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ABSTRACT 

This research investigates the compositional homogeneity of potash-lime- 

silica glasses from the 12th-17th centuries in Northern Europe, and the significance of 

this with respect to compositional studies of archaeological glasses. The variables in 

the glass making process that influence the formation of a homogeneous glass are 
discussed, and investigated using laboratory replication of beech and bracken ash 

glasses. The experimental results are compared to archaeological material from glass 

production sites at Blunden's Wood, Knightons, Sidney Wood, and Little Birches in 

England, and Hils in Germany. 

Backscattered scanning electron microscope (SEM) imaging is used to 

qualify the extent of inhomogeneity in both the experimental and archaeological 

samples. It is confirmed that visually homogeneous glasses can contain 

inhomogeneities that are only visible under backscattered SEM imaging. It is seen 

that the size and orientation of inhomogeneities is varied, and specific glass artefact 

types (such as crucible and waste glass) are more prone to inhomogeneity than fully 

formed glass (such as window and vessel glass). Electron microprobe analysis 

(EPMA) is used to quantify the extent of elemental variations present in the 

inhomogeneous archaeological glasses. The results show that a number of elements 

are significantly influenced by inhomogeneity, including those (such as calcium, 

magnesium and sodium) which are commonly used to form compositional groupings 

of medieval glass. 

It is concluded that although a number of variables in the glass making 

process influence the formation of a homogeneous glass, specific variables, such as 

increased furnace temperature and a high alkali concentration in the ash, appear to be 

the dominating factors. The presence of large elemental variations in a number of 

the archaeological glasses analysed confirms that inhomogeneity is a vital 

consideration in compositional studies of this material, and that particular care must 
be exercised when using analytical techniques that require only a small sample size. 
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CHAPTER I 

Introduction 

1.1 Introduction 

The aim of this research is to investigate the presence or absence of 
inhomogeneity in archaeological glasses, and determine what impact this has on 

compositional studies of the material. The archaeological questions frequently asked 

of glass assemblages are mainly focused on provenance, trade, and technology. 

Typological and compositional studies of glasses are both used to answer these types 

of questions. This research focuses on compositional analysis, which has become an 
increasingly common technique in the study of archaeological glass. Compositional 

data is used to group glasses based on similarities in elemental concentrations. These 

groupings are then used to infer meaning on a number of archaeological questions, 

which will be expanded upon in Section 1.4. 

The fundamental assumption behind compositional studies of archaeological 

glass is that the glass analysed is compositionally homogeneous (see Section 1.3). 

However, if inhomogeneities are present in a glass, they will influence its chemical 

characteristics (see Section 1.2). This will affect the reliability of any analysis, and 

therefore significantly influence any interpretations made from the data. 

Homogeneity should therefore be of primary importance to the archaeologist, but it 

is an issue that has received little consideration within the archaeological literature. 

It is for this reason that it is the subject of this research. The main focus of this thesis 

will be on translucent, potash (potassium based) glasses from northern Europe dating 

from the 12`h-17th centuries. The reasons for the choice of this specific glass type, 

period, and location of material will be covered in Section 1.6. However, initially it 

is important to understand what is meant by compositional homogeneity, and this 

will be discussed in Section 1.2. 

1.2 What is Meant by Homogeneity in Glass? 

All glasses can contain defects that are visible to the eye. Glass technologists 

refer to these as visual defects. Definitions of a few of the most common are listed 

below (Shelby 1997: 45): 
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" Bubbles (large gas filled inclusions >0.4mm in diameter) 

" Seed (gas filled inclusions <0.4mm in diameter) 

" Stones (particles of undissolved materials) 

In addition to this a glass may also exhibit phase separation. This occurs 

when areas of less than 0.1 }gym in diameter exist, which differ in composition from 

the rest of the glass (Goodman 1987, Uhlmann and Kolbeck 1976). This would 

make the glass inhomogeneous on a sub-micron level but may not be significant 

when examining glass on a larger scale. The presence of phase separation can be 

viewed as a type of inhomogeneity but will not be considered here. 

The focus of this research is compositional homogeneity. To explain what 

this means it is necessary to look at glass on a microscopic level. Glasses are either 

opaque or translucent. The difference between them can be identified using their 

microstructure. Opaque glasses are generally composed of crystals (which produce 

the colour and opacity) suspended in a glassy matrix (Plate 1: 1). 

Plate 1: 1 Photomicrograph of an opaque 'sealing wax' red glass with cuprite 
crystals in a clear glass matrix 

Opaque glasses have been widely discussed in studies such as Bimson and 
Freestone (1985), Freestone (1987,1993), Freestone and Bimson (1995), Mass et a!. 

(1998), Welham et al. (2000). An example of an opaque `sealing wax' red glass is 

2 



(IIAPTI=. R I INTRODUCTION 

illustrated in Plate 1: 1. The red cuprite crystals have a different composition to the 

surrounding glass and therefore the material is known to be inhomogeneous. It is 

for this reason that opaque glasses will not be considered in this study. Opacity can 

also be produced by the presence of many bubbles in a translucent glass but this will 

not affect microstructure and therefore compositional homogeneity. 

In comparison to opaque glasses, translucent glasses (Plate 1: 2) contain no 

crystals and therefore have no structure. If the seed and bubbles were avoided, it 

could be assumed that an analysis taken at point 'A' would have the same 

composition as one taken at 'B' or 'C'. If this were true the material would be 

homogeneous, a definition of this can be given as: 

`A homogeneous hoch is one 
. 
fier which small samples taken from 

numerous di/j'rent positions have exactly the same chemical 
composition or value of some other pro/)erty. To describe this 
ytrantitutiveli' the values and accuracy of measurements of the 
properh' chosen and also the size of the samples taken must be 

stated. 
(Cable and Rower 1965: 197) 

A. 
.g 

C" Seed 

500pm 

Plate 1: 2 Photomicrograph of a translucent glass with seed 
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What is fundamental to this study is that the glass in Plate 1: 2. may contain 

regions of differing composition that are not visible to the eye. For example, further 

investigation might reveal that points `A', `B' and `C' have different compositions 

and therefore the material would be inhomogeneous. 

Glass technologists refer to regions of inhomogeneity by a number of terms 
including striae, ream, cord and vein (Anon 1961: 192). The presence of 
inhomogeneity in modem industrial glasses can usually be seen as ̀ wavy' lines or as 
differences in colour intensity. These variations are generally relatively easy to 
detect visually on large items such as plate glass (Shelby 1997: 45), but in 

archaeological glasses, regions of inhomogeneity may not be so easy to see. This 

may be due to the small size of the artefact, fragmentation and/or the existence of 

weathering products that obscure the glass surface. 
Inhomogeneity will influence the aesthetics and working properties of a glass, 

influencing such characteristics as refractive index and viscosity (Shelby 1997). It is 

for these reasons that it has been a vital consideration to the modern glassmaker. 

Glass production is a complex and high temperature process, and even using modern 

techniques, inhomogeneity is hard to avoid (Cable 1998). It is possible that in 

antiquity, the glassmaker may have less control over raw materials and the available 

technologies were more limited. It might therefore be assumed that forming a 

homogeneous glass might be harder to achieve. 

In modern glasses the significance of these inhomogeneities usually depends 

on the end use of the glass. A wider tolerance might be expected for window glass 

compared to an optical glass where any differences in composition will cause a 

change in refractory index (Shelby 1997). The potential consequences of 

inhomogeneity have prompted many studies into its measurement and controlling 

mechanisms. Much of this work has been summarised by Cable (1970,1998) and 

has been built on by more recent studies, such as Cable (1996), Cable and Walters 

(1980), Hense (1987a, 1987b) and Joanni et al. (1989). 

In contrast to modern glassmaking, the importance of inhomogeneity to the 

medieval glassmaker is not known. It may have depended on the type, use and/or 

quality of the products that were being produced. For example, it may have been of 
less concern to the English bottle makers than to the producers of high quality 
drinking wares. What is also very probable is that in some cases it will not be 

possible to tell if the glass was intentionally or accidentally homogenous. 
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The reasons why homogeneity is an important issue to the archaeologist will 
now be discussed. 

1.3 The Importance of Homogeneity to the Archaeologist 

It was noted in Section 1.1 that the scientific study of archaeological glasses 
has predominantly focused on compositional analysis. The fundamental principles 
behind all studies that group glasses using similarities in their elemental 

concentrations are: 

1. Inter group homogeneity 

This is homogeneity within groups of glasses made at the same site or 

using the same raw materials and technology. This assumes a consistency 
between raw materials and production technologies. Any differences 

arising can therefore be ascribed to the use of different raw materials. 

2. Intra sample homogeneity (compositional homogeneity) 

This is homogeneity within a particular artefact or fragment to be 

analysed as described in Section 1.1. 

In order to answer archaeological questions using (1), the fundamental 

assumption is that (2) exists. What is important to remember is that if a glass is not 
homogeneous, and the samples are not representative of the whole glass (see Section 

1.1), then the compositional groups obtained may not be meaningful and any 
interpretations made using the data may be flawed (see Sections 1.4 and 9.3). Early 

compositional studies such as Turner (1956d: 165T, 1963) and Smith (1969) do 

mention the importance of careful sample selection. They note that weathering and 

corrosion products should be removed or avoided and only homogeneous samples 

should be selected. Whilst obtaining a clean surface for analysis is now a standard 

procedure, homogeneity is given little consideration. This may be because 

translucent glasses have generally been assumed by archaeologists to be 

homogeneous, as demonstrated in the following quote: 
`Glass is usually a very homogeneous material and small flakes are 
generally representative of the chemical composition of the glass 
artefact. ' 

(Verity et al. 1994: 243) 
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However, a small number of studies have noted the presence of 
inhomogeneity. Brill and Moll (1963) discussed the applications of electron beam 

microprobe analysis (EPMA, see Section 1.5) to archaeological glass. They noted 

that this technique was well suited to investigate the presence of concentration 

gradients across cord and straie in ancient glasses. Cox and Ford (1989) documented 

the presence of inhomogeneities in their investigation of the weathering of medieval, 

potash based window glass. The main focus of their work was on how the 

inhomogeneities influenced the formation of corrosion products on the glass surface. 

However, they also carried out spot analyses using electron probe microanalysis 

(EPMA) but determined that there was no significant compositional difference 

between different localised areas of the uncorroded glass. Giannichedda et al. (2000) 

found that many of the glasses from a medieval glasshouse in the Gargassa Valley, 

northern Italy contained inhomogeneous phases. These were not visible to the eye 

and could only be detected under the scanning electron microscope (SEM). They 

therefore noted that care should be taken when analysing this type of material to 

avoid compositional bias in the results. The size and degree of compositional 

difference of the inhomogeneities compared to the bulk glass is therefore critical, as 

this will affect the choice of analytical technique. This will be discussed in Section 

1.5, but before this, the effect of inhomogeneity on compositional studies of 

archaeological glass will be discussed in Section 1.4. 

1.4 The Effect of Inhomogeneity on Compositional Studies of Glass 

Early compositional studies, such as those by Geilmann and Bruckbaueer 

(1954), Geilmann et al. (1955) and Turner (1956b, 1956c), determined that glasses 

from different periods and geographical areas fell into broad compositional groups. 

A number of these variations could also be ascribed to the use of specific raw 

materials. Major compositional trends were noted, such as the presence of potassium 

based glasses in western medieval Europe, compared to the predominance of sodium 

based glasses elsewhere (Turner 1956b, 1956c). 

Sayre and Smith (1961) carried out a major study of glass representing 

material produced in the Middle East, Africa and Europe from approximately 15`h 

century BC through to the 10th century AD. They formed groups primarily based on 

relatively large scale differences in the magnesium, potassium, manganese, antimony 
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and lead concentrations in their samples (Table 1: 1). These results were then 

correlated with period and location, and the use of different raw materials (Sayre and 

Smith 1967, Smith 1969). For example, in soda-lime-silica glasses, they associated 

low levels of magnesium and potassium with the use of a mineral alkali source, 

whilst increased magnesium and potassium levels indicated the use of marine or 

terrestrial plant ashes (Sayre and Smith 1961). These two classifications are now 

commonly referred to as HMG (high magnesium glass) and LMG (low magnesium 

glass) (Henderson 1985: 275). 

It can be seen from Table 1: 1 that although many of the groups formed by 

Sayre and Smith (1961) have elemental concentrations that overlap, they all contain 

at least one element that is significantly different. For example, the ranges of the 

oxide weight percent values of the `Second millennium BC' and `Early Islamic' 

groups overlap for magnesium, potassium, antimony and lead, but they can be 

differentiated using manganese, which is significantly different for the two groups 

(see Table 1: 1). 

Mean percent concentrations and standard deviation ranges (in 
No. of 

l 
brackets) 

Group samp es 
analysed MgO K20 MnO Sb203 PbO 

Second 3.6 1.13 0.032 0.058 0.0068 

millennium 15 
BC (4.6-2.9) (1.89-0.69) (0.046-0.021) (0.32-0.011) (0.048-0.0010) 

0.86 0.29 0.022 1.01 0.019 
Roman 34 

(1.24-0.60) (0.47-0.17) (0.035-0.014) (1.93-0.53) (0.077-0.0047) 

1.04 0.38 0.41 0.040 0.014 
Antimony 73 

rich (1.47-0.73) (0.63-0.22) (1.60-0.10) (0.089-0.018) (0.057-0.0033) 

4.9 1.45 0.47 0.021 0.0088 
Early 66 

Islamic (6.5-3.6) (2.2-0.94) (1.07-0.21) (0.035-0.012) (0.047-0.0016) 

0.33 0.026 0.022 0.081 36 

Islamic lead 6 
(0.47-0.24) (0.051-0.016) (0.031-0.016) (0.19-0.035) (40-33) 

Table 1: 1 Compositional groupings for ancient glass characterised by Sayre 

and Smith (1961: Table 1) 

In recent years Sayre and Smith's (1961) classifications have been built and 

expanded upon, and the use of compositional analysis as a tool to investigate 

archaeological glass has become increasingly common. As the number of analysed 

7 



CHAPTER 1 INTRODUCTION 

glasses has increased and the sensitivity of analytical techniques has improved (see 

Section 1.5) the compositional differences used to distinguish between groups of 

glasses have reduced. Therefore the presence of inhomogeneity may have an even 

greater affect on any compositional groupings formed. A selection of published 

compositional studies of archaeological glasses from a range of different periods will 

now be discussed in Sections 1.4.1 and 1.4.2. 

1.4.1 Compositional Analyses of Sodium Rich Glasses 

The majority of published compositional data sets of archaeological glasses 

are of samples with a sodium rich composition. It will be seen that a wide range of 

elements and compositional differences are commonly used as grouping tools. 

However, in general the elemental differences used to discriminate between groups 

of glasses with sodium based compositions are significantly smaller than those used 

for potash based glasses (see Section 1.4.2). A number of compositional studies 

illustrating these points will be discussed below. 

The composition of second millennium BC glass from Egypt and the Middle 

East has been investigated by a number of authors (Henderson 2000). Elemental 

data has been used to infer possible sources of raw materials (Sayre and Smith 1974, 

Shortland and Tite 2000) and production centres (Nicholson et al. 1997, Vandiver, 

1983, and Vandiver, et al. 1991). A large compositional study of Egyptian and 

Mesopotamian glass was carried out by Lilyquist et al. (1993) using energy 

dispersive X-ray spectroscopy (EDS, see Section 1.5). Lilyquist et al. (1993) 

analysed a selection of Egyptian, pre-Malkata glasses and compared the data with 

analyses of glass from Malkata and Amama, in Egypt, and Nuzi in Mesopotamia. 

Graphs of the normalised data for the weight percents of Na20 versus CaO, K20 

versus MgO, A1203 and versus Si02 were used to determine differences in the four 

glass types. The difference in composition between cobalt blue and non-cobalt 

containing glasses throughout the total assemblage was also examined. 

Lilyquist et al. (1993: 41) noted that the Nuzi and Egyptian glasses had a 

similar HMG soda-lime-silica composition, consistent with the use of plant ash as an 

alkali source. The mean concentrations of CaO, K20, MgO and Fe203 for the Nuzi 

glasses (which were all non-cobalt glasses) were also similar in composition to the 

pre-Malkata non-cobalt glasses. They noted that all the cobalt containing glasses 
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contained greater than 1.2% A1203, and less than 2% K20, and the majority of the 

Egyptian and Mesopotamian non-cobalt glasses that were analysed contained higher 

levels of both of these elements. Lilyquist et al. (1993: 41) suggested that the 

difference in composition between the cobalt and non-cobalt containing glasses may 

be due to the use of two different recipes. They suggested that these glasses would 

therefore have been produced separately from each other, either within the same 

workshop or from a different production area. However, there are a number of 

cobalt and non-cobalt glasses that have aluminium and potassium concentrations that 

lie close to these cut of points (for example, less than ±0.2%) (Lilyquist et al. 1993: 

57-8). Therefore if inhomogeneity was present that influenced the concentrations of 

these elements even in small amounts, this might account for the apparent differences 

in composition rather than this being the result of a different production area or 

workshop. 

Another relatively large scale compositional investigation of archaeological 

glass has been carried out by Henderson (1979,1982,1987a, 1987b, 1991), and 

Henderson and Warren (1981) on British, Irish and European Iron Age beads. In 

these studies, compositional data was used to establish chemical groupings from 

which it could be inferred whether specific bead classes were made from different 

materials and therefore in specific locations. 

Henderson (1991) investigated beads containing blue soda-lime-silica glass 

from Early Iron Age contexts at Wetwang Slack, North Humberside, and found that 

the cobalt and iron concentrations did correlate with different bead classes (Guido 

1978). He suggested that these elemental differences were related to the original 

cobalt mineral used as a colourant. Therefore different bead types could be 

attributed to different workshops or the use of specific recipes for each bead class if 

made within the same workshop. Henderson (1991) then widened his study to 

include beads from later Iron Age contexts and wider geographical areas including 

Wales, Scotland and the Continent. He concluded that the type of cobalt colourant 

used changed between the third and second centuries BC and correlated with the rise 

in oppida in Europe during same period. The difference between these groups of 

glasses is based on small differences in the levels of cobalt (less than 0. lWt. % CoO) 

and iron (less than 1Wt. % Fe203). 

It can be seen that in this case the elemental differences used to distinguish 

between groups of glasses are small and based on elements linked to colourants in 
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the glass. Although it is not known whether inhomogeneity particularly influences 

specific elements (see Section 8.4), the use of small elemental variations between 

groupings is important to note as these may be significantly influenced by the 

presence of inhomogeneity. 

The evolution of glass technology over the ls` millennium AD has been also 
been investigated using compositional studies, such as those by Hunter and 
Heyworth (1998), Sanderson and Hunter (1980), and Sanderson et al. (1984). These 

studies covered a large number of different vessel types, from different sites and 

periods. Analyses of funnel beaker fragments excavated from Helgö, Sweden; 

Dorestadt, Holland, and Hamwic (Southampton), England, by Hunter and Heyworth 

(1998), and Sanderson et al. (1984) determined that there was a relationship between 

composition and the origin of the samples. The main elements used to distinguish 

between the groups were sodium: (Wt. % Na20: H13.2±2.1, D14.9±1.7, He16.9±2.2); 

magnesium (Wt. % MgO: H0.7±0.3, D0.9±0.4, Hel. 2±0.4); calcium (Wt. % CaO: 

H7.91±1.07, D10.23±2.22, He8.25±0.16); and manganese (Wt. % MnO: H0.49±0.2, 

D0.74±0.17, H 0.93±0.18) (H=Hamwic, D=Dorestadt, He=Helgö) (Hunter and 
Heyworth 1998: Table 6). It can be seen that if the elemental ranges are considered, 
in a number of these elements there is a continuum in the compositions of the 

different groups of glasses. Therefore it is again possible to see that if 

inhomogeneity were present in the glass samples analysed, it would not have to 

cause a large difference in composition before effecting an apparent difference in the 

sample groupings. 

Compositional analysis has also been used to group sodium based glasses 
from later dated sites. Henkes and Henderson (1998) investigated the distribution of 

a variety of spun-stem roemers dating to the 16`h-19`x' centuries excavated from sites 
in the Low Countries. They noted that no fragments of this type of vessel had ever 
been excavated from the major traditional Waldglas roemer production sites in 

Germany. It was noted that the spun-stem roemers were different in colour and stem 
design to the more common Waldglas roemers. EPMA analysis (see Section 1.5) 

was used to determine whether a difference could be observed between the three 

types of spun-stem roemer, and Waldglas roemers. The results showed that the 

spun-stem roemers did contain significantly more sodium (greater than lOWt. % 

Na20) than the Waldglas roemers (less than 5Wt. % Na20). The spun-stem roemer 

composition was therefore characteristic of glass produced in the Low Countries at 
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this time (Henkes and Henderson 1998: 103). In comparison to the analyses of 

earlier dated glass discussed at the beginning of this section, it can be seen that the 

compositional differences used to form these groupings are significantly larger. 

Therefore even if inhomogeneity were present in these samples, it might be less 

likely to cause a significant bias in the results. 

A number of compositional studies of later dated sodium based glasses have 

examined the difference between the composition of Venetian glasses and those 

made in the `fapon de Venise' (Bronk et al. 2000, De Raedt et al. 2000, Pause 2000, 

Veritä 1985). Bronk et al. (2000) used chemical analysis (EPMA and XRF, see 

Section 1.5) to distinguish between the two types produced during the 16`h and 17`h 

centuries. Bronk et al. (2000) compared the compositions of glass from the Lido di 

Venezia, the Rijksmuseum, Amsterdam, and published analyses of comparative 

material. The Lido di Venezia material was well documented as being of Venetian 

provenance. The analyses were compared to published data by plotting a graph of 

CaO/(Na2O+K20+CaO+MgO+P205) against Na20/(Na2O+K20+CaO+MgO+P205). 

Bronk et al. (2000) placed the Lido glasses into two main groups based on 

analyses of `vitrum blanchum' glass (approximately 0.275-0.4 on the CaO axis and 

0.375-0.5 on the Na2O axis) or `cristallo' (approximately 0.125-0.25 on the CaO axis 

and 0.55-0.7 on the Na2O axis) soda ash as a raw material. Cristallo glass was so 

called as it resembled rock crystal and was made from leached soda ash, whilst 

vitrum blanchum glass was not of such high quality and was made with unleached 

soda ash (Veritä 1985). Bronk et al. (2000) suggested that the analyses of two 

glasses that fell in between these two groupings were made from a mixture of the two 

alkali sources. It can again be seen that the elemental differences between these 

different groupings are small, and therefore if inhomogeneity were present it might 

also account for these differences (see Section 9.2). 

Henderson (1998,2000) compared the analyses of 16th and 17th century 

beaker and goblet fragments from Lincoln. The origins of the vessels had been 

suggested using typology to be Italy, the Low Countries, northern and southern 

England. The aim of the analyses was therefore to determine whether a link could be 

established between composition and the suggested vessel sources, and also to infer 

the possible raw materials used in production of these glasses. Henderson (1998: 44) 

formed six main glass groups based on the sodium, potassium, calcium and lead 

contents of the samples analysed. The main soda-lime-silica group also contained 
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four sub groupings (Type III, V, VIII and IX, see Figure 1: 1). He used graphs of 
magnesia against alumina, and soda against alumina to illustrate differences between 

the four different glass types, and these are illustrated in Figure 1: 1 (Henderson 

1998: Figure 7, Henderson 2000: Figure 3.52). 

Henderson (2000) noted that the difference in composition between the four 
types was related to the impurities contained in the raw materials. Elevated alumina 
levels from the sand source, and increased magnesia from a soda based plant ash. 
Combining the results of the compositional analysis with the typology study of the 

vessel fragments Henderson (1998,2000) suggested that Type III were Venetian 

cristallo glasses made from high purity sands and raw materials. He suggested that 

the Type V glass was made in the `fapon de Venise' style in the Low Countries, Type 

VIII glass were English drinking glasses, and Type IX was Flemish. This was 

confirmed by the similarity in composition to the spun-stem roemers discussed by 

Henkes and Henderson (1998) (see above). It can be seen in Figure 1: 1, that 

although there are distinct compositional differences between a number of the 

different groupings, there is a continuum between some groups. Therefore the 

presence of inhomogeneity may cause samples to fall into different groupings (see 

Section 9.2). 

The examples illustrated in this section have shown that a variety of different 

elements are used as grouping tools in sodium based glasses, and that in the majority 

of cases, the differences in elemental concentration used to distinguish between glass 

groupings are relatively small. Therefore the presence of inhomogeneity may be 

more likely to cause a significant bias in the results obtained (see Section 9.4). 

Compositional studies of potash rich `medieval' type glasses will be discussed in 

Section 1.4.2. 
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1.4.2 Compositional Analyses of Potash Rich Glasses 

In comparison to the large number of published analyses of sodium based 

archaeological glasses (see Section 1.4.1), the available information on potash rich 

`medieval' type glasses is small. Many studies of potash rich glasses use ratios of 

elemental concentrations (in particular, sodium, potassium, calcium and magnesium) 

to form groupings that discriminate between different sites and/or time periods. The 

groupings are based on the assumption that raw materials vary with production 

location and time period, and therefore different glass compositions can be linked to 

specific manufacturing locations and dates. For example, Kuisma-Kursula and 

Räisänen (1999), and Kuisma-Kursula et al. (1997) have carried this out on a broad 

scale in their analyses of European medieval glass. Foy (1977), Barrera and Velde 

(1989), Mortimer in Welch (1997), and Marquis et al. (2000) have examined glass 

over smaller geographical areas. These studies used compositional groupings to 

determine whether glasses were made locally or imported, and to ascertain how raw 

materials and technologies in localised areas have evolved over time. 

A number of studies of medieval glasses have also used compositional 

analyses to infer information on possible raw material sources. These include studies 

of German glass by Gerth et al. (1998), Hartmann (1994), and Wedepohl (1997) 

where elemental concentrations and ratios have been related to the use of specific 

plant ashes as alkali sources. As with the sodium based glasses discussed in Section 

1.4.1, the influence of inhomogeneity on the compositional study of medieval glass 

will depend on the compositional tolerances and the specific elements used to form 

groups. A number of published compositional studies of medieval glasses that 

illustrate these points will now be discussed. 

The composition and typology of French glass was investigated by Barrera 

and Velde (1989), who studied over 500 fragments of French blown glass with 

known dates (10th_18`h centuries AD) and geographical locations. They formed 

compositional groupings based on variations in potassium, calcium and sodium 

concentrations. The `sodic' group contained glasses with greater than 6Wt. % Na2O. 

The `calcic' group was based on a CaO+K20 value of 30±lWt. % with a 

CaO/(CaO+K20) ratio of equal to 0.7 or above and a sodium content of less than 

lWt. %. In contrast the `calco-potassic' group contained glasses that contained 

greater than 22 Wt. % CaO+K20, a CaO/(CaO+K20) ratio of 0.4-0.6, and a sodium 

content of greater than lWt. % and less than 4Wt. %. These groupings were then used 
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to correlate glasses from different time periods with different regions of production. 

It can again be seen that the compositional differences used to differentiate between 

these groups of glasses are larger than those frequently used in studies of sodium 

based glasses (see Section 1.4.1). However, the extent to which inhomogeneity may 

influence glass composition is not yet known, and the influence of inhomogeneity on 

this type of study will be discussed further in Section 9.3.1. 

Marquis et al. (2000) investigated the transition in medieval stemmed glass 

tableware from northern and central France during 150' and 16`h centuries. They 

analysed approximately 50 samples using EPMA (see Section 1.5), and categorised 

glasses using the compositional groupings developed by Barrera and Velde (1989) 

described above. However, in addition to the `calcic' and `calco-potassic' groups 

they had two sodium based groups, a `low sodium' group (less than IOWt. % Na20) 

and a `high sodium' group (greater than 1OWt. % Na20). The potential influence of 

inhomogeneity on these groupings will therefore be similar to those seen in Barrera 

and Velde (1989) discussed above. 

Mortimer in Welch (1997) examined glass from the glassmaking site at Little 

Birches, Staffordshire (see Section 7.3.1). The results of SEM-EDX analysis (see 

Section 1.5) determined that the majority of the Little Birches samples exhibited a 

similar chemical composition, with an approximate standard deviation for the group 

of less than ±0.5% for Na2O, MgO, A1203, and P205, and ±1.5 for K20 and CaO. 

She distinguished between glasses from this group and imported cullet by the 

increased levels of lime and lower total alkali (Na2O+K20) concentrations found in 

the latter. Mortimer in Welch (1997: Figure 18) also used a plot of CaO/(CaO+K20) 

against Na2O (as used by (Barrera and Velde 1989), see above) to demonstrate the 

differences in alkali and lime ratios between the Little Birches glass and glass from 

other comparative English medieval glass production sites. Again these groupings 

are broader than those seen in the compositional studies of sodium glasses in Section 

1.4.1. Therefore the influence of inhomogeneity on these types of groupings may not 

be so significant. However, the extent to which inhomogeneity influences glass 

composition is not yet known and this study will be discussed further in Section 

9.3.2. 

Medieval glass production in Germany has been investigated by Gerth et al. 

(1998), Hartmann (1994), and Wedepohl (1993,1997: 247,2000). Wedepohl (1993, 

1997: 247,2000) analysed a large number of fragments of German glass from a wide 
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range of contexts. He has suggested that the transition of German medieval glass 

manufacture can be split into three main stages based on the levels of calcium, 

potassium and sodium in the glass: 

1. Replacement of soda based glass by early woodash (potash based) 

glass at the start of the Carolingian period. 
2. A major period of wood ash glass from 1000-1400AD. 

3. The introduction of woodash-lime glass beginning at approximately 
1300AD. In comparison to wood ash glass, this glass type contains 

reduced potassium and increased calcium levels. 

Although the groups listed above are defined by differences in composition, 
they are based on relatively large compositional differences of several percent or 

more. It may therefore be possible that the presence of inhomogeneity may be less 

likely to have a significant influence on these types of groupings. 
The studies discussed this Section and Section 1.4.1, have only covered a 

small sample of the large number of published compositional studies of 

archaeological glasses. It can be seen that the combination of elements used to form 

groupings is varied and depends on the nature of the glass being investigated and the 

archaeological question being asked. However, compositional studies of medieval 

potash based glasses are predominantly concentrated on the values of potassium, 

calcium, sodium and magnesium. Differences in the concentrations of these 

elements and elemental ratios (particularly for potassium and calcium) are commonly 

used as grouping tools. 

What is important to remember, is that the elemental tolerances used to 

differentiate between groups of archaeological glasses have become progressively 

smaller (see Section 1.4.1). Therefore the presence of inhomogeneities (see Section 

1.2) even on a small scale may have a significant influence on the compositional 

results and therefore introduce bias into any groupings formed. The degree to which 
inhomogeneity will affect the results of compositional analysis will also be 

influenced by the analytical method used to collect the data. This will therefore be 

discussed in Section 1.5. 
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1.5 The Choice of Analytical Technique and the Effects of Inhomogeneity 

The impact of inhomogeneity on compositional analysis will alter depending 

on the technique used to acquire the data. Different analytical methods require 

specific sample sizes and analysis areas, and therefore with respect to homogeneity 

the following issues must be considered: 

1. The possible orientation of inhomogeneities within the sample. 

2. The size of inhomogeneities within the sample. 

3. The size of the sample used for analysis. 
4. The area of the sample selected in (3) that is actually analysed. 
5. The resolution, accuracy and precision of the analytical technique. 

Inhomogeneities tend to form in specific orientations, and are frequently 

found to run in parallel lines that align with the glass surface (Cable 1970: 95, Cable 

and Bower 1965, Cox and Ford 1989). 

Figure 1: 2 is a schematic representation of an inhomogeneous glass where the 

dark and light bands represent regions of different compositions. Lines `A' and ̀ B' 

represent two different directions in which the glass could be sampled. If a section 

of the glass is removed along line `A', this is in the same direction as the 

inhomogeneities run. The surface of the glass sample (Sample A) is therefore less 

likely to contain as many inhomogeneities as Sample B removed along line `B' 

perpendicular to the direction in which the inhomogeneities are aligned. 

Sample A Sample B 

INHOMOGENEOUS GLASS 

Sample removed Sample removed 
parallel to glass perpendicular to 

surface glass surface 

Figure 1: 2 A schematic representation of an inhomogeneous glass illustrating 
how the orientation of the inhomogeneities and of the sample will 
affect the number of inhomogeneities present on the sample surface 
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Sample orientation is only a consideration for analytical methods that 

evaluate the surface of the glass. Techniques that obtain a bulk chemical 

composition using the sample in solution or powdered form will be less affected by 

inhomogeneity orientation if the sample size is greater than the pattern of 

inhomogeneities. 

The effect of altering the sample size removed from an inhomogeneous glass 

is illustrated in Figure 1: 3 (adapted from (Cable and Hakim 1973: Figure 1)). This 

schematic representation shows three inhomogeneous glasses each with different 

sized inhomogeneities (represented by dark and light bands). The red circles 

correspond to the sample area to be removed. 

GLASS A GLASS B GLASS C 

Sample size Sample size Sample size 
much larger than thickness approximately equal to smaller than thickness of 

of inhomogeneities thickness of inhomogeneities Inhomogeneities 

Figure 1: 3 A schematic representation of the effect of sample size in an 
inhomogeneous glass (adapted from (Cable and Hakim 1973: Figure 
1)) 

It can be seen from Figure 1: 3 that to obtain a sample that is representative of 

the bulk glass composition, the sample area should be significantly larger than any 

inhomogeneities present (Glass A). A reduction in sample size will mean that the 

glass is likely not to be representative of the whole material (Glass B), the chances of 

this occurring are increased as the sample size is decreased further (Glass Q. What 

is also important to remember is that the area sampled is not necessarily the same 

size as the area analysed. Although the sample size in Glass A is most likely to 
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remove material that is representative of the whole glass, if the area analysed is much 

smaller than the inhomogeneities present then the data obtained will not be 

representative of the mean composition of the glass (e. g. Glass Q. Therefore it is the 

ratio of the size of the sample area analysed to the size of the inhomogeneities that is 

significant. 

In addition, the presence of inhomogeneities in a sample becomes significant 

only when their compositional variability is larger than the inherent statistical 
deviation in the measured data. The resolution, precision and accuracy of the 

analytical technique must therefore also be considered, as more sensitive methods 

may be more significantly influenced by inhomogeneity. In their compositional 

study of medieval French glasses Barrera and Velde (1989: 102) state that the 

samples were tested for homogeneity by analysing 5 to 10 points over the sample 

area of 4mm2. If the variation in elemental concentration was not more than the 

expected deviation due to the counting statistics of the EPMA the samples were 
deemed to be homogeneous. This method assumes that the sample removed for 

analysis was representative of the whole glass and not subject to the effects of the 

orientation (Figure 1: 2) or size (Figure 1: 3) of any inhomogeneities present. 
However, it should be noted that this would be difficult to quantify. 

In view of the issues discussed above it would appear that to avoid problems 

of inhomogeneity and obtain a mean calculation of composition, analytical 

techniques that use as large a sample as possible and require the sample to be in 

solution or in powder form would be best. However, to the archaeologist, techniques 

that use smaller samples that require less destruction of the artefact are frequently 

necessary. The considerations that are usually made when choosing a method for 

analysis of archaeological glass are, but not necessarily in this order: 

" Sample size. 

" Destruction of the artefact. 

" Accuracy and precision of results. 

" Limits of detection. 

" The elemental suite required. 

" Cost, speed and availability of analysis. 
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Analytical methods used in compositional studies of archaeological glass 
predominantly fall into two main categories: 

a) Techniques that use the visible (or near visible) region of the 

spectrum, such as optical or atomic emission spectroscopy (OES/AES), 

atomic absorption spectroscopy (AAS) and inductively coupled plasma 

emission spectroscopy (ICP-AES). 

b) Techniques that use X-rays, such as energy dispersive X-ray 

fluorescence analysis (XRF), analytical scanning electron microscopy 
(SEM-EDS/WDS), electron probe microanalysis (EPMA) (sometimes 

referred to as `electron microprobe analysis' (EMPA) or a `probe'), and 

particle induced X-ray emission (PIXE) (Henderson 2000: 20, Pollard and 
Heron 1996: 20). 

Early compositional studies such as those by Bezborodov (1957), Geilmann 

et al. (1955), Turner (1956a, 1956c) (see Section 1.3) were predominantly carried out 

using OES or AES. OES provided multi-element analysis but was gradually 

replaced by AAS, which improved accuracy and precision but increased analysis 

times, as only single element analysis was possible and complex sample dissolution 

was required (Hughes et al. 1976). Typical sample sizes required for AAS range 
from 2-10mg (Hughes et al. 1976: 19), whilst Hatcher et al. (1995: 85) suggest 

approximately 25mg of glass. Examples of AAS analyses from a broad range of 
different glass types can be found in Brill (1999a, 1999b). 

More recently AAS has been superseded by ICP-AES and examples of 

studies on Roman glasses using this method can be seen in Baxter et al. (1995), 

Jackson et al. (1991a, 1991b), and Mirti et al. (1993). Although sample dissolution 

is still required, ICP-AES has the advantage of multi-element analysis combined 

with increased accuracy, precision and a larger elemental suite that includes major, 

minor and trace elements (Hatcher et al. 1995, Heyworth et al. 1988). Typical 

sample sizes required for ICP-AES are 100-150mg (Jackson et al. 1991a: 77, Mirti et 

al. 2000: 361). Further developments have led to the introduction of inductively 

coupled plasma mass spectroscopy (ICP-MS) which enables both the chemical 

composition and isotopic ratios of a sample to be obtained. Laser ablation has also 
recently been added to this system (LA-ICP-MS). This highly sensitive method does 
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not require sample dissolution and uses a laser to volatilise a small section 

(approximately 50µm in diameter and depth) from the surface of the sample (Gratuze 

et al. 1993, Gratuze et al. 1997). However, this therefore means that the same point 

cannot be reanalysed (Henderson 2000: 10). 

X-ray based analytical techniques are also widely used in the compositional 

study of archaeological glasses. The major advantages to the archaeologist is that, in 

comparison to the emission/absorption methods described above, X-ray techniques 

can be used for non-destructive testing, whilst enabling analysis to be carried out at 

the micron or sub-micron level (Reed 1996, Veritä and Toninato 1990). Where a 

sample has to be removed for analysis (for example, if the specimen is too large to fit 

in the sample chamber) only millimetre (or less) sized fragments are required, but the 

area required for analysis can be significantly smaller than this (Henderson 1988: 

78). I\ 

Probably the most common techniques used to analyse archaeological glass 

today are XRF, SEM-EDS/WDS and EMPA (see Section 3.2.5). XRF analyses 

generally require a larger analysis area than SEM or EPMA. For example, to obtain 

data to establish compositional groupings in British iron age beads Henderson and 

Warren (1981: 83) carried out XRF analyses using an analysis area of 2mm, whilst 

the analysis area used by Sanderson et al. (1984: 55) to investigate 1s` millennium 

British glass was a 3x4mm ellipse. In contrast to this, Henderson (1988: 79) used 

analysis areas ranging from 65-80µm diameter spots for his EPMA study of mixed 

alkali glasses, and EPMA analyses of French medieval glasses by Barrera and Velde 

(1989: 102) were obtained from analysis areas 20µm in diameter. The penetration 

depth of the electron beam for analytical SEM is approximately 30-50µm 

whilst in EPMA a much smaller layer of material is penetrated (approximately 3- 

5pm) (Henderson 2000: 17). 

Published analyses of archaeological glasses using PIXE are less common 

than those carried out using XRF, SEM or EPMA. This may be due in part to the 

expense and availability of the equipment, but a number of medieval glasses have 

been analysed using this method (Kuisma-Kursula and Räisänen 1999, Kuisma- 

Kursula et al. 1997). PIXE is a very sensitive technique, capable of detecting low 

elemental concentrations. It is capable of analysing similar sample sizes as SEM or 

EPMA, and has a beam penetration of approximately 50µm (Henderson 2000). 
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In addition to the analytical techniques discussed above, neutron activation 
analysis (NAA) should also be mentioned. This technique usually requires a 

powdered sample (approximately 10-20mg (Frana et al. 1987: 72)) that is then 
irradiated, but can be carried out on a whole sample (Hancock et al. 1994). 

Elemental composition is determined by measurement of the speed of radioactive 
decay. The technique is extremely sensitive, accurate and precise and provides 

simultaneous measurement of a number of trace elements. It has been widely used 
for the analysis of archaeological ceramics (Buxeda I Garrig6s et al. 2001, Hughes et 

al. 1991) and other siliceous materials such as faience (Aspinall et al. 1972). NAA 

has also been used for a number of studies of archaeological glasses. These include 

analyses of Bohemian glasses by Frana et al. (1987) and Mastalka and Venclova 

(1987), a provenance study of medieval Bulgarian glasses by Kuleff et al. (1985), 

and analysis of 16`h-17`x' century North American trade beads by Hancock et al. 
(1994). 

In summary it can be seen that with the introduction of new methods of 

analysis sample sizes have decreased whilst accuracy, precision and detection limits 

have increased. What must be remembered is that if the glass is not homogenous the 

use of small sample will increase the possibility of a significant bias in the results. 
The increasing popularity of obtaining compositional data from techniques such as 
SEM and EPMA, which analyse minute areas of glass means that it is imperative that 

the homogeneity of archaeological glasses now be assessed. 

1.6 Research Aims 

The aims of this research can be summarised as follows: 

1. To determine which factors in the glassmaking process influence the 

formation of inhomogeneity. 

2. To investigate the variables identified in (1) through the laboratory 

replication of medieval potash based glasses. 
3. To determine the extent of inhomogeneities present in medieval glasses 

by an analytical investigation of comparative archaeological material. 
4. To compare the results from (2) and (3) to establish how inhomogeneities 

are likely to have been formed. 
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5. To determine the effects that inhomogeneities may have on the way in 

which archaeological glasses are studied. 

The archaeological material selected for this research is potash based glass 

produced in northern Europe during the 12th to early 17`h centuries, and therefore 

encompasses both the medieval and post medieval periods. The transition between 

the two occurred during 16`h century and has been assigned to a variety of dates 

(Gaimster and Stamper 1997: ix). For ease and simplification the term `medieval' 

will be used in this thesis to refer to the whole period under study. 

In northern Europe, the start of the medieval period saw a high demand for 

ecclesiastical glass combined with a limited availability of soda based (sodium rich) 

alkalis, such as natron (mineral hydrated sodium carbonate Na2CO3.10 H2O) 

(Newton and Davison 1989: 56, Singer et al. 1979: 259-60). As a consequence of 

this, glassworkers are thought to have moved into forested areas in search of fuel, 

and potash rich plant ashes (such as beech and bracken ash) were utilised as alkali 

sources (Hunter 1981). 

Medieval, potash based glasses have been selected for this research for the 

following reasons: 

9 There is textual evidence that gives information concerning raw materials 

and medieval glassmaking practices that is not seen in earlier periods (see 

Section 2.1.1). Therefore we know what was used when compared to 

glasses from earlier periods. 

9A number of different plant species may have been used as alkalis in 

medieval glassmaking. These are very varied in composition and may 

therefore be more likely to exhibit different degrees of inhomogeneity 

(see Section 2.2.2). 

" The excavated archaeological evidence for medieval glass production 

sites is more prevalent than in earlier periods (see Section 2.1.1) and 

therefore comparable material of known provenance is available. 

" The raw materials for experimental replication can be obtained relatively 

easily and in quantity (see Section 4.3). 
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In order to determine which factors in the glassmaking process influence the 

formation of inhomogeneities the medieval glassmaking procedure must therefore be 

examined in detail. This is the objective of Chapter 2 where studies on homogeneity 

will be combined with archaeological and textual evidence for medieval glass 

production. The aim is to highlight the factors that are likely to exert the strongest 

influence on homogeneity. The results will be used to select which variables will be 

investigated in the experimental part of this research. 

Prior to the production of any experimental glasses it is necessary to decide 

on a suitable methodology. This is set out in Chapter 3 and covers in detail aspects 

such as the preparation and selection of raw materials, crucibles and furnaces. In 

addition to this, a method of visually recording and interpreting the experimental frits 

and glasses is outlined. This is essential to ensure that the results obtained are 

consistent and can therefore be reliably compared to one another. Chapter 3 ends 

with a discussion of the established and traditional methods used for measuring 

homogeneity. This is an area that has primarily developed through the needs of the 

modern glass industry. Therefore, to select an appropriate method for archaeological 

glass we need to consider the additional limitations such as sample size and 

destruction. In addition to this, the method must provide both qualitative and 

quantitative results. This is vital to be able to relate the results of this work to the 

study of archaeological glass (see Section 1.3). 

The laboratory replication of medieval glasses forms a large part of this 

research and is broken down into three main themes: raw materials (Chapter 4), 

fritting (Chapter 5) and melting (Chapter 6). Each chapter builds on the results from 

the previous chapters and determines how homogeneity is affected by each variable 

in medieval glassmaking. The overall aim of these three chapters is to obtain an 

integrated picture of how homogeneity is affected by the combination of all of these 

processes. The extent of homogeneity in the experimental glasses is determined 

qualitatively and quantitatively to ascertain: 

" If inhomogeneity is present that is not visible to the eye. 

" If the inhomogeneities are present, whether they will have a significant 

effect on measured glass composition (see Section 1.3). 

" If certain elements exhibit more inhomogeneity than others in the glass. 
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" If certain glassmaking practices exert more of an influence on 
homogeneity than others. 

The archaeological material selected for this research is from the medieval 

glassmaking areas of West Surrey/Sussex Weald (Kenyon 1967) and Staffordshire, 

England (Welch 1997), and Hils, near Grünenplan, Germany (Six 1976). The sites in 

these areas cover the period from 12''-17`h century, and exhibit a wide range of 

glassmaking traditions. Chapter 7 discusses the background to this material, and 

why it is likely to represent different levels of inhomogeneity based on the findings 

of Chapters 2, and 4-6. Chapter 8 covers the analysis of the archaeological material 

and the results are discussed with respect to the evidence in Chapter 7. 

Chapter 9 draws together all of the information on homogeneity gathered in 

the previous chapters and discusses the implications of this on a) the analysis and 

interpretation of compositional data from medieval glasses and b) medieval 

glassmaking practices. Finally the conclusions and further work based on the ideas 

and results produced during this research are presented. 
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How the Variables in Medieval Glass Making Influence 
Homogeneity 

2.1 Introduction 

This chapter examines the variables involved in medieval glass production 

and determines what effect they have on homogeneity. Medieval glass production 

was a complex, high temperature process that can be broken down into 5 main 

sections: 
1. Raw materials 

2. Fritting 

3. Melting 

4. Working 

5. Annealing 

The choices and variables involved in glass making are more complex than 

the basic outline given above. Figure 2: 1 illustrates how each stage of medieval 

glass production is affected by many different parameters such as the composition of 

raw materials, furnace temperatures and crucible dimensions. Homogeneity is 

influenced by a combination of all of these factors and some have a more significant 

effect than others. This chapter examines raw materials, fritting and melting in detail 

and uses the findings to select suitable parameters for the experimental part of this 

research (see Chapters 4-6). Working and annealing will also be briefly discussed 

but will not be investigated experimentally as they are less likely to effect 

homogeneity (see Sections 2.5 and 2.6). 

Evidence of medieval glassmaking practices (see Section 2.1.1) will be 

combined with studies of homogeneity in modem glasses. The following literature 

review therefore contains references to some industry related, laboratory scale 

experiments. The heavy industrial bias of this data is noted and caution exercised in 

its use with respect to medieval glassmaking. 
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Figure 2: 1 Factors affecting homogeneity at each stage of medieval glass 
production 
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2.1.1 Sources of Evidence for Medieval Glass Production Practices 

The three sources of evidence for medieval glassmaking used in this research 

are: a) archaeological remains, b) written accounts of glassmaking and c) economic 
documents recording transactions such as the sale of fuel or raw materials during the 

later medieval period (Crossley 1967, Welch 1997). 

The majority of the archaeological evidence for medieval glassmaking is 

associated with melting, working and annealing (see Figure 2: 1). Identifying 

excavated raw materials (such as sand and ashes) and frit is very difficult. This is 

due to the friable nature of the material and the problems associated with 

distinguishing them from their surroundings (Crossley 1967: 62). The type of 

material evidence generally found associated with medieval glassmaking sites 

includes: furnace remains, crucibles, fragments of worked glass, and waste materials 

from the glassmaking process. 
Written accounts of medieval glassmaking cover many aspects not readily 

deduced from the archaeological record. This includes many variables that affect the 

homogeneity of the glass, such as raw material types, furnace conditions, fritting and 

melting times (see Figure 2: 1). The main texts that are referred to in this research 

are: Eraclius (10th century, Italy) (Merrifield 1849), Theophilus (12th century, 

Germany) (Hawthorne and Smith 1979), Agricola (16th century, Germany) (Hoover 

and Hoover 1950), Biringuccio (16th century, Italy) (Smith and Gnudi 1990), 

Merrett's (1662) translation of Neri's 1612 Italian text and Merrett's (1662) own 

observations on English glassmaking. The information in brackets refers to the 

period and location of glassmaking. 
These glassmaking texts vary in the content, amount of data they provide and 

the aspects of glass production that they cover. It is important to note that there are 

limitations that must be acknowledged before using these sources that have been well 

documented (Royce-Roll 1994, Smedley et al. 1998, Smith and Hawthorne 1974). 

The writers were often not glassmakers and were sometimes only observing practices 

rather than describing methods that they had carried out themselves. In addition, the 

medieval monastic manuscripts such as Theophilus (Hawthorne and Smith 1979) are 

amalgamations of scripts that were copied and evolved with each author over 

centuries (Richards 1940). It is impossible to be certain if errors and omissions were 

made and these texts should therefore be used with care. However, even considering 

this they are a possible insight into the practices used in medieval glass production 
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and this research makes use of these sources as they provide a starting point from 

which to work. Although the remit of this research is northern Europe (see Section 

1.6) written texts from northern and southern Europe will be used. This is because 

documentary evidence is limited and there is a degree of correspondence between the 

practices described in texts from both locations. 

Sections 2.2-2.6 therefore use a combination of documentary and 

archaeological evidence to discuss the factors affecting homogeneity in medieval 

glass production illustrated in Figure 2: 1. 

2.2 Raw Materials: Factors Affecting Homogeneity 

The first stage in the glassmaking process is the selection, procurement 

and preparation of the raw materials. The fundamental components needed to 

produce a glass are a network former and network modifier (Shelby 1997). In 

medieval glasses the most common network former is silica (Si02). To produce 

vitreous silica requires temperatures in excess of 1700°C (Shelby 1997). The 

addition of an alkali, which acts as a network modifier, will produce a corrosive 

liquid phase that dissolves the silica and allows glasses to be formed at lower 

temperatures (Shelby 1997). 

In medieval glasses, sand or quartz rich rocks provided the silica 

component (Brill 1963, Hunter 1985). The majority of northern European 

medieval glass is characterised by high potash, low soda compositions (Sayre and 

Smith 1967). This is due to the use of potash rich plant ashes as a flux (Newton 

1980). Although the soda rich ashes of halophitic plants (for example barilla and 

rochetta) were used as alkalis during the medieval period, these were 

predominant in southern Europe and are therefore outside the scope of this thesis 

(Ashtor and Cevidalli 1983, Gerth et al. 1998, Turner 1956c, Zecchin 1997a, 

Zecchin 1997b). In some cases the ash was also treated before being added to the 

batch to form a `salt' (Neri (Merrett 1662), Biringuccio (Smith and Gnudi 1990). 

This research is concerned only with glasses formed from untreated raw materials 

and therefore salts will not be discussed here. 

Lime (CaO) is also present in medieval glasses. It may have been added 

unintentionally, by the use of calcareous sands and lime rich plant ashes or 
intentionally, using limestone, dolomite, or ground up shells (Brill 1963, 
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Henderson and Warren 1981). Together the combination of raw materials is 

called the batch. 

2.2.1 Silica Sources 

Medieval glassmaking texts suggest that sand and quartz pebbles were the 

main silica sources during this period, examples of this (in bold) are given in the 

following quotes. 

'and a third part of sand, collected out of water, and carefully 
cleaned of earth and stones. ' 

Theophilus (Hawthorne and Smith 1979: 52,53) 

'Our Glass houses in London have a very fine white sand (the very 
same that's used for sand-boxes and scouring) from Maid-stone in 
Kent, and for Green-glasses, a coarser from Woolwich. ' 

(Merrett 1662: 261) 

'Stones which are fusible, if they are white and translucent, are more 
excellent than the others, for which reason crystals take the first 
place. From these when pounded, the most excellent transparent 
glass was made in India. ' 
'The second place is accorded to stones which, although not as hard 
as crystal, are yet just as white and transparent. The third is given to 
white stones, which are not transparent. ' 

Agricola (Hoover and Hoover 1950: 584,585) 

'When you would make fair, and fully perfect Crystal, see you have 

the whitest Tarso, which hath not black veins, nor yellowish like rust 
in it. At Moran they use the pebbles from Tesino, a stone abounding 
in that River. 

Neri (Merrett 1662: 7) 

An anonymous account of Venetian glassmaking dated to the early 14t"/late 

15`h century also mention the use of hard white stones and pebbles from the rivers of 

Ticino and Adige in northern Italy (Jacoby 1993, Veritä 1991). There is little 

archaeological evidence for silica sources (see Section 2.1.1). However, it has been 

suggested that glass waste containing fragments of white quartz pebbles from the 

glasshouses. at Little Birches (14`h and 16th century) (Welch 1997: 28) and Bagot's 

Park (16th century), Staffordshire (Crossley 1967: 63, Welch 1997: 28), may be 
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evidence for the use of quartz as a raw material. White veined quartz from a local 

provenance was also found associated with the Monte Lecco glasshouse (15th/16th 

century), in the Genovese Appenines, Italy (Mannoni 1972). The descriptions of 

medieval glassmaking given in this section appear to suggest that there may be some 

geographical bias in the use of quartz rich stones in Italy compared with sand in 

northern Europe. 

