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Abstract  

Sialic acid utilisation plays an important role in the growth and persistence of the obligate 

human mucosal pathogen Haemophilus influenzae, which causes respiratory tract 

infections, septicaemia and meningitis. Like many other bacteria, H. influenzae can use 

host-derived sialic acids as carbon, nitrogen and energy sources, but also as a terminal 

modification on the LPS to better evade the human immune system. H. influenzae takes 

up exogenous sialic acid via a tripartite ATP-independent periplasmic (TRAP) 

transporter, SiaPQM. This possesses an extracytoplasmic substrate binding protein 

(SBP), SiaP, which binds the substrate in the periplasm and delivers it to the specific 

membrane permease, SiaQM. SiaP contains two globular domains, which close around 

the substrate upon binding. Here, the mechanism of sialic acid binding by SiaP is 

investigated using site-directed mutagenesis of residues in the ligand binding site and 

analogues of sialic acid. These, and several mutations on the surface of SiaP, were 

investigated for their effect on transport by SiaPQM in vitro, using SiaQM reconstituted 

into proteoliposomes, and in vivo, using expression of siaPQM in an E. coli strain lacking 

its native sialic acid transporter, NanT.  

It is demonstrated that stabilisation of the carboxylate group of sialic acid by the totally 

conserved Arginine-147 is important for high-affinity ligand binding, but is not essential 

for transport. Mutation of Aparagine-150 to Aspartate abolishes the function of the 

transporter without affecting ligand binding, suggesting the existence of a critical 

interaction between the components of the transporter. The catabolism of the sialic acid 

analogues was also examined in E. coli expressing different sialic acid transporters. This 

indicates that a wide variety of sialic acid analogues are potential carbon sources in many 

pathogenic bacteria.  
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1.1  The requirement for transporters   

Cells are encased by a phospholipid bilayer, separating the self from the non-self. In 

Gram-positive bacteria, this membrane is surrounded by a thick layer of protective 

peptidoglycan, together making up the cell envelope (Figure 1.1a). Gram-negative 

bacteria possess a second membrane above a thinner peptidoglycan layer, producing 

another distinct compartment for the cell called the periplasm (Figure 1.1b).  

 

The phospholipid bilayer is made up of amphipathic phospholipids, which orient 

themselves with hydrophobic lipid groups in the centre of the bilayer and hydrophilic 

groups on the water-exposed surfaces (Wilkins et al., 1971). This arrangement of 

hydrophobic and hydrophilic groups impedes the movement of polar and non-polar 

groups and so, to allow metabolic process to take place, proteinacious transporters have 

evolved to move exogenous and endogenous substrates across this barrier (Saier, 2000a). 

In the bilayer, the lipid groups exist in a liquid crystalline state, in which transmembrane 

proteins can diffuse laterally as both individual proteins and in large complexes (Singer 

& Nicolson, 1972, Steim et al., 1969).  

 

Various methods of membrane transport have evolved to suit environment and function. 

Conceptually, the least complex method is that of a channel facilitating the diffusion of a 

substrate to equalise its concentration on either side of the membrane (Transporter 

Classification TC1.A), as in the example of the tetrameric Escherichia coli glycerol 

facilitator, GlpF (TC1.A.8.1.1) (Figure 1.2a) (Sweet et al., 1990).  

 

It is also worth mentioning that different classes of transporters exist for the inward 

translocation of substrates through the outer membrane of Gram-negative bacteria. These 

include porins (non specific channels), specific channels and TonB-dependent receptors, 

which are powered transporters and are capable of active transport, accumulating their 

substrate against a concentration gradient (Nikaido, 2003).  
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Figure 1.1: The cell wall of (A) Gram-positive and (B) Gram-negative bacteria. In Gram-positive 
bacteria, the cell membrane is coated with a thick layer of protective peptidoglycan containing 
teichoic acid and lipoteichoic acid, which are critical for cell shape and survival. In Gram-negative 
bacteria, the peptidoglycan layer is much thinner and surrounded by the outer membrane, which 
are anchored together by embedded lipoproteins. The outer membrane is permeabilised by porins 
and coated by lipopolysaccharide, which is critical for cell survival and integrity. Taken from 
Cabeen and Jacobs-Wagner (2005).  
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n X+

H+/Na+
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n ADP 
+  
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Figure 1.2: The major types of transporters in bacteria (with substrate represented by blue circles). A) Substrate specific channels that equalise 
the concentration of the substrate across the membrane. Shown here is a monomer of the tetrameric E. coli glycerol facilitator, GlpF, with three 
molecules of bound glycerol as atom-coloured spheres (Fu et al., 2000). B) Secondary active transporters couple translocation of the substrate 
with ion flow down an electrochemical gradient. The example given here is the E. coli lactose permease, LacY (Guan et al., 2007). C) Binding 
protein-dependent secondary active transporters use two integral membrane proteins, the larger shows some similarity to secondary active 
transporters and the smaller (green) has an essential, but unknown function. Substrate is delivered to this complex by a periplasmic substrate 
binding protein (SBP). The example SBP shown here in green ribbons is SiaP (Johnston et al., 2008). D) Primary transporters use energy 
directly to translocate the substrate. The example given here is a catalytic intermediate of the E. coli maltose transporter, MalEFGK2 (Oldham 
et al., 2007), where ATP hydrolysis drives substrate translocation across the membrane. For the ABC importer, the substrate is bound by a SBP 
and delivered to the permease. E) Group translocators. This group catalyse transport of the substrate at the same time as its phosphorylation. 
The example shown here is a representation of a general phosphotransferase system (Saier et al., 2005).  

Extracellular 
space  

Cytoplasm  

A) Facilitated diffusion  C) Binding protein-
dependent secondary 
active transport 

B) Secondary active 
transport 

E) Group translocation  D) Primary transport 
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1.2  Active transport  

Active transport refers to systems that transport their substrate against a concentration 

gradient, powered at the expense of an energy source such as ATP, an electrochemical 

gradient or light. These active transporters can be grouped into three major types: 

secondary active (TC 2), primary active (TC 3) and group translocators (TC 4) (Figure 

1.2b-f).  

 

In secondary active transporters, transport of the solute is driven by its coupling with ion 

flow down an electrochemical gradient, such as H+ or Na+ (Saier, 2000b) (Figure 1.2b). 

The classical example of this is the E. coli lactose permease (TC 2.A.1.5.1) from the 

Major Facilitator superfamily (MFS; TC 2.A.1). This is a lactose:H+ symporter where the 

translocation of extracellular protons into the cytoplasm drives the accumulation of 

intracellular lactose (Wong et al., 1970, Wong & Wilson, 1970).  

 

A distinct class of secondary transporters are the substrate-binding protein (SBP)-

dependent secondary transporters (Figure 1.2c). The founding member of this class of 

transporter is the Rhodobacter capsulatus C4-dicarboxylate tripartite ATP-independent 

periplasmic (TRAP) transporter, DctPQM (TC 2.A.56.1.1), which couples solute 

transport with ion flow down an electrochemical gradient (Forward et al., 1997). The 

DctM integral membrane proteins of these are part of the Ion Transporter (IT) 

superfamily and share homology with the DcuC family of C4-dicarboxylate secondary 

active transporters (TC 2.A.61) (Prakash et al., 2003). This permease is associated with 

an essential, smaller integral membrane protein of unknown function and a periplasmic 

SBP (Forward et al., 1997, Rabus et al., 1999).  

 

Primary active transporters use an energy source, such as ATP hydrolysis, to drive 

substrate translocation across the membrane. In the case of ABC importers, the substrate 

is delivered to the permease by a substrate binding protein (SBP; also known as PBP pr 

ESR), which binds the substrate with high specificity and affinity (Figure 1.2d) (Ames & 

Nikaido, 1978). ATP is hydrolysed by ATP-binding cassettes, hence the superfamily 
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name of ABC transporters. The classical example of this family is the E. coli maltose 

transporter (TC3.A.1.1.1) from the carbohydrate uptake transporter-1 (CUT-1) family.  

 

The final group of transporters considered here are the Group Translocators, such as the 

bacterial phosphotransferase system (PTS; TC 4.A) (Figure 1.2f) (Saier et al., 2005). In 

these, translocation of the substrate is concomitant with its phophorylation. The 

phosphate group is transferred through cytosolic members of the complex from 

phosphoenolpyruvate. A major role for these transporters is the uptake of sugars, 

generating cytosolic phosphorylated sugars.  

 

Of these groups, ABC transporters will be discussed in detail in terms of the SBP and the 

mechanism of transport. There have recently been critical developments in this field in 

describing the mechanism of this SBP-dependent transporter. Secondary active 

transporters will also be discussed, in line with the TRAP transporters being a class of 

this transporter type.  

 

1.3  ATP binding cassette (ABC) transporters  

ABC transporters make up a large proportion of all transporters found in nature and are a 

common bacterial import system. The E. coli genome contains 65 ABC transport 

systems, taking up over 5% of the total genome (Moussatova et al., 2008). Fifteen of 

these lack an apparent SBP and so are presumed to be ATP-driven export systems, 

leaving the remaining 50 as ABC uptake systems. Their use of ATP hydrolysis to drive 

transport has been shown in many systems both in vivo and in vitro by ATP depletion or 

removal and analogue replacement (Ames et al., 1989, Dean et al., 1989a, Dean et al., 

1989b, Prossnitz et al., 1989). Substrate-specific SBPs, previously discovered by their 

role in chemotaxis (Adler et al., 1973, Hazelbauer & Adler, 1971), were shown to be 

essential for transport by deletion studies, removal of the periplasm by osmotic shock and 

transport in membrane vesicles (Ames & Lever, 1970, Wandersman et al., 1979, Ames et 

al., 1989, Dean et al., 1989a, Dean et al., 1989b).  
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1.3.1  The E. coli ABC transporter for maltose as a model system  

By the end of the 1970’s, it had been shown that maltose transport in E. coli was 

dependent upon a small number of genes including malE that encodes a soluble 

periplasmic maltose chemotaxis protein, which was purified to homogeneity and found to 

bind to malto-oligosaccharides (Hofnung, 1974, Hofnung et al., 1974, Kellermann & 

Szmelcman, 1974, Wandersman et al., 1979). Following this, the maltose transport 

system was described in detail using E. coli membrane vesicles (Dean et al., 1989a, Dean 

et al., 1989b). This showed conclusively that ATP-driven transport was dependent on 

MalE, whether this was supplied in the reaction mix or tethered to the membrane by an 

un-cleavable signal sequence.  

 

Like all other ABC transporters, the E. coli maltose transporter, MalEFGK2, is made up 

of a SBP (maltose binding protein; MBP, MalE), two integral membrane domains (MalF 

and MalG) and an ATPase dimer (MalK2) (Figure 1.3a). The ligand-bound MBP interacts 

with the periplasmic surface of MalFG to deliver the substrate for transport through 

MalFG (Daus et al., 2007a, Oldham et al., 2007). The ATPase dimer interacts with the 

cytoplasmic surface of MalFG and, on binding of two molecules of ATP, the dimer and 

then reopens following ATP hydrolysis (Daus et al., 2007b, Lu et al., 2005).  

 

1.3.1.1 The substrate-binding protein (SBP)  

Periplasmic substrate-binding proteins are soluble proteins made up of two α/β globular 

domains connected by a flexible hinge region (Davidson et al., 2008, Quiocho, 1990, 

Quiocho & Ledvina, 1996). SBPs from different systems have low sequence homology 

but highly similar tertiary structure (Quiocho & Ledvina, 1996). Ligand binding occurs 

by closure of the two domains in a Venus fly trap-like mechanism (Kellermann & 

Szmelcman, 1974, Mao et al., 1982, Newcomer et al., 1981, Sharff et al., 1992, Spurlino 

et al., 1991).  

 
Previously, SBPs were classified based upon their secondary structure arrangement 

(Davidson & Chen, 2004). Class I is believed to have arisen from the fusion of a 

substrate-binding CheY-like protein dimer. From this ancestral class I SBP, a helix swap 
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Figure 1.3: The E. coli maltose transport, MalEFGK2 (Oldham et al., 2007). A) Protein crystal structure of a 
catalytic intermediate of the entire complex. MalE (magenta) delivers maltose to the TMDs, MalFG (blue and 
yellow). In this intermediate, maltose (atom coloured spheres) is held in a binding site in MalF within the 
membrane. The motion of the TMDs that allow transport of maltose (atom coloured spheres) is driven by ATP 
hydrolysis by the ATPase dimer, MalK2 (red and green). B) MalE is made up of two domains that close around 
the ligand. This motion is made up of a 35° hinge bend and an 8° rotation around the hinge. C) One of the 
ATP binding sites. ATP (atom coloured sticks) is held between the Walker A motif (blue) of MalK and the 
LSGGQ motif (green) of the opposite MalK with a glutamine residue (red sticks) from the Q-loop (red). The 
Q-loop has extensive contacts with the TMD coupling helix (yellow) and is proposed to signal between the 
domains. The Walker B motif is shown in pink. D) The NBDs close around two ATP molecules. It is proposed 
that this motion is transmitted to the motion of the TMDs via the coupling helices in MalFG (circled).  
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(“domain dislocation”) occurred between the domains to give the ancestral class II SBP 

(Fukami-Kobayashi et al., 1999). Class III SBPs have a more rigid hinge structure and 

undergo a smaller conformational change upon ligand binding (Borths et al., 2002, 

Davidson & Chen, 2004, Karpowich et al., 2003). 

 

Recently, a new scheme has been proposed that is based upon the high resolution 

structural data available for 107 SBPs (Berntsson et al., 2010). In this, SBPs were 

reclassified based upon distinct, defining structural features into six clusters, A-F, all of 

which can be associated with ABC importers except for cluster E, which is specific to 

TRAP transporters.  

 

In the maltose binding protein (MBP), the extent of domain opening between the two 

conformations is 35° hinge bending and 8° rotation (Figure 1.3b) (Sharff et al., 1992). 

This large change in the presented surface of the protein between these two 

conformations is the basis for the proposed mechanism for discrimination of the ligand 

bound versus unbound PBP.  

 

 

1.3.1.2 The membrane-associated complex  

The membrane-associated complex of an ABC transporter is made up of two NBDs and 

two TMDs, with a total of 10-20 TMHs (Figure 1.3a) (Hollenstein et al., 2007). The 

TMDs can form a homo- or heterodimer and can often be fused to a NBD monomer, 

resulting in a half-transporter that can form a homo- or heterodimeric whole transporter 

(Dawson et al., 2007). MalEFGK2 is made up of a heterodimer of the transmembrane 

proteins MalF and MalG associated with a NBD homodimer, MalK2.  

 

MalF and MalG are made up of 8 and 6 TMHs, respectively, which form corresponding 

crescent shapes around a central opening (Oldham et al., 2007). At the base of each 

TMD, there is a conserved loop containing the Gln-Ala-Ala (EAA) motif, which is 

critical in the interaction with the NBD (Bluschke et al., 2007, Daus et al., 2007b). In the 

MalEFGK2 crystal structure (Figure 1.3a), it can be seen that each of these loops fit into a 
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groove between lobes 1 and 2 of each MalK monomer and interact with a conserved 

region, called the Q-loop, which also contributes Gln-82 to the co-ordination of ATP 

(Chen et al., 2003). As shown in Figure 1.3d, ATP is bound between the Walker A and 

Walker B motifs of the NBD and the LSGGQ motif of the opposite NBD (Chen et al., 

2003, Oldham et al., 2007). It has been proposed that this arrangement with the Q-loop 

allows signalling and the application of mechanical force between the TMDs and the 

NBDs (Chen et al., 2003).  

 

In the protein crystal structure of the MalK2 dimer in isolation, Chen et al. (2003) found 

that in the absence of ATP, the dimer could adopt a fully open conformation (Figure 

1.3d) and a semi-closed conformation, which were both suggested to be mechanistically  

relevant to transport.  

 

MalF is unusual in that it has an extended periplasmic loop that reaches around MalE in 

the protein crystal structure. This interaction with MalE is apparently stable, since this 

loop, when expressed alone, can associate with MalE in solution (Jacso et al., 2009).  

 

1.3.1.3 The proposed mechanism of transport  

The recent protein crystal structure of MalFGK2 in its resting state shows MalFG in a 

periplasm-closed, cytoplasm-open conformation with the NBDs in a conformation 

between the fully open and semi-open forms (Figure 1.4a) (Chen et al., 2003, Khare et 

al., 2009). The periplasmic loop of MalF is not represented in the structure due to its 

disordered state. This structure is very similar to those of E. coli MetN2I2 and ModB2C2 

from Methanosarcina acetivorans and Archaeoglobus fulgidus, in that the core TMDs 

adopt a curved shape (Gerber et al., 2008, Hollenstein et al., 2007, Jones et al., 2009, 

Kadaba et al., 2008). It is worth mentioning here that the NBD extended C-terminii of E. 

coli MetN2I2 and M. acetivorans ModB2C2 have an extended C-terminus that are 

involved in a transinhibition regulatory mechanism, where cytoplasmic substrate binds to 

this regulatory domain and result in the NDBs moving further apart (Gerber et al., 2008, 

Kadaba et al., 2008).  
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Figure 1.4: The proposed transport mechanism of MalEFGK2-likeABC importers. The binding protein is 
shown in magenta, the TMDs in blue and yellow, the NBDs in green or green and red. A) The resting state of 
MalFGK2. MalFG is cytoplasm-open, periplasm-closed and the NBDs are in a conformation between their 
fully open and semi-open forms. B) The interaction of the PBP with the TMDs is represented by the protein 
crystal structure of A. fulgidus molybdate transporter, ModAB2C2. C) The proposed pre-hydrolytic transition 
state complex of maltose⋅MalEFGK2⋅2ATP. D) The transport intermediate complex, stabilised by vanadate 
trapping. E) The proposed post-hydrolytic transition state with semi-open, ADP-bound NBDs and could still 
involve the binding protein. The dissociation of maltose, MalE, ADP and Pi would lead back to the resting 
state of the transporter.  
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When considering the mechanism of transport, it would seem apparent that the 

MalEFGK2⋅2ATP complex must adopt an unstable conformation so that the NBD closure 

and the ATP hydrolysis can occur (Shilton, 2008). This state would be analogous to a 

transition state in enzyme catalysis. Since the closed MalE and the resting MalFGK2 are 

in their lowest energy conformations, their interaction, along with ATP, must produce a 

relatively unstable complex to drive the reaction forwards.  

 

The ligand-bound SBP is able to interact with MalFGK2 and, in doing so, has been shown 

to cause a change in the closure of the NBDs to their semi-open positions (Austermuhle 

et al., 2004, Hollenstein et al., 2007, Orelle et al., 2008). This conformation is 

represented in Figure 1.4b by the crystal structure of A. fulgidus ModAB2C2. Since ATP 

would be present in the nucleotide binding sites of MalK2 (intracellular ATP 

concentration > Km), it has been proposed that, with ATP, the conformation that this 

complex would actually be found in is the ATP-loaded, SBP-absent conformation (Khare 

et al., 2009, Orelle et al., 2008, Shilton, 2008).  

 

This complete closure of the NBDs and concerted closure of the cytoplasmic side of the 

TMDs is believed to be transmitted via the TMD coupling helices (Figure1.3 ac) (Chen et 

al., 2003, Khare et al., 2009, Oldham et al., 2007). The interaction between the coupling 

helix and the Q-loop is extensive, but mediated mainly via Van der Waal’s interactions, 

and so can be satisfied throughout the mechanistic cycle.  

 

The closure of the NBDs appears to result in a rigid body movement of MalFG to the 

cytoplasm-closed, periplasm-open conformation with a concerted opening of the 

associated MalE (Figure 1.4b-d) (Khare et al., 2009, Oldham et al., 2007). In this 

structure, maltose is held in a binding site within the TMDs and not by the SBP, where a 

loop from MalF partially occupies the SBP ligand binding site (Figure 1.3a) (Oldham et 

al., 2007). This loop occupies the maltose binding site of MalE, preventing the ligand 

from maintaining an interaction with the open conformation. The concentration of 

maltose in this occluded cavity is approximately 250 mM and so the maltose is bound by 

the MalF binding site despite its low affinity for maltose, which was revealed by the low 
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affinity of SBP-independent mutants of MalFGK2 (Khare et al., 2009, Oldham et al., 

2007).  

 

In this intermediate state, the NBDs are closed and so the spontaneous hydrolysis of ATP 

to ADP and Pi would occur and is, in fact, necessary to reopen the NBDs in solution (Lu 

et al., 2005). With ADP bound, this state is extremely unstable and so adopts the 

cytoplasm-open, periplasm-closed TMD conformation, followed by the dissociation of 

maltose, MalE, ADP and Pi to give the resting state of MalFGK2 (Figure 1.4d-a). 

However, it is possible that there is a post-hydrolytic transition state that can be adopted. 

In their work on the motion of the NBDs, Orelle et al. (2008) detected the presence of a 

semi-open NBD following ATP hydrolysis. This state in the transport cycle could follow 

the dissociation of Pi and/or maltose. It reasonable to assume that this transition state 

would be very unstable, particularly if the closed, unliganded MalE is still associated. 

Whatever the order, the dissociation of MalE and ADP may allow the NBDs to open 

further to allow the binding of ATP (Orelle et al., 2008).  

 

The stoichiometry of ATP hydrolysed per molecule of substrate transported is, in most 

cases, still up for debate. In the case of the Lactococcus lactis OppA ABC transporter 

(TC 3.A.1.5.10), Patzlaff et al. (2003) suggested that 2 ATP are hydrolysed per cycle of 

transport.  

 

Recently, the protein crystal structure of the E. coli vitamin B12 transporter, BtuC2D2F 

(TC 3.A.1.13.1), has been used to describe a different TMD-fold family and propose a 

different transport cycle (Hvorup et al., 2007, Lewinson et al., 2010). Along with the H. 

influenzae putative metal transporter HI1470/1471-HI1472 (TC 3.A.1.14.11), BtuC2D2F 

has a different transmembrane fold to the molybdate, methionine and maltose 

transporters, forming a narrower channel surrounded by densely-packed TMDs (Jones et 

al., 2009). The most illustrative difference is that, for the MalEFGK2-like transporters, 

the highest affinity of the TMDs for the SBP occurs in the transport intermediate state, 

whereas this is the state with the least stable interaction in the BtuC2D2F-like transporters 

(Lewinson et al., 2010). The resulting effect is that the ground state of the transporter is 



 28

SBP-bound with closed NBDs and a significant basal ATPase activity that is poorly 

stimulated by liganded SBP-binding. Quite how this mechanism is advantageous is 

unclear. The use of such quantities of ATP might be an acceptable loss under metal-

limiting conditions and might be the cost of transporting high affinity-bound metal ions 

or large metal chelating groups from class III SBPs.  

 

1.3.2  The role of the PBP in transport  

The use of a PBP in these systems confers not only high affinity and specificity in 

transport, but can also reduce non-productive consumption of ATP. Binding protein-

independent mutants of MalFGK2 (iMalFGK2) all show a high level of constitutive 

ATPase activity (Davidson et al., 1992, Shuman, 1982). All of these mutants have been 

shown to bind maltose with a similar, low affinity, but allow growth at different rates, 

which are directly proportional to their rate of ATP hydrolysis (Davidson et al., 1992).  

 

The substrate specificity of the transporter is dictated by the specificity of the PBP. The 

L. lactis oligopeptide binding protein, OppA, has little specificity for the sequence of its 

ligands except for a preference for the presence of a leucine residue, yet all peptides that 

could be bound by OppA were transported by OppBCDF (Berntsson et al., 2009, Doeven 

et al., 2004). A similar effect was also seen where a sucrose-binding variant of MalE was 

found to interact with MalFGK2 and stimulate ATPase activity (Gould & Shilton, 2010). 

The Pseudomonas ABC transporter for choline, betaine and carnitine has recently been 

reported to use separate, specific PBPs for betaine and carnitine that are encoded 

separately on the genome (Chen et al., 2010).   

 

It has been shown repeatedly that the opening and closing mechanism of the PBP is 

important in transport; mutations in the PBP that trap the domains closed cannot catalyse 

transport (Jacobson et al., 1991, Sjoelund & Kaltashov, 2007, Zhang et al., 1996) and a 

similar observation has been made for mutations that appeared to be on the interface of 

the PBP domains and the TMDs (Hor & Shuman, 1993, Shilton et al., 1996).  
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Previously, it was believed that only the closed conformation of the PBP interacted with 

the membrane components. It was shown that this was not necessarily the case when 

Ames et al. (1996) showed that both the liganded and unliganded forms of the 

Salmonella typhimurium histidine-PBP could interact with the transporter with similar, 

micromolar affinity. However, the interaction was different for the open conformation, 

where one domain would bind preferentially and the ATPase would not be highly 

stimulated. Their results also suggested that the “de-liganded” PBP did not leave the 

complex following transport, resulting in transport depending on the diffusion of the 

substrate and not the slower-diffusing PBP. In this proposed model, the large excess of 

PBP in the periplasm (often greater than 1 mM) would store extracellular substrate and 

decrease the concentration of free substrate, so increasing the amount that entered the 

periplasm.  

 

In some ABC import systems, binding proteins are found fused to the TMDs. Where 

multiple domains are found that bind the same ligand, two models have been proposed 

(van der Heide & Poolman, 2002). The first proposes that the second domain could 

deliver substrate to the first domain, which cycles through transport. In the second, the 

domains interact alternately so that one binds substrate whilst the other is associated to 

the TMDs. It could be that the faster diffusion of small molecules is being taken 

advantage of, as in the proposed model for the S. typhimurium histidine ABC transporter. 

If the large PBP concentration has an important role in transport, then this effect could be 

amplified in multiple binding domain systems, where the apparent concentration of the 

binding domain would approach 100 mM (van der Heide & Poolman, 2002).  

 

1.3.3  The mechanism of PBP domain closure  

The ligand-induced conformational change of the PBP must occur following recognition 

of the ligand by the open conformation, or at least a semi-open conformation. The protein 

crystal structures of PBPs such as MalE show the networks of amino acid residues in 

their binding sites that recognise the cognate ligand. The binding site of the oligopeptide 

binding protein OppA manages to combine high affinity for its oligopeptide ligands with 

low specificity for their sequence inside a voluminous cavity by interacting with the 
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peptide backbone and a single isoleucine side chain (Berntsson et al., 2009, Doeven et 

al., 2004).  

 

Some evidence for the mechanism of ligand recognition has come from protein crystal 

structures of PBPs bound to ligands that induce only partial or no closure of the domains. 

For MalE, these ligands include maltose, maltotriitol and maltotetraitol (Duan et al., 

2001, Spurlino et al., 1991). Different conformations of the E. coli Leu/Ille/Val binding 

protein have also been compared (Trakhanov et al., 2005). In this case, a more open form 

was also discovered along with the open and closed, all of which lay along the same 

trajectory between fully closed and fully open (Figure 1.5a). In both of these structures, 

the binding site contributed both hydrophobic and polar interactions to the ligand, 

arranged so that the majority of the non-polar interactions were made by aromatic 

residues donated from one domain. It was found that in the ligand-bound open 

conformations, the oligosaccharides were almost always bound to the aromatic residue-

containing domain (Duan et al., 2001, Duan & Quiocho, 2002).  

 

It is widely accepted that SBPs in solution exist in an equilibrium between the open and 

closed forms and that the presence of ligand stabilises the closed form. Using 

paramagnetic relaxation enhancement (PRE) NMR to probe the proximity of 

paramagnetic probes in the cleft of MalE, Tang et al. (2007) showed that, in solution, 5% 

of MalE can be found in the closed form in dynamic equilibrium with the open form. 

However, this does not always occur, as shown for the E. coli glutamine binding protein, 

all of which is found in a fully open conformation using similar methods (Bermejo et al., 

2010). While investigating the closing mechanism of MalE using molecular dynamics 

simulations, Stockner et al. (2005) suggested that a hydrogen bond network around Lys-

15 and Glu-111 altered its contacts throughout the domain closure, creating a strong salt-

bridge that restricted re-opening of the cleft.  

 

Like MalE, the closure of the E. coli glucose/galactose binding protein (GGBP) is made 

up of a hinge-bending motion and a rotation, which was investigated by Careaga et al. 

(1995). The rotation component was investigated by disulphide trapping at six positions 
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A) 

B) 

C) 

Figure 1.5: Investigations of the mechanism PBP domain closure. A) The protein crystal structures of three 
conformations of the E coli Leu/Ile/Val binding protein showing the closure of the domains. B) The positions of 
cysteine mutants in the E. coli glucose/galactose binding protein used in the investigation of domain rotation. E) 
The degree of closure caused by mutations in MalE. Taken from Millet et al. (2003). 
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around the lip of the cleft that covered 142° rotation (Figure 1.5b). They found that 

GGBP was sampling 120° rotation, which reduced to 36° on binding of glucose with a 

reduced rate of twisting. It was suggested that this could be a method for disrupting the 

interaction of the unliganded binding protein with the transport complex, although it is 

also possible that it is either an inherent property of a mobile system or is critical for the 

mechanism of ligand binding and release.  

 

Since ligand binding by PBPs is a function of the equilibrium between the open and 

closed conformations, it would seem that destabilisation of the open form would move 

the equilibrium towards the closed, ligand-bound conformation. Various groups have 

approached this and have found differences in their results. In MalE, the first example of 

this was by Marvin & Hellinga (2001), who targeted a residue in a crevice on the 

opposite side of the hinge to the ligand binding site. This position was mutated to various 

residues including cysteine, to which modifying groups were attached. When the size of 

this side chain was increased, the affinity for the ligand was increased. These variants had 

caused a different degree of closure of the protein, where the increase in affinity was 

proportional to the degree of closure (Figure 1.5e) (Millet et al., 2003). In the work of 

Telmer & Shilton (2003), the region on the opposite side of the hinge to the binding site 

was found to have interactions that stabilised the open conformation. When removed, this 

‘balancing interface’ was disturbed and the affinity for the ligand was dramatically 

increased, mainly by a decrease in the off-rate of the bound ligand. In solution, these 

mutations were found to exist in the same proportion of the open and closed forms and 

their crystal structures showed a similar extent of opening. These results showed that the 

PBP bending around its hinge with stabilising interactions that can occur on both sides 

and that it was possible to alter this equilibrium via these or by blocking the extent of 

opening.  

 

1.3.4  Exploiting SBPs from ABC transporters  

The mechanism of periplasmic binding proteins is one that is easily and frequently 

exploited for purposes other than transport. The most common is as a detector for its 
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substrate, such as in chemotaxis. This section is most easily separated into designed 

systems, exploited for technological gain, and natural systems, exploited for survival.  

 

1.3.4.1 Technological exploitation  

Most designed exploitation of the SBP fold is for the generation of biosensors for the 

SBP substrate, taking advantage of the high specificity for, and strong response to the 

presence of, the substrate. Almost all systems so far are based on designing an electronic 

interface to detect the conformational change in the PBP to create a sensor for a specific 

substrate. The major variance in this is the methods used to convert the conformational 

change into a signal. This ranges from the production of a fluorescence change to a more 

direct interaction with an electrode (Figure 1.6). Fluorescence-based methods involve the 

addition of a chemical fluorophore to the protein, usually around the cleft or the hinge so 

that the change in environment on domain closure causes a large change in fluorescence 

(de Lorimier et al., 2006, Rizk et al., 2006, Thomas et al., 2006). The technology for the 

construction of genetically-encoded nanosensors has been advanced recently and 

involves the fusion of two green fluorescent proteins (GFPs) to either end of the PBP so 

that fluorescence resonance energy transfer (FRET) occurs between them (Deuschle et 

al., 2005, Fehr et al., 2002). This FRET signal is very sensitive to changes in the distance 

and orientation between the two GFPs and so can give a strong signal for the domain 

closure of the PBP. An advance from this is the circular permutation of the PBP (Okada 

et al., 2009); this effectively rotates the secondary structure of a class II PBP so that each 

domain is made of a continuous polypeptide chain and there is just one strand to the 

hinge. This means that the termini, and so the GFPs, are at the maximum possible 

distance from each other in the open conformation, making the signal change much 

larger.  

 

More direct interfaces with the conformational change usually involves surface 

immobilisation if the PBP to an electrode. From this, the closing of the PBP can be 

detected as altered electron transfer of the protein-coated electrodes or the motion of a 

conjugated heavy metal probe such as ruthenium (Figure 1.6ab) (Andreescu & Luck, 

2008, Benson et al., 2001). Cantilever-based sensors have been proposed that would take 
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Figure 1.6: Exploited periplasmic binding proteins (cyan ribbons). A) PBP-coated electronic probe. The binding 
of ligand (atom coloured spheres) affects the transfer of electrons around the electrode. The positions of cysteine 
mutants in the E. coli glucose/galactose binding protein used in the investigation of domain rotation. B) A heavy 
metal (e.g. ruthenium2+) cofactor is added to the protein, which is attached to an electrode in a specific 
orientation. The binding of ligand (atom coloured spheres) decreases the distance between the electrode and the 
cofactor, altering the potential of the electrode. C) Cantilever-based detection. The binding of heavy metal ions 
to the PBP would cause a deflection of the cantilever in an electric field. D) Closure of the PBP domains can be 
linked to the activation, or inactivation, of enzyme activity, such as TEM1 β-lactamase.  
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advantage of recent advances in scanning force microscopy, effectively producing a 

microbalance (Ziegler, 2004). These would be based on detecting the small movements 

of the cantilever following binding of the ligand and have, thus far, only been seriously 

suggested for heavy metal-binding proteins, which would be detected via their response 

to an electric field (Figure 1.6c).  

 

Exploitation methods that link the PBP mechanism to another function, such as an 

enzyme, are exemplified by the work of Guntas et al. (2004), who generated a maltose-

dependent TEM1 β-lactamase (Figure 1.6d). This was achieved by random circular 

permutation and random insertion of the TEM1 β-lactamase gene into malE and 

screening for maltose-sensitive β-lactamase activity.  

 

1.3.4.2 Alternative uses of the PBP fold  

The use of PBPs as detectors for the presence of their substrates is a common one in 

bacteria; PBPs were originally characterised from their role in chemotaxis (Hazelbauer & 

Adler, 1971, Adler et al., 1973). For example, maltose-bound MalE interacts with the 

signal transducer tar and induces a chemotactic response (Figure 1.7a) (Manson & 

Kossmann, 1986, Zhang et al., 1999). Similar exploitation also occurs intracellularly, for 

example the E. coli DNA-binding repressors for the metabolism of lactose and purines, 

LacI and PurR, which bind both their effector and their DNA target (Figure 1.7b) 

(Mowbray & Bjorkman, 1999).  

 

In the ionotropic glutamate receptor, an extracellular PBP-like domain has been inserted 

that regulates the ion channel (Figure 1.7c) (Sobolevsky et al., 2009). Mycobacteria have 

exploited a PBP in the synthesis of their cell wall (Marland et al., 2006). This essential 

component binds phosphotidylinositol mannoside before its inclusion into the cell wall. 

In a similar manner, a PBP-like protein from Pseudomonas aeruginosa has gained 

cyclohexadienyl hydratase activity and is used in the synthesis of phenylalanine from 

chorismate in the periplasm (Tam & Saier, 1993).  
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A) 

Figure 1.7: Alternative uses of periplasmic binding proteins. A) MalE (blue surface representation) interacts 
with the Tar chemotaxis signalling complex (green, magenta and yellow surface representation). Taken from 
Zhang et al. (1999). B) The PBP structure of the ribose binding protein is maintained in the transcription 
repressors PurR and LacI. C) Structure of the Rat ionotropic glutamate receptor (ribbons, one monomer in green) 
with the ligand binding domain highlighted as a red surface representation. D) The E.coli nickel binding protein 
(Blue surface representation) also binds periplasmic heme (different coloured cylinders). Taken from Shepherd 
et al. (2007).  
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In some cases, the original function of the PBP has been maintained, yet provides another 

function. Synechocystis PCC 6803 has two PBPs for Fe3+, one of which, FutA2, is 

redundant in Fe3+ transport but involved in Cu2+ import (Waldron et al., 2007). It has 

been shown that FutA2 sequesters excess Fe3+ in the periplasm, preventing its interaction 

with other metal binding proteins. Another example is E. coli nickel-PBP, NikA, which 

has been found to have a second, independent binding site for heme and is involved in its 

transport (Figure 1.7d) (Shepherd et al., 2007).  

