but also to track disease 

progression and the efficacy of interventions. This is a developing field and whilst 

some characterisation techniques are firmly established others remain 

predominantly research tools. 

Tissue characterisation techniques are made possible by interrogating the T1 and T2 

properties of tissue, as well as the effects of gadolinium based contrast agents 

(GBCA) upon these. This thesis focuses on T1 based techniques, though both T1 

and T2 based techniques are of clinical importance.  

 

1.2 T1 Based Techniques  

T1 is the longitudinal relaxation time of tissue, and differs according to tissue 

composition, the presence of contrast and field strength[5]. T1 is measured 

following a 180° inversion, or 90° saturation, pulse along the z-axis in the magnetic 

field, and  represents approximately 63% of the time for spin to return to 

equilibrium along the z-axis. Energy, detected as signal, is released by hydrogen 

nuclei as their spin returns to equilibrium following the inversion or saturation 

pulse. The signal released is related to size of the molecule with which a hydrogen 

nucleus is associated: large molecules return to equilibrium slowly with a longer T1 

(e.g. fibrotic tissue), whilst smaller molecules (e.g. fat) return to equilibrium more 

quickly with shorter T1[5]. 

A crude assessment of tissue characteristics may be made on T1 weighted survey 

images though beyond use for planning further acquisitions, or detection of 

incidental masses, there is limited application in either research or clinical practice.  
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Figure 1.1 Incidental finding in CMR   

A) T1 and B) T2 weighted survey images demonstrate a left atrial mass, later 
found to be a left atrial myxoma 

 

Both subjective and quantitative methods of T1 based tissue characterisation are in 

routine practice. These include visual assessment of focal scar and fibrosis with late 

gadolinium enhancement (LGE) imaging and quantification of tissue T1 with the 

use of ‘mapping’ methods. T1 mapping techniques remain under development and 

the optimal methodology has not yet been agreed[6]. 

 

1.2.1 Late Gadolinium Enhancement Imaging 

The addition of GBCA to scan protocols greatly increases the potential of tissue 

characterisation with CMR. Due to their large molecular size GBCAs are excluded 

from the intracellular space, consequently following intravenous injection GBCAs 

remain in the circulation and extracellular space before being renally excreted.  In 

the presence of fibrosis or acute injury normal GBCA kinetics are altered, the 

clearance of GBCAs is impaired and contrast persists in the tissue thus shortening 

T1. 

Late gadolinium enhancement images are acquired a minimum of 5 minutes after 

GBCA administration with a T1 weighted image using an inversion time (TI) such 

that the signal from normal myocardium is nulled, but in tissue where gadolinium 

has persisted high signal is evident[7]. 

LGE imaging allows the detection of focal myocardial processes, and both its 

presence and extent have prognostic importance[8-10]. LGE imaging is now also 

recommended for determining the aetiology of heart failure[11], made possible by 

characteristic enhancement patterns displayed in a range of conditions[12, 13]. 
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Figure 1.2 Characteristic LGE patterns 

A & B) Septal, anterior and lateral mid-wall enhancement in dilated 
cardiomyopathy. C) Epicardial lateral wall enhancement in myocarditis. D) 
Full thickness inferior enhancement and thinning in chronic myocardial 
infarction. 

 

However despite its utility, there are limitations of this technique including: 

1) the need for normal tissue as ‘contrast’ for diagnosis 

2) the binary nature of abnormality detection. 

As a contrast between normal and abnormal tissue is required diffuse abnormalities 

are poorly appreciated on LGE imaging. This is a particular problem in conditions 

characterised by diffuse fibrosis where, as an inherent part of the LGE approach, 

global nulling of the myocardium may occur. Furthermore, though the extent of 

LGE may be quantified, this may vary greatly by quantification technique 

employed[14]. As well as difficulty quantifying the extent of abnormalities, the 

underlying pathology responsible may only be termed as present or absent, rather 

than defined by severity of tissue change. The inability to characterise the 

underlying tissue change fully means surrogates are sometimes employed such as 

‘greyness’ or ‘haziness’. Use of terms such as these introduces subjectivity and 

decreases reproducibility in CMR interpretation. Furthermore grey areas on LGE 

imaging may reflect partial volume phenomenon or patchy change[15]. In addition, 
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without the ability to reliably quantify abnormalities tracking change in tissue 

composition,  either in disease progression or the effect of an intervention, is not 

possible. These limitations may be overcome by the quantitative technique, T1 

mapping[16]. 

 

1.2.2 T1 Mapping & Extracellular Volume Estimation 

T1 mapping allows the T1 of any given pixel to be defined and displayed as either a 

grayscale or colour image (once colour scaling has been performed)[17, 18]. T1 

mapping techniques are often vendor specific, though some may be used across 

platforms, and include MOLLI, ShMOLLI, SASHA and SAPPHIRE. T1 is calculated 

by sampling signal at various time points along the tissue recovery curve following 

an inversion or saturation pulse. The signal intensity readout is then fitted to a 

model that enables tissue T1 to be estimated[19]. T1 measurement methods have 

differing degrees of accuracy and precision[20], and consensus on the optimal 

methodology has not yet been reached[6].  

1.2.2.1 Sequences & T1 Sampling Methodology 

1.2.2.1.1 Modified Look-Locker Inversion Recovery (MOLLI) 

There are multiple alternative methods to measure myocardial T1, as mentioned 

above, but  they share some common principles.  

The modified Look-Locker Inversion recovery (MOLLI) method was first published 

in 2004[19]. The nomenclature used to describe MOLLI schemes describes the 

number of samples made following each inversion pulse, and in parentheses the 

minimum pause (recovery period defined in either seconds (s) or R-R interval (b)) 

following the prior sample e.g. a 4(3s)3(3s)2 scheme would comprise: three 

inversion pulses with 4 samples after the first inversion pulse, three after the 

second and two after the final pulse, and a minimum 3 second pause from the last 

sample of the prior set before the next inversion pulse. 

The initially proposed MOLLI scheme employed three inversion pulses with eleven 

subsequent samples in three sets with variable trigger delays set to obtain a 

representative sample of the inversion recovery curve. Multiple sample points 

allow better fitting of the recovery curve, however sampling itself affects recovery 

as in the sampling process signal is ‘lost’. A schematic of a 5(3s)3 MOLLI 

acquisition is shown in figure 1.3. 

Potential limitations: A balanced steady-state free precession (bSSFP), rather than 

spoiled gradient echo, readout is used in MOLLI due to improved signal-to-noise 
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ratio[19]. However the use of a bSSFP readout speeds tissue recovery, as a result it 

is necessary to apply a correction factor, which in turn affects accuracy. 

 

A  

B     1,1;    2,1;    1,2;    2,2;    1,3;   1,4;    2,3;    1,5 

C 

 

Figure 1.3 Explanatory diagram of a 5b(3s)3b MOLLI Scheme. 

A) After each 180° inversion pulse (red lines) magnetisation recovers (blue 
line), as magnetisation recovers signal is sampled with differing trigger delays 
(dashed lines). Subsequent inversion pulses are delivered to the tissue after a 
minimum specified delay. B) Re-ordering of acquisitions by length of trigger 
delay. C) A T1 fitting curve is generated allowing estimation of tissue T1.  

 

Following an inversion pulse, tissue magnetisation recovers to normal over time. 

After the final sample, it  is necessary to allow magnetisation to fully recover prior 



- 6 - 

to a further inversion pulse. Incomplete recovery leads to fitting errors as recovery 

occurs from differing baseline level of tissue magnetisation, with subsequent knock 

on effect on T1 accuracy, as recovery does not occur along the same recovery curve.  

Multiple alternatives to the initial 3(3b)3(3b)5 MOLLI scheme have been suggested. 

The aim of these alternatives include improved accuracy and precision of T1 and 

shortened breath-hold. Many sequences now employ only two inversion pulses to 

minimise the effects of prior magnetisation on subsequent readouts, whilst it is now 

also common for differing pre and post contrast T1 mapping strategies to be used, 

due to differing relaxation properties following contrast administration. For 

example a three second pause to allow complete recovery is unnecessary when T1 

is shortened, whilst standard pre-contrast, ‘native T1’ sequences may sample 

insufficiently early on the recovery curve when recovery is swift to allow for 

accurate fitting. In an attempt to counteract the effects of heart rate on T1 estimation 

modifications to the original MOLLI sequence have been suggested. The use of 

fixed pause duration, measured in seconds, ensures that the interval between 

inversions is constant, and cannot become as squeezed, and the use of front 

weighted MOLLI schemes e.g. 5b(3s)3b both mean that the effects of prior 

magnetisation are lessened [17]. 

1.2.2.1.2 Shortened Modified Look-Locker Inversion Recovery (ShMOLLI) 

The ShMOLLI technique shares much with the MOLLI method, but was developed 

to mitigate the systematic error encountered at higher heart rates on T1 with 

MOLLI. Underestimation of longer T1 with MOLLI at higher heart rates is well 

recognised [19, 21], and is predominantly attributable to an  insufficient recovery 

interval between inversions: In early MOLLI schemes pause duration was 

measured in beats (b), and as a result the interval between inversions using a 

3(3b)3(3b)5 scheme with a heart rate of 60 and 100min-1 are 6000 milliseconds (ms) 

and 3600ms respectively. Therefore when longer T1 times are encountered recovery 

between inversions may be incomplete. The ShMOLLI method[22] (5(1b)1(1b)1) 

acquires 5 samples without the influence of prior tissue inversions, and only utilises 

the final two when recovery (which is estimated from the prior 5) is estimated to 

have been complete. This adaption decreases the influence of heart rate on T1 

estimation, but also means that when T1 is long the later acquisitions are discarded 

with subsequent effect on accuracy, due to fewer points with which to fit a curve.  

1.2.2.1.3 Saturation Recovery Single Shot Acquisition (SASHA) 

Rather than using a 180° inversion pulse as in MOLLI/ShMOLLI both SASHA and 

SAPPHIRE mapping methods employ a saturation pulse. A saturation pulse at 90° 

to the z axis nulls the innate magnetism of tissue, from which it then recovers to 

normal[23]. With the SASHA technique a saturation pulse every R waves nulls the 
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signal, which is then sampled at a variety of intervals as it recovers to allow the 

recovery curve to be fitted.  

 

 

Figure 1.4 Explanatory diagram of a SASHA scheme 

An initial sample (dashed line) is performed prior to saturation pulse deliver 
to determine fully recovered tissue T1. Following that 90° saturation pulses 
(red line) are delivered with every R wave, and signal sampled with different 
trigger delay to allow plotting of a T1 recovery curve as it recovers (blue line). 

 

Unlike MOLLI, where recovery is affected by the bSSFP readout, saturation 

recovery is unaffected and as a result it is not necessary to apply a correction 

algorithm. This, and the absence of effect from prior inversions, mean that SASHA 

has better accuracy compared to MOLLI[20]. When T1 is long, a recovery period 

longer than one R-R interval may be used. However as a first read out is performed 

prior to delivery of any saturation pulses a good estimate of fully recovered T1 is 

obtained with this technique.  

Tissue T1 derived with the SASHA method is likely more accurate than MOLLI and 

ShMOLLI however measurements have lower precision and reproducibility. 

Furthermore if the subject has a low heart rate the acquisition time may well be 

longer than both ShMOLLI and more recently suggested MOLLI schemes[20], as 

SASHA acquistions are typically made over ten heart beats. 

1.2.2.1.4 Saturation Pulse Prepared Heart Rate Independent Inversion Recovery 

(SAPPHIRE) 

SAPPHIRE is a hybrid scheme in which a saturation pulse is first applied prior to 

subsequent  inversion pulse and subsequent read out. This method has been shown 

to perform similarly to SASHA. 
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1.2.2.1.5 Summary 

The MOLLI method is the most established of the T1 mapping techniques in 

common use. However it has limitations, including inaccuracy at high heart rates 

and the necessity of a correction algorithm, that have led to alternative schemes 

being developed. The ShMOLLI method is less sensitive to heart rate than MOLLI 

but may result in a loss of accuracy as when T1 is long, as some points are 

discarded. Indeed with newer MOLLI schemes with ‘front-loading’ of sampling 

(e.g 5b(3s)3b) and fixed minimum pause duration  the advantages of the ShMOLLI  

technique are limited. Though less commonly employed than MOLLI based 

techniques the saturation pulse based methods e.g. SASHA have superior 

accuracy[20]. 

1.2.2.2 Quantitative Tissue Characterisation 

Native T1 reflects both cellular and intracellular characteristics, and is affected by 

both field strength and tissue water content[5]. Prolonged native T1 is seen in a 

range of conditions including myocarditis, acute myocardial infarction and 

hypertrophic cardiomyopathy[24], whilst decreased T1 may be seen in Anderson-

Fabry disease and iron deposition[25]. Further tissue characterisation may be 

performed by combining native and post contrast myocardial and blood pool T1 

with haematocrit to determine the extracellular volume (ECV): 

 

𝐸𝐶𝑉 = (1 − 𝐻𝑐𝑡)
𝑅1(𝑚𝑦𝑜 𝑝𝑟𝑒) − 𝑅1(𝑚𝑦𝑜 𝑝𝑜𝑠𝑡)

𝑅1(𝑏𝑙𝑜𝑜𝑑 𝑝𝑟𝑒) − 𝑅1(𝑏𝑙𝑜𝑜𝑑 𝑝𝑜𝑠𝑡)
 

*Where R1=1/T1 and Hct is Haematocrit. 

 

The ‘wash in/wash out’ kinetics of gadolinium mean that the distribution, and 

persistence, of gadolinium in the extra-cellular space allows the relative shortening 

of T1 following GBCA to be used to approximate the extracellular volume[17]. 

However for this method to be applied it is important that post-contrast T1 is 

sampled at a point when gadolinium has reached an equilibrium[16], or steady-

state, between the intravascular and interstitial space i.e. the components of the 

extracellular volume. Failure to do so will result in over-estimation of ECV, as T1 is 

inappropriately shortened when compared to steady state. Reliable measurement 

of ECV has previously been shown to be possible following both bolus and steady 

state infusion methods of GBCA administration [16].  

As well as determining ECV numerically, swift interpretation of ECV maps may be 

facilitated with use of a colour image. Colour ECV maps display identical 
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information to grayscale images but pixels are colourised according to a predefined 

scale.  

 

Figure 1.5 T1 Based techniques in chronic MI 

Sub-endocardial inferior myocardial infarction. A) LGE image demonstrating 
sub-endocardially based partial thickness myocardial infarction. B) Grayscale 
native T1 map and C)ECV colour map of the same slice demonstrating 
elevated ECV adjacent to the area displaying late enhancement. 

 

ECV has been demonstrated to correlate well with histological measurement of 

tissue fibrosis in a range of conditions[16]. ECV is often used as a surrogate for 

fibrosis or infiltration in both research and clinical arenas, though this may be an 

oversimplification as this assumption does not account for the effects of capillary 

dilation. The ability to measure diffuse fibrosis objectively enables disturbance of 

the extracellular space to be tracked. This new method will potentially provide new 

opportunities for monitoring the tissue effects of therapeutic intervention. 

There are limitations of both native T1 and extracellular volume calculation. T1 is 

sensitive to both field strength, field inhomogeneity and sequence, as a 

consequence absolute cut-offs for native T1 are not yet applicable across multiple 

sites. Multiple acquisitions are necessary for T1 mapping techniques; as a result T1 

acquisition can be long with introduction of respiratory motion artefact[17]. 

Furthermore as both pre and post T1 are necessary for ECV calculation 

reproducible image planning is mandatory to sample the same myocardium on 

both native and post contrast T1 measurement.  

 

1.3 T2 Based Techniques 

T2 is the time constant of transverse relaxation and related to random spin-spin 

interactions of molecules within, tissue and is more affected by water than T1[5]. If 

free water is present, these molecules are further apart, interactions less frequent, 

and relaxation slower. Whereas if water is bound to large molecules it moves more 

slowly, they are more liable to interact and relaxation occurs more quickly.  
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1.3.1 T2 Weighted Imaging 

T2 weighted image characterisation is applied in clinical protocols for subjective 

detection of oedema and inflammation[26], research use includes quantification of 

myocardial salvage and area at risk[27]. T2 weighted images are generated with 

spin echo sequences, particularly turbo spin-echo and short-TI triple inversion 

recovery prepared fast spin echo (STIR)[28]. The presence of oedema demonstrated 

on T2 weighted images has been shown to agree with histological specimens[29, 

30]. 

 

Figure 1.6 Acute Myocarditis 

A & B) hyperintense signal in the LV lateral wall. C & D) demonstrate LGE in 
the same area in an epicardial distribution 

Oedema is demonstrated as a hyperintense area of signal, and allows distinction 

between acute and chronic presentations of cardiac disease[31]. Semi-quantitative 

assessment is possible by measuring the signal ratio of myocardium and skeletal 

muscle. However despite this T2 image interpretation is limited by: 

1) Lack of uniformity of signal, and signal loss in tissue distant from the coil, 

making nearer myocardium appear relatively hyper intense 

2) Artefact from slow flowing blood adjacent to myocardium often resulting 

in a bright rim, adjacent to the endocardium. 
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1.3.2 T2 Mapping 

T2 mapping may help overcome some of the above limitations, whilst at the same 

time providing quantitative information regarding the severity of a given 

abnormality[32]. As with T1 mapping, sequence development is ongoing and is an 

active area of CMR research. Similarly to T1 mapping multiple acquisitions are 

performed to generate a final ‘map’ with pixel wise T2 values[33]. The 

quantification of myocardial water content and oedema in health, aging and 

chronic disease may offer new opportunities to study sub-clinical manifestation of 

disease[34, 35]. Artefact, particularly susceptibility artefact infero-laterally, and 

relatively low signal when compared to T1 based techniques limits its adoption in 

routine clinical practice.  

 

1.3.3 T2* Mapping  

Of all quantitative techniques T2* mapping is the most established, and also the 

technique most used for clinical decision making[36, 37].  T2* is shorter than T2 due 

to interaction between the T2 properties and local magnetic field inhomogeneities 

due to the presence of iron containing compounds[5].   

In clinical practice T2* maps are predominantly used for the quantification of 

cardiac iron deposition, and T2* has been demonstrated to agree well with biopsy 

specimens. The ability to identify and track iron deposition is used to guide iron 

chelation therapy in both haemoglobinopathies and transfusion dependent 

patients. There is also growing research interest in T2* mapping based techniques 

to identify intramyocardial haemorrhage in acute MI[38], a factor that has been 

associated with adverse prognosis. 

 

1.4 Conclusion 

Myocardial tissue characterisation is a developing field of CMR. Increasingly the 

research focus is moving away from subjective to quantitative techniques. Both T1 

and T2 quantification techniques are applied in clinical practice and are providing 

important insights to disease in cardiovascular research. 

This thesis focuses on T1 weighted based techniques: Initially describing the use of 

LGE imaging in chronic severe ischaemic cardiomyopathy and later T1 mapping 

sequence development and its application in health and disease. 
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Chapter 2 

Taxonomy in Clinical Practice for Myocardial Segments in Left 

Ventricular Systolic Dysfunction 

2.1.  Abstract 

2.1.1. Objectives 

To describe differing states of myocardial health and disease in systolic 

dysfunction, in an effort to establish standard nomenclature for future clinical 

research studies. 

2.1.2.  Background 

Multiple terms are applied to describe myocardium in clinical studies, particularly 

with reference to chronic ischaemia. In addition studies employ a range of imaging 

modalities to assess myocardial health. The lack of consistency in description of 

myocardium where terms are often used interchangeably, across a range of 

imaging modalities hinders the interpretation and application of study findings in 

clinical practice. 

2.1.3. Conclusions 

We have described differing myocardial states in left ventricular systolic 

dysfunction with reference to histology and comprehensive imaging assessment 

with the aim of establishing consistent nomenclature in future clinical studies. 
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2.2 Introduction 

The leading cause of left ventricular systolic dysfunction (LVSD) is ischaemic heart 

disease (IHD), but other aetiologies may also lead to LVSD. The pharmacological 

and device therapy for the treatment of LVSD are well established and continues to 

improve. Multiple studies have demonstrated morbidity and mortality benefit for 

β-blockade[39] [40] [41], Angiotensin converting enzyme (ACE) inhibitors[42] [43] 

[44], aldosterone antagonists[45] [46] and device therapy[47] [48]. 

In contrast to medical therapy and device treatment, the role of revascularisation in 

LVSD of ischaemic origin is less certain. Whilst there are clear theoretical benefits in 

improving blood supply to large areas of dysfunctional ‘viable’ myocardium, 

improved outcomes following revascularisation have not been demonstrated in 

recent large clinical trials: STICH[49], HEART[50] and PARR-2[51].  The, largely 

unexpected, results of these trials have led to renewed discussion of the merits of 

viability assessment in LVSD. 

An important confounder in this debate is the inconsistent and often imprecise 

terminology employed to describe myocardial states. In particular the terms ‘viable’ 

and ‘hibernating’ are often used interchangeably and sometimes incorrectly. 

‘Viable’ is a summative term used to describe a range of myocardial states 

including: normal, thinned dyskinetic myocardium, myocardium retaining 

metabolically active respiring cells and dysfunctional non-transmurally scarred 

tissue.  ‘Hibernating’ myocardium on the other hand is very narrowly defined as 

chronically dysfunctional, ischaemic myocardium that recovers contractile function 

following improvement in the myocardial perfusion supply/demand ratio. It 

follows from these definitions that an assessment of ‘viability’ can be made prior to 

revascularisation, but that an assessment of myocardium as ‘hibernating’ can only 

be retrospective. Furthermore, identifying myocardium as ‘viable’ does not 

necessarily imply functional recovery following revascularisation or ‘hibernation’, 

as is often wrongly assumed. 

A second pertinent issue in this context is that myocardial viability and the 

likelihood of contractile recovery of viable, dysfunctional myocardium can be 

assessed with a range of non-invasive imaging techniques. These techniques differ 

fundamentally in their methodological approach, the properties of the acquired 

images and the tests’ limitations, so that discrepancies between the available tests 

are inevitable. This makes consistency in the definition of myocardial states across 

imaging fields challenging. Understanding these differences is imperative, 

especially in the design and interpretation of studies designed to determine the role 

of revascularisation in patients with chronic LVSD. 
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This article aims to define the different states of myocardium that may exist and 

coexist in ischaemic heart disease and cardiomyopathy with reference to histology 

and non-invasive imaging techniques, without reference to heart failure with 

preserved ejection fraction (HF-PEF). 

 

2.3 Available Imaging Techniques 

2.3.1 Echocardiography 

Echocardiography enables real-time assessment of cardiac structure and function 

using a range of techniques. 2D echocardiography allows comprehensive 

assessment of chamber size, wall thickness and contractile function. Doppler 

imaging enables assessment of blood flow through the heart, allowing 

quantification of valvular heart disease, and myocardial motion in systole and 

diastole. There are many echo parameters that provide functional assessment of left 

ventricular function including biplane or 3D ejection fraction (LVEF). Global 

longitudinal strain (GLS) is now an established technique that detects subtle 

systolic and diastolic abnormalities, as well as having superior prognostic value 

when compared to LVEF[52] [53]. The addition of pharmacological (dobutamine) or 

physiological (treadmill/static bike) stress enables the detection of ischaemia and 

viable, dysfunctional myocardium[54] [55] through demonstration of contractile 

reserve.  Perfusion may be quantified using myocardial contrast echocardiography 

(MCE)[56] however this remains primarily a research tool, rather than 

commonplace in clinical practice. 

 

Figure 2.1 Intra-venous contrast agent use in echocardiography.  

Left, rest images have poorly defined endocardial border. Right, following 
administration of intra-venous contrast agent the apical wall motion defect is 
evident. Taken from Plana et al[57]. 
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An important limitation of echocardiography is inconsistent image quality and 

inter-observer variability[58]. Poor image quality can often be overcome with the 

addition of intra-venous contrast agents[59]. However, these are not licensed 

following recent myocardial infarction and image quality can remain limited in 

some due to chest wall abnormality or chronic respiratory disease.  

 

2.3.2 Cardiovascular Magnetic Resonance 

Cardiovascular magnetic resonance (CMR) produces high resolution images of the 

heart in unrestricted imaging planes. Cine imaging with whole heart coverage 

enables measurement of chamber size and systolic function similar to 2D 

echocardiography, but with better accuracy and reproducibility [60, 61].  CMR with 

pharmacological stress agents is used for ischaemia detection: vasodilator induced 

hyperaemic first pass perfusion CMR delineates myocardium with reduced 

perfusion reserve[62] while dobutamine stress allows identification of inducible 

regional wall motion abnormalities to detect ischaemia and hibernation in a similar 

manner to stress echocardiography[63]. An additional strength of CMR is its ability 

to characterise specific tissue properties. Different tissues and tissue states have 

characteristic signal patterns on T1 and T2 weighted imaging, allowing for 

delineation of the extracellular volume, fat and oedema.  The addition of intra-

venous extra-cellular contrast agents allows detection of intra-cardiac thrombus, 

micro-vascular obstruction (MO), scar and fibrosis[64]. Late gadolinium 

enhancement (LGE) images are acquired 10 to 20 minutes after contrast 

administration, when reduced clearance of contrast agent leads to relative signal 

enhancement in tissues with an expanded extracellular space, such as infarct scar 

and replacement fibrosis. LGE thus enables an anatomical delineation of infarct 

extent and shows distinctive patterns of fibrosis in myocarditis, myo-pericarditis 

and cardiomyopathy [65].   

 

Figure 2.2 Patterns of LGE seen in different pathologies 

A. Sub-endocardial infero-lateral enhancement in myocardial infarction. B. 
Anterior mid wall enhancement in dilated cardiomyopathy. C. Lateral 
epicardial and pericardial enhancement in myo-pericarditis. 
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Quantitative analysis of relaxation times with mapping methods is becoming more 

widely used; T1 mapping both before and after contrast administration allows 

estimation of the myocardial extracellular volume (ECV) fraction, which is 

increased in infiltrative and fibrotic processes[66, 67]. 

Magnetic Resonance Spectroscopy (MRS) allows insight into cardiac metabolism 

without invasive measurement or ionising radiation. However this remains a 

research tool and is not used in clinical care or decision making. 

Limitations of CMR include availability, cost and presence of contraindications 

such as implantable devices.  

 

2.3.3 Single Photon Emission Computed Tomography  

Single Photon Emission Computed Tomography (SPECT) allows assessment of 

perfusion, metabolism and, with the addition of image gating, contractile function.  

Thallium SPECT imaging allows identification of myocytes that retain a functional 

Na+/K+ ATPase and are metabolically active. The Na+/K+ ATPase maintains the 

physiological environment within the cell.  Thallium readily crosses this channel 

and is taken up by myocytes in direct proportion to myocardial blood flow. 

Cellular thallium uptake is inhibited by concomitant digoxin administration, but 

does not preclude study interpretation.  On stress thallium SPECT, diminished 

tracer uptake therefore reflects regional perfusion abnormalities as a surrogate of 

myocardial ischaemia[68]. Importantly, Thallium persists in the circulation 

following injection due to its long half-life, and delayed imaging allows the 

identification of hypo-perfused but respiring tissue as a marker of viable 

myocardium. 

Technetium is now the most commonly used tracer in SPECT, primarily due to 

superior imaging characteristics, as well as lower whole body radiation 

exposure[69]. However due to its high binding affinity with myocyte mitochondria 

and shorter half-life (6hrs vs 73hrs) it does not persist in the circulation and 

redistribute in the same manner as Thallium[69]. Techniques have been developed 

to increase initial uptake of technitium into metabolically active hypo-perfused 

myocytes, and diagnostic accuracy for viability is now similar to thallium 

SPECT[70].   

When compared to other imaging modalities SPECT may miss, or overestimate the 

extent, of scar[71].  In addition SPECT reliability may be limited by artefact due to 

gastro-intestinal or breast attenuation which can affect the detection of 

ischaemia[72]. As perfusion is assessed relative to remote normal myocardium, 
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SPECT in common with first pass perfusion CMR, is dependent upon a reference 

area. As a result accuracy may also be limited in balanced ischaemia and left main 

stem disease[73] however it remains a widely used and available technique.   

 

 

Figure 2.3 Inferior wall attenuation artefact on SPECT 

The inferior defect seen on stress SPECT in A) is absent in B), PET imaging, 
suggesting SPECT attenuation artefact. Adapted from Bengel et al,  Cardiac 
Positron Emission Tomography[74]. 

 

2.3.4 Positron Emission Tomography  

Positron Emission Tomography (PET) imaging, whilst less available and accessible 

than SPECT imaging, offers better diagnostic accuracy and higher spatial resolution 

than SPECT. The typical resolution of PET images is between 4 – 7mm, whereas 

SPECT typically has a resolution around 10mm[75]. In addition to myocardial 

perfusion imaging and quantification, PET imaging allows assessment of 

myocardial glucose uptake with the tracer F18-2-deoxy-2-fluro-D-glucose (FDG).   

FDG is taken into myocytes via the same sarcolemmal channel as glucose and 

accumulates intracellularly[75][93]. Tracer signal obtained is therefore proportional 

to metabolically active myocardium. The combination of perfusion and metabolism 

imaging with PET enables high resolution perfusion/metabolism mismatch images 

to be obtained, thus accurately identifying hypo-perfused metabolically active 

myocardium[76].  
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Table 2.1 Assessment of myocardial function, and relative strengths of non-
invasive imaging techniques  

 

Legend: +++ excellent assessment, ++ good assessment (with some 
weaknesses), + not best assessed with this modality, - not assessed with this 
modality 

 

2.3.5 Summary 

In summary, assessment of myocardial viability by echocardiography interrogates 

the functional, contractile reserve of an entire myocardial region, typically reported 

on a segmental basis; CMR allows a similar functional segmental assessment and in 

addition a morphological assessment of non-viable tissue with high spatial detail; 

and with SPECT or PET, assessment of viability is based on metabolic changes of 

non-viable tissue but limited to the entire myocardial extent or at best the endo- 

and epicardial layers. 

