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The three-dimensional microstructure and macrostructure of 

various PAN-based carbon fibres has been characterized by bright- and 

dark-field transmission electron microscopy, and quantitative electron- 

diffraction analysis. 

A skin-core heterogeneity was observed for all fibres heat 

treated to 2500°C, irrespective of type and time of stabilization cycle, 

the skin being variable in longitudinal extent and width, but typically, 

0.1 vm in thickness - much smaller than the sheath zone attributable 

to oxidation, which has been observed in optical microscopy. At 1000°C 

and 1500°C, only a few layer planes at the fibre surface can be 

considered as forming a skin structure, and it is proposed that pro- 

gressive growth inwards of a well-oriented skin structure occurs at 

heat-treatment temperatures in excess of 1800°C. The nature of the 

fibre surface so formed would suggest that the number of edge sites 

suited to bonding with a resin matrix in untreated fibre is'inversely 

related to heat-treatment temperature. Examination of 'first-cut' 

sections suggests that the surfaces of the fibres are rippled, with, 

at 2500°C , the c-axes of skin crystallites being predominantly normal 

to the fibre surface; this is confirmed by scanning electron micros- 

copy and examination of transverse sections. 

In cross section, the sheath and core zones, first observed 

in optical. microscopy, have been shown to possess no preferred trans- 

verse c-axis orientation, it being proposed that strut tWral differences 

between the zones lie in a crosslinking mechanism during oxidative 

stabilization. 

The origin of the intrinsic oriented structure of PAN-based 

carbon fibres has been traced, by quantitative electron-diffraction 

analysis, through heat treatment at 2500°C, 1500°C and 1000°C to the 
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important pyrolysis range 400 - 600°C. At this temperature it is 

proposed that a uniform angular spread of stacking size exists within 

the azimuthal spread of the (0OL) reflection. Heat treatment, 

particularly at 2500°C, causes the preferential growth of those 

crystallites aligned closest to the fibre axis, while the röle of 

smaller crystallites oriented at high angles to the fibre axis is 

thought to be one of interlinking. 

Surface and internal flaws, involving large crystallite 

misorientations, have been observed in type I fibres, and using the 

Reynolds - Sharp theory for fibre failure, estimates of mechanical 

properties for such fibres have been made which are encouragingly 

close to the observed values. In the absence of internal voids 

and the surface skin characteristic of these fibres, an intrinsic 

strength of 7 GNm 
2 

and strain-to-failure of 2% is predicted. Enhanced 

crystallization effects have not been observed in fibres heat treated 

to 1000°C or 1500°C, and the fracture of these fibres at strains 

below 2% is thought to be due to the presence of gross internal and 

surface voids, flaws and irregularities. 
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CHAPTER 1 

THE PRODUCTION, PROPERTIES AND STRUCTURE OF CARBON FIBRES. 
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1.1 THE SIT7UCTURE OF GRAPHITES 

1.1.1 Three-dimensionally crystalline graphite 

The valence electrons of carbon permit trigonal bonding 

between each atom and its three nearest neighbours, resulting in the 

two-dimensional hexagonal lattice shown in Fig. 1. Debye and Scherreri 

proposed that adjacent layers of this lattice are produced by normal 

and parallel translations along a bond by one bond length, successive 

translations being in the same direction. By this scheme the pro- 

jection of atoms in every third layer is identical - ABCABCA.... 

stacking - the rhombohedral form (Fig. 2a. ). The alternative 

ABABABA.... stacking (Fig. 2b. ) first proposed by Hu112 has since 

been confirmed by Bernal3, but more recently4'5'6 both forms have been 

shown to exist. The unit cell (Fig. 3) has the following dimensions: - 

a-b-0.24614 nm 

c-0.6707 nm 

with ddoos0.21316 nm and d110'Q, 12307 nm. 

1.1.2 Polycrystalline graphites 

In paracrystalline forms of carbon the individual layer 

planes vary in perfection and, in poorly-crystalline materials, are 

thought to be wrinkled and to contain vacant lattice sites. Although 

the layers in most structures are arranged parallel to one another, 

to form crystallites, the less-crystalline structures are thought to 

contain substantial fractions of disorganized carbon. The properties 

of a typical paracrystalline carbon have been found to depend upon: - 

(i) the size of`the crystallites 

(ii) the orientation of the crystallites 

(iii) the density 

(iv) the microstructural organization. 

The essential structural difference between paracrystalline 
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Fig. 1. The two-dimensional hexagonal arrangement of carbon atoms in 

a single graphite layer. 

a b 

Fig. 2. Alternative stacking sequences of layer planes in graphite - 
(a) the rhombohedral form, and (b) the hexagonal form. 
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Fig. 3. The unit cell of graphite. 

a b 

Fig. 4. (a) Three-dimensional stacking of layer planes, and (b) turbo- 

stratic stacking. 
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carbons and perfect three-dimensional graphite is that the adjacent 

sheets. of hexagonally-arranged carbon are not ordered with respect 

to one another, Fig. 4, so that the structure possesses two-dimensional 

order only. Such a structure is termed turbostratic, from turbulent 

(disturbed) and stratify (to form in layers). The unique nature of 

turbostratically-stacked graphite means that aggregates of heavily 

cross-linked, but small, crystallites can form dense strong forms 

of carbon. 
The strong inter- and weak intra-layer bonding causes 

high anisotropy in the properties of individual crystallites. The 

extent to which a bulk carbon reflects this anisotropy depends on 

the degree of crystallite orientation; when this is high the 

anisotropy of the bulk material approaches that of the constituent 

crystallites; when the crystallites are randomly oriented the 

anisotropy of the individual crystallites is perfectly averaged, 

so that the aggregate is isotropic. It is the study of the size, 

shape, orientation of, and crosslinking between the individual 

crystallites in relation to the mechanical properties of carbon 

fibres that is the main concern of this thesis. 

1.2 THE MAMWAC URE OF CARBON FIBRES 

1.2.1 The carbon fibre process 

In post-war years the search for new materials for use in 

structural composites generated an upsurge of interest in the carbon 

fibres first produced for use as incandescent lamp filaments. The 

appreciation that the basal planes of the graphite crystal possess 

enormous mechanical strength led to the exploration of possible 

avenues of exploitation, with the result that relatively strong, 

flexible fibres were produced from pyrolyzed viscose rayon. Low- 

strength, low-modulus carbon yarns and fabrics were also made by the 

Union Carbide Corporation in the early 1960's, and these were used as 
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tape windings for rocket nose cones and heat shields. 
In 1960 Bacon7 had produced graphite whiskers, in the form 

of rolled scrolls, which had mechanical properties encouragingly close 

to the theoretical limits (in terms of crystal properties). Although 

impractical for industrial use, this discovery was important as it 

gave a direct experimental demonstration of the physical potential 

of carbon fibres. 

A significant break-through in carbon -fibre techrologº occurred in 

the period 1960 - 1965, when it was discovered independently by Bacon 

et al. 8, Shindo9 ilo, 11, Watt et a1.12,1391 `' and Standage and Prescott" 

that very high-strength carbon filaments could be obtained by subjecting 

a suitable precursor fibre to a continual tensile stress at some stage 

of the preoxidation or heat-treatment process. It is the high values 

of specific modulus and strength, due in part to a low density (about 

2.103kg. m 3) that made these new carbon fibres attractive materials 

as structural reinforcing agents; they form the basis of a z%w type 

of lightweight, stiff and strong material that promises to find 

extensive use in, for example, aerospace structures. Regrettably, 

carbon fibres have yet to realise their potential in these specialized 

fields, but recently high-strength fibres have found increasing use 

in a wide range of sporting and recreational equipment, 

At present there are five main types of commercially avail- 

able high-strength carbon fibre; these are derived from a-cellulose 

(e. g. Thornel), polyacrylonitrile (PAN) (e. g. Grafil, Nbdmor), pitch, 

lignin, and mesophase pitch. This thesis is concerned with the PAN- 

based materials, and the other types will not be considered in detail. 

The manufacturing process of the commercial fibre varies 

in detail, depending on the precursor polymer and the heat-treatment 

cycle used. Typically the process involves the following basic steps; - 
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(i) preoxidation at a low temperature (200.300°C) to promote 

crosslinking, thereby stabilizing the precursor, 

(ii) carbonization in an inert atmosphere at about 1000°C to produce 

type A fibres, 

(iii) further heat treatment at 1500°C for type II (high-strength) 

fibres, or at 2500 - 3000°C for type I (high-modulus) fibres. 

The rayon-based fibres are usually stressed at high heat- 

treatment temperatures, whereas the PAN-based fibres are stressed 

during the low-temperature oxidation step. Both precursors lose 

50 - 80% of their initial weight during high-temperature heat treat- 

ment. 

The outstanding mechanical properties of carbon fibres 

become of practical interest only if they can be efficiently trans- 
lated into a usable structural form, such as a composite. Although 

the intrinsic tensile properties of carbon fibres appear to be 

directly related to the size and orientation of the graphitic subunits, 

the properties of a fibre-resin composite depend to a large extent on 

the nature of the fibre -matrix interface. In order to understand 

the mechanical properties of such a composite it is important to 

characterize the surface and bulk structure of the fibres at both 

a micro- and a macro-level. 

1.2.2 The production of carbon fibres from PAN 

A. Stabilization and pyrolysis 

PAN fibres require a low-temperature air oxidation at 

220°C in order to prevent degradation at higher temperatures. 

The important difference between Shindo's early work10 and the Royal 

Aircraft Establishment (R. A. E. ) process12013p14 is that in the latter 

case the fibres are prevented from shrinking during oxidation. This 

prevents the molecules within the stretched PAN fibres returning to 
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Fig. 6. The condensed naphthyridine ring structure of vacuum-stabilized 
PAN. After Grassie and Hay16. 
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an amorphous state after heating above the second-or er transition 
temperature (about 90 - 120°C). As the orientation of the graphite 
planes in carbon fibres is related to molecular orientation in the 

acrylic precursor, this is obviously an important consideration. 

a. Chemistry of the Zow-temperature process - the theory of 

intr+a-mo Zecu Zar cyc Zisation 
It is widely accepted that PAN, which is a linear nDlecule 

carrying nitrile side-groups (Fig. 5), forms an oxidized ladder 

polymer, the exact structure of which is not clear, when heated in 

air. Grassie and Hay16, however, have shown that when PAN is heated 

(without weight loss) in vacuum at 180 - 230°C a condensed 

naphthyridine ring structure (Fig. 6) is formed. Recently, Watt and 

Johnson17 have shown that ladder-polymer formation is a prerequisite 

to oxidation, which would appear to be through a pyridone structure 

as proposed by Potter and Scott18. Iowever, three of the four formulae 

proposed for oxidized ladder polymer18,19,20,21 can be reconciled by 

tautomeric changes and different oxidation mechanisms (see Fig. 7). 

The lengths (n) of the conjugated sequences are considered to be of 

the order of 4-S monomer units, and depend on termination effects. 

Goodhew et al. 22 propose that termination occurs when a nitrite 

group, adjacent to the growing end of the cyclized chain, fails to 

propagate due to steric hindrance23; this is characterized by the 

formation of am onia2`+'25. Furthermore, it was proposed that the 

effect of the preoxidation treatment is to produce longer lengths of 

conjugated sequences (Fig. 8), as confirmed by increased HCN 

evolution24,26. Although there is considerable controversy regarding 

the type of bonding of the oxygen to the ladder polymer, there is 

little doubt that the methylene hydrogen atoms react during oxidation, 

and if the conditions are held for a sufficient length of time all 
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these hydrogen atoms disappear. At the same time, elemental analysis27 

indicates that only one third of the hydrogen atoms are removed, 

whilst infra-red spectroscopy shows the simultaneous development of 

hydrogen-bonded species, indicating the presence of hydroxyl groups. 

Additional infra-red evidence regarding the presence of carbonyl 

groups would seem to suggest that the main form of oxygen is in 

hydroxyl or carbonyl groups, confirming most of the models depicted 

in Fig. 7. Bailey and Clarke21 have also shown that carbon double 

bonds are produced readily on oxidation and postulate that these add 

to the physical stability of the ladder polymer. 

During the subsequent pyrolysis, Watt28 has shown that 

the appreciable increase in modulus obtained by heating from 300 to 

10000C can be associated with a cross-linking mechanism and evolution 

of HCN (Fig. 9a. ) and H20. Nitrogen evolution as elemental nitrogen 

starts at 600°C and reaches a maximum at about 900°C; consequently 

a cross-linking reaction between adjacent portions of ladder polymer 

Was proposed (Fig. 9b. ). 
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b. Chemistry of the low-temperature process - the alternative 

theory of fragmentation and intermoZecruZar reactions 

None of the conventional cyclization theories outlined above 

adequately explain the role of oxygen during the initial stages of 

pyrolysis, and all the proposed structures are highly idealized. 

Gaulin and McDonald30 however, have interpreted the results obtained 

from elemental analysis in terms of intermolecular reactions previously 

unconsidered. They found that intrcamolecular cyclization to yield a 

linear ladder polymer is incompatible with experimental observations, 

which suggest that the reactions involve elimination, fragmentation, 

intermoZecuZar crosslinking, and cyclization induced by dipole inter- 

actions between pendant nitrile groups. 

Fig. 11. Intermolecular dipole attraction between pendant nitrile groups 
of PAN molecules. After Gaulin and McDonald30. 

H-C CAN 

NBC C-H 
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It was proposed that decomposition products derived both 

during heating PAN in vacuum at 260°C (where the characteristic 

exotherm was observed), and during subsequent pyrolysis, can be 

explained in terms of fragmentation reactions, while the higher 

temperature products (HCN and N2) are derived by elimination 

reactions from the intermediate heterocyclic structures. However, 

after air oxidation, the degradation processes were shown to shift 

to higher temperatures, and the production of CO2, H20, NH3 and 

HCN during the preoxidation stage was considered as further evidence 

of extensive fragmentation. It was found that most of the carbon 

monoxide was evolved at SSO°C, and it was claimed that this was 

attributable to aryl ether groups, inferring that appreciable cross- 

linking occurs during preoxidation through ether formation via 

elimination of water from hydroperoxides (Fig. 10). 

Cyclization was proposed to be the result of elimination 

reactions induced by dipole interactions between the pendant nitrile 

groups. The conventional scheme of intranolecular cyclization requires 

considerable isotacticity, which is incompatible with conformation 

studies and the solution properties of PAN; the proposed syndiotacticity 

being in fact derived from the strong repulsive dipole effects between 

neighbouring nitrile groups31. It was further proposed that the . 

presence of these strong dipoles leads not only to intramolecular 

repulsion, but also to intermolecular attraction (Fig. 11). In the 

light of these facts several structures amenable to ring closure 

are conceivable, and it was proposed that the actual mechanisms of 

both oxidative stabilization and subsequent thermal degradation of 

the 'cyclized' polymer are far pore complex than previously supposed. 

B. High-temperature heat treatment 

Carbon fibres fall into the category of 'hard' or non- 

graphitizing materials, and as such retain a very imperfect structure 
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even after prolonged treatment at very high temperatures and ambient 

pressures. Complete graphitization would only be achieved under the 

influence of combined high pressure and high temperature -a technique 

not used in the conventional carbon-fibre process. In carbon fibres 

heat treated at 1500°C there is substantial, though imperfect, 

organization of the carbon into graphite-like layers; the purpose 

of further inert heat-treatment is to increase the crystallite size 

and improve the preferred orientation; this is accompanied by improve- 

ment in the perfection of the graphite layers, and a decrease in both 

inter-layer d-spacing and disorder. It should be stressed however 

that the structures produced at 2500°C are still essentially 

turbostratic, and use of the term 'graphitized' when referring to type 

I fibres is erroneous. Consequently, carbon fibres will be referred 

to in this thesis by the maximum heat-treatment temperature (M) 

that they have experienced. 

Although type I fibres are potentially useful as stn tural- 

reinforcing materials (they have moduli close to the single crystal 

theoretical modulus) their use has declined recently due to the low 

strain-to-failure that they exhibit. 

1.3 ThE STRUCTURE AND MECHANICAL PROPERTIES OF CARBON FIBRES 

1.3.1 Mechanical properties 

A. Conventionally-produced fibres. 

The Young's modulus of a perfect single crystal of graphite 

parallel to the basal planes is close to 1000 QJm72 (five times that 

of steel), yet that normal to the basal planes is less than 40 GWi 2 

(one half that of aluminium)32. The modulus for basal plane shear is 

only about 4 Glom-Z. for dislocation free graphite, and more than an 

order of magnitude lower than this value (equivalent to that of 

polyethylene) for graphite which contains dislocations. The theoretical 
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tensile strength parallel to the basal planes is at least 9S (*ti_ 2 33 

and strengths as high as 20 (i 2 have been measured in graphite 

whiskers7. By contrast, the shear strength between basal planes for 

dislocation-containing, but otherwise perfect, single-crystal graphite 

is only approximately 1 MW 2 34. As will be shown later the amount 

and type of crystallite interlinking in carbon fibres, where in many 

cases the crystallites contain numerous dislocations and voids, is 

of great importance from a strength/shear point of view. 

Carbon fibres with average tensile strength (OB) of 1.8 to 

2.1 GNm 2 and Young's modulus (E) of about 420 G4m-2 were first 

reported12, '5 in 1966, although ShindolO had produced fibres of 

tensile strength about 0.7 Qt C2 and modulus about 150 (dim 2 as early 

as 1961. In 1967, Nbreton et al. 13 published results showing that the 

choice of an optimum HTT of about 1500°C produced fibres of higher 

strength (about 3 GNM72) than those obtained by heat treatment at 

25000C (about 2.2 ( º-2). Ibwever, where fibres of high modulus 

(greater than 350 GbC2) are required, it was shown that heat treatment 

at or above 2500°C is necessary. In one exceptional case a fibre heat 

treated at 1600°C exhibited a tensile strength of over S Giri 2- one 

quarter of the maximum aB measured by Bacon? for graphite whiskers. 

By 1968, Watt and Johnson35 had examined the effect of heat 

treatment and precursor stretch ratio on Young's modulus. As expected, 

the modulus increased with increasing heat-treatment temperature, 

indicating that the preferred orientation of the turbostratic 

crystallites which constitute the fibre is improved by heat treatment. 

Similarly, the modulus of the final carbon fibre, whether it is heat 

treated at 1000,1500 or 2500°C can be improved by stretching the 

precursor. 

The tensile strength was shown to be highly dependent on the 
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tension maintained during oxidation, with length changes between 0 and 

+20% necessary to produce optimum strength in fibres prepared at heat- 

treatment temperatures of 1000,1500 and 2500°C. In exceptional 

circumstances the strength fell by a factor of three when the fibres 

were allowed to contract 25% during oxidation. Apparently the oriented 

structure of all the carbon fibres studied is related to either the 

structure of the precursor, or the structure of the 'cyclized' polymer 

formed during oxidation. 

Subsequent work at the Atomic Energy Research Establish- 

ment (A. E. R. E. )36 showed that there was an appreciable increase of about 

30% in the apparent modulus of both type I and II fibres when a tensile 

load is applied. It was found that this change of modulus is directly 

related to a change in the crystallite orientation, with the additional 

possibility that basal-plane dislocations play a significant role at 

low applied loads of less than 2.5 x 10-3 Kg. Both effects were 

found to be fully reversible with no evidence of hysteresis. 'In 

structural terms, these results indicate that the turbostratic graphite 

crystallites can be considered as linked in series through grain 

boundaries of small or moderate angles. Stress on the fibre reduces 

this angle appreciably before fracture occurs. Additionally it was 

proposed that the structure contains nubile dislocations which become 

pinned against grain boundaries at moderate stresses. 

B. Modifications to the basic process and their effect on 

mechanical properties 

Boron doping of type I fibres37 showed dramatic increases 

in modulus (for example from 425 to 535 QVm 2) 
and no significant 

change in strength at about 1.65 (dim 2. As expected, the resistivity 

dropped considerably indicating higher perfection and orientation. 

The necessary hot-stretching stage for carbon fibres made 
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from cellulosic precursors38 led Johnson39 to attempt the production 

of carbon fibres of higher than usual preferred orientation by 

stretching at temperatures high enough for plastic flow to take place. 

It was shown that the fibre modulus increases with extension, and 

that an extension of about 30% at 2800°C was capable of giving fibres 

with a mean modulus approaching 700 GNm72. However the tensile strength 

was found to be independent of extension, indicating that the defects 

which limit the strength are not annealed out by high-temperature 

stretching. 

Nbreton40 was able to relate the tensile strength and 

modulus of carbon fibres heat treated to 2500°C directly to the 

strength and modulus of the precursor PAN. He found that the precursor 

could be spun satisfactorily at steam-stretch ratios up to x 13, and 

that this subsequently gave the optimum mechanical properties in 

the high-temperature carbon fibres. It was claimed that improved 

orientation had been maintained during pyrolysis as a result of 

increasing the amount of extension. A similar dependence of tensile 

strength on stretch-ratio indicated that, although the strength of 

carbon fibres is highly flaw-sensitive'' 1. ''2, '' 3, the presence of 

defects in the precursor fibre could be minimized by choosing a high 

steam-stretch ratio. 

Later AvbretonL was able to show that stretching the PAN 

fibres by x 14 in glycerol at 1500C produced a 40% improvement in 

precursor tensile strength. Corresponding improvements in strength 

and modulus were found in the fibre carbonized at 100d°C, and the 

modulus was found to be higher in the carbon fibres heat treated at 

2500°C. Again, however, the strengths of the type I fibres were no more 

than comparable with those normally found in high-modulus, PAN-based 

carbon fibres, further emphasizing the high dependence of tensile 
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strength on flaws and defects. 

Recently45, a patent has described similar methods of 

obtaining highly-oriented precursor PAN, and the effect that this 

orientation has on the mechanical properties of carbon fibres heat- 

treated in the range 1000 - 2600°C. Improvements in both modulus and 

strength were claimed. 

C. AnomaZoue teneile strengths 

Although, theoretically, the strength of a material should 

continue to rise as the modulus is increased, there was, in 1970, a 

well-documented (e. g. 13) maximum in the ultimate tensile strength 

against heat-treatment temperature curve for fibres of a circular 

cross section at about 1500°C. In an attempt to explain this anomaly 

LeMaistre and Diefendorf"6,47 have characterized the three-dimensional 

structure of circular and dog-bone cross-section carbon fibres. It 

was proposed that because of a circumferential crystallite orientation 

Mrozowski cracks result from the radial tensile stresses generated in 

circular cross-section fibres during cooling from high heat-treatment 

, temperatures. In dog-bone shaped fibres, however, the basal planes, 

although thought to be aligned paralled to the fibre surface, are 

predominantly oriented along the large cross-sectional axis of the 

fibre, and the possibility of cleavage cracking is thus reduced. Jones 

and Duacan4S have used this crack-formation mechanism to explain the 

dependence of tensile strengths on post heat-treatment cooling rate. 
M retonkl has verified the existence of random flaws in 

his experiments concerning the effect of gauge length on ultimate 

tensile strength, and Thorne43 and Johnson42 have concluded from 

scanning electron-microscope (SEM) studies that impurities in the PAN 

precursors are the major cause of flaws in carbon fibres. Similarly, 

the voids seen in high-temperature fibres49 have been interpreted 
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as the main cause of the anomalous strength decrease observed after 

heat-treatment above the 1200 - 1600°C range. 

Although contamination can occur at any stage of the carbon- 

fibre process it seems most likely that the highest risks involve 

either the presence of impurity particles in the PAN spinning solution, 

or the surface impurities picked up either during spinning and 

collection or during subsequent handling and conversion to carbon 

fibre. In order to minimize these effects Moreton and Watt50,51,52 

developed a dope-filtration and clean-room spinning technique capable 

of producing relatively high-strength type I carbon fibres. They found 

that not only did the tensile strength of clean-room spun fibres 

continue to rise after heat treatment above 1200°C and up to 2500°C 

(Fig. 12), but that the gauge-length effect was eliminated over the 

10 - 50 mit range for fibres heat treated at 2500°C. They chose a break 

at below 2 Ob-2 as representative of a failure at a severe flaw, and 

calculated the average severe flaw separation to be about 200 nm. 

Diefendorf and Tokarsky53 have recently emphasized the need 

to know both the number and severity of flaws in order to understand 

the strength of carbon fibres, which should, theoretically, be 10 - 201 

of the modulus, but are, at the time of writing, typically less than 

1- 2%. In a series of tensile and loop tests the strength was found to 

increase with shorter gauge lengths, as expected, since the number of 

flaws decreases. Using a weakest-link model for fibre failure, estimates 

of basic link strengths of 8-9 GNm 2 
and lengths of about 20 um were 

made for a type I fibre. Similarly, in other Courtelle-based fibres it 

was found that the higher the strength of the fibre the smaller the 

gauge-length effect. The flaw-free strength was estimated at approximately 

12 G]') 2 corresponding to an acceptable 2- 31 strain-at-failure. This 

clearly indicates that when all the flaws at this level have been removed 
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the intrinsic strength of the fibre will be directly related to the 

microcrystalline structure. 

Thorne5k has also confirmed that breaking strains of at 

least 3% are possible in effectively surface-treated carbon fibres 

heat-treated in the range 1000 - 1500°C. He showed that loop tests 

indicate breaking strains of around 5%, and that a significant 

number of fibres had breaking strains of greater than 3% in tensile 

tests of 10 mm gauge lengths. He concluded that the present shortfall 

in experimental values of breaking strain is partly explained by the 

persistence of some surface flaws, even after surface treatment, 

which cause failure at strains less than 1.5%. 

1.3.2 The structure of carbon fibres 

A. X-ray diffraction studies 

Conventional wide-angle parameters such as Z, Lc, and c/2 

have been reported by Badami et al. 55 for fibres heat treated at 

2600°C, and Johnson et al. 56 have. investigated the dependence of these 

parameters on stress graphitization. Similarly, Ruland has quantitatively 

assessed the correlation between modulus and orientation57 (Fig. 13), 

and pore size and heat-treatment temperature58. These results have been 

confirmed by Johnson and 7yson59,60 and Johnson et al. 61 who reported 

the increase in small-angle pore size over the heat-treatment range 

1000 - 2800°C. Ergun62 has attempted to measure a disorder parameter 

and fault-free stacking size from an analysis of the line widths of 

several orders of the 001 reflections, but Fourdeux et al. 63 have 

shown this to be unsatisfactory because of the dependence of crystallite. 

size on orientation. 

Diefendorf and Tokarsky6k in an extensive review have examined 

carbon fibres heat treated at various temperatures, and made from 

different precursor materials. They conclude that the fibres consist 



23 

Fig. 13. The dependence of modulus (Ec) on crystallite orientation 
function (q). After Ruland57. 
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of long undulating and twisting ribbons. For type A fibres a ribbon 

thickness of 1.5 - 2.0 nm and width about 2.0 nm was proposed, the 

ribbons being highly undulated and twisted to give an intertangled 

mass, providing tight coupling between ribbons. Fibres of higher 

modulus showed increased stacking size and higher preferred orienta- 

tion as expected. In one exceptional carbon fibre, modulus greater 

than 700 GNm-2, three-dimensional ordering was observed together with 

a preferred a-axis orientation compatible with that expected if the 

orientation of the carbon backbone of the PAN polymer was retained 

throughout processing (Fig. 14). Similar observations have been made 

by Ergun65 on a highly-oriented PAN-based carbon fibre. 

Stewart et al. 66 have quantitatively assessed the preferred 

a-axis orientation in carbon fibres heat-treated at 1000,1500 and 

2500°C, and found that in all cases the fibres have mean a-axis 

orientations parallel to the fibre axis with a standard deviation in 

the range 24 - 28°. They propose that when the basal planes-are 

arranged. with their a-axis parallel to the longer sides of the 

crystal sheets (Fig. 14) (in the case of carbon fibres this is the 

fibre axis) the minimum number of carbon atoms per unit length have 

an unsatisfied valence (that is, they are bonded to only two other 

carbon atoms instead of the usual three). Thus it was proposed that 

this configuration is preferentially formed as it has the lowest surface 

energy. 

