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Summary 
 

  Chronic kidney disease (CKD) in humans and cats is a major cause of death. 

In both species, tubulointerstitial fibrosis (TIF) is the major histopathological feature, 

which is the product of collagen accumulation and deposition in the extracellular 

matrix (ECM). Transglutaminase 2 (TG2) is a calcium-dependent enzyme, secreted 

by renal and inflammatory cells under stress. TG2 crosslinks collagen protein, 

promoting fibrosis deposition and progression of disease. 

 

In this research project, azotaemic and non-azotaemic feline kidney tissue were 

employed to determine the TG2 association with renal fibrosis and to test (in vitro) 

the feasibility of the TG2 inhibition. A rodent model of renal warm ischaemia was used 

to generate tubulointerstitial fibrosis without glomerulosclerosis and to determine the 

effect of transglutaminase inhibitors on the development of TIF. 

 

The transglutaminase pathway was associated with TIF in either the cat or the 

rat. In the feline kidney tissue, the inhibition of TG activity was achieved using both a 

TG2 inhibitory monoclonal antibody and a chemical TG inhibitor. In the rat model of 

RWI, reduction in TIF fibrosis deposition was achieved when using an intrarenal TG 

chemical inhibitor. Glomerular TG2 expression and fibrosis was not observed in either 

the cat or the rat. 

 

The TG pathway inhibition may represent a novel approach to reduce or stop 

the development of TIF in cats and humans. RWI rodent model may be an 

interventional model to study TIF in the cat. The understanding of the glomerular 

resistance to develop fibrosis in the cat with CKD and the rat following RWI may be 

of relevance in the generation of treatments to prevent or delay glomerulosclerosis in 

the man. The naturally occurring model of feline CKD may be an important research 

approach to study CKD in the man and to generate evidence based veterinary 

medicine. 
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1.1. Chronic Kidney Disease in the Cat 

 

         Chronic kidney disease (CKD) is a  major concern in small animal medicine 

(Bartlett et al., 2010). CKD is defined as a progressive deterioration in the structure 

and function of the kidney, resulting in electrolyte imbalance and the retention of 

metabolic waste products, with a sustained decrease in GFR at least for 3 months  

(Elliott et al., 2007). 

 

1.1.1 Epidemiology 

 

        CKD is commonly seen in aged cats  (Boyd et al., 2008; Lund et al., 1999) and 

it is the most common renal disease in elderly cats (Polzin, 2011). The incidence of 

CKD in cats is at least 3 times higher than in dogs (Polzin, 2011).  A retrospective 

study from Veterinary Teaching Hospitals in the USA reported a CKD incidence in 

cats over 12 years of age to be as high as 28% (Bartlett et al., 2010). Another study 

on age distribution of CKD reported that 63% of CKD feline patients were older than 

10 year of age (Bartges, 2012). A more recent retrospective study in USA showed an 

incidence of CKD, in randomly selected cats, to be as high as 50% (Marino et al., 

2013b). 

  

1.1.2 Staging 

  

The International Renal Interest Society was created in 1998 by a group of 14 

veterinarians focused on the study of companion animal nephrology in order to 

develop a staging system for dogs and cats with CKD (Elliott et al., 2007). In cats, 

there is a CKD staging system to facilitate severity, progression of diagnosis as well 

as treatment decision support. The core marker for CKD staging is based on plasma 

creatinine, a blood marker measured on two or more occasions in the stable animal. 

The stages are divided in 4 levels, see Figure 1.1. Each level estimates the degree 

of renal functionality and, therefore, potential clinical signs. 

 

Proteinuria and systemic systolic blood pressure serve as parameters to sub-

stage CKD. Proteinuria, assessed from the urinary protein/creatinine ratio (UPC), is 

divided in three stages; non-proteinuric (0 - 0.2 UPC), borderline proteinuric (0.2-0.4 

UPC) and proteinuric (0.4-0.6 UPC). Systemic systolic blood pressure (SSBP) is 
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divided in four levels; minimal risk (130-150 mm/Hg), low risk (150-160 mm/Hg), 

moderate risk (160-190 mm/Hg) and high risk (180-190 mm/Hg). Both sub-staging 

parameters vary independently of each other; therefore, the level of proteinuria or 

SSBP may occur at any stage of CKD (Elliott et al., 2007), see Figure 1.2. 

 

Stage 1 (plasma creatinine ˂ 140 μmol/L), the cat may have normal renal 

function but early renal disease. Non-azotaemic CKD cannot be ruled out.  

Stage 2 (plasma creatinine 140-250 μmol/L), the cat presents a low-mild 

azotaemia with metabolic imbalances that can lead to hyperparathyroidism and 

hypokalaemia (Elliott et al., 2007). This stage has been subdivided in 2a (140-170 

μmol/L) and 2b (170-250 μmol/L) with the purpose of isolating cases with substantial 

azotaemia and probably evident clinical signs as seen in patients with CKD 2, sub 

stage b (Syme et al., 2006).  

Stage 3 (plasma creatinine 250-440 μmol/L), the cat shows moderate 

azotaemia. Extrarenal clinical signs may be present- bone pain, uremic gastritis, 

normocitic normochromic non-regenerative anaemia and metabolic acidosis.  

Stage 4 (plasma creatinine >440 μmol/L), the cat presents severe azotaemia 

with evident systemic clinical signs and uraemic crisis. A non-reversible high degree 

of renal azotaemia indicates end stage renal failure (Elliott et al., 2007).  

 

1.1.3 Risk factors 

 

In a recent retrospective study, involving 1230 clinical cases in USA, it was 

determined that risk factors can include low body condition score, prior dental 

disease, cystitis, anaesthesia and neutering in male cats (Greene et al., 2014). 

 

1.1.3.1 Susceptibility factors 

  

Breed: In the late 80’s, the Maine Coon, Abyssinian, Siamese, Russian Blue 

and Burmese breeds were reported as breeds in high risk of developing CKD 

(DiBartola et al., 1987). The most common familial renal diseases in cats are 

polycystic kidney disease (autosomal dominant) in the Persian and amyloidosis 

(autosomal dominant with incomplete penetrance) in the Abyssinian, Siamese and 

Oriental cat (Polzin, 2011).   
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Figure 1.1: CKD staging system in the domestic cat 

 
Scoring system showing the degree of renal function according to plasma creatinine as a core marker.  
Renal status and potential clinical signs are shown in brackets for each stage. 
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Figure 1.2: IRIS sub-stage based on proteinuria and systemic systolic blood 

pressure 
 

Upper diagram shows the proteinuria sub-staging divided in three levels. Middle diagram shows the 

systemic systolic blood pressure sub-staging divided in four levels. The lower diagram shows that UPC, 

blood pressure and clinical signs may vary independently of each other but are closely interconnected 

when CKD is present. 
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Age: CKD is the most common renal disease in elderly cats (Bartges, 2012). 

An English study involving 80 feline cases showed the presence of CKD 2, 3 and 4 

in cats of 8.3 ± 1.5, 14.4 ± 0.7 and 12.5± 0.9 years of age (Elliott et al., 1998). 

However, the onset of familiar renal disease often presents earlier in young animals.  

 

Gender: In cats there is not substantial evidence with regard to gender 

predisposition to develop CKD. There is data showing that males are more prone to 

develop clinical signs of CKD when compared to female cats (White et al., 2006). 

However, this evidence does not rule out the possibility that females are just more 

capable to handling higher levels of uraemia, phosphataemia or electrolyte 

imbalances.  

 

Environmental factors: Cats living in places with a high risk of infectious 

disease such as mycoplasmosis, feline immunodeficiency virus, feline leukaemia 

virus and feline infectious peritonitis may develop glomerulonephritis (Vaden, 2011). 

Recently, it has been reported that indoors and outdoors hunting cats can become 

infected with leptospirosis showing clinical signs and histopathological evidence of 

CKD (Arbour et al., 2012). Another potential cause of CKD is urinary outflow 

obstruction (Nelson et al., 2009) which can be driven by behavioural and 

environmental factors (Cameron et al., 2004). 

 

1.1.3.2 Initiation factors 

  

Initiation factors are those related to kidney injury in acute, sub-acute, or 

sustained presentation. These factors affect the three basic components of kidney 

tissue; tubulointerstitial, glomerular and vascular space. Tubulointerstitial and 

glomerular disease have both been identified, although glomerular diseases are not 

so frequently seen in the domestic cat (Vaden, 2011; Yabuki et al., 2010). Glomerular 

membranous nephropathy is the most common glomerular disease in the domestic 

cat (Vaden, 2011). Tubulointerstitial compartment damage is the most relevant 

alteration after acute kidney injury (AKI) in cats (Elliott et al., 2007). AKI results in a 

wave of cellular damage with a potentially reversible loss of renal function. AKI has a 

mortality rate in cats and dogs of around 50% (Behrend et al., 1996; Stokes et al., 

2004; Vaden et al., 1997; Worwag et al., 2008; Ympa et al., 2005). According to two 

retrospective studies in companion animals, the prevalence of CKD from AKI 

survivors, was approximately 24% and 20% in dogs and cats, respectively (Vaden et 
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al., 1997; Worwag et al., 2008). AKI may be divided into pre-renal, post-renal and 

intrinsic mechanisms, according to the anatomic area of injury (Stokes et al., 2004).  

  

Pre-renal AKI possible causes are associated with severe dehydration, 

haemorrhage, hypoalbuminaemia, anaphylaxis, sepsis, heart failure, anaesthetics, 

radiocontrast media, medications such as cyclosporine (Dager, 2008), overdose 

and/or mixture of non-steroidal anti-inflammatory drugs (NSAID’s) and steroids 

(Lascelles et al., 2005). Post-renal AKI causes are associated with urinary tract 

obstruction at any level from the renal tubule to the urethra (Dager, 2008). This is 

frequently found in companion animals. Other common causes of post-renal AKI are 

associated with blockage at different levels of the urinary tract; renal pelvis, ureteral, 

bladder and urethra (Berent, 2011; Lulich et al., 1993). Intrinsic AKI results from 

hypotension, renal artery occlusion, vasoconstriction and/or intratubular obstruction 

(Schnellmann, 1999; Schrier et al., 2004). The intrinsic AKI causes are associated to 

ischaemic, nephrotoxic and infectious aetiologies affecting vascular, glomerular, 

tubular or /and interstitial area. In humans, 85% of AKI cases are secondary to either 

ischaemic (50%) or nephrotoxic (35%) aetiologies (Dager, 2008). More than 90% of 

cases result in some degree of acute tubular necrosis (ATN),  the main 

histopathological feature of AKI (Star, 1998). In cats, ATN secondary to renal 

ischaemia and nephrotoxic injury has been described (Bartges, 2011; Chew et al., 

2011). Possible common causes of tubulointerstitial damage associated in cats are 

shown in Table 1.1. 

 

1.1.3.3 Progression factors  

 

Hyperthyroidism and hypertension. Hyperthyroidism is an important 

metabolic disease that has been associated with CKD progression in the domestic 

cat (Peterson, 2012). The progression of CKD in the hyperthyroid cat has been linked 

to hypertension, which is present in 14-23% of cats. In the hyperthyroid cat, the renin-

angiotensin-aldosterone system (RAAS) is activated as in the man. Interestingly, 

RAAS has not been associated with the development of hypertension in the 

hyperthyroid cat, however, it may contribute in the progression of CKD (Williams et 

al., 2013). In the man, hypertension is closely associated with RAAS activation, which 

in turn, directly contributes to the development of CKD (Meguid El Nahas et al., 2005). 

In hyperthyroid cats, hypertension is present in 14-23% of cats with CKD (Williams et 

al., 2013). In cats with hypertension associated with CKD, there is not an increase in 

the plasma renin, thus angiotensin II is not increased either; however, plasma 
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aldosterone is elevated when compared to CKD normotensive cats (Jensen et al., 

1997). Furthermore, aldosterone is not influenced by levels of plasma renin (Williams 

et al., 2013). Interestingly, there is evidence showing that exogenous aldosterone in 

the rat following AKI can promote hypertension (Syme, 2011). In cats 

hyperaldosteronism mediates and contributes in the progression of CKD (Javadi et 

al., 2005). If aldosterone is not upregulated by renin-angiotensin in the cat, therefore 

a direct regulation of aldosterone via potassium ions may play an important role in 

cats with CKD, however, this mechanism might be more relevant in cats with CKD 

stage 4, as serum potassium tend to be lower in previous CKD stages. Feline primary 

hyperaldosteronism may also play a role in cats with CKD where hypertension and 

hypokalaemia are found together (Javadi et al., 2005). Perhaps, there are other 

pathways for feline aldosterone regulation still to be discovered. 

  

Diet: In man, diet plays an important role in the progression of CKD. Since cats 

are strictly carnivorous, a cat with CKD on a conventional diet would unavoidably 

generate higher levels of both urea and phosphorus (Roudebush et al., 2009). 

 

Proteinuria: In humans and dogs with CKD, proteinuria can be excreted in 

large amounts, as glomerulopathy is a common histopathological feature in these 

species. In cats with CKD, even though glomerular lesions are not very common, the 

low detectable levels of proteinuria have been associated with lower life survival 

compared to cats with CKD without proteinuria (Syme et al., 2006).  

 

Other factors: Smoker owners, metabolic acidosis, hypokalaemia, dehydration 

and anaemia have also been proposed as potential progression factors of CKD in the 

domestic cat (Polzin, 2011). 

 

1.1.4. Treatment 

  

Conservative management is based on the treatment of active renal diseases 

as well as the reduction of clinical signs. Some treatments for CKD are based on 

weak evidence or anecdotic experiences while others are based on exhaustive 

evidence-base veterinary medicine.  An attempt to evaluate the evidence available to 

treat CKD in cats has been proposed recently using a grading system from I to IV. 

Grades I and II represents clinical evidence with a high level of reliability, whereas 

grade III and IV indicates either weak or low degree of evidence, respectively 

(Roudebush et al., 2009). 
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Indirect tubulointerstitial damage 

            -Extended pre-renal kidney injury 

            -Post-renal kidney injury 

Direct tubulointerstitial damage 

             -Renal kidney injury 

    a) Ischaemic  

        Severe decompensation after anaesthesia 

        Severe haemorrhage  

        Renal artery thromboembolism 

        IRI due to Kidney transplantation (De Cock et al., 2004) 

        Acute allograft rejection (De Cock et al., 2004) 

    b) Nephrotoxic  

        Endogenous 

             Myoglobin  

             Haemoglobin 

             Hypercalcaemia 

         Exogenous 

             Heavy metals  

             Ethylene glycol 

             Aminoglycosides 

             Melamine/cyanotic acids 

             Chemotherapeutics (cisplatin and doxorubicin) 

             Amphotericin B 

             Ciclosporin  

             Lilies  

     c) Infectious 

         Bacterial  

             Pyelonephritis, sepsis 

         Viral  

             FIP and FLV   

     d) Congenital 

             Amyloidosis  

             Juvenile renal dysplasia 

             Polycystic kidney disease 

     e) Immunogenic 

             Systemic lupus erythematosus 

      f) Neoplastic      

                 Renal lymphoma 

 
Table 1.1: Potential causes of Tubulointerstitial Damage in the Cat 

Modified and combined table from (Ross, 2011) (Dager, 2008). IRI, ischaemia reperfusion 
injury; FIP, feline infectious peritonitis; FLV, feline leukaemia virus. 
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Grade I: Evidence obtained from one or more properly designed randomized 

controlled clinical trials performed in clinical patients of the target species. 

 

Grade II: Evidence obtained from properly designed, randomized controlled studies 

performed using animals of the target species with spontaneous disease in a 

laboratory or research animal colony setting. 

 

Grade III: Evidence obtained from appropriately controlled studies without 

randomization, appropriately designed cohort or case control studies, studies using 

acceptable models of disease or simulations in the target species, cases series or 

dramatic results from uncontrolled studies. 

 

Grade IV: Evidence obtained from studies conducted in other species, reports of 

expert committees, descriptive studies, case reports, pathophysiological justification, 

and opinions of recognized experts developed on the basis of their clinical experience 

(Roudebush et al., 2009). 

 

1.1.4.1. Medical treatment 

 

Diet: Dietary therapy has been shown to prolong survival for companion 

animals with CKD stage 2 to stage 4. Renal diets facilitate the absorption of nutrients 

with a reduced production of metabolic products (urea and phosphorus) slowing or 

preventing high levels of systemic toxic metabolites and potentially death if CKD 

progresses. Diets for CKD are lower in protein, phosphorus and sodium content. Also 

CKD diets are supplemented with vitamin B, soluble fibre, high caloric density, 

omega-3, polyunsaturated fatty acids and antioxidants. Potassium supplementation 

is used more in cats than other species (Polzin, 2011). There is strong evidence 

(grade I) for the use of low protein diets in cats with stage 2 and stage 3 CKD. With 

regard to the reduction of progression of CKD cats in stage 4, there is weak evidence 

(grade III) to show the benefit of renal diets (Polzin, 2011; Roudebush et al., 2009). 

There is strong evidence (grade I) to support the benefit of dietary restriction of 

phosphorus, although evidence supporting the target ranges of phosphataemia to 

bring a benefit to the cat with CKD is weak (grade IV) (Roudebush et al., 2009). 

 

Gastrointestinal Uraemia: Gastrointestinal signs of uraemia include reduction 

of food intake, nausea, vomiting, uraemic stomatitis, halitosis, haematemesis and 



11 

 

haematochezia. Treatment is symptomatic using histamine H2 receptor antagonist, 

antiemetics, mucosal protection such as sucralfate (Polzin, 2011). 

 

Hyperphosphataemia promotes renal secondary hyperparathyroidism, 

mineralization of tissues and progression of CKD. High levels of phosphorus increase 

mortality in humans and companion animals. Phosphate binders are important 

treatment in cats from CKD stage 2 to stage 4. This therapy can be combined together 

with dietary restriction of phosphorus. One third of cats with CKD require treatment 

with phosphate binders. The main phosphate binders available for companion 

animals are sevelamer, chitosan, lanthanum, calcium and aluminium salts. Calcium 

and aluminium salts have been used in the dogs and cats effectively (Polzin, 2011), 

however they have been associated with secondary effects such as hypercalcaemia 

and toxic systemic accumulation, respectively. Sevelamer has also been used 

successfully in human patients with CKD. In dogs and cats, although sevelamer has 

been shown to reduce hyperphosphataemia, its effectiveness has not been tested in 

randomized studies. Chitosan phosphate binders have been tested in short and long 

term studies showing a positive reduction in the progression of CKD, attributable to 

an effective reduction in plasma phosphate and urea, even if renal diets are not being 

used. On the other hand, this product has been associated with the development of 

hypercalcaemia, as it contains 10% of calcium carbonate. With regard to lanthanum 

salts, several studies have shown the effectiveness of the product reducing plasma 

phosphate and urea; however, randomization studies are slightly bias according to 

some experts. Overall, lanthanum salts and chitosan are effective products even 

when patients are fed with regular food (Kidder et al., 2009). 

 

Metabolic acidosis occurs in approximately 10% cats with CKD stages 2-3 

and around 50% in feline patients with uraemic syndrome, most of them in CKD stage 

4 (Elliott et al., 1998). Parenteral alkalinisation therapy is required when severe cases 

are detected. In low metabolic acidosis, dietary therapy may be sufficient (Polzin, 

2011). 

 

Hypokalaemia is seen in 20-30% of cats with CKD stages 2 - 3 and may be 

associated with polyuria, low potassium intake, and activation of renin-angiotensin-

aldosterone system (Lulich et al., 1992). Also, hypokalaemia may be associated with 

hypokalemic myopathy, progressive renal injury, increase in water intake and urine 

production. Potassium gluconate or citrate are adequate options for oral 

supplementation. However, there is weak (grade III) evidence for the implementation 
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of potassium to prevent hypertension and reduce progression of CKD (Roudebush et 

al., 2009). Hyperkalaemia is more evident in cats in CKD stage 4 (Polzin, 2011).  

 

Dehydration is a common sign of CKD and significantly evident in CKD stage 

IV feline patients (Elliott et al., 1998). Dehydration reduces renal function and induces 

acute uraemia. In cats, the lack of access to water and frequent vomiting/diarrhoea, 

signs of CKD, increase the level of dehydration promoting progression of renal 

disease. Water ad libitum, parenteral or empirical subcutaneous administration of 

lactated Ringer’s have been used for patients with uremic crisis (Polzin, 2011). 

However, there is very weak evidence (grade IV) supporting the long term benefit of 

subcutaneous fluid therapy in cats with CKD (Roudebush et al., 2009). 

 

Anaemia occurs in patients with CKD stages 3 and 4. Erythropoietin is a 

glycoprotein hormone which main function in producing erythrocytes (main oxygen 

transporter units). Renal erythropoietin is produced by cortical interstitial fibroblasts 

in close relationship with peritubular capillaries and epithelial cells. The main effect of 

erythropoietin is on red blood cells progenitors and precursors localized in bone 

marrow. It is regulated by hypoxia inducible factor 2α (HIF-2α) under hypoxic 

condition (Paliege et al., 2010). The low cortical oxygenation due to lack of 

erythrocytes maintain a hypoxic environment that may influence the progression of 

CKD. If the kidney cortex is particularly affected in a cat with CKD, a decreased level 

of erythropoietin and therefore anaemia should be expected to occur. Iron production 

is disrupted in patients with CKD. Also uraemia itself inhibits primary cells in the bone 

marrow (Nurko, 2006). Chronic gastrointestinal haemorrhage secondary to uraemia 

can also contribute to anaemia. Exogenous synthetic erythropoietin such as 

darbepoetin alfa or human recombinant erythropoietin have been used to control 

anaemia and reduce the need of blood transfusions. However, antibodies to 

exogenous erythropoietin may form producing refractory anaemia and hypoplasia of 

the erythroid bone marrow (Cowgill et al., 1998). There is grade III evidence to use 

human recombinant erythropoietin in cats with anaemia secondary to CKD. No proper 

studies have been perform to establish the safety and efficacy of darbepoetin 

(Roudebush et al., 2009). 

 

Calcitriol therapy: Kidneys convert 25-hydroxycholecalciferol to 1,25-

dihydroxycholecalciferol, also known as calcitriol. Calcitriol and parathyroid hormone 

are considered the main calcium metabolism modulators.  Kidneys with chronic 

disease have low levels of calcitriol and this promotes renal secondary 
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hyperparathyroidism. Parathyroid hormone can be as toxic as urea and treatment 

with exogenous calcitriol may reverse the effects of hyperparathyroidism in feline 

patients with CKD (Roudebush et al., 2009). Nevertheless, recent grade II and III 

evidence was not able to support the use of calcitriol therapy in cats with CKD 

(Roudebush et al., 2009). 

 

Proteinuria has been reported as a progression factor in the cat with CKD 

(Syme et al., 2006). In humans, there is substantial evidence showing that the 

reduction of proteinuria correlates with survival and progression of CKD (Methven et 

al., 2010). Treatments with angiotensin-converting enzyme inhibitor (ACEI) have 

been implemented in cats with UPC’s  above 0.5 for stages 2 and 3 and 0.4 for stage 

4 (Polzin, 2011). There is grade I evidence for the reduction of proteinuria and survival 

in cats with CKD; however, there is very weak evidence to support the use of ACEI’s 

to slow the progression or to prolong the survival of cats with CKD (King et al., 2006; 

Roudebush et al., 2009; Syme et al., 2006). Although important trends towards an 

increased survival and reduction in the progression of disease were noted when 

reduction of proteinuria was achieved. Another approach to reduce proteinuria is by 

blocking angiotensin II receptors. Telmisartan has shown similar efficiency regarding 

the reduction of proteinuria in cats with CKD (Sent et al., 2013), as seen in humans 

(Mann et al., 2008).  

 

Hypertension is a complication of CKD. Treatment is normally based on the 

use of angiotensin converting enzyme inhibitors (ACEI), benazepril or enalapril.  

Benazepril has hepatic excretion; therefore, is preferred in small animals, however in 

cats, angiotensin converting enzyme inhibitors are not as effective as in dogs, due to 

the role of renin angiotensin aldosterone system (RAAS) (Jensen et al., 1997). In 

cats, calcium channel blockers are more effective alternative, where amlodipine is the 

drug of choice for cats as it increases vascular tone instead of RAAS stimulation 

(Polzin, 2011). However, so far there is just moderate evidence grade III for the use 

of amlodipine to treat hypertension in cats (Roudebush et al., 2009). 

 

1.1.4.2. Renal replacement therapy  

 

Dialysis: Peritoneal dialysis and haemodialysis, a diffusion extracorporeal 

blood purification technique, have been used to treat a variety of conditions including  

AKI, CKD with severe azotaemia, acute kidney disease superimposed on CKD, pre-

treatment for kidney transplantation  in patients with CKD, feline patients with disorder 
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of fluids balance (oliguric, anuric and non-oliguric) and acute intoxications (Cowgill, 

2011).  The survival percentage for dogs and cats subjected to haemodialysis was 

from 21-38% for 1 year survival (Eatroff et al., 2011).  Haemodialysis has also shown 

superiority when compared to peritoneal dialysis, with regard to secondary effects 

(Eatroff et al., 2011). However, peritoneal dialysis is still a good alternative due to its 

low cost and the technical simplicity (Ross et al., 2013). In general, both peritoneal 

and haemodialysis have shown a remarkable benefit translated to patient survival in 

AKI cases (Roudebush et al., 2009).  

 

Continual renal replacement therapy (CRRT) is a blood purification modality 

that uses diffusion, convection and, to some extent, adhesion in contrast to 

intermittent haemodialysis where diffusion is the main mechanism of action. The slow 

and gradual blood purification and removal of large molecules allows a better control 

of electrolytes and acid base balance when compared to IHD. The maintenance cost 

for the CRRT is importantly lower when contrasted with IHD. However, CRRT tends 

to be a longer and more intensive procedure to perform than IHD (Acierno, 2011). 

Currently, enteric dialysis based on pro-biotics which metabolize uremic toxins has 

been used in USA. Another form of enteric dialysis uses polymers that adsorb uremic 

toxins. However, randomized controlled clinical trials are needed to support the initial 

anecdotal evidence (Roudebush et al., 2009).  

 

Kidney Transplantation: Kidney transplantation in veterinary practise is a 

technically challenging surgical procedure currently undertaken in the USA and also 

performed in one centre in Australia. The technique is becoming more popular in the 

USA, however its future as a renal replacement technique, at present, is still unclear. 

Management of CKD in cats can be divided into two main areas, the medical and 

surgical approach. The medical approach states that feline CKD is a long term 

progression course, where stabilization can be achieved using medical treatment 

without the employment of kidney transplantation, a technique considered by some 

experts to be an excessive approach for a cat with a short life expectancy since, the 

majority of cats with CKD present at over 13 years of age and the average life span 

of cats is 15 years (Zoran et al., 2011). Moreover, a recent retrospective study has 

shown that 81% and 37% of cats with CKD stage 2 and 3 respectively, died without 

showing CKD progression to stage 4 (Chakrabarti et al., 2012), which may question 

the usefulness of transplantation over medical treatment. Kidney transplantation 

procedure requires adequate recipient, donor selection, client education, intense pre-

operative and post-operative care  (Bernsteen et al., 2000). The complex post-
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operative care and kidney donor source factors can easily break the animal welfare 

homeostasis. Complications such as hypertension, delayed graft function, 

acute/chronic rejections, chronic allograft nephropathy, neurologic abnormalities, 

neoplasia, diabetes, hypertension, graft thrombosis, hind limb ischaemia and 

infections can be encountered either during or after surgical procedure. In 2008, the 

University of Wisconsin, reported that the survival percentage for cats with renal 

transplant was 59% and 42% at 6 months and at 3 years post-transplant, respectively 

(Schmiedt et al., 2008). Currently, in the same University, the survival percentage 

with 6-month survival after renal transplantation is around 80% and 3-year survival is 

around 65%. In the long term, most cats die of diseases other than renal disease. 

The survival percentage is expected to improve with advances in surgical techniques 

and immunosuppressive drugs. However, as yet, there is not significant evidence for 

the benefit of kidney transplantation over conservative medical treatment (Roudebush 

et al., 2009). 

 

 

1.2. Comparative Medicine 

 

A more novel and less common approach to study CKD in humans is based on 

the investigation of “naturally occurring CKD” in domestic or wild animals. This area 

of research comes under the general heading of comparative medicine, a discipline 

that compares similarities and differences between man and animals to enhance the 

understanding of disease processes (Bradley, 1927). The concept behind 

comparative medicine was initiated in the 18th century by Dr Giovanni Maria Lancisi, 

a physician who established a model to control Rinderpest in cattle, a lethal virus 

guilty of three pandemic hits and responsible of a major shortage in animal-based 

food, especially in Europe. The first veterinary school to be established in the world 

had its origins in Lyon (France) with the purpose of applying Lancisi’s principles to 

the control of animal disease (Palmarini, 2007). Later, in the 19th century, the 

interdependence of animal and human health was emphasised by the German 

physician, Rudolf Virchow and the Canadian physician, William Osler (Virchow’s 

pupil), both men labelled as ‘the fathers of modern pathology and modern 

medicine‘  (Kahn et al., 2007). Rudolf Virchow coined the term “zoonosis”, to highlight 

the relevance of linking human with animal medicine; identifying in this way that 

progress in both areas are dependent on mutual scientific advances and 

technological discoveries. The quote from Virchow that:- 
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“Between animal and human medicine there is no dividing line — nor should 

there be. The object is different, but the experience obtained constitutes the 

basis of all medicine”, 

 

still prevails today and is the fundamental principle of comparative medical research 

(Klauder, 1958). In the 1980s Calving Schwabe, strongly influenced by Virchow’s 

philosophy, coined the term “one medicine”, to establish the links between human 

and animal disease while the term “one health” is the evolution of one medicine, 

which takes into account the role played by the balance of ecosystems in the health 

of both man and animals (Zinsstag et al., 2011). 

 

1.2.1. Naturally Occurring Animal Diseases 

 

Naturally occurring animal diseases (NOAD) in domestic animals are diseases 

generated with silent, acute or chronic clinical presentation as a result of a wide range 

of genetic and environmental factors / variables. These factors may be similar or 

identical to those responsible for human disease. Environmental factors can 

contribute to the development of illnesses by altering the onset, presentation, time 

course, diagnosis, control, prevention of diseases, as well as the outcome of 

treatments. Diet, habitat and habits (smoker owner with passive smoker pets) are 

some factors that cannot be fully replicated in the laboratory, as probably more than 

one variable is interconnected to generate a disease. Also, the wide genetic pool 

(heterogeneity) in both human and animal population is a major factor for disease 

generation that cannot be fully mimicked using laboratory animals. Diseases in 

animals and humans are the product of both environmental and genetic factors 

individually and interacting between the two (Hunter, 2005). 

 

The domestic cat, dog, horse, cow, pig and sheep are species where naturally 

occurring diseases may offer a mutual value to both human and veterinary medicine 

(Wolfe, 2009), based on the histopathology, clinical presentation and/or genetic 

profile of disease similarities, see tables 1.2, 1.3 and 1.4. Furthermore, the recent 

mapping of the dog and cat genomes has allowed the identification of more than 250 

genetic diseases, homologous to human disorders (Menotti-Raymond et al., 2008; 

Pontius et al., 2007). An important increase in the use of naturally occurring diseases 

in dogs and cats should be noticed in the following years due to the efforts of 

completing and refining the cat’s and dog’s genome.  
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The comparative study of gene-environment interactions for the development 

of diseases between animals and humans using sequenced animal genomes, may 

allow the following points:-  

 

 A better understanding of the genetic and environmental risks factors and 

their interactions according to a suspected population predisposition 

(Hunter, 2005).  

 Identification of the associations between environmental factors and 

diseases in animals with a genetic predisposition to develop a disease 

(Hunter, 2005).  

 Analysis of disease mechanism by using information on 

susceptibility/resistance genes to determine the most suitable biological 

pathways in the disease and the environmental variables that are more 

important to the pathways in question (Hunter, 2005).  

 Identification of factors that trigger or prevent diseases to occur in both 

animals and humans, as the study of the differences between species may 

help to identify new approaches of disease study and treatments.  

 Drug safety with a more comparable lifespan to that in humans allowing a 

long term assessment of drugs to evaluate side effects.  

 Generation of evidence-based veterinary medicine. 

 

The study of human diseases based on comparative genetics has a wide range 

of approaches to enhance the understanding of disease. Some possible study 

designs are; the development of prospective studies, prospective interventional 

studies (potentially reducing the use of laboratory animals), prospective studies of 

genetic predisposition and prospective/retrospective basic epidemiological studies. 

However, at the moment, study designs of diseases in domestic animals are 

achievable only in species where the mapping of the genome has been completed or 

it has reached an advance degree of identification, such as in the domestic feline and 

canine.  
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Medical field Animal aetiology or 
disease 

Human disease Reference 

Horse 

 
Orthopedics 

 
Osteoarthritis 

 
Osteoarthritis 

 
(Frisbie et al., 2000) 

 
Oncology 

 
Melanoma 

 
Melanoma 

 
(Seltenhammer et al., 

2004) 

Bovine 

Chemical 
Pathology 

- 
Metabolic Medicine 

 
Citrillinemia 

 
Citrillinemia 

 
(Harper et al., 1989) 

 
Parasitology 

 
Onchocerciasis 

 
River blind disease by 

onchocerciasis 

 
(Gilbert et al., 2005) 

Sheep 

Chemical 
Pathology 

- 
Metabolic Medicine 

 
Krabbe disease 

 
Krabbe disease 

 
(Pritchard et al., 

1980) 

Ferret 

 
Nephrology 

 
Ferret  cystic renal 

disease 

 
Cystic renal disease 

 
(Jackson et al., 2008) 

 
Table 1.2: Naturally occurring disease in domestic species 
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Table 1.3: Naturally occurring diseases in the Domestic Canine 

 

  

  Medical field Animal aetiology or 
condition 

Human disease Reference 

 
 
 
 

Neurology 

Myasthenia gravis Myasthenia gravis (Galin et al., 2007) 

Canine muscular 
dystrophy 

Duchenne muscular dystrophy (Sharp et al., 1992; 
Wang et al., 2009) 

Narcolepsy Narcolepsy (Lin et al., 1999) 

Canine neuronal ceroid 
lipofuscinosis 

 

Human infantile and juvenile 
neuronal ceroid lipofuscinosis 

(Lingaas et al., 1998) 

Myotonia congenital Myotonia congenita (Rhodes et al., 1999) 

B-amyloid accumulation 
in canine brain 

Alzheimer (Cummings et al., 
1993) 

 
 
 

Ophthalmology 
 

Canine retina 
degeneration 

Human retinal degeneration (Acland et al., 1999) 

Progressive rod-cone 
degeneration 

Retinitis pigmentosa (Acland et al., 1998) 

Cone degeneration Achromatopsia (Sidjanin et al., 2002) 

Collie eye anomaly Choroidal hypoplasia (Lowe et al., 2003) 

Human congenital 
stationary night blindness 

Human congenital stationary 
night blindness 

(Aguirre et al., 1998) 

Canine hereditary retinal 
dystrophies 

Human hereditary retinal 
dystrophies 

(Veske et al., 1999) 

Rheumatology Rheumatoid arthritis Rheumatoid arthritis (Ollier et al., 2001) 

Dermatology Digital footpad 
hyperkeratosis 

Inherited keratodermas (Keller et al., 1998) 

      
Hepathology 

Cooper toxicosis Cooper deficiency (Menkes 
disease) and accumulation 

(Wilson disease) 

(van De Sluis et al., 
2002) 

Urology Canine cystinuria Human cystinuria (Henthorn et al., 
2000) 

 
 
 
 

Nephrology 
 

Canine x-linked 
hereditary nephritis 

Human x-linked hereditary 
nephritis 

(Zheng et al., 1994) 

Membranoproliferative 
glomerulonephritis / 
hereditary canine C3 

deficiency 

Membranoproliferative 
glomerulonephritis /  hereditary 

human C3 deficiency 

(Ameratunga et al., 
1998) 

Samoyed hereditary 
glomerulopathy and Bull 

terrier hereditary nephritis 

Alport disease (Hood et al., 2000; 
Jansen et al., 1986) 

Renal amyloidosis / 
recurrent fever of 
unknown origin 

Mediterranean fever (Rivas et al., 1993) 

Polycystic kidney disease Polycystic kidney disease (Gharahkhani et al., 
2011) 

Renal dysplasia Renal dysplasia (Hoppe et al., 1990) 

Renal  
cystadenocarcinoma and 
nodular dermatofibrosis 

(RCND) 

Renal cancer syndrome 
Birt-Hogg-Dube 

(Jonasdottir et al., 
2000; Lingaas et al., 

2003) 

Fanconi syndrome Fanconi syndrome (Bovee et al., 1978) 

Membrano proliferative 
glomerulonephritis 

Membrano proliferative 
glomerulonephritis 

(Minkus et al., 
1994a) 
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Table 1.4: Naturally occurring diseases in the Domestic Feline 

 

 

 

  

Medical field Animal aetiology or 
disease 

Human disease Reference 

 
Immunology 

Feline immunodeficiency 
disease 

AIDS by HIV (Willett et al., 1997) 

Feline leukaemia virus AIDS by HIV (Mullins et al., 
1989) 

 
 

Oncology 
 

Feline leukaemia virus Oncogenesis (Hardy et al., 1976) 

Feline mammary carcinoma Mammary carcinoma (Vail et al., 2000) 

Soft tissue sarcoma Soft tissue sarcoma (Spugnini et al., 
2007) 

Non-Hodgkin’s  lymphoma Non-Hodgking’s  
lymphoma 

(Vail et al., 2000) 

Gastroenterology Helicobacter pilori Helicobacter pilori -

Zoonotic risk 

(Fox et al., 1996) 

 
Pneumology 

Coronavirus (H5N1) H5N1 - Zoonotic risk 
and epidemiology 

(Kuiken et al., 
2004) 

Coronavirus Severe acute 
respiratory syndrome 

(O'Brien et al., 
2006) 

Haematology Feline leukaemia virus Aplastic anaemia (Cotter et al., 
1977) 

 
Cardiology 

 

Hypertrophic Cardiomyopathy Hypertrophic 
Cardiomyopathy 

(Fox et al., 1995) 

Arrhythmogenic ventricular 
cardiomyopathy 

Arrhythmogenic 
ventricular 

cardiomyopathy 

(Fox et al., 2000) 

 
 
 
 

Chemical 
Pathology 

- 
Metabolic 
Medicine 

 
 
 
 
Lysosomal 
 storage 
 disorders 

β-glucuronidase 
deficiency 

Mucopolysaccharidosis  
type VII 

(Fyfe et al., 1999) 

Mucopolysaccharidosis   

type VI 
Mucopolysaccharidosis   

type VI 
(Haskins et al., 

1981) 

alpha-mannosidosis Alpha-mannosidosis (Vite et al., 2001) 

Globoid cell 
leukodystrophy 

Krabbe disease (Johnson, 1970; 
Sigurdson et al., 

2002) 

Mucopolysaccharidosis   
type I 

Mucopolysaccharidosis   
type I 

(He et al., 1999) 

Feline Niemann  
Pick disease type C 

Niemann-Pick 
disease type C 

(Brown et al., 
1994) 

GM2-Gangliosidosis Sandhoff disease (Baek et al., 2009) 

Endocrine  Diabetes mellitus 
type II 

Diabetes mellitus 
type II 

(Henson et al., 
2006) 

         Urology Feline interstitial cistitis Interstitial cistitis (Lavelle et al., 
2000) 

 
Nephrology 

 

Polycystic kidney disease Polycystic kidney 
disease 

(Lyons et al., 2004) 

Renal Amyloidosis Renal Amyloidosis (DiBartola et al., 
1986) 
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Hypertrophic cardiomyopathy (HCM) in cats has been used to investigate 

human HCM (Fox et al., 1995), while  recently, the cat has been appointed as a model 

to study diabetes mellitus type II and obesity in humans (Henson et al., 2006). In 

nephrology, the domestic cat has been proposed as a model to study of polycystic 

kidney disease (Lyons et al., 2004) and renal amyloidosis (DiBartola et al., 1986). 