 

 

1.4  Secondary active transport  

Secondary active transporters are common to all domains of life and can be found 

transporting almost any small molecule family (Saier, 2000b, Sobczak & Lolkema, 

2005). Transport usually occurs at the cost of depleting an electrochemical gradient, 

usually H+, Na+ or K+, which had been built up by transport of these ions at the cost of 

the cell’s chemical energy, giving rise to the name of secondary transport (Harold & 

Kakinuma, 1985).  

 

These transporters can catalyse transport by one of four different methods: Uniport (a 

single translocated substrate); Symport (co-transport of substrate and cations); Antiport 

(counter-transport of substrate and cations); or Solute-Solute exchange (exchange of one 

solute for another). It has also been reported that more complex combinations of these 

can occur including co- and counter-transport of multiple cations (Saier, 2000b). 

Secondary active transporters can be split into many families. The largest is the major 

facilitator superfamily (MFS; TC 2.A.1).  

 

1.4.1  The Major Facilitator Superfamily  

The largest of these four groups of secondary transporters is the MFS, previously known 

as the uniporter-symporter-antiporter superfamily. It is itself spilt up into 29 different 

families (Pao et al., 1998, Saier et al., 1999). Secondary active transporters from the MFS 

are the most commonly used transporter for sugars and up to 8 MFS families have 

members involved in sugar transport (Kaback et al., 2001, Saier, 2000b, Saier et al., 
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1999). Two of these especially worth noting are the sugar porter (SP) family, which 

contains the largest number of members, and the oligosaccharide:H+ symporters (OHS), 

which contains the E. coli lactose permease, LacY.  

 

Many of these MFS families, such as the OHS, are restricted to bacteria and are 400-500 

amino acid residues in length, containing 12 TMHs. Sugar porters also contain 12 TMHs, 

but are found in bacteria, archaea and eukarya and so their size range is larger, from 400-

800 amino acids, with bacterial members generally being smaller. In MFS transporters, 

the first six TMHs show some homology to the last six, suggesting that the MFS 

transporter superfamily arose from a gene duplication and fusion event (Pao et al., 1998). 

 

1.4.2  The E. coli lactose permease as a model system  

Since the reported discovery of the E. coli lac operon, the lactose permease LacY (FHS  

family) could be described as one of the most intensively studied proteins in history, with 

over 500 mutants constructed of the 417 amino acid polypeptide (Varela & Wilson, 

1996). Like MalEFGK2, LacY has lent itself particularly well to analysis, in part due to 

the convenience of transport assay development.  

 

 

1.4.2.1 The structure of the lactose permease  

The protein crystal structure of LacY in a protonated, cytoplasm-open, periplasm-closed 

conformation was reported in 2007 (Figure 1.8a), which adopted the same conformation 

as the non-transporting Cys-154-Gly mutant that had been crystallised previously 

(Abramson et al., 2003a, Abramson et al., 2003b, Guan et al., 2007). This showed the 

presence of the expected 12 TMHs and homology between the N- and C-terminal 

domains, which have approximately two-fold rotational symmetry and can be 

superimposed with an RMSD of 2.2 Å. Between these two domains is a water-filled 

cavity that contains the binding site, where the substrate analogue is bound. The protein 

crystal structure of the E. coli glycerol-3-phosphate transporter, GlpT was simultaneously 

reported and adopted a very similar cytoplasm-open, periplasm-closed conformation 

(Huang et al., 2003).  
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Figure 1.8: A) Protein crystal structure of the E. coli lactose permease, LacY (Abramson et al., 2003b). The 12 TMHs 
form two 6 TMH bundles with an approximate two-fold symmetry. These two bundles form a crevice extending in to 
the membrane with the substrate binding site located approximately halfway through the membrane. B) Global 
changes between the cytoplasm-open structure and the periplasm-open model, taken from Abramson et al. (2003b). 
Left, the cytoplasm-open structure of LacY with helical content represented as cylinders (N-terminal domain in blue 
and C-terminal domain in red). Right, the putative periplasm-open model of LacY. This was produced by a domain-
domain rotation of 60°, supported by cysteine reactivities (residues shown in yellow on the left) and cross-linking 
studies. C) The proposed alternating access model for transport, taken from Abramson et al. (2003b). The periplasm-
open conformation, A, becomes protonated as shown in B. The substrate is bound, C, and the global conformation 
change produces the cytoplasm-open form, D, which dissociates the substrate, E, and then the proton. The substrate-
free cytoplasm-open conformation, F, then flips back to the periplasm-open conformation.  
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1.4.2.2 Proposed mechanism of transport  

Both the LacY and GlpT structures support the proposed Alternating Access mechanism 

for transport (Figure 1.8b) (Locher et al., 2003, Tanford, 1983). The putative periplasm-

open, cytoplasm-closed structural model of LacY is shown in Figure 1.8b (Abramson et 

al., 2003b). This was produced by a domain-domain rotation of 60° and is supported by 

cross-linking studies and by increased solvent exposure of the cysteine residues 

highlighted in the figure.  

 

In this alternating access mechanism (Figure 1.8c), the deprotonated, periplasm-open 

conformation is very unstable and immediately binds a proton via the Glu-269–His-322 

pair, producing the ground state of the transporter, to which substrate is bound by salt-

bridged Glu-126 and Arg-144 pair (Abramson et al., 2003b). To cause transport, this 

complex must adopt a highly unstable conformation, much like the maltose ABC 

transporter, previously. It is suggested that this transition is coupled to the formation of 

an inter-domain salt-bridge between Arg-144 and Glu-269. This then causes the release 

of the substrate into the cytoplasm followed by dissociation of the proton. The 

deprotonated, substrate-free, cytoplasm-open conformation then returns to the periplasm-

open conformation, probably via breaking of the Arg-144–Glu-269 salt bridge and 

reformation of the Glu-269–His-322 pair.   

 
1.4.3  Sodium-driven co-transport  

As stated previously, secondary transporters can also utilise Na+-gradients to drive 

substrate accumulation. A major group of these is the sodium:solute symporter (SSS) 

family (TC2.A.21). These are ubiquitous, ranging in size from 400-700 amino acid 

residues, containing 12-15 TMHs and they transport a wide variety of substrates coupled 

with either 1 or 2 Na+ ions (Faham et al., 2008, Saier, 2000b). The protein crystal 

structure of the Vibrio parahaemolyticus sodium:galactose symporter (vSGLT; TC 

2.A.21.3.2) was determined in a periplasm-open conformation with bound galactose and 

its singe co-transported sodium ion (Faham et al., 2008). This structure was found to 

share a similar 10 TMH-core topology with the previously crystallised Aquifex aeolicus 

leucine:2Na+ symporter, LeuT (TC2.A.22.4.2), of the neurotransmitter:sodium symporter 
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(NSS) family, which was in the cytoplasm-open conformation and bound to leucine and 

two Na+ ions (Yamashita et al., 2005). This similar topology allowed the core structure of 

vSGLT to be mapped onto that of LeuT giving a structural basis for the alternating access 

mechanism (Figure 1.9a).  

 

The alternating access model here is similar to that of LacY and is shown in Figure 1.9b 

(Faham et al., 2008, Jung, 2001, Singh et al., 2008, Yamashita et al., 2005). In this, the 

periplasm-open conformation would first be protonated, where the binding of the proton 

would cause structural changes that form the substrate binding site (Faham et al., 2008, 

Jung, 2001). Binding of the substrate would cause the closure of a hydrophobic 

periplasmic gate, made up of phenylalanine and tyrosine residues, to produce a 

periplasm-facing, occluded state. For the transport to progress, this periplasm-facing 

occluded state must be an intermediate state that moves through a transition state for 

global conformational change to produce the cytoplasm-facing occluded state. In this 

state, Na+ is lost to the low sodium environment of the cytoplasm and the periplasmic 

hydrophobic gate (phenylalanine) opens, allowing the substrate to diffuse into the cell. 

The substrate-free, deprotonated, cytoplasm-open form of the transporter would then 

return to the periplasm-open conformation to complete the cycle.  

 

It is worth noting that, as in MalEFGK2 transport, the whole transport process, and each 

step in it, is akin to a series of intermediate and transition states of enzymatic catalysis, 

where substrates are bound so as to reduce the energy of activation for the process. For 

LeuT, this is highlighted by the lower rate of transport of its native substrates, leucine and 

methionine, when compared to non-native substrates, such as alanine, under saturating 

conditions (Singh et al., 2008). This is explained by the high affinity of the periplasm-

open, occluded intermediate state for the native substrate, which stabilises this transport 

intermediate, reducing the rate of transport.  
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Figure 1.9: The structure and mechanism of sodium-coupled symport. A) Global changes between the 
cytoplasm-open structure and the periplasm-open model, taken from Faham et al. (2008). Surface 
representations of the periplasm-open model (left) and the cytoplasm-open structure (right) of vSGLT with 
helices that undergo structural rearrangement shown as ribbons, galactose and sodium shown as coloured 
spheres and extracellular, water-filled cavities shown as blue mesh. B) The proposed mechanism for sodium-
coupled symport. An extracellular sodium ion associates near the substrate binding site, causing structural 
rearrangements that allow substrate binding. The substrate is located near the centre of the membrane, held 
between a periplasmic and a cytoplasmic gate, both made up of hydrophobic residues, and represented by a 
complete circle when they have be shown to be involved. The transporter undergoes a global conformational 
change from the periplasm-facing to the cytoplasm-facing form. The sodium ion dissociates, followed by the 
substrate, and the transporter then returns to the periplasm-open conformation.  
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1.5  SBP-dependent secondary active transport  

The use of soluble binding proteins in transport is not restricted to primary active 

transporters, but has also been found as part of secondary active transport mechanisms 

that are widespread in prokaryotes and archaea, but absent from eukaryotes (Forward et 

al., 1997, Jacobs et al., 1996, Kelly & Thomas, 2001, Mulligan et al., 2010).  

 

In these, a periplasmic substrate binding protein (SBP) is associated with two membrane 

proteins of 4 and 12 TMHs, which can often be found fused into a single polypeptide 

(Figure 1.2) (Kelly & Thomas, 2001, Rabus et al., 1999). These types of transporter are 

split into two classes. The largest is the tripartite ATP-independent periplasmic (TRAP) 

transporters (TC 2.A.56), after the three components involved. The second, smaller class 

is the tripartite tricarboxylate transporters (TTT; TC 2.A.80), which share the same three-

component structure but no sequence homology (Mulligan et al., 2010).  

 

1.5.1  Features and components of SBP-dependent secondary transporters  

The founding member of this class of transporter was the R. capsulatus C4-dicarboxylate 

transporter, which is responsible for the accumulation of malate, succinate and fumarate 

(Forward et al., 1997). The components of this TRAP transporter system are DctP (the 

SBP), DctQ (the small integral membrane protein) and DctM (the large integral 

membrane protein).  

 

The DctM family of proteins, believed to contain the translocation pores, is part of the 

Ion Transporter (IT) superfamily and shares closest homology with the DcuC family of 

C4-dicarboxylate secondary active transporters (TC2.A.61) (Prakash et al., 2003). The 

function of the DctQ family of smaller integral membrane proteins is unknown and has 

no homology with any known protein family (Kelly & Thomas, 2001, Rabus et al., 

1999). It is suspected that this membrane subunit is involved in mediating the interaction 

or initial docking of the SBP, since these two proteins can sometimes be found fused 

together (Kelly & Thomas, 2001, Rabus et al., 1999).  
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DctP family SBPs share low sequence homology with each other, but their 3D structures, 

of which there are seven thus far, are highly similar with an R.M.S.D. of less than 3 Å 

(Figure 1.10a) (Fischer et al 2010). Like the binding proteins of ABC transporters, these 

SBPs are made up of two α/β globular domains that are linked by a flexible hinge region 

(Muller et al., 2006). However, they also contain a long α-helix that stretches the full 

length of the protein and bends in the closed conformation.  

 

There is an additional family of binding proteins associated with TRAP transporter 

DctQM homologs called TRAP associated extracytoplasmic immunogenic (TAXI) 

proteins, which show sequence homology to the E. coli glutamine binding protein family 

from primary active transporters and were originally annotated as immunogenic proteins 

(Kelly & Thomas, 2001). The one example of these that has been crystallised is 

structurally similar to type II ABC PBPs not DctP family binding proteins. These TAXI 

SBPs are always associated with a DctQM fusion protein and all TRAP transporters in 

archaea are TAXI-DctQM.  

 

 

The tripartite tricarboxylate transporter (TTT) family is the second class of SBP-

dependent secondary transporters and share similar architectural subunits, but no 

sequence homology with TRAP transporters (Winnen et al., 2003). The classical example 

of these is the Salmonella typhimurium citrate transporter, TctABC (Kay & Cameron, 

1978, Widenhorn et al., 1988). Several structures of TTT binding proteins have been 

determined and are also structurally related to type II PBPs (Huvent et al., 2006).  
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Figure 1.10: The structures of DctP-type SBPs. A) Superposition of the closed conformation of the SBPs DctP6, 
DctP7, SiaP, TakP, LakP, UehA, TeaA. The average sequence identity between these proteins is about 20%, 
while their structures have an R.M.S.D. of less than 3 Å. B) The ligand co-ordination by the conserved arginine 
residue. The arginine residue (right) and the ligands (left) are shown as atom-coloured cylinders within the SiaP 
binding site (grey lines). The β-sheet secondary structure of the chain containing the arginine residue is shown as 
a grey ribbon and the hydrophobic patch from SiaP is shown as a black mesh.  

A) 

B) 
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1.5.1.1 Co-ordination of the ligand by SBPs  

At present, seven DctP-family SBPs have been crystallised and their structures published. 

All of these bind organic acids via a mix of polar and non-polar interactions; the only 

common feature is the use of a totally conserved arginine residue to form a bipartite salt 

bridge to the carboxylate group of the ligand (Figure 1.10b). The conserved arginine 

residue extends into the binding site in both the open and closed conformations, 

supported by stable interactions around its β-sheet secondary structure and its proximity 

to a conserved group of hydrophobic residues (Figure 1.10b) (Fisher et al., in 

publication). The ligands represented in this group of structures vary in size between 

sialic acid (MW 309 Da) and pyruvate (MW 88 Da) (Lecher et al., 2009).  

 

Haemophilus influenzae SiaP binds the most common form of sialic acid, N-

acetylneuraminic acid (Neu5Ac), inside its binding pocket (Figure 1.11) with a Kd of 0.12 

± 0.01 µM (Severi et al., 2005). The previously determined crystal structures of SiaP 

with bound Neu5Ac and 2,3-didehydro-2-deoxy-N-acetylneuraminic acid (Neu5Ac2en) 

(Muller et al., 2006, Johnston et al., 2008) showed a number of direct interactions 

between the protein and the ligand. Firstly, the carboxylate group of the sialic acid ligand 

is coordinated by a salt-bridge network to Arginine-147, Asparagine-187 and Arginine-

127. It is Arg-147 which is the most highly conserved residue in the DctP-type TRAP 

SBP family (Muller et al., 2006) and it is this residue that donates a bipartite salt bridge 

between its two terminal nitrogen atoms and the oxygen atoms of the ligand carboxylate 

group. Secondly, the ligand glycerol group interacts with Aspartate-49 and Glutamate-67 

and its C3-chain is subject to hydrophobic packing interactions with Alanine-151. 

Thirdly, the N-acetyl group of the ligand forms an H-bonding interaction with the side 

chains of Asparagine-10 and a hydrophobic interaction with Phe-65. Finally, 

Phenylalanine-170 forms a stacking interaction with the sugar ring (Muller et al., 2006, 

Johnston et al., 2008).  
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Figure 1.11: Representation of the interactions between Neu5Ac and the binding site of SiaP, based 

on 3B50.pdb (Johnston et al., 2008). Amino acid residues and the sialic acid ligand are shown as 

atom coloured cylinders; hydrogen bonds are shown as dashed black lines; Phenylalanine-65 and 

Alanine-151 are not shown for clarity.  
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1.5.1.2 Multimeric SBPs  

The protein crystal structures of the Rhodobacter sphaeroides SBP for sodium pyruvate, 

TakP, and the Thermus thermophilus SBP for calcium lactate, LakP, revealed that these 

exist as back-to-back dimers in solution (Figure 1.12) (Akiyama et al., 2009, Gonin et al., 

2007). The first, TakP, swaps an extended C-terminal α-helix with its corresponding 

monomer, generating an interface of ~3600 Å2. The second, LakP, has this C-terminal 

extension but a helix swap does not occur in the dimer, yet this complex still forms in 

solution.  

 

The role of the dimer is not clear, since current models for TRAP transport are based on 

monomeric binding proteins, as in ABC transport (Mulligan et al., 2009). On the 

discovery of the TakP dimer, a transport model was proposed where this would remain 

associated with the permease and the substrate would be bound by the topmost exposed 

SBP, diffuse through a channel in the dimer to the second SBP and onto the permease 

(Gonin et al., 2007). However, this supposed channel appears to be blocked by several 

hydrophobic residues (Fischer et al., in publication). 

 

It is also worth noting that a multimer of the Thermatoga maritima SBP TM0322 has 

been reported; however, these were found in addition to observable monomeric TM0322 

(Cuneo et al., 2008). The multimers here were reported to be front-to-front dimers and 

tetramers, forming an occluded cavity containing the binding sites. It has since been 

suggested that these complexes are artefacts and non-physiological (Fischer et al., in 

publication). 
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Figure 1.12: Dimers of the DctP-type SBPs (A) TakP and (B) LakP. One monomer is shown in surface 
representation and the second as ribbons. The ligands are shown as red spheres.  

A) 

B) 
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1.5.2  The proposed mechanism of transport  

1.5.2.1 The R. capsulatus C4-dicarboxylate transporter, DctPQM  

The purple photosynthetic Rhodobacter capsulatus can utilise the C4-dicarboxylate 

compounds malate, succinate and fumarate as the sole source of carbon (Stahl & Sojka, 

1973). This was shown to be via a single periplasmic binding protein-dependent transport 

system that was encoded in the dct locus (Hamblin et al., 1990). However, instead of an 

ABC transporter in this region, dctQ and dctM were discovered (Forward et al., 1997). 

The further investigation of this transporter made this the first genetically and 

biochemically characterised binding protein-dependent secondary transporter and the 

founding member of this class. As in the cases of MalEFGK2 and LacY, this system lent 

itself well to analysis, in part due to the traditional use of R. capsulatus as a model 

organism.  

It has been proposed that the closed, substrate-bound SBP interacts with the integral 

membrane proteins to deliver the substrate in much the same way as in ABC transport 

(Mulligan et al., 2009). At this point, like ABC transporters, the interaction of the closed 

SBP would transfer the substrate to the permease and catalyse translocation into the 

cytoplasm. The energy coupling mechanism of transport is suggested to be co-transport 

of two or more H+ or Na+ ions (Kelly & Thomas, 2001). It has been noted that TRAP 

transporters are enriched in marine organisms, suggesting the use of Na+ ions (Mulligan 

et al., 2007).  

 

1.5.2.2 The H. influenzae sialic acid transporter, SiaPQM  

The obligate human mucosal pathogen Haemophilus influenzae uses a TRAP transporter 

for the uptake of exogenous sialic acid, an important compound in its virulence (Bouchet 

et al., 2003, Severi et al., 2005). This transporter, SiaPQM, contains fused membrane 

subunits. The characterisation of this transporter has recently moved forward due to the 

development of an in vitro transport assay of the reconstituted system (Mulligan et al., 

2009). This has shown that transport of the substrate is coupled to co-transport of two or 

more Na+ ions. The proposed mechanism is shown in Figure 1.13. The closed, substrate-

bound SBP, SiaP, interacts with the SiaQM, which is probably in a periplasm-closed 

conformation, as in ABC transporters. SiaQM also binds the Na+ ions that drive 
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Figure 1.13: The proposed mechanism of tripartite ATP-independent periplasmic (TRAP) transporters 
(Mulligan et al., 2009). A) Substrate (grey circle) is bound by the SBP. B) The liganded SBP and at least two 
sodium ions (black dots) bind (open arrows) to the permease. C) The membrane complex adopts a periplasm-
open conformation (solid arrows), opening the SBP and accepting the substrate into an internal binding site. D) 
The conformation of permease resets to its cytoplasm-open form, releasing the substrate and Na+ ions into the 
cell. E) The SBP at this point is ligand-free, but could be in an open or closed conformation. At this point, it 
would dissociate from the complex.  
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transport; however, the order of these two events is not certain. Substrate translocation 

through SiaQM is presumably via an alternating access mechanism, involving the 

opening of SiaP, in a similar manner to MalE in MalEFGK2, and an intramembrane 

substrate binding site. Transport of the substrate by SiaQM cannot be reversed, as many 

traditional secondary transporters can. However, a large excess of unliganded SiaP can 

cause some efflux of a high concentration of substrate. For this to occur, unliganded, 

open-conformation SiaP would have to interact with SiaQM, which would be saturated 

with substrate in the cytoplasm-open form. This shows that binding of the SBP is coupled 

to the conformational changes associated with substrate translocation.  

 

 

1.6  Sialic acids  

As discussed in the previous section, the H. influenzae transporter SiaPQM is responsible 

for the transport of the virulence factor and carbon source sialic acid, which is also 

known as N-acetylneuraminic acid (Neu5Ac). This is an α-keto acidic sugar that adopts a 

chair-configuration pyranose ring through a hemiketal condensation (Angata & Varki, 

2002). Since its discovery, it has been found that this is just one member of a family of 

similar structures, which are known as Sialic acids and total over 50 different members 

(Angata & Varki, 2002, Vimr et al., 2004). The most common member, N-

acetylneuraminic acid (Neu5Ac; 5-acetylamino-3,5-dideoxy-D-glycero-α-D-galacto-

nonulosonic acid), usually referred to as sialic acid (Figure 1.14), can be found modified 

at every available position to generate a large range of compounds. Three important 

members of this family, shown in Figure 1.14, are N-acetylneuraminic acid (Neu5Ac), N-

glycolylneuraminic acid (Neu5Gc) and a de-aminated form, 2-keto-3-deoxy-D-glycero-D-

galacto-nononic acid (KDN).  

Two other groups related to the Sialic acid family are Legionaminic (Leg) acid from 

Legionella and Pseudominic (Pse) acid from Pseudomonas, shown in Figure 1.14. 

Collectively, these complex, similar structures are nonulosonic acids and are all 

synthesised and utilised in similar manners (Lewis et al., 2009). Recently, it has been 

proposed that sialic acid, rather than having arisen in animals and transferred to bacteria, 
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Figure 1.14: Nonulosonic acids found in bacteria. A) Major members of the Sialic acids. B) The three different 
families of nonulosonic acids, taken from Lewis et al. (2009).  

α-N-acetylneuraminic acid (αNeu5Ac) β-N-acetylneuraminic acid (βNeu5Ac) 

N-glycolylneuraminic acid (Neu5Gc) 2-keto-3-deoxy-D-glycero-D-galacto- 
nononic acid (αNeu5Ac) 

A) 

B) 
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arose from the ancient evolution of nonulosonic acids to be adopted by animals 

(specifically, deuterostomes) and lost by other eukaryotes (Lewis et al., 2009).  

 

1.6.1  Utilisation and catabolism of sialic acids  

Sialic acids, widely used in eukaryotes in cell-cell and cell-molecule signalling, are also 

expressed on the surfaces of many pathogens, mimicking the mucins and glycoconjugates 

of their host (Severi et al., 2007, van der Merwe et al., 1996, Vimr & Lichtensteiger, 

2002). In many cases, the display of sialic acid on the LPS of these pathogens is crucial 

for infection and survival in the host (Vimr et al., 2004). This can be mediated via 

different mechanisms, including resistance to serum and the innate immune response 

(Hood et al., 1999, Ogasawara et al., 2007), dampening of the host immune response 

(Carlin et al., 2009) and mimicry of the host glycoforms (Mandrell et al., 1992, Xiang et 

al., 2006). This mimicry can cause health problems beyond the infection, giving rise to 

autoimmune conditions such as Guillain-Barre syndrome, where Campylobacter jejuni 

mimics peripheral nerve gangliosides and antibodies against this also target peripheral 

nerves (Xiang et al., 2006).  

Host glycoconjugates can also mediate interactions with pathogens and their attachment  

to host cells (Karlsson, 1998). This is demonstrated by a proposed inhibitor for influenza 

virus infection, which contains a sialic acid-cleaving enzyme (sialidase) and a cell 

surface-anchoring sequence (Malakhov et al., 2006). When delivered to the airway 

epithelium, this causes a non-toxic stripping of cell surface sialic acid, reducing the 

infectivity of the virus.  

 

In bacteria, sialic acid can be synthesised de novo or can be acquired from the 

environment. As shown in Figure 1.15, sialic acid is synthesised from the common 

metabolite UDP-N-acetylglucosamine (UDP-GlcNAc) via N-acetylmannosamine 

(ManNAc) (Severi et al., 2007, Vimr et al., 2004). To be acquired from the environment, 

sialic acid must be released from the host sialoglycoconjugates by sialidases, which are 

released by many pathogens, possibly supplying those that lack a sialidase and are also 

proposed to be released by the host as a part of sialic acid recycling (Corfield et al., 1992, 

Corfield, 1992, Severi et al., 2007). This free sialic acid is then transported in to the cell 
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Figure 1.15: Sialic acid utilisation by bacteria. Sialic acid (Neu5Ac) is released from sialoglycoconjugates by a 
sialidase and reaches the transporter through a porin in Gram-negative bacteria. Sialic acid is then transported 
into the cytoplasm through an ABC, secondary or TRAP transporter. Sialic acid catabolism uses the nan and nag 
genes as shown. De novo sialic acid is synthesised from UDP-GlcNAc. Sialylation of the LPS follows activation 
of sialic acid as CMP-sialic acid (CMP-Neu5Ac) and transfer to the LPS molecule. Lic3A and Lic3B are 
responsible for mono- and di-sialylation. N. gonorrhoeae uses an extracellular sialyltransferase and host-derived 
CMP-Neu5Ac to transfer sialic acid to its LPS. In some Trypanosome species, a trans-sialidase directly attaches 
Neu5Ac from sialoglycoconjugates to its LPS. 
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using ABC, secondary or SBP-dependent secondary transporters (Severi et al., 2007). In 

some Gram-negative bacteria, a sialic acid-specific porin, NanC, is present; however, this 

is only essential in the absence of the general porins, OmpC and OmpF (Condemine et 

al., 2005).  

 

Once transported, sialic acid can be catabolised by the nan genes to N-

acetylglucosamine-6-phosphate (GlcNAc6P) and on to fructose-6-phosphate (F6P) by the 

nag genes (Figure 1.15) (Plumbridge & Vimr, 1999, Vimr & Troy, 1985). To be 

incorporated into the LPS, sialic acid must be activated by CMP-sialic acid synthetase 

with CTP to give CMP-sialic acid and PPi (Bouchet et al., 2003, Severi et al., 2007, Vimr 

et al., 2004). This is then added to the terminal positions of the LPS acceptors by 

sialyltransferases, such as the H. influenzae Lic3A, which transfers sialic acid to a 

lactose-glycoform (Hood et al., 2001, Kalovidouris et al., 2003, Severi et al., 2007). 

 

It is worth noting that there are several examples where sialylation of the LPS occurs 

extracellularly (Figure 1.15). In some Trypanosoma species and Corynebacterium 

diptheriae, an extracellular trans-sialidase, transfers a host sialic acid residue to its own 

LPS in a reaction similar to the hydrolysis that would release free sialic acid (Agusti et 

al., 2007, Vimr et al., 2004). In Neisseria gonorrhoeae, transport of sialic acid does not 

occur; instead, this bacterium has a membrane-associated, surface-exposed 

sialyltransferase, which would directly transfer sialic acid from the host’s CMP-sialic 

acid (Severi et al., 2007, Vimr et al., 2004).  

 

1.6.1.2 Use of sialic acid by H. influenzae  

H. influenzae is a Gram-negative, non-motile, facultative anaerobic, obligate parasite of 

the human nasopharyngeal mucosa and potential pathogen, which can be found with a 

capsule or without (non-typable; NT) (Aubrey & Tang, 2003, Rao et al., 1999, Vimr et 

al., 2000). NT H. influenzae can cause conjunctivitis and upper respiratory tract 

infections such as otitis media and sinusitis. Typable H. influenzae can be split into six 

serogroups a-f, with most diseases caused by serogroup b, which include meningitis, 

septicaemia, septic arthritis, pneumonia and empyema (Aubrey & Tang, 2003).  
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H. influenzae cannot synthesise sialic acid de novo and so is reliant upon an exogenous 

supply of free sialic acid. Transport through the inner membrane is mediated by the 

TRAP transporter SiaPQM, where the membrane domains are fused into a single 

polypeptide.  

Intracellular sialic acid can be used as a carbon, nitrogen and energy source via the nan 

genes, which are transcribed divergently from the siaPQM operon (Johnston et al., 2007). 

It has been demonstrated that catabolism of sialic acid competes with LPS sialylation, 

which confers increased serum resistance, biofilm formation and pathogenicity (Vimr et 

al., 2000). Two sialyltransferases, Lic3A and Lic3B, have been identified and 

characterised in H. influenzae. Lic3A is an α-2,3-sialyltransferase responsible for adding 

sialic acid to lactose acceptors via a 2,3-linkage (Figure 1.16) (Hood et al., 2001). Lic3B 

transfers sialic acid via 2,3-linkage to a lactose acceptor and via 2,8-linkage to 

sialyllactose acceptor (Figure 1.16) (Fox et al., 2006). This addition of di-sialic acid to 

the LPS results in further increased serum resistance.  

 

1.7  Aims of this investigation  

This investigation will focus on the ligand binding mechanism and transport function of 

the H. influenzae SBP for sialic acid, SiaP. The primary aim of this project is to 

investigate ligand binding and co-ordination by SiaP and to examine the function of SiaP 

in transport, both in vitro using SiaQM reconstituted into proteoliposomes and in vivo by 

expression in E. coli BW25113 lacking its native sialic acid transporter, NanT. Also, the 

transport and catabolism of several sialic acids will be examined using the expression of 

different sialic acid transporters and deletions of known sialometabolic genes. This 

project also aims to investigate the possibility of producing a SiaP variant that is 

compatible with the current technology used by our CASE sponsor, Authentix.  



 58

Figure 1.16: Sialyltransferase activities characterised in H. influenzae. Lic3A and Lic3B can both transfer sialic 
acid from CMP-sialic acid to a lactose-terminal LPS structure via an α-2,3-linkage. Lic3B can transfer a second 
sialic acid to sialyllactose via an α-2,8-linkage.  
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(Galβ-1,4-Glc) 

Sialyllactose  
(Neu5Acα-2,3-Galβ-1,4-Glc) 
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(Neu5Acα-2,8-Neu5Acα- 
2,3-Galβ-1,4-Glc) 
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Chapter Two 
 
 
 
 
 

Materials and Methods 
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2.1  Media and antibiotics  

2.1.1 Luria-Bertani broth  

Luria-Bertani (LB) broth was made up of 10 g/l tryptone (Formedium) 5 g/l powdered, 

dried yeast (Formedium) 10 g/l NaCl (Fisher Scientific).  

 

2.1.2 M9 minimal medium  

M9 minimal medium salts (Neidhardt et al., 1974) were made up from 6 g/l Na2HPO4 

(Fisher Scientific), 3 g/l KH2PO4 (Fisher Scientific), 0.5 g/l NaCl2, 1 g/l NH4Cl 

(Melford). 1 M MgSO4 (Fisher Scientific) and 25 mg/ml FeSO4.7H20 (AnalaR) were 

sterilised separately. The M9 minimal medium salts were supplemented with 2 mM 

MgSO4 and 25 μg/ml FeSO4.7H20. The sterilised carbon source of interest was then 

added to this.  

 

2.1.3 Solid media  

To prepare a solid medium, 1% agar (Oxoid) was added to LB broth and 1% agarose 

(Melford) was added to double M9 minimal medium.  

 

2.1.4 Antibiotics  

Antibiotic selection, where appropriate, was used at 30 μg/ml chloramphenicol (Sigma-

Aldrich) in 80% ethanol (Fisher Scientific), 100 μg/ml ampicillin (Melford) and 50 μg/ml 

kanamycin (Sigma-Aldrich) each from 1000-fold stock, 0.22 μm filter sterilised.  

 

2.2 Table of primers  

The primers used in this work are shown in Table 2.1.  