More recently, Rose67 has reported a detailed study of the 

dependence of the interlayer d-spacing, c/2, and preferred orientation 

of crystallites, Z, on heat-treatment temperature. He showed that 

heat treatment in the temperature range 2000 - 3000°C improves the c/2 

parameter from about 0.345 nm to. 0.340 inn. This is in direct conflict with 

the early work of Franklinl15 who proposed that only two interlayer 
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spacings were possible in graphite - 0.3345 nun for three-dimensionally 

stacked sheets, and 0.3440 nm for turbostratic stacking. Using the 

expression, of Takahashi et al. 68, relating c/2 to La, Rose predicted 

a limiting value for La of about 20 nm for PAN-based fibres heat 

treated to 3000°C. It was claimed that this is directly related to the 

fibril diameter of 40 nm said to exist in the precursor fibres, as 

it was thought that this might reduce to about 20 non because of 

lateral shrinkage during high-temperature heat treatment. Extrapolation 

of the c/2 against Z relationship to an orientation of Z-0° suggested 

an interlayer spacing very close to that of three-dimensional graphite. 

It was proposed that practical achievement of such orientation, for 

example by hot stretching, is precluded by the complex wrinkled 

nature of the elemental ribbons which, it was thought, constitute the 

basic fine structure of the fibre. 

Structural development during the pyrolysis of PAN in the 

temperature range 320 - 1000°C has been studied by Oates and 

Johnson69v70, who conclude that although the mean stacking size, Lc, 

does not alter appreciably throughout the range, the crystallite 

length along the fibre axis, 1 //, increases from 1.9 nm at 320°C to 

2.5 nm at 1000°C. Of greater significance, the intensity of the (100) 

meridional reflection increases appreciably, indicating the develop- 

ment of longer, highly-imperfect, cyclized structures. However, the 

(100) equatorial reflection remains almost negligibly small up to a 

heat-treatment temperature of about 7000C, whereupon there is a 

significant increase. This indicates that there is no diffraction 

evidence for crosslinking of ladder polymer prependicular to the 

fibre axis until this temperature is reached. 

In a low-angle x-ray scattering study, Tyson71 has attempted 

to combine structural parameters with strength and failure-strain 
data in an elastic-plastic theory of failure (see section 1.3.5). He 
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characterized a disordered phase, which was claimed to contain nitrogen 

and carbon in highly-distorted, imperfectly-formed layers, in terms of 

density, volume and size. These x-ray parameters all increase more 

rapidly beyond about 1600°C, which was proposed to be the temperature 

above which buckling forms the means of fibre failure. At 1000°C it 

was proposed that the more isotropic nature of the fibre, and the 

stronger longitudinal boundaries prevent this type of failure. 

B. The microstructure of carbon fibres 

Johnson and Watt72 first showed micrographs of thin, ultra- 

microtomed sections of carbon fibres; samples heat treated at 2500°C 

revealed an internal structure of long, narrow, axially-aligned units, 

10 nm in width, and of indeterminate length. Specimens heat treated 

to 1000°C invariably ruptured along their length during sectioning, 

and opened to give a net-like structure of fibrillar units 80 - 100 nm 

in diameter, apparently running the entire length of the fibre. It 

was tentatively suggested that this structure may have been. derived 

from the fibrillar nature of the precursor PAN. Support for the 

fibrillar fine structure of type I fibres was independently provided 

by Badami et al. 55, who measured stacking sizes of about 5 nm from 

low-resolution dark-field images. Although unappreciated at the time, 

this publication also presented the first evidence of structural 

heterogeneity in high-temperature fibres, when a 'skin' of high 

preferred orientation was observed at the edge of the sections. A 

transverse section of a high-modulus fibre was also depicted, but no 

comment regarding its structure was made. However, it was observed 

that the coarsely-fluted outer surface of the PAN fibres was retained 

throughout the manufacturing process. 

From medium-resolution dark-field micrographs, Johnson and 

Tyson59 were able to show that there is an almost normal distribution 

of stacking sizes in fibres heat treated at 2650°C. The mean size was 
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found to be 6.5 nm, close to the x-ray diffraction value of 6.0 m, 

and that 99.7% of the crystallites have widths between 2 na and 11 nt. 

Many small pores less than 1 nm in width were also observed, but 

it was appreciated that quantitative analysis of features of this 

size is invalidated by choice of an inappropriate level of objective- 

lens defocus (see Appendix 1). A three-dimensionally graphitic phase 

was also found in these preparations, and although it was suspected 

that this may have been a surface phenomenon this remained 

unsubstantiated after ion etching of the fibres. Consequently, it 

was proposed that-the more perfect graphite phase is distributed 

throughout the fibre, and that it may cause the large scale intensity 

variations observed in longitudinal sections. 

In a study of very highly-oriented rayon-based carbon 

fibres, Fourdeux et al. 73 were able to show that partial graphitization 

had occurred; subsequently the dependence of 'graphitization' on 

heat-treatment temperature and degree of stretch was examined by 

electron diffraction71'. They observed hkt modulations in fibres 

heat-treated at 29000C and stretched to give a Young's modulus of 

about 140 (m2. Transmission electron-microscope evidence supported 

a fibrillar fine structure, with the main axis of the fibrils always 

parallel to the fibre axis. In fibres of low preferred orientation 

it was proposed that the fibrils were wrinkled, but became progress- 

ively straighter with increasing preferred orientation. 

Although medium-resolution transmission electron microscopy 

had appeared successful in the characterization of the gross fibrillar 

texture of carbon fibres it could yield no information concerning the 

stacking of individual basal planes, and crystallite aggregation and 

interlinking. This however, became available in 1968, when, using the 

phase-contrast technique developed by Heidenreich et al. 75, lattice- 
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fringe images of the graphite layers were obtained. Measurements of 

stacking size seemed to correlate well with x-ray diffraction estimates, 

but the size of the layers in the direction of the fibre axis appeared 

to be considerably larger (several hundred nm) than previously 

supposed94. The layers however, exhibited straight and curved 

sequences; the straight parts being 10 - 30 nm long, and the curved 

sections 5- 10 nm long. The angle between two consecutive straight 

crystallites was found to be within the angular spread of the 002 

diffraction arc. 

Similar phase-contrast techniques have been used to examine 

cellulose-based76 and PAN-based77 carbon fibres. Hugo et al. 76 

observed thin regions at the surface of fluted fibres, and found that 

the layer planes are essentially continuous over long distances in 

the direction of the fibre axis, micropores being formed by changes 

in plane direction. The continuous, but imperfect nature of the 

basal planes has been confirmed by Johnson77, who also propoped 

that the observed dark extinction bands arise where layer planes are 

distorted out of the diffraction condition. Longitudinal and transverse 

sections examined by Phillips et al. 78 indicated high preferred axial 

orientation, but no preferred orientation in the cross-section, where 

layer-plane packets showed considerable curvature and a random arrange- 

ment about the fibre axis. )bird fringes suggested that the plane 

packets did not extend through the full thickness of the slice but 

formed a complex three-dimensional network, thus limiting the dimensions 

observable in any thin section. 

In an attempt to correlate structural changes during pyrolysis 

with the chemistry of the process, colleagues in this laboratory61'79, 

in collaboration with RAE70, have examined fragmented PAN-based fibres 

heat-treated in the range 320 - 3000°C. They were unable to find any 

evidence of a fibrillar texture in the low heat-treatment range 
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(320 - 10000C), and proposed instead complex and extensive crystallite 

interlinking. Qualitative examination of micrographs recorded at the 

appropriate level of defocus suggested developing order, length, and 

packing of the lattice planes. At 320°C fringes were visible over 

lengths of 1-1.5 nm, and it was proposed that these represented 

the ladder-polymer fragments present after that heat-treatment. At 

4100C the length had grown to about 3.0 nm, at 800°C to 5.0 nm; at 

the highest heat-treatment temperature there was an improvement in 

lattice-fringe contrast thought to be due to the increase in L by 

crosslinking. 

Fourdeux et al. 7k have predicted from high-resolution 

phase-contrast lattice-fringe images the length of the layer planes 

in high-modulus fibres of very high preferred orientation. Their 

results indicated that the planes were continuous over lengths of 

1- 10 um, of the same order as the range of lengths of extended 

chains in medium to high molecular weight polymers. Analysis of 

(002) dark-field images enabled accurate crystallite width (stacking 

size, Lc) calculations, and the use of (100) dark-field techniques 

verified the turbostratic disorder present in the layer stacking. It 

was claimed that the micrographs were in good agreement with the 

'wrinkled-ribbon' structural model. 

This 'wrinkled-ribbon' model for fibre fine structure was 

reviewed in the light of more detailed structural studies in 197163. 

Extinction bands in (002) dark-field images were attributed to a 

Moire effect resulting from a superposition of two microfibrils with 

their layer planes in the (002) diffraction condition, but tilted by 

a small angle with respect to each other. The variations in spacing 

in the Nbire pattern along a given microfibril were presented as 

further evidence for the existence of smoothly curved regions as 



31 

Fig. 15. The wrinkled-ribbon model of carbon fibre structure. After 

Fourdeux et al. 63. 

Fig. 16. The branched-fibril model explaining the dependence of stacking 

size on crystallite orientation. After Fourdeux et al. 63. 

2001 



32 

predicted by their model (Fig. 15). The dependence of stacking size 

on crystallite orientation, referred to in section 1.3.2. A above, was 

represented by a branched fibril model (Fig. 16). 

Johnson's study80 of PAN-based carbon fibres heat treated 

to 2500°C has disputed the existence of regular sequences of straight 

and curved segments as suggested by Ruland and his team. Direct 

lattice resolution revealed a complex three-dimensional structure in 

normal type I fibres, and it was proposed that only after stress 

graphitization or boron doping does the fine structure of PAN-based 

fibres approach that of the highly-oriented cellulose-based fibres. 

The complex interlinked nature of the turbostratic crystallites 

existing at this temperature was further confirmed by Crawford and 

Johnson81 in 1971. Accurately controlled tilting experiments showed 

crystallites apparently moving along tilt axes without any sharp 

boundaries - indicating layer-plane continuity over a much greater 

length than envisaged in a single image. The existence of twist 

boundaries was supported by lattice-resolution pictures, and it was 

proposed that individual layer planes could well run together in 

small numbers through regions which could be considered as subgrains 

since they were related by low-angle tilt and twist boundaries. As a 

consequence of these observations the schematic microstroctural model 

depicted in Fig. 17 was proposed.. 

Some of the observations regarding bent and twisted ribbons 

have been confirmed by the analysis of (002) dark-field images by 

Stewart and Feughe]man82. Earlier models proposed to explain the dark 

extinction bands were disputed, and it was suggested that crossbanding 

could be attributed to an interference pattern produced by basal 

planes crossing over within a bent or folded microfibril. 

Recently, Diefendorf and Tokarsky53 have also disputed the 

'wrinkled ribbon' model of carbon fibre fine structure as proposed by 
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Fig. 17. Three-dimensional structural model of type I fibres. After 

Crawford and Johnson81. 
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Ruland. Although they concede that this model is suited to low- 

modulus fibres, they maintain that a better description for higher- 

modulus fibres is that of a 'wrinkled sheet'. This proposal is based 

on the comparison of bright and dark-field images of the surface 

layers of high modulus fibres when viewed normal to the fibre surface. 

Although the bright-field images clearly showed a continuous, rippled, 

sheet-like structure, the dark-field images of the same area merely 

showed striations parallel to the fibre axis; the former image tends 

to suggest a continuous structure, while the latter supports the 

fibrillar model. However, this technique of examination is limited 

to within a few tens of nanometres at the fibre surface, and should 

be questioned if attempts are made to relate the observed structure 

to the bulk microtexture. Indeed, the authors have interpreted their 

results from other techniques in terms of a 'basket-weave' model 

(Fig. 18). 

A distinctly different three-dimensional structural model 

(Fig. 19) has recently been developed by Wicks", who used results 

from neutron irradiation coupled with unspecified microstructural 

observations. This new model is characterized by a random stacking 

sequence in transverse section, with zones of extensive bending and 

twisting of the layer planes. 

C. The macrostructure of PAN-based carbon fibres 

a. Fibres of cirouZar cross-seotion 

Electron-diffraction and (002) dark-field studies of PAN- 

based carbon fibres by Butler and Diefendorf83 have shown that the 

turbostratic graphite crystallites at the fibre surface are both 

larger and more highly oriented than in the interior of the fibre. It 

was also proposed that as fibre nadulus increases, crystallite 

alignment increases more significantly at the surface of the fibre 
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than in the core. The coexistence of two such phases has been confirmed 

by the dark-field study of Badami-et al. 55, although they did not 

interpret their results in terms of a 'sheath-core' model. 

The appreciation that such a bi-component structure existed 

in high-modulus carbon fibres led Watt and Johnson'' to examine 

polished longitudinal sections of specimens heat treated at 2600°C. 

It was found that holes had formed as if from bubbles inside the fibre, 

but that their formation depended on the type of preoxidation treat- 

ment experienced by the precursor material. In particular, short 

stabilization times would generally lead to zone formation, and 

complete stabilization tended to give a homogeneous fibre. Following 

the discovery of holes in fibres heat treated to 2500°C the existence 

of compatible zones was found in the oxidized-only fibres. Both 

transverse and longitudinal polished sections of 3 denier PAN fibres 

heated in air for 2 hours at 220°C showed the presence of an outer 

zone or 'sheath' surrounding a darker inner zone or 'core', -and it 

was considered that this inner core was unoxidized PAN which had 

polished differently from the outer zone of fully-oxidized material. 

Consequently, it was proposed that the rate of oxidation is a diffusion- 

controlled process, and this was verified by measuring zone thickness 

as a function of time of oxidation. It was found that the 'oxidized' 

zone thickness was directly proportional to the square root of the 

oxidation time. 

Subsequent optical studies53,64,85,86987,88,89 have shown 

that in fully-stabilized PAN-based carbon fibres of a circular cross- 

section a cirownferentiaZ crystallite orientation develops during 

high-temperature heat treatment (Fig. 20). If, however, similar fibres 

are under-stabilized a radial orientation' develops in the under- 

oxidized core, while a oirownferentiat texture is formed in the fully- 

oxidized sheath (Fig. 21). The thickness of the sheath was found to be 
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a unique function of oxidation time, irrespective of fibre diameter, 

thus confirming the diffusion-controlled nature of the low-temperature 

stabilization process. Polarized-light microscopy87°-suggested that in 

very thick fibres alternate circumferential and radial zones are 

formed; in nearly all cases a core, of varying dimensions, with no 

c-axis preferred orientation was observed. In the outer sheath, blocks 

of layer planes less than 500 nm in width were observed to follow the 

fibre surface. 

The co-existence of at least two structurally different 

phases in type I fibres was first verified at lattice-resolution level 

by Johnson et al. 90 in 1973. This study indicated the presence of 

two distinct turbostratic graphite phases (Ti and T2) together with a 

small proportion of a third, component (G) composed of more perfect 

three-dimensional graphite. Ti was designated as a well-oriented, 

highly-crystalline, but turbostratic graphite phase of preferred 

orientation about 1S°, T2 was a less well-oriented, less-crystalline, 

turbostratic phase of preferred orientation about 24°, and G 

represented a three-dimensional graphitic phase of preferred 

orientation better than S°. In keeping with earlier work47'83991 it 

was proposed that the Ti phase originated from the highly-oriented 

sheath, and the T2 phase from the less well-oriented core; it was 

concluded that the presence of the T2 phase would lead to a reduction 

in Young's modulus, and also, because of the presence of many micro- 

voids, in tensile strength. The origin of the G phase was proposed to 

be due to collapse of an un-oxidized core on heat treatment to 2500°C 

with the formation of highly graphitic lamellar sheets, as proposed 

by earlier workers92"93, or that it had occurred as a surface artefact 

during heat treatment. Either mechanism was shown to be possible by 

the fact that there was no evidence for more than one phase in carbon 
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fibres heated at 1000°C only. 

In a recent attempt to characterize the three-dimensional 

structure of circular carbon fibres ex-PAN heat treated at 1600, 

1900 and 2500°C, Wicks and Coyle87ahave used the technique of electron 

diffraction to study tapered fibres produced by flame polishing. Their 

results suggest that there is a trend of £noreasing alignment with 

respect to the fibre axis, and decreasing crystallite size from the 

centre to the surface of all the fibre types, although the effects are 

more pronounced in fibres heat treated at 2500°C. They conclude that 

in these latter fibres two distinct regions can be distinguished, viz: 

(i) an inner region or core characterized by relatively low axial 

alignment and large crystallite size, and 

(ii) an outer sleeve or sheath of material of high axial preferred 

orientation and low average crystallite size. 

The proposed transition annulus between the two zones was found to 

be distinct with a thickness of about 1 um, and separated a core 

approximately 3 um in diameter from a sheath about 1.5 um in thickness. 

(These zones were claimed to be the 'oxidation' zones first observed 

by Watt and Johnson84). An attempt was made to verify the observation 

of the trend of decreasing crystallite size from the centre to the 

surface of the fibre using single fibre x-ray analysis. Surface 

material was removed from the 2500°C fibres by oxidation, and the 

x-ray patterns compared with those obtained from unoxidized fibres. 

The results showed, significantly, that there is a trend of increasing 

stacking size from the centre to the surface of the fibre, although 

the data referring to orientation confirmed the earlier findings from 

the electron-diffraction analysis. Also, it is significant that for 

fibres heat-treated at 1600°C no variation in structure was discernible 

between thinned and un-oxidized fibres, and it was concluded that 

microstructural variations within these fibres are relatively minor, 
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and are only developed at higher heat-treatment temperatures. 

Confining the existence. of two phases in circular cross- 

section PAN-based type I fibres, Larsen and gnith87 were able to 

identify a circumferentially-oriented surface skin in transverse 

sections. However, their micrographs clearly show that the thickness 

of this sheath is incompatible with the observed 'oxidation-zone' 

thickness, and they were unable to produce evidence of the proposed 

radial orientation in the under-stabilized core. 

b. Fibres of non-circuiar arose-section 

With the exception of an outer sheath showing a crystallite 

orientation parallel to the fibre surface, fibres having a 'dog-bone' 

cross-sectional shape have been shown85,88 to possess no preferred 

c-axis orientation in transverse section (Fig. 22). Recently, 

however, Watt and Johnson'7 have shown that under normal stabilization 

conditions such fibres do not develop oxidation zones; these are 

only observed after the fibres have been subjected to a vactaan heat- 

treatment at 220°C prior to oxidation. This suggests that, because 

of the different chemical composition of these fibres, a homogeneous 

macrotexture might be developed at higher heat-treatment temperatures. 

1.3.3 Defect structure of carbon fibres 

A. Internat flaws 

High-voltage electron microscopy has proved useful in the study 

of macro internal defects in carbon fibres. Sharp and Burnay49 have 

examined fibres of 8 um diameter at 1W and characterized the type, 

size and frequency of flaws found in PAN based fibres heat treated in 

the temperature range 1000 - 3200°C. The defect characteristic of 

type I fibres was found to be a bubble or void elongated along the 

fibre axis, such flaws often occurring in groups joined together by 

narrow holes. Although defects up to 3 wn in diameter were observed 
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the most frequent size was found to be about 1 um, present at a rate 

of about 1 per mm on average. Examination of fibres heat-treated 

between 1000 and 3200°C showed that this type of defect is only present 

after heat-treatment above 1800°C; fibres treated at low temperatures 

were found to contain only small inclusions up to 1 pm in diameter. 

Consequently, it was proposed that the flaws exhibited by type I 

fibres are caused by volatilization of inclusions seen in fibres 

heat treated at lower temperatures. 

Later, Sharp et al. 95 were able to characterize the nature 

of flaws in both PAN and rayon-based carbon fibres, observing central 

cavities, diconical voids, irregular inclusions and needle-shaped 

cavities. It was found that these flaws tended to introduce mis- 

oriented crystallites into the fibre, the basal planes of which were 

often inclined at greater than average angles to the fibre axis. 

This would result in large concentrations of shear strain energy in 

these regions when the fibres are loaded in tension to typical 

breaking loads. These large localized concentrations can only be 

relieved by cracks normal to the basal planes - leading to fibre 

failure (see also section 1.3.5). 

The work of Johnson42 and 'Ihorne43 had proved that many 

flaw-causing impurities in carbon fibres could be identified using 

scanning electron microscopy, and the existence of voids in fracture 

surfaces of type I fibres has been verified by Johnson89. In a 

successful attempt to relate the fall-off in tensile strength at heat- 

treatment temperatures above 1500°C to the presence of internal voids, 

the RAE team developed a clean-room spinning techniques°"51.52. Of 

twenty-four broken fibres examined in a scanning electron microscope 

no internal voids were found, and in all cases failure was initiated 

at a surface flaw. Additionally, it was found that fibres broken at 
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low strengths had large surface flaws and relatively smooth fracture 

surfaces, whereas high-strength fibres had small surface flaws and 

much rougher surfaces. 

Thorne' X5has shown that high-quality optical microscopy 

is useful in the examination of fractured fibre ends. He was able to 

successfully locate fracture initiation points in type A fibres, both 

with and without a surface treatment.. 

It is well established that partial oxidation produces 

apparently different zones in precursor-PAN which are present through- 

out subsequent heat treatment. Johnson et al. 92, by using a short, 

high-temperature oxidation at 300°C and rapid carbonization rates, 

have produced fibres containing axially-aligned holes. A scanning 

electron-microscope study showed that heat-treatment at 2200 - 260OPC 

produced concentric lamellar graphite structures surrounding the central 

hole or cavity, and that the material around the outer surface of the 

fibre also appeared to form lamellae. 

In an attempt to explain the anomalous tensile and 

compressive strengths of carbon fibres Barnet and Noor99.100 have 

examined the effect of plasma-etching on embedded PAN-based fibres. 

The patterns resulting from this etching technique suggest to the 

authors that the fibres consist of a highly-crystalline surface sheath, 

a core section, and a number of connecting webs forming a radial 

continuum. It was proposed that random pockets of less-crystalline 

material were found between these webs, and that, the macro-structure 

was characterized by large voids, internal cracks, highly-stressed 

regions, and surface flaws. These findings are summarized in Fig. 23. 

It was further claimed that this type of macrostructure is very 

similar to that found in acrylic fibres spun under high spin-draw 

ratios, and at high temperatures from a low-concentration spinning 

solution. 
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Hart and Pritchard101'102 have reported substantial increases 

in the modulus of type II fibres subjected to an oxidative treatment 

producing up to 90% volume loss. This would suggest that removal of 

'sheathI material leaves a highly-oriented, and hence high modulus 

'core' - contrary to most three-dimensional models, but in agreement 

with Barnet's work described above. The authors, however, proposed 

that the oxidizing gas penetrates the sheath and attacks the less 

graphitic regions preferentially, making free volume available for 

'stepwise collapse inwards of the highly-graphitic material'. It is 

interesting to note that no significant modulus changes were reported 

for fibres heat-treated at either 1000 or 2500°C. 

B. Surface fiazre 

Although surface flaws have been identified both by high- 

voltage electron microscopy95 and scanning electron microscopy89, 

there is no information available at the time of writing concerning 

the microstructure of such flaws, and their role in fracture mechanisms. 

1.3.4 Surface structure 

Following the publication76 of direct lattice-resolution 

micrographs of layer planes close to the surface of a fluted rayon- 

based fibre much interest has centred on the nature of the fibre 

surface, and its relative importance with respect to bonding to the 

resin matrix in a composite material. A schematic representation of 

the model derived from a high-resolution study of rayon-based fibres 

is shown in Fig. 24 and this indicates an essentially basal-plane 

fibre surface. 

The physical structure of carbon-fibre surfaces is of 

considerable importance in determining the interfacial area available 

for bonding between the fibre and the matrix in a composite structure. 
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Rayon-based fibres invariably exhibit regular, fluted cross-sections, 

with longitudinal grooves and striations, whereas, by contrast, PAN- 

based fibres usually show a circular cross-section with a relatively 

smooth and featureless topography. Scanning electron microscopy of 

fibres heat-treated at low temperatures indicated a highly-porous, 

rough surface, the effect of high-temperature heat treatment being 

to reduce the porosity open to the surface and anneal out much of 

the surface roughness'03. The effect of oxidative treatments is to 

increase the surface area irrespective of heat-treatment temperature, 

with a corresponding significant increase in interlaminar shear 

strengthlo3, io4, b05. 

The essentially basal-plane nature of rayon-based type I 

carbon fibres has recently been disputed by Bless and Lando'06. The 

Raman spectra for carbon fibres is induced in a thin surface layer 

of the sample, due to the high extinction coefficient of graphite 

for the laser beam, and thus reflects primarily the properties of the 

surface layers. The results obtained suggest that a cellulose-based 

fibre of modulus 730 QVm-2 has än average surface crystallite dia- 

meter of 22 ran, whereas a PAN-based fibre of modulus 700 GMn-2 has 

an essentially infinite surface crystallite size, and hence a very 

low edge-concentration at the fibre surface. This indicates that the 

surface of very high-modulus carbon fibres made from an acrylic 

precursor is basal plane in nature. 

1.3.5 The Relationship between Structure and Mechanical Properties 

It is important to know the crystallographic orientation 

and perfection of the basal planes within the turbostratic graphite 

crystallites in carbon fibres, since these determine the strength and 

modulus of the fibre, and at the surface will determine the wetting 

and bonding characteristics of the resin to the fibre. Since the graphite 
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structure is strong in the two orthogonal directions of the layer 

plane, and weak in the third, perpendicular to the layer plane and 

parallel to the c-axis, any graphite layer plane slightly mis- 

oriented from the fibre axis will allow shear to become operative 

with a drastic lowering in fibre modulus. The fibre strength, however, 

will be a function not only of surface flaws and related effects, 

but of the axial and radial macrotextures. The strength of a carbon 

fibre-reinforced composite will depend largely on how efficiently 

the shear stress at and near the fibre/matrix interface can be 

transferred to the core of the fibre. 

Ruland57 has compared 'uniform strain', 'uniform stress', 

and'elastic unwrinkling' models to explain the relationship between 

Young's modulus and preferred orientation. A subsequent study'07 

of various higher modulus carbon fibres, however, has tended to 

indicate that the latter model is the only one consistent with 

experimental observations. 

Reynolds, however, in measuring the orientation function 

for various single carbon fibres. as a function of applied stressio8, 

has found that the experimental values of, for example, shear modulus, 

best fit the 'uniform stress' model. This leads to the idea that the 

graphite crystallites may be thought of as connected in series, and 

that individual carbon hexagon planes may extend over several 

crystallite diameters. This model is supported by the observed36 

non-Hookean behaviour of carbon fibres. The very high measured values 

of shear modulus (25 (4n- 2 
, compared with theoretical predictions of 

10 GNrº 
2) 

would appear to; cast doubt on the single fibrillar structures 

proposed by Ruland for type I fibres, as these fibrils would be 

expected to roll over each other as the fibre is twisted. However,, 

Henrichsen and Fishbach109 have recently stated that the torsional 
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behaviour of single carbon fibres is dominated by the structure and 

properties of the material at, or close to, the surface of the fibre, 

so interpretations of mechanical properties in terms of a homogeneous 

structure may well be erroneous. 

Thorne43 has shown that there is a linear relationship 

between ultimate tensile strength and modulus up to a heat-treatment 

temperature of 1000°C, with a constant breaking strain of about lt. 

This relatively low value of strain-at-failure was found to be due 

to the operation of internal flaws which originate in the precursor 

PAN. For really high-strength fibres it was recomaended that the 

concentration of such flaws should be less than 1 per 100 mm, arid 

that the less well-defined surface flaws should be removed. Fibres 

fulfilling these conditions could be expected to have strengths around 

5 GW2 , and breaking strains of 2- 3%. 

In the Griffith equation the size of basal cracks, c, is 

given by: - 

c=°` 2E 
000000.00000000(1) 

where a is the surface free energy, E is the modulus, and c the 

ultimate tensile strength. From this relationship a strength against 

defect size plot can be made for any given surface free energy (Fig. 25). 

Since carbon fibres fail in an apparently brittle manner, 

Whitney and Kinmelll0 have used a Griffith failure criterion to 

elucidate fracture mechanisms. For an ideally brittle material, a 

(from Eqn. 1) should correspond simply to the energy required to break 

primary chemical bonds, but since it is thought that large amounts 

of plastic work are done at the crack tip, the observed values of a 

are much higher than would otherwise be expected. A good agreement 

between calculated and observed crack dimensions was reported for a 

range of type I carbon fibres from various sources, and a comparison 
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between the calculated apparent surface energy and that predicted by 

theory suggested that substantial' plastic work is occurring at the 

crack tip during fracture. Since plastic flow in graphite can only 

occur parallel to the basal planes it was proposed that the elongated 

micropores divert the crack propagation into a direction parallel 

to the fibre axis. 