  

 Morphology Function Perfusion Metabolic  Scar  

Echo ++ ++ - - + 

CMR +++ +++ ++ - +++ 

SPECT + + ++ + ++ 

PET + + +++ +++ ++ 
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2.4 Taxonomy 

 

Myocardium can be divided broadly into different states of health and perfusion: 

Normal 

Ischaemic 

Acute ischaemia 

Chronic ischaemia 

Stunned  

Hibernating 

Myocardial Infarction 

Myopathic 

 

2.4.1 Normal 

2.4.1.1Definition  

Normal myocardium is metabolically active with normal contractile function at rest 

and exhibits contractile reserve in response to increased oxygen demand, and is by 

definition viable. 

2.4.1.2 Metabolism  

Normal cardiac function, including contraction and ionic regulation, is dependent 

upon ATP metabolism. The majority of ATP consumption occurs in myofibrils 

throughout the cardiac cycle. Further ATP is used to regulate sarcolemmal calcium 

and, at the membrane, Na+/K+ ATPase transporter[77, 78]. The heart consumes 

ATP rapidly, and is dependent upon constant renewal of ATP, which in turn is 

dependent upon creatine phosphate levels. Were ATP production to cease and 

consumption continue unchecked, cardiac stores would be depleted in 

approximately 10 to 15 seconds[77]. There are three main pathways by which ATP 

is synthesised: fatty acid oxidation, ketone body and carbohydrate metabolism. 

Fatty acid oxidation yields the most ATP, however all three pathways share a 

common endpoint of ATP synthesis at the electron train transport[79]. In situations 

of increased metabolic demands, the proportion of ATP derived from carbohydrate 

metabolism increases[78].  
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Figure 2.4 Normal myocyte metabolism 

Taken from Myocardial Substrate Metabolism in the Normal and Failing 
Heart[79]. 

 

2.4.1.3 Histology  

Healthy myocardial tissue is composed of myocytes, conducting tissue, vasculature 

and extra-cellular matrix. Approximately 75% of LV myocardial tissue is cardiac 

myocytes, the remaining 25% is the extracellular matrix(ECM)[80]. The ECM is 

predominantly composed of collagen types I & III. ECM composition is regulated 

by a number of factors, including circulating neuro-hormones and mechanical 

strain[81, 82].  

2.4.1.4 Imaging, Morphology and Function 

The left ventricle (LV) is a conical structure that tapers from base to apex. The 

normal LV wall has a thickness of between 7-11mm in diastole and thickens 

uniformly by at least 50% in systole. In response to increasing systemic oxygen 

demand, heart rate increases and myocardial contraction becomes increasingly 

dynamic. Systolic thickening is quantified on echocardiography using a standard 16 

or 17 segment model with a visual scale[83] (1-7, 1=normal, 2= hypokinetic, 3= 

severely hypokinetic, 4= kinetic, 5= dyskinetic, 6= dyskinetic with scar, 7= 

aneurysmal) or by percentage wall thickening.  

As well as assessing function, it is also possible to assess the constituents of the 

myocardium and the homogeneity of the tissue. By CMR, signal in healthy 

myocardium is uniform on T1 and T2 weighted and contrast enhanced images. 
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Semi-quantitative assessment of the ratio of T2 signal in healthy heart to skeletal 

muscle is <1.9[84].  Quantitative measurement of the T1 signal, as measured by T1 

mapping, shows normal values in narrowly defined ranges[85], but these depend 

on the field strength at which the scanner operates and the pulse-sequence 

used[85]. The ECV, calculated using pre and post contrast T1 mapping, is less 

method dependent and is 26 ± 3% in healthy myocardium[66]. 

 

 

Figure 2.5 Normal SPECT examination 

Left ventricle seen in short axis, vertical long axis and horizontal long axis. 
Adapted from Hasegawa et al [86]. 

 

In healthy myocardium, nuclear techniques of perfusion and metabolism display 

uniform signal throughout the myocardium. Myocardial perfusion may be 

quantified both at rest and hyperaemia, thus allowing calculation of myocardial 

perfusion reserve. By PET normal resting myocardial blood flow is 0.7ml/min/g, 

increasing to 2.75ml/min/g on stress, with a flow reserve of 4.17[87]. Though 

absolute values of myocardial blood flow by PET and CMR correlate poorly, 

derived coronary flow reserve correlates well[88].  

 

2.4.2 Reversible Ischaemia 

2.4.2.1 Definition 

Myocardial ischaemia is a mismatch of oxygen supply and demand that 

precipitates a change from aerobic to anaerobic respiration.   

2.4.2.2 Metabolism 

Ischaemia may either be complete, due to an occlusion of a coronary artery, or 

limited due to epicardial coronary artery stenosis. The degree of ischaemia is also 
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determined by the presence and extent of a collateral circulation that can develop in 

humans with established coronary artery disease.  

Changes in cell metabolism begin within one minute of onset of severe ischaemia. 

Sub-endocardial tissue becomes ischaemic first followed by sub-epicardial 

tissue[89].  Shortly after the onset of severe ischaemia, oxygen present in 

myocardium is consumed and normal oxidative metabolism ceases. At the same 

time, electron transport across cell membranes decreases and myocyte contraction 

becomes markedly impaired.  During this initial phase, anaerobic respiration 

replaces aerobic respiration as the dominant source of ATP, and glycogen replaces 

fatty acids and glucose as the substrate for energy production[77]. Anaerobic 

respiration in this setting provides approximately a quarter of the amount of ATP 

as aerobic metabolism. However due to adverse intra-cellular conditions, including 

falling pH, ATP production at this rate is only sustained for approximately one 

minute before continuing at a much lower rate for up to one hour[77].  

In non-severe ischaemia a degree of aerobic respiration continues, and as a result 

more ATP is produced when compared with anaerobic glycolysis. Furthermore, 

hydrogen ions and lactate that accumulate in severe ischaemia are produced less 

quickly, and ‘washed out’ of still perfused tissue, allowing preservation of a more 

physiological environment.  

Once ischaemia has resolved, recovery of normal function is variable. Regional 

abnormalities of systolic function may persist for up to several days, and 

myocardium that fails to recover normal systolic function immediately is said to be 

‘stunned’[90].  

2.4.2.3 Histology 

Abnormal function of cell membrane channels leads to myocyte oedema shortly 

after onset of ischaemia. In addition to oedema, following short duration of severe 

ischaemia, depletion of glycogen stores and the presence of ‘I-bands’ in myo-fibrils 

are seen on electron microscopy[91] 

2.4.2.4 Imaging, Morphology and Function 

2.4.2.4.1 Acute Ischaemia  

Shortly following the onset of ischaemia, regional systolic function becomes 

impaired and may remain so for days after the ischaemic insult[90]. Transthoracic 

echocardiography is most commonly used to identify the wall motion 

abnormalities associated with acute ischaemia. SPECT and PET are rarely used 

clinically in the setting of acute ischaemia. On CMR, wall motion and thickness can 
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be assessed in a similar fashion to echocardiography and in addition, oedema is 

readily detectable and quantifiable as areas of high signal on T2 weighted 

images[13]. The oedematous zone may be quantified to determine the degree of 

benefit following intervention and delineate the ‘area at risk’.  

2.4.2.4.2 Chronic Ischaemia 

Exercise or dobutamine stress echocardiography allow for detection of ischaemia as 

well as determining its location and extent[92]. Ischaemic myocardium shows 

reduced contractile reserve with regional wall motion abnormalities developing at 

increasing levels of stress. 

 

 

Figure 2.6 Schematic of wall motion abnormalities in ischaemia, hibernation, 
sub-endocardial ischaemia and infarction. 

 

CMR allows detection of ischaemia through assessment of regional systolic 

function and perfusion. Tissue perfusion is assessed using first pass adenosine 

stress CMR as above. Quantitative assessment of perfusion with CMR has a good 

correlation with PET imaging[93] but is less commonly used in clinical practice 

than qualitative assessment.  

SPECT is commonly used in the investigation of chronic ischaemia, and whilst 

image quality on PET is superior to SPECT, low availability limits utility. The 

sensitivity and specificity of SPECT compare well with other non-invasive imaging 

techniques[94], and the whole heart acquisition allows accurate quantification of 

the extent of ischaemia, a factor that may have important prognostic value[95]. 

Image interpretation may be limited by attenuation artefact in the inferior wall and 
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anterior wall in females[96].  In addition to perfusion imaging and LV function, 

transient LV dilation (Transient ischaemic dilation –TID) may be appreciated on 

stress SPECT imaging. TID may either represent true dilation as a result of severe 

coronary disease and stunning, or rather may reflect sub-endocardial defects not 

appreciated on perfusion imaging[97]. In individuals with normal perfusion the 

presence of severe TID marks adverse prognosis [98]. 

 

 

Figure 2.7 Imaging in chronic ischaemia 

A) CMR first pass perfusion demonstrating mid-ventricular anterior and 
septal abnormality. B) SPECT demonstrating the anterior and septal stress 
(top row) abnormality that resolves at rest. C) Angiography in the same 
patient showing severe LAD stenosis. Adapted from Greenwood et al 
Cardiovascular magnetic resonance and single-photon emission computed 
tomography for diagnosis of coronary heart disease (CE-MARC): a 
prospective trial[3]. 

 

PET perfusion imaging allows detection of ischaemia. There are several possible 

tracers for use in PET imaging, however the most commonly used in clinical 

practice is Rubidium-82 due to its relative availability and practicality. In head to 

head studies the theoretical advantages of PET over SPECT have been 

demonstrated[74, 99], and PET perfusion imaging is established as the gold 

standard for the detection of myocardial ischaemia. Further to ischaemia detection 

PET may also measure myocardial blood flow[100], enabling qualitative assessment 

of myocardial blood flow reserve, which correlates strongly with coronary artery 

stenosis severity[101]. 
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2.4.3 Stunning 

2.4.3.1 Definition 

Myocardium is ‘stunned’ when contractile function is depressed following 

transient ischaemia, prior to a full recovery, and having sustained no irreversible 

myocyte damage. The mechanism of sustained systolic dysfunction in stunning is 

incompletely understood. However it is believed that oxygen free radical formation 

and elevated myocardial calcium levels may lead to damage of myocardial proteins 

or the sarcoplasmic reticulum[102]. 

2.4.3.2 Metabolism 

Sub-epicardial and sub-endocardial blood flow normalises quickly following 

restoration of normal coronary flow, however normal myocardial metabolism takes 

time to recover. Metabolic changes seen in transient ischaemia, including fall in 

myocyte ATP, phosphocreatine and pH, take several hours to reverse in stunned 

myocardium[103]. Post ischaemic myocardial oxidative and glucose metabolism 

remain depressed by approximately 20% of normal levels for several hours after an 

ischaemic insult, and take up to one week to recover to near normal levels[104].  

2.4.3.3 Histology  

Histological changes seen in stunned myocardium reflect ischaemia sustained.  In 

common with metabolic change; resolving myocardial oedema, myocardial 

glycogen and ATP depletion[90] may be detected several days later. 

2.4.3.4 Imaging, Morphology and Function 

Systolic function of the affected segments is impaired in stunning. The speed of 

recovery of systolic function is variable and may be related to the duration and 

severity of the ischaemic insult[90, 105, 106]. Abnormalities of diastolic function, 

whether assessed by CMR or tissue Doppler persist beyond systolic 

abnormalities[107] [108]. It is likely that stunning is an underappreciated 

phenomena, abnormalities associated with acute ischaemia may have recovered 

when imaging is performed. Furthermore, in clinical practice the label attached to 

the dysfunctional myocardium will depend upon the time point at which the 

myocardium is assessed, as serial imaging is unlikely to be performed.  

CMR examination demonstrates changes in keeping with ischaemia including high 

signal on T2 weighted images indicative of oedema, as well as regional systolic wall 

motion abnormalities. 
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PET FDG metabolism assessment may demonstrate depressed levels of glucose 

metabolism, but no significant metabolism perfusion mismatching as in hibernation 

are seen[58]. 

 

2.4.4  Myocardial Infarction 

2.4.4.1 Definition  

Myocardial infarction follows sustained ischaemia leading to myocyte necrosis and 

later, subsequent remodelling and fibrosis. 

2.4.4.2 Metabolism  

Necrosis occurs when sustained severe ischaemia leads to irreversible structural 

changes within the myocyte, including mitochondrial swelling and disruption of 

the sacrolemma[91]. In the course of ischaemic injury, necrosis begins in the sub-

endocardium where tissue perfusion is lowest and energy consumption is highest, 

leading to ATP supply exhaustion and accumulation of the by-products of 

glycolysis to accumulate there first. Sub-endocardial infarction commences 

approximately 20 minutes after the onset of ischaemia. Prolonged ischaemia leads 

to increasingly transmural necrosis, which moves as a ‘wave front’ from the 

endocardium to the epicardium[89].  

2.4.4.3 Histology  

Characteristic histological changes occur during myocardial infarction, and evolve 

until the infarcted region has undergone scar replacement. On macroscopic 

examination there are few detectable changes over the first four hours, but from 

four to twelve hours the myocardium becomes mottled. Over the next week the 

infarct centre becomes pale and yellows whilst developing red margins. After this, 

the infarcted myocardium becomes greyer as fibrous scar tissue replaces the 

necrotic infarct[109, 110]. 

 

 

 



- 27 - 

 

Figure 2.8 Histological change following myocardial infarction 

Pathology of Myocardial Infarction, Diagnostic Histopathology 2013. A. Light 
microscopy of wavy mitochondrial fibres and interstitial oedema 4 hours 
postmyocardial infarction. B. Myocardial fibres 24 hours post myocardial 
infarction, myocardial thinning and interstitial infiltration by 
polymorphonuclear leukocytes. C. Granulation tissue 7-10 days post 
infarction. Near complete removal of myocytes. D. Light microscopy 2-3 
weeks after infarction. Subendocardial fibrosis marked by arrowhead, with a 
small area of myocardial fibre preservation between layers of collagen 
deposition. Adapted from Chang et al[111]. 

 

Microscopically, the myocardium undergoes a series of changes responsible for the 

macroscopically appreciable abnormalities. During the initial phase, glycogen 

depletion and oedema, in keeping with severe ischaemia is seen on electron 

microscopy[112]. Between four and twelve hours, oedema, necrosis and intra-

myocardial haemorrhage are seen. From twelve to twenty four hours 

hypereosinophilla, neutrophil infiltration and ongoing necrosis develop. Acute 

injury in myocardial infarction is followed within 24 to 48 hours by the 

disappearance of nuclei and striations, and macrophages remove dead cells at the 

infarct border. Following removal of dead myocytes, granulation tissue and 

collagen deposition begins, eventually leading to the formation of collagen 

scar[113] [114].  

2.4.4.4 Imaging, Morphology and Function 

On echocardiography, wall motion abnormalities develop before ECG changes or 

symptoms following coronary occlusion[115]. As well as regional wall motion 

abnormalities, tissue Doppler systolic velocities decrease rapidly following onset of 

ischaemia[116]. Following transmural infarction, the myocardium is akinetic and as 

time progresses, thins. On stress or exercise there is no improvement in wall 

thickening and there is an absence of contractile reserve[117]. Sub-endocardial 

infarction results in wall motion abnormalities of varying severities, and may be 

differentiated from transmural infarction using peak systolic circumferential strain 

and strain rate on stress echocardiography[118].  
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Similar to echo, CMR demonstrates gross anatomical changes associated with 

infarction including remodelling, wall thinning and regional wall motion 

abnormalities[13]. In addition, CMR imaging can be used to delineate infarct extent, 

indicate the area at risk and detect microvascular and reperfusion injury[119].  T2 

weighted CMR is sensitive to free water content of tissue and in acute MI can be 

used to delineate the myocardial area at risk of ischaemic injury[120]. LGE CMR 

after acute MI displays high signal within the infarcted area due to persistence of 

gadolinium within areas of increased extra-cellular volume and abnormal washout 

kinetics within the infarcted tissue[13]. In animal models, infarct enhancement with 

LGE CMR has been observed within 90 minutes of the onset of ischaemia[121]. 

Over time, infarct expansion is reflected by an expanding area of enhanced 

myocardium. In the acute phase, infarct extent may be overestimated due to 

increased signal and contrast in the oedematous peri-infarct zone[122]. In acute 

myocardial infarction, LGE CMR may show an area of low signal within the 

otherwise high signal infarct zone. This reflects loss of normal capillary function 

due to microvascular obstruction (MO) leading to an absence of gadolinium 

delivery to the centre of the infarct. Extensive MO is associated with no-flow on 

invasive coronary angiography and adverse LV remodelling[123]. Within an area of 

MO, myocardial haemorrhage may occur, which causes low signal on T2 and T2* 

weighted CMR[124]. Haemorrhage represents more severe structural change in the 

setting of acute MI and is also associated with adverse LV remodelling following 

infarction[125]. The combination of the information gained from T2 weighted, early 

gadolinium and late gadolinium images allows measurement of the area at risk (T2 

weighted CMR), infarct size (LGE) and myocardial salvage (difference between 

area at risk and infarct size)[120]. 
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Figure 2.9 CMR study in acute myocardial infarction  

Top row: A) High signal on T2 weighted image demonstrating Infero-lateral 
oedema and ‘area at risk’. B) Sub-endocardial infarction in the same patient 
on LGE. Bottom Row: C) EGE image in a second patient with extensive lateral 
wall hypoenhancement D) LGE confirms infarction and microvascular 
obstruction. 

 

At the time of acute infarction SPECT imaging is not usually performed. However 

in research settings, infarct area as delineated by tracer uptake on SPECT correlates 

well with infarct size on pathological specimens[126]. In chronic infarction, 

metabolically active myocytes are replaced by scar and the absence of an intact 

Na+/K+ ATPase leads to lack of uptake of the SPECT tracer within the region of 

infarction. The limited spatial resolution of SPECT can lead to an under-

appreciation of the extent of infarction because small subendocardial infarction 

may not be detected[127].  

In acute myocardial infarction, FDG PET allows detection of infarction and the 

presence of viable tissue in or adjacent to the infarcted territory. The absence of 

detectable glucose metabolism is associated with irreversible myocardial 
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injury[128]. Myocardial perfusion as measured by PET in acute MI is depressed and 

significantly improves following coronary intervention and may continue to 

improve up to two weeks later[129].  

In the setting of chronic myocardial infarction, concordant reduction in signal from 

both perfusion and metabolism (NH3 and FDG tracers respectively) PET is seen 

and readily appreciated in trans-mural infarction, however in sub-endocardial 

infarction PET may fail to detect small areas of sub-endocardial scar when 

compared to CMR[130].  

 

2.4.5 Hibernating Myocardium 

2.4.5.1 Definition   

Chronically dysfunctional viable myocardium of ischaemic origin that recovers 

systolic function following revascularisation.  The precise processes underlying the 

development of hibernation remain unclear, although several mechanisms have 

been proposed. It is thought that although resting blood flow is normal, coronary 

flow reserves are low[131]. This leads to repeated episodes of ischaemia, and 

myocardial stunning, causing a complex series of physiological and structural 

changes that are characteristic of hibernation.  

2.4.5.2 Metabolism  

There remains debate regarding the metabolic changes that occur in hibernation.  

However, there is some evidence to suggest that glucose uptake and utilisation are 

increased and fatty acid metabolism is decreased in hibernating myocardium[132] 

[133].  

2.4.5.3 Histology 

Hibernating myocardium is macroscopically similar to normal myocardium. 

However, at a microscopic level there are diffuse changes within the myocyte and 

extracellular ultrastructure. All types of collagen are seen to increase markedly in 

the ECM of hibernating segments and are more than twice that found in normal 

myocardium[136] when de-differentiation is severe. Structural changes in the extra-

cellular matrix become more pronounced as duration of hibernation increases[137, 

138].   
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Figure 2.10 Histological change in dysfunctional ischaemic myocardium 

Samples taken prior to revascularisation. Top row, hematoxylin staining: A. 
Preserved myocyte architecture in segment with preserved function. B. 
Expansion of the interstitial space and myocyte contractile depletion in 
hibernating tissue. C. More extensive matrix deposition in a segment that 
displayed persistent dysfunction. Bottom row, Picosirius staining: A. Collagen 
fibres are red within the ECM. B. Increased interstitial fibrosis in hibernating 
myocardium. C. A segment with persistent dysfunction has markedly 
increased collagen deposition. Taken from Frangogiannis[134] 

 

 

Figure 2.11 Abnormal Tissue Doppler in abnormalities in chronically ischaemic 
dysfunctional myocardium 

E’ is related to the degree of interstitial fibrosis, adapted from Shan et al[135]. 

 

Furthermore, there is down-regulation of mitochondria and increased glycogen 

storage within the myocyte when compared to both normal and remote 
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myocardium[136] [133]. These changes reflect alteration of mRNA expression and 

disorganisation of cytoskeletal proteins as a result of cellular de-differentiation. 

2.4.5.4 Imaging, Morphology and Function 

On functional imaging, hibernating myocardium has impaired resting systolic 

function, and will typically be scored as either hypo- or akinetic. Diastolic wall 

thickness is greater than 6mm by CMR[139] or 7mm on trans-thoracic 

echocardiography[140]. With inotropic stimulation, by dobutamine stress echo or 

CMR, hibernating myocardium shows ‘contractile reserve’ or a ‘biphasic response’, 

with an improvement in contractile function on low dose/effort stress prior to 

deteriorating at higher workloads[141]. Low dose stress tissue Doppler 

measurement allows quantitative echocardiographic measurement of systolic 

function: Doppler tissue velocities are significantly higher in hibernating 

myocardium than dysfunctional tissue that does not show improvement in systolic 

function following revascularisation[142, 143].  

CMR examination of potential hibernation allows for accurate assessment of 

diastolic wall thickness and regional wall motion abnormalities.  LGE CMR 

contributes only indirectly to the diagnosis of hibernation. On LGE CMR, 

hibernating myocardium has the same signal characteristics as normal 

myocardium, with signal uniformly nulled. LGE CMR therefore only excludes the 

presence of myocardial infarction as the cause of contractile dysfunction, 

suggesting hibernation as one of several potential causes. Furthermore, absence of 

LGE in dysfunctional segments is highly predictive of functional recovery 

following revascularisation[144]. CMR prediction of contractile recovery can be 

further enhanced by the combined use of cine, LGE and dobutamine stress 

imaging. Hibernating myocardium will show reduced resting function, absence of 

LGE and a biphasic response to dobutamine stress[141]. Finally, myocardial 

perfusion can be assessed and quantified by first pass CMR. Resting myocardial 

blood flow (ml/min/g) is decreased in hibernating myocardium, and is increased 

following successful revascularisation[145], whilst hyperaemic blood flow is 

typically reduced[146].  
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Figure 2.12 Increasing transmurality of LGE predicts lack of response to 
revascularisation in chronically ischaemic dysfunctional myocardium 

Progressive transmurality of scar predicts lack of improvement in systolic 
function following revascularisation.  A. 25% LGE of the inferior wall and 
infer-septum B. 50% LGE in the infero-lateral wall becoming increasingly 
transmural inferiorly. C. 100% LGE of the inferior wall. 

 

 

Figure 2.13 . Perfusion-metabolism mismatching in hibernating myocardium  

A) Short axis. B) Vertical long axis. C) Horizontal long axis. Top row 
demonstrates a stress perfusion defect in the infero-lateral wall. Bottom row 
shows matched metabolism imaging shows preservation of metabolism in the 
same territory indicating potential hibernation. Adapted from Bengel et al, 
Cardiac Positron Emission Tomography[74]. 

 



- 34 - 

Cellular uptake of Thallium and other radiotracers used in SPECT imaging is 

dependent upon a functional Na+/K+ATPase and preserved sarcolemmal 

membrane function[76]. In hibernating myocardium, early acquisition following 

tracer administration will identify a defect, reflecting impaired blood flow on stress. 

On delayed acquisitions, the isotope has redistributed and been taken up by 

metabolically active myocytes, so the defect is reduced. Stress/redistribution 

SPECT thus allows to quantification ischaemia and the extent of potential recovery 

in hibernation assessment[147].  

PET assessment of hibernation is most commonly based on the assessment of 

myocardial glucose uptake with FDG. Tracer signal obtained is proportional to 

metabolically active myocardium and likelihood of recovery may be predicted by 

glucose metabolic rate[148]. In addition, PET allows the detection and 

quantification of myocardial blood flow, which is reduced in hibernation[75]. 

Choice of treatment modality in patients with severe LVSD treatment may be 

improved utilising PET perfusion-metabolism imaging[51].  

2.4.5.5 Hibernation with non-transmural scar 

Hibernation commonly co-exists in the presence of sub-endocardial infarction. The 

likelihood of recovery of systolic function of the hibernating myocardium is 

modified by the presence and extent of infarction. As the transmurality of infarction 

increases, recovery following revascularisation becomes less probable[144]. 

In the setting of partial infarction there is reduced response to dobutamine stress on 

functional imaging. Decreased circumferential strain measured by 

echocardiography further facilitates differentiation of normal myocardium, sub-

endocardial and transmural infarction[149] [150].  

As discussed previously, the spatial resolution of CMR LGE enables the detection 

of small volumes of infarction that may be missed by SPECT or PET. Quantification 

of the LGE allows the anticipated rates of recovery to be predicted: In patients with 

mild LVSD 60% with 1-25% LGE, 42% with 26-50% LGE and only 7% of segments 

with more than 50% enhancement would be expected to have recovered at three 

months[144]. In patients with moderate LVSD (LVEF 38%) expected recovery rates 

are similar (0 LGE:73%, 1-25:56%, 26-50:45%, >50%:5%)[151].  
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2.4.6 Myopathic Myocardium 

2.4.6.1 Definition 

Dysfunctional myocardium of non-ischaemic origin. Myopathy covers a wide range 

of pathologies. This review will focus on dilated cardiomyopathy (DCM) with only 

passing reference to other aetiologies. 

2.4.6.2 Metabolism 

Contraction and normal cardiac function relies upon matching of energy demand 

and consumption. This is turn is regulated by appropriate oxygen supply to 

myocytes, mitochondrial function, ATP transport to the site of energy consumption 

and a reliable feedback system to maintain appropriate metabolic rates. A problem 

at any step can lead to pump insufficiency, and cardiac output that does not match 

the physiological requirement. In patients with mild heart failure secondary to 

idiopathic dilated cardiomyopathy no metabolic substrate changes, or mild fatty 

acid metabolism up-regulation occur[79]. In severe heart failure, cellular 

metabolism changes significantly, with greater glucose and less free fatty acid 

utilisation[152, 153] although there are contradictory data[154]. 

 

 

Figure 2.14 Histological abnormalities in cardiomyopathy  

A) Dilated cardiomyopathy, increased interstitial fibrosis at the blue arrow. B) 
Hypertrophic cardiomyopathy, increased interstitial fibrosis (blue) and 
myocyte disarray. C) Fibro-fatty replacement in ARVC. Taken from[155, 156] 
[157]. 

 

2.4.6.3 Histology  

Histological abnormalities differ depending on the underlying aetiology. A 

reduction of mitochondria in the failing heart is common[79] across the disease 

spectrum.  Differing degrees of myocyte hypertrophy are seen depending upon the 
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aetiology of heart failure. However irrespective of aetiology, a common finding is 

the expansion of the extra-cellular matrix and fibrosis [158]. Extracellular matrix 

formation is influenced by local factors and circulating neuro-hormone levels. 

Activation of the Renin-aldosterone-angiotensin system (RAAS) leads to increased 

collagen synthesis[159]. Collagen type and amount in the myocardial extracellular 

space affects cardiac function. Collagen types I and III are the major structural 

components in the cardiac extracellular matrix, providing both tensile strength and 

elasticity[160].  In the failing heart, collagen synthesis increases, leading to 

accumulation of intercellular collagen, limiting ventricular compliance, myocyte 

function and contributing to both systolic and diastolic dysfunction[161] [162].  

Specific cardiomyopathic processes have characteristic histological abnormalities, 

including myocyte disarray and interstitial fibrosis[163] in hypertrophic 

cardiomyopathy (HCM) and fibro-fatty replacement in arrhythmogenic right 

ventricular cardiomyopathy (ARVC). 

2.4.6.4 Imaging, Morphology & Function 

Diffuse fibrotic processes and reduction in contractile substrate as occur in dilated 

cardiomyopathy result in chamber dilation as well as wall motion and tissue 

relaxation abnormalities.  Functional imaging by echocardiography and CMR 

supplies important information for prognosis and risk stratification including 

ejection fraction and left ventricular end diastolic dimensions [164, 165]. 

Comprehensive structural assessment by echocardiography and CMR may guide 

management and allow diagnosis of the underlying cardiomyopathic process to be 

determined.  For example, it is possible to differentiate between morphologically 

similar cardiomyopathies on echocardiography: Improvement in long axis function 

on stress tissue Doppler allows differentiation between ischaemic and non-

ischaemic cardiomyopathy[166];  In the case of left ventricular hypertrophy, 2D-

strain assessment on echocardiography allows differentiation of HCM and 

hypertensive LV hypertrophy, whilst tissue Doppler enables differentiation of 

HCM and athlete’s heart[167] [168].   