As can be seen from the quotes above, the source and quality of silica appears 

to have been an important issue to the medieval glassmaker, as this would affect the 

characteristics of the glass produced (D'Angelo 1976, Hawthorne and Smith 1979, 

Hoover and Hoover 1950, Merrett 1662). There is also documentary evidence 

describing the preparation of silica for glassmaking, such as grinding, washing and 

sieving. Examples of this (in bold) are given in the following quotes: 

'Take then of the best Tarso, pounded small, and served as fine as 
flower, ' 

Neri (Merrett 1662: 7,8) 

'Now this sand must be washed from all it's unprofitable rerrestricity, 
and forced, and then this will make a white and good glass' 

Neri (Merrett 1662: 18) 

Washing the silica source and the use of high purity quartz rich pebbles 

instead of sand may have been a way of overcoming iron contamination. 

Glassmaking sands were (and still are) selected for their low iron concentrations but 

the presence of iron even at low levels (<0.5%) will impart a green tint to glass 

(Weyl 1951). The composition of the silica source would have depended on its 

origin. Sands often include feldspar and clay, both of which can attribute to the 

alumina and iron concentrations in the final glass and these may potentially influence 

homogeneity. 

In addition to quality, it can be seen from the quotes above that silica particle 

size also appears to have been an important issue to the medieval glassmaker. In the 

15th century, glassmakers in central Italy used pulverised pebbles formed by heating 

and quenching, or simply grinding the stone (Veritä 1991). In 1423 a licence was 

granted to Stefano Michiel to supply nine metric tons of crushed pebbles to Murano 

glassmakers (Jacoby 1993: 75). Silica particle size is significant as it influences 
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many aspects of the glassmaking process and will be discussed in detail in Section 

2.2.1.1. 

2.2.1.1 Silica Particle Size 

To determine how silica particle size will influence homogeneity it is 

necessary to understand what happens during the melting process. Melting can be 

described in three stages (Plumat et al. 1963, Shelby 1997: 35): 

1. The raw materials are heated to a temperature where they react and 
decompose. After the batch components have completely dissolved, the 

glass is said to be ̀ batch free'. 

2. Evolved and trapped gases (such as seed and bubbles, see Section 1.1) 

are eliminated from the melt. The period taken to do this is known as 
`refining time'. This starts during the melting process but will often 

continue after batch free time (Lyle 1945). 

3. The melt continues to homogenise by diffusion until it becomes 

isotropic. In practice iE would require extremely long times for this to 

happen unaided. 

Stages 2 and 3 occur together until the melt is fully refined. The rise of 

bubbles and seed to the surface can aid homogenisation by turbulent mixing, if the 

melt is fluid enough to allow the bubbles to ascend. In small scale melts relatively 

rapid convection currents can move seed back into the melt, facilitating 

homogenisation but impeding refining (Plumat et al. 1963). 

The particle size of the silica is important as if it is reduced then the batch 

free time decreases and the homogeneity of the glass will increase (Kreider and 

Cooper 1967). Assuming that there is no melting or batch segregation the most 

homogenous glass is therefore given by the smallest grain size. This has been 

documented in studies including those by Boffe and Letocart (1962), Cable (1958, 

1960a, 1960b), Furuuchi (1959a, 1959b, 1959c), Ito and Uno (1955), Manring and 

Bauer (1964), Potts et al. (1944), and Tooley and Tiede (1944). In their work on 

soda-lime- silica glasses, Preston and Turner (1940) suggested that batch free time is 

inversely proportional to the sand grain surface area. From their work on soda-lime- 
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silica glasses using a narrow range of sand grain sizes (776-65µm), Boffe & Letocart 

(1962) suggest that either the specific area or the size distribution of the particles 

could be the deciding factor for batch free time. They found that batches with a high 

proportion of the largest grains took longer to reach a batch free melt and it was 
therefore concluded that the size distribution of grains was the controlling variable 
(Boffe & Letocart 1962). This factor is also important when the comparative grain 

sizes of the other batch components are considered (see Section 2.2.3). 

Small silica grain sizes are therefore beneficial in the production of a more 
homogeneous glass. However, grain size also influences refining time and this must 
be taken into consideration. If a melt is poorly refined it will contain large numbers 

of seed. Refining time is controlled by silica particle size since the seediness early in 

refining increases as the grain size decreases. Grain size affects the number, size 
distribution, and therefore, the refining rate (Cable 1958,1960a, 1960b). 

The finest sands although producing a very homogeneous glass with a fast 

batch free time, are therefore the most difficult to refine. Fine sand particles give rise 

to heavily concentrated fine interstices within the unmelted batch. When the batch 

begins to melt these gases (both atmospheric and those produced in the melt) are 

trapped as the particles begin to agglomerate and form many tiny bubbles (Shelby 

1997: 39). Longer melt times and higher melt temperatures may facilitate the 

removal of these bubbles (see Sections 2.4.2 and 2.4.3) (Cable 1958,1960a, 1960b). 

To avoid excessive refining periods a balance has to be achieved between refining 

time and batch grain size. The medieval glassmaker may have been more concerned 

with achieving a well refined, rather than homogeneous glass. Particle sizes and melt 

times would have therefore been probably chosen to optimise refining. However, 

inhomogeneity may have been an issue to the medieval glassmaker, as it would have 

made the glass difficult to anneal (see Section 2.6). 

The shape and composition of the silica particles will also affect the way they 

react, which will affect homogeneity (Hlavdc and Nademlynska 1969, Hrma 1982, 

Ito et al. 1954). Different silica sources such as water washed sands or crushed 

pebbles (see Section 2.2.1) may therefore influence homogeneity in different ways 

(Cable 1970). 
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2.2.2 Alkali Sources 

Potassium rich plant ashes were the main alkali source in northern European 

medieval glass production. The term `potash' is used to describe the ashes as well as 

the substance produced when the ashes are lixiviated (Rymer 1976). The main 

evidence for these alkali sources comes from written accounts of medieval 

glassmaking (see Section 2.1.1). A number of these texts refer to specific plants such 

as beech (Fagus sp. ) by Theophilus (Hawthorne and Smith 1979: 52,53) and fern 

(Polypodiaceae sp. ) by Neri (Merrett 1662: 261) and Biringuccio (Smith and Gnudi 

1990: 127). In addition to this, analyses of the ashes of modem versions of these 

plants have been used to extrapolate information about the types of plants being used 

by medieval glassmakers in different periods and locations (Wedepohl 1997). 

Beech ashes are frequently associated with the production of northern 

European medieval glass, in particular German glass. This is due to the mention of 

beech (in bold), as both a flux and a fuel in the manuscripts of Theophilus 

(Hawthorne and Smith 1979) (see Section 2.1.1). 

`If you have the intention of making glass, first cut many beechwood 
logs and dry them out. Then burn them in a clean place and carefully 
collect the ashes, taking care that you do not mix any earth or stones 
with them. ' 

Theophilus (Hawthorne and Smith 1979: 49) 

'take beechwood logs completely dried out in smoke, and light large 
fires on each sides of the bigger furnace. Then take two parts of the 

ashes of which we have spoken before' 
Theophilus (Hawthorne and Smith 1979: 52) 

The manuscripts of Eraclius (Merrifield 1849) mention the use of glasses 

produced from faina'. Merrifield (1849: 212) suggests that these are in fact the 

ashes of beech wood, the term relating to the French for beechnut ̀ faine'. These 

references are sometimes used to infer that beech was the preferential alkali source in 

all northern European medieval glassmaking. This may have been true in some 

regions but it is unlikely that this was always the case. For example, it has been 

noted that during the medieval glassmaking period, the Weald was not populated 

with large numbers of beech trees. It has therefore been suggested that the alkali 
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source was probably oak, which was thought to be more abundant at that time (Wood 

1965,1982). 

Fern appears to have been predominant in English and Italian glassmaking 

(Merrett 1662). In England the species of fem found is bracken (Pteridium 

aquilinum) (Stace 1991: 16), although it is referred to as fern in English medieval 

texts such as those by Harrison (1587: 128) and Norton (c1477) (Reidy 1975: 87). 

Crossley (1967) notes that documents exist confirming the sale of fern ashes to 

glassmakers at Bagot's Park, Staffordshire during the 16th century. 

Ashes from other species including oak (Quercus sp. ) and plants such as 
beans, brambles, rushes and millet may also have been used as alkali sources 
(Agricola (Hoover and Hoover 1950: 586), Neri (Merrett 1662: 15), Zecchin 1997b). 

It is difficult to determine whether a single or a mixture of ash species would have 

been used as an alkali source and Merrett (1662: 259) notes that English medieval 

glassmakers did use a combination of ashes. The percentage ash yield from burning 

wood or fleshy plants such as bracken is extremely low (approximately 2%, see 

Section 4.3.3.1). The medieval glass industry would have required very large 

quantities of vegetation to ensure a sufficient supply of alkali (Bezborodov 1975, 

Smedley et al. 1998). Crossley (1998) has therefore suggested that fuel ash may also 

have been commonly used to supplement or provide the whole of the alkali source. 

This would be beneficial, as it would reduce the total amount of wood required to 

maintain furnace temperatures and supply sufficient raw materials. The use of fuel 

ashes may have been essential to English glassmakers in the in the late 16th century 

to combat the rising cost of wood (Godfrey 1975). 

In comparison to silica, medieval glassmaking texts make no reference to the 

use of ground alkali (see Section 2.2.1). One reason for this may correspond to the 

dominating role of the sand grain size in the melting process (see Section 2.2.1.1). 

Another reason may perhaps be that plant ashes were already in a mainly powdered 

form, although they are often of a predominantly larger grain size compared to that 

of sand (see Section 4.4). Ash particle size may not be critical, as it will melt during 

the early stages of the glass melting, due to the lower melting point of potassium 

based alkalis (approximately 900°C) compared to silica (in excess of 1700°C) (Lide 

1999, Shelby 1997, Smedley et al. 1998). The smaller surface area to volume ratio 

and more refractory nature of the silica compared to the alkali component will mean 

that it is likely to dissolve into the melt at a slower rate. 
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It can be seen that identifying the exact ash types used in medieval 

glassmaking is difficult. The ashes used may have varied depending on factors such 

as geographical area, manufacturing traditions or the season. However, with respect 

to homogeneity, the chemical composition of the ash remains the critical factor. This 

will be discussed in Section 2.2.2.1. 

2.2.2.1 Plant Ash Composition 

The inland plant ashes, such as beech, bracken and oak, thought to be used in 

northern European medieval glassmaking (see Section 2.2.2) are rich in potassium 

and have low levels of sodium. The sum of these elements is taken here to equal the 

total alkali content. Increased alkali levels will allow the batch to melt more quickly, 

facilitating mixing and contact between the raw materials and therefore improving 

homogeneity (see Section 2.2.4). If a batch contains insufficient alkali to react with 

all of the silica then the glass will not fully melt and be inhomogeneous. The 

contents of silica and other refractory components, such as calcium carbonate in the 

plant ash are therefore also important. Plant ashes containing higher alkali levels and 

low levels of silica will probably produce more homogeneous glasses. 

Plant ashes frequently contain high calcium levels and this may also influence 

homogeneity. Cable and Bower (1965) using glasses manufactured from laboratory 

reagents determined that soda-lime-silica glasses with high calcium contents 

(approximately 13%, added as calcium carbonate) exhibited poor homogenisation. 

Segregation occurred quickly with a bottom lime rich layer, and a silica rich top 

layer. All of the melts were inhomogeneous and required stirring to improve them 

(see Section 2.4.6). If this feature is also true for potash based glasses then medieval 

glasses with high lime levels may potentially be more susceptible to inhomogeneity. 

Plant ashes are made up of many different compounds and calcium may be present in 

a number of different forms (Smedley et al. 1998). These have different melting 

temperatures and therefore this may influence their effect on homogeneity. 

The ashes of different plant species are elementally distinct (Geilmann et al. 

1955, Sanderson and Hunter 1981, Turner 1956d). Three of the most commonly 

quoted ashes are beech, oak (Sanderson and Hunter 1981: Table 1) and bracken 

(Jackson and Smedley 2000: Table 2). Table II: 1 and Table 11: 2 list the compositions 

of a number of published analyses for these ash types. As there is only one available 
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analysis of bracken ash, an analysis of fern ash (Bezborodov 1975: Table V) is 

included for comparison, but unfortunately this is from an unknown location. Figure 

2: 2 illustrates the results of plotting the total alkali concentration against calcium for 

the different ashes. These were chosen, as according to the literature, they are the 

most significant with respect to homogeneity. They are also frequently used to link 

medieval potash glass and potash rich plant ash compositions (see Section 1.3) 

(Barrera and Velde 1989, Bezborodov 1957, Wedepohl 1997). 

Figure 2: 2 illustrates that a significant difference can be seen between the 

calcium and total alkali concentration of bracken (see Section 2.2.2) and the hard 

woods, beech and oak. The total alkali concentration of the bracken ash and fern 

ashes ranges from 39.52-47.4%, which is significantly higher than the beech and oak 

values (7.28-20.72%, from two samples). Based on the assumption that increased 

alkali levels will improve homogeneity, these bracken ashes are more likely to make 

a homogeneous glass than the beech or oak ashes. The bracken and fern ashes also 

contain marginally lower lime levels (9.02-14.1%) than the beech and oak ash 

(13.99-36.10%) (Table II: 1 and Table 11: 2). The increased lime levels in the beech 

and oak ashes may also make them more susceptible to forming inhomogeneous 

glasses than the bracken ash. It should be noted that examining the alkali and lime 

values of Wealden beech and oak (Figure 2: 2) shows that it is difficult to distinguish 

between thewdata even thought.. -from 
different species. The silica content of the 

ashes also has to be considered, as this will increase the overall silica levels in the 

batch. In the bracken and fem ashes this is 15.17% and 6.1% respectively (see Table 

11: 2). Unfortunately there are no comparative results for this element for the 

Wealden oak and beech. 
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Figure 2: 2 Total alkali content versus calcium content for a selection of English 
beech, oak (Sanderson and Hunter 1981: Table 1) and bracken ashes 
(Jackson and Smedley 2000: Table 2) and fern ashes (location 
unknown) (Bezborodov 1975: Table V) (see Table 11: 1 and Table 
II: 2) 
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Determining plant ash composition is extremely complex and is influenced 

by many variables. A number of studies including those by Berry (1917), 

Bezborodov (1975), Hartmann (1994), Misra et al. (1993), Sanderson and Hunter 

(1981) and Jackson and Smedley (2000) have investigated ash production. They 

concluded that plant ash compositions are influenced by the variables listed below: 

9 The area of the plant from which the sample was taken (foliage, 

bark, trunk etc. ). 

" The extent of plant growth when cut. 

" The type of growing medium (soil type etc. ). 

" The frequency and time of cutting. 

" The volume of sample used for analysis. 

" The burning temperature. This will effect the final concentrations 

of calcium, potassium and sodium in the ash. 

The alkali content and hence the reactability and melting properties of the ash 

would also have been a consideration to the medieval glassmaker and collection 

practices may have reflected this. For example Eraclius (Merrifield 1849) notes that 

fern should be cut before the feast of Saint John the Baptist (24th June (Thurston and 

Attwater 1981: 631)). 

In summary, it can be seen that glasses with higher alkali and lower calcium 

levels are perhaps more likely to be homogeneous. However, this may not be a 

significant factor when other variables such as melting temperature and time are 

considered. 

2.2.3 Batch Material Particle Size 

Reducing the particle size of batch constituents other than sand (see Section 

2.2.1.1) decreases batch free times and improves homogeneity (Savard and Speyer 

1993a, 1993b, Sheckler and Dinger 1990). More significantly, the minimum batch 

free time and refining time occurs when the particle sizes of all the batch components 

are well matched. Potts et al. (1944) found that when they reduced the grain size of 

one batch component, the shortest batch free time occurred when all the batch 

particle sizes were equal. The most significant change being with sand grain sizes 
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rather than other batch materials such as limestone or soda ash (see Section 2.2.1.1). 

Boffe and Letocart (1962) also supported this theory finding that limestone and 
dolomite grain size did not significantly change the batch free time providing the 

grains were not larger than the sand. Although the alkalis used in medieval 

glassmaking have large particle sizes this is not thought to be significant (see Section 

2.2.2). 

It would therefore appear that in the choice of batch components, the sand 

grain size is the dominating factor in the homogenisation of a glass. Although this 

conclusion is based on the results of modem glassmaking studies, it is thought likely 

that sand grain size would also have been the dominating factor in medieval glass 

melts. 

2.2.4 Batch Mixing and Preparation 

Theophilus (Hawthorne and Smith 1979: 53) and Biringuccio (Smith and 

Gnudi 1990) both refer to mixing raw materials before fritting (see below). The most 

relevant words are highlighted in bold and the words in brackets are additions by the 

author. 

`mix them (the sand and ashes) in a clean place, and when they have 
been long and well mixed together lift them up with a long handled 
iron ladle and put them on the upper hearth in the smaller Section of 
the furnace so that they may be fritted. ' 

Theophilus (Hawthorne and Smith 1979: 53). 

'and then put all these things (sand/pebbles and alkali) mixed together 
into a reverberatory furnace made for this purpose (flitting)' 

Biringuccio (Smith and Gnudi 1990: 127) 

Mixing the silica and ashes together before fritting or melting will provide a 

more intimate mixture and facilitate melting and refining reactions. A well mixed 

batch should therefore produce a more homogeneous glass. Glass technologists have 

examined batch mixing in detail. Such studies include Cable (1958), Fletcher 

(1963), Knight (1956a, 1956b, 1956c, 1956d), Poole (1963), and Sheckler and 

Dinger (1990). Although a well mixed batch maybe achieved using relatively short 

mixing times (see Section 2.2.4.3), the uniform distribution of smaller quantities of 
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substances throughout the batch, such as colourants and refining agents (if added at 

this stage), may not be so easy to achieve. This would therefore be a possible source 

of inhomogeneity in the finished glass. In archaeological glasses these minor 

components may not have been added to the batch but maybe later during the melt, 

for example the addition of colourants by the use of fully formed glass (cullet) (see 

Section 2.2.5) (Henderson 1985). 

Therefore, mixing is dependent on the size, shape and other properties of the 

materials concerned. It may vary considerably depending on the different types of 

substances and sample sizes used (Cable 1969: 147-52, Poole 1963, Sheckler and 

Dinger 1990). In addition, the moisture content of the raw materials and the mixing 

method will all influence the extent to which a batch can be well mixed, these points 

are discussed in Sections 2.2.4.1 to 2.2.4.3. 

2.2.4.1 The Effect of Moisture Content on Batch Mixing 

Moisture content affects the extent of mixing within a batch (Cable 1958, 

Hartley 1963). Stanworth & Turner (1937) found that >4% water content was 

required to cause a significant effect on the rate of melting and refining of a glass 

batch. Damp raw materials may cause the agglomeration of silica fines and prevent 

the flow of raw materials, hindering mixing. A glass formed from a poorly mixed 

batch is therefore more likely to contain inhomogeneities (see Section 2.2.4). In 

addition to this, the water contained in wet materials would be heated up and evolved 

as steam. This would cause a small decrease in maximum furnace temperature at this 

time and influence homogeneity (see Section 2.4.2). Moisture may also react with 

batch components such as carbonates to form substances with different melting 

characteristics and therefore affect homogeneity. 

In archaeological glass production a significant moisture content may have 

been unavoidable unless raw materials were left near the furnace prior to use. There 

is evidence to suggest that medieval glasshouses may have been covered (see Section 

2.4.1) and raw materials may have been kept dry by storing them above the furnace. 
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2.2.4.2 The Effect of Particle Size on Batch Mixing 

Particle size has an effect on melting (see Sections 2.2.1.1 and 2.2.3) and also 

on the extent of batch mixing. Experiments carried out on soda-lime-silica glasses 

by Tooley and Tiede (1946: 197) found that reducing sand grain size from 20- 

60mesh (850-250µm) to less than 200 mesh (75µm) reduced batch segregation. 

Manring and Bauer (1964) and Poole (1963) built on these experiments and 

suggested that if the batch materials were of similar particle sizes, this would enable 

good mixing, thereby producing a more homogeneous batch. Potts et al. (1944) also 

found that variation in raw material grain size resulted in the demixing or separation 

in the batch, but the addition of cullet reduced the problem (see Section 2.2.5). 

Using small silica grain sizes and other evenly matched raw materials might 

therefore translate to the formation of a more homogenous glass. In archaeological 

melts it has been seen that the use of smaller silica grain sizes may have been 

favoured (see Section 2.2.1.1). However, it is not known if all of the batch 

components would have been of similar sizes, or if and when cullet was added to the 

batch (see Figure 2: 1). 

2.2.4.3 The Effect of Mixing Times on Batch Mixing 

Tooley and Tiede (1946) investigated the effect of different mixing times (1- 

30 minutes at 40 r. p. m. ) on the homogeneity of 50g soda lime silica glass melts. 

They found that it was relatively easy to achieve a well assimilated batch with dry 

batch components but these experiments were carried out with laboratory reagents 

and medieval raw materials may behave differently. Tooley and Tiede (1946) 

suggest that. the duration of batch mixing does not have a significant effect on the 

homogeneity of the glass obtained. This may not be because batch mixing is not 

important but that in conjunction with other variables such as melt temperature (see 

Section 2.4.2) it may not appear significant. Conversely, Cable (1998) notes that 

extended mixing times can lead to demixing within a batch. Even with well mixed 

batches there will always be inhomogeneity in the first liquids formed during the 

early stages of melting. The liquid formed at batch free time (see Section 2.2.1.1) is 

not close to the desired average composition and therefore further mixing is required 

to yield a homogeneous melt (Cable 1998: 1085). 
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2.2.5 Recycled Glass 

The use of cullet is an extremely complex issue and it would not be possible 
to cover all of its implicationsfor the glassmaking process here. However, there is 

documentary evidence that cullet was used in medieval glassmaking (Biringuccio 

(Smith and Gnudi 1990: 129)). Cullet can be split into two types: 

a) Local cullet, this is glass made on the site where it is found and is 

therefore likely to have a similar composition to the glass being made 

there 

b) Foreign cullet, this is glass that is brought into to the site from 

outside and is therefore likely to have a different composition to the glass 
being made on site. 

If local cullet was used, continued recycling may produce glasses with very 

similar compositions but which may not have been made from the same raw 

materials (Crossley 1990, Hunter 1985, Price 1978). In this way the use of cullet 

could therefore increase the homogeneity of a melt. Conversely, foreign cullet could 

be a source of inhomogeneity if it had a different composition to the bulk material, or 

if a batch was composed entirely of cullet and contained glasses of many different 

compositions. 
Manring and Conroy (1968) also noted that the particle size of cullet may 

influence homogeneity. If the particle size of the alkali component and cullet are 

similar, and the batch is dry to ensure good mixing (see Section 2.2.4.1), the rate of 

reaction of the alkali with the cullet is greater than with silica. A longer melt time is 

therefore required to dissolve the silica component of the batch and may be a 

potential source of inhomogeneity. However, this assumes the use of ground cullet 

and it is not certain what would occur if the glass were used untreated. 

2.3 Fritting: Factors Affecting Homogeneity 

2.3.1 Introduction 

`Fritting' in archaeological glassmaking refers to a low temperature heat 

treatment (700-900°C) to promote a solid state reaction between raw materials 

(Turner 1956d). This leads to the elimination of gases but does not allow melting to 
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occur. The substance formed is termed a ̀ frit' and this is ground and melted to form 

a glass (Biek and Bayley 1979). Frit will heat up faster than the batch, as it is a more 

effective conductor of heat. Therefore it appears to require a shorter melting period 

than producing a glass from unfitted raw materials (Smedley et al. 1998). Fritting 

will also reduce batch volume, eliminate volatile components and facilitate the 

homogenisation of the frit (Smedley et al. 1998). The latter is an important variable 

to be investigated in this research. 
The use of frit and a fritting stage is referred to in written accounts of 

medieval glassmaking (see Section 2.1.1). The first reference is in the Mappae 

Clavicula (12`h century) where the manufacture of glass using a two stage process is 

noted but there is some doubt as the whether this reference refers to glassmaking or 

metal slag (Smith and Hawthorne 1974). Theophilus (Hawthorne and Smith 1979), 

Agricola (Hoover and Hoover 1950), Biringuccio (Smith and Gnudi 1990) and Neri 

(Merrett 1662) describe various aspects of frit and the fritting process but it should 

be noted that Biringuccio (Smith and Gnudi 1990: 132) also describes the production 

of a glass without a fritting stage. Examples of documentary evidence that refer to 

fritting (in bold) are given below. 

`When they (sand and ashes) begin to get hot, stir at once with the 
same ladle to prevent them from melting from the heat of the fire and 
agglomerating. Continue doing this for a night and a day' 

Theophilus (Hawthorne and Smith 1979: 53). 

`then put them (raw materials) into a `calcar, which at first must be 
well heated, for if they be put into the calcar when it is cold, Fritt will 
never be made of them. At first for an hour, make a temperate fire, 
and always mix the Frit with the rake, that it may be well 
incorporated, and calcined, then the fire must be increased, alwaies 
mixing well the Fritt with the rake, for this is a thing of great 
importance, and you must alwaies do thus for 5 hours, still continuing 
a strong fire. ' 

Neri (Merrett 1662: 8) 

`The calcar is a kind of calcining furnace, the rake is a very long 
instrument of iron, wherewith the Fritt is continually stirred, both 
these are very well known and used in glass furnaces. At the end of 
five hours, take the Fritt out of the Calcar, which in that time (having 
had sufficient fire, and being well stirred) is made and perfected ' 

Neri (Merrett 1662: 8) 
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There is a lack of archaeological evidence for fritting or frit. This is perhaps 

not surprising, as unless the glass production had failed it would have been converted 

to glass (Crossley 1990). Even if it was discarded, documentary evidence suggests 

that frit may have been friable and therefore would not remain in the archaeological 

record or be easily distinguished from its surroundings (see Section 2.1.1). Examples 

of excavated material referred to as `frit' are from the glasshouse at St Weonards, 

Herefordshire (16th century) (Bridgewater 1963: 305) and the Hils glasshouses in 

Germany (12`h-15`h century) (Leiber 1990/1991), but the nature of these materials is 

not described. At Knightons glasshouse, Surrey (16`h century) (see Section 7.2.2), 

(Wood 1982: Microfiche 9,43) states that frit is present and is either a fused cindery 

or glassy material. An excavated crucible from the nearby site of Sidney Wood, 

Surrey (17`h century) (see Section 7.2.3) is also described as being full of glassy 

material or frit ((Kenyon 1967: 52). Giannichedda et al. (2000) tentatively suggest 

that at a glasshouse in the Gargassa Valley, northern Italy (13-14th century) the 

fragments of vitreous fused glass pastes excavated may be frit. These descriptions 

are scant and varied and for the archaeologist there is no exact definition of what 

constitutes a frit. Crossley (1967: 62) has suggested that some excavated materials 

attributed as frit are actually waste products from glassmaking. In the medieval 

period there may have been many different forms of frit depending on the raw 

materials and production parameters used. The description of the excavated material 

is very varied and it may be that fit may benefit by being described by the percent of 

vitrification observed. The lack of material evidence means that, as with raw 

materials much of the information about frit has to be obtained from the results of 

experimental replication or written accounts of glassmaking. The influence of 

fritting on homogeneity will be discussed in Sections 2.3.2-2.3.5. 

2.3.2 Fritting Temperature and Time 

Fritting temperature and time is critical, as this will control the chemical 

reactions that occur on heating, and therefore determine to what extent the 

components decompose and/or melt. The range of temperatures and times used in 

medieval glassmaking would have been determined by the composition of the raw 

materials, the heat output of the furnace, and possibly the nature of the glass to be 

produced. Furnace design and the choice of fuel will affect the temperature, heat 
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distribution and atmosphere within a furnace and hence the fritting reactions, which 
in turn influence homogeneity (Turner 1956d, Wood 1965). It is suggest by Turner 

(1956d) that a low heat is required to prevent complete fusion and liquefaction, but it 

must be high enough or maintained for long enough to cause granulation and a semi- 

vitreous condition. 
Alkali composition (see Section 2.2.2.1) is important as potassium rich ashes 

melt at higher temperatures than sodium rich ones (Smedley et al. 1998). Written 

descriptions of medieval glassmaking allow an estimation of fritting temperatures 

and times. For example, Theophilus (Hawthorne and Smith 1979: 53) (see Section 

2.3.1) states that a beech ash based frit should be heated for a day and a night and 

that that batch must not be allowed to melt in the heat of the fire. It has been 

assumed that this refers to 24 hours. Neri (Merrett 1662: 8) states that fern ash frits 

should be heated for a shorter time of 5 hours and refers to the heat being altered (see 

Section 2.3.1). It is important to note that the higher the fritting temperature the 

shorter the time required to produce the same effects. Although different fritting 

times are given for beech and bracken ash batches, they may have been carried out at 

different temperatures. The colour, vitrification, friability and texture of the frit may 

also have been a more suitable indicator than the length of time it was in the furnace. 

Potash based frits have only recently been experimentally investigated. 

Royce-Roll (1994) fritted batches of beech wood ash and sand in a replica medieval 

furnace. This was done at 1150°C for 3 hours and the frit melted at approximately 

1200°C for about 8 hours to form a glass. Smedley et al. (1998) also formed frit 

using beech wood ashes and sand. They found that temperatures above 700°C were 

enough to initiate a moderate chemical reaction between the ash and sand and that 

some liquid phases were formed above 900-1000°C. Theophilus (Hawthorne and 

Smith 1979) mentions the prevention of the mixture liquefying (see Section 2.3.3). 

Smedley et al. (1998) has suggested that fitting temperatures of below 1000°C were 

typical. 

The liquefaction of the frit influences homogeneity. Fritting temperatures or 

times that are too high will prevent sufficient mixing of the raw materials and are 

more likely to form glasses containing batch relics and partially refined material. 

Further melting to dissolve the `batch relics' is thought to have been ineffective at 

the temperatures thought to be obtainable in medieval furnaces and an 
inhomogeneous glass would be formed (Biek and Bayley 1979). This phenomenon 
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has been observed in experiments by Smedley et al. (1998). Turner (1956d) and 
Smedley et al. (1998) both noted that if liquid phases form during fritting they could 

react with the refractory floor in the furnace or crucible. Refractory oxides can be 

dissolved into the reacting materials to create inhomogeneity. Conversely, fritting 

can also reduce refractory corrosion (Smedley et al. 1998). Ashes are extremely fine 

powders that can be easily transported into the furnace atmosphere by rapidly 

circulating flames etc. The ashes may come into contact with the furnace roof and 

the chemical reactions may form liquids that could drip into the open crucibles 

influencing the homogeneity of the melt. Fritting would diminish the chances of this 

occurring by increasing the effective density of the mixture. The consequences of 

refractory corrosion are discussed fully in Section 2.4.5.1. 

2.3.3 Mixing During Fritting 

Theophilus (Hawthorne and Smith 1979: 53) and Neri (Merrett 1662) 

describe the mixing of raw materials during fritting (see Section 2.3.1). Section 2.2.4 

noted that homogeneity was likely to be improved by using a well mixed batch. 

Mixing the batch during the fritting process may be beneficial, as it would speed up 

reaction times between raw materials, shortening fritting times and forming a more 

intimate mixture due to closer contact between the particles. It is not known whether 

this practice would have also facilitated the homogeneity of the glass. Stirring the 

frit may decrease the contact with refractory surfaces and reduce the chances of 

inclusion of corrosion products (see Section 2.4.5.1). Conversely, if the frit was on 

the furnace floor (see Section 2.3.4), stirring may increase the chances of particles 

being abraded from the floor and transferred into the frit thus decreasing 

homogeneity. These conflicting arguments mean that it is difficult to confirm what 

effect mixing will have on homogeneity. 

2.3.4 Fritting Vessel Dimensions 

Neri (Merrett 1662) and Theophilus (Hawthorne and Smith 1979) state that 

fritting is carried out on the furnace floor. Spreading the mixture over the furnace 

floor may have allowed heat to penetrate more quickly and produced a more 

controlled temperature distribution, contact with the furnace atmosphere and hence a 

more uniformly fritted product. This practice may have therefore improved the 
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quality and the homogeneity of the glass produced, although contact with the larger 

surface area of refractory material increases the possibility of the frit picking up 
inclusions from the furnace floor. Alternatively, the frit may have been produced in 

crucibles, but little excavated evidenceexistslto support this (see Section 2.3.1). However, 

there are fritting crucibles recorded from Egypt during the Roman period. Saleh et 

al. (1972) investigated two large (5 and 9 litres in volume) rectangular, crucibles that 

were found at Wadi Natrun. These are suggested as having been used in the 

production of soda based frit. Refractory corrosion from the crucible or furnace floor 

would also have depended on the nature of both the batch and the materials used to 

form the crucible or furnace and on the fritting time and temperature. 

2.3.5 Grinding and Remixing Frit 

It is generally assumed that frit is ground up and remixed before the melting 

stage (Biek and Bayley 1979, Royce-Roll 1994). Medieval glassmaking texts only 

refer to flit being broken up so that it can be placed into the glassmaking crucible and 

do not mention grinding or remixing (Biringuccio (Smith and Gnudi 1990: 128), 

Agricola (Hoover and Hoover 1950: 587)). If the frit were ground, a more 

homogeneous mixture would be formed as any silica rich areas are broken up and 

redistributed more evenly throughout the material. Grinding would reduce the 

volume of material if the frit contained bubbles and this would allow a larger charge 

to be melted in one go. Grinding the frit would require more labour and time but 

may have been advantageous if this facilitated melting. Alternatively, frit may not 

have required grinding if it was raked on the furnace floor and/or was not allowed to 

vitrify. 

2.4 Melting: Factors Affecting Homogeneity 

2.4.1 Introduction 

The next stage of medieval glass manufacture is to form a batch free glass 

suitable for working into different shapes and forms using a variety of methods such 

as casting and blowing (Grose 1984). The raw materials, frit or cullet (or a 

combination of these) is placed in crucibles and heated at a high temperature until a 

molten glass is formed (Biek and Bayley 1979). Estimations of the temperatures 
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required to do this for medieval, potash based glasses vary between 1200-1400°C 

(Turner 1956d: 295T, Wedepohl 1997: 254), and will be discussed in Section 2.4.2. 

There are a number of documentary sources that depict or describe medieval furnace 

design. The earliest picture of a medieval glass furnace is depicted in a manuscript 

dating to 1023 A. D. in Monte Cassino, Italy. It is thought to be a copy of one 

attributed to De Universo by Hrabanus Maurus, Bishop of Mainz (c. 776-856 A. D. ) 

who was an advisor to Charlemagne (Hunter 1981, Newton and Davison 1989: 111) 

(Plate 2: 1). 
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Plate 2: 1 A depiction of an early medieval glass furnace from the 

manuscript of Hrabanus Maurus dating to 1023 A. D. (Monte 
Cassino, Italy) (Codex i32) (Notarianni and Ferrari 1998: 4) 

Charleston (1978) suggested that medieval glass furnaces could be split into 

two types based on their shape. The `northern' furnace is characterised by 

rectangular foundations, and is frequently ascribed to northern Europe (Plate 2: 2) 

This furnace is described by Theophilus (Hawthorne and Smith 1979: 49-52) who 
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states that it was used in conjunction with a separate annealing furnace (see Section 

2.6). 
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Plate 2: 2 A suggested plan of a ̀ Northern' style glass furnace based on the 
writings of Theophilus (Hawthorne and Smith 1979: 49) 

The `southern' furnace type is characterised by a round base and domed 

shape, and is frequently linked with southern Europe. This furnace is described by 

Neri (Merrett, 1662: 240-8), Biringuccio (Smith and Gundi 1990: 128-9), and 

Agricola (Hoover and Hoover 1950: 586-92) from whom the illustration in Plate 2: 3 

is taken. Annealing was carried out in the upper part of the furnace and glass melting 

in the lower sections; separate furnaces for fritting or pot arching may also have been 

used. 
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A-LOWER CHAMBER OF THE OTHER SECOND FURNACE. B-MIDDLE ONE. C-UPPER ONE. 
D-ITS OPENING. E-ROUND OPENING. F-RECTANGULAR OPENING. 

Plate 2: 3 A `Southern' style glass furnace (Agricola (Hoover and Hoover 1950: 
589)) 
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Excavated archaeological evidence for furnace structures is more common in 

the medieval period in comparison to earlier periods but remains are predominantly 
foundations and little information can be gleaned about superstructure. The evidence 

also suggests that there is more variation in furnace type than documented in 

medieval texts. For example, rectangular furnaces with proposed separate annealing 

ovens, linked to the northern type described above, are noted at Little Birches (14`x' 

and 10h centuries) (Welch 1997) and Bagot's Park, (16`h century) (Crossley 1967) 

Staffordshire, and Knightons (Wood 1982). A more complex winged furnace design, 

in which fritting and annealing are thought to have been carried out, is found at Vann 

Copse, Surrey (I Oh century) (Kenyon 1967) and Hutton and Rosedale, (16`h century) 

Yorkshire (Crossley and Aberg 1972). A number of these furnaces will be discussed 

in more detail in Chapter 7. 

The nature of these furnace changes is important because they will influence 

variables such as temperature (see Section 2.4.2) and atmosphere (see Section 2.4.4) 

that have a direct affect on homogeneity. Cable (1997) suggests that the design of 

northern furnaces would have made it easier to melt higher temperature glasses and 

that the addition of fuel and removal of spent fuel would have been easier and 

interfered less with the working glassblowers compared to the design of the southern 

furnace. - The position of the crucible with respect to the heat source in the furnace 

will influence the extent to which con ttchoA currents are set up, facilitating better 

mixing and therefore homogenisation. The crucibles from Bagot's Park and 

Kimmeridge, Dorset (17th century) appear to have been placed with one side 

overlapping the edge of the siege and may have facilitated this (Crossley 1987). 

It can be seen that medieval furnace design is extremely varied and complex. 

The effects on homogeneity will be hard to predict and therefore this is beyond the 

scope of this research. However, the effects of altering parameters such as furnace 

temperature and crucible dimensions can be examined and these will be discussed in 

Sections 2.4.2 to 2.4.6. 

2.4.2 Melting Temperature 

The temperatures achieved in medieval furnaces depend on their design, age 

and the type and form of the fuel. Accurate prediction of the temperatures attained is 

difficult and it is also impossible to know whether the furnace would have always 
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been operated at the maximum working temperature. The determination of 

temperatures was not noted in glassmaking until the 18`h century, but Cable (1997) 

suggests that in qualitative terms the highest heats were known to form the best 

glasses. Cable and Smedley (1987) have suggested that temperatures of up to 

1350°C may have been obtained in medieval furnaces based upon the softening and 

liquidus temperatures of glass from Hutton and Rosedale, Kimmeridge, and 

Bolsterstone, South Yorkshire (18th century). This method has also been used to 

identify melting temperatures in excess of 1320°C for glass samples from Little 

Birches, Staffordshire (White in Welch (1997: 49)). Experimental replication of 

medieval glasses from laboratory reagents by Wedepohl (1997: 254) have led him to 

suggest that to produce a homogeneous melt would have required temperatures in 

excess of 1400°C. 

In isolation, increasing melting temperature will improve homogeneity, as the 

viscosity of the glass will decrease increasing the mobility of ions and therefore 

diffusion rates. Higher temperatures will also increase the quality of the glass 

produced as better refining is achieved using higher melt temperatures compared to 

longer melt times (see Section 2.2.1.1) (Cable 1997, Rindone 1957). However, 

higher furnace temperatures require higher fuel consumption, and lead to shorter 

crucible and furnace lives. These factors may have been an important consideration 

to the medieval glassmaker. 
The use of different types of fuel in glass manufacture has been noted above 

and many references are made to the use of high quality, dry wood so as not to affect 

the quality of the glass (see Section 2.4.4) (Cable 1997, Crossley 1972, Veritä 1991). 

The fuel source has a direct relation to the temperatures that would have been 

achieved in medieval glass production. Although, hard woods such as beech and oak 

have similar . calorific values, the heat produced will depend on many factors such as 

water content, shape, and size (Tylecote 1986). The use of specific species, which 

have been carefully selected and prepared, are mentioned by Theophilus (Hawthorne 

and Smith 1979) and Neri (Merrett 1662). The dimensions of the wood and the way 

in which it was introduced to the furnace would determine any fluctuations in 

temperature. This can facilitate mixing within the melt and therefore improve 

homogeneity and refining (Crossley 1998). The effect of melting temperature is 

inter-linked with melt time and this will be discussed in Section 2.4.3. 
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2.4.3 Melting Time 

Melt time would have been dependent on the composition and particle size of 

the raw materials, furnace temperature, the size of the melt, and the quality of the 

glass required. To determine maximum melt time, visual indicators such as bubbles 

on the surface of the melt may have been used. The glass may have been sampled to 

determine the workability of the melt, observe the colour or check the extent of 

refining and cord. Agricola (Hoover and Hoover 1950: 592) notes that the 

glassmaker will determine whether the glass is ready for blowing by pulling it up on 

the blowpipe to observe the appearance and behaviour of it. 

In the following quotes Agricola (Hoover and Hoover 1950: 592) notes an 

improvement in glass quality with increasing melt time (in bold) up to 48 hours. 

`The longer they remelt it (the glass), the purer and more transparent 
it becomes, the fewer spots and blisters there are, and therefore the 
glassmakers can carry out their work more easily. ' 

Agricola (Hoover and Hoover 1950: 592) 

`those who only melt the material from which glass is made for one 
night, and then immediately make it up into glass articles, make them 
less pure and transparent than those who first produce a vitreous 
mass and then remelt the broken pieces for a day and a night. And, 

again, these make a less pure and transparent glass than do those 
who melt it again for two days and nights, for the excellence of the 
glass does not consist solely in the materials from which it is made, 
but also in the melting. ' 

Agricola (Hoover and Hoover 1950: 592) 

48 hours would appear to be a relatively long melt time but the affect on 

homogeneity would depend on the temperature of the furnace and melt size. The 

improvement in the quality of the glass may be more significantly influenced by the 

breaking up and remelting of the glass than the increase in melt time (see Section 

2.4.6). Increasing melt time will improve homogeneity and refining to a certain 

extent (see Section 2.2.1.1). In soda-lime-silica glasses Tooley and Tiede (1944) 

found that in 50g melts homogeneity improved quickly during the first 10 hours but 

increasing the melt time (up to 64 hours) was of little further benefit. Although these 

are not potassium based glasses it appears that increasing melt time improves 

homogeneity up to a point after which no further improvement is seen, and other 
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factors such as increased refractory corrosion (see Section 2.4.5.1) and volatilisation 

should be considered (Hrma 1982). 

Volatilisation will tend to only affect the immediate surface layer but it can 

cause significant inhomogeneity if the density of the melt increases and parts of the 

surface layer sink into the main body (Cable 1998). Batch components such as those 

containing potassium, sodium, lead, halides or sulphur are more susceptible to 

volatilisation than others (Cable 1994). These factors make the contribution of 

volatilisation to inhomogeneity hard to predict (Cable 1998). 

2.4.4 Furnace Atmosphere 

Furnace atmosphere will alter depending on fuel type. The absorption of 

water, sulphur, oxygen and other furnace gases into the surface layer of the melt will 

alter the chemical composition of the layer (Cable 1994). This glass will probably 

have a different chemical composition compared to the bulk glass and when this is 

incorporated into the main body will be a source of inhomogeneity. In medieval 

glassmaking, references are made to the use of high quality, dry wood as a fuel 

source (Cable 1997, Crossley 1972, Hoover and Hoover 1950: 592, Merrett 1662). 

The deliberate choice of specific woods and their subsequent preparation may have 

been made to prevent contaminating the glass in open crucibles and/or for their ease 

of combustion (see Section 2.4.5). 

2.4.5 Glass Making Crucibles 

Crucible fabric and design (shape and size) both influence the glassmaking 

process. Each of these factors have a combined effect on inhomogeneity as they 

affect variables such as the rate of volatilisation from the melt surface, refractory 

corrosion and the extent of heat transfer and hence diffusion currents (internal 

mixing). It is known that certain clays and shapes were favoured in medieval 

glassmaking and the importance of this to homogeneity will be discussed in Sections 

2.4.5.1 and 2.4.5.2. 
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2.4.5.1 Crucible Fabric 

Molten glass is very corrosive and reactions at the crucible/glass interface 

will dissolve the ceramic fabric (Turner and Turner 1923). The dissolution of 

refractory impurities into the melt will impair the quality of the glass and make it less 

homogeneous. The following variables all contribute to the rate at which the 

dissolved impurities are distributed throughout the glass. 

" Glass and crucible composition. 

" Melt time. 

" Melt temperature. 

" The heat transfer and refractory properties of the crucible. 

" The dimensions and surface area to volume ratio of the crucible. 

" Diffusion within the melt. 

" Stirring the glass melt. 

To reduce the risk of damaging the melt, crucible fabrics that are more 

resistant to corrosion have been traditionally preferred by glassmakers (Preston 1943, 

Rosenhain 1919). The clay matrix of good refractory clays should contain high 

levels of silica and alumina (Firth et al. 1923). Non-plastics, especially silica, are 

frequently added to crucible clays to increase the refractory nature of the clay and to 

prevent the shrinkage, cracking and distortion of the body during drying (Tite et al. 

1985). How effective they are depends on amount, grain size and their distribution 

throughout the ceramic body. Low levels of iron, calcium and magnesium oxides, 

and alkalis' are also desirable, as these will all diminish the refractoriness and 
i 

stability of the crucible (Rice 1987 , Welch 1997). 

The use of specific high refractory clays or addition of a quartz rich temper 

has been noted in many analyses and descriptions of medieval glass crucibles 

(Bezborodov 1957, Doherty 1993, Hurst 1969b, Kenworthy 1918, Mendera 1988). 

Petrographic analyses of crucibles from the 17'h century glassmaking site at 

Kimmeridge, have shown the high refractory nature of the clay and have been 

estimated using refiring to be able to withstand temperatures of 1300-1350°C 

(Crossley 1987: 372). Examination and refiring of crucibles from Hutton and 
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Rosedale determined that the crucibles were most likely to be of local clay and 

would have withstood up to 1500°C (Crossley and Aberg 1972). 

Theophilus (Hawthorne and Smith 1979,53) describes the use of a specific 

clay for glassmaking crucibles and Biringuccio (Smith and Gnudi 1990: 128) notes 

that the refractory properties of the crucible clay are paramount. The crucibles must 
be able to withstand the hottest heat and are therefore only selected if they do not 
fracture or crack on preheating. The use of prefired and preheated pots appears to be 

a common practice in documented accounts of glassmaking (Theophilus (Hawthorne 

and Smith 1979: 53), Agricola (Hoover and Hoover 1950: 590) and Neri (Merrett 

1662: 127)). The use of prefired pots is likely to be beneficial to homogeneity as the 

ceramic will be less prone to refractory corrosion (Firth et al. 1923). The medieval 

glassmaker may have been more concerned with obtaining a pot that would not crack 

and therefore loose the melt rather than the dissolution of the ceramic into the glass 

during melting. 

2.4.5.2 Crucible Dimensions and Melt Size 

Depending on the nature of the batch (i. e. fit, cullet or sand and ashes, see 

Section 2.3.5) crucible size will affect the amount of glass being produced at one 

time. The influence of melt size on homogeneity must be considered in conjunction 

with melting temperature and time. A small melt has relatively rapid convection 

currents that aid the removal of bubbles and facilitate homogenisation (Plumat et al. 

1963). Large melts may homogenise faster than smaller ones at sufficiently high 

melt temperatures and times suggesting that melting temperature is the 

predominating variable. It is not clear whether the temperature and time required to 

produce a homogenous melt does increase proportionally with melt size (Cable 

1969). Crucibles with a large surface area to volume ratio will be more likely to be 

subject to volatilisation (see Section 2.4.3) and reaction with the furnace atmosphere 

(see Section 2.4.4) that may influence homogeneity. 

The dimensions of medieval glassmaking crucibles are very varied (Horat 

1991). The description of crucible production by Theophilus (Hawthorne and Smith 

1979: 53) is thought to suggest pots of an open, bowl design. No dimensions are 

given but the pots have inturned rims that may have been to prevent spillage and 

overflow of the glass (Hawthorne and Smith 1979: 54). Biringuccio (Smith and 
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Gnudi 1990: 129) describes crucibles that are almost 2 feet by 1.5 feet with a 
thickness of two digits, to produce a good quality glass the charge is heated for two 

days and stirred (see Section 2.4.6). Thick crucible walls were probably chosen for 

strength and crack resistance (see Section 2.4.5.1) but in contrast thick walls would 
have reduced thermal conductivity (reducing internal mixing by thermal currents (see 

Section 2.4.6)) and required higher melting temperatures and/or times. 

Daniels (1950) estimates that the crucibles from the Woodchester glasshouse 
(16`h century) could have contained 150-2001b (68-91Kg) of glass, and Bridgewater 

(1963) estimates 4001b (182Kg) for those at Glasshouse farm, St Weonards (16th 

century). Crossley (1988) suggests that medieval glass melts may never have been 

fully homogeneous and the glassmaker may have deliberately avoided the use of the 

glass at the bottom of the crucible. The use of tall thin crucibles may have been used 

to prevent this problem such as noted at Bagot's Park (Crossley 1967) and Little 

Birches (Welch 1997). 

2.4.6 The Effect of Stirring the Melt on Homogeneity 

Glass melts are too viscous to allow turbulent mixing and are subject to 

laminar flow that will stretch out inhomogeneities. This will aid their removal by 

diffusion but is not as efficient as turbulent mixing, which can be achieved by stirring 

(Cable 1998). Stirring molten glass is widely used to improve homogenisation in 

modem experimental melts (Cable 1996, Cable and Hakim 1973, Cooper et al. 1967, 

Joanni et al. 1989). The only reference to stirring in medieval glassmaking texts is 

made by Biringuccio (Smith and Gnudi 1990: 129) but it is not know what the stirrer 

was made from, or when and how often this was carried out. Neri (Merrett 1662: 

148) refers to molten glass being poured into water and then being remelted several 

times to improve the quality of the glass produced. Stirring, or pouring and 

remelting will facilitate homogenisation through mixing (Tiede and Tooley 1945). 

However, to stir the melt, the furnace would have to be opened, causing heat loss and 

there may have also been contamination of the melt with material from the stirrer. 

2.5 Working 

To form artefacts from a molten glass it must be at the correct temperature to 

obtain the required viscosity for the forming method selected. For example a lower 
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viscosity will be required to blow glass than to cast it (Grose 1984: 29). The molten 

glass will be heated for longer periods than were required to melt it and will therefore 

be subject to all the variables that affect homogeneity discussed in Section 2.4. 

However, it is thought unlikely that working will have such a significant effect on 

homogeneity as flitting and melting but several factors should be considered. Longer 

melting times will facilitate homogeneity by internal mixing. Conversely, extended 

melting times may form more inhomogeneities due to ceramic corrosion or loss of 

volatiles from the melt surface. However, these will probably be negligible in the 

glass composition as a whole. 
The action of blowing the glass may cause some additional mixing close to 

the surface of the melt. This occurs each time the blowing iron is placed in the melt 

to gather a gob of glass. Modem glassmakers twist the blowing iron as the glass is 

gathered to increase the quantity of glass that is collected. This action may facilitate 

homogenisation by mixing but also introduce inhomogeneities as the melt surface is 

mixed in with the bulk mass. If the glass does contain inhomogeneities then the 

production technique will influence their distribution, blowing the glass will stretch 

the inhomogeneities over a wider area than in thicker, cast glass. Areas that are rich 

in silica have a higher viscosity and will not flow as well as the rest of the glass. Due 

to this, successfully manipulating an inhomogeneous glass is difficult (particularly in 

blown glass), and melts of this nature may have been discarded or remelted. 

Therefore it is unlikely that these glasses would be found as finished artefacts. 

2.6 Annealing 

Annealing removes the internal stresses formed in a glass during working and 

is the final stage in the glassmaking process. The stresses are formed by temperature 

gradients produced as the artefact is repeatedly heated and cooled. If a glass is not 

annealed it will be brittle and shatter when touched (Shelby 1997). To remove these 

stresses an even temperature must be created throughout the whole body of the glass 

and the temperature lowered so the centre cools at the same rate as the surface 

(Shelby 1997). The annealing time and temperature vary according to glass type, the 

variation of thickness in the object and its position in the furnace. 

Annealing is carried out at relatively low temperatures (400-600°C) compared 

to the rest of the production process (Shelby 1997: 109). Although annealing does 

59 



C'HAI''! IR2 HOW TI IL VARIAI31. GS IN MEDIEVAL GLASSMAKINO INPLUENC'G IIOMOGGNI II V 

not influence homogeneity, the success of annealing is affected by homogeneity. An 

inhomogeneous glass will contain regions of different compositions and therefore 

also a range of thermal expansions. As the glass cools, the different regions will 

contract at different rates causing breakage. The resulting cullet may have been 

remelted or discarded. 

2.7 Selection of Experimental Variables and Conclusions 

This chapter illustrates that the variables influencing homogeneity in 

medieval glass production (Figure 2: 1) are very complex and frequently inter-linked 

producing combined effects. Within the scope of this research it is not possible to 

investigate every parameter and all the possible relationships. A number of variables 

are also constrained by the time and equipment available in this research. Allowing 

for these factors, the experimental variables that have been selected for investigation 

in the experimental part of this research (Chapters 4-6) are those believed to have 

potentially the most significant effects on homogeneity. These are summarised in 

Table 2: 1, and Figure 2: 3 illustrates how these correspond to Figure 2: 1 where all the 

variables that influence homogeneity were depicted. 

Stage of Glass Production Variable to be Investigated 

Sand Grain Size 

Raw Materials Mixing 

Variation in Alkali Component 

Temperature 
Time 

Fritting Stirring 
Crucible Dimensions 

Crushing and Remixing Frit 

Production of a Glass Without Fritting 

Time 
Temperature 

Melting Crucible Dimensions 
Crucible Fabric 

Melt Size 
Furnace Atmosphere 

Table 2: 1 Summary of experimental variables to be investigated in Chapters 4- 
6 
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COMPOSITION 

Beech Asti Bracken Ash 

COMPOSITION 

EeEr, l s!. Bracken Ash 

CRUCIBLE 

1 Dimensions 

TIME 

CRUCIBLE -ý 

TEMPERATURE 
Fabric Dimensions 

MELT SIZE 

Figure 2: 3 A schematic representation of the experimental variables to be 
investigated in Chapters 4-6 

To avoid introducing unknown variables that may affect homogeneity into 

the experimental part of this research, the silica source was selected to have a known 

composition and particle size distribution (see Section 4.2). Section 2.2.1.1 

PARTICLE SIZE 

N 

TIME 

1 
-- TEMPERATURE 

REMIXING/GRINDING 
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determined that particle size will significantly influence homogeneity and this will be 

investigated in Chapter 4. 