 
 
1.3. Animal Models of Chronic Kidney Disease 

 

To study any disease, the most frequent experimental approaches are based 

on in vitro and animal experimentation. This allows the isolation of variables to 

investigate the pathology and pathogenesis of diseases in a specific experimental 

context. Animal models play a fundamental role to evaluate the efficacy and side 

effects of potential treatments under a complex physiological system. The use of 

laboratory animals is widely accepted by the scientific community and more recently 

includes the ability to knock out or over express genes, particularly in mice, allowing 

a narrower delimitation to study certain molecular pathways (Anders et al., 2000). In 

vitro models using cells can be very useful approach to evaluate isolated molecular 

pathways, however, using cell models does not allow the evaluation of renal function 

or renal tissue protein dynamics under a complex biological system.  

 

To generate a model of CKD in experimental animals, two main requirements 

have to be fulfilled; the generation of an effective acute insult (inflammatory process) 

and the chronic development of renal fibrosis (reparation process), following an acute 

renal injury. In this research project, ischaemia renal perfusion injury (IRI) was the 

renal insult chosen to study the role of the cross-linking enzyme transglutaminase in 

the progression of CKD. The criteria used to choose the rat model of RWI were:- 

 

1.  Acute and chronic hypoxic stress based model as an insult to develop CKD. 

 

Tubulointerstitial hypoxia plays a pivotal role in renal fibrosis, it is a final step in 

ESRD in a variety of kidney diseases and mediates progression of renal injury in early 

and chronic kidney disease (Mimura et al., 2010). Peritubular capillary damage, 

tubulointerstitial fibrosis and inflammatory cellular infiltration in the extracellular matrix 

are histopathological issues found in CKD independently of the cause. Peritubular 

capillary rarefaction mediates hypoxia, tubular damage and tubulointerstitial fibrosis 

(Kawakami et al., 2014). RWI in the rat is able to develop peritubular capillary 
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rarefaction in chronic models of renal fibrosis (Basile, 2007; Basile, 2004; Basile et 

al., 2001a). Therefore, this model may mimic the aetiology for the development of 

CKD in the cat and in the human.  

 

2. Quantification of acute and chronic renal injury by assessment of renal 

function without development of proteinuria. 

 

In the cat, proteinuria is not a prominent feature of renal damage, this is 

probably due to the low development of glomerulosclerosis in cats with CKD (Vaden, 

2011). The model of RWI allows development of tubulointerstitial fibrosis without 

proteinuria. Proteinuria seems to be more evident after 16 weeks of RWI (Basile et 

al., 2001a; Basile et al., 2003; Torras et al., 1999). This model provides a window 

from 28 days to 16 weeks where the development of tubulointerstitial fibrosis is 

evident without relevant amounts of proteinuria, as occurs in the cat with CKD. 

 

3. Quantifiable development of tubulointerstitial fibrosis in the absence of     

glomerulosclerosis. 

 

Tubulointerstitial fibrosis correlates with the reduction of renal function more 

than glomerular fibrosis in humans (Risdon et al., 1968), experimentally in rodents 

and in the cat with CKD (Chakrabarti et al., 2013). This feature, allows this model to 

be used for feline and human CKD studies. A measurable level of fibrosis, together 

with a reduction of renal function is vital to assess the association with the 

transglutaminase pathway. 

 

4. Easy to replicate in a short period of time, with low mortality in long term, 

providing enough kidney tissue to perform kidney homogenates 

 

The rodent model of RWI provides enough renal tissue for experimental 

techniques. Importantly, the low rat mortality after acute injury surviving long term, 

provides adequate numbers in experimental groups, important for chronic 

experiments when expensive drugs are employed for interventional studies.  

 

The model of IRI in the rat generates tubulointerstitial fibrosis which is the core 

histopathological damage in humans and in the cat with CKD. The time dependent 

development of glomerulosclerosis in this model is highly relevant for the study of 

CKD in the cat and important to understand glomerulosclerosis in the human. The 
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histological similarities and differences in this models may bring a better 

understanding the disease for both the domestic feline and the man.  

 

IRI induces a substantial reduction in intracellular adenosine triphosphate 

(ATP), promoting a number of metabolic consequences in tubular cells such as acute 

tubular necrosis (Devarajan, 2005). IRI has three consecutive phases; renal warm 

ischaemia, reperfusion and tissue damage. Tissue damage can be evident in the first 

two phases; however, major renal injury is reached during and after the reperfusion 

phase. The ischaemic event is caused by stopping or significantly reducing blood 

perfusion to the kidney by placing a microvascular clamp in the right renal hilus (renal 

artery and vein) for one hour. Reperfusion occurs when the clamp is removed causing 

a sudden restoration of oxygenated blood flow into the kidney (Collard et al., 2001; 

Maxwell et al., 1997), activating and increasing  catalytic enzymatic activity promoting 

oxidative stress and cellular damage (Carden et al., 2000). In general, the acute and 

chronic stage of IRI are triggered and continued by tissue hypoxia and inflammation 

secondary to the damage to the tubuloepithelial cells and the peritubular / glomerular 

capillary networking. 

 

It is important to mention that apart from renal IRI, there are other common 

animal models employed to generate tubulointerstitial fibrosis, these include renal 

mass reduction (5/6th subtotal nephrectomy) (Johnson et al., 2007) and diabetic 

nephropathy rat models. Unilateral ureteral obstruction (UUO) (Kim et al., 2010; 

Shweke et al., 2008) and models of nephrotoxicity (Debelle et al., 2002) are also 

popular murine fibrogenic models. Even though hypoxia is an event encountered in 

all these models, glomerulosclerosis is a short term outcome in most of them, which 

may not be relevant to study CKD in the cat. UUO model does allow urine/plasma 

assessment for renal function, as urine is not coming from the damaged kidney and 

plasma renal analytes are the reflex of both the intact and the injured kidney; leaving 

histopathology as the only method to determine glomerular and tubular impairment. 

 

1.3.1. Renal Ischaemia Reperfusion Injury 

 

 Renal warm ischaemia (RWI) is defined as the organ deprivation of blood flow, 

decreasing the tissue oxygen concentration. It is considered to be the prelude to 

major renal damage. When blood flow and oxygen concentration are re-established; 

the last event, is also called renal reperfusion injury. The kidney receives 

approximately 25% of the cardiac output, being the most well perfused organ in the 
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body in relation to its size (Brezis et al., 1995). Once the renal arterial blood gets into 

the kidney, the cortex is the first renal zone to be oxygenated (30-50mmHg). On the 

other hand, the medulla has a low oxygen tension profile (15-20mmHg); this is due to 

the fact that the medulla has a high rate of oxygen exchange and therefore higher 

levels of carbon dioxide to preserve osmotic gradient, and urinary concentration 

(Brezis et al., 1995; Nangaku et al., 2007a). The most susceptible areas for ischaemia 

are the S3 segment of the proximal tubule (cortex close to the outer medulla) and the 

ascending limb of the loop of Henle in the outer medulla (Brezis et al., 1995; Nangaku 

et al., 2007a; Nielsen et al., 1999); probably associated with either Na/K-ATPase or 

K+ channel activity and sensitivity to ATP levels in the proximal tubules (Tsuchiya et 

al., 1992). The effect of a 60 minute period of renal warm ischaemia on the surface 

colouration of the kidney following the release of a renal hilus clamp is shown for the 

anaesthetised rat in Figure 1.3. 

 

1.3.1.1. Histopathology 

 

The acute stage of IRI can be assessed by histopathology and is useful in 

establishing the level of damage and renal prognosis. Some histopathological 

features include the  loss of apical brush border and basolateral interdigitations 

(Bonventre, 1993). After 5 minutes of renal ischaemia, the lipid composition of the 

membrane changes  significantly (Jones, 1982; Jones, 1981). On the other hand, with 

more advanced damage, intracellular vacuoles and mitochondrial swell, as well as 

shrinking of nucleus and chromatin condensation (pyknosis), can be detected. 

Furthermore, an apparent tubular dilatation may be observed over the basement 

membrane due to the gaps produced by the cell separation from its base (Bonventre, 

1993; Meadows, 1973). Also, histopathology detects cellular debris, intratubular 

proteins and even histopathological features suggesting oedema (Bonventre, 1993). 

 

1.3.1.2. Hypoxia  

 

 There is evidence showing that an ischaemic process during AKI, in whichever 

modality (pre-renal, intrinsic and post-renal), triggers a cascade of inflammatory 

factors that overlaps the healing stage, promoting a substitution of functional 

parenchyma by fibrotic tissue (Dager, 2008; Rosenberger et al., 2006). AKI is 

associated with aberrant intra-renal microcirculation and therefore oxygen 

misbalances. Low tensions of oxygen in the renal cortex promotes up-regulation of 
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hypoxia-inducible factor (HIF) in all types of AKI (Rosenberger et al., 2006), which 

has been associated with the development of renal fibrosis (Higgins et al., 2008). 

 

There are three different forms of AKI. Pre-renal, renal and post renal AKI. 

Ischaemia in pre-renal and intrinsic AKI are the most common forms of AKI generated 

by renal hypoperfusion, however post-renal AKI has also a hypoxaemic component. 

 

Pre-renal AKI: results from hypotension and/or hypovolemia leading to hypoxia 

with conserved renal microstructure when compensated on time (Dager, 2008). 

Hypovolemia leading to a severe fall in systemic blood pressure promotes 

vasoconstriction in different systems, including the renal system, preserving the basic 

immediate vital ones (cardiac output and cerebral perfusion) (Badr et al., 1988).  

 

Intrinsic AKI: Is associated to frank reduction in renal oxygen producing a 

direct effect in the vascular, glomerular and tubular or /and interstitial compartment 

(Dager, 2008). 

 

Post-renal AKI. Post-renal AKI results from the increase of intrapelvic pressure 

leading to ischaemic atrophy, which can be reversible when intrapelvic blockage is 

corrected (Wen et al., 1999). The most representative animal model to evaluate post-

renal AKI is the unilateral ureteral obstruction (UUO)(Chevalier et al., 2010). UUO 

produces tubuloepithelial apoptosis and necrosis due to hypoxia and oxidant injury 

as seen in intrinsic renal AKI (Thornhill et al., 2007). Post-renal AKI secondary to UUO 

produces hypoxia with cellular proliferation, tubular basement membrane thickening 

and necrosis in proximal tubules, as seen in renal ischaemia reperfusion injury 

(Cachat et al., 2003). 

 

1.3.1.3. Molecular Pathophysiology of Ischaemia 

 

Ischaemia promotes a decrease in cellular oxidative phosphorylation resulting 

in a deficit of ATP re-synthesis and phosphocreatine; this event is described as Krebs 

cycle paralysis. At this point, cellular metabolism follows the anaerobic pathway to 

obtain enough energy for cell survival. These pathways are mainly glycolysis and 

glycogenolysis and provide around 5% ATP production in contrast to the aerobic ATP 

synthesis (de Groot et al., 2007). 
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Figure 1.3: Effect of Renal Warm Ischaemia on the renal surface colouration  

 

Sequence of renal surface colour from a Sprague Dawley rat before, during and after left renal hilar 
clamping. A: Normal colour; B: Colour of clamped kidney after 60 minutes. C-H: Colour after removing 
the clamp forceps for C = 5 seconds, D = 10 seconds, E = 15 seconds, F = 20 seconds of removing 
clamp; G: Colour after 30 seconds of removing clamp and H: Colour after 1 minute of removing. 
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Apart from generating high levels of lactic acid, increasing intracellular and 

extracellular pH with a later disturbance in liposome stability, ischaemic events also 

provoke an inadequate functioning of the transmembrane ionic pumps. The ionic 

disequilibrium is mainly due to the increase in the intracellular concentration of Ca+ 

and Na+, dragging water into cells with the subsequent cellular swelling (Flores et al., 

1972). In an adequate cellular environment, ATP is normally hydrolysed by 

nucleoside triphosphate diphosphohydrolases (NTPDases) to ADP-AMP-adenine; 

and adenine is deaminated to inosine-hypoxanthine-xanthine-uric acid, see Figure 

1.4. The enzyme responsible for the oxidation of hypoxanthine to xanthine is xanthine 

dehydrogenase. Interestingly, when there is a lack of oxygen, the enzyme is 

converted by Ca activated proteases to xanthine oxidase. Xanthine oxidase is an 

oxygen-dependent enzyme that is not able to degrade hypoxanthine to xanthine. A 

continuous increase of hypoxanthine is therefore unavoidable; see Figure 1.5 

(Maxwell et al., 1997). This catabolic product does not produce damage by itself. 

Hypoxanthine requires re-oxygenation to induce cellular disturbances. 

 

1.3.1.4 Reperfusion  

 

The pathophysiology of reperfusion can be explained through three main 

components; the role of reactive oxygen species (ROS), complement and leukocytes. 

 

Reactive Oxygen Species (ROS): When reperfusion occurs, xanthine 

oxidase starts degrading the accumulated hypoxanthine to xanthine. In this process, 

high levels of reactive oxygen species such as superoxide and hydrogen peroxide 

are produced; however, hydroxyl radical and nitric oxide are also important products 

to take into account in this process, see Figure 1.6 (Maxwell et al., 1997). 
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Figure 1.4: Xanthine dehydrogenase in the healthy kidney 
 
The degradation of hypoxanthine to xanthine is performed by xanthine dehydrogenase in a normal 
cellular environment. 
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Figure 1.5: Renal ischaemia and the role of xanthine dehydrogenase 
 
Due to a decrease in oxygen xanthine dehydrogenase is converted to xanthine oxidase, an oxygen-
dependent enzyme to catalyse hypoxanthine to xanthine; therefore, an increase in hypoxanthine 
unavoidable 
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Eventually, ROS disrupts cells by damaging DNA, inducing apoptosis and 

oxidizing polydesaturated fatty acids and amino acids (Martin et al., 2002).  

Interestingly, even though xanthine oxidase is a key enzyme in the development of 

ROS, its inhibition through allopurinol in acute renal ischaemia and kidney 

transplantation has not always been translated into improvements in renal integrity 

(Paller et al., 1984).  

 

Complement: IRI also interferes with the innate immune system. The 

complement system plays an important role in reperfusion by altering vascular 

permeability and integrity through the overexpression of adhesive endothelial 

molecules such as β2 integrin, E-selectin and P-selectin, promoting leukocyte 

adhesion. Moreover, complement is involved in the stimulation of the lipoxygenase 

pathway. The main anaphylatoxins responsible of such an event are C3a, iC3b, C5a 

and C5b-9. C5a has been the most widely studied in IRI (Collard et al., 1999). 

 

Leukocytes: The white cells are aggregated in vascular endothelium by the 

interaction of integrins, selectins and the endothelial intracellular adhesion molecules 

1 (ICAM-1). The transmigration of leukocytes by diapedesis is augmented by platelet 

endothelial cell adhesion molecule 1 (Panes et al., 1999). Mesangial/tubular cell 

death and development of thrombosis after IRI are promoted by leukocyte products 

released (ROS, elastases and proteases) in the oedematous interstitial space. In an 

IRI model of rat, the inhibition of P-selectin receptors by a soluble P-selectin ligand 

showed a significant decrease in the inflammatory response when compared to the 

diseased group without treatment (Takada et al., 1997). 

 

1.3.1.4 Companion Animals 

 

The study of IRI in animal models has been widely used to understand the 

phenomena related to kidney transplantation, including delayed graft function, chronic 

allograft nephropathy and the effect of immunosuppressive drugs on the transplanted 

kidney (Ahmed et al., 2004). 
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Figure 1.6: Summary of events during reperfusion and final cellular products 
 
The sudden flow of oxygenated blood through the ischaemic kidney produces an increase in the xanthine 
oxidase activity with the subsequent formation of reactive oxygen species (ROS). 
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The model of ischaemia reperfusion injury using renal isografts in the rat 

allows the isolation of IRI from immunological alloantigenic factors and 

immunosuppressive drugs (Kusaka et al., 2000). Similar phenomena can be isolated 

and studied in animal models of renal auto-transplantation. The animal model of IRI 

can also help to understand the development of chronic kidney disease since both 

the initial renal damage and the progression to CKD are closely related to hypoxic 

cellular events (Basile, 2007). In both CKD and CAN, the main final histopathological 

feature is tubulointerstitial fibrosis, responsible for disease progression. 

  

In cats and dogs, a 60-minute period of RWI can produce sufficient damage 

to generate important functional and histological injury following 3 days of reperfusion 

(Jiang et al., 2010; Kitada et al., 2002; Schmiedt et al., 2011). Similar acute 

phenomena have been shown in feline renal isografts  (Bernsteen et al., 1999) and 

in renal autograft  models of cat (Mehl et al., 2006) and dog (Dempster et al., 1953). 

One kidney graft out of five developed generalized diffused interstitial fibrosis after 21 

days (Mehl et al., 2006). The studies above show the high degree of sensitivity in the 

acute response to IRI in both species. In the cat, IRI may be a potential complication 

for the development of renal fibrosis, suggesting that hypoxia may be an important 

factor for the development of CKD. 

 

 

1.4 Chronic Kidney Disease (CKD) 

 

1.4.1 CKD in Humans 

 

In man, chronic kidney disease may be defined as the sustained and 

irreversible decrease in renal function with a disease progression of ≥ 3 months, 

irrespective of cause. CKD is the most common disease affecting kidneys. CKD is 

defined as a GFR <60ml/min per 1.73 m2 or albumin-to-creatinine ratio > 30mg/g, the 

main parameters for CKD staging (Levey et al., 2010).  

 

Epidemiology: According to a recent national hospital survey in USA, 17% of 

people between 60-69 years of age presented moderate CKD (Coresh et al., 2007). 

Cardiovascular disease is the most common cause of death in patients with CKD 

(Keith et al., 2004; Tonelli et al., 2006). In the UK, amongst the potential aetiologies 

of CKD, diabetes heads the list followed by glomerulonephritis (independent of 

aetiology) with hypertension in third place (Farrington et al., 2009). Major medical risk 
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factors associated with CKD, in patients over 65 years of age, include hypertension, 

dyslipidemia, chronic lung disease, coronary heart disease, diabetes mellitus, stroke 

or transient ischemic attack and peripheral arterial disease (Go et al., 2004). CKD 

aetiology can be divided according to susceptibility, initiation and predisposition 

factors.   

  

Susceptibility and initiation factors: Familial predisposition, race, low birth 

weight, infant malnutrition, male and elderly people have been described as 

susceptibility factors whereas hypertension, diabetes, hyperlipidaemia, obesity, and 

smoking as initiation factors.  

 

Progression factors: Familial diseases, race, age, and gender are defined as 

non-controllable factors; metabolic controllable factors are diabetes, obesity, 

hyperlipidemia, hyperuricemia and the subsequent systemic hypertension, 

cardiovascular and renal disease.  Other progression factors include smoking, daily 

drinking of alcohol and frequent non-steroidal anti-inflammatories (Meguid El Nahas 

et al., 2005). 

 

Staging: CKD is divided into five stages, mainly in relation to the eGFR. Stage 

1 (>90ml/min/1.73m2); stage 2 (60-89 ml/min/1.73m2); stage 3 (30-59 ml/min/1.73m2); 

stage 4 (15-29 ml/min/1.73m2) and stage 5 (<15ml/min/1.73m2). Staging based on 

the albumin/creatinine ratio may be divided into stage A1 optimal (<10mg/g); stage 

A1, high normal (10-29mg/g); stage B, high (30-299 mg/g) and stage C, very high 

(>300mg/g) (Levey et al., 2010). 

 

General Management: The management of CKD has two approaches, life 

style modification (diet, exercise and weight reduction) and drug therapy. The aims 

for pharmacological intervention can be divided in early and late stages of CKD. In 

early stages of CKD, the main aims are: decreasing blood pressure, decreasing 

proteinuria and controlling hyperglycaemia (diabetic patients) and serum cholesterol. 

For the later stages of CKD, a broader range of treatments are available to cover 

other complications including hyperparathyroidism, anaemia, heart disease, 

malnutrition, hypovitaminosis A, hyperphosphataemia and iron deficiency (Meguid El 

Nahas et al., 2005). 

 

Replacement: Once the patient has been diagnosed with CKD stage 5, also 

known as end stage renal failure (ESRF), the only effective treatment is renal 
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replacement therapy. The aims of renal replacement are to remove cellular catabolic 

products and to maintain an adequate water/electrolytes balance, achieved by either 

dialysis or kidney transplantation. According to two global overview studies in patients 

with ESRF, around 23% of ESRF patients undertook kidney transplantation while the 

remaining 77% used dialysis (69% haemodialysis and 8% peritoneal dialysis) 

(Grassmann et al., 2005; Moeller et al., 2002). Peritoneal dialysis provides only 

approximately 10% of the normal renal excretory function (Sehgal, 2002) and has 

some important complications such as amyloidosis, diabetes mellitus, peritonitis, 

mineral and vitamin deficiencies. Haemodialysis, on the other hand, can trigger 

complications such as mineral imbalances, hypotension, fever, clot alteration, 

haemolysis and arrhythmias (Chadha et al., 2010; Shroff et al., 2009).  

 

         Chronic Allograft Nephropathy: Chronic Allograft Nephropathy (CAN) is 

defined as the decrease in renal function in the presence of tubulointerstitial fibrosis 

and tubular atrophy within the transplanted kidney. In a retrospective study, CAN 

showed a significant impact in more than one-fourth of patients subjected to kidney 

transplantation (Cecka, 2000).  CAN risk factors are divided in two main areas; 

alloantigen independent and dependent factors. Regarding alloantigen independent 

factors, ischaemia reperfusion injury heads the list, followed by donor age, aetiology 

of renal failure and kidney size mismatch (Fellstrom, 2003; Paul, 1999). Concerning 

alloantigen dependent factors, these are related to human leukocyte mismatch and 

commonly associated with classic acute rejections (Fellstrom, 2003; Paul, 1999). 

During kidney transplantation, the ischaemic stage may be divided in two main 

conditions, warm ischaemia (WI) and cold ischaemia (CI). WI occurs when the kidney 

stops receiving blood supply with a temperature around 37◦C. This stage is subdivided 

in two phases, first warm ischaemia (FWI) and second warm ischaemia (SWI) 

(Collard et al., 2001). 

 

FWI begins when the blood flow of the donor kidney, from either cadaveric 

donors (non-heart-beating donors) or heart-beating donors, is totally or partially 

blocked, and ends when the kidney is perfused with cold preservation solutions and 

stored in a cold environment. This phase has been associated with graft survival as 

FWI of more than 50 minutes has been shown to increase the possibility of graft 

rejection episodes significantly (Vanes et al., 1983). On the other hand, less than 30 

minutes of FWI prevents important cellular damage (Secin, 2008).  
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SWI goes from the time the kidney is not in a cold environment and free of cold 

preservation solution, to the time the donor kidney is anastomosed before 

reperfusion. In this phase, there is evidence showing that a higher development of 

acute tubular necrosis can occur when anastomosis of conduits lasts for more than 

35 minutes (Halloran et al., 1988). However, there is also evidence suggesting that a 

more relevant renal damage may take place during cold ischaemia time rather than 

SWI itself (Szostek et al., 1999). 

  

CoId ischaemia takes place outside the donor’s body and involves a cold 

sequence which lasts from the time the kidney is stored in a cold environment (0 - 4 

◦C) with cold preservation solutions  to the time it is placed in the recipient. An increase 

during the cold ischaemic time (CIT) has been associated with delayed graft function 

(DGF) (Kyllonen et al., 2000). Moreover, the association of CIT with the 

overexpression of major histocompatibility complex II (MHC II) mRNA in rats has been 

shown in proximal tubular cells and vascular endothelium (Kouwenhoven et al., 

2001). A similar immunogenic phenomenon was also studied in mice where the 

expression of MHC I and II mRNA was noticed in proximal tubular cells after long CIT 

(Shoskes et al., 1990). These findings suggest that ischaemia is not only an 

alloantigen independent factor, but also closely related to alloantigen dependent 

events. 

 

1.4.2. Hypoxia 

 

         Experimental evidence has demonstrated that a reduction in renal oxygenation 

is a common and progressive final pathway in CKD (Nangaku, 2006). This hypothesis 

suggests that renal tissue under oxygen misbalances increases extracellular matrix 

deposition, mainly in the tubulointerstitial space, promoting fibrosis and therefore 

development and progression of CKD. This hypothesis has been validated by 

different researchers in vitro, in vivo and using human tissue (Heyman et al., 2008; 

Norman et al., 2006). The sustained loss of peritubular capillaries may continue the 

damage caused by ATN leading to tubulointerstitial fibrosis. This pathway has been 

represented in animal models of ischaemia reperfusion injury, 5/6th subtotal 

nephrectomy and models of AKI using nephrotoxic drugs (Badr et al., 1988; Basile, 

2004; Pillebout et al., 2001; Yuan et al., 2003) where hypoxia has been recognized 

as core trigger factor for CKD development and progression. Hypoxia promotes 

fibroblast activation, proliferation and epithelial mesenchymal transition, stimulating 
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extracellular matrix synthesis due to deposition of collagen proteins in the 

tubulointerstitial space (Desmouliere et al., 2005; Norman et al., 2000). 

 

Kidney fibrosis is defined as the uncontrolled and progressive deposition of 

connective tissue in the tubulointerstitial and glomerular space. It has been suggested 

that renal fibrosis is a parallel event to the primary inflammatory response (Efstratiadis 

et al., 2009). However, with more evidence, it has been proposed that renal ischaemia 

plays an important first step role in the development of renal fibrosis (Bonventre, 

1993), as seen in chronic allograft nephropathy. 

 

1.4.3 Renal Fibrosis  

 

 In humans, there is evidence of the association between AKI and the 

development of CKD (Finn, 1993; Venkatachalam et al., 2010; Wald et al., 2009). In 

vivo animal models have shown that renal recovery after IRI is often not complete; 

this lack of recovery predisposes the kidney to generate sequelae. Residual structural 

damage can progress inducing sustained tubular damage with the subsequent 

substitution of functional parenchyma by renal fibrosis (Devarajan, 2006; 

Venkatachalam et al., 2010). Fibrogenesis is mainly carried out by fibroblasts and 

leukocytes. Nonetheless, particularly in kidney, endothelial, tubuloepithelial and 

mesangial cells are the crucial units which contribute to the development of fibrosis 

(Verderio et al., 2004). A potential link between vascular endothelial damage and 

CKD has also been suggested to be a crucial factor for the development of renal 

fibrosis following acute kidney injury (Basile, 2007).   

 

1.4.3.1 Pathophysiology 

 

Acute: Renal IRI culminates in nephron death due to tubular epithelial cell 

death via necrosis and apoptosis (Ueda et al., 2000). Later on, from the remaining 

nephrons, the severely injured ones experience a decrease in glomerular filtration 

rate (GFR) (Daughart.Tm et al., 1974; Daugharty et al., 1975). This is due to the fact 

that damaged tubules produce intratubular cellular debris increasing the tubular 

internal pressure. The blocked tubules increase the intratubular fluid pressure 

separating the tubular cells from the basement membrane. Afterwards, the uncovered 

basement membrane is not able to retain the fluid which leaks back into the 

peritubular capillaries with the subsequent reduction in glomerular plasma flow 

followed by decrease in GFR. Furthermore, the intratubular casts, composed of 
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cellular debris, lead to tubular blockage with the subsequent oedema due to the 

increase in pressure, proximal to the obstruction (Bonventre, 1993). The initial tubular 

epithelial cell inflammation apparently takes place more in the outer medulla, 

producing a mechanical secondary site of injury that keeps and enhances the 

ischaemic event (Yamamoto et al., 1984).  Therefore, probably the histopathological 

evaluation for acute damage should probably focus in both outer medulla and cortex. 

Regarding the less injured remaining nephrons, an increase in single nephron GFR 

might be noticed. However, due to the extensive damage, the nephrons still show an 

overall decrease in GFR. The increase of GFR for a single nephron seems to be 

associated with a compensatory glomerular hypertrophy, allowing an increase in the 

glomerular plasma flow and intracapillary pressure, followed by endothelial shear 

stress which in turn induces endothelial activation and the arrival of inflammatory cells 

(Seal et al., 2005), see Figure 1.7. 

 

Chronic: Once the main acute phase of the inflammatory cascade has 

developed, a transitional and overlapped tissue repairing phase takes place in the 

injured kidney. The main actors are the infiltrated and local fibroblasts in the interstitial 

space, which participate in the synthesis and deposition of collagen fibres, producing 

an expansion in the extracellular matrix translated as kidney scarring. This 

histopathological change together with tubular degeneration culminate in tubular 

malfunction leading to tubulointerstitial fibrosis, glomerulosclerosis and multilayering 

of peritubular capillaries (Remuzzi et al., 1998). Histological changes are 

degenerative and irreversible (Boor et al., 2007). 

 

1.4.3.2 Molecular Pathophysiology 

 

Acute: The first molecules involved after IRI are P and E-selectin, which reach 

their maximum level 6 hours after the initial injury. This phenomenon promotes 

leukocyte arrival (mainly neutrophils), adhesion and aggregation with the subsequent 

cellular transmigration to the interstitial space. On the other hand, after 2-5 days 

macrophages infiltrate interstitial space (Takada et al., 1997) releasing  different 

cytokines and growth factors, mainly transforming growth factor β (TGF-β), interleukin 

6 (IL-6), IL-1, fibroblast growth factor (FGF), vascular endothelial growth factor 

(VEGF) and platelet derived growth factor (PDGF). 
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Figure 1.7: Development of renal fibrosis following ischaemia reperfusion injury 

 
Renal IRI culminates in nephron death loss followed by hypertrophy of single nephron which in turn 
increases the GFR promoting endothelial and cytokines activation. An increase in vascular lumen 
proliferation together with infiltration of inflammatory cells and fibroblasts into the extracellular matrix will 
generate atherosclerosis, tubulointerstitial fibrosis and glomerulosclerosis. 
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The last two are described as wound healing factors (Verderio et al., 2004). 

Concerning lymphocytes Th1; IL-2, tumour necrosis factor α (TNFα) and interferon 

gamma (IFN-γ) are the principal cellular products in the acute inflammatory stage 

(Verderio et al., 2004).  HIF also plays an important role. In a HIF-stimulated model 

of rat by inhibition of prolyl-hydroxylase, it was found that in approximately 90 % of 

the juxtamedullary cortex (inner cortex), the transcription of erythropoietin was 

localized  in cortical fibroblasts and up-regulated through HIF-2α (Paliege et al., 

2010), suggesting that erythropoietin level might be proportional to HIF-2α expression 

in the juxtamedullary cortical tissue when hypoxia is present.  

 

Chronic: This transitional phase is mainly orchestrated by two inflammatory 

cytokines TGF- β and FGF (Verderio et al., 2004), perhaps due to their close link with 

fibroblast activation and expansion of extracellular matrix. Furthermore, 

transformation of epithelial tubular cells into mesenchymal fibroblasts has been 

suggested as one of the main mechanisms to develop renal fibrosis (Strutz et al., 

2006). In vitro, for instance, renal epithelial cells have shown significantly higher levels 

of collagen I, III and IV under TGF- β stimulation (Creely et al., 1992). Epithelial 

mesenchymal transition also occurs in pericytes in the mouse with normal kidney 

function and these cells are the major source of myofibroblast in the ureteral 

obstruction model of kidney fibrosis, generating mainly collagen I (Lin et al., 2008). 

HIF has been implicated in the cellular transition in tubuloepithelial cells in vitro. In 

the HIF-1α knock out mouse with unilateral ureteral obstruction, a substantial 

decrease of fibrosis was noticed in contrast to the wild type group (Higgins et al., 

2007).  The HIF signalling has been associated with the development of fibrosis 

through the activation of transforming growth factor-β1 (TGF-β1), its role in 

endothelial mesenchymal transition pathway and inflammatory processes (Haase, 

2006). 

  

After inflammation, fibroblasts provide stabilization and tissue development. 

These cells produce fibronectin collagen I, III and IV, which are the most important 

elements in the extracellular matrix (ECM) for fibrosis generation. Also 

metalloproteinase enzymes (MMP) are synthesized by fibroblasts. Other elements in 

the extracellular matrix include: glycoproteins, glycosaminoglycans, reticular and 

elastic fibres (Strutz et al., 2006). Fibroblast activation  is performed through PDGF, 

TGF- β1 or carried out by FGF 2, in an autocrine way (Strutz et al., 2002). 

Interestingly, the renin-angiotensin system has been associated with the 

development of fibrosis through the indirect activation of fibroblast by increasing the 
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levels of TGF- β1 in tubular epithelial cells. Moreover, it has been shown that TGF- 

β1 stimulates in vitro the expression of renin in juxtaglomerular cells (Border et al., 

1998). However, other mechanisms such as hyperglycaemia, hypoxia and ECM – 

integrin interaction and fibroblasts activators have also been described (Qi et al., 

2006; Strutz et al., 2006). Fibroblasts reach the injured area by migration of local 

fibroblasts from the medulla to the cortex or by differentiation of epithelial or 

endothelial cells (Zeisberg et al., 2008). They can also adopt a myofibroblast 

phenotype expressing α-smooth muscular actin (α-SMA); this property compacts the 

injured area by contraction of actin fibres (Desmouliere et al., 2005). 

 

1.4.3.3 Extracellular Matrix 

 

 ECM can be easily defined as the acellular material around cells; it includes the 

interstitial space and the basement membrane.  This meshwork-like substance is an 

intercellular scaffold  substrate for cellular support,  movement, development, 

differentiation, and intercellular networking (Hynes, 2009). It is mainly composed of 

collagen proteins I, III, IV and V. However, other important elements are found in the 

ECM: elastin, which keeps the anatomic form of tissue; fibronectin, important in cell 

adhesion migration and differentiation; proteoglycans, responsible for water retain; 

and glycosaminoglycans, vital for  tissue resistance to high levels of compression 

(Strutz et al., 2006). Normally, there is a balance between synthesis and degradation 

of ECM. However, in renal disease such as in CKD, the synthesis of ECM is altered. 

There are many pathways to understand the development of renal fibrosis during 

renal disease. In CKD, the normal rate of ECM degradation is thought to be overcome 

by the pathological deposition of collagen fibres resulting in expansion of ECM. Also, 

it has been shown that CKD itself reduces the degradation of the ECM with the 

following accumulation of matrix.  Additionally, the pathological expansion of ECM 

can be further enhanced when cross-linking of collagen proteins occurs in the 

interstitial space and basement membrane. When collagen cross-linking occurs, 

fibrosis accumulation (reversible scarring stage) of extracellular matrix suffers a 

transition to fibrosis deposition, which is a stage where fibrosis cannot be easily 

degraded by natural proteolytic systems promoting fibrosis build up. The cross link  of 

collagen fibres and elastin occurs mainly by three pathways; non enzymatic glycation 

/ lipid peroxidation (Maillard reaction), lysyl oxidase and transglutaminase enzymes 

(Popov et al., 2011). 
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 Non-enzymatic glycation is a reaction between proteins and reducing sugars 

(ribose and glucose), it is implicated in aging of tissue proteins as well as in 

hyperglycaemia. This reaction produce chromophores and fluorophores called 

advanced glycation end products (AGEs) which react with amino groups of collagen  

producing collagen-AGEs cross link products (Copeland et al., 1987). 

 

 Lysyl oxidases (LOXs) are a group of 5 characterized copper enzymes,  

responsible of the peptidyl lysine oxidation converting specific residues of  

hydroxylysine and lysine of α-aminoadipic-δ-semialdehyde; these converted residues 

produce an insoluble cross link in elastin and collagen fibres (Lucero et al., 2006). 

Interestingly, these enzymes seem to be up regulated by TGF-β1 (Goto et al., 2005). 

Animal models of lung, liver, dermal, renal (Di Donato et al., 1997; Higgins et al., 

2007; Yang et al.) and arterial fibrosis have shown a reduction in the level of scarring 

when inhibiting LOX’s; however, it has also been associated with the development of 

severe alterations in musculoskeletal, vascular and the respiratory system (Maki et 

al., 2005). 

 

 Transglutaminases (TG’s) were discovered in 1959 (Clarke et al., 1959). In 

1968 the first type was described as a fibrin stabilizing factor, better known as protein 

factor XIIIa (Pisano et al., 1968). Currently, 9 types of transglutaminase have been 

identified in kidney, brain, skin, testis, liver, heart, lung and prostate (Selkoe et al., 

1982). Their more widely studied roles include wound healing and the erratic increase 

of extracellular matrix after cellular stress (Telci et al., 2006). 

 

 

1.5 Transglutaminase 2 

 

 TG2 is an enzyme expressed in organs such as bowel, skin, prostate, testicles, 

brain, lung, heart, liver and kidney. Macrophages, hepatocytes, skeletal, smooth 

muscle cells and astrocytes cells are able to secrete TG2 when these are exposed to 

stress factors (Haroon et al., 1999b; Ientile et al., 2007; Verderio et al., 2004). In the 

kidney, TG2 has been identified in epithelial, mesangial, endothelial cells and can be 

secreted when cells are exposed to stress factors, such as hyperglycaemia and 

hypoxia (Ientile et al., 2007; Verderio et al., 2004). 
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 TG2 in the human has a molecular weight of 80kDa and is composed of 687 

aminoacids and it is transcribed in the chromosome 20 locus 12. In the cat, TG2 also 

consists of 687 amino acids as a secreted protein (protein ID 

ENSFCAP00000004444) (Flicek et al., 2014). Interestingly, between human and the 

cat TG2 there is a 90% protein sequence homology, according to the Ensembl 

genome data base (Flicek et al., 2014). 

 

 TG2 has calcium dependent and independent activities. Transamidation and 

deamidation are calcium dependent functions whereas G-protein, disulphide 

isomerase activity, protein kinase binding and hydrolysis of GTP are considered 

calcium independent activities. From all these functions the most studied is 

transamidation. Transamidation is the transfer of a NH2 from glutamine to lysine. 