In a recent patentlll, the Griffith equation has used 

to calculate the apparent fracture surface energy, a, of a rang of 

carbon fibres. By measuring the stress, strain, Young's modulus and 

flaw size the surface energy was calculated to be in the range 

14 - 42 Jm 
2, 

compared with the theoretical value of 4.2 Jm 2 

calculated from single crystal compliances. It was proposed that this 

difference can be explained in terms of a plastic work term, and 

that a is an intrinsic property of the carbon fibre, and accordingly 

is microstructurally dependent. Means of increasing the surface free 

energy, by adjusting processing variables, were discussed in the patent. 

Stewart and Feughelman112 have claimed that both the strength 

and modulus of carbon fibres heat treated to above 12000C are 

explicable in terms of fibre fine structure alone, provided that the 

contribution of bending to the unwrinkling of the ribbons is taken 

into account. The loss in strength, later attributed to the presence 

of internal'flaws50,51,52, which accanpanies an increase in fibre 

modulus as the heat-treatment temperature is increased above 1SOO0C, 

was proposed to be a consequence of the increase in ribbon thickness. 

The effects of complex fibril interweaving and interlinking were not 

discussed in this model. 

Reynolds and Sharp113 have shown that, for a fibre whose 

Young's modulus is determined by the mean misorientation, j, of 

hexagonal planes from the fibre axis, there is a large concentration 
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of shear stress in crystallites which are misoriented at angles 

greater than the mean. In a perfect single crystal containing no 

basal dislocations a shear strain-to-failure of 216% was predicted, 

but it was proposed that this is reduced to about 20% in the presence 

of very small crystal defects. This suggests that if a crystallite 

is misoriented by such an angle that it experiences a strain of 

greater than 20% then it will fail. Failure-strains of 1.1 - 1.5% 

were predicted for a range of carbon fibres heat treated at different 

temperatures, and estimates of critical flaw size in the range 

26 - 48 nm were made. In view of the fact that in all cases these 

latter values are significantly greater than the average crystallite 

size it would seem that failure of a single crystallite of average 

size is not sufficient to lead to failure of the fibre. If, however, 

there is structural continuity with neighbouring crystallites which 

are themselves misoriented, then crack propagation might be expected. 

Tyson71 has recently used a modified elastic/plastic 

theory to explain the anomalous tensile strengths of fibres heat 

treated above 10000C. The theory requires that a density fluctuation 

be present for crack nucleation and ultimate fracture, and that a 

critical strain exists over a region comparable to the spacing of the 

crack nuclei (this parameter having been obtained from low-angle 

x-ray diffraction). The pores and microvoids were proposed to be the 

plastic zones where, provided a critical strain is reached, crack 

nucleation begins. The density and weight-fraction of this disordered 

phase was shown to be particularly significant in limiting the strain- 

to-failure and strength of PAN-based carbon fibres heat treated in 

the temperature range 1000 - 2800°C. 
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2.1 INTRODUCTION 

The results obtained from polarized-light microscopy have 

suggested that a preferred c-axis orientation, dependent on stabil- 

ization conditions, exists in carbon fibres prepared at heat-treatment 

temperatures of 1000°C, 1500°C and, particularly, 2500°C. For example, 

circular cross-section fibres are thought to possess circumferential 

crystallite orientation when fully stabilized, and both radial (core) 

and circumferential (sheath) orientations when partially oxidized. 

If such a macrostructure exists then it should be revealed by 

examination of longitudinal sections. Figure 26(a) shows a schematic 

representation of the cut face at a depth of about r/2 into a fully- 

stabilized (circumferentially-oriented) fibre of radius r. An ultra- 

thin section cut from this face will have graphite sheets at A which 

are normal to the electron beam, and consequently (002) lattice- 

fringes and dark-field patterns will be absent from any recorded 

electron images. This would give an apparent 'sheath-core' heterogeneity 

even though the macrostructure is completely circumferentially 

oriented. However, if the cut face includes the axis, f, of the fibre 

a thin section cut from it will reveal an apparently homogeneous 

structure. When a 'radial-circumferential' texture develops, a 

'sheath-core' macrostructure would be expected irrespective of the 

depth, d, of the section into the fibre. Although the apparent core 

thickness, tc, and sheaththickness, ts, will be functions of d, in 

all cases the value of is will be at least 1 um for fibres of 6-8 um 

diameter. 

For fibres which have a dog-bone cross-sectional shape, many 

observed macrostructures would be expected depending on the direction 

of cutting with respect to the major and ithE)r transverse. axes. If a radial- 

circumferential model holds, cutting along the major axis (Fig. 27(a)) 

will show a sheath-core structure, while cutting along the minor axis 
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(Fig. 27(b)) will reveal a homogeneous structure. If, however, with 
the exception of the surface layers, there is no. preferred c-axis 

orientation in cross-section an apparently homogeneous structure 

would be expected irrespective of the direction of cutting (Fig. 

27(c) and (d)). 

2.2 EXPERIMENTAL PROCEDURE 

The 39 specimens shown in Table 1 were embedded in a hard 

TAAB resin, and thin longitudinal sections prepared at RAE using an 

LKB Mk. 1 Ultra Microtome and a diamond knife as described by 

Johnson and Watt72. In all cases several thin sections from each 

specimen were obtained, and, where possible (i. e. before fibre pull-out), 

the entire fibre was sectioned and collected on Formvar-coated 400 

mesh copper grids. Under exceptionally stable conditions it was 

possible to cut series of sections, nominally 30 inn thick, which 

appeared colourless in reflected light. 

All specimens were examined in a Philips EM300 electron 

microscope operated at 100 kV with a liquid nitrogen anti-contamina- 

tion trap, and fitted with a standard hairpin filament and a 0.3 nm 

diameter gun bias cap. Condenser apertures of 200 or 300 um were used 
routinely throughout this study except where otherwise stated, and 

the following types of electron image obtained: - 

(i) (002)-axial dark-field image at intermediate magnifications 

(50 000x - 100 000x). In this case the electron beam was tilted so 

that an equatorial section of the (002) diffracted arc coincided with 

the optical axis of the microscope; a small (less than 20 um) 

centrally-aligned thin-foil objective aperture was then used to remove 

all other reflections. Crystallite size, and the extent of structural 

heterogeneities were measured directly from prints of know magnification. 

(ii) Multibeam (i. e. no objective aperture), (000)! -axial, phase-contrast 
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lattice-fringe image at an objective-lens defocus which gives enhance- 

ment of the 0.34 nm turbostratic graphite spacing. The focus for these 

images was always ascertained by using a TV monitor system (see 

Appendix 1), and the images usually recorded at a magnification in 

the range 350 000x - 500 000x. As in (i) above, crystallite and flaw 

size were measured directly from prints of known magnification. 

(iii) Electron-diffraction patterns were always recorded at a condenser 

2 (C2) setting of two coarse steps over focus (see Appendix 1), for 

times between 2s and 10 minutes depending on selected-area aperture 

size, and the reflection of interest. For revealing structural 

differences between small areas a 10 um diameter intermediate-lens 

(selector) aperture was usually used to select an area of diameter 

0.4 um at the specimen. Intensity traces of these electron-diffraction 

patterns were obtained using a Joyce-Loebl double-beam recording 

microdensitometer at a ratio-arm magnification of SOx, and with a 

short, narrow slit, and were digitized manually for input to an ICL 

1906A computer. An Algol program used routinely in this laboratory 

for the resolution of overlapping x-ray diffraction peaks'16 (see 

Appendix 3) was adapted for use with the electron-diffraction data, 

traces being logarithmically corrected for saturation of the photo- 

graphic emilsionil7 (see Appendix 2) and then resolved into the zero- 

order (000) peak, (00&) peaks, (hk0) peaks where appropriate, and a 

polynaüiäl background. The known asymmetry of the reflections was 

allowed for by fitting different functions to either side of each 

peak. The resolved widths (e s) at half-maximum peak intensity and/or 

integral breadths (the area under a reflection divided by its 

intensity) then gave values of apparent crystallite size (L) using 

the Scherrer equation: - 

L=K 
es 
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The skin structure of specimen B2500 is seen at lattice 

resolution in Plate II. Large, highly-oriented crystallites, ranging 

in size up to a maximum of about 15 nm, can be seen linking together in 

a complex manner up to the edge, e, of the section. Irregular extinction 

bands at d indicate that the layer planes are highly distorted, and this 

is confirmed by extensive layer-plane bending at, for example, b. 

Crystallites of width between 8 nm and 14 nm can be seen to be mis- 

oriented at angles of at least 200 to the direction, f, of the fibre 

axis at m, n, and r. 

A somewhat different skin structure in specimen C2500 is 

seen at lattice resolution in Plate III. Although showing high preferred 

orientation, the crystallites within 40 nm of the fibre surface, s, 

are smaller, at about 6- 10 nm, than normally observed. Significantly, 

there is again evidence of severe misorientation at in, where a crystallite 

of width 5 nm can be seen to be misoriented at 30 - 40° to the direction, 

f, of the fibre axis. Apparently there is structural continuity between 

the skin region and the core, c, through this crystallite. 

The variability in skin crystallite size is demonstrated in 

Plate IV, which shows a large, highly-graphitic surface crystallite of 

width 30 nm in specimen D2500. Although relatively perfect for carbon 

fibres this crystallite exhibits dark extinction bands due to lattice 

distortions, and a large crack has opened at c. Additionally, structural 

continuity with core crystallites is maintained through a misoriented 

crystallite at m, and the high degree of crystallite perfection means 

that the fibre surface, s, is basal plane in nature. 

At lower magnification, and in the (002) dark-field mode of 

image formation, the extent of skin structure in specimen F2500 can be 

seen in Plate V. As in Plate I, a region, a, about 60 nm wide very close 

to the edge, e, of the section is characterized by a comparative absence 
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of (002) diffracted intensity. The typical skin structure then extends 
inwards over 250 nm, but apparently there is a further region, b, of 

structural discontinuity before the core structure is reached. This 

region of apparently small crystallite size and low (002) diffracted 

intensity is about 80 nm wide. The skin zone is characterized by a 

large stacking size, high preferred orientation, and large crystallite 

lengths in the direction, f, of the fibre axis. 

b. Core structure 

A homogeneous core structure, irrespective of both time of 

preoxidation and fibre diameter, was exhibited by all the specimens 

examined. The extent of the skin region, which has a maximum thick- 

ness of about 500 nm, but is typically of the order 100 - 250 nm 

means that the core represents more than 90% of the fibre. Plate VI 

shows, in the (002) dark-field mode, the core structure of specimen 

F2500. Comparison with Plate V shows that the stacking size is smaller 

and the preferred orientation poorer in the core than in the skin. 

Additionally, the crystallites in the core are much more discontinuous 

in the direction, f, of the fibre axis than in the skin, and 

consequently one would expect lower values of La//, the ribbon length. 

The gross homogeneity is quite apparent from this image. 

At lattice resolution, an essentially continuous, but in 

places highly misoriented structure is evident. Plate VII indicates 

crystallites with a range of stacking sizes up to about 13 nm linked 

together in a highly complex manner in specimen D2500. There is 

evidence of crystallite overlapping in Nbir6 patterns at m, while 

interlinking occurs through crystallites, x, inclined at angles of 

greater than 450 to the direction, f, of the fibre axis. Apparent 

voids, v, are easily located between crystallites, and exceptionally 

a wide zone, w, shows no evidence of interference fringes presumably 

due to the absence of (002) planes in the diffraction condition. 
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Plate VIII shows a core structure, also from specimen D2500, 

which consists of highly-interlinked crystallites with a maximum 

stacking size of about 9 nm. Crystallites misoriented at angles of 

at least 450 to the direction, f, of the fibre axis are apparent at m, 

and it is of significance that structural continuity is maintained 

through these crystallites. 

c. Defect structure 

In order to understand the strength of carbon fibres it is 

important to investigate any feature which may be considered as a 

flaw, characterizing its shape and size, and the crystallite 

orientation in its vicinity. Plate IX shows, at lattice resolution, 

the skin structure of specimen B2500. The bending and twisting of 

layer planes close to a highly-distorted region, d, has caused the 

formation of a flaw, p, while a misoriented crystallite of width 10 nm 

which starts at x apparently extends through this flawed region and 

terminates at y. An axially-aligned void, v, of width 2 nm and length 

at least 20 nm has opened between two of the almost perfectly-aligned 

edge crystallites, while cracks are in evidence at c. As in Plates I 

and V the large surface crystallites apparently do not extend fully 

to the edge, e, of the section, the outer zone of thickness between 

15 and 30 nm being characterized by weak or no (002) interference 

fringes. A similar flaw to that at p in Plate IX is shown at the 

edge, e, of a section prepared from specimen A2500 in Plate X. The 

crystallite forming the surface of the fibre has twisted at x to give 

a flaw, and at ma misoriented crystallite overlaps with the other, 

larger surface crystallite to give a Moird pattern. Layer-plane bending 

across a-a has resulted in a 60. tilt of the edge crystallite at g 

with respect to that at h. 

A striking surface flaw, from specimen B2500, is depicted in 
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the bright-field mode at intermediate magnification in Plate XI. A large 

surface crystallite, s, has pulled away from the core structure, c, 

along a-a, and fractured at x leaving a hole, h. It is proposed that 

the continuation of the surface crystallite has twisted out of the 

diffraction condition along w-w. It is possible that such extreme 

flaws may be due either to the disruptive effect of sectioning, or 

handling prior to embedding. In either case, a weakness must have 

existed in the fibre at that point in order for the flaw to be realized. 

An 'inverted-hairpin' flaw in specimen C2500 is shown in 

Plate XII. Structural continuity of both ends of this misoriented 

crystallite is evident at x and y, and at lower magnification 

(Plate XIII) it is noticeable that it extends to a depth of at least 

25 nm into the section at z. The general unevenness of the fibre surface 

is clearly shown in Plate XIII; the 'inverted hairpin' in fact forming 

a 40 nm deep step, s, while there is evidence of a smaller protuberance 

at x. Although the images in Plate XIII were recorded at lattice 

resolution they are reproduced at low magnification. 

A 'blister' flaw in specimen D2500 is shown in bright-field 

at intermediate magnification in Plate XIV. The fibre surface is 

relatively smooth with the exception of the area v-v, where a 'bulge' 

of some 20 nm is evident. At lattice resolution (Plate XV) it is clear 

that the crystallite that forms the blister is about 17 nm wide, and 

is misoriented at about 15° to the direction, f, of the fibre axis. 

The irregular dark extinction bands, b, are evidence of layer-plane 

distortion, and at e fracturing of layer planes has occurred. A void, 

v, of width 3 nm has opened between the misoriented surface crystallite 

and the core structure, c. 

A very large surface crystallite of width about 35 nm in 

specimen D2500 is shown at lattice resolution in Plate XVI. This 
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'knee-shaped' region consists of a highly graphitized crystallite 

bent through an angle of about 40o along a-a. There is evidence of 

severe lattice disorder at d, and the layer planes have apparently 

twisted over out of the diffraction condition at g. 

A similar 'knee-shaped' flaw in specimen F2500 is shown in 

Plate XVII. A crystallite of width 17 nm close to the edge, e, of the 

section is bent through an angle of about 200 along a-a. Disruption 

of the lattice-fringe image in the form of extinction bands, b, cracks, 

c, and localized distortion, d, is indicative of the presence of 

severe dislocations, while structural continuity is maintained through 

interlinking at h. The direction, f, of the fibre axis is indicated. 

A highly-graphitized and well-interlinked skin structure 

in specimen F2S00 is depicted at lattice resolution in Plate XVIII. 

This skin, of total thickness 45 nm, consists of crystallites ranging 

in size up to about 10 nm, which are extensively interwoven in a 

complex three-dimensional manner. Regular Moire-fringe patterns, m, 

result from crystallite overlapping, and dark extinction bands, b, 

particularly at the very edge of the section, are indicative of 

considerable lattice distortion. There is evidence of gross crystallite 

inisorientation, not only in the skin at s, but also in the core at t. 

The structure of the surface crystallites signifies the essentially 

basal-plane nature of the fibre surface. 

d. Quantitative electron diffraction 

The techniques of analysis of electron-diffraction patterns 

outlined earlier were used to obtain quantitative measurements of size 

and distortion parameters for the skin and core regions in specimens 

A2500, B2500, C2500 and D2500. In all cases several (up to six) orders 

of the (OOR) reflection were observed in skin regions, while usually 

only the first two orders were seen in the electron-diffraction patterns 

of the core (Plate XIX). The limited extent of the skin necessitated 



Plate XIX. Electron-diffraction patterns from 

a) skin, and (b) core of s ecimen C2500. 
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the use of a 10 1, m diameter intermediate-lens aperture, which selects 

an area of diameter 400 nm at the specimen, and the longitudinal 

variability of the skin meant that meaningful averaged electron- 

diffraction patterns could only be obtained by integration (recording 

the pattern of many different areas on the same plate). However, 

integration was unnecessary in the core because of its homogeneity. 

Crystallite size and Lattice distortion. 

The computer program used in this study outputs the width in 

s at half maximum peak intensity, and using the Scherrer equation, with 

K=1, the apparent stacking size was obtained for each of the resolved 

(OO2) reflections. As the width, A s, was found to increase linearly 

with R2 the technique first proposed by Ergun118 and later adapted by 

Thrower and Nagle119 was used to derive the 'mean defect-free distance', 

Dc, and lattice distortion parameter, c. Dc is defined as the distance 

over which there is a probability e1 of encountering a lattice defect, 

and a is defined as a strain parameter such that a lattice distance r 

parallel to the c-axis is altered by ±a r with a probability of O. S. 

A graph of ns against 9.2 for specimens A2500, B2500, C2500 

and D2500 is shown in Fig. 28. The marked difference between skin and 

core regions is apparent, but there is no evidence to suggest that 

different oxidation times have any significant effect on either 

crystallite size or perfection in either region. Figure 29 shows a 

successful resolution of the (002) reflection from (a) skin, and (b) 

core regions of specimen B2500, and the ability of the program to cope 

successfully with very asymmetric peaks is demonstrated in Fig. 30, 

where the (110) and (006) equatorial reflections of specimen B2500 

(skin) are resolved. 

The mean defect-free distance, Dc, and lattice distortion 

parameter, o, are shown in Table 2 for skin and core regions of specimens 
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Fig. 30. Resolution of the overlapping asymmetric (110) and (006) 

profiles from the skin region of specimen B2500. 



Table 2 Lattice Distortion (a) and Mean Defect-free Distance (Dc) 

parameters 
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SPECIMEN REGION IN SPECIMEN c ($) De (nm) 

A2500 Skin 0.54 8.9 
Core 1.66 3.0 

B2500 Skin 0.66 9.8 
Core 1.21 4.5 

C2500 Skin 0.62 11.4 
Core 1.63 2.8 

D2500 Skin 0.52 11.8 
Core 1.73 3.5 

Table 3 Mean Layer-plane Dimensions for Specimen B2500 

REGION IN SPECIMEN REFLECTION SIZE PARAMETER (nm) 

Skin (100) Equatorial La 
1=8.4 

Skin (100) Meridional La /, = 8.3 

Skin (110) Meridional La = 12.4 

Core (100) Equatorial La 1=4.8 
Core (100) Meridional La 7.7 

Core (110) Meridional La ýý = 7.2 
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A2500, B2500, C2500 and D2500. The values of Dc lie between about 9 nm 

and 12 nm for the skin, and 3 nm and 5 nm for the core, while a is 

about 0.5 - 0.7% for the skin and in the range 1.2 - 1.7% for the 

core, irrespective of time of preoxidation. 

Layer plane dimensions La/I (layer length) and Lal (layer 

width) shown in Table 3 were determined from the (hkO) reflections on 

the meridian and equator respectively. In the case of the (100) 

equatorial reflection K was taken as 1.84, for the (100) meridional 

reflection as 1, and for the (110) meridional reflection as 0.87 as 

described by Ruland and Tompa120. In the skin region the layer length 

was found to be 8.3 nm, while the depth was estimated at 8.4 nm. It is 

apparent from lattice-resolution images of carbon fibres that the 

layer planes are continuous in the direction of the fibre axis for many 

tens of nanometres, and as such it is important to stress that the 

value quoted for La// is only a measure of the average length of 

straight sequences of layer planes. In the core it is noticeable that 

La/I has changed only slightly at 7.7 nm, while La 1 has altered 

significantly to 4.8 nm. This indicates that the layer planes are not 

as wide in the core as they are in the skin, but that there is little 

difference in length. 

Preferred orientation 

The values of preferred orientation, Z, for skin and core 

regions in specimens A2500, B2500, C2500, and D2500 are shown in Table 4. 

As with stacking size and lattice distortion it is evident that time 

of preoxidation has no significant effect on orientation. The Z values 

for the skin are between 12 0 and 16°, while for the core the range is 

20° to 32°. It is significant that the mean values of these orientations, 

140 for the skin and 24 0 for the core are remarkably close to those 

observed by Johnson et al. 90 for Ti and T2 phases in high-modulus PAN- 

based fibres. 



Table 4 Preferred Orientation Parameters 

SPECIMEN REGION IN SPECIMEN z0 

A2500 Skin 15 
Core 22 

B2500 Skin 13 
Core 21 

C2500 Skin 16 
Core 32 

D2500 Skin 12 
Core 20 

Table 5 Crystallite Size, Lattice Spacing and Orientation of 
Various Specimens 

SPECIMEN REGION IN SPECIMEN L 
Ti c/2 

nm 
Z 
o 

A1000 Skin 1.1 0.38 - 
Core 1.1 0.37 42 

A1500 Skin 1.6 0.36 43 
Core 1.6 0.35 - 

D1000 Skin 1.2 0.37 43 
Core 1.1 0.37 - 

D1500 Skin 1.9 0.35 - 
Core 1.8 0.35 42 

E1000 Skin 1.4 0.36 - 
Core 1.3 0.36 44 

E1500 Skin 1.2 0.35 - 
Core 1.4 0.35 48 

F1000 Skin 1.3 0.36 - Core 1.3 0.37 42 

F1500 Skin 1.6 0.35 - 
Core 1.4 0.36 42 
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B. The effect of different stabilization cycles 

Watt and Johnson have found17 that the chemical composition 

of the precursor acrylic is of fundamental importance in the formation 

of 'oxidation zones'. In an attempt to relate the presence or absence 

of these zones to the skin-core regions seen in high-modulus circular 

cross-section fibres ex-special Courtelle, specimens J2500 and K2500 

were examined. The first of these had experienced a conventional 

stabilization cycle, while the latter had been vacuum-stabilized 

prior to oxidation and inert heat treatment. In both cases a skin 

structure identical to that observed earlier was identified. Again it 

was characterized by a wide range of crystallite sizes and mis- 

orientations, and, significantly, appeared to vary considerably in 

extent. 

a. Skin-core structure 

Plate XX shows the typical skin structure of specimen J2500 

in the (002) dark-field mode. Extending to a maximum thickness of 

about 120 nm this region is characterized by both larger crystallite 

size, and higher preferred orientation than the core, c. Extensive 

regular Moire-fringe patterns indicate crystallite overlapping at m. 

Specimen K2500, which received a vacuum stabilization prior 

to oxidation, exhibits the same type of skin-core structure (Plate XXI) 

as specimen J2500, which was not vacuum-stabilized. In this case a skin 

of thickness about 150 nm has formed close to the surface, s. It is 

significant that the skin structure, again characterized by large 

crystallite size and high preferred orientation, neither extends fully 

to the edge, s, of the section (for example along x-x), nor homogeneously 

to the core, c (for example along t-t). This effect is similar to that 

reported for specimen F2500 (Plate V). It is evident, however, that 

formation of a skin-core macrostructure in fibres based on special 
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Courtelle is not dependent on the stabilization cycle used. 

b. Defect structure 

Plate XXII shows an apparently stepped surface in specimen 

J2500, formed by the termination of surface crystallites of width 25 nm 

at t. In view of the strict orientation limitations imposed on dark- 

field images of this type this interpretation may be invalidated by 

the twisting of crystallites out of the Bragg diffraction condition. 

Plate XXI exhibits some interesting flaws, for example, at 

f the skin structure is apparently discontinuous, and the area showing 

a low (002) diffracted. intensity (referred to as t above) is 

considerably wider at 200 nm than elsewhere. In the core, c, of the 

fibre a large hole of width 150 nm and length 0.45 um is shown at h, 

while subsidiary inclusions can be seen at a and b. These are in the 

same direction parallel to the fibre axis as h, and as such may have 

been produced during precursor drawing. In the case of the larger hole, 

catalytic graphitization has occurred parallel to the c-axes-of the 

crystallites on either side of the flaw. 

Similarly, an interesting internal flaw in specimen J2500 

of width and length about 0.5 pm is depicted in Plate XXIII in bright- 

field ((000) only) mode, and in Plate XXIV in the (002) dark-field mode. 

The hole, h, can be seen to be bordered by highly-graphitized 

crystallites, g, of width up to about 100 nm. Crystallites, m, mis- 

oriented at large angles to the direction, f, of the fibre axis clearly 

evident in Plate XXIII are missing from Plate XXIV since they are 

diffracting outside the small objective aperture used. This demonstrates 

the orientation limitations of dark-field images when such a small 

aperture is used. It is noticeable that extensive catalytic graphiti- 

zation has not occurred in those areas, d and e, along the direction 

of the fibre axis; graphitization only proceeding normal to f, and thus 
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parallel to the c-axis of the crystallites as in Plate XXI. 

c. Re-gume 

Carbon fibres made from circular cross-section special 

Courtelle, and heat-treated to 2500°C exhibit a skin-core structure, 

the dimensions of which are independent of time of preoxidation and 

type of stabilization cycle. The width of the skin, which has a 

mean stacking size of around 10 nm, and preferred orientation about 

15 0, is extremely variable up to a maximum of about 0.5 pm. The core 

structure, of mean stacking size about 4 nm and preferred orientation 

25° is characterized by complex three-dimensional interlinking and 

interweaving, and forms more than 90% of the total volume of the fibre. 

Although possessing higher preferred orientation than the core, there 

is a higher chance of the skin containing a large crystallite mis- 

oriented from the fibre axis at an angle greater than the mean, and 

structural continuity between these and the core might be expected 

to lead ultimately to failure. There is no evidence to suggest that 

light and dark zones seen in polarized-light microscopy of cross 

sections of oxidized fibres are related to structural zones in fibres 

heat treated to 2500°C. 

2.3.2 Fibres heat treated to 10000C and 1500°C 

In an effort to identify the origin of skin-core heterogeneity 

and surface flaws in carbon fibres made from special Courtelle and 

heat treated to 2500°C, specimens A1000, A1500, D1000, D1S00, E1000, 

E1500, F1000 and F1500 were thin sectioned at RAE and examined in the 

electron microscope. Owing to the large amounts of specimen damage to 

these lower temperature fibres during sectioning, only those regions 

of the section which appeared undistorted were examined; intermediate- 

magnification bright and dark-field images, lattice-resolution images 

and electron-diffraction patterns being obtained from relevant areas. 
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Values of Lc (from the (002) reflection only) and c/2 were obtained as 

described above, and the results are shown in Table S. 

It is evident from Table 5 that for fibres heat treated at 

1000°C, Lc is of the order of 1.1 - 1.4 nm, and that there is no skin- 

core effect. Similarly, fibres heat treated at 1500°C showed no evidence 

of structural heterogeneity, with stacking sizes of 1.2 - 1.9 nm being 

found for both skin and core zones. The c/2 parameter was found to 

decrease from a value in the range 0.36 - 0.38 nm at 1000°C to about 

0.35 - 0.36 nm at 1500°C. The Z values shown in Table 5 confirm that 

there is no diffraction evidence of gross heterogeneity in carbon fibres 

prepared at either 1000°C or 15000C, since they are in the range 

42 - 480 irrespective of selected area. 

The quantitative electron-diffraction analysis is confirmed 

by subjective examination of appropriate bright and dark-field images. 