It has been shown in Section 2.2.2 that it is extremely difficult to resolve 

which raw materials were used as the alkali source in medieval glassmaking. Whilst 

it is probable that the medieval glassmaker used a combination of ashes for the alkali 

source it is an important first step to determine how a single ash source behaves 

before being able to understand how a mixture might complicate the factors affecting 

homogeneity. In this research beech and bracken ash are used as generic types to 

represent a hard wood and a fleshy plant. Beech and bracken are some of the most 

common plants discussed in the medieval glassmaking texts (see Section 2.2.2). The 

source and composition of the ash used in these experiments is discussed in Section 

4.3. The effect of cullet on homogeneity will not be experimentally investigated. 

This is because it is hard to determine at what stage (if at all) cullet was introduced 

into the glassmaking process (see Section 2.1), and the variation in cullet 

composition and the amount used also makes this variable too complex to consider 

within the scope of this research. 
Batch sizes of 9-36g were selected based upon the limited availability of raw 

materials, furnace dimensions and to make this work consistent with the work of 

Smedley et al. (1998). Sections 4.5 and 4.6 investigate batch mixing experimentally 

as the evidence in Section 2.2.4 suggests that this is an important factor in 

determining homogeneity. 

The effect of fitting on homogeneity is a very complex issue (see Section 

2.3). Fritting temperature, time and ash composition are intimately related and will 

be investigated experimentally in Chapters 4 and 5. It is difficult to determine the 

exact parameters used from the archaeological, textual and experimental evidence 

(see Section 2.3). Therefore, a wide range of temperatures, (500-1000°C) and times 

(1-24 hours) has been selected. Mixing the batch during fritting can be potentially 

beneficial to the formation of a homogeneous glass (see Section 2.3.3); this is 

investigated in Chapter 5. Crushing and mixing the frit prior to melting should also 

facilitate homogeneity (see Section 2.3.5), and is investigated in Chapter 5. 

The choice of melting temperature and time are important parameters with 

respect to homogeneity (see Section 2.4.2 and 2.4.3). After trials (see Section 4.7) 

two melting temperatures of 1200 and 1300°C were selected for this research. These 

are thought . to cover the possible temperatures that were obtained in medieval 
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furnaces estimated from experimental work and also the temperatures that the raw 

materials melted at. 
The effect of different crucible fabrics on homogeneity is a complex issue 

(see Section 2.4.5.1). The structure, chemical and physical characteristics of 

medieval crucibles are very varied and therefore it is impossible to reproduce these 

here. Therefore, two compositionally known, high refractory crucible fabrics 

(mullite and alumina) (see Appendix A) will be used to provide a possible indication 

of how homogeneity might be influenced by a change in crucible composition rather 

than to imitate any archaeological crucibles. The use of a known fabric composition 

should eliminate unknown variables being introduced into the experimental 

procedure. 
An indication of scaling up melt size will be investigated by using melt sizes 

between 9-36g. Larger experimental melts could not be made due to the limited 

availability of raw materials (see Section 4.3.3.1). Melt size is influenced by melt 

temperature and time (see Section 2.4.5.2) and the effect of altering these can be 

investigated on smaller melts. Whilst it is understood that this will in no way 

replicate medieval melt sizes (see Section 2.4.5.2) it will provide an indication of 

possible trends. The effects of different surface area to volume ratios produced by 

using crucibles of varying sizes will also be examined in Section 6.1.3. 

The effect of stirring the melt on homogeneity will not be investigated in the 

experimental part of this research. This is for two reasons: a) ceramic corrosion from 

the stirrer blade may introduce inhomogeneities, b) the volume of the experimental 

melts is too small to enable a conventional laboratory stirrer to be used or for the 

melt to be poured and remelted (see Section 2.4.6). Although the operating 

parameters for medieval glass furnaces are very complex the effect on homogeneity 

caused by altering the melting furnace atmosphere will be investigated 

experimentally in Chapter 6. 

Working and annealing are also factors that influence homogeneity albeit to a 

lesser extent. They are not investigated here, as this would require the production of 

large quantities of experimental glasses. This is not within the scope of this research 

due to constraints on raw materials and laboratory equipment. However, the 

relationship between working and homogeneity must be considered as fragments of 

medieval worked glass (vessel and window) are analysed in Chapter 8. 
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Before investigating the variables discussed above it is important to set out 

the methodology that will be used to examine the experimental glasses formed. This 

will now be discussed in Chapter 3. 
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CHAPTER 3 

Methodology for Examining the Experimental and Archaeological 
Glasses 

3.1 Introduction 

This chapter describes the standard set of parameters that were developed to 

record the experimental frits and glasses produced in Chapters 4-6 and the 

archaeological material investigated in Chapter 8. A suitable method for measuring 
inhomogeneity was also required and this is discussed in Section 3.2. The different 

methods used to depict the visual and microscopic results are described in Section 

3.3. In some cases the qualitative nature of the observations meant that it was hard to 

quantify the results, but where possible a systematic recording process has been used. 

3.2 Methods of Measuring Homogeneity 

A suitable method was required to determine the extent of homogeneity in the 

experimental and archaeological glasses in this research. To quantitatively describe 

the homogeneity of a sample a minimum of two parameters are required. These are, 
intensity, which is the magnitude of deviation of the property from the average 

value, and the scale, which is the size of the sample used or of the inhomogeneity 

itself (Cable and Bower 1965: 197). In this research it is important that 

inhomogeneity can be described in parameters that correspond to the compositional 

study of archaeological glass (see Section 1.3). It is therefore vital that the 

measuring method selected provides the following data: 

0 Composition 

This is the relative compositional difference between inhomogeneities 

and. the glass matrix. These data determine, to what extent the 

inhomogeneity is likely to exert a bias on compositional results (see 

Section 1.3). 
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9 Size 

If the sample size and/or analysis area is significantly smaller than the 

size of the inhomogeneities then the data obtained may not be 

representative of the true glass composition (see Section 1.5). 

9 Position 

If the glass has widely and unevenly distributed inhomogeneities then the 

sample selected for analysis may also not be representative of the true 

glass composition. 

Several techniques have been developed to measure the homogeneity of 

glass. These techniques arose from industrial applications where homogeneity is 

very important, as it can adversely affect the mechanical and optical properties of a 

glass (see Section 1.2) (Anon 1961, Cable and Bower 1965, Imagawa 1973). These 

industrial methods are not constrained by the amount of material available or the 

possible destruction of the sample during testing, as is the case in this study. 

Therefore, the application of these techniques to archaeological samples is not 

always appropriate. The following sections describe some of the methods that have 

been developed for measuring homogeneity and summarise their suitability for the 

glasses in this research. 

3.2.1 Visual Examination and Shadow Patterns 

The presence of cord in a glass will leave flow patterns that frequently can be 

detected visually (see Section 1.1). The ease with which this can be seen depends on 

the size and colour of the inhomogeneity, and the thickness of sample. Placing glass 

samples against contrasting backgrounds has been used to facilitate observation 

(Anon 1961). 

Inhomogeneity can also be recorded using either an ordinary photograph or a 

shadow pattern. A shadow of the glass is cast onto a screen or photographic plate 

and the smaller the source of light used the sharper the shadow. Examples of this 

type of apparatus are described by Spencer and Badger (1924), Seddon (1937) and 

Jebsen-Marwedel (1959). Any irregularities on the glass surface will appear as light 

and dark streaks on the photographic plate. The flow patterns in a glass can be 
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observed without the interference of surface markings by submerging the test piece 
into a liquid of identical refractive index (Anon 1961, Wright 1921). These methods 

are non-destructive and provide a visual indication to the extent of inhomogeneity on 

a macro scale. However, the compositional difference between the bulk glass and 
inhomogeneity is not obtained and the sample size is large (several centimetres). 
Therefore this method is not suitable for the archaeological samples in this research. 

3.2.2 Density Spread Technique 

The density spread technique was developed by Turnbull (1941), and 

Turnbull and Ghering (1941). It involves the crushing and centrifuging of a sample 

of glass to determine the spread of density distribution throughout the particles. The 

disadvantages of this method are that it is laborious and does not give information 

about the precise distribution or composition of inhomogeneities throughout the 

glass. The scale of the inhomogeneities can sometimes be determined if they are in 

the same order of magnitude as the glass particles. Thus, this method is only suitable 

for determining the relative intensity of the inhomogeneities in a glass (Cable and 

Bower 1965). This method is unsuitable for archaeological glasses due to the 

destruction of a large sample (approximately lOg (Turnbull 1941, Turnbull and 

Ghering 1941)) and the limited value of the information that it yields. 

3.2.3 The Christiansen-Shelyubskii Method 

This method is derived from the principle of the Christiansen Filter 

(Christiansen 1884a, 1884b) and the interpretation of this by Raman (1949) and 

Schilling and Weiss (1966: 66). The fundamental principles of this technique are 

discussed by Hense (1987a, 1987b). The basic apparatus consists of a long, optical 

cell filled with grains of the crushed glass sample suspended in a liquid of matching 

refractive index. A suitably dimensioned cell will allow a beam of white light to 

pass through undeviated giving a virtually monochromatic beam of white light, this 

is known as a Christiansen Filter (Hense 1987a, 1987b). If the refractive indices of 

the glass and liquid differ then the light will be refracted and will scatter each time it 

passes a glass liquid boundary. This effect can be used to measure the homogeneity 

of a glass and essentially gives the homogeneity factor as the standard deviation of 

the refractive index (Tenzler and Frischat 1995). 
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Shelyubskii (1960) developed this principle and Cable and Bower (1965) 

produced a simple apparatus to carry out experiments using this technique. Their 

method was easy to use but although it gave the intensity of the homogeneities it did 

not give their distribution and orientation. Further development of Shelyubskii's 

technique by Imagawa (1973), Sakaino et al. (1978) and Cable and Walters (1980) 

refined the accuracy of the method. Coloured glasses require a further modification 

to account for the absorption of the glass, which will lower the transmission values 

and simulate a higher inhomogeneity (Budd and Blanchard 1966, Inoue et al. 1981). 

The Christiansen-Shelyubskii technique is not suitable for archaeological glass 

samples. This is due to the destruction of the sample, the sample size (approximately 

2g (Budd and Blanchard 1966: 13)) required, the lack of information about the 

distribution of inhomogeneities, and the modifications that would be required for 

coloured glasses. 

3.2.4 Etching and Interferometry 

This technique was originally devised and then developed by Löffler (1954) 

to provide a way of examining individual inhomogeneities. It can also provide the 

parameters necessary for the quantitative measurement of the homogeneity of a 

sample. The method involves a test piece of glass being placed in dilute hydrofluoric 

acid. The rate of attack of this acid on soda-lime-silica glasses is very sensitive to 

changes in chemical composition and the etching of an inhomogeneous glass sample 

will therefore produce regions of differing depths. The differences, which are of the 

order of a few wavelengths of light, can be measured using an interferometer. The 

pattern of interference fringes produced provides the difference in depth of etching 

(intensity of the inhomogeneity), the size of the inhomogeneities (scale) and the 

distribution of inhomogeneities throughout the sample (Cable and Bower 1965, 

Cable and Hakim 1973). The depth of etching does not define the exact chemical 

composition of the inhomogeneity even though the depth does depend on 

composition. 

The main problem that exists with the application of this technique to potash 

rich archaeological glasses is that calibration would be required to determine the 

attack rates on potassium-lime-silica glasses. Although the method identifies the 

position of inhomogeneities in the sample it does not supply their chemical 
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composition. In addition, the highly corrosive acids that destroy the samples also 

make this method inappropriate for this research. 

3.2.5 SEM (EDS/WDS) and EPMA 

SEM and EPMA can be used to examine inhomogeneity both qualitatively 

and quantitatively (Adams et al. 1966). The EPMA works by focusing an electron 

beam onto a small area of the sample and collecting the emitted X-rays. Qualitative 

analysis is possible as each element has a characteristic X-ray spectrum and therefore 

each line obtained can be identified by its wavelength. These results can then be 

quantified by comparing the intensities of the lines obtained from the sample with 

those produced from standards of known compositions. To collect the spectra an 

EPMA will often have an energy dispersive spectrometer (EDS) in addition to a 

number of wave dispersive spectrometers (WDS) attached to it. The EDS collects 

the spectra in parallel and gives a rapid and convenient way of obtaining the overall 

composition of a sample. In comparison the WDS focuses on one wavelength at a 

time and therefore some EPMA machines will have a number of spectrometers 

attached to them working in series. Although the analysis time is generally slower 

the precision, accuracy and limits of detection are generally improved (Reed 1996). 

The SEM is primarily an electron imaging tool. It works in a very similar 

way to the EPMA except the beam is scanned over a small area of the sample, by 

changing the type of detection either a topographical or a compositional contrast 

(using backscattered electrons) image can be obtained (Goodhew et al. 2001). An 

SEM can also be modified to carry out compositional analysis by attaching an X-ray 

spectrometer. Such instruments are often referred to as SEM-EDS or SEM-WDS 

depending on the type of spectrometer attached. In archaeological glass analyses, 

SEM-EDS is generally more common (see Section 1.5) (Reed 1996). 

Backscattered imaging (usually with a SEM but sometimes available on 

EPMAs) can successfully identify the presence of inhomogeneities (Adams et al. 

1966: 99). Plate 3: 1 illustrates two images taken from the same piece of 

inhomogeneous glass attached to a crucible fragment (to the bottom right of the 

picture). The left hand secondary electron image is topographical and it can be seen 

that the structural properties of the crucible are shown clearly, whilst the translucent 

glass (which has no structure) appears as all one colour. The right hand image was 
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taken in backscattered electron mode. The intensity of the colours is proportional to 

the composition of the material, brighter regions corresponding to a higher mean 

atomic mass than darker areas (Chescoe and Goodhew 1990, Reed 1996). The 

contrast of the backscattered image in Plate 3: 1 has been adjusted to reflect the 

compositional differences in the glass rather than the crucible. The dark and light 

areas indicated on the image indicate the presence of inhomogeneities. However, it 

should also be noted that in some cases an inhomogeneous sample will not exhibit 

any colour contrast on a backscattered image. This can occur in multi-element 

materials, such as glass, when regions of the same sample have different elemental 

proportions but the same mean atomic mass (Goodhew et al. 2001). 

Plate 3: 1 A comparison between a secondary electron (Left) and backscattered 
(Right) SEM image of an inhomogeneous glass sample (Br68, Table 
V: 19) 

Once the presence of these inhomogeneities has been identified the difference 

between the bulk glass composition and the inhomogeneity can be quantified by 

analysis using an SEM-EDS/WDS or EPMA. Depending on the information 

required this could take the form of spot or line analyses, or elemental mapping. 

These techniques have not been widely used to examine inhomogeneity. Adams et 

al. (1966) obtained qualitative and semi-quantitative data on inhomogeneous 

borosilicate glasses using SEM backscattered images and EPMA line scans. In 

archaeological glasses only a small number of published studies of archaeological 

glasses have noted the presence of inhomogeneities (see Section 1.3). In all of these 

cases a combination of SEM and EPMA was used to identify and quantify the 
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inhomogeneities present (Brill and Moll 1963, Cox and Ford 1989, Giannichedda et 

al. 2000, Riccardi et al. 1999). 

The use of SEM and EPMA provides a relatively fast and easy way of 

identifying the presence and composition of inhomogeneities in small (generally 

several millimetres or less) glass samples. Although these techniques are 'non- 

destructive', sample preparation can require the removal of very small samples from 

the original material (see Section 1.5). Due to the limited size of archaeological 

material usually available for analysis this would seem to be an advantage. 

However, if large scale inhomogeneities are present they will not be identified in 

small samples (see Section 1.3). These techniques are also specialised and 

expensive, and if large samples are available they cannot always be accommodated. 

Only one surface of the glass can be analysed at a time, and it is therefore important 

to ensure that a suitable cross section of the material is examined and that the 

possible orientation of the homogeneities is considered (see Section 1.3) (Adams et 

al. 1966: 98). 

3.2.6 Summary of Homogeneity Measurement Techniques 

The measurement techniques discussed in this section are summarised in 

Table 3: 1. 

thodd f Composition of Distribution of Position of Sample 
Sample 

Size 
Me in 

Inhomogeneity Inhomogeneity Inhomogeneities Inhomogeneities Destruction Larger 
than 

Visual 
Examination and No Yes Yes No Yes 
Shadow Patterns 

Density Spread No No No Yes Yes 
Technique 

Christiansen - 
Shelyubskii No No No Yes Yes 

Method 

Löffler's Etching 
and No Yes No Yes No 

Interferometry 

SEM and EPMA Yes Yes Yes Yes No 

Table 3: 1 A comparison of homogeneity measurement techniques and the 
different parameters that they measure 
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The most suitable method for assessing inhomogeneity in the experimental 

and archaeological glasses in this research is backscattered SEM imaging coupled 

with SEM-EDS/WDS or EMPA analysis. The use of these techniques fulfils the 

criteria set out in Section 3.2 as the position, scale and the composition of 

inhomogeneities can be obtained, and this is also an easy and practical technique. 

Most importantly, it has been seen that SEM and EPMA are widely used for the 

compositional analysis of archaeological glasses (see Section 1.5). The significance 

of inhomogeneity on this type of analysis can therefore be assessed. 

3.3 Measurement of Results in Chapters 4-6 and 8 

3.3.1 Visual Observations 

A standard method was developed for recording the features observed in the 

experimental frits and glasses produced in Chapters 4-6. All the material produced 

was examined visually with a hand lens (x10) and a range of parameters recorded. 

These differed between frits and glasses and are listed in Table 3: 2. 

aterial Observation Recorded 

Colour 

Percentage change in batch volume from unheated to heated batch 

Frit Presence of any unreacted batch (loose raw materials) 

Friability of the product 

Extent of vitrification within the product 

Colour 

Presence of any unreacted batch 

Glass Presence of any batch relics (white crystalline inclusions within the glass) 

Presence of any opacity* (a cloudy appearance in the glass) 

Presence of any crystalline substances on the glass surface* 

11 * Only present in bracken ash glasses II 

Table 3: 2 Visual observations recorded for experimental glasses and frits 

An example of a visually homogeneous glass, and glasses with batch relics, 

opacity and the crystalline substance can be seen in Plate 3: 2. Glasses containing 

batch relics that were visible to the eye were taken to be visually inhomogeneous. 
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The percentage reduction in batch volume was calculated by recording the volume of 

each batch before and after heat treatment. The extent of friability, vitrification and 

colour were subjective observations. 

UCms. 5 

Visually homogenous bracken glass 
(Br116, Table V: 23) 

Plate 3: 2 Examples of batch relics, opacity and white crystalline substance in 

experimental beech and bracken glasses 

Batch relics, opacity and the crystalline substance were found to vary 

considerably in quantity in different glasses. In order to quantify the variation 

between samples a set of parameters was created and are listed in Table 3: 3. It can 

be seen from Plate 3: 2 that the beech ash glasses are very deeply coloured and 
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although it was visually easy to see batch relics and inhomogeneity, representing this 

photographically was frequently difficult. 

High (H) I Present in ? 50%of the glass 

Medium (M) I Present in >_25-<50% of the glass 

Low (L) I Present in <25% of the glass 

None (NV) I Not visible in the glass 

Table 3: 3 Qualifiers used in visual and SEM results 

The archaeological glasses investigated in Chapter 8 were initially examined 

using a hand lens (x l 0), and their colour, condition (the presence of weathering 

products) and the presence of any opacity recorded. Following visual examination 

the archaeological and experimental glasses were subjected to SEM and/or EPMA 

analysis and this is described in Section 3.3.2. 

3.3.2 Scanning Electron Microscopy and Electron Microprobe Analysis 

3.3.2.1 Instrumentation 

The SEM and EPMA analyses were carried out at the NERC Electron 

Microprobe Facility in the Department of Earth Sciences, University of Manchester. 

A JEOL JSM6400 analytical scanning electron microscope fitted with an Oxford 

Instruments, energy dispersive spectrometer was used for imaging. Towards the 

latter part of this research the detector on the SEM was replaced with a PGT X-ray 

Analysis System. The Cameca SX100 electron microprobe was not commissioned 

until near the end of this research. It was then used in conjunction with the SEM to 

provide elemental mapping and line scans. 
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3.3.2.2 Sample Selection and Preparation 

The aim of sampling the experimental glasses for imaging and analysis was 

a) to ensure that the piece removed would be as representative of the whole glass as 

possible, and b) to look at the extent of inhomogeneities produced when variables in 

the glassmaking process were altered. The ideal situation would have been to 

examine the whole glass, because the size and distribution of any inhomogeneities 

was not known (see Section 1.5). However, this was not possible due to the large 

number of glasses to be analysed (over 350) and the size constraints of the SEM and 
EPMA sample holders (26mm diameter). 

Vertical cross sections of the experimental glasses were selected for analysis, 

as these are likely to exhibit a higher incidence of inhomogeneity (see Section 1.5). 

The area of glass available for analysis in most cases was approximately 2cm by 

0.5cm. In the case of the archaeological material (Chapters 7 and 8) the dimensions 

of the artefact and the quantity that could be removed for analysis limited the sample 

size. Where possible the largest cross section obtainable was selected but care was 

taken to remove a sample where the surface to be analysed would not have been 

altered by weathering or corrosion (see Section 1.3). Samples of both the 

experimental and archaeological glasses were mounted in Presi Mecaprex MA 2 

epoxy resin, ground using Buehler silicon carbide papers (400,800 and 2500 grades) 

and then polished using Buehler Metadi diamond spray to 0.25µm. The samples 

were coated with a layer of carbon to ensure good conductivity during analysis. 

It is important to note that the sample sizes used are substantially larger than 

those usually examined in compositional analyses of archaeological glasses using 

SEM and EPMA (see Section 1.5). Thus, by examining a larger area it will be 

possible to determine how inhomogeneity will influence compositional results if only 

a small sample is analysed. This has important implications for archaeological 

research (see Section 1.5). 

3.3.2.3 Imaging 

The mounted, polished and coated samples were examined using the SEM in 

secondary and backscattered electron modes (see Section 3.2.5). The SEM was 

operated at 15kV with a beam current of 1.5nA at a working distance of 15mm and a 

take off angle of 40° for the Oxford Link detector, and 30° for the PGT detector (see 
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Section 3.3.2.1). Each sample was examined carefully and any inhomogeneities 

recorded and photographed. All the images in this thesis were taken when the SEM 

was fitted with the PGT detector (see Section 3.3.2.1). The glasses were divided into 

three categories based on the electron imaging results: 

1. Inhomogeneous glasses with silica relics (Plate 3: 3). 

2. Inhomogeneous glasses with no silica relics (Plate 3: 4). 

3. Homogeneous glasses (Plate 3: 4). 

A variation was observed in the number of silica grains and the extent of 

inhomogeneity within the glasses in the first two categories (Plate 3: 3 and Plate 3: 4). 

These were split into categories of high, medium, low and none visible using the 

same parameters as listed in Table 3: 3. It should be noted that the homogeneous 

glasses in (3) are those where no5a, kWcontrast was visible on the backscattered 

image (see Plate 3: 4). Although it was seen in Section 3.2.5 that these glasses could 

still be inhomogeneous it is thought that the likelihood of many samples exhibiting 

this phenomenon is low. However, quantitative analysis (see Section 3.3.2.5) will be 

used to determine the extent to which elemental composition varies in 

`homogeneous' samples. 

3.3.2.4 Elemental Mapping 

Elemental mapping was carried out on one archaeological sample (see 

Section 8.3.1). The technique allows a small area of the sample to be scanned for a 

set number of elements. The results are given in the form of images where changes 

in elemental concentration in the area scanned are represented by different colours 

(Reed 1998). Elemental mapping was carried out using the EPMA with an 

accelerating voltage of 20kV and a beam current of 100nA. 

3.3.2.5 Compositional Analysis 

The chemical analysis of the experimental and archaeological glasses was 

carried out using the EPMA (see Section 3.3.2.1). The basic operating parameters 

are described in Table 111: 1. A defocused beam of approximately 10-20µm in 
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diameter was used, with a beam current of 6nA and an accelerating voltage of 15kV. 

To optimise results for the volatile elements these were counted first using short 

count times. The data obtained from the EPMA is automatically corrected using an 

internal ZAF correction program. 

The EPMA was calibrated with known mineral and metal standards for each 

element to be detected (Table III: 1). Corning D, a potash based, glass standard that 

is comparable with medieval glass compositions was then used to ensure that the 

system was set up correctly for the glasses to be analysed, and that matrix effects 

were minimised (Table 111: 2) (Brill 1972: Table N). The EPMA data obtained for 

this thesis was collected over 5 runs. On each occasion the same standardising 

procedure was carried out and Corning D was analysed before, during and after the 

unknown samples were analysed. Initially it was not possible to obtain data for 

chlorine, cobalt or copper. Analysis of chlorine became possible after run 1 but 

cobalt and copper were only available for runs 4 and 5. 

The Coming D analyses for each run were averaged and are recorded in 

Table 111: 3. The difference between the published (Table III: 2) and recorded values 

was then calculated and the data obtained from the archaeological and experimental 

glass samples corrected by this factor (using the data from the relevant run). The 

average and 2 sigma values from the Corning D data for each run is listed in Table 

111: 3. The relative variation in the data can be observed by comparing the values of 

the coefficient of variation (standard deviation/mean), this is expressed as a 

percentage and recorded in Table III: 4. The average lower limit of detection (see 

Appendix B) for each element on each run and over the entire data set is listed in 

Table 111: 5. 

It can be seen from a comparison between the published values of Coming D 

(Table 111: 2) and the data obtained from each run (Table 111: 3, Table III: 4 and Table 

111: 6) that the data exhibits a good degree of accuracy and precision for the majority 

of the elements analysed. It should be noted that although the values obtained for 

iron have a good accuracy there is a significant variation in precision between each 

run. A significant variation in precision between each run can also be seen in the 

chlorine values. Although the level of chlorine in Coming D is significantly greater 

than the lower limit of detection of the EPMA for this element the data obtained from 

the Coming D analyses also have poor accuracy. The values obtained for aluminium 

are approximately 0.5Wt. % lower and the concentrations of phosphorus (with the 
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exception of run 1) are approximately 0.5Wt. % higher than the expected values from 

Coming D. However, the small standard deviation of the coefficient of variation for 

these elements (Table 111: 6) shows that this data does have good precision. The 

levels of sulphur and cobalt in Coming D are too close to the lower limits of 

detection of the EPMA (Table 111: 5) for the values obtained to be confirmed or 

refuted. 

Analyses of the unknown samples were carried out using the same techniques 

and conditions as the Coming D standards. Therefore, in cases where the 

concentration of the elements in the unknown is similar to that of the standard they 

should both be subject to the same standard deviation. In this research the 2 sigma 

values for Coming D (Table 111: 3) and the lowest detectable limits (Table 111: 5) 

obtained from each data run will be used. 
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Plate 3: 3 Backscattered SEM images of inhomogeneous beech and bracken 
glasses containing varying quantities of silica relics (Table 3: 3) 
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CHAPTER 4 

Experimental: The Effect of Altering Raw Material Parameters on 
Homogeneity 

4.1 Introduction 

Chapter 2 discussed the evidence for medieval glassmaking practices and 

their relationship to homogeneity. Parameters were selected for experimental 
investigation based on the significance of their influence on homogeneity (see 

Section 2.7). This experimental work can be broken down in to three main themes: 

raw materials (this Chapter), fritting (Chapter 5) and melting (Chapter 6). 

However, it will be seen that there are many links and interactions between the 

variables involved in each stage and that it is often difficult to draw a distinction 

between each one. 
The aims of this Chapter are therefore to: a) describe the raw materials used 

in this research and their preparation for glassmaking, b) determine the effect of 

batch mixing on homogeneity and c) establish a suitable melting time for each ash 

used in Chapters 5 and 6. All the frits and glasses produced were examined and 

recorded according to the parameters described in Section 3.3. The glasses were 

examined using backscattered SEM imaging and where appropriate selected for 

compositional analysis (see Sections 3.3.2.3 and 3.3.2.5). The experimental details 

and results are recorded in Table P1: 1-Table IV: 24. 

4.2 Sand 

The influence of the silica source on homogeneity has been discussed in 

Section 2.2.1. Loch Aline L30A commercial grade sand (commonly used in the 

modern UK lead crystal glass industry) was chosen to provide a known source with 

uniform chemical and physical properties, which would avoid introducing unknown 

variables that may affect the homogeneity of the experimental glasses. The 

compositional analysis (by XRF) is given in Table 4: 1 and the typical distribution of 

particle sizes in Table 4: 2 (Tilcon 1999: 1). This data indicates that the sand is of 

high purity and has a limited range of grain sizes. 
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Chemical 
Composition SiOZ A1203 FezO 

0 
Na20 KZO CaO MgO Loss on 

Ignition 

Oxide Wt. % 99.8 0.05 
TO 

<0.05 <0.01 <0.02 <0.05 0.07 

Table 4: 1 Chemical composition of standard grade Loch Aline sand (L30A) 
(Tilcon 1999: 1) 

Particle Size (B. S. 410 Test Sieves) /pm 

>500 >425 >355 >250 >180 >125 >90 <90 

Typical % Nil 0.2 3.0 36.0 53.7 6.4 0.5 0.1 

Specification 
Limits % Nil 1.0max N/a n/a n/a N/a 0.6max n/a 

Table 4: 2 Typical distribution of particle sizes in Loch Aline standard grade 
sand (L30A) (Tilcon 1999: 1) 

Sand grains of known particle sizes were required for all of the following 

experiments. To limit variations in the raw material, a single batch of L30A sand 

was prepared. A large sample of sand (3.0Kg) was ground for 24 hours using a ball 

mill containing alumina milling media (1.5Kg). The resultant sand was then sieved 

(B. S. 410 Test Sieves) to produce different grades ranging from <_45pm->_425µm 

grain diameter. The sand was sieved in quantities of 100g to ensure it was all 

subjected to the percussion action of the sieve shaker and to prevent contamination of 

larger grain sizes with smaller ones. The sieving stage was repeated three times for 

each grade to ensure consistent results. Each grade was washed repeatedly with 

copious amounts of water until no more fines could be observed in the decanted 

liquor. The sand was then heated to 105°C for 12 hours to remove the remaining 

water. The grades of sand produced for these experiments are listed in Table 4: 3. 

Milled Sand Particle Size (B. S. 410 Test Sieves) /Nm 

>_425->250 <_250->180 <_180->150 <_150->75 <_75->63 <_63->45 <_45 

Table 4: 3 Particle sizes of milled Loch Aline standard grade sand (L30A) 
produced for use in this research 
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4.3 Beech and Bracken Ash 

4.3.1 Ash Preparation 

The use of beech and bracken ashes in medieval glassmaking has been 

described in Section 2.2.2, and the reasons why they have been chosen for these 

experiments discussed in Section 2.7. At least two kilograms of beech tree ash was 

required to produce the glasses for the experimental part of this project (Chapters 4- 

6). It would have been preferable to use a single source of beech ash but this was not 

possible due to the large amount of wood required (see Section 4.3.3.1). 

Experiments in Section 4.6 used beech ash obtained from branches and twigs (brash) 

prepared by Smedley et al. (1998). This was collected from a single tree of an 

unknown age, the burning parameters are listed in Table IV: 1. 

The majority of experiments (Sections 4.7-6.1.4) used beech ash produced 

during the period of this research. Wood was collected in April 1999 from Whitely 

Woods, Sheffield (SK305 847). The tree had been cut down for at least one year 

prior to collection and consisted of 490.0Kg of trunk wood (30-40cm diameter) 

(Plate 4: 1). The wood was analysed by the Sheffield Dendrochronology Laboratory 

and confirmed as being from a 120 year old beech tree. 

Plate 4: 1 Billeted beech trunk wood ready for ashing 
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The wood was allowed to dry indoors for six months before it was burnt and 
during this period approximately 200Kg was stolen! This meant that the weight loss 

from wet to dry wood could not be assessed. The dry wood was billeted, weighed 

and ashed inside a garden incinerator using a blowtorch to initiate burning. The 

burnt material from each sample was allowed to cool before being sieved (2mm B. S. 

410 Test Sieve). The resulting fractions were weighed and the results recorded in 

Table IV: 1. 

A single bracken ash source was used in all of these experiments. This was 

beneficial as it allows more reliable comparisons between the different experimental 

glasses. The bracken was collected from Snake Pass, Derbyshire (SK084 924) and is 

described in Jackson and Smedley (2000: 336) (Table IV: 2). 

4.3.2 Compositional Analysis 

The compositional analyses by XRF of the beech ash collected by Smedley 

eta!. (1998: 149), and the bracken ash collected by Jackson and Smedley (2000: 

Table 2) are reported in Table IV: 3 and Table 11: 2 respectively. Samples of ash from 

the beech trunk wood ashed during this research (Table IV: 1) were collected for 

analysis. The original XRF unit used by Smedley eta!. (1998) and Jackson and 

Smedley (2000) was not available. Therefore, initial attempts to analyse the ash 

were made using ICP-AES, at the NERC facility, Department of Geology, Royal 

Holloway, University of London. A variety of sample preparations were tried based 

on either a nitric acid digest or a nitric followed by hydrofluoric acid digest. The 

mixture of organic and inorganic matter in the samples meant that it was impossible 

to obtain a complete dissolution, and filtration was required to produce a solution 

suitable for the ICP-AES. It was not possible to obtain repeatable results due to the 

difficulty in controlling the rate of sample dissolution into the acid. In order to 

overcome these problems, XRF analysis was attempted as the ash could be analysed 

without putting it into solution. An EDAX Eagle micro-probe (35 kV, 620µA) was 

used with an analysis time of 100 seconds. The beam was directed by a 300 micron 

capillary that attenuated X-rays over about 20 KeV and the samples were prepared as 

compressed powder pellets. Unfortunately, the facilities were not available to enable 

the analysis of all of the ash samples and therefore a representative group was 
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chosen. It should be noted that the results obtained (Table IV: 3) are semi- 

quantitative as no suitable matrix matched standards were available. 

4.3.3 Results and Discussion 

4.3.3.1 Burning Times and Ash Yields for Beech and Bracken 

Initially the beech wood burning was carried out inside the Department of 

Engineering Materials, University of Sheffield. This was to ensure constant 

conditions for each ashing and avoiding factors such as wind and rain. The heat and 

flames, approximately 2m high, meant that the following experiments had to be done 

outdoors for safety. 
Obtaining a stable flame was initially difficult but once burning was 

established the wood burnt very fast and fiercely. The burning times recorded in 

Table N: 1 are the periods when flames could be seen but it should be noted that the 

ashes and charcoal took much longer (up to 8 hours in some cases) to cool to air 

temperature. The beech ash formed was a pale grey/brown fine powder (Plate 4: 2). 

The bracken ash was dark grey in colour, had a coarser texture and was more 

vitrified than the beech ash (Plate 4: 2). The presence of small quantities of charcoal 

could be seen in both ashes. 
The results from the burnings of beech and bracken are recorded in Table 

N: 1 and Table N: 2. The percentage yield of ash is very low for all the samples 

(approximately 0.5-1.5 Wt. %). These results are in agreement with the findings of 

studies such as Berry (1917), Bezborodov (1975) and Smedley et al. (1998) (see 

Section 2.2.2). They confirm that a large volume of vegetation is required to produce 

an adequate supply of ash for glass production. These low yields may have meant 

that glassmakers could have used fuel ashes as a supplement. This brings additional 

problems in relating the chemical composition of a glass to the composition of the 

raw materials from which it was made (see Section 2.2.2.1). 
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Plate 4: 2 Beech ash (Trunk Wood, Sample 1 Table IV: 1) and Snake Pass 

bracken ash (Table IV: 2) 
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The beech ash yields were extremely variable and it is difficult to determine 

whether the rate of burning for the beech wood corresponds with the ash to charcoal 

ratios obtained (Table N: 1). Samples 3-5 all produced ash at a rate of 15000g of 

wood per hour, and had similar ash to charcoal ratios of approximately 70: 30 

percent. Sample 1 burnt more slowly (12500g of wood per hour), and the proportion 

of ash to charcoal was increased (approximately 40: 60). 

The brash wood burnt by Smedley et al. (1998) produced the highest 

proportions of ash to charcoal (approximately 85: 15). Brash has smaller dimensions 

than trunk wood and will therefore burn faster facilitating ash rather than charcoal 

production. In addition to this the ratio of bark to wood is also higher in brash 

compared to trunk wood. Bark produces more ash than wood and therefore this may 

increase the overall ash yields (Tylecote 1986: 223). The exception to these results is 

Sample 2, which although it burnt very quickly (25000g of wood per hour) formed 

the highest proportion of charcoal (approximately 62%). This may have been due to 

factors such as the rate that wood was fed into the incinerator and the temperature 

achieved. The difference in the burning rates and ash to charcoal ratios for the 

different beech wood samples may also influence ash composition (see Section 

2.2.2.1). This is therefore another factor that will influence homogeneity. 

4.3.3.2 Ash Composition 

Figure 4: 1 illustrates the elemental composition of the beech (Table N: 3) and 

bracken ashes (Table 11: 2) used in this research (see Section 4.3.1). Both the beech 

brash and trunk ashes have calcium levels (in excess of 31% CaO) that are higher 

than the total alkali concentration (less than 24% K20+Na2O). In comparison to the 

beech, the bracken ash contains lower calcium (9.02% CaO) and higher total alkali 

levels (39.52% K20+Na2O). These trends are in agreement with the published beech 

and bracken ash analyses discussed in Section 2.2.2.1. Higher alkali concentrations 

will facilitate homogeneity and glass formation. It is therefore probable that bracken 

ash batches will form a glass at lower melting temperatures and be more 

homogeneous than beech ash batches. It has also been seen that high calcium levels 

may have a detrimental effect on homogeneity (see Section 2.2.2.1) and therefore 

this may be evident in glasses produced from the beech ashes. 
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The beech brash and bracken ash have higher silica levels (18.0 and 15.17% 

Si02 respectively) than the beech trunk wood ash (2.55% Si02). This will increase 

the total silica component of the batch and increase the amount of alkali required to 

form a homogeneous glass. However, as the bracken ashes have a significantly 

higher total alkali content than the beech brash ashes the increased silica levels are 

less likely to cause inhomogeneity in the bracken compared to beech brash glasses. 

There are significant differences between the composition of the beech brash 

and trunk ash. Although both of the trees are from the same geographical area it is 

well documented that the part of the tree burnt will affect the composition of the ash 

(see Section 2.2.2.1). The higher phosphate concentration in the beech brash ash 

(15.3% P205) compared to the trunk ash (4.16% P205) may be due to the higher 

proportion of bark to wood, as bark contains a higher proportion of phosphates 

(Tylecote 1986: 223). In comparison to these wood ashes, the phosphate 

concentration in the bracken ash (as fleshy plant see Section 2.2.2) is 7.55% P205. 

The magnesium level in the three ash types is also very varied. The beech trunk 

wood contains the highest levels (11.63% MgO) and the bracken ash the lowest 

(4.88% MgO) with the beech brash ash falling in between (6.95% MgO). Although 

there are significant differences in the phosphate and magnesium concentrations of 

the three ash types the potential affects of these on homogeneity are not known. 

Phosphoric oxide can act as a network former (see Section 2.2) (Shelby 1997: 27), 

but it is not certain whether this will influence homogeneity. The three ash types 

have low levels of alumina (0.46-1.01% A1203). Although alumina can increase the 

melting point of a batch, which would affect homogeneity (see Section 2.4.2) 

(Shelby 1997: 28), it is thought unlikely that it will be so significant when present at 

these low levels. 

The beech brash and trunk ashes contain approximately 6.2% and 7.23% 

manganese oxide respectively. High levels of manganese are well documented in 

beech ashes (see Section 2.2.2.1) and will impart a purple colour to the glass. The 

high levels of iron (3.55%) in the bracken ash mean that the glass formed is likely to 

be green or blue. However, the colour of the glasses formed from both these ashes 

will depend on factors such as melting temperature, time, furnace atmosphere, and 

the presence of internal redox agents (Sellner et al. 1979, Weyl 1951). 
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Figure 4: 1 A comparison of the composition of beech and bracken ashes used in 
this research (Table 11: 2 and Table IV: 3) 
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4.4 Beech and Bracken Ash Particle Shapes and Relative Sizes 

Section 2.2.3 described the importance of raw material particle size on 

homogeneity. To determine the relative particle sizes of beech and bracken ash from 

Section 4.3, samples were suspended in water and mounted on a microscope slide. 

This enabled examination of the ash particles under a transmitted light microscope 

using plain polarised light. The shape and average size of the ash particles was noted 

and can be seen in Plate 4: 3. 

Visual examination of the ashes under the microscope determined that the 

particles of each ash type differed greatly in size and shape (Plate 4: 3). However, 

there was difficulty in comparing the ash sizes as observed in the photomicrographs 

due to the friable nature and solubility of the ash. It was therefore only possible to 

make general observations about the ash shapes and sizes. The results obtained 

suggest that there is a large difference in the particle sizes and distribution of these 

sizes for each type of ash. The beech ash (Plate 4: 3) consists of small particle sizes 

(approximately 10µm-50µm) compared to that of bracken (approximately 40µm- 

200pm). The bracken ash (Plate 4: 3) contains a very large particle size distribution 

with all sizes well represented. The influence of this (if any) on the homogeneity of 

the glass produced is not known. It may be limited due to the lower melting point of 

alkali compared to silica (see Section 2.2.3). It has already been noted that these 

ashes are extremely friable. Therefore, whilst the use of a finely divided powder 

would provide a more evenly mixed batch, it is not certain whether the ashes were 

ground prior to use in medieval glassmaking. 
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4.5 Batch Mixing Experiments 

4.5.1 Introduction 

Section 2.2.4 noted that the use of a well mixed batch is likely to be 

extremely beneficial in the reduction of inhomogeneities within a glass. The ability 

to achieve this depends on many factors including sand grain particle size and the 

method and time of mixing. The aim of this set of experiments was to investigate 

these variables, and determine an efficient and practical batch mixing regime that 

would be suitable for use in the forthcoming experiments. 
It should be noted that in this set of experiments laboratory grade sodium 

carbonate was the alkali fraction instead of beech or bracken ashes. The reason for 

this was that sodium carbonate could be completely and easily removed from the 

batch by dissolution in water allowing the proportions of alkali and sand to be 

calculated. This would not have been possible with plant ashes due to their partial 

insolubility. These ashes were also not used due to their limited availability (see 

Section 4.3.3.1). 

4.5.1.1 Mixing Time and Mixing Method 

The aim of these experiments was to determine the effect of mixing method 

and mixing time on the distribution of material in the batch (see Section 2.2.4.3). 

Batches were prepared containing sand (50.0g) and sodium carbonate (50.0g). The 

sodium carbonate was sieved through a 250µm mesh test sieve (B. S. 410) to remove 

any large lumps. The batches were placed in identical sealed glass jars (1000cm3) 

and rotated manually (one complete rotation per second), ̀ end over end' for a set 

time period. Three samples of 20g were removed from each batch using a spatula to 

prevent demixing. Hot water was added to the samples to dissolve the alkali 

fraction. The solution was then filtered and the remaining sand washed carefully to 

remove any residual alkali coating the grains. The sand fraction was dried for 12 

hours at 105°C and then weighed. The respective soda contents of each sample were 

calculated by difference. Mixing times (0-600s) were investigated using the `end 

over end' mixing method and the results are recorded in Table N: 4. Duplicate 

experiments were then carried out using the CB1 mixing method. This involved 

placing each batch in a large crucible (CB1, see Appendix A, Figure B: 1, Table B: 2) 
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and manually stirring it using a wooden spatula (15cm long, 1 cm width). The results 

are recorded in Table IV: 5. 

The results in Table IV: 4 and Table IV: 5 show that whatever mixing method 

or time is used the samples removed from the batch appear to contain almost equal 

amounts of sand and soda. However, when the range of results for each set of 

samples is looked at in detail a few general trends can be observed. Figure 4: 2 

illustrates the change in distribution of the batch components with increased mixing 

time and different mixing methods. Each point on the graph represents an average of 

three measurements. 
Mixing the batch even for very short periods (30seconds) using either the end 

over end or the CB 1 method significantly improves the even distribution of the batch 

components in each sample (1.8-4.8% respectively) compared to no mixing at all 

(12.5-26.4g). Increasing stirring times to 60s gives an improvement in batch 

distribution in the end over end samples (1.1%) but no change in the CB1 samples 

compared to those produced at 30s using the same method. Increasing stirring times 

to 300 and 600s continues to improve the distribution of sand and soda in the CB1 

samples but introduces demixing in the `end over end' samples (see Section 2.2.4.3). 

These experiments have shown that the two methods have different rates of mixing. 

The `end over end' method is more efficient producing a well mixed batch faster, as 

it has a more vigorous mixing action within a larger mixing area compared to the 

stirring action in the smaller CB 1 crucible. A practical batch mixing regime was 

required for future experiments in this chapter as well as Chapters 5 and 6. Based on 

the results from this section the `end over end' method and a mixing time of sixty 

seconds were selected. 
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Figure 4: 2 Variations in batch mixing with mixing time and method (Table IV: 4 
and Table IV: 5) 

4.5.1.2 Sand Grain Size 

Experiments were carried out to determine the effect of sand grain size on 

mixing (see Section 2.2.4.2). Batches were prepared using unsieved sand (Table 4: 2) 

and a range of sand grain sizes (>450->75pm) (Table 4: 3). The values for the >450- 

>250 sand grain size samples were obtained from the results of the experiments in 

Section 4.5.1.1. The results are recorded in Table IV: 6 and are illustrated in Figure 

4: 3. 
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Figure 4: 3 Variation in batch mixing with sand grain size (Table IV: 6) 

It was noted in Section 2.2.4.2 that smaller silica grain sizes or well matched 

batch grain sizes facilitated batch mixing. Figure 4: 3 shows that better mixing 

appears to be achieved with decreasing sand grain size although the differences are 

small. However, the best distribution was obtained when using unsieved, multi grain 

sized sand and this is therefore not in agreement with the published results discussed 

in Section 2.2.4.2. Reasons for the improved mixing when using the unsieved sand 

could be that better packing is achieved when a mixture of grain sizes is used or a 

sampling bias in the results. 

4.5.2 Summary and Discussion of Batch Mixing Experiments 

These basic mixing experiments have shown that successful mixing of the 

batch components occurs rapidly when using dry materials and does not appear to be 

significantly affected by the use of different sand grain sizes and mixing methods. If 

the batch is not mixed, it may not actually be a major source of inhomogeneity due to 

other factors involved in the production of a glass (see Section 2.2.4.3) (Tooley and 

Tiede 1946). The particle size of raw materials may actually be more important in 

the later stages of melting and refining (see Section 2.2.3). Therefore the effect of 

mixing and particle size will be investigated in Section 4.6. 
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4.6 The Effect of Sand Grain Size and Batch Mixing on Homogeneity 

4.6.1 Introduction 

Section 2.2.1.1 determined that the use of smaller silica grain sizes and a 

mixed batch are beneficial in the production of a more homogeneous glass. The aim 

of these experiments was not to investigate fritting in detail, as this will be carried 

out in Chapter 5, but to investigate the effects sand grain size and batch mixing have 

on fritting, melting, and the homogeneity of a glass. 
Section 2.3.2 discussed the different fitting times reported by Theophilus 

(Hawthorne and Smith 1979: 53) and Neri (Merrett 1662: 8). It was noted that this 

disparity could be a function of the use of either different fitting temperatures, or 

different raw materials with different melting characteristics. In the following 

experiments the fritting times and temperature were selected based on work by 

Smedley et al. (1998: 154), and these parameters kept constant for both beech and 

bracken batches to enable the observation of any differences in the behaviour of the 

two ashes. The melting temperature selected was 1300°C. This value was chosen as 

it is thought that this would be sufficient to form a glass based on work by Smedley 

eta!. (1998: 152), and also be within the temperatures assumed to be achievable in 

medieval furnaces (see Section 2.4.2). 

4.6.2 Experimental 

The following experiments were carried out to investigate the differences 

between glasses formed using mixed (see Section 4.5) and unmixed batches. 

Bracken and beech ash based batches were prepared using differing sand grain 

particle sizes. Four identical batches were prepared for each ash and sand grain size. 

The ash particle size was variable (see Section 4.4). Two batches were mixed, the 

other two left unmixed. 
A standard batch composition of 2 parts alkali, to 1 part silica, by weight was 

used in all of the experiments in this section. The choice of this ratio and the use of 

weight rather than volume was based on the results of the experimental work carried 

out by (Smedley et al. 1998). L30A sand (Section 4.2) was the silica source (5.00g), 

and either beech or bracken ash (10.00g) was used to provide the alkali (Section 4.3). 

Where specific sand grain sizes are quoted they refer to those described in Section 

96 



CHAPTER 4 THE EFFECT OF ALTERING RAW MATERIAL PARAMETERS ON HOMOGENEITY 

4.2, Table 4: 3. Where it is stated that the batch is mixed, the procedure used was the 

`end over end' method for a period of 60s (see Section 4.5.1.1). 

A schematic representation of this set of experiments can be seen in Figure 

4: 4 and the experimental details for both the bracken and beech ash batches are 

recorded in Table IV: 8 and Table IV: 11. All the frits and glasses produced were 

examined visually and the results recorded in Table IV: 9 and Table IV: 12. 

MIXED 
BATCH 

BATCH II FRITTING II MELTING 

UNMIXED 
BATCH 

Figure 4: 4 A Schematic representation of batch mixing and sand grain size 
experiments 

4.6.2.1 Fritting 

One mixed and one unmixed batch of each ash type (beech and bracken) and 

sand grain size was subjected to a fritting procedure (see Section 2.3) before the glass 

melting stage. These samples were heated in mullite crucibles (CON 9) at 900°C for 

24 hours. The crucibles are conical in shape, approximately 5.5cm in height and 

have a volume of 43m1 (for a full description see Appendix A). The crucibles were 

then allowed to cool on the back of the furnace to decrease the risk of cracking due to 

thermal shock. Two sets of identical frits were produced, one was removed from the 

crucible for examination and the other was left in situ for the subsequent melting 

stage. These experiments did not investigate the effect on homogeneity of grinding 

and mixing frit before the melting stage. This will be covered in Section 5.5. 
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4.6.2.2 Melting 

All the batches were melted at 1300°C for 1 hour in an electric furnace (see 

Appendix A). The unfritted batches were added to preheated crucibles (1000°C) in 

one charge. The fritted samples were left in their crucibles and were preheated on 

the back of the melting furnace for thirty minutes to prevent the crucibles cracking 
due to thermal shock on insertion into this furnace. After removal from the melting 

furnace the crucibles were allowed to cool on the back of the furnace before being 

examined. 

4.6.3 Results 

4.6.3.1 Unmixed and Unfritted Batches 

The unmixed, unfritted beech ash batches did not form glasses (Table IV: 9). 

The batch was pale grey/green and had reduced in volume by approximately 25%. 

The batch fell apart when removed from the crucible (Plate 4: 4). It contained loose 

powder except at the sand ash interface where some vitrification was visible, this 

vitrification increased with decreasing sand grain size. 

Plate 4: 4 Unmixed, unfritted beech (Be5, Table IV: 9) ash batch heated at 
1300°C for 1 hour 
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All the unmixed and unfritted bracken ash batches in this set of experiments 

formed a visually homogeneous, dark green glass (Plate 4: 5, Table IV: 12). Visual 

examination showed that there appeared to be no difference in the samples produced 

using differing sand grain particle sizes. All the glasses were observed to have a ring 

of a white crystalline substance (see Section 3.3.1) around the top of the glass (Plate 

3: 2) and no batch relics could be detected. The SEM images obtained from samples 

of these glasses determined that in all cases the glass appeared to be homogeneous. 

Plate 4: 5 Unmixed, unfritted bracken (Br5, Table IV: 12) ash batch heated at 
1300°C for 1 hour 

4.6.3.2 Unmixed and Fritted Samples 

The frit formed from the unmixed beech ash batches was predominantly 

grey/green (Table IV: 7). The frit formed from the unmixed bracken ash batches 

was dark grey (Table IV: 10). All the frits mainly consisted of loose powder and fell 

apart on removal from the crucible. The only visible evidence of vitrification (pale 

purple in colour) was at the ash sand interface. This was observed to increase 

slightly with decreasing sand grain size. The reduction in batch volume between the 
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raw materials and the frit was approximately 25%, in the beech ash batches and 30% 

in the bracken ash batches. 

The unmixed and fritted beech ash batches did not form glasses when heated 

at 1300°C for 1 hour (Plate 4: 6, Table IV: 9). The only vitrification observed was the 

same as has been seen in the frit at the interface between the sand and ash. The thin 

layer of semi-vitrified product was greater than that observed in the frit and the 

extent of vitrification increased with decreasing sand grain size. The extent of 

vitrification in these samples was less than that observed in the unmixed and 

unfritted samples (Section 4.6.3.1). 

Beech Ash Batch 

Plate 4: 6 An unmixed, fritted beech (Be6, Table IV: 9) ash batch heated at 
1300°C for 1 hour 

All the unmixed and fritted bracken ash batches (Table IV: 12) in this set of 

experiments did not form complete glasses and the extent of vitrification increased 

with decreasing sand grain size. Visual examination of the product showed that in 

all cases it was opaque brown, semi-vitrified and contained copious batch relics 

(Plate 4: 7). Examination with the SEM determined that homogeneity increased with 

decreasing sand grain sizes. 
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Plate 4: 7 An unmixed, fritted bracken ash batch heated at 1300°C for 1 hour 
(Br6, Table IV: 12) 

4.6.3.3 Mixed and Unfritted Batches 

The mixed and unfritted beech ash batches (Table IV: 9) did melt but failed to 

form a glass. The batch was observed to have reduced in volume by approximately 

75% and an opaque, pale purple mass was observed at the bottom of each crucible 

(Plate 4: 8). No loose powder could be observed in any of the samples and the 

substance could not be removed from the crucible. The extent of vitrification 

increased with decreasing sand grain size and a small quantity of pale purple glass 

was observed to have formed around the edges of the crucible in those samples 

produced using sand grain sizes ranging from <_l80pm-<_45pm. 