Tissue Doppler imaging of the mitral annulus and mitral inflow velocity provides a 

non-invasive estimate of left atrial pressure[169]. CMR left atrial transit time also 

correlates strongly with LV early diastolic pressure[170], although this is not 

commonly applied in clinical practice.  

In many cardiomyopathies, LGE CMR shows characteristics patterns of 

enhancement, including in ischaemic cardiomyopathy, dilated cardiomyopathy, 

hypertrophic cardiomyopathy and infiltrative processes. The presence and extent of 
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LGE on CMR predicts outcomes in a range of cardiac diseases, including 

DCM[171], HCM [172] and ischaemic heart disease[173].  

T1 mapping and subsequent ECV calculation allows measurement of both diffuse 

fibrotic and infiltrative processes that are unreliably assessed with visual analysis 

alone[174][175]. T2* mapping allows detection and tracking of iron overload 

cardiomyopathy[176]. 

The ability of SPECT alone to accurately differentiate ischaemic from dilated 

cardiomyopathy is uncertain as mild stress perfusion defects are commonly seen 

with both aetiologies[177][178]. The defects seen have mild stress defect severity 

ratios (SDSR >45%), however similar abnormalities may be seen in multi-vessel 

coronary disease precluding the use of SPECT as the sole diagnostic tool in this 

situation. 

Decreased FFA metabolism with increased glucose metabolism is seen on PET 

examination in DCM[152]. Hyperaemic blood flow by PET is lower in DCM than in 

healthy controls, 2.23ml/min/ml vs 4.33ml/min/ml in one report[179] and 

perfusion abnormalities in DCM are progressively worse in more severe heart 

failure[180].   

 

2.5 Clinical Implications 

Different imaging modalities assess different facets of myocardial health and 

disease and are often complementary. An awareness of the principles underlying 

acquisition, and the aspect of myocardial health and pathology assessed is crucial 

in both clinical practice and when considering clinical trial design.  

The detection of ‘normal’ myocardium is straightforward, and can be accomplished 

using any test capable of delivering good quality anatomical images. The most 

appropriate method will vary depending upon patient and institute: In terms of 

practicality, availability and economy this will frequently be echocardiography, and 

is sufficient to exclude all but inducible ischaemia and sub-clinical cardiomyopathy. 

It needs to be noted though, that minor deviations from normal, such as small areas 

of infarction, may be undetected unless high resolution imaging methods such as 

LGE CMR are used. 

Ischaemia detection or perfusion assessment may be performed using either 

stress/exercise echo/CMR, CMR first pass perfusion or nuclear imaging, and all 

are included in current practice guidelines[181]. SPECT is the mostly widely used 

modality worldwide, and PET remains the gold standard, however availability of 
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PET is limited. In some patients it may be desirable to exclude valvular disease or 

cardiomyopathy making DSE or CMR the most appropriate choice of test. 

To detect true ‘hibernating’ myocardium, a test that assesses the metabolic activity 

of myocytes must be used i.e. SPECT or PET. However, in clinical practice the 

question most often posed relates to the likelihood of contractile recovery in a given 

coronary territory, or the potential for LV reverse remodelling following 

revascularisation. For this purpose, any of the non-invasive imaging techniques 

covered may be selected, as long as the limitations of the chosen technique are 

recognised in clinical decision making.  

Partial infarction is best appreciated by CMR examination, with the added benefit 

that systolic abnormalities not associated with coronary disease may be explained 

by characteristic abnormalities of cardiomyopathy on LGE CMR.  

Where infarction and cardiomyopathy co-exist, multi-modality imaging may be 

necessary, often including coronary imaging. Tissue Doppler velocities have been 

shown to differ in DCM and ischaemic heart disease, and this may allow 

discrimination of causes of LVSD, but use is not widespread in clinical practice.  

LGE CMR allows the extent of scarring due to either pathology to be determined, 

but not the benefit of any specific therapy.  

Mild perfusion defects  are common in DCM as discussed above. SPECT, PET or 

CMR first pass perfusion in combination with coronary angiography may facilitate 

targeted revascularisation if indicated, and potentially avoid unnecessary 

revascularisation. 

 

2.6 Conclusion 

Consistent adoption of standard nomenclature in clinical trials will improve the 

clarity of the literature, and simplify decision making regardless of imaging 

modality employed. 

 

 

 

 

 

  



- 39 - 

Chapter 3 

Predictive Power of Late Gadolinium Enhancement for 

Myocardial Recovery in Chronic Ischaemic Heart Failure: A 

HEART sub study 

3.1  Abstract 

3.1.1 Objectives 

To assess the predictive power of LGE for myocardial recovery in chronic severe 

ischaemic cardiomyopathy undergoing revascularisation as part of a clinical trial.  

3.1.2  Background 

The amount of myocardial scar measured by late gadolinium enhancement (LGE) 

cardiovascular magnetic resonance (CMR) imaging predicts regional recovery in 

wall motion following revascularisation. Previous studies have been conducted in 

patients with a relatively recent myocardial insult and relatively preserved left 

ventricular (LV) function 

3.1.3 Methods 

Twenty two patients with severe LV impairment of ischaemic origin were enrolled 

as a sub-study of a trial that randomly assigned patients to revascularisation or not 

in addition to guideline-indicated pharmacological therapy. Patients underwent a 

CMR study at baseline and six months. Scans were qualitatively and quantitatively 

assessed for wall motion, rest/stress myocardial perfusion and LGE. 

3.1.4 Results 

The median duration of heart failure since diagnosis was 13 (IQR 5 to 21) months. 

Patients had severe LV dilatation (EDV 280±77ml) and reduction in LV ejection 

fraction (29±10%). The percentage scar burden by LGE was 17±9%. Patient 

characteristics of those undergoing revascularisation (n=7) or not (n=14) were 

similar. Myocardial Perfusion Reserve Index (MPRI) improved following 

revascularisation (MPRI 1.17 vs. 1.57, p <0.0001) but not following medical therapy 

(1.39 vs. 1.32, p=0.54). However, LVEF improved in patients whether or not they 

had revascularisation.  In the revascularisation group, 14% of dysfunctional 

segments with LGE <25% and 22% of dysfunctional segments with LGE <50% had 

improved contractile function. However, the transmural extent of LGE did not 

predict contractile recovery following revascularisation or pharmacological therapy 

(p=0.19, p=0.42). LVEDV improved overall ((280±77 to 269±83 ml) p=0.05)); 

improvement was associated with heart failure duration (p=0.04). 
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2.1.5 Conclusions 

In patients with chronic severe LV impairment of ischaemic origin, duration of 

heart failure is a better predictor of recovery than transmural extent of LGE, 

following medical therapy or successful revascularisation. This suggests that the 

extent of myocardial remodelling is more important for LV recovery than the 

presence and extent of prior infarction alone and that LGE should not be the sole 

determinant of treatment method in severe LVSD of ischaemic origin. 
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3.2 Introduction  

A series of trials have demonstrated the benefits of pharmacological [39-41, 43, 44, 

46]  and device therapy[39-41, 43, 44, 46, 48, 182, 183]  in appropriately selected 

patients with chronic heart failure secondary to LVSD. The benefit of 

revascularisation in patients with LVSD associated with an acute coronary 

syndrome has also been demonstrated[184, 185], but the benefit of revascularisation 

for chronic stable heart failure has not[12].  

Early trials of revascularisation for heart failure selected patients solely on the basis 

of coronary anatomy and systolic function[186], whereas more recent trials have 

included assessment of myocardial viability and scar[49, 95]. The reference 

standard for measurement of myocardial infarction and scar is late gadolinium 

enhancement (LGE) cardiovascular magnetic resonance (CMR) imaging. In 

observational studies, the transmural extent of LGE has predicted the recovery of 

contractile function and regional wall improvement following revascularisation but 

some of these studies have enrolled patients shortly after an ischaemic insult[144]. 

The ability of LGE to predict recovery in patients with chronic, severe, ischaemic 

cardiomyopathy and whether revascularisation adds to the benefits of 

pharmacological therapy is unknown. CMR can also be used to assess the effect of 

revascularisation on myocardial blood flow that may explain the success or failure 

of the procedure.  

This study investigated the relationship between the extent of LGE and myocardial 

recovery in patients with long-standing severe ischaemic cardiomyopathy treated 

either pharmacologically alone or with additional revascularisation.  

 

3.3 Methods 

Twenty-two patients were recruited from a multi-centre randomised controlled 

study (HEART-UK[50]) comparing best medical treatment (ACE inhibitor, beta-

blocker and aldosterone antagonist) to best medical therapy plus revascularisation 

for patients with chronic heart failure and left ventricular systolic dysfunction 

secondary to ischaemic heart disease but with little or no angina.    

Revascularisation was by whichever conventional means (i.e. percutaneous 

coronary intervention or coronary artery bypass grafting) on which the attending 

cardiologist and cardiac surgeon reached consensus. Patients were entered into the 

clinical trial on an intention to treat basis and this CMR study was a separate sub-

study.  

Ethical approval was obtained for the CMR study from participating regional sites 

and all patients gave written informed consent prior to inclusion.  
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3.3.1 Inclusion Criteria 

Patients who fulfilled the following criteria were included; a) chronic heart failure 

for at least 6 weeks; b) treated with diuretics c) left ventricular ejection fraction of 

35% or less on echocardiography, nuclear scintigraphy or left ventriculogram and 

coronary artery disease as the cause of left ventricular dysfunction; d) at least 5 of 

17 segments that showed contractile dysfunction but were viable as assessed by 

either stress echocardiography or nuclear myocardial perfusion scanning.  

 

3.3.2 Exclusion Criteria 

Contraindications included patients who were not candidates for bypass surgery 

because of frailty or serious co-morbidity; unstable angina, myocardial infarction or 

stroke within the preceding two months or patients being considered for 

revascularisation for the relief of angina or valve surgery. In addition to these 

criteria, other contra-indications for the sub-study were a history of airways disease 

or conduction abnormalities precluding pharmacological stressing with adenosine 

and/or any contraindication to CMR scanning. 

 

3.3.3 CMR Scanning Protocol 

Recruited patients underwent two CMR examinations on a 1.5 T scanner (Philips 

Intera CV, Philips Medical Systems, Best, The Netherlands), equipped with a 5-

element cardiac synergy surface coil and vectorcardiogram gating. The first scan 

was performed at baseline and the second 6 months after receiving assigned 

therapy. Left ventricular function was assessed via contiguous multiple slice short 

axis cines using a steady state free precession sequence. Rest and stress myocardial 

perfusion imaging was performed using a saturation recovery fast gradient echo 

sequence in conjunction with SENSitivity Encoding (SENSE) parallel imaging (TR 

2.8, TE 1.4, Flip angle 55o. 10-14 slices covering the entire left ventricle: slice 

thickness 6mm, 4mm inter-slice gap, acquired resolution of 1.88*2.21*10mm3 

reconstructed to 1.88*14.88*10mm3 ). A bolus of dimeglumine gadopentetate 

(Magnevist, Schering AG, Berlin, Germany) contrast medium was rapidly injected 

by a power injector into an antecubital vein via an 18 gauge peripheral cannula at a 

dose of 0.05 mmol/kg, followed by a flush of 20 ml normal saline for rest imaging; 

a second injection of 0.05 mmol/kg gadolinium was repeated after a 15 minute 

interval at point of maximum vasodilator stress during continuous intravenous 

adenosine infusion (4 minutes into a six minute infusion). An inversion recovery 

segmented k-space T1-weighted spoiled gradient echo sequence with a non-

selective inversion recovery pre-pulse and trigger delay set for acquisition in mid 
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diastole was used for LGE imaging (6 to 8 slices to cover the entire LV. TR7.5ms, TE 

3.8ms, flip angle 15°, TI adjusted to achieve optimal suppression of normal 

myocardium).  

 

3.3.4 CMR Analysis 

All analyses were performed by a single experienced observer blinded to all clinical 

data (PS). Left ventricular volumes, mass and ejection fraction were calculated from 

the short-axis data sets, using a disc-summation method and commercially 

available post-processing software (Mass 5.0, Medis, Leiden, The Netherlands). All 

subsequent analysis was on a segmental basis using a 16 segment modified version 

(apical segment not included) of the American Heart Association model [83] for 

tomographic imaging, with representative matching basal, mid and apical slices 

being selected from the short axis cine and LGE data sets.  

Combined wall thickening and wall motion for each segment was graded visually 

as follows: 0 - normal; 1 – mild/moderate hypokinesia; 2 - severe hypokinesia; 3 - 

akinesia or 4 – dyskinesia, and a left ventricular wall motion index subsequently 

calculated. An improvement of segmental function was defined as an increase in 

systolic wall motion of at least one grade on follow-up, with deterioration defined 

as the converse. On LGE images, the extent of hyper-enhanced tissue within each 

segment was measured and the percentage of hyper-enhancing myocardium 

calculated for the left ventricle as a whole. In addition, the transmural extent of 

hyper-enhancement was graded on a 5 point scale: 0 - none; 1 – 1-25 % thickness of 

the myocardial segment, 2 – 26-50 %, 3 – 51-75 %, and 4 - 76-100 % . Semi-

quantitative assessments of myocardial perfusion for each segment on initial and 

follow up scan were performed on separate dedicated software (View Forum, 

Philips Medical Systems, Best, The Netherlands). The upslope of first pass 

perfusion curves created from plots of changes in myocardial signal intensity over 

time at rest and hyperaemic stress were calculated using a five point linear fit. 

These were corrected for baseline myocardial signal intensity pre-contrast and 

arterial input as derived by blood pool signal intensity within the equivalent slice. 

The corrected upslope for stress was divided by the value for rest and the result 

expressed as a myocardial perfusion reserve index (MPRI).  

3.3.5 Statistical Analysis 

All data are presented as mean +/- SD (continuous) or median (IQR). Normality 

was determined by the Shapiro-Wilks test. The student t-test was used for 

continuous variables and the Χ2 test for categorical comparisons. Changes over time 

were assessed for differences between, and within, groups by paired t-test. Data 
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was processed by patient or segment as stated. Two sided significance of p < 0.05 

was considered statistically significant. All statistical analysis was performed using 

SPSS v20, IBM, Chicago, Illinois, USA. 

 

3.4 Results 

3.4.1 Baseline characteristics 

One of the 22 recruited patients received an implantable cardio-defibrillator 

following intervention and was excluded from analysis. Characteristics of the 21 

patients in the final analysis are summarized in table 3.1 and 3.2. Patients had 

severe heart failure with a mean LV EDV of 280 ± 77ml, and mean LVEF of 29 ± 

10%. Mean time from diagnosis of heart failure was 16 ± 17 months, time between 

baseline and follow-up scans was 216 ± 62days. 

Of the 21 patients, 14 were randomised to the conservative strategy and seven to 

revascularization. Five patients underwent CABG, with a mean of three grafts, and 

two underwent percutaneous coronary intervention, both for two vessel disease. 

There were no significant differences in patient characteristics between the two 

treatment groups at baseline. Time between baseline and follow-up scans was 

shorter in the medical arm at 186 days (174-196) than in the revascularisation arm, 

at 274 days (175-373). Time from revascularisation to scan is not reported. 
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Table 3.1 Subject characteristics. 

  

 All patients 

(n=21) 

Revascularisation 

(n=7) 

Conservative 

Strategy 

(n=14) 

P  

 

Age (years) 64 ± 8 60 ± 5 66 ± 9 0.14 

Male gender 19 7 12 0.47 

BMI (Kg/m2) 28.7 ± 3.0 29.4 ± 2.2 28.3 ± 3.3 0.45 

Ex-smoker or current 

smoker 

13 6 7 0.11 

Diabetes 7 3 4 0.51 

Hypercholesterolaemia 15 6 9 0.31 

Family History 17 5 12 0.43 

Atrial fibrillation 8 0 8 0.01 

NYHA Classification     

1 3 1 2 

2 14 4 10 

3 4 2 2 

4 0 0 0 

Severe Symptoms 

(>NYHA III) 

4 2 2 0.43 

Time since HF Diagnosis 

(months) 

13 (5,21) 22.5 (16.5,40.5) 9 (2,14) 0.01 

Pre-LVEDV (ml) 280 ± 77 320 ± 75 261 ± 73 0.10 

LVEF (%) 29 ± 10 28 ± 13 29 ± 9 0.73 

Left Ventricular Wall 

Motion Index (LVWMI) 

2.0 ± 0.5 2.0 ± 0.7 2.0 ± 0.4 0.83 

%LV mass displaying LGE 17.6 ± 9.3 19.5 ± 11.4 16.7 ± 8.2 0.53 
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Table 3.2 Study subject medication at enrolment & completion. 

 

 All (n=21) Revascularisation (n=7) Conservative (n=14) 

Enrolment End Enrolment End Enrolment End 

β-blocker 18 20 6 6 12 14 

ACEi / ARB 17 20 6 6 11 14 

AA 2 5 0 1 2 4 

Digoxin 4 4 1 1 3 3 

Amiodarone 0 1 0 0 0 1 

Statin 14 14 5 5 9 9 

ACEi/ARB = Angiotensin converting enzyme inhibitor/angiotensin receptor 
blocker; AA = aldosterone antagonist 

 

Table 3.3 Segmental pre-treatment CMR findings by study group. 

 

 

Transmural extent LGE (%) 

All  

(n=336) 

Revascularisation 

(n=112) 

Medical  

(n=224) 

 

P 

 0 135 (40%) 46 (41%) 89 (40%)  

 

0.82 

 1-25 51 (15%) 19 (17%) 34 (15%) 

 26-50 60 (18%) 19 (17%) 41 (18) 

 51-75 52 (16%) 20 (18%) 32 (14%) 

 76-100 38 (11%) 10 (9%) 28 (13%) 

Segmental Function     

 Normal 24 (1%) 11 (10%) 13 (6%)  

 

0.41 

 Hypokinetic 90 (27%) 24 (21%) 66 (30%) 

 Akinetic 96 (29%) 35 (31%) 61 (27%) 

 Dyskinetic or 

aneurysmal 

126 (38%) 42 (38%) 84 (38%) 
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3.4.2 Segmental analysis 

3.4.2.1 Late Gadolinium Enhancement 

For the final analysis, 336 myocardial segments were available. Contractile function 

was abnormal in 93% of all segments at enrolment. The severity of contractile 

abnormalities did not differ between groups (Table 3.3). Pre intervention regional 

wall motion correlated strongly with extent of LGE (Beta coefficient 0.892, p<0.01).  

The presence and degree of functional improvement from baseline to follow up was 

poorly predicted by the extent of LGE. Improvement in segmental contractile 

function relative to transmurality of LGE is shown in figure 1.  

 

 

Figure 3.1 Change in segmental function by transmural extent of LGE. 

A negative value indicates improvement in segmental function on the 
previously defined scale. 

 

Overall lower extent of transmurality of LGE did not predict recovery.  Pre and 

post intervention LGE did not differ significantly and was similar between groups 

(p=0.59).  

Overall, 20% of dysfunctional segments with LGE <25% improved, and 22% with 

LGE <50% improved systolic thickening by at least one grade (Table 3.4). 

Improvement was similar in the revascularised and medical therapy groups (Tables 

3.5 and 3.6).   
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Table 3.4 Change in segmental function overall (all segments) following 
intervention. 

Negative change in wall motion score indicates segmental improvement 
(P=0.214) 

 % Transmural Extent of LGE 

Change in wall motion score 0 1-25 26-50 51-75 76-100 

-3 1 0 0 0 0 

-2 1 3 4 0 0 

-1 21 12 11 11 7 

0 82 30 38 31 29 

1 26 6 7 9 2 

2 4 0 0 1 0 

 

Table 3.5 Revascularisation group only: Change in segmental function following 
intervention (P=0.197). 

 % Transmural Extent of LGE 

Change in wall motion score 0 1-25 26-50 51-75 76-100 

-3 1 0 0 0 0 

-2 0 1 2 0 0 

-1 4 6 2 4 4 

0 33 9 13 13 6 

1 8 1 2 3 0 

2 0 0 0 0 0 

 

Table 3.6 Medical treatment group: Change in segmental function following 
intervention (P=0.413). 

 % Transmural Extent of LGE 

Change in wall motion score 0 1-25 26-50 51-75 76-100 

-3 0 0 0 0 0 

-2 1 2 2 0 0 

-1 17 6 9 7 3 

0 49 21 25 18 23 

1 18 5 5 6 2 

2 4 0 0 1 0 
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3.4.2.2 Myocardial Perfusion Reserve 

It was not possible to calculate MPRIs in 22 segments that had either full thickness 

or apical infarcts with marked wall thinning. MPRI improved following 

revascularisation (1.17 vs. 1.57, p <0.0001) but not following medical treatment (1.39 

vs. 1.32, p=0.54), see Figure 2. There was no correlation between improvement in 

segmental function and MPRI in either arm. 

 

 

Figure 3.2 Change in myocardial perfusion reserve following revascularisation  

 

3.4.3 Per Patient Analysis 

Following intervention, LVEDV decreased by 12 ± 25ml overall. Improvement was 

seen in 13 patients, 2 of 7 in the revascularisation and 11 of 14 in the medical 

therapy arm (p=0.03). EDV decreased significantly following medical therapy (261 

± 73ml to 244 ± 74ml, p=0.03), but not following revascularisation (320 ± 28ml to 318 

± 32ml, p=0.87). LVEF did not change following treatment, and no difference was 

seen between groups (p=0.87) (table 3.7).  Reduction in LVEDV was associated with 

the duration of heart failure in the entire study group (p=0.04) (Figure 3.3). 
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Table 3.7 LV function and remodelling following intervention 

 

 

 

 

Figure 3.3 LV remodelling over study period across entire study group by heart 
failure duration (P=0.04) 

 

3.5 Discussion 

Dysfunctional myocardium with LGE <50% is generally considered to be ‘viable’ 

and expected to recover contractile function following revascularisation. Previous 

series have reported rates of contractile recovery of 60 to 78% in patients with no or 

limited LGE[144]. However, in these studies overall left ventricular systolic 

function was not severely impaired[144, 187], relatively few segments were 

dysfunctional, and time from to insult to revascularisation was short[144].  

 All patients 

(n=21) 

Revascularisation 

(n=7) 

Medical 

(n=14) 

 

P 

LVEF post treatment 29 ± 10% 28 ± 14% 29 ± 8% 0.82 

LVEF improved 9 3 6 1.0 

Change in LVEF % 0 ± 7 0 ± 10 % 0.3 ± 10.4 0.87 

LVEDV after treatment (ml) 269 ± 84 318± 84 244 ± 74 0.05 

LVEDV decreased 13 2 11 0.03 

Change in LVEDV  (ml)  -12 ± 25 -2 ± 24 -25± 44 0.2 
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In contrast, patients in this study had a longstanding diagnosis of ischaemic 

cardiomyopathy with widespread contractile dysfunction and severely impaired 

LVEF. Data for prediction of recovery of function in long-standing ischaemia and 

contractile dysfunction are sparse. A recent report suggested that in the absence of 

extensive infarction severely remodelled myocardium may recover systolic 

function following revascularisation[18]. 

In this population, functional recovery was much lower than in previous reports, 

with only 23/162 (14%) of dysfunctional segments with LGE <25% improving at 

follow-up. This was irrespective of whether patients were treated 

pharmacologically or with revascularisation.  

The likely cause for the reduced functional recovery in patients undergoing 

revascularisation in this study was the long duration of ischaemia and its severity. 

Chronic ‘hibernation’ leads to changes in myocyte metabolism and the extra-

cellular matrix[133, 136]. These changes become more severe with prolonged 

ischaemic injury and duration of hibernation[137, 188]. Delayed improvement in 

contractile function has previously been shown to be associated with greater 

duration of hibernation[132]. The low rate of recovery seen in this population is 

therefore likely to be due to established changes in the extra-cellular matrix and 

cellular metabolism and to cardiac myocyte de-differentiation. 

The duration of hibernation and time to recover systolic function correlate with 

recovery times following revascularisation ranging for days to months. In previous 

studies, follow up imaging of patients was performed at approximately 3[144]  to 6 

months[187] . In this study patients were scanned 186 ±7 days after commencing 

medical therapy and 274 ± 79 days after revascularisation; though the follow-up 

duration was thus longer than in many previous reports, it may still have been 

insufficient to detect functional recovery in a cohort of patients with long-standing 

and severe ischaemic heart failure.  

This study is too small to derive definitive comparisons between medical treatment 

and revascularisation. However, several observations can be made. Segmental 

recovery was seen in both medical and revascularisation groups. Contemporary 

medical therapy with ACE inhibitor & β-blockers are known to improve LV 

function in heart failure, especially if the LV is not severely dilated [189, 190]. 

However, on average, LV ejection fraction did not improve significantly in either 

group. This could reflect the small number of patients. Most patients had received 

pharmacological treatment for a long time prior to the study and might have 

already received any expected benefit.  However, LVEDV appeared to improve in 

the conservatively managed group compared to those who were revascularised. 

This could reflect myocardial damage caused by the revascularisation procedure. 
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Differences in the severity of LV dilatation and duration of disease between the two 

groups and a chance statistical difference due to multiple comparisons provide 

alternative explanations. Ultimately, in a study of this size, small differences should 

not be over-interpreted. However, this is a randomized study suggesting that 

revascularisation does not cause large, consistent benefits on LV function in 

patients with chronic ischaemic cardiomyopathy and is therefore an important 

finding.   

This study also showed no correlation between the transmural extent of LGE and 

recovery following revascularisation, despite clear improvement in MPRI 

demonstrating successful revascularisation. Previous studies have not measured 

perfusion alongside LGE and our study provides the first evidence that improved 

flow does not necessarily lead to improved function when assessed at six months. 

The lack of functional improvement despite improved perfusion suggests 

established structural and metabolic change within hibernating myocardium as 

described above that are not reversible within the follow-up period. 

 

3.6 Limitations  

The main limitation of this study is its sample size and it therefore has to be 

considered as hypothesis-generating. However, it does show that improved LV 

function with revascularisation is not universal, consistent or to be taken for 

granted. Larger studies should test the ability of LGE to predict more modest or 

erratic recovery in function. Such studies might also use T1 mapping and extra 

cellular volume mapping that may better predict the likelihood of recovery 

following revascularisation in patients with ischaemic cardiomyopathy who do not 

have visually detectable LGE. 

 

3.7 Conclusions 

In patients with longstanding severe LV impairment of ischaemic origin, duration 

of heart failure is a better predictor of global functional recovery than transmural 

extent of LGE, following medical therapy or revascularisation. This suggests that 

the transmurality of LGE, commonly used as the primary basis of revascularisation 

decision making, may fail to capture the extent of remodelling and the potential for 

recovery in severe longstanding LVSD. 

Further studies should be performed that are powered to detect indices that predict 

response following revascularisation in severe LVSD, possibly using CMR 

techniques better at assessing diffuse myocardial change, including ECV 

calculation with T1 mapping. More importantly, more randomised trials should be 
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conducted to show whether the benefits of revascularisation justify the risk and 

cost even in carefully selected patients with heart failure. 
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Chapter 4 

The Effect of Changes to MOLLI Scheme on T1 Mapping and 

Extra Cellular Volume Calculation in Healthy Volunteers with 

3 Tesla Cardiovascular Magnetic Resonance Imaging 

4.1 Abstract 

4.1.1 Objectives 

To establish the variation of native T1 and extracellular volume in healthy 

volunteers with different MOLLI schemes 

4.1.2 Background 

Diffuse myocardial fibrosis may be quantified with magnetic resonance by 

calculating extra-cellular volume (ECV) fraction from native and post-contrast T1 

values. The ideal MOLLI (Modified Look-Locker Inversion Recovery) sequence for 

deriving T1 values has not been determined. 

4.1.3 Methods 

12 phantom gels were studied with inversion recovery spin echo MR at 3.0 Tesla to 

determine reference T1. Gels were then scanned with 6 MOLLI sequences 

(3s)3b(3s)5b; 4b(3s)3b(3s)2b; 5b(3s)3b with flip angles of both 35° and 50° at a range 

of heart rates(HR).  In 10 healthy volunteers MOLLI studies were performed on two 

separate occasions. Mid ventricular native and post contrast T1 was measured and 

ECV (%) calculated.  

4.1.4 Results 

In phantoms, the co-efficient of variability at simulated HR (40-100) with a flip 

angle of 35⁰ ranged from 6.77 to 9.55, and at 50⁰ from 7.71 to 11.10. T1 was under-

estimated by all MOLLI acquisitions. Error was greatest with longer T1, and 

increased as heart rate increased. The 10 volunteers had normal MR studies. Native 

T1 time was similar for all acquisitions but highest with the 5b(3s)3b 35° scheme 

(1189.1ms ± 33.46). Interstudy reproducibility was similar for all MOLLIs.  

4.1.5 Conclusion 

The 5b(3s)3b MOLLI scheme agreed best with reference T1, without statistical 

difference between the six schemes. The shorter breath-hold time of 5b(3s)3b 

scheme may be preferable in clinical studies and warrants further investigation. 
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4.2 Introduction 

The value of detection of focal myocardial scar that characterises a number of 

disease processes using late gadolinium enhancement (LGE) imaging is well 

recognised[13, 65]. However this technique relies upon contrast between healthy 

and diseased myocardium and as a result it is limited in the detection of diffuse 

myocardial disease processes characterised by diffuse fibrosis or infiltration.  

Longitudinal relaxation time (T1) mapping allows quantitative myocardial tissue 

characterisation; thereby enabling detection of diffuse myocardial disease processes 

that have previously only been detectable with cardiac biopsy[66, 67]. T1 

measurement before and after the administration of gadolinium based contrast 

agent (GBCA) allows the relative volumes of the intra-cellular and extra-cellular 

components of myocardium to be quantified, as long as equilibrium between the 

compartments has been reached. 