Plate XXV shows a thin section of specimen D1000 in the bright-field 

mode. The cracks, c, which run at 900 to the direction, f, of the fibre 

axis are due to sectioning, which in this case was parallel to f. However, 

the resin embedding medium, r, can be seen present along the edges of 

the fibre, and this is indicative that some regions (such as at x) are 

not badly distorted, and these were used for electron-diffraction and 

high-resolution studies. 

Plate XXVI shows, in the (002) dark-field mDde, specimen D1000. 

This section is characterized by artefacts such as 'pile-up', p, and 

chatter marks, c, caused during sectioning, but it is apparent that 

there is no evidence of structural heterogeneity in terms of a sheath- 

core macrotexture. Regions where there is evidence of higher (002) 

diffracted intensity, for example at r, constitute a crumpled structure 

again caused by sectioning. 

Plate XXVII shows a section cut from specimen E1000, which 

again shows not only the transverse cracks, c, typical of cutting along 
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the fibre axis direction, but also small, relatively undistorted areas, 

r, suited to high-resolution studies. In the (002) dark-field mode 

(Plate XXVIII) this specimen clearly shows no skin-core heterogeneity, 

the density and size of crystallites being remarkably uniform right up 

to the edge, e, of the section. Again, a higher density of (002) 

diffraction (for example at h) is indicative of a thicker region in 

the specimen caused by crumpling and pile-up. The direction, f, of the 

fibre axis is shown. 

The superior sectioning properties of material heat treated 

at 1500°C is shown in Plate XXIX, which is a bright-field image of 

specimen E1500. The transverse cracks are less evident, and again, 

relatively undistorted regions, r, can be located for high-resolution 

and diffraction analysis. 

After heat treatment at 1500°C the crystallites are slightly larger 

than at 1000°C, there being little change in preferred orientation 

(Table 5). Plate XXX shows the more discrete nature of these crystallites 

in specimen D1500. There is some evidence of a narrow skin of width 

40 nm at s, which exhibits apparently larger crystallite size than the 

more typical structure at t. This effect may be a sectioning artefact 

since a similar structure at x apparently extends into the fibre normal 

to the direction, f, of the fibre axis. 

A similar structure for specimen F1500 is depicted in Plate 

XXXI. The homogeneous core structure, c, extends fully to the edge, e, 

of the section, while holes, h, and other anomalous effects, g, are 

clearly related to sectioning artefacts. 

At lattice resolution, there is some evidence for a slight 

increase in crystallite size and orientation at the very edge of the 

section. Although no clear-cut demarcation between skin and core can be 

seen it is clear from the high-resolution image of specimen F1500 in 
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Plate XXXII that the surface of the fibre constrains the crystallization 

of the turbostratic graphite lattice planes into a well-oriented, but 

extremely thin layer. In order to confirm this, longitudinal sections 

cut normal to the fibre axis were examined. In this case the leading 

edge is relatively distortion-free after cutting, and unambiguous 

conclusions may be drawn from relevant images. Plate XXXIII shows the 

edge of a section cut from specimen F1500, and it is clear that 

crystallite orientation and perfection is higher at the very edge than 

in the core, c. For example, at a and b there are crystallites of width 

6 nm and 5 nm respectively, and the layer-plane length in the direction 

of the fibre axis is evidently much greater in this narrow skin 

region than in the core. Plate XXXIV is a similar image from specimen 

F1000, showing grouping of layer planes at the very edge of the fibre 

to form the start of surface crystallites, and at xa more crystalline 

area of width 6 nm extending into the section. 

2.4 FIBRES HAVING A DOG-BONE CROSS SECTION 

Recently Watt and Johnson have shown17 that the different 

chemical composition of dog-bone cross-section fibres (i. e. Orlon and 

Dralon) compared with circular cross-section fibres (special Courtelle) 

is of importance in the formation of oxidation zones. In particular, 

conventionally-stabilized dog-bone shaped fibres were found to exhibit 

no oxidation zones, a skin of thickness greater than 1 Pm only being 

formed after a vacuum stabilization prior to oxidation. In order to 

test whether or not these observed zones are related to the skin-core 

zones seen in all high-modulus carbon fibres ex-special Courtelle 

specimens G2500, H2500, L2500, M2500, N2500, and P2500 were thin 

sectioned and examined. 

2.4.1 Macrostructure 

Plate XXXV shows the longitudinal structure of specimen 
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M2500 in the (002) dark-field mode. Evidently a skin of thickness 

about 75 nm has formed at s and t, though there is discontinuity, x, 

extending over about 0. S pm between these two regions. The core 

structure is homogeneous with no evidence of the zones of different 

orientations predicted by polarized-light microscopy. 

The specimens which do not exhibit oxidation zones, viz. 

L2500 and N2500, were similarly examined, and found to possess the 

characteristic skin-core structure. Plate XXXVI shows this typical 

structure in specimen L2500. The crystallite size and orientation 

is higher within a 60 nm region close to the edge, e, of the section, 

although-there is some evidence, for example at x, y, and z of a 

larger than average crystallite size in the core. Extensive Moire- 

fringe patterns are indicative of crystallite overlapping and inter- 

linking, and the direction, f, of the fibre axis is shown. 

Plate XXXVII, from the same specimen, L2500, apparently 

shows a hole, h, running down the centre of a7 um wide section. When 

the dog-bone cross section of Orlon is considered, however, it is 

evident that this image represents a cut through the two lobes as 

in Fig. 31. If this is the case, then skin structure should be apparent 

at the regions labelled x in Fig. 31. Examination of the relevant 

areas, s, in Plate XXXVII shows that this is in fact so. A core 

structure possessing no preferred c-axis orientation is assumed in Fig. 31. 

A skin-core structure indistinguishable from that of type I 

fibres ex-special Courtelle is shown in Plate XXXVIII for specimen L2500. 

A skin of high orientation and large crystallite size can be seen to 

extend over an area of maximum width 200 nm at the edge, e, of the 

section, while it is clear that the core structure is completely 

homogeneous. There is some evidence of crystallites twisting out of the 

diffraction condition at the very edge of the section at x, y, and z, 
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but in general, the large edge crystallites present a smooth, presumably 

basal plane fibre surface, for example at a and b. 

2.4.2 Defect structure 

A remarkable area of well-graphitized, but completely 

atypical, skin structure in specimen P2500 is depicted in Plate XXXIX. 

From the edge, S, of the section extending some 0.5 um into the fibre 

is an area containing six highly-oriented crystallites which do not 

appear to interlink in the normal manner. Moire patterns, M, however, 

indicate that there is extensive crystallite overlapping, and presum- 

ably interlinking through the voids, T, even though the crystallites 

must be either out of the diffraction condition, or diffracting 

outside the objective aperture. This is confirmed in Plate XL, the 

(110) meridional dark-field image of the same area, which shows an 

essentially continuous structure. This pair of images emphasizes the 

importance of understanding the orientation limitations imposed in 

the (002) dark-field mode of image formation. 

2.4.3 Resume 

Although different stabilization cycles appear to produce 

dissimilar transverse structures as revealed by polarized-light 

microscopy, in dog-bone cross sectionally shaped fibres, there is no 

evidence that these zones are carried through to fibres prepared at 

heat-treatment temperatures of 2500°C. In particular those fibres 

which exhibited no oxidation zones after a conventional stabilization 

cycle were shown to possess a skin-core heterogeneity indistinguish- 

able from that of circular cross section fibres and vacuum-stabilized 

dog-bone fibres heat treated to 2500°C. 
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R4FfER 3 

SURFACE AND TRANSVERSE SiRUCTIRES 



3.1 SURFACE STRUCTURE 

3.1.1 Introduction 

l ýj 80 

Since carbon fibres are used as structural reinforcing agents 

in composite materials it is important to characterize the nature of 

the fibre surface in order to understand bonding of fibres with the 

resin matrix. The number of edge sites on the fibre surface, i. e. the 

number of terminating graphite sheets, is of importance, and this can 

only be assessed directly by using high-resolution electron microscopy, 

where images recorded under the appropriate conditions provide a 

faithful representation of the layer-plane structure at the fibre 

surface. 

3.1.2 Fibres heat treated to 2500°C 

An essentially continuous graphite-sheet surface structure 

has been predicted for PAN-based fibres by Raman spectroscopyl06, 

thus confirming the circumferential crystallite orientation in the outer 

layers of the fibre. SEM studies89, however, have tended to suggest 

a fibrillar surface structure, these fibrils being arranged parallel 

to the fibre axis, while bright- and dark-field transmission images 

obtained from thin surface areas have been interpreted53 in terms of a 

rippled-sheet structure. Evidently, considerable discrepancies exist 

between models derived from different techniques. 

Using high-resolution phase-contrast electron microscopy 

Hugo et al. 76 have shown that the layer planes close to the surface 

of rayon-based fibres are highly oriented, and indeed do form the 

surface layer itself; however, thin regions in fluted fibres may not 

be representative of the surface structure in these specimens. It is 

evident, however, from the lattice-resolution images depicted in 

Plates IV, X, XV, XVI and XVII that certain areas of the surface of 

PAN-based type I material are perfectly basal plane in nature. However, 

other images tend to suggest that highly-graphitic crystallites do not 
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extend fully to the edge of the section, for example, in Plate I there 

is a non-diffracting region of width 150 nm and in Plate Va similar 

region 50 nm - 80 nm wide. 

Figures 26 and 27 show the anomalies of structure expected 

from examination of sections cut at varying depths into the fibre, and 
by taking this to an extreme one can envisage a first or last-cut 

section which will give information about the structure of the fibre 

surface. Plate XLI shows just such a section, cut from specimen M2500, 

in the (002) dark-field mode. Apparently, structural heterogeneity 

exists across the entire section, but bearing in mind that this is a 

first (or last) cut, the variations in (002) diffracted intensity are 

representative of the c-axis orientation of those crystallites at 

or close to the very surface of the fibre. The striations of high 

diffracted intensity, h, are those areas where the c-axes of the 

crystallites are perpendicular to the incident electron beam, while 

the intermediate regions of low or no diffraction, t, are characterized 

by an orientation of crystallites out of the diffraction condition. 

A microdensitometer scan along SS' in Plate XLI gives the intensity 

trace of Fig. 32(a). There are regions, f, where the diffracted intensity 

is low, and here the graphite sheets must be normal to the electron 

beam. In other regions, g, the diffracted intensity is high, and the 

turbostratic crystallites must be oriented so that the layer planes 

are parallel to the incident beam. Using this simple interpretation, 

which implies that the (002) layer planes at the fibre surface follow 

the surface (i. e. the c-axis of a surface crystallite is always normal 

to the surface of the fibre) a schematic projection of the surface 

irregularity can be made (Fig. 32(b)). If such a simple model holds, 

the surface structure is characterized by. rippling, the mean wavelength 

of a ripple being about 250 nm. 
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This type of surface macrostructure is confirmed in the SEM 

micrographs depicted in Plate XLII, where striations of separation 

about 250 nm - 500 nm are arrowed. There is no evidence that heat 

treatment at different temperatures has any effect on this type of 

surface structure, as can be seen in Plate XLII(a), (b), and (c) which 

are images of specimens heat treated at 1000°C, 1500°C and 2500°C 

respectively. Some interesting surface flaws, typical of specimen 

F2500, are shown in Plate XLIII. At xa crack of length 15 pm and 

width 0.5 pm runs parallel to the surface striations, while at higher 

magnification a similar flaw of length 5 pm and width ranging between 

100 nm and 500 nm can be seen at y. This type of surface flaw was not 

observed in specimens heat treated at 1000°C and 1500°C and is 

presumably a heat-treatment effect. 

Using this new model of layer-plane stacking at the surface 

of type I fibres coupled with the calculated periodicity of the surface- 

ripple repeat it is possible to explain observed anomalous skin 

effects. It has been stressed that the skin seen in type I material 

varies considerably in thickness and longitudinal extent. Figure 33 

shows the schematic (002) dark-field images, a, b, and c, expected 

from sections cut at different depths into a fibre of circular cross- 

section. A surface irregularity of wavelength about 2S0 nm and section 

thickness of 30 nm - So nm is assumed, and this means that there is 

always a high probability of edge crystallites being out of the 

diffraction condition. The dark-field pattern, a, of the first-cut 

section is shown to exhibit the striations typical of Plate XLI. 

Figure 34 is a microdensitometer scan across the dark-field image 

of a conventional longitudinal section of the type c in Fig. 33. 

It is clear that at one edge of the section there is a skin region, 

s, of high diffracted intensity about 200 nm wide, while at the other 

edge the surface crystallites are not oriented for diffraction, the 
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intensity falling off from the general core level at x to the very 

edge of the section, e. Similarly, the anomalous structural band of 

low diffracted intensity occasionally observed between the skin and 

core regions (see, for example, region b in Plate V and t in Plate 

XXI) can be explained in terms of the structural model depicted in 

Fig. 35. 

3.1.3 Fibres heat treated at 1000°C and 1500°C 

Since the graphite layer planes formed at heat-treatment 

temperatures of 1000 and 1500°C are both less continuous and less 

perfect than those formed at heat treatment at or above 2500°C the 

chance of finding an edge site in any given area must be higher in 

fibres prepared at the lower temperatures. Plate XXXIIIshows the 

edge structure in a longitudinal section of specimen F1500, and at 
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those regions labelled x layer-plane packets can be seen to terminate, 

forming edge sites suited to bonding with the resin matrix. Similarly, 

in specimen F1000 (Plate XXXIV) those regions labelled d will presum- 

ably form good bonding sites. It is evident from Plate XLII that the 

gross rippled surface structure of fibres heat treated to 2500°C is 

also present in fibres prepared at lower temperatures, but there is no 

evidence of the type of surface defect shown in Plate XLIII at either 

1000°C or 1500°C. 

3.1.4 Resume 

In type I fibres the skin layer contains large, highly- 

graphitic crystallites oriented with their c-axes predominantly 

normal to the fibre surface. In certain areas the actual fibre surface 

is purely basal plane in nature, but crystallite orientation effects 

preclude the possibility of following the surface layer at lattice 

resolution over long distances in the direction of the fibre axis. 

Examination of first-cut sections shows that the fibre surface is 

rippled, with a periodicity of about 250 nm, and this is confirmed 

by scanning electron microscopy. Gross surface flaws involving cracks 

and elongated cavities of considerable size are only seen in type I 

material, but the general striated surface structure is indistinguish- 

able from that existing at lower heat-treatment temperatures. Type A 

and type II material contains regions at the fibre surface where layer- 

plane packets terminate to give edge sites for matrix bonding. A new 

structural model for type I fibres summarizing the essential macro- 

structural findings is depicted in Fig. 36. The fibre axis, f, is 

shown. 

3.2. TRANSVERSE STRUCTURE 

3.2.1. Introduction 

Although certain conclusions and structural models-may 
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be drawn from the two-dimensional images obtained from longitudinal 

sections, in order to complete a comprehensive three-dimensional 

structural characterization it is necessary to examine thin trans- 

verse sections. This becomes essential since zones of different 

orientation seen in light-microscope images of thick cross sections, 

from fibres which have only been oxidized, have also been identified" 

in similar sections of fibres heat treated at 1000°C, 1500°C and 2500°C, 

but are not evident in thin longitudinal sections. Unfortunately, the 

oriented structure of carbon fibres makes the preparation of thin 

undistorted transverse sections almost impossible. 

3.2.2 Cross sections 

In an attempt to characterize the transverse structure of 

carbon fibres containing oxidation zones and heat treated to 2500°C, 

Johnson at RAE has obtained thin cross sections of suitably embedded 

fibres; these contain dissimilar zones of dimensions compatible 

with those observed in the light microscope. Plate XLIV shows the 

structure of a typical section. The direction of cutting, d, is 

shown, and the fibre axis is normal to the plane of the image. In 

spite of severe disruption during sectioning, as shown by the 

ellipticity of the section which should be circular with a diameter 

of 8 pm, it is apparent that a two-zone system exists, the core, c, 

having sectioned better than the outer sheath, s. Compression of the 

structure has resulted in thick areas, t, while pull-out of longi- 

tudinal structure has occurred to a limited extent at, for example, 

p. The leading edge, that is the edge sectioned first, contains 

areas, e, from whichlattice-resolution images can be obtained, while 

the core and sheath also contain thin, undistorted areas suited to 

high-resolution microscopy at c and s respectively. 



Plate XLV. Electron-diffraction patterns from (a) 

sheath and (b) core regions in a transverse 

section cut from specimen 82500. 
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3.2.3 Sheath-core structure 

In order to assess the gross orientation effects in cross 

section, a selected-area electron-diffraction study was performed with 

a 30 um diameter intermediate-lens aperture selecting an area of 

diameter 1.25 pm at the specimen. Although many different areas 

were selected, the (002) reflection was found to be a continuous ring 

in all cases (Plate XLV), indicating that there is no c-axis pre- 

ferred orientation in either sheath or core. This was confirmed by 

a similar study using a 10 um diameter selected-area aperture. 

Analysis of microdensitometer traces by the methods described 

earlier indicates that the mean stacking size in the core is 2.1 nm, 

while in the outer sheath it is 2.0 nm. These values, while 

significantly lower than those of about 3-4 nm typically found 

for core structure in conventional longitudinal sections, are not 

significantly different, clearly showing that there is no difference 

between sheath and core zones from a diffraction point of view. 

To explain the anomalous sectioning behaviour, lattice- 

resolution images were obtained from thin, undistorted regions such as 

at c and s in Plate XLIV; the core structure of specimen R2500 being 

shown in Plate XLVI. It is apparent from this image that there is no 

preferred orientation, and that the crystallites interlink in an 

extremely complex manner to form a densely-packed structure. There is 

very little evidence of enclosed voids between crystallites, a 

continuous, compact, highly-interlinked structure being envisaged. 

At higher magnification the essential conclusions regarding 

the core structure of specimen R2500 are confirmed in Plate XLVII. 

Rarely are the layer planes straight over lengths of more than 2 

or 3 nm, and the high density of crystallite packing is achieved 

through a complex three-dimensional interlinking of layer planes. 
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There is no diffraction evidence of differences in preferred 

orientation and stacking size between sheath and core zones. With 

lattice resolution, however, it is clear that the sheath structure 

of specimen 82500 shown in Plate XLVIII contains enclosed voids, v, 

not apparent in the core. This leads to a less-dense, and less- 

compact structure. This essential difference is confirmed in Plate 

XLIX which shows the sheath structure of specimen S2500 at lattice 

resolution. Numerous small sharp-edged voids, v, can be seen 

enclosed by bent and folded crystallites. It is envisaged that the 

origin of these voids lies in the greater layer-plane width (layer- 

plane length as seen in transverse section) enabling the graphiti- 

zation of crystallites in the fully-oxidized sheath in a folded 

form enclosing the small voids. In the under-stabilized core, where 

layer-plane width is smaller, crystallization into a dense, void- 

free, structure is assumed. If this mechanism is valid it seems 

probable that a more highly-crosslinked layer structure develops 

in the fully-oxidized sheath than in the under-stabilized core. 

The reason that structural differences between sheath and core zones 

are not found by diffraction analysis of thin longitudinal sections 

is presumably due to the misleading nature of La/I and La 
1 measure- 

ments. Since these are only measurements of the average straight 

dimensions of layer-plane sequences they give no information regarding 

total layer-plane length or width. Additionally, the unambiguous 

interpretation of the appearance of voids in longitudinal sections 

is complicated by the orientation limitations discussed earlier. 

Schematic representations of the three-dimensional structures envisaged 

for the sheath and core are depicted in Fig. 37. 

3.2.4 Skin structure 

The structural model for the surface described above 
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Fig. 37. Three-dimensional structural models for (a) sheath 

and (b) core of a partially-oxidized circular cross 

section type I fibre. 
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assumes that the layer planes follow the fibre surface when close to 

it, and this is confirmed in Plate L, which shows the skin structure 

of specimen S2500 at lattice resolution. A large crystallite, e, of 

width 18 nm and bent along t-t forms the surface, s, of the fibre. The 

complex crystallite interlinking between skin and sheath structural 

zones is evident at several regions, x. The skin in this image has a 

maximum thickness of about 70 nm, and it is evident that there are 

extensive areas where the surface of the fibre is purely basal plane. 

The general rippling of the fibre surface is confirmed, and crystallite 

bending through angles up to 90° means that a first-cut longitudinal 

section will exhibit striations of (002) diffracted intensity as pre- 

dicted. 

A similar complex interlinked, but less-graphitic, skin 

structure in specimen 82500 is shown at lattice resolution in Plate LI. 

Crystallites of widths ranging up to maximum of about 18 nm can be seen 

to be oriented with their c-axes normal to the fibre surface, s. 

Several Moire patterns, m, are indicative of crystallite overlapping 

and interlinking, while irregularly-spaced dark extinction bands, b, 

mean that the crystal lattice is considerably distorted. 

3.2.5 Resume 

With the exception of a thin outer layer which is circum- 

ferentially oriented, there is no preferred orientation of c-axes in 

transverse sections of type I fibres ex-special Courtelle. Although 

structurally different zones, undoubtedly related to the oxidation 

zones observed in optical microscopy, have been identified, there is 

no evidence to suggest that these are characterized by either different 

crystallite size or orientation. It is tentatively proposed that the 

origin of the difference lies in the increased layer-plane width through 

crosslinking during low-temperature stabilization, enclosed sharp- 

edged voids being formed during subsequent crystallization of the 
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folded and bent plane packets. In the core it is proposed that the 

smaller values of layer-plane width enable crystallization into a 

less-interlinked, but extremely dense structure. 
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CHAPTER 4 

QUANTITATIVE ELECTRON MICROSCOPY, 
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4.1 INTRODUCTION 

Subjective examination of images obtained from longitudinal 

and transverse sections indicates that the thin outer skin of type I 

material represents less than 10% of the total fibre volume. The 

intrinsic mechanical properties of these fibres must therefore be 

directly related to the structure of the core which comprises the 

bulk of the material. The modulus is a function of preferred crystallite 

orientation, as described initially by Ruland57, and the ultimate 

tensile strength in the absence of internal and surface flaws of a 

gross nature, and the surface skin may be classified in these terms, 

is governed by the orientation, size and interlinking of the constituent 

crystallites. In order to perform a quantitative characterization 

of the core structure various direct and indirect methods of electron- 

microscopical and x-ray diffraction examination techniques were 

employed, and the relationships between these assessed. 

4.2 EXPERIMENTAL 

Longitudinal sections of specimen F2500 were examined in a 

Philips IIv1300 electron microscope fitted with a French 'PF' type pointed 

filament, used at low filament heating, a 0.3 mm gun bias cap, and condenser- 

lens apertures of C1- 100 pm and C2 - 200 pm. Micrographs of the same area 

of the core of a thin section were recorded in the following modes at 

100 kV utilizing a liquid nitrogen anticontamination trap: - 

(i) Multibeam bright-field image at Gaussian focus (Plate LII). 

(ii) Multibeam bright-field lattice-fringe. image at that defocus 

position which gives maxilmin fringe contrast as determined 

empirically by Johnson and Crawford121 (Plate LIII). 

(iii) (000) - (002) two-beam symmetric bright-field lattice-fringe image 

at the optimum focal position, see Appendix 1, other beams 

eliminated with a 39 pm objective aperture (Plate LIV). 

(iv) (002) - (004) two-beam symmetric dark-field lattice-fringe image 
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recorded at the same focal level as in (iii) above (Plate LV). 

(v) (002) axial dark-field image using a 28 um objective aperture. 
Astigmatism was corrected with an axial zero-order beam and the 

28 um objective aperture in place. The appropriate focal level was 

determined by obtaining the optimum (002) axial bright-field lattice- 

fringe image using the 39 um objective aperture; the 28 um aperture 

was then introduced in order to record the high-resolution dark- 

field image (Plate LVI). 

A low electron-optical magnification compatible with resolution 

of 0.34 nm and precise judgement of focus was used in order to form an 
42 

image of an area of 2x 10 nm considered to be representative of the 

core structure in this specimen. The electron-diffraction pattern of 

the same region was recorded using a 10 um diameter intermediate-lens 

aperture which selects an area of 12.5 x 104 nm2 at the specimen. Width 

measurement of single crystallites in each type of image was made over 

an area equivalent to 90 x 170 nm2 at a step interval of 1.7 nm to 

give 300 - 500 values. The arithmetic mean, Lc, and standard deviation, 

s, were calculated from the frequency distributions of crystallite size 

for each high-resolution image (Fig. 38), and are given in Table 6. 

These values of Lc obtained by direct measurement are quoted to t 0.2 nm 

at the 95% confidence level. 

For an array of N lattice points separated by a constant spacing 

d, the diffracted intensity, I, is given by: - 

sin Id a sin2(66where, using the usual notation, 

8d7rsine 
. For i such arrays the total diffracted intensity is given by: - 

Ia sin2(Ni6) 
............... 

(2) 
6i sine (6) 

In order to investigate the theoretical. diffraction profile as obtained 

from Egn. (2) the five separate distributions of Fig. 38 were aggregated 
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Fig. 38. Frequency distributions of crystallite size measured from 

images recorded using different instrumental conditions. 
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Table 6 Measurement of Crystallite Size, Le, by different techniques 

TECHNIQUE 
c nm s nm 

Direct measurement on high-resolution images 

(i) Multibeam bright-field image at Gaussian focus 4.5 2.3 

(ii) Multibeam bright-field image at maximum fringe- 
contrast focus 4.5 2.5 

(iii) 000 - 002 symmetric bright-field image 4.7 3.0 

(iv) 002 - 004 symmetric dark-field image 4.0 2.9 

(v) 002 axial dark-field image 3.5 2.8 

Electron Diffraction 

(90 - p) =± 2° 5.2 

(90 - p) _± 90° (from Fig. 40c) 4.3 

Mean defect-free distance (D ) 5.9 
c 

X-ray Diffraction 

(90-y, ) =±1° 5.1 

(90 - ip) _± 90° (rotated specimen) 3.8 

Powder photograph 5.9 

Computation 

Distortion-free stacking size 8.3 

Table 7 The effect on direct measurements of crystallite size of 
discounting all crystallites of width 1.7 nm or less 

TECHNIQUE Lc nm 

(i) Multibeam bright-field image at Gaussian focus 4.9 
(ii) Miltibeam bright-field image at maximatt fringe- 

contrast focus, 4.8 

(iii) 000 - 002 symmetric bright-field image 5.4 

(iv) 002 - 004 symmetric dark-field image 5.1 

(v) 002 axial dark-field image 4.7 
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and normalized to give one distribution. From the resolution analysis 

of the resultant peak, the half-height width was measured and the 

distortion-free stacking height derived from this is included in 

Table 6. 

The electron-diffraction pattern was analyzed in the 

conventional manner by means of an equatorial scan with a Joyce- 

Loebl double-beam recording microdensitometer at a ratio-arm 

magnification of SOx. After logarithmic correction for saturation 

of the photographic emulsion117, the width at half-height, o s, 

of each (OOR. ) reflection was measured, Lc calculated from the 

Scherrer equation applied to the (002) reflection, and the 'mean 

defect-free distance', Dc, obtained following the method of Thrower 

and Nagleli9. 

The x-ray diffraction pattern of this specimen, which has 

a preferred orientation of 20°, had been analyzed in this laboratory 

in another context122. To eliminate the orientation effect in the 

present study, x-ray photographs of both powdered and rotated 

specimens were recorded and analyzed. All x-ray diffraction results 

are included in Table 6. 

The widths at half-height, o s, of the (002) and (002) reflections 

were measured at angles of azimuthal orientation (90 - 4), fig. 39, 

between ±10 and ± 450, with the results shown in Fig. 40(a), where 

Lc/ is the calculated stacking size at any angle of azimuthal 

orientation, *. Additionally, the area, A, under the (002) and 

(002) profiles was measured as a function of q, Fig, 40(b). 



101 

Fibre axis 

uator 

Fig. 39. Schematic representation of the width (e s) of the (002) 

reflection at an angle of misorientation, p. 

4.3 RESULTS FOR SPECIMEN F2500 

From Table 6 it is evident that the stacking size values, 

Lc, obtained from high-resolution images recorded under precise control 

of instrumental conditions are significantly lower than those values 

obtained from conventional diffraction methods, which in turn are 
lower than the value computed from the normalized aggregated stacking- 

height distribution based on all images. The arithmetic mean of this 

distribution is 4.2 nm, approximately half the computed stacking size. 