Transamidation can be explained in two main phases. First phase involves a 

nucleophilic attach, which is the binding of the thiol group from cysteine 277 to the 

carboxamide of a glutamine residue (acyl-donor). This phenomena releases 

ammonia and produces a thioester intermediate bond between the cysteine 277 and 

the substrate.  In the second phase, the thioester intermediate can then be attacked 

by the surface amine (acyl-acceptor) of a second substrate (lysine residue). The 

residues in collagen protein are rich in lysine and glutamine (Gundemir et al., 2012). 

Regulation of TG2 is achieved through the GTP/GDP hydrolysis regulation, Ca2+ 

concentration and regulation of disulphide bonds between cysteine residues via redox 

processes (Jin et al., 2011). 

 

 TG2 transamidation accelerate the extracellular matrix build up through the 

creation of pro-fibrotic and irreversible cross linking products of epsilon (γ-glutamyl)-

lysine dipeptide bonds, which are highly resistant to proteolytic degradation (Johnson 

et al., 2004a; Johnson et al., 1999; Verderio et al., 2004). TG2 is an important 

phagocytic enhancer, plays important roles in fibroblast movement, adhesion and 

spreading (Gaudry et al., 1999) and it has been implicated in other activities such as, 

cell death modulator by promoting intracellular cross link using fibronectin 1 (FN1) as 

substrate and preventing microtubular and substantial DNA damage (Verderio et al., 

1998).  

 

 

 

 

http://www.ensembl.org/Felis_catus/Transcript/ProteinSummary?db=core;g=ENSFCAG00000004808;r=A3:21403010-21432684;t=ENSFCAT00000004809
https://en.wikipedia.org/wiki/Lysine
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  Intracellularly, TG2 is inactive due to the low levels of Ca and the high levels 

of GDP/GTP (guanosine-5'-triphosphate/ guanosine-5'-diphosphate), maintaining a 

closed structural conformation avoiding the interaction of cysteine 277 with any 

substrate. TG2 expression can be found in nuclei, cytosol and plasma membrane. 

Interestingly, TG2 does not have a signal peptide, therefore, the common 

endoplasmic reticulum/Golgi secretion pathway is not utilised by this enzyme. FN1 is 

considered as important protein for TG2 secretion (Gaudry et al., 1999; Telci et al., 

2006; Verderio et al., 2004). However, other studies have suggested other proteins 

for TG2 externalization (Telci et al., 2006). Zemskov et al (2013) showed that TG2 

may be exteriorised through perinuclear recycling endosomes. This mechanism 

allows TG2 protein to be delivered inside these vesicles to the plasma membrane and 

then externalized to the extracellular space. However, further research has to be done 

to clarify the exact mechanism to transport TG2 extracellularly. 

 

 TG2 enzyme has four domains, amino terminal sandwich, first, second barrel 

domain and a core domain, where the catalytic triad is located. The triad is composed 

of cystein-277, histidine-335 and aspartame-358 aminoacids allowing the 

transamidation activity of the enzyme (Liu et al., 2002). TG2 monomer in ribbon 

drawing is shown in Figure 1.9. Second barrel and amino terminal sandwich have 

been identified as vital TG2 elements for externalization and therefore potential 

targets for drug inhibitors (Hang et al., 2005). The mechanisms can be divided in two 

pathways, direct and indirect increase of extracellular matrix. 

 

Direct Increase in ECM: When the specific cells are damaged by hypoxia, 

oxidative stress, hyperglycaemia, glutamate exposure, UV or inflammatory cytokines 

(Ientile et al., 2007), TG2 is mobilized to the extracellular space. In the new 

environment, the enzyme encounters a high concentration of Ca+ that interacts with 

the catalytic core triggering a transamination reaction. Through this reaction, a new 

amino bond is formed linking mainly two peptides localized in collagen proteins, γ-

carboxamide glutamic acid and epsilon-amino group of lysine, see Figure 1.8. 

 

Also, low levels of guanosine-5'-triphosphate interact and improve the 

catalytic transamination. TG2 also cross links, at a lower rate with other substrates 

such as  apolipoproteins, fibronectin, vimentin and dermatan sulphate proteoglycans 

(Gupta et al., 2007). The cross link products are highly resistant to proteolytic, 

mechanical or chemical interactions (Fisher et al., 2009; Griffin et al., 2002; Johnson 

et al., 2003; Johnson et al., 2007; Verderio et al., 2004).  
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Figure 1.8: Cross linking product of collagen fibres through the TG2 pathway 
 
Once Transglutaminase 2 is externalized to the extracellular space, interacts with calcium promoting the 
formation of an amino bond which binds γ-carboxamide glutamic acid and ϵ-amino group of lysine 
peptides in collagen fibres. 
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Figure 1.9: Ribbon drawing of a human TG2 monomer with bound GDP 

Upper drawing. Green, red, cyan and yellow represents the sandwich domain, catalytic core, first and 
second barrel domain, respectively. GDP is shown as a ball and stick model between the catalytic core 
and the first barrel. Lower framed drawing represents the magnification of the catalytic core consisting 
of Cys-277, His-335, Asp-358, Tyr-516 and GDP using a ball and stick model. Upper and lower drawing 
were taken from (Liu et al., 2002). 
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 Indirect Increase in ECM: TG2 can regulate one of the most well-known 

fibrogenic cytokines, TGF-β1 (Huang et al., 2010; Khalil, 1999). Studies have shown 

that TGF-β1 is secreted inactively as latent form of TGF- β (L-TGF-β1) and later this 

is catalysed by TG2. Also, TG2 may recruit the latent form of TGF-β1 to the 

extracellular matrix followed by cytokine activation (Huang et al., 2010; Kojima et al., 

1993; Nunes et al., 1997). Researchers from the Academic Nephrology Unit / The 

University of Sheffield showed that a partial reduction (approximately 20%) in the 

expression of  TGF -β1  can be achieved when cell lines overexpressing TG2 are 

subjected to TG2 inhibitors (Huang et al., 2010). 

 

Inhibition of transglutaminase activity: Currently, four interventional studies 

have been achieved to evaluate the role of TG2 in the development of renal fibrosis, 

these studies can be divided in two different approaches:- TG2 gene ablation in a 

models of UUO (Kim et al., 2010; Shweke et al., 2008); and based on 

pharmacological transglutaminase inhibitors in the rodent model of diabetic 

nephropathy (Huang et al., 2009) and subtotal nephrectomy (Johnson et a 2007). 

However, neither gene ablation, nor pharmacological approach has ever been 

attempted using a RWI stimuli in the rat. 

 

The compound used in the present research project is a chemical drug 

produced by Zedira biotech company under the name of D003, called in this thesis 

as TGI. TGI is a 2-[(2-oxopropyl)thio] imidazolium derivate, 220.70 molecular weight 

and a IC50 of about 1.0 µM (Zedira, Germany). TGI was originally developed to inhibit 

factor XIIIa as a therapeutic approach in the treatment of thrombosis (Freund et al., 

1994). However, further evaluation showed that its effectiveness to inhibit factor XIIIa 

was similar to drugs developed to inhibit transglutaminase 2 in the extracellular matrix 

(Skill et al., 2004). Using proximal tubular cells, Skill et al (2004) evaluated the in vitro 

effectiveness of TGI to inhibit TG2 activity. The drug was tested to determine its effect 

without a direct effect on either TGF-β regulation (Skill et al., 2004) or caspase 3, an 

enzyme involved in apoptosis (Johnson et al., 2007). Skill et al (2004) also ruled out 

the possibility that the inhibitory effect of TGI on collagen I/IV deposition was due to 

a down regulation in cellular collagen secretion or collagen transcription. Johnson et 

al (2007) showed TGI to reduce collagens in vivo (Johnson et al., 2007). 

 

TGI has access to both the intracellular and extracellular space (Lortat-Jacob 

et al., 2012), whilst a second inhibitor derived from the same chemical family N-

benzyloxycarbonyl-L-phenylalanyl-6-dimethyl-sulfonium-5-oxo-L-norleucine is not 
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able to access intracellularly due to its higher molecular weight (Baumgartner et al., 

2004); both TG inhibitors have just an extracellular effect. The transglutaminase 

enzyme, when active, transfers an acyl group from the substrate to the 

transglutaminase cysteine residue (active site). This action results in a thiol ester 

group which subsequently is catalysed via enzymatic aminolysis or hydrolysis. The 

thiol group can be easily inactivated by alkalinic compounds; however highly reactive 

alkalinic compounds can also affect other enzymes with a thiol group, decreasing 

specificity (Folk et al., 1977; Freund et al., 1994). TGI exerts its inhibitory effect via 

acetonylation of the active site cysteine residue, with release of the complementary 

thione; moreover, it has also a low reactivity as an alkylating agent (Freund et al., 

1994), improving specificity. Similar transglutaminase inhibitors to TGI have been 

tested in vitro at a concentration of 1mM without any effect on  several serine protease 

and thiol sensitive enzymes showing a high selectivity for the transglutaminase family 

enzymes (Freund et al., 1994).  

 

A novel approach to inhibit the activity of transglutaminase 2 isoform is by 

targeting the active site of the enzyme using antibodies to a specific epitope. The 

mouse inhibitory antibody to human TG2 (BB7) used in Chapter 4 is an antibody 

derived from a single murine clone B cell. For its development, different antigens 

containing specific epitopes from the active site of the human TG2 were injected in 

mice. B cells were isolated from spleen and mixed with myeloma cells generating 

immortal hybridomas. Each hybridoma cell produced a single type of antibody against 

a single epitope. The single hybridoma cells were separated into individual wells of a 

microtiter plate and tested for their ability to produce monoclonal antibodies. These 

antibodies were isolated, purified and then tested for their ability to inhibit the activity 

of TG2. After an extensive screening, BB7 antibody targeted an epitope in the TG2 

core domain resulting in the inhibition of human TG2 activity. The epitope is identical 

to the residues in the feline TG2 active site and just 82% identical to the one it the rat 

and mouse. Even though BB7 showed a useful level of in vitro inhibition in the rat 

TG2, it was not employed for in vivo studies due high risk of immunogenicity to the 

rat and production issues. Therefore, in the end, the employment of BB7 was just 

restricted to inhibition of feline TG2 in kidney tissue with CKD.  

 

 The development, screening and previous in vitro testing of BB7 antibody were 

exclusively performed by Dr Phil Watson, Dr Mabrouka Maamra and Professor Tim 

Johnson from the Department of Infection and Immunity - Medical School, University 

of Sheffield.  
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1.6 Hypothesis and Aims 

 

Hypothesis 

 

Is TG2 elevated in the domestic feline with CKD? Does the inhibition of TG2 

reduce the development of tubulointerstitial fibrosis in a rodent model of RWI which 

mimics CKD in the domestic feline and renal fibrosis secondary to CAN? 

  

 

 

Aims 

Firstly, a companion animal approach was employed. Kidney tissue, obtained 

post mortem, from domestic cats with/without azotaemia was analysed. Kidney tissue 

samples were obtained from the biorepository at the Royal Veterinary College 

(London, UK) in collaboration with Professors Jonathan Elliott and Harriet Syme. 

 

Chapter 3: To determine if the development of azotaemia in the domestic cat was 

associated with the progression of tubulointerstitial fibrosis in the kidney. 

 

Chapter 4: To determine if the development of tubulointerstitial fibrosis and 

azotaemia in the domestic cat was associated with an upregulation of the 

transglutaminase pathway, an enzyme system involved in protein cross-linking and 

matrix deposition. Additional studies were also performed, in vitro, to establish 

whether renal  transglutaminase enzyme activity in the cat could be decreased by 

either (a) a mouse monoclonal, neutralising antibody to human TG2 (selective 

inhibitor) or (b) by a non-selective, small molecule, chemical inhibitor of the 

transglutaminase enzyme group. 

 

Secondly, an in vivo laboratory model of renal fibrosis was employed. 

Tubulointerstitial fibrosis was induced in the Sprague-Dawley rat following a period of 

renal warm ischaemia (RWI) applied to the left kidney. 

 

Chapter 5: To establish if changes in renal function and the development of renal 

fibrosis were associated with an increase in the expression of TG2 protein and TG 

enzyme activity in the Sprague-Dawley rat using a unilateral model of RWI.  
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Chapter 6: To undertake an interventional study using a nonselective, small 

molecule, transglutaminase inhibitor (D003, Zedira, Germany) to establish whether 

the inhibition of renal TG following a period of RWI in the Sprague-Dawley rat is 

associated with a reduction in renal fibrosis, specifically in the tubulointerstitial space.  

  

 Thirdly, a technique of kidney transplantation was developed in the rat with 

the aim of undertaking TG2 interventional studies in a model of chronic allograft 

nephropathy, a renal fibrosis model largely influenced by renal warm ischaemia. 

 

Chapter 7A: Describes the precise details of the surgical technique employed.  

 

Chapter 7B: The donor and recipient techniques were carefully evaluated.  

  

 Disappointingly however, while the intricate technique of kidney 

transplantation in the rat was successfully established, TG2 neutralising antibodies 

were ultimately unavailable for use. 
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CHAPTER 2 

Material and Methods 
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2.1. Domestic Cat 

 

Blood samples were obtained via jugular vein. Plasma biochemical profiles 

were obtained almost at the time of sample collection. UPC measurements were 

obtained from samples that had been stored at -80°C. Plasma analysis was 

performed by Idexx Laboratories (Wetherby, UK). Urine protein and creatinine were 

measured using pyrogallol red and picric acid methods, respectively.  

 

Systemic blood pressure was performed using a doppler flow detector with a 

9.5 MHz probe as described previously (Syme et al., 2002).Time-averaged systolic 

blood pressure (SBPOT) was calculated using an average of 5 measurements of 

systolic blood pressure against time dividing the area under the curve by the interval 

between the first and last blood pressure measurements (Chakrabarti et al., 2013). 

 

Post-mortem kidney tissue was obtained for 15 cats from a bio-repository bank 

stored at -80◦C. An informed consent had been obtained from cat owners following 

euthanasia (Royal Veterinary College, London, UK). 14/15 cats were of domestic 

shorthair varieties (DSH), 1/15 was a Burmese. The average age at euthanasia was 

16.2 years (range 9 - 23.7). An essential inclusion criteria was the presence of a 

plasma biochemical profile obtained within a maximum of 2 months prior to 

euthanasia.  

 

The following normal ranges were employed: plasma creatinine 40-140 µmol/L; 

plasma urea; 2.7-9.2 µmol/L; plasma phosphate 1.29-2.84 mmol/L; urinary protein 

creatinine ratio (UPC), non-proteinuric ˂ 0.2, borderline proteinuric 0.2 - 0.4 and 

proteinuric ˃ 0.4.  

 

The degree of CKD was assessed according to the International Renal Interest 

Society (IRIS) staging system for feline CKD (Elliott et al., 2007). Plasma creatinine 

140-250 µmol/L (CKD stage 2); 251-440 µmol/L (CKD stage 3) and > 440 µmol/L 

(CKD stage 4) (Elliott et al., 2007; Syme et al., 2006) . Cats were divided in two 

groups; non-azotaemic control group, where plasma creatinine and urea were within 

the normal range (n=5), and azotaemic group (n=10). The azotaemic group included 

cats with CKD stage 2 (n=3), stage 3 (n=3) and stage 4 (n=4). 
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2.2. Sprague Dawley Rat 

 

All the procedures were carried out according to the regulations of the Home 

Office (Animals Scientific Procedures Act 1986, United Kingdom). An intensive 

course, composed of four modules, was undertaken at the University of Sheffield 

(Biological Services) to obtain a personal license to perform animal handling and 

surgical procedures in rats. Topics included UK legislation on animal experimentation, 

ethical and welfare issues together with a review of animal handling, husbandry, 

human methods of killing rats, anaesthesia and the basis of surgery. 

 

 Male Sprague-Dawley rats (Harlan, UK), 8-10 weeks, with an initial weight of 

250-300 grams were maintained at 20◦C, 45% humidity and with a light cycle of 12 

hours. Rats were housed in pairs with water and food ad libitum (Harlan 2018 Tecklad 

Global, 18% protein rodent diet).  

 

2.2.1. Anaesthesia  

 

 Induction of anaesthesia was performed by placing the rat in an anaesthetic 

chamber with 5% isoflurane and 8 L/min oxygen (Figure 2.1). Analgesia was provided 

by intramuscular (left rear limb) injection of buprenorphine 50μg/kg. Maintenance of 

anaesthesia was achieved with 1.5% of isoflurane and 1 L/min oxygen.  

 

2.2.2. Temperature 

 

The rat was placed on an operating board covered with a homeothermic blanket. 

The body temperature was measured using a homeothermic blanket control unit 

(Harvard apparatus, USA) (Figure 2.2) by introducing a probe in the rectum. The 

blanket was servo-controlled, increasing its temperature automatically when the 

reading was below 36.5◦C until reaching 37◦C. The tight control of animal body 

temperature is of particular importance in studies using warm ischaemia as the renal 

insult. 

 

2.2.3. Aseptic Technique 

 

The rat was shaved on the cranio-dorsal side of the lateral abdominal wall (6 

cm2). The shaved area was cleaned three times using chlorhexidine solution. The 

excess of solution was removed using a sterile swab. Sterile double layer paper roll 
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(30 cm2) with a middle 5cm2 central opening was used as surgical drapes to narrow 

the surgical field. The surgical procedure was performed with surgical mask, cap, 

sterile gloves and gown (Figure 2.3). The surgical procedure started when a diagonal 

(4 cm) skin incision was made in the left abdominal wall from the dorsal corner (close 

to the last rib) of the shaved area to the ventral-caudal shaved corner. 

 

2.2.4. Renal Warm Ischaemia 

 

 After the skin incision, an incision through the abdominal oblique external, 

internal and a portion of the transverse muscles was performed. The abdominal fat 

was identified and displaced on one side in order to visualize the kidney. 

Subsequently, Adson forceps were used to grab the perirenal fat from the caudal pole 

pulling the kidney out from the abdominal cavity without injury. With the aid of a 

surgical microscope (10x magnification), the adrenal gland and main conduits of the 

renal hilus (renal artery with the respective branches, renal vein and ureter) were 

identified. Later on, the excess of perinephric fat tissue near the renal hilus was 

carefully separated from the renal vascular conduits creating a small window of 0.5cm 

length in the each side of the renal vascular bundle. Afterwards, the renal artery and 

renal vein were clamped for 60 minutes with a 45○ angled vascular bulldog clamp, 

exerting 75-80 grams of pressure according to the manufacturer information (Vascu-

statt II, SCALAN international). Special care was taken to avoid clamping adrenal 

gland blood supply and ureter. To ascertain whether the kidney was being clamped 

properly; visual evaluation on the kidney surface was carried out in order to see the 

change of colour from reddish bright brown to dark brown (Figure 2.4).  The kidney 

with the clamp was placed back in the abdominal cavity to avoid heat loss. The 

muscular layers together with the skin were closed with a Bakus towel clamp. The 

wound and clamp were covered with a sterile gauze bandage soaked in NaCl 0.9%. 

After 60 minutes, the clamp was removed and the total recovery of colour was 

evaluated for 3 minutes (Figure 1.3, panel A, B and H).  

 

 The abdominal muscular layers (abdominal transverse, oblique internal 

/external muscular layers) were sutured as one layer with polyglycolic acid 4-0 

(braided coated fast absorbable suture, 3/8c, 19mm needle, B. Braun) using a simple 

continuous pattern. The skin was sutured using 4 single separated knots. The rat was 

placed in an incubator to recover consciousness. During all procedures the body 

temperature was kept between 36 - 37 ◦C. 
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Figure 2.1: Anaesthetic equipment 

 
Black arrow: anaesthetic chamber. Red arrow: Isoflurane adsorber. Yellow arrow: Oxygen meter.  

White arrow: Isoflurane vaporizer.  
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Figure 2.2: Homeothermic blanket control unit 
 
Left panel: Homeothermic Unit board displaying an optimal temperature. Right panel: Rectal probe in 

the rat. 
 
 
 
 
 

 
 

Figure 2.3: Surgeon using a microscope during a surgical procedure in a rat 
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2.2.5. Nephrectomy 

 

 Rats were nephrectomised by removal of the right kidney. Ligation of the ureter, 

renal artery and vein was undertaken by placing a Rochester forceps in the renal 

hilus. A 3-0 polyglycolic acid suture was placed below the forceps to ligate the area 

(Figure 2.5). Another pair of Rochester forceps were placed 0.5cm above the first 

forceps. The pedicle was cut using microvascular scissors in the free space between 

forceps. The other forceps were removed slowly to evaluate the effectiveness of the 

knot by visually assessing any degree of haemorrhage coming from the ligated 

pedicle. 

 

2.2.6 Renal Tissue Infusion 

 

 For interventional drug studies in rat models of RWI, drugs were delivered by 

renal tissue infusion allowing both a marked reduction in total drug dose and reduced 

potential for the development of side effects. The principle of intrarenal drug delivery 

using a subcutaneous osmotic pump was based on previous published 

methodologies (Huang et al., 2009; Johnson et al., 2007; Oldroyd et al., 1999). 

 

2.2.6.1. Fenestrated Cannula. 

 

         Fenestrated cannula was produced with the aid of a light microscope (10x 

magnification), using sterile gloves over a sterile working surface. The heat sealing 

end was tested inserting a 23 gauge needle in the open end, attached to a 3 ml air 

filled syringe. Air was injected into the sealed cannula followed by immersion of the 

heat sealing end in a universal container with sterile NaCl 0.9% for the detection of 

bubbles. Disposal of cannulas was done when air leakage (bubbles) was detected. 

Using a preheated 27 gauge needle with the aid of a thermocautery pencil, six 

bilateral fenestrations were performed on the polyethylene tubing between 2 and 

12mm from the sealed side. To visually ensure the fenestrations were inside the 

kidney when inserted, the cannula was ring marked with a permanent marker 

between 1.5 and 15 mm from the seal (Figure 2.6); therefore, when the cannula was 

correctly positioned in the kidney, the markings were not visualized. The plastic debris 

were flushed away by injecting sterile NaCl 0.9% into the cannula and then cannulas 

were dried out by centrifugation.   
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Figure 2.4: Effect of renal warm ischaemia on the renal surface colouration 
 
The left panel shows the normal kidney colour. The right panel represents the dark brown colour 

after 5 minutes of renal vascular clamping. 
 
 
 
 

 

 

 
 

Figure 2.5: Right nephrectomy 
 

Rochester forceps clamping renal hilar conducts and suture placed to ligate renal hilar conducts. 
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2.2.6.2. Osmotic Minipump 

 

 The complete osmotic pump has a length, diameter and weight of 5.1 cm, 1.4 

cm and 5.1 grams, respectively. The body is composed of cellulose ester blend 

osmotic (outer layer) and thermoplastic hydrocarbon elastomer (drug reservoir). The 

flow moderation is a stainless steel (56 gauge), 4.6 cm length metallic tube with a 

plastic removable plastic cap on top. The outer and inner diameters of the flow 

moderation are 0.08 and 0.05 cm, correspondingly. The pump consists of a cylindrical 

drug compartment, inert to aqueous drug formulations including bases, diluted acids 

and alcohols. The drug reservoir is encapsulated by an osmotic layer material, which 

in turn is surrounded by a semi-permeable non-expandable membrane, (Figure 2.7). 

 

The semi-permeable membrane allows the subcutaneous fluids to get in 

contact with the osmotic layer. The expanded osmotic layer compresses the 

cylindrical drug compartment promoting the expulsion of the drug solution at specified 

rates and volumes (Theeuwes et al., 1976).  2ML4 pump model was used to deliver 

2.5 μl/hr of 50 mmol/L of TG inhibitor (D003) or vehicle solution.  

 

2.2.6.3. Pump Loading  

 

 Osmotic minipumps were filled under aseptic conditions using a laminar flow 

hood. The pumps were manipulated using sterile gloves over a sterile surface (sterile 

blue roll paper or gloves inner wrapping) Figure 2.8, panel A. The steps to load an 

osmotic minipump are described below:- 

 

1.  The pump was weighed without solution together with its flow moderator. 

2.  The filling cannula was attached to a 3ml syringe and the solution was drawn up,  

      taking care not to introduce air (bubbles). 

3.  The pump was held with the exit port pointed upright (vertically). 

4.  The filling cannula was inserted and maneuvered to the bottom of the pump. 

5.  The plunger of the syringe was slowly pushed, holding the pump in an upright  

      position and slightly inclined to allow the exit of the displaced air by the injected  

      solution (Figure 2.8, panel B). 

6.  Excess solution was removed and the flow moderator fully inserted into the body  

     of the pump without the plastic cab, Figure 2.8, panels from C to E. 

7.  The filled pump was weight with the flow moderator in place.  

8.  The volume loaded was calculated from the difference in weight obtained in step  
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     1 and step 6.  All the loaded pumps were completely filled, with no less than 2ml. 

9.  The cannula was inserted in the exit of the flow moderator (Figure 2.8, panel F). 

10. The cannula was glued to the pump using a small drop of cyanoacrylate base  

      solution followed by a drop of sterile NaCl 0.9% (Figure 2.8, panel G). 

11. To prime the cannula. The pump with the attached cannula was placed in a  

      universal container with 7ml of sterile NaCl 0.9%, just enough to cover 90% of the  

      pump’s body, (Figure 2.8, panel H). The universal containers were closed and  

      placed in a 37◦C incubator overnight. 

 

2.2.6.4. Renal Tissue Cannulation  

 

 The insertion of the cannula into the kidney was performed using an intravenous 

catheter 18 gauge. Intra-renal cannulation was achieved using the following steps.  

The needle of the catheter is removed. The needle is bent several times using forceps 

to separate 3.5 cm length of the needle from the cutting edge tip (Figure 2.9, panel 

A). The 3.5 cm needle is reintroduced into the catheter until the sharp tip gets 0.5cm 

out of the plastic catheter (it can be pushed with the large portion of the cut needle) 

(Figure 2.9, panel B and C), The cannula is then cut with scissors allowing 4 cm length 

(Figure 2.9, panel D) . A free space of 1 cm between the blunt side of the needle and 

the plastic catheter is allowed to insert the plastic cannula (Figure 2.9, panel E and 

F). To ensure the cannula will remain attached to the pump during the study, a loop 

of silk 3-0 is displayed and knotted around the cannula embracing the external flow 

moderator (Figure 2.9, panel E).  

 

The catheter/needle works as guide to insert the cannula straight and smoothly 

within the kidney. The insertion starts from the caudal pole to the cranial pole slightly 

towards the convex side of the kidney. Afterwards, the guide is pulled out from the 

catheter, (Figure 2.10, top right and left panel). 

 

The fixation of the intra-renal cannula was achieved by placing a double knot 

(silk 3-0) in the cannula, cranial and caudal to the renal parenchyma. The knots were 

covered with cyanoacrylate to ensure fixation (Figure 2.10, bottom panel). 
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Figure 2.6: Fenestrated cannula for drug delivery 
 
Left panel shows a 12 cm 0.58-mm-polyethylene bore cannula with a fenestrated seal heated side. 
Right panel shows the intra-renal fenestrated cannula with 6 double side fenestrations. The cannula is 

ring market to delimitate the intra and extra renal parts. 
 

 

 

 

 
 

Figure 2.7: Minipump compartments 

 
From left to right the blue arrows are showing the agent loaded in the pump, osmotic layer,  
semipermeable membrane, impermeable reservoir and the external portion of the moderator covered by 
a plastic cab. Diagram from Alzet, USA. 
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Figure 2.8: Sequence for mini-pump loading 

 
Panel A. Preparation for pump loading in the hood laminar chamber. Panel B. The filling cannula 
attached to the syringe was inserted vertically into the pump. Panel C and D: Flow moderator with and 
without the plastic cab, respectively. Panel E: Partially inserted flow moderator into the pump. Panel F: 
Fully inserted flow moderator with a cannula attached. Panel G: Cannula glued with cyanoacrylate base 
solution. Panel H: Pumps in universal containers with 7ml of sterile NaCl 0.9%, ready for priming in 

incubator at 37◦C. 
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Figure 2.9: Sequence to prepare the cannula for renal insertion 

 
Panel A. The needle is removed from the intravenous catheter and cut 3.5 cm from the cutting edge tip. 
Panel B. The needle is reintroduced in the cannula. Panel C. The needle is then pushed with the cut 
cannula until the sharp tip is 0.5cm out of the catheter. Panel D. Black arrow and brackets are showing 
1 cm space between the blunt side of the needle and the end of the catheter. Panel E. The cannula is 

inserted into the 1cm space of the catheter (yellow oval). Knot embracing the cannula to the flow 
moderator (black circle). Panel F. Image magnification from yellow oval in panel E.  
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Osmotic Minipump Position 

 

Using a left lateral abdominal incisional approach, a small window was created 

between skin and muscle (dorsal corner of the incision) using blunt dissection towards 

the back of the rat, aligned slightly left along the spinal thoracic processes. This 

manoeuvre allowed the creation of a subcutaneous tunnel to insert the osmotic mini-

pump in the back of the rat (Figure 2.12, panel A and B). Subcutaneous blunt 

dissection was performed 7cm caudal of the lateral abdominal incision. The cannula 

was displayed forming a loop subcutaneously in the abdominal wall allowing the 

cannula to get into the abdominal cavity through the ventral corner of the muscular 

layer (Figure 2.12, panel from C to F. To avoid intra-abdominal displacement of the 

cannula, 3 single stitches were placed between the subdermal tissue and muscular 

fascia along cranial side of the loop. The purpose of displaying the cannula in this 

way was to avoid changing the natural position of the kidney when the cannula gets 

stretched during the daily activity of the rat. Furthermore, to avoid the subcutaneous 

displacement of the pump from the back of the rat towards the abdominal incision, a 

partial space narrowing using a continuous purse-string suture (allowing 1 cm 

diameter opening, smaller than the pump’s diameter) was performed in between the 

cannula and the pump (Figure 2.12, panel G and H). The intention of avoiding 

displacement of the pump was mainly to avoid pushing the fixed intra-renal cannula, 

inducing possible renal torsions and potential positional reduction of renal blood flow. 

Wound closure was performed as described previously. After 3 days infusion of TG 

inhibitor or vehicle, left renal hilar clamping was performed as previously described 

(section 2.2.4) to induce renal warm ischaemia, Figure 2.11.  

 

2.2.7. Urine collection, water/food intake and body weigh 

 

 The rats were placed in metabolic cages for 24 hrs to determine urine 

production and water intake (Figure 2.13). Terminal food intake was evaluated by 

subtracting the remaining food after 24hrs from the initial 75 grams of food previously 

placed in the food container.  

 

To avoid protein degradation, the urine was collected and preserved in chilled 

plastic containers (ice block). The urine was collected, filtered using Whatman filter 

paper 3MM, aliquoted and stored at – 20 ◦C. 
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Figure 2.10: Intra-cannulation and fixation 

 
Top left panel shows the cannula insertion from the caudal pole to the cranial pole of the left kidney 
using a modified catheter/needle as guide to insert the cannula along the kidney. Top right panel shows 
the cannula without the guide ready to be fixed. Bottom panel shows the fixation of the cannula by 

placing double knots of suture in the cannula (red arrows), cranial and caudal of the renal parenchyma. 
The text around the images (dorsal, ventral, caudal and cranial) indicates the lateral display of the rat on 
the surgical board. 
 
 
 
 

 
 
Figure 2.11: Colour of renal surface before, during and after renal warm ischaemia 

 
Left panel shows the normal red colour in a cannulated kidney. Middle panel shows the dark brown 
colour after 60 minutes of renal warm ischaemia; black arrow indicates a microvascular clamp. Right 
panel shows the renal colour after reperfusion in a cannulated kidney. 
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Figure 2.12: Subcutaneous positioning of osmotic pump 

 
Panel A and B. Subcutaneous blunt dissection on the dorsal thorax to positioning an osmotic pump. 
Panel from C to D. Panel E. Display of the plastic cannula under the skin. Panel F. Position of kidney 
after cannulation, the cannula is displayed subcutaneously forming a loop. Panel G. Visualization of the 
plastic portion of the flow moderator (black arrow). Panel H. Partial narrowing of the pump exit using a 

continuous purse-string suture (yellow arrow). 
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 Body weight monitoring was performed every 48 or 72 hours. The % of gained 

body weight was calculated by measuring the initial rat weight in grams before any 

surgical procedure (regarded as 100% body weight) and compared with the last 

recorded weight measurement. 

 

2.2.8. Blood 

 

 For longitudinal blood sampling, rats were anesthetized as previously described 

(section 2.2.1). A butterfly needle (23G) was introduced into one of the collateral 

caudal veins obtaining approximately 500μl of blood. The sample was allowed to clot 

and then centrifuged. The serum obtained was aliquoted in eppendorfs (50μl) and 

stored at - 20◦C. Terminal blood samples were collected by heart puncture through 

the diaphragm and centrifuged. Serum was aliquoted (100 μl) and stored at -20◦C.  

 

2.2.9. Systolic blood pressure 

 

2.2.9.1. Principle 

 

Systemic blood pressure (SBP) was measured using a tail cuff 

plethysmography. The tail cuff exerts pneumatic pressure on the base of the rat tail 

occluding the blood flow through an air inflation system cuff. The first pulse of the 

caudal collateral tail arteries was recorded while deflating the occlusion cuff. The data 

is captured photoelectrically from the tail cuff sensor and the signals are sent to the 

central amplifier (IITC life science BP amplifier) and codified to obtain the systemic 

systolic / diastolic blood pressure, mean and heart rate. The equipment to measure 

systemic blood pressure is shown in Figure 2.15.  

 

2.2.9.2. Procedure 

 

Each rat was placed in a pre-warmed rat restraint cage. A tail cuff sensor was 

placed in the base of the tail and screwed to the cage. Approximately after three 

minutes in the restraint cage, when the rat was quiet and calmed, the tail cuff was 

placed in the base of the tail (Figure 2.14), left panel and eventually covered with blue 

paper role. A warm environment was achieved by using heat lamp (Figure 2.14, right 

panel). Five readings per rat were carried out. This procedure was performed after 28 

days of ischaemia reperfusion injury or every 28 days for the 5 months study. The 

time spent per rat was approximately 10 minutes. 
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Figure 2.13: Metabolic cages 
 
White arrow shows the cage where the rat is placed. Yellow arrow shows the water container. Green 
arrow shows the food container. Black arrow shows the funnel to separate urine from faeces. Blue 
arrow shows ice block to store urine and faeces.  

 

 

 
 

Figure 2.14: Systemic systolic and diastolic blood pressure procedure 
 
Left panel shows a rat in a restraining cage with a tail cuff attached to the tail’s base. Right panel 

shows the rat covered and warmed with the aid of a lamp. 
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Figure 2.15: Equipment for systemic blood pressure in the rat 
 
Red arrows show the monitor (top arrow) and central amplifier unit (bottom arrow). Yellow, blue and 
white arrows show a tail cuff sensor, a sphingometer to measure the pressure on the tail cuff and a 

pump to inflate the tail cuff, respectively.  
 
 
 
 

 

 
 

Figure 2.16: Telemetry for systemic systolic and diastolic blood pressure 

 
Top linear graph represents the pressure (mmHg) exerted on the base of the rat’s tail with a pneumatic 
tail cuff. Bottom linear graph represents the blood pulsation of the caudal collateral tail arteries. The 
green line represents systole and the red line represents diastole. 
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The results for each measurement were displayed on the blood pressure 

monitor (IITC software). The determination of systole and diastole was determined 

manually according to the chart recording. The green line (systole) was placed where 

the pulsation began. The red line (diastole) was placed where the pulsation wave 

expanded the most (Figure 2.16). The results were obtained by calculating the mean 

of the values excluding the highest and lowest measurements.  

 

2.2.10 Kidney Tissue 

 

At the end of the study the rats were anesthetized as previously described. A 

longitudinal incision was performed from xyfoids to pubis. The left kidney was sized, 

pictured and weight without renal capsule. The kidney was incised longitudinally from 

the convex to the concave side; afterwards each half was cut in the middle to obtain 

four pieces of tissue. One piece was placed in formalin 10% for 24 hrs and changed 

to PBS afterwards. The other three pieces were placed in cryovials and stored in 

liquid nitrogen.  

 

 

2.3 Chemical Assays 

 

2.3.1. Creatinine  

  

2.3.1.1. Principle 

 

Creatinine phosphate is a break-down product of muscle metabolism. Its 

production is constant depending on the muscle body mass. This catabolic product is 

used to estimate the glomerular filtration rate by calculating its renal clearance from 

measurements of creatinine in the serum and urine. 

 

2.3.1.2. Procedure 

 

Creatinine was analysed in urine and serum by the Jaffe rate method (Levey et 

al., 1988), which utilises the colorimetric reaction between alkaline picrate and 

creatinine. The change in colour is quantifiable photometrically through absorbance 

readings at 520 nanometres (Bartels et al., 1969; Fabiny et al., 1971). The samples 

were run in a SYNCHRON ® System (Beckman Coulter Inc.) machine using CREm 

reagents (Beckman Coulter Inc.). The data was expressed in μmol/L and mmol/L for 
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serum and urine respectively. The measurements of creatinine in urine and blood 

were performed by the Department of Clinical Chemistry, Royal Hallamshire Hospital 

in Sheffield and supervised by Dr Martin Loxley. Cat samples were analysed by the 

Royal Veterinary College, Hatfield, UK. Assessment of serum creatinine was 

performed at day 0, 8 and 28 after, 56, 84, 112 and 140 of RWI according to each 

study. 

 

2.3.2 Rat Albumin  

 

2.3.2.1. Principle 

 

 Rat albumin was measured in urine by enzyme-linked immunosorbent assay 

(ELISA). A 96 well plate was coated with sheep anti-rat albumin antibody and the 

sample added to the plate. The secondary sheep anti-rat albumin antibody containing 

horseradish peroxidase (HRP) was then added followed by the enzyme substrate 

3,3’,5,5’-tetramethylbenzidine (TMB). The enzymatic colour reaction was proportional 

to the amount of secondary antibody bound to the primary antibody, which in turn, is 

bound to albumin. The optical signal was measured by spectrophotometry at 450 nm.  

  

2.3.2.2. Materials 

 

 Coating buffer; 0.05 M Carbonate-Bicarbonate with a pH of 9.6; washing 

solution, 50mM Tris, 0.14 M NaCl, 0.05% Tween 20, pH 8.0; blocking solution, 50mM 

Tris, 0.14M NaCl, 1% BSA, pH8.0; sample/conjugate diluent: 50mM Tris, 0.14M NaCl, 

1% BSA, 0.05% Tween 20, pH 8.0. For enzyme substrate and stopping solution 

3,3’,5,5’-tetramethylbenzidine (TMB) and 2 M H2SO4 were used, respectively.  