All the mixed and unfritted bracken ash batches (Table IV: 12) in this set of 

experiments formed a visually homogeneous, dark green glass (Plate 4: 8). Visual 

examination showed that there appeared to be no difference in the samples produced 

using differing sand grain particle sizes. No significant visual differences could be 

detected between the glasses produced in this section and those produced from 

unmixed and unfritted batches (see Section 4.6.3.1). All these glasses were observed 
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to have a ring of a white crystalline substance around the top of the glass and were 
found to be homogeneous on examination under the SEM. 

Plate 4: 8 A mixed, unfritted beech (Be7, Table IV: 9) and bracken (Br7, Table 
IV: 12) ash batch heated at 1300°C for 1 hour 
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4.6.3.4 Mixed and Fritted Samples 

The frit formed from the mixed beech ash was pale purple in colour (Table 

N: 7). The bracken ash batches were a darker purple with a dark green surface 

layer (Table IV: 10). All the fits occupied approximately 50% of the original batch 

volume and contained extensive vitrification. They had shrunk away from the sides 

of the crucible and were difficult to completely remove from the crucible. The beech 

batches could not be broken up completely by hand. The bracken ash batches were 

completely vitrified and could only be broken using a hammer. 

The mixed and fritted beech ash batches (Plate 4: 9, Table N: 9) did not 

completely melt but the extent of vitrification increased with decreasing sand grain 

size. Vitrification was less than that observed in the identical unfritted batches 

(Section 4.6.3.3). A small amount of glass was again observed in samples produced 

using sand grain sizes of 75µm or less. 

The mixed and fritted bracken ash batches (Table IV: 12) made using the 

smallest sand grain sizes (: 575->63pm and <_63->45pm) produced visually batch free 

but highly opalescent, pale green glasses (Plate 4: 9). The batches containing larger 

sand grain sizes (_425->75pm) did not melt completely. Visual examination of the 

partially formed, opaque brown glass showed that it contained copious batch relics. 

This was visually identical to the product formed by the unmixed and flitted batches 

(Plate 4: 6, Section 4.6.3.2). The extent of vitrification in the opaque brown 

substance increased with decreasing sand grain size. Backscattered SEM imaging 

determined that the pale green glasses were homogeneous and that the opaque brown 

material became more homogeneous with decreasing sand grain sizes. The decrease 

in inhomogeneities occurred at comparatively larger sand grain sizes than those in 

glasses made from unmixed fritted batches (Section 4.6.3.2). 
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Plate 4: 9 A mixed, fritted beech (Be8, Table IV: 9) and bracken (Br8, Table 
IV: 12) ash batch heated at 1300°C for 1 hour 
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4.6.3.5 Crystalline Substance Found on Bracken Glasses 

Many of the bracken glasses produced in these experiments had a very fluid 

liquid layer on top of the melt, which on cooling, formed a pale pink or white 

crystalline substance (Plate 3: 2). The substance was observed to flake off the surface 

of the glass very easily and deliquesce if left in contact with air for a few days. This 

material was not seen on any of the beech glasses produced. 

The crystalline substance was removed from the surface of a selection of 

bracken glasses. A sample of each of these was subjected to the standard chemical 

qualitative tests listed in Table 4: 4 (Briggs and Stewart 1928) to determine the 

nature of the cations and anions present. The experimental parameters and the 

results observed at all stages were noted in Table 4: 4 and it was concluded from 

these that this substance was likely to be potassium sulphate. 

, Add aqueous The colourless solution forms a white C02 , 
S032-, S042 

barium chloride precipitate. Cr2042- present 

Add dilute 
The white precipitate remains. SO42- only present 

hydrochloric acid 

The white crystalline substance burns to give 
Flame test an orange/lilac flame. This appears lilac when K` present 

viewed through blue glass. 1 11 

Table 4: 4 Results of the qualitative chemical tests carried out on the white 
crystalline substance observed on a number of the bracken ash 

glasses 

4.6.4 Summary of Results 

The results of the beech and bracken ash experiments in this section (Table 

IV: 9 and Table IV: 12 respectively) are summarised below. The beech ash batches 

were not subjected to SEM analysis (see Section 3.3.2.2) due to their inability to 

completely melt and form a glass. The backscattered SEM imaging of the bracken 

ash glasses confirmed the visual observations made in all cases with respect to 

homogeneity. 

" Melting temperatures of 1300°C and times of 1 hour are not sufficient for 

any of the beech ash batches to fully smelt and form a glass. In contrast, 
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all of the unmixed or mixed, unfitted bracken ash batches formed a 

glass. No difference in homogeneity could be detected visually or using 

the SEM between the unmixed or mixed, unfritted bracken glass types. 

" The use of smaller sand grain sizes (<_180µm->45µm) does appear to 

improve the extent of vitrification in the finished product in both fritted 

and unfritted batches. 

" Mixing the batch improves the extent of vitrification in the finished 

product in both fritted and unfitted batches for both ash types. 

" The inclusion of a fritting stage (24hr at 900°C) does not facilitate the 

production of a glass at melting temperatures of 1300°C for 1 hour when 

compared to unfritted batches for both ash types. In bracken glasses the 

exception to this occurs when using a mixed batch and small sand grain 

sizes (<_75->45pm). 

9 The glasses formed from bracken ash frit are paler in colour than those 

formed from unfritted batches and contain extensive opacity. No 

difference in homogeneity can be seen under the SEM between the two 

types. 

4.6.5 Discussion 

4.6.5.1 Batch Mixing 

Although many of the beech and bracken ash batches in these experiments 
did not form completely batch free glasses they did exhibit several general trends in 

the results. Mixing the raw materials prior to fritting or melting does increase the 

extent of vitrification and the homogeneity of the finished glass. Theophilus 

(Hawthorne and Smith 1979: 53) and Biringuccio (Smith and Gnudi 1990) both refer 

to batch mixing in their observations on medieval glassmaking practices. It would 

therefore appear that the glassworkers knew of the significance of this stage in the 

glassmaking process (see Section 2.2.4). Mixing the batch will ensure a more 

intimate combination of the alkali and silica, facilitating reactions between the raw 

materials. This is applicable to both glasses made from unfitted or fritted batches 

and reduces the likelihood of forming inhomogeneities such as silica rich inclusions 

within the melt (see Section 2.3.2) (Crossley 1972). 

106 



CHAPTER 4 THE EFFECT OF ALTERING RAW MATERIAL PARAMETERS ON HOMOGENEITY 

4.6.5.2 Sand Grain Size 

In addition to the benefits of batch mixing, decreasing the sand grain particle 

size increased the extent of homogeneity and glass formation within the batches. 

These results are comparable with those discussed in Section 2.2.1.1. Decreasing the 

size of the silica grains increases the surface area to volume ratio and therefore the 

area over which the alkali can attack the silica, ensuring a faster and more complete 

melt. Combining the use of a small silica grain size and a mixed batch therefore 

increases the probability of forming a relatively batch free and homogeneous glass. 
It has been seen that there was a deliberate selection of smaller silica grain 

particle sizes in medieval glass manufacture, as mentioned by Neri (Merrett 1662), 

Theophilus (Hawthorne and Smith 1979) and Biringuccio (Smith and Gnudi 1990) 

(see Section 2.2.1). This choice was probably not due solely to the increased 

homogeneity of the finished glass, but is more likely to be linked with the shorter 

melting times obtained which would reduce fuel requirements. 
The correlation between refining time and sand grain size must also be 

considered. In Section 2.2.1.1 it was noted that the use of very small grain sizes 

would cause an increase in refining time. In these experiments the glass that was 

formed contained little seed and appeared to be relatively well refined. However, it 

must be noted that these experimental melts are very small compared to the evidence 

for medieval glass melting (see Section 2.4.5.2) and are therefore likely to exhibit 

much faster rates of homogenisation and refining (see Section 2.2.1.1) (Plumat et al. 

1963). The production of glass on a larger scale may therefore have needed to 

address the question of refining as large quantities of seed would have affected the 

visual appearance and overall quality of the glass and increase the melting time 

required. The medieval glassmaker may therefore have had to balance grain size 

against refining time. This would have depended on the quality of the glass desired 

and the extra time required to prepare the batch for melting (for example pulverising 

quartz pebbles) if the dimensions of the raw materials were not small enough. 

4.6.5.3 Fritting 

In both the beech and bracken ash batches the fritting stage can be seen to 

have significantly altered the appearance of the batch when compared to the raw 

materials. The beech ash batches were initially a pale brown colour (caused by the 
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ash). On heating, the mixed batches changed to pale purple, caused by the presence 

of manganese in the ashes (approximately 6%, Table N: 3). The colour change 

occurs as the Mn 3+ ion is altered with increasing temperatures (Smedley et al. 1998). 

In comparison, the unmixed batches turned a pale green colour on heating except at 

the sand/ash interface where the purple colour was again present. The reason for the 

green colour is not certain, but this may be due to the removal of the organic 

component of the ash as it is heated causing the overall colour of the batch to lighten. 

In the mixed batches the grey bracken ash also formed a predominantly 

purple coloured frit. The manganese concentration is much lower in this ash type 

(approximately 0.5%, Table IV: 3) and it is not certain whether this element is 

responsible for the colour change here. The difference in colour between the body 

(purple) and the surface (dark green) of the frit may be caused by the reaction 

between the batch and the furnace atmosphere. The frit was heated in air and the 

conditions inside the furnace are neutral to oxidising. In contrast the environment 

inside the frit is likely to be reducing as the ash contains organic material that will 

burn to release carbon dioxide at temperatures greater than about 400°C (Lide 1999). 

The change in atmosphere is probably responsible for the difference in colour 

between the surface and the body. 

In the unmixed bracken batches the bracken ash remained grey in colour but 

had become paler with heating, as with the unmixed beech batches the purple colour 

was observed at the raw material interface where the materials had begun to react. It 

would therefore appear that in both these ash types the colour change is a direct 

result of the reaction between the ash and sand. 

In addition to the difference in colour, a comparison of the fritted beech and 

bracken ash batches shows bracken exhibits a greater change in batch volume and 

vitrification when compared to the same samples produced from beech. This is due 

to the differences in the composition of the two ash types, it can be seen from Table 

N: 3 that bracken contains a much higher total alkali concentration (approximately 

37-53%) than beech ash (approximately 20%). Potassium and sodium compounds 

will melt at temperatures in the region of approximately 700-1000°C and begin to 

react. with silica in the batch (Lide 1999, Smedley et al. 1998). The higher the alkali 

concentration in the batch the faster the speed of these reactions will be. This 

therefore leads to a more noticeable difference in the vitrification. 
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The evidence for fritting in medieval glassmaking has been well documented 

by many authors in antiquity such as Theophilus (Hawthorne and Smith 1979) and 
Neri (Merrett 1662) and the potential benefits of including a flitting stage in glass 

production have been discussed in Section 2.3. It was noted that fritting had many 

advantages including a reduction in batch volume and in the temperature required to 

melt the batch, eliminating waste gases and allowing carbon and volatiles to be burnt 

off (Smedley et al. 1998). The results from these experiments confirm that with both 

ashes the batch volume and the friability (and therefore the removal of volatile 

components) of the fritted product are significantly reduced. It can also be seen that 

the use of a mixed batch is vital to ensure a more comprehensive reaction between 

the alkali and sand fractions even at lower temperatures. 

The most unexpected observation in these experiments however, was that the 

use of a fritted batch generally appears not to have facilitated glass formation and 

has increased the quantities of inhomogeneities observed in the finished glass. This 

behaviour occurred in both beech and bracken ash batches and the reasons for this 

are not certain. It should be noted that the comparative experiments carried out by 

Smedley et al. (1998) with the same beech ash did find that the fritted batches 

produced glasses. It may therefore be that there was some unknown experimental 

error in the furnaces or materials used here. The former can probably be ruled out as 

the furnaces are calibrated regularly. However, it was noted in Section 2.2.2.1 that 

plant ash compositions can be very variable and this may be one reason for the 

results obtained. It would be interesting to determine the composition of the fritted 

product and determine if any significant differences could be seen. The melting 

behaviour of the beech brash ash will be examined in Section 4.7. 

In addition to the reasons given above, there are many other factors that may 

have influenced the unexpected fritting results obtained in these experiments. The 

fritting parameters chosen were only an approximation to those described by 

Theophilus (Hawthorne and Smith 1979: 53), who noted that in addition to the batch 

being heated for twenty four hours that it should be continuously stirred. This latter 

instruction was not carried out here, as the practicalities of stirring the ashes for this 

length of time could not be overcome due to safety problems in working with hot 

open furnaces. The results may therefore be a reflection of this but there are other 

factors to consider. Theophilus' description also implies that the batch is placed on 

the furnace floor and raked. It is therefore not held in a crucible and this may have 
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an important affect on the contact between raw material particles, the furnace 

atmosphere, the surface area to volume ratio of the batch, and heat transfer. The 

shape and fabric of the fritting crucibles used in these experiments will have had an 

effect on all of the variables mentioned and therefore may be responsible for the 

results obtained. 
The main reason for the formation of more inhomogeneities in fritted 

compared to unfritted batches is thought to be due to the loss of some of the volatile 

alkali component. If significant amounts are lost during the fritting process then 

there may not be enough to melt all the silica to form a glass (Shelby 1997). It 

appears that fritting is a very complex procedure and further experiments are 

required to determine whether variables such as stirring the frit or changing crucible 
dimensions will affect the glass produced. 

It can be observed from the results of these experiments that the fritting stage 

of glass production is complex and dependent on a complex combination of factors 

and these will be investigated further in Chapter 5. 

4.6.5.4 Melting 

The comparison between the results from the beech and bracken ash batches 

in these experiments show that different melting parameters (such as temperature and 

time) are required for different raw materials. Bracken ash glasses melt at a lower 

temperature than the equivalent beech ash glasses and, as with the fritting reactions, 

this is due to their higher total alkali concentrations. The faster the batch melts the 

more time is available for internal thermal mixing and therefore the more 

homogeneous the glass is likely to be. In addition to this, a well mixed batch and 

smaller sand grain sizes will increase the reaction speed of the raw materials, 

decreasing melting time and therefore facilitating homogenisation. 

The colour of the glasses formed varied with the ash used and is dependent 

on the amounts and types of transition elements present in the batch. It is also 

influenced by many other factors including melting temperatures, times, and furnace 

atmosphere. The green colour of the bracken glasses was caused by the presence of 

iron in the ashes (between 0.5-3.5%, Table IV: 3) (Weyl 1951). The two fritted 

batches that formed were significantly paler in colour than those formed from 

unfritted batches. It is not certain why this occurs but the change in hue may be due 
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to the loss of some of the batch components during fritting. The colour change is 

important, as it may have been another reason for the inclusion of a flitting stage. 
The small amount of beech ash glass formed was pale purple in colour, and as with 

the frit, this is caused by the presence of the trivalent manganese ion in the ashes. 
The bracken glasses formed in these experiments did have a tendency to form 

a white crystalline substance that is probably potassium sulphate (Table 4: 4). If the 

batches had been scaled up and melted in large quantities then the volume of this 

would presumably have increased and would have had to be removed before the 

glass could be worked. The amount of potassium sulphate formed might be expected 

to reduce with the inclusion of a fritting stage, as potassium based components are 

very volatile and therefore more likely to be easily lost. However, it can be seen that 

the quantities observed on fritted glasses were equal to that seen on the unfitted 

glasses. Further investigation into the behaviour of this substance with different 

fritting and melting parameters will be carried out over the following sections. It is 

important to note that whilst this product would appear to be an undesirable side 

effect in the manufacture of bracken glasses it does not appear to affect the actual 

homogeneity of the glass. 
In addition to the white crystalline substance, extensive opacity was observed 

in the two flitted bracken ash glasses. In archaeological glasses opalescence (usually 

observed as a greylblue colouration) is thought to be due to the formation of calcium 

phosphate from phosphate rich plant ashes or apatite rich sands (Crossley 1972). 

The opacity visible in the experimental glasses does not appear to be grey/blue in 

colour, and imparts a milky appearance to the original glass. It does also not appear 

to be influencing the homogeneity of the glass but may be another unwanted 

consequence of forming glasses from bracken ashes. Further compositional 

information is required to determine the nature of the opacity in these glasses and 

this will be carried out in Chapter 6. 

4.6.6 Conclusions 

A summary of the main conclusions derived from this set of experiments is 

listed below: 

" Mixing the batch will facilitate the production of a more homogeneous 

glass. 
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" Smaller sand grain sizes improve glass formation and therefore 

homogeneity. However, this has to be balanced against refining time and 

therefore the quality of the glass desired. 

" Sand grain size and mixing may not significantly influence homogeneity 

if the ash is very reactive. 

" The inclusion of a fitting stage increases inhomogeneity. 

" The inclusion of a fritting stage is not always necessary to produce a 

glass. 

" Beech ash batches required a higher melting temperature than bracken 

batches to form a glass. 

" Beech and bracken ashes have specific fritting and melting requirements. 

The unusual results obtained from the glasses made using a fritting stage 

suggests that fritting is a very complex variable that will require further experimental 
investigation. This will be carried out in Chapter 5. Before this can be done it is 

important to establish a melting temperature and time that will melt the beech ash 
batches into glasses. The relationship between ash type, melting temperature and 

time is therefore the focus of Section 4.7. 
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4.7 Stages of Melting, an Evaluation of Glass Melting Temperature and Time 

4.7.1 Introduction 

The results of Section 4.6 determined that at melting temperatures of 1300°C 

most of the glasses were not batch free after 1 hour. To be able to investigate 

inhomogeneity in Chapters 5 and 6a melting time has to be selected that will form a 

glass. The following sets of experiments were therefore designed to determine at 

what times and temperatures these glasses became batch free. These experiments 

used the beech brash ash produced by Smedley eta!. (1998) (used in Section 4.6), the 

beech trunk wood ash produced during this research (used in Chapters 5 and 6), and 

the bracken ash produced by Jackson and Smedley (2000) (see Section 4.3). 

4.7.2 Experimental 

The batch composition used in Section 4.6.2 was altered for all the following 

experiments in this Chapter. The parameters were the same except the total batch 

weight was reduced from 15.00g to 9.00g (3.00g sand, 6.00g ash). This new value 

was chosen to conserve raw materials (see Section 4.3.3.1). The sand grain size used 

was <_250->180µm (B. S. 410 Test Sieves) and the batch was mixed. A single sand 

grain size was chosen, as it was important to maintain a standard throughout all the 

following experiments to avoid introducing additional unknown variables. The 

mixing procedure used was the `end over end' method for a period of 60s (see 

Section 4.5.1.1). Unless otherwise stated, these batch parameters were also used in 

Chapters 5 and 6. 

The batches were added in one stage to preheated mullite crucibles (CON9, 

see Appendix A). They were not fitted before melting as the results from Section 

4.6 suggested that fritting is an extremely complex variable and this will be 

investigated in detail in Chapter 5. Batches of each ash type were subjected to 

differing melting temperatures (1200°C and 1300°C) and times (0.083-66hrs) in an 

electric furnace. The crucibles were then removed and left to air cool on the back of 

the furnace. The experimental parameters and the visual results of the glasses 

produced in this section are recorded Table IV: 13 to Table IV: 24. 

113 



CHAPTER 4 THE EFFECT OF ALTERING RAW MATERIAL PARAMETERS ON HOMOGENEITY 

4.7.3 Results for Beech Ash Batches 

The difference in the melting behaviour of the beech brash and trunk wood 

ash batches at 1200°C and 1300°C is illustrated in Figure 4: 5. 
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Figure 4: 5 A comparison of the results of stages of melting for beech brash and 

beech trunk wood ash glass at 1200°C and 1300°C (Table IV: 13 to 
Table IV: 20) 
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The beech brash ash did not form a glass at a melting temperature of 1200°C. 

At melt times between 5 and 20 minutes no visible melting could be observed. 

Vitrification was observed in the centre of batches heated for times greater than 20 

minutes but the resulting substance was still extremely friable. The extent of 

vitrification increased with increasing melt times but even after very long melting 

times of up to 66 hours the resulting mixture was still very friable and no glass had 

formed (Plate 4: 10). 

The beech trunk wood ash batches reacted faster than the brash ash batches. 

The first signs of vitrification occurred and a glass was formed in the trunk wood ash 
batches at a melting time of 5 minutes. Glass formation increased with extended 

melting times (up to 66 hours), but batch relics were still present and the glasses 

were all inhomogeneous (Plate 4: 10). 

The results from these experiments using a melting temperature of 1300°C 

show that raising the melting temperature does increase the extent and speed at 

which vitrification occurs in both beech ash types (Figure 4: 5). In the brash ash 
batches at a melt time of 5 minutes, the batch had reduced in volume by 75 percent 
but loose batch could still be seen on the top of a semi-vitrified core. Glass was first 

observed after a melt time of 20 minutes. The glass formed at the crucible wall and 

at the edges of the semi-vitrified core, but loose batch was still present. The extent 

of glass formation increased slowly with increasing melt time. The glass was pale 

purple and visually homogenous in colour. A core of white, semi-vitrified material 

(which appeared to be partially melted sand) was present in all the samples. As melt 

times increased the core decreased in size but remained evident in the centre of the 

glass even after 46 hours (Plate 4: 11). The colour of the surrounding glass also 

appeared to become paler with increasing time. The melts were not continued 

beyond 46 hours, as it was thought not possible to melt the semi-vitrified core any 

further. The beech trunk ash batches heated at 1300°C had formed at a melting time 

of 5 minutes and were visually batch free after 45 minutes (Figure 4: 5). The visual 

differences between the glasses formed from the two different beech ashes is 

illustrated in Plate 4: 11. 

Although the trunk wood ash glass was batch free after 45 minutes 

backscattered imaging determined that inhomogeneities were still present until the 

melting time was increased to 4 hours (Plate 4: 12). 
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Plate 4: 10 A comparison of beech brash and trunk wood ash batches heated at 
1200°C for 66 hours (Be36, Table IV: 14 and Be48, Table IV: 16) 
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0 c; riis. 5 
Beech Trunk Wood Ash 

Plate 4: 11 A comparison of a beech brash wood ash batch heated at 1300°C for 
46 hours (Be69, Table IV: 18) and a beech trunk wood ash batch 
heated at 1300°C for 4 hours (Be85, Table IV: 20) 
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Plate 4: 12 A comparison of optical and backscattered SEM images of a beech 
trunk ash glass melted at 1300°C for 0.75 hours (Be78, Table IV: 20) 
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4.7.4 Results for Bracken Ash Batches 

The difference in the behaviour of the bracken ash at different melting 

temperatures is illustrated in Figure 4: 6. 
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Figure 4: 6 A Comparison of Bracken Ash Batches Melted at 1200°C and 1300°C 
with Increasing Melt Times (Table IV: 21 to Table IV: 24) 
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The results obtained from these experiments using a melting temperature of 

1200°C (Table IV: 22) determined that the bracken ash batches were extremely 

reactive. Copious white fumes were emitted from the batch during the first 10 

minutes of the melt time. The batch reduced by a quarter in size within 5 minutes. 

The time taken to produce a dark green batch free glass was 4 hours (Plate 4: 13). 

0 cros. 5 

Visually Batch Free Glass 

" 

Backscattered SEM Image Illustrating Low Inhomogeneity 

Plate 4: 13 A comparison of optical and backscattered SEM images of a bracken 

ash glass melted at 1200°C for 4 hours (Br34, Table IV: 22) 
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Backscattered SEM imaging showed that low levels of inhomogeneity were 

still present after a melting time of 4 hours (Plate 4: 13). The backscattered imaging 

confirmed that visual homogeneity coincided with the removal of the silica relics, but 

that complete removal of inhomogeneity required a melting time of 5.5 hours. 

A pink or white crystalline substance (identical to that seen in Section 4.6.3) 

was observed on the surface of many of the glasses produced. The substance initially 

disappeared at melt times greater than 2 hours but reappeared in the centre of the 

surface of the glass produced at 5.25 hours. It was not present at the next melt time 

of 5.5 hours. 

The melting behaviour in this set of experiments using a melting temperature 

of 1300°C (Table IV: 24) followed the same pattern as the bracken melts carried out 

at 1200°C except fully formed glasses were produced in shorter times. The bracken 

ash batches reacted violently emitting copious white fumes for the first 10 minutes of 

the melt time. At a melt time of 5 minutes the batch had reduced in size to a quarter 

of its original volume and a partially reacted glassy substance had formed. A dark 

green visually batch free glass was observed at a melt time of 30 minutes or more. 

Examination under the SEM showed that although this glass contained no silica 

relics it was still inhomogeneous (Plate 4: 14). 

The same differences in visual and microscopic homogeneity were observed 
in the glasses formed at 1300°C as in the glass formed at 1200°C. Although a 

visually homogenous glass was formed after 30 minutes the SEM images confirmed 

that the formation of a homogeneous glass required a longer melting time of 1.5 

hours. The dissolution of the silica relics again coincided with the observation of 

visual homogeneity. 

The pink or white crystalline substance was observed on the surface of 

glasses formed at melt times of 5-50 minutes. The amount of this substance reduced 

in size (shrinking away from the edges of the crucible to a small disk in the centre) 

with increased melt time, completely disappearing at 55 minutes. The removal of the 

majority of bubbles from the melt also occurred at the same melt time. No 

significant visual differences could be detected between the glasses formed at 55 

minutes and those at 1 and 1.5 hours. The batch free glasses produced at 1200°C 

were observed to be visually similar to those produced at 1300°C. 
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Plate 4: 14 Optical and backscattered SEM images of bracken ash batch heated 
at 1300°C for 30 minutes (Br43, Table IV: 24) 
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4.7.5 Discussion 

4.7.5.1 Beech Ash 

The trunk ash reacts faster and therefore forms more homogeneous glasses 

than the brash ash. However, even when melting for lengthy time periods melting 

temperatures of 1200°C are not sufficient for either ash to form a homogeneous 

glass. Increasing the melting temperature to 1300°C improves the quantity and 
homogeneity of glass formed. Section 4.3.3.2 noted that beech ashes have a lower 

total alkali content than bracken ashes and are therefore more likely to require higher 

melting temperatures to form a homogeneous glass. The results from these 

experiments suggest that this is the case. Cable and Smedley (1987) have suggested 

that temperatures of up to 1350°C may have been produced in wood fired furnaces 

(see Section 2.4.2). It is not certain whether these temperatures were achievable in 

medieval furnaces, but if glasses were being produced from beech ashes, then higher 

temperatures may have been required. Unfortunately it was not possible to 

determine the melting behaviour of beech ash glasses at temperatures higher than 

1300°C due to time and raw materials constraints but this is area for further work. 
The results from the beech ash experiments show that the trunk and brash ash 

have significantly different melting behaviours. This is surprising as the ashes 

contain similar levels of alkali (see Section 4.3.3.2). The unusual behaviour of the 

brash ash was noted in Section 4.6.5.3. Although the brash ash has a higher silica 

and calcium-content than the trunk ash it would be expected that both ashes would 

have formed glasses. It is therefore assumed that the brash ash must have been 

subject to some unknown contamination and therefore it is not used in the rest of 

these experiments. 
The brash ash batches that did form glasses contained a semi-vitrified core of 

what is thought to be silica rich material. Silica relics were also present in many of 

the trunk ash glasses. One explanation for this occurrence is that there is not enough 

alkali present in the beech ash to react fully with the silica at this temperature. 

During the melting stage the available alkali is gradually combined with the silica in 

the production of a glass. If there is insufficient alkali available to dissolve all the 

silica in the batch then the remaining fraction will be left as batch relics. To remove 

silica rich areas within a glass higher melting temperatures are required. These will 

facilitate a faster and more turbulent melting reaction ensuring a more intimate 
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mixture between the silica and alkali. To avoid the inclusion of batch relics it is 

therefore beneficial for the raw materials to react quickly. This will be facilitated by 

the use of higher melting temperatures, mixed batches, small silica grain sizes and 

raw materials with high alkali concentrations. 
Although visually homogeneous glasses were formed using trunk wood ash, 

the SEM images confirmed that inhomogeneities were still present that required 

extended melting times to remove. It is important to note that the medieval 

glassmaker would not have been able to observe these microscopic differences in 

composition. It is therefore possible that glass may have been worked before it was 

homogeneous. The batches used in these experiments are also very small in 

comparison to medieval melts (see Section 2.4.5.2). The times required for the 

experimental melts to become not only batch free but also compositionally 

homogenous may therefore be much less than that required for medieval glass 

production. The influence of increasing batch size on homogeneity will be 

investigated in Section 6.1.3. 

Despite the presence of the many silica relics in the brash ash glasses, the 

glass formed contained very little seed. This is important to note, as it is therefore 

possible that although the beech ashes will probably require higher and longer 

melting times to become batch free, they may not then require extra refining time 

(see Section 2.2.1.1). However, another reason for the lack of seed may be the 

presence of manganese in the glass that acts as a very efficient refining agent (Weyl 

1951). 

The trunk ash glass is dark purple and the brash ash glass pale purple. The 

two ashes contain similar manganese contents. It is therefore surprising that, as they 

have been melted in the same way, that they should produce significantly different 

colours of glass. This again suggests that the brash ash has been contaminated. The 

colour of the brash ash glasses was observed to lighten as the melt time increased. It 

has already been seen that the purple colouration is due to the presence of the 

manganese in the ash (see Section 4.6.5.4). The purple Mn3+ ions exist in 

equilibrium with pale yellow/brown, Mn2+ ions. In oxidising conditions the 

equilibrium will shift towards the trivalent ion and the purple colour will increase. 

Increasing the melt times will cause the internal melt conditions to become more 

reducing. This will shift the equilibrium back towards the production of the divalent, 
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manganous ions, producing a paler glass (Weyl 1951). Therefore the brash ash 

glasses become paler with increasing melt times. 

4.7.5.2 Bracken Ash 

The results from Section 4.6 dewPnst.. that bracken ash batches required 

lower melt temperatures and shorter times to form a glass than their beech 

equivalents. In addition to this, it can be seen that at lower temperatures (1200°C) 

longer melting times will be required to form a batch free bracken glass (240 

minutes) and that at 1300°C a batch free glass is formed after only 30 minutes. 

These results confirm that the bracken ash is extremely reactive and will form a 

visually homogeneous glass very readily. 
o6serzýh o-ls an +6 e 

TheLbracken ash glasses also confirm that visual homogeneity does not mean 

that inhomogeneities are not present which will require extended melting times to 

remove. The bracken batches form a glass faster than the beech batches but may 

then require additional refining time to produce a seed free melt. This needs to be 

considered, as extra refining time will allow the melt to become more homogeneous. 

The batch free times recorded in these experiments are not necessarily the times 

required to produce a glass suitable for working. 
The white crystalline substance produced on the surface of the bracken ash 

glasses is the same as was observed in the previous set of experiments and is 

therefore probably potassium sulphate (see Section 4.6.5.4). It was observed that 

longer melt times facilitate the removal of the white substance. This is probably due 

to the volatile nature of the material (see Section 4.6.5.4). 

4.7.6 Conclusions 

The results in these experiments exhibit many of the same trends observed in 

the batch mixing and sand grain size experiments in Section 4.6. However, the most 

evident observation is that bracken ash batches exhibit a faster melting behaviour 

than their beech equivalents. A summary of the main conclusions made from these 

experiments is given below: 

" Increasing melt time improves homogeneity and refining. 
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" Increasing melt temperature improves homogeneity and refining. 

" If silica rich areas (silica relics) are formed in a melt they are difficult to 

remove and will remain as a potential source of inhomogeneity. 

" If a glass is visually homogeneous it may still contain inhomogeneities that 

can only be detected using backscattered SEM imaging. 

" Melting parameters (temperature and time) are specific to the raw materials in 

the batch. 

" Beech ash glasses require a higher melting temperature than bracken ash 

glasses. 

These results provide a set of guide lines about the melting behaviour of 
beech and bracken batches. This will be built upon in Chapter 6 but first the 

behaviour of beech and bracken ash frit will be investigated in Chapter 5. 
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CHAPTER 5 

Experimental: The Effect of Fritting Variables on Homogeneity 

5.1 Introduction 

It was concluded in Chapter 4 that the inclusion of a fritting stage in glass 

production did not improve homogeneity, or facilitate the formation of glasses at 
lower melting temperatures as was expected. The aim of this Chapter is to carry out 

a detailed investigation of how altering the fritting parameters such as temperature, 

time and crucible dimensions, affects the homogeneity of the glass formed. The 

Chapter is in two parts: a) the production of beech and bracken ash frits using 
different fritting parameters and b) melting the frits produced in (a) into glasses. The 

evidence for fritting in medieval glassmaking and the reasons why specific fritting 

variables were chosen for experimental investigation has been discussed in Sections 

2.3 and 2.7. 

The experiments in this chapter were initially carried out using bracken ash, 

as a new supply of beech ash was being located (see Section 4.3). The results from 

these and experiments using the new beech ash source (see Section 4.7) exhibited 

well defined melting characteristics. These observations were therefore used to plan 

the experimental schedule for the beech ash in this Chapter. The same maximum and 

minimum values for temperature and time were used as for the bracken fritting 

experiments but with fewer intermediate values. All the experimental details and 

results from this Chapter are tabulated in Table V: 1-Table V: 32. 

5.2 Fritting Temperature and Time 

These experiments were carried out using the standard mixed batch of beech 

or bracken ash (2 parts) and sand (1 part) as described in Section 4.7.2. Identical 

batches were placed in mullite crucibles (CON9) and heated in air in an electric 

muffle furnace (Appendix A) at differing temperatures (500-1000°C) and times (1- 

24hr). The colour, decrease in batch volume and friability of the finished product (in 

these experiments called `the frit') and the experimental parameters are recorded in 

Table V: 1 to Table V: 4. Unless otherwise stated, the batch composition and furnace 

parameters used here were also used for the experiments in Sections 5.3 and 5.4. 
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Samples of the beech and bracken frits produced were analysed by ICP-AES 

and XRF. The operating parameters and sample preparation were as described in 

Section 4.3.1. The frit was crushed and thoroughly mixed to ensure that a 

representative sample as possible was removed for analysis. Repeatable results 

could not be obtained from ICP-AES due to problems with the extent of sample 
dissolution (see Section 4.31). XRF analysis was therefore used instead and the 

results recorded in Table V: 5 and Table V: 6. The frit samples selected for XRF 

analysis were unfortunately limited in number. Samples were therefore chosen to 

represent regions where significant change occurred in the fritting behaviour of the 

two ash types. Although the beech ash frits produced at 1000°C were analysed, the 

bracken frits produced at the same temperature were extremely vitreous and it was 
difficult to obtain a representative sample free of refractory contamination. 
Therefore, bracken ash frits produced at 900°C were selected as they exhibited the 

same degree of vitrification as the beech ash frits formed at 1000°C. 

5.2.1 Results 

5.2.1.1 Colour 

Figure 5: 1 is a schematic representation of the changes in the colour of the 

beech ash batch with temperature and time. The original batch was the same pale 

grey/brown colour as the ash (Plate 4: 2). Heating the batch to 500°C caused a visible 

change in colour. At temperatures ranging from 500-600°C the colour was paler than 

the original batch but at temperatures from 700°C upwards the colour became darker. 

This change became more marked with increasing times and temperatures until at 

NOT the frit was dark brown/black in colour. Granular grains of a blue/green 

material were observed inside the frit. Raising the temperature and time further 

(800-1000°C) caused the number of these specks to increase. The maximum fritting 

temperature and time investigated (1000°C for 24 hours) gave a shiny black/purple 

frit, which contained many green, blue and white specks. A selection of the frits 

produced can be seen in Plate 5: 1. 

128 



CHAPTER 5 Illl' I_11-1'CI OI- I`RITIING VARIAHI ISUN IIO\1O(i IN I II) 

F- 
v 

Unheated Batch 

Figure 5: 1 

17 :7 
500°C 1 hour 

F 
500°C 24 hours 

:717 
600°C 1 hour 600°C 24 hours 

,7 -7 
7F700'C 1 hour F 700°C 24 hours 

ýj I/- 

750°C 1 hour 
F750°C 24 hours F 

800°C 1 hour 800°C 24 hours 

900°C 1 hour 900°C 24 hours 

1 000°C 1 hour 1000°C 24 hours 

A schematic representation of change in beech ash frit colour with 
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Plate 5: 1 A selection of beech ash frits (Table V: 2) 
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Figure 5: 2 illustrates the change in colour of the bracken ash frits with 
increasing temperature and time. The original bracken ash batch was dark grey in 

colour (see Plate 4: 2). As fritting temperatures were increased between 500°C and 
600°C this changed to a paler grey colour. A marked colour change to pale 
blue/green occurred at 700°C. This colour became more intense as both fritting 

temperatures and times were increased. A small volume of pale purple coloured 

material appeared in the centre of the blue/green material produced at a fritting 

temperature of 700°C (held for 1 hour). The volume of the pale purple coloured 

material increased with increasing temperatures and times. The sample held at 

800°C for 24 hours was almost completely pale purple in colour with a thin 

green/blue layer on the surface. The main body of material was dark purple in colour 

with white specks of what was thought to be silica rich material throughout the frit. 

The purple colour continued to become darker as fritting temperatures and times 

were increased above 800°C to 1000°C. Plate 5: 2 illustrates a selection of the 

bracken ash frits. 
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Figure 5: 2 A schematic representation of change in bracken ash frit colour 
with temperature and time (Table V: 4) 
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5.2.1.2 Batch Volume and Vitrification 

Figure 5: 3 illustrates the change in batch volume between the original and 

fritted batches for both beech and bracken ash. 
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Figure 5: 3 A comparison of the change in batch volume with fritting 
temperatures and times for beech and bracken ash batches 
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In the beech ash batches there was no visible change in percentage batch 

volume until the fritting temperature was increased to 600°C. The batch volume then 

decreased in proportion to the increased fritting temperature and time. The batches 

remained in a powered form until the temperature was raised above 700°C. The 

extent of vitrification then increased in proportion to the reduction in batch volume, 
but the product was still extremely friable. The maximum reduction in batch volume 

and extent of vitrification was observed at a fitting temperature of 1000°C and time 

of 24 hours. The beech frit had formed a partially melted, vitreous mass at the 

bottom of the crucible but this could still be crushed using a metal spatula. 
In the bracken ash batches no reduction in batch volume was observed until 

the fritting temperature reached 750°C and was held for 16 hours or more. No 

vitrification was observed in the bracken ash batches heated at 500-600°C and the 

original powdery form of the batch was maintained. At fritting temperatures of 700- 

750°C the sample held the shape of the crucible when it was removed, but easily 
disintegrated into a power. At higher fritting temperatures (850-1000°C) the batch 

volume continued to decrease. Extensive reduction in batch volume was noted in the 

samples heated to 850°C. Extensive vitrification was observed in those samples 
heated at 900°C for 5 hours or more. A thin layer of glass had formed that adhered to 

the crucible and prevented the frit being easily removed. The samples heated to 

1000°C exhibited the greatest reduction in size (75% of the original batch volume), 

as they had melted to form a vitreous mass containing no unreacted batch, that could 

not be removed from the bottom of the crucible. 
The grey and blue/green bracken frits (500-900°C) from Sections 5.2 to 5.4, 

if allowed to stand in air for several days absorbed water and became sticky. None 

of the beech frits or the semi-vitrified purple bracken frit (750-1000°C) exhibited this 

characteristic. 

5.2.1.3 XRF Analysis 

The results from the XRF analyses of selected samples from the beech and 

bracken frits are recorded in Table V: 5 and Table V: 6. The change in the silica, 

calcium and total alkali (potassium + sodium) concentrations for a sample of the 

beech and bracken ash frits are illustrated in Figure 5: 4 and Figure 5: 5 respectively. 
These elements have been selected as they are thought to have a significant influence 
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on homogeneity (see Section 4.3.3.2). It was expected that the frits would contain 

higher silica levels than their respective ashes due to the addition of the sand 

component in the batch. 
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Figure 5: 4 A comparison of silica, calcium and total alkali concentrations (by 
XRF) in beech ash frits and unheated beech ash (Table V: 5) 
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It can be seen from Figure 5: 4 that the silica levels are higher in both sets of 

beech frits compared to the unheated ash. The silica level increases at a fritting 

temperature of 500°C but then decreases as the temperature is increased. There 

appears to be no observable pattern in the total alkali and calcium oxide values for 

the beech ash frits. 

In contrast to the beech ash frits, the bracken frit analyses (Figure 5: 5) exhibit 

a number of compositional trends. 
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Figure 5: 5 A comparison of silica, calcium and total alkali concentrations (by 
XRF) in bracken ash frits and unheated bracken ash (Table V: 6) 
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It can be seen that in bracken ash frits made at 1 and 24 hours the levels of 

silica increase and the total alkali decreases with an increase in the fritting 

temperature. The change in calcium values is less significant than observed in the 

silica or alkali concentrations. At a fritting time of 1 hour, calcium decreases with 

increasing fritting temperature. In contrast, at fritting times of 24 hours, calcium 

oxide decreases slightly with increasing fritting temperatures. 

It is difficult to determine any conclusive results from these analyses. Due to 

the difficulties in obtaining analyses, the data set is small and repeat analyses could 

not be obtained. In addition to this, these results may be influenced by sample 

segregation due to the heavier weight of the silica compared to other batch 

components. This therefore makes obtaining a representative sample difficult. 

5.3 Stirring The Batch During Fritting 

The aim of this group of experiments was to determine what effects stirring 

the batch during fritting had on the frit formed. The crucible was removed from the 

furnace every ten minutes and the batch stirred manually (5 revolutions) using a 

metal spoon spatula. During fritting times of 24 hours it was only possible to stir the 

frit for the first seven hours due to laboratory safety constraints. The frits were then 

compared to those produced under identical conditions but without stirring (see 

Section 5.2) and any differences noted. The fritting parameters and results for both 

ashes are recorded in Table V: 7 to Table V: 10. 

A comparison was made between the stirred and unstirred frits (see Section 

5.2.1) formed at the same fritting temperatures and times. Between 500°C and 800°C 

no significant visual difference could be detected between the unstirred and stirred 

frits for either ash type. When the fritting temperature was increased to 800°C the 

stirred frit formed small (0.2-0.5cm diameter) friable balls. At temperatures of 

800°C or more the results showed that the changes in colour and vitrification occur at 

lower fritting temperatures and times than when compared to the unstirred batches. 

The predominantly granular nature of the frit prevented the accurate observation of 

reduction in batch volume. 
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5.4 Fritting Crucible Dimensions 

The aim of these experiments was to determine how altering the surface area 
to volume ratio of the batch would affect the nature of the frit formed. The fritting 

crucible used in these experiments was a small mullite tray approximately 80mm 

wide, 125mm in length and 15mm high (see Appendix A). Beech and bracken ash 

frits were produced at a selection of fritting temperatures and times. The frits were 

then compared to those produced under identical conditions in CON9 crucibles (see 

Section 5.2) and any differences noted. The fritting parameters and results are 

recorded in Table V: 11 to Table V: 14. 

At low fritting temperatures (500°C) no change could be detected between the 

small tray frit and the CON9 frit for both ash types. At temperatures of 600°C or 

more (bracken ash) and 800°C or more (beech ash) the results showed that the 

changes in colour and friability occur at lower fitting temperatures and times than 

when compared to the CON9 frits. The reduction in batch volume of the frit was 
difficult to assess, as the layer of frit was very thin (approximately 2-3mm), and 

therefore were not recorded. 

5.4.1 Discussion 

5.4.1.1 Fritting Temperature and Time 

These results show that increasing fritting temperatures and times caused 
distinct colour changes, a reduction in batch volume and an increase in vitrification. 
Although the beech and bracken ash batches both exhibited the same general trends, 

the frits were specific to each ash type. The higher alkali levels of the bracken ash 

(compared to the beech ash, see Section 4.3.3.2) are responsible for the faster and 

more extensive reactions of these frits. The fritting behaviour of a batch is therefore 

dependent on the composition of the constituent raw materials. 

The initial reductions in batch volume at comparatively low temperatures 

observed in both the batches may be caused by the removal of any organic and other 

volatile components, for example, carbonates forming oxides and giving off carbon 
dioxide. Depending on the reactivity of the ash component increasing fritting 

temperature and time facilitates further reduction in batch volume as the raw 

materials react and start to vitrify. It can be seen from Figure 5: 3 that the beech 
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batches reduce in size almost proportionally with increasing fritting temperatures and 

time and the extent of vitrification in the batches was never enough to prevent the frit 

being crushed easily by hand. In comparison the volume of the bracken ash based 

material is reduced only slightly at lower fritting temperatures (500-800°C) but then 

drops significantly at temperatures of 850°C and 1000°C. The major changes in the 

vitrification of the batch also occur at approximately these temperatures and times 

and there is therefore only a narrow window in which these changes occur. In 

comparison to the beech ash, the frit formed is much harder and at high temperatures 

(approximately 900°C) impossible to crush by hand. It is generally assumed that in 

medieval glass production the frit was crushed and ground up before it was melted 

(see Section 2.3.5). This would have a significant effect on the homogeneity of the 

glass formed and this will be investigated in Section 5.5. 

5.4.1.2 Stirring the Batch During Fritting 

The results of these experiments for both ash types show that stirring the 

batch during fritting does appear to facilitate the production of a more vitrified 

product with a greater reduction in batch volume and volatility in comparison to 

unstirred frits prepared using the same temperatures and times. The faster reaction 

times are probably due to the stirring procedure improving the contact between the 

batch components. In Section 2.3.3 it was noted that Theophilus (Hawthorne and 

Smith 1979,53) stated that frit should be stirred during production until it formed 

small balls. The results from these experiments show that this will only occur if 

fritting temperatures and times are raised to a point where sufficient vitrification 

occurs to bind the fit together. It is thought that his observations are based on beech 

ash glasses but in these experiments this event appears to occur in both beech and 

bracken ash batches and at approximately the same temperature (800°C). 

Stirring the frit will also ensure that there is a more even contact of the raw 

materials with the furnace atmosphere, compared to just one surface for the unstirred 

frit. This is probably the reason why the stirred frits are all one colour compared to 

the unstirred samples which exhibit differences between the surface and the body of 

the frit. Whether the increased reaction of the frit with the furnace atmosphere will 

have any affect on the finished glass is uncertain. Stirring the frit may lead to an 

increase in contact with the crucible walls and may increase the chances of refractory 
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contamination within the glass, which may therefore be a possible source of 
inhomogeneity in the glass produced. 

It would therefore seem that although stirring the frit requires more labour 

and a possible increase in heat loss from the furnace it may have been beneficial in 

the reduction of batch volume and the production of a glass. Factors such as 

reactions with the furnace atmosphere and refractory materials mean that it is not 

certain if stirring would be beneficial in the production of a more homogeneous 

glass. The glasses formed from mixed batches in Section 4.6 showed that a more 
intimate mixture of raw materials assisted the production of a more homogeneous 

glass. It will be interesting to determine whether stirring the frit has the same effect 

and this will be carried out in Section 5.5.3. 

5.4.1.3 Fritting Crucible Dimensions 

It can be seen from the results of these experiments that for both the beech 

and bracken ash batches the increase in crucible surface area to volume ratio 
facilitates the speed of reactions in the flit. In these experiments the batch is more 

thinly spread over a wider area and therefore the raw materials heat up more rapidly 

and have more contact with the furnace atmosphere. The reactions in the batch are 

therefore more likely to be faster. The benefits of this may be that the batch forms a 

more even fritted product and that this will then transpose to a more homogeneous 

glass. However, the increased contact with the crucible may increase the likelihood 

of refractory contamination and therefore possible inhomogeneity (see Section 

2.3.4). 

Section 2.3.4 noted that the evidence for archaeological fitting crucibles is 

limited and it is therefore not certain what crucible dimensions were used or, as 
Theophilus (Hawthorne and Smith 1979) suggests, whether fritting was carried out 

on the furnace floor. Frit produced on the furnace floor is likely to have had a larger 

surface area to volume ratio than that produced in a crucible. This would therefore 

speed up the rate of the fitting reactions. The choice of method may therefore 
influence homogeneity but if the frit was subjected to stirring then the influence of 
the crucible dimensions may have been in effect cancelled out. 
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5.4.2 Conclusions 

The results from this set of experiments have built substantially on the 

previous fritting work in the batch mixing experiments (see Section 4.6). The results 
from both sets of experiments have shown that frits formed using different conditions 

and ashes are very different in nature. It would appear that the fritting stage has to be 

modified depending on the type and proportions of raw materials being used. The 

main conclusions drawn from these experiments are summarised below. 

" The changes observed in a frit are specific to the raw materials in the 

batch. 

" Batch volume reduces with increased fritting temperature and time. 

" Vitrification increases with increased fritting temperature and time. 

" Friability decreases with increased temperature and time. 

" Stirring the frit facilitates faster reactions between the raw materials. 

" Increasing the surface area to volume ratio of the fritting crucible 
facilitates faster reactions between the raw materials. 

Now that the behaviour of the beech and bracken ash frits has been 

characterised it is possible to establish how different frits can be related to the 

homogeneity. This will be carried out in Section 5.5. The results can then be 

combined with those here to determine which fritting parameters are more likely to 

have been successful in the production of a homogeneous glass and how this relates 

to the use of different raw materials. 

5.5 Melting Beech and Bracken Glasses From Their Frits 

5.5.1 Introduction 

The aim of these experiments was to observe how the use of the different 

fritting parameters affected the final homogeneity of the glass formed. The fritted 

batches produced in Section 5.2 to 5.4 were melted at 1200°C or 1300°C for five 

hours. A selection of bracken frits was also melted at 1250°C. The range of 

temperatures and melt time was chosen based on the results of the stages of melting 

experiments (see Section 4.7). 
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The cooled frit was removed from the fritting crucible, crushed, mixed and 

placed in a mullite crucible (CON 9). To prevent the crucible cracking from thermal 

shock it was preheated on the back of the furnace for thirty minutes before melting. 
A preheated crucible containing the frit was placed in an electric furnace for 5 hours 

and then removed and left to cool on the back of the furnace for thirty minutes. The 

experimental parameters and the results from these experiments are recorded in 

(Table V: 15 to Table V: 32). It should be noted that it was not possible to crush any 

of the bracken ash frit made at 1000°C (1-24 hours) because the frit had become a 
hard, vitreous mass which could not be removed from the crucible. 

Duplicate fritted samples were prepared using the same parameters as 
detailed in section 5.2. The frit was not crushed and mixed, and remained in the 

fritting crucible before being melted (as described above). The aim of this set of 

experiments was to determine whether the smaller particle size caused by crushing 

the frit will provide a more intimate mixture, thereby facilitating the formation of a 

more homogeneous glass. 

5.5.2 The Effect of Fritting Temperature and Time on Homogeneity 

5.5.2.1 Beech Glasses 

The experimental parameters and results from the beech ash frits heated at 
1200°C can be seen in Table V: 15 and Table V: 16 respectively. All of the samples 

produced using either the mixed or the unmixed frit consisted of a dark purple glass 

containing batch relics. The number of relics increased with increasing fritting 

temperatures and times. The glasses formed using frits made at 500°C from either 

unmixed or mixed frit were visually identical and contained low levels of batch 

relics. Melting frits formed at 600°C-1000°C produced glasses containing increased 

levels of batch relics. At these fritting temperatures the glasses made from unmixed 
frits contained fewer batch relics than those made from identical mixed frits (Plate 

5: 3). 
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Backscattcrcd SLM Images 

High levels of batch relics 
High levels of inhomogeneity 

(Be93) 

Medium levels of batch relics 
Medium levels of inhomogeneity 

(Bel0l) 

Plate 5: 3 A comparison between optical and backscattered SEM images of 
mixed (Be93) and unmixed (Be101) beech frits (1000°C, 24 hours) 
heated at 1200°C for 5 hours (Table V: 16) 

The SEM results confirm the visual observations made of the beech glasses 

produced at 1200°C (Plate 5: 3). In a small number of samples the levels of 

inhomogeneity noted using the SEM are lower than the levels of batch relics 

recorded visually. The SEM samples were selected to be as representative of the 

whole glass as possible but it is likely that in some cases this was not always 
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achieved. The visual and SEM observations confirm that at melting temperatures of 
1200°C, mixed and the unmixed beech ash frits will form an inhomogeneous glass. 

The experimental parameters and results from melting beech frits at 1300°C 

are recorded in Table V: 17 and Table V: 18 respectively. All the glasses formed 

contained no visible batch relics and were dark purple in colour. No visual 
difference could be detected between any of the samples made at different fritting 

temperatures and times, or from unmixed or mixed frits (Plate 5: 4). 

Cr1ý5 
U Cm. 5 IL 

Mixed Frit Unmixed frit 
Homogeneous Glass Homogeneous Glass 

(Be107) (Be 115) 

Plate 5: 4 A comparison between mixed (Be107) and unmixed (Be115) beech 
frits (1000°C, 24 hours) heated at 1300°C for 5 hours (Table V: 18) 

The SEM results confirmed the absence of any batch relics in any of the 

beech glasses produced at 1300°C but identified the presence of inhomogeneities in 

a number of samples. The backscattered SEM image obtained from the visually 

homogeneous glass Be96 (Plate 5: 5) shows that the glass contains medium levels of 

inhomogeneity. 

145 



CHAPTER 5 THE EFFECT OF FRITTING VARIABLES ON HOMOGENEITY 
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Visually Homogeneous Glass Backscattered SEM Image with 
Medium Levels of Inhomogeneity 

Plate 5: 5 A visually homogeneous beech glass (Be96) and a backscattered SEM 
image of a sample of the glass illustrating the presence of medium 
inhomogeneity 

The extent of the inhomogeneities in the beech glasses produced at 1300°C 

are illustrated in Figure 5: 6. 
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Figure 5: 6 A comparison between glasses made from mixed and unmixed beech 
frit at 1300°C (Table V: 18) 
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The symbols on the y-axis of Figure 5: 6 correspond to the parameters 
described in Section 3.3.2.3: homogeneous glass (NP), low inhomogeneity (L), 

medium inhomogeneity (M) and high inhomogeneity (H). It can be seen that the 

mixed frits are all homogeneous but that a number of the glasses formed from 

unmixed frit contain inhomogeneities. Inhomogeneity increases with increasing 

fritting temperature, times and the use of unmixed frits. The exceptions to this are 

those glasses formed from frit made at 500°C and 800°C for 1 hour, and 1000°C for 

24 hours, which are all homogeneous. It is not certain why this has occurred but it 

may be due to a sampling bias. If the inhomogeneities are not equally distributed 

throughout the whole glass then the sample removed for analysis may not be truly 

representative. The exact locations of inhomogeneities cannot be located during 

sampling as they cannot be visually resolved. Therefore this problem may be 

difficult to avoid. 