With increasing use in clinical practice and medical research, it is important that 

accurate, precise and reproducible methods for T1 mapping are employed[191].  

Values obtained are dependent upon numerous scanner and pulse sequence 

parameters including flip angle, acquisition pulse sequence and the interval 

between inversions. The potential advantages of various Modified Look-Locker 

Inversion Recovery (MOLLI) have been investigated by simulation and in phantom 

studies [192, 193], however direct comparison in vivo has not been made between 

proposed sequences.  

Patient factors, including heart rate and breath-hold duration, will affect the 

acquisition both with reference to tissue recovery and image quality. In this study 

we aimed to determine the reproducibility and accuracy of three published MOLLI 

acquisition schemes[191] utilising two different flip angles in phantom gels and 

healthy volunteers.   

 

4.3 Methods 

All studies were performed at a single centre equipped with a 3.0T Philips Achieva 

TX research MRI scanner using a 32-channel cardiac phased array receiver coil. 

Volunteer scanning was approved by the local ethics committee and all subjects 

gave written informed consent.   

 

4.3.1 MOLLI Schemes 

ECG triggered MOLLI acquisitions with different number of images were acquired 

according to three predefined schemes. Pause duration was defined in seconds (s), 
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acquisition duration by beats (b). Scan parameters were: FOV (typically 

320*400mm, but modified to minimise artefact as needed), voxel size 

1.98x1.98x10mm³ (reconstructed to 1.25x1.25mm), single-shot, sensitivity encoding 

(SENSE) factor 2, partial echo factor 0.85, water fat shift 0.4, trigger delay set for 

end-diastole, TFE prepulse delay 350ms. Acquisition duration was 170-185ms 

dependent upon FOV. TI values for the images acquired directly after inversion are 

spaced equally from the shortest possible value (FOV dependent) for the first 

inversion to 350ms for the final inversion to representatively sample magnetisation 

recovery. Images are then acquired at the same cardiac phase in the subsequent 

images.  

The schemes employed were: 3b(3s)3b(3s)5b; 5b(3s)3b; 4b(3s)2b(3s)1b 

All three schemes were acquired with flip angles of 50° and 35°. A flip angle of 50° 

was chosen as a value frequently used in the existing literature [19].  The value of 

35° was chosen to maximise signal from native myocardium at 3T according to the 

formula: 

αSImax = cos-1* ((T1-T2)/(T1+T2)) 

 

If myocardial native T1 is assumed to be ≈1200ms, a flip of angle of approximately 

35⁰ results in maximal signal.  

 

4.3.2 Phantom Scanning 

A total of 12 agarose gel phantoms with known T2 time were studied. T2 values 

were obtained using a multiple-spin-echo sequence with TR = 5000ms and TE 

ranging from 30-240ms in 30ms increments. A mono-exponential function was 

fitted on a voxel-by-voxel basis to estimate T2, and mean values calculated for each 

gel. Reference T1 relaxation times of each phantom were determined using 

standard inversion recovery spin echo pulse sequences (IRSE) using varying 

inversion times: 50, 100, 150, 200, 300, 500, 750, 1000, 1250, 1500, 2500, 4000ms. TR 

10ms, TE 12ms, slice thickness 10mm and acquired resolution 1.5 x 1.5mm2. Having 

determined reference T1, gels were studied using MOLLI schemes at a range of 

heart rates. A physiology simulator set to heart rates of 40, 60, 80, 100 beats per 

minute was used to trigger the MOLLI scans.  
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4.3.3 Volunteer Scanning 

10 healthy volunteers were recruited to undergo MR studies. Subjects were 

excluded if they had a history of cardiac disease, hypertension, renal impairment, 

diabetes or contra-indication to MR. Volunteers underwent two studies, separated 

by a mean interval of 17.1 ± 14.2 days.  

The cardiac long-axis was located as per standard practice and a stack of left-

ventricular (LV) short axis images acquired using an ECG gated balanced Steady 

State Free Procession (bSSFP) method (echo time (TE) 1.3ms; repetition time (TR) 

2.6ms; flip angle 40°, spatial resolution 1.6×2.0×10 mm, 40 phases per cardiac cycle). 

GBCA was administered as two split doses as part of a stress perfusion MR study. 

Adenosine was administered at 140mcg/kg/min-1 via a cannula sited in the ante-

cubital fossa for a minimum of three minutes and until maximal vasodilation 

occurred. 0.075mmol/Kg Gadovist (Bayer Schering Pharma, Berlin-Wedding, 

Germany) boluses were separated by twelve minutes, followed on each occasion by 

a 20ml saline flush. Post contrast MOLLIs were performed 15 minutes after the 

second bolus of Gadolinium.  

LGE imaging was performed at seven to ten minutes following final contrast dose 

(inversion recovery-prepared T1 weighted gradient echo, inversion time according 

to Look-Locker scout, TR/TE/flip angle 3.7ms/2.0ms/25°, acquired spatial 

resolution 1.54×1.75×10 mm) as a contiguous stack with no gap, with complete 

coverage of the left and right ventricles. 

 

4.3.4 Image Analysis 

Left ventricular volumes and ejection fraction were analysed from bSSFP cine 

images using standard analysis methods. Phantom and volunteer MOLLI study 

images were saved as Digital Imaging and Communications in Medicine (DICOM) 

format. T1 values were calculated from source images using manual motion 

correction on CMR42 (Circle Cardiovascular Imaging Inc, Calgary, Alberta, 

Canada). In phantoms a region of interest (ROI) was drawn in the centre of the gel 

away from any ringing artefact.  

In volunteer MOLLI data sets, a narrow ROI in the infero-septum of the mid-

ventricular slice was drawn as per Rogers et al[194] to replicate application of T1 

mapping in clinical practice.  Furthermore, segmental analysis was performed 

using a narrow ROI in each segment of the mid LV slice in accordance with the 

AHA model[195]. Conservative ROIs were drawn in each segment taking care to 

avoid artefact induced by epicardial vessels. Mis-registration was avoided by 
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visually comparing left and right ventricular anatomical features (e.g. papillary 

muscles, trabeculations), and any mis-registered images were discarded. The blood 

pool contour was drawn in the centre of the LV cavity on the same slice away from 

any papillary muscle. Extracellular volume fraction was calculated using the 

formula:  

𝐸𝐶𝑉 = (1 − 𝐻𝑐𝑡)
𝑅1(𝑚𝑦𝑜 𝑝𝑟𝑒)−𝑅1(𝑚𝑦𝑜 𝑝𝑜𝑠𝑡)

𝑅1(𝑏𝑙𝑜𝑜𝑑 𝑝𝑟𝑒)−𝑅1(𝑏𝑙𝑜𝑜𝑑 𝑝𝑜𝑠𝑡)
 Where R1=1/T1 

 

Scans were discarded when artefact prohibited analysis. 

 

4.3.5 Statistical Analysis 

Statistical analysis was performed using IBM SPSS Statistics 20.0 (IBM Corp., 

Armonk, NY). Continuous variables are expressed as means ± standard deviation 

(SD). Reproducibility and agreement were assessed by coefficient of variation 

(CoV), both comparing IR SE T1 reference values to MOLLI T1 value in phantoms, 

and also to assess the inter-study variability of repeat MOLLI studies in volunteers. 

CoV of less than 10% was considered acceptable.  

 

4.4 Results 

4.4.1 Phantom Scanning 

Reference T1 values were: 228, 346, 539, 564, 784, 895, 927, 1302, 1537, 1674, 1854 

and 1949ms. Co-efficient of variability with each MOLLI scheme at simulated HR of 

40, 60, 80, 100 with flip angle of 35⁰ was 6.77 to 9.55; when flip angle was 50 CoV 

ranged between 7.76 and 11.1 (table 4.1). 

 

Table 4.1 Effect of simulated heart rate on MOLLI performance vs ref T1 SE in 
phantom gels 

 

Flip 

Angle 35⁰ 

Co-efficient of Variability Flip 

Angle 50⁰ 

Co-efficient of Variability 

Scheme HR 40 60 80 100 Scheme HR 40 60 80 100 

5,3,0 6.77 7.61 9.49 7.57 5,3,0 7.86 7.71 7.60 9.19 

3,3,5 6.81 7.21 8.31 8.85 3,3,5 7.74 7.99 8.67 11.10 

4,3,2 6.94 7.78 7.89 9.55 4,3,2 9.00 9.30 9.03 8.89 
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T1 was persistently under-estimated by all MOLLI acquisitions. Error was greatest 

when gel T1 was longer, and at higher heart rates. 

For all schemes at a simulated heart rate of less than 100 beats per minute the co-

efficient of variability was acceptable at less than 10%. Performance of the 

3b(3s)3b(3s)5b MOLLI with 50⁰ showed the lowest precision (CoV: 11.10).  The 

performance of the MOLLI schemes in phantoms compared to reference T1, when 

T1 is of clinical relevance, (346, 539, 927, 1302, 1949ms with T2 respectively 113, 86, 

99, 180, 161ms) are shown in figures 4.1 and 4.2.  
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4.2 Volunteers 

4.4.2.1 Demographics 

Demographic characteristics of the study population are as presented in table 4.2. 

The mean age was 27yrs ± 3, (7 males). BSA corrected LVEDV (101 ± 12ml/m2), LV 

mass (52 ± 7g/m2) and ejection fraction (57% ± 2) were normal. All volunteers had 

normal right ventricular function and had normal late gadolinium enhancement 

images (table 4.2). 119 of 120 acquired mid-ventricular short axis MOLLI 

acquisitions were suitable for analysis (1 acquisition error prohibited analysis).   

 

Table 4.2 Volunteer Characteristics 

 Mean ± SD 

Age (years) 27 ± 3 

Gender (M:F) 7 : 3 

Mean Systolic Blood Pressure (mmHg) 111 ± 7 

Mean Diastolic Blood Pressure (mmHg) 55 ± 6 

Indexed LVEDV (ml/kg/m2) 101 ± 12 

Indexed LV Mass  (g/kg/m2) 52 ± 7 

LVEF(%) 57 ± 2 

Indexed  RVEDV (ml/kg/m2) 104 ± 17 

RVEF (%) 54 ± 2 

 

4.4.2.2 Myocardial Native T1 

With a flip angle of 35° infero-septal native T1 (ms) was similar for all MOLLI 

acquisitions (table 4.3). Native T1 was higher when flip angle was 35° compared to 

50°, and highest using the 5b(3s)3b scheme. Inter-study reproducibility of native T1 

measurement was good for all pulse sequences (table 4.3).  
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Table 4.3 Volunteer studies: Reproducibility of infero-septal post contrast T1 
(ms) by MOLLI scheme and flip angle (sd) (CoV: coefficient variability). 

 

35° Flip 

Angle 

Mean (sd) CoV 50° Flip 

Angle 

Mean (sd) CoV 

5,3,0 1189.1 (33.46) 1.78 5,3,0 1170.7 (25.90) 1.67 

3,3,5 1184.5 (22.66) 1.24 3,3,5 1158.7 (33.01) 2.26 

4,3,2 1181.8 (23.17) 1.28 4,3,2 1168.4 (24.05) 1.06 

 

4.4.2.3 Extracellular Volume 

ECV (%) was reproducible with each scheme employed and agreed well on visit 

one and two. The co-efficient of variability for all three schemes and for both flip 

angles was less than 7% (table 4.4). 

 

Table 4.4  Reproducibility of extra-cellular volume fraction (%) by MOLLI 
scheme.  

ROI in the infero-septum by MOLLI scheme (sd) 

   

35° Flip Angle Mean ECV Co-efficient of Variability 

 5,3,0 24.8 (3.9) 5.62 

 3,3,5 24.5 (3.2) 5.90 

 4,3,2 24.7 (3.2) 4.92 

50° Flip Angle   

 5,3,0 25.9 (3.9) 5.97 

 3,3,5 25 (3.3) 5.58 

 4,3,2 25.3 (4.0) 6.30 

4.4.2.4 Segmental Analysis 

It was possible to measure native and post contrast T1 in all mid-LV segments, and 

measurement was not precluded by artefact. ECV in all six segments of the mid left 

ventricular slice was similar (calculated from pre- and post-contrast T1 maps), 

standard deviations were low and did not differ between segments or sequence 

(table 4.5). 
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Table 4.5  Mean extra-cellular volume fraction (%) of mid LV segments from 
standard 16 segment AHA model (average value of two studies). 

 

 35° flip angle 50° flip angle 

5,3,0 3,3,5 4,3,2 5,3,0 3,3,5 4,3,2 

Mid LV slice 

Anterior 24.3 (3.1) 24.1 (3.2) 24.1 (3.0) 26.6 (3.7)  25.5 (3.3) 25.7 (3.6) 

Antero-lateral 23.4 (2.3) 23.5 (2.4) 23.5 (2.4) 25.6 (3.3) 24.3 (2.5) 24.4 (2.7) 

Infero-lateral 23.0 (3.2) 23.3 (3.2) 22.8 (3.3) 25.2 (4.9) 24.4 (4.1) 24.4 (4.3) 

Inferior 23.2 (3.2) 23.4 (3.2) 23.1 (3.1) 24.8 (3.0) 24.4 (3.5) 24.3 (3.5) 

Infero-septal 24.4 (3.7) 24.4 (3.1) 24.3 (3.3) 26.1 (3.9) 24.9 (3.6) 25.2 (3.4) 

Antero-septal 24.3 (3.0) 24.1 (2.7) 24.0 (2.9) 26.2 (3.7) 24.8 (3.5) 25.1 (3.4) 

 

4.5 Discussion 

Previous studies have examined multiple sequence parameter variables in 

simulator, phantoms and volunteer subjects[196]. This study aimed to add to these 

previous studies and further define the effect of change in acquisition scheme and 

flip angle.  

The initially proposed 3b(3s)3s(3b)5 MOLLI scheme is still commonly used[19]. 

However this may not be ideal for accurate T1 measurement as the final eight 

chronologically acquired images are influenced by previous inversion(s), so that T1 

estimation is affected by incomplete tissue recovery between inversions.  To 

shorten breath-hold time, and reduce the number of points affected by prior 

inversions, alternative MOLLI schemes have been suggested. These include a 3,5 

acquisition, which has been found to perform similarly to 3,3,5[197, 198]. However 

the same problems relating to potential incomplete recovery are inherent in this 

scheme also. In this study we found that a 5(3s)3 scheme with flip angle of 35° 

agreed best with a gel T1 spin echo reference, which may be a consequence of fewer 

points being affected by prior magnetisations. 

Many commonly used MOLLI acquisitions time pause duration and acquisition 

intervals in beats, and a pause of three R-R intervals (3 beats, (3b)) is commonly 

used. This leads to inconsistent pause duration, and potentially subsequent 

underestimation of long T1, as recovery may not be complete. This is particularly 

true of the 3b(3b)3b(3b)5b scheme at higher heart rates[199]. A fixed pause duration 

of at least three seconds (3s), as employed in this study, may minimise this problem 

and ensure more complete recovery of native blood pool and myocardium where 

T1 at 3T is typically 1800ms and 1200ms. However, in this study we have 
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demonstrated that under-estimation of native T1 remains problematic in phantom 

studies at high heart rates in spite of fixed pause duration. This is likely due to 

incomplete recovery: for example using a 5b(3s)3b the time between inversions is 

9000 ms whereas at 100bpm it is only 6000ms.  

Due to the effects of incomplete recovery it has been suggested to employ different 

MOLLI schemes for native and post contrast T1 measurement. The pause duration 

employed in this study was approximately 5.5 times the T1 of post contrast 

myocardium, which has previously been shown to have only a negligible effect on 

post contrast myocardial T1 measurement at heart rates up to 90 [200].When T1 is 

short, for instance after GBCA administration, incomplete recovery of longitudinal 

magnetisation between inversion pulses is minimal and additional points sampled 

early following inversion pulse may improve accuracy and precision. A 4,3,2 

acquisition scheme with either a single RR[191]  or three beat interval recovery 

[201] period has been suggested as an alternative to both 3,3,5 and 5,3 in this 

situation. However, in this study we employed a 3 second pause, rather than the 1s 

pause[191], throughout to aid comparison between schemes.  

Similarly, if the signal-to–noise ratio (SNR) of myocardium is not maximised, image 

quality may be suboptimal, which will reduce fitting quality in the T1 estimation 

and precision[191]. Signal is dependent on the readout pulse flip angle and is 

maximal for a balanced steady-state free precession sequence (as used for MOLLI) 

when: 

αSImax = cos-1* ((T1-T2)/(T1+T2))[202] 

 

Therefore a flip angle may be selected to maximise signal from any image 

component depending upon a tissue’s T1 value. The effects of flip angle on signal 

have been studied previously [196].  A flip angle of 50o leads to high signal within 

the blood pool and an impression of good image quality due to high myocardium-

blood contrast, whilst a flip angle of ~35o results in maximal SNR for native T1 

measurement within healthy myocardium (assuming T1= 1200ms and T2=40ms) at 

the expense of a visually less appealing T1 map due to the blood pool appearing 

less homogenous.  Following contrast administration, T1 shortens and higher flip 

angles result in higher SNR, however signal already increased following GBCA 

administration, therefore maximising signal from pre-contrast myocardial T1 

becomes most relevant. In this study, native in vivo T1 was similar with MOLLI 

sequences using either 35° or 50° flip angle; however T1 was highest when using a 

flip angle of 35° and therefore more likely to be a true representation of tissue T1, as 

MOLLI tends to underestimate T1.  
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The shorter breath hold time that the 5b(3s)3b sequence employs means it may be 

better tolerated in patients with breathlessness and/or left ventricular dysfunction 

when compared to 3b(3s)3b(3s)5b and 4b(3s)3b(3s)2b - though this was not 

investigated in this study. Comparative breath hold times using 5b(3s)3b, 

3b(3s)3b(3s)5b and 4b(3s)3b(3s)2b at a heart rate of 60bpm are 11s, 17s and 15s 

respectively. This may have positive implications for image quality by minimising 

cardiac motion due to respiration when T1 mapping is used as a clinical or research 

tool.  

All schemes performed similarly regardless of the LV segment where T1 was 

measured. Previous studies have shown that infero-septal T1 is the most 

reproducible segment for T1 measurement[194]. However we did not undertake to 

measure signal to noise ratio (SNR) in this study. Lower SNR, especially in the 

lateral wall as previously demonstrated[191] will result in less precision of T1 and 

until this is quantified some caution should be applied to the widespread 

application of T1 segmental T1 mapping.  

We found the studied MOLLI sequences to be similarly reproducible, with good 

agreement between visits. The 2013 SCMR T1 mapping consensus document[203] 

acknowledges that there is variation in MOLLI sequences used globally, and whilst 

optimal pulse sequences are being defined it is important to establish local normal 

values. These data suggest that these three MOLLI sequences, with two different 

flip angles, perform similarly; potentially suggesting that robust local practice and 

patient factors should be considered when deciding upon the ideal T1 mapping 

scheme, including scan duration and breath-hold duration. 

 

4.6 Limitations 

This small study did not include subjects with known myocardial pathology to 

assess the effects of change in MOLLI scheme in areas with elevated ECV. SNR was 

not quantified in this study. 

 

4.7 Conclusions 

Further, larger datasets may allow more comprehensive conclusions to be drawn 

regarding ideal MOLLI acquisition. However in this study we have shown that 

5b(3s)3b performs similarly to 3b(3s)3b(3s)5b whilst offering advantages in breath 

hold duration and likely improvement in respiratory motion, suggesting it may be 

more appropriate for clinical application.   
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Chapter 5 

Single Bolus Versus Split Dose Gadolinium Administration in 

ECV Calculation at 3 Tesla  

5.1  Abstract 

5.1.1  Objectives 

To assess the effects of split dose versus single bolus contrast administration on 

ECV calculation 

5.1.2 Background 

Diffuse myocardial fibrosis may be quantified with cardiovascular magnetic 

resonance (CMR) by calculating extra-cellular volume (ECV) from native and post-

contrast T1 values. Accurate ECV calculation is dependent upon the contrast agent 

having reached equilibrium within tissue compartments.  Previous studies have 

used infusion or single bolus injections of contrast to calculate ECV. In clinical 

practice however, split dose contrast injection is commonly used as part of 

stress/rest perfusion studies. 

5.1.3 Methods 

Ten healthy volunteers and five patients (4 ischaemic heart disease, 1 hypertrophic 

cardiomyopathy) were studied on a 3.0 Tesla (Philips Achieva TX) MR system and 

underwent two (patients) or three (volunteers) separate CMR studies over a mean 

of 12 and 30 days respectively. Volunteers underwent one single bolus contrast 

study (Gadovist 0.15mmol/kg). In two further studies, contrast was given in two 

boluses (0.075mmol/kg per bolus) as part of a clinical adenosine stress/rest 

perfusion protocol, boluses were separated by 12 minutes.  Patients underwent one 

bolus and one stress perfusion study only. T1 maps were acquired pre contrast and 

15 minutes following the single bolus or second contrast injection. 

5.1.4 Results 

ECV agreed between bolus and split dose contrast administration (coefficient of 

variability 5.04%, bias 0.009, 95% CI -3.754 to 3.772, r2=0.973, p=0.001)). Inter-study 

agreement with split dose administration was good (coefficient of variability, 

5.67%, bias -0.018, 95% CI -4.045 to 4.009, r2=0.766, p>0.001). 

5.1.5 Conclusions 

ECV quantification using split dose contrast administration is reproducible and 

agrees well with previously validated methods in healthy volunteers, as well as 
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abnormal and remote myocardium in patients. This suggests that clinical perfusion 

CMR studies may incorporate assessment of tissue composition by ECV based on 

T1 mapping. 
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5.2 Introduction 

Expansion and composition change of the myocardial extra-cellular matrix (ECM) 

is seen in a range of myocardial diseases and correlates with measures of systolic 

and diastolic function[158, 204][205-207]. Cardiac magnetic resonance (CMR) late 

gadolinium enhancement (LGE) imaging is well suited for the detection of focal 

myocardial scar that characterises a number of disease processes[13, 65]. However 

this technique relies upon the presence of healthy myocardium to detect scar, and 

as a result is limited in the detection of diffuse myocardial disease processes where 

global myocardial ECM expansion occurs. 

Longitudinal relaxation time (T1) mapping allows quantitative characterisation of 

the myocardium, thereby enabling detection of diffuse myocardial disease 

processes that have previously required cardiac biopsy[66, 67]. Furthermore, the 

ability to accurately define myocardial composition allows for the detection of sub-

clinical disease states and may enable the effects of intervention on tissue 

composition to be determined non-invasively [203]. 

T1 measurement before and after the administration of an extracellular contrast 

agent allows the relative volumes of the intra-cellular and extracellular components 

of myocardial tissue to be quantified as long as equilibrium between the extra-

cellular compartments (interstitium and blood) has been reached. Equivalence of 

primed slow intra-venous infusion and bolus only administration of contrast agent 

has been demonstrated previously[16, 201]. However, stress perfusion imaging is 

an expanding area of CMR[3] now included in international practice guidelines[4] . 

During stress perfusion CMR studies, contrast agent delivery is split between rest 

and stress imaging. Integrating T1 mapping and ECV calculation in such a clinical 

protocol requires knowledge of the effects of split contrast injection on the derived 

measurements. Therefore we aimed to determine the effects of split versus single 

bolus contrast administration on ECV, and to assess the inter-study variability of 

ECV measured on split contrast administration CMR studies. 

 

5.3 Methods 

The research protocol was approved by the local ethics committee and all subjects 

gave written informed consent.  All studies were performed at a single centre 

equipped with a 3T MRI scanner (Achieva TX, Philips Healthcare, Best, The 

Netherlands) using RF shimming and a 32-channel cardiac phased array receiver 

coil.  
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5.3.1 Volunteer Scanning 

A total of ten healthy volunteers were recruited to undergo CMR studies. Subjects 

were excluded if they had a history of cardiac disease, hypertension, renal 

impairment, diabetes or contra-indication to CMR.  

All subjects underwent a total of three CMR studies on separate days: 

 Study 1. Single bolus: In one CMR study, the contrast agent (Gadovist, 

Bayer Schering Pharma, Berlin-Wedding, Germany) was administered as a 

single bolus (0.15mmol/kg) with post-contrast T1 mapping acquired 15 

minutes later.  

 Study 2. Split dose: Contrast was administered as a split doses 

(0.075mmol/kg twice) as part of an adenosine stress perfusion protocol. For 

stress perfusion, intra-venous adenosine was administered at 

140mcg/kg/min, via an intra-venous cannula sited in the ante-cubital fossa, 

for a minimum of three minutes and until an appropriate haemodynamic 

response had occurred. Contrast agent was delivered at a dose of 

0.075mmol/kg at peak haemodynamic stress. For rest perfusion, the same 

contrast injection regime was repeated twelve minutes later. A total 

Gadovist dose of 0.15mmol/kg was administered. Post-contrast T1 mapping 

was performed 15 minutes after the second contrast administration.  

 Study 3. Split dose: Split dose stress perfusion CMR study as 2. 

 

5.3.2 Patient Scanning 

A total of five patients that had undergone a clinically indicated, non-urgent, 

adenosine stress perfusion CMR study were recruited if they exhibited an area of 

enhancement on LGE imaging on the clinical study, which included native T1 map 

and 15 minute post contrast T1 map as per our local protocol. Patients were then 

recalled for one single bolus CMR study on a separate day in keeping with the 

above protocols.  

 

5.3.3 CMR Protocol 

In each study, the cardiac long-axis was located as per standard practice using 

balanced steady-state free precession pulse (bSSFP) cine images. Cine imaging was 

performed using a contiguous stack of parallel short-axis slices covering the whole 

left ventricle (LV), with a bSSFP pulse sequence (echo time (TE) 1.3 ms; repetition 

time (TR) 2.6 ms; flip angle 40°, spatial resolution 1.6×2.0×10 mm, 40 phases per 

cardiac cycle). 
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For all studies, contrast was delivered via a peripheral cannula, followed by a 20ml 

saline flush delivered by automated injector (Medrad Inc, Warrendale, 

Pennsylvania, USA) at 5ml/second. 

Native and 15 minute post-contrast data for T1 value estimation were obtained 

using breath-held Modified Look-Locker Inversion recovery (MOLLI) acquisition 

[19, 192, 203]. Images were acquired in the central slice of a ‘3 of 5’ approach [208]. 

An ECG triggered 5b(3s)3b MOLLI balanced turbo gradient recalled echo (GRE) 

acquisition method was used (voxel size 1.98x1.98x10mm³ (reconstructed to 

1.25x1.25mm), single-shot, sensitivity encoding (SENSE) factor 2, trigger delay set 

for end-diastole, flip angle 35°, acquisition duration per image 170-185ms 

(dependent upon FOV) a range of inversion times are calculated by the system in 

order to provide good sampling of T1 recovery.  

Perfusion imaging acquisition used a spoiled turbo GRE sequence (echo time (TE) 

2.8 ms; repetition time (TR) 1.28 ms; flip angle 15°, acquired spatial resolution 

2.42x2.42×10 mm) in three 10mm short axis slices with a 148x148 matrix, FOV 300–

420, sensitivity encoding factor 2.4, half scan factor of 0.65 and a saturation pre-

pulse delay of 80ms. 

LGE imaging was performed at 7-10 minutes following final contrast dose 

(inversion recovery-prepared T1 weighted gradient echo, inversion time according 

to Look-Locker scout, TR/TE/flip angle 3.7/2.0/25 degrees, spatial resolution 

1.54×1.75×10 mm). 

 

5.3.4 Image Analysis 

Study images were saved as Digital Imaging and Communications in Medicine 

(DICOM) format. T1 values were calculated from source images using manual 

motion correction on CMR42 (Circle Cardiovascular Imaging Inc, Calgary, Alberta, 

Canada). Mis-registration was avoided by visually comparing left and right 

ventricular anatomical features (papillary muscles, trabeculations) any mis-

registered images were discarded. In volunteers a narrow region of interest (ROI) in 

the infero-septum of the mid-ventricular slice was drawn as per Puntmann[194] in 

an effort to minimise potential artefact induced by epicardial cardiac vessels in the 

anterior and lateral walls. In patient studies two separate ROIs were drawn 

sampling:  

1. the area displaying visual enhancement on the LGE acquisition; matched 

using standard image planning techniques and left and right ventricular 

anatomical features. 
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2. remote myocardium (preferentially the infero-septum as in volunteer 

studies).     

The blood pool contour was drawn in the centre of the LV cavity on the same slice 

away from any papillary muscle. Signal intensity was measured from each MOLLI 

source image and T1 estimated based on the mean signal from myocardial and 

blood pool ROIs. ECV was calculated using the formula: 

 

𝐸𝐶𝑉 = (1 − 𝐻𝑐𝑡)
𝑅1(𝑚𝑦𝑜 𝑝𝑟𝑒)−𝑅1(𝑚𝑦𝑜 𝑝𝑜𝑠𝑡)

𝑅1(𝑏𝑙𝑜𝑜𝑑 𝑝𝑟𝑒)−𝑅1(𝑏𝑙𝑜𝑜𝑑 𝑝𝑜𝑠𝑡)
 Where R1=1/T1 

 

5.3.5 Statistical Analysis 

Statistical analysis was performed using IBM SPSS® Statistics 21.0 (IBM Corp., 

Armonk, NY). Unless otherwise stated the results are presented as mean ± standard 

deviation (SD). Reproducibility and agreement was assessed by coefficient of 

variation and Bland Altman plot. Normality of distribution was determined with 

Kolmogoarov-Smirov testing, normality was assumed with a value of >0.2. 