It might be expected that the computed value of Lc would approximate 

more closely to the diffraction values than the electron-microscope 

values, since the former will be increased by the enhanced contribution 

of larger crystallites to the diffracted intensity. However, it is 
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Fig. 40. The dependence of (a) Lc 
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important to note that the computed value represents the diffraction 

from an idealized system with no defects. 

The more detailed analysis of the diffraction profiles 

confirms the observation63 that the width at half-height of the (002) 

reflection is a function of the misorientation from the fibre axis. 

Indeed, in a bright-field lattice-fringe image, a high proportion 

of small crystallites, (see, for example, at x in Plate V), can be 

seen to be misoriented by large angles. These crystallites will be 

excluded from results obtained from conventional diffraction techniques 

which only sample the (002) profile within a finite off-equatorial 

angle of about ± 20 for electron diffraction, and about ±1o for 

x-ray diffraction. In an attempt to obtain an electron-diffraction 

measurement more representative of the true microstructure of the 

specimen, the effect on apparent crystallite size, defined here as 

Lcarc, of including an increasing proportion of the arc associated 

with the (002) and (002) reflections has been calculated. If. the 

mean crystallite size at any angle (90 - p) is defined as Lai, and 

the normalized area under the (002) and (002) profiles at that angle 

is A, then Lcarc is given by: - 
E 

Lc'A 

L arc 4=90 
Lc 

EA 
t =90 

Hence when ý= poi Lcarc gives the most representative measure of 

stacking size. The effect of including an increasing proportion of the 

arc, as shown in Fig. 40(c), is to significantly reduce the apparent 

mean crystallite size from 5.2 nm at ý= 90o to approximately an 

asymptotic value of 4.3 nm at o= 00. This value is in much closer 

agreement with the stacking size of 3.8 nm evaluated from the pattern 

of the rotated specimen in x-ray diffraction, where orientation effects 
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were eliminated in a different manner. Powdering techniques when 

applied to these specimens tend to give granular (002) reflections, 

presumably because the fibre fragments are still large in comparison 

with the crystallite size. Consequently, a limited scan across such a 

pattern may involve, for example, an oriented fragment of skin material 

unrepresentative of the intrinsic structure. A representative size 

value will only be obtained in x-ray diffraction when there is a 

random dispersion of individual crystallites, and this is best achieved 

through specimen rotation. 

Results of this thorough diffraction analysis can now be 

compared with values of mean stacking size obtained from direct 

measurement of high-resolution images. There is no significant 

difference between the results for Lc obtained from the three different 

bright-field modes (4.5 - 4.7 nm), and since the number of fringes 

in the (000) - (002) symmetric bright-field lattice-fringe image is 

relatively insensitive to defocus (see Appendix 1), the appropriate 

focal levels for this type of measurement have presumably been chosen 

in recording the multibeam images. There will be no contribution to 

the image in the tilted modes from crystallites oriented at angles 

of i, less than 40o since the diffracted waves from the (002) planes 

will then lie outside the objective aperture (Fig. 41). In the ideal 

case a continuous change of imaging conditions might be expected for 

crystallites not aligned along the fibre axis. In practice, all 

crystallites appear to be imaged with similar lattice-fringe contrast, 

and it is thought that this may well be a result of finite beam 

divergence. 

The value for Lc determined from each bright-field image 

is higher than those predicted from either thorough electron-diffraction 

analysis (4.3 nm) or the x-ray diffraction analysis (3.8 nm). Whilst 

the trend of a reduction in crystallite size with increasing angle of 
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a, 

4004 
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(0 

Fig. 41. Dark-field conditions for (a) (002) axial with 28 pm objective 

aperture, and (b) (002) - (004) symmetric with 39 pm objective 

aperture. 

misorientation can be unequivocally established from these images, it 

is clear from the histograms that fewer small crystallites (1 -5 layer 

planes) are counted in bright-field compared with dark-field conditions. 

Indeed, the image in bright-field is typically of much lower contrast 

than in dark-field, with the consequence that small crystallites cannot 

always be detected. It is interesting to note the effect of ignoring the 

small crystallites measured in each image on the values obtained for L. 

Table 7 shows that Lc determined by each method now corresponds much better 

with the value from conventional x-ray and electron-diffraction analysis. 

In dark-field conditions, image contrast is so great that nearly 

all crystallites can be readily detected and measured. The appearance of 

crystallites in a high-resolution image is a function of that segment of 

arc of the diffracted beam or beams permitted to pass through the object- 

ive aperture. In the present case both the (002) - (004) symmetric, and the 

(002) axial, dark-field images are formed from ±500 of the (002) arc (Fig. 41). 



106 

However, the lower value for Lc, and the higher contrast obtained from 

the (002) axial image, are clearly due to differences in image formation; 

the symmetric image is the result of interference between the (002) and 

(004) beams, while the axial image contains information from the (002) 

beam only. Additionally, spherical aberration will have minimal effect 

in the (002) axial case. 

4.4 ELECTRON-DIFFRACTION ANALYSIS OF SPECIMENS HEAT TREATED AT 1OOO°C 

AND 1 srm°r. 

The success of the detailed analysis of the electron-diffrac- 

tion patterns from the 2500°C material prompted a similar investigation 

of other specimens heat treated at 1000°C and 1500°C. The results of 

conventional orientation and size measurements in various regions of 

specimens A1000, A1500, D1000, D1500, E1000, E1500, F1000 and F1500 are shown 

in Table 2 (Chapter 2). It is evident that there are no significant 

differences between the sets of samples heat treated at 1000°C and 

1500°C, nor are there any differences between skin and core regions 

in the longitudinal sections. The dependence of stacking size on 

azimuthal orientation in these specimens was analyzed by the methods 

described above, the values being averaged for the two sets of specimens 

at 1000°C and 1500°C. Coupled with the analysis of the core structure 

of specimen F2500 described in section 4.3 above, a graph of the 

percentage change (e Lcý ) in Lc at any angle 4' from the equatorial 

value of Lc was plotted against heat-treatment temperature at 5° 

intervals of iy from 85° to 55°, Fig. 42. For example, for the 2500°C 

specimen Lc has fallen by 10% at 4' = 85° in comparison with its value 

at 4' = 90° (on the equator), while for the 1500°C specimens the relative 

change is 5%, and for the 1000°C specimens only 3%. It is evident that 

for each value of ip the pLc4 values lie on a straight line. Extra- 

polation of this set of lines suggests that they have a common origin, 

where eLc4= 0%, in the 400°C to 600°C temperature range. If this 
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Fig. 42. The dependence of relative change in crystallite size with 

misorientation on heat-treatment temperature. 
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extrapolation is valid, then it can be assumed that heat treatment at 

this temperature results in a structure containing a uniform angular 

distribution of stacking size. 

Fortunately, reference can be made to earlier work in this 

laboratory and at RAE of a rigorous study of the pyrolysis process70, 

79,123. Crystallites with a mean stacking size of around 1.7 nm were 

measured in lattice-fringe images of a 600°C specimen, as compared to 

an Lc value of 1.3 nm from x-ray diffraction, although it is certain 

that the latter value is low due to the lack of a correction for 

distortion-broadening effects. No significant increase in Lc over the 

range 300°C to 800°C was detected by direct measurement, but there was 

an increase in La// together with an increased intensity in the (100) 

meridional scatter. Taken in conjunction with chemical analysis of 

the pyrolysis products, the results indicate an interlinking of the 

ladder polymer sequences along the direction of the vestigial 

crystallites from the preoxidized PAN. Obviously, the distribution of 

vestigial crystallites is normal about the fibre axis, and the length- 

wise interlinking of units will proceed most favourably for those 

crystallites aligned close to the fibre axis. Thus a skeletal structure 

is formed. At 1000°C, this brings about the angular distribution noted 

in Fig. 42, although the Lc value (1.7 nm from direct measurement) is 

hardly altered. Plate LVII shows the structure of specimen K1500 at 

lattice resolution, discontinuous layer planes being aligned pre- 

dominantly parallel to the direction, f, of the fibre axis, with little 

evidence of severe misorientation. At higher temperatures, particularly 

2500°C, crystallization processes favour those crystallites aligned 

closest to the fibre axis, which are enlarged by accretion of those layer 

planes in favourable configurations. 



longitudinal structure of specimen Q2500. 
Plate LVIII. lattice-resolution image of tile 
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4.5 STRUCTURAL ANALYSIS OF SPECIMEN Q2500 

The longitudinal structure of specimen Q2500, which did not 

receive an oxidative stabilization, but was heat treated to 2500°C, was 

analyzed using the methods described above. As can be seen from Fig. 43 

the dependence of L' on ý is much less marked in this fibre than in 

the conventionally-stabilized specimen (Fig. 40(a)). Figure 43 also 

indicates that the preferred orientation of this specimen (i. e. that 

orientation at which the area under the (002) reflection had fallen to 

50% of its value on the equator) is 36° as compared with 18° for 

specimen F2500 (Fig. 40(b)). Similarly, the relative change in Lcarc 

over the range from ý= 900 to ý= 60° is much smaller than that 

obtained from previous analysis (Fig. 40(c)). Although the mean axial 

crystallite size in a conventionally-treated fibre is as high as 

5.2 nm, when the dependence of Lc" on i is quantitatively assessed the 

value of Lcarc (for all misorientations from p= 900 to ý= 00) is 

only 4.3 nm. Similar analysis of the unoxidized fibre shows that the 

comparative values are 2.9 nm and 2.7 nm respectively. So although the 

mean crystallite size in a fibre which has not been oxidatively 

stabilized is smaller than that normally found in conventional fibres, 

the dependence of stacking size on misorientation is small relative to 

that usually observed. 

The poor preferred orientation present in specimen Q2500 is 

confirmed at lattice resolution in Plate LVIII, which shows crystallites, 

M, misoriented at large angles to the fibre axis direction, f. The 

lower value of mean stacking size is also evident from this image when 

compared with, for example, Plates VII and VIII. From a macrostructural 

viewpoint, it is significant that no skin-core heterogeneity was 

observed in these unoxidized specimens. 

4.6 RESUME 

Conventional diffraction analysis, for example, of an equatorial 
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section of an oriented fibre pattern, gives misleading measurement of 

crystallite stacking size, appropriate size evaluation only being 

obtained when the full range of crystallites, oriented at all angles 

to the fibre axis, is included. High-resolution electron images, 

particularly those of the dark-field type, afford not only a direct 

measurement of the true mean size, but also a unique characterization 

of the full range of size present (Fig. 38). The dependence of stacking 

size on misorientation is found to be most marked in fibres heat 

treated at 2500°C, decreasing linearly at lower heat-treatment 

temperatures until in the range 400 - 600°C there is a uniform angular 

distribution of size. Fibres which have not been oxidatively stabilized, 

but have been heat-treated to 2500°C exhibit a very poor preferred 

crystallite orientation (36°) in comparison with conventionally- 

treated fibres (18°), and the dependence of stacking size on ' 

was found to be considerably less significant than usually observed 

at this HTT. 
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5.1 MACROSTRUCTURE 

5.1.1 Introduction 

The images obtained from polarized-light microscopy have 

suggested that transverse c-axis orientation in carbon fibres is 

directly related to both type and time of preoxidation cycle, and 

chemical composition of the fibres concerned. 'Oxidation zones' 

observed in light-microscope images of 1 pm thick transverse sections 

of oxidized-only fibres are carried through subsequent inert heat 

treatment to 1000,1500 and 2500°C. The fully-stabilized sheath zone 

supposedly exhibits circumferential crystallite orientation, while 

the under-oxidized core is thought to be radially oriented. 

5.1.2 Fibres heat treated to 2500°C 

The preferred radial and circumferential crystallite 

orientations in core and sheath zones, predicted from polarized- 

light microscopy, should be seen in thin longitudinal sections, 

according to Figs. 26 and 27; these are not observed in practice. Care- 

ful examination of transverse sections, however, has indicated that 

structurally-different zones, compatible with the oxidation zones 

observed in polarized-light microscopy, do exist in under-stabilized 

fibres, but selected-area electron-diffraction analysis indicates 

that they possess no preferred transverse c-axis orientation. The 

different sectioning properties of the dissimilar sheath and core 

zones, and also the reason for the appearance of such zones in optical 

microscopy, is presumably related to crystallite packing density and 

perfection as discussed in 5.2 below. Examination of relevant 

longitudinal sections from dog-bone cross-section fibres confirms the 

light-microscope observation that there is no preferred c-axis 

orientation in cross section, with the exception of a thin outer skin 

which is circumferentially oriented. In view of these anomalies the 

use of polarized-light microscopy where specimen shape may be important 
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(for example, with circular cross-section fibres) could be misleading. 

The findings of Butler and Diefendorf83 regarding larger 

crystallite size and higher preferred axial orientation close to the 

fibre surface in comparison with the material which forms the core of 

the fibre have been confirmed in this study. PAN-based type I fibres, 

irrespective of origin and stabilization cycle (with the exception of 

one fibre which was inert, non-oxidatively stabilized) have been found 

to possess a thin skin of maximum thickness 0.5 um, exhibiting a large 

crystallite size and higher preferred crystallite orientation in 

comparison with the core component, which forms the bulk (> 90%) of 

the fibre. The skin zone, which is variable in both longitudinal 

extent and width, is characterized by a mean axial crystallite stacking 

size of about 10 nm and preferred orientation about 150, while the core, 

which is much more homogeneous, has a mean axial stacking size of 

about 4 nm and a preferred orientation of about 250. The most signifi- 

cant macrostructural conclusion from this study concernsthe"thickness 

of this skin zone. Polarized-light microscopy and plasma-etching 

techniques(see Chapter 1) suggest that a circumferential crystallite 

orientation exists in an outer sheath of at least 1 pm thickness 

compatible with the 'oxidation zone' observed by Watt and Johnsons4. 

The direct transmission electron-microscope techniques used in the 

present study have indicated, however, that the skin zone is very thin 

in comparison with fibre diameter, being typically 50 - 150 nm in 

thickness. 

The interpretation of surface features as revealed by 

scanning-electron microscopy in terms of macrofibrils carried through 

pyrolysis and heat treatment from the precursor PAN must now be 

considered erroneous. Examination of thin longitudinal and transverse 

sections, and 'first-cut' sections has shown unequivocally that the 
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c-axes of the more highly graphitized skin crystallites are oriented 

predominantly normal to the fibre surface. Rippling of the fibre 

surface, with an average periodicity of about 250 nm is proposed, 

and this is sufficient to explain striations of (002) diffracted 

intensity in dark-field images of first-cut sections, and anomalous 

skin effects in conventional longitudinal sections. Since scanning- 

electron microscopy reveals no structural differences (with the 

exception of crystallization flaws in type I fibres) between the 

surfaces of fibres heat treated at 1000,1500 or 2500°C, it is proposed 

that the origin of the surface rippling lies in precursor spinning. 

The high orientation and crystallization, coupled with the preferred 

c-axis orientation of skin crystallites at the very surface of type I 

material means that these fibres possess large surface areas of 

entirely basal-plane nature. This is obviously undesirable in terms 

of matrix bonding in a composite structure, which is presumably through 

edge sites. 

A dense core structure, essentially homogeneous at a macro- 

level, is proposed, the model comprising crystalline webs enclosing 

random pockets of less-crystalline material99,100 not being supported 

by the present study. 

High-voltage electron microscopy49'95 has shown that large 

crystallite misorientations occur in the vicinity of internal voids 

in type I fibres, and this has been confirmed. Volatilization of 

impurity particles, presumably originating in the precursor PAN, at 

high heat-treatment temperatures causes catalytic graphitization 

parallel to the c-axes of the turbostratically-stacked crystallites 

bordering the void. This crystallization process does not appear to 

proceed parallel to the fibre axis (normal to the c-axis), and thus 

the formation of spherical voids is precluded, diconical shapes being 

prevalent. 
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5.1.3 Fibres heat treated to 1000°C and 1500°C 

In type I fibres, heat treated to 2500°C, a thin skin 

incompatible with the oxidation zones observed in transverse sections 

has been characterized in terms of relatively large crystallite size 

and high axial preferred orientation. Such a skin region is not 

observed in fibres heat treated at 1000°C or 1500°C. At low magnifi- 

cation it is clear that a homogeneous core structure extends fully 

to the edge of longitudinal sections, and it is only at lattice 

resolution that a very thin skin region exhibiting slightly larger 

crystallite size and better orientation becomes apparent. This region 

actually forms the fibre surface. It is proposed that the surface of 

the fibre, being a discontinuity of structure, forms a restraint on 

the possible orientations taken up by those crystallites within one 

crystallite width of it. At 1000°C, crystallites at the fibre surface 

of width up to about 5 nm showing high axial orientation, yet 

relatively unconnected lengthwise, are proposed. At 1500°C such 

crystallites have started to link and interconnect lengthwise and grow 

in width, whilst maintaining orientation, so that the basic skin 

structure is established. Subsequent heat treatment at 2SO0°C or above 

is thought to cause the growth inwards of this skin structure; highly- 

graphitic, yet misoriented crystallites being formed in the skin 

structure from regions of surface variability of relatively minor 

importance at lower heat-treatment temperatures. A schematic 

representation of the origin and growth of the skin structure through- 

out the temperature range 1000 - 2500°C is shown in Fig. 44. Since the 

formation of such a skin structure is purely a heat-treatment artefact, 

unconnected with type of stabilization cycle, the interlaminar shear 

strength of composite structures fabricated from unmodified fibres 

(i. e. not surface treated) should be a unique function of final 

heat-treatment temperature, the relationship being inverse. 
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Fig. 44. Schematic representation of the development of skin structure 
from (a) 1000°C, to (b) 1500°C and (c) 2500°C. (f denotes 
direction of fibre axis). 
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Sections obtained from early attempts to section low- 

temperature fibres72 predicting the presence of 80 - 100 nm fibrils 

in 1000°C material, thought to originate in the precursor, have now 

been shown to be misleading, since the orientation of such 'fibrils' 

can be changed by altering the direction of cutting. For example, 

axially-aligned structures can be formed by cutting longitudinal 

sections normal to the direction of the fibre axis, while cutting along 

the axis produces macrostructures oriented normal to the fibre axis. 

These findings have recently been independently confirmed124. 

5.2 MICROSTRUCTURE 

5.2.1 Introduction 

The direct observation of representative lattice-fringe 

images of the turbostratically-stacked layer planes is necessary in 

order to obtain a meaningful characterization of the intrinsic micro- 

structure. However, images of this type are essentially a two- 

dimensional representation of a complex three-dimensional object, and 

to overcome this problem examination of both longitudinal and trans- 

verse sections is essential. The traditional microstructural models 

(see Chapter 1) are based on images obtained from either sections or 

fragments exhibiting longitudinal structure only, and in the light of 

the present study, the acceptance of such models must be critically 

questioned when they are used for the calculation of mechanical properties. 

5.2.2 Fibres heat treated to 2500oC 

The complex interlinking of layer planes and crystallites in trans- 

verse sections of type I fibres indicates that the widely-accepted 

'wrinkled-ribbon' structural mode163 (Fig. 15) is grossly simplistic. 

However, the conclusions regarding the röle of small crystallites 

misoriented off the fibre axis as interlinking agents between the larger 

axially-aligned crystallites63 (Fig. 16) can be accepted, since a 
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continuous change in mean apparent stacking size with orientation was 

found for a typical core structure. 

The three-dimensional structural model developed by Crawford 

and Johnson (Fig. 17) showing a complex three-dimensional structure 

characterized by bending and twisting of layer-plane packets is thought 

to more closely resemble the actual structure. The limitation of this 

model, however, is that the crystallites in cross section bend too 

sharply, a smoothly-curved 'thumb-print' type structure as proposed 

initially by Phillips et al. 78, and later adapted by Wicks98 (Fig. 19) 

being more realistic. 

The basket-weave model (Fig. 18) of Diefendorf and 

Tokarsky53 is a typical product of an over-simplified approach to 

structural analysis from inappropriate low-resolution images, while 

the rippled-sheet model for fibre surfaces is explained by orientation 

effects of skin crystallites. 

Stewart and Feughelman82 have suggested that regular Moire 

patterns are due to crystallite overlapping, while irregular dark 

extinction bands arise from interference effects whLie basal planes 

cross over within a single crystallite. In the present study, such 

bands are often observed in large skin crystallites, and these are 

clearly attributable to lattice-distortion effects, while core 

crystallites, as seen in transverse section, evidently turn and fold 

on themselves within a length (5 nm) considerably less than the thick- 

ness of a typical thin longitudinal. section (30 nm). In this case dark 

bands might be expected. The fundamental difference between skin 

crystallites, which often extend fully through the section, and core 

crystallites :. hich rarely do, is reflected in the very different values 

obtained from Lal, while Lai, is basically the same for both structures 

(see 2.3.1. A. d). 

Structurally-different sheath and core zones of dimensions 
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compatible with the oxidation zones observed in optical microscopy 

are only observed in transverse sections. This indicates that the 

origin of the structural difference does not lie in an orientation 

effect, and this is confirmed by the continuous ring nature of the 

(002) reflection of both zones in transverse section. Additionally, 

computation of the apparent stacking size for each zone shows no 

difference, and it is only at lattice resolution that the differences 

are discernible. In the core the crystallite packing density is 

greater than in the sheath since the layer-plane width (length as 

seen in transverse section) is not as great. In the sheath zone the 

layer planes are wider, with the result that they are able to fold 

back on themselves enclosing micro-voids. These differences are not 

observed in longitudinal sections since the unambiguous interpretation 

of regions showing no (002) interference fringes in terms of voids 

is not possible due to layer-plane orientations, which may be out 

of the diffraction condition. Undoubtedly the origin of the difference 

lies in preoxidation; it would appear that during this critical 

stage, the sheath, which is 'fully'-oxidized, contains ladder polymer 

which is more heavily crosslinked than the 'under'-oxidized core, 

and consequently layer plane width on crystallization is greater in 

the former case than in the latter. As such the role of oxidation 

in stabilization would seem to be one of crosslinking. A schematic 

representation of the structure of PAN-based type I carbon fibres 

is depicted in Fig. 4S. Note that the longitudinal structure of 

both sheath and core zones is identical. This is due to the void-like 

appearance of crystallites out of the diffraction condition, which 

are indistinguishable from true enclosed voids. 
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are not to scale) 
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5.2.3 Fibres heat treated at 1000°C, 1500°C and 25000C - the true 

origin of structure in PAN-based carbon fibres 

The longitudinal structure of type I carbon fibres is 

characterized by relatively large crystallites oriented preferentially 

along the fibre axis, interlinked by smaller crystallites misoriented 

by angles up to 90° with respect to the axis. From Fig. 46, which 

shows the dependence of A on ý for various carbon fibres, it can be 

calculated that about 60% of the crystallites are oriented within 

100 of the fibre axis, and these have a mean stacking size between 

4.2 nm and 5.3 nm (Fig. 47, the dependence of Lc/ on ip). The remaining 

40% of crystallites, oriented at angles greater than 10° to the fibre 

axis have mean sizes between 4.3 nm and 1.5 nm (Fig. 47). At lower 

heat-treatment temperatures the relative mean size of those crystallites 

misoriented at large angles with respect to those oriented axially 

changes significantly. For example, at 1500°C, the mean size of the 

60% of crystallites which are oriented within about 15° of the fibre 

axis is between 1.3 and 1.5 nm, while the total range of mean size 

is only 1.2 - 1.5 nm. Similarly, at 1000°C, a narrow mean stacking 

size range between 0.8 and 1.0 nm exists. Figure 42 shows the develop- 

ment of the dependence of crystallite stacking size on orientation 

with increasing heat-treatment temperature, and it is evident that 

at 500 ± 100°C the structure consists of crystallites having a uniform 

mean size oriented at all angles within the azimuthal spread of the 

(002) reflection. In the early stages of pyrolysis, it seems that 

extensive fragmentation occurs, with only two or three graphite-like 

layers stacking together on average. Heat treatment to 1000°C then 

produces a relatively insignificant change in Lc, but a lengthwise 

interlinking of layer planes, added stability being gained by cross- 

linking with the evolution of HCN and N2. Once the small highly- 

distorted crystallites are linked together along the direction of the 
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fibre axis a skeletal structure is formed, and it is on this that 

subsequent heat-treatment crystallization occurs. By 2500°C, axially- 

aligned crystallites have grown in width to a mean size of more than 

5 nm, while those crystallites oriented at 40° to the fibre axis have 

a mean size of only 1.5 nm. Evidently the role of these smaller 

crystallites is one of interlinking. A schematic representation of the 

origin and growth of structure in PAN-based carbon fibres is depicted 

in Fig. 48, enclosed voids, v, being shown for the 2500°C specimen. 

The formation of these is through lengthwise and widthwise growth of 

layer planes, and crystallization processes. The values given for 

Lceq are the mean stacking sizes at ý= 900. 

In view of the very disordered structure present during the 

early stages of pyrolysis, chemical formulae proposed for long 

sequences of oxidized and/or inert-stabilized PAN22 would appear to 

be too idealized. A scheme which involves fragmentation, where the 

röle of oxygen is as an interlinking agent is favoured by the present 

study. Since the changes in microstructure between sheath and core 

zones in 'under'-oxidized fibres would appear to be too insignificant 

to affect the mechanical properties of carbon fibres, the need to 

completely stabilize the precursor seems to have been overemphasized 

in the past. In view of these anomalies, a more critical analysis of 

the mechanism and effect of oxidation on crystallite orientation and 

microstructure is now needed. 

5.2.4 Unoxidized fibres heat treated to 25000C 

It is evident from lattice-resolution images and diffraction 

analysis of non-oxidized fibres heat treated to 2500°C that the skeletal 

structure developed during pyrolysis is not formed to the same extent 

during inert stabilization. A cyclized condensed naphthyridine ring 

structure for vacuum-stabilized PAN (Fig. 6) is clearly not as thermally 

stable as the oxidized ladder polymer formed during the conventional 
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process. Reference to Fig. 46 shows that the preferred orientation of 

unoxidized fibres heat treated to 2500°C is close to that found in 

conventionally-produced fibres heat treated to only 1000°C and 1500°C, 

while from Fig. 47 the differences in stacking size can be directly 

assessed. At '= 90° (on the fibre axis) the mean crystallite stacking 

size for unoxidized fibres heat treated to 2500°C is 2.9 nm, while 

it is 5.4 nm for conventional type I fibres. Yet at t, = 65° 

(corresponding to a misorientation of 250) the corresponding values 

are 2.6 nm and 2.0 nm. Evidently, since a well-developed axially- 

aligned skeletal structure is not formed during inert stabilization 

and pyrolysis the preferential growth in width of axial crystallites 

is not substantial in comparison with misoriented crystallites. 

Additionally, the non-appearance of the skin structure characteristic 

of type I fibres in unoxidized fibres heat -treated to 2500°C must be 

related to this relatively non-selective crystallization process. 

If this is the case, the formation of an oxidatively-stabilized 

skeletal structure, although unrelated to the oxidation zones observed 

in polarized-light microscopy, is a prerequisite to the crystallization 

of a skin structure at high heat-treatment temperatures. 

5.3 THE TENSILE STRENGTH OF PAN-BASED CARBON FIBRES 

5.3.1 Intrinsic strength 

A. Introduction 

Reynolds and Sharp113 have shown that failure of single 

graphitic crystallites might be expected when they experience a strain 

of greater than 20%. In order for such strains to be realized in fibres 

which typically fail at 1- 2% the crystallites must be misoriented 

from the fibre axis by an angle 4 such that: - 

es = cE sin 4 cosh ............... (3) 
c44 
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where es is the crystallite shear strain-to-failure, e is the fibre 

strain-to-failure, E is the Young's modulus of the fibre, and c44 is 

the the crystallite shear modulus (4.0 GNm in the absence of basal 

dislocations). Taking Es as 20%, a plot of c against ý for type I 

(E=350 GNm 
2), 

type II (E=250 GNm 
2), 

and type A fibres (E=200 GNm 
2) 

can be made, and is shown in Fig. 49. 