5.5.2.2 Bracken Glasses 

The experimental parameters and results from bracken frits melted at 1200°C 

are recorded in Table V: 19 and Table V: 20 respectively. The unmixed fits all 

produced inhomogeneous glasses. The glasses made from mixed frits contained less 

inhomogeneity than glasses made from comparative unmixed frits and a number 

were visually homogeneous (Plate 5: 6). In glasses made from both unmixed and 

mixed frit inhomogeneity increased with increasing fritting temperature and time, 

becoming more prevalent at higher fritting temperatures (Plate 5: 6). Shorter fritting 

times of 1 or 5 hours were beneficial in reducing the number of inhomogeneities 

even at higher fritting temperatures. 

The white crystalline substance (see Section 4.6.3.5) was visible on the 

majority of the glasses made at 1200°C from unmixed frit and increased in quantity 

with increasing fritting temperatures. It was not present on any of the glasses made 
from mixed frits. All the glasses formed from the frits produced at temperatures of 

greater than 500°C and the frit produced at 500°C for 24 hours produced a 

transparent, pale brown glass with a slight green colouration in places. The glasses 

produced from frit formed at 500°C for 1 hour, formed a dark green/brown coloured 

glass (Plate 5: 6). 
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0 cros. 5 

Frit 500°C 1 hour 
Visually homogeneous glass (Br51) 

Cnýý, 

Frit 900°C 1 hour 
Visually homogeneous glass (Br67) 

p Cms. 5 

Frit 900°C 24 hours 
Medium levels of batch relics and low 

opacity (Br70) 

Glasses Made From Mixed Frits 

Frit 900°C 1 hour 
Medium levels of batch relics and low 

opacity (Br71) 

0 cms. 
Frit 900°C 1 hour 

High levels of batch relics and high opacity 
(Br80) 

Glasses Made From Unmixed frits 

Plate 5: 6 A comparison between glasses made at 1200°C (5 hours) from mixed 
and unmixed bracken frits made at different fritting temperatures 
and times (Table V: 20) 
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Although a number of the glasses made at 1200°C frone mixed frit were 

visually homogeneous, SEM examination confirmed the presence of inhomogeneities 

in all of the glasses. The backscattered SEM image obtained from the visually 

homogeneous glass Br51 (Plate 5: 6) is illustrated in Plate 5: 7. 

It can be concluded from the combination of the visual and SEM results that 

all the bracken ash glasses formed at 1200"C are inhomogeneous but that the use of 

mixed frits and lower fritting temperatures and times substantially improves the 

homogeneity of the glass. 

Plate 5: 7 A backscattered SI: 1I image illustrating the presence of low 
inhomogeneity in a visually homogeneous bracken glass melted at 
1200°C (Br51) (Plate 5: 6) 

The experimental parameters and results for the glasses made at 1250°C from 

bracken frits are recorded in Table V: 21 and Table V: 22 respectively. All the glasses 

formed from the mixed frits were visually homogeneous (Plate 5: 8). Apart from the 

colour of Bi-85 (which was melted from mixed frit formed at 600°C for 1 hour), no 

visual difference was observed between glasses formed using differing fritting times 

and temperatures. To conserve raw materials, only a small number of unmixed 

bracken frits were melted at 1250°C, and therefore the main fritting temperatures 

were based upon the previous results in this Chapter. The glasses made from 

unmixed frits produced at 600°C, 700°C and 900°C for 1 hour, and 1000°C for 24 
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hours were inhomogeneous (Plate 5: 8). The glasses made from unmixed frits 

produced at 1000°C for 1,5, and 16 hours were all visually homogeneous, and 

visually identical to those produced from mixed frits at the same temperatures and 

times. Slight opacity was visible in Br106, although this was the only glass formed 

at 1250°C to show this characteristic. 

cms. 5 

Frit 900°C 1 hour 
Visually homogeneous glass (Br98) 

Glasses Made From Mixed Frits Glasses Made From Unmixed frits 

Plate 5: 8 A comparison between glasses made at 1250°C (5 hours) from mixed 
and unmixed bracken frits made at different fritting temperatures 
and times (Table V: 22) 

The majority of the glasses formed at 1250°C formed a glass, which was a 

slightly darker brown/green colour than those produced at 1200°C (Plate 5: 6). The 

exceptions to this were Br 85 and Br102 formed from frits produced at 600°C for 1 
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hour and Br 103 formed from unmixed frit produced at 700°C for 1 hour. These 

were a darker green colour than the rest of the glasses produced at 1250°C. 

The SEM results for the bracken glasses formed at 1250°C confirm that a 

number of the visually homogeneous glasses from both the mixed and unmixed frits 

contain inhomogeneities that are only visible under the SEM (Plate 5: 9). 

Cms. 5 

Glass Made from Mixed Frit (850°C 1 hour) 
Visually homogeneous glass (Br94) 

Plate 5: 9 A visually homogeneous bracken glass melted at 1250°C (Br94) and a 
backscattered SEM Image of a sample of the glass illustrating the 
presence of low inhomogeneity 
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The presence of these inhomogeneities increases in glasses made from frits 

produced at higher fritting temperatures and times (Figure 5: 7). 

.r -H d 
C 
C, a) 

M E 
0 
r 
C 
öL 
c} 

w 
NP 

600 700 750 800 850 900 

Fritting Temperature/°C 

©1 hour Fritting Time, Mixed Frit  5 hours Fritting Time, Mixed Frit 

  16 hours Fritting Time, Mixed Frit   24 hours Fritting Time, Mixed Frit 

Mixed Frit 

H 

---------------------------------------------------------------------------------------- ------ --------- 

M 

c 
öL 

- ----------- ------- ----------------------------- ----------------- -------- d 
w 

NP 

600 700 750 800 850 900 1000 

Fritting Temperature/°C 

W1 hour Frilling Time, Unmixed Frit  5 hours Frilling Time, Unmixed Frit 

16 hours Frilling Time, Unmixed Frd   24 hours Fritting Time, Unmixed Frit 

Unmixed Frit 

Figure 5: 7 A comparison between glasses made from mixed and unmixed frit 
melted at 1250°C for 5 hours (Table V: 22) 
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Although there are a small number of glasses made from the unmixed frits 

they contain comparatively more inhomogeneities than glasses formed from mixed 
frits. SEM examination also showed that silica relics are apparent in the glasses 

made from unmixed frits, but that these were not observed in the glasses made from 

mixed frit. This again confirms that using unmixed frits does not facilitate 

homogeneity. 

The overall conclusions from the glasses formed at 1250°C are that as with 

the bracken glasses formed at 1200°C, lower fritting temperatures and times and the 

use of mixed frit facilitate homogeneity. The increase in melting temperature 

facilitates the production of a homogeneous glass. This reduces the detrimental 

effect on homogeneity of unmixed frits, and frits made at increased temperatures and 

times. 

The experimental parameters and results from the glasses made at 1300°C 

from bracken frits are recorded in Table V: 23 to Table V: 24. All the glasses 

produced from the mixed frits were visually homogeneous (Plate 5: 10). The 

majority of the glasses produced at 1300°C from unmixed frits were also visually 
homogeneous (Plate 5: 10) except those formed from frits made at 900°C and 1000°C 

for 1 hour and 1000°C for 16 hours which contained low levels of batch relics. The 

glasses formed at 1300°C were all a slightly darker brown/green colour than those 

produced using melt temperatures of 1250°C. The exceptions to this were the glasses 

formed from frit made at 500°C for 1 hour, which were dark green/blue (Plate 5: 10), 

and those formed from frit made at 500°C for 24 hours, which were dark 

green/brown. 
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5 0 cms. 

Frit 500°C 1 hour 
Visually homogeneous glass (Br109) 

U Cms. 5 

Frit NOT 1 hour 
Visually homogeneous glass (Br116) 

Glasses Made From Mixed Frits Glasses Made From Unmixed frits 

Plate 5: 10 A comparison between glasses made at 1300°C (5 hours) from mixed 
and unmixed bracken frits made at different fritting temperatures 
and times (Table V: 24) 

SEM examination of the mixed frit glasses made at 1300°C confirmed that 

many of the glasses made from mixed frits were homogeneous. The exceptions to 

this were glasses made from frit produced at 750°C (1,5 and 16 hours), 800°C (1,5, 

16 and 24 hours) and 900°C (1 hour) produced glasses, which although they were 

visually homogeneous, contained inhomogeneity only visible under the SEM 

(Figure 5: 8, Plate 5: 11). These results do not appear to follow the general trend of 

increasing inhomogeneity with increased fritting temperatures and times as observed 
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in the glasses produced at 1200 and 1250°C. This may be due to a sampling bias in 

the SEM results (see Section 5.5.2.1). 
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Figure 5: 8 A comparison between glasses made from mixed and unmixed frit 
melted at 1300°C for 5 hours (Table V: 24) 
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0 Cms. 5 

Glass Made from Mixed Frit (800°C 24 hours) 
Visually homogeneous glass (Brl 19) 

Plate 5: 11 A visually homogeneous bracken glass melted at 1300°C (Br119) and 
a backscattered SEM image of a sample of the glass illustrating the 
presence of medium inhomogeneity 
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The SEM results from the glasses made from unmixed frits melted at 1300°C 

contain comparatively more inhomogeneities than those formed from mixed frits. In 

these samples the number of inhomogeneities do tend to increase with increasing 

fritting temperatures and times (Figure 5: 8). The exceptions to this are those glasses 

formed from frits made at 800°C for 1 hour, and 1000°C for 5 hours. These two 

unexpected results may again be due to a sampling bias (see Section 3.3.2.2). Br136 

(frit 1000°C for 1 hour) contains a high quantity of batch relics due to the crucible 

breaking during melting and the loss of much of the batch. 

The overall conclusions from the glasses formed at 1300°C are that glasses 
formed from mixed frits formed at lower fritting temperatures and times form more 

homogeneous glasses. Increasing melt temperature improves homogeneity 

compared to frits melted at 1200°C or 1250°C. The use of a higher melting 

temperature appears to remove some of the inhomogeneity formed in glasses made 

using higher fritting temperatures and longer fitting times, and unmixed frits. 

5.5.3 The Effect on Homogeneity of Stirring the Batch During Fritting 

5.5.3.1 Beech Glasses 

The experimental parameters and results from the glasses made at 1200°C 

and 1300°C from stirred beech flits are detailed in Table V: 25 and Table V: 26. The 

glasses produced at 1200°C formed dark purple glasses, which were all visually 

inhomogeneous. Although there were only low levels of batch relics, the number of 

batch relics in the glasses increased slightly with increasing fritting temperatures and 

times. A comparison between the number of batch relics in glasses made from 

mixed, unmixed and stirred frits produced at the same temperatures and times can be 

seen in Figure 5: 9. It can be seen that when fritting temperatures are increased the 

stirred frit produces a more homogeneous glass than a mixed or unmixed flit. The 

use of lower fritting temperatures, and stirred frit will therefore facilitate 

homogeneity but melting temperatures of 1200°C are not sufficient to form a 

homogeneous beech glass. 
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Figure 5: 9 A comparison between the visual homogeneity of glasses made 
from mixed, unmixed and stirred beech frits melted at 1200°C for 
5 hours (Table V: 16 and Table V: 26) 

The glasses formed from stirred beech frits melted at 1300°C all formed 

visually homogeneous, dark purple glasses. No visual difference could be detected 

between the samples produced at different fritting temperatures and times. The SEM 

results determined that low levels of inhomogeneity were present in the glasses 

formed from frits heated at 800°C and 1000°C for 1 hour. A comparison between the 

homogeneity of glasses made from mixed, unmixed and stirred frits produced at the 

same temperatures and times can be seen in Figure 5: 10. It can be seen that as in the 

glasses made at 1200°C there is no difference between the homogeneity of the 

glasses made from mixed, unmixed or stirred frits produced at 500°C for 1 hour. 

Increasing fritting temperature to 800°C decreases homogeneity, and in contrast to 

the results obtained at 1200°C the stirred frit forms a more inhomogeneous glass than 

the mixed or unmixed frit. At a fritting temperature of 1000°C only the mixed frit 

forms a homogeneous glass. 

The results of the glasses made from stirred beech frits confirm that visually 

homogeneous glasses may contain inhomogeneities that are only visible using the 

SEM. Lower fritting (500°C), and higher melting (1300°C) temperatures facilitate 
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homogeneity, and stirring the frit increases homogeneity at lower melting 

temperatures (1200°C) but decreases it at higher melting temperatures (1300°C). 
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p1 hour Fritting Time, Stirred Frit 

Figure 5: 10 A comparison between the homogeneity (by SEM) of glasses made 
from mixed, unmixed and stirred beech frits melted at 1300°C for 
5 hours (Table V: 18 and Table V: 26) 

5.5.3.2 Bracken Glasses 

The experimental parameters and results from the glasses made at 1200°C 

and 1300°C from stirred bracken frits can be seen in Table V: 27 and Table V: 28. All 

the glasses formed were visually homogeneous, but many contained inhomogeneities 

that were only visible using the SEM. The glasses were the same colour as those 

formed from unstirred frits at the same melting temperatures (see Section 5.5.2.2). 

Figure 5: 11 illustrates the differences in homogeneity between glasses formed at 

1200°C from stirred, mixed and unmixed frits made at identical fritting temperatures 

and times. The stirred and mixed frits form glasses containing the same levels of 

inhomogeneity, which is less than those in the glasses made from unmixed frits. The 

exception to this is seen at a fritting temperature of 850°C (1 hour), where the stirred 

frit forms a more homogeneous glass than the mixed frit; and fritting temperatures of 

1000°C, where the glass formed was very inhomogeneous and identical to that 

formed from the unmixed frit. 
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Figure 5: 11 A comparison between the homogeneity (by SEM) of bracken 
glasses made from mixed, unmixed and stirred frits melted at 
1200°C for 5 hours (Table V: 20 and Table V: 28) 

The glasses made from stirred frits at 1300°C were all visually homogeneous. 

The glasses formed from frits made at 700°C and 1000°C for 1 hour contained low 

levels of inhomogeneity that were only visible using the SEM. The effect on 

homogeneity of melting stirred, mixed and unmixed frits at 1300°C is illustrated in 

Figure 5: 12. 
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Figure 5: 12 A comparison between the homogeneity (by SEM) of bracken 
glasses made from mixed, unmixed and stirred frits melted at 
1300°C for 5 hours (Table V: 24 and Table V: 28) 
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The glasses contain comparatively lower levels of inhomogeneities than those 

formed at 1200°C (Figure 5: 11) but it would appear that stirring the batch during 

fritting is only beneficial to homogeneity at low fritting temperatures. 

5.5.4 The Effect of Fritting Crucible Dimension on Homogeneity 

5.5.4.1 Beech Glasses 

The experimental parameters and results for the glasses formed from these 

experiments are detailed in Table V: 29 and Table V: 30. The larger dimensions of 

the fritting crucibles (small trays, see Appendix A) meant that they would not fit in 

the melting furnace. The frits were therefore removed and placed into CON9 

crucibles for the glass melting stage. The frit had to be broken to enable transfer 

from one crucible to the other and it was therefore not possible to determine the 

behaviour of unmixed frits in this set of experiments. 

All the frits melted at 1200°C formed visually inhomogeneous dark purple 

glasses. The extent of inhomogeneity increased with increasing fritting temperatures 

and times. The difference between the glasses made from frits formed in small trays 

and CON9 crucibles is illustrated in Figure 5: 13. 
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p1 hour Fritting Time, CON9 Frit ®1 hour Fritting Time, Small Tray Frit 

E124 hours Fritting Time, CON9 Frit ®24 hours Fritting Time, Small Tray Frit 

Figure 5: 13 A comparison between the visual homogeneity of beech glasses 
made from mixed, frits in CON9 and small tray crucibles, melted 
at 1200°C for 5 hours (Table V: 16 and Table V: 30) 
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At a fritting temperature of 500°C the use of fritting crucibles with larger 

surface area to volume ratios will decrease homogeneity. This effect appears to be 

cancelled out by the use of higher fritting temperatures and longer fritting times, as 

no significant difference can be detected between the homogeneity of glasses formed 

from either crucible type. 

All the glasses formed from small tray frits at 1300°C were dark purple and 

visually homogeneous. Backscattered SEM imaging confirmed that all the glasses 

(except the sample produced from frit made at NOT for 1 hour) contain low levels 

of inhomogeneity. A comparison of these glasses with those produced from frits 

made in CON9 crucibles is illustrated in Figure 5: 14. It can be seen that the use of 

smaller surface area to volume fritting crucibles and an increased melting 

temperature facilitates the formation of a more homogeneous glass. 
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Figure 5: 14 A comparison between the homogeneity (by SEM) of beech 
glasses made from mixed, frits in CON9 and small tray crucibles, 
melted at 1300°C for 5 hours (Table V: 18 and Table V: 30) 

5.5.4.2 Bracken Glasses 

The experimental parameters and the results from the glasses produced from 

bracken frits made in varying surface area to volume ratio crucibles are recorded in 

Table V: 31 and Table V: 32. The behaviour of unmixed frits could not be 

investigated as the frit broke up on transfer from the fritting to the melting crucible 
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(see Section 5.5.4.1). The colour of all the glasses formed in this set of experiments 

was identical to that of those formed from comparative CON9 frits in Section 5.5.2.2. 

All the glasses formed at 1200°C were visually inhomogeneous. Figure 5: 15 

illustrates the difference in the number of batch relics in glasses formed from frits 

made in CON9 and small trays. The glasses made from CON9 frits are generally 

more homogeneous than the glasses made from small tray frits. The larger surface 

area to volume ratio of the small tray has therefore had an adverse effect on 

homogeneity. The trend of increasing inhomogeneity with increasing fritting 

temperatures is only observed at 1000°C. 
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Figure 5: 15 A comparison between the visual homogeneity of bracken glasses 
made from mixed, frits in CON9 and small tray crucibles, melted 
at 1300°C for 5 hours (Table V: 20 and Table V: 32) 

All the bracken glasses made from small tray frits at 1300°C were visually 

homogeneous but backscattered SEM imaging confirmed that a number of these 

glasses contained inhomogeneities. The use of a higher melting temperature 

(1300°C) facilitates the production of a more homogeneous glass, whilst increasing 

fritting temperatures increases inhomogeneity. Figure 5: 16 illustrates the difference 

between glasses formed from frits made in CON9 crucibles and small trays. The 

glasses formed from frits made in small trays contain comparatively more 

homogeneities than those made from frits formed in CON9 crucibles 
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Figure 5: 16 A comparison between the homogeneity (by SEM) of bracken 
glasses made from mixed, frits in CON9 and small tray crucibles, 
melted at 1300°C for 5 hours (Table V: 24 and Table V: 32) 

5.5.5 Summary of Results 

The main observations from the results obtained in this set of experiments are 

summarised in the following points: 

" Visually homogeneous glasses may contain inhomogeneities that are only 

visible using backscattered SEM imaging. 

" Lower fritting temperatures and shorter fritting times increases 

homogeneity in both ash types. 

" Mixing the frit prior to melting increases homogeneity in both ash types. 

" The use of stirred frit increases homogeneity at melting temperatures of 

1200°C but increasing this to 1300°C gives inconclusive results for both 

ash types. 

" The use of smaller surface area to volume ratio crucibles increases 

homogeneity. 

0 Increasing melting temperature increases homogeneity in both ash types. 
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" Increasing melting temperatures may cancel the effects of some of the 

fritting variables. 

5.5.6 Discussion 

5.5.6.1 Fritting Temperature and Time 

The results from both the beech and bracken ash glasses produced in this 

section follow the same general trend whereby the homogeneity is seen to decrease 

with increasing fritting temperatures and times. The XRF analyses of the frits in 

Section 5.2.1.3 determined that the alkali component of the frit decreased with 
increasing fritting temperatures and times. It was suggested that this would be likely 

to cause inhomogeneity, as insufficient flux would be present to enable the complete 
dissolution of the silica component (see Section 5.4.1.1). 

The' results of the fritting experiments in Section 4.6 determined that 

variables such as reduction in batch volume would increase with increasing fritting 

temperatures and times. This reduction in batch size is one of the reasons why a 
flitting stage is generally thought to have been included in medieval glass production 
(see Section 2.3). The results from Section 5.5.2 have shown that depending on the 

alkali source and the melting temperature employed, the benefits gained from a 

higher fritting temperature and longer fritting time have to be balanced against the 

formation of a batch free glass. It can be seen that certain fritting procedures or 
heating parameters may be more beneficial than others and that these have to be 

altered according to the composition of the batch. 

5.5.6.2 Mixed and Unmixed Frits 

Mixing the frit before melting is thought to allow a more intimate mixture of 

the raw materials enabling a more extensive and even reaction between the silica and 

alkali and therefore facilitating the formation of a more homogeneous glass (see 

Section 2.3.5). The results of these experiments have shown that in bracken ash 

glasses this does occur, and the mixed frits form more homogeneous glasses than 

unmixed frit at the same fritting and melting parameters. It would therefore seem 

that for bracken ash batches this stage is very beneficial in the production of a 
homogenous glass. 
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In beech ash glasses the effect of mixed frits on homogeneity was 
inconclusive. Beech ash batches require higher melting temperatures than their 

bracken equivalents and at these increased temperatures the affects of the fritting 

variables are effectively cancelled out. Therefore it would appear that mixing the frit 

will improve the homogeneity of the batch but will depend heavily on the reactivity 

of the batch components and melting temperature used. Mixed frits will occupy less 

batch volume than unmixed frits, therefore increasing the volume of glass that could 

be formed from one melt. 

5.5.6.3 Stirred Frit 

Section 2.3.3 suggested that using a stirred frit could have either beneficial or 

detrimental effects on homogeneity. These experiments have shown that at melting 

temperatures of 1200°C using stirred frit produces similar improvements in 

homogeneity as mixing the frit before melting (see Section 5.5.6.2). The formation 

of a more intimate mixture of raw materials by either mixing method enables a more 

even interaction between the silica and alkali and facilitates homogeneity. The 

inconclusive results obtained at melting temperatures of 1300°C may be due to the 

more prevalent effect on homogeneity of the increased melting temperature. The 

possibility of refractory contamination with modem crucibles is very slight and it is 

not though that this would be a significant source of inhomogeneity in these 

experiments. 

5.5.6.4 Fritting Crucible Dimensions 

It has already been mentioned in Section 2.4.5.2 that it might be expected that 

the larger surface area to volume ratio of the fritting crucibles would cause a greater 

loss of the volatile components from the frit compared to those flits formed in 

crucibles with smaller surface areas. The fritting experiments in Section 5.4.1.3 

shows that this hypothesis was correct and the larger crucible surface area facilitated 

a faster fritting reaction. When these frits were melted to form a glass (see Section 

5.5.4) the results confirmed that the loss of volatiles had left insufficient alkali to 

form a homogeneous glass. The use of a larger surface area is therefore similar to 
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the use of increased fritting temperatures and times and is therefore detrimental to the 

production of a homogeneous glass. 

5.5.6.5 Melting Temperature 

The most significant trend observed from the results of these experiments is 

the marked increase in homogeneity with increasing melt temperature. The higher 

temperature will aid the faster reaction of the silica and alkali components and help 

prevent segregation of the batch and the formation of silica rich areas which it is then 

difficult to remove even with extended melting times (see Section 4.7.5). Once the 

batch is fluid the increased temperature will lower the viscosity of the melt, 
facilitating the removal of bubbles and seed and speeding up homogenisation due to 

increased mixing by thermal currents within the molten glass. The use of higher 

melting temperatures will therefore not only enable the production of a more 
homogeneous glass but also one that is better refined and of an improved quality. 

The results from this Chapter also confirm that the beech ash batches require higher 

melting temperatures than bracken ash batches. This is due to the lower alkali 

content of the beech ash and has been discussed in Section 4.7.5. 

The results from this Chapter show that the use of higher melting 

temperatures allows a larger tolerance of the parameters used in the preparation and 

fritting of the batch. For example, beech or bracken frit formed at high temperatures 

(1000°C) for long times (24 hours) will not form a homogeneous glass at a melting 

temperature of 1200°C, but will if the melting temperature is increased to 1300°C. If 

it is the loss of the alkali component in frits formed at high temperatures and long 

times which prevents the complete dissolution of the silica component of the batch 

(see Section 5.5.6.1) then the increase in melting temperature will compensate for 

this by allowing more silica to dissolve using less flux. 

5.5.6.6 The Effect of Sampling Bias in Visually Homogeneous Glasses 

The general trend in the results from this Chapter is that inhomogeneity 

increases with increasing fritting temperatures and times and decreasing melting 

temperature. However, it can be seen that there are some instances where the levels 

of inhomogeneity observed under the SEM do not follow this general pattern. The 

most likely reason for these anomalies is that the area removed for SEM analysis was 
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not representative of the whole glass. It has been determined that inhomogeneities 

are present in visually homogeneous glasses but the position and distribution of these 

microscopic inhomogeneities (if present) could not be seen whilst sampling. 

Therefore although a large sample was removed for SEM analysis (see Section 

3.3.2.2) in some cases the area sampled may not have been representative of the 

glass. 
To remove this possible bias it would have been beneficial to carry out multi 

sampling and also to be able to produce each glass more than once in order to ensure 

repeatable results. This was not possible due to constraints on time and raw 

materials and as the general trends results appear to be relatively constant it is 

thought that, within the limitations of laboratory replication, these results constitute a 

good representation of the processes that are being investigated. 

5.5.7 Conclusions 

The conclusions from these experiments are summarised in the points below: 

" Visually homogeneous glasses may contain inhomogeneities that are only 

visible under the SEM. 

" Increasing melting temperatures will increase homogeneity in both ash 

types and will generally cancel out the effects of factors which appear to 

cause inhomogeneities, such as increased flitting temperatures or times. 

" Fritting does not always facilitate the production of a homogeneous glass. 

" Increasing fritting temperatures and times will increase inhomogeneity. 

" Mixing the frit before melting and/or stirring the batch during fritting will 
improve homogeneity. 

9 Smaller surface area to volume ratio fritting crucible dimensions will 
increase homogeneity. 

" Beech ash batches require higher melting temperatures than bracken. 

It can be concluded from the results of these experiments that the choice of 

fritting and melting variables has to be selected depending on the composition of the 

raw materials. It can also be seen that effects of many of the fritting variables are 

removed by the use of higher melting temperatures and it would appear that this is 
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one of the most significant factors in the production of a homogeneous glass. In 

addition to melting temperature it can be seen from Figure 2: 1 that there are many 

other variables in the melting stage that will influence homogeneity and a number of 

these will be investigated in the next Chapter. 
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CHAPTER 6 

Experimental: The Effect of Melting Variables on Homogeneity 

6.1 Introduction 
The effects of the melting stage on the homogeneity of medieval glasses were 

considered in Section 2.4. The aim of the experiments in this Chapter is to determine 

the effect on homogeneity of altering melting conditions, such as crucible 
dimensions, fabric and furnace atmosphere. It was not possible to experimentally 
investigate all of the variables associated with melting within the time scale of this 

research. Therefore a limited number of parameters had to be selected. The reasons 
behind these choices have been discussed in Section 2.7. 

Beech and bracken ash batches were made up to the standard batch 

composition and mixing parameters given in Section 4.7.2. The constraints on raw 

materials meant that it was not possible to use both mixed and unmixed frits in these 

experiments. Mixed frits were selected as the experiments in Section 5.5.2 had 

determined that these were more likely to form homogeneous glasses. Glasses were 

also produced using unfritted batches to provide a comparison to the fritted glasses 

produced in Chapter 5. All the glasses were examined and described according to 

the parameters described in Section 3.3. 

The results of the experiments in Chapter 5 determined that increasing fritting 

temperature and time appears to have a direct relationship to inhomogeneity. 

6.1.1 The Effect of Melting Crucible Fabric on Homogeneity 

It was not possible to replicate archaeological crucible fabrics, due to their 

complex nature, and diverse fabric types (see Section 2.4.5.1 and 2.7). Therefore, 

these experiments will determine how homogeneity is affected by the use of simple, 

modem refractory fabrics: alumina and mullite (see Appendix A). Mullite crucibles 
have been used in all of the experiments in Chapters 4 and 5. These experiments 

were carried out using unfritted batches placed in CON9 crucibles of each fabric type 

and heated at 1200°C and 1300°C for 5 hours. 
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6.1.1.1 Beech Glasses 

The experimental parameters and results from these experiments are detailed 

in Table VI: 1 and Table VI: 2 respectively. The unfritted beech glasses produced at 

1200°C were dark purple and visually inhomogeneous. No difference could be 

observed either visually or under the SEM between the glasses formed in either 

mullite or alumina crucibles. The beech glasses produced at 1300°C were dark 

purple and visually homogeneous. Backscattered SEM imaging showed that both 

glasses contained a low level of inhomogeneity (Plate 6: 1). It can be concluded from 

these experiments that changing melting crucible fabric from mullite to alumina does 

not have an effect on homogeneity. 

0 

Alumina Crucible (Be 134) Backscattered SEM Image (Be 134) 
Visually homogeneous glass Low levels of inhomogeneity 

Plate 6: 1 A comparison between the visual and microscopic homogeneity of 
unfritted bracken glasses made in alumina and mullite crucibles at 
1300°C for 5 hours (Table VI: 2). 
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6.1.1.2 Bracken Glasses 

The experimental details and results for the bracken glasses produced in 

alumina and mullite crucibles are recorded in Table VI: 3 and Table VI: 4. All the 

bracken glasses formed at 1200"C and 1300°C in mullite crucibles were dark green 

and visually homogeneous. All the glasses made at 1200°C and 1300°C in alumina 

crucibles were very mottled in appearance. Blue, brown and yellow streaks could be 

observed to be running through the predominantly green glass. The bright white 

colour of the alumina made these colours easier to observe (Plate 6: 2). 

cros. 5 

Alumina Crucible (Br165) 
Visually homogeneous glass 

c11s. 

Mullite Crucible (Br16b) 
Visually Homogeneous Glass 

Backscattered SEM Image (Br 165) 
Low levels of inhomogeneity 

Plate 6: 2 A comparison between unfritted bracken glasses produced in 
alumina and mullite crucibles at 1200°C for 5 hours (Table VI: 4) 
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Backscattered SEM imaging determined that both the bracken glasses made 
in alumina and mullite glasses at 1200°C contained the same low levels of 
inhomogeneity. The different colours of the alumina crucible glass did not relate to 

any differences in the colours on the SEM images. These colour changes are 

therefore not related to the presence of inhomogeneities. Both the glasses formed at 

1300°C were homogeneous under the SEM. It can therefore be concluded that using 

either alumina or mullite as a crucible fabric does not significantly alter the 

homogeneity of the glass produced, but may alter its visual appearance. The increase 

in homogeneity with increasing melting temperature is comparable to the results 

obtained in Chapter 5. 

6.1.2 The Effect of Melting Crucible Dimension on Homogeneity 

The aim of these experiments was to investigate whether altering melting 

crucible dimensions will influence homogeneity. The melting crucible dimensions 

were altered from the standard CON9 (54.5aam height and 35.0'm base diameter) to a 

smaller CYL7 (3.6rm height and 28.6nn base diameter) and larger CON7 (60.3 

height and 42. F nn base diameter) (see Appendix A). Unfitted and mixed fritted 

batches were placed in these crucibles and heated at 1200°C or 1300°C for 5 hours. 

6.1.2.1 Beech Glasses 

The experimental parameters and results from these experiments are listed in 

Table VI: 5 and Table VI: 6. All the glasses formed at 1200°C in CON7 and CYL7 

crucibles were dark purple and visually inhomogeneous. The visual and SEM results 
determined that the extent of batch relics within the glass increased with increasing 

fitting temperatures and times. The results are comparable with those batches 

melted at the same temperatures and times but melted in smaller, CON9 crucibles 

(see Sections 5.5.2.1 and 6.1.1.1). The number of batch relics does not appear to be 

affected by the size of the melting crucible. 
All the glasses produced at 1300°C were dark purple and visually 

homogeneous (Plate 6: 3). A comparison was made between these glasses and those 

melted in smaller, CON9 crucibles melted at comparable temperatures and times (see 

Sections 5.5.2.1 and 6.1.1.1). No difference could be detected visually or in 

backscattered SEM mode between the two sets of glasses. 
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Plate 6: 3 A comparison between unfritted beech glasses melted in CON7 and 
CYL7 melting crucibles at 1300°C for 5 hours (Table VI: 6) 

6.1.2.2 Bracken Glasses 

Bracken glasses were produced in CON7 and CYL7 crucibles. The 

experimental details and results are recorded in Table VI: 7 and Table VI: 8. The 

glasses formed at melting temperatures of 1200°C from bracken frits were a 

brown/green colour and visually inhomogeneous. The level of inhomogeneity 

increased with increasing fritting temperature. The unfritted batches produced darker 

green/brown, visually homogeneous glasses but examination using the SEM 

determined that they contained low levels of inhomogeneity. The results were 

comparable to the glasses made from the same batches using CON9 crucibles (see 

Sections 5.5.2.2 and 6.1.1.2). The glasses formed at a melting temperature of 

1300°C were all visually homogeneous, but examination using the SEM determined 

that those formed from frits made at 500°C for 1 hour contained low levels of 

inhomogeneity. 

No difference could be detected either visually or microscopically between 

any of the glasses made using the same batches in different sized crucibles at either 

melting temperature (Plate 6: 4). The results are also comparable to the glasses made 

from the same batches using CON9 crucibles (see Sections 5.5.2.2 and 6.1.1.2). It 

can be concluded from these results that altering the melting crucible size within 

these experimental parameters does not affect homogeneity. 
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Plate 6: 4 A comparison between unfritted bracken glasses melted in CON7 
and CYL7 melting crucibles at 1200°C for 5 hours (Table VI: 8) 

6.1.3 The Effect of Melt Size on Homogeneity 

The aim of these experiments was to determine how increasing the total batch 

weight would influence homogeneity. Due to the limitations of the furnace 

dimensions it was not possible to replicate a batch that would fill a typical medieval 

glassmaking crucible (see Section 2.4.5.2 for a discussion of the archaeological 

evidence for crucible dimensions). For these reasons only unfritted glass made from 

6g sand and 12g ash, and 12g sand and 24g ash (standard batch weight = 3g sand, 6g 

ash) was produced. The ash to sand ratio and the rest of the batch parameters 

remained as described in section 4.7.2, and the furnace parameters used are as 

described in Section 6.1.1. The results from both the beech and bracken ash glasses 

are described in Section 6.1.3.1 and 6.1.3.2. 

6.1.3.1 Beech Glasses 

The experimental parameters and results for these glasses are detailed in 

Table VI: 9 and Table VI: 10. The glasses produced at 1200°C were dark 

purple in colour and visually inhomogeneous. Backscattered SEM imaging 

determined that these glasses were also homogeneous on a microscopic 
%, a-91o sses P2Axs'-ci aio k& o'c We-e- boK1 v is u i(. awed vwr-vosco? icoJLj 1ýcwýogenf 

level. LAt either melting temperature no difference could be determined between the 
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glasses made from different batch sizes. The glasses are also the same as those 

glasses made using the same conditions from the smaller standard batch weight (see 

Section 6.1.1.1). These results therefore show that increasing batch weight within 

these experimental parameters appears to have no affect on the homogeneity of the 

glass produced. 

6.1.3.2 Bracken Glasses 

The experimental parameters and results for these glasses are detailed in 

Table VI: 11 and Table VI: 12. All the glasses produced were visually identical, being 

dark green in colour and visually homogeneous. Backscattered SEM imaging 

determined that both the glasses formed at 1200°C contained low levels of 
inhomogeneity, but those formed at 1300°C were homogeneous. The results are the 

same as those glasses made using the same conditions from the smaller standard 
batch weight (see Section 6.1.1.2). These results therefore show that as with the 

beech, increasing batch weight within these experimental parameters appears to have 

no affect on the homogeneity of the glass produced. 

6.1.4 The Effect of Melting Furnace Atmosphere on Homogeneity 

The aim of these experiments was to investigate how furnace atmosphere 
influences homogeneity. A gas fired melting furnace (see Appendix A) was used to 

provide a reducing atmosphere. It was not possible to determine the degree of 

reduction by measuring the partial pressure of oxygen so the position, colour and 

shape of the flame was used to estimate the furnace conditions instead. A 

combination of unfritted and crushed fritted batches were placed in separate mullite 

crucibles (CON9) and preheated on the edge of the furnace for 1 hour to reduce the 

chance of cracking due to thermal shock. The batches were then heated at 1200°C 

and 1300°C for 5 hours, removed from the furnace and allowed to air cool. 
These melts had to be repeated several times, as the crucibles were very 

susceptible to thermal shock. Preheating the crucibles did not appear to be as 

effective at preventing this problem as when using an electric furnace (neutral 

furnace atmosphere). The reasons for this may have been due to hot spots caused by 
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uneven contact between the crucible fabric and flames. The results for the beech and 

the bracken glasses are given in Section 6.1.4.1 and 6.1.4.2. 

6.1.4.1 Beech Glasses 

The experimental details and results are listed in Table VI: 13 and Table 

VI: 14. Melting temperatures of 1200°C produced dark purple, visually 

inhomogeneous glasses. The degree of inhomogeneity increased with increasing 

fritting temperature. The difference between the visual homogeneity of glasses from 

identical batches formed in a neutral (see Sections 5.5.2.1 and 6.1.1.1) and reducing 

furnace atmosphere is illustrated in Figure 6: 1. Where the batches are fritted the 

fritting time was 1 hour. The two glasses are the same, with the exception of the 

glasses produced from frit made at 500°C for 1 hour. In both types of furnace 

conditions homogeneity is less in the unfritted compared to fritted glasses. These 

results show that it is difficult to determine any significant difference between the 

results from either furnace atmosphere and at melting temperatures of 1200°C beech 

glasses will be inhomogeneous. 
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Figure 6: 1 A comparison between unfritted and fritted beech glasses melted 
in reducing and neutral furnace atmospheres at 1200°C for 5 
hours (Table V: 16, Table VI: 2 and Table VI: 14) 
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The beech glasses produced at 1300°C in a reducing atmosphere were all dark 

purple and visually homogeneous. SEM examination confirmed that they were all 

microscopically homogeneous except for the glass formed from frit made at 500°C 

for 1 hour. The difference in microscopic homogeneity between these glasses and 

those made in neutral furnace atmospheres from identical batches (see Sections 

5.5.2.1 and 6.1.1.1) is illustrated in Figure 6: 2. The variable homogeneity of the 

glasses show that it is difficult to draw any definite conclusions as to whether the 

formation of a homogenous glass will be facilitated by the use of a reducing furnace 

atmosphere. 
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Figure 6: 2 A comparison between beech glasses melted in reducing and 
neutral furnace atmospheres at 1300°C for 5 hours (Table V: 18, 
Table VI: 2 and Table VI: 14) 

6.1.4.2 Bracken Glasses 

The results from these experiments are listed in Table VI: 16. All the bracken 

glasses produced in the gas furnace at 1200°C or 1300°C were visually 

homogeneous. In all cases except one, the glasses made in the reducing furnace 

atmospheres were a darker green/brown colour than those made in the electric 

furnace (see Sections 5.5.2.2 and 6.1.1.2). The exception was the glass produced in 

the gas furnace from frit, which had been heated at 500°C for 1 hour. This glass was 
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a green/brown colour compared with the blue/green colour of the one made in a 

neutral furnace atmosphere. Where the batch was fritted the fritting time was 1 hour. 

The SEM results show that all the glasses made at 1200°C in the reducing 

furnace conditions contain inhomogeneities. The levels of homogeneity differ to 

those seen in the same glasses produced in neutral furnace conditions, this is 

illustrated in Figure 6: 3. 
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Figure 6: 3 A comparison between bracken glasses melted in reducing and 
neutral furnace atmospheres at 1200°C for 5 hours (Table V: 20, 
Table VI: 4 and Table VI: 16) 

Increasing the melting temperature to 1300°C reduced the level of 

inhomogeneity. The levels of homogeneity in the glasses made in reducing furnace 

conditions are the same as those seen in the same glasses produced in neutral furnace 

conditions (Figure 6: 4). The exception to this is the higher levels of inhomogeneity 

in the glass made in a reducing furnace atmosphere from frit made at 500°C for 1 

hour. 

The variable homogeneity of the bracken glasses in these experiments show 

that it is difficult to draw any definite conclusions as to whether the formation of a 

homogenous glass will be facilitated by the use of a gas furnace. 
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Figure 6: 4 A comparison between bracken glasses melted in reducing and 
neutral furnace atmospheres at 1300°C for 5 hours (Table V: 24, 
Table VI: 4 and Table VI: 16) 

6.1.5 Summary of Results 

The main observations from the results obtained in this set of experiments are 

summarised below: 

" Altering the melting crucible fabric (using mullite and alumina) does not 

affect homogeneity in beech ash glasses. 

" Altering the melting crucible fabric affects the visual appearance of the 

bracken glasses but does not affect homogeneity. 

" Homogeneity is not affected by variations in melting crucible dimensions 

(using CON9, CON7and CYL7 crucibles) for either ash type. 

" Homogeneity is not affected by an increase in melt size within the 

experimental limits (9-36g total batch weight) does not affect 

homogeneity in either ash type. 

" Altering the furnace atmosphere does not give a conclusive change in 

homogeneity in either ash type. 
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The results from this Chapter also confirm many of the results from Chapter 5 

these are summarised below. 

" Visually homogeneous glasses may contain inhomogeneities that are only 

visible under the SEM. 

" Increasing fritting temperatures and times increase homogeneity in both 

ash types. 

9 Increasing melting temperature facilitates homogeneity in both ash types. 

In comparison to melting parameters such as temperature and time the 

variables investigated in this Chapter appear not to have such a significant effect on 
homogeneity. These points and all the other results from this set of experiments will 
be discussed in the following sections. 

6.1.6 Discussion 

6.1.6.1 Batch Size and Melting Crucible Dimensions 

The results from these experiments suggest that no difference could be 

detected in the homogeneity of glass produced in melting crucibles with variable 
dimensions or small (9.00g) and large (36.00g) batch sizes. The experimental melts 

are much smaller than archaeological examples (see Section 2.4.5.2) and therefore 

can homogenise comparatively quickly. However, scaling up the melts in these 

experiments has not produced inhomogeneity. On the basis of these results it is 

difficult to determine whether batch size and crucible dimensions do have a 

significant influence on homogeneity. It is thought likely that the other factors such 

as melting temperature may be more influential, and that longer melting times would 
be required with increasing melt size. 

6.1.6.2 Crucible Fabric 

The aim of this set of experiments was not to replicate archaeological 

crucible fabrics but to investigate how altering the crucible fabric would affect 
homogeneity. The results from both the beech and bracken experiments determined 

that no conclusive correlation between homogeneity and crucible fabric could be 
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observed. The highly corrosive nature of molten glass has been mentioned in 

Section 2.4.5.1 and it was noted that the most obvious point for this to be observed is 

at the ceramic/glass interface. The crucibles used for the experimental glasses are 

made of modem, highly refractive fabrics and the ceramic dissolution would have 

been too small to be observed on the backscattered SEM images. It is thought that it 

is more likely to observe these inhomogeneities in medieval glass crucibles due to 

the lesser nature of the fabric compared to modem materials, and the longer times 

required to melt larger scale melts. 
The results from these experiments have not been able to conclusively 

determine whether homogeneity is affected by the change in crucible fabric. 

However, the properties of the clay, such as thermal conductivity, will influence melt 

temperature and therefore the extent of internal mixing. It has been seen that these 

variables will have a significant affect on homogeneity. 

The choice of crucible fabric did affect properties of the glasses other than 

homogeneity. It was noted in Section 2.6 that none of the experimental glasses were 

subjected to annealing and therefore they would be liable to crack due to the 

presence of internal stresses formed on cooling. The glasses formed in the alumina 

crucibles all exhibited much less cracking and this is due to the greater insulating 

properties of this fabric in comparison to mullite. The bracken glasses formed in 

alumina crucibles were very mottled in colour but this was not linked to the presence 

of inhomogeneities. It was probably due to the presence of iron in different 

oxidation states (see Section 5.5.6.1). The alumina is also a bright white colour and 
it may therefore be that these colour differences are present in the mullite melts but 

cannot be so easily observed. 

6.1.6.3 Melting Furnace Atmosphere 

A comparison of the results obtained from the beech and bracken glasses 

produced in reducing and neutral furnace atmospheres did not produce conclusive 

results. It was difficult to regulate the temperature in the gas furnace as accurately as 
in the electric furnace (see Appendix A) and fluctuations in the temperature of the 

gas furnace may therefore have influenced the differences observed between the two 

sets of glasses. It is likely that if furnace atmosphere does have any effect on 
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homogeneity it would be effectively removed by variables such as fritting and 

melting temperatures. 

The reducing furnace atmosphere will influence glass colour depending on 
the colouring agents present in the melt. This was apparent in the bracken ash 

glasses made in a reducing furnace atmosphere, which are browner compared to 

those made in neutral conditions. The colour change is again due to the balance of 

Fe2+ and Fe 3+ ions in the melt (see Section 5.5.6.1). The beech ash glasses produced 

in reducing and neutral furnace conditions were both dark purple, and no colour 

difference could be observed between identical melts produced in either furnace 

type. The reducing conditions are not sufficient to shift enough of the purple Mn3+ 

ions to yellow Mn2+and cause a colour change, therefore the glass remains purple 

(see Section 4.7.5.1). 

6.1.6.4 Melting Fritted and Unfritted Batches 

It was noted in Section 2.3.1 that the inclusion of a fritting stage in medieval 

glass production is usually attributed to the reduction in melting temperature required 

when compared to melting unfritted raw materials. The results of the experiments in 

this and Chapters 4 and 5 have shown that unfritted beech and bracken ash batches 

will form glasses at the same melting temperatures. However, further experiments 

would be required to determine whether the behaviour of the two batch types is 

comparable as melting temperatures are reduced. 
Glasses produced from unfritted raw materials tend to be more homogeneous 

than glasses formed from fritted batches. This may be because fritting forms 

compounds that require different melting temperatures and times, or because regions 

are formed in the frit that contain high levels of silica that would be difficult to melt. 

In addition to this, alkali may also be lost in the fritting stage (see Section 5.5.6.1). If 

this occurs then there may be insufficient alkali to react with all the silica present. 

The unfritted bracken glasses are much darker in colour than the fritted glasses, but 

there is no colour difference between unfritted and fritted beech ash glasses. 
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6.2 Overall Summary and Conclusions from Chapters 4-6 

Standard batches were used in these experiments to ensure repeatability 

between melts, and differing proportions of ash to sand and other sources of alkali 

have not been investigated here. Beech and bracken ashes have been used as generic 

alkali types, but many other species (for example oak) or combinations of species 

may have been used in medieval glass manufacture (see Section 2.2.2). These 

differences in plant ashes will affect the batch composition and hence have an effect 

on ease of melting. Specific conditions would have had to been used for each batch. 

However, for the majority of the glassmaking variables investigated here, common 

trends can be observed in the behaviour of both ash types. Therefore, the behaviour 

of other batches may also follow similar trends. 

In addition to the information on homogeneity these experiments have also 

provided information on the stages of glass production (such as batch mixing and 
fritting) that are not well represented in the archaeological record. It has been seen 

that flitting in particular is a very complex stage in glass production and will have a 

significant effect on variables such as batch volume or glass colour depending on the 

operating parameters and the ash types used. 
Finally it can be seen that to produce a homogeneous glass is difficult. It 

requires considerable knowledge and experience of raw materials and the glass 

making process. However, the production of a visually homogeneous glass does not 

mean that it is microscopically homogeneous. This has implications when the 

composition of the glass is considered. The size and position of the sample removed 
for analysis, and the location of analyses on that sample will all have an influence the 

composition obtained. This has important implications for the study of 

archaeological glasses (see Section 1.3). 

The main conclusions from the beech and bracken glasses produced in 

Chapters 4-6 are summarised in Table 6: 1. 
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Stage of 
Gl V i bl 

Homogeneity 
ass 

Production 
ar a e 

Beech 
11 Bracken 

R Smaller Sand Particle Sizes Improved improved 
aw 

Materials Mixing the Raw Materials Before Fritting Improved Improved 
and/or Melting 

Fritting Crucibles with Smaller Surface No change Improved Area to Volume Ratios 
Lower Fritting Temperatures Improved Improved 

Fritting Shorter Fritting Times Improved Improved 
Stirring During Frittin Improved Improved 

Mixing the Frit Before Melting Inconclusive Improved 
Higher Melting Temperatures Improved imp roved 

Longer Melting Times Improved improved 
Variation in Melting Crucible No Change No Change 

M l i 
Dimensions 

e t ng Crucible Fabric No Change No Change 
Oxidising or Reducing Melting Furnace Inconclusive Inconclusive Atmosphere 

Increased Melt Size No Change No Chanqe 

Table 6: 1 Summary of Experimental Results 
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CHAPTER 7 

Selection of Comparative Archaeological Material 

7.1 Introduction 

The results from Chapters 4-6 have determined that inhomogeneity will vary 

depending on the glass making parameters used, and that certain factors, such as raw 

material composition and melting temperatures, will have a more significant effect 

than others. It is therefore necessary to select comparative archaeological material 

that represents glassmaking practices that are relevant to homogeneity. The 

following criteria were therefore used as the basis for selecting the archaeological 

material for this research: 

1. Sites that are producing glass from raw materials (sand and ashes) rather 

than remelting cullet, as this material will be more likely to exhibit 
inhomogeneity (see Section 2.2.5). 

2. Documented use of different alkali sources relevant to those used in this 

research, as it can be seen from Chapters 4 to 6 that this has a significant 

effect on homogeneity. 

3. Extensive excavated evidence of factors that will influence homogeneity 

such as crucible sizes and fabric, and furnace types (see Chapter 2). 

4. A range of periods and geographical locations. This increases the 

possibility of covering different technologies (such as alkali type (see 

Section 2.2.2)) that may affect homogeneity. 

5. A wide range of material including worked and finished glass, crucibles 

and waste products. The waste and crucible glasses are very important, as 

these are more likely to contain inhomogeneities (see Section 2.4.5.2). 

6. A large assemblage of glass from which to sample from and the ability to 

remove relatively large samples for analysis (see Section 3.3.2.2). 

7. Well documented excavation. 

8. The date of the site fits into the period under study (12`h to 17th centuries). 
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The following medieval glassmaking regions were therefore selected: the 

Surrey/Sussex Weald and Staffordshire, England, and Hils, near Griinenplan, 

northern Germany. These sites are thought to represent the use of different alkali 

sources. Oak in the Weald, bracken in Staffordshire and beech in Hils (see Section 

2.2.2 and below). They contain a large number of excavated glass production sites 

that together cover the period from 12th-17th century. There is documentary evidence 
(such as land leases and sales of fuel and raw materials) associated with some of the 

sites, as well as a wide variety of archaeological remains including furnace 

structures, crucible fragments, worked and finished glass fragments, and cullet. This 

data is important as it provides evidence for glassmaking practices. The sites chosen 
from each region are listed below: 

The Weald 

" Blunden's Wood (14th century) (Wood 1965). 

" Knightons (16`h century) (Wood 1982). 

" Sidney Wood (17th century) (Kenyon 1967). 

Staffordshire 

" Little Birches, Wolseley (146' and 16th centuries) (Welch 1997). 

Hils' 

" Glasshouses A2-A18 (12''-15`h centuries) (Six 1976). 

The specific reasons for these choices and the details of glass production at 

each site will be discussed in Sections 7.2 to 7.4. 

7.2 The Medieval Glass Industry in the Weald 

The Wealden glass industry has been studied extensively. The first 

excavations were carried out by Winbolt (1932,1933), and were built on by Kenyon 

(1959,1967). Glass production probably took place in the Weald at the start of the 

13th century and continued until the mid 17`h century. There were over forty 

glasshouses in operation during this period (Figure 7: 1 and Table VII: 1) but 

187 



CHAPTER 7 SELECTION OF COMPARATIVE ARCHAEOLOGICAL MATERIAL 

documentary and archaeological evidence is limited until the mid 16`h century 

(Kenyon 1967). 
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Figure 7: 1 Map of glass furnace sites in the Weald (Table VII: I) after (Kenyon 
1967) 
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Wealden glass and glass sites are frequently referred to using the terms 

`Early' (pre 16`h century) or `Late' (post 16`h century) (Kenyon 1967). The Early 

period is characterised by rectangular, `northern' style glass furnaces (see Section 

2.4.1), and thick glass that is frequently milky in appearance and more prone to 

weathering (such as at Blunden's Wood, Plate 7: 1) (Wood 1965). At this time, high 

quality wares such as those made from crystal glass were being imported from 

Germany, France and Italy (Crossley 1998: 168). 

Plate 7: 1 `Early' (pre 16`h century) thick Wealden glass cullet from Blunden's 
Wood 

During the mid 16`h century the glass industry in the Weald began to grow 

with a combination of increasing product demand coupled with improved production 

techniques (Crossley 1972). The Late period features winged furnace structures, 

such as at Vann (late 16`h century) (Winbolt 1933: 30). The glass is finer, harder, 

relatively unweathered and is frequently a clear dark blue green or olive green colour 

(such as at Sidney Wood, Plate 7: 2) (Kenyon 1967). This change in furnace design 

reduced fuel costs and facilitated the manufacture of a higher quality glass that could 

be sold without increasing prices. These technological advances are frequently 
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attributed to the influx of immigrant glassworkers from Lorraine and Normandy in 

northern France. Many of these workers came to live in the Chiddingfold area and 

the first recorded arrival is dated to 1567 (Crossley 1990,1998, Kenyon 1967). 

However, the increased demand for high quality glass may have forced the English 

glassmakers to respond and adapt their production methods (Crossley 1972,1990, 

Kenyon 1967: 13, Welch 1997). 