 

2.3 Strains and plasmids  

Table 2.2 contains all of the bacterial strains used here, while Table 2.3 lists all of the 

plasmids used and constructed during this work.  
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Table 2.1 Primer list  
 
Primer  Target  RE Sequence   
siaPfor  siaP KpnI, 

NdeI  
gcggtacctaaaagaaggagatatacatatgatgaaattgacaaaac 

siaPrev siaP XhoI ccgctcgagttatggattgattgcttc  

siaPhis6rev  siaP-His6 XhoI ccgctcgagttagagatggtggtgatgatgtggattgattgcttcaatttg 

R147Afor R147A  aaacttgctgtgccaaatgcagcaacaaac 

R147Arev R147A StuI ggcacagcaagtttcaggcctttcatatctgc 

R147Efor R147E  aaacttgaagtgccaaatgcagcaacaaac 

R147Erev R147E StuI ggcacttcaagtttcaggcctttcatatctgc 

R147Kfor R147K  aaacttaaagtgccaaatgcagcaacaaac 

R147Krev R147K StuI ggcactttaagtttcaggcctttcatatctgc 

R127Afor R127A SfuI ggaactgcccaaagcacttcgaatcgtgc 

R127Arev R127A  gctttgggcagttccgttataagcttggg 

R127Efor R127E SfuI ggaactgaacaaagcacttcgaatcgtgc 

R127Erev R127E  gctttgttcagttccgttataagcttggg 

R127Kfor R127K SfuI ggaactaaacaaagcacttcgaatcgtgc 

R127Krev R127K  gctttgtttagttccgttataagcttggg 

F170Afor F170A NcoI atggcagcttctgaagtttatcttgcgttac 

F170Arev F170A  cttcagaagctgccatgggtgttggtgatgc 

F170Wfor F170W NcoI atggcatggtctgaagtttatcttgcgttac 

F170Wrev F170W  cttcagaccatgccatgggtgttggtgatgc 

F170Yfor F170Y NcoI atggcatattctgaagtttatcttgcgttac 

F170Yrev F170Y  cttcagaatatgccatgggtgttggtgatgc 

N187Afor N187A  tcaagaagccccgttagccgcggtgcaagc 

N187Arev N187A SacII acggggcttcttgaccatcgacggcattgg 

N187Dfor N187D  tcaagaagacccgttagccgcggtgcaagc 

N187Drev N187D SacII  acgggtcttcttgaccatcgacggcattgg 

F75Wfor F75W EagI cagctgtggtaccctgaagcggccgtatttgcc 

F75Wrev F75W  agggtaccacagctggaagcgagcagattc 

Y76Wfor Y76W EagI ctgttttggcctgaagcggccgtatttgcc 

Y76Wrev Y76W  ttcaggccaaaacagctggaagcgagcac 

Y161Wfor Y161W  gctaaatgggttggtgcatcaccaacacc 

Y161Wrev Y161W PspLI accaacccatttagcgtacgctaagtttgttgc 
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A11Nfor A11N KpnI gtatgaataatggtacctcatcaaatgaatataaagcgg 

A11Nrev A11N  gtaccattattcataccgaatttcaagtcataatcagc 

A66Ifor A66I  cctttatagaatctgctcgcttccagc 

A66Irev A66I XbaI gcagattctataaaggtaaagtctagagaaccg 

A66Mfor A66M  cctttatggaatctgctcgcttccagc 

A66Mrev A66M XbaI gcagattccataaaggtaaagtctagagaaccg 

A151Vfor A151V  ccaaatgtagcaacaaacttagcctatgc 

A151Vrev A151V KpnI gtttgttgctacatttggtacccgaagttttaagcc 

S15Dfor S15D KpnI gctggtaccgattcaaatgaatataaagcggc 

S15Kfor S15K KpnI gctggtaccaaatcaaatgaatataaagcggc 

A195Drev A195D SacII gcacttcatagaatttttgatcttgcaccgcggctaacg 

A195Krev A195K SacII gcacttcatagaatttttgtttttgcaccgcggctaacg 

Q72Efor Q72E Kpn2I gctcgcttcgagctgttttatccggaagcgg 

A151Krev A151K KpnI ggctaagtttgtttttgcatttggtacccgaagttttaagcc 

A152Krev A152K KpnI ggctaagtttgttgctttatttggtacccgaagttttaagcc 

N150Dfor N150D  gtaccagatgcagcaacaaacttagcc 

N150Drev N150D KpnI gttgctgcatctggtacccgaagttttaagcc 

Kpn1siaP  siaP KpnI gcggtaccatgatgaaattgacaaaac 

siaPKpnI  siaP KpnI gcggtacctggattgattgcttc  

siaPup siaP   gacttctttggcaaacatttctgccgc 

siaQMdown siaQM   cgcctttaaccgtattgataatgattaacgc 

siaQMup siaQM   cccacgtaaacaaataagagcttggcg 

siaPdown pWKS30   catgattacgccaagcgcgcaattaaccc 

siaQMrev pWKS30  gcgcgcgtaatacgactcactatagggcg 

15midDOWN siaP   cgttagcagcggtgcaagcacaaaaattc 

15midUP siaQM   ccaccgataattaataacggcgttaagattgccc 
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Table 2.2 Bacterial strains  
 
E. coli strain  Genotype  Source  

DH5α  K-12 F’ φ80dlacZΔM15 recA1 endA1 gyrA26 

thi-1 supE44 relA1 deoR Δ(lacZYA-argF)U169 

Invitrogen  

BL21 (DE3)  F- ompT hsdSB(rB-, mB-) gal dcm (DE3)  Novagen  

MC1061  araD139 Δ(ara-leu)7696 ΔlacX74 galU- galK- 

hsdR2 (r k- m k+) mcrB1 rpsL (F-) 

(Casadaban & Cohen, 

1980)  

BW25113  Δ(araBAD)567 ΔlacZ4784(::rrnB-3) lambda- 

rph-1 Δ(rhaBAD)568 hsdR514 

(Datsenko & Wanner, 

2000)  

BW25113 

nanT::kan  

Δ(araBAD)567 ΔlacZ4784(::rrnB-3) lambda- 

rph-1 Δ(rhaBAD)568 hsdR514 nanT::kan 

(Baba et al., 2006)  

BW25113 

nanA::kan  

Δ(araBAD)567 ΔlacZ4784(::rrnB-3) lambda- 

rph-1 Δ(rhaBAD)568 hsdR514 nanA::kan 

(Baba et al., 2006) 

BW25113 

nanE::kan  

Δ(araBAD)567 ΔlacZ4784(::rrnB-3) lambda- 

rph-1 Δ(rhaBAD)568 hsdR514 nanE::kan 

(Baba et al., 2006) 

BW25113 

nanK::kan  

Δ(araBAD)567 ΔlacZ4784(::rrnB-3) lambda- 

rph-1 Δ(rhaBAD)568 hsdR514 nanK::kan 

(Baba et al., 2006) 

BW25113 

nagA::kan  

Δ(araBAD)567 ΔlacZ4784(::rrnB-3) lambda- 

rph-1 Δ(rhaBAD)568 hsdR514 nagA::kan 

(Baba et al., 2006) 

BW25113 

nagB::kan  

Δ(araBAD)567 ΔlacZ4784(::rrnB-3) lambda- 

rph-1 Δ(rhaBAD)568 hsdR514 nagB::kan 

(Baba et al., 2006) 

BW25113 

ytfQ::kan  

Δ(araBAD)567 ΔlacZ4784(::rrnB-3) lambda- 

rph-1 Δ(rhaBAD)568 hsdR514 ytfQ::kan 

(Baba et al., 2006) 

BW25113 

ΔnanT  

Δ(araBAD)567 ΔlacZ4784(::rrnB-3) lambda- 

rph-1 Δ(rhaBAD)568 hsdR514 ΔnanT 
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Table 2.3 Plasmid list  
 
 
Plasmid  Description  Resistance 
pET21b  High copy-number expression plasmid  Amp 

pGTY3 pET21b with siaP between NdeI and BamHI  Amp 

pAH16 pET21b with siaP-His6 between NdeI and XhoI  Amp 

pAH35 pET21b with siaP-His6:R147A (introduced StuI RE site)   Amp 

pAH36 pET21b with siaP-His6:R147E (introduced StuI RE site) Amp 

pAH37 pET21b with siaP-His6:R147K (introduced StuI RE site) Amp 

pAH41 pET21b with siaP-His6:R127A (introduced SfuI RE site) Amp 

pAH42 pET21b with siaP-His6:R127E (introduced SfuI RE site) Amp 

pAH57 pET21b with siaP-His6:R127K (introduced SfuI RE site) Amp 

pAH44 pET21b with siaP-His6:F170A (introduced NcoI RE site) Amp 

pAH45 pET21b with siaP-His6:F170W (introduced NcoI RE site) Amp 

pAH46 pET21b with siaP-His6:F170Y (introduced NcoI RE site) Amp 

pAH47 pET21b with siaP-His6:N187A (introduced SacII RE site) Amp 

pAH48 pET21b with siaP-His6: N187D (introduced SacII RE site) Amp 

pAH38 pET21b with siaP-His6:F75W (introduced EagI RE site) Amp 

pAH39 pET21b with siaP-His6:Y76W (introduced EagI RE site) Amp 

pAH40 pET21b with siaP-His6:Y161W (introduced PspLI RE site) Amp 

pAH63 pET21b with siaP-His6:F170W;R147A (with NcoI and StuI RE sites)   Amp 

pAH64 pET21b with siaP-His6:F170W;R147E (with NcoI and StuI RE sites) Amp 

pAH65 pET21b with siaP-His6:F170W;R147K (with NcoI and StuI RE sites) Amp 

pAH66 pET21b with siaP-His6:F170W;R127A (with NcoI and SfuI RE sites) Amp 

pAH67 pET21b with siaP-His6:F170W;R127E (with NcoI and SfuI RE sites) Amp 

pAH68 pET21b with siaP-His6:F170W;R127K (with NcoI and SfuI RE sites) Amp 
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pAH69 pET21b with siaP-His6:F170W;N187A (with NcoI and SacII RE sites) Amp 

pAH70 pET21b with siaP-His6:F170W;N187D (with NcoI and SacII RE sites) Amp 

pAH52 pET21b with siaP-His6:A66I (introduced XbaI RE site) Amp 

pAH53 pET21b with siaP-His6:A66M (introduced XbaI RE site) Amp 

pAH54 pET21b with siaP-His6:A151V (introduced KpnI RE site) Amp 

pAH55 pET21b with siaP-His6:A11N (introduced KpnI RE site) Amp 

pAH49 pET21b with siaP-His6:S15D:A195K (with KpnI and SacII RE sites) Amp 

pAH50 pET21b with siaP-His6:S15K:A195D (with KpnI and SacII RE sites) Amp 

pAH51 pET21b with siaP-His6:Q72E:A151K (with Kpn2I and KpnI RE sites) Amp 

pAH58 pET21b with siaP-His6:Q72E:A152K (with Kpn2I and KpnI RE sites) Amp 

pAH84 pET21b with siaP-His6:S15D:A195D (with KpnI and SacII RE sites) Amp 

pAH85 pET21b with siaP-His6:S15K:A195K (with KpnI and SacII RE sites) Amp 

pAH56 pET21b with siaP-His6:N150D (introduced KpnI RE site) Amp 

pWKS30  Low copy number in vivo expression vector  Amp 

pES7  pWKS30 with siaPQM between KpnI and BamHI RE sites  Amp 

pAH15  pWKS30 with siaP-His6-siaQM between KpnI and BamHI with an 
intragenic XhoI site  

Amp 

pAH87 pWKS30 with siaP-His6:N150D-siaQM between KpnI and BamHI with 
an intragenic XhoI site  

Amp 

pET24b  High copy-number expression plasmid  Kan 

pJPW4  pET24b with siaP-His6 between NdeI and XhoI  Kan 

pAH88 pET24b with siaP-His6:N150D (introduced KpnI RE site) Kan 

pFLIPPi-
260n  

pRSET with BamHI-cfp-KpnI-pibp-KpnI-yfp-HindIII Amp 

pFLIP-
Neu5Ac  

pRSET with BamHI-cfp-PinAI-siaP-KpnI-yfp-HindIII Amp 
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2.4 General cloning techniques  

2.4.1 Agarose gel electrophoresis  

Separation of DNA fragments by electrophoresis was performed using 1% agarose gel in 

TBE buffer. This buffer was made up with 1.62 g/l Tris (Invitrogen), 2.75 g/l boric acid 

(Fisher Scientific) and 0.95 g/l EDTA (Fisher Scientific). The gel was submerged in TBE 

buffer with ethidium bromide in the lower reservoir and DNA separation was performed 

by applying a 75 volt potential difference for 45 minutes. Ethidium bromide-stained 

DNA was visualised on a transilluminator (Syngene Imaging System).  

 

2.4.2 Plasmid preparation  

Plasmid DNA was prepared initially using a Qiagen kit, before switching to one provided 

by Machery-Nagel.  

 

2.4.3 Polymerase Chain Reaction (PCR)   

PCR was performed in 50 μl reaction volumes with 0.1 x dilution of the polymerase-

specific 10 x reaction buffer, 20 pmoles of forward and reverse oligonucleotide primer, 

0.2 mM mixed nucleotides, 1 mM MgSO4 and 1000 x dilution of the template DNA 

plasmid.  

Following a 2 minute, 95 °C denaturation step, the target DNA was amplified by 25 

cycles of 94 °C for 1 minute, 55 °C for 1 minute and 72 °C for 1 minute per kilobase of 

target. Following a final extension step of 5 minutes at 72 °C, the PCR product was 

removed from the thermal cycler (Techne) and frozen.  

 

2.4.4 Site-directed mutagenesis PCR  

2.4.4.1 Mutagenic primer design  

Oligonucleotide primers for site-directed mutagenesis were based on that of Zheng et al. 

(2004). This used 30-50 base primers with a 5’ overlap to reduce the primer-primer 

annealing temperature. The overlap covered a fifteen base region centred on the target 

codon and each primer was extended in the 3’ direction for at least 15 bases or until the 

expected melting temperature reached 70 °C. Using Webcutter2.0 

(http://users.unimi.it/~camelot/tools/cut2.html), a silent restriction site was introduced 
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into one of the overhanging regions that would produce a unique restriction digestion 

pattern.  

2.4.4.2 Mutagenic PCR conditions  

The 50 μl PCR reaction mixture was made up as in Section 2.4.3. Following a 5 minute, 

95 °C denaturation step, the whole target plasmid was amplified by 16 cycles of 94 °C for 

1 minute, 55 °C for 1 minute and 68 °C for 3 minute per kilobase of target. Following a 

final extension step of 1 hour at 68 °C, the PCR product was held at 10 °C until it was 

removed from the thermal cycler and frozen. Before transformation in to competent E. 

coli DH5α, the PCR product was subjected to DpnI restriction enzyme digestion to 

destroy the template DNA.  

 

2.4.5 Megaprimed mutagenic PCR  

2.4.5.1 Megaprimer primer design  

To introduce two mutations at a distance from each other, a technique based on that of 

(Kirsch & Joly, 1998) was developed. Oligonucleotide primers were designed to amplify 

the region covering the two mutagenic targets with a silent restriction site introduced to 

each primer using Webcutter2.0 (http://users.unimi.it/~camelot/tools/cut2.html). 

 

2.4.5.2 Megaprimer PCR  

The 50 μl PCR reaction mixture was made up as in Section 2.4.3. Following a 2 minute, 

95 °C denaturation step, the target region was amplified by 30 cycles of 94 °C for 1 

minute, 55 °C for 1 minute and 68 °C for 2 minutes. Following a final extension step of 

15 minutes at 68 °C, the PCR product was held at 10 °C until it was removed from the 

thermal cycler and frozen. The megaprimer was then purified by 1% agarose gel 

electrophoresis and extracted from the gel.  

 

2.4.5.3 Megaprimed mutagenic PCR  

Megeprimed mutagenic PCR was performed in 50 μl reaction volumes with 0.1 x dilution 

of the polymerase-specific 10 x reaction buffer, 360 ng of megaprimer, 0.2 mM mixed 

nucleotides, 2 mM MgSO4 and 1000 x dilution of the template DNA plasmid.  
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Following a 5 minute, 95 °C denaturation step, the whole target plasmid was amplified 

by 10 cycles of 94 °C for 1 minute, 55 °C for 1 minute and 65 °C for 20 minutes, 

followed by 10 cycles of 94 °C for 1 minute, 50 °C for 1 minute and 65 °C for 20 

minutes. Following a final extension step of 1 hour at 65 °C, the PCR product was 

removed from the thermal cycler and frozen. Before transformation into competent E. 

coli DH5α, the PCR product was subjected to DpnI restriction enzyme digestion to 

destroy the template DNA.  

 

2.4.6 Preparation of DNA fragments and cloning  

2.4.6.1 Restriction enzyme digestions  

Diagnostic digestions were performed in 20 μl reaction volumes with 0.1 x dilution of the 

optimal 10 x reaction buffer, 1 μl of restriction enzymes in total and 2 μl plasmid 

preparation or 5 μl PCR product. To prepare cut DNA from downstream use, a 50 μl 

reaction volume with 0.1 x dilution of the optimal 10 x reaction buffer and 1 μl of each 

restriction enzyme was used to digest 20 μl plasmid DNA or 45 μl PCR product.  

 

2.4.6.2 Dephosphorylation reaction conditions   

Digested vector DNA was dephosphorylated in 50 μl reaction volumes with 0.1 x dilution 

of the 10 x reaction buffer and 1 μl T4 calf intestinal alkaline phosphatase (CIAP; 

Promega). This was incubated at 37 °C for 30 minutes before the addition of another 1 μl 

CIAP and 30 minutes incubation.  

 

2.4.6.3 Gel extraction  

DNA components were purified by 1% agarose gel electrophoresis and extracted from 

the gel using a Qiagen kit, before switching to one provided by Machery-Nagel.  

 

2.4.6.4 PCR clean up  

To remove contaminating enzymes or buffers, DNA components were cleaned using a 

Qiagen kit, before switching to one provided by Machery-Nagel.  

 

2.4.6.5 Ligation of DNA  
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The insert and 50 ng dephosphorylated vector were mixed at a ratio of 5:1 in 15 μl 

specific buffer and incubated overnight at room temperature with 1 μl T4 DNA ligase 

(NEB). This was then transformed directly into competent E. coli DH5α.  

 

2.4.7 Transformations  

2.4.7.1 Chemically competent E. coli DH5α stock  

E. coli DH5α were inoculated into 250 ml LB and grown at 37 °C with shaking at 160 

rpm until OD650 0.3–0.4. Growth was stopped by incubation on ice for 1 hour and the 

cells harvested by centrifugation at 6000 rpm for 10 minutes at 4 °C (Evolution RC; 

Sorvall). These were resuspended in 50 ml ice cold 50 mM CaCl2 and incubated on ice 

for 1 hour. The competent cells were spun down again, resuspended in 8 ml 50 mM 

CaCl2 20% glycerol (Fisher Scientific) and kept at -80 °C in 100 μl aliquots.  

 

2.4.7.2 Small volumes of chemically competent cells  

The recipient strain of E. coli was inoculated into 20 ml LB, with selection where 

appropriate, grown at 37 °C with shaking at 250 rpm until OD650 0.3–0.4 and stopped by 

incubation on ice for 1 hour. 1.5 ml cells were harvested by centrifugation at 8000 rpm 

for 1 minute (Mikro20; Hettich Zentrifugen), resuspended in 1 ml ice cold 50 mM CaCl2 

and incubated on ice for 1 hour. The competent cells were spun down again, resuspended 

in 0.5 ml 50 mM CaCl2 and split into 100 μl aliquots for transformation.  

 

2.4.7.3 Heat shock  

An aliquot of chemically competent E. coli was mixed with 1–5 μl of plasmid preparation 

or 5–45 μl PCR product and incubated on ice for 1 hour. The heat shock was performed 

at 42 °C for 1.5 minutes before returning the samples to ice. 900 μl LB was added to the 

cell suspension and this was incubated at 37 °C for 1 hour before being spread on 

selective LB agar.  

 

2.4.7.4 Freeze-thaw competency  

The recipient strain of E. coli was grown overnight at 37 °C and 500 μl of this was 

inoculated into 5 ml LB before incubating at 37 °C for 1 hour. These were harvested by 
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centrifugation at 8000 rpm for 1 minute, resuspended in 1 ml ice cold 50 mM CaCl2 and 

split into 100 μl aliquots. These were mixed with 2–10 μl of plasmid preparation, frozen 

in liquid nitrogen and thawed at 37 °C for 2 minutes. 900 μl LB was added to the cell 

suspension and this was incubated at 37 °C for 1 hour before being spread on selective 

LB agar.  

 

2.5 Growth of bacteria  

2.5.1 Expression of periplasmic proteins from pET-based constructs  

E. coli BL21 (DE3) pLysS pET21b-siaP(variant) were grown in 5 ml LB ampicillin 

chloramphenicol for 5 hours or overnight at 37 °C with shaking at 250 rpm. These 

cultures were spun down at 8000 rpm, washed with M9 salts and resuspended in 1 ml M9 

salts. This was inoculated into a starter culture of 50 ml M9 minimal medium containing 

0.4% D-glucose and grown at 37 °C overnight with shaking at 180 rpm. The starter 

cultures were inoculated into 625 ml M9 minimal medium containing 0.4% D-glucose to 

an OD650 0.1, grown at 25 °C to an OD650 0.2 - 0.3 when they were induced by the 

addition of 1 mM IPTG (Melford) and incubated overnight at 25 °C.  

 

2.5.2 Expression of cytoplasmic proteins from pRSET-based constructs  

E. coli BL21 (DE3) pLysS pAH80 (pRSET-cfp-siaP-yfp) was grown in 5 ml LB 

ampicillin chloramphenicol for 5 hours at 37 °C with shaking at 250 rpm. These cultures 

were spun down at 8000 rpm, washed with M9 salts and resuspended in 1 ml M9 salts. 

This was inoculated into two flasks of 50 ml M9 minimal medium 0.4% D-glucose to an 

OD650 0.1, grown at 25 °C to an OD650 0.2 - 0.3 when they were induced by the addition 

of 1 mM IPTG (Melford) and incubated for two days in the dark at 25 °C.  

 

2.5.3 Expression of membrane proteins from pBAD-based constructs  

E. coli MC1061 pBADnQM were grown in 5 ml LB ampicillin for 5 hours at 37 °C with 

shaking at 250 rpm. These cultures were inoculated into a starter culture of 50 ml LB 

medium containing ampicillin and 0.5% glycerol and grown at 37 °C overnight with 

shaking at 180 rpm. 6.25 ml of overnight culture was inoculated into 625 ml LB 0.5% 

glycerol ampicillin, grown at 37 °C to an OD660 1 when they were induced by the 
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addition of 0.005% arabinose (Calbiochem). These were then incubated for a further two 

hours at 37 °C before being harvested by centrifugation at 5000 rpm for 15 minutes at 4 

°C. The pelleted cells were resuspended in 50 mM potassium phosphate buffer 20% 

glycerol pH7.8 and kept at -80 °C.  

 

2.6 Preparation of bacterial extracts  

2.6.1 Periplasmic fraction preparation  

After overnight growth, induced cells were pelleted at 6000 rpm for 20 minutes at 4 ºC 

and resuspended in 25 ml 5 mM EDTA, 50 mM Tris, 0.5 M sucrose (Fisher Scientific) 

pH 8.0 and incubated with 12 mg lysozyme (chicken egg white; Sigma) at 30 ºC for 2 

hours. This was then centrifuged at 12000 rpm for 10 minutes at 4 ºC and the supernatant 

collected.  

 

2.6.2 Cytoplasmic protein recovery  

Induced cells were harvested by centrifugation at 4000 rpm for 20 minutes at 4 ºC, 

resuspended in 35 ml 50 mM Tris/HCl pH 8.0 and sonicated on ice for a total of 10 

minutes to rupture the cells. Insoluble protein and cell debris were removed by 

centrifugation at 12000 rpm for 10 minutes at 4 ºC and the supernatant collected. 

 

2.6.3 Preparation of cell membranes as total membrane vesicles  

MgCl2 (Fisher Scientific) and DNase (Sigma-Aldrich) were added to the harvested E. coli 

cells to a final concentration of 1 mM and 100 μg/ml, respectively. The cells were 

ruptured by sonication on ice for a total of 10 minutes and then incubated on ice for a 

further 5 minutes before the addition of 5 mM EDTA pH 7.5. The lysate was centrifuged 

at 10000 rcf for 30 minutes at 4 °C and the supernatant spun again at 40000 rpm for 1 

hour at 4 °C (L7 Ultracentrifuge; Beckman). The pellet was resuspended in 11 ml 50 mM 

potassium phosphate buffer 10% glycerol pH 7.8 and kept at -80 °C.  

 

2.7  Protein purification techniques  

2.7.1  Hydrophobic Interaction Chromatography (HIC)  
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The periplasmic fraction preparation was dialysed into 50 mM Tris/HCl, 1.5 M 

(NH4)2SO4 pH 8.0 and clarified by centrifugation at 12000 rpm for 10 minutes at 4 °C. A 

Tricorn 10/300 column packed with Source 15PHE (Amersham Biosciences) was 

connected to a BioLogic DuoFlow FPLC (BioRad) and washed with 50 mM Tris/HCl, 

1.5 M (NH4)2SO4 pH 8.0. The clarified, dialysed periplasmic preparation was loaded onto 

the column at 0.5 ml/minute. The separation was performed by decreasing the (NH4)2SO4 

concentration to zero over 3 hours with a flow rate of 1 ml/minute and fractions collected 

for 2 minutes (Fraction Collector model 2128; BioRad). Protein-containing fractions 

were visualised using SDS PAGE.  

 

2.7.2  Size Exclusion Chromatography (SEC)  

Following HIC, the SiaP-containing fractions were dialysed into 50 mM Tris/HCl, 150 

mM NaCl pH 8.0 and clarified by centrifugation at 12000 rpm for 10 minutes at 4 °C. A 

G75 sepharose column was connected to an AKTA UPC-900 FPLC (Amersham 

Pharmacia Biotech) and washed with 10 column volumes (CV) of 50 mM Tris/HCl, 150 

mM NaCl pH 8.0. The clarified, dialysed SiaP-containing preparation was loaded onto 

the column in 5 ml aliquots at 0.45 ml/minute. The separation was performed over 5 

hours, allowing 1.5 CV to be passed. The fraction volume collected was 2.5 ml minutes 

(Fraction Collector Frac-950; Amersham Pharmacia Biotech). Protein-containing 

fractions were visualised using SDS PAGE.  

 

2.7.3  Nickel-affinity chromatography   

2.7.3.1 FPLC  

The periplasmic fraction preparation was dialysed into 20 mM Tris/HCl, 300 mM NaCl 

pH 7.5 and clarified by centrifugation at 12000 rpm for 10 minutes at 4 °C. A 1 ml 

HisTrap HP column containing Ni-sepharose (GE Healthcare) was connected to a 

BioLogic DuoFlow FPLC (BioRad) and washed with 20 mM Tris/HCl, 300 mM NaCl, 

12 mM imidazole pH 8.0. Imidazole was added to the clarified, dialysed periplasmic 

preparation to a concentration of 12 mM and this was loaded onto the column at 1 

ml/minute. The column was then washed with 20 column volumes (CV) 20 mM 

Tris/HCl, 300 mM NaCl, 20 mM imidazole pH 7.5. His-tagged protein was eluted with 
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20 mM Tris/HCl, 300 mM NaCl, 400 mM imidazole pH 7.5 and 1 ml fractions were 

collected (Fraction Collector model 2128; BioRad). Protein-containing fractions were 

visualised using SDS PAGE.  

 

2.7.3.2 Peristaltic pump  

The periplasmic fraction preparation was dialysed into 20 mM Tris/HCl, 300 mM NaCl 

pH 7.5 and clarified by centrifugation at 12000 rpm for 10 minutes at 4 °C. A 1 ml 

HisTrap HP column containing Ni-sepharose (GE Healthcare) was connected to a P-1 

peristaltic pump (Amersham Biosciences) and washed with 20 mM Tris/HCl, 300 mM 

NaCl, 12 mM imidazole pH 8.0. Imidazole was added to the clarified, dialysed 

periplasmic preparation to a concentration of 12 mM and this was loaded onto the column 

at a medium flow rate. The column was then washed with 20 column volumes (CV) 20 

mM Tris/HCl, 300 mM NaCl, 20 mM imidazole pH 7.5. The pump was then filled with 

20 mM Tris/HCl, 300 mM NaCl, 400 mM imidazole pH 7.5, reconnected to the column 

and eluted protein was collected as 0.5 CV, followed by 2 CV fractions. Protein-

containing fractions were visualised using SDS PAGE.  

 

2.7.4 Nickel-Nitrilotriacetic acid (Ni-NTA) resin – FLIP  

2.7.4.2 Purification of soluble protein  

The sample containing Histidine-tagged protein was dialysed into 20 mM Tris/HCl, 200 

mM NaCl pH 7.5 (in the dark, where necessary) and clarified by centrifugation at 12000 

rpm for 10 minutes at 4 °C. A High-imidazole buffer containing 20 mM Tris/HCl, 200 

mM NaCl, 400 mM imidazole pH 7.5 was added to the clarified lysate to give a final 

imidazole concentration of 12 mM. This was mixed with 500 μl pre-equilibrated Ni-

nitrilotriacetic acid (Ni-NTA) resin (Qiagen) per 25 ml of sample and mixed for 1 hour at 

4 °C (in the dark, where necessary). Upto 0.75 ml of protein-bound resin was sedimented 

in a disposable column (Qiagen), washed with 10 column volumes (CV) of 20 mM 

Tris/HCl, 200 mM NaCl, 20 mM imidazole pH 7.5 and then the protein was eluted with 

0.5, 2 and 2 CV of 20 mM Tris/HCl, 200 mM NaCl, 400 mM imidazole pH 7.5. The 

second fraction was at 4 °C (in the dark, where necessary).  
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2.7.4.2 Purification of membrane protein  

Approximately 10 mg of SiaQM in E. coli total membrane vesicles was mixed in 7 ml 50 

mM potassium phosphate buffer, 200 mM NaCl, 20% glycerol, 10 mM imidazole, 0.5% 

dodecyl-D-maltoside (DDM) pH 7.8 and incubated on ice for 30 minutes. This was 

centrifuged at 53000 rpm for 20 minutes at 4 °C, the supernatant mixed with 300 μl Ni-

nitrilotriacetic acid (Ni-NTA) resin (Qiagen) and mixed for 1 hour at 4 °C. After the resin 

was sedimented in a disposable column (Qiagen), the column was washed with 10 

column volumes (CV) of 50 mM potassium phosphate buffer, 200 mM NaCl, 20% 

glycerol, 40 mM imidazole pH7.8 containing 0.05% DDM, followed by 10 CV of the 

same buffer containing 0.15% decyl-D-maltopyranoside (DM). SiaQM was then eluted 

with 0.5, 2 and 2 CV of DM-containing buffer with 500 mM imidazole. 

 

2.7.5 Reconstitution of membrane protein into proteoliposomes  

200 μg of SiaQM was then mixed with 8 mg E. coli lipid in 50 mM potassium phosphate 

buffer 0.15% DM pH 7.0, incubated on ice for 10 minutes and reconstituted into 

proteoliposomes by rapid dilution in 65 ml 50 mM potassium phosphate buffer pH 7.0 on 

ice. The Proteoliposomes were then collected by centrifugation at 40000 rpm for 1 hour 

30 minutes at 4 °C, resuspended in 0.5 ml 50 mM potassium phosphate buffer pH 7.0 and 

kept at -80 °C. As the requirements for reconstituted SiaQM increased, this was supplied 

by Judith Hawkshead.  

 

2.8 Large volume fermentation for the production of SiaP-His6:A11N  

2.8.1 Expression of protein from the pAH55 construct  

E. coli BL21 (DE3) pLysS pAH55 was grown in 20 ml LB ampicillin chloramphenicol 

for overnight at 37 °C with shaking at 250 rpm. This culture was spun down at 4000 rpm 

for 10 minutes at 4 °C and resuspended in 10 ml M9 salts. This was inoculated into a 

starter culture of 800 ml M9 minimal medium containing 0.6% D-glucose and grown at 

37 °C overnight with shaking at 180 rpm. A 70 l fermenter with CBC10 CH-8604 control 

unit (α-ALPHA-LAVAL CHEMAP AG) was set up with 50 l M9 minimal medium 

supplemented with 0.05% D-glucose, 0.5% glycerol, 0.2% α-lactose (Sigma) and 0.01% 
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antifoam 204 (Sigma). The starter culture was inoculated directly into this and grown at 

30 °C for 32 hours with O2 saturation kept above 20% by a variable stirring rate.  

 

2.8.2 Preparation of bacterial extracts  

Induced cells were pelleted at 5000 rpm for 15 minutes and resuspended in 250 ml 5 mM 

EDTA, 50 mM Tris, 0.5 M sucrose (Fisher Scientific) pH 8.0. Glycerol was added to a 

final concentration of 10% and the mixture was frozen and kept overnight at -20 ºC. 

Following thawing, this was incubated with 0.5 mg/ml lysozyme at 30 ºC for 4 hours and 

was then centrifuged at 14000 rpm for 30 minutes at 4 ºC. The supernatant was collected 

and kept at 4 ºC before purification of the soluble protein using Ni-NTA resin.  

    

2.9 Polyacrylamide gel electrophoresis (PAGE)  

2.10.1 Native conditions  

2.9.1.1 Buffers and gel  

The separating polyacrylamide gel was cast from 6% acrylamide (Geneflow), 375 mM 

Tris/HCl, 0.1% ammonium persulphate (APS; Sigma), 0.01% (TEMED; Sigma) pH 8.8, 

while the stacking gel was cast from 4.5% acrylamide, 125 mM Tris/HCl, 0.1% APS, 

0.01% TEMED pH 6.8. The running buffer in the tank was made up of 3 g/l Tris, 14 g/l 

glycine (Fisher Scientific).  

 

2.9.1.2 Sample preparation  

Each protein was resuspended in sample buffer, which was made up of 188 mM 

Tris/HCl, 10% glycerol, 0.0005% bromophenol blue (Sigma-Aldrich) pH 8.8.  

 

2.9.1.3 Running conditions  

The migration of proteins under native conditions electrophoresis was performed using 

6% polyacrylamide gel. Each sample was loaded so that 250 ng of protein was added to 

each lane. The gel was submerged in running buffer and a 60 volt potential difference 

was applied for 3.5 hours.  

 

2.9.2 Denaturing conditions  
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2.9.2.1 Buffers and gel   

The separating polyacrylamide gel was cast from 12% acrylamide, 375 mM Tris/HCl, 

0.1% sodium dodecyl sulphate (SDS; Melford), 0.1% APS, 0.01% TEMED pH 8.8, while 

the stacking gel was cast from 4% acrylamide, 125 mM Tris/HCl, 0.1% SDS, 0.1% APS, 

0.01% TEMED pH 6.8. The running buffer in the tank was made up of 3 g/l Tris, 14 g/l 

glycine and 1 g/l SDS.  

 

2.9.2.2 Sample preparation  

The sample buffer was made up of 18 mM Tris/HCl, 20% glycerol, 0.2% SDS, 0.001% 

Brilliant Blue-R250 (Fisher Bioreagents) pH 7.2. Each protein was resuspended in this 

buffer and heated to 97.5 °C for 5 minutes. For whole cell lysates, 1 ml of culture was 

spun down at 13000 rpm for 5 minutes and resuspended in a volume of sample buffer 

equal to 50 x OD650 of the culture. These were then heated to 97.5 °C for 5 minutes, 

clarified by centrifugation at 13000 rpm for 15 minutes and samples removed from the 

supernatant.  

 

2.9.2.3 Running conditions  

The separation of proteins under denaturing conditions by electrophoresis was performed 

using 12% polyacrylamide gel. Once the gel was submerged in running buffer, the 

samples were loaded and a 200 volt potential difference was applied for 1 hour. When 

finished, the gels were rinsed with distilled water.  

 

2.9.3 Staining/destaining  

Coomassie stain was made up of 2.5% Brilliant Blue-R250 in 10% acetic acid (Fisher 

Scientific), 45% methanol (Fisher Scientific). Polyacrylamide gels were submerged in 

this stain for 10 minutes with gentle agitation. The gels were destained in 10% acetic 

acid, 10% ethanol before an image was captured using the Syngene Imaging System.  

 

2.9.4  Western blotting  

2.9.4.1 Buffers  
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The transfer buffer was made up of 200 mM glycine, 25 mM Tris/HCl, 10% methanol pH 

8.3. TBST buffer was made up of 150 mM NaCl, 20 mM Tris/HCl, 0.1% Tween-20 

(Sigma) pH 8.3. For the blocking solution, 5% milk powder (Marvel) was added to 

TBST. The primary hybridization buffer was made up of a 1:2000 dilution of mouse 

anti(tetrahistidine) antibodies (Qiagen) in TBST 1% milk powder. The secondary 

hybridization buffer was made up of a 1:2000 dilution of horseradish peroxidise-

conjugated rabbit anti(mouse) antibodies (Zymed Invitrogen) in TBST 1% milk powder.  

 

2.9.4.2 Running conditions   

The polyacrylamide gel was removed from the PAGE tank and equilibrated in transfer 

buffer for 15 minutes. Once fitted into the transfer cassette and submerged in transfer 

buffer, the proteins were transferred to nitrocellulose membrane (Amersham Biosciences) 

by a 0.35 ampere current for 1 hour. Following this, the membranes were stained with 

Ponceau S solution (Sigma) to confirm the transfer of proteins.  

 

2.9.4.3 Sample visualisation  

Protein-bound nitrocellulose membranes were incubated in blocking solution for 30 

minutes at room temperature with gentle agitation. Following four washing steps with 

TBST, the membrane was incubated with the primary hybridisation buffer over night at 4 

°C. The next morning, the membrane was washed four times with TBST, incubated with 

the secondary hybridisation buffer for 1 hour at room temperature and immediately 

washed seven times with TBST. For visualisation, the membrane was mixed with 5 ml 

Supersignal West Pico chemiluminescent substrate (Thermo Scientific), dried and 

exposed to CL-Xposure photographic film (Thermo Scientific).  

 

2.10 Fluorescence spectroscopy  

Fluorescence spectroscopy was performed in either 50 mM Tris/HCl pH 8.0 or 20 mM 

phosphate buffer of the specified pH value, made up from the sodium or potassium salts 

as indicated.  

Purified protein was used at a concentration dependent upon its affinity for sialic acid. 

Where the Kd value was less than 2 μM, the protein concentration was 0.05 μM; for Kd 
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values above this but less than 10 μM, the protein concentration used was 0.25 μM; when 

the Kd value was indeterminate, the protein concentration used was 1 μM. Protein 

fluorescence experiments were performed in 3 ml quartz cuvettes (Starna) using a 

FluoroMax2 (Instruments SA, Inc.) with an LTD6 waterbath (Grant) or a FluoroMax4 

(Horiba Jobin Yvon) with a NesLab RTE water bath (Thermo Scientific). Both the 

FluoroMax2 and the FluoroMax4 were controlled with the supplied software, DataMax-

Std version 2.20 and FluorEssence version 3.0.0.19, respectively. The sample was excited 

at the specified wavelength with slit widths of 2 – 5 nm in order to give a signal intensity 

of 2 – 3 x 106 units. Ligand was added at specified concentrations and times to produce 

spectra and time-course titrations as described. For titrations, the cumulative fluorescence 

change was plotted using SigmaPlot (version 10.0) and the Kd value was determined 

using a fit to a simple hyperbolic curve.  