 

2.3.2.3. Procedure  

 

 For coating with capture antibody and blocking, 100μl of sheep anti-rat albumin 

(Lot A110-134A-2, BETHYL, 30mg/ml) were diluted in 10ml of coating buffer to pipette 

from the final solution 100μl in each well. The plate was incubated for 60 minutes at 

room temperature and washed. The washing procedure was repeated three times. 

200μl blocking solution was added, incubated for 30 minutes and washed 3 times. 

The standards were diluted in sample diluent according to the chart provided by the 

manufacturer (Rat reference Serum, Lot: RS10-100-4, BETHYL). Control group 

samples (Nx) were diluted from 1:500 to 1:128,000; disease group samples (RWI) 
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where dilute from 1:2,000 to 1: 1,024,000. 100μl of the diluted samples and standards 

were added to their specific wells and incubated for 60 minutes. Afterwards, the plate 

was washed 5 times.  

 

For HRP detection a sheep anti-rat albumin HRP conjugated (Lot A110-134P-

10, BETHYL) was diluted 1:10,000 in sample conjugate and 100μl pipetted in the 

wells followed by 60 minutes incubation. Later, the plate was washed to remove the 

unbound antibody-enzyme conjugate. For the enzyme substrate reaction, a tablet of 

3,3’,5,5’-tetramethylbenzidine (TMB) was diluted in 1ml dimethyl sulfoxide (DMSO). 

Once the tablet was dissolved, 9ml of phosphate buffer was added together with 2μl 

hydrogen peroxide (H2O2). 100μl substrate buffer was added to each well, and the 

plate incubated for 10 minutes at room temperature. The colour reaction was stopped 

by adding 100μl 2M H2SO4. The plate was read at 450nm. A standard curve is shown 

in Figure 2.17. The concentration of albumin in the urine was expressed in 

milligram/millilitre. Assessment of urine albumin was performed at day 0, 8 and 28 

after, 56, 84, 112 and 140 of RWI according to each study. 

 

 

2.4 Kidney Histology 

 

2.4.1. Haematoxylin and Eosin 

 

2.4.1.1. Principle 

 

Haematoxylin and eosin (H & E) is considered the gold standard staining for 

medical diagnosis. The staining consists in the oxidation of haematoxylin, which 

produces aluminium ions and haematein, staining in blue nuclei of cells, keratohyalin 

granules and calcium-based material. The blue nuclear staining is due to binding of 

the dye-metal complex to DNA. Other colour shades such as pink, red and orange 

are achieved by using an aqueous or alcoholic solution of eosin Y.  H & E staining 

was performed by Fiona Wright, from the Academic Nephrology Unit, Medical School-

the University of Sheffield. 

 

2.4.1.2. Procedure 

 

5μm paraffin embedded sections were deparaffinized and rehydrated using a 

standard protocol; 100% xylene (10 minutes); 100% ethanol (5 minutes); 90% ethanol 
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(5 minutes); 70% ethanol (5 minutes). After that, haematoxylin nuclear staining was 

applied in the sections and rinsed in tap water getting a blue colour. To remove the 

excessive background stain (differentiation step), a weak acid alcohol was used and 

sections were rinsed again. Later on, the eosin counterstain was applied. Slides were 

passed through several changes of alcohol to remove traces of water and then rinsed 

in several baths of xylene to clear the tissue. The slides were mounted in DPX 

mountant for histology.  

 

10 sections containing glomeruli (1 glomerulus per section) and tubules (4-5 

transverse tubules per section) per rat kidney were assessed by measuring the 

diameter of the Bowman’s capsule and tubules in µm (vertical and horizontal red 

lines) and the internal area of the Bowman’s capsule and tubules in µm2 (red line 

enclosing intra capsular and tubular white space), see Figure 2.18. The quantification 

of measurements was determined by the mean diameter in µm and area in µm2 of 10 

sections per tissue sample. 

 

2.4.2 Periodic acid Schiff & Haematoxylin  

 

2.4.2.1. Principle 

 

The periodic acid Schiff and Haematoxylin (PASH) protocol is based on the 

demonstration of extracellular polysaccharides such as glycogen and collagens 

through an oxidative process (Thompson, 1966). It also allows the detection of 

mucosubstances such as glycoproteins, glycolipids and mucins. The oxidation results 

in the formation of aldehyde grouping through carbon to carbon bond cleavage.  The 

dialdehyde compound is then detected by the Schiff reagent. The purple-magenta 

colour is the result of the restoration of the quinoid chromophoric group. 

 

Haematoxylin on the other hand, which is obtained from the log-wood tree, is a 

dye called haematein that is used in combination with aluminium ions. It stains acidic 

/ basophilic structures giving to the nucleus a purplish colour. DNA and RNA are both 

basophilic. Eosin is a negatively charged acid dye, which stains basic or acidophilic 

structures in red or pink. Eosinophilic or acidophilic structures includes filaments in 

muscle cells, intracellular membranes and extracellular fibres. 
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2.4.2.2. Procedure 

 

Kidneys were fixed in 10% neutral-buffered formalin and evaluated by a 

specialist veterinary pathologist (Dr Cathy Brown – University of Georgia) masked of 

all clinical history. Paraffin-embedded sections (3μM) were stained with haematoxylin 

and eosin (HE). A second section was stained with haematoxylin and periodic acid-

Schiff, for morphometric evaluation. 

 

Glomerulosclerosis scoring system ranged from 0 to 3 (Hughson et al., 2002). 

Twenty five glomeruli per sample (600x) were evaluated for the degree of mesangial 

matrix expansion. Score 0 = matrix encircling no more than 1 nucleus (no fibrotic tuft); 

1 = matrix could surround several nuclei but no extended to the peripheral capillary 

loops (between 1% to 25% fibrotic); 2 = moderate matrix expansion involving 

peripheral capillary loops affecting less than 50% of the glomerulus (between 26% to 

50% fibrotic tuft); 3 = moderate matrix expansion affecting more than 51% to 75% of 

the glomerulus. The score for each glomerulus was averaged and divided by the 

number of glomeruli measured. % obsolescence index was determined by counting 

all glomeruli in two 70-mm2 fields and recording the number that were obsolescent. 

Obsolescent glomeruli (score 4, matrix expansion affecting > 75% of the glomerulus) 

and the obsolescence index was combined with the mean glomerular score using the 

following formula: combined glomerular score = 0.04 x obsolescence index + mean 

glomerular score x (1 – obsolescence index/100) (Hughson et al., 2002). 

 

Tubulointerstitial fibrosis and inflammation scoring system ranged from 0 to 3 

with 0.5 intervals (Chakrabarti et al., 2013). Score 0 = no fibrosis/inflammation or rare 

small foci; 1 = mild or scattered multifocal areas of fibrosis/inflammation affecting less 

than 5% of the tissue section; 2 = moderate fibrosis/inflammation affecting 25% to 

50% of the section; 3 = diffuse or coalescing fibrosis / inflammation affecting more 

than 50% of the section (Chakrabarti et al., 2013). 
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Figure 2.17: Standard curve used to calculate ng/ml of albumin  
 
The Y axis represents the optical density (absorbance reading at 450 nm). The X axis represents the 
albumin concentration, Standard curve and albumin concentrations detected using a spectrophotometer. 
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Figure 2.18: Glomerular and tubular histomorphometry 

 
Panels A-B, C-F. Representative images of glomeruli and tubules, respectively, under 400x (A, C and 
E) and 600x (B, D and F) magnification. Panels A-B, show measurements for glomerular diameter 

(vertical and horizontal red lines) and Bowman´s capsule (yellow line enclosing the white Bowman’s 
area). Panels C-F, show intratubular area (red line enclosing the intratubular white space) and tubular 

diameter (vertical and horizontal red lines transecting transverse tubules) measurements and structural 
differences between Nx (C and D) and RWI tissue samples (E and F). 
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2.4.3 Masson’s Trichrome 

 

2.4.3.1. Principle 

 

This technique stains the extracellular matrix (mainly collagen proteins) in blue; 

therefore, blue colour correlates with the degree of kidney fibrosis. MTS can also stain 

in pink/red cytoplasm, nuclei in dark blue / black; therefore, erythrocytes, epithelial, 

endothelial, mesangial and infiltrated inflammatory cells can be stained.  The 

quantification of the colours can be achieved using multiphase image analysis 

allowing the identification of specific shade of colours.  

 

2.4.3.2. Materials 

 

Bouin’s solution; working Weigert’s iron haematoxylin solution; Biebrich scarlet-

acid fucshin, aniline blue solution (Sigma-Aldrich, UK), distyrene / plasticizer / xylene 

media (DPX) from BHD England and cold ice acetone were employed for this 

technique. 

 

2.4.3.3. Procedure 

 

5μm paraffin embedded sections were deparaffinized and rehydrated by using 

a standard protocol; 100% xylene (10 minutes); 100% ethanol (5 minutes); 90% 

ethanol (5 minutes); 70% ethanol (5 minutes). The slides were placed in Bouin’s 

solution overnight at room temperature and washed in tap water until no yellow colour 

was detected.  The slides were placed in working Weigert’s iron haematoxylin solution 

for 5 minutes (rinsed in deionized water), Biebrich scarlet-acid fuchsin, working 

phosphotungstic/phosphomolybdic acid and aniline blue solutions followed by 1% 

acetic acid for 2 minutes. The slides were dehydrated by rinsing them for one second 

in 70% ethanol, 90% ethanol and 100% xylene and mounted in DPX (Johnson et al., 

2007).  

  

2.4.3.4. Quantification 

 

Intra-glomerular mesangial area (IGMA): Using a CC-12 digital camera 

(Imaging Systems, Germany), a minimum of 10 IGMA fields (400x) were assessed. 

The assessed area was delimited by centring a squared frame on the glomerular tuft, 

excluding glomerular parietal epithelial cells and Bowman’s capsule. Measurements 
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were achieved by multiphase image analysis (Cell F, Olympus, Software Digital 

Image System, USA). The analysis of blue, red and white colour was performed using 

3 different colour phases. Indigo blue was used to highlight blue staining (extracellular 

matrix), green for red/pink staining (cellularity) and black to isolate white colour (free 

space), see Figure 2.19, panels A and D. 96% of colour coverage per image was 

required as minimum to assure the images were being properly evaluated.  

 

Tubulointerstitial space: For cortical tubulointerstitial space, at least 12 cortical 

fields were acquired (200x). The image analysis was performed as described before, 

Figure 2.19, panels C and D. For either the glomerular or tubulointerstitial space, the 

ratio of ECM to cell volume was calculated by dividing the percentage of indigo blue 

(ECM) between % of green (cellularity) as described by Johnson et al (2007). In the 

cat study, the area of positive stain was expressed as a percentage of the total field. 

 

 

2.5  Kidney Homogenates 

 

2.5.1. Homogenization 

 

2.5.1.1. Principle 

 

Tissue homogenization is a process where a tissue sample is brought to a state 

such that all fractions of the same sample are equal in composition. The mechanical 

action of tissue homogenization together with hyperosmotic solution used to preserve 

proteins promotes cell membrane disruption. This allows an accurate measurement 

of protein and enzymatic activity for both intra and extracellular compartments. 

 

2.5.1.2. Materials 

 

Protease inhibitors, solutions and equipment used are displayed in Table 2.1. 

 

2.5.1.3. Procedure 

 

A portion of kidney tissue is cut, weighted and chopped. If 1 gram of tissue is 

obtained, this is suspended in 9 ml of STE + 1 tablet protease inhibitor in a 15 ml 

centrifuge tube (10% tissue homogenate). 
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Figure 2.19: Masson’s trichrome staining image analysis 
 
Panels A and C show representative images of diseased glomeruli and tubulointerstitial space, 
respectively. The intra-glomerular mesangial area (IGMA) is delimited by a red square. Panels B and D 

are examples of multiple colour substitution from panels A and C, respectively; blue (extracellular matrix) 
is highlighted in indigo-blue; red (cellularity) in green and white (free space) in black.  
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The centrifuge tube is placed on a box with flaked ice. The tube is half 

embedded in liquid nitrogen for 2 seconds followed by the homogenizer probe 

introduction and homogenization of tissue for no more than 10 seconds, 3 times and 

24000 rpm. For each time, the homogenate is cooled down in liquid nitrogen for two 

seconds.  Between homogenization of different tissue samples the homogenizer 

probe is thoroughly rinsed. 1 ml of homogenate is pipetted in an eppendorf previously 

load with stainless steel beads. Eppendorfs are placed in the bullet blender in the cold 

room setting the controls for speed 8 during 5 minutes and centrifuged for 10 seconds 

to remove burrs of metal beads and non-homogenized tissue. See Figure 2.20. 

 

2.5.2 Kidney Protein  

 

2.5.2.1. Principle 

 

The assay is based on the reaction of proteins with an alkaline copper tartrate 

solution (reagent A) and folin reagent (reagent B)(Lowry et al., 1951). The mixture of 

reagent A with B into the protein samples allows the reaction between protein and 

copper at alkaline pH, with the subsequent reduction of Folin regent by the copper-

treated protein. The development of the yellowish colour in the samples is due to the 

reaction with the amino acids tyrosine and tryptophan; however, other aminoacids, 

cysteine, cysteine and histidine, contribute to a less extend.   

 

2.5.2.2. Materials 

 

Protease inhibitors, solutions, hardware and software used are displayed in 

Table 2.2. 

 

2.5.2.3. Procedure 

 

Serial dilutions of BSA were prepared (0.2-1.5mg/ml) starting with 1.5mg/ml in 

a microplate (96 wells) in STE + protease inhibitors. 5μl of standards or samples were 

pipetted into the wells. 25μl of working reagent A was pipetted to each well and mixed 

thoroughly using a microplate mixer. After that, 200μl of reagent B was added into 

each well with the subsequent microplate agitation. The microplate was incubated at 

room temperature for 5 minutes and then measured absorbance at 750nm. 
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Figure 2.20: Equipment and process of tissue homogenization  

Panel A. Homogenizer and probe, yellow arrow. Panel B. Homogenizer settings, revolutions 
per minute. Panel C. Styrofoam box with a 15 ml centrifuge tube (right black arrow) on flaked 
ice. Dewar for liquid nitrogen, right arrow. Panel D. Two tubes with homogenized tissue from 
different samples using a probe homogenizer. Arrow showing matrix tissue sediment. Panel 
E. Stainless steel beads for bullet blender homogenizer. Panel F. Beads in eppendorf ready 
to be loaded with 10% tissue homogenates. Panel G and H. Bullet blender. Panel I. Samples 
from Panel D after homogenization with bullet blender. 
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2.5.3 Transglutaminase Enzyme Activity  

 

2.5.3.1. Principle 

 

This technique is based on the incorporation of a radioactive (3H) amine 

substrate (putrescine) into an acceptor protein (dimethylcasein), as described 

previously (Lorand et al., 1972). Both elements are transglutaminase substrates, 

which bond between each other by transglutaminase protein activity in the tissue 

homogenate. The tissue homogenization itself and the STE buffer used for 

homogenization break up the membrane cell by both physical and osmotic 

mechanisms, respectively. Hence, the measurement of activity in this assay covers 

the intra and extracellular compartments. The activation is triggered by adding 

calcium chloride and dithiothreitol (DTT) to the mixture. Once activated, the mixture 

is incubated at body temperature during different time points and placed in small 

squares of filter paper. The filter paper is embedded in trichloroacetic acid to stop the 

reaction and to promote protein precipitation. The filter paper is placed in ethanol and 

then air dried. The paper is placed in tubes with scintillation fluid to enhance 

radioactivity detection from the scintillation machine. The incorporation of labelled 

groups into proteins by the transglutaminase activity are attached and/or embedded 

into the filter paper, therefore, the radioactivity detected by the scintillation machine 

counter is the protein precipitated on the paper. 

 

2.5.3.2. Materials 

 

Materials for TG activity by 3H-putrescine assay are displayed in Table 2.3 

 

2.5.3.3. Procedure 

 

Kidney homogenates (10% w/v) in STE buffer and protease inhibitors were 

incubated  (37°C) with 60mM 3H-putrescine (65Ci/mmol), 40mM dithiothreitol, 

25mg/ml NN’-Dimethylcasein, 25mM CaCl2  in a final volume of 50 μl. Recombinant 

rat TG2 1:1000 was used as the positive control. Negative controls were obtained 

using either the 50 μM of TGI (D003, Zedira, Germany) or 100mM EDTA. 10μl of the 

mixture was spotted into 3 mm filter paper at 0, 5, 10, 20, and 60 minutes and 

precipitated with cold 10% and 5% trichloroacetic acid, 5 minutes (2x) and 10 minutes 

(4x) respectively. The filter papers were placed washed twice in 100% ethanol for 5 

minutes. The filter papers were dried off over night at room temperature. The 
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precipitated protein was determined by scintillation counting, Figure 2.21. The EDTA 

controls were subtracted from the samples values. One unit of TG activity was 

equivalent to 1nmol of 3H-putrescine incorporated per hour at 37°C. The results were 

expressed units per mg of protein. Unit of activity is equivalent to 1nmol of putrescine 

incorporated per hour at 37°C. The technique was performed as described previously. 

 

2.5.4 Transglutaminase Protein  

 

2.5.4.1. Principle 

 

Western blot is a technique to detect and quantify specific proteins in tissue 

homogenates. It uses gel electrophoresis to separate proteins by structure and 

molecular weight (Laemmli, 1970). Once the proteins are separated, these are 

transferred to a polyvinylidene difluoride membrane. The proteins in the membrane 

are targeted using a primary and secondary antibody. The secondary antibody is 

linked to a reporter enzyme. The enzymatic chemiluminescent signal is triggered 

when exposed to appropriate substrates. The chemical signal is detected by a high 

resolution / sensitivity camera. The signal is quantified by image analysis. 

 

2.5.4.2. Materials 

 

Powders, solutions, antibodies, control antibodies, control proteins, software 

and hardware used are displayed in Tables 2.4a and 2.4b. 

 

2.5.4.3. Procedure 

 

Cat and rat kidney homogenates (10% w/v) in STE buffer were separated on a 

10% polyacrilamide gel (27μg/lane), transferred (14v, cold room) overnight to PVDF 

membrane, washed and blocked with 10% skimmed milk. Human recombinant TG2 

was used as a positive control. For negative controls an unspecific antibody to TG2, 

IgG and serum were employed. The blot was probed with a primary antibody and 

revealed using a secondary polyclonal HRP antibody. Chemiluminescent blots were 

captured by a ChemiDoc MP Image System. Determination of molecular weight was 

performed by comparing the colour bands in the blot (molecular weight marker) with 

the bands obtained in the enzymatic reaction using the ChemiDoc Image System 

Software, Figure 2.23. Results were shown as optical density mm2 per µg of protein. 
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Figure 2.21: Scintillation machine counter 
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Figure 2.22: Western blot basic equipment 
 
Panel A. Dual gel caster. Panel B. Power source (left) and buffer tank (right). Panel C. Transfer tank 
loaded with cassettes. Panel D. Order of material in a transfer cassette. Panel E. Power source and 
transfer tank in a cold room, lower and upper yellow arrow respectively. Panel F. Chemidoc machine. 

Panel D. Chemidoc software for protein quantification. 
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Figure 2.23: Representative Western blot for transglutaminase 2 
 
Representative kidney tissue homogenates from cats with and without azotaemia. The samples were 
immunoprobed with a mouse monoclonal TG2 antibody BB7, using human recombinant TG2 as positive 
control.  From left to right, human recombinant TG2 shows a band of 78-79 kDa, whereas both the 
normal function and CKD cat tissue show a band of 75 and 66 kDa. 66kDa bands possible inactive 
fragments of TG2. 

 

 

2.6. In situ assays 

 

2.6.1. Immunofluorescence  

 

2.6.1.1. Principle 

 

A primary antibody binds on a specific tissue protein; afterwards, a secondary 

antibody labelled with a fluorochrome binds to the primary antibody. Subsequently, 

an optical microscope is used to quantify the amount fluorescence from the secondary 

antibody. The microscope emits fluorescent light with a specific wave length which in 

turn excites the fluorochrome attached to the secondary antibody, emitting light 

captured by the microscope receptors. The quantification is performed applying the 

same bases as described for MTS technique.  

  

2.6.1.2. Material 

 

To make up the washing buffer, a tablet of protease inhibitor cocktail (Complete 

Mini, Roche Diagnostics, GmBH, Germany) was dissolved in 10 ml of PBS + 0.1% 

Triton X-100. For blocking buffer, 5% goat serum was added to 5ml of washing buffer. 

Primary and secondary antibodies used in the cat and in vivo studies are displayed 

in Table 2.5. 
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2.6.1.3. Procedure 

 

8μm thick cryostat sections on adherent slides, previously stored at -80◦C were 

placed in an incubator chamber at 37◦C for 10 minutes. The slides were ringed with a 

paraffin pen marker to avoid spillage of reagents. 

 

Primary antibody. 50μl blocking buffer was added to the slides incubating them 

for 10 minutes. The solution was removed by tilting the slide over a tissue paper. The 

tissue samples were washed with 50μl washing buffer followed by 5 minutes 

incubation at room temperature with the subsequent removal of solution. This 

procedure was performed two more times. The primary antibody was diluted in 

blocking buffer. 50μl were added and incubated in a humidity chamber overnight at 

4◦C. For controls, blocking buffer without primary antibody and unspecific primary 

antibody to the protein in analysis (e.g. Collagen IV when looking for TG2) were used 

in some sections. 

  

Fixation. The slides were washed twice in blocking buffer as described before 

and placed in cold acetone for 10 minutes in a -20◦C and air-dried was allowed. The 

sections were washed using PBS for two more times.  

 

 Secondary antibody. The secondary antibody was diluted in PBS + 3% bovine 

serum albumin (w/v). 50μl was added to the slides with subsequent incubation in a 

humidity metal tray placed on a dark room for 2 hours. The slides were washed 3 

times with PBS and air dried. Finally, a drop of mounting medium with DAPI was 

added (MOWIOL + DAPI) to stain nuclei in blue and covered with a cover slip. The 

slides were left in a dark place at room temperature overnight. Sections were 

analysed using an optical microscope (BX61 Olympus) with the appropriate UV filter. 

The sections were covered with foil and stored at -20◦C for subsequent analysis. 

 

2.6.1.4. Quantification 

 

No less than 10 or 15 fields were randomly pictured for IGMA (400x) and cortical 

tubulointerstitial space (200x), respectively (Olympus Systems, F-view II digital 

camera). The quantification of Alexa red (red), FITC (green) and DAPI (blue) was 

performed using 2 different colour phases. Yellow or white were used to highlight the 

brightest red or green signal, respectively, depending on the secondary antibody 

fluorochrome; whereas green or red were used for quantification of DAPI staining, 
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see Figure 2.25.  The analysis a 96% of colour coverage per image was required as 

minimum to assure the images were being evaluated properly using white to cover 

the black space. For either IGMA or tubulointerstitial space, the ratio of collagens or 

TG2 to cell number was calculated by dividing percentage of yellow (collagens or TG2 

expression: green or red fluorescent signal, respectively) between the percentage are 

of green (DAPI:  fluorescent blue staining) (Huang et al., 2009). In the cat study, the 

area of positive stain was expressed as a percentage of the total field instead of ration 

of protein target to cell number. Equipment for image analysis is displayed in Figure 

2.24. Examples for protein quantification by image analysis are shown in Figure 2.25. 

 
 

2.6.2. TG Activity assay 

 

2.6.2.1. Principle 

 

The technique is based on the incorporation of a fluorescent TG substrate 

(cadaverin) into the endogenous TG substrates in the cryostat section such as 

collagens. The binding of substrates is performed by the endogenous 

transglutaminases localized in the extracellular space. The section is incubated with 

biotinylated cadaverin. The activation is triggered when calcium chloride and DL-

Dithiothreitol (DTT) are added to the section. The catalysed reaction attaches the 

biotinylated cadaverin to the tissue section. Later on, the slide is incubated with a 

fluorescent fluorochrome attached to streptavidin. Streptavidin and biotin have a high 

affinity between each other; therefore, the fluorochrome labelled streptavidin attaches 

to biotin working as a fluorescent tag for TG activity. The more fluorochrome is 

detected the more activity is present. This technique was performed as previously 

described (Johnson et al., 1999). 

 

2.6.2.2. Material 

 

The main material is displayed in Table 2.6a. Rehydration buffer and washing 

buffer reagents are displayed in Table 2.6b. Reaction buffer and controls reagents 

are shown in Table 2.6c. 
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2.6.2.3. Procedure and quantification 

 

Cryostat kidney sections (8μm) were rehydrated and incubated 30 minutes at 

room temperature. The slides were washed up twice.  The sections were incubated 

1h at 37◦C with the reaction buffer. Three controls were set up by incubating some 

sections with either 10mmol/L EDTA, 200 μmol/L of TGI (DOO3, Zedira, Germany) 

or anti-TG2 mouse monoclonal antibody, 1:50. Sections were washed twice, fixed 

with cold acetone for 10 minutes in a -20◦C freezer, air dried and blocked with 3% 

BSA in PBS at 4◦C overnight. The sections were washed twice, probed with Alexa 

labelled streptavidin 1:300 in 3% BSA / PBS and incubated 2h at 37◦C. Sections were 

washed in PBS and mounted using MOWIOL-DAPI mounting media. IGMA and 

tubulointerstitial fields were pictured and quantified as described for the 

immunofluorescent techniques. Examples for TG activity and protein quantification by 

image analysis are shown in Figure 2.26. 

 
 
 
 

2.7. Statistical analysis 

 

2.7.1. Cat study 

 

Data analysis and presentation were performed using Prism 5 software 

(GraphPad). The cross-sectional data was analysed by unpaired two-tailed Student’s 

t-test with Welch’s correction. To evaluate group correlations, r2 was calculated by 

linear regression analysis.  The statistical significant level was defined as P<0.05. 

 

2.7.2. In vivo studies 

 

Longitudinal measurements were assessed using two way analysis of variance 

(two-way ANOVA); whereas the cross sectional measurements were analysed by 

both unpaired t test (for two groups) and one way ANOVA (more than two groups) 

followed by Bonferonni’s multiple comparisons test to compare more than two groups. 

To assess correlations between different experiments, analysis r2 and p values were 

calculated. For all the statistical analysis, a probability higher than 95% (p<0.05) was 

taken as significant. The calculations, histograms and linear plots were performed 

using Graph Prism version 5 software. 
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Figure 2.24: Microscopy equipment 
 
Camera and manual control for microscope, upper and lower yellow arrow, respectively. Microscope 
voltage regulator and fluorescent light source, upper and lower black arrow, respectively.  
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Figure 2.25: Identification and quantification of target proteins by image analysis 

Panel A, C and E are representative images of the tubulointerstitial area by immunstained for collagen 
I, III and IV immunofluorescence. Panel A-B and E-F correspond to cat tissue. Panel C-D corresponds 
to rat tissue. Panel A. Intense red fluorescence (Alexa red) indicates the presence of collagen I protein, 
whereas the green fluorescent (FITC) indicates the presence of collagen III and IV, Panel C and E, 
respectively. The blue dots (DAPI) represent cell nuclei for all images. Panel B, D and F show the colour 
substitution by image analysis from panel A, C and E, respectively. Intense red fluorescence is 

highlighted in yellow and green fluorescence in white. Blue (DAPI) in green or red.  
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Figure 2.26: TG act and TG2 identification and quantification by image analysis 
 
Panel A and C are representative images of the tubulointerstitial area for TG activity and TG2 protein 
identification.  Panel A-B and C-D are tissue samples from rat and cat, respectively. Intense red 
fluorescence (Alexa red) indicates the presence of TG activity and TG2 protein, Panels A and C, 
respectively. The blue dots (DAPI) represent cell nuclei. Panel B and D shows the colour substitution by 
image analysis from panel A and B, respectively. Intense red fluorescent is highlighted in yellow. Blue 

(DAPI) in green. 
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Protease inhibitors  

     -Complete Free EDTA protease Inhibitor, 1 tablet in 10 ml (Roche, USA) 

Solutions and equipment 

     -STE buffer (0.25 M sucrose, 0.03 M Tris, 0.05 M EDTA) + protease inhibitors 
     -Homogenizer, Janke Kunkel (IKA Labothechnik T25, Germany) 
     -Bullet blender + Stainless steel beads 0.9-2mm, (Next Advance, Inc, USA) 
     -15 ml centrifuge tubes and 1.5 ml eppendorfs    
     -Liquid nitrogen 
     -Styrofoam box with flaked ice. 

 
Table 2.1: Material for tissue Homogenization 

 
 

 

Protease inhibitors  

     -Complete Free EDTA protease Inhibitor Cocktail (Roche, USA) 

Solutions 

     -Colorimetric assay kit (DC Protein Assay, 500-0120, Bio-rad, UK). 

       Reagent A: Alkaline copper tartrate solution and  Reagent B: Folin reagent 

     -STE buffer (0.25 M sucrose, 0.03 M Tris, 0.05 M EDTA) 

     -Bovine serum albumin standard 1.43mg/ml (protein standard II, Bio-rad, UK). 

Hard and Software 

     -Microplate for ELISA (96 wells) 

     -Thermo Lab Systems Ascent, microplate reader/software V2.7, USA. 

 
Table 2.2: Material for protein concentration measurement 

 
 
 

Powders and tablets 

     -NN’-Dimethylcasein               -Trichloroacetic acid (TCA)                 -Sucrose 
     -Tris base                                                                                            -EDTA 
     -Complete Free EDTA protease Inhibitor Cocktail (Roche, USA)      -CaCl2 

Solutions 

     -Putrescine dihydrochloride ([1,4-3H(N)]  1mCi (37MBq), 65Ci/mmol, PE, USA. 
     -STE buffer (0.25 M sucrose, 0.03 M Tris, 0.05 M EDTA) 
     -50mM and 1.05M Tris-HCl (pH 7.4)   -25mM CaCl2      -Ethanol 100% 
     -Scintillation solution (L8286,Ultima Gold LSC Cocktail, Sigma) 

Recombinant proteins and inhibitors 

     -Recombinant rat TG2 1:1000 (T038, Zedira. Germany) 
     -TG inhibitor, 1,3-dimethyl-2[(oxopropyl)thio]-imidazolium chloride 
      (50μM; D003, Zedira, Germany) 

Others 

     -1cm2 filter paper squares Whatman 3MM 

Hard and Software 

     -Scintillation Machine (Beckman Coulter, LS 6500 scintillation counter, USA) 

 
Table 2.3: Material for TG activity by 3H-putrescine assay 
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Powders and Tablets 

 -Tris base   -NaCl   -Acrylamide 
 -Sodium lauryl sulphate (SDS) 
 -Ammonium per sulphate (APS)  

-Tetramethylethylenediamine (TEMED) 
-Glycine -Bromophenol blue  
-Complete protease Inhibitor Cocktail 
  (Roche, USA) 

Solutions 

-SDS page 10%: H2O (6.3ml), 1.5M Tris HCL pH 8.8 (4ml), 30% Acrylamide    
  (5.4ml), 10% SDS (160 μl), 10% APS (160 μl), TEMED (16μl). 
-Stocking gel:  H2O (3.05ml), 0.5M Tris HCL pH 6.8 (1.25ml), 30% Acrylamide    
  (0.67ml), 10% SDS (50 μl), 10% APS (50 μl), TEMED (12μl). 
-Running Buffer for 1L: Tris (3g) + glycine (14.4g) + SDS (1g) in d.d H2O. 
-Transfer buffer for 1L: Tris (3g) + glycine (14.4g) + 800ml d.d H2O + 200   
  methanol 
-2x Protein buffer for 80ml: 0.5M Tris pH 6.8, 4% SDS, 80% glycerol, 0.5%  
  Bromophenol blue  
-Loading buffer for 1ml: 2x Protein loading (900 μl ) +  mercaptoethanol (100 μl) 
-10X Tris buffered saline (TBS): 0.5M Tris HCl, 1500mM  NaCl, pH 7.4: 
-Washing buffer: Tris buffered saline TBS + Tween 20 1% 
-BM chemiluminiscence blotting substrate (POD) (Roche, Germany) 

 
Table 2.4a: General materials for Western Blotting 

 
 
 

Primary antibodies Secondary antibodies 

  -Rabbit polyclonal TG2 antibody  
   (1:5000, Abcam, Ab421, USA) 

    -Polyclonal goat anti-rabbit HRP 
antibody      
    (1:10,000, P0448, DAKO, UK) 

  -Goat polyclonal TG2 antibody  
   (1:1000, Ab62819, Abcam) 

    -Polyclonal rabbit anti-goat HRP 
antibody  
     (1:5000, P0449, DAKO, UK) 

  -Mouse monoclonal TG2 antibody 
   (1:1000, CUB 7402, Abcam, UK) 

    -Goat anti-mouse HRP antibody 
     (1:5000, A3673, Sigma, UK) 

   
   -Mouse monoclonal TG2 BB7 Ab  
    (1:5000, U of Sheffield, UK) 
 

Control Antibodies 

    -Goat IgG  -Rabbit IgG 
    -Rabbit polyclonal cyclophilin A Ab  

     (1:1000, Ab 42408, US) 
    -mAb B-actin  (1:2000, Ab 6276, UK) 

Positive control and protein weight marker 

-Human recombinant TG2, 78 kD (1:250, T002, Zedira, Germany) 
-Guinea pig liver TG2, 76.5 kD (1:250, T006, Zedira, Germany) 
-Molecular weight marker: Precision Plus Protein dual colour molecular weight   
 markers  (Bio-rad, 16-03-64, UK) 

Hard and Software 

-PVDF membrane (Immobilon-P, Millipore, USA) 
-Whatman paper 3MM and sponges 
-Wet electroblotting equipment  (Dual gel caster, buffer tank, gel transfer    
 cassettes, transfer tank, electrode assembly, power source) 
-ChemiDoc MP Image System (170-8280, Bio-rad, USA) 

-ChemiDoc Image System Lab Software (4.1v, Bio-rad, USA).  
 See Figure 2.22, panel F.      

 
Table 2.4b: General materials for Western Blotting 
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Protein Cat study In vivo rat studies 

target Primary Ab Secondary Ab Primary Ab Secondary 
Ab 

 
 

Collagen 
I 

 
Mouse 

monoclonal 
Abcam, 
Ab 6308 

 
 
1:20 

Goat 
Polyclonal 

FITC 
Santa Cruz, 
sc362277 

 
 
1:50 

 
Rabbit 

polyclonal 
Abcam 
34710 

 
 
1:100 

Swine 
polyclonal 

FITC 
Dako 
F0054 

 
 
1:15 

 
Collagen 

III 

Goat 
polyclonal 
Southern 
Biotech, 
1330-01 

 
 
1:15 

Rabbit 
polyclonal 

FITC Vector, 
FI5000 

 
 
1:150 

Goat 
polyclonal 
Southern 
Biotech, 
1330-01 

 
 
1:10 

Rabbit 
polyclonal 

FITC 
Vector, 
FI5000 

 
 
1:150 

 
Collagen 

IV 

Rabbit 
MP 

Biomedicals 
681241 

 
 
1:35 

Swine 
polyclonal 

FITC 
Dako 
F0054 

 
 
1:15 

Rabbit MP 
Biomedicals 

681241 

 
 
1:35 

Swine 
polyclonal 

FITC 
Dako 
F0054 

 
 
1:15 

 
 

TG2 

Rabbit 
polyclonal 
Abcam, 
Ab421 

 
 
1:100 

Goat 
polyclonal 

Alexa 
Invitrogen, 
A.Fluor 594 

A11012 

 
 
1:300 

Rabbit 
polyclonal 
Abcam, 
Ab421 

 
 
1:100 

Goat 
polyclonal 

Alexa 
Invitrogen
, A.Fluor 

594 
A11012 

 
 
1:300 

 
Table 2.5: Primary and secondary antibodies used for tissue analysis 

 
 
 

Solutions 

    -Goat serum -Triton X-100  

    -Biotin cadaverin  (A1594, Molecular Probes,  Invitrogen, USA) 

    -Streptavidin Alexa red fluor conjugate 594 1:300 (Invitrogen, USA) 

Powders and tablets 

    -DTT -Streptavidin (Sigma, USA) -Tris (hydroxymethyl)aminomethane 

    -Complete Free EDTA protease Inhibitor Cocktail (Roche, USA) 

Inhibitor 

    -1,3-dimethyl-2[(oxopropyl)thio]-imidazolium chloride 

     (D003, Zedira, Germany) 

Hardware and Software 

    -Light Microscope (Olympus)  

    -F-View digital camera (Soft Imaging Systems, Germany) 

    -Multiphase image analysis software (Cell F, Olympus, Germany) 

 
Table 2.6a: General materials used for TG in situ activity experiment 
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Rehydration buffer Washing buffer 

5% goat serum  

10mmol/L EDTA 10 mmol/L EDTA 

0.01% (v/v) Triton X-100  

5 μg/ml streptavidin  

Protease inhibitors Protease inhibitors 

In 50 mmol/Tris 7.4 In PBS  7.4 pH 

 
Table 2.6b: Reagents for rehydration and washing buffers 

 
 
 
 
 
 

 
Reaction 

buffer 

Negative 

Control 

 1 

Negative 

Control  

2 

Negative 

Control 

 3 

 

Control  

4 

5mmol/L CaCl2  5mmol/L CaCl2 5mmol/L CaCl2 5mmol/L CaCl2 

5mmol/L DTT 5mmol/L DTT 5mmol/L DTT 5mmol/L DTT 5mmol/L DTT 

0.5 mmol/L  

Biotin cadaverin 

0.5 mmol/L 

Biotin 

cadaverin 

0.5 mmol/L 

Biotin 

cadaverin 

0.5 mmol/L 

Biotin 

cadaverin 

0.5 mmol/L 

Biotin cadaverin 

Protease 

inhibitors 

Protease 

inhibitors 

Protease 

inhibitors 

Protease 

inhibitors 

Protease 

inhibitors 

In 50 mmol/Tris 

7.4 pH 

In 50 mmol/Tris 

7.4 pH 

In 50 mmol/Tris 

7.4 pH 

In 50 mmol/Tris 

7.4 pH 

In 50 mmol/Tris 

7.4 pH 

 10mmol/L 

EDTA  

20mmol/L 

EDTA  

100 μmol/L 

DOO3  

Anti-mouse TG2 

 

 
Table 2.6c: Reagents for reaction buffer and controls 
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CHAPTER 3 
 

Renal Fibrosis and Chronic 

Kidney Disease in the Cat 
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3.1. Introduction 

 

Feline CKD affects over 50% of senior cats (Marino et al., 2013a), therefore, a 

large case load requires renal targeted treatment where the cornerstone treatment is 

mainly modification of diet. Other approaches such as drugs to reduce hypertension 

and proteinuria (RAAS and ARB) may contribute to feline wellbeing. However, 

extended and large scale studies are needed to determine if angiotensin inhibition is 

effective with regard to life survival, as seen in humans with CKD. Feline CKD 

presents two main challenges in veterinary medicine, the silent onset of CKD and the 

lack of reversibility once the disease has been established. Therefore, approaches to 

tackle CKD can be focused in:- a) detection of early CKD (plasma, urinary markers), 

where affected kidneys may have better chances to stop the progression or even 

reverse the disease and b) treatments to treat mature CKD, where symptomatic 

therapy plays an important role and where inhibition of profibrotic proteins may allow 

a substantial reduction in the substitution of functional parenchyma by fibrotic tissue, 

main characteristic of CKD.  