0 Cms. 5 

Plate 7: 2 `Late' (post 16th century) Wealden glass from Sidney Wood 

Late glass may still have been made from the same raw materials as Early 

glass, but production practices may have been improved so that a more uniform and 

consistent glass was regularly produced (Crossley 1972). Kenyon (1967) suggests 

that some glasshouses were in operation over both periods and a combination of 

Early and Late glass can be found at sites such as at Knightons (see Section 7.2.2). 

The Wealden industry eventually collapsed during the 17`h century due to the scarcity 

of the wood supply. This meant that other fuels such as coal had to be utilised and 

glass production moved to areas where these materials were more easily available 

(Hunter 1981). 

There is some evidence for the types of raw materials used by the Wealden 

glassmakers. Local sand sources such as those at Hambledon Common, near 

Chiddingfold may have been utilised (see Figure 7: 1) (Crossley 1988, Kenyon 1967: 
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35). Plant ashes may have been obtained from a local source, as the medieval 

glassmaking areas in the Weald were heavily forested at this time (Crossley 1998). 

The environmental evidence suggests that oak and not beech trees were predominant 

during the medieval period (Sanderson and Hunter 1981), and therefore it is likely 

that oak may have been the main alkali source used (see Section 2.2.2). Although 

this ash was not used in the experimental part of this research (Chapters 4-6) it can 

be seen from the analyses of Wealden oak and beech in Section 2.2.2.1 that the 

calcium and total alkali concentrations are similar for each species. Therefore the 

effect on homogeneity may be similar. 

There is a distinct similarity between the crucibles found at the Wealden sites, 

and both `barrel' and `bucket' shaped pots were common (Figure 7: 2) (Fox and 

Lewis 1982, Wood 1965). 

Figure 7: 2 Medieval Wealden glass crucibles from Blunden's Wood 
glasshouse, barrel (right) and bucket (left) shaped (Wood 1965: 
Figure 8) 

The crucibles range in size but Kenyon (1967: 49-51) suggests that the 

commonest forms were approximately 25-40cm in height and diameter with walls 

ranging from approximately 0.5-3cm in thickness. The rim shapes are varied and 

this has been attributed to the signature of different potters. The Wealden crucibles 

have good refractory properties and Kenyon (1967) suggests that the importance of 

obtaining the correct crucible fabric to withstand high temperature and resist 

refractory corrosion was well known (see Section 2.4.5.1). The crucible fabric and 

dimensions-are important, as these will affect homogeneity (see Sections 2.4.5 and 
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}q, ao, tast 
6.1.6). Merchant (199j suggests that although Wealden clays would have been 

suitable for use as glass crucibles due to their good refractory properties, his analyses 

of Blunden's Wood, Knightons and Sidney Wood crucibles could not ascertain the 

exact clay sources used. 
The Wealden glasshouses selected for this research span the Early to Late 

medieval periods, and will be discussed in Sections 7.2.1 to 7.2.3. 

7.2.1 Blunden's Wood 

Glass samples were chosen from Blunden's Wood, Hambledon, Surrey 

(SU974 374), as it represents one of the earliest sites and has the most 

comprehensive remains of glass manufacture in the Weald. The site has been dated 

to approximately 1330 and has remained comparatively undisturbed since the last 

phase of use. It was excavated in 1960 by E. S. Wood and provides a rare insight 

into the early phases of medieval glass production in this region (Wood 1965). The 

location of the site is illustrated in Figure 7: 3. 
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Figure 7: 3 Map of the Hambledon area showing Blunden's Wood glasshouse 
(Wood 1965: Figure 1) 
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Blunden's Wood had three furnaces structures and these are illustrated in 

Figure 7: 4. Furnace A was rectangular and of the northern type. It is thought to have 

been the main melting furnace due to the large amount of waste glass and scum or 

gall found associated with it. The sieges each contained two slight depressions that 

are thought to have been sites for crucibles. It is unusual in design as it contains 

what Wood (1965: 59) suggests is a cavity wall, which may have provided extra 

thermal insulation. This feature was also found at the 16th century furnace in 

Jamestown, Virginia (Harrington 1952). However, Ashurst and Wood (1973) 

suggest an alternative design, with no insulation cavity and an outer wall continuous 

to the sieges. 
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Figure 7: 4 Excavation plan of Blunden's Wood glasshouse (Wood 1965: 
Figure 2) 

Furnace B was circular and consisted of two chambers connected by a 

firebox. It is thought possibly to have resembled a beehive in shape. The function of 

this furnace is not certain. Glass was found attached to the structure in the eastern 

cavity and many crucible and glass fragments were found associated with the 

furnace. Furnace C was the smallest in size and situated between furnaces A and B. 

Wood (1965: 64) has suggested that furnace B may have been used for both fritting 

(east cavity) and annealing (west cavity) whilst furnace C may have been for firing 

and preheating crucibles. Wood (1965: 64) also notes that annealing may have been 
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carried out in the roof of furnace A, although the superstructure was not excavated. 
There is a fragment of a possible frit type material attached to a crucible from 

Blunden's Wood. Analysis by Merchant (1998: 79,168) found that it did consist of 

sand that had reacted with an alkali and he suggested that this would have occurred at 

a maximum temperature of 900°C. However, due to the problems of identification 

(see Section 2.3.1) it cannot be certain whether this material really is frit. 

Window and vessel glass was produced at Blunden's Wood and although 

some imported cullet was also found, the majority of the pieces are typical of local 

manufacture based on abundance (Wood 1965). The glass is of the Early type and is 

weathered to varying degrees. It ranges in colour from pale green yellow to pale 

blue green and in some cases is slight opaque (Wood 1965). Analyses of Blunden's 

Wood glass by Merchant (1998: Tables 6.10 and 6.12) and Waterton (in Wood 

(1965: 71)) confirm that the glass has a typical medieval potash-lime composition 

with approximately 10-14 Wt. % total alkali and 11-17Wt. % lime (Table VII: 2). 

Merchant (1998k suggests that the high calcium levels may be due to the intentional 

addition of limestone or the use of calcium rich plant ashes. It can be seen from 

Section 2.2.2.1 that beech and oak ashes both contain relatively high calcium levels, 

but the Weald was also a well known source of lime during the medieval period 

(Godfrey 1975). It was noted in Section 2.2.2.1 that high calcium levels could be a 

source of inhomogeneity but this will depend on other factors such as melting 

temperatures. 

Wood (1965: 68) notes that a fragment of glass from Blunden's Wood could 

be melted at 1150°C. He therefore suggests that it may have been produced between 

1200-1250°C. Merchant (1998: 32) suggests from the results of crucible analyses 

that glass melting temperatures at Blunden's Wood were in excess of 1000°C and 

more likely between 1200-1300°C. It was noted above and in Section 7.2 that oak 

may have been used as the alkali component in Blunden's Wood glass, and it was 

suggested in Section 2.2.2.1 that oak may have similar effects on homogeneity as 

beech ash. The experimental results in Chapters 4-6 have shown that at 1300°C, 

small beech ash batches can produce a homogeneous glass, but at 1200°C the glass is 

very inhomogeneous. Therefore, based on the suggested melting temperatures 

above, the glass produced at Blunden's Wood may be likely to contain 

inhomogeneity, especially when the larger crucible dimensions and melt size are 

taken into consideration (see Section 2.4.5). 
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Unusually for the Weald, the majority of the crucibles found at Blunden's 

Wood were barrel, not bucket shaped (see Figure 7: 2). The crucibles were 

approximately 10-15" (25-37.5cm) diameter, and 12-15" (30-37.5cm) in height, with 

walls of 0.25"-1" (0.6-2.5cm), and thicker bases (1.75-2" (4.3-5cm)) Wood (1965: 
"n v01VMt 

68-9). These large crucible dimensions (over 100 times largerithan a standard 

experimental CON9 crucible, see Appendix A) means that the melt size, and the 

thermal conductivity of the crucible fabric will have a greater affect on homogeneity 

(see Section 2.4.5.2) than in the experimental melts (Chapters 4-6). 

The fourteen samples selected from Blunden's Wood are recorded in Table 

VII: 3. predominantly consist of crucible and waste glass fragments, as these are 

more likely to exhibit inhomogeneity (see Section 2.4.5.2). Bottle glass and a 

number of possible window glass or locally produced cullet fragments were also 

selected to provide a comparison to the waste material. 

7.2.2 Knightons 

The 16th century glass site at Knightons, Alford, Surrey (TQ 0170 3140), is 

situated in Sidney Wood (see Figure 7: 5) (Wood 1982). The last use of the site has 

been dated to approximately 1550, shortly before the documented arrival of the 

French immigrant glass workers in the Weald in 1567, and Knightons is therefore 

thought to represent the change over between the old and new techniques in the 

region (see Section 7.2) (Crossley 1990). 
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The excavations at Knightons uncovered four furnaces, all constructed from 

local materials. These are illustrated in Figure 7: 6. Wood (1982) suggests that 

furnace 1 was the main working furnace due to its central position and structure. 

Furnace 2 (a slightly smaller but very similar furnace) replaced furnace 1 at some 
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time during the operation of the site. The furnaces were single chamber and 

rectangular in shape containing a central fire trench with parallel sieges, both of 

which were thought to be able to hold 3 crucibles. This type of northern European 

furnace (see Section 2.4.1) is typical of those excavated in the Weald during the 

medieval period (Kenyon 1967). Furnace 3 was heavily robbed but had evidence of 

lump glass, scum and possible frit, associated with it. The use of this furnace is 

uncertain, but it has not been subjected to such high temperatures as furnaces 1 and 

2, which therefore suggests a low temperature use such as fritting and/or firing 

crucibles (Wood 1982: 9). It has been seen in Section 2.3.1 that identifying frit on 

archaeological sites is difficult and therefore the functions of these furnaces cannot 

be confirmed. 
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Figure 7: 6 Site plan of Knightons glasshouse (Wood 1982: Figure 3) 

Wood (1982) suggests that furnace 4 was the annealing furnace, although it 

may have also have also been used for pot arching. It consisted of two square 

chambers with a connecting passage, appeared not have reached high temperatures 

and contained fragments of crucible and crown and vessel glass. This furnace may 
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have been specifically designed to hold sheets of crown glass on racks and each 

chamber used alternately in order to enable constant production. Figure 7: 6 shows 

that furnaces 3 and 4 may have been connected. This may be evidence of French 

workmanship, as the trend in winged furnace design (such as at Vann) was to reduce 
fuel requirements by recycling the hot air from one part of the furnace into another 

(Hurst 1969a). 

The two clay pits on the site appeared to have been used for building and 

repairing the furnaces. The site also had a trench connected with run offs to a stream 

that may have been used for washing raw materials or mixing clay. The presence of 

tile fragments and post holes suggests that the working area of the site may have 

been covered by a roof (Wood 1982). This may have prevented the fuel and raw 

materials becoming wet. This is important, as the use of dry batch materials would 
have facilitated homogeneity (see Section 2.2.4.1). 

The glass at Knightons is predominantly the Early type, and is similar to that 

seen at Blunden's Wood (see Section 7.2.1). There is also a small proportion of Late 

type glass at Knightons (see Section 7.2), which contradicts the original date for the 

introduction of this material (1567) (Kenyon 1967). Wood (1982: 44) suggests that 

this glass may be the result of the local industry attempting to improve quality, or 

more likely due to an early French influence either at Knightons or another 

glasshouse from which cullet has been obtained. The glass produced at Knightons 

consisted of both window and vessel fragments and is typical of artefacts being 

produced at that time period. In addition to this, evidence of pontils and blowing 

irons were also found on the site (Wood 1982). 

A cullet store was found which contained over 12000 fragments of glass 

(61.5Kg). The majority of these pieces were from the site. These were weathered 

and represented the Early Wealden type glass. In addition to these some foreign 

pieces were also noted (Wood 1982: 11). A waste tip was excavated containing 

fragments of many of the vessels found in the annealing furnace; glass from here 

may have been used as in house cullet for which the behaviour of the glass was 

known. 

Analyses of Early Wealden glass from Knightons by Merchant (1998: Table 

6.10 and 6.12) are given in Table VII: 4, the glass composition is similar to that from 

Blunden's Wood (see Section 7.2.1) with total alkali levels ranging from 11.44- 

12.49Wt. %, and lime from 14.49-16.08Wt. %. There is no evidence of the raw 
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materials used at Knightons but Wood (1982: Microfiche 49) suggests that oak may 
have been used. There have been no attempts to obtain furnace operating or glass 

melting temperatures. The melting furnace design and glass composition at 

Knightons is very similar to Blunden's Wood, and therefore the temperatures given 
in Section 7.2.1 may be comparable. However, Knightons was one of the last 

rectangular style furnaces in operation in the Weald (see Section 7.2) (Wood 1982: 

44). Furnace technologies may therefore have been more advanced than at 

Blunden's Wood (see Section 7.2.1), increasing melting temperatures and facilitating 

homogeneity (see Section 2.4.2). 

There are a large number of crucible fragments associated with the furnaces 

at Knightons, but few are large enough to determine the original form. Wood (1982: 

Microfiche 26) notes they fall into two groups. Thick walled (2-2.8cm with a base of 

up to 5cm) bucket shaped (28-33cm base diameter with a rim diameter of up to 

40cm) and, thin walled (1.1-1.8cm) barrel shaped (approximately 24cm base 

diameter, 32-38 rim diameter, suggested height 40-45cm). The large size of these 

crucibles will affect melt size and thermal transfer and influence homogeneity, as at 
Blunden's Wood (see Section 7.2.1). 

Twenty one samples of glass waste, crucible fragments and window glass 

were selected for analysis in Chapter 8 (Table VII: 5). The glass was all of the Early 

type as no Late glass or vessel glass was available. 

7.2.3 Sidney Wood 

Unfortunately, the 16`h-17`h century glass site at Sidney Wood (TQ 0220 

3372) (see Figure 7: 5) is not as well documented as Blunden's Wood or Knightons 

(see Sections 7.2.1 and 7.2.2). It is thought to be the glasshouse cited on the Norden 

maps of 1594 and 1607 and also Speed's maps of 1611-2 and 1676 (Kenyon 1967: 

203). One, large (approximately 30-40 (9-12m) by 15-20 feet (4.5-6m)) rectangular 
furnace was excavated by Winbolt (1933: 38) and this contained the remnants of 

sieges covered in fused glass. The large size of the furnace leads Kenyon (1967: 81) 

to suggest that there may have actually been more than one furnace present. 
However, since the excavations were fragmentary it is difficult to assess the nature of 

the furnace or furnaces. 
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Although only a small quantity of heavily fragmented material was found at 

Sidney Wood, it is of the highest quality glass seen in the Weald (Plate 7: 2) (Kenyon 

1967: 206). Window and vessel glass were produced, and Winbolt (1933) also 

documents lumps of raw blue glass and glass tubes at the site. Kenyon (1967: 217) 

suggests that this glass (along with glass from Brookland and Glasshouse Lane) may 

possibly have been the last ever produced in the Weald and that a significant increase 

in quality had taken place over the period c. 1579-1618. 

Analyses of Sidney Wood vessel glass (Kenyon 1967: 39) can be seen in 

Table VII: 6 (Samples 1-6 and 9-10). The vessel glass composition is different to the 

Blunden's Wood and Knightons samples (see Table VII: 2 and Table VII: 4), with a 

lower total alkali (approximately 5-6%) and higher lime content (approximately 21- 

25%). Higher melting temperatures would have been required to produce this glass 

composition (see Section 2.2.2.1), and this suggests that the furnace temperatures at 

Sidney Wood were probably greater than those archived at Blunden's Wood and 

Knightons (see Sections 7.2.1 and 7.2.2). The high calcium levels would be 

detrimental to homogeneity (see Section 2.2.2.1) but may have been compensated for 

by increased melting temperatures (see Section 2.4.2). The higher lime levels could 

have been relatively easily achieved by the intentional addition of limestone, which 

is prevalent in the Weald (Godfrey 1975) or the addition of calcium rich plant ashes 

(Merchant 1998). However, lowering the alkali component of the glass would 

require less plant ashes, which may have been enforced by the high demand and 

competition for wood in the Weald at this time (Godfrey 1975). 

Many fragments from varying sized crucibles were found associated with the 

site and a. complete crucible containing material described as frit or glass is 

illustrated in Plate 7: 3 (Kenyon 1967: 52). Merchant (1998: 102) notes that the 

Sidney Wood crucible fabric is denser than the Blunden's Wood or Knightons 

crucibles (see Sections 7.2.1 and 7.2.2), but that refiring experiments have shown 

that it has good refractory properties. It can be seen from Table VII: 6 that the 

composition of the crucible glass (Samples 7-8) is significantly different to the vessel 

glass. Merchant (1998: 206) notes this anomaly and suggests that due to the paucity 

and poor standard of excavation at Sidney Wood the crucibles may not belong to this 

site. 
Merchant (1998: 102) notes that the Sidney Wood crucibles are grey in 

colour and suggests that this might be an indication of a reducing furnace 

200 



(IIAPTFR 7 SFI. F(1 R)N OF COMPARA"I IVF AR('IIAF. OLOGI('AI, MATERIAL 

atmosphere. This may also be a reason for the blue hue of Sidney Wood glass 

compared Blunden's Wood and Knightons glass, which is green. The blue colour is 

caused as the oxidation state of iron is reduced (Weyl 1951: 95). However, reducing 

conditions can also be produced by increased melting temperatures and times as well 

as internal redox agents (see Section 4.3.3.2). 
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Plate 7: 3 A crucible from Sidney Wood (Kenyon 1967: Plate IV) 

A final and very important point to note about Sidney Wood is that Winbolt 

(1933) notes the presence of coal clinker at the site and suggests that wood and coal 

may have both been sources of fuel. Coal fired furnaces appeared at the start of the 

17'x' century due to the lack of coppiced wood and this scarcity was particularly 

prevalent in the Weald (Crossley 1988). However, glassmaking moved away from 

the Weald to coal producing areas (see Section 7.2) and it is not certain whether 

Sidney Wood was being operated with coal or not. Coal fired glasshouses usually 

employed covered crucibles to prevent contamination of the glass melt from the 

sulphur in the fuel (Crossley 1987), and there is no evidence at Sidney Wood to 

confirm or refute this. If coal were used at Sidney Wood then this would have had a 

detrimental effect on homogeneity (see Section 2.4.4). 

A smaller assemblage was available for sampling compared to Blunden's 

Wood or Knightons. Three samples of fully formed vessel glass (no window glass 
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was available), three crucible fragments and one furnace fragment were selected for 

analysis in Chapter 8 and are listed in Table VII: 7. 

7.3 The Medieval Glass Industry in Staffordshire 

The Staffordshire forests were another area of medieval glass production 
(Welch 1997). Archaeological and documentary evidence suggests that glass was 

produced in this region from the late 13th century to the end of the 16`h and possibly 

the beginning of the 17'h centuries (Crossley 1967, Pape 1933-34, Welch 1997). The 

industry was concentrated in two areas between the forests of Cannock Chase and 
Needwood. Fifteen furnace sites were concentrated in Bagot's Park near Abbots 

Bromley and a smaller number in the Wolseley Estate near Rugeley (Figure 7: 7) 

(Crossley 1972, Welch 1997). 

Pape (1933-34) carried out some of the earliest excavations of the 

Staffordshire glasshouses, such as Bishop's Wood (dated to the 16`h century). Recent 

studies have included work by Crossley (1967) at Bagot's Park and Welch (1997) at 

Little Birches. Glass production in Staffordshire was on a smaller scale compared to 

the Weald but there is less excavated evidence. Peak glass production was reached 
in the mid 16th century and, as in the Weald, this is frequently attributed to the 

arrival of French immigrant workers. There are also documented links between 

Wealden and Staffordshire glass making families in this period (Kenyon 1967, 

Welch 1997). 

Silica sources are plentiful in the region of Bagot's Park and include sand and 

pebble deposits. Larger areas of suitable glassmaking sand are also noted at nearby 

sites in southern Derbyshire (Crossley 1967). White pebbles have been found in 

some of the waste glasses and glass in crucible bases from the Staffordshire sites (see 

Section 2.2.1). However, Crossley (1967) notes that opalescence can also be seen in 

the glass. This may have been introduced by the use of apatite rich sands (which are 

known to be prevalent in Derbyshire) or the use of plant ashes (Crossley 1967, 

1998). Documentary evidence suggests that the main alkali source for medieval 

glassmaking in Staffordshire may have been bracken ashes (see Section 2.2.2), but 

these may have been used in conjunction with fuel ashes (Crossley 1967, Pape 1933- 

34). The results of Chapters 4-6 have shown that bracken ashes are more likely to 

form a homogeneous glass than ashes with a lower total alkali content such as beech 
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or oak (see Section 4.3.3.2). The Staffordshire glasses might therefore be expected 

to contain less inhomogeneities than those from the Weald. 
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Figure 7: 7 Map of Glass Sites in Staffordshire (Welch 1997: Figure 1) 

The Staffordshire crucibles are similar in shape and size to those found in the 

Weald and are made of highly refractive clay (Crossley 1967, Pape 1933-34). In 

contrast to the Weald the local clay sources appear to have been utilised for crucible 

production. For example, at Bagot's Park the material appears to have been obtained 

from the local Cannock fireclay deposits. This clay was then mixed with quartz to 

increase the strength and reduce the shrinkage of the material for crucible production 

(Crossley 1967, Doherty 1993). There is documentary evidence dated to c1616 that 

the local -Staffordshire clays were so well suited for glassmaking pots that they were 

exported to Newcastle upon Tyne for this purpose (Kenyon 1967). The glass found 

associated with the Staffordshire glasshouses is comparable with contemporary 
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material found in the Weald, with the quality and resistance to weathering improving 

at the later sites (Kenyon 1967) (see Section 7.2). 

There is documentary evidence that glassmaking continued in Staffordshire 

until the mid 1600's, but no archaeological evidence for this has yet been located 

(Crossley 1967). The Staffordshire glassmaking site selected for this research will be 

discussed in Section 7.3.1. 

7.3.1 Little Birches 

The glass site at Little Birches, Wolseley, near Rugley, Staffordshire 

(SK00809 18909) was excavated in 1991-2, and had two phases of working. The 

South site, containing three furnaces (Furnaces 1,2 and 3) and three waste tips 

(south, west and east tips), is dated to sometime between 1521-1565 and is thought to 

be almost contemporary with Bagot's Park (see Section 7.3). There is no evidence to 

suggest that French immigrant workers were associated with the Wolseley area even 

though they are documented at Bagot's Park. The North site (containing furnace 4 

and the north waste tip) cannot be dated so accurately and is thought to have been in 

use sometime in the 13th and 14th centuries. Figure 7: 8 illustrates a plan of Little 

Birches showing the north and south sites (Welch 1997). 

The name Little Birches refers to the wood next to the glass site that was 

planted in the 1880s, but there is still birch covering much of the surrounding area. 

Welch (1997: 25,33) suggests that birch charcoal excavated within the contexts of 

the furnaces may be an indication that this wood was used as fuel. However, there is 

no conclusive evidence to confirm or refute whether this was the only species used. 

The documentation of glass manufacture in Wolseley is vague until the latter 

half of the 15`h century when it is certain that there was glass production in the area, 

although these records cannot be attributed directly to the site at Little Birches. A 

rental document dated to 1479 notes the sale of `ferns' (see Section 2.2.2) to a 

glasshouse in the Wolseley area (Welch 1997: 2). The possible use of bracken ash as 

an alkali source is an important reason why Little Birches was selected for this 

research. The results of Chapters 4-6 have confirmed that bracken based glasses 

form more homogeneous glasses than those made from beech. The Little Birches 

glass samples are therefore expected to be more homogeneous than those from the 

Wealden sites (see Section 7.2). However, other factors that effect homogeneity, 
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such as melting temperatures must be considered and these will be discussed for the 

North site in Sections 7.3.1.1 and the South site in Section 7.3.1.2. 
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Figure 7: 8 Little Birches site plan (Welch 1997: Figure 3) 
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7.3.1.1 The North Site (13`x'-14(" centuries) 

There is less excavated evidence for medieval glassmaking on the North site 

compared to the South site (see Section 7.3.1.2). The only furnace to be uncovered 

was furnace 4 (Figure 7: 8, Plate 7: 4), which was rectangular with a central fire trench 

blocked with waste material. Although of similar design it was smaller in size than 

furnace 1 on the South site (see Section 7.3.1.2), the trench being 2.6m compared to 

4.3m long (Welch 1997: 15). The estimated maximum firing temperatures for 

furnace 4 (based on refiring experiments) are 1398-1430°C, but the real temperatures 

achieved are likely to be lower than this (White in Welch (1997: Table 7)). The 

results from Chapters 4-6 have shown that the combination of bracken as an alkali 

source and high furnace temperatures will facilitate homogeneity. These results 

suggest that the North site glass would be homogeneous. However, homogeneity 

will also be affected by other variables such as melt size, crucible fabric, and 

therefore these must also be considered. 

Plate 7: 4 Furnace 4, North Site, Little Birches (Welch 1997: Figure 12) 

A majority of crucible fragments excavated from Little Birches were from the 

North site. They featured bucket and barrel shapes (see Section 7.2) as well as a 

`goldfish bowl' type. The estimated dimensions obtained from the assembly of two 
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crucibles were 280mm internal rim diameter, basal diameter 300mm and overall 
height of 360mm. Many of the crucible fragments were obtained from deposit 116 

that lay just to the west and south sides of furnace 4 (Welch 1997: 15). The North 

site crucibles are made of a similar high refractory fabric and have comparable 
dimensions to those excavated at Blunden's Wood (Section 7.2.1). Therefore the 

effects on homogeneity of melt size, the thermal conductivity of the crucible fabric 

and refractory corrosion will be similar (Section 7.2.1). 

The North site only yielded nine fragments of heavily weathered, thin, milky 

green, Early type (see Section 7.2) glass. The north tip (Figure 7: 8) contained a 

small amount of glass waste but this was predominantly made up of crucible and 

stone fragments (Welch 1997). The composition of samples of this glass can be seen 
in Table VII: 8 (Welch 1997: 41). The glass has a slightly wider range of total alkali 
(11.0-20.7Wt. %) concentrations and similar levels of lime (16.6-17.4Wt. %) as the 

contemporary Blunden's Wood glass (see Section 7.2.1). A two component silica 

and bracken ash batch would not impart these high levels of calcium to the glass (see 

Section 2.2.2). To achieve this it would therefore appear that lime must have been 

being added from another source. The function of lime in glasses was not fully 

understood until the 18`h century and therefore it is not thought that this inclusion is 

deliberate. The two possible sources for the lime are from calcium rich plant ashes 
(for example oak and beech trees) or limestone. However, in comparison to the 

Weald (see Section 7.2.3) there is no lime industry associated with the Little Birches 

area (Crossley 1998). Therefore, although there are compositional similarities 
between the material from the North site and Blunden's Wood (see Section 7.2.1), 

the Little Birches glass will probably be more homogeneous due to the combination 

of higher melting temperatures and the use of bracken ashes as an alkali source. 
A selection of waste and crucible glass was chosen for analysis. The North 

site glass is likely to be more homogeneous for the reasons described above and 

therefore the analysis of waste products is beneficial as they are more likely to show 
inhomogeneities than the finished product. The 7 samples selected are listed in 

Table VII: 9. 
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7.3.1.2 The South Site (16t' century) 

The main melting furnace on the South site was furnace I (Figure 7: 8, Figure 

7: 9), which was rectangular with a central fire trench and parallel sieges containing 

impressions of crucibles (Welch 1997). Welch (1997) suggests that three crucibles 

would probably have fitted on either side of furnace 1. Furnace 2 (Figure 7: 8) was 

square in shape and probably for a different purpose other than glass melting. 

Furnace 3 (Figure 7: 8) was significantly destroyed but appeared to have been similar 

to and probably contemporary with furnace 1. Both of the furnaces had post pits 

associated with them and these may have been evidence for some sort of roofed 

structure (Welch 1997). This may have helped to keep the raw materials dry and the 

importance of this to homogeneity has been discussed in Section 7.2.2. 

Refiring of clay fabric from the melting furnace by White in Welch (1997: 

Table 7) has suggested a maximum operating temperature of 1512-1541°C. 

Although White in Welch (1997: 51) suggests that this is probably higher than the 

real temperatures achieved it is still higher than those achieved at the North site (see 

Section 7.3. L I). As homogeneity improves with increasing furnace temperature (see 

Section 2.4.2) the glass from the South site is likely to be more homogeneous than 

that from the North site. 

Figure 7: 9 Furnace 1, Little Birches with a speculative reconstruction (Welch 
1997: Figure 6) 
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The crucibles associated with the South site were thicker and larger than 

those from the North Site (see Section 7.3.1.1). Barrel and bucket shaped crucibles 
(see Section 7.2) were excavated with an approximate internal rim diameter of 300- 

350mm (Welch 1997). The South site crucibles were comparable with the nearby 

contemporary site of Bagot's Park but not with Knightons (see Section 7.2.2). 

Larger crucibles would mean that larger melt sizes might have been used. These 

would have then required longer melt times and higher melt temperatures to form a 
homogeneous glass (see Section 2.4.5.2). 

Refiring experiments by White in Welch (1997: Table 7) suggest that the 

South site crucibles were subjected to temperatures in the region of 1140-1210°C, 

and that the maximum operating temperatures for the melting furnace was 1512- 

1541°C. In addition to the ceramic analyses, the liquidus temperature for a piece of 
South site glass was determined to be greater than 1320°C (White in Welch (1997: 

49)). These findings suggest that the temperatures achieved at the South site were 

greater than at the North site and therefore this would have had an effect on the raw 

materials that could be utilised and the quality and homogeneity of the glass 

produced. 
A large volume of vessel, window and glass production waste was excavated 

from the South site. The large number of `bulls eyes' and proportions of other glass 
fragments found at the South site suggest that crown window glass was the primary 

product of this glasshouse. Crown glass is produced by blowing a sphere of glass 

and opening up the end to allow the glass to be spun into a disk. The thinner outer 

parts of the glass are cut to form window glass and the thickest part attached to the 

blowing iron is termed the `bulls eye' (Kenyon 1967). The majority of the glass was 

pale green in colour and usually translucent and transparent, with little evidence of 

opacity. There was a marked similarity between the flat glass and the material from 

Bagot's Park although Little Birches did not contain any hard, dark green (Late) 

glass as seen at Bagot's Park (Welch 1997). 

Three waste tips (East, West and South) were uncovered at the South site. 
These contained a large amount of material (100m3) that varied in appearance, some 
being predominantly clear glass lumps, others containing a large quantity of bubbles. 

Small white chips and fragmented pebbles were found in some of the material and it 

appeared that some of the glass had cooled whilst in contact with the ground. A 

large waste pit (101) was excavated just to the north of furnace 1 and contained a 
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large amount of vessel glass in addition to most of the coloured glass found at the 

site. The East tip adjoined deposit 101 although it was not certain if the two features 

were linked. South of furnace 1 was deposit 90, which contained a large amount of 

worked glass fragments. However, the material was different in nature to that found 

in 101. It appears that different waste tips were used for housing different types of 

cullet, which may suggest a deliberate selection procedure. It is not thought that the 

vessel glass found was produced on site and could have been collected for remelting. 
A selection of analyses of the South site glass carried out by Mortimer 

(Welch 1997: Table 1) are listed in Table VII: 10. The total alkali content ranges 
from 10.5-17.6Wt. % and the lime levels from 11.3-18.6Wt. %, and as at the North 

site (see Section 7.3.1.1), these compositions suggest that another component was 
being added to the batch that gives a higher lime concentration than the bracken ash 

alone. Although higher temperatures would have been required to produce a 
homogeneous glass, the evidence above suggests that at the South site these may 
have been attained and were greater than those achieved at the North site. Although 

the crucibles were larger and the melt size may have been increased, the furnace 

temperature may have been the dominating factor. The South site glass is therefore 

likely to be more homogeneous than comparative material from the earlier North site. 
No fully formed glass was available for analysis and therefore the material 

selected from the South site was waste and crucible glass, which is comparable with 

the material selected from the North site (see Section 7.3.1.1). The 9 samples are 

recorded. in Table VII: 11. 

7.4 The Medieval Glass Industry in his 

The Hils region, near Grünenplan, northern Germany was a major area of 

medieval glass production in northern Europe (Leiber 1990/1991). Evidence for 

eighteen medieval, and fourteen early modem glasshouses has been excavated and 

the relative location of the medieval sites (A2-A18) is illustrated in Figure 7: 10 (for 

key to sites see Table VII: 12) (Six 1976). 
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Figure 7: 10 The Location of Glasshouses A2-A18 in the Hils Region, near 
Grünenplan, Germany (Leiber 1999/2000: Figure 1) (Scale 1: 75000) 
(Key to Site Numbers in Table VII: 12) 
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The majority of the Hils glasshouses (A2-A17) are dated to the 12th-13th 

centuries whilst A18 is thought to have been in operation at the start of the 15th 

century (Leiber 1990/1991). Vessel and window glass was being produced, and the 

river Wesser provided a trade route for this material to towns such as Höxeter 

(Kuisma-Kursula et al. 1997). In addition to this, documentary evidence suggests 

there were links between glassmaking families in Hils and other areas of Germany, 

such as Eichsfeld and the Kaufunger Wald (Hartmann 1994). 

In comparison to medieval glass production in Weald or Staffordshire (see 

Sections 7.2 and 7.3), the remains of the glasshouses in Hils are scant and have not 

been excavated as comprehensively. Hils is heavily forested and the creation of 

spruce plantations has meant that many sites have been robbed or destroyed (Leiber 

1990/1991). Although there is a paucity of excavated evidence, the reason that these 

glasses were selected was the use of beech as an alkali source. During the medieval 

period, beech forests are thought to have been predominant in Hils (Six 1976) and 

documentary evidence from Theophilus (Hawthorne and Smith 1979) (see Section 

2.2.2) also suggests that beech ashes were used as an alkali source for glassmaking in 

this area. If beech ash was used as the alkali then the results from Chapters 4-6 

suggest that Hils glasses are therefore more likely to exhibit inhomogeneity than 

those made from bracken, such as those at Little Birches (see Section 7.3.1). 

The evidence for medieval glassmaking at the Hils glasshouses consists of 

crucible and furnace fragments, glass waste and worked glass fragments. Not all of 

these types of evidence are found at each site, and furnace evidence was only 

excavated at glasshouses A2, A4 and A7. There is little evidence of fully formed 

glass except at the later site of A18. The glass is predominantly green, blue or 

yellow in colour with a few colourless, purple and opaque red fragments. In addition 

to beech wood for use as fuel and alkali, there is other evidence of suitable 

glassmaking raw materials in the Hils region. Quartz sand, quartzite pebbles and 

high refractory clay are all found in the locality (Six 1976: 129). There is 

documentary and excavated evidence that a number of the Hils glasshouses were also 

producing high lead glass (approximately 25Wt. % PbO) (Leiber 1999/2000: 548). 

The most complete excavations of Hils glasshouses have been carried out at 

sites A2 and A4 (Figure 7: 10) (Leiber 1999/2000, Six 1976). A2 had a rectangular 

`northern' style (see Section 2.4.1) main melting furnace and three smaller furnaces, 

which have been suggested by Six (1976: 136) to be for fritting and annealing. Two 
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of these were rectangular and approximately 1.5m in length, and one was oval and 

connected to what is suggested by Six (1976: 136) to be a rectangular chimney. The 

glasshouse at A4 had three furnaces (Leiber 1999/2000). The main melting furnace 

was again northern style and rectangular in shape with a2 metre long central fire 

trench. Furnace 2 was associated with molten glass and melting crucibles but was 

horseshoe in shape with a 1.5m long fire trench. The rounded shape suggests a more 

southern type of design (see Section 2.4.1). Furnace 3 was rectangular and had two 

fire trenches of approximately 1.5m. The remains of this furnace are scant but it had 

not been fired to such as high temperature as furnaces 1 and 2, suggesting that may 

have been used for a lower temperature process such as fritting or annealing. 

Unfortunately, there are no analyses of furnace or crucible fabric from the 

Hils glasshouses to provide estimates of the melting temperatures used to produce 

these glasses. Thus it is difficult to assess how homogeneity will be affected, but it 

was noted in Chapter 5 that to form a homogeneous beech glass under laboratory 

conditions, temperatures in excess of 1300°C were required. However, other factors, 

such as crucible dimensions and melt size (see Section 2.4.5.2) will affect 
homogeneity. The dimensions of the crucibles from the Hils glasshouses appear to 

have been uniform and fall into two main types that are illustrated in Figure 7: 11 

(Leiber 1999/2000: 527). 

Figure 7: 11 Reconstruction of Crucibles from Hils Glasshouse A7 (after Six 
1976: Figure 5) 
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The large crucibles are approximately 16cm base and 40cm rim diameter, and 
30cm in height. Six (1976: 137) has suggested that these were for fritting but there is 

no evidence to confirm or refute this. The use of fritting crucibles contrasts with 

fritting on the furnace floor, which may have been used at the Wealden and 
Staffordshire sites discussed in Sections 7.2 and 7.3. The use of a crucible will 

therefore have different effects on homogeneity (see Section 2.3.4), and it has been 

seen in Chapter 5 that fritting temperature and time have to be adjusted depending on 

the surface area and volume ratio of the fritting vessel. 
The melting crucibles have curved in rims and are similar to those described 

by Theophilus (Hawthorne and Smith 1979). Based on the reconstruction of 

crucibles from glasshouses A2 and A7 (Figure 7: 10), the dimensions of the melting 

crucibles (Figure 7: 11) are estimated to range from 10-12cm base diameter, 25cm 

rim diameter, and to be 20-26cm in height. Leiber (1999/2000: 528) suggests that 

these would have held 5-6litres of glass. These are smaller than the Wealden and 

Staffordshire crucibles (see Sections 7.2 and 7.3). In isolation, a smaller melt size 

and crucible dimensions would have facilitated homogeneity (see Section 2.4.5.2) 

but this has to be balanced against the effects of other variables such as melting 

temperature and alkali composition. The crucibles are made from low iron, high 

refractory clay from the clay beds just to the north and north east of Hils but it is not 

know how this data was determined (Leiber 1999/2000: 528). The use of this type of 

clay would have also facilitated homogeneity by resisting refractory corrosion (see 

Section 2.4.5.1). 

Analyses of Hils glass can be seen in Table VII: 13 (Kuisma-Kursula et al. 

1997 66, Sellner et al. 1979, Six and Madder 1989). The 12th and 13th century glass 

(Samples 3-7) contains a wide range of total alkali (12.8-18.9Wt. %) and lime (3.1- 

21.2) levels. The compositional variability within single pieces of Hils glass was 

noted by Wedepohl(1997: 251). He has suggested that this is due to the glass being 

from failed melts and that therefore these compositions are not indicative of the glass 

used to produce objects. The variability is important as it suggests that 

inhomogeneity is present in some of the Hils glasses. The later glass samples (1 and 

2) contain lower total alkali (8.4-9.5Wt. %) and increased lime levels (21.6- 

22.2Wt. %). The change in composition suggests that lime may have been added 

from another source other than beech ashes (see Section 2.2.2.1). Although, higher 

lime levels increase inhomogeneity, higher furnace temperatures are required to melt 
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this type of glass and these facilitate homogeneity. Therefore, as suggested at Sidney 

Wood (see Section 7.2.3) the later Hils glass may be more homogeneous than the 

earlier material. 
A small assemblage of Hils glass samples was available for sampling and the 

majority of pieces were trails and drops from glass working, or test pulls (see Section 

2.4.3) from the 12th-13`h century glasshouses. Two pieces of vessel glass and a glass 
drop were available from the later glasshouse (1400) A18. The vessel glass is 

important, as it will enable a comparison between the homogeneity of the finished 

and waste glass. The twenty seven samples selected are listed in Table VII: 14. 

7.5 Summary and Conclusions 

It can be seen that it is not always possible to infer all of the factors that will 

affect homogeneity from the remains and documentary evidence associated with 

medieval glassmaking sites. Certain parameters such as melting times and fritting 

procedures are more difficult to assess than others such as melt size or possible 
furnace temperatures. However, some general conclusions about the homogeneity of 

the glass selected for analysis in Chapter 8 can be suggested from the evidence 
discussed above and are summarised below. These predictions are based on isolated 

factors and glassmaking practices thought to have been used at each site. It should 

also be noted that many of these factors might be overridden if higher melting 

temperatures were used (see Sections 2.4.2 and 5.5.6.5). 

" The Little Birches glass (see Section 7.3.1) is the most likely to be 

homogeneous due to the suggested use of bracken as an alkali source. 

" The higher furnace temperatures achieved at Little Birches, South site 
(see Section 7.3.1.2) suggest that this glass is likely to be more 
homogeneous than the material from the North site (see Section 7.3.1.1). 

" The Wealden glass from Blunden's Wood (see Section 7.2.1), Knightons 

(see Section 7.2.2) and Sidney Wood (see Section 7.2.3) is likely to 

contain inhomogeneities due to the use of oak as an alkali source. 

" The Blunden's Wood glass is likely to be more inhomogeneous than the 

Knightons and Sidney Wood material due to the use of lower furnace 

temperatures. 

215 



CHAPTER 7 SELECTION OF COMPARATIVE ARCHAEOLOGICAL MATERIAL 

" The Knightons glass covers the transitional period in Wealden glass 

production. It is therefore likely to be less inhomogeneous than the 

material from Blunden's Wood but possibly more inhomogeneous than 

the glass from Sidney Wood. 

" The Sidney Wood glass is likely to be the most homogeneous out of all 

the Wealden glass analysed. 

" The Hils glass is likely to be inhomogeneous due to the use of beech as an 

alkali source. 

" The earlier Hils glasses (12`h-13`h centuries) are likely to be more 
inhomogeneous than the later material (15th century) due to increasing 

lime levels that require increased furnace temperatures. 

The glass selected in this chapter (Table VII: 3, Table VII: 5, Table VII: 7, 

Table VII: 9, Table VII: 11 and Table VII: 14) will now be examined for 

inhomogeneity using SEM and EPMA as described in Section 3.3. 
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CHAPTER 8 

Analysis of Archaeological Material 

8.1 Introduction 

The significance of inhomogeneity to the compositional study of 

archaeological glasses was discussed in Section 1.3. It was noted that the 

fundamental assumption behind these studies is that the glass analysed is 

compositionally homogeneous. However, the results of Chapters 4-6 have shown 

although many of the experimental glasses appeared to be visually homogeneous a 

significant number contained inhomogeneities that could only be located by 

backscattered SEM imaging. If inhomogeneities are present in archaeological 

glasses they may therefore exert a significant bias on the compositional results 

obtained (see Section 1.5). 

The aim of this Chapter is to determine to what extent inhomogeneity is 

present in the medieval glasses selected in Chapter 7. These samples were chosen to 

represent glasses produced from different ash types because the results of Chapters 

4-6 determined that certain variables in the medieval glassmaking process are more 
likely to have a significant effect on inhomogeneity than others. For example, 
bracken batches form more homogeneous glasses than beech batches in this 

experimental work (see Sections 7.3 and 7.4). However, the effects of other key 

variables such as furnace temperature and crucible dimensions were also considered, 
but it should be noted thatLis difficult to determine these effects in archaeological 

samples (see Chapter 7). 

The archaeological material analysed from Blunden's Wood (Table VII: 3), 

Knightons (Table VII: 5), Sidney Wood (Table VII: 7), Little Birches (Table VII: 9 

and Table VII: 11) and Hils (Table VII: 14) was prepared for SEM and EPMA 

analysis as described in Section 3.3.2.2. The SEM backscattered imaging results are 
described in Section 8.2 and these results are then used to plan the EPMA analysis in 

Section 8.3. Both sets of results are discussed in Section 8.4. 
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8.2 Backscattered SEM Imaging 

8.2.1 Wealden Glassmaking Sites 

Glass from the Wealden, glassmaking sites of Blunden's Wood, Knightons 

and Sidney Wood was selected for analysis (see Section 7.2). It has been seen that 

glass from these sites is likely to contain inhomogeneities based on the assumption 

that oak was used as an alkali source (see Section 7.2). In addition to this, due to 

factors such as higher furnace temperatures (see Section 7.2.1), it is thought that the 

material from Blunden's Wood is likely to be the most inhomogeneous, Sidney 

Wood the least inhomogeneous, with the material from Knightons falling in the 

middle. Sections 8.2.1.1-8.2.1.3 will examine glass from these sites to determine 

whether the predicted results made in Section 7.5 can be observed. 

8.2.1.1 Blunden's Wood 

The results of the backscattered imaging of the Blunden's Wood glass 

samples (see Section 7.2.1, Table VII: 3) are recorded in Table VIII: 1. The samples 

of bottle glass (BW 1) and waste glass/cullet (BW2 and 3) (Plate 8: 1) were visually 

and microscopically homogeneous. However, one sample of waste glass or cullet 

(BW4) contained visual opacity and medium levels of inhomogeneity (Plate 8: 2). 

BW4 
Waste glass/cul 

with opacity 

0 

Visually 
Homogeneous BWI 

ste glass/cullet Visually 
homogeneous 

bottle glass 

MI)2 

Visually homogeneous waste 
glass/cullet 

cros. 5 

Plate 8: 1 Bottle glass and waste glass/cullet from Blunden's Wood (BW1-4, 
Table VII: 3) 
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Plate 8: 2 Backscattered SEM image of a sample of waste glass/cullet (BW4) 
from B unden's Wood with medium levels of inhomogeneity (Table 
V111: 1) 

The crucibles from Blunden's Wood (BW5-10) either contain glass that 

exhibits opacity (Plate 8: 3) or is visually homogeneous (Plate 8: 4). Backscattered 

imaging has shown that inhomogeneity was present in both these types of glass 

(Plate 8: 3 and Plate 8: 4), but one sample of each glass type (BWS and9 ) was also 

homogeneous. Therefore in these samples there appears to be no correlation between 

inhomogeneity and the presence of visual opacity in the glass. 
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Plate 8: 3 Crucible glass with opacity from Blunden's Wood (BW6, Table 
VII: 3) and the comparative backscattered SEM image of a sample of 
the glass showing medium levels of inhomogeneity (Table VIII: I) 
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Plate 8: 4 Visually homogeneous crucible glass from Blunden's Wood (BW5, 
Table VII: 3) and the comparative backscattered SEM image of a 
sample of the glass, showing medium levels of inhomogeneity (Table 
VIII: I) 
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The samples of glass waste from Blunden's Wood (BW 11-14) are illustrated 

in (Plate 8: 5). 

BW11 
Glass waste and scum m 

with earth 

BW14, 
. `ý 

,. 
Glass waste 
mixed with 

earth 

BW12 
Glass waste 

with 
devitrification 

on surface 

awl- I. 
BW13 

Glass waste 

0 cms. 5 

Plate 8: 5 Waste glass samples from Blunden's Wood (BW 11-14, Table VII: 3) 

Backscattered imaging of the waste glass samples from Blunden's Wood 

showed that two of the samples were homogeneous (BW 1l and 14-) and two 

contained inhomogeneities (BW 1Z and 13) (Plate 8: 6). 

In summary it can be seen that in these samples from Blunden's Wood, the 

vessel glass is homogenous, whilst samples of cullet, crucible glass and glass waste 

can be either microscopically inhomogeneous or homogeneous. It is important to 

note that, as with the experimental glasses produced in Chapters 4-6, a number of 

visually homogeneous glasses contained inhomogeneities only visible using 

backscattered SEM imaging. 
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Glass waste from Blunden's Wood (BW 12) showing medium levels of inhomogeneity 

Glass waste from Wunden's Wood (BW Ii) showing low levels UI'inhomogeneity at the 
inclusion/glass interface 

Plate 8: 6 Backscattered SEM images of glass waste from Blunden's Wood 
showing medium (BWI2), and low (BW13) levels of inhomogeneity 
(Table VIII:! ) 
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8.2.1.2 Knightons 

Section 7.2 noted that the Knightons glass was probably produced using oak 

ash, and therefore based on the results of these experiments is likely to exhibit 

inhomogeneity (see Chapters 4-6). The results of the backscattered imaging of glass 

samples from Knightons (see Section 7.2.2, Table VII: 5) are listed in Table VIII: 2. 

The majority of the glass samples obtained for analysis were from visually 

homogeneous, crown window glass fragments (K 1-11) (Plate 8: 7). The results 

showed that all of these samples were also microscopically homogeneous. 

- 

K4 
K5 

K8-11 

K2 

T 

K6 

K7 

0 cms. 5 

Plate 8: 7 Visually homogeneous crown glass from Knightons (KI-11, Table 
VI1: 5) 
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The samples of local cullet selected from Knightons (K12-16) (see Section 

7.2.2) are illustrated in Plate 8: 8. The samples taken from strike offs (K12-14) were 

all visually and microscopically homogeneous. Samples K15 and 16 were removed 
from larger lumps of glass cullet. K15 was visually homogeneous and K16 

contained opacity but both were found to be microscopically inhomogeneous (Plate 

8: 9). The backscattered images in Plate 8: 9 show that K15 contains lower levels of 

inhomogeneity than K 16, and that K 16 also contains devitrification. 

K16 
Glass cullet 
with opacity 
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K12 
Visually homogeneous strike off 

K13 
fly homogeneous 

strike off 

K14 
Visually homoge 

strike off 
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y 

K15 
sually homogeneous glass cullet 

0 cros. 5 

Plate 8: 8 Samples of cullet from Knightons (K12-16, Table VII: 5) 
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Plate 8: 9 Backscattered SEM images of cutlet from Knightons with medium 
(K15) and high (K16) levels of inhomogeneity (Table VII1: 2) 
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The crucible fragments from Knightons contained either a mixture of heavily 

weathered glass and scum (K17), or visually homogeneous dark green glass (K18 

and 19) (slight opacity was visible in parts of K18) (Plate 8: 10). The results of the 

backscattered SEM imaging showed that K18 was homogeneous, whilst K17 and 19 

both contained inhomogeneities (Plate 8: 11). It can be seen that, as with the 

Blunden's Wood crucibles (see Section 8.2.1.1), inhomogeneity is present in visually 

homogeneous glasses (K19) and that the presence of opacity in a glass does not 

appear to be linked with inhomogeneity. 

Crucible Iii, ýi:; Ki iýli,, i, ihl - l" i t11 11Cav11 ' vve therccl 'Ia., and cuin attached 

., 

w,.,, 
ew- 

,a 

Crucible fragment from Knightons (K1 R) with glass containing some opacity 

Plate 8: 10 Crucible fragments from Knightons (K17 and 18, Table VII: 5) 

227 

Im 



CHAPTER 8 ANALYSIS OF ARCHAEOLOGICAL MATERIAL 

Plate 8: 11 Backscattered SEM image of crucible glass from Knightons (K17) 
with low to medium levels of inhomogeneity near inclusions (Table 
VIII: 2) 

The fragments of glass waste sampled from Knightons (K20 and 21) both 

contained a mixture of transparent dark green, and opaque pale blue/green glass 

(Plate 8: 12). Examination of samples of these glasses using backscattered SEM 

imaging showed, unsurprisingly, that both contained inhomogeneities (Plate 8: 13). 

Plate 8: 12 Waste glass from Knightons (K20, Table VII: 5) 
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Plate 8: 13 Backscattered SEM image of glass waste from Knightons (K20) with 
high levels of inhomogeneity (Table VIII: 2) 

It can be seen that the results of the Knightons glass are similar to those 

obtained from the Blunden's Wood material (see Section 8.2.1.1). All of the fully 

formed (crown) glass is homogeneous, but inhomogeneity is present in a number of 

fragments of cullet, crucible glass and glass waste. Inhomogeneity can also be 

detected in visually homogeneous glasses, but again there appears to be no link 

between the presence of opacity and microscopic inhomogeneities. 

8.2.1.3 Sidney Wood 

The results of backscattered SEM imaging of the Sidney Wood glass (see 

Section 8.2.1.3, Table VII: 7) are recorded in Table VIII: 3. The blue/green vessel 

glass samples (SW 1-3) were both visually (Plate 8: 14) and microscopically 

homogeneous. The Sidney Wood crucible glass was dark green, and was either 
(Pbl 

. 
8.65) 

visually homogeneous (SW4), or contained extensive blue/green opacity (SW5 and 

6). However, all of the crucible glass samples (SW4-6) contained inhomogeneities 

that were visible using backscattered SEM imaging (Plate 8: 16). The thin fragment 
(Pb e 8: t .) 

of purple furnace glass (SW7) appeared to be visually homogeneous but was also 

found to contain inhomogeneities when examined under the SEMýpb' $ . Iah 
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Curcurbit rim 
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Plate 8: 14 Visually homogeneous vessel glass (SW1-3) from Sidney Wood 
(Table VI1: 7) 

Plate 8: 15 Crucible fragments (SW4) from Sidney Wood containing visually 
homogeneous dark green glass (Table VII: 7) 
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Plate 8: 16 Backscattered SEM image of crucible glass (SW4) from Sidney 
Wood showing a high level of inhomogeneity (Table VIII: 3) 
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Plate 8: 17 Visually homogeneous, purple glass (SW7) on a furnace fragment 
from Sidney Wood (Table VII: 7) 
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Plate 8: 18 Backscattered SEM image of glass removed from a furnace fragment 
(SW7) from Sidney Wood showing low levels of inhomogeneity near 
the furnace/glass interface (Table VIII: 3) 

Although a smaller number of samples were analysed from Sidney Wood 

compared to Blunden's Wood or Knightons (see Sections 8.2.1.1 and 8.2.1.2) it can 

be seen that the results from the three sites are very similar. As at Blunden's Wood 

and Knightons, all of the Sidney Wood vessel glass samples examined were 

homogeneous, and all of the crucible glass contained inhomogeneities even when 

the glass was visually homogeneous. 

8.2.2 Staffordshire Glassmaking Sites 

The reasons why glass was selected from the north and south glassmaking 

sites at Little Birches, Staffordshire have been discussed in Section 7.3. It was 

suggested in Section 7.5 that the Little Birches glass would exhibit the lowest levels 

of inhomogeneity of all the archaeological material analysed in this research based 

on the suggested use of bracken ashes as an alkali source and increased furnace 

temperatures. The evidence that higher furnace temperatures were achieved at the 

south site compared to the earlier dated north site was also thought to suggest that the 

glass would be more homogeneous at the south site than the north site (see Section 
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7.3.1). Sections 8.2.2.1-8.2.2.2 will examine glass from both of these sites to 

determine whether the predicted results made in Section 7.5 can be observed. 