 

2.11 Isothermal Titration Calorimetry (ITC)  

2.11.1 ITC protocol  

For this analysis the ligand was dissolved in a volume of the dialysis buffer from the 

protein preparation. Both the protein and ligand were degassed at 2 °C below the 

experimental temperature before being loaded into the VP-ITC microcalorimeter 

(MicroCal), controlled by VPViewer2000 version 1.4.24 (MicroCal LLC). 10 – 14.6 μM 

SiaP-His6 was titrated with additions of 100 – 200 μM sialic acid. Initially, the titration 

pattern was a first injection of 3 μl, followed by 6 μl injections of 14 seconds, separated 

by 180 seconds. To reduce running time, this pattern was modified to a first injection of 3 

μl, three 18 μl injections separated by 240 seconds, followed by 6 μl injections of 14 

seconds, separated by 180 seconds. These were then analysed using Origin 7SR2 version 

7.0383(B383) (OriginLab Corporation) by fitting to one set of binding sites.  

 

2.11.2 ITC for SiaP-His6:F170W  

For SiaP-His6:F170W, 40 μM protein was titrated with additions of 600 μM sialic acid. 

The titration pattern was a first injection of 3 μl, followed by 6 μl injections of 14 

seconds, separated by 180 seconds.  
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2.11.3 ITC for higher Kd values  

For Kd values above 2 μM, the protein concentration used was ten times the expected Kd 

value and the concentration of ligand used was ten times the protein concentration. The 

titration pattern was a first injection of 3 μl, followed by 6 μl injections of 14 seconds, 

separated by 180 seconds.  

 
2.12 Circular Dichroism (CD)  

2.12.1 CD spectra determination  

CD spectra were determined using a J-810 spectropolarimeter (Jasco) controlled by the 

supplied software SpectraManager version 1.53.00 (Jasco); the temperature was 

maintained at 20.0 °C using a Peltier unit PFD-425S (Jasco). Protein was dialysed into 10 

mM potassium phosphate buffer pH 8.0 and diluted to a concentration of 5 μM. The 

spectra were determined in a 1 mm pathlength quartz cuvette (Starna) between 240 – 180 

nm at 100 nm/minute with 1 nm pitch.  

 

2.12.2 Thermal stability by CD  

The melting temperature was determined by measurement of the CD signal at 222 nm 

every 5 °C between 20 – 90 °C. The rate of temperature increase was set at 3 °C/minute 

and the sample was incubated at the new temperature for 5 minutes before each 

measurement.  

 

2.13 In vivo growth assays  

2.13.1 Growth on solid medium   

For growth experiments on solid medium, the E. coli BW25113 ΔnanT strains carrying 

the plasmids of interest were grown overnight in 5 ml LB with selection and then 

streaked onto M9 minimal medium 1% agarose with 1 mg/ml sialic acid or 0.4% glucose 

as the sole carbon source. These were then incubated at 37 °C for two days.  

2.13.2 Liquid culture 

The E. coli BW25113 ΔnanT strains carrying the plasmids of interest were grown 

overnight in 5 ml LB with selection. These cells were harvested by centrifugation at 8000 

rpm for 1 minute, washed M9 salts be resuspension and centrifugation and then 10 μl was 
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inoculated in to 3 ml M9 minimal medium with 1 mg/ml sialic acid as the sole carbon 

source. These were then incubated at 37 °C overnight.  

2.13.3 Prototype incubated plate shaker – buffers etc and pre-growth  

2.13.3.1 24-well plate set up   

Cultures of the E. coli strains of interest were grown to mid-log phase and then washed 

and resuspended in M9 salts. These were then inoculated to an OD650 0.01 in 700 μl M9 

minimal medium in the wells of a sterile 24-well glass-bottom plate. The wells were 

closed by an air-permeable sterile lid, which was taped onto the top of the plate.  

2.13.3.2 The prototype incubated plate shaker  

Culture growth was monitored using a prototype incubated plate shaker (EnzyScreen). 

The 24-well plate was clamped into the shaker cabinet and incubated at 35 °C with 

shaking at 250 rpm. The shaking was halted every 30 minutes for about 1 minute while 

the density of the culture was measured. A flat-bed scanner captured an image of the base 

of the plate and the increasing whiteness of the growing cultures was converted to a value 

(G value) by the associated software (ImageAnalysisGIU version 1.0.0.0).  

2.13.3.3 Standard curve  

The G value was correlated to an OD650 value (OD650*) by measuring the G value of non-

growing cultures of known optical density (Figure 2.1). Below a G value of 57, the 

relationship is linear; above this value, y is approximately equal to 104/(1+ OD650(-(x-

0.289)/0.095)). Using this, all G values were converted to their apparent OD650 values 

(OD650*).  

 

2.14 ELISA-based assays for the detection of SiaP-His6  

2.14.1 Target substrates   

BSA-Neu5Ac was prepared using a method based on that used by Telmer and Shilton 

(2003) to produce BSA coupled to Amylose and Maltoheptaose. 50 mg Neu5Ac was 

dissolved in 50 ml ddH20 and activated by the addition of 50 mg NaIO4 (s) followed by 

incubating on ice for 30 minutes. 20 ml 0.05 mg/ml BSA 200 mM Na2CO3 pH 9.1 was 

added to the activated Neu5Ac and stirred at room temperature for six hours. This was 

then dialysed four times against 5 l ddH20 for 48 hours at 4 °C, freeze dried and stored at 

4 °C.  
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2.14.2 96-well plate assay  

5 nanomoles (nmoles) and 0.5 nmoles of sialic acid, Neu5Ac-BSA, colominic acid and 

porcine mucin (submaxiliary gland; Sigma) were added to columns of 8 wells on a 96-

well MaxiSorp plate (Nunc) and left open at 37 °C to dry. The plate was washed with 140 

mM NaCl, 2.7 mM KCl, 0.1% Tween-20, 8.1 mM sodium phosphate, 1.5 mM potassium 

phosphate pH 7.3 (TPBS). The remaining well surface was blocked by incubating with 

50 μl TPBS 2% BSA at 4 °C for two days. The plate was washed again in TPBS. 50 μl 20 

μM SiaP-His6 was added across each 12-well row in a 1/3 serial dilution to the lowest 

concentration of 27 nM in the 7th row. These were incubated at room temperature for 3.5 

hours, washed with TPBS and incubated with 1/2000 mouse anti(His4)antibodies 

overnight at 4 °C. Unbound antibodies were washed off with TPBS and the wells were 

incubated with 1/2000 HRP-conjugated rabbit anti(mouse)antibodies at room temperature 

for 1.5 hours. 50 μl Supersignal (Pierce) was added to each well and the resultant 

luminescence was observed at 425 nm using a PolarStar Optima plate reader (BMG 

Labtech).  

 

2.15 14C-radiolabelled sialic acid-based assays  

2.15.1 Filter binding assay  

Protein at 2.5 μM was incubated with 2.5 μM 14C-labelled sialic acid (14C-Neu5Ac; 

Sigma-Aldrich) in 50 μl 50 mM Tris/HCl pH 8.0 for 10 minutes on ice. The protein was 

precipitated by incubation on ice for 20 minutes with 1 ml saturated (NH4)2SO4. 

Precipitated protein was trapped on 0.22 μm nitrocellulose filter (Sigma-Aldrich), washed 

with 2 ml 50 mM Tris/HCl pH 8.0 and added to 3 ml scintillation fluid (Perkin Elmer) for 

measuring. 

 

2.15.2 In vitro 14C-sialic acid transport assay  

2.15.2.1 Preparation of SiaQM-containing proteoliposomes  

Proteoliposomes containing 200 μg SiaQM were centrifuged at 53000 rpm for 20 minutes 

at 4 °C (TLA100 rotor, TL-100 Ultracentrifuge; Beckman) then resuspended in 0.5 ml 

100 mM potassium acetate, 2 mM MgSO4, 20 mM potassium phosphate pH 7.0 and 
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Figure 2.1: Standard curve for the relationship between OD650 and G value for E. coli BW25113 in 

M9 minimal medium. Below a G value of 57, the relationship is linear; above this value, y is 

approximately equal to 104/(1+ OD650(-(x-0.289)/0.095)).  
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extruded 11 times through a 400 nm polycarbonate filter (Avestin) to make a 

homogenous suspension of proteoliposomes containing this Na+-free buffer. These 

extruded proteoliposomes were centrifuged at 53000 rpm for 20 minutes at 15 °C and 

resuspended in 50 μl of the same buffer.   

 

2.15.2.2 Buffers for gradients  

The reaction buffer for the uptake assay was made up of 100 mM sodium acetate, 2 mM 

MgSO4, 20 mM sodium PIPES pH 7.0, 1 μM valinomycin. This combination of 

components on the outside and inside of the proteoliposomes set up a sodium-inside 

gradient.  

 

2.15.2.3 Standard assay  

For each uptake assay, 5 μM protein and 5 μM 14C-Neu5Ac were added to 300 μl of the 

reaction buffer and incubated at the reaction temperature of 30 °C for 1 minute. 1.15 μM 

SiaQM in proteoliposomes (6 μl addition) was added to start the reaction and 50 μl 

samples were taken twenty seconds later and every forty seconds following, up to 180 

seconds. As each of these was removed, they were mixed with 50 μl 100 mM sodium 

acetate, 2 mM MgSO4, 20 mM sodium PIPES, 1 mM unlabelled sialic acid pH 7.0. After 

10 seconds, these were added to a 0.22 μm nitrocellulose filter, washed with 2 ml 50 mM 

potassium phosphate buffer pH 7.0 and added to 3 ml scintillation fluid for measuring.  

 

2.15.2.4 Altered 14C-sialic acid concentration  

Doubling the volume of 14C-Neu5Ac added to the reaction buffer increased the sialic acid 

concentration to 10 μM. To reach a reaction concentration of 30 μM sialic acid, 5 μM 

14C-Neu5Ac was mixed with 25 μM unlabelled sialic acid.  

 

2.15.2.5 Competition assay  

This assay used 8.12 μM 14C-Neu5Ac and 11.88 μM unlabelled Neu5Ac to reach a 

reaction concentration of 20 μM sialic acid. The concentration of valinomycin was 

doubled to 2 μM and 5 μM SiaP-His6 was included in the reaction buffer. For the 

competition assay, 5 μM SiaP-His6:N150D was added, giving a maximum total protein 
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concentration of 10 μM. The reaction was started by the addition of 2.3 μM SiaQM in 

proteoliposomes (12 μl addition) and 50 μl samples were taken 30 seconds later and 

every 60 seconds following, up to 270 seconds.  

 
2.16 Guanidine hydrochloride (GnHCl) denaturation for protein recycling  

2.16.1 Buffers  

The protein solution was made up to 50 mM potassium phosphate buffer, 200 mM NaCl, 

20% glycerol, 10 mM imidazole pH 7.5 from higher concentration stocks. Guanidine 

hydrochloride (GnHCl), was added to 50 mM potassium phosphate buffer, 200 mM 

NaCl, 20% glycerol, 20 mM imidazole pH 7.5 to give wash buffers containing 2 M, 1.5 

M, 1 M and 0.5 M GnHCl. The elution buffer was made up of 50 mM potassium 

phosphate buffer, 200 mM NaCl, 20% glycerol, 500 mM imidazole pH 7.5.  

 

2.16.2 In-column denaturation and refolding  

The protein in imidazole-containing buffer was clarified by centrifugation at 12000 rpm 

for 10 minutes at 4 °C. This was mixed with 500 μl pre-equilibrated Ni-NTA resin and 

mixed for 1 hour. After the resin was sedimented in a disposable column, the bound 

protein was denatured with 30 column volumes (CV) of buffer containing 2 M GnHCl, 

follwed by 4 CV of each of the solutions containing decreasing GnHCl. The column was 

washed with 50 mM potassium phosphate buffer, 200 mM NaCl, 20% glycerol, 20 mM 

imidazole pH 7.5 and then the protein was eluted with 0.5, 2 and 2 CV of 50 mM 

potassium phosphate buffer, 200 mM NaCl, 20% glycerol, 500 mM imidazole pH 7.5.  
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Chapter Three 
 
 
 
 
 

Examination of the contribution of 

individual amino acid residues to high-

affinity sialic acid binding by SiaP 
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3.1  Strategy for site-directed mutagenesis of the siaP gene to alter sialic acid-

binding properties of SiaP  

From the known structures of sialic acid binding proteins, such as bacterial sialidases and 

eukaryotic siglecs, the most common method used to coordinate monomeric sialic acid is 

bivalent salt bridging with an arginine residue (Angata et al., 2004, Morschhauser et al., 

1990, van der Merwe et al., 1996, Vinson et al., 1996). As mentioned previously, the 

DctP-like TRAP SBPs invariably use their conserved binding site arginine to co-ordinate 

carboxylate-containing ligands and it was expected that the corresponding arginine (Arg-

147) would be a residue involved in the interaction with sialic acid in SiaP. Due to the 

potential importance of sialic acid carboxylate stabilization, not only Arg-147, but also 

Arg-127 and Asn-187 were chosen as targets for mutation (Figure 3.1). The arginine 

residues were mutated to three different amino acids: the first was a conservative change 

to lysine; the second a charge swap to glutamate; and the third a truncation of the side 

chain using alanine (Table 3.1). The asparagine was replaced by alanine or aspartate. In 

the crystal structures of SiaP in the closed and open conformations, Phenylalanine-170 

shows an additional movement and rotation that projects it into the closed binding cleft in 

close proximity with the ligand (Muller et al., 2006, Johnston et al., 2008). This suggests 

that this residue could be acting as a lid for the binding site and so it was truncated to 

alanine, given a polar side chain as tyrosine or increased in size as tryptophan.  

 

3.2  Introduction of Arginine-147 mutants into native SiaP  

A method to create the selected mutations in siaP was needed and we achieved rapid and 

extremely efficient production of site-directed mutants using a technique based on that of 

Zheng et al. (2004). Briefly, this uses 30–50 base primers with a 5’ overlap of about half 

their length to reduce the primer-primer annealing temperature and a silent mutation to 

add a restriction endonuclease cleavage site to allow for screening of potential mutants 

(Zheng et al., 2004). The long overhang allows the primers to anneal across the opposite 

end of the plasmid PCR product, so introducing PCR-like properties to the reaction. This 

improves the yield by allowing amplification of the entire plasmid and the high melting 

temperature of the overhang region removes the need for a plasmid 
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Figure 3.1: Representation of the interactions between Neu5Ac and the binding site of SiaP, based 

on 3B50.pdb (Johnston et al., 2008). Amino acid residues and the sialic acid ligand are shown as 

atom coloured cylinders; hydrogen bonds are shown as dashed black lines; Phenylalanine-65 and 

Alanine-151 are not shown for clarity.  

Arg-147 

Arg-127 

Asn-187 

Phe-170 

Glu-67 

Asp-49 

Asn-10 Neu5Ac 
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Table 3.1: Target residues in SiaP and their chosen replacements.  
 

Target residue  Amino acid change 

     Alanine 

     Glutamate 

Arginine-127  

     Lysine 

     Alanine 

     Tryptophan  

Penylalanine-170 

     Tyrosine  

Arginine-147      Alanine 

      Glutamate 

      Lysine 

Asparagine-187      Alanine 

      Aspartate 
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ligation step before transformation. The population of transformants bearing the template 

plasmid was reduced still further by digestion of the PCR product with DpnI restriction 

endonuclease.  

 

Originally, all mutagenesis of siaP was performed in the plasmid pES8 (Table 2.3), to 

allow the mutated siaP gene to be shuttled into two downstream vectors. Once confirmed 

by sequencing, the mutated genes in the pES8 vector were inserted into pET21b (between 

NdeI and XhoI) for over-expression and in vitro analysis, or into pES9, along with a 

strong ribosome binding site, upstream of siaQM (between KpnI and XhoI) for in vivo 

complementation analysis. During this project, it was decided to focus on the analysis of 

purified protein in vitro, relieving the need to shuttle the mutated siaP genes between 

vectors, and so mutagenesis was performed directly on the gene in the larger pAH16 

construct (6.4 kb in total). For each variant, the DNA sequence of the new gene was 

determined and the protein expression was tested using standard methods.  

For large scale production, native SiaP and its variants were produced at 25 °C in E. coli 

BL21 (DE3) pLysS containing the plasmid bearing the siaP gene, or the chosen variant, 

in M9 minimal medium with 0.4% glucose and appropriate antibiotic selection. 

Expression was induced at OD650 0.2–0.4 with 1 mM IPTG and the cells were left 

growing overnight.  

SiaP contains an N-terminal signal peptide for its export to the periplasm and, when 

transported, this peptide is cleaved to give processed SiaP. This processed SiaP can then 

be easily separated from the unprocessed SiaP by preparing the periplasmic fraction. 

Processed SiaP was then purified from the periplasmic fraction by hydrophobic 

interaction chromatography (HIC) followed by size exclusion chromatography (SEC) 

(Figure 3.2a).  

 

SiaP:R147A, SiaP:R147E and SiaP:R147K accumulated to a similar level as the native 

protein. However, only SiaP:R147E purified in an identical manner to the native SiaP 

using HIC (Figure 3.2ab). Purification of SiaP:R147A and SiaP:R147K was attempted 

twice, but these mutants did not separate on the HIC column with the same profile as the 

native SiaP, rather they eluted at the highest concentrations of ammonium sulphate 
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Figure 3.2: SDS PAGE gels showing the purification of native SiaP, SiaP:R147E and SiaP-R147K.  A) Fractions 

of SiaP eluted by SEC. Lane 1: sample from HIC column loaded onto SEC column; lane 2: pre-stained MW 

marker; lanes 3–9 fractions covering the SEC elution peak. B) Fractions of SiaP:R147E eluted by SEC. Lanes 1 

and 7: nativeSiaP as size marker; lane 2: pre-stained MW marker; lanes 3–6  fractions covering the SEC elution 

peak. C) Fractions from SiaP:R147A-containing periplasmic preparation eluted by HIC. These fractions cover 

the expected elution peak. Lanes 1 and 15: SiaP as size marker, indicated by arrows; lanes 2–13: fractions 21–32. 

D) The final fractions from SiaP:R147A-containing periplasmic preparation eluted by HIC. Lanes 1 and 15: SiaP 

as size marker, indicated by arrows; lanes 2–13 fractions 78–90. These show the elution of SiaP:R147E over a 

large number of the final fractions.  

A) 

B) 

C) D) 
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(Figure 3.2cd). This could be due to the amino acid substitutions causing very slight 

disruption to the conformation of the protein. As can be seen, basing a standard 

purification procedure for the SiaP mutants using HIC would be unreliable due to its 

sensitivity to changes in SiaP.  

 

 

3.3  SiaP-His6 functions as SiaP in vitro and in vivo  

Due to the inability of HIC to reliably separate mutant SiaP proteins, a C-terminal 

hexahistidine–tag (His6–tag) was added to siaP and the resultant SiaP-His6 was then 

purified and characterised for sialic acid binding in vitro and in vivo. The C-terminus was 

chosen as the position for the His6-tag since this would not require the removal of the 

signal peptide, which could have an effect on the folding of the protein and would result 

in a cytoplasmic SiaP variant. 

 

The siaP-His6 gene was engineered using a 51 base reverse primer and the original 

forward primer (SiaPfor, Table 2.1) and ligated into the pBlueScriptII vector (making 

pAH14). This was then cloned into both the pES9-based in vivo and pET21b- based in 

vitro vectors (to make pAH15 and pAH16, respectively). Expression and periplasmic 

fractionation of SiaP-His6 was performed exactly the same as for native SiaP (Figure 

3.3a). His6-tagged SiaP was separated from the periplasmic preparation by Ni-

chromatography using the standard protocol.  

 

All fractions were visualised by SDS-PAGE for the presence of the tagged protein 

(Figure 3.3a) and the second elution fraction was sufficiently clean to be analysed. 

Following dialysis into the required buffer, this was then kept at 4 ºC. As with native 

SiaP, the affinity of SiaP-His6 for sialic acid was determined by tyrosine fluorescence 

titration. This protein undergoes a fluorescence signal increase of just 5% on ligand 

binding (Severi et al., 2005), making titration of this change difficult. Fluorescence 

titration of SiaP-His6 was achieved under the same conditions as native SiaP, giving a Kd 

value of 0.14 ± 0.04 μM in 50 mM Tris/HCl pH 8.0 at 37 °C (Figure 3.3b), which is 

identical to the native protein (Severi et al., 2005).  
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A) 

B) 

Figure 3.3: Purification and in vitro ligand binding analysis of SiaP-His6. A) Fractions from the Ni-

affinity purification of SiaP-His6. Lanes 1 and 12: 150 ng SiaP as size marker; lane 2: spheroplasts 

from induced cells; lane 3: periplasmic preparation; lane 4: periplasmic preparation dialysed into Ni-

column buffer; lane 5: Ni-column flow through; lane 6: Ni-column washing step; lanes 7–11: Ni-

column elution fractions 1–5. These show the elution of SiaP-His6 over two 1 ml fractions. B) 

Titration of the tyrosine fluorescence signal of 0.05 μM SiaP-His6. This was repeated in triplicate and 

gave the Kd value as 0.17 ± 0.01 μM.  
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This Kd value was confirmed in triplicate using Isothermal Titration Calorimetry (ITC). 

10 μM, 13.2 μM and 14.6 μM SiaP-His6 was titrated with 6 μl additions of 150 μM, 200 

μM and 100 μM sialic acid in 50 mM Tris/HCl pH 8.0 at 37 °C (Figure 3.4). These gave 

a Kd value for sialic acid of 0.11 ± 0.02 μM and the thermodynamics of binding as ΔHo= 

-116 kJ mol-1; ΔSo= -240 kJ mol-1 K-1; ΔGo= -41 kJ mol-1 and so binding is very 

favourable and enthalpically driven. The thermodynamics of ligand binding will be 

discussed in greater detail in Section 4.1.4.  

 

Since the presence of the His6-tag had no detectable effect on ligand binding in vitro, the 

effect of the His6 tag on transport was monitored in vivo using a system developed by Dr. 

Emmanuele Severi. In this, the siaPQM genes are expressed from a single operon in the 

low copy-number plasmid, pWKS30, by IPTG induction in a strain of E. coli lacking its 

native sialic acid transporter, E. coli BW25113 ΔnanT.  

 

The siaP and siaP-His6 genes were introduced upstream of siaQM to make pES7 (Severi 

et al.) and pAH15, respectively. Transformants bearing each of these were streaked on 

M9 minimal medium 1% agarose supplemented with 1 mg/ml Neu5Ac as the sole carbon 

source. These showed that growth occurred with expression of the whole transporter 

containing either SiaP or SiaP-His6 (Figure 3.5).  

 

The above results would indicate that the addition of the hexahistidine tag to SiaP has no 

detrimental effect on either ligand binding in vitro or ligand-dependent interaction with 

SiaQM in vivo and so SiaP-His6 is an acceptable variant to work with.  
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Figure 3.4: ITC analysis of 10 μM SiaP-His6 in 50 mM Tris/HCl pH 8.0 at 37 °C. 150 μM Neu5Ac was 

injected into the cell in 6 μl aliquots. Here, for SiaP-His6 K = 9.91 x 106 M-1 and so the Kd is 0.10 μM.  
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Figure 3.5: Growth of E. coli BW25113 ΔnanT strains containing the empty vector, pWKS30, 

expressing siaPQM or siaP-His6–QM on M9 minimal medium supplemented with 1 mg/ml Neu5Ac as 

the sole carbon source.  

E. coli BW25113 ΔnanT pWKS30 

E. coli BW25113 ΔnanT 
pWKS30-siaPQM 

E. coli BW25113 ΔnanT 
pWKS30-siaP-His6-siaQM 
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3.4  The introduction of tryptophan residues can improve the fluorescence signal 

change on ligand binding  

Due to the poor fluorescence signal change of SiaP on ligand binding, we attempted to 

create a variant of SiaP with a stronger fluorescence signal. Single tryptophan residues 

were introduced into three different positions in siaP-His6. The first two positions, Tyr-76 

and Tyr-161, are close to the surface of the protein, near to the environment of the cleft 

and so were suspected of causing the fluorescence change in the protein upon ligand 

binding (Figure 3.6a). The third position, Phe-75, came from an alignment with VC1779, 

the homologous sialic acid binding protein from Vibrio cholerae, which has a very strong 

fluorescence signal change on ligand binding. Phe-75 corresponds to one of the four 

tryptophan residues in VC1779 and is surface exposed near the domain interface (Figure 

3.6a).  

 

These three mutant proteins were produced and purified identically to SiaP-His6 (Figure 

3.7). The tryptophan fluorescence spectra of these proteins were compared to SiaP-His6 

and no tryptophan emission could be seen on excitation for tryptophan residues at 297 nm 

(Figure 3.8). However, when excited for tyrosine fluorescence at 281 nm, emission peaks 

centred on 340 nm could be seen for the tryptophan insertion mutants. It is possible that 

these mutations have introduced intramolecular fluorescence resonance energy transfer 

(FRET) from the tyrosine residues surrounding the introduced tryptophan. FRET occurs 

when the absorbed energy from one fluorophore is absorbed by another fluorophore 

without emitting the energy packet as a photon, but resonating between the energy levels 

of the donating and accepting fluorophores. This is supported by the increase in intensity 

of the 340 nm peak in these mutants from Tyr-76 to Phe-75 to Tyr-161 corresponds to the 

increasing number of tyrosine residues in close proximity to the introduced tryptophan 

residue (Figure 3.6b).  

 

The fluorescence signal change of these mutants on ligand binding is not a large increase, 

of only 12 %, 13 % and 5 % for Phe-75, Tyr-76 and Tyr-161, respectively. The signal of 

the SiaP-His6:Y161W mutant was titrated and gave a Kd value of 0.17 ± 0.01 μM.  



 97

Figure 3.6: A) Surface representation of SiaP with targets for tryptophan mutants highlighted (PyMol). 

Tyr-75 and Tyr-161 are suspected of causing the fluorescence change in SiaP; Phe-75 corresponds to the 

suspect Trp residue from Vibrio cholerae VC1779, the sialic acid-binding PBP. B) Worm representation 

of SiaP with targets for tryptophan mutants as spheres and tyrosine residues as cylinders (CCP4MG).  

 

  

 

A) 

B) 
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Figure 3.7: A) Whole cell lysates from production of SiaP-His6:F75W, SiaP-His6:Y76W and SiaP-

His6:Y161W. Lanes 1 and 14: SiaP as size marker, indicated by arrows; lanes 2 and 3: Whole cell lysates 

from induced E. coli BL21 (DE3) pLysS pAH38 expressing SiaP-His6:F75W; lanes 4 and 5: Whole cell 

lysates from induced E. coli BL21 (DE3) pLysS pAH39 expressing SiaP-His6:Y76W; lanes 6 and 7: 

Whole cell lysates from induced E. coli BL21 (DE3) pLysS pAH40 expressing SiaP-His6:Y161W; lanes 8 

and 9: Periplasmic fractions from induced E. coli BL21 (DE3) pLysS pAH38 expressing SiaP-His6:F75W; 

lanes 10 and 11: Periplasmic fractions from induced E. coli BL21 (DE3) pLysS pAH39 expressing SiaP-

His6:Y76W; lanes 12 and 13: Periplasmic fractions from induced E. coli BL21 (DE3) pLysS pAH40 

expressing SiaP-His6:Y161W. B) Ni-affinity purification of SiaP-His6:F75W. Lanes 1 and 8: SiaP as size 

marker, indicated by arrows; lane 2: Ni-column flow through; lane 3: Ni-column washing step; lanes 4–7: 

Ni-column elution fractions 1–4. These show the greatest elution of SiaP-His6:F75W in fraction 2. SiaP-

His6:Y76W and SiaP-His6:Y161W elute in a similar manner.  

A) 

B) 

  SiaP    2    3    4    5     6     7     8     9    10   11  12  13    SiaP

     SiaP         2       3        4           5            SiaP

  F75W Y76W  Y161W  F75W   Y76W  Y161W
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Figure 3.8: Fluorescence emission spectra (300 nm – 360 nm) of SiaP-His6:F75W, SiaP-His6:Y76W 

and SiaP-His6:Y161W with and without a saturating concentration of sialic acid when excited at (A) 

281 nm and (B) 297 nm. Protein fluorescence emission spectra are shown in blue, protein plus 

saturating sialic acid in red and buffer without protein in green. The tryptophan emission (λex 297 nm) 

of all proteins is insensitive to the addition of sialic acid, while the appearance of a peak around 340 

nm (when excited at 281 nm) corresponds to tryptophan emission.  
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Unfortunately, this signal change was not a significant improvement over SiaP-His6, and 

so these mutations were not used any further for functional work. 

 

 

3.5  Mutations of residues co-ordinating the ligand carboxylate group disrupt 

ligand binding   

All mutations of the ligand carboxylate-coordinating residues (Table 3.1) were 

introduced into the siaP-His6 allele in the pAH16 construct for in vitro analysis and 

showed similar expression in E. coli BL21 (DE3) pLysS (Figure 3.9a). The proteins were 

then purified in a similar manner to SiaP-His6 (Figure 3.9b shows R147A as an example) 

so that their binding affinity for sialic acid could be determined.  

Using the same conditions as for the determination of ligand binding affinity by native 

SiaP and SiaP-His6, each protein was monitored for its ligand-induced fluorescence 

signal change. For all of the mutants, no signal change could be seen on the addition of 

up to 3 mM sialic acid. The protein concentration chosen previously (0.05 μM) was a 

compromise between achieving measurable signal intensity and maintaining pseudo-first 

order conditions, where the protein concentration was significantly below the Kd value. 

Since the Kd value for these mutants was clearly higher than the native SiaP, the protein 

concentration in the fluorimeter cell could be increased, thereby increasing the signal 

intensity. The fluorescence signal of 1 μM protein was monitored on the addition of 3 

mM Neu5Ac (90 μl addition of 100 mM Neu5Ac 50 mM Tris/HCl pH 8.0, supplemented 

with 1 μM protein to avoid dilution effects on fluorescence signal), and only SiaP-

His6:R127K demonstrated a detectable fluorescence signal change (Figure 3.10; Table 

3.2).  

 

The fluorescence signal change of SiaP-His6:R127K was titrated and gave a Kd value of 

0.98 ± 0.19 mM. Only this most conservative of mutations showed any ligand interaction 

at all, indicating that the other mutants have severely disrupted sialic acid binding. For all 

of these proteins, it is worth re-iterating that the very small fluorescence signal changes 

on ligand binding made analysis of these proteins problematic. 
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Figure 3.9: SDS PAGE gels showing the production of SiaP-His6:R147A, SiaP-His6:R147E and SiaP-

His6:R147K. A) Whole cell lysates from E. coli BL21 (DE3) pLysS expressing SiaP-His6:R147A, SiaP-

His6:R147E and SiaP-His6:R147K. Lane 1: SiaP as size marker, indicated by arrows; lanes 2 and 3: Whole 

cell lysates from induced E. coli BL21 (DE3) pLysS pAH35 expressing SiaP-His6:R147A; lanes 4 and 5: 

Whole cell lysates from induced E. coli BL21 (DE3) pLysS pAH36 expressing SiaP-His6:R147E; lanes 6 

and 7: Whole cell lysates from induced E. coli BL21 (DE3) pLysS pAH37 expressing SiaP-His6:R147K. B) 

Ni-affinity purification of SiaP-His6:R147A. Lanes 1 and 8: SiaP as size marker, indicated by arrows; lane 2: 

Ni-column flow through; lane 3: Ni-column wash step; lanes 4–7: Ni-column elution fraction 1–4.  

 R147A        R147E        R147K 
     1         2      3        4       5        6        7  

     1        2     3      4      5      6     7        8 

A)  

B)  



 102

Figure 3.10: Fluorescence titration of SiaP-His6 with mutations as indicated. Excitation wavelength 281 nm, 

emission wavelength 310 nm. Each black arrow shows an addition of sialic acid where the last addition (block 

arrow) gives a final concentration of 3 mM sialic acid. A titration of the fluorescence signal is only apparent 

for SiaP-His6:R127K, which gave a Kd of 0.98 ± 0.19 mM. 
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Table 3.2: Sialic acid-binding affinities of the ligand-binding mutant proteins. Indeterminate Kd values 

arise when no titration can be seen on the addition of 3 mM sialic acid to 0.5 μM protein. 

Protein Kd 

SiaP-His6 0.11 ± 0.02 μM 

SiaP-His6:R147K > 3 mM 

SiaP-His6:R147A > 3 mM 

SiaP-His6:R147E > 3 mM 

SiaP-His6:R127K 0.98 ± 0.19 mM 

SiaP-His6:R127E > 3 mM 

SiaP-His6:R127A > 3 mM 

SiaP-His6:N187A > 3 mM 

SiaP-His6:N187D > 3 mM 
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The failure to detect any fluorescence change from the remaining mutants could have 

been due to the protein being unfolded or inactive. The folded state of a protein can be 

determined by its circular dichriosm (CD) spectrum. This uses circularly polarised light 

to interrogate the secondary structure content of a protein in solution and its spectra 

between 200 – 250 nm reveals its folded state and α/β/coil content.  

 

The CD spectra of the three Arg-147 mutants were obtained and overlaid with that of 

SiaP-His6. As can be seen in Figure 3.11, the spectra of the three mutants were very 

similar to SiaP-His6, indicating that the secondary structure of these proteins are similar 

and so would seem to be folded in the same manner.  

 

This similarity of their spectra suggests that the mutant proteins have folded correctly. 

However, the CD spectra cannot reveal very slight changes in structure and so these 

mutants might have very small malformations that render them non-functional.  

 

 

 

3.6  An aromatic residue is required at position 170 for high-affinity ligand 

binding  

As mentioned earlier, Phenylalanine-170 was suspected of acting as a lid for the binding 

site. As in Table 3.1, the role of this residue was investigated by mutation to alanine, 

tryptophan and tyrosine.  

 

Using the same mutagenic approach outlined above, these three mutations were 

introduced into the siaP-His6 allele in the pAH16 construct, expressed and purified 

following the same protocol as for SiaP-His6 and their affinities for sialic acid were 

determined by fluorescence signal titration.  

 

The fluorescence signal changes of SiaP-His6:F170Y (an increase) and SiaP-His6:F170W 

(a quench) were larger and clearer than that of SiaP-His6, particularly the tryptophan 

substitution mutant. SiaP-His6:F170W had a Kd value for sialic acid of 1.21 ± 0.03 μM (a 
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Figure 3.11: Overlaid CD spectra of 0.1 mg/ml SiaP-His6 (blue) and the SiaP-His6;R147 mutants (red) 

in 20 mM sodium phosphate buffer pH 8.0 at 37 °C. This also shows the potential applied to detector, 

which remains below 700 V.  
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10-fold decrease), while that of SiaP-His6:F170Y was similar at 1.13 ± 0.05 μM (Figure 

3.12). There was little change in the signal from SiaP-His6:F170A, but its significantly 

decreased affinity of 340 ± 70 μM suggests that an aromatic residue is important in this 

position (Figure 3.12).  

  

 
3.7  Co-ordination of the ligand carboxylate group is important for high-affinity 

ligand binding  

In the previous section, SiaP-His6:F170W was found to show a strong fluorescence 

quench on ligand binding. This was examined further as a possible ligand binding-

reporter variant of SiaP.  

 

As with previous attempts at tryptophan introduction, this protein showed no tryptophan 

fluorescence on excitation at 297 nm (Figure 3.13a). However, as expected, when excited 

at 281 nm for tyrosine residues, it showed a strong emission peak at a longer wavelength, 

this time centred around 340-350 nm (Figure 3.13b). This shows a 50 % signal quench on 

ligand binding and was easily titrated to give a Kd value for sialic acid of 0.96 ± 0.03 μM 

(Figure 3.13cd). This was also measured in triplicate by ITC, giving a Kd value for sialic 

acid of 1.21 ± 0.03 μM.  