Correlation was assessed with Pearson’s correlation coefficient.  

 

5.4 Results 

Demographic characteristics of the study volunteers are as presented in table 5.1. 

The mean age of volunteers was 26.6yrs ± 2.8, 7 of 10 volunteers were men. Body 

surface area (BSA) corrected LVEDV (101 ± 12ml/m2), LV mass (52 ± 7g/m2) and 

ejection fraction (57% ± 2) were normal.  All volunteers had normal right 

ventricular function and demonstrated no hyper-enhancement on late gadolinium 

enhancement images. All volunteers had an appropriate response to adenosine, 

with mean resting heart rate of 61.4 ± 5.2 beats per minute that increased on stress 

perfusion by 22.6 ± 7.6 beats per minute. Stress perfusion images were assessed 

qualitatively and no perfusion defects were identified. Split dose administration 

contrast agent doses were separated by 12.0 ± 3.7 minutes. 

Patient characteristics are as displayed in table 5.1. Mean patient age was 59.0yrs ± 

13, 4 of 5 patients were men, body surface area (BSA) corrected LVEDV (96 ± 

36ml/m2), LV mass (64 ± 20/m2) and ejection fraction (42 ± 13). Patient pathologies 

were: 4 chronic ischaemic heart disease with established myocardial infarction; 1 

hypertrophic cardiomyopathy. All patients had extensive LGE, and no inducible 

perfusion defects on stress perfusion imaging out with the area of LGE. 
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Table 5.1 Subject characteristics 

 

 Healthy Volunteers 

(n=10) 

Patients  

(n=5) 

Age 26.6 ± 2.8 59.0 ± 13.3 

Gender (M:F) 7 : 3 4 : 1 

Underlying Cardiac Disease  Ischaemic Heart Disease 4 

Hypertrophic Cardiomyopathy 1 

Mean Rest Systolic Blood 

Pressure (mmHg) 

111 ± 7 131 ± 19 

Mean Rest Diastolic Blood 

Pressure (mmHg) 

55 ± 6 71 ± 10 

Mean Rest Heart Rate (bpm) 61.4 ± 5.2 63 ± 19 

Mean Stress Heart Rate 

Increase  

22.6 ± 7.6 86 ±16 

BSA indexed LVEDV 

(ml/kg/m2) 

101.3  ± 12.3 96.2 ± 35.8 

BSA indexed LV Mass  

(g/kg/m2) 

51.5  ± 7.1 64.3 ± 20.3 

LV EF % 57 ± 2 41.7 ± 13.2 

RV EF % 54 ± 2 48.8 ± 5.9 

 

 29 of 30 sets of volunteer mid-ventricular short axis MOLLI acquisitions were 

available for final analysis; in one MOLLI an acquisition error prohibited analysis.  

10 of 10 patient MOLLI acquisitions were suitable for analysis. 

There was a strong positive correlation between ECV calculated following single or 

split bolus contrast administration in healthy volunteers, as well as abnormal and 

remote myocardium in patients (coefficient of variability 5.04%; bias 0.009, 95% CI -

3.754 to 3.772, r2=0.973, p=0.001)). Bland-Altman plot of the data set can be seen in 

figure 1.  
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Inter-study agreement for ECV calculation with split dose administration visits was 
good in the 10 volunteers studied (coefficient of variability 5.67%, r2 = 0.766, p < 
0.001). Bland-Altman plot can be seen in figure 5.2 (bias -0.018, 95% CI -4.045 to 
4.009).  
 

5.5 Discussion 

The insights that T1 mapping offers into tissue composition are increasingly 

applied as a research tool.  T1 mapping is also being integrated into clinical 

protocols, particularly in the investigation of unexplained left ventricular 

hypertrophy. Consequently, comprehensive CMR protocols that interrogate not 

only cardiac structure, function and perfusion but also tissue composition in one 

protocol have great clinical value. 

Previous studies have shown that ECV calculated using either an infusion or bolus 

of contrast agent[16] is reproducible, and correlates well with fibrosis measured on 

myocardial biopsy specimens[209]. However until this time it was not known if 

split dose contrast administration, as used in adenosine stress perfusion protocols 

affects ECV estimation and how this correlates with previously validated methods.  

Given that reliable ECV calculation requires steady state of contrast agent 

concentration, split dose administration may have given rise to different estimates 

against single bolus administration or a continuous contrast infusion. Any such 

differences would have prevented the application of established normal ranges that 

have been published over recent years to subjects undergoing stress perfusion 

protocols[18, 66, 67, 209, 210].  It was also conceivable that vasodilator effects of 

adenosine stress may have led to different contrast distribution with the 

myocardium and peripheral tissues. Persistent vasodilation at the time of the 

second MOLLI, as a consequence of adenosine administration would lead to a 

genuine increase of ECV due to increased capillary plasma volume. However the 

vasodilatory effects of adenosine are both transitory and short-lived[211] and have 

passed by the time of rest perfusion acquisition and following that, the second 

MOLLI.   

This study has now shown that ECV estimation with split dose contrast 

administration as part of a stress/rest perfusion CMR protocol agrees well with 

bolus administration in healthy volunteers. Reproducibility and inter-study 

agreement was good for split dose ECV calculations and in line with that 

previously published for ECV calculation following bolus contrast 

administration[16].  

Previously published data suggested that bolus contrast administration may 

underestimate ECV at values of >40%[16].  However in this study we have 

examined 5 patients with extensive LGE enhancement and grossly elevated ECV 
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due to chronic myocardial infarction and cardiomyopathy and found equivalence 

between the techniques. This suggests that ECV calculation is reliable across a 

range of values using either method of contrast administration. 

 

5.6 Limitations 

This study was performed in a limited number of healthy volunteers and patients. 

It has previously been shown that at fifteen minutes contrast equilibrium may not 

have been reached for post contrast T1 mapping, especially in individuals with 

higher ECVs[16]. This study has attempted to address this point specifically 

however no patients with the most elevated ECVs (e.g. cardiac amyloidosis) were 

studied, due in part to the demands of returning for a non-clinically indicated 

research CMR study. In spite of this we have not shown difference between these 

techniques in ECV calculation up to an ECV of 48%. However it should be stressed 

that the small sample size limits definitive conclusions to be drawn and this study 

should be repeated in a large cohort incorporating more subjects with myocardial 

pathology. 

This study investigated one particular MOLLI acquisition scheme which is 

consistent with international recommendations. However, other methods have 

been published and as yet there is no firm MOLLI scheme recommendation. It is 

difficult to select the ideal T1 mapping sequence as different sequences may 

perform differently depending upon the T1 of the tissue studied. Consequently the 

demonstration of the inter-study reproducibility of locally adopted sequences, in 

line with SCMR guidance, is important.  

 

5.7 Conclusions 

Split dose contrast T1 mapping, in keeping with a stress perfusion protocol, is 

reproducible and agrees with bolus contrast administration. This suggests ECV 

measurement maybe incorporated into stress perfusion protocols in both clinical 

and research CMR studies. 
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Chapter 6 

Athletic Cardiac Adaptation is a Consequence of Increased 

Myocyte Mass 

6.1 Abstract 

6.1.1 Objectives 

To determine if athletic cardiac remodelling is a consequence of increased 

myocardial cellular, rather than extracellular mass as measured by cardiovascular 

magnetic resonance (CMR). 

6.1.2 Background 

Cardiac remodelling occurs in response to regular athletic training, and the degree 

of remodelling is associated with fitness. Understanding the myocardial structural 

changes in athlete’s heart (AH) is important to develop tools that differentiate 

athletic from cardiomyopathic change. 

6.1.3 Methods 

34 athletes underwent an exercise test to assess maximal aerobic capacity (i.e. 

V̇O2max) and comprehensive CMR with native and post-contrast T1 mapping 

allowing partition co-efficient (λ) and extracellular volume (ECV) calculation. 

6.1.4 Results 

Participants were divided into tertiles by maximal oxygen uptake (V̇O2max). Intra-

cellular mass increased with V̇O2max tertile (83.7±16.7; 101.3±21.4; 110.7±18.0 g; 

P<0.01), though extracellular mass (28.1 ±4.0; 30.1±5.7; 29.8±4.5 g; P=0.56) in AH 

remained static. CMR derived measures of tissue composition (T1, λ, ECV) differed 

significantly by V̇O2max tertile, P=0.05, 0.03, <0.01 respectively, and were 

significantly correlated: Native T1 r= -0.40, P= 0.02; λ r= -0.42, P=0.02; ECV r= -0.55, 

P<0.01. An inverse relationship was seen between LVMi and ECV (r= -0.56, 

P<0.01).Indexed LV end diastolic volume (LVEDVi) and mass (LVMi) correlated 

with V̇O2max (r=0.455, P=0.01; r=0.34, P=0.049).   

6.1.5 Conclusions 

Increased LV mass in AH occurs as a consequence of an increase in myocyte mass, 

whilst the extra-cellular mass remains constant. Athletic remodelling, both on a 

macroscopic and cellular level, is associated with the degree of an individual’s 

fitness. ECV mapping may have a future role in differentiating AH from change 

secondary to cardiomyopathy. 
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6.2 Introduction 

Regular exercise training places demands on the heart that may lead to cardiac 

remodelling. The rare, but prominent cases of sudden cardiac death in elite athletes 

have underlined the importance of understanding the adaptation underlying 

athlete’s heart (AH)[212].  Gaining insights into the remodelling process is 

important to understand the nature of adaptation, and to develop tools that 

distinguish AH from cardiomyopathic changes, particularly those of hypertrophic 

cardiomyopathy (HCM).  

Cardiac magnetic resonance (CMR) imaging is particularly well suited to 

investigate changes of structure and function in athletic cardiac remodelling due to 

its multi-parametric capabilities, high spatial resolution and lack of ionising 

radiation. The high reproducibility of the method means that anatomical change 

can be quantified with greater confidence and smaller sample size than with other 

methods[61, 213]. Emerging CMR techniques including T1 and extra-cellular 

volume (ECV) mapping allow the relative volumes of the extra-cellular and intra-

cellular myocardial compartments to be quantified. The methods have been used to 

quantify extracellular expansion (higher ECV & T1) secondary to interstitial fibrosis 

in cardiomyopathy [67], and conversely increased myocyte volume (lower ECV & 

T1) in pathologies such as Anderson-Fabry disease[25][210].  

In this study we sought to characterise cardiac changes in elite athletes using CMR 

in order to gain insights into the mechanisms underlying the AH remodelling 

process. We hypothesised that in athletes, LV hypertrophy occurs secondary to an 

increase in myocardial cellular mass rather than extracellular volume as measured 

by CMR and that these adaptations correlate with aerobic capacity (V̇O2max). 

 

6.3 Methods 

Participants were approached via athletic societies and associations and 

recruitment was open to athletes competing at regional, national and international 

level. Subjects were eligible for inclusion if they took part in regular competition 

and trained for a minimum of 6 hours per week. Subjects were excluded if they had 

contraindications to CMR or systemic medical illness. The study was conducted in 

accordance with the declaration of Helsinki, and was approved by the local ethics 

committee (Research and Ethics Committee reference: 14/YH/0126). All volunteers 

gave informed written consent. 

All subjects underwent a CMR study and maximal exercise test, performed on the 

same day when logistically possible.  
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6.3.1 Cardiac Magnetic Resonance Protocol 

The CMR study was performed at rest prior to exercise testing. All studies were 

performed on a 3 Tesla Achieva TX system equipped with a 32 channel cardiac 

phased array receiver coil and multi-transmit technology (Philips Healthcare, Best, 

The Netherlands). The cardiac long and short axes were determined using standard 

scout views. Mid LV native (pre-contrast) T1 maps were generated using a 

previously described MOLLI sequence[214] planned using the 3 of 5 method[208], 

briefly comprising: ECG triggered 5b(3s)3b MOLLI, flip angle 35⁰, voxel size of 

1.98*1.98*10 mm3. Left ventricular (LV) mass and volumes were obtained from cine 

imaging covering the entire LV in the short axis: balanced SSFP, voxel size 

1.2*1.2*10 mm3, no gap, 50 cardiac phases. Right ventricular (RV) and atrial 

volumes were obtained from a transaxial stack covering the entire heart: balanced 

SSFP, voxel size 1.7*1.5*5mm3, no interslice gap. 0.15mmol/kg Gadovist (Bayer 

Schering) was delivered by power injector (Medrad Inc, Warrendale, Pennsylvania, 

USA) as a single bolus via a venous cannula placed in the ante-cubital fossa, 

followed by a 20ml saline flush at 5ml/second. Late gadolinium enhancement 

(LGE) imaging (inversion recovery-prepared T1 weighted gradient echo, inversion 

time according to Look-Locker scout, TR/TE/flip angle 3.7ms/2.0ms/25°, acquired 

spatial resolution 1.54×1.75×10 mm) with whole heart coverage was performed 

seven to ten minutes following contrast administration. Post-contrast T1 maps were 

acquired using the same MOLLI scheme fifteen minutes after contrast 

administration. 

 

6.3.2 Image Analysis 

All image analysis was performed using cmr42 (Circle Cardiovascular Imaging Inc, 

Calgary, Alberta, Canada). Volumetric and mass analysis was performed in the 

standard manner from the short axis stack[215] (LV) or long axis cine images[216] 

(RV, left and right atria (LA, RA)). Ventricular and atrial measurements were 

indexed to body surface area (BSA). The presence of focal fibrosis or scar was 

assessed qualitatively from LGE imaging.  T1 values were calculated from source 

images using manual motion correction, with a region of interest (ROI) placed in 

the mid infero-septum as per Rogers et al [194]. Partition co-efficient (λ) and ECV 

were calculated using the formulae:  

 

𝛌 =
𝑅1(𝑚𝑦𝑜 𝑝𝑟𝑒) − 𝑅1(𝑚𝑦𝑜 𝑝𝑜𝑠𝑡)

𝑅1(𝑏𝑙𝑜𝑜𝑑 𝑝𝑟𝑒) − 𝑅1(𝑏𝑙𝑜𝑜𝑑 𝑝𝑜𝑠𝑡)
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𝑬𝑪𝑽 = (1 − 𝐻𝑐𝑡)
𝑅1(𝑚𝑦𝑜 𝑝𝑟𝑒) − 𝑅1(𝑚𝑦𝑜 𝑝𝑜𝑠𝑡)

𝑅1(𝑏𝑙𝑜𝑜𝑑 𝑝𝑟𝑒) − 𝑅1(𝑏𝑙𝑜𝑜𝑑 𝑝𝑜𝑠𝑡)
 

*Where R1=1/T1 and Hct is Haematocrit. 

Myocyte and extra cellular mass were calculated using the formulae: Myocyte 

mass= LV mass * (100 - % ECV); Extracellular mass = LV mass * %ECV. All T1, 

ECV, volumetric and mass analysis was performed by two observers (AKM, BE) 

blinded to all subject data including sporting discipline and aerobic capacity.  

 

6.3.3 Exercise Protocol 

Participants were instructed to arrive rested (no strenuous exercise in the preceding 

24 hr) having abstained from any alcohol (preceding 24 hr), food and caffeine 

(preceding 3 hr) ingestion. To determine maximal oxygen uptake (V ̇O2max) and 

anaerobic threshold (AT) participants undertook a ramp-incremental (RI) step-

exercise (SE)[217],i.e. RISE test on an electronically-braked cycle ergometer 

(Excalibur Sport, Lode BV, Groningen, the Netherlands), which allows for 

confirmation of VO2max in a single test[217]. Participants wore a nose-clip and 

breathed through a low-dead space, low-resistance mouthpiece which was 

connected to a bi-directional pitot tube flow sensor and gas sample line assembly, 

allowing for breath-by-breath measurement of gas volumes and concentrations (O2, 

Galvanic; CO2 infrared), and subsequent calculation of ventilatory and pulmonary 

gas exchange variables (Cardio2, Medical Graphics Corporation, St Paul, MN, 

USA). Prior to each test, the pitot tube flow sensor was calibrated over a range of 

flow rates using a 3 l syringe, while the gas analysers were calibrated using 

precision gases that spanned the inspired and expired physiological range. A 12-

lead electrocardiogram was monitored throughout, and heart rate (HR) was 

measured from the R-R interval. The RISE test was preceded by rest period (~ 2 

minutes) and unloaded cycling (20W) (~ 4 minutes), with these phases continued 

until a steady state was attained, after which work rate increased as a linear 

function of time at a rate of 20-30W/min (depending upon reported training 

history), with the intention of bringing participants to the limit of tolerance in ~10-

12 min [218]. The RI was then followed by 5 min of active recovery (20W) after 

which a SE was performed at 95% of the RI work rate peak, with this SE also 

continued to the limit of tolerance. In both RI and SE parts of the test, the limit of 

tolerance was defined as the point at which cycling cadence fell below 50 rpm 

despite strong verbal encouragement.  

Breath-by-breath data were edited using the V ̇O2 response to eliminate erroneous 

breaths (occurring outside the local mean 99% prediction limits), that were 

considered unphysiological [219]. AT was then estimated using the V-slope method 
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[220], and supporting ventilatory and pulmonary gas exchange criteria (i.e. the 

fractional end-tidal concentrations of O2 and CO2, and the ventilatory equivalents 

for O2 and CO2[221]). V̇O2peak was identified in both RI and SE phases as the highest 

12-breath rolling average (highest mean V ̇O2 over ~15-20 s), with this representing 

an appropriate sampling duration to balance identifying V̇O2peak in the presence of 

breath-by-breath noise, and including data from the transient phase of the response 

leading to V̇O2peak [217].  Within participants, the highest 12-breath rolling average 

from RI and SE phases were then compared using unpaired t-tests, with no 

difference (p> 0.05) between RI and SE V̇O2peak, and thus the attainment of  V ̇O2max 

confirmed in each test[222]. 

 

6.3.4 Statistical Analysis 

Statistical analysis was performed using IBM SPSS Statistics 20.0 (IBM Corp., 

Armonk, NY). Participants were ranked and then split in tertiles according to 

V̇O2max. Unless otherwise stated the results are presented as mean ± standard 

deviation (SD). Differences between groups were assessed using the Chi-squared 

test with four degrees of freedom, or one-way ANOVA when appropriate. Post hoc 

analysis was performed with Tukey’s HSD test.  Normality of distribution was 

determined with Kolmogarov-Smirnov testing. Correlation was assessed with 

Pearson’s correlation co-efficient. Significance for all tests was assumed with p 

<0.05. Univariable analyses were performed to identify predictors of athletic 

cardiac remodelling. Variables with a probability value of <0.1 in the univariable 

analysis were included in a multivariable analysis, based on an enter linear 

regression model.  

 

6.4 Results 

6.4.1 Study participant characteristics 

34 athletes (26 male : 8 female) between 20 and 45 years of age (mean age 30.9 ± 7.2 

yrs, height 178.5 ± 8.8 cm , weight 71.2 ± 10.5 kg) were prospectively recruited and 

underwent CMR study and maximal exercise testing, separated by a median of 0 

days (inter-quartile range 0 – 0). Athletic disciplines of participants: 6 running; 15 

cycling; 13 triathlon (table 6.1). Mean haematocrit was 0.45 ± 0.03 g/dL (by tertile 

from lowest to highest V̇O2max: 0.43 ± 0.03; 0.46 ± 0.03; 0.47 ± 0.03 g/dL; p= 0.02).  
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Table 6.1 Subject characteristics. 

  

Overall 

Lowest 

V̇O2maxTertile 

(n=11) 

Middle 

V̇O2maxTertile 

(n=12) 

Highest 

V̇O2maxTertile 

(n=11) 

 

P 

Age (years) 30.9 ±7.2 33.9 ± 6.9 30.7 ± 7.5 28.0 ± 6.5 0.16 

Gender 26 M: 8F 5:6 11:1 10:1 0.01 

BMI 22.5 23.4 ± 2.7 22.4 ± 1.9 21.6 ± 2.1 0.20 

Haematocrit 

(g/dL) 

0.45 0.43 ± 0.03 0.46 ± 0.03 0.47 ± 0.03 0.02 

Hours training 

per week 

11.5 ± 3.7 12.7 ± 3.7 10.0 ± 3.4 12.0 ± 3.7 0.19 

Number of years 

training at >6 hrs 

per week 

8.7 ± 5.8 10.0 ± 7.2 8.4 ± 4.9 7.5 ± 5.3 0.60 

Sporting discipline 

   Running 6 2 2 2  

0.67 

 

   Cycling 15 4 5 7 

   Triathlon 13 5 5 2 

 

6.4.2 Cardio-Pulmonary Exercise Testing 

Subjects were divided into tertiles by V̇O2max (n=11, n=12, n=11). Mean V̇O2max by 

tertile was: 50.0 ± 2.9; 59.6 ± 1.6; 67.7 ± 6.3 mLO2/min/kg (p <0.01 by definition). 

AT, as a percentage of V̇O2max, did not differ by tertile: 61.1% ± 8.8; 65.3% ± 5.6; 

61.0% ± 8.0; p=0.31). Neither resting heart rate (59 ± 9; 54 ± 6; 52± 11 beats/min; 

p=0.17) nor maximal heart rate differed between groups (176 ± 8; 183 ± 11; 184 ± 12 

beats/min; p= 0.20). However Δ HR (difference between resting and peak HR) was 

significantly different between tertiles (117 ± 11; 129 ± 8; 132 ± 10 beats/min; p 

<0.01) (Table 6.2). 
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Table 6.2 Cardiopulmonary exercise testing  

 Lowest 

V̇O2maxTertile 

(n=11) 

Middle 

V̇O2maxTertile 

(n=12) 

Highest 

V̇O2maxTertile 

(n=11) 

 

P 

Resting HR (beats/min) 59.0 ± 8.8 53.9 ± 5.5 52.0 ± 11.2 0.17 

Maximal HR (beats/min) 176.3 ± 8.1 183.0 ± 10.9 183.6 ± 11.7 0.20 

Δ HR(beats/min) 117.3 ± 11.0 129.1 ± 8.3 131.6 ± 9.8 <0.01 

Relative V̇O2max 

(mLO2/min/kg) 

50.0 ± 2.9 59.6 ± 1.6 67.7 ± 6.3  

Anaerobic threshold as % 

V̇O2max 

61.1 ± 8.8 65.3 ± 5.6 61.0 ± 8.0 0.31 

Peak Work Rate (W) 324.9 ± 44.6 388.0 ± 59.7 440.7 ± 63.1 0.01 

 

6.4.3 CMR Findings 

Typical findings may be seen in figure 6.1, and full CMR data may be seen in table 

6.3.  

 

Figure 6.1 Cardiac Remodelling in athletic cardiac adaptation 

a) mid left ventricular short axis and horizontal long axis CMR views of 
athletes in the lowest tertile, and highest  tertile (b), demonstrating more 
pronounced remodelling in the athlete with higher V ̇O2max. 
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Table 6.3 Cardiac MRI findings 

 

 

Cardiac Geometry 

Lowest 

V̇O2maxTertile 

(n=11) 

Middle 

V̇O2maxTertile 

(n=12) 

Highest 

V̇O2maxTertile 

(n=11) 

 

P 

Left Ventricle     

LVEDVi        (ml/m2) 110.9 ±13.3  117.2 ± 15.9 121.6 ± 13.4 0.30 

LV Mass (g) 111.8 ± 19.7 131.3 ± 25.8 140 ± 21.7 0.02 

 Cellular Mass (g) 83.7 ± 16.7 101.3 ± 21.4 110.7 ± 18.0 <0.01 

Extra-Cellular Mass (g) 28.1 ± 4.0 30.1 ± 5.7 29.8 ± 4.5 0.56 

LVM indexed  (g/m2) 63.4 ± 10.9 67.4 ± 10.0 75.1 ± 8.0 0.03 

 Indexed Cellular Mass (g) 47.5 ± 9.5 51.9 ± 8.4 59.1 ± 6.9 <0.01 

 Indexed Extra-Cellular Mass (g) 15.9 ± 1.9 15.5 ± 2.5 16.0 ± 1.8  0.83 

LVEDV/Mass ratio 1.8 ± 0.2 1.8 ± 0.3 1.6 ± 0.2 0.25 

LVEF (%) 56.6 ± 4.4 54.2 ± 4.8 57.0 ± 3.8 0.27 

Right Ventricle     

   RVEDVi        (ml/m2) 106.6 ± 14.7 119.3 ± 24.3 123 ± 16.9 0.48 

   RVEF (%) 52.2 ± 3.5 53.3 ± 4.9 54.0 ± 5.4 0.67 

Atrial Size     

   LA Volume index    (ml/m2) 93.3 ± 11.7 101.7 ± 22.2 105.6 ± 14.5 0.40 

   RA Volume index   (ml/m2) 141.3 ± 29.1 147 ± 37.4 144.4 ± 28.4 0.90 

Tissue Composition     

   Individuals displaying LGE 0 0 1 0.34 

   Native T1 (ms) 1205.5 ± 

42.3 

1179.0 ± 

35.9 

1166.7 ± 

27.6 

0.05 

Partition co-efficient 0.45 ± 0.04 0.42 ± 0.05 0.40 ± 0.03 0.05 

ECV (%) 25.4 ± 2.6 23.1 ± 2.8 21.4 ± 2.0 <0.01 

 

Examination of the extra-cellular and intra-cellular compartments demonstrated 

that the difference observed in overall myocardial mass in higher performing 

athletes was due to increased cellular mass (83.7 ±  16.7; 101.3 ±  21.4; 110.7g ±  18.0 

g; p<0.01), rather than expansion of the extra-cellular space, which remained 

constant (28.1 ±4.0; 30.1 ± 5.7; 29.8 ± 4.5 g; p=0.56) (Figure 6.2).  
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Figure 6.2 Mass of the cellular and extra-cellular myocardial compartments by 
V̇O2max  tertile. 

Extra-cellular mass is static (p=0.561), whilst cellular mass increases with 
V̇O2max (p=0.007) (error bars represent 95% CI).  Inter-group differences with 
post hoc Tukey correction are as displayed. 

 

CMR derived measures of tissue composition correlated significantly with V̇O2max: 

Native T1 r= -0.40, p= 0.02; partition co-efficient r= -0.42, p= 0.02; ECV r= -0.55, 

p<0.01 (Figure 3).  

When analysed by V̇O2max tertile these changes remained significant: Native T1: 

1205.5 ± 42.3; 1179.0ms ± 35.9; 1166.7ms ± 27.6; p= 0.05. Partition co-efficient: 0.45 ± 

0.04; 0.42 ± 0.05; 0.40 ± 0.03; p=0.05. ECV (%): 25.4 ± 2.6; 23.1 ± 2.8; 21.4 ± 2.0; p <0.01 

(Figure 4).  
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Figure 6.3 Relationship between V̇O2max (mLO2/min/kg) and indices of cardiac 
remodelling 

A) Indexed LV mass and V̇O2max r=0.46, p=0.01; B) Indexed LVEDV and 
V̇O2max r=0.34, p=0.049; C) Extracellular Volume and V̇O2max -0.55, p<0.01; D) 
Extracellular Volume and Indexed LV mass r=-0.56, p=<0.01. 

 

 

Both LVMi and LVEDVi correlated significantly with V̇O2max (r=0.455, p=0.01; 

r=0.34, p=0.049). A significant inverse relationship was seen between ECV and 

indexed LV mass (r= -0.56, p<0.01) (Figure 6.3), and LAi correlated with LVEDVi 

(r=0.47, p<0.01). Indexed LV mass differed significantly by V̇O2max tertile (63.4 ± 

10.9; 67.4 ± 10.0; 75.1 ± 8.0 g/m2; p=0.03) (Figure 6.3). No other measures of cardiac 

size or function were significantly correlated. 
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6.4.4 Regression Analysis 

On multivariate linear regression analysis increased cellular mass indexed to BSA 

was only significantly influenced by V̇O2max (Beta=0.451, p=0.015), and not sex 

(Beta=-0.490, P= 0.109), weight (Beta=0.187, p=0.401) or haematocrit (Beta= -0.324, 

P=0.156) (table 6.4). 

 

Table 6.4 Multivariate regression analysis of cellular mass (BSA indexed) 

 Univariable Multivariable 

 Beta P Beta P 

Age -0.24 0.17   

Sex -0.56 0.00 -0.490 0.109 

Height -0.149 0.400   

Weight 0.360 0.037 0.187 0.401 

Discipline 0.08 0.64   

Hours of 

training 

0.03 0.88   

     

V̇O2max 0.51 0.00 0.451 0.015 

Hct 0.343 0.047 -0.324 0.156 

 

6.5 Discussion 

This study shows that left ventricular hypertrophy in AH occurs as a consequence 

of expansion of myocyte volume alone, a finding that provides novel insight into 

the physiological change underpinning a poorly understood phenomenon. We 

have further demonstrated that myocyte volume expansion is linearly related to 

aerobic capacity, and that there is no expansion of the extracellular space in athletic 

cardiac adaptation.  