B. Fibres heat treated to 2500°C 

a. Conventional type I fibres 

Since it has been shown that the larger crystallites present 

in the core structure are aligned preferentially along the fibre axis, 

while smaller interlinking crystallites are misoriented at large angles 

with respect to the fibre axis, failure of a single crystallite in the 

latter category, which is the most likely occurrence, would not be 

expected to lead to intrinsic failure of the fibre. Figure 38 indicates 

that a range of crystallite size up to a maximum of about 18 nm exists 

in the core structure of type I carbon fibres, while qualitative 

examination of lattice-fringe images suggests that these large 

crystallites are oriented within about 5° of the fibre axis. From 

Fig. 49 it can be shown that if fibre failure is only initiated 

by failure of one or more of these crystallites, then fibre strains- 

_2 to-failure of 2- 3% and strengths of 7- 10 GNm might be expected. 

Using the Griffith relationship: - 

a. 2E 

,ra2 

with a =4.2 Jm _2 a critical flaw size, c, of 9- 19 nm can be calculated 

for such fibres. From high-resolution dark-field images (Fig. 38)it 

is estimated that about 7% of the crystallites present have stacking 

sizes in this range. Misorientation of such crystallites by 5° would 

thus theoretically lead to fibre failure without needing the condition 
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of structural continuity. Since the core structure of these fibres 

does not contain crystallites larger than about 18 nm in width this 

may be taken as the maximum possible critical flaw size for fibre 

failure initiated from the failure of a single crystallite, and it 

_2 
can be shown that a fibre strength of about 7 GNm would be expected. 

Where failure involves crack propagation through a 

structural continuity, however, lower intrinsic strengths would he 

exhibited by the fibres. For example, if a crystallite misoriented 

at z 100 to the fibre axis fails, then a fibre strain-to-failure of 

s 1.3% would be expected. This means an ultimate tensile strength 

_z of <_ 4.5 GNm , and a critical flaw size of z 46 nm, the latter value 

being considerably greater than the maximum observed crystallite size 

in the core. The average size of crystallites oriented at angles 

greater than 100 to the fibre axis ranges from 4.2 nm to 1.5 nm, and 

fibre failure will only occur if, once formed, a crack will propagate 

either through these small misoriented crystallites, or through the 

larger more axially-aligned crystallites. 

To summarize, it would seem that if failure of a single 

crystallite, of size greater than the critical flaw size as calculated 

from the Griffith equation, only leads to fibre failure, then ultimate 

_2 tensile strengths of greater than 7 GNm and strains-to-failure of at 

least 2% could be realized. If, however, fibre failure involves the 

propagation of a crack, initiated in a small relatively highly-mis- 

oriented crystallite, through a structural continuity, then strengths 

around 5 GNm-2 and strains, -to- failure of about 1.3% would be expected. 

These values are lower than those predicted by Diefendorf and Tokarsky53 

(see 1.3.1. C) . 

b. Non-oxidatively-stabilized fibres heat treated to 2500°C 

Figure 46 shows that the preferred orientation for PAN 

fibres stabilized in nitrogen and heat treated to 2SO0°C (specimen 



131 

Q2500) is about 36°, as compared with 18° for a typical core structure 

from type I material conventionally processed. Since the modulus is 

about 200 GNm _2 (Table 8) a crystallite misoriented by 200 could be 

expected to cause fibre failure at a strain of 1.2%, yet from Table 8 

it can be seen that the observed strain-to-failure of 0.35% is 

significantly less than this value. Indeed, from Fig. 49 it is evident 

that the theoretical minimum strain-to-failure of a fibre of modulus 

200 GNm_ 
2 

is about 0.7%. Clearly, it is possible that the structure 

of conventionally-stabilized carbon fibres heat treated to 2500°C is 

such that the relief of shear stress in misoriented crystallites is, 

as suggested by Reynolds and Sharp 113, through basal-plane rupture, 

rather than shear failure between basal planes, while in these special 

non-oxidatively-stabilized type I fibres a different fracture 

mechanism is occurring. This could be due to the significant proportion 

of graphitic crystallites misoriented at large angles to the fibre 

axis, which are still of a mean size only slightly less than the 

axially-aligned crystallites. An additional possibility is that 

Equation (3) does not hold in this special case. A value of c44 of 

4.0 GNm_ 
2 

(the dislocation-free value) has been used in the calculation 

of the theoretical c vs. q curves of Fig. 49, yet it is certain that 

the basal planes in specimen Q2500 are far from perfect, and, coupled 

with the turbostratic nature of layer-plane stacking, much lower 

values of c44 might be expected. Seldin and Nezbeda125, for example, 

have measured the shear modulus, c44, for compression-annealed 

pyrolytic graphite (CAPG) and single-crystal graphite (SCG) both 

before and after neutron irradiation. They found values in the ranges 
0.18 - 0.35 GNm 2 for unirradiated CAPG, and 0.4 - 1.7 GNm-2 for 

unirradiated SCG. After neutron irradiation at 50°C, however, the ranges 
_2 

were found to increase to 2.2 - 4.0 GNm , and 1.6 - 3.9 GNm 

respectively. It is therefore reasonable to suggest that the 
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Table 8 Properties of Carbon Fibres made from Special Courtelle 

CARBON FIBRES FROM 3 DENIER COURTELLE 

MAT- OXIDATION TIME (h) 5 10 20 40 
TRI: ANENT 
TIMPERAT[JRE PROPERTY 
oC 

1000 um) Diameter 11.5 10.8 10.4 9.8 
-g UTS (GNm ) 1.30 2.08 2.38 2.42 

E (GNm'2) 179 202 216 254 

eM 0.73 1.03 1.10 0.95 
(A1000) (D1000) 

1500 Diameter (pm) 10.6 10.8 9.9 9.6 
UTS (GNm 2) 1.36 1.62 1.76 1.60 
E (GNm 

2) 232 240 279 267 

E (ý) 0.59 0.67 0.63 0.60 
(A1500) (D1500) 

2500 Diameter (um) 9.7 10.1 9.4 8.9 

UTS (GNm-2) 1.70 1.83 1.89 1.62 
E (GNm-2) 344 388 398 352 

e (ý) 0.49 0.47 0.47 0.46 
(A2500) (B2500) (C2500) (D2500) 

2500 UTS (GNm 
2) 0.73) 

E (GNm 2) unoxidized- 210 ) 
stabilized for 

e ($) 0.35) 16h in N2 
(Q2500) 

Note: UTS = Ultimate Tensile Strength 
E= Young's Modulus 
c= Fibre strain-to-failure 

Identification numbers for specimens examined in the electron microscope 
are shown in brackets. 
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'Table 8 (continued) Properties of Carbon Fibres made from Special 
Courtelle 

CARBON FIBRES FROM 12 DENIER SPECIAL COURTELLE 

HAT- OXIDATION TIME (h) 1 3 9 
TREATMENT 
TEMPERATURE PROPERTY 
oC 

1000 Diameter (pm) 9.2 8.5 7.9 
_2 UTS (GNm ) 2.33 2.63 2.76 

_2 E (GNm ) 187 212 232 

M 1.25 1.24 1.19 
(E1000) (F1000) 

1500 Diameter (pm) 8.0 8.7 8.2 
_2 UTS (GNm ) 3.15 2.79 1.97 

2 
) E (GNm 248 252 268 

F- M 1.27 1.11 0.74 
(E1500) . (F1500) 

2500 Diameter (pm) 8.2 8.3 7.9 
2 

) UTS (GNm 2.25 2.09 2.35 

E (GNm 2) 345 391 386 

E (ý) 0.65 0.53 0.61 
(E2500) (F2500) 

Note: UTS = Ultimate Tensile Strength 
E= Young's Modulus 
6= Fibre strain-to-failure 

Identification numbers for specimens examined in the electron microscope 
are shown in brackets. 
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theoretical curves predicted in Fig. 49 may not hold for highly- 

imperfect specimens. 

C. Fibres heat treated to 1000°C and 1500°C 

The direct electron-microscopical techniques used in this 

study have indicated that, with the exception of a very thin outer 

skin of insignificant proportions at a macroscopic level, the structure 

of type A and type II fibres is homogeneous. It is evident that a 

significant proportion of relatively large crystallites are oriented 

at large angles to the axis of these fibres (see Figs. 46 and 47), 

and this means that intrinsic initiation of cracks might be expected 

in crystallites misoriented by angles of, say, 100. If the crack 

propagates through the structure and failure occurs, ultimate tensile 

_2 strengths of about 4-5 Mir, would be expected. Thorne54, however, 

using loop-testing techniques has reported a much higher intrinsic 

strain-to-failure of 5%, and an ultimate tensile strength in excess 

-2 of 10 GNm , so it would appear that crack propagation at lower strains 

does not occur in fibres having no gross flaws. Consequently, the 

most likely reason for failure at low strains (less than 2%) is the 

presence of surface irregularities and flaws. Although enhanced 

crystallization around these regions certainly will not have occurred 

at low heat-treatment temperatures, flaw sizes in the range 100 - 200 nm 

would be expected to lead to fibre failure at, according to the 

Griffith equation, only 0.8 - 1.0%, in fibres heat treated in the 

range 1000 - 1500°C. 

Recently Johnson at RAE126 has carbon coated type A and 

type II fibres from a hydrocarbon gas, and predicted intrinsic strains- 

to-failure of more than 2%. A commercially-available type A fibre, 

which had received no surface treatment had a mean strain-to-failure 

of 1.42% (maximum 1.67%), yet showed an increase to 1.70% (maximum 
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2.03%) after carbon coating. Since such coating techniques have no 

effect on crystallite orientation, such an improvement is presumably 

obtained through simple healing of surface flaws, and it is possible 

that the Reynolds-Sharp theory breaks down for these lower-temperature, 

highly-disordered fibres. 

5.3.2 Observed Fibre strengths 

A. Fibres heat treated to 2500°C 

From Table 8 it is apparent that conventionally-produced 

type I fibres containing internal defects have mean strains-to-failure 

in the range 0.46 - 0.65%. Reference to Fig. 49 indicates that failures 

at such strains are initiated by failure of crystallites misoriented 

at angles of greater than 200 to the fibre axis. Using the Griffith 

failure criterion, a critical flaw size in the range 0.15 - 0.35 um 

would be expected for such fibres. 

a. Surface flaws 

Plate XI shows a large surface flaw in specimen B2500, 

where at sa skin crystallite of width 60 nm is oriented at 45° to 

the fibre axis. Athough the break at x is almost certainly due to the 

disruptive effect of sectioning, it is likely that in its undisturbed 

state such a crystallite may have been oriented at "= 20°, resulting 

in a theoretical fibre strain-to-failure of about 0.7%. For fibre 

failure to occur, a critical flaw size of 150 nm would be needed, and 

although the observed crystallite size is less than this, once 

initiated a crack would be expected to propagate through the adjacent 

core structure. 

The surface flaw depicted at lattice resolution in Plate XII 

and at lower magnification in Plate XIII is represented by a 40 nm 

step on the fibre surface comprising crystallites misoriented at 450 

to the fibre axis. Such crystallite misorientation would be expected 
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to lead to fibre failure at a strain of less than 0.5%, and although 

the 'inverted hairpin' flaw is smaller than the critical flaw size of 

350 nm structural continuity is maintained through x and y (Plate XII), 

while the misoriented region extends to a depth of 25 nm into the 

section at z (Plate XIII). 

Plates XIV and XV show a bulge in the skin structure of 

specimen D2500, resulting in a surface crystallite of width 17 nm 

being oriented at 4= 15°. A theoretical strain-to-failure for this 

system of about 0.9% can be predicted from Fig. 49, with a corres- 

ponding critical flaw size of 95 nm. If structural continuity, not 

evident from the image obtained from this particular section is 

maintained at a different point in the fibre skin-core interface, a 

crack initiated in such a crystallite could be expected to propagate 

through smaller, equally-misoriented adjacent core crystallites. 

A type of bulging skin structure, comprising a knee-shaped 

crystallite, is depicted at lattice resolution in Plate XVI. Twisting 

through an angle of 40° along a-a, this region can be thought of as 

two crystallites each misoriented at 200 to the fibre axis. In this 

case a theoretical strain-to-failure of 0.7% and critical flaw size 

of about 150 nm would be expected. 

A similar knee-shaped crystallite is shown in Plate XVII, 

where misorientation of a crystallite of width 17 nm at = 200 is 

evident. Again the calculated fibre strain-to-failure of about 0.7% 

is slightly higher than typically observed in these specimens (Table 8), 

while a critical flaw size of 150 nm would mean that structural 

continuity between skin and core is necessary in order for fibre 

failure to occur. 

b. Internal flaws 

A striking internal flaw in specimen J2500 is shown in 

Plates XXIII and XXIV. A hole, h, is bordered by large, highly- 
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graphitic crystallites misoriented by angles up to at least 400. 

Failure of such crystallites would theoretically occur at a fibre 

strain of less than 0.5%, with a corresponding critical flaw size 

of more than 300 nm. This latter figure is less than the size of the 

void (0.5 pm x 0.5 pm), so fibre failure would be expected from this 

flaw alone, without need for the usually necessary conditions of 

structural continuity. 

Similar internal voids can be seen at a, b, and h in 

Plate XXI. Since this is a (002) dark-field image, recorded using a 

small objective aperture, crystallites misoriented at > 200 will 

be absent from the image since they are diffracting outside the 

aperture. It is clear that the hole h is bordered by crystallites 

which are larger than normally found in the core, and it is reasonable 

to assume that some of them are highly misoriented. The size of the 

hole, which has a length of 0.45 um, would be expected, from the 

Griffith failure criterion, to initiate failure at a fibre strain 

of 0.41%. Similarly, holes a and b, being smaller, would be expected 

to lead to fibre failure in the strain range 0.55 - 0.62°%. 

c. Resume 

In type I fibres the observed ultimate tensile strengths 

and strains-to-failure can be explained in terms of the presence of 

internal voids. Severe misorientation of catalytically-graphitized 

crystallites bordering such holes are predicted to lead to fibre failure 

at strains of 0.5 - 0.6%, remarkably close to the observed values 
t. 

(0.46 - 0.65%). In many cases structural con. nuity with the surrounding 

core material in order for fibre failure to occur is unnecessary, since 

the critical flaw size, as calculated from the Griffith equation, is 

less than the size of the void. 

In the absence of internal voids of such a gross type, failure 
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is initiated at surface flaws, and strains-to-failure in the range 

0.5 - 1.0% are predicted. Invariably the crystallite which fails 

initially is smaller than the critical flaw size, and for fibre 

failure to occur, propagation of a crack through adjacent skin or 

core material would be necessary. The predictions of critical flaw 

size for such failure are in the range 80 - 300 nm, remarkably similar 

to the typical dimensions of the skin region. In this case, since 

there is a finite probability of finding a large misoriented crystallite 

in the skin structure of fibres heat treated to 2500°C, this region 

must be considered as a flaw. 

Moreton and Watt50,51,52 have shown that internal voids, 

and the more gross surface flaws can be removed by dope filtration 

and clean room spinning. This produces a concomitant increase in 

strength and thus strain-to-failure in comparison with conventionally- 

produced fibres. The present study supports this view, since fibre 

failure at internal voids is proposed in the range 0.5 - 0.6%, while 

at surface flaws between 0.5 and 1.0%. These values are significantly 

lower than the predicted intrinsic strain-to-failure of 2.0% (see 

5.3.1. B. a) which will only be realized in the absence of both internal 

voids, and the characteristic skin structure of type I fibres. 

B. Fibres heat treated to 1000° and 1500°C 

Table 8 shows that the observed mechanical properties of 

type A and type II fibres are disappointingly low in comparison with 

the estimates of intrinsic strength made by Johnson126 and Thornes`'. 

Since these fibres have been shown to be macrostructurally homogeneous 

in the present study, these differences must lie in the presence of 

internal voids and surface irregularities, not associated with 

enhanced crystallization effects. Using the Griffith relationship, 

typical observed strains-to-failure in type A and type II fibres 
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will be obtained if the critical flaw size is in the range 100 - 150 nm. 

This is of the order of the width of surface irregularities observed 

in SIN pictures of whole fibres, and it is proposed that these may 

initiate failure. Where gross surface and internal flaws can be removed, 

however, failure of single crystallites, and subsequent crack propa- 

gation through the continuous, but highly-disordered structure of 

these materials, may form the fracture mechanism at strains of greater 

than 2%. 

5.4 FUTURE WORK 

Since the use of carbon fibres is entirely in composite 

structures it is important to successfully understand the nature of 

fibre-resin bonding. In order to perform such a characterization 

direct observation of the fibre surface at layer-plane level is 

necessary, and this can only be achieved through high-resolution 

electron microscopy. 

It is known that commercial surface treatments are. capable 

of significantly increasing the interlaminar shear strength (ILSS) 

of a composite fabricated using type I fibres, while for fibres heat 

treated at a lower temperature (1000 - 1500°C) the improvement is 

much less substantial. This effect can be adequately explained by 

reference to the observations made in this thesis. The surface of 

type I fibres is of a mainly basal-plane nature, with few edge sites, 

while type A and type II fibres surfaces are characterized by the 

presence of a considerable number of terminating graphite sheets, 

and hence many carbon atoms having an unsatisfied valence suited to 

matrix bonding. A useful extension of this work would involve the 

examination of surface-treated type I fibres, in order to explain the 

increases in ILSS. 

Similarly, carbon coating of type A fibres has recently 

been shown to produce a 20% increase in fibre strength, and this 



140 

remains unexplained in terms of a model which uses failure of mis- 

oriented crystallites as a fracture-initiation mechanism. Although 

not necessarily associated with large crystallite misorientations, 

the gross surface flaws present in these low-temperature fibres, which 

apparently initiate fibre failure, are 'healed' by carbon coating. 

It would be very interesting to examine the microstructure of such 

a carbon coat, and the nature of its bonding to the fibre surface. 

The presence of internal and surface flaws, theoretically 

leading to failure of type I fibres at strains close to those 

observed practically, has been verified in the present study. Practical 

assessment of the nature of such flaws would now seem to be possible. 

If a fracture-causing flaw in a type I fibre of known mechanical 

properties can be located, and serial thin sections obtained from it, 

a three-dimensional characterization of crystallite size and 

orientation in the vicinity of the flaw can be made. In this case, the 

applicability of theoretical fibre-failure models to a real system can 

be directly assessed. 
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Al. ELECTRON MICROSCOPY 

A1.1 Introduction 

Since Heidenreich et al. 75 published the first phase-contrast 

lattice-fringe images of graphitized carbons in 1968, high-resolution 

transmission electron microscopy has found increasing use in the 

analysis of the microcrystalline structure of carbons. However, accurate 

and meaningful interpretation of the recorded two-dimensional image, 

which contains no phase information, in terms of a three-dimensional 

structural model is only possible if the fundamental information- 

transfer processes of the microscope are understood. 

A plane wave of electrons incident on a specimen is 

modulated such that it can be regarded as split into real and 

imaginary parts which can be treated separately. For a perfect lens 

system, free of aberrations, the real part of the modulation due to 

a weak object is transferred into the image intensity, whereas the 

imaginary part is cancelled by the conjugate complex terms which 

appear. For weak objects the real part of the object modulation is 

identical to the amplitude component of the object, while the imaginary 

part is identical to the phase component; the two components being 

transferred independently. If, however, lens aberrations are present 

simultaneous transfer of both components occurs. Individual micrographs 

become ambiguous since there is no means of deciding which part of the 

image intensity is related to the amplitude compoment, and which part 

to the phase component of the object. 

For example, in an idealized situation, a phase shift of 

¶/2 due to aberration removes the amplitude component of the object 

from the image, while the phase part is transferred with maximum 

contrast. Since the wave aberration is, however, a function of spatial 

frequency it is impossible to obtain maximum phase or amplitude contrast 
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simultaneously for all frequencies. Typically, only a small band of 

the spatial frequency spectrum is recorded with positive contrast in 

the electron micrograph, other parts having either negative or no 

contrast. In order to successfully interpret images it is important 

to understand the dependence of contrast on spatial frequency, lens 

aberrations, and defocus phase-shifts. 

A1.2 Theoretical background - the weak-phase approximation 

If the three-dimensional potential field in an object is 

given by: 
e, (X, Y, 

then an incident coherent plane wave of unit amplitude, when passing 

through this field, is modified by a transmission function of the type: 

exp Ciao (x, y) 7 

where 0 (x, y) =f 4' (x, y, z) dz is the projection in the beam direction 
00 

of the three-dimensional potential distribution in the object, and 

a =it /x E, E being the accelerating potential and x the electron 

wavelength. 

The wave function immediately behing the object is therefore: 

V (X0 y0) = 1. exp [ia4 (0 y0) ] ............... (4) 

Using the weak phase approximation, that the effect of the 

potential field in the object on the incident electron beam is small, 

then (4) can be rewritten: 

4 (x0, Yo) =1+i0e (xo, Yo) 

The wave function at the diffraction plane [' (h, k)] is the 

Fourier transform of q (0, y0) multiplied by a phase factor, P, given 

by: 

P=expIi X(ß)] 

where ß is the diffraction angle, hence: 

4' (h, k) =FE* (xo, yo) J. P............... (5) 
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Again, using the weak phase approximation (5) can be 

rewritten: 

%P (h, k) =6 (0,0) -Q4 (h, k) . sin X+io4 (h, k) . cos X ... (6) 

where 6 (0,0) is a delta function representing the unscattered 

electron beam at the origin and 

4 (h, k) =F [4 (xo, y0)1. 

At the image plane the Fourier transform of ' (h, k) gives 

the wave function i, (xi, yi). The intensity I *(xi, yi) 12 is recorded in 

the electron microscope, and since 

aI (h, k) «6 (0,0) 

it is clear that the imaginary part of (6) contributes to the image 

squared terms in very small quantities. Thus the Fourier transform 

of the intensity distribution in the image is proportional to: 

6 (0,0) -2Q4 (h, k) .s in X. 

-2. sin X is known as the phase-contrast transfer function 

(CTF), and it is a term which modulates the amplitudes of 4 (h, k) and 

the sign of its phases. 

Al. 3 Wave aberration due to defocus and spherical oberration 

Scherzer127 has shown that for image points near the optical 

axis: 
X (B) _ -2 it 1C5 ß4 -Af ß2 ............... (7) 

42 

while Heidenreich128 has derived an alternative form of this equation 

given a spherical aberration term four times larger. 

The wave aberration, X, describes the phase shift of the 

diffracted rays caused by the non-spherical wave surface. Figure 50 

shows the real and imaginary parts of P calculated for the Gaussian 

image plane (o f= 0) for the EM300 electron microscope (Cs = 1.6 nm). 

For an ideal lens (Cs = 0) it would follow that P=1 in the Gaussian 

image plane, meaning that the real part of this function 
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would be characterized by a straight line parallel to the ß axis 

in Fig. SO, while the imaginary part would be zero for all scattering 

angles in the Gaussian plane. By using such a lens, correct imaging 

would be possible for amplitude objects. Zernike129 has shown that 

an ideal lens for phase objects corresponds to P =: ± i for all ß#0 

(i. e. real part is zero, and imaginary part is ± 1). From Fig. 50 it 

is clear that for a small range of ß, P corresponds quite well to an 

ideal lens for amplitude objects. 

If a small defocussing term (Af>O) is included in (7) the ý 

ranges of the same sign can be enlarged and shifted. Figure 51 shows 

the real and imaginary parts of the function P for an objective lens 

with a coefficient of spherical aberration 1.6 mm, at a defocus of 

of = +75.0 nm. 

Using (7) it is evident that the CTF for a weak phase object 

is given by: 

CTF = -2. sin X 

= -2. sin 1Cs ß4 -A fß2 
............... (8) 

4 

Since it is thought130 that during an elastic collision there is an 

additional phase shift of it/2 between scattered and unscattered waves, 

then aberration phase shifts of n7r-7r/2 will lead to maxima in (8). 

Hence maximum phase contrast will be observed when: 

n Tr -7= (2n-1) 
7_ 

-2ý Cs ß4 -ef ß2 .......... (9) 

since ß= A/r, then 

(2n-1) A=- C4+ef2S(. X)2 

2 

which is a quadratic equation in (a/r)2 with solutions 

fa2 =of ± 1of 2- (2n-1) X1 
rC Cs 

s 
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a function of a/r. 
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and hence 

r=A 1f± eft 
cs cS 

- 2n-1 A -1 
cs ............... (1o) 

Equation (10) describes the dependence of phase contrast 

on spherical aberration (Cs) and defocussing (A f) , and a graph 

accoring to this equation is called a phase-contrast transfer 

characteristic. From such a graph one can read which reciprocal 

spatial frequencies Ai are transferred with maximum phase contrast 

at any given defocus o f. 

A1.4 Experimental evidence 

A1.4.1 'Amorphous carbon fi Zms' 

Thon131 has shown experimentally that, for an objective 

lens with Cs = 4.0 mm, there is good agreement between the transfer 

intervals (ICTFI < 0.6) in the optical transforms of high-resolution 

images of thin 'amorphous' carbon films, recorded at various defocii, 

when compared with the theoretical predictions embodied in (10). 

Recently, however, attempts to repeat these experiments in ä Philips 

I M300, with a coefficient of spherical aberration of 1.6 mm, have 

proved unsuccessful132. 

A1.4.2 Lattice-fringe images 

From (9) it follows that: 

of= 2n1 a +C s 
ß2 

202 

and hence Afn+l - ofn= r2 

so a reversal of contrast for a 0.34 nm spacing at 100 kV (A = 0.0037 nm) 

would be expected after a defocus of 31.0 nm. 

Johnson and Crawf6rd121, however, have shown experimentally 

that the contrast reversals observed in lattice-fringe images of carbon 

fibres occur ever 50 ± 10 nm, and therefore do not fit the Scherzer 

'integrated-ray' aberration term. 
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Crawford and Marsh133 have confirmed the anomalous contrast 

reversal defocus period of 50 - 60 nm, while showing that the number 

of fringes observed in small crystallites is also a function of defocus. 

For their microscope (Cs = 1.4 mm) an optimum defocus (o fc) of about 

80 nm gave images with the smallest apparent crystallite size, while 

micrographs recorded at: 

+A fc + n. o fr nm, ............... (11) 

where n= ±1, +2, and +3, and o fr is the observed periodicity of 

contrast reversal, showed an increasing number of fringes. It was 

proposed that this value of Af corresponds closely to that described 

by llöppe13`' at which the real part of the complex image amplitude 

derived from the scattering by a single sheet of carbon atoms has a 

point extension (Fig. 51(b)). As contrast is conventional at this 

defocus a high charge would be represented by a high density in the 

printed micrograph. The optimum defocus was shown to give an accurate 

mapping of object charge density in the recorded image, whereas 

another defocus position giving good contrast (n = +1 in (11)) was 

believed to show the graphite sheets in averaged conditions, and 

reversed contrast. 

Recently, Crawford and Marsh135 have confirmed that a 

faithful image of a disordered molecular structure, obeying the weak- 

phase approximation, can only be obtained at one level of underfocus 

- that corresponding to the Scherzer plateau127. At this underfocus 

position all detail within a wide, low spatial frequency interval is 

transferred without contrast bias or frequency gaps. Choice of an 

underfocus which gives a 'clean' image favouring the 0.34 - 0.36 nm 

spacing was found to give micrographs containing a frequency gap at 

about 0.6 nm. A system-induced improvement of order produced by such 

information filtering was shown to lead to erroneous measurement of 

crystallite size (both length and width) in comparison with the 'valid' 
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image recorded at o fc. 

In the Philips N300 Electron microscope used in the present 

study, a spherical aberration coefficient of 1.6 mm means that the 

Scherzer plateau, observed at an objective lens defocus of + 75.0 nm, 

cuts off at a value corresponding to a spatial frequency r=0.38 nm, 

Fig. 51(b). Lattices of spacing less than 0.38 nm are then imaged 

with much lower, and reversed contrast at this defocus. To overcome 

this problem the objective lens of the microscope was weakened to a 

value corresponding to either +162.5 ± 12.5 nm or +212.5 ± 12.5 nm, 

where high contrast for the graphite spacing is obtained. Although 

introducing frequency gaps at higher r values, it was considered that 

such action was justified since the highly-crystalline structure of 

fibres heat treated to 2500°C contains mainly spacings in the range 

0.3354 - 0.344 nm. In the case of fibres heat treated at lower 

temperatures, every effort was made to ensure that a transfer interval 

as wide as possible was utilized. 