 

Renal fibrosis is characterized by deposition of collagen proteins in the 

extracellular matrix. Extracellular matrix is a meshwork-like substance found within 

the extracellular space and in association with the basement membrane of the cell 

surface. It promotes cellular proliferation, provides supporting structure, influences 

cell development and differentiation, coordinates cellular functions through signalling 

with cellular adhesion receptors, integrates cells into tissues and influences cell shape 

and it is vital for cell movement. When functional renal parenchyma (endothelial, 

epithelial tubular and mesangial cells) is substituted by fibrotic tissue, function in the 

kidney is progressively reduced with important disturbances of function at glomerular 

and tubulointerstitial level. 

 

 Once collagen protein is accumulated in the extracellular area, this is stabilized 

and matured when the disease is not controlled and hence fibrosis becomes 

deposited and resistant to natural degradation. In humans there is a large amount of 

evidence showing that tubulointerstitial fibrosis highly correlates more with renal 

function than with glomerulosclerosis (Rodriguez-Iturbe et al., 2005). A recent study 

has shown similar results in the domestic cat (Chakrabarti et al., 2013). This finding 

suggests that tubulointerstitial space is a cardinal subject to study over glomeruli, 

independently of the low regenerative ability of the later. Therefore, to study fibrogenic 
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pathways in renal tissue from cats with CKD has to fulfil two main features, 

deterioration of renal function and a considerable level of tubulointerstitial fibrosis. 

 

The aim of this study was to analyse the level of renal fibrosis in feline kidney 

tissues with different levels of renal function provided by the RVC biorepository bank. 

Renal function correlates with the level of renal fibrosis in man and in numerous in 

vivo studies, therefore, it was expected to generate two groups, a non-azotaemic 

(n=5) and azotaemic (n=10) groups, with low and high level of fibrosis, respectively.   

 

Renal fibrosis analysis was performed employing Masson’s trichrome staining 

and quantified by image analysis. Similar results to those in MT staining were 

obtained when analysing collagen I by immunofluorescence. This data was further 

confirmed by a Diploma holder from the American College Veterinary Pathologists, 

based in the USA; who evaluated renal fibrosis and inflammation by stereology on 

periodic acid-Schiff / haematoxylin (PASH) stained tissue. The importance of 

determining the level of fibrosis was vital in this study to further investigate the 

association of tubulointerstitial fibrosis with transglutaminase 2 enzyme, a pro-fibrotic 

enzyme. 

 

    

3.2. Material and methods 

 

3.2.1. Renal tissue source and function 

 

Kidney tissue was obtained from the Royal Veterinary College biorepository 

bank. Breed, age, gender, last treatment and cause of euthanasia for each kidney 

samples are described in Table 3.1. The selection of renal samples was based on the 

presence of plasma biochemical profile obtained in a maximum of 2 months prior to 

euthanasia. From over 100 samples, the group was reduced to 27 samples. 10/27 

tissues were obtained from cats with hyperthyroidism and therefore discarded. 2/23 

showed borderline values of hyperazotaemia and were discarded too. The remaining 

samples were further separated according to the level of renal function using mainly 

plasma creatinine as a marker. Groups were divided in non-azotaemic (n=5) and 

azotaemic group (n=10) according to plasma creatinine, however other parameters 

such as urea, phosphate, urinary protein creatinine ratio (UPC), urinary specific 

gravity and blood pressure were also recorded, Table 3.2. 
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Case 
No.  

Breed Age Gender Last treatment Cause of Euthanasia  

1 DSH 18.0 F None Died/unknown 

2 DSH 21.4 F CCB Neurological 

3 DSH 11.0 F None Stomach tumour 

4 DSH 17.3 M CCB Seizures 

5 DSH 23.7 F CCB Liver tumour 

6 DSH 19.9 M None Lung tumours 

7 DSH 17.9 M ACE NA 

8 DSH 10.5 F ACE,CCB Bladder tumour 

9 DSH 16.1 M CCB Behaviour change 

10 Burmese 20.5 M None Collapsing 

11 DSH 15.7 F None Intestinal tumour 

12 DSH   9.0 M None CKD 

13 DSH 13.8 M None CKD 

14 DSH 10.0 M None CKD 

15 DSH 17.7 F CCB CKD 
 

Table 3.1: Clinical history from kidney tissue 
 
DHS, domestic short hair; CKD, chronic kidney disease; ACE, angiotensin converting enzyme inhibitor; 
CCB, calcium channel blocker. Age is displayed in years at death. 

 
 
 

 
 

 
   Groups 

 
Sample 

Plasma 
creatinine 

μmol/L 

Plasma 
urea 

mmol/L 

Plasma 
phosphate 

mmol/L 

 
UPC 

Blood 
pressure 
mmHg 

 
USG 

 
 

Non 
Azotaemic 

1 53.7 15.8 1.07 NA 89 NA 

2 91 12.5 1.58 1.91 142 1.015 

3 92.2 8.3 1.25 0.18 105 1.029 

4 124 9.4 1.85 0.26 155 1.046 

5 133 14.8 1.18 NA 138 1.014 
 
 
 
 
 

Azotaemic 

6 180 11.8 1.26 0.19 135 1.018 

7 221 17 0.96 0.47 151 1.016 

8 244 30.9 2.29 5.8 183 1.014 

9 251 24.5 1.84 0.51 181 1.024 

10 260.3 27.3 2.19 NA 141 1.016 

11 352 19.4 1.4 1.28 137 1.016 

12 450 67.3 5.67 4.78 149 1.021 

13 489 48 5.38 1.58 140 1.016 

14 513.5 34.4 3.84 0.24 139 1.012 

15 847.6 72.3 5.17 0.76 144 1.011 
 

Table 3.2: Individual renal function parameters 
 

UPC, urinary protein creatinine ration; USG, urinary specific gravity 
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3.2.2. Renal histomorphology   

 

Kidneys were fixed in formalin 10%. Paraffin-embedded sections for each 

kidney were cut (3μM thickness). The slides were deparaffinised and rehydrated to 

stain with periodic acid-Shiff haematoxylin (PASH) or Haematoxylin and eosin, in 

different sections. Fibrosis and inflammation were evaluated in both tubulointerstitium 

and glomeruli, whereas obsolescence was only assessed in the glomeruli. Staining 

and analysis of tissue was carried out by a certified veterinary pathologist masked of 

all clinical history. See Chapter 2, section 2.4.2. 

 

3.2.3. Renal fibrosis 

 

3.2.3.1. Masson’s trichrome staining 

 

5μm, formalin-fixed, paraffin embedded sections were deparaffinized and 

rehydrated. The slides were placed in Bouin’s solution overnight, washed and placed 

in working Weigert’s iron haematoxylin solution for 5 minutes. The slides were stained 

with Biebrich scarlet-acid fuchsin, aniline blue solutions, dehydrated and mounted in 

DPX. For IGMA and tubulointerstitial expansion of extracellular matrix, no less than 

10 glomeruli (x 400) and (x 200) of cortex tubules were acquired. The fibrosis index 

was determined calculating the blue area percentage of total field. Quantification was 

performed by image analysis. See Chapter 2, section 2.4.3. 

 

3.2.3.2. Immunofluorescence  

 

8μm thick cryostat sections on adherent slides, previously stored at -80◦C. The 

slides were blocked and washed. The tissue was probed with a primary antibody 

(collagen I and III) overnight at 4◦C followed by fixation and serial washings. The slides 

were immunoprobed with a secondary antibody and left at room temperature for 2 

hours. Finally, a drop of mounting medium with DAPI was added. No less than 10 

glomeruli (x 400) and (x 200) of cortex tubules were acquired. The immunofluorescent 

fibrosis index was determined calculating the intense Alexa red (collagen I) and FITC 

(collagen III) fluorescent area percentage of the total field. Quantification was 

performed by image analysis. See Chapter 2, section 2.6.1. 
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3.2.4. Statistics 

 

The cross-sectional data was analysed by unpaired two-tailed Student’s t-test 

with Welch’s correction. To evaluate group correlations, r2 was calculated by linear 

regression analysis.  The statistical significant level was defined as P<0.05. 

 

3.3.     Results 

 

3.3.1. Renal function 

 

The measurements of plasma creatinine, urea and phosphorus in the 

azotaemic group showed a significant 4-fold, 3 fold and 3 fold increase, respectively, 

when compared to the non-azotaemic group. UPC, blood pressure and USG did not 

show any significant difference between groups; however, the azotaemic group 

showed a higher mean UPC and blood pressure mean together with a lower urinary 

density trend when compared to the non-azotaemic group, Table 3.3. 

 

 

               Parameters  Non-azotemic (n=5)    Azotemic (n=10) 

Plasma urea (mmol/L)                12 ± 1.5  35  ±  6.6 ** 

Plasma creatinine (µmol/L)                98 ± 14 381  ±  64 *** 

Plasma phosphate (mmol/L)                 1.4 ± 0.4    3  ±  0.6 * 

Urinary specific gravity            1.026 ± 0.0075 (4) 1.016 ± 0.0012 

Urine protein/creatinine                0.8 ± 0.6 (3)    1.7  ±  0.7 (9) 

Blood pressure (mmHg)               126 ± 12         150  ±  5.6 

 

Table 3.3: Grouped renal function parameters 
 
Results are expressed as mean ± sem. *P<0.05, ** P<0.01, ***P<0.005. Nos. of samples assayed are 

shown in brackets. 

 

 

3.3.2. Renal fibrosis, inflammation and specific renal diseases 

 

3.3.2.1. Periodic Acid-Schiff / Haematoxylin (PASH) 

 

Glomerular fibrosis score and glomerular obsolescence. Measurements of 

glomerular fibrosis score and glomerular obsolescence for the azotaemic and non-

azotaemic groups, expressed as score unit and index %, respectively, did not show 
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any significant difference between groups. Glomerulosclerosis, non-azotaemic, 1.15 

± 0.20 score; azotaemic, 1.22 ± 0.17 score, NS. Glomerular obsolescence, non-

azotaemic, 8.4 ± 3.7 index %; azotaemic, 21.4 ± 6 index %, NS. 

 

Tubulointerstitial fibrosis score and inflammation. The azotaemic group for 

tubulointerstitial fibrosis score was associated with a significant 2.8 fold increase in 

the unit score when compared to the non-azotaemic group. Non-azotaemic, 0.8 ± 

0.34; azotaemic, 2.25 ± 0.21 score, P<0.01. No significant difference was seen for 

the inflammation score between groups. Non-azotaemic, 0.9 ± 0.33; azotaemic, 1.6 

± 0.16 score, NS. 

  

Specific renal diseases, papillary necrosis, hypertensive arteriosclerosis and 

lymphoma were diagnosed in tissue samples 8, 10 and 11, respectively. All renal 

histomorphology parameters per sample generated by stereology are displayed in 

Table 3.4. 

 

3.3.2.1. Masson’s trichrome  

 

Intraglomerular mesangial area. Representative examples of glomeruli from 

MTS sections are shown for the non-azotaemic and the azotaemic group in Figure 

3.1, panels A and C, respectively. The intraglomerular mesangial area (IGMA) in the 

representative images do not show any visual difference in blue staining between 

images. Cross-sectional measurements of IGMA for the azotaemic and non-

azotaemic groups, expressed as mean blue area % did not show a significant 

difference. See Figure 3.1 panel E for IGMA changes. Non-azotaemic, 5.65 ± 2.4; 

azotaemic, 4.73 ± 1.8 area %, NS. 

 

Tubulointerstitial area. Representative examples of glomeruli from MTS 

sections are shown for the non-azotaemic and the azotaemic experimental group in 

Figure 3.1, panels B and D. The tubulointerstitial area from the azotaemic image 

shows a high level of blue staining localized in the interstitial area when compared to 

the non-azotaemic representative section. The azotaemic image also shows a higher 

degree of intratubular and intertubular space in contrast to the non-azotaemic 

representative image. Measurements of the tubulointerstitial in the azotaemic and 

non-azotaemic groups, expressed as mean of blue/red ratio, showed a significant 

change between groups. Non-azotaemic, 1.95 ± 0.5; azotaemic, 5.5 ± 1 blue area %, 

P<0.005. See Figure 3.1, panel F. 
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Case 
No. 

CKD 
stage 

Interstitial 
fibrosis 
score 

 
Degree 

Glomerular 
fibrosis 
score 

 
Degree 

1 Non-azotemic 1 Mild 0.96 Normal 

2 Non-azotemic 2 Moderate 1.88 Mild 

3 Non-azotemic 0 Normal 0.72 Normal 

4 Non-azotemic 0.5 Normal 1.08 Mild 

5 Non-azotemic 0.5 Normal 1.12 Mild 

6 2 1 Mild 0.44 Normal 

7 2 1.5 Mild 1.32 Mild 

8 2 2.5 Moderate 2.2 Moderate 

9 3 2.5 Moderate 2.08 Moderate 

10 3 2 Moderate 1.12 Mild 

11 3 2 Moderate 1.32 Mild 

12 4 2 Moderate 1.2 Mild 

13 4 3 Severe 0.88 Normal 

14 4 3 Severe 0.96 Normal 

15 4 3 Severe 0.72 Normal 

 

Table 3.4: Renal histopathology 
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Figure 3.1: Expansion of extracellular matrix in the cat kidney tissue 
 
Panel A, C and B, D.  Representative images of glomeruli (400x) and tubulointerstitial (200x) area, 

respectively, showing coloration (blue – extracellular matrix and red-cellularity) and structural differences 
between the Non-azotaemic (A and B) and azotaemic (C and D) samples, respectively. Panel E and F. 

The histograms represents the mean blue area % in the IGMA and tubulointerstitial area, respectively.  
Non-azotaemic group (n=5) and Azotaemic group (n=10). Vertical bars indicate +/-SEM. 
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3.3.2.2. Collagens 

 

Intraglomerular mesangial area for collagens I and III. Representative 

examples of IGMA for collagen I (Figure 3.2) and III (Figure 3.3) fluorescent stained 

sections are shown for the non-azotaemic and azotaemic group, panels A and C, 

respectively. The intraglomerular mesangial area (IGMA) in the representative 

images do not show any visual difference in red or green staining between groups for 

collagen I or collagen III. Terminal measurements of collagens in the IGMA for the 

non-azotaemic and azotaemic groups, expressed as mean Alexa red and FITC area 

%, did not show any significant change between groups, Figure 3.2 and Figure 3.3 

panels E, respectively. 

 

Tubulointerstitial area for collagens I and III. Representative examples of 

tubulointerstitial space for collagen I (Figure 3.2) and III (Figure 3.3) fluorescent 

stained sections are shown for the non-azotaemic and azotaemic group, panels B 

and D, respectively.  

The tubulointerstitial example for collagen I in the azotaemic group shows a 

higher level of red fluorescence when compared to the non-azotaemic image. 

Measurements of the tubulointerstitial area for collagen I in the non-azotaemic and 

azotaemic groups, expressed as Alexa red area %, showed a significant change 

between groups. Non-azotaemic, 5.4 ± 1.3; azotaemic, 11.89 ± 1.6 area %, P<0.01. 

See Figure 3.2, panel F.  

The tubulointerstitial examples for collagen III show a similar level of green 

fluorescence in both groups. No significant difference between groups was observed 

for collagen III. See Figure 3.3, panel F. 

3.3.3. Correlations 

Interstitial fibrosis showed positive linear correlations with both renal function 

and interstitial inflammation parameters. All the renal function markers showed a 

moderate but significant level of correlation with fibrosis, see Table 3.5 and 3.6.  

Positive linear correlations were obtained between techniques to quantify 

fibrosis by image analysis (MT and Collagen I) and stereology (PASH), see Table 3.7 

and Figure 3.4. 
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Figure 3.2: Collagen I in the cat kidney with CKD 
 
Panel A, C and B, D.  Representative images of glomeruli (400x) and tubulointerstitial (200x) area, 

respectively, showing coloration (Alexa red – collagen I and DAPI – nuclei) and structural differences 
between the Non-azotaemic (A and B) and azotaemic (C and D) samples, respectively. Panel E and F. 

The histograms represents the mean Alexa red area % in the IGMA and tubulointerstitial area, 
respectively.  Azotaemic group (n=10) and non-azotaemic group (n=5). Vertical bars indicate +/-SEM. 
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Figure 3.3: Collagen III in the cat kidney with CKD 
 
Panel A, C and B, D.  Representative images of glomeruli (400x) and tubulointerstitial (200x) area, 

respectively, showing coloration (FITC green – collagen III and DAPI – nuclei) and structural differences 
between the Non-azotaemic (A and B) and azotaemic (C and D) samples, respectively. Panel E and F. 

The histograms represents the mean % green area in the IGMA and tubulointerstitial area, respectively.  
Azotaemic group (n=10) and non-azotaemic group (n=5). Vertical bars indicate +/-SEM. 
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Fibrosis Renal function r2 P value < 

Fibrosis by MTS Creatinine 0.44 0.008 

Fibrosis by MTS Urea 0.57 0.002 

Fibrosis by MTS Phosphate 0.44 0.008 

Fibrosis by PASH Creatinine 0.56 0.005 

Fibrosis by PASH Urea 0.48 0.005 

Fibrosis by PASH  Phosphate 0.45 0.007 

Collagen I Creatinine 0.56 0.002 

 
Table 3.5: Positive linear regressions between fibrosis and renal function 

 
 
 
 

         Technique A Technique B r2 P value < 

Inflammation by H&E* Fibrosis by MTS 0.35 0.03 

Inflammation by H&E* Fibrosis by PASH 0.65 0.001 

 
Table 3.6: Positive linear regressions between fibrosis techniques 

 
 

 

Technique A Technique B r2 P value < 

Fibrosis by PASH Fibrosis by MTS  0.28 0.05 

Fibrosis by PASH  Collagen I 0.38 0.02 

 
Table 3.7: Positive linear regressions between inflammation and fibrosis techniques 

 
H&E, haematoxylin and eosin; PASH, periodic acid-Schiff + haematoxylin; MTS, Masson’s trichrome 
staining; *, n=14. 
 
 
 
  

 

 

Figure 3.4: Tubulointerstitial fibrosis correlations.  
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3.4. Discussion   

  

3.4.1. Renal function 

 

Post-mortem kidney tissue was obtained from primary renal azotemic and non-

azotaemic cats. Plasma blood analysis showed a significant low level in renal function 

in the azotaemic group. On the non-azotaemic group, even though plasma analysis 

did not show evidence of renal impairment we cannot rule out the possibility of 

incipient forms of CKD. Their old age (11 to 23.7 years) itself is considered a risk 

factor for the development of renal dysfunction (Greene et al., 2014). Low urinary 

specific gravity is frequently associated with early and severe stages of CKD in 

geriatric cats. However, this technique normally has to be consistent with other 

parameters of renal dysfunction to gain diagnostic relevance. A cat with extra-renal 

impaired antidiuretic hormone activity could have normal renal function with USG 

<1.035, however this is not common in cats (Watson, 1998). 

 

3.4.2. Renal fibrosis assessment 

 

With regard to the techniques employed to assess fibrosis, stereology by PASH 

was the only technique showing a positive correlation with both collagen I and MTS. 

It also showed a slightly higher correlation when compared to renal function 

parameters. Professor Cathy A Brown from the University of Georgia, responsible for 

the tissue analysis by stereology in this study, has used this technique to assess renal 

tissue in the cat providing very relevant information of interest in the feline CKD field 

(Chakrabarti et al., 2013; Schmiedt et al., 2009).  

 

Concerning methods to quantify fibrosis, image analysis is faster than 

interactive stereological methods but requires a high contrast of tissue between the 

object (blue staining in case of MT) and the background for the software to detect 

specific shades of colour (Kubinova et al., 2004). MTS blue coloration can vary 

according to the level of fibrosis, thickness of tissue and age of staining products, 

however this technique is more specific for collagens than PASH. In my experience, 

setting the blue threshold using MTS can be challenging in kidney tissue with early 

fibrosis and hence it cannot be captured in its totality. PASH staining is not specific 

for collagens as it also stains polysaccharides. Therefore, complete assessment of 

fibrosis cannot just rely in one technique and should be thoroughly assessed by 
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combination of semi-quantitative methods. Collagen immunostaining has to be 

performed parallel to either MT or PASH independently of its quantification method. 

 

3.4.3. Glomerular fibrosis 

 

Glomerulosclerosis is thought to be a less consistent feature of CKD in the cat 

when compared to dogs or humans (DiBartola et al., 1987; Lucke, 1968; Minkus et 

al., 1994b; Yabuki et al., 2010). However, in a recent English study, mild forms have 

been reported in a cat population of 80 individuals (Chakrabarti et al., 2013). In 

humans, a strong correlation between tubulointerstitial fibrosis and renal function has 

been documented, independent of glomerulosclerosis (Bohle et al., 1981). As 

reported previously by Chakrabarti et al (2013), renal dysfunction seen in azotaemic 

cats with CKD is related most clearly to tubulointerstitial damage rather than 

glomerular injury, perhaps suggesting that progressive fibrosis drives progressive 

deterioration in renal function. This may indicate that the survival of nephrons 

depends on the quick tubular restoration to allow the glomeruli to undertake their 

reparative process or any structural salvage mechanism; hence, the glomerular 

capillary system may be dependent on the peritubular capillary network. The high 

regenerative tubular process may be supported by regenerative cells and cytokines 

coming from the peritubular capillary network and not just tubular or resident 

interstitial cells. The glomerular reparative process may be dependent on oxygenation 

and some regenerative material coming the peritubular capillary system. Another 

approach to explain the lack of correlation between glomerulosclerosis and renal 

function may be found in Gandhi et al (1998) study, where a subtotal nephrectomy 

animal model showed that atubular glomeruli exceeded the number of glomeruli with 

total sclerosis, suggesting that periglomerular interstitial fibrosis, without major 

mesangial fibrosis, may lead to peritubular scarring due to the obstruction of the blood 

flow into the proximal tubule and therefore the glomeruli may seem structurally normal 

but in essence is atubular (Gandhi et al., 1998). 

 

3.4.4. Tubulointerstitial fibrosis 

 

The presence of tubulointerstitial fibrosis in the post-mortem kidney tissue 

obtained from primary renal azotaemic cats was demonstrated by both quantification 

by multiphase image analysis and by a veterinary pathologist without knowledge of 

the samples’ clinical history. Kidney collagen I was elevated whereas collagen III 

remained at the same level of the non-azotaemic group. The absence of elevated 
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collagen III deposition in kidneys from azotemic cats supported the presence of a 

mature form of renal fibrosis since collagen III, a scaffold for collagen I, is the 

predominant isoform of collagen when deposited in the early stages of renal fibrosis 

(Lavaud et al., 2001; Zager et al., 2009). A study performed by Chakrabarti et al 

(2012) in cats with different levels of CKD showed the relevance of tubulointerstitial 

fibrosis and its correlation with the reduction of renal function parameters such as 

azotaemia, hyperphosphatemia, proteinuria and anaemia. The data presented in this 

chapter showed similar results.  

 

The formation of tubulointerstitial fibrosis has been extensively studied in vitro 

and in vivo models with many mediators for its development, most of them within 

inflammatory and hypoxic processes. In human medicine, research approaches to 

understand renal fibrosis have been focused on inflammation and pro-fibrotic 

processes and the generation of urine and plasma markers for each process are 

topics of high priority. 

 

 Detecting early stages of renal inflammation allows early treatment with the 

subsequent reduction of pro-fibrotic events. In human medicine detecting early stages 

of renal disease is accomplished by health checks, which, in developed countries, are 

subsidised by governments. As an example, regular blood test analysis to assess 

renal status can be carried out in a regular basis after 65 years of age, in the UK. This 

action reduces long term cost to the government, as prevention is better than treating 

for many years any chronic condition. In the veterinary setting, even though 

preventive medicine is becoming more popular and insurance plans allow a better 

health check coverage, the culture of worldwide preventive medicine in pets is still 

immature.  

 

Regarding pro-fibrotic pathways, research approaches to detect and to block 

fibrogenic proteins have been attempted for many years, using in vitro and in vivo 

models. Some of them have shown promising results to reduce and even to reverse 

nephropathy (Perico et al., 2008; Perico et al., 2005).  In veterinary medicine, 

specifically in feline CKD, proteins such as TGF-β (Arata et al., 2005), endothelin 1 

(Uchide et al., 2006) and renin, angiotensin, aldosterone system (King et al., 2006; 

Mizutani et al., 2006; Watanabe et al., 2007) have been studied, with controversial 

findings. These proteins represent potential markers of fibrosis, as well as potential 

target treatments due to their association and causal link in the development of 

fibrosis in different experimental models. Large scale randomized, control and 
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prospective studies in cats are needed to generate evidence based veterinary 

medicine. Veterinary based medicine has to be boosted using also approved animal 

models and, if there is an adequate rationale, testing approved drugs for human use 

in feline patients in large scale trials may speed up the finding of suitable treatments 

for feline CKD. Even though, there are phenotypic differences amongst animal 

models, cats and humans, careful extrapolation of findings from veterinary research 

to human medicine and vice versa may be possible, taking into account the many 

functional and histopathological similarities of CKD. The trigger point to develop 

kidney failure has not being studied in depth in the cat, however, a common hypoxic 

cellular pathway may be importantly involved in its development (Nangaku, 2006; 

Norman et al., 2000), as this is an intimate path in both inflammatory and fibrogenic 

processes (Manresa et al., 2014). These processes have been found in any form of 

acute and chronic renal injury in many animal models and in human tissue with CKD. 

In the present research project, the varied level of fibrosis in the feline kidney samples 

allowed us to study the association of the transglutaminase 2 protein in the 

tubulointerstitial area, adding another protein to the short list of pro-fibrotic proteins 

investigated in the cat with CKD.  

 

3.4.5. Conclusion 

 

According to the renal function information provided by the Royal Veterinary 

College, two groups (non-azotaemic and azotaemic) have been established in this 

chapter. The azotemic group showed significantly higher level of tubulointerstitial 

fibrosis, by different techniques, when compared to the non-azotaemic group. This 

results allows the investigation of the association between tubulointerstitial fibrosis 

and the transglutaminase pathway in Chapter 4.  
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4.1. Introduction 

 

The beginning and evolution of CKD is determined by the progressive 

deposition of collagen proteins in the tubulointerstitial space. The progressive 

behaviour of the disease has been associated with constant cellular insults that 

perpetuate chronic wound healing. Hypoxia has been proposed to play a pivotal role 

in tubulointerstitial fibrosis (Nangaku, 2006). An effective pathological deposition in 

the kidney is importantly aided by cross-linking enzymes such as transglutaminase 2, 

an isoform of a transglutaminase group of enzymes. 

 

Transglutaminases are calcium-dependent enzymes able to cross link collagen 

proteins through the generation of an Є-(γ-glutamyl)-lysine dipeptide bond, making 

them highly resistant to proteolytic degradation (Lorand et al., 2003; Verderio et al., 

2004). The cross-link reaction is triggered following calcium activation when TG is 

exported into the extracellular space (Verderio et al., 2004; Verderio et al., 2009). 

From the 8 isoforms of transglutaminases in vertebrates, transglutaminase 2 (TG2) 

have been frequently studied due to its biochemical functions and ubiquitous 

expression in many cell types and core organs such as liver, heart and kidney. In the 

kidney TG2 is expressed by infiltrating macrophages (Haroon et al., 1999a) together 

with a number of resident renal cell types including endothelial, mesangial (Fesus et 

al., 1988) and tubular cells (Johnson et al., 1999). TG2 transcription may be 

stimulated by stress factors such as hypoxia, acidosis, oxidative stress, 

hyperglycaemia or inflammatory cytokines (Ientile et al., 2007; Skill et al., 2004; 

Verderio et al., 2004). 

 

In the man, TG2 has been associated with the development of CKD by 

assessing TG2 protein and renal fibrosis in kidney biopsies (Johnson et al., 2003). In 

experimental animal models, a causal link has been established between TG2 and 

tubulointerstitial fibrosis in interventional pharmacology studies using a rat model of 

diabetic nephropathy and subtotal nephrectomy (Huang et al., 2009; Johnson et al., 

2007). Moreover, genetic modification has also shown the TG2-renal fibrosis link in 

the TG2-knock mouse models of unilateral ureteral obstruction (Kim et al., 2010; 

Shweke et al., 2008). 

  

In the cat, naturally occurring CKD has been recently investigated to determine 

causes, risk and predisposition factors, to allow prevention, early identification and 

treatment of the disease. The impact of the CKD study in cats does not only rely in 
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the high incidence of the disease in this species, it is also of high importance due to 

the similarities of CKD between humans and domestic felines. By understanding the 

development of the disease in the cat and by finding a common disease pathway, this 

study intended to allow the establishment of  a bridge between both species through 

the understanding CKD. A common factor for CKD between species may be hypoxia. 

Current research in cats have shown that renal tissue hypoxia may pay a role in 

generation of feline CKD (Habenicht et al., 2013; Schmiedt et al., 2012; Williams et 

al., 2014) as seen in animal models and in the man (Eardley et al., 2008). The 

importance of this evidence is the possibility of stabilising a common fibrogenic route 

of disease to enhance the understanding of the disease for and quicker generation of 

treatment in both human and veterinary medicine. The common fibrogenic route 

between hypoxia and renal fibrosis may be transglutaminase 2, which could be a 

potential maker of renal damage and a potential therapeutic target in this species. 

 

 The aim of this study was to determine whether TG is expressed in the feline 

kidney obtained from tissue non-azotaemic and azotaemic samples with different 

degrees of renal fibrosis. Total TG enzyme activity and total TG2 protein expression 

were measured in kidney homogenates whereas extracellular TG enzyme activity and 

TG2 protein expression were determined in situ by immunofluorescence. 

 

In vitro inhibition of TG2 enzyme activity was assessed in this study to establish 

the relevance of TG2 over the other TG isoforms and to explore a potential 

therapeutic option in CKD inhibiting the TG pathway by using monoclonal antibodies 

to TG2 or chemical inhibitors of transglutaminases. 

 

 

4.2. Material and methods 

 

4.2.1. Transglutaminase activity 

 

4.2.1.1. Total TG activity by 3H-putrescine assay. 

 

Transglutaminase activity was measured by the incorporation of 3H-

putrescine into N,N´dimethylcasein in tissue homogenates. The incorporation 

reaction was triggered by the addition of CaCl2 and dithiothreitol (DDT). A sample of 

homogenate was spotted onto 3-mm filter paper and precipitated with ice cold 
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trichloroacetic acid (TCA) 10%. The filter paper was washed several times and the 

precipitated protein quantified to measure the incorporated 3H-putrescine. Each 

sample was re-assessed with 100 μM of a non-selective transglutaminase inhibitor 

compound developed at Aston University, N-benzyloxycarbonyl-L-phenylalanyl-6-

dimethyl-sulfonium-5-oxo-L-norleucine developed, and the selective TG2 neutralizing 

monoclonal antibody BB7 (3.3nM). The results were expressed units per mg of 

protein. Unit of activity is equivalent to 1nmol of 3H-putrescine incorporated per hour 

at 37°C.  See Chapter 2, section 2.5.2, for kidney homogenates and section 2.5.3 for 

TG 3H-putrescine assay methodology. 

 

4.2.1.2. Extracellular in situ activity 

 

8μm thick cryostat sections on adherent slides, previously stored at -80◦C. 

Sections were incubated with biotin cadaverin and CaCl2. The main negative control 

required the substitution of CaCl2 by EDTA. The extracellular matrix incorporated 

biotin cadaverine was revealed by probing the tissue sections with streptavidin Alexa 

red. Sections were visualized using a fluorescent light microscope. Finally, a drop of 

mounting medium with DAPI was added. No less than 10 glomeruli (x 400) and 10 

fields of tubulointerstitial space (x 200) were acquired. The fluorescent TG activity 

index was determined calculating the intense Alexa red area percentage of the total 

field.  Quantification was performed by image analysis. See Chapter 2, section 2.6.2. 

 

4.2.2. Transglutaminase 2 

 

4.2.2.1. Total TG2 by Western blot 

 

Tissue homogenates, obtained as described in Chapter 2, section 2.5.2, were 

separated on a 10% polyacrylamide gel and then electro-blotted. Human recombinant 

TG2 was used as a positive control. For negative controls a non-specific antibody to 

TG2, IgG and whole rabbit serum were employed. The blot was probed with either a 

monoclonal (BB7), rabbit polyclonal (Ab421), goat polyclonal (Ab62819) or mouse 

monoclonal (CUB7402) TG2 antibody. Primary antibodies were revealed using a 

secondary alkaline phosphatase antibody with the subsequent employment of a 

chemiluminiscence blotting substrate. The blots were placed in a ChemiDoc machine 

(Image system, Bio-rad, USA) and quantification was performed using a ChemiDoc 
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software (Image system lab software, Bio-rad, USA). The results obtained were 

shown as optical density mm2 per µg of protein. See Chapter 2, section 2.5.4. 

 

4.2.2.2. Extracellular TG2 

 

8μm thick cryostat sections on adherent slides, previously stored at -80◦C. The 

slides were blocked and washed. The tissue was probed with a primary antibody 

(TG2) overnight at 4◦C followed by fixation and serial washings. The slides were 

immunoprobed with a secondary antibody and left at room temperature for 2 hours. 

Finally, a drop of mounting medium with DAPI was added. No less than 10 glomeruli 

(x 400) and (x 200) of cortex tubules were acquired. The immunofluorescent fibrosis 

index was determined calculating the intense Alexa red) area percentage of the total 

field. Quantification was performed by image analysis. See Chapter 2, section 2.6.1. 

 

4.2.3. Statistics 

 

The cross-sectional data was analysed by unpaired two-tailed Student’s t-test 

with Welch’s correction. To evaluate group correlations, r2 was calculated by linear 

regression analysis.  The statistical significant level was defined as P<0.05. Chapter 

2, section 2.7. 

 

 

4.3. Results 

 

4.3.1. Total kidney transglutaminases 

 

4.3.1.1. TG2 antibody 

 

Representative western blots of recombinant human TG2 (rhTG2) and renal 

TG2 protein are shown for kidney sample No.15 immunoprobed with four different 

TG2 antibodies. rhTG2 (positive control) gave a single band at approximately 78kDa.  

 

Cat kidney homogenate (35μg protein/lane approx.) showed two bands with 

both BB7 and Ab421 antibody at 75kDa / 83kDa and 75kDa / 66kDa, respectively. 

CUB7402 and Ab62819 showed a band at 75kDa, see Figure 4.1.  As negative control 

western blots were probed with just secondary antibody, no signal was observed. To 
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further assess Ab421, a rabbit IgG, whole rabbit serum and guinea pig TG2 were 

employed, no evidence of bands overlapping either 83kDa or 75kD area was seen. 

Figure 4.2. 

 

4.3.1.2. Total TG2 protein 

 

A representative western blot of total TG2 protein in the kidney is shown for 

non-azotaemic cats (n=5) or azotaemic cats (n=10), Figure 4.3, panel A. 

Recombinant human TG2 (positive control) gave a single band at 78kDa. Cat kidney 

homogenates (27μg protein/lane) gave two bands at 75 kDa (TG2) and 83 kDa. For 

both primary antibodies rpTG2 antibody (Ab421) and TG2 monoclonal antibody 

(BB7), the mean volume density /μg protein of the 75kDa band obtained from cats 

with azotaemia was approximately 3-fold higher than that from non-azotaemic cats. 

When immunoprobing with BB7: Non-azotaemic, 151500 ± 9769; azotaemic, 222800 

± 26690 OD mm2/µg protein, P<0.05, Figure 4.3 panel C. When immunoprobing with 

Ab421: Non-azotaemic, 21 270 ± 4 046; azotaemic, 60 300 ± 14 870 OD mm2/µg 

protein, P<0.05, Figure 4.3 panel D.  

 

A strong positive linear correlation was obtained between total TG2 protein and 

total enzyme activity, measured in tissue homogenates from cat kidneys by western 

blotting and 3H-putrescine incorporation assays, respectively, Figure 4.3, panel D. 

 

4.3.1.3. Total TG enzyme activity 

 

The azotaemic group was associated with a significant 3 fold higher level in the 

total TG enzyme activity when compared to the non-azotaemic group. Non-

azotaemic, 10.9 ± 2.3 nmol; azotaemic, 37.2 ± 8.1 nmol 3H-putrescine per hour at 

37◦C, P<0.02, Figure 4.4, panel A. A positive linear correlation was obtained between 

total TG enzyme activity and total TG2 protein, see Figure 4.4. A strong positive linear 

correlation was obtained between total TG2 protein and total enzyme activity, 

measured in tissue homogenates from cat kidneys by western blotting and 3H-

putrescine incorporation assays, respectively, Figure 4.5. 

 

 

 

 

 



119 

 

 

 

 

 
 

Figure 4.1: Western blot for Transglutaminase 2 using different antibodies 
 
Western blot for cat kidney TG2 from a representative kidney tissue homogenate from an azotaemic cat 
sample (cat No. 15). Sample was immunoprobed with four different antibodies, using human 
recombinant TG2 as positive control were immunoprobed with BB7 antibody. 
 

 

 

 
 

Figure 4.2: Western blot for TG2 using different positive and negative controls 
 
Western blot for cat kidney TG2 from an azotaemic kidney homogenate (cat kidney tissue No. 10). 
Antibody was assessed using two positive controls, human recombinant TG2 (control set-1 and 2, first 
lanes) and guinea pig TG2 (control set-2, second lane). For negative controls, blots were probed with or 
without rabbit IgG (, control set-1, lane 3 and 4, respectively) and rabbit serum (control set-2, lane 4).  
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4.3.2. Extracellular kidney transglutaminase 

 

4.3.2.1. TG in situ activity 

 

Intraglomerular mesangial area. Representative examples of glomeruli from 

fluorescent sections are shown for each experimental group in Figure 4.6, panels A 

and C. The intraglomerular mesangial area (IGMA) in the representative images do 

not show any visual difference in red fluorescence between representative images. 

Measurements of IGMA for the azotaemic and non-azotaemic groups, expressed as 

mean of area % did not show a significant difference. Non-azotaemic, 4.5 ± 1.8; 

azotaemic, 9.5 ± 2.6 area %, NS. See Figure 4.6 panel E. 

 

Tubulointerstitial area. Representative examples of tubulointerstitial area from 

fluorescent sections are shown for the azotaemic and non-azotaemic group in Figure 

4.6, panels B and D, respectively. The tubulointerstitial area from the azotaemic 

image shows an intense red fluorescence extracellularly in both peritubular and 

interstitial space when compared to the non-azotaemic representative section. 