6.5.1 Mechanism of Myocardial Adaption & Remodelling 

Cardiovascular adaptation occurs in response to haemodynamic challenge and 

prolonged endurance training and even in previously untrained individuals leads 

to marked changes in cardiac geometry[223]. Early adaption is characterised by an 

increase in LV mass and as a consequence change in LV mass: volume ratio, later 

followed by LV dilation, normalisation of the ratio and ‘eccentric 

hypertrophy’[223]. LV geometry and particularly LV mass have previously been 

shown to be related to V̇O2max[224] [225] [226]. 
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CMR has provided new insights into the mechanisms that underpin cardiac 

remodelling with exercise training. The multi-parametric assessment of the human 

heart and high reproducibility provided by the technique allow both accurate 

functional and anatomical assessment [16, 227][13]. Myocardial native T1, partition 

co-efficient and ECV measurement are robust and validated techniques for tissue 

characterisation[228], and the correlation of these parameters with histological 

tissue specimens is excellent[16, 227, 229]. T1 and ECV increase in myocardial 

fibrosis, oedema and expansion of the extracellular space, with subsequent relative 

decrease in myocyte mass[230]. Conversely, an expanded cellular mass reduces T1 

and ECV as the distribution volume for conventional extracellular contrast agents is 

reduced. 

In this study we have demonstrated that indexed LV mass is correlated with 

aerobic capacity, and that indexed LV mass and ECV are inversely related. 

Participants with a higher V̇O2max had a similar extracellular mass as those with a 

lower V̇O2max, but a significantly higher intracellular mass.   

These data allow postulation of the mechanism underlying the development of AH 

that is consistent with known concepts: Following rapid division in foetal life, 

cardiac myocytes are terminally differentiated shortly after delivery. As a result, 

any increase in overall myocardial mass is secondary to myocyte hypertrophy or 

ECM expansion rather than cell hyperplasia[231]. CMR allows in vivo quantification 

of the two tissue compartments and our data show that in AH the overall extra-

cellular compartment volume is similar to previously reported normal ranges [24], 

whilst there is marked cellular expansion.  

Important differential diagnoses of AH include DCM and HCM, which may both 

display increased LV mass or LVEDV. The role of CMR in the detection of these 

myocardial diseases is established, and both DCM and HCM display characteristic 

morphological abnormalities on CMR. At a microscopic level HCM is characterised 

by myocyte disarray and interstitial fibrosis[163], and thus increased ECV. LGE 

CMR allows detection of focal replacement fibrosis and infarction in both 

HCM[232] and DCM[233], however diffuse processes are poorly detected with this 

technique. T1 mapping and ECV measurement have shown expansion of the 

extracellular space in HCM, occurring in  both hypertrophic[24][16] and non-

hypertrophic segments as well as in DCM[234][235]. Our observation that 

hypertrophy in AH is cellular without ECV expansion suggests that T1 mapping 

CMR may be an ideal tool to distinguish between athletic left ventricular 

adaptation and pathological hypertrophy or remodelling.  

Both ‘side by side’ sarcomere addition in concentric remodelling, and ‘end to end’ 

addition in eccentric remodelling result in myocardial hypertrophy[236], with an 



- 90 - 

increase of muscle mass without increase in myocyte number[237]. In this study, 

conducted without tissue biopsy, we are unable to determine the intra-cellular 

sarcomere arrangement; however other CMR techniques that allow myocyte size to 

be quantified, as investigated by Coelho-Filho et al[238], may allow this to be 

determined in the future.  

 

6.5.2 Late Gadolinium Enhancement & Myocardial Scar 

LGE has previously been demonstrated in up to 13% of elite[239] and 50% of 

veteran athletes[240]. In this cohort of athletes, LGE was only displayed in one 

(3%), and in a myocarditis pattern rather than the typical sites of the RV insertion 

point or the interventricular septum. This may be as a consequence of the relatively 

young age of athletes studied. 

 

6.5.3 Remodelling & Relationship with Performance 

The relationship between aerobic capacity and LV remodelling is known[225][224].  

In this study we have demonstrated that LVEDVi and LVMi correlate with V̇O2max, 

confirming that the degree of remodelling is related to fitness. Indexed atrial 

volumes are not related to fitness, but as shown previously correlate with LVEDVi 

in athletes[241], suggesting that atrial conduit function[242], as a result of superior 

ventricular diastolic performance[243], is enhanced in AH. 

 

6.6 Limitations 

There was relatively little diversity in the range of athletic discipline pursued, 

however this has previously been shown not to affect the phenotype of cardiac 

remodelling[244]. Furthermore, the assumptions made regarding the mode of 

myocardial hypertrophy in AH in this study have not been validated by 

histological sample. Haematocrit, which is used in the calculation of ECV, differed 

between groups of athletes and may thus have introduced a bias in the results. 

However, native T1 and partition co-efficient, which are independent of 

haematocrit, also differed significantly by V̇O2max tertile. Genotyping was not 

performed in any of the participants to exclude common gene mutations associated 

with HCM, consequently it is possible that participants may have had subclinical 

HCM. However no subjects displayed any characteristic resting abnormalities 

associated with HCM on  cine or LGE imaging. 
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Finally, the participants were all of white origin and this study should be repeated 

in a range of ethnic origins in an effort to understand AH in all elite athletes, as risk 

and remodelling may differ between ethnicities[245]. 

 

6.7 Conclusions 

Cardiac remodelling and LVH in AH is a consequence of increased myocyte mass 

alone, without expansion of the extra-cellular space as measured by CMR. This is 

unlike HCM or DCM, where CMR tissue characterisation detects expansion of the 

extra-cellular space, in the presence or absence of LVH. Athletic remodelling, both 

on a macroscopic and microscopic level is associated with the degree of aerobic 

capacity. T1 and ECV mapping by CMR may have a future role in differentiating 

AH from change secondary to cardiomyopathy, especially HCM. 
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Chapter 7 

Preliminary Report, ‘Effects of aldosterone antagonism in heart 

failure with preserved ejection fraction: a cardiac MRI, exercise 

physiology and quality of life pilot study’ 

7.1  Abstract 

7.1.1 Objectives   

To study the effect of spironolactone in heart failure with preserved ejection 

fraction on the myocardial extracellular volume as measured with CMR T1 

mapping. 

7.1.2 Background 

Treatment of heart failure with preserved ejection fraction (HF-PEF) lags behind 

that of reduced ejection fraction (HF-REF). Aldosterone antagonists have promise 

in this condition and been shown to improve left ventricular filling and morbidity. 

In this study we investigate the mode of action and tissue effects of spironolactone 

in HF-PEF. 

7.1.4 Methods 

60 patients meeting European Society of Cardiology (ESC) criteria for the diagnosis 

of HF-PEF, including elevated NT-proBNP, are to be randomised 1:1 to open label 

six months of oral Spironolactone 25mg once daily or monitoring only. At the time 

of writing 30 have been recruited. A comprehensive multi-modality assessment 

comprising cardiac magnetic resonance (CMR), echocardiography, ambulatory 

blood pressure monitoring, maximal exercise test and quality of life(QoL) 

assessment were conducted at enrolment and at six months. The primary outcome 

was change in myocardial extracellular volume (ECV) as measured by CMR T1 

mapping. 

7.1.5 Results 

30 patients (15 male: 15 female, mean age 74.2 ± 6.9) were recruited at the time of 

writing and 15 subjects have completed the follow-up period (7 spironolactone, 8 

monitoring). The groups were well matched with the exception of native T1 (1200.4 

± 95.9ms vs 1267.8 ± 50.4 ms, p=0.032). No baseline parameters correlated with 

ECV. After 6 months ΔECV of –1.8 ± 3.9% versus +2.3 ± 3.2% (p=0.041) was seen 

with spironolactone vs monitoring. LV mass decreased with spironolactone (-11.0 ± 

15.4g vs +6.8 ± 13.4g p=0.032), ΔLV mass correlated with ΔECV (r=0.573, p=0.026). 

No significant change was seen in echocardiographic, exercise or QoL parameter.  
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7.1.6 Conclusions 

At this point the study is not powered to comment definitively upon the primary 

end-point. However treatment with spironolactone led to a reduction in LV mass is 

in keeping with previous studies. Spironolactone also resulted in a significant 

reduction in ECV: The interaction between ECV and LV mass point toward 

reduction in myocardial fibrosis as a possible mode of action of spironolactone in 

HF-PEF. This effect should become clearer upon study completion. 
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Note for the reader 

The study is ongoing and recruitment is incomplete, as a result interpretation is 

limited. 

Furthermore, some of the planned analysis cannot be performed until the follow-up 

period of all subjects is complete including analysis of stored blood samples, 

therefore the following should be read bearing in mind the following limitations: 

1. NT-proBNP & blood biochemistry: NT-proBNP and serum biochemistry 

performed prior to study enrolment will be presented. This is a clinical 

assay and predates study entry.  

2.  Markers of collagen turnover & renin-aldosterone system activation: the 

relationship between myocardial fibrosis measured with CMR and 

circulating markers of collagen turnover and renin-aldosterone levels 

cannot be presented, analysis will be performed once all participants have 

completed the study period. 

  



- 95 - 

7.2 Introduction 

7.2.1 Background 

Heart failure is a clinical syndrome defined by the presence of symptoms, including 

decreased exercise tolerance and breathlessness,  and  signs such as elevated 

jugular venous pressure (JVP), pulmonary crackles and peripheral oedema[246]. 

Approximately half of all patients with a diagnosis of heart failure have preserved 

systolic function (HF-PEF)[247], and may affect between 1-5% of the general 

population [248].Unlike heart failure with reduced ejection fraction (HF-REF), 

where multiple pharmacological, device and surgical interventions have changed 

prognosis[11], doctors are currently unable to offer disease modifying therapy to 

individuals with HF-PEF[11]. This is despite these patients having many shared 

clinical and physiological manifestations of disease[249] and poor prognosis[250, 

251]. 

The prevalence of HF-PEF rises with age and is nearly twice as high in women than 

men[252]. Compared with systolic heart failure patients with HF-PEF have 

increased rates of atrial fibrillation, hypertension and obesity but lower rates of 

coronary disease. With an aging population in the developed world HF-PEF is 

likely to become an increasing problem with far reaching affects on health 

expenditure, morbidity and mortality.  

 

7.2.2 Pathophysiology  

Symptoms in HF-PEF arise due to elevated left atrial pressure, as a consequence of  

elevated left ventricular filling pressures due to intrinsic abnormalities of left 

ventricular relaxation and stiffness. Left atrial function, ventricular-arterial 

coupling, heart rate variability, neuro-hormonal activation and peripheral 

abnormalities are also important in the development of symptoms.  

The key determinants of stiffness are the extra-cellular matrix (ECM) and cardiac 

myocytes, though abnormalities of both are not seen in all patients with HF-PEF 

[253].  Diastolic function may be thought to be both active, and related to cross-

bridge detachment and calcium handling, and passive, related to the mechanical 

properties of the myocardium. 

Passive: The Collagen types I, III & IV are found in the myocardial extra-

cellular matrix. Passive stiffness is predominantly determined by the amount of 

collagen type I relative to collagen type III. Collagen synthesis is regulated by many 

factors including sympathetic activation, neuro-hormonal activation, preload, after-

load and cardiac inflammation[159][254]. Collagen type I deposition has been 
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found to be elevated in HF-PEF due to down regulation of collagen degradation 

and up regulation of synthesis [255]. Studies in humans have demonstrated that 

myocardial fibrosis is related to both myocardial relaxation and contraction [135].  

Active: Both calcium handling and myocyte stiffness are abnormal in HF-

PEF. Active myocyte stiffness is thought be related to changes in titin, a cytoskeletal 

protein and changes in its phosphorylation state[256]. Myocardial relaxation is 

dependent upon sarcoplasmic reuptake of calcium and cross bridge detachment. 

Relaxation, and cross bridge decoupling, is an active, energy intense process and 

myocardial energy reserves are lower in HF-PEF[257]. 

The resultant abnormality of active and passive stiffness is diastolic dysfunction. 

Diastolic dysfunction is defined as ‘the inability to fill the ventricular to an 

adequate preload volume at acceptably low pressures’[258]. Active and passive 

myocardial relaxation abnormalities result in slowing and prolongation of left 

ventricular filling which is especially important on exertion. On exertion the 

available ventricular filling time shortens and exercise induced abnormalities of left 

ventricular untwisting develop, in turn leading  to a marked rise in left atrial (LA) 

pressure[259][260].   

In health approximately 80% of left ventricular filling occurs in early diastole due to 

rapid myocardial untwisting and left ventricular suction. Impairment of 

myocardial relaxation decreases early LV filling, with a subsequent increase in the 

importance of the active atrial contribution[261]. Loss of normal LA function is an 

important factor in the development of symptoms in HF-PEF, with the presence of 

heart failure symptoms predicted by reduced LA strain and increased LA stiffness 

in patients with similar LVH and LA size[262]. The development of atrial 

fibrillation (AF), as a consequence of LA dilation and remodelling, is a sign of 

advanced HF-PEF and associated with more fibrosis, necrosis and neurohormonal 

activation[263]. Chronic elevation of LA pressure may also lead to the development 

of pulmonary hypertension and subsequent right ventricular dysfunction.  

Abnormalities of systolic function are found in HF-PEF potentially reflecting an 

early myocardial process resulting in a progressive decline of systolic 

performance[264]. Systolic abnormalities of longitudinal and radial contractile 

function in HF-PEF may be measured with tissue Doppler and strain assessment. 

Multiple peripheral and central abnormalities lead to an inability to increase 

cardiac output in HF-PEF, with subsequent development of exertional symptoms.  

Loss of atrial contribution to LV filling in AF, seen in more severe HF-PEF,  leads to 

marked impairment of exercise capacity with marked loss of cardiac efficiency[263]. 

In addition minor abnormalities of systolic performance are amplified on exertion 
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as stroke volume fails to increase as in health[265],  and when occurring with the 

chronotropic incompetence often seen in HF-PEF leads to a failure to augment 

cardiac output[266]. In addition increased afterload on exercise, and diminished 

preload reserve due in part to increased aortic stiffness, leads to unfavourable 

ventricular-coupling and exercise limitation[267][268]. 

 

7.2.3 Diagnosis 

The European Society of Cardiology (ESC) state that a diagnosis of HF-PEF may be 

made when there are signs and symptoms present compatible with heart failure, 

normal or mildly reduced left ventricular ejection fraction and associated structural 

cardiac abnormalities including left ventricular hypertrophy (LVH), left atrial 

dilation (LA) and or diastolic dysfunction[246].  

7.2.3.1 Non-invasive 

7.2.3.1.1 Echocardiography 

The primary function of echocardiography in the diagnosis HF-PEF is to confirm 

that systolic function is normal, there are structural abnormalities present in 

keeping with HF-PEF and in excluding other cardiac causes of heart failure.  The 

addition of continuous wave Doppler, tissue Doppler and echo strain imaging 

allows the assessment of diastolic function. 

For a diagnosis of HF-PEF to be made the LVEF must be >50% on echo, with an 

indexed of LVEDV <97ml/m2[246]. There are multiple echocardiographic measures 

that predict LV filling pressure and diastolic function, although all are not in 

routine clinical practice. Continuous wave Doppler (CW) measurement of mitral 

inflow allows assessment of LV relation and LV filling pressure with use of the E/A 

ratio as well as the E wave deceleration time, however this technique is more prone 

to variation due to fluid status than tissue Doppler imaging (TDI)[269]. Decreased 

septal and mitral lateral wall diastolic velocities (E’) are seen in HF-PEF, and if 

tissue relaxation is normal a diagnosis of HF-PEF is unlikely. TDI measurement of 

myocardial systolic and diastolic velocities either alone, or in combination with 

mitral inflow CW Doppler identifies raised LV filling pressures [269], though 

accuracy is limited whilst patients are decompensated[270]. Measurement of 

diastolic indices on exertion may unmask previously minor diastolic abnormalities. 

When myocardial relaxation (E’) is abnormal it fails to increase in proportion to 

mitral inflow (E), leading to elevation of the E’/E ratio and LV filling pressure[271].  

Echo strain imaging allows the detection and quantification of subtle motion 

abnormalities and strain rate, a parameter that predicts LV filling pressure better 
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than E/E’ [272]. Diastolic strain rate has been shown to correlate with LV relaxation 

[272], as well as interstitial fibrosis in animal models[273], suggesting potential use 

in HF-PEF patients.   

7.2.3.1.2 CMR 

Cardiac magnetic resonance imaging (CMR) provides excellent image quality 

without the use of ionising radiation and is well suited to the assessment of LV 

function, mass and atrial volumes. As well as volumetric data grid-tags are well 

established in the assessment of radial, longitudinal or circumferential LV 

deformation. Systolic and diastolic strain, strain rate and torsion are all indices of 

systolic and diastolic function useful in the diagnosis of HF-PEF, although the 

availability and clinical application of tagging quantification is not widespread[274-

276].  

The use of gadolinium containing contrast agents in CMR allows for focal 

myocardial scar[144] and fibrotic[277] processes to be delineated with late 

gadolinium enhancement (LGE) imaging. However LGE is limited in diffuse 

myopathic processes as a contrast between ‘normal’ and abnormal tissue is 

required to detect pathology.  

Extra-cellular volume fraction (ECV), measured by CMR T1 mapping, allows 

measurement of the myocardial interstitial expansion without biopsy; allowing the 

relationship between ECV expansion, diastolic function and outcomes in HF-PEF to 

be investigated[278][279]. 

7.2.3.2 Invasive 

7.2.3.2.1 Cardiac Catheterisation 

LV end diastolic pressure (LVEDP) may either be measured from direct 

measurement at left heart catheterisation or assumed from pulmonary capillary 

wedge pressure (PCWP) at the time of right heart catheterisation. LVEDP or PCWP 

of >16 or >12mmHg are respectively diagnostic of diastolic dysfunction in the 

presence of a normal LVEDI[280], on occasions that resting haemodynamics are 

normal exercise right heart catheterisation may be performed and reveal abnormal 

LV filling[260].  Pressure volume measurement readily detect abnormalities in LV 

filling and ventricular-arterial coupling, though they are not routinely applied in 

clinical practice[281][282]. 

7.2.3.2.2 Biomarker Measurement 

The use of B-type natriuretic peptides (BNP and NT-proBNP) is well established in 

the diagnosis of heart failure, with both high negative and positive predictive 

value[283].  BNP levels are a strong predictor of outcome in both HF-PEF and 
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systolic HF[284, 285].  BNP/NT-proBNP above the trial median value has 

persistently been associated with worse outcomes in a number of randomised 

controlled trials[286, 287]. There are a number of situations where BNP values alone 

may be misleading, though when combined with echocardiographic indices test 

performance improves[288]. ‘False positive’ BNP measurement is associated with 

atrial fibrillation, increasing age and female gender, whilst ‘false negative’ 

measurements are seen in obesity and fluctuating atrial pressure elevation. The 

prevalence of the previous factors in the HF-PEF population mean that the 

development of other, more specific biomarkers, is important.  

Alternative biomarkers are being investigated in HF-PEF including markers of 

collagen and extra-cellular matrix turnover and may be associated with clinical 

outcomes[289, 290]. 

 

7.2.4 The Role of Mineralocorticoid Antagonists in HF-PEF 

Inhibition of the Renin-angiotensin system (RAAS) is theoretically beneficial in HF-

PEF. Many of the contributory and pathophysiological changes seen in HF-PEF are 

directly affected by RAAS activation including myocardial fibrosis, vascular 

stiffness, hypertension and afterload. 

The mineralocorticoid antagonists (MRA) spironolactone and eplerenone improve 

survival and quality of life in selected patients with HF-REF[45, 46]. The beneficial 

effects of MRAs in HF-REF are likely due to altered sodium and potassium 

handling and decreased myocardial fibrosis[291, 292].  

Fibrosis is a key mediator of myocardial stiffness and diastolic dysfunction in HF-

PEF[162, 253, 293]. Recent studies have demonstrated that in HF-PEF MRAs 

improve left ventricular diastolic function[234, 294], decrease HF 

hospitalisation[295] and in selected patients may decrease mortality[296]. The mode 

of action of MRAs in HF-PEF is uncertain. However spironolactone has been shown 

to decrease serum markers of collagen turnover and improve tissue relaxation[294, 

297]. If spironolactone’s action is shown to be related to remodelling of the 

myocardial extracellular matrix this study will improve understanding of action of 

a disease modifying therapy, in a condition likely to become an increasing health 

burden[247]. 

 

7.2.5 Aims 

In this study we employ CMR T1 mapping to quantify myocardial ECV before and 

after six months spironolactone therapy to determine if the effects of MRAs in HF-
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PEF are mediated by a decrease of diffuse myocardial fibrosis. Having not 

previously been used as a primary end-point ECV measurement provides new 

opportunities for examining response to intervention. 

 

7.3 Methods 

This study was funded by British Heart Foundation Project Grant 

(PG/14/10/30641), received appropriate ethical approval (13/NE/0292) and was 

conducted in accordance with the declaration of Helsinki.  

60 subjects are to be recruited from a single tertiary hospital following primary care 

referral with symptoms compatible with HF and if they met European Society of 

Cardiology (ESC) guidance for the diagnosis of HF-PEF[11] with the addition of 

elevated NT-proBNP.  

 

7.3.1 Inclusion and exclusion criteria 

Inclusion criteria are: age 18-90, left ventricular ejection fraction (LVEF) >50% by 

echocardiogram (with relevant structural abnormality e.g LVH or dilated LA), 

symptoms compatible with HF or signs of HF,  and elevated NT-proBNP (>400pg 

per ml) at time of referral.  

Exclusion criteria were: inability to undergo CMR examination, severe renal 

dysfunction (eGFR <30ml/min/1.73m2), severe valvular abnormality, uncontrolled 

hypertension (systolic >140mmHg or >160mmHg on three agents) on clinic 

measurement, diabetes mellitus (DM) (whether insulin dependent or not), contra-

indication to spironolactone therapy and severe co-morbidity with expected life 

expectancy <5 years. 

 

7.3.2 Study medication & randomisation 

Patients underwent 1:1 open-label randomisation. Randomisation was performed 

using a randomised permuted block strategy by an online service provider (Sealed 

Envelope, London, UK). Spironolactone was started at the subjects choosing 

following all enrolment investigations to allow monitoring of renal function to be 

scheduled in primary care. Spironolactone was commenced at 25mg orally once 

daily with no planned titration. Renal function was monitored in primary care or at 

the study centre depending on patient preference. Monitoring was performed at 

regular intervals in accordance with national guidance[298] for use of the drug in 

systolic heart failure (renal function checked one week, one month, two months and 

three months after initiation). If renal dysfunction or hyperkalaemia developed the 
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dose was decreased to alternate day or stopped. Safety follow-up was continued for 

28 days after study completion. 

 

7.3.3 Multimodality Assessment 

7.3.3.1 Cardiac Magnetic Resonance Protocol 

Examinations were performed with a 3 Tesla Philips Achieva system equipped 

with a 32 channel cardiac phased array receiver coil and MultiTransmit® 

technology (Philips Healthcare, Best, The Netherlands). The cardiac long and short 

axes were determined using standard scout views. Mid LV native (pre-contrast) T1 

maps were generated using a previously described MOLLI sequence [214] planned 

using the 3 of 5 method, briefly comprising: ECG triggered 5b(3s)3b MOLLI, flip 

angle 35⁰, voxel size of 1.98*1.98*10 mm3. Left ventricular (LV) mass and volumes 

were obtained from cine imaging covering the entire LV in the short axis: balanced 

SSFP, voxel size 1.2*1.2*10 mm3, no gap, 40 cardiac phases. Right ventricular (RV) 

and atrial volumes were obtained from a transaxial stack covering the entire heart: 

balanced SSFP, voxel size 1.7*1.5*5mm3, no interslice gap, 40 cardiac phases. 

0.15mmol/kg Gadovist (Bayer Schering) was delivered by power injector (Medrad 

Inc, Warrendale, Pennsylvania, USA) as a single bolus via a venous cannula placed 

in the ante-cubital fossa, followed by a 20ml saline flush at 5ml/second. Late 

gadolinium enhancement (LGE) imaging (inversion recovery-prepared T1 

weighted gradient echo, inversion time according to Look-Locker scout, 

TR/TE/flip angle 3.7ms/2.0ms/25°, acquired spatial resolution 1.54×1.75×10 mm) 

with whole heart coverage was performed seven to ten minutes following contrast 

administration. Post-contrast T1 maps were acquired using the same MOLLI 

scheme fifteen minutes after contrast administration. 

7.3.3.2 CMR Analysis 

All image analysis was performed using cmr42 (Circle Cardiovascular Imaging Inc, 

Calgary, Alberta, Canada). Volumetric and mass analysis was performed in the 

standard manner from the short axis stack (LV) or long axis cine images (RV, left 

and right atria (LA, RA)). The presence of focal fibrosis or scar was assessed 

qualitatively from LGE imaging.  T1 values were calculated from source images 

using manual motion correction with the region of interest (ROI) placed in the mid 

infero-septum to minimise variability[17, 194]. ECV was calculated using the 

formula:  
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𝑬𝑪𝑽 = (1 − 𝐻𝑐𝑡)
𝑅1(𝑚𝑦𝑜 𝑝𝑟𝑒) − 𝑅1(𝑚𝑦𝑜 𝑝𝑜𝑠𝑡)

𝑅1(𝑏𝑙𝑜𝑜𝑑 𝑝𝑟𝑒) − 𝑅1(𝑏𝑙𝑜𝑜𝑑 𝑝𝑜𝑠𝑡)
 

*Where R1=1/T1 and Hct is Haematocrit. 

 

All T1, ECV, volumetric and mass analysis was performed by two observers (AKM, 

PS) blinded to time point, subject data and study arm.  

7.3.3.3 Trans-thoracic echocardiogram 

All echocardiograms were performed by British Society of Echocardiography (BSE) 

accredited echocardiographer.  Measurements were averaged over 3 cardiac cycles 

for subjects in sinus rhythm and 5 cardiac cycles for those in atrial fibrillation. 

Acquisitions included continuous wave (CW) and tissue Doppler imaging (TDI) 

measurements of mitral inflow peak early (E), peak late (A) flow velocities, E/A 

ratio and mitral flow deceleration time (DT). TDI measurement (systolic (S’), early 

(E’), late (A’)) were performed from the apical 4 chamber view and measured at the 

lateral and septal mitral annulus. E/E’ was calculated from averaged mitral 

annulus TDI. Diastolic function was graded from 0-3[269]. All echocardiographic 

measurements were made by the investigators blinded to time point, subject data 

and study arm. 

7.3.3.4 Ambulatory blood pressure monitoring 

24 hour ambulatory blood pressure (ABPM) was performed with standard clinical 

equipment (Del Mar Reynolds NIBP, Sentinel Space lab 7.0.3.737). 

7.3.3.5 Maximal exercise testing 

Exercise test and determination of maximal oxygen consumption (Peak VO2) were 

performed using RISE-95 protocol and performed with an electromagnetically 

braked cycle ergometer (Excalibur Sport, Lode BV, Groningen, The Netherlands). 

Heart rate, pulse oximetery and electrocardiogram were monitored continuously. 

Respired gas was sampled and measured at 50Hz for N2, O2 and CO2. Calculation 

of pulmonary gas exchange (VO2, VCO2, RER) and ventilator variables (Ve; tidal 

volume, Vt; breathing frequency) were performed on a breath by breath basis. 

Anaerobic threshold was calculated using the V slope method. All exercise 

physiology measurements were made blinded by experienced cardiac physiologists 

blinded to subject study arm. 
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7.3.3.6 Quality of life & functional status 

Validated self-assessment questionnaires (EQ5D-3L, SF-12) were used to determine 

quality of life[299]. Functional status was assessed by the investigator and graded 

using the New York Health Association (NYHA) scale from I to IV. 

7.3.3.7 Serum analysis 

A 20 ml blood sample was taken under standard conditions following a 20 minute 

seated period prior to CMR study. Samples were cooled, centrifuged and stored at -

80°C within 30 minutes for later analysis.  Markers of collagen turnover and renin-

angiotensin-aldosterone system (RAAS) activation will be performed upon 

completion of study follow-up period to minimise variability. Consequently they 

are not presented in this paper. Future analysis will include: serial PINP, PIIIINP, 

MMP-9, NT-proBNP, aldosterone and renin levels, urea & electrolytes, albumin 

and bilirubin. 

 

7.3.4 Endpoints 

7.3.4.1 Primary endpoint 

The primary outcome was to determine if spironolactone therapy leads to a 

decrease of diffuse myocardial fibrosis as assessed by CMR T1 mapping.  

7.3.4.2 Secondary Endpoint 

Exploratory analysis of the relationships between the extracellular volume and 

exercise capacity and diastolic function. 

 

7.3.5 Statistical Analysis 

This study was powered to detect a 3% change from baseline to 6 month follow up 

in extracellular volume fraction between groups. Assuming a 10% drop-out rate a 

sample size of 60 subjects was required[300]. All data are presented as mean +/- SD 

unless otherwise stated. Continuous variables were compared with independent t-

test and categorical variables with χ2 testing.  Normal variance was assumed. 

Correlation was assessed with Pearson’s correlation co-efficient. Significance was 

assumed throughout with P<0.05. 
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7.4 Results  

Between June 2014 and April 2015, 232 subjects meeting eligibility criteria were 

approached to take part in the study. 30 subjects were recruited and randomised to 

6 months spironolactone or monitoring. At the time of writing (end March 2015) 15 

subjects had completed the follow up period and four had withdrawn, or been 

withdrawn from the study. Of those no longer under follow-up: 2 withdrew 

consent, 1 was withdrawn having been unable to complete the CMR study and 1 

was withdrawn by the study investigators due to poor compliance. 3 withdrawals 

were in the treatment group, 1 in monitoring group. 