The present study has confirmed that the periodicity of 

contrast reversal for the 0.34 nm graphite lattice is 50 ± 10 nm. 

Plate LIX shows a defocus series recorded under multibeam conditions, 

with the (000) reflection axial. At +162.5 nm three fringes are observed 

at x, at +212.5 nm four fringes, and at +262.5 nm six fringes. The 

area y which at +162.5 nm shows considerable distortion and apparent 

layer-plane discontinuity, has, at +262.5 nm, been averaged, so that 

the lattice fringes, although bent, are continuous. 

Plate LX shows a focal series recorded under three-beam 

conditions (002 - 000 - 002), with the (000) axial. At +162.5 nm an 

increase in contrast, together with the appearance of satellite 

fringes, s, in comparison with the Gaussian image is noticeable. At 

+212.5 nm, half-spacings, h, arising from the modulation of the 0.34 nm 
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spacing, are evident, and these become increasingly resolved at +350 nm. 

Note also that the positions of the terminating fringes, t, and 

heavily-faulted regions, f, are a function of defocus. Jefferson 

et al. 136 have recently shown theoretically that the appearance of 

0.17 nm fringes can arise from dynamical scattering effects, while 

in the present study these are usually observed in regions where the 

layer planes are smoothly curved. Explanations for the appearance of 

these lattice-fringe modulations still remain unsatisfactory, 

particularly in terms of the weak-phase approximation. 

Cockayne et al. 137 have shown both experimentally and 

theoretically that there is not a one-to-one correlation between a 

two-beam lattice-fringe image and the lattice planes in the object. 

In experiments on crystallized germanium the number and positions 
of terminating fringes observed in high-resolution images were found 

to change with diffraction geometry, the algebraic total of 'edge 

dislocations', however, always remaining the same. In the present 

study the effect of type of imaging mode on the crystallite size 

distribution has been critically examined (Chap. 4). It was found 

that similar results were obtained from all bright-field images 

irrespective of defocus (within a certain range), and diffraction 

geometry. However, when lattice-fringe images from individual 

crystallites were examined closely, remarkable differences were 

observed between the two-beam (002 - 000) symmetric and multibeam 

images. Plate LXI shows such images from a highly-crystalline region. 

In the multibeam image, recorded at an objective-lens defocus of 

+212.5 nm, a large area of 0.17 nm 'half-fringes' can be seen at h, 

while in the two-beam symmetric lattice-fringe image of exactly the 

same area, recorded at an objective-lens defocus giving no edge fringes, 

several terminating fringes, t, can be clearly seen. Obviously, the 

unambiguous interpretation of these in terms of edge dislocations is 
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Fig. 52. Half-height width of (112) reflection (arbitrary units) as a 
function of condenser two setting. 

not possible. Similarly, in the two-beam image there are areas, such 

as at x, from which lattice fringes are absent. This is either a 

slightly-distorted area, seen in 'averaged' conditions in the multi- 

beam image, or, more likely, such effects are due to orientation out 

of the diffraction condition due to beam tilting. 

A1.5 Electron microscope settings for electron diffraction 

If representative quantitative data is to be obtained from 

electron-diffraction patterns the effects of instrumental broadening 

should be minimized. In the electron microscope this is facilitated 

by overfoc using the condenser two lens (C2). In order to assess the 

amount of overfocus required to minimize any broadening effects, electron- 

diffraction patterns of a longitudinal carbon-fibre section were 

recorded at various C2 settings, and the width at half height of the 
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(112) reflection measured in each case. Figure 52 shows a graph of 

half-height width of the (112) reflection (arbitrary units) as a 

function of C2 setting. It is clear that at a C2 setting of only one 

coarse step over-focus, instrumental broadening has been minimized. 

To allow for a certain margin of error the electron-diffraction 

patterns analyzed in the present study were all recorded at a C2 

setting two coarse steps over-focus. 

A2. CALIBRATION OF PHOTOGRAPHIC BIULSIONS 

In order to derive quantitative measurements of half-height 

width and integral breath from electron-diffraction patterns it is 

necessary to understand the response of the photographic emulsion 

used, to the intensity and exposure time of the electron beam. Ilford 

FN4 and Special Lantern Contrasty (SLC) plates and SP332 cut film 

were exposed to different beam intensities, developed, fixed and 

washed, and the optical densities measured using a Joyce-Leobl 

double-beam recording microdensitometer fitted with a 3D wedge. 

Figure 53 shows the dependence of optical density, measured as mm of 

throw on the 3D wedge, on beam intensity (percentage full-scale 

deflection on the exposure meter of the microscope) for the three 

different recording mediums. It is evident that SP332 film is 

remarkably uniform in response, yet much slower than either FM4 or 

SLC plates, which, however, exhibit saturation at about 260 mm and 

225 mm respectively. The response of all three emulsions up to one 

quarter of the saturation density (Dsat) is linear, and a correction 

for densities, D', above 0.25D 
sat can be made logarithmically using 

Eqn. 12 as described by Valentine117. 

Da2. n Dsat 
............... (12) 

D- Di 
sat 
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Since the response of the emulsion is linear up to a value 

of 0.25Dsat a considerable effort was made to ensure that electron- 

diffraction patterns were recorded in this range, thus obviating the 

need for the logarithmic correction. However, this was not practicable 

in certain cases, where, for example, several orders of the (00t) 

reflections were of interest, and at such times a correction was 

applied. Since, in an example of this type, a considerable range of 

densities exists on a single plate, the whole range of wedges 

(0.25D - 3D) was used, and the saturation densities, Dsat' pertaining 

to SLC plates for each wedge are shown in Table 9. 

Table 9 

WEDGE 3D 2. SD 1.75D 1.5D O. SD 0.25D 

Dsat 225 265 310 587 627 1138 



A3. COMPUTER PROGRAMS 

A3.1 Iterative procedure for resolution of overlapping asymmetric electron- 
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diffraction peaks, with graphical facilities. 

'LIBRARY' (ED, SUBGROUPLDSA) 
'BEGIN' 'COMMENT' RESOLUTION OF OVERLAPPING ELECTRON-DIFFRACTION PEAKS. 

ASYMETRIC ELECTRON DIFFRACTION PEAKS IN CAT =1 
WITH THE 000 TREATED AS THE FIRST PEAK. DATA 
READ IN AS 3 PARAMETERS FOR FIRST PEAK, THEN F, AMP, WI DTH, WI DTH, F 
FOR SUCCESSIVE PEAKS, THEN POSITIONS THEN BASELINE. 
CAT =2 FOR SYMMETRIC E. D. PEAKS READ IN AS 3*PEAKS+BASELINE+ 

POSITIONS. ASYMETRIC ELECTRON DIFFRACTION PEAKS IN 
CAT=4, BUT NO 000. PARAMETERS ARE READ IN AS: F, A, W, W, F, 

FOR SUCCESSIVE PEAKS, THEN POSITIONS THEN BASELINE. 
Z VALUES ARE READ IN AS MM., AND THEN CHANGED TO S 

BY DIVISION BY THE FACTOR: CAMERA LENGTH IN CMS. (L)* 
DENSITOMETER MAGNIFICATION(DENSMAG)* 
WAVELENGTH OF ELECTRONS USED IN ANGSTROM UNITS(LAMBDA). 

"EMULSION BROADENING" IS LOGARITHMICALLY CORRECTED, DSAT 
BEING READ IN. 
THE ABILITY TO PLOT YOBS, BASELINE, AND YCALC 
WITHOUT ANY ITERATION IS INCLUDED IN REQUESTS 7,5, '3 

'PROCEDURE' AP(NP, N, B, BL, REQUEST, CAT)f 
'VALUE' NP, B, BL, REQUEST; 
'INTEGER' NP, B, BL, REQUEST, CAT, NJ 
'BEGIN' 

IF, REQUEST=1 
'IF' REQUEST=2 
'IF' REQUEST=3 
"IF' REQUEST=4 
'IF' REQUEST=5 
'IF' REQUEST=6 
*IF' REQUEST=7 
'IF' REQUEST=10 
'IF' REQUEST=11 
' IF' 'REQUEST= 12 
'IF' REQUEST<4 
'I F' REQUEST=4 
'OR' REQUEST=S 
'IF' REQUEST>8 

`THEN' Ns=S*B-2; 
'THEN' Ns=6*B-2; 
'THEN' N: =NP; 
'THEN' N: =3*B; 
'THEN' N: =3*B+BL; 
'THEN' N: =NPI 
'OR' REQUEST=8 'OR' REQUEST-9 'THEN' N: =0; 

'THEN' N: =5*B; 
" THEN' N: =6*B; 
, THEN' N: =NP; 

, OR, REQUEST=7 
, OR, REQUEST=5 
'THEN' CATt=2f 
'THEN' CAT: =4f 

'THEN' CAT: 1; 
'OR' REQUEST=6 

'END' OF AP; 
'PROCEDURE' ACC(NP, B, BL, CAT, X, E); 
'VALUE' NP, B, BL, CAT; 
'INTEGER' NP, B, BL, CAT; 
'ARRAY' X, E; 
'BEGIN' 'INTEGER' I; 
'FOR' I: =1 'STEP' 1 'UNTIL' NP 'DO' 
'IF' X[I]'GE'l 'THEN' E113: =0.01 'ELSE' E[I]: =0.001; 
'END' OF ACC; 
'PROCEDURE' FUNCT(B, NP, M, CAT, BL, X, Z, YOBS, Q, 

SUMQ, BASE, YCALC, F, DV, ST ); 
'VALUE' B, NP, M, CAT, BL, DV, ST; 
'REAL' F; 
'INTEGER' B, NP, M, CAT, BL, DV, ST; 
'ARRAY' X, Z, YOBS, Q, SUMQ, BASE, YCALC; 
'BEGIN' 'INTEGER' KK, T, 1; 

F: =O; 
AHIC: 'FOR' KK: =1 'STEP' 1 'UNTIL' M 'DO' 

'BEGIN' 
SUMQCKK7: =O. 
'FOR' T: =1 'STEP' 1 'UNTIL' B 'DO' 
'BEGIN' 
'IF' CAT=l 'THEN' 
'BEGIN' 'IF' T=1 'THEN' 
QtTI: =(Xt1)*(XC2)*EXP(-LN(2)*((2*(ZCKK)-Xt5*B-13)/X[3) 



1,57 

)12)))) + ((1-XC1])*(X[2]/(1+((2*(ZCKK]-X[5*0-1 
])/XC3])'2)))) 

'ELSE' 'IF' ZCKK] 'LE' X[5*B+T-2] 'THEN' 
Q[T): =(XC5*T-6]*(XC5*T-5]* EXP(-LN(2) * 

((2*(ZCKK]-X[5*B+T-2])/X[5*T-4])*2))))+ 
((1-X[5*T-63)*CXCS*T-53/(1+ 
((2*(ZCKK3-XC5*B+T-27)/X[5*T-4) 

' 2)))) 'ELSE' QCT): =(XC5*T-21*(X[5*T-5]*EXP(-LN(2)*((2*(Z[KK]- 
XC5*B+T-23)/X[ 

5*T-33)+2))))+((1-X[5*T-21)*(XC5*T-53 
/(1+((2*(ZCKK]-XC5*B+T-27)/X[5*T-3])12)))); 

SUMQCKK): =SUMOCKK]+Q[T]f 
'END'; 
'IF' CAT=2 'THEN' 
'BEGIN' QCT3: =(XC3*T-23*(X[3*T-13* EXP(-LN(2) * 

((2*(ZCKK]-XC3*B+BL+T])/X[3*T])t2))))+ 
((1-X(3*T-2])*(XC3*T-1]/(1+ 
((2*(Z[KK]-X[3*B+BL+T])/X[3*T])12)))); 

SUMQCKK]: =SUMQCKK]+Q[TI; 
' END' A* 

'IF' CAT=4 'THEN' 
'BEGIN' 'IF' ZCKK] 'LE' X[5*B+T] 'THEN' 
QCT): =(XC5*T-4]*(X[5*T-3]*EXP(-LN(2)* 
((2*(ZCKK]-X[5*B+T])/XC5*T-2))t2))))+ 
((1-XC5*T-4])*(X[5*T-3]/(1+ 
((2*(ZCKK]-XC5*B+T])/X[5*T-23)t2)))) 
'ELSE' QCT]: =(X[5*T]*(XC5*T-3]*EXP(-LN(2)*((2*(ZCKK]- 
X[5*B+T])/X[5*T-1])t2))))+((1-X[5*T])*(X[5*T-3] 
/(1+((2*(ZCKK]-XC5*B+T])/X[5*T-1])? 2)))); 
SUMQCKKI: =SUMQCKK]+QCT]; 
'END'; 

'END'; 
'IF' CAT=1 'THEN' 
'BEGIN' 

'IF' BL=2 'THEN' 
BASECKK]: =XCNP-1] + ((ZCKK]-ZC1]) 

(XCNP]-XCNP-1])/(ZCM)-ZC13))S 
'IF' BL=4 'THEN' 

BASECKK): = XINP-33 + (XCNP-2] * ZCKKI) + (XCNP-1] 
* ZCKK]12) + (XCNP] * ZCKK]13); 

'END', 
'IF' CAT=2 'THEN' 
'BEGIN' 

'IF' BL=2 'THEN' 
BASE[KK]: =XC3*B+1] + ((ZCKK)-ZC1)) * (XC3*B+2] 

-XC3*B+1])/(Z[M]-ZC1])); 
'IF' BL=4 'THEN' 

BASECKK]: = X[3*B+1] + (XC3*B+2] * ZCKK]) + 
(XC3*B+3]* ZCKK]12) + (XC3*B+4] 

* ZCKK)'3); 
'END'; 
'IF' CAT=4 'THEN' 
'BEGIN' 
'IF' BL=2 'THEN' 
BASECKK]: =XCNP-11+(ý(ZCKK]-ZC1])* 
(XCNPI-XCNP-13)/(ZCM]-Z[1])); 
'IF' BL=4 'THEN' 
BASECKK]: =XCNP-3)+(XCNP-2]*ZCKK])+(XCNP-1] 
*ZCKK]"2)+(XCNP]*ZCKK]13); 

_' ND' I 
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YCALC(KK3: = SUMQCKK] + BASECKK]; 
F: =F + ((YCALCC)CK] - YOBS(KK])t2); 

'END'; 
AHID: 'END' OF FUNCT; 
'PROCEDURE' POWELL 64 (FUNCT, X, E, N, F, ESCALE, I PRI NT, I CON, MAXI T, DV, 

B, NP, M, CAT, BL, Z, YOBS, Q, SUMQ, BASE, YCALC, SD, LI MI T, ST) ; 
" REAL' ESCALE, F, SD, LIMIT; 
'INTEGER' B, NP, N, IPRINT, ICON, MAXIT, DV, M, CAT, EL, ST; 
" ARRAY' X, E, Z, YOBS, Q, SUMQ, BASE, YCALC; 
'PROCEDURE' FUNCT; 

'BEGIN' 'ARRAY' t4C1: N*(N+3)]; 
'REAL' DDMAG, FKEEP, SCER, SUM, FP, DMAX, DACC, DDMAX, 

D, DL, FPREV, FA, DA, DD, FB, DB, FHOLD, DMAG, 
FC, DC, A, BB, DI , FI, AAA; 

'INTEGER' JJ, JJJ, K, NFCC, IND, INN, I, J, ITERC, ISGRAD, 
ITONE, IXP, IDIRN, ILINE, IS, JIL; 

'SWITCH' SW1: =L10, L11, L12, L13, Ll4, L96; 
DDMAG: =0.1*ESCALE; 
SCER: =0.05/ESCALE; 
JJ: =N*N+N; 
JJJ: =JJ+N; 
K: =N+ 1; 
NFCC: =IND: =INN: =ITERC: =1; 
'FOR' I: =l 'STEP' 1 'UNTIL' N 'DO' 
'BEGIN' 'FOR' J: =l 'STEP' I 'UNTIL' N 'DO' 

'BEGIN' 'IF' I=J 'THEN' 
'BEGIN' WCK]: =ABS(ECI]); 

WCI): =ESCALE 
'END' 'ELSE' 
WCK): =0; 
K: =K+1 

1 END"; 
'END' ; 
ISGRAD: =2J 
FUNCT(B, NP, M, CAT, BL, X, Z, YOBS, Q, SUMQ, 

BASE, YCALC, F, D11, ST); 
AH£S: 'IF' LIMIT>F 'THEN' 'GOTO' AH12; 

FKEEP: =2*ABS(F); 
L5: I TONE: =1; 
FP: =F; 

SUM: =O; 
IXP: =JJ; 
'FOR' I: =1 'STEP' I 'UNTIL' N 'DO' 

'BEGIN' IXP: =IXP+1; 
WCIXPI: =XCI) 

'END'; 
IDIRN: =N+1; 
ILINE: =1; 
L7: DMAX: =WCILINE7; 
DACC: =DMAX * SCER; 
DMAG: ='IF' DDMAG<O. 1*DMAX 'THEN' DDMAG 'ELSE' 0.1*DMAX; 

DMAG: ='IF' DMAG>20*DACC 'THEN' DMAG 'ELSE' 20*DACC; 

DDMAX: = 10 * DMAG; 
'IF' ITONE=3 'THEN' 'GOTO' L71; 

DL: =O; 
D: =DMAG; 
FPRL"V: =F; 
IS: =5; 
FA: =F; 
DA: =DL; 
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L8 : DD: =D-DL; 
DL :=D; 
L58: K: =IDIRN; 
'FOR' I: = 1 'STEP' I 'UNTIL' N 'DO' 
'BEGIN' XCI]: =XCI]+DD*WCK7; 

K: =K+1 
'END'; 
FUN CT (B, NP, M, CAT, BL, X, Z, YOBS, Q, SUMQ, 
BASE, YCALC, F, DV, ST); 

AH9s 'IF' LIMIT>F 'THEN' 'GOTO' AH12; 
NFCC: =NFCC+1; 
'GOTO' SWICISI; 
L14: 'IF' F<FA 'THEN' "GOTO' L15; 
'IF' F>FA 'THEN' 'GOTO" L24; 
"IF' ABS(D)>DMAX 'THEN' 'GOTO' L18; 
D: =2*D; 
'GOTO' L8; 
L18 : WRITE TEXT('("("CC')'MAXIMUM%CHANGE%DOES%NOT 

%ALTER%FUNCTION '('CC')'")'); 
PHI 0: ST: =1; 

'GOTO' L50; 
L15: FB: =F; 
DB: =D; 
'GOTO' L21; 
L24: FB: =FA; 
DB: =DA; 
FA: =F; 
DA: =D; 
L21: 'IF' ISGRAD=1 'THEN' 'GOTO' L83; 
L23: D: =2*DB-DA; 

'GOTO' L8; 
L83: D: =0.5*(DA+DB-(FA-FB)/(DA-DB)); 
IS: =4; 
'IF' (DA-D)*(D-DB)'GE'O'THEN' 'G0T0' L8; 
L25: IS: =1; 
'IF' ABS(D-DB)'LE'DDMAX 'THEN' 'GOTO' L8; 
L26: 

D: =DB+('IF' DB'GE'DA 'THEN' ABS(DDMAX) 'ELSE' (-ABS(DDMAX))); 

DDMAX: =2*DDMAX; 
AM: 1: 'IF' DDMAG> 2&+76 'THEN' 

'BEGIN' 
ST: =2; 
'GOTO' L50; 

'END'; 
DDMAG: =2*DDMAGI 
'IF' DDMAX'LE'DMAX 'THEN' 'GOTO' L81 

DDMAX: =DMAX; 
'GOTO' LB; 
L13: 'IF' F'GE'FA 'THEN' 'GOTO; L23; 

L28: FC: =FB; 
DC: =DB; 
L29: FB: =F; 
DB: =D; 
'GOTO' L30; 
L12: 'TF' F'LE'FB 'THEN' 'GOTO' L281 
FA: =F; 
DA :=D; 
`GOTO'L30; 
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L11: 'IF' F'GE'FB 'THEN' 'GOTO' L10; 
FA: =FB; 
DA: =DB; 
'GOTO'L29; 
L71: DL: =D: =1, 
DDMAX: =5; 
FA: =FP; 
DA: =-1; 
FB: =FHOLD; 
DB: =0; 
L10: FC: =F; 
DC: =D; 
L30: A: =(DB-DC)*(FA-FC); 
BB: =(DC-DA)*(FB-FC); 
'IF' (A+BB)*(DA-DC)>O'THEN' 'GOTO' L341 
FA: =FB; 
DA: =DB; 
FB: =FC; 
DB: =DC; 
'GOTO' L26; 
L34: D: =0.5*(A*(DB+DC)+BB*(DA+DC))/(A+BB), 
Dl: =DB; 
FI: =FB; 
'IF' FB'LE' FC 'THEN' 'GOTO' L44; 
Dl: =DC; 
FI: =FC; 
L44: 'IF' ITONE#3'THEN' 'GOTO' L86; 
ITONE: =2; 
'G0T0' L45; 
L86: 'IF' ABS(D-DI)'LE'DACC 'THEN' 'GOTO' L41; 
'IF' ABS(D-DI)'LE' 0.03*ABS(D)'THEN' 'GOTO'L41; 
L45: 'IF'(DA-DC)*(DC-D)<O'THEN4 'G0T0' L47; 
FA: =FB; 
DA: =DB; 
FB: =FC; 
DB: = DC; 
'GOTO'L25; 
L47: IS: =2; 
'IF'(DB-D)*(D-DC)'GE'0'THEN' 'GOTO' L$; 
IS: =3; 
'GOTO' L8; 
L41: F: =FI; 
D: =DI-DL; 
DD: =SQRTC(DC-DB)*(DC-DA)*(DA-DB)/(A+BB)); 
'FOR' I: =1'STEP' 1 'UNTIL' N 'DO' 
'BEGIN' XCI ]: =XCI ]+D*WCIDIRN]; 

WCIDIRN1: =DD*WCIDIRN]; 
IDIRN: =I DI RN+1 

'END'; 
WEILINE]: =WCILINE]/DD; 
ILINE: =ILINE+1; 
'IF' IPRINT#1'THEN' 'GOTO' L51; 
L50: WRITE TEXT ('("('CC')'ITERATION')'); 
WRITE(DV, FORMAT('('-NDDD')'), ITERC); 
WRITE(DV, FORMAT('('SSS-NDDD')'), NFCC); 
WRITE(DV, FORMAT('('SS-NDDDDD. DDDDDD')'), F); 

A"13: SD: =SORT(F/M); 
WRITE(DV, FORMAT('('SSS-NDD. DDDDDDC')'), SD); 
'FOR' I: =l 'STEP' 1 'UNTIL' N 'DO' 
WRITE(D'I, FORMAT('('SS-NDDD. DDDDDDD')'), XCII); 
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AH14: 'IF' ST=1 'OR' ST=2 'OR' ST=3 'THEN' 'G0T0' L20; 
'IF' IPRINT=2'THEN' 'G0T0' L53; 
L51: 'IF' ITONE=2'THEN' 'GOTO' L381 
'IF' FPREV <F+SUM 'THEN' 'GOTO' L94; 
SUM: =FPREV-F; 
JIL: =ILINE; 
L94: 'IF' IDIRN'LE'JJ'THEN' 'GOTO' L7; 
'IF' IND =2'THEN' 'G0T0' L721 
L92: FHOLD: =F; 
IS: =6; 
IXP: =JJ; 
'FOR' I: =1'STEP' 1 'UNTIL' N 'DO' 
'BEGIN' IXP: =IXP+1; 

W(IXP]: =XCI]-WCIXP] 
'END'; 
DD: =1; 
'GOTO' L58; 
L96: 'IF' IND =2'THEN' 'GOTO' L87; 
'IF' FP<F'THEN' 'GOTO' L37; 
'IF' FP-F=O 'THEN' 'GOTO' L20 'ELSE' D: =2*(FP+F-2*FHOLD)/(FP-F)12; 
'IF' D*(FP-FHOLD -SUM)t2'GE'SUM 'THEN' 'G0TO' L37; 
L87: J: =JIL*N+l; 
'IF' J>JJ'THEN' 'GOTO' L61; 
'FOR' I: =J'STEP' 1 'UNTIL' JJ 'DO, 
'BEGIN' K: =1-N; WCK): =W[I] 
'END'; 
'FOR' I: =JIL 'STEP' I 'UNTIL' N 'DO' WCI-1]: =WCI]; 
L61: I DI RN: =K: =I DIRN-N3 
ITONE: =3; 
IXP: =JJ; 
AAA: =O; 
'FOR' I: =1 'STEP' I 'UNTIL' N 'DO'_ 
'BEGIN' IXP: =IXP+1; 

WEK]: =WCIXP]; 
'IF' AAA <ABS(WCKI/ECI])'THEN' AAA : =ABS(WCK]/ECI]); 
K: =K+1 

'END'; 
DDMAG: =1; 
WCNI: =ESCALE/AAA; 
ILINE: =N; 
'GOTO'L7; 
L37: IXP: =JJ; 
AAA: = 0; 
F: =FHOLD; 
'FOR' I: =1'STEP' 1 'UNTIL' N 'D0' 

'BEGIN' IXP: =IXP+1; 
XCII: =XC1]-WCIXP]; 
'IF' AAA *ABS(E[I])<ABS(WCIXPI) 
'THEN' AAA : =ABS(W[IXP]/E[1]) 

'END'; 
'GOTO' L72; 
L38: AAA: =AAA*(1+DI); 
'IF' IND=2 'THEN' 'GOTO' L106; 
L72: 'IF' IPRINT'GE'2'THEN' 'GOTO' L50; 
L53: 'IF' IND=2'THEN' 'GOTO' L88; 
'IF' AAA>0.1 'THEN' 'GOTO' L76; 
'IF' ICON=1'THEN' 'GOTO' L20; 
IND: =2; 
'IF' INN=2 'THEN' 'GOTO' L101; 
INN: =2; 
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K: =JJJ; 
%FOR' I: =l 'STEP' I 'UNTIL' N 'DO' 
'BEGIN' K: =K+1; 

WCK]: =XCI]; 
XCI]: =XCI3+10*ECI] 

'END'; 
WRITE TEXT('(''('P')'%%FURTHER%CHANGE%OF% 

PARAMETERS%%FOR%RICON2'('C') '' )'); 
FKEEP: =F; 
FUNCT (B, NP, M, CAT, BL, X, Z, YOBS, Q, SUMQ, 
BASE, YCAL C, F, D'I, ST) ; 

A1H12t 'IF' LIMIT>F 'THEN' 
'BEGIN' ST: =3; 

'GOTO' L50; 

)' )i 

L78s 

"END'; 
NFCC: =NFCC+1; 
DDMAG: =O; 
"GOTO' L108; 
L76: 'I F' F<FP 'THEN' " GOTO " L35; 
L78: WRITE TEXT('("('CC')'ACCURACY2 

LIMITED9. BY%ERRORSRINZF"("CC") '' 

'GOTO' L20; 
L88: IND: =l; 
L35: DDMAG: =0.4*SQRT(FP-F); 
I SGRAD: = l; 
L108: ITERC: =ITERC+1; 
'IF' ITERC'LE'MAXIT 'THEN' 'GOTO' L5; 
WRITE (DV, FORMAT('('-NDDDD')'), MAXIT); 
WRITE TEXT('('ITERATIONS%COMPLETED'('CC') '' )'); 
'IF' F'LE'FKEEP 'THEN' 'GOTO' L20; 
F: =FKEEP; 
'FOR' I: =i'STEP' 1 'UNTIL' N 'DO' 
'BEGIN' JJJ: =JJJ+1; 

XCI ]: =WCJJJ] 
'END'; 
'GOTO' L20; 
L101: JIL: =1; 
FP: =FKEEP; 
'IF' F<FKEEP 'THEN' 'GOTO' L105 
'ELSE' 'IF' F=FKEEP 'THEN' 'GOTO' 

'BEGIN' IXP: =IXP+1; 
K: =1XP+N; 
'IF' JIL=2'THEN' 'GOTO' L115; 
WW! C IXP] : =WWCK]; 
'GOTO' L113; 
LI15: WE IXPI: =XCI]; 
XCII: =WCKI; 