Measurements of the tubulointerstitial in the azotaemic kidney tissue, expressed as 

mean of area %, showed a 3.8 fold higher significant values. Non-azotaemic, 7.9 ± 

2.1; azotaemic, 30.1 ± 3.1 area %, P<0.005. See Figure 4.6, panel F. 

 

4.3.2.2. TG2 protein 

 

Intraglomerular mesangial area. Representative examples of glomeruli from 

fluorescent sections are shown for each experimental group in Figure 4.7, panels A 

and C. The intraglomerular mesangial area (IGMA) in the representative images do 

not show any visual difference in red fluorescence between representative images. 

Terminal measurements of IGMA for the azotaemic and non-azotaemic groups, 

expressed as mean of area % did not show a significant difference. Non-azotaemic, 

3.3 ± 1.5; azotaemic, 5 ± 1.7 area %, NS. See Figure 4.7 panel E. 

 

Tubulointerstitial area. Representative examples of tubulointerstitial area from 

fluorescent sections are shown for the azotaemic and non-azotaemic group in Figure 

4.7, panels B and D, respectively. The tubulointerstitial area from the azotaemic 

image shows an intense red fluorescence extracellularly in both peritubular and 

interstitial space when compared to the non-azotaemic representative section. 

Significantly higher values (2.7 fold) were obtained for kidney tissue from cats with 
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azotaemia compared with non-azotaemic samples. Non-azotaemic, 9.7 ± 2.7; 

azotaemic, 26.4 ± 3.3 area %, P<0.002). See Figure 4.7 panel F. 

 

4.3.3. In vitro inhibition of TG enzyme activity 

 

The effect of N-benzyloxycarbonyl-L-phenylalanyl-6-dimethyl-sulfonium-5-oxo-

L-norleucin a small MW TG inhibitor on TG enzyme activity in cat kidney 

homogenates is compared with a TG2 selective mouse monoclonal antibody (BB7) 

in Figure 4.8. Both N-benzyloxycarbonyl-L-phenylalanyl-6-dimethyl-sulfonium-5-oxo-

L-norleucine and mAb BB7 inhibitors almost completely inhibited all the activity in the 

cat kidney. 

 

4.3.4. Correlations  

 

Extracellular TG enzyme activity gave positive linear correlations with both a 

marker of renal function (plasma creatinine r2 =0.30, P<0.05) and a marker of matrix 

deposition (collagen I, r2 = 0.35, P<0.05).  Extracellular TG2 protein in the 

tubulointerstitium showed a highly significant positive linear correlation with plasma 

creatinine (r2=0.75, P<0.0001), plasma urea (r2=0.81, P<0.0001) and plasma 

phosphate (r2=0.76, P<0.0001), Table 4.1. 

 

A significant positive linear correlation was also obtained between extracellular 

TG2 protein and extracellular TG enzyme activity (r2=0.41, P<0.02) and also between 

total TG activity with both total TG2 protein and extracellular TG activity, Table 4.2. 

Regarding correlation between the TG pathway and tubulointerstitial fibrosis, 

significant positive linear correlations could also be demonstrated with markers of 

matrix deposition including, Masson’s trichrome and collagen I, (r2 =0.39 and 0.39, 

respectively, P<0.05).  Also, when fibrosis was assessed by PASH, positive 

correlations were found with extracellular TG activity ad TG2 protein, see Figure 4.9. 
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Figure 4.3: Representative Western blots for the quantification of feline TG2  

 
Panel A. Western blot for cat kidney TG2 from non-azotaemic (cat Nos. 1–5) and azotaemic animals 
(cat Nos. 6–15). Kidney homogenates were immunoprobed with BB7 antibody. Human recombinant TG2 
(hrTG2) was employed as a positive control (78 kDa). Kidney homogenates gave 2 bands at 75 kDa 
(TG2-green arrow) and 66 kDa (possible inactive TG2 fragments-red arrow). Panel B. Each feline tissue 
sample were reassessed using rabbit polyclonal TG2 antibody (rpTG2). Kidney homogenates gave 2 
bands at 83 kDa (factor XIIIa-red arrow) and 75 kDa (TG2-green arrow). Panel C and D. Significantly 
higher total TG2 protein in cat kidneys obtained from azotaemic  compared with non-azotaemic animals 
when immunoprobed with BB7 and rpTG2, respectively. Vertical lines on columns are ±SEM. Panel E. 
Positive linear correlation between total TG2 protein using BB7 and total TG2 protein using rpTG2 in 
kidneys from azotaemic and non-azotaemic cats (n = 15). 
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Figure 4.4: Total Transglutaminase activity 

 
Significantly higher total TG enzyme activity in cat kidneys obtained from azotaemic (n = 10) compared 
with non-azotaemic animals (n = 5), determined by 3H-putrescine incorporation. Vertical lines on 
columns are ± SEM.  
 

 

 
 

Figure 4.5: Linear regression between total TG activity and total TG2 protein 
 
Positive linear correlation between total TG2 protein and total TG enzyme activity in kidneys from 
azotaemic and non-azotaemic cats (n = 15). 
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Figure 4.6: Transglutaminase activity in the cat kidney with CKD 

Panel A, C and B, D.  Representative images of glomeruli (400x) and tubulointerstitial (200x) area, 

respectively, showing coloration (Alexa red - TG activity and DAPI - nuclei) and structural differences 
between the Non-azotaemic (A and B) and azotaemic (C and D) samples, respectively. Panel E and F. 

The histograms represents the mean % red area in the IGMA and tubulointerstitial area, respectively.  
Azotaemic group (n=10) and non-azotaemic group (n=5). Vertical bars indicate +/-SEM. 
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Figure 4.7: Transglutaminase 2 in the cat kidney with CKD 

Panel A, C and B, D.  Representative images of glomeruli (400x) and tubulointerstitial (200x) area, 

respectively, showing coloration (Alexa red-TG2 and DAPI-nuclei) and structural differences between 
the Non-azotaemic (A and B) and azotaemic (C and D) samples, respectively. Panel E and F. The 

histograms represents the mean % red area in the IGMA and tubulointerstitial area, respectively.  
Azotaemic group (n=10) and non-azotaemic group (n=5). Vertical bars indicate +/-SEM. 
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Figure 4.8: Inhibition of total transglutaminase 

 
TG enzyme activity in cat kidney tissue by a low MW, nonselective TG inhibitor and a TG2-selective 
mouse monoclonal antibody (BB7 mAb) in vitro. Kidney homogenates were prepared from azotaemic 
cats Nos. 6, 7, 8, 10, 12 and 15. Vertical lines on columns are ± SEM (n=6). 
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Technique A Technique B r2 P value < 

Extracellular TG activity Creatinine 0.30 0.05 

Extracellular TG activity Urea 0.27 0.05 

Extracellular TG2 protein Creatinine 0.75 0.0001 

Extracellular TG2 protein Urea 0.81 0.0001 

Extracellular TG2 protein Phosphorus 0.76 0.0001 
 

Table 4.1: Correlation between tubulointerstitial TG pathway and renal function 

 

Technique A Technique B r2 P value < 

Extracellular TG activity Extracellular TG2 protein 0.41 0.02 

Total TG activity Extracellular TG activity 0.34 0.03 

Total TG activity Total TG2 protein 0.85 0.0001 

 
Table 4.2: TG pathway correlations 

 

 
 

Figure 4.9: Correlations between tubulointerstitial TG pathway and fibrosis 
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Figure 4.10: Epitope binding site of BB7 Ab on human and feline TG2  
 
Upper image. Segment of TG2 aminoacid sequence and differences between the cat and the human; 
blue residues denote the BB7 epitope binding site. Lower image. BB7 epitope binding site is shown in 

blue for both cat and human (blue) showing 100% identities. Red residues in the mouse and rat 
aminoacid segment show the differences in the BB7 epitope binding site when compared to the cat and 
human.  
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4.4. Discussion  

 

4.4.1. TG2 protein antibodies  

 

When using the rabbit polyclonal TG2 (Ab421) western blot analysis showed 

two bands at 75kDa (TG2) and 83kDa. According to the molecular weight, the upper 

band is compatible with factor XIIIa (ENSFCAP00000014378) (Flicek et al., 2014), a 

member of the transglutaminase group that is found in blood plasma. Factor XIIIa 

does not interfere with extracellular TG2 analysis in cryostat section, as the technique 

washes out all blood plasma from tissue sections. The positive controls (human 

recombinant TG2) gave a single band at 78kDa. Both human and feline TG2 are 

composed of 687 aminoacids, however, recombinant human TG2 (hrTG2) is N-

terminally fused with a hexahistidine-tag generating a bigger protein of 693 

aminoacids, which may explain the slight higher molecular weight for the recombinant 

TG2. 

 

TG2 detection was further assessed testing four different TG2 antibodies by 

western blot. Three of those antibodies were commercially available by Abcam (goat 

polyclonal TG2 antibody, mouse monoclonal TG2 antibody and a rabbit polyclonal 

TG2 antibody) and the other, a monoclonal antibody named BB7, which was 

developed by our Academic Nephrology Unit (P Watson, T Johnson and M 

Mabrouka), see Chapter 2, section 2.5.4, Table 2.4. BB7 antibody, which was 

originally designed to inhibit human TG2, matched 100% the epitope binding site in 

the cat TG2, Figure 4.10. All the 4 antibodies showed a consistent band at 75kDa. 

However, a double, well-defined band was detected at 66kD which may be 

compatible with a degradation fragment of TG2 (Belkin et al., 2004), Further 

discussion for the 83 and 66kD bands will be addressed in Chapter 8. 

 

When using the goat TG2 antibody, a polyclonal antibody obtained from 

immunised goats with a synthetic peptide identical to the cat TG2, the positive control 

(recombinant human TG2) and feline renal TG2 showed a faint signal in both bands. 

Different blocking methods and antibody concentrations were attempted, however 

similar results were obtained, probably due to the susceptibility of cat TG2 protein to 

denature at that protein portion. For these reasons, the goat polyclonal antibody was 

not employed. The monoclonal TG2 antibody CUB7402 did not match 100% the 

epitope binding site to the cat TG2 (69% identities in the aminoacid sequence), hence, 

it was discarded too. BB7 antibody, on the other hand, matched 100% the feline 

http://www.ensembl.org/Felis_catus/Transcript/ProteinSummary?db=core;g=ENSFCAG00000015505;r=B2:22137472-22297478;t=ENSFCAT00000015509
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epitope binding site. However, due to patent in progress, the employment of BB7 

antibody was restricted to the in vitro TG2 inhibitory study. 

 

The rabbit polyclonal antibody (Ab421, immunogen: full length TG2 protein 

purified from guinea pig) was chosen in this project for the following reasons:-  

 

a) Assets of a polyclonal antibody  

 

-It recognizes multiple epitopes on any one antigen, therefore, it can help to 

amplify signal with low expression (multiple epitopes provide more robust 

detection). 

 

-It is more tolerant to minor changes in antigen, such as polymorphism, 

heterogeneity of potential glycosylation sites and preferred choice for detection 

of denature proteins.  

 

-Identify proteins of high homology to the immunogen protein in question, 

hence suitable when the nature of the antigen in an untested species is not 

known, as in cat TG2. 

 

b) The band at 75 kDa showed a high positive linear regression in the OD mm2/µg 

protein when compared to the 75 kDa band generated by our TG2 monoclonal 

antibody BB7 (r2= 0.95, P<0.0001), see Figure 4.3, panel A-E.  

 

c) The lower band 75 kDa generated by this antibody is a neat and high definition 

band with no major background, easy to replicate experimentally, Figure 4.3, 

panel B. 

 

d) It is a commercially available antibody, easy to obtain, thus information 

obtained in this research project can be published and further investigations 

can be done or replicated by any research group interested in the field. 

 

4.4.2. Transglutaminase pathway and CKD in the cat 

 

The azotaemic cats showed a higher TG activity and TG2 protein expression 

when compared to non-azotaemic cats in both extracellular and in tissue 

homogenates. Kidney homogenate studies showed a 3-fold higher total TG enzyme 
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activity in cats with azotaemia when contrasted with non-azotaemic cats. Extracellular 

TG enzyme activity and TG2 protein showed a significant linear correlation with 

markers of renal function, including plasma creatinine, urea, and phosphate, and with 

tubulointerstitial fibrosis, including the deposition of matrix protein and collagen I.  

 

In the present study, triggering factors for TG2 expression and activity may be 

primary hypoxia or secondary, linked to phosphate, urea and creatinine levels. 

Combination of factors may be important to trigger or perpetuate TG2 transcription 

and cellular exportation o TG2 to the ECM. 

 

4.4.2.1. Phosphate 

 

An imbalance in calcium and phosphate homeostasis is a common feature of 

CKD (Barber et al., 1998). Hyperphosphataemia has been found to be an 

independent predictor for CKD progression and associated with low survival and high 

morbidity when present in cats (Geddes et al., 2013). The relevance of 

hyperphosphataemia in CKD and its suppressive effect on renal vitamin D3 

metabolism has been studied in both humans and domestic felines (Barber et al., 

1998; Nolan, 2005). On the other hand, vitamin D analogues are known to have 

renoprotective effects (Li, 2010). A significant upregulation for both renin and TGF-β 

was reported in a model of CKD in vitamin D receptor knockout mice (Zhang et al., 

2008). Moreover, it has been shown that vitamin D receptor knockout fibroblasts show 

upregulation of NF-Kβ (Sun et al., 2006). Interestingly, transglutaminase 2 is strongly 

associated with the upregulation of TGF- β (Khalil, 1999; Nunes et al., 1997; Shin et 

al., 2008) and NF-Kβ (Kim et al., 2010), both main fibrogenic and inflammatory 

proteins, respectively (Morrissey et al., 1998). Moreover, activation of NF-Kβ has 

been shown to activate TG2.  

 

4.4.2.2. Urea 

 

Regarding the link between azotaemia and TG2 in CKD, urea and creatinine 

may be importantly involved in the activation of TG2. Azotaemia is a blood condition 

by abnormally high levels of nitrogen containing compounds. Urea is considered to 

be the main compound to generate hyperosmolarity (Levine et al., 2001) and 

metabolic acidosis, hence urea itself, through generation of reactive oxygen species 

(Vaziri, 2004), may be considered a TG2 triggering factor (Lee et al., 2003).  
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4.4.2.3. Creatinine 

 

The impact of high levels of creatinine in the cat has not been studied 

experimentally. In a model of acute kidney injury in the rat (bilateral nephrectomised 

rats) creatinine or urea injections where able to shorten life survival (Levine et al., 

2001). In dogs when chronic creatinine intoxication was induced, mild anaemia and 

gastroduodenitis were present (Giovannetti et al., 1969). With this evidence, we could 

speculate that plasma creatinine might not have a direct role in TG activation, 

however, its potential effect to produce anaemia and inflammation may contribute to 

some extent. 

 

4.4.2.4. Hypoxia 

 

Triggering and perpetuating factors for TG2 may be associated with hypoxic 

tissue status. Upregulation of NF-Kβ following unilateral ureteral obstruction in the 

mouse could not be demonstrated in the TG2 knockout mouse (Kim et al., 2010). 

Renal hypoxia generates reactive oxygen species (Nangaku, 2006) and systemic 

acidosis, all potential triggers for TG2 activation (Lee et al., 2003).  

 

In the cat, there are two pieces of evidence showing that hypoxia may be 

involved in feline CKD (Schmiedt et al., 2012; Williams et al., 2014). Schmiedt et al 

(2012) showed the effect of renal ischaemia reperfusion in a model of bilateral renal 

reperfusion injury in the cat, where the acute changes in plasma urea and creatinine 

were compatible with acute kidney disease that eventually may predispose to the 

development of CKD, as seen in many other experimental animal models. In 

Habenicht et al (2013) and Williams et al (2014) studies, vascular endothelial growth 

factor (VEGF) was assessed in urine from cats with CKD. VEGF is an angiogenic 

protein produced by cells when low oxygen levels are detected (Levy et al., 1995). 

Hyperthyroid azotaemic cats showed a significant increase in urinary VEGF when 

compared to the normal renal function cats (Williams et al., 2014). Conversely, 

Habenicht et al (2013) showed that in non-hyperthyroid cats with CKD there is a 

significant reduction of urinary VEGF when comparing to normal renal function cats. 

Interestingly, in an acute model of RWI in the Sprague Dawley rat, increase in renal 

VEGFR-2 transcription occurs without the increase in expression of VEGF and 

VEGFR-1 showing that perhaps VEGF may not be a urinary sensitive marker of 

hypoxia (Kanellis et al., 2002). 
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4.4.3. In vitro inhibitory studies 

 

Both the mAb BB7 and N-benzyloxycarbonyl-L-phenylalanyl-6-dimethyl-

sulfonium-5-oxo-L-norleucine almost completely inhibited all the activity in the cat 

kidney. The transglutaminase inhibitor compound is able to inhibit the activity of all 9 

isoforms of transglutaminase whereas BB7 antibody is specific for TG2. These results 

suggest that factor XIIIa (blood plasma transglutaminase) does not play a major role 

in the kidney from cats with CKD, taking into account the homogenized kidney 

samples assessed in this study were obtained from euthanized cats without previous 

blood flushing out before -80°C storage. According to our findings TG2 is the major 

isoform in the cat kidney tissue with CKD. 

 

4.4.4. Conclusion 

 

This study has shown for first time the following points: 

 

a) The association of TG2 with feline CKD 

b) TG2 is the major transglutaminase isoform in the cat kidney. 

c) We have identified an epitope in the cat TG2 that inhibits (in vitro) its activity when 

targeted by a monoclonal antibody. 

d) Identification of a commercial TG2 antibody for future studies in the cat with CKD. 

e) The in vitro inhibition of TG2 activity in the cat kidney tissue is possible using both 

approaches monoclonal and chemical inhibitors of transglutaminases.  

 

The renal TG pathway represents an important and plausible new therapeutic 

target to reduce the development and slow the progression of CKD in the domestic 

cat. However, due to ethical concerns, experimentation to determine effectiveness of 

antibodies cannot be performed in cats in this study, hence a rat model of renal warm 

ischaemia was employed due the accumulative evidence showing that hypoxia may 

be a cornerstone factor for the development of renal fibrosis. The association and 

causal link between the TG2 pathway and tubulointerstitial fibrosis induced by RWI 

will be analysed in chapters 5 and 6, respectively. 
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The Transglutaminase pathway 

following Renal Warm Ischaemia 
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5.1. Introduction 

 

Many of the animal models used to study the development of chronic kidney 

disease involve the induction of acute renal injury at a pre-renal, a renal or a post-

renal level. Ischaemia has been identified as a major contributor to acute kidney injury 

in humans (Abuelo, 2007) significantly increasing the risk of developing CKD 

(Bellomo et al., 2012). The development of oxidative stress is a common denominator 

following the induction of acute renal disease triggered by hypoxia (Nangaku, 2006; 

Shah et al., 2007). The induction of acute renal injury following RWI has also been 

described in the cat where the histopathological features are compatible with the 

development of chronic kidney disease (Schmiedt et al., 2012). Mechanisms 

associated with such events may be examined in animal models following the 

induction of renal warm ischaemia (RWI) (Weight et al., 1996). Animal models of RWI 

have also been used to understand the pathogenesis of chronic allograft 

nephropathy, a fibrogenic condition which may develop following human kidney 

transplantation. Interestingly, chronic allograft nephropathy has been also recognised 

following kidney transplantation in cats (De Cock et al., 2004). 

 

RWI in the rat induces ischaemia reperfusion injury involving cellular infiltration 

and extracellular matrix accumulation leading to the development of chronic renal 

failure (Forbes et al., 2000). The degree of RWI correlates with the level of renal 

damage in the functional and structural setting (Azuma et al., 1997). Different rat 

models of RWI have been established to study the degree of acute renal injury after 

renal warm ischaemia and its implication in the development of renal fibrosis. 

Differences in these models rely on the clamping of renal pedicles (unilateral or 

bilateral), time of clamping (30, 45 and 65 minutes) and the time for contralateral 

nephrectomy after RWI (0, 5, 7 and 14 days). The less the clamping time the lower 

the acute renal injury and the degree of fibrosis in chronic studies (Becker et al., 

2013). Bilateral renal clamping tends to develop less renal fibrosis when compared to 

unilateral clamping + early contralateral nephrectomy (Basile et al., 2001a; Lloberas 

et al., 2001; Torras et al., 1999);  this is probably associated with the elevation of renal 

pressure, hyperfiltration and metabolism, increasing renal oxygen requirements 

(major tissue hypoxic state) in the unilaterally injured kidney (Brenner et al., 1996; 

Brezis et al., 1995).  

 

 Regarding the time for contralateral nephrectomy, the recovery and survival 

of the clamped kidney after 60 minutes of RWI kidney was importantly associated 
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with the time of contralateral nephrectomy in previous pilot studies; this is probably 

associated, apart from the tissue oxygen requirements above described, with the 

levels of hyperazotaemia (elevation of plasma urea and creatinine) that produces an 

acidotic systemic state affecting renal function and other rat organs, generating 

complete renal failure and death. On the other hand, long recovery of clamped kidney 

by contralateral renal support may produce a lower level of fibrosis in contrast to early 

contralateral nephrectomised rats. Temperature, plays an important role for the 

development of acute kidney in rat RWI. In Sprague Dawley rats, an acute association 

between RWI and the development of renal injury has been established according to 

the rat´s body temperature ranging from 32 to 39 °C, the higher the temperature the 

lower the renal function (Delbridge et al., 2007). Therefore, an adequate balance 

amongst, temperature, timing for RHC and contralateral nephrectomy are pivotal for 

the development of tubulointerstitial fibrosis and level acute and long term mortality.  

 

In the present study, a rat model of RWI was employed to assess changes in 

the transglutaminase pathway associated with the accumulation of extracellular 

matrix and impairment of renal function. Ischaemia reperfusion injury was induced in 

male Sprague Dawley rats subjected to left renal hilar clamping for 60 minutes (37°C 

body temperature) followed by a right nephrectomy 7 days later. Due to histology 

requirements, this study consisted of a series of 3 cross-sectional experiments where 

kidney tissue was harvested after 8, 28 and 140 days. Renal function was measured 

sequentially throughout. A time course was undertaken to establish whether the 

development of fibrosis in the rat kidney is associated with the transglutaminase 

pathway at different time points following renal warm ischaemia. 

 

 

5.2. Material and methods 

 

5.2.1. Animals and anaesthesia 

 

Male Sprague-Dawley rats (Harlan, UK), 8-10 weeks, with an initial weight of 

250-300 grams were maintained at 20◦C, 45% humidity and with a light cycle of 12 

hours. For surgical procedure, rats were induced in an anaesthetic chamber with 5% 

isoflurane and 8 L/min oxygen. Analgesia was provided by intramuscular injection of 

buprenorphine 50μg/kg. Maintenance of anaesthesia was achieved with 1.5% of 

isoflurane and 1 L/min oxygen. The rat was placed on an operating board covered 
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with a homeothermic blanket to keep the rat temperature between 36-37°C. Surgical 

area was clipped and cleaned aseptically.  

 

5.2.2. Experimental protocol 

 

The groups consisted of nephrectomised rats (Nx) composed of sham operated 

rats subjected to right nephrectomy at day 7. The disease group (RWI), composed of 

rats subjected to 60 minutes of left renal hilar clamping and right nephrectomy at day 

7; both groups with a disease progression of 8, 28  or 140 days. In the 8-day 

experiment, a rat did not reach an adequate change in coloration suggesting 

inadequate clapping of renal hilus, therefore, it was removed from the study. A rat in 

the 28-day died after contralateral nephrectomy. Number of rats for each terminal 

experiments are displayed in Table 5.1. 

 

 

Days after RWI Number of rats per group 

Nx RWI 

8 5 4 

28  8 7 

140 6 10 

 
Table 5.1: Number of rats for each study 

 

 

 

5.2.3. Renal function  

 

5.2.3.1. Blood serum and urine 

 

Blood serum and urine were pipetted into plastic test tubes. Creatinine was 

assayed  in serum and urine by the Jaffe rate method (Levey et al., 1988) using a 

SYNCHRON ® System (Beckman Coulter Inc.) machine (section 2.3.1). Assessment 

of serum and urine creatinine was performed at day 0, 8, 28, 56, 84, 112 and 140 of 

RWI, according to each study. 
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5.2.3.2. Rat albumin 

 

Rat albumin was measured in urine by enzyme-linked immunosorbent assay 

(ELISA). A 96 well plate was coated with sheep anti-rat albumin antibody and the 

sample added to the plate. The secondary anti-sheep antibody containing 

horseradish peroxidase (HRP) was then added followed by the enzyme substrate. 

The change in colour was proportional to the amount of secondary antibody bound to 

the primary antibody which in turn is bound to albumin. The optical signal was 

measured by spectrophotometry at 450 nm (section 2.3.2). Assessment of albumin 

excretion was performed at day 8, 28, 56, 84, 112 and 140 of RWI, according to each 

study. 

 

5.2.3.3. Systemic blood pressure 

 

Systemic blood pressure was measured using a tail cuff plethysmography. The 

blood pressure was captured by a central amplifier (IITC life science BP amplifier) 

and the information was displayed through a software IITC life science (section 2.2.9).  

 

5.2.4. Renal morphology 

 

5.2.4.1. Haematoxylin and Eosin  

 

5μm paraffin embedded sections were deparaffinized and rehydrated. The 

slides were stained with haematoxylin, rinsed and stained with eosin. Slides were 

passed through several changes of alcohol and xylene to clear and dehydrate tissue 

sections. The slides were mounted in DPX mountant. Bowman’s space, glomerular 

diameter, tubular dilatation space and tubular luminal area were assessed using a 

software for image analysis (Cell F, Olympus, Software Digital Image System, USA). 

H and E staining was only performed for the 28-day RWI study (section 2.4.1).  

 

5.2.5. Renal fibrosis 

 

5.2.5.1. Masson’s trichrome staining 

 

5μm, formalin-fixed, paraffin embedded sections were deparaffinized and 

rehydrated. Tissue sections were placed in Bouin’s solution overnight, washed and 
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placed in working Weigert’s iron haematoxylin solution for 5 minutes. Slides were 

stained with Biebrich scarlet-acid fuchsin, aniline blue solutions, rinsed in tap water, 

dehydrated and mounted in DPX. For IGMA and tubulointerstitial expansion of 

extracellular matrix, no less than 10 glomeruli (x 400) and (x 200) of cortex tubules 

were acquired. The fibrosis index was determined calculating the blue (Masson´s 

trichrome) / red (cellularity) ratio of total field. Quantification was performed by image 

analysis (section 2.4.3). Tissue assessment of extracellular matrix expansion by MTS 

was performed at day 8, 28 and 140 days, according to each RWI study. 

 

5.2.5.2. Immunofluorescence 

 

8μm thick cryostat sections on adherent slides, previously stored at -80◦C. The 

slides were blocked and washed. The tissue was then probed with a primary antibody 

(collagen I, III and IV) overnight at 4◦C followed by fixation and serial washings. The 

slides were immunoprobed with a secondary antibody and left at room temperature 

for 2 hours. A drop of mounting medium with DAPI was added and a cover slide was 

placed on top. No less than 10 glomeruli (x 400) and (x 200) of cortex tubules were 

acquired. The immunofluorescent fibrosis index was determined calculating the 

intense FITC (collagens) / DAPI (nuclei) ratio of the total field.  Quantification was 

performed by image analysis (section 2.6.1). Tissue assessment of collagens by 

immunofluorescence was performed at day 8, 28 and 140 days, according to each 

RWI study. 

 

5.2.6. Renal transglutaminase 

 

5.2.6.1. Immunofluorescence 

 

8μm thick cryostat sections on adherent slides were blocked and washed. The 

tissue was probed with a primary antibody (TG2) overnight at 4◦C followed by fixation 

and serial washings. The slides were immunoprobed with a secondary antibody and 

left at room temperature for 2 hours. A drop of mounting medium with DAPI was 

added and a cover slide was place on top. No less than 10 glomeruli (x 400) and (x 

200) of cortex tubules were acquired. The immunofluorescent fibrosis index was 

determined calculating the intense Alexa red (TG2) / DAPI (nuclei) of the total field.  

Quantification was performed by image analysis (section 2.6.1). Tissue assessment 

of TG2 by immunofluorescence was performed at day 8, 28 and 140 days, according 

to each RWI study. 
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5.2.6.2. TG in situ activity 

 

8μm thick cryostat sections were rehydrated. Sections were incubated 1h at 

37◦C with the reaction buffer. Three controls were set up by incubating some sections 

with either 10mmol/L EDTA, 200 μmol/L DOO3 or anti-TG2 mouse monoclonal 

antibody, 1:50. Sections were washed twice, fixed with cold acetone for 10 minutes 

in a -20◦C freezer, air dried and blocked with 3% BSA in PBS at 4◦C overnight. The 

sections were washed twice, probed with Alexa labelled streptavidin 1:300 in 3% BSA 

/ PBS and incubated 2h at 37◦C. Sections were washed in PBS and mounted using 

MOWIOL-DAPI mounting media. IGMA and tubulointerstitial fields were pictured and 

quantified as described for the immunofluorescent techniques. Examples for TG 

activity and protein quantification by image analysis are shown in Figure 2.26. 

 

5.2.7. Statistics 

 

 Studies were assessed by unpaired t-test and two-way ANOVA for longitudinal 

studies. To assess correlations between different experiments, analysis r2 and p 

values were calculated. For all the statistical analysis, a probability higher than 95% 

(p<0.05) was taken as significant. The calculations, histograms and linear plots were 

performed using Graph Prism version 5 software (section 2.7.2). 

 

 

5.3. Results 

  

5.3.1. Renal Warm Ischaemia - day 8 study 

 

5.3.1.1. Renal function 

 

Serum creatinine. The RWI group showed a significantly higher serum 

creatinine level, expressed as mean of μmol/L, when compared to the Nx group. Nx, 

51.6 ± 4; RWI, 334.3 ± 34 μmol/L, P<0.0001. 

 

Creatinine Clearance. The RWI group showed a significantly lower creatinine 

clearance, expressed as mean of milliliters per minute, when compared to the Nx 

group. Nx, 1.53 ± 0.21; RWI, 0.125 ± 0.04 ml / min, P<0.001.   
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Albumin excretion, water intake and urine production. Measurements did 

not show any significant difference between groups. Albumin, Nx, 0.8 ± 0.6; RWI,  

2.36 ± 0.16 mg / 24hrs, P=0.06. Water intake, Nx, 29 ± 1; RWI, 36 ± 3 ml / 24 hrs, 

P=0.055. Urine production, Nx, 20.2 ± 6.5; RWI, 34.2 ± 4.15 ml / 24 hrs, P=0.13. 

 

Renal weight. Terminal measurement of renal weight for the RWI group, 

expressed as mean of grams per kidney, showed a significantly higher change when 

compared to the Nx group. Nx, 1.24 ± 0.12; RWI, 2 ± 0.06 grams, P<0.01. 

 

5.3.1.2. Renal fibrosis 

 

Masson’s Trichrome Staining  

 

Intraglomerular mesangial area. The RWI group was associated with a 

significantly higher blue/red ratio at day 8 when compared to the Nx group. Nx, 2 x10-

4 ± 2.5 x10-5; RWI, 10 x10-4 ± 20 x10-5 blue/red ratio, P<0.005. 

Tubulointerstitial area. The RWI group was associated with a significantly 

higher in the blue/red ratio at day 8 when compared to the Nx group. Nx, 0.007 ± 

0.001; RWI, 0.04 ± 0.01, P<0.001. 

 

Collagen III 

 

Intraglomerular mesangial area. Measurements of collagen III in the IGMA did 

not show any significant difference in the FITC/DAPI ratio between groups. Nx, 2.3 

x10-3 ± 0.7 x10-3; RWI, 2.1 x10-3 ± 10.5 x10-3 FITC/DAPI ratio, P=0.9. 

Tubulointerstitial area. The RWI group was associated with a significantly 

higher FITC/DAPI ratio when compared to the Nx group. Nx, 0.085 ± 0.02; RWI 0.3 ± 

0.03 FITC/DAPI, P<0.0003. 

 

5.3.1.3. Renal transglutaminase 
 

TG in situ activity 

 

Intraglomerular mesangial area. Measurements of TG activity in the IGMA did 

not show any significant difference in the Alexa red / DAPI ratio between groups. Nx, 

0.54 ± 0.13; RWI 0.33 ± 0.22 Alexa/DAPI, P=0.43. 
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Tubulointerstitial area. The RWI group was associated with a significantly 

higher Alexa red / DAPI ratio when compared to the Nx group. Nx, 0.24 ± 0.07; RWI 

0.55 ± 0.07 FITC/DAPI, P<0.02. 

 

TG2 immunofluorescence 

 

Tubulointerstitial area. The RWI group was associated with a significantly 

higher Alexa red / DAPI ratio when compared to the Nx group. Nx, 0.7 ± 0.05; RWI 

0.9 ± 0.04 FITC/DAPI, P<0.05. Table 2.52 shows a summary for RWI-day 8 results. 

 

5.3.2. Renal Warm Ischaemia - day 28 study 

 

5.3.2.1. Renal function 

 

Serum creatinine. The RWI group was associated with a significantly higher 

serum creatinine, expressed as mean μmol/L, when compared to the Nx group. Nx, 

48.75 ± 2.3; RWI, 68.1 ± 3.4 µmol/L, P<0.001. 

 

Albuminuria. Measurements did not show any significant difference between 

groups. Nx group. Nx, 0.7 ± 0.08; RWI, 0.6 ± 0.1, mg / 24 hrs, P<0.001. 

 

Water intake and urine production. Measurements did not show any 

significant difference between groups. Water intake, Nx, 10.2 ± 2.3; RWI, 12.6 ± 2.3, 

ml / 24 hrs, P=0.5. Urine production. Nx, 12.06 ± 1.9; RWI, 15.14 ± 1.6, ml / 24 hrs, 

P=0.25. 

 

Renal weight. Measurement of renal weight for the RWI group, expressed as 

mean of milligrams per kidney, showed a significant change when compared to the 

Nx group. Nx, 1.24 ± 0.12; RWI, 2 ± 0.06 grams, P<0.01. 
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Assessment Groups Units RWI 
change 

P value 
< Nx RWI 

Renal function 
Serum creatinine 51.6 ± 4 334.3 ± 34 μmol/L 6.4 fold▲ P<0.0001 

Creatinine clearance 1.53 ± 0.21 0.125 ± 0.04 ml / min 94%▼ P<0.001 

Kidney weight 1.24 ± 0.12 2 ± 0.06 mg 1.6 fold▲ P<0.01 

Albumin excretion 0.8 ± 0.6 2.36 ± 0.16 mg / 24hrs 66%▼ NS 

Water intake 29 ± 1 38 ± 3 ml / 24 hrs 1.3 fold▲ NS 

Urine production 20.2 ± 6.5 34.2 ± 4.15 ml / 24 hrs 1.7 fold▲ NS 

Intraglomerular mesangial area 
  MT 2x10-4±2.5x10-5 10x10-4±20x10-5 blue/red 5 fold▲ P<0.01 

Collagen III 2.3 x10-3±0.7 x10-3 2.1 x10-3±10 x10-3 FITC/DAPI 8.7%▼ NS 

TG in situ activity 0.54 ± 0.13 0.33 ± 0.22 Alexa/DAPI 39%▼ NS 

Tubulointerstitial 
MT 0.007 ± 0.001 0.04 ± 0.01 blue/red 5.7 fold▲ P<0.001 

Collagen III 0.085 ± 0.02 0.3 ± 0.03 FITC/DAPI 3.5 fold▲ P<0.0005 

TG in situ activity 0.24 ± 0.07 0.55 ± 0.07 Alexa/DAPI 2.3 fold▲ P<0.02 

TG2 0.7 ± 0.05 0.9 ± 0.04 Alexa/DAPI 1.3 fold▲ P<0.05 

 
Table 5.2: Measurements after 8 days of RWI 
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5.3.2.2. Renal histomorphology 

 

Bowman’s space and glomerular diameter. The RWI group did not show a 

significant higher diameter when compared to the Nx group. Bowman’s space, Nx, 

847 ± 99.2; RWI, 1404 ± 278 µm2, P=0.068. Glomerular diameter, Nx, 121 ± 2.8; RWI, 

116 ± 5.7 µm, P=0.46. 

 

Tubular luminal area. Representative examples of tubular luminal 

measurements from H & E sections are shown for each experimental group in Figure 

5.1, panels A and B. The tubular section from the RWI group shows a considerable 

increase in tubular luminal area when compared to the Nx group. The RWI group was 

associated with a significantly higher tubular luminal area (µm2) compared with Nx 

group (P<0.0001), see Figure 5.1 panel C. Nx, 105 ± 7.5; RWI, 670 ± 79 µm2, 

P<0.0001.   

 

External tubular diameter. Representative examples of external tubular 

diameter measurements from H & E sections are shown for each experimental group 

in Figure 5.1, panels A and B The tubular section from the RWI group shows no 

difference in the external tubular diameter area when compared to the Nx group. The 

RWI group did not show any difference or trend in the external tubular diameter area 

(µm) when compared to the Nx group, see Figure 5.1, panel D. Nx, 58 ± 1.2; RWI, 

56.4 ± 1.4 µm, P=0.44 

 

5.3.2.3. Renal fibrosis 

 

Masson’s Trichrome Staining  

 

Intraglomerular mesangial area. Representative examples of glomeruli are from 

MTS sections at day 28 are shown for each experimental group in Figure 5.2, panels 

A and C. The intraglomerular mesangial area (IGMA) in the representative images do 

not show any visual difference in blue staining between Nx (panel A) and RWI (panel 

C) representative image. Measurements of IGMA for the Nx and RWI groups, 

expressed as mean of blue/red ratio did not show a significant difference at day 28. 

See Figure 5.2 panels E. Nx, 0.43x10-2 ± 0.17 x10-2; RWI, 0.8 x10-2 ± 0.3 x10-2 blue/red 

ratio, P=0.32. 
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Figure 5.1: Effect of RWI on tissue morphology after 28 days 

Panel A and B. Representative images of tubules under 400x magnification showing structural 
differences between the Nx (Panel A) and the RWI (Panel B) samples. The histogram in panel C and D 

represents the mean of tubular luminal area and external tubular diameter. RWI = renal warm ischaemia 
(60 min) plus right nephrectomy (n=7), Nx = right nephrectomy alone (n=8). Vertical bars indicate +/-
SEM. 
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Figure 5.2: Effect of RWI on the IGMA and tubulointerstitial matrix after 28 days  

Panel A,C and B,D. Representative images of IGMA and tubulointerstitial area under 400x and 200x 

magnification, respectively, are showing coloration (blue-extracellular matrix; red-cellularity) and 
structural differences between the Nx (A and B) and RWI (C and D) samples, respectively. The 
histogram E and F represents the mean blue/red ratio in the intraglomerular mesangial area and 

tubulointerstitial area after 28 days of RWI, respectively. Nx = right nephrectomy, n=8; RWI = renal warm 
ischaemia (60 min) plus right nephrectomy, n=7. Vertical bars indicate +/-SEM 
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Tubulointerstitial area. Representative examples of tubules from MTS sections 

at day 28 the RWI and Nx group are displayed in Figure 5.2, panels B and D, 

respectively. The tubulointerstitial area from the RWI image (panel D) shows a high 

level of blue staining localized in the tubular basement membrane and interstitial area 

when compared to the Nx image (panel B). Moreover, the RWI group shows a higher 

degree of intratubular and intertubular space in contrast to the Nx group. 