 

To take advantage of this reporter variant of SiaP, the Arg-127, Arg-147 and Asn-187 

mutations (Table 3.1) were introduced in to the SiaP-His6:F170W background and 

purified identically to SiaP-His6:F170W.  

 

The mutants in the reporter variant were analysed by fluorescence signal titration 

identically to those in the SiaP-His6:F170W protein. Up to 5 mM sialic acid was added to 

1 μM protein (150 μl addition of 100 mM Neu5Ac 50 mM Tris/HCl pH 8.0, 

supplemented with 1 μM protein to avoid dilution effects on fluorescence signal) in an 

attempt to detect any fluorescence signal change. As expected, SiaP-His6:F170W;R127K 

showed a fluorescence signal change on the addition of ligand, which was titrated and 

gave a Kd value of 1.5 ± 0.3 mM, the highest measured Kd value of any mutant in this 
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Figure 3.12: Fluorescence titration of 0.25 μM SiaP-His6:F170A, 0.25 μM SiaP-His6:F170Y and 0.05 

μM SiaP-His6:F170W. A) Fluorescence emission spectra of 0.25 μM SiaP-His6:F170A (λex 281 nm). 

B) Example titration of 0.25 μM SiaP-His6:F170A (λex 281 nm, λem 340 nm). C) Fluorescence 

emission spectra of 0.25 μM SiaP-His6:F170Y (λex 281 nm). D) Example titration of 0.25 μM SiaP-

His6:F170Y (λex 281 nm, λem 340 nm). E) Fluorescence emission spectra of 0.05 μM SiaP-His6:F170W 

(λex 281 nm). F) Example titration of 0.05 μM SiaP-His6:F170W (λex 281 nm, λem 340 nm). In 

emission spectra, protein spectra are shown in blue, protein plus saturating sialic acid in red and buffer 

without protein in green.  
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Figure 3.13: Fluorescence spectra and titration of 0.05 μM SiaP-His6:F170W. A) Tryptophan 

fluorescence emission spectra (λex 297 nm) of 0.05 μM SiaP-His6:F170W in blue and buffer without 

protein in green. B) Fluorescence emission spectra (λex 281 nm) of 0.05 μM SiaP-His6:F170W in blue, 

protein plus saturating sialic acid in red and buffer without protein in green. C) Example titration of 

0.05 μM SiaP-His6:F170W. D) Fluorescence titration of 0.05 μM SiaP-His6:F170W giving a Kd value 

of 1.21 ± 0.03 μM.  

 

A) B)

C) 

D) 
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project (Table 3.3). The only other mutant protein in the reporter background to give a 

signal change was SiaP-His6:F170W;N187A, which gave a Kd value of 244 ± 8 μM.  

 

The titration of SiaP-His6:F170W;N187A could have been due to a beneficial interaction 

between these two close positions (< 4 Å), or the reporter making the signal change more 

obvious, underlining the need for investigation of negative results by fluorescence 

methods.  

 

 

3.8  No ligand binding can be detected for the Arg-147 mutants in vitro  

To confirm that an interaction between these mutants and sialic acid was not occurring 

with a similar affinity to the native SiaP but was undetectable by measuring fluorescence 

change, ITC was performed twice on the most conservative Arg-147 mutant, SiaP-

His6:R147K.  

 

In both of these experiments (6 μM protein with 200 μM Neu5Ac; 13 μM protein with 

600 μM Neu5Ac), no apparent interaction between the two partners could be seen under 

these conditions (Figure 3.13). 

 

 

Another non-fluorimetric method of determining if binding occurs is to use filter binding 

of precipitated protein following incubation with 14C-labeled sialic acid. Measuring the 

intensity of radiation recovered can be compared to the amount of protein originally used 

and a percentage of this bound with labeled sialic acid can be determined. When 

incubated with 5 μM 14C-Neu5Ac, 35 ± 10% of SiaP-His6 and 40 ± 5% of SiaP-

His6:F170W was recovered with labeled sialic acid. For SiaP-His6, this could be reduced 

to 0 ± 5% on the addition of 1 mM non-labeled sialic acid. For the SiaP-His6:Arg-147 

mutants, no interaction (less than 1% recovery) could be detected using 5 μM labeled 

sialic acid. Using these non-fluorimetric assays for binding, the results indicate that the 

affinities of these mutants of SiaP are significantly lower than that of the native SiaP.  
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Table 3.3: Sialic acid-binding affinities of the ligand-binding mutants in the reporter variant. 

Indeterminate Kd values arise when no titration can be seen using the highest concentration of protein 

and sialic acid possible.  

Protein  Kd  

SiaP-His6  0.11 ± 0.02 μM 

SiaP-His6:F170W 1.21 ± 0.03 μM 

SiaP-His6:F170W;R127A > 5 mM 

SiaP-His6:F170W;R127E > 5 mM 

SiaP-His6:F170W;R127K 1.5 ± 0.3 mM 

SiaP-His6:F170W;R147A > 5 mM 

SiaP-His6:F170W;R147E > 5 mM 

SiaP-His6:F170W;R147K > 5 mM 

SiaP-His6:F170W;N187A 244 ± 8 μM 

SiaP-His6:F170W;N187D > 5 mM 
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Figure 3.14: ITC analysis of 13 μM SiaP-His6:R127K in 50 mM Tris/HCl pH 8.0 at 37 °C. 600 μM 

Neu5Ac was injected into the cell in 6 μl aliquots.  
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In the investigation of the molybdate binding protein ModA, a ligand-dependent mobility 

shift assay in native polyacrylamide gel was developed (Rech et al., 1996). In an attempt 

to show an interaction with sialic acid, this was performed with some of the mutants of 

SiaP. Native, His6-tagged and mutant proteins were separated on 6% polyacrylamide 

native gel with and without pre-bound sialic acid. Despite several attempts, no clear 

ligand-dependent differences could be seen between any sample pairs (Figure 3.15). 

However, interesting size differences between the mutants were seen on these gels. The 

hexahistidine tag did not appear to cause a change in migration between SiaP and SiaP-

His6, nor did the introduction of the R147E mutation, but the combination of the R147E 

mutation with the His6-tag caused an increase in mobility. Also, SiaP-His6:R147A and 

SiaP-His6:R147K mutants exhibit a small retardation compared to SiaP and SiaP-His6. 

This could be due to a slight decrease in size or overall charge. Unfortunately, this 

method does not appear to work reliably for SiaP, since the native protein showed no 

ligand-dependent mobility shift.  

 

 

To determine if any detectable domain closure occurred, the difference in melting 

temperatures between the ligand-bound and unbound proteins could be compared. This 

change in melting temperature is a common behaviour of proteins which undergo a large 

domain closure on ligand binding, such as MBP (Gould et al., 2009).  

 

The thermal denaturation of SiaP-His6 with and without sialic acid was monitored by CD 

at 222 nm as the temperature was increased (Figure 3.16ab). In a similar behaviour to 

MBP, the Tm of SiaP-His6 increases from 50–60 °C up to 55–65 °C when saturated with 

sialic acid. The Tm of un-liganded SiaP-His6:R147K is 45–55 °C, indicating that this 

mutation has a destabilising effect on the protein; on the addition of 5 mM sialic acid, the 

Tm remains at 45–50 °C (Figure 3.16cd).  

 

This suggests that no significant domain closure occurs with this concentration of sialic 

acid, which may be due to the Kd being above 5 mM or that this mutation has disturbed 

the mechanism of domain closure.  
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Figure 3.15: Native PAGE gel of 280 ng of each protein as indicated, with and without pre-incubation 

with sialic acid. No clear differences in mobility can be seen on the addition of sialic acid. However, 

the R147E point mutations appear to cause changes in the migration in the SiaP-His6 background. 

SiaP  SiaP:R147E SiaP-His6 
SiaP-His6: 

R147E 
SiaP-His6: 

R147A 
SiaP-His6: 

R147K SiaP-His6 SiaP  

 Neu5Ac     -    +    -     +    -    +   -   +   -    +    -    +    -    +   -
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Figure 3.16: CD signal at 222 nm following the thermal denaturation of 0.2 mg/ml protein in 20 mM 
sodium phosphate buffer pH 8.0. A) SiaP-His6 (Tm 50-60 ºC). B) SiaP-His6 with 10 μM sialic acid (Tm 

55-65 ºC). C) SiaP-His6:R147K (Tm 45-55 ºC). D) SiaP-His6:R147K with 5 mM sialic acid (Tm 45-55 
ºC).  

A) 

B) 

C) 

D) 
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To investigate this hypothesis, the protein crystal structures of the three R147 mutants 

were determined in the presence of sialic acid by Marcus Fischer.  These structures reveal 

that all of these proteins adopt the closed conformation with sialic acid inside the binding 

site, having overall structures identical to the native SiaP (Marcus Fischer, personal 

communication). This stands against the idea that the conserved arginine-carboxylate salt 

bridges of the DctP-like family are critical for ligand binding, but merely necessary for 

high affinity interaction.  

 

 

3.9  The Arg-147 residue is not essential for sialic acid transport in vivo  

The CD spectra of the mutant proteins suggested that they were correctly folded in 

solution and the protein crystal structures that they could adopt a correctly closed 

conformation. However, these mutants showed no interaction with sialic acid in vitro 

upto a concentration of 5 mM. The Arg-147 mutations were introduced into the in vivo 

system to see if they abolished function.  

 

The siaP:R147 mutant alleles were introduced upstream of siaQM (pES15, pES16 and 

pES17) and transformed into E. coli BW25113 ΔnanT to examine growth in vivo. Four 

technical replicates of each of these strains were then grown in 700 μl Neu5Ac-

supplemented M9 minimal medium in 24-well plates in a prototype incubated plate 

shaker (EnzyScreen). Cell density was measured twice every hour and converted to an 

apparent OD650 (OD650*) value using the standard curve (Figure 2.1). These values were 

averaged and their standard deviation determined.  

 

In vitro, these mutants show no interaction with sialic acid up to 5 mM ligand. However, 

it can been seen in Figure 3.17 that strains bearing the SiaP:R147 mutations can maintain 

growth on 3.2 mM sialic acid, but show mutation-dependent phenotypes. This behaviour 

was also seen with 1.6 mM sialic acid. When attempted using 0.65 mM sialic acid growth 

could be seen to occur, but was not measurable using the incubated plate shaker. From 

the increases in the doubling time (TGEN), the growth defect caused by the R147A 

mutation is more severe than that of the R147E, while the conservative SiaP-R147K 
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Figure 3.17: Growth on 3.2 mM sialic acid of E. coli BW25113 ΔnanT strains expressing the siaPQM 

mutant alleles in M9 minimal medium supplemented with sialic acid.  The mutations in siaP are 

denoted by: R147A as red up triangles, R147E as blue down triangles and R147K as green down 

triangles; native siaPQM is shown as black circles. Growth was measured by the opacity of the 

medium and converted to OD650* using a standard curve. Error bars are standard deviations of four 

repeats.  
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Table 3.4: Growth rates of E. coli BW25113 ΔnanT strains expressing siaPQM with mutations in siaP as 

indicated.  

3.2 mM sialic acid 1.6 mM sialic acid  

Transporter Growth rate (min-1) TGEN (min) Growth rate (min-1) TGEN (min)

SiaP–SiaQM  8.59 ± 0.19 x 10-3  116 ± 3  6.70 ± 0.23 x 10-3 149 ± 5 

SiaP:R147K–SiaQM 8.19 ± 0.44 x 10-3 122 ± 6 6.36 ± 0.42 x 10-3 157 ± 9 

SiaP:R147E–SiaQM 6.35 ± 0.36 x 10-3 157 ± 8 5.04 ± 0.25 x 10-3 198 ± 9 

SiaP:R147A–SiaQM 5.54 ± 0.15 x 10-3 181 ± 5 4.36 ± 0.65 x 10-3 229 ± 30 
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mutant is very similar to that of the native SiaP (Table 3.4). Halving the sialic acid 

concentration causes an increase in TGEN of about 27% in all cases. The increases in TGEN 

caused by the mutations in siaP are consistent between the two carbon source 

concentrations; these cause a 5%, 34% and 55% decrease in growth rate for the lysine, 

glutamate and alanine mutations, respectively.  

 

The growth demonstrates that the Arg-147 residue is not essential for transport and could 

be being supported by two methods. The first of these is based upon the properties of an 

equilibrium mixture. With a ligand concentration below the Kd value of the binding 

protein, a small population of transient SBP-ligand complexes would be found and as the 

ligand concentration:Kd ratio decreased, this population would decrease. It could be that 

this small population is sufficient to maintain growth.  

 

In the second method, unliganded binding protein, probably in a transient closed 

conformation, could interact with SiaQM and stabilise a transport-competent intermediate 

complex. If true, this method would suggest that these mutants were fulfilling a more 

critical role as a scaffold or catalyst for transport.  

 

 

3.8  Summary  

This chapter has focussed on the interactions between SiaP and this ligand, particularly 

the ligand carboxylate group. Once the more easily purified hexahistidine-tagged protein 

was produced, the investigation of the Arg-127, Arg-147 and Asn-187 residues 

proceeded more effectively. It was found that any mutations made to these three residues 

abolished high affinity binding in vitro (Table 3.2). These mutations were investigated 

further using the F170W reporter variant. No ligand binding could be detected for any 

mutation of Arg-147 and less conservative changes to Arg-127, while the titration of 

SiaP-His6:R127K was much clearer (Table 3.3). In the native background, the N187A 

mutant gave no detectable ligand binding, while in the reporter background (Kd 1.21 ± 

0.03 μM), this gave a Kd value of 244 ± 8 μM.  
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The Arg-147 mutations were introduced to the in vivo growth system, based on E. coli 

BW25113 ΔnanT carrying H. influenzae siaPQM on a low copy-number plasmid. When 

grown on sialic acid as the sole carbon, nitrogen and energy source, it was found that 

these Arg-147 mutants allowed growth (Figure 3.17). It is likely that this growth is based 

on the interaction of the SiaP mutants with sialic acid, since a mutation-dependent 

phenotype is observed.  
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4 Investigation and manipulation of the SiaP ligand binding properties for 

application as a sialic acid biosensor  

As a company involved in the detection of counterfeit, adulterated and smuggled 

products, Authentix are interested in SiaP for its sialic acid detection possibilities. Their 

objective is to be able to label clients’ products with the food safety-certified sialic acid, 

which can then be detected further down the supply chain in order to confirm the 

authenticity of the product. Their aim is to take possession of a variant of SiaP that is 

compatible with a Lateral Flow Device (LFD), which can report detection of sialic acid in 

the nM range in 40% ethanol, can survive drying and temperature variations and be able 

to function when attached to a surface.  

 

The current binding protein-based diagnostic device from Authentix uses a sugar-binding 

protein that recognises a polysaccharide with low affinity and a disaccharide with high 

affinity. SiaP is a candidate for adaptation to this diagnostic system since it is also 

reported to bind sialyllactose with a Kd value of 18 μM (Severi et al., 2005). The affinity 

of SiaP for sialic acid is a critical component of its exploitation. The Kd value needs to be 

decreased to at least 30 nM (~10 parts per billion), which is about a four-fold decrease on 

the currently reported value.  

 

This chapter covers the investigation of the biophysical properties of SiaP that are related 

to the interests of Authentix and their ultimate impact upon the final product.  

 

4.1  Investigation of the biophysical properties of SiaP-His6  

The effect of the reaction buffer and conditions were investigated, since these could have 

a large impact upon the ligand binding affinity. The effect of organic solvent tolerance 

was investigated along with those of pH, salt and temperature, since a potential market 

for labelling would be products containing the solvents such as ethanol. These were all 

initially studied using the F170W reporter variant of SiaP due to its improved signal for 

ligand binding.  
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4.1.1  Ethanol decreases ligand binding and promotes α-helix formation  

The addition of organic solvents, such as alcohols, is known to affect the structure and 

function of proteins in solution. Alcohols disrupt hydrophobic interactions and favour 

polar interactions (Buhrman et al., 2003, Deshpande et al., 2005) such as amide–amide 

hydrogen bonds, which cause the formation of regions of high α-helical content 

(Knubovets et al., 1999). The effect of ethanol on the affinity of sialic acid binding by 

SiaP was investigated.  

 

The ligand binding affinity of SiaP for sialic acid in the presence of ethanol was 

determined by fluorescence titration of the SiaP-His6:F170W reporter variant. Under the 

conditions used, the addition of 50 % ethanol gave a large fluorescence signal, preventing 

titration of the protein fluorescence emission. However, ligand binding to 0.05 µM 

protein in 50 mM Tris/HCl pH 8.0 at 37 °C with up to 10 % ethanol could be determined 

(Table 4.1). The addition of 1% ethanol does not appear to have an effect on the Kd value 

of SiaP-His6:F170W for sialic acid. However, above this concentration, the affinity 

decreases by about 65% to 1.9 ± 0.2 µM with 5% ethanol and 1.8 ± 0.1 µM with 10 % 

ethanol.  

 

To investigate this ethanol effect on the structure of SiaP-His6, the CD spectrum of the 

protein was determined in the presence of increasing concentrations of ethanol. The 

spectra of 0.2 mg/ml SiaP-His6 was determined between 190 – 250 nm in the presence of 

1 %, 5 %, 10 % and 50 % ethanol in 20 mM potassium phosphate buffer pH 8.0 at 37 °C 

(Figure 4.1).  

 

As can be seen in Figure 4.1, the addition of ethanol causes a shift away from the 

spectrum of SiaP-His6 with a lower intensity signal. This shift between 0% (red) and 1% 

ethanol (turquoise) is slight, while 5% (light green), 10% (dark green) and 50% ethanol 

(blue) have similar spectra with lower elipticity. The shorter wavelengths (195 – 210 nm) 

appear to be more affected by the presence of ethanol.  
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Table 4.1: Sialic acid-binding affinities of SiaP-His6:F170W in the presence of an increasing 

concentration of ethanol.  

 

Ethanol concentration  Kd K Relative affinity  

0 1.21 ± 0.03 μM 8.26 ± 0.20 x 105 M 100 ± 2 % 

1 % 1.12 ± 0.14 μM 8.93 ± 0.99 x 105 M 108 ± 11 % 

5 % 1.91 ± 0.23 μM 5.34 ± 0.66 x 105 M 65 ± 12 % 

10 % 1.82 ± 0.09 μM 5.49 ± 0.26 x 105 M 66 ± 5 % 
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Figure 4.1: CD spectra of 0.2 mg/ml SiaP-His6 (yellow) in the presence of 1% (orange), 5% (red), 

10% (purple) and 50% (blue) ethanol. The lower section shows the potential applied to the detector, 

which indicates decreased reliability of the spectrum at values greater than 800 V.  
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From the appearance of the spectra, it would appear that the addition of ethanol causes a 

slight change in the fold of the protein, indicating some sensitivity to high concentrations 

of ethanol. The secondary structural content of the protein at each concentration of 

ethanol was determined using the programme CDNN (Bohm et al., 1992). A CD 

spectrum contains information on the overall secondary structure, which this programme 

can deconvolute to give the relative amounts of α-helix, β-sheet, β-turn and random coil. 

As can be seen in Table 4.2, the secondary structural profiles below 20% ethanol are very 

similar. In 50 % ethanol, the secondary structural content is significantly altered, with a 

large increase in α-helical content and decrease in random coil. This behaviour is similar 

to that of other proteins in alcohol, where this increase in α-helical content occurs with a 

loss of tertiary structure, eventually resulting in a molten globule-like state (Knubovets et 

al., 1999).  

 

That ethanol causes a decrease in the ligand affinity of SiaP would be a problem for the 

application of this protein to a LFD. However, the affinity does not appear to decrease 

severely between 5 and 10 % ethanol and so, in the finished product, it may be necessary 

to dilute the testing sample so that the concentration of ethanol is within this range. The 

decrease in affinity seen here is likely due to the ethanol causing structural changes to the 

protein.  

 

 

4.1.2  Ligand binding affinity is affected by ionic strength and the presence of 

sodium ions  

It is clear that the composition and conditions of the reaction buffer will have a great 

effect upon the ligand binding affinity, for example, the pH can have a strong effect on 

the enthalpy of association of a complex (Chervenak & Toone, 1995). To investigate this, 

the pH-dependence of the sialic acid binding affinity was first determined. 
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Ethanol Concentration Secondary structural 

elements  0 % 1 % 10 % 20 % 50 % 

α-helical  52 % 61 % 54 % 59 % 72 % 

β-sheet  7 % 5 % 7 % 7 % 4 % 

β-turn 14 % 13 % 14 % 13 % 11 % 

Remainder  

(random coil) 
27 % 21 % 25 % 21 % 13 % 

 

Table 4.2: Relative content of secondary structural elements of SiaP-His6 determined by CD spectra. 

The percentage of each element is shown as a percentage at each concentration of ethanol.  



 127

This was monitored using the SiaP-His6:F170W reporter variant. The Kd for sialic acid 

was determined by fluorescence titration between pH 5 – 9 in 20 mM sodium phosphate 

buffer at 37 °C.  

 

As can be seen in Figure 4.2a, there is a clear decrease in the Kd for sialic acid when the 

pH drops to 7.5. The data also show an increase in affinity from 1.21 ± 0.03 µM in 50 

mM Tris buffer to 0.83 ± 0.01 µM in the sodium phosphate buffer at pH 8.0.  

  

This pH effect is not expected to be due to altering the protonation state of the critical 

binding site residues, since their pKa values are not in this range, nor that of sialic acid, 

which has a pKa value of 2.60 (Dawson, 1986). The only residue with an expected pKa 

value in this range and near the binding cleft of SiaP is Aspartate-213, the side chain of 

which is predicted to have a pKa of approximately 6.6 by the programme H++ (Gordon et 

al., 2005, Anandakrishnan & Onufriev, 2008). Asp-213 is located in the shell of residues 

around the ligand binding residues and near to the β-sheets of the hinge. However, it is 

more likely that the changing pH has acted through the sensitivity of SiaP to the ionic 

strength of the buffer.  

 

 

The pH effect on the Kd of SiaP-His6:F170W was determined in 20 mM NaPi buffer, in 

contrast to all previous measurements in 50 mM Tris/HCl pH 8.0. It was noted in Figure 

4.2a that this caused an increase in affinity from 1.21 ± 0.03 µM in Tris/HCl buffer to 

0.83 ± 0.01 µM in sodium phosphate buffer at pH 8.0. Consequently, the effects of buffer 

of varying ionic strength would have to be examined. 

 

The effects of the buffer were investigated initially by adding NaCl and KCl to 50 mM 

Na+-free Tris/HCl pH 8.0 and then to Na+-free 20 mM potassium phosphate buffer pH 

8.0 (Figure 4.2b).  
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Figure 4.2: The effect of pH and ionic strength on the affinity of SiaP-His6:F170W for sialic acid, determined by 

fluorescence titration of 0.05 μM protein at 37 °C in triplicate. A) The pH-dependence of sialic acid affinity. 

This was determined in 20 mM sodium phosphate buffer. For comparison, the sialic acid affinity of SiaP-

His6:F170W in 50 mM Tris/HCl pH 8.0 is shown in red. B) Sialic acid-binding affinities of SiaP-His6:F170W 

under different buffer conditions. These were determined in 50 mM Tris/HCl (grey background) or 20 mM 

phosphate buffer (white background).  

A) 

B) 
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The affinity of SiaP-His6:F170W in Na+-free Tris/HCl pH 8.0 is 0.78 ± 0.03 µM 

compared to 1.21 ± 0.01 µM in Tris buffer made in glass beakers. The addition of NaCl 

to Na+-free Tris/HCl buffer decreases the affinity to the expected range of 1.36 ± 0.16 

µM. This effect is not seen with the addition of KCl to Na+-free Tris/HCl. The Kd values 

in Na+-free Tris/HCl and sodium phosphate buffers are very similar and so the affinity 

was determined in potassium phosphate buffer. As can be seen in Figure 4.2b, the affinity 

here is not decreased, but does not appear to decrease on the addition of NaCl.  

 

These results show that in Tris-buffer Na+ ions and not K+ ions have a detrimental effect 

on the Kd. However, in sodium phosphate buffer, the affinity for the ligand is higher than 

in Tris-buffer, indicating that phosphate buffer would have to be used to attain higher 

affinity detection of sialic acid. Surprisingly, the Kd value in potassium phosphate buffer 

is mid way between sodium phosphate and Tris buffer, but is insensitive to Na+ ions. 

From these and due to the difficulties of avoiding even slight contamination with Na+ 

ions, the highest sialic acid-binding affinity could be determined in 20 mM sodium 

phosphate buffer pH 6.0.  

 

 

4.1.3  Decreasing temperature increases ligand binding affinity  

Due to the nature of the ligand binding mechanism, it would be expected that temperature 

would have an effect on the affinity of this interaction. Since the SiaP-LFD would be 

used at ambient room temperature, the effect of temperature on ligand affinity was of 

interest. Due to the ease of its analysis, the SiaP-His6:F170W reporter variant was used to 

monitor the affinity for sialic acid at different temperatures.  

 

The Kd values were determined in triplicate using fluorescence titration at 25, 30, 37 and 

45 ºC. This range was chosen to remain below the melting temperature of SiaP-His6 (50–

60 ºC) and above room temperature. The Kd values approach a minimum value around 

0.3 µM, increasing as they approach the melting temperature of the protein (Figure 4.3).  
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Figure 4.3: The effect of temperature on the affinity of SiaP-His6:F170W for sialic acid. This was 

determined by fluorescence titration of 0.05 μM protein in 50 mM Tris/HCl pH 8.0 in triplicate at each 

temperature point, except for 45 °C, which is an average of two results (shown).  
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This minimum Kd value around 25 ºC is serendipitous, since the expected operating 

temperature of an LFD would be room temperature, outside or in a warehouse. However, 

this data refers to the SiaP-His6:F170W reporter variant, not the native form.  

 

 

4.1.4  Sialic acid-binding by SiaP is enthalpically driven and releases water  

Since the Kd value of SiaP-His6:F170W for sialic acid is ten times that of SiaP-His6 at 37 

ºC, it was assumed that this difference would be equivalent at each temperature point, 

giving initial protein and ligand concentrations that could be used to perform isothermal 

titration calorimetry (ITC) on SiaP-His6.  

 

ITC was performed in triplicate on various concentrations of SiaP-His6 in 50 mM 

Tris/HCl pH 8.0 at 15, 20, 25, 30, 37 and 45 ºC. The Kd values at each temperature are 

shown in Figure 4.4a and the thermodynamic data in Table 4.3. Figure 4.4a shows that, as 

temperature decreases, the Kd for sialic acid approaches a lowest value around 30 nM.  

 

The ITC also gives a wealth of thermodynamic data (Table 4.3). At 37 ºC, the binding 

enthalpy, ΔHo, is -116 kJ mol-1, which is a very large value that is favourable for the 

binding event to occur. This indicates that a large number of bonding interactions are 

made upon ligand binding. Conversely, the binding entropy, -TΔSo, is 74 kJ mol-1 which 

is also very large, but unfavourable, indicating that there is a large loss in degrees of 

freedom upon ligand binding. The Gibbs free energy, ΔGo, is -42 kJ mol-1, indicating that 

the binding event is favourable, driven by the enthalpic change.  

 

Plotting the binding enthalpy with changing temperature reveals the heat capacity of the 

system, Cp, to be -2.75 kJ mol-1 K-1 (Figure 4.4b). A negative heat capacity corresponds 

to polar solvation, such as the releasing of water from a lattice (Chervenak & Toone, 

1995), which is in line with the mechanism of ligand binding and domain closure. That is, 

the dehydration of sialic acid and the ejection of numerous water molecules from the 

open binding cleft.  
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Figure 4.4: The thermodynamics of sialic acid binding by SiaP-His6. A) The effect of temperature on the 

affinity of SiaP-His6 for sialic acid. This was determined by ITC using varying concentrations of protein in 

50 mM Tris/HCl pH 8.0 in triplicate at each temperature point. B) Graph of the effect of temperature on 

binding enthalpy. The gradient of this line gives the heat capacity of the system. C) The van’t Hoff plot of 

the natural log of the binding affinity, K, against the inverse of the temperature. The gradient and intercept 

of the short linear range between 20 °C and 37 °C were determined from the line shown.  

A) 

B) 

C) 



 133

Temperature (°C) Kd (nM) ΔH (J/mol) ΔS (J/mol/deg) ΔH-TΔS (J/mol) 

15 26.7 ± 0.33 -48952 ± 1629 -24.9 ± 5.7 -41779 ± 1244 

20 29.1 ± 0.26 -60737 ± 2908 -63.0 ± 10.2 -42267 ± 2195 

25 40.8 ± 0.23 -71518 ± 1170 -98.3 ± 3.6 -42218 ± 911 

30 58.2 ± 0.49 -84419 ± 2959 -139.9 ± 10.1 -42034 ± 2228 

37 109.1 ± 2.1 -115785 ± 4727 -239.9 ± 14.0 -41422 ± 3690 

45 437.0 ± 1.5 -126663 ± 635 -276.3 ± 2.4 -38805 ± 456 

 

Table 4.3: Thermodynamic data from the ITC analysis of SiaP-His6.  
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The enthalpy of a reaction can also be determined from the equilibrium constant at 

multiple temperatures where the reaction is a simple bi-molecular association, as is 

expected for SiaP (Severi et al., 2005). However, this assumes that ΔCp is independent of 

temperature. The van’t Hoff plot of ln(Keq) against 1/T allows ΔHvH and ΔSvH to be 

determined from the gradient and y-axis intercept over narrow temperature ranges (Figure 

4.4c). Over the approximately linear range between 20 °C and 37 °C, ΔHVH, = -1762 J 

mol-1, and ΔSVH, = -5.2 J mol-1 K-1, which are different to the experimentally determined 

values of ΔHo and ΔSo. This indicates that SiaP-His6-sialic acid binding is not a simple 

one step process, such as A + B ↔ A·B, but one with multiple steps before forming the 

A·B complex.  

 

This contradicts the previous finding that SiaP binds sialic acid as a simple, bi-molecular 

association (Severi et al., 2005). However, it has previously been shown that DctP does 

not follow this simple reaction, but exists in equilibrium between closed-unliganded, 

open-unliganded, open-liganded and closed-liganded forms (Walmsley et al., 1992). This 

contradiction cannot be resolved at this point and requires further investigation.  

 

4.1.5  Optimised conditions for high affinity binding of Neu5Ac by SiaP  

From the findings in this section, the temperature, pH and buffer composition effects 

were combined to give the optimal conditions for the highest sialic acid-binding affinity 

of SiaP-His6.  

 

The SiaP-His6-sialic acid interaction was examined by ITC in triplicate at 15 ºC in 20 

mM sodium phosphate buffer pH 6.0 using 10 µM SiaP-His6 titrated by the injection of 

150 µM sialic acid (Figure 4.5).  

 

From these, the Kd value was determined as 22 ± 2 nM, or 6.8 ± 1.2 parts per billion 

(ppb) (Figure 4.5). This is the highest affinity for sialic acid measured in this project and 

is inside the range required by Authentix.  
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Figure 4.5: ITC titration of SiaP-His6 in 20 mM sodium phosphate buffer pH 6.0 at 15 °C. The 

first injection of 2 μl was followed by three of 18 μl and then a series of 6 μl injections.  
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In the 50 mM Tris/HCl buffer at 15 ºC, ΔHo is -49.0 kJ mol-1 and -TΔSo is 7.2 kJ mol-1, 

where enthalpy is large and favourable and entropy is unfavourable. The Gibbs free 

energy, ΔGo (ΔH-TΔS), is -41.8 kJ mol-1 so that binding is favourable and driven by the 

enthalpic change. In 20 mM sodium phosphate buffer, ΔHo is -53.5 kJ mol-1, -TΔSo is 

11.3 kJ mol-1 and ΔGo is -42.2 kJ mol-1. From these, there is little change in the ΔGo 

between both buffers; however, switching from Tris/HCl to sodium phosphate buffer 

causes a change in ΔHo of -4.55 kJ mol-1 and in -TΔSo of 4.1 kJ mol-1. This change in 

enthalpy suggests that, with sodium phosphate, unliganded SiaP-His6 forms more 

interactions when in the open conformation or that fewer interactions are made on ligand 

binding. The change in entropy indicates that the system becomes more ordered upon 

ligand binding in sodium phosphate than Tris/HCl buffer. However, it is difficult to be 

concrete about these changes since they are a combination of many effects.  

 

4.2  Detection of sialic acid  

4.2.1  The Lateral Flow Device  

Currently, Authentix uses a substrate binding protein-based assay to detect the addition of 

the ligand in a labelled product. The current SBP-based Lateral Flow Device (LFD) uses 

the high affinity ligand to inhibit binding of the SBP to a lower affinity glyco-conjugated 

ligand, which is attached to the surface of the LFD (Figure 4.6). The presence or absence 

of the SBP on the conjugated ligand strip shows the presence of the high affinity ligand 

label in the sample.  

 

4.2.2  Conjugated sialic acid as a basis for a Lateral Flow Device  

Since SiaP had previously been shown to bind the sialoconjugate sialyllactose with a Kd 

of 18 µM (Severi et al., 2005), this was taken to mean that SiaP might be suitable for a 

complementary LFD. Several sialic acid-conjugated ligands were tested for binding by 

SiaP-His6.  

 

Neu5Ac, colominic acid (poly Neu5Ac) and porcine mucin (a highly sialyllated protein) 

were chosen as potential substrates for SiaP. Also, Neu5Ac was conjugated to BSA using 

NaIO4–activation of a ring hydroxyl to form a covalent interaction with the BSA 
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Figure 4.6: The principle of a lateral flow device using SiaP. A) Three dimensional representation of the LFD. The 

small funnel represents the loading site of the sample; the sample is then drawn past three strips by capillary 

action. B) As the sample is drawn along the device by capillary action, it first encounters dried SiaP bound to 

microbeads. These are then washed on to the first strip that contains surface-bound sialic acid. The second strip 

contains an antibody to SiaP and so acts as a control for the LFD. C) With an unlabelled sample, that is, one which 

contains no sialic acid, the unliganded SiaP will bind to the first strip and give a signal. The excess SiaP will then 

continue on to the third strip and give a second signal, serving as a positive control. D) If the sample contains sialic 

acid, it will be bound by SiaP, which is then unable to interact with the surface-associated sialic acid and will not 

give the first signal. The SiaP will then continue on to the final strip, where it will give a final signal, indicating 

that the LFD has worked.  

A) B) 

C) D) 
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terminus (Telmer & Shilton, 2003). Serial dilutions of these potential substrates were 

dried onto the surface of a clear 96-well plate and washed with PBS 0.1 % Tween-20 

(TPBS). The remaining surface of the wells was blocked with TPBS 4 % BSA and then 

washed with TPBS again. A serial dilution of SiaP-His6 was incubated in each well, 

followed by Mouse anti(tetrahistidine) antibodies and HRP-conjugated Rabbit 

anti(mouse) antibodies with TPBS washing between each step. These were then 

measured by the addition of 50 μl SuperSignal and the luminescence monitored at 425 

nm.  

 

As can bee seen in Figure 4.7, there appears to be SiaP-His6 present with all substrates 

including the blocking control (BSA). All but BSA-Neu5Ac show some increase in 

signal with increase concentration of SiaP-His6. In fact, the clearest titration evident is for 

the BSA blocking control and all other substrates seems to cause a decrease from this 

maximal intensity.  

 

This interaction of SiaP-His6 with the blocking control could have been due to 

contamination of the crude BSA with some sialyllated protein or an unfortunate physical 

interaction between SiaP-His6 and BSA. At this point, it was decided that it would be 

more efficient to screen multiple glycans as targets for SiaP-His6 using a microarray 

approach.  

 

4.2.3  SiaP is specific for monomeric sialic acid  

The Consortium for Functional Glycomics provides a service whereby glycan binding 

proteins, such as lectins, are screened for their interaction partners (CFG, 2010). This 

meant that many more sialoglycans could be screened for an interaction with SiaP-His6. 