 

7.4.1 Findings at Study Enrolment 

7.4.1.1 Demographics 

Study subject characteristics can be seen in table 7.1. The subjects had a mean age of 

74.4 ± 7.0 years and equal gender split. 77% of patients had NYHA II heart failure 

symptoms, with the remainder having NYHA III symptoms.  Diagnoses of 

hypertension and atrial fibrillation were common and found in 80% and 90% of 

subjects respectively. β-Blockers were prescribed in 71% and angiotensin 

converting enzyme inhibitor (ACEi) or angiotensin receptor blocker in 68%, and 

prescribed for systemic hypertension or atrial fibrillation.  Blood pressure control at 

enrolment was satisfactory with mean daytime systolic blood pressure of 130.1 ± 

15.2mmHg, diastolic 71.8 ± 10.4mmHg on mean of 1.9 ± 0.9 agents. NT-proBNP was 

elevated at 1718.0 ± 177.8 pg/ml, haemoglobin, haematocrit, sodium and potassium 

were normal, renal function was mildly impaired with mean eGFR of 63.0 ±14.3 

ml/min/1.73m2. 

7.4.1.2 Baseline CMR Characteristics 

Left and right ventricular chamber measurements and function were within normal 

limits. Left and right atrial volumes were elevated (148.6 ± 29.2; 163.3 ± 39.7ml 

respectively). Only one patient displayed LGE, which was in a typical myocarditis 

pattern (though no history of prior cardiac disease was elicited). Native T1 was 

similar to those previously recorded in volunteers studied in our unit. The 

extracellular volume was elevated at 28.3 ± 3.8% when compared to previously 

published normal ranges[18] (table 7.2). 
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Table 7.1 Baseline demographics and subject characteristics 

 

 

 

 

 

 

  Completed follow up   

Overall (n=30) Monitoring 

(n=8) 

Spironolactone 

(n=7) 

P 

Age  74.2 ± 6.9 73.0 ± 6.8  76.7 ± 3.9 0.26 

Male:Female 15:15 3:4 3:3 0.82 

BMI (Kg/m2) 29.5 ± 5.3 31.2 ± 5.9 29.6 ± 6.2 0.63 

Medical History  

 Hypertension (%) 24 (80) 6(75) 5 (86) 0.88 

 Atrial Fibrillation (%) 27 (90) 8 (100) 7 (100) - 

 MI or coronary 

revascularisation (%) 

1 (3) 0 0 - 

 Vascular disease (%) 3 (10) 2 (25) 1 (14) 0.61 

Medication  

 ACE inhibitor/ARB (%) 19 (68) 6 (75) 3 (43) 0.21 

 Β-blocker (%) 20 (71) 8 (100) 5 (71) 0.10 

 Loop diuretic (%) 12 (43) 3 (38) 4 (57) 0.45 

 Calcium antagonist (%) 9  (32) 4 (57) 1 (14) 0.14 

 Digoxin (%) 7 (25) 1 (13) 2 (29) 0.44 

 Lipid-lowering med (%) 13 (46) 4 (50) 4 (57) 0.79 

Clinical findings   

 Breathlessness 27 (96) 8 (100) 7 (100) - 

 Orthopnoea 7 (25) 1 1 0.92 

 Oedema 19 (68) 4 5 0.40 

 Systolic blood pressure 130.2 ± 15.9 130.9 ± 13.1 129.2 ± 14.4 0.829 

 Diastolic blood pressure 72.8 ± 10.4 74.4 ± 12.6 75.2 ± 9.4 0.908 

 Pulse pressure 55.5 ± 18.2 56.4 ± 10.6 54.0 ±15.2 0.741 

Laboratory Tests  

 Haemoglobin 12.4 ± 3.2 11.2 ± 4.6 14.1 ± 1.3 0.17 

 Haematocrit 40.7 ± 0.04 0.40 ± 0.03 0.44 ± 0.05 0.10 

 Sodium 140.2 ± 3.6 141.3 ± 4.4 141.2 ± 2.2 0.95 

 Potassium 4.3 ± 0.3 4.3 ± 0.3 4.3 ± 0.2 0.47 

 eGFR(ml/min/1.73m2) 63.0 ± 14.1 53.1 ± 12.2 59.7 ± 14.9 0.40 

 NT-proBNP 1669.3 ± 1428.2 1727.0 ± 895.0 1224.3 ± 416.8 0.23 
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Table 7.2 Baseline CMR Characteristics 

 

 All  Completed follow up  

P  (n=30) Monitoring(n=8) Spironolactone(n=7) 

Chamber volumes & masses 

 LVEDV (ml) 149.4 ± 40.9 158.9 ± 56.7 141.8 ± 21.2 0.50 

 LV mass (g) 108.2 ± 325.3 100.3 ± 40.3 104.7 ± 21.5 0.81 

 Male 126.7 ± 27.5    

 Female 92.0 ± 34.0    

 Indexed LV mass (g/m2) 55.8 ± 17.1 50.7 ± 16.9 54.3 ± 16.1 0.71 

 Male 61.1 ± 13.1    

 Female 51.2 ± 19.2    

 LV ejection fraction (%) 53.6 ± 5.8 53.7 ± 3.9 55.8 ± 5.6 0.46 

 RVEDV (ml) 158.9 ± 52.2 155.6 ± 40.8 172.1 ± 49.1 0.35 

 RV ejection fraction(%) 49.0 ± 5.8 48.6 ± 7.3 48.9 ± 7.0 0.92 

 Left atrial volume (ml) 148.6 ± 29.2 156.4 ± 30.8 144.5 ± 35.4 0.55 

 Right atrial volume(ml)  163.3 ± 39.7 90.3 ± 21.1 84.2 ± 10.9 0.51 

Tissue Characteristics 

 LGE 1* 0 1 - 

 Native T1 (ms) 1234.3 ± 82.7 1276.4 ± 24.4 1148.5 ± 120.1 0.18 

 ECV (%)** 28.3 ± 3.8 28.0 ± 2.4 27.5 ± 4.0 0.78 

 

*One individual displayed LGE in a typical myocarditis pattern without prior 
history and no associated regional wall motion abnormality.  

** normal range (25.4 ± 2.5%) 

 

7.4.1.3 Echocardiography, quality of life & exercise physiology 

Baseline characteristics can be seen in table 7. 3.   Diastolic function was abnormal 

in all subjects though comprehensive assessment was limited by the presence of 

atrial fibrillation. Mild, moderate and severe diastolic dysfunction were seen in 10 

(36%), 15 (50%) and 5 (17%) subjects respectively. Mean E/E’ was outwith the 

normal range at 10.5 ± 3.0.  

9 participants were unable to perform maximal exercise testing for a range of 

reasons (knee pain, hip pain, and insufficient strength to move pedals). Peak VO2 

was 12.5 ± 4.3ml/kg/min, anaerobic threshold was reached at 10.7 ± 2.5ml/kg/min 

though VE/CO2 slope was normal. Physical QoL and health self-rating were 

decreased while mental QoL was normal.  
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Table 7.3 Baseline echocardiography, exercise physiology and quality of life 
characteristics 

 

 All  Completed follow up  

  (n=30) Monitoring(n=8) Spironolactone(n=7) P  

Echocardiography 

 E wave velocity (cm/s) 100.0 ± 22.0 103.1 ± 24.2 102.3 ± 27.8 0.96 

 Deceleration time (ms) 188.6 ± 47.5 180.6 ± 40.9 175.0 ± 29.7 0.77 

 Lateral E’ (cm/s) 10.6 ± 2.8 10.3 ± 2.4 10.8 ± 2.5 0.71 

 Septal E’ (cm/s) 9.3 ± 2.3 8.7 ± 1.9  9.6 ± 1.9 0.42 

 Mean E’ (cm/s) 10.0 ± 3.5 9.5 ± 1.9 10.2 ± 1.7 0.49 

 E/E’ 10.5 ± 3.0 11.2 ± 4.4 10.1 ± 2.2 0.58 

 Right ventricular S’  11.7 ± 3.0 11.0 ± 2. 9.9 ± 1.9 0.42 

Diastolic dysfunction grade 

 I (normal) (%) 0 (0) 0 (0) 0 (0)  

 

0.96 

 II (mild) (%) 10 (33)  3 (38) 3 (43) 

 III (moderate) (%) 15 (50) 4 (50) 3 (43) 

 IV (severe) (%) 5 (17) 1 (13) 1 (14) 

Functional Status 

 NYHA II 23 (77) 6 4 0.88 

 NYHA III 7 (23) 2 3 

Cardiopulmonary Exercise Testing (2 monitoring and 3 spiro could not perform CPEX) 

 VO2 max 12.5 ± 4.3 12.4 ± 2.8 16.4 ± 1.8 0.06 

 VO2 at AT 10.7 ± 2.5 10.3 ± 1.7 11.9 ± 3.7 0.41 

 VE/VCO2 slope 32.0 ± 5.0 29.4 ± 3.3 28.5 ± 3.3 0.72 

Quality of Life 

 SF 12 physical 

(44.2 ± 11.7) 

30.7 ± 9.7  32.5 ± 7.4 31.6 ± 7.6 0.83 

 SF 12 mental 

(47.7 ± 10.5) 

48.9 ± 14.3  47.1 ± 13.5 53.4 ± 10.1 0.33 

 EQ 5D TTO  0.85 ± 1.21 

 

0.53 ± 0.44 0.68 ± 0.28 0.43 

 EQ 5D visual scale 

 (75.3 ±18.2) 

0.66 ± 0.24   0.58 ± 0.30 0.68 ± 0.21 0.47 
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7.4.1.4 Relationship between left ventricular extracellular volume & study 

parameters 

No significant relationships were seen between ECV and cardiac geometry, tissue 

relaxation, functional status, quality of life or well-being at baseline.  

7.4.1.5 Relationship between other study parameters 

Systolic blood pressure and pulse pressure were significantly associated with LV 

mass (r=0.399, p=0.032; r=0.624, p=0.000), though diastolic blood pressure was not 

(r=-0.306 p=0.107 (figure 7.2)). NT-proBNP correlated with cardiac chamber 

volumes, most strongly with RVEDV (r=0.581, p=0.001) and eGFR (r=-0.402, 

p=0.025). eGFR correlated with LVEDV, RVEDV and RA volume (r=-0.379, p=0.039; 

r=-0.430, p=0.018; r=-0.458, p=0.016) but otherwise no significant relationships were 

identified (Table 7.4).  

 

Table 7.4 Interaction between NT-proBNP, eGFR and selected study parameters 

NT-proBNP Correlation P value 

 LVEDV 0.388 0.034 

 LVEF -0.553 0.002 

 LV Mass 0.355 0.054 

 RVEDV 0.581 0.001 

 RVEF -0.399 0.067 

 left atrium 0.221 0.269 

 right atrium 0.407 0.035 

 Peak VO2 -0.462 0.046 

 eGFR -0.402 0.025 

eGFR 

 LVEDV -0.379 0.039 

 LVEF 0.119 0.531 

 LV Mass -0.288 0.122 

 RVEDV -0.430 0.018 

 RVEF 0.161 0.394 

 Left atrium -0.346 0.077 

 Right atrium -0.458 0.016 

 Peak VO2 0.076 0.757 
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Figure 7.1 Correlations of baseline systolic and diastolic blood pressure with LV 
mass  

systolic r= 0.424, p=0.031; diastolic r= 0.282, p=0.162 
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Figure 7.2 Relationship of NT-proBNP and selected baseline charcteristics 

A) eGFR (r=-0.402, p=0.025) 

 

B) RV end diastolic volume (r=0.630, p=0.000) 
 

 
C) Peak VO2 (r=0.462, p=0.025) 
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7.4.2 Intervention Effect 

15 subjects have completed the follow-up period: 8 monitoring, 7 spironolactone. 

The interval between baseline and follow up CMR studies was 207 ± 20 days.  One 

individual required down titration of spironolactone due to mild hyperkalaemia, 

but the study drug was continued. No adverse events occurred.  

7.4.2.1 Results 

Group composition, including age and gender were not statistically different. 

ΔECV of –1.8 ± 3.9% versus +2.3 ± 3.2% (p=0.041) was seen in spironolactone and 

monitoring groups respectively. A significant decrease in LV mass following 

treatment with spironolactone versus controls was seen (p=0.032) (figure 7.3 & table 

7.5).   

 

 

Figure 7.3 Change in ECV and LV mass over the study period 

A) ΔECV after 6 months follow-up (p=0.041) B) ΔLV Mass (g) after 6 months 
follow-up (p=0.032) 
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Table 7.5 Change of CMR characteristics over the study period 

 Monitoring(n=8) Spironolactone(n=7) P  

Chamber volumes & masses 

 LVEDV (ml) -9.7 ± 14.6  -15.4 ± 10.9  0.41 

 LV mass (g) 6.8 ± 13.4 -11.0 ± 15.4 0.32 

 LV ejection fraction (%) 1.2 ± 5.5 0.4 ± 2.3 0.73 

 RVEDV -0.3 ± 12.9 -15.3 ± 14.1 0.04 

 RV ejection fraction (%) 4.2 ± 7.2 0.0 ± 5.3 0.23 

 Left atrial volume (ml) 4.9 ± 15.4 2.6 ± 20.1 0.80 

 Right atrial volume (ml)  -9.9 ± 25.1 -3.3 ± 22.7 0.62 

Tissue Characteristics 

 Native T1 (ms) -43.5 ± 22.5 46.5 ± 115.5 0.049 

 Extracellular Volume (%) 2.4 ± 3.3 -1.8 ± 3.9 0.041 

 

Table 7.6 Change in echocardiography, exercise physiology and quality of life 
measures 

 Monitoring(n=8) Spironolactone(n=7) P 

Blood Pressure 

 Systolic 3.5 ± 13.7 -9.0 ± 15.1 0.12 

 Diastolic 6.0 ± 11.4 -2.0 ± 6.6 0.13 

 Pulse pressure -2.5 ± 11.4 -3.0 ± 6.4 0.44 

Echocardiography 

 E wave velocity (cm/s) 2.1 ± 19.0 -6.6 ± 13.4 0.39 

 Deceleration time (ms) -16.3 ± 25.4 -11.3 ± 34.0 0.75 

 Lateral E’ (cm/s) 0.1 ± 3.0 0.6 ± 1.2 0.66 

 Septal E’ (cm/s) -1.3 ± 1.5 -0.7 ± 1.7 0.49 

 Mean E’ (cm/s) -0.6 ± 2.0 -0.0 ± 0.7 0.48 

 E/E’ 1.1 ± 2.0 -0.7 ± 1.3 0.06 

 Right ventricular S’  3.2 ± 5.6 -1.3 ± 4.9 0.13 

Cardiopulmonary Exercise Testing (3 spiro and 2 monitoring could not perform CPEX) 

 Peak VO2  -0.7 ± 2.6 0.0 ± 1.9 0.70 

 VO2 at anaerobic threshold -0.5 ± 0.8 0.7 ± 2.5 0.42 

 VE/VCO2 slope 1.1 ± 3.7 -7.4 ± 16.1 0.42 

Quality of Life 

 SF 12 physical -4.6 ± 10.0 1.9 ± 5.3 0.15 

 SF 12 mental -4.0 ± 26.7 -7.3 ± 10.6 0.77 

 EQ 5D TTO  0.1 ± 0.5 -0.1 ± 1 0.37 

 EQ 5D VAS -0.8 ± 2.7 -0.1 ± 0.1 0.46 

 EQ 5D visual scale 7.3 ± 12.4 -4.6 ± 12.7 0.09 
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RVEDV decreased significantly following treatment with spironolactone versus 

monitoring, though no other right sided cardiac parameters changed. 

No significant change was seen in any echocardiographic or quality of life 

parameters. A non-significant change of  E/E’ was seen, with positive change 

observed in the treatment group (1.1 ± 2.0 vs -0.7 ± 1.3; p=0.06). Maximal exercise 

testing was performed by 4 and 6 subjects in the spironolactone and monitoring 

groups respectively, no significant change in peak VO2, anaerobic threshold or 

VE/VCO2 slope was identified (table 7.6).   

ΔECV mass correlated with ΔLV (r=0.573, p=0.026) but not with Δ diastolic, systolic 

or pulse pressure (r=0.419, p=0.120; r=0.495, p=0.061 r=0.314, p=0.255) (table 7.7). A 

non-significant relationship was seen between ΔECV and ΔE/E’ (r=0.499, p=0.069). 

 

Table 7.7 Relationship between  ΔECV and Δ of selected study parameters 

 

ΔECV Correlation P 

 LVEDV 0.443 0.098 

 LVEF 0.136 0.630 

 LV Mass 0.573 0.026 

 RVEDV -0.21 0.941 

 RVEF 0.112 0.690 

 Left atrium -0.02 0.996 

 Right atrium -0.71 0.810 

 Systolic blood pressure 0.495 0.061 

 Diastolic blood pressure 0.419 0.120 

 Pulse pressure 0.314 0.255 

 E wave velocity 0.129 0.660 

 Mean E’ -0.287 0.319 

 E/E’ 0.499 0.069 

 Peak VO2 0.055 0.888 

 

7.5 Discussion 

7.5.1 Treatment Effect 

This is the first drug study to employ ECV as the primary end point, and provides 

insights into the mode of action of aldosterone antagonism in HF-PEF. Recent data 

suggest that in carefully selected patients spironolactone may improve mortality 

and morbidity in HF-PEF [296]; however it remains a condition without 

randomised data supporting disease modifying therapy. In this preliminary 

analysis the sample size is insufficient to definitively test the primary hypothesis. 
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Despite this we have found a significant change in the myocardial extracellular 

volume following six months of spironolactone in HF-PEF. 

In keeping with previous data LV mass fell following spironolactone treatment in 

HF-PEF[234]. However for the first time we have demonstrated that change in LV 

mass was associated with ΔECV. Simultaneous decrease of ECV and LV mass 

potentially points to the physiological basis underlying remodelling: suggesting 

that the decrease of LV mass is secondary to regression of extracellular expansion 

and diffuse fibrosis.  

Myocardial fibrosis is a major contributor to myocardial stiffness, diastolic 

dysfunction and subsequent heart failure[293, 301][302].  In this preliminary 

analysis the data suggest that improvement in cardiac relaxation may be associated 

with regression of fibrosis. A change in E/E’ of 1.5 and 3 has previously been 

reported following 12 and 6 months of MRA treatment[234, 294]. We did not 

observe a significant change in echocardiographic measures of cardiac relaxation; 

however previous studies would suggest that a sample size of at least 10 is needed 

to detect an E/E’ change of 2. 

The relationship between LV mass, systolic and diastolic blood pressure is 

established[303][304][305] , as are the anti-hypertensive effects of 

spironolactone[306].  Improved diastolic function has been shown to be 

independent of change in blood pressure[234], but instead occurs as a consequence 

of inhibition of neuro-hormonal activation. 

Previous studies have demonstrated  cardiac remodelling following aldosterone 

antagonism in HF-PEF; however the direct myocardial effects have previously not 

been known. The multi-parametric assessment of the heart possible with CMR 

means that this study is ideally placed to determine the interaction between neuro-

hormonal activation and myocardial tissue characteristics.  

 

7.5.2 Enrolment Characteristics 

Our population was similar in age, gender, NYHA classification and BNP to 

previously published studies[295]. Importantly, rates of atrial fibrillation (89%) in 

the present study are much higher than previously published studies. As DM was 

an exclusion criteria rates this study population differed from other published 

studies were rates were as high as 60%[294]. 

Baseline myocardial fibrosis did not significantly correlate with any study 

parameter, though a non-significant relationship was seen between Peak VO2 and 
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ECV. A relationship between myocardial fibrosis and peak oxygen consumption 

has not previously been described.  

BNP has powerful prognostic value in HF-PEF[284, 307] and has previously been 

reported to be related to RV dysfunction[308] and renal impairment[309]. RV 

dysfunction develops as a consequence of pulmonary hypertension and afterload 

mismatch due to chronically elevated left atrial pressure, and is itself related to the 

presence of atrial fibrillation[309]. Renal dysfunction, RV dysfunction and elevated 

heart failure biomarkers are a triad of adverse predictors outcome in HF-PEF. 

Spironolactone as a mild diuretic and neuro hormonal antagonist may directly 

interact with two aspects of this triad, whilst indirectly lowering left atrial pressure 

as diastolic performance improves. This positive interaction may explain the 

survival benefit reported by Pfeffer et al[296], in patients from the Americas 

recruited to TOPCAT that more frequently had elevated BNP, atrial fibrillation and 

renal impairment. The inclusion criteria in this study will result in this cohort being 

more similar to the population that benefited from spironolactone, and as a result 

should offer important insights into spironolactone’s action in HF-PEF. 

 

7.6 Limitations 

As preliminary results the interpretation of the findings in this study is limited. A 

sample size of 60 was determined at the start of the study, as of my period of study 

ending half that number have been recruited. As before, some findings thus far are 

interesting but definitive conclusions may not yet be drawn despite findings being 

in line with published data and study hypothesis.  

Stored serum has not yet been analysed, to minimise variation of results all 

specimens are to be analysed as a single batch. The lack of NT-proBNP and markers 

of collagen turnover following the study period precludes insight that may have 

been gained by examining the interaction of serum biomarkers, the effect of 

spironolactone on the renin-angiotensin-aldosterone system and tissue 

composition. 

 

7.7 Conclusions 

In this preliminary analysis few subjects have completed the study period and a 

fuller analysis will be performed when the study is complete. Despite this the initial 

analysis points to the mode of action of aldosterone antagonism in HF-PEF, and for 

the first time measures the tissue effect of the intervention.  
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In addition, on completion this study will help further understanding of the 

interaction between tissue composition, blood pressure, tissue relaxation and 

markers of collagen turnover.  
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List of Abbreviations 

 

A Peak late mitral inflow 

ABPM Ambulatory blood pressure  

ACE Angiotensin converting enzyme 

AF Atrial fibrilliation 

AH  Athlete's heart 

ARVC Arrhythmogenic right ventricular cardiomyopathy 

AT Anerobic threshold 

ATP Adenosine triphosphate 

bpm Beats per minute 

BSA  Body surface area 

bSSFP Balanced steady-state free precession 

CMR Cardiovascular Magnetic Resonance 

CoV Coefficent of variation 

CW Continuous wave 

DCM Dilated cardiomyopathy 

DSE Dobutamine stress echo 

DT Deceleration time 

E Peak early mitral inflow  

ECM Extracellular matrix 

ECV Extracellular volume  

EDV  End diastolic volume 

eGFR Estimated glomerular filtration rate 

GBCA Gadolinium based contrast agents 

HCM Hypertrophic cardiomyopathy  

Hct  Haematocrit 

HF-PEF Heart failure with preserved ejection fraction  
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HF-REF Heart failure with reduced ejection fraction  

IHD Ischaemic Heart Disease 

LA Left atrium 

LGE Late Gadolinium Enhancement 

LV Left ventricle 

LVEDP Left ventricular end diastolic pressure 

LVEF Left ventricular ejection fraction 

LVSD Left ventricular systolic dysfunction  

MCE Myocardial contrast echocardiography 

MI  Myocardial infarction 

MO  Micro-vascular obstruction  

MOLLI Modified Look-Locker Inversion recovery 

MPRI  Myocardial perfusion reserve index 

MRA Mineralocorticoid antagonists  

MRS  Magnetic Resonance Spectroscopy  

ms Milliseconds 

NT-proBNP N-terminal prohormone brain natriuretc peptide 

NYHA New York Heart Association 

PCWP Pulmonary capillary wedge pressure 

PET Positron Emission Tomography  

QoL  Quality of life 

RA   Right atrium 

RAAS Renin-aldosterone-angiotensin system  

RI Ramp incremental 

ROI Region of interest 

RV  Right ventricle 

SAPPHIRE 

Saturation Pulse Prepared Heart Rate Independent Inversion 

Recovery  

SASHA Saturation Recovery Single Shot Acquisition 
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SE  Spin echo 

SENSE SENSitivity Encoding parallel imaging  

ShMOLLI Shortened Modified Look-Locker Inversion Recovery  

SI  Step incremental 

SNR Signal to noise 

SPECT Single Photon Emission Tomography  

STIR Short-TI triple inversion recovery prepared fast spin echo  

TDI Tissue Doppler imaging 

TE Echo time 

TI  Inversion time 

TID Transient ischaemic dilation  

TR Repetition time  

Ve Tidal volume 

Vt Breathing frequency 
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preserved ejection fraction: a cardiac MRI, exercise physiology 

and quality of life pilot study 
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Appendix B 

Subject & GP Information Sheets 

 

B.1  Athlete’s Heart Study 

B.1.1 Patient information sheet  

 

The Athletes Heart Study: Multi-modality assessment 
of athletic cardiac adaptation 

 
PARTICIPANT INFORMATION SHEET 

 

1. Invitation 
 
You are being invited to take part in a research study. Before you decide whether or 
not to take part, it is important for you to understand why the research is being done 
and what it will involve. Please take time to read the following information carefully, 
and discuss it with others if you wish.  
Ask us if there is anything that is not clear, or if you would like more information. 
Take time to decide whether or not you wish to take part. 
 
2. What is the purpose of the study? 
 
In people that undertake prolonged resistance and endurance sport and train to a 
very high level the heart may undergo a series of changes that allow the heart to 
pump more. When the heart changes the main pumping chamber (left ventricle) 
increases in size and becomes more muscular. 
When these changes are very pronounced it can be difficult to tell an athletes’ heart 
from some forms of heart disease including cardiomyopathy. This is important 
because prolonged strenuous exertion and physical training in people with heart 
disease may be dangerous. This means that it is very important that we can tell 
when a muscular heart is due to physical training or a potentially dangerous heart 
condition.  
 
Currently the best method of doing this is for an athlete to undergo a period of 
‘detraining’. This may last up to six months, and as well as being highly frustrating 
for the professional or keen amateur athlete may also have professional 
repercussions.  
 
In this study we are using a new cardiac magnetic resonance (CMR) technique to 
compare changes that occur in highly trained heart muscle against people with 
known heart disease. If this technique is able to tell apart athletes’ heart and people 
with heart disease we will be able to help sportsmen and women exercise safely, 
avoid detraining and help avoid people with heart disease exposing them to harm. 
   
3. Why have I been chosen?  
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You have been chosen because you are either a professional or keen amateur 
athlete OR a patient with cardiomyopathy that has volunteered to take part in the 
study. 
We hope to have 80 people like you taking part so we can learn as much as 
possible about the changes that occur in heart muscle in very vigorous exercisers 
and potentially protect athletes from harm in the future.   
 
4. Do I have to take part? 
 
No. It is up to you to decide whether or not to take part. If you do decide to take part 
you will be given this information sheet to keep and be asked to sign a consent 
form. If you decide to take part you are still free to withdraw at any time and without 
giving a reason. If there is a possibility that you might be pregnant, you should not 
take part in the study. Our research team will be happy to discuss any other 
questions that you may have concerning your suitability for the study, before you 
decide whether to take part. 
 
5.  What will happen to me if I take part? 
 
If you want to take part you will come to the LGI on two separate occasions. On the 
first visit you will have a cardiac MRI scan and blood sample taken, on the second 
visit you will perform an exercise test and have an echocardiogram and an ECG 
performed.  
 
CMR scan: This will last approximately one hour, but you should allow an hour and 
a half for your total time in the department. During the MRI you will lie flat in the 
scanner and be asked to hold your breath. We will give you a contrast agent that 
allows us to learn more about your heart and is used commonly in this type of scan. 
 
Exercise test: The duration of the CPEX (cardio-pulmonary exercise test) will 
depend on your level of fitness and will be performed on a treadmill. During the 
exercise test we will monitor your heart rhythm and blood pressure. We will also ask 
you to wear a mask when you are exercising so that we can accurately measure 
how efficient your circulation is. In some people the exercise test will be short and 
be finished after 10 minutes, in some it may last up to an hour. 
 
Echocardiogram: This will last approximately ten minutes and will be done before 
your exercise test. It uses ultrasound to take pictures of the heart, and other than a 
little bit of jelly on your chest is very comfortable and uneventful.  
 
ECG: Using an ECG we can measure the electrical impulses within the heart. This 
provides important information about the heart’s ‘wiring’ and how muscular the 
heart is. 
 

 
 
 
6.  What do I have to do?  
 
If you decide to take part you will undergo a few extra tests including one blood test. 
If you are one of the people taking part that has heart disease many of the tests will 
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form part of your normal care, and the results will be sent to your medical team. 
Over and above the two short visits you need not do anything else.  
 
 
7. What are the side effects of any treatment received when taking part? 
 
Your treatment will not be affected by taking part in this study in any way, but you 
will have a one blood test performed as part of the study. 
 
8. What are other possible disadvantages and risks of taking part? 
 
MRI scan: Magnetic Resonance Imaging (MRI) is safe and no radiation is used for 
this scan. There are no known risks from the technique.  
Some people may experience claustrophobia (fear of confined spaces). Our MRI 
staff will do all that they can to make you feel comfortable during the scan, and will 
be monitoring you via a video camera and an audio link. If we are unable to make 
you feel comfortable in the scanner, we will not go ahead with scanning.  
We will need to insert a small tube (cannula) into your arm for the contrast dye. The 
contrast medication we use during the scan is very safe but, as with any injection, 
reactions may occur. These include a warm sensation at the injection site, nausea or 
vomiting and transient skin rash.  
People with a history of allergy are more likely to suffer a more severe reaction to the 
medication used, but this is rare (less than 1 in 3000). The department is equipped to 
cope with allergic reactions if they happen.  
 
For Women: 
 
If you are a woman who might become pregnant, you will be asked to have a 

pregnancy test  
(urine or blood) before taking part. If you become pregnant during the study you will 
have to leave the study.  
 
9. What are the possible benefits of taking part?  
 
We cannot promise the study will help you but the information we get might help 
improve the prospects of young athletes and individuals with cardiomyopathy in the 
future. There is also a small chance that a non-cardiac abnormality may be 
detected during a follow-up scan that may lead to you undergoing investigation for 
an unrelated abnormality leading to prompt treatment. 
 