8.2.2.1 Little Birches North Site 

The backscattered SEM imaging results for the Little Birches glass (see 

Section 7.3.1.1, Table VII: 9) are recorded in Table VII1: 4. All of the samples were 

taken from crucible fragments containing dark green glass. Although the glass was 

visually homogeneous and showed no signs of opacity, it was heavily weathered and 

frequently mixed with a variety of inclusions including fragments of quartz pebbles 

(Plate 8: 19). 

Plate 8: 19 Crucible fragment (LBN5) from Little Birches North site (Table 
VII: 9) 

Backscattered imaging determined that although the glass was visually 

homogeneous in some cases inhomogeneity was present. For example, samples 

LBN2,4,6 and7 were homogeneous but LBNI, 3 and 5 were inhomogeneous. 

Inhomogeneities are predominantly associated with the presence of inclusions in the 

glass (Plate 8: 20). In comparison to the Wealden material (see Section 8.2), the 

levels of inhomogeneity observed in the North site glass are extremely low, and in 

some cases very difficult to detect on the backscattered image. 
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Crucible glass (LBN3) from Little Birches North site with very low levels of inhomogeneity 

" 

lob 

Crucible glass (LBN5) from North site with medium levels of inhomogeneity around 
inclusions 

Plate 8: 20 Backscattered SEM images of crucible glass (LBN3 and 5) from 
Little Birches North site showing low levels of inhomogeneity (Table 
VIII: 4) 

8.2.2.2 Little Birches South Site 

The results of the backscattered SEM imaging of the Little Birches, South site 

glass (see Section 7.3.1.2, Table VII: 11) is recorded in Table VIII: 5. The material is 

a mixture of crucible glass (LBS 1-3) and glass waste (LBS4-9) (Plate 8: 21), and is 

very similar in appearance to the material from the North site (Plate 8: 19). 
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Plate 8: 21 Glass waste (LBS4) from Little Birches South site with visually 
homogeneous dark green glass, inclusions and heavily weathered 
surface layer (Table VII: 11) 

The backscattered SEM imaging results from the South site material were 

comparable to those from the North site (see Section 8.2.2.1). One sample of 

crucible glass (LBS I) was anhomogeneous but the others (LBS2 and 3) were 

homogeneous. A number of the samples of glass waste (LBS4-7) also contained 

inhomogeneities (Plate 8: 22), but some were homogeneous (LBS8 and 9). It can be 

seen from Plate 8: 22 that inhomogeneities are associated with the presence of 

inclusions. 

It can be seen from the results of the glass from both the North and South 

sites at Little Birches, that the levels of inhomogeneity in crucible glass and glass 

waste are much lower that that observed in the Wealden glass in Section 8.2. The 
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Glass waste (LBS4) from Little Birches 
South site with low levels of inhomogeneity 

around an inclusion 
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Glass waste (LBS6) from Little Birches Glass waste (LBS7) from Little Birches 
South site with very low levels of South site with low levels of inhomogeneity 

inhomogeneity around an inclusion 

Plate 8: 22 Backscattered SEM images of inhomogeneous glass waste from Little 
Birches South site (Table VIII: 5) 

8.2.3 Hils Glasshouses 

Section 7.4 discussed the reasons for selecting glass from the medieval 

glassmaking sites in Hils for this research. It is though that these glasses will be the 

most likely of all the archaeological glass examined in this research to exhibit 

inhomogeneity due to the use of beech ashes as an alkali source and the results of the 

experimental beech ash glasses in Chapters 4-6 (see Section 7.5). 
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The backscattered SEM imaging results from the Hils glass samples (see 

Section 7.4, Table VII: 14) are recorded in Table VIII: 6. The majority of the Hils 

glass samples were drops, trails and pulls of glass in a variety of colours (GI-18), 

that could be working waste or test pulls (see Section 7.4). The glasses were 

predominantly visually homogeneous, with the exception of a few samples (G1,10, 

12 and 16) that contained opacity (Plate 8: 23). However, all of these samples except 

G2 and 6 exhibited high levels of inhomogeneity that were only visible using 

backscattered SEM imaging (Plate 8: 24). All of the glasses containing opacity were 

inhomogeneous as was the one sample dated to 1400 (G25) (Table VII: 14). 

G1 G2 G3 G4 G5 

'17 1 

G6 G7 G8 G9 G10 

W 

G11 G12 G13 G14 
G15 

G19 

G16 G17 G18 Heavily weathered 
surface layer 

G20 
0 cros. 5 

Plate 8: 23 Visually homogeneous glass (G1-11,13-15, and window glass (G19 
and 20) selected from Hils for analysis (Table VI1: 14) 
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Visually homogeneous glass drop (G)) from Visually homogeneous glass drop (G I I) 
glasshouse All (12th/13th centuries) with from glasshouse A12 (12'h/13`h centuries) 

high levels of inhomogeneity with high levels of inhomogeneity 

Visually homogeneous glass drop (G14) Visually homogeneous glass drop (G18) 
from glasshouse A 13 (12'x'/ 13th centuries) from glasshouse A 18 (1400AD) with high 

with devitrification and high levels of levels of inhomogeneity 
inhomogeneity 

Plate 8: 24 Backscattered SEM images of inhomogeneous glass drops from Hils 
glasshouses A11-13 and A18 (Table VIII: 6) 

The two samples of window glass (G19 and 20) were visually homogeneous 

but had a heavily weathered surface layer (Plate 8: 23). Examination using 

backscattered SEM imaging showed that G19 was homogeneous but G20 contained 

high levels of inhomogeneity (Plate 8: 25). 
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Plate 8: 25 Backscattered SEM image of visually homogeneous window glass 
(G20) from Hils glasshouse A18 (1400AD) with high levels of 
inhomogeneity (Table VIII: 6) 

The samples of glass waste selected from the Hils glasshouses are illustrated 

in Plate 8: 26. The glass is green or blue and the majority of samples are mixed with 

earth and scum. Opacity was also present in a number of samples (G22 and 25-27). 

G21 G22 G23 

G24 G25 G26 

0 cms. 5 G27 

Plate 8: 26 Glass waste (G21-27) selected from Hils glasshouses for analysis 
(Table VI1: 14) 
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Examination of the waste glass samples using backscattered SEM imaging 

determined that they all contained inhomogeneities (Plate 8: 27). 

.., 

1 
ýýtý_; - 

Glass waste (G27) from glasshouse A 16 
(12"/13 `h centuries) with devitrification and 

high levels of inhomogeneity 

Plate 8: 27 Backscattered SEM images of glass waste from Hils glasshouses A5 
and 16 (12`h-13th centuries) (Table VIII: 6) 

It can be seen that the Hils glass samples exhibit the highest levels of 

inhomogeneity of all the archaeological glasses examined in this research. There is 

no apparent link between the presence of opacity and inhomogeneity, and many of 

the visually homogeneous glasses contain inhomogeneity that is only visible using 

backscattered SEM imaging. In contrast to the fully formed glass from the other 

archaeological sites (see Sections 8.2 and 8.2.2), inhomogeneity was present in a 

sample of window glass from Hils. However, due to the small number and very 

weathered condition of the window glass samples from Hils, it is not known if they 

are representative of the window glass produced at the site. 

8.3 Compositional Analysis 

The results of Sections 8.2-8.2.3 have confirmed that a significant number of 

the medieval glasses examined in this Chapter are inhomogeneous. The aim of the 

following sections is to quantify these inhomogeneities using EPMA (see Section 

3.3.2.5) and compare the results to data obtained from the comparative homogeneous 

glasses in this Chapter. This will enable the effect of inhomogeneity on 

compositional analyses of medieval glasses to be assessed (see Section 1.3). 
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The backscattered images obtained in Sections 8.2-8.2.3 were used as a guide 

for the position of analyses, a combination of elemental mapping, line scans and 

point analyses were used (see Section 3.3.2.5). Where line scans were carried out, it 

was not possible to keep the total distance scanned and the distance between analysis 

points consistent for every glass. This was due to variations in sample dimensions, 

the condition of the sample (the presence of cracks, inclusions etc. in the glass), and 

restrictions on analysis time. The EPMA results are recorded in Table VIII: 7-41 and 

will be discussed in Sections 8.3.1-8.3.3. 

8.3.1 Hils Glasses 

The Hils samples were selected for analysis first, as they exhibit a high 

degree of inhomogeneity and therefore any changes in composition will be more 

apparent (see Section 8.2.3). Elemental mapping was used initially to provide an 

overall picture of the compositional changes occurring over a set area of glass. Due 

to the time taken to carry out this type of analysis it was only possible to use this 

method for one sample. The backscattered SEM image in Plate 8: 28 is taken from a 

fragment of worked glass (G13) from glasshouse A13 (Table VIII: 6). The red box 

represents the area analysed (approximately 1 mm2), and the elemental maps 

produced are illustrated in Plate 8: 29-Plate 8: 32. The colour differences on the maps 

refer to the intensity of the element being measured present, (red high, blue low). 

Plate 8: 28 Backscattered SEM image of G13 (Table VIII: 6), the boxed area 
represents the area selected for elemental mapping, and the arrow 
the direction of the line scan 
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Plate 8: 29 Elemental maps illustrating the relative concentrations of 
magnesium and phosphorus in the boxed area of G13 (Table VIII: 6, 
see Plate 8: 28) 
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Plate 8: 30 Elemental maps illustrating the relative concentrations of calcium 
and aluminium in the boxed area of G13 (Table VIII: 6, see Plate 
8: 26) 
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Plate 8: 31 Elemental maps illustrating the relative concentrations of manganese 
and iron in the boxed area of G13 (Table VIII: 6, see Plate 8: 28) 
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Plate 8: 32 Elemental maps illustrating the relative concentrations of potassium 
and silica in the boxed area of G13 (Table VIII: 6, see Plate 8: 28) 
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The results from the elemental mapping show that the pattern of variation for 

each element corresponds directly to the inhomogeneities visible in the backscattered 

SEM image (Plate 8: 28). The range of intensities and the level of compositional 

variation within the mapped area are specific for each element. For example, the 

maps for calcium and aluminium (Plate 8: 30) contain a large number of different 

coloured regions that correspond to a wide range of elemental concentrations. In 

contrast, the maps of manganese (Plate 8: 31) and potassium (Plate 8: 32) have fewer 

different coloured regions that correspond to a smaller range of elemental 

concentrations. It can therefore be seen that in this glass, inhomogeneity has a more 

significant affect on some elements than others. 

There appears to be a general relationship between the concentrations of 

certain elements in the section of G13 analysed. It can be seen from the elemental 

maps (Plate 8: 29-Plate 8: 32) that in some regions higher levels of aluminium, iron 

and silica correspond to lower levels of magnesium, phosphorus., calcium, 

potassium and manganese. However, it was not possible to produce maps for all the 

elements present in the glass and other elemental relationships may be occurring that 

cannot be observed here. In order to identify any other elements present, and to 

quantify the changes in elemental composition an EPMA line scan was carried out 

across the mapped region. The blue arrow on Plate 8: 26 represents the approximate 

position and direction of the line scan and the results of the analyses are listed in 

Table VIII: 7. In order to provide a comparison to G13, a homogeneous glass G6 was 

also analysed. The results of the line scan of G6 are recorded in Table VIII: 8. The 

reported values of chlorine and the oxides of cobalt, copper and sulphur for both 

glasses are not significantly greater than the lower limits of detection of the EPMA 

(see Section 3.3.2.5), for the presence or absence of these elements to be confirmed 

or refuted. Therefore these elements will not be discussed further. Figure 8: 1-Figure 

8: 6 illustrate the changes that occur in the rest of the elements analysed in G13 and 

G6 over the distance scanned (2323µm and 1819µm respectively). The respective 

standard deviation (±2 sigma) for each element (obtained from analyses of Corning 

D, see Section 3.3.2.5) is plotted as an error bar on each analysis point. 

It can be seen from Figure 8: 1 that the inhomogeneous glass, G13, has a 

wide distribution of calcium oxide values (7.186-12.492Wt. %), and that the range of 

concentrations (5.306Wt. %) is significantly larger than would be expected from any 

analytical error. In contrast, the homogeneous glass, G6, has a smaller distribution 
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of calcium oxide concentrations (14.933-15.692Wt. %), a range of just 0.759Wt. %. It 

can be seen that for G6, when the standard deviation of the analyses is considered, at 

a 96% confidence level the majority of the data points fall within the same range. 
Figure 8: 2 illustrates the range of potassium oxide concentrations obtained 

for G13 and G6. Although there is a greater proportion of potassium than calcium 

present in both glasses, the variation in the potassium oxide values is less (G13 

14.734-16.509Wt. % and G6 14.866-15.279Wt. %), giving a much smaller range of 

results (G13 1.775Wt. % and G6 0.413 Wt. %). However, the range of values for G13 

is significantly greater than would be expected from experimental error whilst the 

majority of the values from G6 are within the expected standard deviation of the 

data. These results also confirm the observations made from the elemental maps of 

G13, where it was seen that inhomogeneity has a more significant affect on calcium 

compared to potassium. 

Figure 8: 3 illustrates the variation in silica (61.336-68.51OWt. % Si02) over 

the line scanned on G13, and it can be seen that a wide range of concentrations occur 

over a small area and these are greater than would be expected from experimental 

error. In addition to this, Figure 8: 4 and Figure 8: 5 show that there is also a 

significant range of magnesium oxide (1.549-2.437Wt. %) and aluminium oxide 

(2.382-3.842Wt. %) concentrations in G13. In contrast, the distribution of silica 

(59.579-60.818Wt. % Si02), magnesium (2.579-2.74OWt. % MgO), and aluminium 

(2.863-3.323Wt. % A1203) values for G6 is much smaller (Figure 8: 3-Figure 8: 5). 

The analyses of silica and magnesium oxide for G6 fall within the expected standard 

deviation of the results but the distribution of alumina values fall outside this. This is 

interesting, as G6 was observed to be homogeneous using backscattered SEM 

imaging. 

Although it can be seen in Figure 8: 6 that the range of phosphorus, values is 

greater in the inhomogeneous glass G13 (0.388-0.778Wt. % P205) than the 

homogeneous glass G6 (0.571-0.681Wt. % P205), the low level of precision for 

phosphorus (see Section 3.3.2.5) means that in each glass all the data points are 

within the standard deviation obtained from the comparative Corning D analyses. 

The distribution of iron (0.406-0.79OWt. % FeO, Figure 8: 7), manganese (0.303- 

0.505Wt. % MnO, Figure 8: 7), and sodium (0.307-0.565Wt. % Na20, Figure 8: 8) 

concentrations in G13 are all greater than the calculated limits of experimental error. 

In contrast to this, the same elements in G6 do not show such a large variation 
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(0.331-0.459Wt. % FeO, 0.807-0.929Wt. % MnO, and 0.404-0.574Wt. % Na20) and 

are all within the expected standard deviation of the data. The only element where 

the concentrations and ranges are virtually identical for both glasses is titanium (G13, 

0.190-0.275Wt. % Ti02 and G6,0.170-0.264Wt. % Ti02), and it can be seen in Figure 

8: 8 that the majority of the titanium values for both glasses fall within a range 

expected from experimental error. 

A number of inter-elemental relationships were observed from the results of 

the elemental mapping of G13. The results of the line scans have shown that calcium 

(Figure 8: 1), magnesium (Figure 8: 4) and silica (Figure 8: 3) appear to be directly 

related and have extremely similar shaped plots, calcium and magnesium increasing 

and decreasing together whilst silica mirrors these effects. However, the 

relationships between the other elements analysed are much more complex and vary 

depending on the part of the glass analysed. For example, it can be seen in Figure 

8: 1 and Figure 8: 2 that for G13 the calcium and potassium concentrations rise and 

fall together between 122-1100µm but are opposed between 1711 and 2323µm. It 

would appear from these results that G13 is made up of many combinations of 

different glass compositions. In comparison to G13 there do not appear to be any 

inter elemental relationships in the analyses from G6. 

In summary it can be seen that for the majority of elements, the data from the 

inhomogeneous glass (G13) contains significantly larger ranges of elemental 

concentrations than the analyses from the homogeneous glass (G6). To confirm 

whether the same trend in results was observed in G13 as above, a repeat line scan of 

the sample was carried out in the same area as before. The results are recorded in 

Table VIII: 9 and although the distance scanned was reduced it can be seen that the 

elemental ranges of the two sets of data from G13 are comparable. For example the 

values of calcium vary from 8.090-12.736Wt. % CaO, a range of 4.646Wt. % CaO, 

whilst the distribution of potassium values is 14.727-16.608Wt. % K20, a range of 

1.882Wt. % K20. The inhomogeneous nature of G13 means that the range of 

elemental concentrations obtained from different line scans in the same area is likely 

to be slightly variable, as the results will depend on the specific areas of 

inhomogeneity that the scan crosses. 
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Figure 8: 1 Graph of EPMA line scan data illustrating the change in CaO 
concentration over distance for inhomogeneous Hils glass sample 
G13 (Table VI11: 7) and homogeneous Hils glass sample G6 (Table 
VII1: 8) 
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Figure 8: 2 Graph of EPMA line scan data illustrating the change in K20 
concentration over distance for inhomogeneous Hils glass sample 
G13 (Table VIII: 7) and homogeneous Hils glass sample G6 (Table 
VIII: 8) 
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Figure 8: 3 Graph of EPMA line scan data illustrating the change in Si02 
concentration over distance for inhomogeneous his glass sample 
G13 (Table VIII: 7) and homogeneous Hils glass sample G6 (Table 
VIII: 8) 
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Figure 8: 4 Graph of EPMA line scan data illustrating the change in MgO 
concentrations over distance for inhomogeneous Hils glass sample 
G13 (Table VIII: 7) and homogeneous Hils glass sample G6 (Table 
V111: 8) 
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Figure 8: 5 Graph of EPMA line scan data illustrating the change in A1203 
concentrations over distance for inhomogeneous Hils glass sample 
G13 (Table VIII: 7) and homogeneous Hils glass sample G6 (Table 
VIII: 8) 
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The EPMA results from G13 and G6 confirm the results of the backscattered 

SEM imaging for these glasses (see Section 8.2.3), and show that a significant 

difference can be observed in the range of elemental concentrations obtained from an 

inhomogeneous and homogeneous glass. It can also be seen that certain elements, 

such as calcium and aluminium are influenced by inhomogeneity more than others 

are. To corroborate this evidence, line scans (and where this was not possible, point 

analyses) were carried out on more of the Hils glasses, the results are recorded in 

Table VIII: 10-Table VIII: 28. These results, and those already obtained from G13 

and G6, are illustrated in Figure 8: 9-Figure 8: 15, which show the maximum, 

minimum and range of values obtained for each element from each Hils glass sample 

analysed. The reported values of chlorine and the oxides of cobalt, copper and 

sulphur for the majority of glasses were below the lower limits of detection of the 

EPMA (see Section 3.3.2.5) and therefore are not represented graphically but will be 

discussed with respect to the relevant glasses. 

It can be seen from Figure 8: 9-Figure 8: 15 that the EPMA results from each 

Hils glass exhibit different levels of compositional homogeneity for each element 

analysed. The results confirm that inhomogeneity has a stronger influence on some 

elements such as calcium (Figure 8: 10) and aluminium (Figure 8: 11) rather than 

others such as potassium (Figure 8: 9). However, the range of concentrations for each 

element varies with each glass analysed, this is due to the location of the analysis 

points (see Section 1.5). This may be one reason why although the majority of the 

Hils samples were observed to exhibit high levels of inhomogeneity in backscattered 

SEM imaging (see Section 8.2.3), they do not all exhibit exactly the same range of 

elemental concentrations. 

It can be seen from Figure 8: 9-Figure 8: 15 that although the two 

homogeneous glasses (G6 and G19) have small ranges of elemental concentrations, 

other inhomogeneous glasses also exhibit similarly small ranges for a number of 

elements. For example, Figure 8: 10 illustrates that although the range of calcium 

values for G6 and G19 are 0.759 and 0.392Wt. % CaO respectively, the ranges for 

inhomogeneous glasses G7 and G24 are 0.619 and 0.501Wt. % CaO respectively. 

Therefore, in this case the inhomogeneous glasses exhibit a smaller range of calcium 

values than the homogeneous glass G19. It is important to note that using 

backscattered SEM imaging G7 and G24 were classified as having high and low 

levels of inhomogeneity respectively (see Section 3.3.2.3). Figure 8: 9-Figure 8: 15 
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illustrate that although both these glasses exhibit similar ranges of elemental 

concentrations for the majority of elements, G24 has a significantly larger range of 

aluminium concentrations than G7. It is important to note that in this case the 

backscattered SEM classification for inhomogeneity could be potentially misleading. 
Figure 8: 9-Figure 8: 15 shows that the range of inhomogeneity observed in the 

waste glass (G21-24 and 27) and glass drops (G1,5-14 and 16-18) appears to be 

similarly varied. In addition to this there is no correlation between the samples from 

each different glasshouse, although this is difficult to confirm, as there are only small 

number of samples available for analysis from each site (see Section 7.4). 

Figure 8: 9-Figure 8: 15 show that the majority of the Hils glass samples 

analysed have different compositions to each other. For example, Figure 8: 10 shows 

that the maximum calcium levels recorded for each glass are distributed between 

2.773Wt. % CaO (G24) to 15.692Wt. % CaO (G6) for the 12/13`h century glass and 

13.313Wt. % CaO (G18) to 24.876Wt. % CaO (G20) for the 1400AD fragments. This 

wide variation in chemical compositions between different samples has also been 

noted in published analyses of Hils glass (see Section 7.4). However, it is difficult to 

determine whether there is any relationship between the glass composition and the 

level of inhomogeneity observed due to the limited number of samples. 
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Table VIII: 28) 

259 



CHAPTER 8 ANALYSIS OF ARCHAEOLOGICAL MATERIAL 

16.000 ------------------------------------------------------------------------------------------------------- 

14.000 -------------------------------------------------------------------------------------------------------- 

12.000 ---------------------------------------------------------------------------------------------------- 

10.000 
ö 

8.000 

6.000 { 

4.000 

I 

2.000 

0.000 r-r 

0 Gym Stil Gtiý GyD ýL1 

Hils Glass Sample No. 

Umax Omin  renge 

Figure 8: 11 A comparison of the maximum, minimum and range of values 
obtained for A1203 for Hils glass samples using EPMA (Table VIII: 7- 
Table VIII: 28) 

12.000 T----- ----- ----- ----- -- --------------------- - ------ - ------------------------------------------ 

11.000 -------"-------------------"----------------"-------------------------------------------------------------- 

10.000 ---------"------------------------------------------------------ 

9.000 -----------------------------------------"--------------------------- 

8.000 ---------------------------------------------------------------------------------------------------- 

0 7.000 -----------"--"--"------------------------------------------------------------------------------------------ 
A 6.000 

5.000 -------"------------------------------"--------------------------------- --- 

- ----- ------------ 

{ ---- 

2.000 

1.000 

r 
 L.  1 0.000 

e 
Cý Cý Cý 

ee 
Cý 

ee 
11 Cl 

4 
CI 6 CIIII 

His Glass Sample No. 

 max Dmin  range 
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obtained for Na20 for his glass samples using EPMA (Table VIII: 7- 
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It was noted in Section 7.5 that the Hils glasses were likely to exhibit the 

highest levels of inhomogeneity due to the use of beech ash as an alkali source, 

which would result in a batch with increased calcium and reduced total alkali 

contents. The EPMA results confirm that the majority of the Hils samples exhibit 

greater levels of inhomogeneity, and that calcium levels in particular do appear to be 

significantly affected. However, any relationship between low calcium 

concentrations and homogeneity is difficult to establish. Although G7 and G24 

contain the lowest calcium levels, approximately 3Wt. % CaO, and similar total alkali 

concentrations, approximately 13.5Wt% K20+Na2O, of all the Hils glasses analysed, 

they both exhibit low levels of inhomogeneity. In contrast to this, homogeneous 

glass G6 contains approximately 15Wt. % CaO, and a similar total alkali content to 

G7 and G24 (approximately 15Wt. % K20+Na2O). These results show that the 

presence of low calcium levels is not necessarily an indicator of homogeneity, and a 

high calcium content does not necessarily result in the formation of an 

inhomogeneous glass. This is confirmed when the compositional results of the two 

fragments of Hils window glass (G19 and 20) are examined. Although G19 and 20 

contain the highest calcium levels out of all the Hils glass, G19 has a very low range 

of elemental compositions. These two glasses are significantly different in 

composition to the rest of the Hils glasses and will now be discussed. 

The elevated calcium and reduced potassium concentrations of the two 

fragments of window glass excavated from glasshouse A18, dated to 1400AD, are 

characteristic of the composition of later dated medieval glass (see Section 7.4). It 

can be seen from Figure 8: 9-Figure 8: 15 that these two samples (G19, Table VIII: 22 

and G20, Table VIII: 23) have the highest levels of calcium, phosphorus,, sodium, 

magnesium, manganese, and chlorine and the lowest values of potassium and silica 

compared to all the other Hils glasses analysed. These analyses are very similar to 

the published compositions of comparative Hils window glass discussed in Section 

7.4. It should be noted that the glass drop (G18) also excavated from glasshouse 

A18, and dated to the same period, does not have a similar chemical composition to 

G19 and 20, and exhibits similar characteristics to the other 12/130' century Hils 

glass compositions. Therefore, it is possible that G19 and 20 may not have been 

produced at glasshouse A18 but were brought in as foreign cullet. However, this is 

difficult to determine due to the small number of samples available for analysis and 

the paucity of excavated evidence at Hils (see Section 7.4). 
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The results of backscattered imaging in Section 8.2.3 determined that G19 

was homogeneous and G20 inhomogeneous. Figure 8: 19-Figure 8: 22 illustrate the 

distribution of elemental compositions in G19 and G20 over the distance scanned 

(4149µm and 3687µm respectively). It can be seen that as with the comparison of 

the inhomogeneous and homogeneous glasses G13 and G6 discussed above, the 

range of elemental concentrations is significantly larger in the inhomogeneous glass 

G20 compared to the homogeneous glass G19. Figure 8: 19 illustrates that G20, 

contains a broad distribution of calcium (22.424-24.876Wt. % CaO) and potassium 

(5.916-6.869Wt. % K20) concentrations. However, the range of these values 

(2.453Wt. % CaO and 0.954Wt. % K20) is not as large as observed in many of the 

inhomogeneous 12/13`h century Hils glasses discussed above. 

The range of silica (3.272Wt. % SiO2), aluminium (0.255Wt. % A1203) and 

magnesium (0.397Wt. % MgO) concentrations in G20 (Figure 8: 20 and Figure 8: 21) 

are also significantly greater than any spread in the data due to experimental error 

but, as can be seen in Figure 8: 9-Figure 8: 18, less than a number of the other 

inhomogeneous glasses analysed. Figure 8: 19 illustrates that in the homogeneous 

glass, G19, the distribution of all the potassium and the majority of the calcium 

values are within the limits expected due to experimental error, this is also the case 

for the analyses of silica (Figure 8: 20), magnesium and aluminium (Figure 8: 21) 

from G19. 

Figure 8: 22 shows the distribution of phosphorus concentrations is larger for 

inhomogeneous glass G20 (0.689Wt. % P205) than homogeneous glass G19 

(0.353Wt. % P205). The range of sodium values is smaller for G20 (0.338Wt. % 

Na20) than G19 (0.358Wt. % Na20), but when the data is examined it can be seen 

that there is a more varied distribution of values for G20 than G19. The range of 

concentrations of iron, manganese and titanium are similar for both G19 and 20 

(Figure 8: 23), and the majority of the data for all the elements is distributed within 

the spread of data expected due to experimental error. G19 and 20 are the only Hils 

glasses that contain chlorine concentrations that are significantly greater than the 

lowest limit of detection for the EPMA (see Section 3.3.2.5). Figure 8: 24 shows that 

although the range of chlorine values is greater for G20 (0.281Wt. % Cl) than G19 

(0.174Wt. % Cl), the level of precision for this element means that all the majority of 

the data points for both glasses are within the spread expected from experimental 

error. G20 also contains sulphur concentrations that are greater than the lower limit 
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of detection of the EPMA, but poor precision (see Section 3.3.2.5) means that it is 

difficult to confirm whether the range of values obtained (0.31 lWt. % SO2) is due to 

inhomogeneity or instrumental error. The EPMA results also confirm that the deep 

blue colour of G19 (Plate 8: 23) is due to the presence of cobalt in the glass (Weyl 

1951: 168). However, it is only present in very small quantities, close to the lower 

limit of detection of the EPMA. 

It can be seen from Figure 8: 19-Figure 8: 22 that G20 contains some distinct 

inter elemental relationships, magnesium, aluminium, phosphorus and calcium all 

appear to increase as potassium and silica decrease. The relationship between 

calcium and potassium is illustrated well in Figure 8: 19. In comparison to the spread 

of different compositions in G13, G20 appears to contain a smaller number of 

distinct glass compositions. It is important to note that G19 and 20 were heavily 

weathered (see Section 7.4), and therefore any compositional changes may be due to 

corrosion. 

In summary it can be seen that the majority of the Hils glasses did exhibit 
high levels of inhomogeneity as expected from the results of the backscattered SEM 

imaging (see Section 8.2.3) and elemental mapping (see above). The majority of the 

elemental variations observed in these inhomogeneous glasses were also greater than 

those expected due to experimental error. It is important to note that significant 

levels of elemental variation were also observed for aluminium in glass sample G6 

that had appeared homogeneous under backscattered SEM imaging. Specific 

elements were found to be more significantly affected by inhomogeneity than others, 

in particular calcium, aluminium, magnesium, and phosphorus .A number of 

elemental relationships were also observed, and a number of the samples analysed 

exhibited a combination of many different compositions. 
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MnO and FeO concentrations over distance for inhomogeneous Hils 
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8.3.2 Little Birches 

The backscattered images of the Little Birches glass samples (see Section 

8.2.2) determined that, as predicted in Section 7.5, the material from both the North 

(13th/14`x' centuries) and South (16th century) Sites contained the lowest levels of 
inhomogeneity of all the archaeological material analysed. EPMA line scans and, 

where this was not possible, point analyses were carried out on a selection of 
inhomogeneous and homogeneous samples from each site. The results are recorded 
in Table VIII: 29-Table VIII: 40. It can be seen from the data that the all samples 
from both the North and South sites are similar in composition, and therefore the 

material from the two sites will be discussed together. Figure 8: 25-Figure 8: 35 

illustrate the maximum, minimum and range of elemental concentrations obtained for 

each element where the majority of data points were significantly greater than the 

lowest limit of detection of the EPMA (see Section 3.3.2.5). 

It can be seen from Figure 8: 25 that all of the Little Birches glasses, except 

for one sample of glass waste (LBS2), contain similar potassium concentrations, the 

maximum values ranging between 12.691(LBN7)-14.474(LBS3)Wt. % K20. 

Although, LBS2 contains a slightly higher potassium concentration (maximum value 

17.245Wt. % K20), the spread of compositions is still significantly less than those 

obtained from the Hils glasses (Figure 8: 10). The range of potassium values for each 

sample (0.263(LBS6)-1.552(LBS3)Wt. % K20) are also smaller than those observed 

in the majority of Hils glass samples (Figure 8: 10). 

Figure 8: 26 illustrates the variation in calcium concentrations between the 
Little Birches samples. The North Site samples contain higher levels of calcium 

(maximum values 15.431(LBN1)-19.569(LBN7)Wt. % CaO) than the South Site 

glasses (12.548(LBS2)-15.152(LBS3)Wt. % CaO). The range of calcium values 

obtained for each Little Birches sample is greater than the values obtained for 

potassium but smaller than the calcium ranges seen in the Hils glasses (Figure 8: 10). 

The smaller range of values was expected due to the lower levels of inhomogeneity 

observed in the Little Birches glass (see Section 8.2.2). However, what is surprising 

is that the majority of homogeneous Little Birches samples (LBN4 and 7, and LBS2, 

3,8 and 9) contain larger ranges of potassium and calcium than the inhomogeneous 

samples (LBN1 and 3, and LBS4-7). 

The Little Birches data for aluminium and magnesium is represented in 

Figure 8: 27 and Figure 8: 28 respectively. It can be seen that the glasses from both 
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the North and South Sites contain similar levels of both these elements 

(approximately 1.5-2.5Wt% A1203 and 7-8Wt. % MgO). The exception to this, is one 

sample of glass waste from the North Site (LBN7), which contains approximately 

3Wt. % A1203 and 6Wt. % MgO. The Little Birches glasses therefore contain higher 

levels of magnesium and lower levels of aluminium than the Hils glasses. Although, 

the ranges of aluminium and magnesium concentrations vary for each sample 

analysed, there does not appear to be a relationship between the extent of these 

elemental variations and the presence of inhomogeneity observed under the SEM. 

Figure 8: 29 and Figure 8: 30 illustrate the differences in silica and 

phosphorous concentrations for each of the Little Birches glasses. It can be seen that 

the majority of the South Site glass contains higher silica (maximum values 

52.212(LBS5)-60.874(LBS2)Wt. % SiO2) and lower phosphorus (2.759(LBS9)- 

3.836(LBS9)Wt. % P205) concentrations than the North Site samples (maximum 

values 51.361(LBN7)-52.087(LBN4)Wt. % SiO2 and 3.771(LBN4)- 

3.838(LBN7)Wt. % P205). The range of silica values obtained from each of the Little 

Birches glasses is significantly less than seen in the majority of the Hils samples. In 

comparison, the ranges of phosphorus. values obtained from each Little Birches 

sample are similar to those seen in the majority of the Hils glasses analysed. 

It can be seen from Figure 8: 16 and Figure 8: 17 that the levels of manganese 

and sodium in the Little Birches glass samples are greater than observed in the 

majority of the Hils glasses. The majority of the glasses from the South site contain 

slightly lower concentrations of both elements. The Little Birches glasses contain 

lower concentrations (approximately O. lWt. % Ti02 and 0.5Wt. % FeO) and smaller 

spreads of data for titanium (Figure 8: 33) and iron (Figure 8: 34) than the majority of 

the Hils glasses. The values for both these elements are similar for both the North 

and South Site Little Birches samples. The range of concentrations obtained from 

each analysis for all these elements do not appear to be linked to the extent of 

inhomogeneity observed in backscattered SEM imaging. 

The chlorine (Figure 8: 35) values for the Little Birches glasses are varied but 

for this element the range of values obtained for each analysis does appear to be 

greater for glasses that were deemed to be homogeneous using backscattered SEM 

imaging. 
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Figure 8: 25 A comparison of the maximum, minimum and range of values 
obtained for K20 for Little Birches glass samples using EPMA 
(Table VIII: 29-Table VIII: 40) 
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Figure 8: 26 A comparison of the maximum, minimum and range of values 
obtained for CaO for Little Birches glass samples using EPMA 
(Table V111: 29-Table VIII: 40) 
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Figure 8: 27 A comparison of the maximum, minimum and range of values 
obtained for A1203 for Little Birches glass samples using EPMA 
(Table V111: 29-Table VIII: 40) 
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Figure 8: 28 A comparison of the maximum, minimum and range of values 
obtained for MgO for Little Birches glass samples using EPMA 
(Table V111: 29-Table VIII: 40) 
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Figure 8: 29 A comparison of the maximum, minimum and range of values 
obtained for Si02 for Little Birches glass samples using EPMA 
(Table V111: 29-Table VIII: 40) 
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Figure 8: 30 A comparison of the maximum, minimum and range of values 
obtained for P205 for Little Birches glass samples using EPMA 
(Table VIII: 29-Table VIII: 40) 
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Figure 8: 31 A comparison of the maximum, minimum and range of values 
obtained for MnO for Little Birches glass samples using EPMA 
(Table V111: 29-Table VIII: 40) 
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Figure 8: 32 A comparison of the maximum, minimum and range of values 
obtained for Na20 for Little Birches glass samples using EPMA 
(Table VIII: 29-Table VllI: 40) 
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Figure 8: 33 A comparison of the maximum, minimum and range of values 
obtained for Ti02 for Little Birches glass samples using EPMA 
(Table V111: 29-Table VIII: 40) 
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Figure 8: 34 A comparison of the maximum, minimum and range of values 
obtained for FeO for Little Birches glass samples using EPMA 
(Table V111: 29-Table VIII: 40) 

279 



CHAPTER 8 ANALYSIS OF ARCHAEOLOGICAL MATERIAL 

1.200 --------------------------------------------------- ------------- 

1.000 

0.800 

U 
0.600 

0.400 

0.200 

0.000 
rrrrrrrrrrrr- 
CID CO CC co co 00 W CO co CO W 
Zzzz (/) (/) V) C/) (/) C/) (1) U) 

WAVNWA (T CD V CO (O 
Little Birches Glass Sample No. 

ýýmax Omin  range 

Figure 8: 35 A comparison of the maximum, minimum and range of values 
obtained for Cl for Little Birches glass samples using EPMA (Table 
VIII: 29-Table VIII: 40) 

Figure 8: 36-Figure 8: 39 illustrate the change in elemental composition over 

distance (9979}ßm LBN3 and 13079}ßm LBN7) for one sample containing low levels 

of inhomogeneity (LBN3) and one homogeneous sample (LBN7) from Little Birches 

North Site. Although there are a smaller number of analysis points for LBN7 

compared to LBN3 it can still be seen that the range of concentrations for the 

majority of elements is unexpectedly larger for the homogeneous compared to the 

inhomogeneous glass. 

Figure 8: 36 illustrates the change in calcium and potassium concentrations 

for LBN3 and 7. It can be seen that although the spread of the calcium values for the 

inhomogeneous glass (LBN3,0.713Wt. % CaO) is greater than that expected from 

experimental error it is not as large as the spread of data in the homogeneous glass 

(LBN7,1.483Wt. % CaO). However, this spread in LBN7 is mainly caused by one 

value. In comparison the majority of the potassium values for LBN3 are within the 

expected limits of experimental error whereas the potassium values for LBN7 are 

not. This is also seen in the comparison of the distribution of silica values for each 

glass sample (Figure 8: 37). 
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Figure 8: 38 illustrates that the homogeneous sample LBN7 contains a wider 

range j of aluminium values (0.798Wt. % A1203) than the inhomogeneous sample 

LBN3 (0.184Wt. % A1203). However, the distribution of magnesium values in each 

glass (0.361Wt. % MgO (LBN3) and 0.348 (LBN7)) is similar, and in both cases 

larger than the spread of values expected due to experimental error. Although the 

range of phosphorus concentrations in LBN7 (0.372Wt. % P205) is greater than in 

LBN3 (0.288Wt. % P205) Figure 8: 39 shows that for both glasses the range of values 

are within the expected spread of the data due to experimental error. In contrast, the 

inhomogeneous glass LBN3 has a greater range (0.283Wt. % Na20) and wider 

distribution of sodium values than the homogeneous glass LBN7 (0.171Wt. % Na2O). 

LBN3 contains smaller ranges of iron (0.098Wt. % FeO) and manganese 

(0.160Wt. % MnO) and larger ranges of chlorine (0.172Wt. % Cl) and titanium 

(0.079Wt. % Ti02) than LBN7 (0.130Wt. % FeO, 0.174Wt. % MnO, 0.103Wt. % Cl 

and 0.034Wt. % Ti02). However, it can be seen from Figure 8: 40 that the spread of 

manganese, iron and chlorine concentrations for LBN3 and LBN7 are slightly greater 

than any spread due to experimental error in the samples. The values of titanium for 

both glasses are within the spread due to error expected from the analyses. Although 

it is difficult to determine any distinct elemental relationships in LBN3 and 7, it can 

be seen that, as in the Hils glass G13 (see Section 8.3.1), these glasses appear to be 

made up of a number of varied glass compositions. 

In summary, it can be seen that in comparison to the inhomogeneity observed 

in the Hils glass samples (see Section 8.3.1), the elemental variation within each 

Little Birches sample is small. This corresponds well to the lower levels of 

inhomogeneity observed in the backscattered images of the Little Birches glass (see 

Section 8.2.2). Although the elemental ranges obtained for each sample will depend 

on the position of the analysis points, it is important to note that a number of the 

homogeneous glasses contain larger elemental ranges than the inhomogeneous 

samples. However, it has been seen from the descriptions of LBN3 and LBN7 above 

that this appears to vary for each element analysed. There also does not appear to be 

a significant difference in the inhomogeneity observed between the glass from either 

site although the average concentrations of certain elements are varied. 
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Figure 8: 36 Graph of EPMA line scan data illustrating the change in CaO and 
K20 concentrations over distance for North Site inhomogeneous 
glass sample LBN3 (Table VIII: 30) and homogeneous glass sample 
LBN7 (Table VIII: 32) 
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Figure 8: 37 Graph of EPMA line scan data illustrating the change in Si02 

concentrations over distance for North Site glass sample LBN3 
(Table VIII: 30) and homogeneous glass sample LBN7 (Table 
VIII: 32) 
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Figure 8: 38 Graph of EPMA line scan data illustrating the change in MgO 
and A1203 concentrations over distance for North Site glass 
sample LBN3 (Table VIII: 30) and homogeneous glass sample 
LBN7 (Table VIII: 32) 
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Figure 8: 39 Graph of EPMA line scan data illustrating the change in Na20 
and P205 concentrations over distance for North Site glass sample 
LBN3 (Table VIII: 30) homogeneous glass sample LBN7 (Table 
VIII: 32) 
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Figure 8: 40 Graph of EPMA line scan data illustrating the change in MnO, 
FeO, Ti02 and Cl concentrations over distance for North Site glass 
sample LBN3 (Table VIII: 30) homogeneous glass sample LBN7 
(Table VIII: 32) 
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8.3.3 Wealden Glasses 

It was suggested in Section 7.5 that glass from the Wealden sites of 
Blunden's Wood, Knightons and Sidney Wood were likely to contain inhomogeneity 

due to the use of oak as an alkali source. The results of the backscattered SEM 

imaging in Section 8.2 confirmed that a number of the Wealden samples were 

inhomogeneous but that there was no apparent difference between the extent of 

inhomogeneity in the material from the three different sites. In the majority of cases 

only a small number of EPMA point analyses were possible for each sample of the 

Wealden material. Where the glass had been noted as being inhomogeneous (see 

Section 8.2) the analysis points were selected to reflect areas of the most potentially 

disparate composition (i. e. the most different in colour on the SEM backscattered 

image, see Section 3.2.5). The results are recorded in Table VIII: 41-Table VI11: 81 

and will be discussed in Sections 8.3.3.1-8.3.3.3. 

8.3.3.1 Blunden's Wood 

Figure 8: 41-Figure 8: 50 illustrate the maximum, minimum and range of 

concentrations of each element for each Blunden's Wood glass sample where the 

majority of data points are significantly greater than the lowest limit of detection for 

the EPMA (see Section 3.3.2.5). It can be seen that as with the Little Birches 

samples (see Section 8.3.2), the range of elemental concentrations is not always 

greater in the inhomogeneous (BW4,5,6,7,10,12 and 13) compared to the 

homogeneous samples (BW1,2,3,8,9,11 and 14) (see Section 8.3.3.1). In 

addition, the range of concentrations for each sample is also element specific. For 

example, the two samples of waste glass BW 12 and BW 13 contain medium and low 

levels of inhomogeneity respectively (see Section 8.2.1.1). Figure 8: 41 and Figure 

8: 42 show the changes in potassium and calcium concentrations for the Blunden's 

Wood glasses analysed. It can be seen that BW 12 contains a smaller range of 

potassium values (1.620Wt. % K20) but a larger range of calcium values (3.151Wt. % 

CaO) than BW 13 (2.608Wt. % K20 and 1.026Wt. % CaO). Although the position of 

the analysis points will affect the range of values obtained, it can be seen that it is 

also difficult to relate the extent of inhomogeneity viewed under the SEM to the 

differences observed in the analytical data. 
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The composition of the vessel glass (BW1) corresponds well with the 

published analyses of comparative Blunden's Wood material (see Section 7.2.1). 

Two samples of cullet (BW2 and 4) are similar in composition to BW1 but the third 

cullet sample (BW3) has elevated concentrations of potassium (Figure 8: 42) and 

phosphorus (Figure 8: 46) and reduced levels of silica (Figure 8: 45). This difference 

in composition may suggest that BW3 is foreign cullet (see Section 2.2.5). Two 

samples of crucible glass (BW7 and 8) and two samples of waste glass (BW 12 and 

13) contain significantly lower calcium concentrations (approximately 5Wt. % or less 

CaO) and increased aluminium concentrations compared to the rest of the glasses. 

The change in these two elements suggests that the difference is probably due to the 

analysis of areas containing refractory corrosion products (see Section 2.4.5.1). The 

data from the Blunden's Wood material does show that, as expected, the 

inhomogeneous waste material contains the greatest elemental ranges out of all the 

material analysed (see Section 7.2.1). However, increased calcium and decreased 

total alkali levels do not appear to be related to different levels of inhomogeneity (see 

Section 2.2.2.1). 

The range of elemental compositions observed in each of the Blunden's 

Wood samples is predominantly less than those measured in the Hils glass (see 

Section 8.3.1) but greater than observed in the Little Birches material (see Section 

8.3.2). This confirms the prediction made in Section 7.5. It is difficult to ascertain 

which elements are the most significantly affected by inhomogeneity in the 

Blunden's Wood samples, as it would appear that in general this is sample specific. 

288 



CHAPTER 8 ANALYSIS OF ARCHAEOLOGICAL MATERIAL 

22.000 r --------------------------------------------------------------------------- 

20.000 ---------------------------------------------------------------------------- 

18.000 ------- --------------------------------------------- ------- 

16.000 ------- 

14.000 

12.000 

10.000 
{ 

--- 

8.000 

6.000 } 

4.000 } 

2.000 

0.000 su, 
BW1 BW2 BW3 BW4 BW5 BW6 BW7 BW8 BW9 BW10 BW11 BW12 BW13 BW14 

Blunden's Wood Sample No. 

 MAX OMIN ORANGE 

Figure 8: 41 A comparison of the maximum, minimum and range of values 
obtained for K20 for Blunden's Wood glass samples using EPMA 
(Table V111: 41-Table VIII: 54) 
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Figure 8: 42 A comparison of the maximum, minimum and range of values 
obtained for CaO for Blunden's Wood glass samples using EPMA 
(Table VIII: 41-Table VIII: 54) 
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Figure 8: 43 A comparison of the maximum, minimum and range of values 
obtained for A1203 for Blunden's Wood glass samples using EPMA 
(Table V111: 41-Table VII1: 54) 
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Figure 8: 44 A comparison of the maximum, minimum and range of values 
obtained for MgO for Blunden's Wood glass samples using EPMA 
(Table V111: 41-Table VIII: 54) 
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Figure 8: 45 A comparison of the maximum, minimum and range of values 
obtained for Si02 for Blunden's Wood glass samples using EPMA 
(Table VIII: 41-Table VIII: 54) 
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Figure 8: 46 A comparison of the maximum, minimum and range of values 
obtained for PZO5 for Blunden's Wood glass samples using EPMA 
(Table V111: 41-Table VIII: 54) 
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Figure 8: 47 A comparison of the maximum, minimum and range of values 
obtained for MnO for Blunden's Wood glass samples using EPMA 
(Table V111: 41-Table VII1: 54) 
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Figure 8: 48 A comparison of the maximum, minimum and range of values 
obtained for Na2O for Blunden's Wood glass samples using EPMA 
(Table V111: 41-Table VIII: 54) 
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Figure 8: 49 A comparison of the maximum, minimum and range of values 
obtained for Ti02 for Blunden's Wood glass samples using EPMA 
(Table V111: 41-Table VIII: 54) 
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Figure 8: 50 A comparison of the maximum, minimum and range of values 
obtained for FeO for Blunden's Wood glass samples using EPMA 
(Table V111: 41-Table VIII: 54) 
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8.3.3.2 Knightons 

Figure 8: 51-Figure 8: 60 illustrate the maximum, minimum and range of 

elemental concentrations obtained for each sample of Knightons glass analysed. 
Section 8.2.1.2 noted that all the samples of crown glass (K1-11) and the three 

samples of cullet (K12-14) were homogeneous. The waste glass or cullet (K15 and 
16), glass waste (K20 and 21) and two crucible glass fragments (K17 and 19) were 
inhomogeneous whilst the other crucible fragment (K 18) was homogeneous. 

The inhomogeneous glasses K15 and K16 have the largest range of 

concentrations for the majority of elements. The ranges of calcium (6.743 (K15) and 
3.274 (K16) Wt. % CaO) are comparable to those seen in the Hils samples in Section 

8.3.1. However, it can be seen that as with the material analysed from Blunden's 

Wood and Little Birches (see Section 8.3.2 and 8.3.3.1 respectively) in general the 

extent of compositional variation appears to be element and sample specific. It is 

important to note that smaller elemental variation can sometimes be observed in the 

results from inhomogeneous rather than homogeneous glasses. For example, it can 

be seen from Figure 8: 53 that the range of aluminium values in a sample of 

homogeneous glass K7 (0.304 Wt. % A1203) is greater than observed in the 

inhomogeneous glass K20 (0.131Wt. % A1203). In addition, it can be seen from 

Figure 8: 54 that K7 contains a smaller range of magnesium (0.479Wt. % MgO) than 

K20 (0.704 Wt. % MgO). 

The results from the Knightons glass appear to show that specific elements 

are influenced more by inhomogeneity than others. Calcium, aluminium, 

magnesium, phosphorus and manganese all appear to be significantly affected. 

However, it is important to note that this does vary for each sample and element. 

It can be seen from the results of the EPMA analysis that the Knightons 

samples all have typical `Early' potash lime compositions. These correspond well to 

the published analyses of Knightons glass discussed in Section 7.2.2. The 

composition of the crown glass and cullet samples (K1-14) is similar. In contrast, 

the composition of the crucible and waste glass is more varied (and in a number of 

samples more inhomogeneous). This was expected due to the inclusion of refractory 

corrosion products in the glass (see Section 2.4.5.1). The elemental variation in the 

Knightons samples is comparable to that seen in the Blunden's Wood glass. This 

confirms the observations made using the SEM in Sections 8.2.1.1 and 8.2.1.2. 
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Figure 8: 51 A comparison of the maximum, minimum and range of values 
obtained for K20 for Knightons glass samples using EPMA (Table 
V111: 55-Table VIII: 75) 
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Figure 8: 52 A comparison of the maximum, minimum and range of values 
obtained for CaO for Knightons glass samples using EPMA (Table 
V111: 55-Table VIII: 75) 
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Figure 8: 53 A comparison of the maximum, minimum and range of values 
obtained for A1203 for Knightons glass samples using EPMA (Table 
V111: 55-Table VIII: 75) 
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Figure 8: 54 A comparison of the maximum, minimum and range of values 
obtained for MgO for Knightons glass samples using EPMA (Table 
VIII: 55-Table VIII: 75) 
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Figure 8: 55 A comparison of the maximum, minimum and range of values 
obtained for Si02 for Knightons glass samples using EPMA (Table 
V111: 55-Table VIII: 75) 
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Figure 8: 56 A comparison of the maximum, minimum and range of values 
obtained for P205 for Knightons glass samples using EPMA (Table 
V111: 55-Table VIII: 75) 
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Figure 8: 57 A comparison of the maximum, minimum and range of values 
obtained for MnO for Knightons glass samples using EPMA (Table 
VIII: 55-Table VIII: 75) 
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Figure 8: 58 A comparison of the maximum, minimum and range of values 
obtained for Na20 for Knightons glass samples using EPMA (Table 
V111: 55-Table VIII: 75) 
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Figure 8: 59 A comparison of the maximum, minimum and range of values 
obtained for Ti02 for Knightons glass samples using EPMA (Table 
V111: 55-Table VIII: 75) 
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Figure 8: 60 A comparison of the maximum, minimum and range of values 
obtained for FeO for Knightons glass samples using EPMA (Table 
V111: 55-Table VIII: 75) 
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8.3.3.3 Sidney Wood 

Figure 8: 61-Figure 8: 70 illustrate the maximum, minimum and range of 
elemental concentrations obtained for each Sidney Wood sample analysed. It can be 

seen that the three fragments of vessel glass (SW1-3) have very consistent 

compositions. In contrast to the Blunden's Wood and Knightons samples (see 

Sections 8.3.3.1 and 8.3.3.2) they contain lower potassium and higher calcium values 

(approximately 4Wt. % K20 and 23Wt. % CaO). This composition is typical of later 

medieval glass (such as G19 and 20 at Hils, see Section 8.3.1) and is comparable 

with the published analyses of Sidney Wood material (see Section 7.2.3). It was 

suggested in Section 7.2.3 that the high calcium levels in Sidney Wood vessel glass 

might make it more susceptible to inhomogeneity. However, samples SWI-3 were 

found to be homogeneous using backscattered SEM imaging and this is confirmed by 

the low elemental ranges obtained from the results of the EPMA analysis. 

In contrast to the vessel glass, the two samples of crucible glass (SW4 and 6) 

and the furnace fragment (SW7) exhibited inhomogeneity in backscattered SEM 

imaging (see Section 8.2.1.3). The EPMA results confirm that for the majority of 

elements, these glasses contain larger elemental ranges than the homogeneous vessel 

glasses (Figure 8: 61-Figure 8: 70). The exceptions to this are the values obtained for 

iron and titanium (Figure 8: 59 and Figure 8: 60). A number of the analyses are below 

or near the lowest limit of detection for titanium (see Section 3.3.2.5) and therefore 

this may influence the results obtained. However, the values for iron are well above 

the limit of detection and therefore the compositional differences observed are likely 

to be significant. The levels of sulphur in the Sidney Wood glass are not illustrated 

as the majority of the values obtained are below the limit of detection for the EPMA. 

It can be seen that the composition of the crucible and furnace fragment 

samples is very different to the vessel glass. This anomaly has been already noted in 

the published analyses of Sidney Wood material (see Section 7.2.3). It can be seen 

from Figure 8: 61-Figure 8: 70 that SW4,6 and 7 also appear to have very different 

compositions to each other. Despite these unusual compositions it can be seen that 

this inhomogeneous material contains significantly larger elemental variations to the 

homogeneous vessel glass. For example, the range of calcium values in SW4 is 

4.095Wt. % CaO, whilst the homogeneous sample SW1 has a range of just 

0.677Wt. % CaO (Figure 8: 52). 
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SW7 was classified as having low levels, and SW4 and 6 high levels of 
inhomogeneity (see Section 8.2.1.3). It can be seen that for the majority of elements 

SW7 does have smaller elemental ranges than SW4 and 6. This is the only set of 

material analysed in this research to show a distinct relationship between the level of 

inhomogeneity viewed under the SEM and the range of analytical data obtained. 