This is performed on a GlycoArray (mammalian printed array version 3.2), which is a 

chip that is spotted with four hundred and six different glycans, allowing for the 
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Figure 4.7: The presence of SiaP-His6 in wells containing potential substrates detected by antibodies 

against the hexahistidine tag (units of intensity are arbitrary and have been normalized between each 

sample). Filled circles indicate 5 nanomoles substrate per well and empty circles indicate 0.5 

nanomoles substrate per well. The concentration of SiaP-His6 used (μM) is shown on the x-axis. A) 

Interaction with blocking BSA. B) Interaction with dried-down sialic acid. C) Interaction with sialic 

acid conjugated to BSA. D) Interaction with colominic acid (polysialic acid). E) Interaction with 

porcine mucin.   

A) B) 

C) D) 

E) 
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screening of glycan-binding proteins by antibody detection. SiaP-His6 was examined on 

this array and the results are shown in Figure 4.8a (courtesy of the CFG).  

 

These results indicate that SiaP-His6 does not interact with any of the glycans displayed 

in the GlycoArray. A positive GlycoArray result provided by the CFG is shown in Figure 

4.8b for comparison.  

 

 

The negative results from the GlycoArray cast doubt on the previous finding that SiaP 

can bind sialyllactose (Severi et al., 2005). To investigate this, binding of sialyllactose by 

SiaP-His6 was determined by fluorescence signal change. A second modified sialic acid, 

methylumbelliferyl neuraminic acid (MeUmbNeu5Ac), was also investigated by 

fluorescence change. This is made up of sialic acid covalently modified by the addition of 

the small methylumbelliferyl fluorophore to the carboxylate group (Figure 4.9a). This 

fluorescently labelled sialic acid is commonly used as a substrate for sialidase assays, but 

the similar substrate 4-methylumbelliferyl-α-D-mannopyranoside has previously been 

used to investigate mannose-binding proteins, since it shows a fluorescence quench on its 

sequestration into a proteinacious environment (Thompson & Lakowicz, 1984, Kenoth et 

al., 2003).  

 

The interaction between SiaP-His6 and sialyllactose was examined by the fluorescence 

change of SiaP-His6 following the addition of up to 180 µM sialyllactose. The interaction 

between SiaP-His6 and MeUmbNeu5Ac was determined by the fluorescence change of 

the ligand following addition of 20 µM SiaP-His6.  

 

The fluorescence signal of SiaP-His6 shows no change on the addition of sialyllactose 

(Figure 4.9b). The sequestration of the methylumbelliferyl fluorophore inside the protein 

upon ligand binding was expected to cause a decrease in ligand fluorescence (Thompson 

& Lakowicz, 1984, Kenoth et al., 2003). Comparing the fluorescence emission spectra 

before and after the addition of SiaP-His6 showed no change. This lack 
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Figure 4.8: Determination of glycan binding using a GlycoArray. A) Results from analysis of 200 μg/ml 

SiaP-His6 at a tenth of the scale of the positive result. B) Binding of a bacterial lectin to the GlycoArray. 

This is shown as an example of a glycan-binding protein.  
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A) 

Figure 4.9: The interaction of SiaP-His6 with modified sialic acid. A) Structure of methylumbelliferyl 

neuraminic acid (MeUmbNeu5Ac). B) Fluorescence titration of SiaP-His6 with sialyllactose. The red 

arrow indicated the addition of 0.2 μM protein to the cuvette; sialyllactose was added to 60 μM then 180 

μM (black arrows), followed by 20 μM sialic acid (blue arrow).  

B) 

60 μM 
sialyllactose 

180 μM 
sialyllactose 

20 μM 
sialic acid 
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of interaction was also observed by surface plasmon resonance (SPR) of surface-attached 

SiaP-His6 (Marcus  Fischer, personal communication). 

 

There is apparently no interaction between SiaP and sialyllactose or MeUmbNeu5Ac. In 

addition to the failure to find any conjugated sialic acid ligand for SiaP-His6, this 

indicates that SiaP specifically binds monomeric sialic acid.  

 

 

4.2.4  An in-solution approach for sialic acid detection  

The results from the previous section show that SiaP is specific for monomeric sialic 

acid. This fundamentally changes the design for the SiaP-based sialic acid detector. 

Binding of a ligand by a substrate binding protein usually results in a large 

conformational change as the domains close around the ligand (Mao et al., 1982). This 

can be taken advantage of in genetically-encoded nanosensors (Fehr et al., 2002), where 

cyan- and yellow-fluorescent protein (CFP and YFP) are fused to the N- and C-termini of 

a truncated binding protein so that the conformational change on ligand binding causes a 

change in the FRET signal between the two fluorescent proteins (Figure 4.10a). Gu et al. 

(2006) created a nanosensor for inorganic phosphate, FLIPPi-260n, which used an 

enhanced CFP (eCFP) and a venus YFP (vYFP) fused to a phosphate binding protein 

(PiBP) from Synechococcus strain A. Creating a similar construct, FLIP-Neu5Ac, could 

produce a suitable sensor for sialic acid.  

 

The FLIPPi gene construct was acquired through the plasmid database, Addgene Inc. The 

gene fusion for eCFP-PiBP-vYFP (FLIP-Pi) was supplied on the IPTG-inducible plasmid, 

pRSET (Invitrogen), pRSET-FLIPPi-260n. The pibp gene is inserted in the construct 

between two KpnI restriction enzyme (RE) sites (Gu et al., 2006). After repeated failures 

in attempts to replace the pibp gene with siaP, a new strategy was designed, where the 

upstream KpnI RE site was replaced by a PinAI RE site. After PCR amplification, PinAI-

siaP-KpnI was blunt-end ligated into pBlunt0 (Invitrogen) to provide excess, correctly 

digested insert. This was successfully ligated into PinAI and KpnI digested pRSET-

eCFP-vYFP vector to give pFLIP-Neu5Ac. E. coli BL21 (DE3) pLysS pFLIP-Neu5Ac 
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Figure 4.10: Construction of the FLIP-Neu5Ac nanosensor. A) The basis of the nanosensor. The siaP 

gene is inserted between eCFP and vYFP. On the addition of ligand, the FRET signal from the two 

fluorescent proteins changes due to the domain closure of the binding protein. B) Ni-affinity purification 

of FLIP-Neu5Ac. Lane 1: E. coli BL21 (DE3) pLysS pFLIP-Neu5Ac whole cell lysate; lane 2: clarified 

lysate; lane 3: Ni-column flow through; lane 4: Ni-column wash step; lanes 5–7: Ni-column elution 

fractions 1–3; lane 8: Molecular weight marker. C) Fluorescence emission spectra of FLIP-Neu5Ac (blue) 

and on the addition of 500 μM sialic acid (red) when excited at 433 nm. The signal from the buffer is 

shown in green.  D) Fluorescence emission spectra of FLIP-Neu5Ac (blue) and on the addition of 500 μM 

sialic acid (red) when excited at 281 nm. The signal from the buffer is shown in green.  

B) 

C) D) 
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was grown in 500 ml M9 minimal medium supplemented with 0.4 % glucose at 25 °C to 

OD650 0.2 before induction with 1 mM IPTG in the dark for 48 hours. Harvested cells 

were resuspended in 50 mM potassium phosphate pH 8.0, sonicated for 10 minutes in 

total to lyse the cells and the supernatant was clarified by centrifugation. The FLIP-

Neu5Ac–containing supernatant was incubated with 1 ml Ni-NTA resin (Qiagen) for 1 

hour at 4 °C, washed with 50 mM Tris/HCl 300 mM NaCl (TBS) containing 20 mM 

imidazole and FLIP-Neu5Ac was eluted with 500 mM imidazole TBS. Sialic acid 

binding by FLIP-Neu5Ac was determined by fluorescence titration in 50 mM Tris/HCl 

pH 8.0 with excitation at 281 nm (tyrosine) and 433 nm (CFP).  

 

FLIP-Neu5Ac was expressed and purified in the same manner as FLIP-Pi-260n (Gu et al., 

2006) (Figure 4.10b), eluting in the second fraction, which was bright yellow in 

appearance. The fluorescence emission spectra of 0.05 μM FLIP-Neu5Ac with and 

without 0.5 mM sialic acid were determined when exciting for tyrosine residues (281 nm) 

and CFP (433 nm). As can be seen, there is no reliable ligand-dependent change in the 

emission spectra when CFP or tyrosine residues are excited (Figure 4.14cd).  

 

The appearance of three peaks around 475, 505 and 520 nm (λex 433 nm) suggest that 

eCFP and vYFP are correctly folded and close by in solution. Unfortunately, this shows 

no sensitivity to sialic acid. Nor could sialic acid binding be detected with excitation at 

281 nm; this is likely to be due to the effect of introducing two proteins that are each 

similar in size to SiaP, whether by destabilising the fold or interfering with ligand 

binding.  

 

4.3  Rational design of SiaP to modulate its sialic acid binding affinity  

4.3.1  Binding site mutations designed to increase ligand affinity  

In collaboration with Professor Roderick Hubbard, the structure of sialic acid-bound SiaP 

was examined for changes in the protein structure that could increase contacts to the 

ligand, thereby potentially improving the affinity of binding. This analysis produced three 

possible changes to the protein that were targets for mutation (Figure 4.11a). The first 

candidate, Ala-11-Asn, was intended to form a hydrogen bond with the ring C4-hydroxyl 
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Figure 4.11: A family of binding site mutations designed to increase ligand affinity. A) 
Representation of the targets for increased interactions between Neu5Ac and the binding site of 
SiaP. B) Sialic acid-binding affinities of the ligand binding site mutant proteins. These were 
determined in triplicate in 50 mM Tric/HCl pH 8.0 at 37 °C.  
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group. The second and third targets, Ala-66 (to Ile and Met) and Ala-151 (to Val), aimed 

to provide a more hydrophobic environment for the CH3 of the N-acetyl group and the 

glycerol backbone, respectively.  

 

Using the same mutagenic technique as outlined previously, these four mutations were 

introduced into the siaP-His6 allele present in the pAH16 construct. They were expressed 

and purified following the same protocol as for SiaP-His6. The affinities of the mutant 

proteins for sialic acid were determined by titration of the fluorescence signal of 0.05 μM 

protein. Where the Kd value was above 1.1 μM, the protein concentration was increased 

to 0.25 μM to increase the fluorescence signal.   

 

All of these mutant proteins gave clear fluorescence signal titration data, which are 

shown in Figure 4.11b. As can be seen, all of these mutations have caused a decrease in 

sialic acid binding affinity. The least damaging are the Ala-66 mutations, of which the 

shorter isoleucine mutant is least deleterious. The Ala-151-Val mutation causes a 200-

fold decrease in affinity, probably by disturbing the water network around Arg-70 and 

Asn-154 and so affecting the entire environment around the glycerol group of the ligand. 

The most damaging of these mutations was Ala-11-Asn, originally intended to extend to 

the C4-hydroxyl and form a hydrogen bond. This causes approximately 1000-fold 

decrease in affinity and is likely not interacting with the C4-hydroxyl, but disturbing the 

ligand N-acetyl group.  

 

 

4.3.2  Mutations designed to promote the closed conformation  

Binding proteins such as ABC PBPs and TRAP SBPs are believed to exist in equilibrium 

between the open and closed conformations, where the presence of ligand in the binding 

site stabilizes the closed conformation. There have been examples where destabilization 

of the open conformation has been used to increase the affinity of the binding protein for 

its ligand (Marvin & Hellinga, 2001, Telmer & Shilton, 2003). A different method of 

approach would be to stabilize the closed conformation, which has previously been 

accomplished by introducing disulphide bridges between the two domains of the protein 
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(Jacobson et al., 1991, Stockner et al., 2005, Zhang et al., 1996). However, stabilizing the 

closed form has not been attempted by introducing opposite charges to form transient 

stabilizing interactions in the closed conformation. Four pairs of residues in SiaP were 

found to come close enough together when ligand bound to use as targets for this pair-

wise approach (Figure 4.12 and Table 4.4). The first pair, Serine-15 and Alanine-195, is 

located near the hinge and are surface exposed in the open and closed conformations. It 

was decided to mutate both of these to both aspartate and lysine, which would also allow 

the control mutations of aspartate-aspartate and lysine-lysine. The second pair was 

Arginine-50 and Aspargine-150, which come very close together in ligand-bound SiaP 

and would only, theoretically, require the mutation of the asparagine to aspartate to form 

a salt bridge. The third and fourth pairs both share Glutamine-72, which comes close 

enough to Alanine-151 and Alanine-152, which could be made into a glutamate-lysine 

pair.  

 

These combinations of double mutations were introduced into the siaP-His6 allele in the 

pAH16 construct using a mutagenic megaprimer approach based on that of Kirsch & Joly 

(1998). This uses a forward primer containing one mutation and the reverse primer 

containing the second, both with a silent restriction site for screening, to make a PCR 

product of several hundred bases (Kirsch & Joly, 1998). This was purified and used as a 

megaprimer to introduce the double mutation into the siaP gene in pAH16. The mutant 

proteins were then expressed and purified following the same protocol as for SiaP-His6. 

The affinities of these mutant proteins for sialic acid were determined by titration of the 

fluorescence signal of 0.05 μM protein, or 0.25 μM protein when the Kd value was above 

3.4 μM sialic acid. All of these mutant proteins were expressed and purified in a similar 

manner to SiaP-His6 and all gave clear titration of their fluorescence signal.  

 

As can be seen in Table 4.4, all but one of these mutations caused a decrease in the sialic 

acid binding affinity. This single mutation, Asn-150-Asp, has no apparent effect on the 

ligand affinity, which is surprising, given the sensitivity of Ala-151 to mutation (above). 

The sensitivity of this location to mutation is highlighted in the comparison of 

Q72E;A151K and Q72E;A152K pairs, where switching from Ala-152-Lys to Ala-151-
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Figure 4.12: Representation of the targets for the pair-wise mutants, designed to introduce Hydrogen bonds 
between the two domains of SiaP in the closed conformation. Sialic acid is shown as cylinders and the targets as 
spheres; carbon atoms are represented by green, oxygen by red and nitrogen by blue.  
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Table 4.4: Sialic acid-binding affinities of the pair-wise mutant proteins.  

 

Protein Intended interacting pair Kd (μM) 

SiaP-His6 -     0.11 ± 0.02  

SiaP-His6:S15D;A195D Asp–Asp    15 ± 7  

SiaP-His6:S15D;A195K Asp–Lys    76 ± 4  

SiaP-His6:S15K;A195D Lys–Asp      9.3 ± 1.9  

SiaP-His6:S15K;A195K Lys–Lys    38 ± 9  

SiaP-His6:Q72E;A151K Glu–Lys  580 ± 190  

SiaP-His6:Q72E;A152K Glu–Lys      3.4 ± 1.3  

SiaP-His6:N150D Arg–Asp      0.10 ± 0.02  
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Lys causes a decrease in affinity of about 170-fold. The Ser-15;Ala-195 pairs have a 

strong detrimental effect, ranging from 85- to 690-fold decrease in affinity for 

S15K;A195D and S15D;A195K, respectively. Between these two extremes lie the control 

mutants, S15D;A195D and S15K;A195K, which cause 136- and 345-fold decreases. As 

can be seen, none of these mutations had the desired effect. This suggests that the 

interface between the two domains is very sensitive to the disruption caused by the 

introduction of such large, charged groups.  

 

 

4.4  Summary  

The critical finding of this chapter, in relation to Authetix, is the finding that SiaP is 

specific for monomeric sialic acid (Section 4.2.3). This makes SiaP unsuitable for a LFD 

and fundamentally changes the design for a sialic acid detector. An attempt was made to 

construct a SiaP-based genetic nanosensor for sialic acid, but without success.  

 

The buffer conditions for ligand binding were investigated, which resulted in an optimal 

set of conditions that gave SiaP a Kd value for Neu5Ac-binding of 22 ± 2 nM (Figure 

4.5). The thermodynamics of ligand binding were investigated using ITC and showed that 

ligand binding is enthalpically driven and associated with the release of many water 

molecules. This also suggested that the binding event is not a simple bi-molecular 

association as previously found, but could include multiple steps, as for DctP (Severi et 

al., 2005, Walmsley et al., 1992).  

 

Rationally designed mutations were made in attempts to increase the ligand affinity of 

SiaP. Mutations in the binding pocket all had a deleterious effect, suggesting that the 

ligand binding site is a complex environment and sensitive to mutational change (Figure 

4.11). A second group of mutations was developed, which aimed to introduce opposite 

charges on the binding cleft and promote the closed conformation of the protein (Figure 

4.12). However, none of these caused an increase in affinity (Table 4.4).  
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Chapter Five 
 
 
 
 
 

Investigation of the effect of mutations in 

SiaP upon transport by reconstituted 

SiaPQM 
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5.1  An in vitro assay for 14C-Neu5Ac uptake by SiaP-SiaQM  

Originally, the effects of mutations in siaP on Neu5Ac transport were to be investigated 

via their effect on growth in the in vivo assay mentioned previously. However, due to the 

growth seen for the extreme Arginine-147 mutations and the unforeseen complexity of 

cloning the siaP alleles into the final vector, an in vitro assay for SiaP activity was used 

(Mulligan et al., 2009). This uses SiaP to supply 14C-labelled sialic acid (14C-Neu5Ac) to 

SiaQM reconstituted into proteoliposomes (Figure 5.1a). The 14C-Neu5Ac transported 

into the lumen of the proteoliposomes can then be measured using scintillation counting. 

Originally, this assay used N-terminal decahistidine-tagged SiaP (His10SiaP) and so this 

had to be compared to SiaP-His6 (Mulligan et al., 2009).  

 

Following the method of Mulligan et al. (2009), N-terminal decahistidine-tagged SiaQM 

was purified by Ni-affinity chromatography and reconstituted into proteoliposomes by 

rapid dilution. A homogenous suspension of 400 nm proteoliposomes containing the 

inside buffer was added to the reaction (outside) buffer, setting up an inwardly directed 

sodium gradient to energise the transporter. As the requirements for reconstituted SiaQM 

increased, this protein was kindly supplied by Judith Hawkhead. For the uptake assay, 5 

μM SiaP was equilibrated in the reaction buffer with 5 μM 14C-Neu5Ac. SiaQM in 

proteoliposomes was added to a final concentration of 1.15 μM and samples were taken 

20 s later and every 40 s following this. Uptake of labelled sialic acid was halted by the 

addition of 1 mM unlabelled sialic acid and the transported 14C-Neu5Ac was measured 

by scintillation counting.  

 

The assay was performed in triplicate for His10SiaP, SiaP-His6 and the negative control, 

which used SiaP-His6 and empty liposomes. These, not SiaQM-proteoliposomes, were 

chosen as the negative control due to the cost of producing SiaQM and that non-

specifically associated SiaP had previously been shown to be the largest source of 

contaminating 14C-Neu5Ac (Christopher Mulligan, personal communication). As can be 

seen in Figure 5.1b, the uptake of 14C-Neu5Ac proceeds in a similar manner for both 

His10SiaP and SiaP-His6 and both are clearly above the background level.  
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A) 

B) 

Figure 5.1: In vitro 14C-Neu5Ac uptake assay. A) 14C-Neu5Ac is bound by SiaP, delivered to SiaQM-

containing proteoliposomes and transported into the lumen of the proteoliposomes. B) 14C-Neu5Ac 

uptake catalysed by SiaP-His6 (black circles) and His10-SiaP (black triangles). The background 

intensity is shown as empty circles.  
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These results indicate that His10SiaP and SiaP-His6 are equivalent in this assay and so the 

C-terminal hexahistidine-tag can be used in all future experiments. It is worth noting that 

the amounts of 14C-Neu5Ac recovered are significantly lower than the highest intensities 

reported previously (Mulligan et al., 2009), which is likely due to variations in the 

reconstitution efficiency of SiaQM. 

 

 

5.2  The Arg-147 mutants catalyse no uptake in vitro  

Previously, the Arginine-147 mutants of SiaP-His6 had exhibited no detectable binding 

with up to 3 mM Neu5Ac (Figure 3.6). However, these same mutants are able to 

complement growth of the E. coli ΔnanT strain when supplied in trans in the presence of 

siaQM (Figure 3.17). It was decided to investigate the transport activity of these mutant 

proteins in the reconstituted in vitro system.  

 

The 14C-Neu5Ac uptake assay was performed with 5 μM of each of the SiaP-His6:R147 

mutants and 5 μM 14C-Neu5Ac with samples taken every forty seconds with SiaP-His6 as 

the positive control. As can be seen in Figure 5.2, the transport rates of the Arginine-147 

mutants of SiaP-His6 are indistinguishable from background.  

 

This agrees with the in vitro sialic acid binding data that these mutants do not interact 

with sialic acid in the low μM range. It also suggests that the higher substrate 

concentrations and longer time periods of the in vivo growth assay are needed to detect 

transport by these mutants and that the Arg-147 is important for high affinity sialic acid 

transport but is not essential.  

 

 

5.3  Position 170 is important for ligand binding and transport  

The in vitro investigation of the role of the Phenylalanine-170 ‘lid’ in ligand binding 

showed that this residue had to be an aromatic residue for high affinity sialic acid binding 

(Figure 3.7). The role in transport, rather than just ligand binding, could be investigated 

easily using the 14C-Neu5Ac uptake assay.  
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Figure 5.2: The in vitro transport of 14C-Neu5Ac catalysed by SiaP-His6 (filled circles) and the SiaP-

His6:R147 mutants (Ala, triangles; Glu, squares; Lys, diamonds). The background intensity is shown 

as empty circles. 
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The transport of 14C-Neu5Ac catalysed by each of the SiaP-His6:F170 mutants was 

investigated using the same conditions described previously. Figure 5.3 shows the 

amounts of 14C-Neu5Ac recovered at each time point. As expected, SiaP-His6:F170A 

shows no uptake of substrate, since its Kd for sialic acid (340 ± 70 μM) is 68 times the 

available concentration, while the tyrosine and tryptophan mutants catalyse uptake at 

similar rates as SiaP-His6.  

 

The working concentration of 14C-Neu5Ac used is five times the Kd values for the 

tyrosine and tryptophan mutants (1.13 ± 0.05 μM and 1.21 ± 0.03 μ M, respectively) and 

so these are expected to be ligand-bound. This is supported by the similarity between the 

uptake rates of SiaP-His6 and the tyrosine mutant. The tryptophan mutant appears to 

catalyse transport at a similar initial rate, but this fails to accumulate to the same level.  

 

The absence of transport by the low affinity-binding F170A mutant is not unexpected, 

since it is not saturated by the Neu5Ac used in the assay. Combined with the transport-

positive phenotypes of the F170W and F170Y mutants indicate that the 170 position of 

SiaP has to have an aromatic group for binding and transport of sialic acid, but must be 

phenylalanine for highest affinity binding. The lower recovery of labelled Neu5Ac from 

the SiaP-His6:F170W-catalysed assay indicates that the larger aromatic side chain of this 

mutant has disturbed gating or regulation of the transport cycle in such a way that it is no 

longer able to accumulate such a high concentration gradient into the proteoliposome.  

 
 
 
5.4  Binding site mutations in SiaP reduce transport in vitro via their reduced 

occupancy  

The binding site mutants developed to introduce more side chain interactions with the 

ligand in Section 4.1.1 (Figure 4.1) all showed decreased affinity for sialic acid. Since all 

of these mutations are inside the core of the protein, they should not alter the interaction 

between SiaP and SiaQM. Due to this, these mutations could be used to investigate the 

effect of reduced sialic acid affinity on transport.  
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Figure 5.3: The in vitro transport of 14C-Neu5Ac catalysed by SiaP-His6 (black circles), SiaP-

His6:F170A (empty triangles), SiaP-His6:F170W (red diamonds) and SiaP-His6:F170Y (blue down 

triangles). The background intensity is shown as empty circles.  
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For these mutant proteins of varying affinity for sialic acid, the concentration of protein 

and 14C-Neu5Ac in each assay was kept at 5 μM each. Uptake catalysed by SiaP-

His6:A11N and SiaP-His6:A151V are at a similar level to the background, while that of 

SiaP-His6:A66I is similar to SiaP-His6 (Figure 5.4a). Interestingly, transport with SiaP-

His6:A66M is reduced compared to SiaP-His6.  

 

The lack of detectable transport by the A11N and A151V mutants is unsurprising, given 

that their Kd values for sialic acid are 19 and 4.5 times higher than the concentration of 
14C-Neu5Ac used in the assay. The transport by the A66I mutant is indistinguishable 

from SiaP-His6, indicating that the binding proteins are ligand-bound to a similar extent. 

The reduced uptake of the A66M mutant could be explained by the reduced occupancy of 

this mutant protein; the concentration of 14C-Neu5Ac used is only five times the Kd of the 

protein for sialic acid, compared to ten times the Kd of the Ala-66-Ile mutant.  

 

To examine if the reduced uptake catalysed by the A66M mutant is due to reduced 

occupancy of the binding protein, the assay was repeated using a concentration of 14C-

Neu5Ac ten times the Kd of the protein for sialic acid to reach a similar level of ligand-

bound protein to the Ala-66-Ile mutant.  

 

In this experiment, the transport of 14C-Neu5Ac by 5 μM SiaP-His6 or SiaP-His6:A66M 

was measured in the presence of 10 μM 14C-Neu5Ac. The uptake of 14C-Neu5Ac by the 

Ala-66-Met under these conditions is much closer to that of SiaP-His6, but not identical 

(Figure 5.4b). 

 

Doubling the concentration of 14C-labelled sialic acid brought the concentration to nine 

times the Kd of the mutant protein for sialic acid. This increase has brought the transport 

rate closer to that of SiaP-His6 under the same conditions, indicating that the reduced 

transport rate seen previously was due to reduced occupancy of the binding protein under 

the same substrate-limiting conditions. 
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Figure 5.4: The in vitro transport of 14C-Neu5Ac catalysed by SiaP-His6 (black circles), SiaP-

His6:A66I (up triangles), SiaP-His6:A66M (down triangles), SiaP-His6:A151V (diamonds) and SiaP-

His6:A11N (squares). A) Uptake from 5 μM 14C-Neu5Ac reaction concentration. The background 

intensity is shown as empty circles. B) Uptake from 10 μM 14C-Neu5Ac reaction concentration. The 

background intensity is an average of two results and is shown as empty circles. 

A) 

B) 
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5.5  Surface mutations in SiaP affect transport by different mechanisms  

In Section 4.1.2, double mutants of SiaP were developed where opposite charges were 

introduced that would come into proximity only in the closed form and so stabilise this 

conformation of SiaP (Figure 4.4). These double mutants introduced charged groups onto 

the surface of SiaP and so could be used to investigate the interaction between the 

binding protein and SiaQM. From the previous section, any effects of reduced ligand 

affinity could be compensated for by increased 14C-Neu5Ac concentration.  

 

For the investigation of SiaP-His6:Q72E;A152K, SiaP-His6:S15D;A195K and SiaP-

His6:S15K;A195D, the transport activity of 5 μM 14C-Neu5Ac by 5 μM of each protein 

was determined using the standard protocol. To investigate the effect of the lower affinity 

of SiaP-His6:Q72E;A152K, the uptake catalysed by 5 μM of this protein was measured in 

the presence of 5 μM 14C-Neu5Ac and 25 μM Neu5Ac, giving a sialic acid concentration 

of 30 μM.  

 

The transport of 14C-Neu5Ac catalysed by the S15D;A195K double mutant is very low, 

but above background, while that of SiaP-His6:Q72E;A152K is much higher (Figure 

5.5a). The reduced transport of the Q72E;A152K and S15D;A195K double mutants is not 

unexpected due to their reduced affinity for sialic acid (Figure 5.5a). To examine if this 

reduced rate is solely reduced to reduced occupancy of the binding proteins under these 

conditions, the concentration of sialic acid was raised to 30 μM, at which the uptakes 

catalysed by the double mutant and SiaP-His6 are identical (Figure 5.5b). This indicates 

that that the reduced uptake seen in the previous experiment was due to reduced 

occupancy of the binding protein. 

 

Surprisingly, the uptake catalysed by the S15K;A195D double mutant was identical to 

that of SiaP-His6 (Figure 5.5c). This is surprising since the Kd value of SiaP-

His6:S15K;A195D for sialic acid is 9.3 ± 1.9 μM, which is twice the concentration of 
14C-Neu5Ac used in this assay. It is not clear how this double mutant, which has a 78-

fold decrease in ligand affinity, maintains wild type transport when the protein should not 

be saturated with ligand. It could be that there is a stronger interaction 
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Figure 5.5: The in vitro transport of 14C-Neu5Ac catalysed by SiaP-His6 with double mutations on the 

surface. The background intensity is shown as empty circles. A) 14C-Neu5Ac uptake catalysed by SiaP-

His6 (black circles), SiaP-His6:Q72E;A152K (squares) and SiaP-His6:S15D;A195K (triangles). B) The 

in vitro transport of 14C-Neu5Ac from 5 μM 14C-Neu5Ac mixed with 25 μM Neu5Ac catalysed by SiaP-

His6 (black circles) and SiaP-His6:Q72E;A152K (triangles). C) The transport of 14C-Neu5Ac from 5 μM 

reaction concentration catalysed by SiaP-His6 (black circles) and SiaP-His6:S15K;A195D (diamonds).  

A) 

B) 

C) 
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between SiaP-His6:S15K;A195D and SiaQM, thereby increasing the apparent 

concentration locally to the membrane protein. It could also be that the closed 

conformation has been disrupted in the mutant, increasing the probability of the ligand-

bound protein returning to the open conformation. When in the transport complex, this 

conformationally less stable mutant could result in the substrate being delivered more 

quickly or successfully with each cycle of transport.  

 

 

5.6  The Asn-150-Asp mutation abolishes transport without affecting ligand 

binding  

Along with the double mutants from Section 4.1.2, a point mutation was also made that 

was intended to have the same effect as the double mutants (Figure 4.4). The affinity of 

this mutant, SiaP-His6:N150D, for Neu5Ac was determined in vitro and found to have 

had no effect, with the Kd value remaining at 0.10 ± 0.02 μM. This was then investigated 

using the in vitro uptake assay with the standard protocol.  

 

In Figure 5.7, the recovery of 14C-Neu5Ac from the SiaP-His6:N150D assay is 

indistinguishable above background, indicating that the transport in vitro was abolished 

by this mutation. This lack of transport could be due to either an inactive protein 

preparation or an incorrect measurement of the affinity by fluorescence titration.  

 

 

As an independent measure of the Kd, ITC was also performed in triplicate on 10 μM 

protein in 50 mM Tris/HCl pH 8.0 at 37 °C with additions of 150 μM sialic acid (Figure 

5.7). These show that this mutation has had no effect on the affinity for sialic acid (Kd 

0.10 ± 0.02 μM), which is surprising given the sensitivity of SiaP to all of the mutations 

made during the course of this investigation and the extreme effect of mutation to Ala-

151 (Table 4.7).  
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Figure 5.6: The in vitro transport of 14C-Neu5Ac catalysed by SiaP-His6 (black circles) and SiaP-

His6:N150D (down triangles). The background intensity is shown as empty circles.  
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Figure 5.7: ITC analysis of 10 μM SiaP-His6:N150D in 50 mM Tris/HCl pH 8.0 at 37 °C. 150 μM 

Neu5Ac was injected in 6 μl aliquots following an initial injection of 2 μl. In this titration, K = 1.03 x 

107 M-1 and so the Kd value is 0.10 μM.  
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It was decided to examine the effect of the Asn-150-Asp mutation on the transporter in 

vivo using the same system that was used to discover the functionality of SiaP-His6 in 

Section 3.3 and the Arginine-147 mutants in Section 3.6. This is based on complementing 

the deletion of the E. coli native sialic acid transporter with siaPQM on a low copy 

number plasmid.  

 

The Asn-150-Asp mutation was introduced directly into the siaP-His6 allele in pAH15 

(pWKS30-siaP-His6-siaQM), creating pAH87. This was then transformed into E. coli 

BW25113 ΔnanT and tested for growth on sialic acid as the sole carbon source with 

induction of the operon by IPTG. Expression of a hexahistidine-tagged SiaP was probed 

by Western blot analysis.  

 

Introduction of this mutation to the whole transporter did not restore growth on sialic acid 

as the sole carbon source (Figure 5.8). This phenotype is far more extreme than that 

caused by mutation of the conserved Arg-147.  

 

The failure of growth at this high sialic acid concentration and long incubation time 

indicate that this mutation has abolished either the binding protein–membrane protein 

interaction or ligand release from the SBP as ligand binding is unaltered. This in vivo 

null-growth phenotype was also seen in so-called dominant-negative MalE, where a 

mutated residue near the binding cleft sticks outwards in the closed conformation (Shilton 

et al., 1996). 

 

 

5.6.1  SiaP-His6: N150D forms a transient, non-productive complex with SiaQM  

To investigate the possible interaction between SiaP-His6:N150D and SiaQM, a 

competition assay between SiaP-His6 and SiaP-His6:N150D was set up. If an interaction 

occurred, then the presence of the transport-incompetent mutant protein would reduce 

transport of 14C-Neu5Ac by the transport-competent protein.  
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Figure 5.8: A) Growth of E. coli BW25113 ΔnanT strains expressing siaP-His6–siaQM from pAH15, 

siaP-His6:N150D–siaQM from pAH87 or carrying the empty vector, pWKS30, on M9 minimal 

medium 1% agarose, 1 mM IPTG supplemented with 1 mg/ml sialic acid as the sole carbon source. B) 

Top, SDS PAGE gel of E. coli BW25113 ΔnanT strains expressing siaPQM from (1) pES7, (2) siaP-

His6–siaQM from pAH15 and (3) siaP-His6:N150D–siaQM from pAH87 (3). Bottom, western blot 

with anti(tetrahistidine) antibodies showing expression of polyhistidine-tagged SiaP in lanes 2 and 3 

with a population of uncleaved SiaP visible as a higher weight band. The MW of native SiaP is 

indicated by arrows.  

E. coli BW25113  
ΔnanT pAH15  

E. coli BW25113  
ΔnanT pWKS30 

E. coli BW25113 ΔnanT pAH87 A) 

B)  1        2         3 
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The assay was performed with 5 μM SiaP-His6 and again with a mix of 5 μM SiaP-His6 

and 5 μM SiaP-His6:N150D. To ensure that the binding protein would remain saturated 

throughout the experiment, the transport activity was measured in the presence of 20 μM 

sialic acid, made up of 8.1 μM 14C-Neu5Ac and 11.9 μM Neu5Ac.  

 

As can be seen in Figure 5.9, the addition of the mutant protein to SiaP-His6 at a ratio of 

1:1 in the presence of an excess of sialic acid causes a reduction in the amount of 14C- 

Neu5Ac recovered. This result shows that SiaP-His6 and SiaP-His6:N150D are competing 

for the same available SiaQM. The association between the mutant protein and the 

membrane protein is non-productive and also transient, since transport still occurs via the 

activity of SiaP-His6.  

 

 

In the previous uptake assay, SiaP-His6 and SiaP-His6:N150D were present at an equal 

concentration. To examine the interaction between SiaP-His6:N150D and SiaQM further, 

both SiaP-His6 and SiaP-His6:N150D could individually be expressed to an excess over 

the other in vivo.  

 

To monitor the effect on transport of supplying excess SiaP-His6 to SiaP-His6:N150D–

SiaQM, E. coli BW25113 ΔnanT was transformed with pAH78 (pWKS30-siaP-

His6:N150D-siaQM) and pJPW4 (pET24b-siaP-His6). In contrast, the effect of excess 

SiaP-His6:N150D on the growth of SiaP-His6–SiaQM was investigated using E. coli 

BW25113 ΔnanT pAH15 (pWKS30-siaP-His6-siaQM) and pAH88 (pET24b-siaP-

His6:N150D). These were tested for growth on sialic acid as the sole carbon source with 

induction of all proteins by IPTG. For all of these strains, expression of hexahistidine 

tagged-SiaP was probed by Western blotting.  