We have a standardised procedure were incidental findings will be formally reported 
to your general practitioner. If appropriate one of the study doctors will advise you 
of any incidental findings on the day of your scan.  
 
10. What happens when the research study stops? 
 
After your second visit your involvement with the study will cease but your normal 
care will continue, under your clinical team, uninterrupted. 
 
11. What if there is a problem? 
 
If you have a concern about any aspect of this study, you should ask to speak with 
the researchers who will do their best to answer your question.  If you remain 
unhappy and wish to complain formally, you can do this through the NHS 
Complaints Procedure.  Details can be obtained from the hospital. 
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In the event that something does go wrong and you are harmed during the research 
study there are no special compensation arrangements, however in certain 
circumstances arrangements may differ.  If you are harmed and this is due to 
someone’s negligence then you may have grounds for a legal action for 
compensation but you may have to pay your legal costs.  The normal National 
Health Service complaints mechanisms will still be available to you. 
 
 
12. Will my taking part in this study be kept confidential? 
 
Yes.  All the information about your participation in this study will be kept 
confidential.  The details are included in Part 2. 

 
13. Contact Details 
 
Your Doctor 
 
Name :   Dr Peter Swoboda or Dr Adam McDiarmid 

Cardiac MRI department, 
Clarendon wing, 
Leeds General Infirmary 

Tel. Number:  01133925909 
 
 
Your Research/Specialist Nurse 
 
Name :   Research Nurses 

Cardiovascular Research 
Sunshine Corridor 
Leeds General Infirmary 

Tel. Number:  0113 392 5481 or 392 6286 
 
 
 
 
 
 
 
 
 
 
This completes Part 1 of the Information Sheet. 
 
If the information in Part 1 has interested you and you are considering 
participation, please continue to read the additional information in Part 2 
before making any decision. 
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PART  2 
 
16.  What if new information becomes available? 
 
Sometimes during the course of a study, new information becomes available on the 
condition being studied. If this happens, we will tell you about it and discuss with 
you whether you want to or should continue in the study. If you decide to withdraw, 
we will make arrangements for your care to continue. If you decide to continue in 
the study you will be asked to sign an updated consent form. 
 
On receiving new information, we might consider it to be in your best interests to 
withdraw you from the study. If so, we will explain the reasons and arrange for your 
care to continue. 
 
If the study is stopped for any other reason, you will be told why and your 
continuing care will be arranged. 
 
17. What will happen if I don’t want to carry on with the study? 
 
The data collected up to the time you withdraw from the study will be kept in fully 
anonymised form.  
 
 
18. Will my part in this study be kept confidential? 
 
If you consent to take part in this study, the records obtained while you are in this 
study as well as related health records will remain strictly confidential at all times. 
The information will be held securely on paper and electronically at your treating 
hospital under the provisions of the 1998 Data Protection Act. Your name will not be 
passed to anyone else outside the research team or the sponsor, who is not 
involved in the trial. You will be allocated a trial number, which will be used as a 
code to identify you on all trial forms. 
 
Your records will be available to people authorised to work on the trial but may also 
need to be made available to people authorised by the Research Sponsor, which is 
the organisation responsible for ensuring that the study is carried out correctly. A 
copy of your consent form may be sent to the Research Sponsor during the course 
of the study. By signing the consent form you agree to this access for the current 
study and any further research that may be conducted in relation to it, even if you 
withdraw from the current study.  
 
The information collected about you may also be shown to authorised people from 
the UK Regulatory Authority and Independent Ethics Committee; this is to ensure 
that the study is carried out to the highest possible scientific standards.  All will have 
a duty of confidentiality to you as a research participant. 
 
If you withdraw consent from further study treatment, unless you object, your data 
and samples will remain on file and will be included in the final study analysis. 
 
In line with Good Clinical Practice guidelines, at the end of the study, your data will 
be securely archived for a minimum of 15 years. Arrangements for confidential 
destruction will then be made.  
 
With your permission, your GP, and other doctors who may be treating you, will be 
notified that you are taking part in this study. 
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19.  Informing your General Practitioner (GP) 
 
We will inform your GP that you are taking part, but the study will not have an 
impact on your care. 
 
20.  What will happen to any samples I give? 
 
Blood samples will be stored within the LGI for the duration of the study to allow for 
some specialist tests to be performed in one batch. After this samples will be 
destroyed. 
 
21. Will any Genetic testing be done? 
 
No 
 
22. What will happen to the results of this medical study? 
 
The results of the study will be available after it finishes and will usually be 
published in a medical journal or be presented at a scientific conference. The data 
will be anonymous and none of the participants involved in the trial will be identified 
in any report or publication.  
 
Should you wish to see the results, or the publication, please ask your study doctor.  
 
23. Who is organising this medical study? 
 
This study is being organised by the Leeds Institute of Genetics, Health and 
Therapeutics (LIGHT) within the University of Leeds.  
 
24. Who has reviewed the study? 
 
This study was given favourable ethical opinion for conduct in the NHS by Yorkshire 
& Humber – Leeds West Research Ethics Committee. 
 
25. Contact for further information 
 
You are encouraged to ask any questions you wish, before, during or after your 
research investigations. If you have any questions about the study, please speak to 
your study nurse or doctor, who will be able to provide you with up to date 
information about the drug(s)/procedure(s) involved. If you wish to read the 
research on which this study is based, please ask your study nurse or doctor. If you 
require any further information or have any concerns while taking part in the study 
please contact one of the following people: 
 
Dr Peter Swoboda or Dr Adam McDiarmid 
Cardiac MRI department, 
Clarendon wing, 
Leeds General Infirmary 
01133925909 
 
 
 
 
If you decide you would like to take part then please read and sign the consent 
form. You will be given a copy of this information sheet and the consent form to 

Research Nurses 
Cardiovascular Research 
Sunshine Corridor 
Leeds General Infirmary 
Tel: 0113 392 5481 or 392 
6286 
p.bijsterveld@leeds.ac.uk 
l.m.clark@leeds.ac.uk 

mailto:p.bijsterveld@leeds.ac.uk
mailto:l.m.clark@leeds.ac.uk
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keep. A copy of the consent form will filed with the study records and one may be 
sent to the Research Sponsor. 
 
You can have more time to think this over if you are at all unsure. 
 
Thank you for taking the time to read this information sheet and to consider this 
study. 
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B.1.2 General Practitioner Information Sheet 

 

The Athletes Heart Study: Multi-modality assessment 
of athletic cardiac adaptation 

 
General Practitioner Information sheet 

Version 1.0  February 2014. 
 
 
25/02/2014 
 
 
Dr  
 
Re: 
 
Dear colleague, 
 
Your patient has agreed to take part in the ‘The Athlete’s Heart Study: Multi-
modality assessment of athletic cardiac adaptation’ study. This is a study where 
we look at the change in heart muscle morphology and function in individuals that 
have developed physiological changes following intensive physical training. We 
would like to give you some relevant information about this study.  
 
Purpose of the study:  
Following prolonged resistance and endurance training the heart may undergo a 
series of physiological adaptations.  These changes, including left ventricular dilation 
and hypertrophy, can be difficult to differentiate from changes seen in some forms of 
cardiomyopathy including hypertrophic cardiomyopathy. Prolonged strenuous 
exertion and physical training in patients with cardiomyopathy may be dangerous and 
result in sudden death, as a result it is essential that when overlap in physical 
appearances exist the two are differentiated. 
 

Currently the best method of differentiating the two is for an athlete to undergo a 
period of ‘detraining’. This may last up to six months, and as well as being highly 
frustrating for the professional or keen amateur athlete may also have professional 
repercussions.  
 

In this study we plan to use a new cardiac magnetic resonance (CMR) technique to 
detect changes that occur in highly trained heart muscle versus patients with 
known cardiomyopathy displaying similar morphological changes. If this technique 
is able to differentiate between athletes’ heart and patients with cardiomyopathy it 
will allow us to accurately define the cause of the changes in heart structure and 
function, avoiding detraining and protecting patients with cardiomyopathy from 
potential harm. 
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Recruitment: 40 subjects will be recruited from national and local sporting 
associations with 40 controls recruited from local tertiary specialist hypertrophic 
cardiomyopathy clinic.  
 
What will happen to your patient? 
Athletes and controls will undergo the same range of non-invasive multi-modality 
tests. 
  
After having given informed consent subjects will then: 
 

 Have a perfusion CMR examination (including a blood test) 

 Perform a cardio-pulmonary exercise test to determine peak oxygen 
consumption 

 Have a 12 lead surface electrocardiogram and brief echocardiogram 
 

By entering into the study subjects will have a series of additional tests. However 
these are safe, well tolerated and performed as part of routine clinical care in 
patients with hypertrophic cardiomyopathy.  
In this study the CMR scan will last approximately one hour, which is similar to a 
normal examination. The echocardiogram and ECG should last approximately 15 
minutes in total whilst the duration of the cardiopulmonary exercise test will be 
dependent upon the subject’s level of fitness and is anticipated to last less than 
one hour. 
 
Confidentiality: All information, which is collected about your patient during the 
course of the research, will be kept strictly confidential. Patients will not be identified 
in any publication that may result from this research. We will inform you if an 
incidental abnormality is found on any of the scans. 
 
Indemnity/Compensation: If patients are harmed as a direct result of taking part in 
this study, there are no special compensation arrangements however in some special 
circumstances compensation may be provided. If patients have any cause to complain 
about any aspect of the way they have been approached or treated during the course 
of this study, the normal National Health Service complaints mechanisms are available 
to them. 
 

The research organisation: This study is organized by the CMR Clinical Research 
Group at the University of Leeds.  
 
For further information please contact:    
Dr Adam McDiarmid or Peter Swoboda 
Clinical Research Fellows            
Cardiac MRI Department                                                             
B Floor Clarendon Wing                 
Leeds General Infirmary                 
LS1 3EX                    
Tel 0113 392 5909                                                           

Research Nurses 
Cardiovascular Research 
Sunshine Corridor 
Leeds General Infirmary 
LS1 3 EX 
Tel: 0113 392 5481 or 392 6286 
p.bijsterveld@leeds.ac.uk 
l.m.clark@leeds.ac.uk 

mailto:p.bijsterveld@leeds.ac.uk
mailto:l.m.clark@leeds.ac.uk
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B.2 Effects of aldosterone antagonism in heart failure with 

preserved ejection fraction: a cardiac MRI, exercise physiology 

and quality of life pilot study 

B.2.1 Patient Information Sheet 

 

Aldosterone Antagonism in Heart Failure with 
Preserved Ejection Fraction 

 

 

PATIENT INFORMATION SHEET 
V 2.2  1st August 2014 

 
 
1. Invitation 
 

You are being invited to take part in a research study. Before you decide whether or 
not to take part, it is important for you to understand why the research is being done 
and what it will involve. Please take time to read the following information carefully, 
and discuss it with others if you wish. Ask us if there is anything that is not clear, or 
if you would like more information. Take time to decide whether or not you wish to 
take part. 
 
2. What is the purpose of the study? 
 
Heart failure with Preserved Ejection Fraction (HF-PEF) affects many hundreds of 
thousands of people in the UK. In HF-PEF the heart becomes stiff and becomes a 
less effective pump, this can lead to breathlessness and fluid retention.  
We diagnose this condition by taking a history (listening to you tell us about your 
symptoms), examining you and using tests that tell us about heart function including 
a cardiac ultrasound (echocardiogram) and blood samples.  
The treatments we currently have helps to get rid of any fluid that has accumulated 
but doesn’t improve the way the heart functions. One reason that we don’t yet have 
disease altering treatments in this condition is that we don’t fully understand what 
makes the heart become stiff to begin with. Some recent research has suggested 
that a commonly prescribed drug called Spironolactone might help the heart relax 
and make filling easier. We want to use cardiac magnetic resonance imaging 
(CMR) to learn more about changes in the heart in HF-PEF and the effects that 
Spironolactone has on it.  A CMR is a detailed, very safe scan where we use a very 
powerful magnetic to make very accurate pictures of the heart.  
We hope that by learning more about these changes we might be able to develop 
treatment for this condition in the future. 
 
3. Why have I been chosen?  
 
This study is looking at patients like you that have HF-PEF. We hope to have 60 
people like you taking part so we can learn as much as possible about HF-PEF and 
the effects that Spironolactone may have. We don’t have a good treatment for HF-
PEF at the moment and we hope that what we learn in this study might allow us to 
help people like you in the future. 
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4. Do I have to take part? 
No. It is up to you to decide whether or not to take part. If you do decide to take part 
you will be given this information sheet to keep and be asked to sign a consent 
form. If you decide to take part you are still free to withdraw at any time and without 
giving a reason. This will not affect the standard of care that you receive from the 
NHS. If there is a possibility that you might be pregnant, you should not take part in 
the study. Our research team will be happy to discuss any other questions that you 
may have concerning your suitability for the study, before you decide whether to 
take part. 
 
5.  What will happen to me if I take part? 
 
If you want to take part you will first have a CMR study, an echocardiogram, an 
exercise test, a quality of life questionnaire, 24hr blood pressure cuff and a blood 
sample taken. After that you will randomly put into one of two groups: one group is 
the ‘Spironolactone’ group and the other the ‘Control’ group. 
If you are assigned to the control group we won’t need to do anything further 
immediately but will be asked to come back to the study centre at the end of month 
one and three to see how you are feeling. If you are assigned to the Spironolactone 
group you will be asked to start taking a new tablet called Spironolactone, we will 
prescribe this in the hospital. You will remain on this treatment for six months during 
which time you will have a few extra blood tests through your GP to make sure that 
you are experiencing no adverse effects.  We will ask you to come back at the end 
of month one and three to pick up your prescription and check how you are feeling. 
Once the six months are up we will ask both groups to come back for the same 
tests as at the beginning of the study to see if Spironolactone has any positive 
effects in HF-PEF. 
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*Please note that if you are allocated to either the treatment or monitoring groups 
we’d like to see you at the end of month one and three to see how you are feeling 
 
6. What do I have to do?  
 
If you decide to take part you will undergo some extra tests that you would not have 
otherwise had including 24hr blood pressure, CMR and exercise test on two 
separate occasions, as well as the ‘check-ups’ at the end of month one and three. 
This means that you will have four trips to the LGI that you would otherwise not 
have had.  
If you are randomized to the Spironolactone group you will be taking a medication 
that you would not otherwise be prescribed, this medicine means that you need to 
have a few extra blood tests to make sure it doesn’t interfere with your kidneys. 
Below you can see the typical blood testing that we would expect needs to be 
performed during the study. Sometimes, if your results are abnormal, we will need 
to do occasional extra blood tests. 
 

 
 
7.  What is the drug that is being tested? 
 
Spironolactone. Is a commonly used medication for breathlessness and fluid 
retention caused by heart failure due to a weak pump. Some studies have shown 
that it can have positive effects in HF-PEF, we hope that by examining the effects of 
Spironolactone in HF-PEF we can learn more about how these positive effects 
come about. 
 
8. What are the alternatives for diagnosis or treatment 
 
Currently there are no proven alternatives for this condition. This treatment may not 
make you feel better but it will hopefully enable us to devise better treatment for 
patients with this condition in the future. 
 
 
9. What are the side effects of any treatment received when taking part? 
 
In some cases Spironolactone can cause problems with kidney function. Your 
Doctor will be aware of this potential problem as it is a commonly prescribed 
medicine. We will ask them to perform blood tests in the standard manner. We will 
monitor these results and be happy to offer advice to your doctor if need be. 
If you do decide to take part in the study, you must report any problems you have to 
your study nurse or doctor and your GP.  
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There is also a contact number given at the end of this information sheet for you to 
phone if you become worried at any time.  
 
If you become suddenly unwell whilst you are with us we will contact your 
nominated next of kin. 
 
10. What are other possible disadvantages and risks of taking part? 
 
The medication: There is a small risk of kidney problems with Spironolactone 
however the regular blood tests that your GP will be performing should minimise 
any risk of harm from this. Other side-effects including gynaecomastia are relatively 
minor and should resolve on stopping the treatment. Gynaecomastia is tender 
breast swelling that may affect both sexes and can occur as a side effect of the 
medication. Gynaecomastia typically resolves once the medication is withdrawn. 
 
CMR scan: Magnetic Resonance Imaging (MRI) is safe and no radiation is used for 
this scan. There are no known risks from the technique.  
Some people may experience claustrophobia (fear of confined spaces). Our MRI 
staff will do all that they can to make you feel comfortable during the scan, and will 
be monitoring you via a video camera and an audio link. If we are unable to make 
you feel comfortable in the scanner, we will not go ahead with scanning.  
We will need to insert two small tubes (cannulae) into your arms; one for the 
contrast dye and another for the stress medication. The contrast medication we use 
during the scan is very safe but, as with any injection, reactions may occur. These 
include a warm sensation at the injection site, nausea or vomiting and transient skin 
rash.  
During the scan you will be given Adenosine and a Gadolinium containing contrast 
agent, these are both well studied medications that we use regularly for CMR. The 
effects of Adenosine last for a few minutes and allow us to perform a ‘stress’ test. It 
can cause flushing, breathlessness and chest discomfort. However, all of these 
feelings usually subside within one or two minutes or even more quickly when the 
medication is stopped. 
People with a history of allergy are more likely to suffer a more severe reaction to the 
medication used, but this is rare (less than 1 in 3000). The department is equipped to 
cope with allergic reactions if they happen. Adenosine, the medication we use to 
increase the blood flow to the heart,  
 
 
For Women: 
 
The treatment might harm the unborn child; therefore you should not take part in 

this study if you 
are pregnant, breast-feeding or you intend to become pregnant during the study.  
If you are a woman who might become pregnant, you will be asked to have a 

pregnancy test  
(urine or blood) before taking part. You must agree to use a reliable form of 

contraception during  
the trial, e.g. 

 Oral contraceptive +condom 

 Intra-uterine device (IUD)+ condom 

 Diaphragm with spermicide + condom 
 

This should be continued for at least 6 months after the treatment has finished. 
 

 If you become pregnant during the study it is essential that you inform the 
study centre and your GP 
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For Men: 
 
Please share this information with your partner if it’s appropriate: 
It is (or is not) known if the study medicine will affect sperm or semen and therefore 
you must not father a child during this study or for a safety period of 6 months after 
treatment. If your partner might become pregnant you must use reliable forms of 
contraception during the trial and for 6 months afterwards, e.g. 

 Oral contraceptive +condom 

 Intra-uterine device (IUD)+ condom 

 Diaphragm with spermicide + condom 
 
 

11. What are the possible benefits of taking part?  
 
We cannot promise the study will help you but the information we get might help 
improve the treatment of people with Heart Failure with Preserved Ejection Fraction 
(HF-PEF) in the future. 
 
There is also a small chance that an abnormality, not relating to the heart, may be 
picked up by the MRI scan. This could mean that a totally unexpected health 
problem is investigated and treated more promptly than otherwise expected with 
some potential health benefits for you. 
 

12. What happens when the research study stops? 
 
When the research study stops people assigned to the Spironolactone group will 
stop taking the study medication. Follow up will continue for 30 days after the study 
if there are any problems after medication has stopped.  
 

13. What if there is a problem? 
 
If you have a concern about any aspect of this study, you should ask to speak with 
the researchers who will do their best to answer your question.  If you remain 
unhappy and wish to complain formally, you can do this through the NHS 
Complaints Procedure.  Details can be obtained from the hospital. 

 
In the event that something does go wrong and you are harmed during the research 
study there are no special compensation arrangements, however in certain 
circumstances arrangements may differ.  If you are harmed and this is due to 
someone’s negligence then you may have grounds for a legal action for 
compensation but you may have to pay your legal costs.  The normal National 
Health Service complaints mechanisms will still be available to you. 
 
14. Will my taking part in this study be kept confidential? 
 
Yes.  All the information about your participation in this study will be kept 
confidential.  The details are included in Part 2. 

 
15. Contact Details 
 
Your Doctor 
 
Name Dr Adam McDiarmid   
Tel. Number: 0113 243 2799   extension 25909 
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This completes Part 1 of the Information Sheet. 
 
If the information in Part 1 has interested you and you are considering  
participation, please continue to read the additional information in Part 

2 before  
making any decision. 

 
 
PART  2 
 
 

16.  What if new information becomes available? 
 
Sometimes during the course of a clinical trial, new information becomes available 
on the drugs that are being studied. If this happens, we will tell you about it and 
discuss with you whether you want to or should continue in the study. If you decide 
to withdraw, we will make arrangements for your care to continue. If you decide to 
continue in the study you will be asked to sign an updated consent form. 
 
On receiving new information, we might consider it to be in your best interests to 
withdraw you from the study. If so, we will explain the reasons and arrange for your 
care to continue. 
 
If the study is stopped for any other reason, you will be told why and your 
continuing care will be arranged. 
 

17. What will happen if I don’t want to carry on with the study? 
 
If you do not wish to continue with the study normal clinical care will be arranged for 

you. 

 
 
 

18. Will my part in this study be kept confidential? 
 
If you consent to take part in this study, the records obtained while you are in this 
study as well as related health records will remain strictly confidential at all times. 
The information will be held securely on paper and electronically at your treating 
hospital under the provisions of the 1998 Data Protection Act. Your name will not be 
passed to anyone else outside the research team or the sponsor, who is not 
involved in the trial. You will be allocated a trial number, which will be used as a 
code to identify you on all trial forms. 
 
 
Your records will be available to people authorised to work on the trial but may also 
need to be made available to people authorised by the Research Sponsor, which is 
the organisation responsible for ensuring that the study is carried out correctly. A 
copy of your consent form may be sent to the Research Sponsor during the course 
of the study. By signing the consent form you agree to this access for the current 
study and any further research that may be conducted in relation to it, even if you 
withdraw from the current study.  

 
The information collected about you may also be shown to authorised people from 
the UK Regulatory Authority and Independent Ethics Committee; this is to ensure 
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that the study is carried out to the highest possible scientific standards.  All will have 
a duty of confidentiality to you as a research participant. 
 
If you withdraw consent from further study treatment, unless you object, your data 
and samples will remain on file and will be included in the final study analysis. 
 
In line with Good Clinical Practice guidelines, at the end of the study, your data will 
be securely archived for a minimum of 5 years. Arrangements for confidential 
destruction will then be made.  
 
With your permission, your GP, and other doctors who may be treating you, will be 
notified that you are taking part in this study. 
 

19.  Informing your General Practitioner (GP) 
 
For you to take part it is essential that we inform your GP of your involvement. This 
is to insure that the medication is introduced safely and that we can arrange 
monitoring blood tests close to home to save you travelling to the LGI as regularly.  
 

20.  What will happen to any samples I give? 
 
Blood samples will be stored within the LGI for the duration of the study to allow for 
some specialist tests to be performed in one batch. After this samples will be 
destroyed. 
 

21. Will any Genetic testing be done? 
 
No 
 
22. What will happen to the results of this clinical trial? 
 
The results of the study will be available after it finishes and will usually be 
published in a medical journal or be presented at a scientific conference. The data 
will be anonymous and none of the patients involved in the trial will be identified in 
any report or publication.  
 
Should you wish to see the results, or the publication, please ask your study doctor.  
 
23. Who is organising and funding this clinical trial? 
 
This study is being organised by the Leeds Institute of Cardiovascular and 
Metabolic Medicine (LICAMM) within the University of Leeds. Funding has been 
awarded by the British Heart Foundation.  
 
24. Who has reviewed the study? 
 
This study was given favourable ethical opinion for conduct in the NHS by North 
East - York Research Ethics Committee. 
 
 
25. Contact for further information 
 
You are encouraged to ask any questions you wish, before, during or after your 
treatment. If you have any questions about the study, please speak to your study 
nurse or doctor, who will be able to provide you with up to date information about 
the drug(s)/procedure(s) involved. If you wish to read the research on which this 



- 163 - 

study is based, please ask your study nurse or doctor. If you require any further 
information or have any concerns while taking part in the study please contact one 
of the following people: 
 
If you decide you would like to take part then please read and sign the consent 
form. You will be given a copy of this information sheet and the consent form to 
keep. A copy of the consent form will be filed in your patient notes, one will be filed 
with the study records and one may be sent to the Research Sponsor. 
 
You can have more time to think this over if you are at all unsure. 
 
Thank you for taking the time to read this information sheet and to consider this 
study. 
 

 
Dr Adam McDiarmid 
Cardiovascular Magnetic Resonance 
Leeds General Infirmary 
Leeds 
LS1 3EX 
 
0113 243 2799   extension 25909 
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B.2.2 General Practitioner Information Sheet 

 

 

AA - HFPEF STUDY 

Effects of Aldosterone Antagonism in Heart 
Failure with Preserved Ejection Fraction: A 

Cardiac MRI, Exercise Physiology and Quality of 
Life Study 

 
General Practitioner Information sheet 

Version 2.2 1st August 2014. 
 
 
01/08/2014 
 
 
Dr  
 
Re: 
 
Dear colleague, 
 
Your patient has agreed to take part in the AA HF-PEF study, which is a randomised 
controlled trial of Spironolactone use in the treatment in HF-PEF. We would like to 
give you some relevant information about this study.  
 
Your patient has been randomised to:  (Please monitor renal function as per NICE 
guidance for systolic heart failure if on SPIRONOLACTONE) 
 
 
Purpose of the study:  
 
Heart failure is a common problem affecting approximately 900,000 people in the UK. 
Nearly half of these will have a normal, or near normal, ejection fraction and are said 
to have Heart Failure with Preserved Ejection Fraction (HF-PEF). Unlike systolic 
dysfunction there have been no improvements in the treatment of HF-PEF over the 
past decades, and prognosis remains poor. 
In the HF-PEF the heart becomes stiff and diastolic function is impaired, this is 
believed to be due to diffuse fibrosis throughout the left ventricle. There have been 
some recent studies in patients with HF-PEF that have shown improvement in 
diastolic function following treatment with Spironolactone. Using cardiac MRI (CMR) 
we hope to find out why this is. In this study we will measure diffuse cardiac fibrosis 
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using CMR techniques that were originally developed in Leeds over 25 years ago, to 
help answer this.  
If the improvements seen in diastolic function are associated with regression of 
diffuse fibrosis it might point to future interventions that will make a big difference 
the care of patients with in HF-PEF. 
 
Recruitment: 60 patients will be recruited and randomised to either a treatment 
group or a control group. 
 
What will happen to your patient? 
All patients will undergo a comprehensive assessment of cardiac function, quality 
of life and functional status and serum bio-makers of heart failure. This will include: 
 

 CMR study 

 Echocardiogram 

 Cardio-pulmonary exercise tests 

 2 Health questionnaires (MLHF & EQ5D-2) validated in cardiovascular 
disease 

 Blood tests  
 
Patient journey flowchart: please note there will be study centre visits at the end of 
month one and three to assess any issues with the study medication, medication 
compliance or adverse events. 
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Patients will be randomised 1:1 to either Spironolactone 25mg PO od or to a 
control group. Individuals randomised to the control group will undergo not further 
intervention.  
Those randomised to treatment with Spironolactone will be commenced on 25mg 
PO od in accordance with NICE guidelines for the initiation of Spironolactone in 
congestive cardiac failure by the study centre.  
 
What we would like you to do: We would be grateful if you could monitor renal 
function and electrolytes as recommended by NICE in the treatment of in 
congestive cardiac failure *, all results will be seen by the research centre. If 
performing venesection in the practice is difficult we will make arrangements for 
your patient to attend the LGI for monitoring. 
If your patient is unwell, has any problems with the medication or has any illness we 
would be grateful if you would inform the study centre. We will see study 
participants at the end of month one and three at the study centre to see how they 
are doing and make sure they are suffering no adverse events. We will re-issue 
prescriptions for the study medication at these visits. 
At six months all patients will be asked to re-attend for repeat tests, at this point 
the medication will be stopped and patients will be discharged from follow-up. 
 
Adverse Events & Pregnancy: Your patient has been asked to contact the study 
centre if they become unwell during the study.  
Likewise if your patient becomes pregnant during the study we would be grateful if 
you would contact the study centre. 
 
Confidentiality: All information, which is collected about your patient during the 
course of the research, will be kept strictly confidential. Patients will not be identified 
in any publication that may result from this research. We will inform you if an 
incidental abnormality is found on any of the scans. 
 
Indemnity/Compensation: If patients are harmed as a direct result of taking part in 
this study, there are specific compensation arrangements in place. If patients have 
any cause to complain about any aspect of the way they have been approached or 
treated during the course of this study, the normal National Health Service complaints 
mechanisms are available to them. 
 
The research organisation: This study is organized by the CMR Clinical Research 
Group within the Leeds Teaching Hospitals NHS Trust and is sponsored by the 
University of Leeds. The study is funded by the British Heart Foundation. 
For further information please contact:    
Dr Adam McDiarmid 
Clinical Research Fellow            
Cardiac MRI Department                                                             
B Floor Clarendon Wing                 
Leeds General Infirmary                 
LS1 3EX                    
Tel 0113 392 5909                  
a.k.mcdiarmid@leeds.ac.uk                                                                    

Research Nurses 
Cardiovascular Research 
Sunshine Corridor 
Leeds General Infirmary 
LS1 3 EX 
Tel: 0113 392 5481 or 392 6286 
p.bijsterveld@leeds.ac.uk 
l.m.clark@leeds.ac.uk 

mailto:a.k.mcdiarmid@leeds.ac.uk
mailto:p.bijsterveld@leeds.ac.uk
mailto:l.m.clark@leeds.ac.uk
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