L113: 'END'; 
JIL: =2; 
'GOTO'L92; 
L107: INN: =l; 
'GOTO'L35; 
L106: 'IF' AAA'O.! 'THEN' 'GOTO' L107; 

JIL: =2; 
FP: =F; 
F: =FKEEP; 
L105: IXP: =JJ; 
'FOR' I: =! 'STEP' 1 'UNTIL' N 'DO' 
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L20: 
'END' POWELL 64; 
'PROCEDURE' RESULTS(NP, N, M, REQUEST, OP, X, Z, YOBS, SUMQ, 

BASE, YCALC, F, SD, DV); 
'VALUE' NP, N, M, REQUEST, OP, DV; 
'REAL' F, SD; 
'INTEGER' NP, N, M, REQUEST, OP, DV; 
'ARRAY' X, Z, YOBS, SUMQ, BASE, YCALC; 
'BEGIN' 'INTEGER' I, KK, FORMT, FORM2, FORMS, FORM4, FORM5; FORMI: =FORMAT('('SS-NDDSSSS')'); 
FORM2: =FORMAT('('S-NDDD. DDDDDDDDC')'); 
FORM3: =FORMAT('C'S-NDDD. DDD')'); 
FORM4: =FORMAT('('S-NDDD. DDDC')'); 
FORM5: =FORMAT('('S-NDDDDD. DDDDDDC')'); 
'IF' OP=1 'THEN' 'GOTO' AH; 

WRITETEXT('(''('CCC')'ZZADJUSTEDZPARAMETERS'('C') '')'); 
'FOR' I: =1 'STEP' 1 'UNTIL' N 'DO' 
'BEGIN' WRITE(DV, FORM1, I); 

WRITE(DV, FORM2, X[I]); 
'END'; 
'IF' REQUEST=3 'OR' REQUEST=6 'THEN' 'GOTO' AH; 
WRITE TEXT('(" ('C')'%%FIXEDZ%PARAMETERS'('C")"')'); 
'FOR' I: =(N+l) 'STEP' 1 'UNTIL' NP 'DO' 
'BEGIN' WRITE(DV, FORMT, I); 

WRI TE(DV, FORM2, X[ I]); 
'END'; 

AH: WRITETEXT('(''('C')'7. '('6S')'Z'('7S')'YZOBS'('5S')'SUMQ 
'("6S')'BASE"('6S')'YCALC'C'4S')'YCALC-YOBS'('C')99)9. ); 
'FOR' KK: =l 'STEP' I 'UNTIL' M 'DO' 
'BEGIN' WRITE(DV, FORM3, ZCKK3); 

'IF' REQUEST=7 'THEN' 
'BEGIN' WRITETEXT('('%'('11S')'x")'); 

'GOTO' H1; 
'END'; 
WRITE(DV, FORM3, YOBSCKK) ); 

HI: WRITE(DV, FORMS, SUMQCKK)); 
WRITE(DV, FORMS, BASECKK)); 
'IF' REQUEST=7 'THEN' 
'BEGIN' WRITE(DV, FORM4, YCALCCKK)); 

'GOTO' H2; 
'END'; 
WRITE(DV, FORMS, YCALCCKKI); 
WRITE(DV, FORM4, (YCALCCKK)-YOBSCKK)))J 

R2_ 'END; 
'IF' REQUEST=7 'THEN' ' GOTO " }i3; 
SD: =SQRT(F/M); I 
WRITETEXT(' (''('C' )' Z%F' ('8S' )'Z=%' )' ); 
WRI TE(DV, FORM. 5, F); 
WRITETEXT('('%%SD'('8S')'=% S ')')3 
WRI TE(D'J, FORM2, SD),, 

'END' OF RESULTS; 
'BEGIN' 'COMMENT' DATA INPUT; 
'INTEGER' B, NP, N, M, Fl, F2, F3, F4, F5, F6, F7, CYCLES, REQUEST, CAT, 

I, KK, VV, T, I PRI NT, I CON, MAXI T, DV, BL, MM, OP, ST, SYMBJ 
'REAL' ESCALE, PC, STEP, L, DENSMAG, LAMBDA, XFACTOR, DSAT, 

ZA; ZB, AA, BBB, CC, DD, EE, FF; 
ohmo; 
4RITETEXT('C '' ('CC')'%%HINDELEH%211%( 

RESOLUTION%OF%OVERLAPPING2PEAKS) 
'('CC')'%%SAMPLEZZ%ZX: Z')')t 
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COPYTEXT('('; ')'); 
B: =READ; 
BL: =READ; 
NP: =READ; 
M: =READ; 
CYCLES: =READ; 
Fl: =FORMAT('('SSS-NDDDC')'); 
F2: =FORMAT('('SSS-NDDD. DDDDDDDC')')J 
F3: =FORMAT('('SSS-NDDD. DDDC')'); 
F4: =FORMAT('('SSS-NDDSS')'); 
FS. =FORMAT('('SSS-NDDD. DDD')'); 
F6: =FORMAT('('SDDC')'); 
F7: =FORMAT('('SSS-NDDD. DC')'); 

'BEGIN' 'REAL' 'ARRAY' PARAMETERCI: NP], XCI: NP3, EC1: NP3, 
QC1: NP), REQCI: CYCLES3, MAXCI: CYCLES]; 
' REAL' LIMIT, F, SD, TOA, TPA, TBA, PCE; 
LIMIT: =F: =TOA: =TPA: =TBA: =PCE: =OS 

'FOR' VV: =1 'STEP' I 'UNTIL' CYCLES 'DO' 
REQCVVI: =READ; 
'FOR' VV: =1 'STEP' 1 'UNTIL' CYCLES 'DO' 
MAXCVV): =READ; 
I PRI NT: =READ; 
PC: =READ; 
L: =READ; 
DENSMAG: =READ; 
LAMBDA: =READ; 
XFACTOR: =READ; 
DSAT: =READ; 
STEP: =READS 
ICON: =2; 
ESCALE: =100; 
WRITETEXT('C ''('CC')'%%B'('lOS")"=x')'); 
WRI TE(DV, Fl, B); 
WRITETEXT('('%%BL'('9S')'=R')'); 
WRITE(DV, Fl, BL); 
WRITETEXT('('%%NP"('9S')'=x')'); 
WRITE(DV, Fl, NP); 
WRITETEXT("('R%M'('lOS')"=X")"); 
WRITE(DtJ, F!, M); 
WRITETEXT("('' ('CC')'%%CYCLES2%%%%=x')")S 
WRITE(DV, Fl, CYCLES); 
WRITETEXT( "('%%REQUEST%%%%=%')'); 
'FOR, VV: =l 'STEP' 1 'UNTIL' CYCLES 'DO' 
WRITE(DV, F4, REQCVV]); 
WRITETEXT('("'('C')'%%MAXIT%% %%%=Z')'); 
'FOR' VV: =1 'STEP' 1 'UNTIL' CYCLES 'DO* 
WRITE(DV, F4, MAXCVV]); 
WRITETEXT('('' ('C')'%%IPRINT'('5S')'=Z')'); 
WRITE(DV, F3, IPRINT); 
WRITETEXT('('%%PC'('9S")'=%')'); 
WRITE(DV, F3, PC); 

RITETEXT('('%%L'C'lOS')'=%')'); 
WRITE(DV, F3, L); 
WRITETEXT('('%%DENSMAG'('4S')'=x')')3 
WRITE(DV, F3, DENSMAG); 
WRITETEXT('('%%LAMBDA'("5S')'% ')")3 
WRI TE(DV, F3, LAMBDA); 
WRITETEXT('('T7. XFACTOR'('4S')'=%')'); 
WRITE(DV, F3, XFACTOR); 
WRITETEXT('('%%DSAT'('7S')'=%')'); 
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REQUEST: =REQCVV]; 
MAXIT : =MAXCVV]; 
AP (NP, N, B, BL, REQUEST, CAT) ; 
ACC (NP, B, BL, CAT , X, E); 
POWELL 64(FUNCT, X, E, N, F, ESCALE, IPRINT, ICON, MAXIT, 

DV, B, NP, M, CAT, BL, Z, YOBS, Q, SUMQ, 
BASE, YCALC, SD, LIMIT, ST)J 

AH18: 'IF' ST=1 'THEN' 
'BEGIN' 
AH19: ESCALE: =2*ESCALES 
AH19A: 'FOR' I: =1 'STEP' I 'UNTIL' N 'DO' 

XCI): =PARAMETERCI); 
i1R! TETEXT (' (''(' C') ' %%CYCLE') ' ); 
TJRITE(D'l, F4, VV); 
WRITETEXT('('%%WILL%BE%REPEATED'('C') '' )'); 
'GOTO' AH17; 

'END'; 
'IF' ST=4 'THEN' 'GOTO' AH17A; 

PH20: 'IF' ST=2 'THEN' 
'BEGIN' WRITETEXT('(''('CC')'22 

INTEGER%OVERFLOW%AT9. AH11')'); 
'GOTO' AH19; 

'END'; 
Aä21: 'IF' ST=3 'THEN' WRITETEXT('("('CC')'%%LIMIT%OF%F%HAS% 

BEEN9. REACHED'('CC') ")'), 
FUN CT (B, N P, M, C AT, BL, X, Z, YO B S, Q, S UM Q, BAS E, Y CAL C, F, DV, ST) ; 
RESULTS(NP, N, M, REQUEST, OP, X, Z, Y(IBS, SUMQ, BASE, 

YCALC, F, SD, DV) ; 
ST: =O; 

PH22: 'IF' LIMIT>F 'THEN' 'GOTO' AH24; 
AH23: 'FOR' I: =1 'STEP' 1 'UNTIL' NP 'DO' 

PARAMETERCI): =XCII; 
11123A: 'END'; 
AH24: ý, IRITETEXT(' ('' ('CCC')'%%CALCULATION%OF%00(IRDINATESZAND% 

AREAS%OF%THE%PEAKS%AND%BACKGROUND'('CC') '' )')3 
AA: =READ; AA: =AA/2.54; 
BBB: =READ; BBB: =BBB/2.54; 
CC: =READ; DD: =READ; EE: =READ; FF: =READ; 
LIMITS(O, AA, 1, BBB); 
REGION(ZC1), ZCM]+0.005, CC, DD). 
CRSET(4); CRSIZE(0.01*DD); 

MM: =(((ZCM]-ZC1])/STEP)+1); 
'BEGIN' 'REAL' 'ARRAY' XXCI: MM], BACI: MM], ARC1: B3I 

'FOR' KK: =1 'STEP' I 'UNTIL' MM 'DO' 
XXCKKI: =(ZC17+(STEP*(KK-1))); 

'COMMENT' CALCULATION OF THE COORDINATES OF THE. BACKGROUND; 
PH25: 'FOR' KK: =1 'STEP' 1 'UNTIL' MM 'DO' 

'BEGIN' 
'IF' CAT=1 'THEN' 
'BEGIN' 'IF' BL=2 'THEN' 
BACKKI: =XCNP-11 + ((XX'CKK]-Z113) * (XCNP]-XCNP-17)/ 

(ZCM]-ZC1])); 
'IF' BL=4 'THEN' 

BACKKI: = XCNP-31 + (XCNP-23 * XXCKK]) + (XCNP-11 * 
XXCKKlt2) + (XCNPI * XXCKK]t3); 

'END'; 
'IF' CAT=2 'THEN' 
'BEGIN' 'IF' BL=2 'THEN' 
BACKK]: =XC3*B+17+ ((XXCKK] - ZCU)) * (XC3*B+2], 

-XC3*B+13)/(ZCM]-ZCI))); 
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'IF' BL=4 'THEN' 
BACKKI: = XC3*B+1] + (XC3*B+2] * XXCKK]) + (XC3*B+3] 

* XXCKK]t2) + (X[3*B+4]* XXCKK]t3); 
'END'; 

'IF' CAT=4 'THEN' 
'BEGIN' 
'IF' BL=2 'THEN' 
BACKK): =XCNP-1)+((XXCKK)-Z[13)* 
(XCNP)-XCNP-11)/(ZCM]-ZC1])); 
'IF' BL=4 'THEN' 
BACKK): =XCNP-31+(XCNP-21*XXCKKI)+(XCNP-1) 
*XXCKK]t2)+(XCNP)*XXCKK]t3); 
'END'; 
'END'; 

SYMB: =50; 
CURPTO(Z, YOBS, 1, M, 50); 
CURPTO (XX, BA, 1, MM, 1 0) ; 
'COMMENT' CALCULATION OF THE AREA UNDER THE BACKGROUND; 
AH26: 'FOR' KK: =1 'STEP' 2 'UNTIL' (MM-2) 'DO' 

TBA: =TBA + (((BACKK)+(4*BACKK+13)+BACKK+23)/6)* 
(XXCKK+23-XXCKK])*1); 

'COMMENT' CALCULATION OF THE COORDINATES OF EACH PEAK; 
AH27: WRITETEXT('(''('CC')'Z'C'7S')'XX'('11S')' 

Q'('9S')'BASE'('5S') 

Y%CALC=Q+BASE'('C') '' )'); 
'FOR' T: =1 'STEP' I 'UNTIL' A 'DO' 
'BEGIN' 'REAL' 'ARRAY' Q, BOTHt1: MMI3 

'REAL' AREA; 
AREA: =O; 

WRITETEXT('(" ('CCC')'%%PEAK%RNO. ')'); 
WRI TE(DV, F6, T); 
'FOR' KK: =1 'STEP' I 'UNTIL' MM 'DO' 

'BEGIN' 
'IF' CAT=l 'THEN' 
'BEGIN' 'IF' T=l 'THEN' 
QCKK]: =(XC1]*(XC2]*EXP(-LN(2)*((2*(XXCKKI-XC'S*B-1])/ 

XC3])12)))) + ((1-X[13)*(XC21/(1+CC2*CXXCKK3 

-XC5*B-1])/XC3])12)))) 
'ELSE' 'IF' XXCKK] 'LE' XC5*B+T-23 'THEN' 

QCKKI: =(XC5*T-6]*(XC5*T-5]* EXP(-LN(2) 
((2*(XXCKK]-X[5*B+T-2])/X[5*T-1))'2))))+ 
((1-XC5*T-63)*(X[5*T-53/C1+ 
((2*(XXCKK]-XC5*B+T-2])/XC5*T-4])t2)))) 

'ELSE' QCKKI: =(XC5*T-2]*(XC5*T-53*EXP(-LN(2)*((2* 
(XXCKK]-X[5*B+T-23)/XC5*T-33)t2))))+ 
((1-XC5*T-2])*(XC5*T-5]/C1+((2*CXXCKK]- 
XC5*B+T-23)/X[5*T-3])t2)))); 

'END'; 
'IF' CAT=2 'THEN' 

'BEGIN' 
QCKK): =(XC3*T-21*(XC3*T-13* EXP(-LN(2) 

((2*(XXCKK]-XC3*B+BL+T])/XC3*T])12))))+ 
((1-XC3*T-2])*(XC3*T-13/(1+ 
((2*(XXCKK]-XC3*B+BL+T3)/XC3*TI)12))))S 

" END*; 
'IF' CAT=4 'THEN' 
'BEGIN' 'IF* XXCKK] 'LE' XC5*B+T] 'THEN' 
01l(K3s=(XC5*T-43*(XC5*T-33*EXP(-LN(2)* 
((2*(XXCKK]-XC5*B+T])/XC5*T-2])t2))))+ 
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((1-XC5*T-41)*(XC5*T-3]/(I+ 
((2*(XXCKK]-X[5*B+T])/XCS*T-23)12)))) 
'ELSE' QCKKI: =(X[5*T]*(XC5*T-3]*EXp(-LN(2)*((2*(XXCKK]- 
XCSSB+T7)/XC5(T-1])]2))))+((1-X[SPT])N(X[5(T-3] 
/(l+((2*(XXCKK]-X[5*B+T])/X[5*T-1])t'2)))); 
'END'; 

'IF' QCKK]'GE'O. 001 'THEN' 
'BEGIN' WRITE(DV, F5, XXCKK]); 

WRITE(DV, F5, QCKK]); 
WRITE(DV, F5, BACKK]); 
WRITE(DV, F3, (QCKK]+BACKK])); 
'END'; 

'END'; 
'FOR' KK: =I 'STEP' I 'UNTIL' MM 'DO' BOTHCKK7: =QCKK]+BACKK]3 
CURPTO(XX, BOTH, I, MM, -10); 
'COMMENT' CALCULATION OF THE AREA UNDER EACH PEAK; 
PH28: 'FOR' KK: =l 'STEP' 2 'UNTIL' (MM-2) 'DO' 

AREA: =AREA+(((QCKK3+(4*QCKK+13)+QCKK+23)/6) 
(XXCKK+21-XXCKK])*I); 

ARCT7: =AREA; 
'COMMENT' TOTAL AREA UNDER THE PEAKS; 
AH29: TPA: =TPA+AREA; 

'END*; 
WCESSI(EE, FF); CRSET(0); CRSIZEC0.02*DD); 
LIMITS( O, AA, 0, BDB); 
REGION(ZC I J, ZCMJ, CC-2, DD); 

LJRITETEXT('('' ('CC')'% PEAKZNO. '('24S')' 
SQZCM'('6S')'PER%CENT'('C' 

)19)9); 
'FOR' T: =1 'STEP' 1 'UNTIL' B 'DO' 
'BEGIN' 

WRITE(DV, F4 , T); 
t, iRITETEXT('('%'('I7S')'%')')J 
WRITE(DV, F5, AR[T]); 
WJRITE(DV, F3, (AR(TI*100/(TPA+TBA))); 

'END'; 
AH30: GIRITETEXT('('%%TOTAL%AREA%UNDER%THE%PEAKS')'); 

WRITE(DV, F5, TPA); 
WRITE(DV, F7, (TPA*100/(TPA+TBA))); 
WRITETEXT('('%% TOTAL%%BACKGROUND%ZAREA%%%')')S 
WRI TE(DV, F5, TBA); 
WRITECDV, F7, (TBA*100/(TPA+TBA))); 
WRITETEXT('('% TOTAL%%CALCULATED%%AREA%%x')'); 
WRITE(DV, F3, (TPA+TBA)); 

BORDER; 
GREN D; 

" END'; 
'IF' REQUEST=7 'OR' REQUEST=9 'THEN' 'GOTO' AH32; 

'COMMENT' CALCULATION OF THE INTEGRATED AREA 
UNDER THE ORIGINAL CURVE; 

AH31: 'FOR' KK: =1 'STEP' 2 'UNTIL' (M-2) 'DO' 
TOA: =TOA+(((YOBSCKK)+(4*YOBSCKK+11)+YOBS[KK+21)/6) 

*(Z[KK+27-Z[KK])*1); 
WRITETEXT('('%%TOTAL% OBSERVED7%AREA%%%%%')')S 
WRITE(DV, F3, TOA); 
'COMMENT' CALCULATION OF THE SQUARE PERCENTAGE ERROR; 
'FOR' KK: =1 'STEP' I 'UNTIL'M 'DO' 
PCE: =PCE+(((YOBS[KK]-YCALCCKK])/YOBSCKK])*2); 
PCE: =SQRT(PCE/M); 
PCE: =10 0*PCE; 
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WRITETEXT('('%%PERCENTAGE%ERRORZ%Z%R=%% %%')'); ' 
PRINT(PCE, 4,3); 
'END'; 

1H32: 'END'; 

'END'; 
'END' 
<EBTAH9110SPU> 
#** 

A3.2 Procedure for calculation of contrast-transfer function, with graphical 
facilities 

'LIBRARY' (ED, SUBGROUPLDSA) 
'BEGIN' 
'REAL' CS, DELTAF, CHI, X, A, B; 
' INTEGER'M, K; 
CS: =READ; 
DELTAF: =READ; 
A: =READ; 
B: =P. EAD; 
M: =200; 
'BEGIN' 
'ARRAY'D, C, ALPHAC 1 : M]; 

X: =0.001; 
'FOR'K: =1' STEP'1'UNTIL'M'DO' 
'BEGIN' 

X: =X+0.0001; 
ALPHA[ K]: =X; 
DCK]: =0.0037/ALPHACK]; 
CHI: =-3.1416*(A*(CS/2)*ALPHACK3t4-B*DELTAF*ALPHACK3t2)/0.0037; 
CCK]: =-2*SIN(CHI); 
PRINT(DCK], 2., 2); 
SPACE( 5); 
PRINT(CCK], 2.3); 
SPACE(S); 
PRINT(ALPHAC K], 2,4 ); 
NEWLINE(1); 
'END'; 

LIMITS(0,15,2,8); 
REGION(ALPHACII., ALPHALM], -2.5,2.5); 
CURPTO (ALPHA, C, 1, M, -1 0) ; 
AXESSI(0.002,0.25); 
BORDER; 
GREND; 
'END'; 
'END' 
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X14 Electron-microscope plate and film reference numbers 

Plate Number Reference Number Plate Number Reference Number 
I 11088 XXXII 11920 

II 11078 XXXIII 13405 
III 11320 XXXIV 13410 

IV 11288 XXXV 14213 
V 12165 XXXVI 14077 

VI 12166 XXXVII 14081 
VII 11310 X)0(VI II 14199 

VIII 11310 XXXIX 14102 
IX 11079 XL 14104 
X 09851 XLI 14212 

XI 11099 XLII EU18, LU20 & EU25 
XII 11323 XLIII EU27 & EU30 

xiii 11319 - 11325 XLIV 14615 
XIV 11282 XLV 14617 & 14618 

XV 11281 XLVI 14638 

XVI 11303 XLVII 14634 
XVII 12163 XLVIII 14656 

Will 12159 XLIX 14686 

XIX 11364 & 11376 L 14684 
XX 14038 LI 14629 

)(XI 14064 LII 13356 

XXII 14040 LIII 13358 
XXI11 14198 LIV 13359 

XX1V 14197 LV 13360 

xxv 12073 LVI 13362 

xxvi 12130 LVII 14231 

xxvii 12104 LVIII 14362 

XXVIII 12099 LIX 12627,12631 & 12636 

XXIX 12120 LX 13570 - 13574 

xxx 12076 LXI 13348 & 13352 

xxxi 12154 
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Table 2 Lattice Distortion (o) and Mean Defect-free Distance (Dc) 

parameters 

SPECIMEN RE: QON IN SPECIMEN a ($) Dc (run) 

A2500 Skin 0.54 8.9 
Core 1.66 3.0 

B2500 Skin 0.66 9.8 
Core 1.21 4.5 

C2500 Skin 0.62 11.4 
Core 1.63 2.8 

D2500 Skin 0.52 11.8 
Core 1.73 3.5 

Table 3 Mean Layer-plane Dimensions for Specimen B2500 

REGION IN SPEC1\1F. N REFLECTION SIZE PARAMETER (tort) 

Skin (100) Equatorial L = 8.4 
a1 

Skin (100) Meridional La // = 8.3 

Skin (110) Meridional La //= 12.4 

Core (100) Equatorial La 
1=4.8 

Core (100) Meridional La = 7.7 

Core (110) Meridional La 11 = 7.2 
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Table 4 Preferred Orientation Parameters 

SPECIMEN REGION IN SPECIMEN Z° 

A2500 Skin 15 
Core 22 

B2500 Skin 13 
Core 21 

C2500 Skin 16 
Core 32 

D2500 Skin 12 
Core 20 

Table 5 Crystallite Size, Lattice Spacing and Orientation of 
Various Specimens 

SPECIMEN REGION IN SPECIMEN L c/2 
nm 

Z 
o 

A1000 Skin 1.1 0.38 - 
Core 1.1 0.37 42 

A1500 Skin 1.6 0.36 43 
Core 1.6 0.35 - 

D1000 Skin 1.2 0.37 43 
Core 1.1 0.37 - 

D1500 Skin 1.9 0.35 - 
Core 1.8 0.35 42 

E1000 Skin 1.4 0.36 - 
Core 1.3 0.36 44 

E1500 Skin 1.2 0.35 - 
Core 1.4 0.35 48 

F1000 Skin 1.3 0.36 - 
Core 1.3 0.37 42 

F1500 Skin 1.6 0.35 - 
Core 1.4 0.36 42 
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Table 6 Measurement of Crystallite Size, Lc, by different techniques 

TECHNIQUE 

Direct measurement on high-resolution images 

(i) Multibeam bright-field image at Gaussian focus 
(ii) Multibeam bright-field image at maximum fringe- 

contrast focus 
(iii) 000 - 002 symmetric bright-field image 

(iv) 002 - 004 symmetric dark-field image 

(v) 002 axial dark-field image 

Electron Diffraction 

(90-ý, ) 20 

(90 - 900 (from Fig. 40c) 

Mean defect-free distance (Dc) 

X-ray Diffraction 

(90 - , y) =+ lo 

(90 - ý) =± 900 (rotated specimen) 
Powder photograph 

Computation 

Distortion-free stacking size 

illlt Is fl111 

4.5 12.3 

4.5 2.5 

4.7 3.0 

4.0 2.9 

3.5 2.8 

5.2 

4.3 
5.9 

5.1 

3.8' 
5.9 

8.3 

Table 7 The effect on direct measurements of crystallite size of 
discounting all crystallites of width 1.7 nm or less 

TECHNIQUE Lc nm 

(i) Multibeam bright-field image at Gaussian focus 4.9 

(ii) Multibeam bright-field image at maximum fringe- 
contrast focus 4.8 

(iii) 000 - 002 symmetric bright-field image 5.4 

(iv) 002 - 004 symmetric dark-field image 5.1 

(v) 002 axial dark-field image 4.7 
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Table 8 Properties of Carbon Fibres made from Special Courtelle 

CARBON FIBRES FROM 3 DENIER COURTELLE 

IHAT- OXIDATION TIME (h) 5 10 20 40 
TRLANENT 
TEMPERATURE PROPERTY 
oC 

1000 Diameter (pm) 11.5 10.8 10.4 9 8 
UTS (GNm ) 1.30 2.08 2.38 

. 
2.42 

E (GNm'2) 179 202 216 254 

e(%) 0.73 1.03 1.10 0.95 
(A1000) (D1000) 

1500 Diameter (pm) 10.6 10.8 9.9 9.6 
UTS (GNm 2) 1.36 1.62 1.76 1.60 
E (GNm 2) 232 240 279 267 

e (ý) 0.59 0.67 0.63 0.60 
(A1500) (D1500) 

2500 Diameter (um) 9.7 10.1 9.4 8.9 
2 
) UTS (GNm 1.70 1.83 1.89 1.62 

E (GNm-2) 344 388 398 352 

e (40) 0.49 0.47 0.47 0.46 
(A2500) (B2500) (C2500) (D2500) 

2 
2500 UTS (GNm 0.73) 

E (GNm 2) 210 ) unoxidized- 
stabilized for 

£ (9 ) 0.35) 16h in N2 
(Q2500) 

Note: UTS = Ultimate Tensile Strength 
E= Young's Modulus 

c= Fibre strain-to-failure 

Identification numbers for specimens examined in the electron microscope 
are shown in brackets. 
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Table 8 (continued) Properties of Carbon Fibres made from Special 

Courtelle 

CARBON FIBRES FROM 12 DENIER SPECIAL COURTELLE 

HEAT- OXIDATION TIME (h) 1 3 9 
TREATMENT 
TEMPERATURE PROPERTY 
OC 

1000 Diameter (um) 9.2 8.5 7.9 
2 

UTS (GNm ) 2.33 2.63 2.76 
2 

E (GNm ) 187 212 232 

e ($) 1.25 1.24 1.19 
(E1000) (F1000) 

1500 Diameter (pm) 8.0 8.7 8.2 
_2 UTS (GNm ) 3.15 2.79 1.97 

2 
E (GNm ) 248 252 268 

e (ý) 1.27 1.11 0.74 
(E1500) (F1500) 

2500 Diameter (um) 8.2 8.3 7.9 

UTS (Gvm ) 2.25 2.09 2.35 

E (GNm 2) 345 391 386 

e (a) 0.65 0.53 0.61 
(E2500) (F2500) 

Note: UTS = Ultimate Tensile Strength 
E= Young's Modulus 

E= Fibre strain-to-failure 

Identification numbers for specimens examined in the electron microscope 
are shown in brackets. 

'fahle 9 

WEDGE 3D 2.5D 1.75D 1.5D 0.5D 0.25D 

Dsat 225 265 310 587 627 1138 
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