 

The expression of siaP-His6 in the strain carrying the ΔnanT siaP-His6:N150D+ siaQM+ 

background restores growth on Neu5Ac (Figure 5.10ac). However, overexpression of 

siaP-His6:N150D in the ΔnanT siaP-His6
+ siaQM+ background does not abolish the 

growth of this strain on sialic acid (Figure 5.10bc). All of these double plasmid strains 
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Figure 5.9: The in vitro transport of 14C-Neu5Ac catalysed by 5 μM SiaP-His6 (black circles) and a 

mix of 5 μM SiaP-His6 and 5 μM SiaP-His6:N150D (red diamonds). The concentration of sialic acid 

used was 8.1 μM 14C-Neu5Ac with 11.9 μM Neu5Ac to ensure an excess of ligand over protein. The 

background intensity is shown as empty circles.  
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Figure 5.10: Growth of E. coli BW25113 ΔnanT strains carrying low-copy number siaPQM mutant alleles 

and high-copy number siaP mutant alleles on M9 minimal medium 1% agarose, 1 mM IPTG supplemented 

with 1 mg/ml sialic acid as the sole carbon source. A) The effect of SiaP-His6, from pJPW4, on the growth 

phenotype of SiaP-His6:N150D–SiaQM from pAH87. B) The effect of overexpression of SiaP-His6:N150D, 

from pAH88, on the growth effect of SiaP-His6–SiaQM from pAH15. C) Expression of E. coli BW25113 

ΔnanT strains carrying pET- and pWSK-based constructs: 1) pAH15 (siaP-His6–siaQM) and pAH88 (siaP-

His6:N150D); 2) pAH15 (siaP-His6–siaQM) and pET24b (empty vector); 3) pAH87 (siaP-His6:N150D–

siaQM) and pET24b (empty vector); 4) pAH87 (siaP-His6:N150D–siaQM) and pJPW4 (siaP-His6). Top, 

SDS PAGE gel. Bottom, western blot with anti(tetrahistidine) antibodies showing expression of 

polyhistidine-tagged SiaP in all lanes. The MW of native SiaP is indicated by arrows.  

C)  1       2        3       4 
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ΔnanT  
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were tested for growth on M9 minimal medium agarose supplemented with 0.6% glucose 

with IPTG-induction and lack of growth without IPTG-induction on M9 minimal 

medium agarose supplemented with 1 mg/ml sialic acid.  

 

The restoration of growth by expression of SiaP-His6 in the strain expressing SiaP-

His6:N150D–SiaQM indicates that SiaP-His6:N150D is not forming a permanent 

inactivating complex with SiaQM in vivo and that SiaP-His6 can out-compete the non-

productive mutant protein. However, with the supposed excess of SiaP-His6:N150D in 

the strain expressing siaP-His6–siaQM, growth is maintained. This could be due to the 

smaller population of transport-competent SiaP-His6 maintaining a level of sialic acid 

uptake that allowed growth on the solid medium.  

 

From these, it could be that the single atom change between asparagine and aspartate has 

disturbed the association between the binding protein and SiaQM or has interrupted the 

passage of the ligand in some way. 

  

 

5.6.2  Asn-150 forms part of a network extending from the bound ligand to the 

surface of SiaP  

From the examination of the sialic acid-bound crystal structure of SiaP, it appears that π-

stacking occurs between Asn-150 and Arg-50, which forms part of a hydrogen-bonded 

network with Asp-48 and Arg-70. This apparent hydrogen-bonded network extends from 

the surface of the protein to the bound sialic acid, via Asp-49 (Figure 5.11a). Arg-50 

forms hydrogen bonds from an Nη and its Nε with one terminal oxygen from the 

carboxylate of Asp-48; Nη and its Nε of Arg-70 are coordinated by the terminal oxygens 

from the ligand-interacting Asp-49, while the remaining terminal amine of Arg-70 forms 

a hydrogen bond with the backbone carbonyl of Asn-150. Of these, only Asn-150 is part 

of Domain 2, which contains the ligand carboxylate-coordinating residues including Arg-

147, and is only interacting with the remainder of the network via Asn–Arg stacking and 

one hydrogen bond.  
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Asn-150Arg-50

Arg-70

Asp-48

Asp-49 

Neu5Ac

Asn-187 

Arg-147 

Arg-127

(Asn-150) 

Arg-50 
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Figure 5.11: Representation of the residues involved in the Arg-50 – Asn-150 network. A) The hydrogen 

bonded network extending from the bound Neu5Ac (cyan carbon atoms) to the surface of SiaP (partial surface 

representation). The residues involved in the network from domain 1 are shown with green carbon atom, while 

Asn-150 from domain 2 is shown with purple carbon atoms. Arg-127, Arg-147 and Asn-187 are shown in grey 

as a reference and a ribbon representation of SiaP is shown in green. B) The changes in the network upon ligand 

binding. In the open conformation, the relative positions of Neu5Ac and Asn-150 (marked in brackets) from the 

closed conformation are shown as lines. In the closed conformation, the relative position Asn-150 (marked in 

brackets) from the closed conformation is also shown as lines. 

A) 

B) 
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As can be seen in Fig 5.11b, this network undergoes a slight conformational change 

between the open and closed forms. In the open form of SiaP, the diaminomethyl group 

of Arg-50 is not represented in the crystal structure, due to disorder, and one terminal 

amine of Arg-70 interacts with the terminal oxygens of Asp-49. From this, it would seem 

that these residues could be acting as a network that takes part in the opening of SiaP and 

release of sialic acid on interaction with SiaQM.  

 

The ability of SiaP-His6:N150D to bind sialic acid with the same affinity and in 

apparently the same manner as SiaP-His6 would suggest that this residue is not critical in 

domain closure. Since the mutant can interact with SiaQM, it would also seem that this 

mutant protein would be conformationally equivalent to SiaP.  

 

 

The thermodynamic data from ITC of SiaP-His6:N150D and SiaP-His6 are shown in 

Table 5.1. There is no significant effect of this mutant on Kd or ΔG; however, ΔH and ΔS 

both increase in the presence of this mutation by 9.6 kJ mol-1 and 32.6 J mol-1 K-1, 

respectively. 

 

 

It is surprising that the Asn-150-Asp mutation appears to abolish transport of sialic acid 

without affecting the affinity of ligand binding. To confirm this surprising result, the 

uptake assay and ITC were repeated twice each with independent preparations of protein 

and found to give the same results. In addition to the ΔH contributions that are identical 

between these two proteins, the change in ΔH (ΔΔH) is made up of the hydration 

enthalpy difference (ΔHhyd) between aspartate and asparagine plus the new, or lost, 

interaction(s). By considering the thermodynamic cycle, the resultant enthalpy change 

(ΔΔH) can be calculated, revealing the gain or loss of interactions caused by the mutation 

(Figure 5.12). Under these circumstances, it is possible to estimate the change in ΔHhyd 

(ΔΔHhyd), assuming that the ΔHhyd of asparagine and aspartate in these proteins are 

equivalent to that of asparagine and aspartate chemical analogues in solution. This is not 
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Buffer composition  Kd (μM) ΔH (J mol-1) ΔS (J mol-1 K-1) -TΔS (J mol-1) ΔH-TΔS (J mol-1)
SiaP-His6 0.12 ± 0.02 -114700 ± 4400 -237.0 ± 12.8 73500 ± 4000 -41270 ± 500 

SiaP-His6:N150D 0.10 ± 0.02 -104700 ± 4300 -203.3 ± 15.3 63000 ± 4700 -41700 ± 400 
 

Table 5.1: Thermodynamic data from the ITC analysis of SiaP-His6 and SiaP-His6:N150D.  
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      SiaP-His6         + 

SiaP-His6:N150D   + 

Neu5Ac 

Neu5Ac 

   SiaP-His6⋅Neu5Ac 

SiaP-His6:N150D⋅Neu5Ac 

ΔH = -114.7 kJ mol-1

ΔH = -104.7 kJ mol-1

ΔHHYD = +10.2 kJ mol-1 ΔΔH = +20.2 kJ mol-1

Figure 5.12: The change in ΔH (ΔΔH) between Neu5Ac binding by SiaP-His6 and SiaP-His6:N150D. The 

enthalpies of binding and hydration are shown. ΔΔH = -(-114.7) + 10.2 +(-104.7) = +20.2 kJ mol-1.  
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an unacceptable assumption, given that Asn-150 is on the surface of the protein and 

exposed to the bulk solvent. To do this, the terminal component of asparagine was taken 

to be ethanamide (acetamide) and for aspartate, this was taken to be ethanoic (acetic) 

acid. The ΔHhyd of acetamide is -40.59 kJ mol-1 and the ΔHhyd of acetic acid is calculated 

as -30.43 kJ mol-1, giving the ΔΔHhyd of these two compounds as +10.2 kJ mol-1 (Kang et 

al., 1988). Adding these to the cycle shown in Figure 5.12, this gives the ΔΔH of SiaP-

His6 and SiaP-His6:N150D binding to sialic acid to be equal to 20.2 ± 4.4 kJ mol-1. This 

value is equal to that of the new interactions formed in the closed mutant protein or lost 

by open conformation. Since the Asn-150 side chain only interacts with Arg-50 via π-

stacking, it is more likely that this increase in ΔH is due to Asp-150 having more 

interactions. This could be due to the formation of hydrogen bonds with other residues in 

the protein or in the bulk solvent. This could be demonstrated clearly in the crystal 

structure of this mutant protein.  

 

It is also worth noting that the change in ΔS of +33.7 J K-1 mol-1 (a change in TΔS of 

10.5 kJ mol-1) between these two mutants indicates that the N150D mutant protein is 

either more disordered in the closed conformation or that the open form is more ordered.  

 

 

The protein crystal structure of SiaP-His6:N150D was determined in the presence of sialic 

acid by Marcus Fischer (YSBL). For all residues except for Asp-150, the structures 

appear identical. Asp-150 can be observed in an identical position to Asn-150 in SiaP; 

however, it also appears that Asp-150 adopts a second conformation in approximately 

60% of cases. This second conformation is oriented away from the network, projecting 

away from the cleft and into the bulk solvent.  

 

 

With this data, it would seem that the N150D mutation does not prevent the interaction 

between the two proteins, but does prevent transport, probably by failing to open the 

domains and release the substrate. How this failure of transport might be caused by this 
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mutation could be explained by its incorrect interactions with the rest of the network and 

mis-positioning for the interaction with SiaQM.  

 

From these results, it is clear that this position is of critical importance to the transport of 

sialic acid by SiaPQM, despite its lack of conservation in the DctP family (11%). The 

mutation of this residue appears to cause a failure of signalling between SiaP and SiaQM. 

Whether it is a signal of ligand-occupancy from SiaP to SiaQM or an opening/release 

instruction from SiaQM to SiaP is yet to be determined.  

 

5.6  Summary  

This chapter has focussed on the in vitro transport capabilities of the mutant library using 

the reconstituted system. The first to be investigated were the Arg-147 mutants, which 

catalysed no uptake of 14C-Neu5Ac (Figure 5.2). The Phe-170 mutants showed that this 

position needed to be an aromatic group for transport to be detectable and a 

phenylalanine was required for high affinity binding (Figure 5.3).  

 

Mutations in the binding pocket of SiaP reduced the uptake of the labelled sialic acid, but 

this was demonstrated to be due to their reduced affinity for the ligand (Figure 5.4). In 

one of the surface-exposed double mutants, Q72E;A152K, this was also demonstrated to 

be the cause of its reduced transport (Figure 5.5ab). The S15K;A195D double mutant, 

despite its low affinity for sialic acid (9 μM), catalysed normal uptake from 5 μM 14C-

Neu5Ac, which could be due to a stronger interaction with SiaQM or an altered 

equilibrium between the closed and open conformations (Figure 5.5c).  

 

The most surprising finding from this chapter is the importance of the Asn-150 position 

to transport. Mutation of this asparagine to aspartate causes a complete loss of transport 

both in vitro (Figure 5.6) and in vivo (Figure 5.8), but appears to allow a transient, non-

productive interaction with SiaQM (Figures 5.9 and 5.10). In the protein crystal structure 

of SiaP, Asn-150 seems to form a part of a hydrogen-bonded network that extends from 

the surface of the protein to the bound sialic acid (Figure 5.11) and so could be involved 

in signalling between SiaP and SiaQM.  
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 Chapter Six 
 
 
 
 
 

The utilisation of different sialic acid 

analogues 
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6.1  The ligand N-acteyl group is surrounded by a water network  

As stated in Section 1.6, Neu5Ac is a member of the sialic acid family, which is a group 

of α-keto acidic sugars (Figure 1.14). SiaP has previously been shown to bind Neu5Ac, 

Neu5Gc and KDN with Kd values in the μM range (Muller et al., 2006). The most 

structurally similar analogue, glycolyl neuraminic acid (Neu5Gc), has an extra hydroxyl 

on the N-acetyl group and is bound by SiaP with a very similar Kd of 0.29 μM. Also of 

interest is the de-aminated analogue, 3-deoxy-D-glycero-D-galacto-nonulosonic acid 

(KDN), which is bound with a Kd of 42 μM. The differences between these three sialic 

acids are restricted to the N-acetyl group on C5 and so could be investigated using the 

existing mutant library developed in Section 4.3.1. Of these, Ala-11-Asn, Ala-66-Ile and 

Ala-66-Met are changes in the region around the ligand N-acetyl group (Figure 4.11).  

 

The affinities of these mutant proteins for different ligands were determined by titration 

of the fluorescence signal of 0.05 μM protein, or 0.25 μM protein when the Kd value was 

above 1.1 μM (Table 6.1). The mutations cause a decrease in affinity, of which the Ala-

11-Asn mutation is the most detrimental.  

 

The effects of these mutations on the Kd values for the different sialic acids are shown in 

Table 6.2. As can be seen, both of the Ala-66 mutations cause a similar decrease in 

affinity for Neu5Ac and KDN. Of most interest is the effect of the Ala-11-Asn mutation. 

This causes an 873-fold decrease in affinity for Neu5Ac and a 198-fold decrease for 

Neu5Gc, but only a 12-fold decrease in the affinity for KDN. In the crystal structure of 

Neu5Ac-bound SiaP, Ala-11 is next to a hydrogen-bonded water network around the 

ligand N-acetyl group. And so, the introduction of a large, charged side chain such as 

asparagine would be very disturbing to ligands with the N-acetyl group present. When 

KDN is bound, this region would be far more accepting of the asparagine side chain, as 

shown by its decreased sensitivity to this mutation. 
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Table 6.1: The binding affinities of sialic acid analogues by SiaP-His6, SiaP-His6:A11N, SiaP-

His6:A66I and SiaP-His6:A66M. Vaues in italics were determined for SiaP (Muller et al., 2006).  

Kd values  
Protein Neu5Ac KDN  Neu5Gc  

SiaP-His6 0.11 ± 0.02 μM 42 μM 0.29 μM 
SiaP-His6:A11N 96 ± 2 μM 497 ± 6 μM 57.5 ± 3.2 μM 
SiaP-His6:A66I 0.53 ± 0.11 μM 148 ± 3 μM - 
SiaP-His6:A66M 1.10 ± 0.04 μM 154 ± 34 μM - 

 

Table 6.2: The effect of the binding site mutations on the binding affinity of Neu5Ac, Neu5Gc 

and KDN compared to the wild-type SiaP-His6.  

Decrease in affinity for ligand caused by the mutation  
Protein Neu5Ac KDN  Neu5Gc  

SiaP-His6:A11N  873 x  12 x  198 x 
SiaP-His6:A66I  5 x  4 x - 
SiaP-His6:A66M  10 x  4 x - 
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During the investigation of the physical properties of SiaP-His6 in Section 4.1.4, the 

thermodynamics of ligand binding were determined experimentally at different 

temperatures (Figure 4.4) and used in Section 5.5.3 to investigate the effects of the 

N150D mutation on the ligand binding event (Figure 5.12). The components of this, such 

as enthalpy, entropy and heat capacity, could be determined to reveal the mechanics of 

ligand binding. The change in heat capacity (ΔCp) of Neu5Ac binding by SiaP-His6 was 

calculated from these results and revealed the ΔCp to be -2.74 ± 0.19 kJ mol-1 K-1, which 

would be negative due to large numbers of water molecules being displaced upon ligand 

binding. A similar analysis could be performed on KDN binding by SiaP-His6 to reveal 

the extent of water displacement on ligand binding.  

 

ITC was performed with various concentrations of SiaP-His6 using ten times the 

concentration of KDN in triplicate at 15 °C and in duplicate at 30 °C. These constraints 

were due to the large amounts of protein needed for each run; 2.5 ml of protein sample 

had to be prepared at 110 μM protein for runs at 15 °C and at 220 μM protein for runs at 

30 °C. Ligand-bound protein was recycled by guanidine denaturation.  

 

For such low affinity binding, ITC required large amounts of protein. This was reduced 

by using guanidine hydrochloride to denature and refold the protein, releasing the bound 

ligand. The resultant, unliganded protein appeared to behave normally, that is, the 

thermodynamic data produced were similar. The ITC gave clear, repeatable results at 

both temperature points. The values for ΔH, ΔS and ΔG are shown in Table 6.3. ΔCp is 

given by the gradient of the graph of ΔH against temperature.  

 

Statistical thermodynamics shows that ΔCp is the fluctuation of enthalpy, and so is a 

direct measurement of the flexibility of the system (Cooper, 2005). An increase in this 

value (ΔΔCp) represents an increase in flexibility, or fluctuation, which could be 

explained by the addition of water to the system. In the change from Neu5Ac to KDN 

binding this value is equal to +230 J mol-1 K-1, which is made up of the additional water 

plus the difference in heat capacity between the two ligands. As in Section 5.5.3, this is 

also the case for both ΔΔH and ΔΔS. 
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Table 6.3: The thermodynamic data from the ITC analysis of Neu5Ac and KDN binding by SiaP-His6.  
 

Ligand 
Temp  
(°C) 

Kd  
(μM) 

ΔH  
(kJ mol-1) 

ΔS  
(J mol-1 K-1) 

-TΔS  
(kJ mol-1) 

ΔH-TΔS  
(J mol-1) 

ΔCp  
(kJ K-1 mol-1) 

Neu5Ac 30  0.058 ± 0.005 -84.4 ± 3.0 -139.9 ± 10.1 42.4 ± 3.1 -42.0 ± 3.0 
 15  0.027 ± 0.003 -49.0 ± 1.6 -24.9 ± 5.7 7.2 ± 1.6 -41.8 ± 1.6 -2.74 ± 0.19 

KDN 30  6.36 ± 0.74 -30.4 ± 0.4 -6.0 ± 2.1 1.7 ± 0.6 -28.7 ± 0.6 
 15  16.4 -68.0 -132.6 40.2 -27.8 -2.51 ± 0.03 
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To determine the effective change in these thermodynamic values, the differences in the 

contributions of KDN and Neu5Ac were estimated using the values of methanol (CH3–

OH) for KDN and N-methylacetamide (CH3–NHCOCH3) for Neu5Ac (Della Gatta et al., 

1986, Graziano, 2001, Ooi et al., 1987). The ΔHhyd, ΔShyd and ΔCp of methanol and N-

methylacetamide and the resulting changes in ΔH, ΔS and ΔCp are shown in Figure 6.1.  

 

Adding these to the cycle shown in Figure 6.1, this gives the ΔΔH from Neu5ac binding 

to KDN binding to be equal to +51.98 kJ mol-1. This larger enthalpy indicates weaker 

binding. The change in ΔCp of +186.3 J mol-1 K-1 shows an increase in flexibility, which 

could be due to the addition of extra water, which is line with the increase in the entropy 

of the system (+60.5 J mol-1 K-1). All of these data suggest the presence of extra water 

involved in the binding of KDN compared to Neu5Ac.  

 

 

It was previously shown that the A11N mutation had a less deleterious effect on KDN 

binding than Neu5Ac binding (Table 6.2). Unfortunately, it would be impractical to 

perform ITC on the binding on KDN by SiaP-His6:A11N due to the extreme protein 

needs for such a low affinity interaction (the expected Kd value at 15 °C is ~115 μM). 

However, it was possible to perform ITC on Neu5Ac binding by the mutant, despite the 

excessive protein and ligand requirements.  

 

ITC was performed on 220 or 420 μM SiaP-His6:A11N at 15 °C and 30 °C, respectively, 

with a ligand concentration equal to ten times the protein concentration. The protein 

concentration was chosen to maintain the lowest practical c-value (~10) for the titration 

curve. The extreme protein requirement restricted the number of repeats achievable to a 

duplicate dataset at both temperature points and so are reported merely as averages 

without standard deviations. The titrations gave clear, similar results and are shown in 

Table 6.4.   
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Figure 6.1: The thermodynamic cycles of Neu5Ac and KDN binding by SiaP-His6. The effect of the 

ligand modification is taken into account in the differences in the ΔH, ΔS and ΔCp of both binding events. 

For example, ΔΔH(SiaP-His6-Neu5Ac→ SiaP-His6-KDN)  

  = -ΔH(SiaP-His6-Neu5Ac) + ΔHhyd(Neu5Ac→KDN) + ΔH(SiaP-His6-KDN)  

  = -(-71.59) + 35.88 + (-55.48)  

  = +51.99 kJ mol-1  

SiaP-His6     + 

SiaP-His6     + 

Neu5Ac 

KDN 

SiaP-His6⋅Neu5Ac 

SiaP-His6⋅KDN

ΔHp = -71.59 kJ mol-1
ΔSp = -98.32 J K-1 mol-1 

ΔCp = -2.74 kJ K-1 mol-1 

ΔHHYD = +35.88 kJ mol-1 

ΔSHYD = +20.4 J K-1 mol-1 

ΔCp     = -47.7 J K-1 mol-1 

ΔHp = -55.48 kJ mol-1
ΔSp = -90.44 J K-1 mol-1 

ΔCp = -2.51 kJ K-1 mol-1 

ΔΔHp = +51.99 kJ mol-1
ΔΔSp = +28.28 J K-1 mol-1 

ΔΔCp = +186.3 J K-1 mol-
1
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Table 6.4: The thermodynamic data from the ITC analysis of Neu5Ac binding by SiaP-His6 and SiaP-
His6:A11N.  
 

Protein 
Temp  
(°C) 

Kd  
(μM) 

ΔH  
(kJ mol-1) 

ΔS  
(J mol-1 K-1) 

-TΔS  
(kJ mol-1) 

ΔH-TΔS  
(J mol-1) 

ΔCp  
(kJ K-1 mol-1) 

30  0.058 ± 0.005 -84.4 ± 3.0 -139.9 ± 10.1 42.4 ± 3.1 -42.0 ± 3.0 SiaP-His6 15  0.027 ± 0.003 -49.0 ± 1.6 -24.9 ± 5.7 7.2 ± 1.6 -41.8 ± 1.6 -2.74 ± 0.19 

30  53.1 -5.8 65.7 -18.9 -24.7 SiaP-
His6:A11N 15  33.6 -41.9 -56.3 17.1 -24.8 

-2.41 ± 0.02 
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As previously, the differences in the values of ΔH, ΔS and ΔCp are a combination of the 

differences in binding plus the direct differences introduced by the mutation of the amino 

acid side chains. The contributions of the alanine and asparagine residues were calculated 

using the method of Makhatadze and Privolov (Makhatadze & Privalov, 1993, Privalov 

& Makhatadze, 1993) (Dr Seishi Shimizu, personal communication) and are included in 

Figure 6.2.  

 

The cycle in Figure 6.2 gives the change in enthalpy to be an increase of 45.7 kJ mol-1, 

and so binding is weaker. The large increases in ΔS and ΔCp relate to large increases in 

disorder and flexibility. This could correspond to changes in the water network 

surrounding position 11, which would be revealed by the protein crystal structure.  

 

 

The effects of these ligands and the A11N mutation on ligand binding were investigated 

further by comparing the protein crystal structures of SiaP-His6 and SiaP-His6:A11N with 

Neu5Ac and KDN bound (SiaP-His6 with KDN and SiaP-His6:A11N with both ligands 

were determined by Marcus Fischer, YSBL). These structures reveal that the position of 

the methyl N-acetyl group from Neu5Ac is replaced by a single water molecule in the 

KDN-occupied binding site (Figure 6.3ab). This associated water molecule is the only 

addition between these two structures of SiaP-His6 and fits in with the findings from the 

previous section. The increases in entropy and heat capacity both appear to correspond to 

the presence of this extra water molecule in the binding site of SiaP.  
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Figure 6.2: The thermodynamic cycles of Neu5Ac binding by SiaP-His6 and SiaP-His6:A11N. The effect 

of the amino acid modification is taken into account in the differences in the ΔH, ΔS and ΔCp of both 

binding events. For example, ΔΔH(SiaP-His6-Neu5Ac→ SiaP-His6:A11N-Neu5Ac)  

 = -ΔH(SiaP-His6-Neu5Ac) + ΔHhyd(SiaP-His6→ SiaP-His6:A11N) + ΔH(SiaP-His6:A11N-Neu5Ac)  

 = -(-71.59) + 3.78 + (-29.69)  

 = +45.68 kJ mol-1  

SiaP-His6     + 

SiaP-His6:A11N + Neu5Ac 

Neu5Ac SiaP-His6⋅Neu5Ac 

SiaP-His6:A11N⋅Neu5Ac 

ΔHp = -71.59 kJ mol-1
ΔSp = -98.32 J K-1 mol-1 

ΔCp = -2.74 kJ K-1 mol-1 

ΔHHYD = +3.78 kJ mol-1
ΔSHYD = -5.44 J K-1 mol-1 

ΔCp     = -14.3 J K-1 mol-1 

ΔHp = -29.69 kJ mol-1
ΔSp = -15.6 J K-1 mol-1 

ΔCp = -2.41 kJ K-1 mol-1 

ΔΔHp = +45.68 kJ mol-1
ΔΔSp = +77.28 J K-1 mol-1 

ΔΔCp = +315.7 J K-1 mol-1 
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Figure 6.3: Representation of the ligand binding site from the crystal structures of SiaP-His6 and SiaP-His6:A11N 

bound to Neu5Ac and KDN. The ligands, Arg-147 and position 11 are shown as atom-colour cylinders, nearby 

residues as atom-colour lines and water molecules red spheres. The corresponding water molecules and ligand from 

the structure of SiaP-His6 with Neu5Ac are shown as red crosses and black lines, respectively. Hydrogen bonds 

around the small network and Arg-147 are shown as dashed, grey lines. A) SiaP-His6 with Neu5Ac. B) SiaP-His6 

with KDN. The extra water molecule is highlighted. C) SiaP-His6:A11N with Neu5Ac. The position of the displaced 

water molecule from the SiaP-His6 structure is highlighted. D) SiaP-His6:A11N with KDN. The displaced and 

introduced water molecules are highlighted as in B and C.  

B) A) 

C) D) 
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The protein crystal structure of SiaP-His6:A11N bound with Neu5Ac shows the presence 

of the asparagine at position 11 (Figure 6.3c) that sterically intrudes upon the location of 

the three water molecules and displaces one of them, but without replacing it, as in the 

case of the ligand N-acetyl group (Figure 6.3b). The displaced water molecule did not 

interact directly with the ligand, but via the two other water molecules in this network of 

three. The explanation of the large decrease in affinity of this mutant for Neu5Ac seems 

to be limited to this location. The loss of the water molecule has caused change in the 

position of the two remaining water molecules, moving them away from their optimal 

positions.  

 

The A11N mutation has a smaller effect on the Kd value for KDN than Neu5Ac (Table 

6.2). The protein crystal structure of SiaP-His6:A11N bound with KDN shows a 

remarkable difference to the Neu5Ac-bound structure (Figure 6.3cd). Here, the Asn-11 

residue is oriented towards the binding site and the ligand itself is positioned directly 

away from this residue, relative to the position of Neu5Ac. The charged hydroxyl group 

of the asparagine side chain is nearer to the location of the displaced water molecule and 

interacts with on of the remaining pair. A new three-water molecule hydrogen-bonded 

network exists with the remaining two from the original and the new water introduced by 

the absence of the ligand N-acetyl group. There are two other slight changes in the water 

molecules surrounding the ligand, but it would appear that this KDN-water network is 

more accepting of the A11N mutation than the Neu5Ac-network, including a 

translocation of the entire ligand, via the larger water network associated with KDN-

binding.  

 

6.2  E. coli can grow on different sialic acids as the sole carbon source using 

different sialic acid transporters  

Growth of E. coli on Neu5Ac is well known and the use of Neu5Gc has previously been 

reported but not characterised in any way (Vimr & Troy, 1985). The use of KDN as the 

sole carbon source has not previously been examined in E. coli. The transport and 

catabolism of these by E. coli BW25113 could be investigated in vivo using the prototype 

incubated plate shaker mentioned in previous chapters. The small volume of the wells (< 
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1 ml) meant that growth on these expensive sialic acids could be investigated in a cost-

effective manner. E. coli BW25113 was grown in M9 minimal medium supplemented 

with 0.5 mg/ml of each sialic acid as the sole carbon source. Growth was measured by the 

incubated plate shaker every 30 minutes at 31 °C with shaking at 250 rpm.  

 

As can be seen in Figure 6.4, growth occurs on all three of these sialic acids to the same 

final density and in the order of Neu5Ac, KDN and Neu5Gc. Growth on Neu5Gc is not 

unexpected, given its similarity in structure to Neu5Ac. This structural similarity would 

explain the great similarity in growth rates between these two carbon sources. Growth on 

KDN as the sole carbon sources has not been reported previously and it should be noted 

that growth on this is at a similar rate to growth on Neu5Ac and Neu5Gc.  

 

 

These differences in growth rate could have been due to differences in transport and 

catabolism or in the induction of the nan and nag operons by the substrate and its 

downstream products. To determine which of these occurs, the effect of pre-induction of 

these operons was examined by incubation with Neu5Ac before inoculation into the 

plate.  

 

E. coli BW25113 was grown in M9 minimal medium containing 0.4% glycerol before 

being incubated in M9 1 mg/ml Neu5Ac for four hours. The cells were then harvested, 

washed and inoculated into M9 minimal medium with 0.5 mg/ml of each sialic acid as 

the sole carbon source. The growth of these was measured by the incubated plate shaker 

every 30 minutes at 35 °C with shaking at 250 rpm. 
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Figure 6.4: Growth curves of E. coli BW25113 on 0.5 mg/ml Neu5Ac (blue circles), Neu5Gc (blue up 
triangles) and KDN (blue diamonds).  
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As can be seen in Figure 6.5, the growth rates following induction are above that of the 

uninduced on Neu5Ac and appear to be identical.  

This increase in growth rate and apparent similarity between the three substrates 

following induction indicates that the differences in the growth rates in Figure 6.4 are due 

to the differences in induction by the different sialic acids and their downstream products.  

 

 

In the previous experiment, growth of E. coli on the sialic acids was mediated by the 

endogenous sialic acid transporter, NanT, which is a member of the Major Facilitator 

Superfamily (MFS). Using the previous E. coli ΔnanT deletion strain and low copy 

number plasmid system, siaPQM was shown to allow growth on Neu5Ac (Figure 3.5). 

These, and another binding protein-independent transporter (STM1128) from the Sodium 

Solute Symporter (SSS) family, were examined for growth on the three sialic acids by 

expression from this low copy number plasmid.  

 

As in the standard protocol, E. coli BW25113 ΔnanT expressing nanT, siaPQM or 

stm1128 from a low copy number plasmid were grown in M9 minimal medium without 

FeSO4, supplemented with 0.4% glycerol to remove catabolic repression. These were 

harvested, washed and inoculated into M9 minimal medium (without FeSO4) with 0.5 

mg/ml of each sialic acid as the sole carbon source. Their growth at 31 °C was measured 

by the incubated plate shaker every 30 minutes.  

 

Growth on these three sialic acids with expression of the three sialic acid transporters is 

shown in Figure 6.6. Under all of these conditions, growth occurred at varying rates 

(Table 6.5 for doubling times, TGEN).  
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Figure 6.5: Growth curves of un-induced (blue) and pre-induced (red) E. coli BW25113 on 0.5 mg/ml 
Neu5Ac (circles), Neu5Gc (up triangles) and KDN (diamonds).  
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Figure 6.6: Growth curves of E. coli BW25113 ΔnanT strains expressing, from a low copy number 
plasmid, NanT (red), SiaPQM (blue) and Stm1128 (green). The sole carbon sources were: 0.5 mg/ml 
Neu5Ac (circles), Neu5Gc (up triangles) and KDN (down triangles). Growth of E. coli BW25113 
ΔnanT pWKS30 on these carbon sources is shown by empty symbols.  
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Table 6.5: Growth rates of E. coli BW25113 ΔnanT strains expressing sialic acid transporters as indicated.  

0.5 mg/ml Neu5Ac 0.5 mg/ml Neu5Gc 0.5 mg/ml KDN  
Transporter Growth rate (min-1) TGEN (min) Growth rate (min-1) TGEN (min) Growth rate (min-1) TGEN (min) 
NanT 8.18 ± 0.10 x 10-3 122 ± 2 9.39 ± 0.10 x 10-3  107 ± 3  6.10 ± 0.15 x 10-3 164 ± 4 
Stm1128 8.41 ± 0.10 x 10-3 119 ± 2 8.17 ± 0.17 x 10-3 122 ± 3 7.40 ± 0.10 x 10-3 135 ± 2 
SiaPQM 5.61 ± 0.05 x 10-3 178 ± 2 5.20 ± 0.13 x 10-3 192 ± 5 4.62 ± 0.06 x 10-3 216 ± 3 
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With constitutive expression, all of these different families of transporters transport 

different sialic acids and allow growth at similar rates with doubling times varying 

between about 100 and 200 minutes. This similar transport of different ligands suggests 

that multiple sialic acids could be relevant substrates for these organisms.  

 

The doubling times calculated for each transporter with Neu5Ac and Neu5Gc are all very 

similar, the major differences are seen with KDN as the substrate. Of these transporters, 

SiaPQM stands out as consistently allowing the slowest growth on all three substrates, 

which could be due to the involvement of the binding protein requiring a second 

association step in the transport cycle. STM1128 allows a very similar growth rate on all 

three sialic acids, while NanT catalyses the fastest growth on Neu5Gc. This could be 

evidence of differences in the ligand-binding mechanism of these two proteins, where 

there are, relatively, less critical interactions around the N-acetyl group or at least better 

acceptance of its replacement such that its absence does not reduce the rate of uptake.  

 

 

6.3 The catabolism of sialic acids requires relevant components of the sialometabolic 

pathway in E. coli  

6.3.1 The catabolism of Neu5Gc requires the nan and nag genes and releases 

glycolate 

Growth of E. coli on Neu5Ac is dependent on the presence of the sialometabolic genes 

nanA, nanK, nanE, nagA and nagB (Figure 6.7a) (Plumbridge & Vimr, 1999, Vimr & 

Troy, 1985). Intracellular Neu5Ac is processed by these three enzymes from the nan 

operon, the inducer of which might not be Neu5Ac (Kalivoda et al., 2003). The product 

of these is N-acetyl-D-glucosamine-6-phosphate (GlucNAc6P), which induces the nag 

pathway and is processed to D-fructose-6-phosphate (F6P). The metabolism of Neu5Gc 

would also be expected to follow this pathway.  

 

Strains of E. coli BW25113 containing kanamycin cassette replacement deletions of the 

sialometabolic genes or ytfQ (positive control) were grown in M9 minimal medium 
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Neu5Ac 

ManNAc 

GlucNAc6P 

GlucN6P 

F6P 

pyruvate 
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H2O 
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Figure 6.7: Growth on Neu5Ac and Neu5Gc of E. coli strains with deletions in the sialometabolic 
pathway. A) The sialiometabolic pathway of E. coli. ManNAc, N-acetyl-D-mannosamine; ManNAc6P, N-
acetyl-D-mannosamine-6-phosphate; GlucNAc6P, N-acetyl-D-glucosamine-6-phosphate; GlucN6P, D-
glucosamine-6-phosphate; F6P, D-fructose-6-phosphate. B) Growth on 0.5 mg/ml Neu5Ac of E. coli 
BW25113 with kanamycin cassette insertions in place of nanA, nanK, nanE, nagA, nagB (empty symbols) 
and yjhS (black circles). C) Growth on 0.5 mg/ml Neu5Gc of E. coli BW25113 with kanamycin cassette 
insertions in place of nanA, nanK, nanE, nagA, nagB and yjhS.  