Measurements of the tubulointerstitial area for the Nx and RWI groups, expressed as 

mean of blue/red ratio, showed a significantly higher level in the RWI group when 

compared to the Nx group. Nx, 0.007 ± 0.001; RWI 0.12 ± 0.05 blue/red ratio, P<0.03. 

See Figure 5.2 panel F. 

 

5.3.2.4. Renal transglutaminase 

 

TG2 immunofluorescence 

 

Intraglomerular mesangial area. Measurement of TG2 in the IGMA for the Nx 

and RWI groups, expressed as mean of Alexa/DAPI ratio, did not show any significant 

change between groups. Nx, 1.8x10-2 ± 5.5x10-3; RWI, 5.3x10-2 ± 28x10-3 Alexa red / 

DAPI, P=0.3. 

Tubulointerstitial area. Cross-sectional measurements of TG2 in the 

tubulointerstitial space were associated with a significantly higher Alexa/DAPI ratio 

between groups. Nx, 0.9 ± 0.09; RWI 1.35 ± 0.13 Alexa/DAPI, P<0.02. 

A summary of results is displayed in Table 5.3. 

 

5.3.3. Renal Warm Ischaemia - day 140 study 

 

5.3.3.1. Renal function 

 

Serum creatinine. Longitudinal measurements of serum creatinine, expressed 

as a mean of μmol/L are shown in Figure 5.3, panel A. The RWI group was associated 

with significant 7 fold increase at day 8 (24hrs after right nephrectomy) when 

compared to the Nx group. Nx, 52 ± 1.7; RWI, 348 ± 18 μmol/L, P<0.0001.  However, 

by the measurement at day 28, the levels of serum creatinine from the RWI group 

decreased considerably staying slightly higher than the Nx group for the rest of the 

study. At day 140, the RWI group was associated with a significant higher serum 

creatinine level when compared to the Nx group.  Nx, 54.2 ± 2.8; RWI, 65.7 ± 3.4 

μmol/L, P<0.04. 
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Assessment Groups Units RWI 

change 

P value 

< Nx RWI 

Renal function 

Serum creatinine 48.75 ± 2.3 68.1 ± 3.4 μmol/L 0.7 fold ▲ P<0.001 

Albumin excretion 0.7  ± 0.1 0.56 ± 0.1 mg / 24hrs 2.2 fold ▲ P<0.0001 

Water intake 10.2 ± 2.3 12.6 ± 2.3 ml / 24hrs 1.2 fold ▲ NS 

Urine production 12.06 ± 1.9 15.14 ± 1.6 ml / 24hrs 1.2 fold ▲ NS 

Histomorphometry  

Glomerular diameter 121 ± 2.8 116 ± 5.7 µm 4%▼ NS 

Bowman’s space 847 ± 99.2 1404 ± 278 µm2 1.6 fold ▲ NS 

Tubular diameter 58 ± 1.2 56.4 ± 1.4 µm 2.7%▼ NS 

Tubular luminal area 105 ± 7.4 670 ± 79 μm2 6.4 fold ▲ P<0.0001 

Intraglomerular mesangial area 

MT 0.43x10-2±0.17x10-2 0.8x10-2 ± 0.3x10-2 blue/red 5 fold ▲ NS 

TG2  1.8x10-2 ± 5.5x10-3 5.3x10-2 ± 28x10-3 Alexa/DAPI 2.9 fold ▲ NS 

Tubulointerstitial  

MT 0.007 ± 0.001 0.12 ± 0.05 blue/red 17 fold ▲ P<0.03 

TG2  0.9 ± 0.09 1.35 ± 0.13 Alexa/DAPI 1.5 fold ▲ P<0.02 

 
Table 5.3: Measurements after 28 days of RWI 
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Creatinine Clearance. Longitudinal measurements of creatinine clearance, 

expressed as a mean of millilitres per minute, are shown in Figure 5.3, panel B.  The 

RWI group showed a moderate decrease after 24hrs of renal hilar clamping (P<0.05), 

followed by an important decrease (94% its original value) at day 8 when compare to 

the Nx group. Nx, 1.3 ± 0.1; RWI, 0.1 ± 0.1 millilitres / minute, P<0.0001). At day 28, 

the creatinine clearance in the RWI group increased considerably staying slightly 

lower during the rest of the time course study in contrast to the Nx group.  The 

creatinine clearance trend showed, an inverse pattern to the one seen for serum 

creatinine in Figure 5.3, panel A. The terminal measurements of creatinine clearance 

for the Nx and RWI groups did not show a significant difference between groups at 

day 140. Nx, 1.9 ± 0.3; RWI, 1.7 ± 1.1 mls / min, P=0.5. 

 

Albumin excretion. Longitudinal measurements of albumin excretion, 

expressed as mg per 24 hours, are shown in Figure 5.3, panel C. The albumin levels 

in the RWI group increased steadily from day 28 to day 112 followed by a significant 

5.5 fold rise compared to the Nx group at day 140 (P<0.0001). A gradual increase in 

the levels of albuminuria for the Nx group was evident from day 56 to day 120. 

Albumin excretion at day 8 did not show any significant difference between groups. 

However, the terminal measurements of albumin excretion showed a significant 

increase in the RWI group at day 140. Nx, 90.6 ± 2.8; RWI, 378 ± 95.9 mg / 24hrs, 

P<0.05. 

 

Systolic blood pressure. Longitudinal measurements of systolic blood 

pressure for each experimental group, expressed as mmHg are shown in Figure 5.3, 

panel D.  The RWI group was associated with a steady significant increase from day 

28 to day 140 in contrast to the Nx group, which remained relatively constant within 

normal range (mean 124.6 ± 1.45 mmHg). At day 140, the RWI group showed a 

significantly higher blood pressure when compared to the Nx group. Nx, 128 ± 2.4; 

RWI, 150 ± 3.73 mmHg, P<0.001. 

 

Water intake and urine production. The RWI group showed a moderate 

significant increase in water intake and urine production when compared to the Nx 

group. Water intake, Nx, 26.2 ± 0.4; RWI, 36.3 ± 2.4 ml / 24 hrs, P<0.01. Urine 

production, Nx, 14.7 ± 1.5; RWI, 25.5 ± 2.2 ml / 24 hrs, P<0.01. 
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Figure 5.3: Effect of RWI on renal function during 140 days 

The plot line graph represents the mean of serum creatinine (A), creatinine clearance (B), albumin 
excretion (C) and systolic systemic blood pressure (D) measurements at different time points after 

surgery. RWI = renal warm ischaemia (60 min) plus right nephrectomy (n=10), Nx = right nephrectomy 
alone (n=6). Vertical bars indicate +/-SEM. * = P< 0.05; **** =P<0.0001. 
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5.3.3.2. Renal fibrosis 

 

Masson’s Trichrome Staining 

 

  Intraglomerular mesangial area. Representative examples of glomeruli from 

MTS sections are shown for each experimental group in Figure 5.4, panels A and C. 

The IGMA from the RWI image (panel C) shows almost the same level of blue staining 

than the mesangial matrix as the Nx image (panel A). Measurements of IGMA for the 

Nx and RWI groups, expressed as mean of blue/red ratio did not show a significant 

difference at day 140 of RWI.  Nx, 0.7x10-2 ± 0.5x10-2; RWI, 1.4x10-2 ± 0.3x10-2 

blue/red ratio, P=0.2. See Figure 5.4, panel E. 

Tubulointerstitial area.  Representative examples of tubules from MTS sections 

are shown for the RWI and Nx group in Figure 5.4, panels B and D. The RWI 

representative image (panel D) shows a higher level in blue staining when compared 

to the Nx group (panel B). The RWI group was associated with a significant increase 

in the blue/red ratio in comparison to the Nx group. Nx, 0.04 ± 0.01; RWI, 0.16 ± 0.03 

blue/red ratio, P<0.01, Figure 5.4, panel F. 

 

Collagens 

 

Intraglomerular mesangial area for collagens I, III and IV. Measurements of 

collagens in the IGMA for the Nx and RWI groups, expressed as mean of FITC/DAPI 

ratio, did not show any significant change between groups at day 140. Collagen I, Nx, 

13x10-2±4.5x10-2; RWI, 9.7x10-2±1x10-2 FITC/DAPI, P=0.31. Collagen III, Nx, 0.4x10-

2±0.5x10-3; RWI, 0.4x10-2±0.3x10-3 FITC/DAPI, P=0.84. Collagen IV, Nx, 0.13 ± 0.03; 

RWI0.10 ± 0.04 FITC/DAPI, P=0.65.  

Tubulointerstitial area for collagens I, III and IV. Representative examples of 

tubulointerstitial area from immunofluorescence stained sections are shown for each 

experimental group for collagen III and IV in Figure 5.5, panels A-C and B-D, 

respectively. The tubulointerstitial area for collagen I showed a similar level of green 

signal (FITC) in both groups. Collagen III and IV from the RWI representative sections 

show a higher level in green fluorescence in the interstitial and peritubular, 

respectively, when compared to the Nx group. The RWI group for collagen III and IV 

was associated with a significantly higher FITC/DAPI ratio when compared to the Nx 

group. Nx, 0.09 ± 0.14; RWI, 0.38 ± 0.02 FITC/DAPI, P<0.0001 for collagen III and 

Nx, 0.08 ± 0.02; RWI, 0.19 ± 0.03 FITC/DAPI, P<0.03 for collagen IV. No significant 

difference was seen for collagen I between groups. Nx, 0.14 ± 0.03; RWI, 0.16 ± 0.02 

FITC/DAPI, P=0.44. 
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Figure 5.4: Effect of RWI on the IGMA and tubulointerstitial matrix after 140 days 

Panel A,C and B,D. Representative images of IGMA and tubulointerstitial area under 400x and 200x 

magnification, respectively, are showing coloration (blue-extracellular matrix; red-cellularity) and 
structural differences between the Nx (A and B) and RWI (C and D) samples, respectively. The 
histogram E and F represents the mean blue/red ratio in the intraglomerular mesangial area and 

tubulointerstitial area after 140 days of RWI, respectively. Nx = right nephrectomy, n=6; RWI = renal 
warm ischaemia (60 min) plus right nephrectomy, n=10. Vertical bars indicate +/-SEM 
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Figure 5.5: Effect of RWI on tubulointerstitial collagen III and IV after 140 days 

Panel A-D.  Representative images of tubulointerstitial (200x) area for collagen III (A and C) and IV (B 
and D) are showing coloration (collagens-FITC and blue nuclei-DAPI) and structural differences between 
the Nx (A and B) and RWI (C and D) samples. Panel E and F. The histograms represents the mean 

FITC/DAPI in the tubulointerstitial area for collagen III and IV, respectively. Nx = right nephrectomy alone 
(n=6). Vertical bars indicate +/-SEM.  RWI = renal warm ischaemia (60 min) plus right nephrectomy 
(n=10). 
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5.3.3.3. Renal transglutaminase 

 

TG in situ activity 

 

Intraglomerular mesangial area. Representative examples of the IGMA from TG 

activity fluorescent stained sections are shown for the Nx and RWI experimental 

groups at 140 days of RWI in Figure 5.6, panels A and C. Measurements of TG activity 

in the IGMA for the Nx and RWI groups, expressed as mean of Alexa red / DAPI ratio 

did not show any significant change between groups at 140 days of renal warm 

ischaemia.  Nx, 1.8x10-2 ± 0.6x10-2, RWI, 1.8x10-2 ± 12x10-2 Alexa red / DAPI ratio, 

P=0.5. Figure 5.6, panel E. 

Tubulointerstitial area. Representative examples of the tubulointerstitial area 

from TG activity fluorescent stained sections are shown for the Nx and RWI 

experimental groups at 140 days of RWI in Figure 5.6, panel B and D, respectively. 

The example from the RWI group shows a higher intense red signal (Alexa) in the 

tubulointerstitial area when compared to the Nx representative image. The RWI group 

was associated with a significantly higher TG activity Alexa/DAPI ratio in contrast to 

the Nx group. Nx, 0.17 ± 0.01; RWI, 0.25 ± 0.02 Alexa/DAPI, P<0.02. Figure 5.6, 

panel F. 

 

Transglutaminase 2 

 

Intraglomerular mesangial area. Representative examples of the IGMA from 

immunofluorescent stained sections are shown for the Nx and RWI experimental 

groups at 140 days of renal warm ischaemia in Figure 5.7, panels B and D. 

Measurements of TG2 in the IGMA for the Nx and RWI groups, expressed as mean 

of Alexa/DAPI ratio, did not show any significant change between groups at 140 days 

of RWI. Nx, 0.2x10-2 ± 0.9x10-3, RWI, 1.6x10-2 ± 8.5x10-3 Alexa red / DAPI ratio, P=0.2. 

Figure 5.7, panel E. 

Tubulointerstitial area. Representative examples of the tubulointerstitial area 

from immunofluorescent stained sections are shown for the Nx and RWI experimental 

groups at 140 days of RWI in Figure 5.7, panel C-D, respectively. The example from 

the RWI group shows a higher intense red signal-Alexa red in the tubulointerstitial 

area when compared to the Nx representative image. The RWI group was associated 

with a significantly higher TG2 Alexa/DAPI ratio in contrast to the Nx group. Nx, 0.07 

± 0.02; RWI, 0.3 ± 0.08 Alexa/DAPI, P<0.02. Figure 5.7, panel F. A summary of 

results is displayed in Table 5.4. 
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Figure 5.6: Effect of RWI on the IGMA and tubulointerstitial TG act after 140 days 

 
Panel A, B and C, D.  Representative images of glomeruli (400x) and tubulointerstitial (200x) area, 

respectively, showing coloration (TG activity-Alexa red and blue nuclei-DAPI) and structural differences 

between the Nx (A and C) and RWI (B and D) samples, respectively. Panel E and F. The histograms 

represents the mean Alexa/DAPI in the intraglomerular mesangial (IGM) and tubulointerstitial area, 

respectively. RWI = renal warm ischaemia (60 min) plus right nephrectomy (n=10), Nx = right 

nephrectomy alone (n=6). Vertical bars indicate +/-SEM. 
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Figure 5.7: Effect of RWI on the IGM and tubulointerstitial TG2 after 140 days 

Panel A, B and C, D.  Representative images of glomeruli (400x) and tubulointerstitial (200x) area, 

respectively, showing coloration (TG2-Alexa red and blue nuclei-DAPI) and structural differences 
between the Nx (A and C) and RWI (B and D) samples, respectively. Panel E and F. The histograms 

represents the mean Alexa/DAPI in the intraglomerular mesangial (IGM) and tubulointerstitial area, 
respectively.  RWI = renal warm ischaemia (60 min) plus right nephrectomy (n=10), Nx = right 
nephrectomy alone (n=6). Vertical bars indicate +/-SEM. 
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Assessment Groups Units RWI 
change 

P value 
< Nx RWI 

Renal function 
Serum creatinine 54.2 ± 2.8 65.7 ± 3.4 μmol/L 6.4 fold ▲ P<0.04 

Creatinine clearance 1.9 ± 0.3 1.7 ± 1.1 mls / minute 10%▼ NS 

Albumin excretion 90.6 ± 50 378.2 ± 96 mg / 24hrs 4.1 fold ▲ P<0.05 

SBP 128 ± 2.4 150.2 ± 4 mmHg 1.2 fold ▲ P<0.001 

Water intake 26.17 ± 0.4 36.3 ± 2.4 ml / 24hrs 1.4 fold ▲ P<0.01 

Urine production 14.67 ± 1.5 25.5 ± 2.24 ml / 24hrs 0.6 fold ▲ P<0.01 

IGMA 
MT 0.7x10-2±0.5x10-2 1.4x10-2 ±0.3x10-2 blue/red 2.4 fold ▲ NS 

Collagen I 13x10-2±4.5x10-2 9.7x10-2±1x10-2 FITC/DAPI 25%▼ NS 

Collagen III 0.4x10-2±0.5x10-3 0.4x10-2±0.3x10-3 FITC/DAPI 1:1 NS 

Collagen IV 0.13 ± 0.03 0.10 ± 0.04 FITC/DAPI 23%▼ NS 

TG in situ activity 1.8x10-2±0.6x10-2 1.8x10-2±12x10-2 Alexa/DAPI 1:1 NS 

TG2  0.2x10-2±0.9x10-3    1.6x10-2±8.5x10-3 Alexa/DAPI 8 fold ▲ NS 

Tubulointerstitial 
MT 0.04 ± 0.01 0.16 ± 0.03 blue/red 4 fold ▲ P<0.001 

Collagen I 0.14 ± 0.03 0.1650 ± 0.01684 FITC/DAPI 1.1 fold ▲ NS 

Collagen III 0.09 ± 0.14 0.38 ± 0.02 FITC/DAPI 4 fold ▲ P<0.0001 

Collagen IV 0.08 ± 0.02 0.19 ± 0.03 FITC/DAPI 2.4 fold ▲ P<0.03 

TG in situ activity 0.17 ± 0.01 0.25 ± 0.02 Alexa/ DAPI 1.5 fold ▲ P<0.02 

TG2 0.07 ± 0.02 0.3 ± 0.08 Alexa/ DAPI 4.3 fold ▲ P<0.03 

 
Table 5.4: Measurements after 140 days of RWI 
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5.3.4. Correlations 

 
Linear regressions in the tubulointerstitial space showed positive correlations 

between the TG pathway and renal fibrosis after 28 and 140 days of RWI. Day 28, 

TG2 and MTS, r2=0.42, P<0.01. Day 140, collagen III with TG activity and TG2, 

r2=0.45, P<0.01 and r2=0.26, P<0.05, respectively, Figure 5.8. Serum creatinine at 

day 8, showed a positive linear regression with the level of fibrosis by collagen III 

(r2=0.78, P<0.0001) and MTS (r2=0.48, P<0.01) and the TG pathway by TG in situ 

activity (r2=0.30, P<0.05) and TG2 (r2=0.44, P<0.005) at day 140 of RWI. Serum 

creatinine at day 28 showed high significant correlations with luminal tubular area 

(r2=0.74, P<0.001). All linear regressions amongst renal function, tubulointerstitial 

extracellular matrix expansion/fibrosis and TG pathway techniques are shown in 

Table 5.5. 

 

 

5.4. Discussion 

 

5.4.1. Experimental technique 

 

Rat Strain. The ability of the rat to develop renal fibrosis can be an inherited 

characteristic, the extent of which differs between individual strains. Evidence 

obtained following subtotal nephrectomy, has previously shown the SD to develop 

renal fibrosis to a greater extent than Wistar Furth, which was attributed to having 

both a lower nephron number and lower nitric oxide generating capacity  (Erdely et 

al., 2003). Both SD (Basile et al., 2001a; Basile et al., 2005; Basile et al., 2003; 

Lloberas et al., 2001; Torras et al., 1999) and Wistar stains (Jain et al., 2000a; Jain 

et al., 2000b; Jain et al., 2001; Yang et al., 2005) have previously been used to study 

the chronic effects of RWI, the Wistar only developing tubulointerstitial fibrosis in early 

renal disease while the SD, a more sensitive strain, also developed 

glomerulosclerosis. The SD rat was therefore employed in the present study. 
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Figure 5.8: Linear regressions between the TG pathway and tubulointerstitial 
fibrosis 
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Technique A Technique B r2 P value < 

RWI day 8 
TG in situ activity Serum creatinine 0.57 0.02 

Serum creatinine  Collagen III 0.84 0.005 

RWI day 28 
TG2 Serum creatinine 0.31 0.05 

TG2 MTS 0.42 0.01 

Luminar tubular area Serum creatinine 0.74 0.001 

Luminar tubular area MTS 0.27 0.05 

Luminar tubular area TG2 0.28 0.05 

RWI day 140 
TG in situ activity Serum creatinine day 8 0.30 0.05 

TG in situ activity Serum creatinine day 140 0.45 0.005 

TG in situ activity MTS 0.43 0.01 

TG in situ activity Collagen III 0.45 0.01 

TG2 MTS 0.38 0.05 

TG2 Collagen III 0.26 0.05 

TG2 Serum creatinine day 8 0.44 0.005 

MTS Collagen III 0.54 0.005 

Serum creatinine day 8 MTS 0.48 0.01 

Serum creatinine day 8 Collagen III 0.78 0.0001 

Serum creatinine day 140 MTS 0.50 0.01 

Serum creatinine day 140 Collagen III 0.38 0.02 

Serum creatinine day 140 Albumin excretion day 140 0.50 0.01 

Serum creatinine day 140 Systemic systolic blood pressure 0.25 0.05 

 
Table 5.5: Tubulointerstitial positive linear regressions at 8, 28 and 140 after RWI 

 

 

 

 

 

 

 

 

 

 

 



161 

 

RWI time. Weight et al (1998), using bilateral renal hilum clamping in the SD 

rat, showed 45 minutes to be the optimal ischaemic time for survival following the 

induction of renal injury. RWI over 45 minutes may produce a greater degree of renal 

impairment together with a considerable increase in mortality when rats are 

nephrectomised on day 0. In the present SD rat study, the right nephrectomy was 

delayed until day 7, allowing a 60 min RWI stimulus to be employed with a 100% 

survival. In addition, a 4-fold greater increase than demonstrated by Torras et al 

(1999) was detected in albuminuria after 5 months. 

 

Body temperature during renal ischaemia. The extend of ischaemia reperfusion 

injury following a period of RWI is a function of both time and temperature. RWI is 

always induced under anaesthesia, which suppresses the thermoregulatory system 

in the hypothalamus, reducing body temperature. The importance maintaining body 

temperature during a period of “renal warm ischaemia” was recognized by Delbridge 

et al (2007) who demonstrated a positive correlation between renal damage, 

assessed by the increase in serum creatinine, and body temperature following 45 min 

RWI in the SD rat. In the present study, under isoflurane anaesthesia, rat body 

temperature was maintained (36-37◦C) using a thermal blanket, servo-controlled via 

a rectal temperature probe. In the absence of external body warming, body 

temperature falls to 32◦C under anaesthesia. The thermal blanket also had an 

advantage over a thermal mat since it could be wrapped around the rat to prevent 

heat loss by convection. A high wattage lamp was further employed in cases where 

the body temperature fell down below 36◦C, together with procedures to avoid 

dehydration. An additional consideration could be the diurnal variation in body 

temperature which may increase by some 2◦C during the dark cycle (Brezis et al., 

1995) suggesting it may also be important to standardize the time of the day when 

rats are subjected to RWI. 

 

Nephrectomy: In the present study, a right nephrectomy was performed 7 days 

after a 60min period of RWI to the left kidney. The nephrectomy was performed for 2 

major reasons. Firstly to improve rat survival, maintaining adequate renal function 

during the period of acute renal injury to the left kidney. A rat survival of only 55% 

(day 4) was obtained when the right nephrectomy and RWI were performed in the 

same operation. An alternative approach, using bilateral nephrectomy, produced a 

lower chronic increase in albumin excretion indicating a lower incidence of glomerular 

injury (Basile et al., 2001b). Secondly, was the possibility of inducing compensatory 

hypertrophy in the kidney subjected to ischaemia reperfusion injury, Hypertrophy may 
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also lead to increased metabolic demand (Brenner et al., 1996), enhancing 

hypoxaemia and predisposing to medullary injury (Brezis et al., 1995). In addition, an 

important third but pragmatic reason was to allow the function of the ischaemic kidney 

to be determined using systemic serum and urine data. 

 

5.4.2. Kidney function 

 

Kidney function: Delaying the right nephrectomy until day 7 improved animal 

survival, allowing the use of a longer 60 min stimulus of RWI. Day 8, 24h post 

nephrectomy, was therefore the first study day were the effect of RWI could be 

demonstrated solely on the function of the left kidney. The effectiveness of RWI (60 

min) at inducing ischaemia reperfusion injury was apparent by the 7-fold increase in 

serum creatinine measured on day 8. Creatinine clearance fell by 94% reflecting a 

major fall in GFR resulting from the ischaemic insult in the absence of any increase 

in urine flow or albumin excretion. By 1 month however, the creatinine clearance of 

the left kidney had recovered to a similar level as the nephrectomised control group 

without any significant difference in urine flow, albumin excretion or systemic blood 

pressure. In the 1-4 month period following RWI (60 min), rats developed mild 

hypertension and albuminuria but little change in creatinine clearance as active 

creatinine excretion via renal tubes occurs importantly in this species (Darling et al., 

1991).  By the time the study was terminated, after 5 months, the albuminuria in 

particular had become much more severe and was associated with an increase in 

both urine flow and fluid intake. 

 

5.4.3. Kidney histology 

 

Kidney histology: Kidney histology by MT staining also showed evidence of 

tissue damage and expansion of extracellular matrix at day 8 after RWI. 

Immunofluorescence analysis showed that collagen III contributed to the expansion 

of ECM in the tubulointerstitial space. Unexpectedly, tubulointerstitial TG enzyme 

activity and TG2 protein were elevated in the left kidney at day 8, together within an 

increase in collagen III. The 28-day study following RWI developed a similar trend in 

renal damage, tubulointerstitial fibrosis and up-regulation of the transglutaminase 2 

than the trend seen in the 8 and 140-day studies. Figure 5.9, upper and lower 

histograms shows the levels of MTS and TG2, respectively, at 8, 28 and 140-day time 

point following RWI. Histological evidence supported an increase in matrix protein 

deposition in the tubulointerstitium, including that for collagen III and collagen IV. The 
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lack of change in collagen I was an indicator of the presence of the early stages of 

fibrosis, collagen I increasing at a later stage when the fibrosis becomes more mature 

(Lavaud et al., 2001; Zager et al., 2009).  There was however, little evidence of direct 

glomerular involvement; glomerular TG2 remained unchanged.  Linear regressions 

at 28 and 140 between renal fibrosis and the TG pathway established a positive 

association consistent with previous studies in animal models and in the man. Positive 

correlations were established for renal function and renal fibrosis at day 8, 28 and 

140 post RWI. Interestingly, serum creatinine at day 8 showed a positive correlation 

for both renal fibrosis (MTS and collagen III) and the TG pathway (TG2 and TG 

activity) at day 140 suggesting that an acute elevation of serum creatinine secondary 

to RWI may predict the development of fibrosis and therefore TG2. This is evidence 

that acute renal injury proceeds a series of inflammatory processes of which may 

trigger CKD. 

 

5.4.4. Downsides of the renal warm ischaemia model 

 

With a relatively simple surgical procedure, renal hilar clamping, the rat model of RWI 

allows the understanding of tubulointerstitial fibrosis in an accelerated time frame. 

However, there are important downsides to consider for this model. Body temperature 

in the rat during anaesthesia is normally unsteady. It has been established that small 

fluctuations in body temperature in the Sprague Dawley rat cause different degrees 

of acute renal injury (Delbridge et al., 2007). Sudden fluctuations of temperature may 

happen in a period of 20 minutes during RWI, therefore a fulltime body temperature 

assessment have to be performed during all surgical procedure. Rats with fluctuations 

above or over 36-37 °C should be discard from experimental groups. Small 

fluctuations (minutes) in the period of RWI change significantly the level of renal injury 

(Becker et al., 2013) and therefore, high level of attention is necessary to synchronize 

from the time an accurate clamping (without relocation) is performed to the time the 

clamp is removed after exact 60 minutes. The clamping of the renal hilar is another 

vital factor that requires accuracy during placement. Some rats have abundant 

perirenal fat. Fat tissue may interact with the compression effectiveness of the 

microvascular clamp over the renal conduits; conversely low fat tissue on renal 

vessels may predispose to crushing of renal vein after 60 minutes of continues 

pressure.  
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5.4.5. 28-days RWI for interventional studies 

 

The disease duration of the 28-day study was determined to develop of a 

suitable level of renal damage and fibrosis, adequate for interventional studies. A 

significant level of TG2 was observed when comparing experimental groups. Also it 

showed a positive linear regression with fibrosis and renal function. Early 

development of fibrosis, as seen in the 28-day study, was thought to be easier to 

reduce than well-established mature fibrosis (Jones et al., 1992). Natural matrix 

remodelling and degradation after renal injury could allow the inhibitor to perform a 

better effect in an ECM area without continuous build-up of collagen proteins. 

Therefore, reduction of subtle levels of fibrosis by TG inhibitors would be easier to 

identify when comparing experimental groups. On the other hand, the level of TG2 

was higher in the 28 days study in comparison to the 8 and 140-day study. A TG2 

time course from the 3 studies is shown in Figure 5.9, lower histogram. The effect of 

RWI on TG2 at this time point may be of high relevance, therefore, its inhibition may 

represent an important effect on the development of fibrosis. Welfare benefits and 

practicability were also and important factors to take into account; one minipump lasts 

for 28 days, thus, no multiple surgical procedure would be required to change osmotic 

pumps reducing surgical procedures together with animal handling, anaesthesia, 

stress and pain for the studied rats. 

 

5.4.6. Conclusion 

 

The 28-day rat model of RWI allows sufficient degree of acute kidney injury to 

generate an adequate level of fibrosis in the tubulointerstitial area. The level of fibrosis 

in this model has shown a correlation with the levels of TG2 in the extracellular space 

following 60 minutes of RWI. The present study has established a model of 

tubulointerstitial fibrosis suitable to undertake chemical interventional studies using a 

chemical TG inhibitor. In the following chapter, inhibition of TG2 will be use on this 

model to determine whether TG2 is a causal link for the development of renal fibrosis. 
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Figure 5.9: Time point effect of RWI on tubulointerstitial fibrosis and TG2 

Upper and lower histogram, represent the effect of RWI on renal fibrosis and TG2, respectively, after 8, 
28 and 140 days. RWI = renal warm ischaemia (60 min) plus right nephrectomy (day 8, n=4; day 28, 
n=7; day 140, n=10), Nx = right nephrectomy alone (day 8, n=5; day 28, n=8; day 140, n=6). Vertical 
bars indicate +/-SEM. 
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6.1. Introduction 

 

The role transglutaminase 2 in extracellular matrix deposition and inflammatory 

events (Gundemir et al., 2012) makes this enzyme a potential pharmaceutical target 

against renal fibrosis. TG2 and its role in renal fibrosis has previously been studied in 

vitro (Huang et al., 2010; Skill et al., 2004), in vivo (Fisher et al., 2009; Johnson et al., 

2007) and in human renal tissue  (Johnson et al., 2003). The inhibition of TG2 and its 

renal effect in disease has been achieved by using knock out models of TG2 as well 

as TG2 inhibitors which show a beneficial effect on renal function and structure.  

 

Having established a RWI model, standardizing the time for renal hilar 

clamping, temperature condition during RWI and time for contralateral nephrectomy 

(Chapter 5), an interventional approach was necessary to evaluate whether the TG 

pathway was a causal link for the development of tubulointerstitial fibrosis following 

RWI. To accomplish this aim, the transglutaminase inhibitor 1,3-dimethyl-2[(2-

oxopropyl)thio]imidazolium chloride (TGI), (DOO3, Zedira, Germany), was employed. 

TGI is an inhibitor for all isoforms of transglutaminase. However, transglutaminase 2, 

factor XIIIa and prostate transglutaminase are the only three isoforms that can be 

found extracellularly; while, factor XIIIa  and TG2 are the only two isoforms located in 

the kidney, blood plasma and the intra/extracellular compartments, respectively (Skill 

et al., 2004; Yee et al., 1994). TGI compound is able to penetrate both intracellular 

and extracellular compartments, however, its inhibitory effect is just exerted in the 

extracellular space, as TG2 is activated when exported extracellularly due to the high 

levels of calcium encountered in this area (Lortat-Jacob et al., 2012). A related 

compound called N-benzyloxycarbonyl-L-phenylalanyl-6-dimethyl-sulfonium-5-oxo-

L-norleucine, used as control in previous chapters, is restricted to the extracellular 

space due to its high molecular weight (Baumgartner et al., 2004). The chemical 

structure of TGI is displayed in Figure 6.1. 

 

 

Figure 6.1: TGI chemical structure 
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The method used to deliver the TGI in this model was first evaluated by Oldroyd 

et al (1999). The system is based on intrarenal drug delivery through kidney 

cannulation. The inserted cannula was connected to an osmotic minipump placed 

subcutaneously in the back of the rat. This method delivered effective concentrations 

directly into the kidney, reducing the amount of product required to affordable levels 

and improving its side effect profile, particularly reducing the possibility potential 

effects on blood clotting and wound healing.  The main advantage of the osmotic 

pump is continuous drug delivery over 28 days (Theeuwes et al., 1976) reducing 

fluctuations in drug concentration, time and man power for drug administration. Also, 

the low antigenicity of the pump reduces discomfort to the rat retaining a foreign body 

subcutaneously. 

 

6.2. Material and Methods 

 

6.2.1. Animals and anaesthesia 

 

Male Sprague-Dawley rats (Harlan, UK), 8-10 weeks, with an initial weight of 

250-300 grams were maintained at 20◦C, 45% humidity and with a light cycle of 12 

hours. Chapter 2, section 2.2. For surgical procedure, rats were induced in an 

anaesthetic chamber with 5% isoflurane and 8 L/min oxygen. Analgesia was provided 

by intramuscular injection of buprenorphine 50μg/kg. Maintenance of anaesthesia 

was achieved with 1.5% of isoflurane and 1 L/min oxygen. During anaesthesia, the 

rat was placed on an operating board covered with a homeothermic blanket to keep 

the rat temperature between 36-37°C.  

 

6.2.2. Experimental protocol and surgical procedures 

 

Two interventional studies were performed with a disease progression over 

either 8 or 28 days. Each study consisted of nephrectomised control rats (Nx) sham 

operated (day 0) and subjected to right nephrectomy at day 7. The disease groups 

(RWI and RWI+TGI) were composed of rats subjected to intrarenal cannulation and 

placement of a subcutaneous osmotic minipump in the dorsal aspect of the back (day 

-3), see section 2.2.6.4 and 2.2.6.5, and subjected to 60 minutes of left renal hilar 

clamping (day 0) with right nephrectomy at day 7. The minipumps were loaded with 

2ml of either NaCl 0.9% (vehicle) or vehicle + 50 mmol/L of TGI (10 µg/kg/hr). Number 

of rats used for each terminal experiment is displayed in Table 6.1. 
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Days after RWI                Number of rats per group 

Nx RWI RWI+TGI 

8 5 4 3 

28 5 5 6 

 
Table 6.1: Number of rats for each interventional study 

 

 

6.2.3. Renal function  

 

6.2.3.1. Blood serum and urine 

 

Creatinine was assayed  in serum and urine by the Jaffe rate method (Levey et 

al., 1988) using a SYNCHRON ® System (Beckman Coulter Inc.) machine (section 

2.3.1). Assessment of serum and urine creatinine was performed prior to surgical 

procedure, 24hrs after intrarenal cannulation, day 8 and 28 after RWI, according to 

each interventional study. 

 

6.2.3.2. Rat albumin 

 

Rat albumin was measured in urine by enzyme-linked immunosorbent assay 

(ELISA). A 96 well plate was coated with sheep anti-rat albumin antibody and the 

sample added to the plate. The secondary anti-sheep antibody containing 

horseradish peroxidase (HRP) was added followed by the enzyme substrate. The 

change in colour was proportional to the amount of secondary antibody bound to the 

primary antibody which in turn is bound to albumin. The optical signal was measured 

by spectrophotometry at 450 nm (section 2.3.2). Assessment of albumin excretion 

was performed at day 0, 8 and 28 after RWI, according to each interventional study. 

 

6.2.4. Renal fibrosis 

 

6.2.4.1. Masson’s trichrome staining 

 

5μm, formalin-fixed, paraffin embedded sections were deparaffinised and 

rehydrated. Tissue sections were placed in Bouin’s and later in working Weigert’s iron 

haematoxylin solutions. Slides were stained with Biebrich scarlet-acid fuchsine, 

aniline blue, dehydrated and mounted. For IGMA and tubulointerstitial expansion of 
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extracellular matrix, no less than 10 glomeruli (x 400) and (x 200) of cortex tubules 

were acquired. The fibrosis index was determined calculating the blue (Masson´s 

trichrome) / red (cellularity) ratio of total field. Quantification was performed by image 

analysis (section 2.4.3).  

 

6.2.4.2. Immunofluorescence 

 

8μm thick cryostat sections were blocked and washed. The tissue was probed 

with a primary antibody (collagen I, III and IV) overnight at 4◦C followed by fixation 

and serial washings. The slides were immunoprobed with a secondary antibody and 

left at room temperature for 2 hours and mounted with DAPI. No less than 10 

glomeruli (x 400) and (x 200) of cortex tubules were acquired. Collagen quantification 

was determined calculating the intense FITC (collagens) / DAPI (nuclei) ratio of the 

total field. Quantification was performed by image analysis (section 2.6.1).  

 

6.2.5. Renal transglutaminase 

 

6.2.5.1. Immunofluorescence 

 

8μm thick cryostat sections were blocked and washed. The tissue was probed 

with a primary antibody (TG2) followed by fixation and serial washings. The slides 

were immunoprobed with a secondary antibody and left at room temperature for 2 

hours and mounted with DAPI. No less than 10 glomeruli (x 400) and (x 200) of cortex 

tubules were acquired. Collagen quantification was determined calculating the 

intense Alexa red (TG2) / DAPI (nuclei) ratio of the total field. Quantification was 

performed by image analysis (section 2.6.1).  

 

6.2.5.2. TG in situ activity  

 

8μm thick cryostat sections were incubated with biotin cadaverine and CaCl2. 

The main negative control consisted in the substitution of CaCl2 by EDTA. The 

extracellular matrix incorporated biotin cadaverine was revealed by probing the tissue 

sections with streptavidin Alexa red and mounted with DAPI. No less than 10 

glomeruli (x 400) and (x 200) of cortex tubules were acquired. The fluorescent TG 

activity index was determined calculating the intense Alexa red (TG activity) / DAPI 

(nuclei) ratio of the total field.  Quantification was performed by image analysis 

(section 2.6.2).  
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6.2.5.3. Total TG activity 

 

Transglutaminase activity was measured by the incorporation of 3H-putrescine 

into N,N´dimethylcasein in tissue homogenates using CaCl2 and dithiothreitol (DDT). 

The TG inhibitor N-benzyloxycarbonyl-L-phenylalanyl-6-dimethyl-sulfonium-5-oxo-L-

norleucine (100μM) and the selective TG2 neutralizing monoclonal antibody BB7 

(3.3nM) were used as negative controls. The results were expressed units per mg of 

protein. Unit of activity is equivalent to 1nmol of 3H-putrescine incorporated per hour 

at 37°C. See section 2.5.2, for kidney homogenates and section 2.5.3 for TG 3H-

putrescine assay methodology. Tissue assessment of total TG activity was performed 

only at 28 days after RWI. 