However, it should be noted that these results are based on a small number of data 

points from each glass and therefore may alter if more analyses were carried out. 

It is difficult to determine any distinct difference between the level of 

inhomogeneity seen in all of the Wealden glasses analysed. The EPMA results for 

all of the glass analysed in this Chapter have shown that the relationship between 

inhomogeneity and composition is complex and varied. The EPMA and SEM results 

will be discussed in Section 8.4. 
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Figure 8: 61 A comparison of the maximum, minimum and range of values 
obtained for K20 for Sidney Wood glass samples using EPMA 
(Table V111: 76-Table VIII: 81) 
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Figure 8: 62 A comparison of the maximum, minimum and range of values 
obtained for CaO for Sidney Wood glass samples using EPMA 
(Table V111: 76-Table VIII: 81) 
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Figure 8: 63 A comparison of the maximum, minimum and range of values 
obtained for A1203 for Sidney Wood glass samples using EPMA 
(Table V111: 76-Table VIII: 81) 
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Figure 8: 64 A comparison of the maximum, minimum and range of values 
obtained for MgO for Sidney Wood glass samples using EPMA 
(Table V111: 76-Table V1II: 81) 
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Figure 8: 65 A comparison of the maximum, minimum and range of values 
obtained for Si02 for Sidney Wood glass samples using EPMA 
(Table V111: 76-Table VIII: 81) 
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Figure 8: 66 A comparison of the maximum, minimum and range of values 
obtained for P205 for Sidney Wood glass samples using EPMA 
(Table V111: 76-Table VIII: 81) 
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Figure 8: 67 A comparison of the maximum, minimum and range of values 
obtained for MnO for Sidney Wood glass samples using EPMA 
(Table V111: 76-Table VIII: 81) 
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Figure 8: 68 A comparison of the maximum, minimum and range of values 
obtained for Na20 for Sidney Wood glass samples using EPMA 
(Table V111: 76-Table VIII: 81) 
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Figure 8: 69 A comparison of the maximum, minimum and range of values 
obtained for Ti02 for Sidney Wood glass samples using EPMA 
(Table V111: 76-Table VIII: 81) 
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Figure 8: 70 A comparison of the maximum, minimum and range of values 
obtained for FeO for Sidney Wood glass samples using EPMA (Table 
V111: 76-Table VIII: 81) 

8.4 Discussion 

The results of the backscattered SEM imaging in Section 8.2, have confirmed 

the predictions made in Section 7.5 that the Hils glasses would contain the highest 

levels of inhomogeneity, Staffordshire glasses the least, with the Weald falling in 

between. It can be seen that homogeneity is a complex issue that varies for each 

sample and element analysed. The results of the SEM imaging and EPMA analyses 

will be discussed in Sections 8.4.1-8.4.8. 

8.4.1 Wealden Glasses 

Blunden's Wood, Knightons and Sidney Wood were chosen specifically to 

span the period before, during and after the recorded change in medieval furnace 

technologies in the Weald (see Section 7.2). The change in furnace design is thought 

to have increased the melting temperatures attainable, and from the information in 

Chapter 2 and the conclusions from the experimental glass in Chapter 5, it can be 

seen that this variable has a significant effect on the formation of a more 
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homogeneous glass. The earlier glass from Blunden's Wood or Knightons might 

therefore be expected to contain higher levels of inhomogeneities when compared to 

the material obtained from the later site (with improved furnace design) of Sidney 

Wood. The SEM results from the Wealden glasses (see Section 8.2.1) show there is 

no apparent difference in the level of inhomogeneity seen in samples from Blunden's 

Wood, Knightons and Sidney Wood, as was suggested in Section 7.5. However, 

when the EPMA results are considered (see Section 8.3.3) it can be seen that 

although the inhomogeneity in the waste and crucible glass is comparable for the 

three sites, the vessel glass from Sidney Wood exhibits the smallest elemental ranges 

(see Section 8.3.3.3). Therefore the finished product from Sidney Wood, the vessel 

glass, appears to be homogeneous. 

Although Knightons represents the transition between the Early and Late 

glassmaking traditions in the Weald (see Section 7.2.2), the levels of inhomogeneity 

are comparable to those seen in the material from the earlier site of Blunden's Wood. 

This is perhaps not surprising as although both Early and Late glass was excavated at 

Knightons, all the samples analysed here were of the Early type. 

The vessel glass from Sidney Wood is of extremely high quality visually, and 
has a different chemical composition to the Blunden's Wood and Knightons material. 

Therefore it is possible that the Sidney Wood glass samples analysed are likely to 

have been made using different raw materials from those used at Blunden's Wood 

and Knightons. Even though the Sidney Wood glass has lower total alkali and higher 

lime levels (see Section 8.3.3.3), it is homogeneous. These factors suggest that 

increased furnace temperatures and times may have been used by medieval 

glassmakers at Sidney Wood. The composition of the Sidney Wood crucibles and 

furnace fragment is significantly different to the fully formed glass. It was seen in 

Section 7.2.3 that there is some uncertainty to whether these crucibles are from 

Sidney Wood, and this may provide an explanation for these differences. 

The fully formed glass (vessel and window) from the Wealden sites exhibited 

greater homogeneity than the majority of crucible, cullet and waste glass as expected 

(see Section 2.4.5.2). There appears to be a distinct difference in the homogeneity of 

different glass types and this will be discussed in Section 8.4.4. It was noted in 

Section 2.2.2.1 that Wealden oak ash contained similar total alkali and calcium levels 

to beech ash. The results of the experimental glasses in Chapters 4-6 have shown 

that small beech ash melts require melting temperatures of 1300°C to produce a 
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homogeneous glass. If the oak ash batches behave in a similar way to beech ash 

batches it might be suggested that similar melting temperatures would be required to 

form a homogeneous glass. The furnace temperatures achieved at Blunden's Wood 

have been estimated at 1200-1300°C (see Section 7.2.1). Therefore based on the 

results of Chapters 4-6 it might be assumed that to achieve a homogeneous product 

1300°C would have been required. However, it was only possible to analyse one 

sample of vessel glass from Blunden's Wood and further examination of fully 

formed glass from this site is needed to determine whether this is indicative of the 

finished products produced at the site. 

8.4.2 Little Birches 

It was suggested in Section 7.3.1 that the Little Birches glasses would be the 

most homogeneous of all the archaeological glasses analysed based on the use of 

ferns as an alkali source and high furnace temperatures. The SEM and EPMA results 

confirmed that overall, the Little Birches glasses did contain the lowest levels of 

inhomogeneity. It was expected from the results of the experimental work (see 

Chapters 4-6) that the glass from the Little Birches South Site might contain the 

lowest levels of inhomogeneity due to the use of higher furnace temperatures (see 

Section 7.3.1.2). However, it was not possible to see any apparent differences 

between the glass from either site. These observations are only based on the 

examination of a small number of waste glasses and further examination of a wider 

range of material would be required to confirm this. 

The glass obtained from Little Birches was all found in tips near the furnaces 

(see Section 7.3.1). It might therefore be that the medieval glassmakers were 

deliberately discarding this glass because it was unsuitable for further working. The 

results of this Chapter (see Section 8.2) have shown that samples of fully formed 

glass appear to contain less inhomogeneity than waste glass from the same site. At 

Little Birches, the low levels of inhomogeneity in the waste glass would suggest that 

any fully formed glass would contain no or only very low levels of inhomogeneity. 

It was seen in Section 8.3.2 that the majority of the homogeneous Little 

Birches samples contained larger elemental ranges than the inhomogeneous ones. 

This apparent anomaly in the EPMA results is difficult to explain. However, the 

very low levels of inhomogeneities present in the Little Birches glasses are not 
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always easy to identify on the backscattered SEM image of the sample (see Section 

8.2.2). Therefore it is possible that a number of the EPMA scans of `homogeneous' 

Little Birches samples covered areas that contained extremely low levels of 

inhomogeneity that were not identified on the backscattered SEM image. 

8.4.3 Hils 

It was suggested in Section 7.5 that the Hils glasses would contain the highest 

levels of inhomogeneity, and this has been confirmed by the results of the SEM and 
EPMA analyses in this Chapter. The high levels of inhomogeneity in the Hils 

glasses were expected, as it was thought that beech ashes were used as the alkali 

source in these glasses (see Section 7.4). It is interesting to note that the samples 
from both the 12`"/13`h and 15th centuries contain inhomogeneities. However, only 
three 15th century samples were available for analysis. This combined with the 

paucity of excavated evidence from the glassmaking sites at Hils (see Section 7.4) 

means that is difficult to assess whether the extent of homogeneity is related to the 

period of production or the glasshouse where the sample originated. 
The majority of the Hils samples are drops and trails of glass and glass waste. 

The inhomogeneity seen in the glass waste samples is not unexpected (see Section 

8.4.4). However, it would be interesting to know which part of the glassmaking 

process the inhomogeneous glass drops come from. If these are the by-products of 

glass working (for example the ends of decorative trails, or working waste from the 

manufacture of vessel and windows), then this may mean that the fully formed glass 
they relate to contains substantial inhomogeneity as well. Unfortunately there was 

no comparative material to test this against. The drops may also be test pulls used to 
determine whether the glass melt was suitable for working (see Section 2.4.3), in 

which case the high levels of inhomogeneity are therefore not unexpected. 
The images and EPMA analyses obtained from the Hils samples show that 

the majority of the glasses investigated exhibit a significant degree of inhomogeneity 

(see Sections 8.2.3 and 8.3.1). In most cases the inhomogeneities are present 

throughout the whole cross section of the glass and in some samples they appear to 

have been stretched out in the direction that the glass was being worked (G15 and 

G19). The orientation of inhomogeneities must be considered and will be discussed 

in Section 8.4.5. 
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Although there was a distinct difference in the results of glass from the 
Weald, Little Birches and Hils, it can be seen that in general, crucible or waste glass 
is more prone to inhomogeneity than fully formed glass. This will be discussed in 

Section 8.4.4. 

8.4.4 Glass Artefact Type and Inhomogeneity 

The results of this Chapter have shown that inhomogeneity is more common 
in crucible or waste glass fragments than in window or vessel glass. It is perhaps not 

surprising that the fully formed glass is predominately homogeneous, as the presence 

of major inhomogeneities might prevent successful working and annealing (see 

Sections 2.5 and 2.6). Artefacts that broke in the annealing process would probably 
have been recycled as cullet and therefore may be less likely to be found in the 

archaeological record. The results of the Knightons material show that the moil 
fragments analysed (K12-14), are more homogeneous than other samples of cullet 
(such as unidentified lumps of glass). However, only a comparatively small amount 

of cullet was analysed and therefore the difference in homogeneity may be due to a 

sampling bias. 

It was seen in Chapter 7 that high refractory fabrics were used to produce 

glassmaking crucibles at all of the sites selected for this research. The use of 

crucibles with good refractory properties will reduce the level of inhomogeneity 

caused by ceramic corrosion. However, molten glass is extremely corrosive (see 

Section 2.4.5.1) and therefore the majority of the crucible glasses analysed in Section 

8.2 contain a number of inhomogeneities that occur at the glass/crucible interface 

(for example BW5 (Plate 8: 4) and SW4 (Plate 8: 16)). In a number of samples these 

inhomogeneities can be observed to extend outwards into the bulk of the glass (for 

example BW6 and 8). 

Thermal and diffusion currents will distribute any inhomogeneities formed by 

ceramic dissolution throughout the glass melt. The rate at which this homogenisation 

occurs will depend on many factors such as the position of the heat source, melt 

temperature and time, glass composition and the heat transfer properties of the 

crucible fabric (see Section 2.4.5.1). The relatively large melt sizes of the glass 

analysed (see Sections 7.2-7.4) may mean that it is unlikely that crucible dissolution 
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will significantly alter the bulk composition of the glass. However, if extended 

melting times were used, this may be difficult to ascertain. 
It is therefore likely that the incidence of inhomogeneities will increase in 

glass removed from nearer the bottom of the melt. However, it has been seen that 

the majority of the fully formed glass is homogeneous. One reason for this may be 

that the glass at the bottom of the crucible was never utilised. For example, Crossley 

(1972: 432) suggests that the medieval glassmaker is likely to have deliberately 

avoided glass at the bottom of the crucible in order to avoid contamination with 

unwanted inclusions that would impair the quality of the glass. 
Although the glass at the bottom of the crucible may have been avoided in 

medieval glassmaking (see Section 2.4.5.2), the majority of excavated crucible 

fragments only contain a thin (approximately 1cm or less) layer of glass. This is 

apparent in the crucible glass samples from this Chapter. Although this glass is 

unlikely to be representative of the bulk of the glass originally in the crucible 

(Mortimer in Welch (1997: 38)), the high incidence of inhomogeneity in this type of 

samples should still be noted as it will influence compositional analysis in glass from 

crucibles. 

In comparison to the crucible fragments, the inhomogeneities in waste glass 

samples tend to be distributed more evenly throughout the whole of the glass. 

However, it can be seen that where there are inclusions within the glass sample, as in 

BW 14, the level of inhomogeneity will be higher in that area. Depending on the 

source of the glass waste these inclusions may have been picked up from a variety of 

places, such as rocks or earth picked up from around the glass site, glass scum or 

waste crucible and furnace fragments. The inhomogeneity around the inclusion is 

caused by the corrosive nature of molten glass, which will attack these features 

altering the composition of the glass (see Section 2.4.5.1). In addition to these 

observations, it should be noted that the visual appearance of the glass samples does 

not appear to relate to the levels of homogeneity observed and the presence of 

opaque regions in the glass cannot be directly related to inhomogeneity. 

8.4.5 Orientation of Inhomogeneities 

It was suggested in Section 1.5 that inhomogeneities are likely to align in 

parallel with the glass surface and that this can have a significant effect on 
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compositional analysis. The backscattered SEM imaging of the medieval glasses in 

Section 8.2 has shown that the majority of the crucible glass samples have 

inhomogeneities that are aligned with the glass surface and crucible wall. This is 

perhaps not surprising due to the refractory dissolution occurring at the crucible/glass 

interface (see Section 8.4.4). In contrast, the waste glass samples contain randomly 

orientated inhomogeneities and the glass drops from Hils exhibit inhomogeneity in 

both parallel and random orientations to the glass surface. The only sample of fully 

formed glass containing inhomogeneity visible under the SEM was G20 (see Section 

8.2.3). Although Plate 8: 25 shows that the inhomogeneities present are in parallel 

alignment, G20 was too thin to be mounted in cross section. The surface visible in 

Plate 8: 25 represents a plane section of the glass. Therefore, in this sample, the 

inhomogeneities are not aligned in parallel to the glass surface. However, the lack of 

inhomogeneous window or vessel glass fragments in the samples analysed here, 

means that it is difficult to assess whether this is a general or unusual occurrence. 

The results from this Chapter have confirmed that when using analytical 

techniques that require polished sections of samples (such as EPMA, see Section 1.5) 

care must be exercised when examining glass that is prone to the parallel alignment 

of inhomogeneities (such as crucible glass). However, it was seen in Section 1.5 that 

as well as the orientation, the size of inhomogeneities will also significantly affect 

compositional analysis. This will be discussed in Section 8.4.6. 

8.4.6 Size of Inhomogeneities 

The results of the backscattered SEM imaging of the medieval glasses in 

Section 8.2 show that the size of the inhomogeneities can vary from approximately a 

millimetre in width (for example K20, Plate 8: 13), to 10s of microns (for example 
G9, Plate 8: 24). However, the majority of samples contain a mixture of a wide range 

of sizes (for example G14, Plate 8: 24). It was seen in Section 1.5 that the size of 
inhomogeneities must be considered to ensure that the area analysed is representative 

of the whole glass. It was also noted that different analytical techniques require 
different sample sizes and analysis areas, and that some of the most common 

techniques used to study archaeological glasses require only millimetre sized 

samples. 
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The EPMA line scans in Section 8.3 have shown that glass composition can 

alter significantly over a small sample area (for example less than 1 mm2, see Section 

8.3.1). Therefore, in cases where large inhomogeneities are present, a small sample 

would probably not to be representative of the whole glass (see Section 1.5). It is 

possible to see this effect by examining the backscattered SEM images obtained in 

Section 8.2. For example, the backscattered SEM image of G14, a visually 

homogeneous glass drop containing high levels of inhomogeneity is illustrated in 

Plate 8: 33. Each blue box represents a different possible position for a Imme 

sampling area. The lighter and darker areas on the image represent areas of different 

mean atomic number (see Section 3.2.5). The large range of EPMA results obtained 

from this glass also confirms this (see Section 8.3.1). 

Plate 8: 33 Backscattered SEM image of an inhomogeneous glass drop (G14, 
Table VIII: 6) showing how different sampling positions and sizes 
will contain glass with different compositions 

0F 
It can be seen that Box 1 is predominantly made up of much darker material, 

Box 2tlighter glass and Box 3 is a mixture of the two. Therefore, although they are 

all from the same glass sample, these three regions will have different compositions. 

Depending on the extent of the compositional differences these affects might be 
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cancelled out by using a larger sampling area. However, what is important to 

remember is that the area sampled may be significantly larger than the area actually 

analysed (in many cases only a few microns, see Section 1.5). Therefore a larger 

sampling area does not necessarily mean that the affects of inhomogeneity will be 

removed. 
What is also important to remember, is that these glasses are visually 

homogeneous and therefore inhomogeneities can only be seen using backscattered 

SEM imaging. Therefore when removing samples for analysis it may be difficult to 

determine whether the area removed is representative of the whole glass. The effects 

of this, with respect to different analytical techniques will be discussed in Section 

8.4.7. 

8.4.7 The Choice of Analytical Technique and the Effects of Inhomogeneity 

It was noted in Section 1.5 that the degree to which inhomogeneity influences 

compositional analysis will be influenced by the analytical technique used to obtain 

the data. It was seen that this was due to the differences in parameters including 

sample size, analysis area, and the resolution, sensitivity and precision of different 

analytical methods. It was suggested that analytical methods that use small sample 

sizes (a few mm2), and analysis areas (10's of microns) (such as EPMA, LA-ICP- 

MS, PIXE, SEM-EDS/WDS, and XRF) would be more prone to the effects of 
inhomogeneities than others. The results of this research have shown that, if 

millimetre sized fragments were removed for analysis from an inhomogeneous glass, 

the compositional results obtained could be subject to a significant bias due to 

inhomogeneity (see Section 8.4.6). It is possible that different areas from the same 

glass fragment could potentially be classified as different glasses. Therefore the way 
in which these types of analytical methods are used in the compositional study of 

archaeological glass should be carefully considered. Analytical techniques that use a 
larger glass sample (such as AAS, ICP-AES, ICP-MS, and NAA) may therefore be 

less influenced by inhomogeneity. However, it has been seen that in many of the 

glasses analysed in Chapter 8, the size of the inhomogeneities can be relatively large 

(a few mm or more). 
If the sample size is increased to reduce the effects of inhomogeneity, it is 

still important to consider the size of the area of glass actually analysed. Analytical 
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techniques such as EPMA use analysis areas in the range of 10's of microns across 
(see Section 1.5). However, as the results from this research have shown, if larger 

samples are prepared for analysis, and a number of repeat analyses are taken for each 

sample over the whole sample area, the chances of hitting inhomogeneous regions 

are increased. Therefore if inhomogeneities were present in the sample, it may be 

possible to observe this as elemental variation that is larger than expected due to 

experimental error. 

What is not known however, is how large the sample has to be to be 

representative of the glass. It has been seen in Section 8.4.6 that the size and position 

of inhomogeneities can vary from sample to sample. Therefore the sample size 

required will be different for each glass (see Sections 8.2 and 8.3). It was noted that 

in the archaeological glass analysed the size of inhomogeneities varied from 10's of 

microns to a few millimetres in size, and that a range of sizes of inhomogeneities 

could also exist within one sample. Further work is therefore required to determine 

how wide spread inhomogeneities are in archaeological glass samples, how they can 

be easily identified (see Section 8.4.8), and whether multi-sampling of material will 

help reduce the effects of inhomogeneity. 

Thus, the orientation of inhomogeneities is particularly important in 

techniques that look at one surface of the glass, such as analytical SEM and EPMA 

(see Section 1.5). It has been seen that these techniques are being used increasingly 

to obtain compositional data from archaeological glasses. A careful sampling 

strategy is therefore required for fragments of crucible and waste glass, and further 

work is required to determine whether inhomogeneity forms in a specific orientation 
in samples of fully formed glass. 

8.4.8 The Determination of Inhomogeneity 

It can be seen that the backscattered SEM images in Sections 8.2-8.2.3 

provide a quick and easy technique to allow the position and occurrence of 
inhomogeneities to be ascertained. The difference in colour contrast on the image is 

also a good indicator of the extent of compositional variation within the sample. 
This is illustrated well in the samples of highly inhomogeneous Hils glass. However, 

the EPMA results in Section 8.3 have shown that it is not always possible to directly 

relate the extent of inhomogeneity seen on an SEM image to the extent of 
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compositional variation in the glass. This appears to be a more significant problem 
in samples that appear to be homogeneous or contain lower levels of inhomogeneity. 

For example, the majority of the Hils glasses were observed to be very 
inhomogeneous using backscattered SEM (see Section 8.2.3). The EPMA analyses 

of these samples also showed that they contained the largest elemental ranges, as 

expected (see Section 8.3.1). In contrast, the Little Birches glasses were seen to 

contain low levels of inhomogeneity or to be homogeneous using backscattered 

SEM. However, the elemental variation within each of these samples obtained from 

EPMA analysis did not appear to be related to the extent of homogeneity seen under 

the SEM (see Section 8.4.2). This is important, as a sample with a `homogeneous' 

backscattered SEM image might still contain significant compositional variations. It 

should be noted that these differences might be caused by a bias in the EPMA results 

due to the number and position of the analysis points (see Section 8.4.6). It can be 

seen from Section 8.3.1 that the position of the analysis is paramount, and moving a 

distance of less than 50µm away from this may cause a significant change in the 

composition obtained. 

The EPMA results have also shown that many different glass compositions 

can exist within a small area in the same glass sample (see Section 8.3.1). This may 
be one reason why although elemental relationships do occur in a number of 
inhomogeneous glass samples, they appear to vary depending on the sample and the 

position of analysis. Section 8.4.4 noted that the presence of inhomogeneity in 

crucible and waste glasses is common due to the inclusion of refractory corrosion 

products. It has been seen that the elements that will be most affected at the 

glass/refractory interface are calcium, aluminium, magnesium and iron. However, 

the EPMA results show that not all of the samples contain inhomogeneity, and that in 

some cases the difference in composition is similar to that seen in a homogeneous 

glass. 
The results from the experimental glasses made in Chapters 4-6 suggested 

that glasses made from alkalis with a higher total alkali and lower calcium content 
(such as bracken) would be more homogeneous. Glasses made from alkali sources 

with higher calcium and lower total alkali contents (such as beech and oak) would be 

more likely to contain inhomogeneities. It was seen that the extent of inhomogeneity 

observed in the Hils (beech), The Weald (oak), and Little Birches (bracken) glasses 
is comparable with the expected results predicted from the alkali source. However, 
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the EPMA results show that there does not appear to be a significant difference in the 

total alkali and calcium levels in the majority of the archaeological glasses analysed 
in this Chapter. In addition, it is very difficult to relate glass composition to the raw 

materials used. However, this similarity in composition may suggest that other 
factors, such as furnace temperatures, are more significant in the formation of a 

homogeneous glass than the alkali source. 

The increased homogeneity seen in the samples of later medieval glass 

analysed in this Chapter may also be due to a significant increase in furnace 

temperatures. However, the EPMA results, particularly of the Hils glasses, do 

suggest that calcium may be more significantly affected by inhomogeneity than other 

elements. It was observed in Section 1.3 that specific elements, in particular calcium 

and potassium, are used to group medieval glasses in order to answer a variety of 

archaeological questions. It can be seen that in the Hils glasses, significantly 
different calcium values would be obtained depending on the area analysed (see 

Section 8.3.1). The wide range and distribution of different calcium concentrations 

mean that if this element was used to discriminate between different sets of glasses it 

may be possible that samples from the same glass would fall into different groups. 

The significance of these elemental variations therefore depends on the 

compositional tolerances used to differentiate between each group of glasses. 
The results of the EPMA analysis in this Chapter has also confirmed that 

colourants such as cobalt and copper with high atomic numbers are not responsible 

for the inhomogeneities seen in the backscattered SEM imaging. The results have 

shown that in general it appears that the extent to which different elements are 

influenced by inhomogeneity more than others depends on the position and size of 

the sample, and the area of the sample analysed. The significance of this to 

compositional studies of archaeological glasses will be discussed further in Chapter 

9. 

8.5 Overall Summary and Conclusions 

The results of the medieval glasses analysed in this chapter can be 

summarised in the following points: 
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"A number of medieval glasses contain inhomogeneity that is only visible 

using backscattered SEM imaging. 

" The presence of inhomogeneity in medieval glasses has a significant 

effect on the elemental composition of the glass. 

" Specific glass artefact types such as crucible and waste glass are more 
likely to exhibit inhomogeneity than fully formed glass. Therefore 

specific sampling techniques are required for different types of glass 

artefact. 

9 The compositional variations observed using EPMA analysis are element 

and sample specific. 

The size of inhomogeneity is varied and could potentially be greater than 

the sample size required for analysis. Therefore sample size may 

significantly alter the composition obtained. 

9 The position and size of the analysis points will significantly affect the 

composition obtained. 

" Inhomogeneous glasses may contain many different glass compositions 

within a small area. 

" The use of analytical techniques that analyse a minute sample of material, 

such as XRF, SEM-EDS/WDS, and EPMA may be more prone to the 

effects of inhomogeneity. 

" The identification of the scale and location of inhomogeneities in a glass 

sample is difficult. 

" The use of larger sample sizes, and multi-sampling may reduce the effects 

of inhomogeneity, and further work is required to determine this. 

9 Colourants such as copper and cobalt do not appear to be responsible for 

the presence of inhomogeneity. 

" Increased furnace temperature appears to improve homogeneity. 
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The Effect of Inhomogeneity on Compositional Studies of 
Archaeological Glass 

9.1 Introduction 

The significance of inhomogeneity on the compositional analysis of 

archaeological glass was discussed in Section 1.3. It was established that if 

inhomogeneities were present in the samples analysed, they may have a significant 
influence on any compositional groupings formed from the material, and therefore 

any archaeological inferences made from these groups. The results from Chapter 8 

confirmed that inhomogeneity is present in a large number of the medieval glasses 

analysed in this research. It was seen that there was a significant variation in the 

elemental differences of these inhomogeneities (see Section 8.3). This Chapter 

discusses the influence of inhomogeneity on the grouping of data from Chapter 8 

(see Section 9.2). These results will then be considered with respect to the 

compositional study of medieval glass using a number of case studies (see Section 

9.3). The broader implications of inhomogeneity with respect to the use of 

compositional analysis in studies of medieval glass will also be discussed. 

9.2 The Effect of Inhomogeneity on the Grouping of Data from Chapter 8 

The aim of this Section is to demonstrate the potential influence of 
inhomogeneity if glass samples are formed into groups based exclusively on 

similarities in composition. A variety of elements are used as grouping tools in 

compositional studies of medieval glasses (see Section 1.4). However, the use of 

alkali ratios (in particular CaO/(CaO+K20)) is common, as these are the main 

elements found in plant ash alkalis (see Section 2.2.2.1). Examples of medieval glass 

studies that use such ratios include Barrera and Velde (1989), Marquis et al. (2000), 

Velde and Barrera (1986), and Mortimer in Welch (1997). The potassium and 

calcium ratios are usually plotted against the sodium concentration of the glass, and 

the resulting graph used to group the glass samples analysed. The relationship 

between magnesium and sodium is also frequently used in conjunction with initial 
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groupings made from the CaO and K20 ratios. The results from Chapter 8 suggest 
that magnesium is another element significantly influenced by inhomogeneity. 

Therefore, the results of the archaeological glasses from Chapter 8 will be considered 

with respect to calcium, potassium, sodium, and magnesium. 
The Hils glasses will be examined first, as they contain the samples with the 

greatest inhomogeneity and therefore exhibit the largest variations in elemental 

concentrations (see Section 8.3.1). The ratios of CaO/(CaO+K20) for the samples 

from the Hils glass production sites analysed in Section 8.3.1 are recorded in Table 

IX: 1 and Table IX: 2. Figure 9: 1 and Figure 9: 2 illustrate the spread of compositional 

data obtained for each of the Hils glass samples when the ratios of CaO/(CaO+K20) 

are plotted against their respective sodium concentrations for each analysis point. 

The large quantity of data from the Hils glasses means that it is difficult to view all 

the data on one graph and therefore the samples are split between Figure 9: 1 and 

Figure 9: 2. 

It can be seen from Figure 9: 1 and Figure 9: 2, that the two homogeneous 

glass samples from Hils (G6 and G19) have tightly grouped data points. However, 

the majority of the Hils glasses exhibit a much wider spread of data, as expected (see 

Section 8.3.1). Figure 9: 2 illustrates most clearly that in a number of the 

inhomogeneous Hils glasses it is possible to place the data into more than one group. 

For example, the data for the inhomogeneous glass G13 is clustered into two main 

areas, highlighted by the red and blue circles in Figure 9: 2. If the data in the blue 

circle is considered, it would appear that on Figure 9: 2, G13 has a different 

composition to the other glasses illustrated. However, if the data in the red circle is 

considered instead, G13 appears to have a similar composition to G14, G16 and G23. 

The situation is made more complex as it can also be seen that a number of the data 

points for G16 group in a separate cluster outside the blue circle, and that one point 

for G23 is in the middle of a cluster of G17 analyses. It is therefore apparent from 

these results that it is possible to place a large number of the inhomogeneous Hils 

glass samples into many different groups based on their calcium, potassium and 

sodium contents (see Figure 9: 1 and Figure 9: 2). 

It can also be seen that there are similar difficulties in identifying groups 

when the magnesium values for the Hils glasses are plotted against their comparative 

sodium concentrations. The magnesium and sodium values for the Hils glasses are 

recorded in Table VIII: 7-Table VIII: 28, and illustrated in Figure 9: 3-Figure 9: 4. 
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Figure 9: 3-Figure 9: 4 illustrate that a number of the inhomogeneous Hils glasses 

have magnesium values that spread over approximately lWt% MgO. The data from 

the homogeneous samples (G6 and G19) is again in comparatively tight clusters. 

Therefore, it would also be possible to classify a number of the inhomogeneous Hils 

glass samples into many different groupings based on their magnesium 

concentrations. 

The ratios of CaO/(CaO+K20) for the Little Birches (North and South Site) 

glass samples analysed in Section 8.3.2 are recorded in Table IX: 3. In contrast to the 

very inhomogeneous Hils glass samples, the results from Chapter 8 determined that 

the Little Birches glass contained the lowest levels of inhomogeneity of all the 

archaeological glass analysed. Figure 9: 5 illustrates the spread of compositional data 

obtained for each of the Little Birches glass samples when the ratios of 

CaO/(CaO+K20) are plotted against their respective sodium concentrations for each 

analysis point. If the graphs of the Hils (Figure 9: 1 and Figure 9: 2) and Little 

Birches (Figure 9: 5) data are compared, it can be seen that the spread of the data 

points for the majority of the Little Birches glass samples is significantly smaller 

than those observed in the inhomogeneous Hils glasses. However, a few of the 

samples (such as LBS4 and 5) have one data point that is an outlier from the main 

group of analyses, and this is probably therefore not indicative of inhomogeneity. 

Figure 9: 6 illustrates that the majority of the Little Birches glass samples also 

contain a smaller spread of magnesium values (Table VIII: 29-Table VIII: 40), as was 

expected due to their greater homogeneity. However, LBS2 and 3 also exhibit 

similar magnesium ranges compared to the inhomogeneous Hils samples. The larger 

spread of data in LBS3 and the other homogeneous Little Birches glasses compared 

to the inhomogeneous samples from the same sites is also apparent from Figure 9: 5 

and Figure 9: 6. This result was unexpected and the possible reasons for this anomaly 

have been discussed in Section 8.4.2. 

The ratios of CaO/(CaO+K20) for the Wealden glass samples from 

Blunden's Wood, Knightons and Sidney Wood analysed in Section 8.3.3, are 

recorded in Table IX: 4-Table IX: 7. Figure 9: 7-Figure 9: 9 illustrate the relationship 

between CaO/(CaO+K20) and sodium for these samples. It was noted in Section 

8.3.3 that the degree of inhomogeneity observed in many of the Wealden samples is 

less than that observed in the Hils glasses, but greater than that seen in the Little 

Birches material. The results illustrated in Figure 9: 7-Figure 9: 9 confirm this 
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observation. It can also be seen that the analysis points for the homogeneous fully 

formed glass samples (BW1, K1-11, and SWl-3) are in tighter clusters than the 

majority of the inhomogeneous cullet, crucible and waste samples. 

Figure 9: 10-Figure 9: 12 illustrate the distribution of magnesium 

concentrations for the Wealden glass samples plotted against their comparative 

sodium values (Table VIII: 41-Table VIII: 81). The results confirm that the majority 

of the Blunden's Wood and a number of the Knightons and Sidney Wood samples 

also exhibit a large variation in elemental concentrations for magnesium. 

It was noted in Section 8.3.3 that there were a smaller number of analysis 

points available for the Wealden glass samples. This means that it is more difficult 

to confirm the differences in composition observed in the samples in comparison to 

the data from Hils and Little Birches. However, it can be seen that on the basis of 

the data recorded from a number of medieval glasses analysed in this research, it is 

possible to place the same sample into more than one compositional group depending 

on which analysis point is chosen (see Figure 9: 1-Figure 9: 12). The results from 

Chapter 8 have also confirmed that this is observed for a number of elements. 

It is important to note that in this case the samples are from known 

archaeological contexts (see Chapter 7), and the presence or absence of 

inhomogeneity has also been identified (see Section 8.2). However, what has to be 

considered is how the groupings would be influenced if these factors were not 

known. Therefore what will be considered in the next section is the way in which 

compositional data is applied in studies of medieval glass and how the presence of 

inhomogeneity will affect this. 

322 



ER 9 THE EFFECT OF INHOMOGENEITY ON COMPOSITIONAL STUDIES OF ARCFIAHOLOGICAL GLASS 

1.000 

0.900 

0.800 

0.700 

0.600 -- ------ 

Ye 

+. Qe 
0.500 ----s 

öj ýo 

0.400 --------- -f 

ex 

ao 

°ý 

0.300 -------------------------- ------------- -------------------- ---- --- ----------------------- - -- 
0 

0.200 ----- ------ 

1L 

0.100 

1---------------------- 

------------------ - 

0.000 +--- ,- -- --- - -, 
0.000 0.500 1.000 1.500 2.000 2.500 3.000 3.500 4.000 

1AR% Na2O 

x G1 G5 " G6 A G7 Q G8 G9 X G10 0 G11 a G12 
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9.3 Compositional Studies of Medieval Glass 

Compositional studies of medieval glasses that compare large data sets, are 

less common in comparison to other types of glass composition (for example natron 

based glasses) (see Section 1.4). A number of examples were discussed in Section 

1.4, and in the majority of these cases, compositional analysis was being used to 

complement and confirm groupings formed from secure archaeological data, rather 

than form groups based solely on differences in composition. In addition, the 

chemical groupings formed are frequently based on a combination of distinct 

differences in the concentrations of a number of different elements. The combination 

of these two factors makes the attribution of glasses to specific compositional 

groupings based on inhomogeneity less problematic than those where the distribution 

is not discrete and differences between groups are small. 

To determine how the presence of inhomogeneity may affect this type of 

study, examples of analyses by Barrera and Velde (1989) and Mortimer (in Welch 

(1997)) will be examined in detail in Sections 9.3.1 and 9.3.2 respectively. These 

groups were chosen as they contain large complex data sets with glasses from a 

number of different locations (see Section 1.4.2). 

9.3.1 Analyses of French Glasses from 10th-18th Century by Barrera and Velde 

(1989) 

Barrera and Velde (1989) studied the typology and composition (using 

EPMA analysis, see Section 8.4.7) of over 500 fragments of French blown glass 

ranging from 10`h-18`h centuries AD. Their samples were from securely dated 

contexts and known geographical locations (see Section 1.4). Figure 9: 13 illustrates 

the graph of CaO/(CaO+K20) against Wt. % Na2O for the `calco-potassic' group of 

glasses defined by Barrera and Velde (1989). Their `calco-potassic' group contained 

glasses with greater than 22 Wt. % CaO+K20, a CaO/(CaO+K20) ratio of 0.4-0.6, 

and a sodium content of greater than lWt. % and less than 4Wt. %. 

Barrera and Velde (1989) noted that within the `calco-potassic' group, two 

separate compositional groupings could be seen which corresponded to the majority 

of glasses they analysed from eastern France (Figure 9: 14). The compositional 

difference between the two groups was also related to their date. Group 'A' 

corresponding to samples dating from the end of 15`' to the end of 16`s century, and 
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group `B' to earlier dated glass (13`h to the first half of the 15`h century) (Figure 

9: 14). It can be seen from Figure 9: 14 that in these groupings, the smallest cluster, 

Group `A', ranges over an area of approximately 0. ICaO/(CaO+K2O) and 0.5Wt. % 

Na2O. The difference in CaO/(CaO+K2O) ratios between the group `A' and `B' is 

less than 0.1, and the sodium the levels overlap slightly for the two groups (sec 

Figure 9: 14). 
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Figure 9: 13 Graph of CaO/(CaO+K20) for the `calco-potassic' group of 10"'- 
18"' century French glass analysed by Barrera and Velde (1989: 
Figure 10) 
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Figure 9: 14 Graph of CaO/(CaO+K20) for glass from eastern France in the 
`calco-potassic' group, after Barrera and Velde (1989: Figure 11) 
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If we consider the results of the archaeological glass analysed in this research 

(see Section 8.3). It was seen that a number of the inhomogeneous Hils glasses 

exhibited a spread of CaO/(CaO+K20) ratios of greater than 0.1 within the same 

sample (see Section 9.2). For example, the maximum and minimum 

CaO/(CaO+K20) values for G13 are 0.442 and 0.309 respectively (Figure 9: 2, Table 

IX: 2). A number of Hils samples also exhibit large variations in sodium contents 

(see Section 8.3.1). Therefore, if the Hils glasses analysed in this research were 

classified using a similar spread of CaO/(CaO+K20) ratios and sodium 

concentrations as those in Barrera and Velde (1989) illustrated in Figure 9: 13 and 

Figure 9: 14, it is possible that glass samples would fall into more than one grouping. 

A number of the inhomogeneous Wealden samples analysed in Section 8.3.3 would 

also be subject to the same problem (Figure 9: 7-Figure 9: 9). However, if the Little 

Birches glasses in Figure 9: 5 are considered it can be seen that the tighter cluster of 

CaO/(CaO+K20) ratios and sodium concentrations for each glass mean that it is 

unlikely that this would occur. This outcome is expected due to the overall more 

homogeneous nature of the Little Birches glass compared to the Hils glass (see 

Section 8.4). 

Barrera and Velde (1989) (see above, Figure 9: 13 and Figure 9: 14) note that 

the composition of samples from a glasshouse in Argonne can be distinguished from 

the other 'calco-potassic' French material they analysed from the 13th to the first half 

of 15th century. This is done on the basis of differences in the magnesium and 

sodium concentrations of the samples, and is illustrated in Figure 9: 15. It can be 

seen from Figure 9: 15 that the Argonne group features glass compositions containing 

approximately 3-4Wt. % MgO and 0.5Wt. % Na2O. Apart from the single glass 

sample, which falls into the Argonne group, the other samples analysed by Barrera 

and Velde (1989: Figure 12a) can be separated as they contain significantly more 

magnesium and/or sodium. 

If we again consider the elemental ranges observed in the glasses analysed in 

this research (see Figure 9: 3-Figure 9: 6), it can be seen that these are less than the 

difference between the Argonne group and the other glass samples analysed by 

Barrera and Velde (1989) illustrated in Figure 9: 15. However, Barrera and Velde 

(1989) also found that the samples of later (end of 15t' to end of 16th centuries) 

Argonne glass they analysed formed a specific group within other samples of French 

glass from the same period (Figure 9: 16). It can be seen from this graph that the 

337 



CHAPTER 9 THE EFFECT OF INHOMOGENEITY ON COMPOSITIONAL STUDIES OF ARCHAEOLOGICAL GLASS 

spread of glass analyses is much wider and that there are samples that fall in close 

proximity to the Argonne group. Therefore in this case, the elemental variations in 

the magnesium values, observed in the Hils, Wealden, and Little Birches samples 

(Figure 9: 3-Figure 9: 6), might place these glasses either within or outside the 

Argonne group. 
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Figure 9: 15 Graph of Wt. % MgO against Wt. % Na20 for French medieval 
glasses from 13`x' to mid 15`x' century in the `calco-potassic' group, 
after (Barrera and Velde 1989: Figure 12a) 
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Figure 9: 16 Graph of Wt. % MgO against Wt. % Na20 for French medieval 
glasses in the `calco-potassic' group dated between the end of 13"' to 
the end of 15`x' century (Barrera and Velde 1989: Figure 12b) 
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9.3.2 Analyses of Glass from English Medieval Glassmaking Sites by 

Mortimer (in Welch (1997)) 

Mortimer (in Welch (1997: Figure 18)) analysed glass samples from Little 

Birches and other comparative English glassmaking sites, including Knightons (see 

Section 1.4). She used a plot of CaO/(CaO+K20) against Wt. % Na20 to attempt to 

highlight any compositional relationships between glass samples from known 

production sites. Figure 9: 17 illustrates some of her results. The bulk of the Little 

Birches glasses analysed by Mortimer (in Welch (1997)) fall into a broad main group 

ranging from approximately 0.45-0.60 CaO/(CaO+K20) and 1.5-3.5Wt. % Na2O. It 

can be seen that the analyses of the Little Birches material are very similar to those 

obtained from the same sites in this research (see Figure 9: 5). 

Mortimer (in Welch (1997: 38)) also records a number of other Little Birches 

glasses that do not fall into the main classification. For example, the glass samples 

numbered 9.3,27,28,29 and 31 on Figure 9: 17 have a similar composition to the 

bulk of the Little Birches glass samples but have increased lime and decreased potash 

concentrations (Mortimer (in Welch 1997: 38)). Three of these samples are also 

typologically distinct from the rest of the Little Birches glass and have higher 

aluminium and lower magnesium contents than the bulk of the Little Birches glass 

analysed. These elemental differences could be due to the presence of 

inhomogeneity but the difference in concentration is probably rather larger than 

would be expected from the results of this research (see Section 9.2). The samples 

are also fully formed flat glass (with the exception of 31, a moil) and would therefore 

possibly be less likely to contain inhomogeneity (see Section 8.4.4). Mortimer (in 

Welch (1997: 38)) suggests these samples may be foreign cullet brought in from 

another glass making site (see Section 2.2.5). She notes that the glass compositions 

are also comparable to other English glassmaking sites in operation during the same 

period, such as Bagots Park (marked as BP on Figure 9: 17). 

The majority of the CaO/(CaO+K20) and Na20 values of the Knightons glass 

samples analysed in this research (see Figure 9: 8) do fall in the same region as the 

Knightons sample analysed by Mortimer (in Welch (1997)) on Figure 9: 17. 

However, it can be seen from Figure 9: 8 that a number of the data points from the 

Knightons samples fall into the main group of Little Birches analyses marked on 

Figure 9: 17. Therefore, on the basis of differences in potassium, calcium and sodium 

concentrations, it would be difficult to determine distinct groupings for glass from 
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Knightons and Little Birches. It is also interesting to note the broad spread of 

sodium values within Mortimer's (in Welch (1997: 38)) analyses, as this was also 

noted in the Little Birches samples analysed in this research (see Section 8.3.2 and 

Figure 9: 5). 
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Figure 9: 17 Graph of CaO/(CaO+K20) for glass from Little Birches after 
Mortimer (in (Welch 1997: Figure 18)) (BP=Bagots Park glass, the 
numbered points refer to possible foreign cullet excavated from 
Little Birches) 
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9.4 Summary and Conclusions 

The results of this Chapter have determined that the presence of 
inhomogeneity can place a significant bias on the analytical data obtained from a 

glass sample. A number of these elemental differences are significantly larger than 

those sometimes used to distinguish between published groups of medieval glasses. 
On the basis of composition alone, it is possible to place an inhomogeneous glass 

sample into many different compositional groups (see Section 9.2). These results 

have therefore highlighted the importance of using compositional data obtained from 

samples with a secure archaeological context. It is also important to note that the 

results from Chapter 8 determined that a number of other elements exhibited 

considerable inhomogeneity. This is in addition to the elemental differences seen in 

the calcium, sodium, potassium, and magnesium values discussed in Sections 9.2 and 

9.3. The results of this Chapter can be summarised in the following points: 

" Elements that are commonly used as compositional grouping tools for 

medieval glasses (such as calcium, potassium, sodium and magnesium) 

are among those significantly influenced by inhomogeneity. 

" The presence of inhomogeneity in the medieval glasses analysed in this 

research can have a significant effect on compositional groupings made 

from the data. 

" The effect of inhomogeneity on compositional studies of archaeological 

glasses will depend on the elements and elemental variations used to 

group the samples. 

" It is important that compositional groupings of glasses are based on 

samples from secure archaeological contexts or known typological groups 

where possible. 

It is important to note that this research has focused on potash rich glasses as 

these were thought to be the most likely to exhibit inhomogeneity (see Section 1.6). 

However, there are many analytical studies that look at different compositional types 

of glass, such as mineral alkali or lead based glasses. It is possible that other glass 

compositions are also influenced by the presence of inhomogeneity. In particular it 

has been seen that the compositional differences used to distinguish between 
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groupings of sodium based glasses are significantly smaller than those used in potash 

based glasses (see Section 1.4). Therefore the presence or absence of inhomogeneity 

in other types of archaeological glass compositions is a subject that needs to be 

addressed. 
The conclusions and further work suggested by the results of this research 

will be discussed in Chapter 10. 
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CHAPTER 10 

Conclusions and Further Work 

10.1 Conclusions 

In conclusion, it can be seen that inhomogeneity is a complex issue that has 

significant implications for the compositional study of archaeological glass. It was 

seen that each stage of medieval glass production contained a number of variables 

that would influence homogeneity (see Chapter 2). The laboratory replication of 

medieval potash based glasses (Chapters 4-6) determined that a number of these 

variables were dominant factors in the formation of a homogeneous glass. This was 

also confirmed by the levels of inhomogeneity seen in the comparative medieval 

glass analysed in this research (see Chapters 7 and 8). The conclusions drawn with 

respect to inhomogeneity and the medieval glass production process are summarised 

in Section 10.1.1. 

It has been seen that the consideration of the presence of inhomogeneity in 

medieval glass is of vital importance to compositional studies of this material (see 

Chapter 9). The conclusions of this research with respect to the compositional study 

of medieval glass are summarised in Section 10.1.2. Finally, further work suggested 
by the results of this research will be discussed in Section 10.2. 

10.1.1 Inhomogeneity and Medieval Glass Production 

The results from the experimental beech and bracken ash glasses produced in 

Chapters 4-6, have shown that the production of a homogeneous glass is influenced 

by a complex set of variables. It was seen that altering parameters in batch 

preparation, fritting and melting does have a significant effect on the compositional 
homogeneity of the glass produced. However, it was concluded that the dominating 

factors in the formation of a homogeneous glass, are the use of ash sources with an 
increased total alkali content, and increased melting temperatures (see Section 6.2). 

The significant influence of these factors on the homogeneity of medieval glasses 

were confirmed from the analyses of comparative archaeological material from the 
Weald and Little Birches, in England, and Hils in Germany (see Chapter 7). 
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The conclusions relating specifically to each stage of glass production, based 

on the results of the experimental glasses in Chapters 4-6, are summarised in the 
following points. 

Raw Materials 

" Smaller sand grain sizes improve glass formation and therefore 
homogeneity. However, this has to be balanced against refining time and 
therefore the quality of the glass desired (see Section 4.6.5.2). 

" Mixing the batch will facilitate the production of a more homogeneous 

glass (see Section 4.6.5.1). 

" Batches containing ashes with increased total alkali (sodium + potassium) 
levels facilitate homogeneity (see Section 6.2). 

Fritting 

" Lower fritting temperatures and shorter fritting times facilitate 

homogeneity (see Section 5.5.6.1). 

" Mixing the frit prior to melting increases homogeneity (see Section 

5.5.6.2). 

" Stirring the frit facilitates faster reactions between the raw materials, and 

facilitates homogeneity (see Section 5.5.6.3). 

" Smaller surface area to volume ratio fritting crucible dimensions will 
increase homogeneity (see Section 5.5.6.4). 

" The inclusion of a fritting stage does not always facilitate the production 

of a homogeneous glass (see Section 6.1.6.4). 

Melting 

" Increasing melting temperatures will increase homogeneity and will 

generally cancel out the effects of factors which appear to cause 
inhomogeneities, such as increased fritting temperatures or times (see 

Section 5.5.6.5). 

" The use of smaller surface area to volume ratio crucibles increases 

homogeneity (see Section 6.1.6.1). 
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" Variations in melting crucible dimensions (using CON9, CON7and CYL7 

crucibles (see Appendix B)) does not affect homogeneity (see Section 
6.1.6.1). 

9 An increase in melt size within the experimental limits (9-36g total batch 

weight) does not affect homogeneity (see Section 6.1.6.1). 

" Altering the melting crucible fabric (using mullite and alumina) does not 

affect homogeneity in beech ash glasses (see Section 6.1.6.2). 

" Altering the furnace atmosphere does not give a conclusive change in 

homogeneity (see Section 6.1.6.3). 

The results of the experimental glasses produced in Chapters 4-6 also 
illustrates that different ashes behave in different ways. This suggests that each one 
(or mixture of several see Section 2.2.2) would require a unique set of fritting and 

melting parameters. The changes in variables, such as colour, vitrification and batch 

volume, observed in the production of the experimental glasses, would have all been 

important indicators to the medieval glassmaker. Without the ability to accurately 

measure temperatures or control raw materials these factors would have provided an 
important guide to the reactions occurring. 

10.1.2 Inhomogeneity and Compositional Analyses of Medieval Glass 

The results of this research have shown that inhomogeneity is present in a 

number of medieval glass samples and that this will have a significant influence on 

the way in which it is analysed and the compositional data used. The conclusions 

made from the analyses of the archaeological glass in this research are summarised 
below: 

"A number of medieval glasses contain inhomogeneity that is only visible 

using backscattered SEM imaging, including a number of glasses that 

appear visually homogeneous (see Section 8.2). 

" The presence of inhomogeneity in medieval glasses can have a significant 

effect on the elemental composition of the glass depending on the size of 
the inhomogeneity and the analytical method used (see Section 8.3). 
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" Crucible and waste glass samples are more likely to contain 
inhomogeneity than fully formed glass samples (see Section 8.4.4). 

" The presence of inhomogeneities is more likely at a glass/crucible or 

glass/inclusion interface. Therefore, specific sampling and analytical 
techniques may be required for different types of glass artefact (see 

Sections 8.4.4 and 8.4.5). 

" The size of inhomogeneity is varied and could be potentially greater than 

the sample size required for analysis. Therefore sample size may 

significantly alter the composition obtained (see Section 8.4.6). 

" The use of analytical techniques that analyse a minute sample of material, 

such as EPMA, LA-ICP-MS, PIXE, SEM-EDS/WDS, and XRF may be 

more prone to the effects of inhomogeneity (see Section 8.4.7). 

" The presence of inhomogeneity in the medieval glasses analysed in this 

research had a significant effect on compositional groupings made from 

the data (see Section 9.2). 

" Elements that are commonly used as compositional grouping tools for 

medieval glasses (such as calcium, potassium, sodium and magnesium) 

are among those significantly influenced by inhomogeneity. Therefore, 

effect of inhomogeneity on compositional studies of archaeological 

glasses will depend on the elements and elemental variations used to 

group the samples (see Section 9.3). 

The results of this research have shown that the influence of inhomogeneity 

on the compositional analysis of medieval glasses will depend on the nature of the 

material analysed, the method of analysis, and the type of analytical data required 
(see Section 8.4). In conclusion, this research has highlighted the importance of 

using compositional data from material only with secure archaeological or 

typological contexts (see Chapter 9). 

10.2 Further Work 

The experimental beech and bracken glasses produced in this research (see 

Chapters 4-6) have shown that the formation of a homogeneous glass is a complex 

process. A number of experimental parameters were constrained by the time and 
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laboratory facilities available. It would be interesting to investigate the effects of 
these parameters further, in particular, the behaviour of different ash types and the 

effects of fritting, larger batch sizes, and larger ranges of temperatures and times. 
Compositional analysis of the experimental glasses produced might also help 

ascertain the processes occurring in the formation of a homogeneous glass. 
It was suggested in Section 8.4.7 that the effects of inhomogeneity might be 

reduced by the use of larger sample sizes for analysis and multi-sampling. However, 

further work is required in this area to ascertain the scale and location of 
inhomogeneities within glass samples. In addition to this, although this research has 

illustrated that a number of major and minor elements are significantly influenced by 

inhomogeneity, it is not known how trace elements are affected. 
This research has focused on medieval, potash based glasses. The 

consequences of inhomogeneity in other glass composition types therefore also need 

to be considered. A number of examples of compositional studies of non-potash 
based glasses were discussed in Section 1.4. It was seen that the elements used to 

group these glasses varied depending on the type of archaeological question being 

asked of the material. What is important to note is that in comparison to the 

elemental groupings used in medieval glasses (see Sections 1.4 and 9.3), those used 

to group other types of glasses tend to be appreciably smaller. If inhomogeneity 

were present in these samples, the effects on compositional groupings would be even 

more significant. Therefore it is vital that the presence of inhomogeneity is a 

consideration in compositional studies of archaeological glass. 
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