 

B) C) 

A) 
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supplemented with 0.4% glycerol to remove catabolic repression. These cells were 

harvested, washed and inoculated into M9 minimal medium supplemented with 0.5 

mg/ml Neu5Ac or Neu5Gc as the sole carbon source. Growth was then measured by the 

incubated plate shaker. Growth of the control and deletion strains on Neu5Ac and 

Neu5Gc is shown in Figure 6.7bc. From these, there is no growth on either of the sialic 

acids as the sole carbon source without the intact sialometabolic pathway.  

 

 

The absence of growth by all of the sialometabolic deletion strains shows that Neu5Gc 

follows this pathway just as Neu5Ac. The only expected difference is the production of 

the carbon source glycolate instead of acetate by NagA. This was examined using a 

deletion of the glcE gene, which encodes the FAD-binding subunit of glycolate oxidase 

and is essential for this activity (Pellicer et al., 1996).  

 

As in the standard protocol, E. coli BW25113 containing kanamycin cassette replacement 

deletions of ytfQ and glcE were inoculated into M9 minimal medium supplemented with 

0.5 mg/ml Neu5Ac or Neu5Gc as the sole carbon source. Growth was then measured by 

the incubated plate shaker. Growth of the control and glcE deletion strains on Neu5Ac 

and Neu5Gc is shown in (Figure 6.8a). This shows a reduction in the final optical density 

of the glcE deletion strain when grown on Neu5Gc, suggesting the production of 

glycolate during Neu5Gc catabolism contributes to growth.  

 

 

It has recently been suggested that the final gene in the nan operon, yhcH, is essential for 

growth on Neu5Gc by converting it to Neu5Ac (Roy et al.). Using the incubated plate 

shaker, this could quickly and easily be investigated. As in the standard protocol, the 

strains containing kanamycin cassette replacement deletions of ytfQ and yhcH were 

inoculated into M9 minimal medium supplemented with 0.5 mg/ml Neu5Ac or Neu5Gc 

as the sole carbon source. Growth was then measured by the incubated plate shaker. 
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Figure 6.8: The effect of different deletions in E. coli BW25113 on growth on Neu5Gc. A) Growth of 
E. coli BW25113 with kanamycin cassette insertions in place of ytfQ (circles) and glcE (triangles) on 
0.5 mg/ml Neu5Ac (blue) and Neu5Gc (red). B) Growth of E. coli BW25113 with kanamycin cassette 
insertions in place of ytfQ (black) and yhcH (white) on 0.5 mg/ml Neu5Ac (circles) and Neu5Gc 
(triangles).  

A) 

B) 
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Growth of the control and yhcH deletion strains on Neu5Ac and Neu5Gc is shown in 

(Figure 6.8b). As can be seen, the yhcH deletion strain can grow on both Neu5Gc and 

Neu5Ac, demonstrating that this gene is non-essential for catabolism of these sialic acids. 

This is not unexpected given the structural similarity between these two compounds and 

that NanA has been shown to process both of these (Comb & Roseman, 1960).  

 

 

6.3.2 The catabolism of KDN requires nanA  

The examination of the sialometabolic pathway implies that KDN would require only the 

first enzyme of the nan genes, NanA (Figure 6.9ab). The lyase would remove pyruvate 

from KDN leaving D-mannose (Man), which would then enter mannose degradation via 

Mannofructokinase, MaK (Kornberg et al., 2000). 

 

As previously, strains of E. coli BW25113 containing sialometabolic enzyme deletions 

were grown in M9 minimal medium 0.4% glycerol before being harvested, washed and 

inoculated into M9 minimal medium with 0.5 mg/ml KDN as the sole carbon source. To 

investigate the effect of induction, this was repeated but before inoculation into wells of 

the plate, the cells were incubated for four hours in M9 minimal medium 1 mg/ml 

Neu5Ac. The growth of the deletion strains under both of these conditions was measured 

by the incubated plate shaker every 30 minutes at 35 °C with shaking at 250 rpm.  

 

Growth of the deletion strains on KDN reveals that nanA is essential, while nagA and 

nagB are not (Figure 6.9c). In vitro, NanA releases pyruvate from KDN (Judith 

Hawkhead, personal communication). As expected, nanK and nanE are non-essential but, 

unexpectedly, their deletion causes a very long delay in growth. This delay could have 

been due to poor induction of nan operon by KDN and its downstream products. To 

examine this, the deletion strains were grown under the same conditions except for a 4-

hour incubation with Neu5Ac before inoculation into the plate. Figure 6.9d shows the 

growth of these pre-induced cells. Again, nanA is essential; nagA and nagB are 

nonessential for growth, but these strains do not experience the reduction in lag time seen 

in the control deletion strain (ytfQ). Pre-induction of the nanK and nanE deletions strains 
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Figure 6.9: The effects of deletions in the sialometabolic pathway on growth of E. coli on KDN. A) 
The sialiometabolic pathway of E. coli. ManNAc, N-acetyl-D-mannosamine. B) The expected 
catabolic pathway taken by KDN in E. coli. Man, D-mannose; maK, mannofructokinase; M6P, D-
mannose-6-phosphate; G6P, D-glucose-6-phosphate; manA, M6P isomerase. G6P is transparent since 
this reaction has not been confirmed, just that M6P can interact with NanE to inhibit ManNAc6P-
GluNAc6P epimerisation (Larrion et al., 2007). C) Growth on 0.5 mg/ml KDN of E. coli BW25113 
with kanamycin cassette insertions in place of nanA (empty diamonds), nanK (red squares), nanE (red 
up triangles), nagA (empty down triangles), nagB (empty circles) and yjhS (black circles). D) Growth 
of the same strains on 0.5 mg/ml KDN after four hours incubation with 1 mg/ml Neu5Ac. Symbols are 
the same except for yjhS deletion (black circles) are also shown without pre-induction (grey circles).  

C) D) 

A) B) 
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causes a decrease in the delay, which is much more pronounced for the nanK deletion.  

 

It would appear that nanK and nanE are non-essential for growth on KDN, but are able to 

process the KDN products down stream of NanA to accelerate, or avoid an inhibition of, 

growth. The interaction of NanK and NanE with D-mannose and D-mannose-6-phosphate 

(M6P), respectively have been shown in vitro and so this could potentially be occurring 

in vivo (Ferrero et al., 2007, Larion et al., 2007).  

 

With pre-induction by incubation with Neu5Ac, this delay is diminished but still present, 

suggesting that these enzymes are useful in processing KDN. Assuming that the 

incubation with Neu5Ac has resulted in full induction of the nan operon, it could be that 

NanK is providing an initial pathway to D-mannose-6-phosphate from D-mannose and 

that NanE may process D-mannose-6-phosphate to Glucose-6-phosphate (G6P) before the 

intracellular concentration becomes inhibitory. However, induction for the operon may 

not be full under these conditions, depending on which of Neu5Ac, N-acetyl-D-

mannosamine and N-acetyl-D-mannosamine-6-phosphate are the true nan inducers. Both 

deletion strains experience a Neu5Ac-dependent reduction in the lag time, which, 

following this argument, supports that either Neu5Ac or the first nan product, N-acetyl-D-

mannosamine, is the nan inducer. However, it has previously been suggested that these 

are not the true inducers and so this long lag phase could be caused by the slow 

production of an unknown inducer further downstream.  

Alternatively, the poor growth of these deletion strains could be due to a detrimental 

effect of the kanamycin cassette on the down stream genes in the operon. This would 

implicate the final nan gene, yhcH, in the utilisation of KDN.  

 

 

6.3  Summary  

This section has focussed on the binding, transport and ultimately the catabolism of the 

three different sialic acids Neu5Ac, Neu5Gc and KDN. Firstly, the binding of these was 

investigated using the existent mutant library (Table 6.1). From this followed the 

examination of the water environment around the ligand N-acetyl group using 
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thermodynamic and crystallographic methods (Figure 6.3). Secondly, sialic acid 

transporters from three different transporter families (MFS, SSS and TRAP-T) were 

shown to transport the different sialic acids and restore growth to E. coli BW25113 

ΔnanT (Table 6.5). Finally, the catabolism of these sialic acids was investigated using 

deletions in the sialometabolic pathway of E. coli BW25113. These showed that the N-

acetyl and N-glycolyl containing Neu5Ac and Neu5Gc were catabolised by the full 

sialometabolic pathway, whereas the de-aminated analogue KDN required only the first 

nan gene with the kanamycin cassette insertions at nanK and nanE causing a very long, 

induction-sensitive lag phase (Figures 6.7 and 6.9).  
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Chapter Seven 
 
 
 
 
 

Discussion 
 



 205

This discussion chapter is split into three main themes. The first covers sialic acid 

binding by SiaP, while the second discusses the transport of sialic acid by the whole 

transporter in the context of both the binding site and surface mutations. The third section 

includes the growth of E. coli on the various sialic acids that were available and their 

transport by different transporters.  

 

7.1  The binding of sialic acid by SiaP is sensitive to conditions and mutation  

During the course of this project, the binding site of SiaP was investigated using a wide 

variety of techniques. These ranged from the determination of the thermodynamics of 

binding different ligands to the contribution of individual amino acid residues in the 

binding of the ligand and transport in the intact transport complex. Using a titration of the 

protein’s intrinsic fluorescence, it was confirmed that SiaP binds Neu5Ac with a Kd value 

of 0.12 ± 0.02 μM in 50 mM Tris/HCl pH 8.0 at 37 °C.  

 

7.1.1 Can SiaP function without domain closure?  

Co-ordination of the carboxylate group by an arginine residue is a common method of 

sialic acid binding and the DctP family SBPs contain a totally conserved arginine residue 

that is involved in organic acid carboxylate binding. The protein crystal structure of 

Neu5Ac-bound SiaP showed three residues involved in ligand carboxylate stabilisation: 

Arg-127, Arg-147 and Asn-187. Arg-147 corresponds to the totally conserved arginine 

residue and forms a bipartite salt bridge with the ligand carboxylate group (Figure 7.1a). 

These positions were mutated to the amino acids shown in Table 3.1. It was found that 

growth was allowed at a sialic acid concentration as low as 650 μM (Section 3.7), while 

no binding could be detected in vitro at Neu5Ac concentrations up to 3 mM in the siaP-

His6 background (Table 3.2) and 5 mM in the reporter background (Table 3.3). This 

apparent contradiction was investigated at length during this work.  

 

No interaction with Neu5Ac could be detected in vitro for any of these mutants except for 

the most conservative change to Arg-127 (to lysine), which gave a Kd value of about 1 

mM (Table 3.2). Using the ligand binding reporter variant (siaP-His6:F170W) as 
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Figure 7.1: Representation of all of the targets for mutation within the binding site of SiaP, based on 

3B50.pdb (Johnston et al., 2008). The ligand and the amino acids of interest are shown as atom 

coloured cyclinders; hydrogen bonds are shown as dashed black lines. A) Amino acid residues that 

form direct electrostatic interactions with the Neu5Ac ligand. B) Amino acid residues within the 

binding site that do not form electrostatic interactions with the ligand. Other binding site residues are 

shown a atom coloured lines for clarity.  
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background, this R127K mutant gave a Kd value of 1.5 mM, while no interaction with 

Neu5Ac could be detected for any other mutant except for N187A, which gave a Kd value 

of just 244 ± 8 μM. This surprising result could be due to a beneficial interaction between 

these two close positions (< 4 Å) or the reporter variant revealing the previously 

undetectable fluorescence signal change, as intended. This insertion of tryptophan 

residues to generate reporter variants has been used previously in studies of ligand 

binding systems such as calmodulin and the nucleotide binding site of F1-ATPase 

(Kilhoffer et al., 1992, Weber et al., 1998).  

 

The Arg-147 mutants were investigated further for sialic acid binding using a variety of 

different methods including the recovery of bound 14C-Neu5Ac, ITC, gel shift assays and 

thermal denaturation. From these, no interaction between sialic acid and the mutant 

proteins could be detected. All of the methods used are based on the closure of the 

domains of the SBP and so it was concluded that this was not occurring, due to either a 

disruption of the closing mechanism or that the Kd for sialic acid was significantly above 

the attainable sialic acid concentrations. However, it has been shown that maltose binding 

protein binds reduced, oxidised and cyclic maltodextrins without the need for domain 

closure (Hall, Ganesan et al. 1997; Hall, Thorgeirsson et al. 1997). The extent of closure 

could be investigated by paramagnetic relaxation enhancement (PRE) NMR with labelled 

cysteine residues at positions away from the binding cleft. The closing mechanism could 

have been disrupted by a disturbance of a ‘trigger’ residue in the binding site that is used 

to detect the presence of the ligand and promote the closure of the domains (Sharff et al., 

1992). In SiaP, this was previously proposed to be the Arg-127 residue as this is located 

in the hinge region and comes into contact with the ligand (Muller et al., 2006); this 

could be investigated further using by introducing the R127A mutation in the in vivo 

system to examine its phenotype compared to those of the Arg-147 mutants.  

 

 

At this point, it is worth reiterating the failure of hydrophobic interaction chromatography 

to separate SiaP:R147A and SiaP:R147K (Figure 3.2) and the differences in mobility on 

native PAGE (Figure 3.15). The retention of the proteins by the HIC column is due to an 
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improved interaction with the matrix, which could be due to a greater hydrophobic 

surface being exposed in these mutant proteins, that is, slight unfolding.  

The mobility on native PAGE also varies between the mutants. The hexahistidine tag has 

no effect on the migration of the native protein, while SiaP:R147E, SiaP-His6:R147A and 

SiaP-His6:R147K show a slight retardation, probably due to a slight increase in size or 

overall charge. This difference is slightly less in the case of SiaP:R147E, which purified 

normally by HIC. However, the combination of the hexahistidine tag and the R147E 

mutation causes a large increase in electrophoretic mobility. The explanation for these 

results is not clear at this point, but the nature of the open conformations of these mutant 

proteins may hold clues to this.  

 

To investigate the apparent absence of domain closure, transport by the Arg-147 mutants 

was investigated using the in vivo assay. This transport-positive phenotype was 

confirmed independently via an in vivo uptake assay of 14C-Neu5Ac by E. coli BW25113 

ΔnanT over a similar time course as the in vitro uptake assay in proteoliposomes. These 

showed the accumulation of 14C-Neu5Ac in the same pattern as the in vivo growth 

phenotype (Dr. Emmanuel Severi, personal communication).  

The interaction of open conformation SiaP with SiaQM has been shown previously, 

where an excess of unliganded SiaP can catalyse the reverse transport of 14C-Neu5Ac 

from loaded SiaQM-proteoliposomes (Mulligan et al., 2009). This would suggest that 

these mutants might bind the ligand with one domain, as in the initial binding of maltose 

by MalE (Spurlino et al., 1991), or are fulfilling a mechanistic role as a scaffold, 

generating a transport-competent complex in which ligand binding by the SBP is not 

critical.  

 

To determine if these mutants were capable of binding sialic acid and undergoing domain 

closure, the protein crystal structures were determined in the presence of a high 

concentration of sialic acid (Marcus Fischer, YSBL). All three were found in the closed, 

ligand-bound conformation. From this, it is likely that these apparently transport-

competent mutants could be supplying Neu5Ac via the small, transient population of 

closed, ligand-bound complexes that occur in an unsaturated equilibrium. This could be 
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investigated by PRE using the same methods as Bermejo et al. and Tang et al. (2007). 

This also shows that the totally conserved arginine residue is critical only for high affinity 

ligand binding, and is not mechanistically essential for domain closure.  

 

 

7.1.2  The sialic acid binding affinity of SiaP is sensitive to conditions and mutation 

of the binding site  

Throughout the course of this work, fifteen mutations have been made at positions around 

the ligand binding site (Figure 7.1). Mutations of Arg-127, Arg-147 and Asn-187 have 

been investigated for ligand binding using both the His6-tagged native protein and the 

reporter variant as backgrounds to the mutation (Sections 3.5 and 3.7). All of these have 

shown undetectable or extremely low affinity (approximately 9000-fold decrease or 

greater) for Neu5Ac (except for SiaP-His6:F170W;N187A at 244 ± 8 μM). In Section 

4.3.1, four mutations were targeted to positions around the ligand binding site that did not 

form direct interactions with the bound Neu5Ac (Figure 7.1b). These were all found to 

cause a decrease in the affinity for the ligand by between 5 – 900-fold.  

 

In Section 4.3.1, it was hoped that the SiaP-ligand interactions were a compromise 

between binding and eventual release into the transporter, so that, for in vitro 

applications, the affinity could be increased at the expense of ligand release. However, 

the mutations that were introduced, even if they formed the intended interactions at all, 

have actually disturbed the binding of the ligand, causing a decrease in affinity of 5–900-

fold. The most rigorously investigated of these was the Ala-11-Asn mutation in Section 

6.1. The protein crystal structure of this (Figure 7.2) shows that, in fact, the mutated 

residue forms no direct interactions with the ligand, but instead displaces a secondary 

water molecule and alters the co-ordination of two nearby water molecules from the shell 

around the ligand. Such detrimental effects as this would suggest that the binding site and 

its associated water molecules form very specific, but also very sensitive, interactions 

with sialic acid.  
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Figure 7.2: Representation of the ligand binding site from the crystal structures of (A) SiaP-His6 and (B) 

SiaP-His6:A11N bound to Neu5Ac. Neu5Ac, Arg-147 and position 11 are shown as atom-colour cylinders, 

nearby residues as atom-colour lines and water molecules red spheres. In the SiaP-His6:A11N structure (B) 

the corresponding water molecules and ligand from the structure of SiaP-His6 (A) are shown as red crosses 

and black lines, respectively. Hydrogen bonds around the small network and Arg-147 are shown as dashed, 

grey lines.  

B) A) 
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The sensitivity of sialic acid binding by SiaP was also found during the investigation of 

the biophysical properties of the protein. The sensitivity to ethanol is not unexpected, 

since this organic solvent disturbs the secondary structure of proteins by promoting the 

formation of α-helical content (Section 4.1.1) (Buhrman et al., 2003, Deshpande et al., 

2005, Knubovets et al., 1999). During the examination of the pH-dependence of ligand 

binding, a small change in affinity was noted between pH 7 and 7.5. This could not be 

attributed to a change in the protonation state of any component of the system and so it is 

likely that the change in affinity is due to the sensitivity of ligand binding to the ionic 

strength of the buffer. The temperature sensitivity (Figure 4.4a) is also not unexpected for 

the enthalpically-driven ligand binding event in a binding protein that undergoes a large 

conformational change to a closed form that is stabilised by weak bonds between the 

domain-domain and protein-ligand interfaces and the release of large numbers of water 

molecules from the protein and the ligand.  

 

Great temperature sensitivity would be expected of all DctP-type SBPs, since all of the 

known substrates are small, hydrophilic molecules, of which sialic acid is the largest. 

Indeed, it was odd that SiaP had previously been reported to bind to the even larger, 

conjugated sialic acid, sialyllactose, with a high affinity (Muller et al., 2006). In Section 

4.2.3, this was refuted and it is now clear that SiaP cannot bind to sialic acids that are 

modified or conjugated at the reducing sugar terminus (C2-OH). An examination of the 

protein crystal structure does support this, since these modifications at the anomeric C2 

position would prevent the co-ordination of the ligand carboxylate by the relocation of 

the carboxylate group to the α-position and the presence of the modification at the β 

position (Figure 7.3).  

 

This monomeric ligand specificity might be expected of the DctP family, in contrast to 

other SBPs such as MalE, which can bind to ligands of various lengths from maltose 

(glucose-1,4-glucose) up to amylose (glucose oligomer) and even cyclodextrins (cyclic 

glucose oligomers) (Ferenci, 1980). The ability of MalE to bind longer chain ligands 

means that the interactions made on binding can accept the modifications to the reducing 

hydroxyl of the sugar ring. In the case of sialic acid, modification of the reducing 
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Figure 7.3: Conjugated sialic acids could not be bound by SiaP. A) The structures of the α- and 

β-anomers of Neu5Ac and sialyllactose, where the carboxylate group is in the β-position. B) The 

β-Neu5Ac occupied binding site of SiaP. The ligand and the co-ordinating residues are shown as 

atom coloured cylinders with hydrogen bonds as dashed lines.  
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terminus disturbs the environment around the carboxylate group and can reposition it to 

the α-anomer (Figure 7.3).  

 

 

7.2  The transport of sialic acid by SiaPQM is dependent upon ligand binding by 

SiaP and the correct interaction between the SiaP and SiaQM  

In Section 4.3.1, a group of ligand binding site mutants was developed that were intended 

to increase the affinity for Neu5Ac by introducing more interactions with the bound 

ligand (Figure 7.1b). Unfortunately, all of these caused a decrease in affinity, but did 

result in a library of binding site mutants with decreasing affinity for Neu5Ac, down to 

the 100 μM range. Since these mutations were all within the binding site of the protein, 

they could be used to investigate the effect of decreasing affinity on transport with out 

directly affecting the interaction between SiaP and SiaQM.  

 

Unsurprisingly, it was found that decreasing affinity caused a decrease in the rate of 

transport at 5 μM ligand (Figure 5.4). Using the example of SiaP-His6:A66M mutant, 

near maximal uptake could be restored by saturation of the binding protein using a sialic 

acid concentration ~10-times the Kd value. This demonstrates that the rate of uptake is 

dependent upon the ligand occupancy of the binding protein.  

 

In Section 4.3.2, a group of mutations on the surface of SiaP was developed that were 

intended to decrease the Kd value of the protein for the ligand by stabilising the closed 

conformation of the protein. All but one of these (N150D) caused a reduction in the 

affinity of the protein for sialic acid. The in vitro uptake assay was used to investigate the 

effect of several of these mutations on the interaction with SiaQM (Section 5.4.1). In this 

group, the reduced transport of the Q72E;A152K double mutant was shown to be caused 

by the decreased affinity for Neu5Ac, while N150D and S15K;A195D abolished and 

permitted uptake, respectively (Figures 5.5 and ND uptake).  

 

The S15K;A195D double mutant catalysed-uptake was indistinguishable from the 

control, despite the saturation state of this mutant (Kd 9 ± 2 μM). Previous findings 
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suggested that a reaction concentration of 90 μM Neu5Ac should have been needed to 

reach maximal uptake, given its Kd value. This surprising result of an unsaturated binding 

protein (approximately 35% occupency) catalysing a normal uptake rate could be due to 

either of two different methods; a general scheme for transport is proposed in Figure 7.4 

to clarify the effects of these, and further, mutations on transport.  

The first method could be that these mutations have improved the duration or stability of 

the interaction between the binding protein and SiaQM, which would alter the association 

or dissociation of Step B in the scheme in Figure 7.4. This could increase the apparent 

concentration in proximity to the membrane component by maintaining the interaction 

between the two components throughout the transport cycle. This could be a sustained 

association, giving a similar effect as transporters with SBP fusions (van der Heide & 

Poolman, 2002), but would require the substrate to be able enter the binding protein. 

Alternatively, the interaction of a single domain could have been improved, allowing the 

SBP to open while associated to the permase, as in the S. typhimurium histidine ABC 

transporter (Ames et al., 1996). To examine this, the strength of the interaction between 

this mutant SBP and SiaQM could be determined by surface plasmon resonance (SPR) or 

crosslinking between the two components.  

The second could be that this double mutant has destabilised the closed conformation of 

SiaP, promoting the open conformation. The Kd value is made up of the on- (kon) and off-

rates (koff) of the equilibrium shown as Step A in Figure 7.4. A destabilised closed 

conformation would increase the off-rate, that is, the reverse of Step A, resulting in a 

lower Kd value without affecting the on-rate. This could be determined by stopped-flow 

spectroscopy to investigate the on- and off-rates.  

 

In the protein crystal structure of Neu5Ac-bound SiaP, the loop containing Phe-170 has 

moved relative to the rest of the domain compared to the open conformation of SiaP and 

this Phe-170 forms a hydrophobic interaction with the ligand. Investigation of this 

residue has suggested that this position acts as a lid for the binding site and also has a role 

in transport. When truncated to alanine, the ligand affinity decreases ~3000-fold and 

transport in vitro is undetectable (Table 3.2 and Figure 5.3). When replaced by polar 



Figure 7.4: The proposed sialic acid transport scheme of SiaPQM. A) SiaP exists in an 

equilibrium between the open and closed, ligand-bound forms. B) Closed, ligand-bound SiaP and 

at least two Na+ ions associate with SiaQM. C) The complex adopts the periplasm-open 

conformation and the substrate moves part way through the membrane. D) The complex resets to 

the cytoplasm-open conformation. E) SiaP is ligand-free and could still be associated with 

SiaQM in an open, closed or partially-open conformation. At this point, ligand-free SiaP, the 

substrate and the Na+ ions dissociate from the complex in an unknown order.  
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aromatic groups, the affinity is reduced ~10-fold and transport is maintained. Only the 

phenylalanine ring at this position combines high affinity binding with transport activity. 

The reduced ability of the tryptophan mutant to accumulate 14C-Neu5Ac to high levels 

while maintaining a similar initial rate could be due to the increased size of this residue 

disturbing its role as a gate in the translocation channel or in the regulation of the 

transport cycle in some way (Step D in Figure 7.4). It seems less likely that this effect is 

due to a disturbance of the SBP domain closure or the reduced affinity for the ligand, 

since the mutant SBP should be saturated and the initial rate of uptake was identical to 

SiaP-His6. Aromatic residues have been found to play key roles in secondary active 

transport, where they help form a transport-intermediate occluded state by forming part 

of periplasmic and cytoplasmic gates, for example LeuT and vSGLT, which use 

phenylalanine and tyrosine residues for this purpose (Faham et al., 2008, Yamashita et 

al., 2005).  

 

In the group of surface mutations developed in Section 4.3.2, an Asn-150-Asp point 

mutation was made that was intended to form an aspartate-arginine pair (Table 4.4). In 

contrast to all other mutations made in the course of this project, this mutation did not 

have a deleterious effect on the affinity for Neu5Ac, despite its proximity to the 

apparently sensitive Ala-151 residue (Figure 4.11b). It was found that this N150D 

mutation abolished transport of Neu5Ac both in vitro (Figure 5.6) and in vivo (Figure 

5.8). However, this could be restored in vivo by the expression in trans of siaP-His6 

(Figure 5.10) and was shown to compete with an equal concentration of SiaP-His6 in 

vitro (Figure 5.9). This would indicate that this mutant is able to interact with SiaQM in a 

transient, non-productive manner and so is blocking Step C in the proposed transport 

scheme (Figure 7.4). ITC analysis of the ligand binding event revealed an increase in 

enthalpy and entropy between Neu5Ac-binding by SiaP-His6 and SiaP-His6:N150D 

(Table 5.1). This could be due to the formation of hydrogen bonds with other residues or 

more likely a component of the bulk solvent, such as transient interactions with Na+ ions.  
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From an examination of the protein crystal structure, Asn-150 appears to form a part of a 

hydrogen-bonded network with Asp-48, Arg-50 and Arg-70, shown in Figure 7.5. The 

extreme effect of this mutation would suggest that this position is critical for substrate 

transport and, although the precise mechanism is unclear at this point, it would appear to 

be interrupting Step C in the transport scheme (Figure 7.4). It could be that this is near to 

or forms part of the SiaPQM substrate translocation channel and so interferes with the 

passage of the substrate. This could also be a part of a ligand-sensing mechanism or a 

part of the opening-signal regulating the transport cycle. It is also worth mentioning that 

in many protein crystal structures of SiaP, it has been noted that there is a small, 

unidentifiable electron density connected to Asn-150 that is not present in the Asp-150 

structure (Marcus Fischer, personal communication). If this unknown density is not an 

artefact, it could be that this associated structure is critical to the transport of sialic acid 

by SiaPQM.  

 

The structure of the N150D mutant showed that there could be two distinct positions of 

the Asp-150. The first population of these is an identical orientation to Asn-150 in the 

Neu5Ac-bound SiaP structure. The second population comprises about 60% of the total 

and is oriented away from the network and extends outwards, away from the protein. This 

could fit with the increase in enthalpy and entropy since this exposed side chain could 

interact with more water molecules.  

The extended side chain orientation of the Asp-150 could be similar to the structure of a 

dominant-negative MalE mutant that was determined by Shilton et al. (1996), where a 

W230R mutation results in this residue projecting from the surface into a region of MalE 

known to be critical for the interaction with MalFGK2. However, this is not truly 

analogous, since Trp-230 is a binding site residue and the W230R mutant causes a large 

decrease in ligand affinity. The protein crystal structure shows that this mutated residue 

interferes with the previously-determined protein-protein interaction region that is away 

from the Trp-230 position.  
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Figure 7.5: Representation of the residues involved in the Arg-50 – Asn-150 The hydrogen bonded network 

extending from the bound Neu5Ac (cyan carbon atoms) to the surface of SiaP (partial surface representation). 

The residues involved in the network from domain 1 are shown with green carbon atoms, while Asn-150 from 

domain 2 is shown with purple carbon atoms. Arg-127, Arg-147 and Asn-187 are shown in grey as a reference 

and a ribbon representation of SiaP is shown in green.  
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This N150D mutation has not explained the exact role of the Asn-150 residue in the 

transport cycle. This could be investigated by replacing Asn-150 with alanine to monitor 

the effect of the side chain on the transport of sialic acid. It would also be beneficial to 

investigate the remaining residues in the proposed network with such mutations as Arg-

50 and Arg-70 to alanine, aspartate or lysine and Asp-48 and Asp-49 to alanine or 

asparagine. It would also be possible to demonstrate a physical interaction between the 

components of the transporter by attempting to cross-link SiaP:N150C and SiaQM with a 

hetero-bifunctional cross-liking reagent.  

In fact, this has recently been achieved and has demonstrated a direct interaction between 

this SBP and the membrane domains (C. Mulligan, personal communication). This assay 

could now be used to determine the protein-protein interactions with the previous 

mutations from this work. It would be important to investigate the association of the Arg-

147 and Phe-170 mutants, as well as the SiaP-His6:S15K;A195D double mutant, which 

was suspected of altering this association.  

 

7.3  Utilisation of sialic acids by bacteria  

As discussed in Section 1.6.1, bacteria can use sialic acids as a source of carbon, nitrogen 

and energy. Their transport can be mediated by ABC, secondary active and SBP-

dependent secondary transporters. Once inside the cell, Neu5Ac is catabolised in E. coli 

by the nan and nag operon products to produce fructose-6-phosphate, which enters the 

glycolysis pathway (Figure 1.14).  

 

As stated in Section 6.2, the use of Neu5Ac by E. coli as the sole carbon source has been 

characterised previously, while the use of Neu5Gc had been reported but not 

characterised in any way (Vimr & Troy, 1985) and the use of KDN had not been 

examined in E. coli. It was found that all of these three sialic acids were capable of 

supporting growth (Figure 6.4a). Neu5Ac allowed growth to occur soonest, closely 

followed by KDN and then Neu5Gc. These differences were shown to be due to the 

induction effects of these different sialic acids, since pre-induction with Neu5Ac resulted 

in identical growth for all substrates (Figure 6.4b). Growth on Neu5Gc was found to 

follow the sialometabolic pathway as Neu5Ac, but with release of glycolate instead of 
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acetate by NagA, as expected (Figures 6.7 and 6.8). For growth on KDN, the first nan 

gene, nanA, was the only sialometabolic gene found to be essential for growth (releasing 

pyruvate and D-mannose), while deletion of nanK and nanE were found to cause a long 

lag phase before growth (Figure 6.9).  

 

Unfortunately, the inducer for the nan operon is uncertain due to reports that cast 

suspicion and doubt upon Neu5Ac, ManNAc and ManNAc-6Pi (Johnston et al., 2007, 

Kalivoda et al., 2003), but from the growth of E. coli BW25113 it is clear that Neu5Ac or 

its products are better than KDN or its products, which are better than Neu5Gc or its 

products. This result for KDN is surprising if it is a downstream product that is the 

inducer since, for KDN, this is mannose. Mannose is not normally present in the 

cytoplasm as it is transported via a PTS transporter to give mannose-6-phosphate 

(Man6P) and if present would be acted upon by a promiscuous kinase activity to give 

Man6P. With the much longer lag phase in Neu5Gc-growth, it would seem that the 

presence of the extra hydroxyl group is detrimental to intracellular Neu5Gc-induction and 

so binding of this involves accurate recognition of the C5 position, but this is not critical 

for the enzymatic action of the nan and nag gene products.  

 

The nanK and nanE-deletion effects on KDN-dependent growth would be due to their 

capacity to interact with mannose and Man6P, respectively, producing Man6P and 

possibly glucose-6-phosphate (Figure 6.9) (Ferrero et al., 2007, Larion et al., 2007). The 

effects of these enzymes would be to reduce the growth-inhibition effects of high 

intracellular concentrations of mannose and Man6P. The reduction but not avoidance of 

this lag phase following pre-induction could be due to poorer expression or induction of 

the remaining nan genes from the deletion strains or that NanK and NanE are playing an 

important role under these conditions. This would suggest that NanK can supplement 

promiscuous hexose kinase activity and NanE reduces the inhibitory effect of Man6P 

build up, possibly by producing glucose-6-phosphate that would enter the pentose 

phosphate pathway.  
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Pre-induction with Neu5Ac causes a reduction in the lag time experienced by both of 

these deletion strains, presumably since Neu5Ac or ManNAc are the inducers. Combined 

with the growth of E. coli BW25113 on KDN, above, it would seem that sialic acids are 

the nan inducers.  

To investigate these, the effect of complete induction could be investigated using a 

deletion of the nan regulator, nanR. This would require the construction of a series of 

double deletions by bacteriophage P1 transduction of nanR::kan into a clean deletion 

(excision of the kanamycin cassette) of each of the sialometabolic genes.  

 

An alternative explanation for the growth defect was that the presence of the kanamycin 

cassette had a detrimental effect on the expression of yhcH, the final gene in the nan 

operon. This could be investigated by examining the growth of E. coli BW25113 

yhcH::kan or by using a clean deletion of nanK and nanE, so removing the potential 

polar effects of this cassette.  

 

 

The sialic acid transporters NanT (MFS), STM1128 (SSS) and SiaPQM (TRAP-T) are 

from three different families of secondary transporters; the major difference between 

these is that only SiaPQM is SBP-dependent. Like SiaPQM, STM1128 is sodium ion 

gradient-driven, whereas NanT is proton-driven. All of these transporters restored growth 

on each of the three different sialic acids at different rates (Table 6.5). A clear difference 

can be seen with SiaPQM, where growth is consistently the slowest. This is likely due to 

the required association between the membrane protein and the binding protein. The rate 

of growth allowed by STM1128 is very similar for each carbon source, while NanT 

allowed the fastest growth on Neu5Gc rather than Neu5Ac. This would seem to indicate 

that there are differences in the ligand binding mechanism of these two proteins, where 

there are presumably differences in the co-ordination of the ligand N-acetyl group where 

all of these transporters are sensitive to its absence and NanT is more accepting of its 

increase in size. How this would relate structurally to the N-acetyl group co-ordination 

mechanism by SiaP cannot be determined at this point.  
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That these very different transporters from different organisms can transport these 

different sialic acid analogues is an important finding with widespread implications. The 

capability to transport these three different sialic acids suggests that they can all be used 

by the source bacteria, E. coli, H. influenzae and S. typhimuriumi. These pathogens all 

contain the nan genes, nanA, nanK and nanE, which can catabolise these sialic acids. It 

has recently been shown that another nan gene, nanS (yjhS), can metabolise 9-O-acetyl-

N-acetylneuraminic acid to Neu5Ac (Steenbergen et al., 2009). In their examination of 

nearly 2000 bacterial genomes, Almagro-Moreno & Boyd (2009) found that the nan 

genes were mostly restricted to pathogenic and commensal γ-proteobacteria, 

Fusobacterium and Firmicutes, and they demonstrated the ability to utilise Neu5Ac by 

several Salmonella, Vibrio and Yersinia species. These results start to suggest that nan-

containing species, which are mostly pathogens, could be exposed to and using a wide 

variety of sialic acids.  
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