 

6.2.5.4. Total TG2 protein 

 

Tissue homogenates, were separated on a 10% polyacrylamide gel and electro-

blotted. Human recombinant TG2 was used as a positive control. Primary antibodies, 

either rabbit TG2 (Ab 421, Abcam, UK) or mouse monoclonal antibody (CUB 7402, 

Abcam, UK) were revealed using a secondary alkaline phosphatase goat anti-rabbit 

or anti-mouse antibody, respectively. For negative controls, just secondary antibody 

and mouse monoclonal to B actin (1:2000, Ab 6276, UK) were employed in the blot 

probed with CUB 702. For blots probed with Ab421, a lane blot was probed with just 

secondary antibody and another with rabbit serum. Cyclophilin A (Ab 42408, Abcam, 

UK) was used as loading control. The blots were place in a ChemiDoc machine 

(Image system, Bio-rad, USA) and quantified using a ChemiDoc software. The results 

obtained were shown as TG2 optical density mm2 / cyclophilin A optical density mm2 

(section 2.5.4). Tissue assessment of total TG2 protein was performed only at 28 

days after RWI. 

 

6.2.6. Statistics 

 

Longitudinal measurements were assessed using two way analysis of variance 

(two-way ANOVA); whereas the cross sectional measurements were analysed by one 

way ANOVA followed by Bonferonni’s multiple comparisons test to compare more 

than two groups. T-test corrected by Mann Whitney U was used to analyse Total TG 

activity between RWI and RWI+TGI results. To assess correlations between different 

experiments, analysis r2 and p values were calculated. For all the statistical analysis, 

a probability higher than 95% (p<0.05) was taken as significant (section 2.7.2). 
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6.3.  Results 

 

6.3.1. Ischaemia and reperfusion 

 

The surface colour of the kidney had changed from reddish to homogeneous 

dark-brown by 2 minutes after applying the left renal hilar clamping, demonstrating 

the depletion of oxygen in the renal tissue. Measurement of the kidney length and 

width was assessed before and after clamping, all clamped kidneys showed an 

increase after 5 and 60 minutes of renal clamping. 2 minutes after removal of the 

clamp from the renal hilus, kidney surface colour reverted back to normal in all 

animals, suggesting homogeneous tissue blood flow and subsequent re-oxygenation 

had been achieved. All kidneys assessed in this study fulfilled the requirements above 

described. 

 

6.3.2. Renal Warm Ischaemic - day 28 interventional study 

 

6.3.3.1. Renal function  

 

Serum creatinine. Measurements of serum creatinine for each experimental 

group at both day 8 and 28 after RWI are shown in Figure 6.2. Serum creatinine prior 

to any surgical procedure and 24hrs after intra-renal cannulation did not show any 

significant difference amongst groups. At day 8, the RWI group was associated with 

a significant 7.5 fold increase in the serum creatinine compared to the Nx. This 

increase was significantly reduced by the TG inhibitor. At day 28, a similar 

phenomenon was observed.  
 

 
 

Figure 6.2: Effect of RWI and TG inhibition on s. creatinine after 8 and 28 days  

The plot line graph represents the mean serum creatinine µmol/L at day 8 and day 28. Vertical bars 
indicate ± SEM. P<0.01 and P<0.05, RWI+TGI compared with RWI at day 8 and day 28, respectively. * 
Denotes P<0.01, RWI compared with Nx group in both time points. Nx, n=5; RWI, n=5; RWI+TGI, n=6. 
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.Creatinine clearance. At day 8 and 28, the RWI and RWI+TGI groups showed 

a significant decrease compared to the Nx control group. Day 8, Nx, 1.65 ± 0.6; RWI, 

0.05 ± 0.01 and RWI+TGI, 0.11 ± 0.01 ml / min. Day 28, Nx, 2.3 ± 0.4; RWI, 0.38 ± 

0.1 and RWI+TGI, 0.96 ± 2.4 mmHg.  No significant differences between RWI and 

RWI+TGI groups were observed at day 8 and 28. Creatinine clearance following renal 

warm ischaemia for 60 minutes at day 8 and 28 showed a modest significant (P<0.01) 

correlation with serum creatinine; r2= 0.46 and 0.64, respectively.  

 

Albumin in urine. Measurements of albumin excretion at 0, 8 and 28 days did 

not show any significant difference or trend between groups. Day 0, Nx, 0.9 ± 0.7; 

RWI, 0.47 ± 0.18 and RWI+TGI, 0.13 ± 0.1 mg / 24hrs; Day 8, Nx, 3.1 ± 2.1; RWI, 2 

± 0.45 and RWI+TGI, 2.4 ± 1.4 mg / 24hrs; Day 28, Nx, 3.7 ± 1.8; RWI, 3.2 ± 1.9 and 

RWI+TGI, 6.8 ± 2.2 mg / 24hrs. However, a significant correlation with serum 

creatinine at day 28 was identified, r2= 0.50, P<0.01.  

 

Kidney weight. Kidney weight did not show any significant difference between 

groups.  Nx, 1.23 ± 0.08 grams; RWI, 1.29 ± 0.1 grams and RWI+TGI, 1.39 ± 0.4 

grams. 

 

% of gained body weight. Measurement of % gained body weight over 28 

days are shown in Figure 6.3. The RWI group was associated with a significant 

(P<0.05) lower % of gained weight when compared to the Nx group. However, it was 

partially restored by the administration of the TGI. Nx, 38.4 ± 4.3; RWI, 19.8 ± 3.8 and 

RWI+TGI, 31 ± 3 % of gained body weight. 

 
 

Figure 6.3: Effect of RWI and TG inhibition on % gained weight after 28 days 

The histogram represents the gained weight in % after 28 days of renal warm ischaemia. Vertical bars 
indicate ± SEM. NS denotes no significance between RWI+TGI and RWI groups. * Denotes P<0.05, 
RWI compared with Nx group. Nx, n=5; RWI, n=5; RWI+TGI, n=6. 
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6.3.3.2. Tubulointerstitial  fibrosis 

 

Tubulointerstitial Masson’s trichrome staining. Representative examples of 

tubules and interstitium from MTS sections are shown for each experimental group in 

Figure 6.4, panel A, B and C. The tubulointerstitial area from the RWI group shows a 

higher level of blue staining localized in the tubular basement membrane and 

interstitial area when compared to the example from Nx and RWI+TGI groups. The 

RWI group was associated with a significant increase (20-fold) in MTS staining 

compared to the Nx control group. TGI reduced the increase in MTS staining by some 

80 % to values which showed no statistical difference from the Nx control group. Nx, 

0.001 ± 0.0001; RWI, 0.02 ± 0.005 and RWI+TGI, 0.005 ± 0.001 blue/red ratio. Figure 

6.4, panel D. 

  

Tubulointerstitial collagen I. Representative examples of the tubulointerstitial 

area from immunofluorescence stained sections are shown for each experimental 

group in Figure 6.5, panel A, B and C. The tubulointerstitial section from the RWI 

group shows a higher intense green signal (FITC) in the tubulointerstitial area when 

compared to the example from Nx and RWI+TGI groups. The RWI group was 

associated with a significant increase (1.8-fold) in collagen I immunofluorescence 

compared to the Nx control group. TGI abolished the increase in collagen I 

immunostaining which showed no statistical difference from the Nx control group. Nx, 

0.24 ± 0.03; RWI, 0.42 ± 0.06 and RWI+TGI, 0.19 ± 0.03 FITC/DAPI ratio. Figure 6.5, 

panel D.  

 

Tubulointerstitial collagen III. Representative examples of the 

tubulointerstitial area from immunofluorescence stained sections are shown for each 

experimental group in Figure 6.6, panel A, B and C. The tubulointerstitial section from 

the RWI group shows a higher intense green signal (FITC) in the tubulointerstitial 

area when compared to the example from Nx and RWI+TGI groups. The RWI group 

was associated with a significant increase (4.3-fold) in Collagen III 

immunofluorescence compared to the Nx control group. TGI reduced the increase in 

Collagen III immunostaining by some 45% to values which also showed statistical 

difference from the Nx control group, P<0.001. Nx, 0.12 ± 0.01; RWI, 0.52 ± 0.04 and 

RWI+TGI, 0.34 ± 0.03 FITC/DAPI ratio. Figure 6.6, panel D. 
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Figure 6.4: Effect of RWI and TG inhibition on tubulointerstitial fibrosis after 28 days 
 
Panel A-C. Representative images of the tubulointerstitial area under 200x magnification, showing 
coloration (blue-extracellular matrix expansion; red-cellularity) and structural differences in the Nx (A), 
RWI (B) and RWI+TGI (C) groups. Panel D. The histogram represents the mean blue/red ratio in the 

tubulointerstitial area. Vertical bars indicate ± SEM. P<0.01, RWI+TGI compared with RWI group. * 
Denotes P<0.001, RWI compared with Nx group. Nx, n=5; RWI, n=5; RWI+TGI, n=6. 
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Figure 6.5: Effect of RWI and TG inhibition on tubulointerstitial collagen I after 28 
days 

Panel A-C. Representative images of the tubulointerstitial area under 200x magnification, showing 
coloration differences in collagen I (FITC-green) in the Nx (A), RWI (B) and RWI+TGI (C) groups. Blue 
dots represent cell nuclei (DAPI). Panel D. The histogram represents the mean FITC/DAPI ratio in the 

IGMA. Vertical bars indicate ± SEM. P<0.01, RWI+TGI compared with RWI group. * Denotes P<0.05, 
RWI compared with Nx group. Nx, n=5; RWI, n=5; RWI+TGI, n=6. 
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Figure 6.6: Effect of RWI and TG inhibition on tubulointerstitial collagen III after 28 

days 

Panel A-C. Representative images of the tubulointerstitial area under 200x magnification, showing 
coloration differences in collagen III (FITC-green) in the Nx (A), RWI (B) and RWI+TGI (C) groups. Blue 
dots represent cell nuclei (DAPI). Panel D. The histogram represents the mean FITC/DAPI ratio in the 

IGMA. Vertical bars indicate ± SEM. P<0.01, RWI+TGI compared with RWI group. * Denotes P<0.0001, 
RWI compared with Nx group. Nx, n=5; RWI, n=5; RWI+TGI, n=6. 
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Tubulointerstitial collagen IV. Representative examples of the 

tubulointerstitial area from immunofluorescence stained sections are shown for each 

experimental group in Figure 6.7, panel A, B and C. The tubulointerstitial section from 

the RWI group shows a higher intense green signal (FITC) in the peritubular area 

when compared to the example from Nx and RWI+TGI groups. The RWI group was 

associated with a significant increase (5.5-fold) in Collagen IV immunofluorescence 

compared to the Nx control group. TGI reduced the increase in Collagen I 

immunostaining by some 90% to values which showed no statistical difference from 

the Nx control group. Nx, 0.04 ± 0.01; RWI, 0.22 ± 0.02 and RWI+TGI, 0.06 ± 0.01 

FITC/DAPI ratio. Figure 6.7, panel D.  

 

6.3.3.3. Renal function and tubulointerstitial fibrosis correlations 

 

Significant correlations were obtained for renal fibrosis and serum creatinine in 

measurements taken at day 8 and 28. A remarkable high correlation was obtained 

between serum creatinine at day 8 and collagen III, r2= 0.88, P<0.0001. Masson’s 

trichrome staining showed a considerable positive correlation when compared to 

collagen I, III and IV; r2= 0.59, 0.77 and 0.76, respectively. However, when adding the 

three collagens into one measurement and comparing it with MTS, a higher 

correlation was obtained, r2= 0.88, P<0.0001. Linear regressions using renal function 

and fibrosis parameters are displayed in Table 6.2. 

 

6.3.3.4. Tubulointerstitital pathway 

 

Tubulointerstitial Transglutaminase in situ activity. Representative 

examples of the tubulointerstitial area from immunofluorescence stained sections are 

shown for each experimental group in Figure 6.8, panel A, B and C. The 

tubulointerstitial section from the RWI group shows a higher intense red signal (Alexa) 

in the tubulointerstitial area when compared to the examples from Nx and RWI+TGI 

groups. The RWI group was associated with a significant increase (1.9-fold) TG 

activity fluorescence compared to the Nx control group. TGI reduced the increase in 

TG activity staining by some 80 % to values which showed no statistical difference 

from the Nx control group. Nx, 0.10 ± 0.017; RWI, 0.19 ± 0.02 and RWI+TGI, 0.12 ± 

0.013 Alexa/DAPI ratio. Figure 6.8, panel D. 
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Figure 6.7: Effect of RWI and TG inhibition on tubulointerstitial collagen IV after 28 

days 

Panel A-C. Representative images of the tubulointerstitial area under 200x magnification, showing 
coloration differences in collagen IV (FITC-green) in the Nx (A), RWI (B) and RWI+TGI (C) groups. Blue 
dots represent cell nuclei (DAPI). Panel D. The histogram represents the mean FITC/DAPI ratio in the 

IGMA. Vertical bars indicate ± SEM. P<0.0001, RWI+TGI compared with RWI group. * Denotes 
P<0.0001, RWI compared with Nx group. Nx, n=5; RWI, n=5; RWI+TGI, n=6. 
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Technique A Technique B P value ˂ r2 

Serum creatinine day 8 MTS 0.0001 0.65 

Serum creatinine day 8 Collagen I 0.04 0.28 

Serum creatinine day 8 Collagen III 0.0001 0.88 

Serum creatinine day 8 Collagen IV 0.0005 0.60 

Serum creatinine day 28 MTS 0.0001 0.57 

Serum creatinine day 28 Collagen I 0.03 0.30 

Serum creatinine day 28 Collagen III 0.001 0.65 

Serum creatinine day 28 Collagen IV 0.0005 0.61 

MTS Collagen I 0.001 0.59 

MTS Collagen III 0.0001 0.77 

MTS Collagen IV 0.0001 0.76 

Collagen I Collagen III 0.03 0.31 

Collagen III Collagen IV 0.0003 0.65 

Collagen IV Collagen I 0.0003 0.65 

Collagens I, III, IV MTS 0.0001 0.88 

Collagens I, III, IV Serum creatinine day 8 0.0001 0.72 

Collagens I, III, IV Serum creatinine day 28 0.0005 0.64 

 
Table 6.2: Renal function and tubulointerstitial fibrosis correlations 
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Tubulointerstitial Transglutaminase 2. Representative examples of the 

tubulointerstitial area from immunofluorescence stained sections are shown for each 

experimental group in Figure 6.9, panel A, B and C. The tubulointerstitial section from 

the RWI group shows a higher intense red signal (Alexa) in the tubulointerstitial area 

when compared to the examples from Nx and RWI+TGI groups. The RWI group was 

associated with a significant increase (1.9-fold) TG2 immunofluorescence compared 

to the Nx control group. TGI reduced the increase in TG2 immunostaining by some 

80 % to values which showed no statistical difference from the Nx control group. Nx, 

0.85 ± 0.12; RWI, 1.6 ± 0.05 and RWI+TGI, 1 ± 0.07 Alexa/DAPI ratio. Figure 6.9, 

panel D. 

 

6.3.3.1. Tubulointerstitial TG correlations, renal function and fibrosis 

 

Extracellular TG activity showed significant correlations when compared to 

parameters of renal function. When comparing TG activity with parameters of 

tubulointerstitial fibrosis, low-moderate correlations were obtained; MTS, collagen I, 

III, and IV, r2=0.30, 0.29, 0.34, and 0.41, respectively. Regarding extracellular TG2, 

slightly higher correlations were obtained when comparing the same measurements 

of tubulointerstitial fibrosis; MTS, collagen I, III, and IV, r2=0.53, 0.38, 0.53, and 0.67. 

Parameters of renal function at day 8 and 28 showed a higher correlation with TG2 in 

contrast to the correlations obtained with TG activity. A table with linear regressions 

using tubulointerstitial parameters is displayed in Table 6.3. 
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Figure 6.8: Effect of RWI and TG inhibition on tubulointerstitial TG activity after 28 
days 

Panel A-C. Representative images of the tubulointerstitial area under 200x magnification, showing 
coloration differences in TG activity (Alexa-red) in the Nx (A), RWI (B) and RWI+TGI (C) groups. Blue 
dots represent cell nuclei (DAPI). Panel D. The histogram represents the mean Alexa/DAPI ratio in the 

IGMA. Vertical bars indicate ± SEM. P<0.05, RWI+TGI compared with RWI group. * Denotes P<0.01, 
RWI compared with Nx group. Nx, n=5; RWI, n=5; RWI+TGI, n=6. 
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Figure 6.9: Effect of RWI and TG inhibition on tubulointerstitial TG2 after 28 days 
 
Panel A-C. Representative images of the tubulointerstitial area under 200x magnification, showing 
coloration differences in TG2 protein (Alexa-red) in the Nx (A), RWI (B) and RWI+TGI (C) groups. Blue 
dots represent cell nuclei (DAPI). Panel D. The histogram represents the mean Alexa/DAPI ratio in the 

IGMA. Vertical bars indicate ± SEM. P<0.0001, RWI+TGI compared with RWI group. * Denotes 
P<0.0001, RWI compared with Nx group. Nx, n=5; RWI, n=5; RWI+TGI, n=6. 
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          Technique A Technique B P value ˂ r2 

TG in situ activity Serum creatinine day 8 0.05 0.37 

TG in situ activity Creatinine clearance day 28 0.05 0.38 

TG in situ activity MTS 0.05 0.30 

TG in situ activity Collagen I 0.05 0.29 

TG in situ activity Collagen III 0.02 0.34 

TG in situ activity Collagen IV 0.01 0.41 

TG in situ activity Collagens I, III, IV 0.01 0.42 

TG2 protein Serum creatinine day 8 0.005 0.48 

TG2 protein Serum creatinine day 28 0.01 0.42 

TG2 protein Creatinine clearance day 28 0.01 0.39 

TG2 protein MTS 0.005 0.53 

TG2 protein Collagen I 0.01 0.38 

TG2 protein Collagen III 0.005 0.53 

TG2 protein Collagen IV 0.0001 0.67 

TG2 protein Collagens I, III, IV 0.0005 0.63 

TG2 protein TG in situ activity 0.0005 0.60 

 
Table 6.3: Tubulointerstitial Area - General linear regressions 
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6.3.3.2. Glomerular fibrosis 

 

Glomerular Masson’s trichrome staining. Representative examples of 

glomeruli from MTS sections are shown for each experimental group in Figure 6.10, 

panel A, B and C. The intraglomerular mesangial area (IGMA) from the RWI group 

shows a higher level of light blue staining in the capillary basement membranes 

together with mesangial matrix expansion in contrast to the examples from Nx and 

RWI+TGI groups. The RWI group was associated with a higher blue/red ratio in 

contrast to the Nx control group (P<0.01). This increase was significantly reduced by 

the TGI (P<0.05) to values not significantly different from the Nx control. Nx, 0.0006 

± 0.0001; RWI, 0.004 ± 0.001 and RWI+TGI, 0.0018 ± 0.0005 Alexa/DAPI ratio. 

Figure 6.10, panel D. 

 

Glomerular collagen I, III and IV. Representative examples of glomeruli from 

immunofluorescence stained sections are shown for each experimental group in 

Figure 6.11, panel A, B and C (collagen I); Figure 6.12, panel A, B and C (collagen 

III); Figure 6.13, panel A, B and C (collagen IV).  

 

The IGMA for collagen I, from the RWI and RWI+TGI groups shows a lower 

level of green signal (FITC) when compared to the example from Nx group, Figure 

6.11, panel A-C. Collagen I. The RWI group showed a significantly lower FITC/DAPI 

ratio of some 60% (P<0.05) when compared to the Nx control group. This decrease 

remained unaffected by the administration of the TG inhibitor. Nx, 0.23 ± 0.03; RWI, 

0.1 ± 0.06 and RWI+TGI, 0.07 ± 0.03 FITC/DAPI ratio. 

 

The IGMA for collagen III from RWI+TGI group shows a slight increase in green 

signal when compared to both the examples from Nx and RWI+TGI groups, Figure 

6.12, panel A-C. Collagen III. The RWI group did not show any significant difference 

amongst groups. Nx, 0.004 ± 0.001; RWI, 0.002 ± 0.001 and RWI+TGI, 0.016 ± 0.007 

FITC/DAPI ratio. 

 

The IGMA for collagen IV shows a similar fluorescent behaviour to the one seen 

in IGMA for collagen I, Figure 6.13, panel A-C. Collagen IV. The RWI group showed 

a significantly lower FITC/DAPI ratio of some 80% (P<0.01) when compared to the 

Nx control group. This decrease remained unaffected by the administration of the TG 

inhibitor. Nx, 0.25 ± 0.05; RWI, 0.06 ± 0.02 and RWI+TGI, 0.04 ± 0.004 FITC/DAPI 

ratio 
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Figure 6.10: Effect of RWI and TG inhibition on glomerular matrix after 28 days  
 
Panel A-C. Representative images of the intraglomerular mesangial area under 400x magnification, 

showing coloration (blue-extracellular matrix expansion; red-cellularity) and structural differences in the 
Nx (A), RWI (B) and RWI+TGI (C) groups. The IGMA is delimited by a squared red frame. Panel D. The 

histogram represents the mean blue/red ratio in the IGMA. Vertical bars indicate ± SEM. P<0.05, 
RWI+TGI compared with RWI group. * Denotes P<0.01, RWI compared with Nx group. Nx, n=5; RWI, 
n=5; RWI+TGI, n=6. 
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Figure 6.11: Effect of RWI and TG inhibition on glomerular collagen I after 28 days 

 
Panel A-C. Representative images of the intraglomerular mesangial area under 400x magnification, 
showing coloration differences in collagen I (FITC-green) in the Nx (A), RWI (B) and RWI+TGI groups 
(C). Blue dots represent cell nuclei (DAPI). The IGMA is delimited by a squared red frame. Panel D. The 

histogram represents the mean FITC/DAPI ratio in the IGMA. Vertical bars indicate ± SEM. NS denotes 
no significance between RWI+TGI and RWI groups. * Denotes P<0.05, RWI compared with Nx group. 
Nx, n=5; RWI, n=5; RWI+TGI, n=6. 
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Figure 6.12: Effect of RWI and TG inhibition on glomerular collagen III after 28 days 

 

Panel A-C. Representative images of the intraglomerular mesangial area under 400x magnification, 
showing coloration differences in collagen III (FITC-green) in the Nx (A), RWI (B) and RWI+TGI (C) 
groups. Blue dots represent cell nuclei (DAPI). The IGMA is delimited by a squared red frame. Panel D. 

The histogram represents the mean FITC/DAPI ratio in the IGMA. Vertical bars indicate ± SEM. NS 
denotes no significance between RWI+TGI and RWI groups. Nx, n=5; RWI, n=5; RWI+TGI, n=6. 
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Figure 6.13: Effect of RWI and TG inhibition on glomerular collagen IV after 28 
days 

 
Panel A-C. Representative images of the intraglomerular mesangial area under 400x magnification, 
showing coloration differences in collagen IV (FITC-green) in the Nx (A), RWI (B) and RWI+TGI (C) 
groups. Blue dots represent cell nuclei (DAPI). The IGMA is delimited by a squared red frame. Panel D. 

The histogram represents the mean FITC/DAPI ratio in the IGMA. Vertical bars indicate ± SEM. NS 
denotes no significance between RWI+TGI and RWI groups. * Denotes P<0.01, RWI compared with Nx 
group. Nx, n=5; RWI, n=5; RWI+TGI, n=6. 
 

 
 
 
 

 

 

 

 



190 

 

 

 

6.3.3.3. Glomerular TG pathway 

 

Glomerular Transglutaminase in situ activity. Representative examples of 

glomeruli from immunofluorescence stained sections are shown for each 

experimental group in Figure 6.14, panel A, B and C. The IGMA from the RWI and 

RWI+TGI groups show a lower level of red signal (Alexa) compared to the example 

from Nx group.  

 

The RWI group showed a significantly lower Alexa/DAPI ratio of some 80% 

(P<0.0001) when compared to the Nx control group. This decrease remained 

unaffected by the administration of the TG inhibitor. Nx, 0.38 ± 0.05; RWI, 0.09 ± 

0.027 and RWI+TGI, 0.08 ± 0.03 Alexa/DAPI ratio. Figure 6.14, panel D. 

 

Glomerular Transglutaminase 2. Representative examples of glomeruli from 

immunofluorescence stained sections are shown for each experimental group in 

Figure 6.15, panel A, B and C. The IGMA from the RWI and RWI+TGI group show a 

lower level of red signal (Alexa) when compared to the example from Nx group.  

 

The RWI group showed a significantly lower Alexa/DAPI ratio of some 90% 

(P<0.0001) when compared to the Nx control group. This decrease remained 

unaffected by the administration of the TG inhibitor. Nx, 0.31 ± 0.04; RWI, 0.03 ± 0.01 

and RWI+TGI, 0.05 ± 0.02 Alexa/DAPI ratio. Figure 6.15, panel D. 

 

6.3.3.4. Glomerular correlations with extracellular TG pathway 

 

Extracellular TG activity showed a moderate correlation with parameters of 

extracellular TG2, r2=0.58, 0.001. Tubulointerstitial renal fibrosis also showed positive 

correlations with extracellular TG activity. A table with linear regressions using IGMA 

parameters is displayed in Table 6.4. 
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Figure 6.14: Effect of RWI and TG inhibition on glomerular TG activity after 28 
days 

 
Panel A-C. Representative images of the intraglomerular mesangial area under 400x magnification, 
showing coloration differences in TG activity (Alexa-red) in the Nx (A), RWI (B) and RWI+TGI (C) groups. 
Blue dots represent cell nuclei (DAPI). The IGMA is delimited by a squared red frame. Panel D. The 

histogram represents the mean Alexa/DAPI ratio in the IGMA. Vertical bars indicate ± SEM. NS denotes 
no significance between RWI+TGI and RWI groups. * Denotes P<0.0001, RWI compared with Nx group. 
Nx, n=5; RWI, n=5; RWI+TGI, n=6. 
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Figure 6.15: Effect of RWI and TG inhibition on glomerular TG2 after 28 days 
 
Panel A-C. Representative images of the intraglomerular mesangial area under 400x magnification, 
showing coloration differences in TG2 protein (Alexa-red) in the Nx (A), RWI (B) and RWI+TGI (C) 
groups. Blue dots represent cell nuclei (DAPI). The IGMA is delimited by a squared red frame. Panel D. 

The histogram represents the mean Alexa/DAPI ratio in the IGMA. Vertical bars indicate ± SEM. NS 
denotes no significance between RWI+TGI and RWI groups. * Denotes P<0.0001, RWI compared with 
Nx group. Nx, n=5; RWI, n=5; RWI+TGI, n=6. 
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            Technique A Technique B P value ˂ r2 

TG in situ activity Collagen I 0.05 0.28 

TG in situ activity Collagen IV 0.05 0.38 

TG in situ activity Collagen I, III, IV 0.02 0.33 

TG2 protein Collagen IV 0.01 0.43 

TG2 protein Collagen I, III, IV 0.03 0.32 

TG2 protein TG in situ activity 0.001 0.58 

 
Table 6.4: Intraglomerular Mesangial Area - General Linear regressions 

 

 

6.3.3.5. Total TG pathway 

 

Total TG enzyme activity. The RWI and RWI+TGI groups were associated 

with a significant 3.5 and 5 fold reduction in nmol of 3H-putrescine incorporated per 

hour at 37°C when compared to the Nx group, Figure 6.16, panel A. The analysis 

between the RWI and RWI+TGI showed a significant reduction of the RWI+TGI when 

contrasted to RWI group. RWI, 0.48 ± 0.07 and RWI+TGI, 0.3 ± 0.05 units / mg of 

protein, P<0.05. Figure 6.16. 

 

 

Figure 6.16: Effect of RWI and TG inhibition on total TG activity after 28 days 

The histogram represents the total TG activity, determined by 3H-putrescine incorporation, in 
homogenates of kidneys from RWI and RWI+TGI rats. Vertical bars indicate ± SEM. RWI, n=5; 
RWI+TGI, n=6. 

 

 



194 

 

 

Total Transglutaminase 2. Representative western blots for each 

experimental group, immunoprobed with a rabbit polyclonal TG2 antibody (TG2 rpAb) 

and a mouse monoclonal TG2 antibody (TG100) are shown in Figures 6.17 and 6.18, 

respectively (sections A). Recombinant rat TG2 (positive control) gave a single band 

at approximately 73 kDa. When immunoprobing with TG2 rpAb, the rat kidney 

homogenates gave two intensive bands, 83 and 72kDa (Figure 6.17, section A). 

When immunoprobing with the TG2 mAb, the rat kidney homogenates gave one 

intensive band at 72 kDa and multiple faint bands with a lower molecular weight; the 

more evident ones had molecular weights of 61, 47 and 32 kDa (Figure 6.18, section 

A). Negative controls using either rabbit serum or mouse IgG to β-actin at an equal 

concentration to each primary antibody did not show a band with a similar molecular 

weight to the ones detected when using TG2 antibodies. β-actin antibody (mouse IgG 

control), gave one band at 40 kDa. The omission of primary antibody for each western 

blot did not showed any signal band. When immunoprobing a row segment of tissue 

blot with cyclophilin A (loading control), a band at 17 kDa was detected in all samples 

with a similar density.  

 

When blot was immunoprobed with the rabbit TG2 antibody (Ab 421), the mean 

volume density of the 83 (potential factor XIIIa) and 72 kDa (TG2) bands corrected 

by the mean volume density of cyclophilin A did not show significant difference 

amongst groups. 83 kDa band. Nx, 0.22 ± 0.03; RWI, 0.19 ± 0.004 and RWI+TGI, 

0.18 ± 0.01 ODmm2 / ODmm2. 72 KDa band. Nx, 0.26 ± 0.03; RWI, 0.19 ± 0.012 and 

RWI+TGI, 0.25 ± 0.06 ODmm2 / ODmm2, Figures 6.17, section B. When blot was 

immunoprobed with mouse monoclonal TG2 (TG100) the 72 kDa band corrected by 

the mean volume density of cyclophilin A did not show significant difference amongst 

groups. Nx, 0.16 ± 0.01; RWI, 0.19 ± 0.01 and RWI+TGI, 0.21 ± 0.03 ODmm2 / 

ODmm2. Figures 6.18, section B. 

 

No correlations were obtained when compared tubulointerstitial measurements 

with either total TG activity or TG2 protein. 
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Figure 6.17: Effect of RWI and TG inhibition on total TG2 after 28 days using a  
rabbit polyclonal antibody  

 
 
Panel A. Representative western blot for transglutaminase 2 (TG2) from Nx (rats 1-5), RWI (rats 6-10) 

and RWI+TGI (rats 11-16). Homogenates were immunoprobed with a rabbit polyclonal TG2 antibody. 
Rat recombinant TG2 was the positive control giving a band at 72kDa.  Kidney homogenates a band at 
71 kDa (TG2). In the negative control set, the first lane kidney homogenate (rat 9) was immunoprobed 
with rabbit serum giving a faint band at 45kDa band. In the last lane kidney homogenate (rat 9) was 
probed without primary antibody. Cyclophilin A was employed for loading control giving a band at 17 
kDa. Panel B. The histogram represents the TG2 mean OD mm2 / cyclophilin A mean OD mm2 obtained 

from kidney homogenates immunoprobed with rabbit polyclonal TG2 antibody. Vertical bars indicate ± 
SEM.  NS denotes no significance between RWI+TGI and RWI groups. Nx, n=5; RWI, n=5; RWI+TGI, 
n=6. 
 
 
 

 
 
 

 
 
 

Figure 6.18: Effect of RWI and TG inhibition on total TG2 after 28 days using a 
mouse monoclonal antibody 

 
Panel A. Representative western blot for transglutaminase 2 (TG2) from Nx (rats 1-5), RWI (rats 6-10) 

and RWI+TGI (rats 11-16). Kidney homogenates were immunoprobed with a mouse monoclonal TG2 
antibody. Rat recombinant TG2 was the positive control giving a band at 72kDa.  Kidney homogenates 
a band at 71 kDa (TG2). In the negative control set, the first lane kidney homogenate (rat 9) was 
immunoprobed with mouse monoclonal to β-actin giving a 40 kDa band. In the last lane kidney 
homogenate (rat 9) was without primary antibody. Cyclophilin A was employed for loading control giving 
a band at 17 kDa. Panel B. The histogram represents the TG2 mean OD mm2 / cyclophilin A mean OD 

mm2 obtained from kidney homogenates immunoprobed with mouse monoclonal TG2 antibody. Vertical 
bars indicate ± SEM. NS denotes no significance between RWI+TGI and RWI groups. Nx, n=5; RWI, 
n=5; RWI+TGI, n=6. 
 
 
 
 
 
 



196 

 

6.3.3. Renal Warm Ischaemia - day 8 interventional study 

 

6.3.2.1. Renal function and kidney weight 

 

Serum creatinine. Measurements of serum creatinine for each experimental 

group at day 8 after RWI, expressed as mean of μmol/L, are shown in Figure 6.19. 

The RWI group was associated with a higher serum creatinine compared to the Nx 

control (P<0.0001), this increase was partially restored by the TGI. Nx, 52 ± 4; RWI, 

334 ± 34 and RWI+TGI 251 ± 23 μmol/L. Serum creatinine prior to any surgical 

procedure and 24hrs after intra-renal cannulation on day -3 did not show any 

significant difference between experimental groups. 

 

 

 

 Figure 6.19: Effect of RWI and TG inhibition on serum creatinine at day 8 

 
The histogram represents the level of serum creatinine after 8 days of renal warm ischaemia. Vertical 
bars indicate ± SEM. NS denotes no significance between RWI+TGI and RWI groups. * Denotes 
P<0.0001, RWI compared with Nx group. Nx, n=5; RWI, n=4; RWI+TGI, n=3.  
 
 
 

 

Creatinine clearance. The RWI group was associated with a lower creatinine 

clearance compared to the Nx control (P<0.001), this increase was partially restored 

by the TGI. Nx, 1.5 ± 0.2; RWI, 0.12 ± 0.4 and RWI+TGI 0.23 ± 0.1 ml/min. Creatinine 

clearance prior to any surgical procedure and 24hrs after intra-renal cannulation did 

not show any significant difference between groups. 
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Albumin in urine. Measurements of albumin excretion at day 8 for each 

experimental group, did not show any significant difference between groups. Nx, 2.4 

± 0.6; RWI, 0.83 ± 0.16 and RWI+TGI, 1.8 ± 0.7 mg / 24hrs.  

 

Kidney weight. The RWI group was associated with a significantly higher renal 

weight in grams compared to the Nx control group (P<0.001). TGI significantly 

reduced the increase in kidney weight by some 90% to values not significantly 

different from the Nx controls. Nx, 1.24 ± 0.12; RWI, 2.04 ± 0.5 and RWI+TGI 1.32 ± 

0.1 grams, Figure 6.20. 

 

 

  

Figure 6.20: Effect of RWI and TG inhibition on the left kidney weight at 8 days 

The histogram represents the weight of the left kidney after 8 days of renal warm ischaemia. Vertical 
bars indicate ± SEM. P<0.01, RWI+TGI compared with RWI group. * Denotes P<0.001, RWI compared 
with Nx group. Nx, n=5; RWI, n=4; RWI+TGI, n=3.  

 
 
 

6.3.2.2. Tubulointerstitial fibrosis 

 

Masson’s trichrome staining. The RWI group was associated with a higher 

blue/red ratio compared to the Nx control (P<0.05). This increase remained 

unaffected by the administration of the TG inhibitor. Nx, 0.007 ± 0.001; RWI, 0.04 ± 

0.01 and RWI+TGI 0.036 ± 0.01 blue/red ratio, Figure 6.21. 

 



198 

 

 

Figure 6.21: Effect of RWI and TG inhibition on extracellular matrix expansion at 8 
days 

 
The histogram represents the effect of RWI on extracellular matrix expansion after 8 days. Vertical bars 
indicate ± SEM. NS denotes no significance between RWI+TGI and RWI groups. Nx, n=5; RWI, n=4; 
RWI+TGI, n=3.  
 
 
 
 

Collagen III. The RWI group was associated with a higher FITC/DAPI ratio 

compared to the Nx control (P<0.01). This increase was partially reduced by the TGI 

Nx, 0.085 ± 0.02; RWI, 0.3 ± 0.03 and RWI+TGI 0.25 ± 0.02 FITC/DAPI ratio. Figure 

6.22. 

 

 

Figure 6.22: Effect of RWI and TG inhibition on tubulointerstitial collagen III at 8 
days 

 
The histogram represents the effect of RWI on tubulointerstitial collagen III after 8 days. Vertical bars 
indicate ± SEM. NS denotes no significance between RWI+TGI and RWI groups. * Denotes P<0.01, 
RWI compared with Nx group. Nx, n=5; RWI, n=4; RWI+TGI, n=3.  
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6.3.2.3. Tubulointerstitial TG pathway 

 

Tubulointerstitial transglutaminase in situ activity. The RWI group was 

associated with a significant increase (2.2 fold) in the Alexa/DAPI ratio when 

compared to the Nx controls. TGI abolished the increase in transglutaminase activity 

which showed no statistical difference from the Nx control group. Nx, 0.24 ± 0.07; 

RWI, 0.55 ± 0.07 and RWI+TGI, 0.25 ± 0.05 FITC/DAPI ratio. Figure 6.23. 

 

 

 

 

 

Figure 6.23: Effect of RWI and TG inhibition on tubulointerstitial TG activity at 8 
days 

The histogram represents the effect of RWI on tubulointerstitial collagen III after 8 days. Vertical bars 
indicate ± SEM. P<0.05, RWI+TGI compared with RWI group. * Denotes P<0.05, RWI compared with 
Nx group. Nx, n=5; RWI, n=4; RWI+TGI, n=3 
 

 
 
 
 
6.4. Discussion 

 

6.4.1. Interstitial transglutaminase and fibrosis 

 

In the present study, the 2-fold increase in TG enzyme activity following RWI, 

was prevented by the renal infusion of a TG inhibitor, suggesting that adequate drug 

concentrations had been achieved for enzyme inhibition within the extracellular 

matrix. Although the distribution of TG inhibitor employed was not confined to the 

extracellular space, an intracellular effect would seem unlikely as the intracellular 

calcium concentration is not high enough to activate the enzyme, an essential 
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requirement for enzyme inhibition. However, in addition to inhibiting extracellular TG 

enzyme activity, the TG inhibitor, also prevented the increase in extracellular TG2 

protein induced by RWI, which is assumed to be a transcriptional event. How could a 

TG enzyme inhibitor reduce the extracellular renal content of the enzyme protein 

itself? One possibility maybe through inhibition of its cross-linking effect, reducing the 

activation of the latent form of TGF-β since, the activated form of TGF-β is known to 

stimulate the transcription of TG2 in the rat kidney (Huang et al., 2010). 

  

RWI was associated with an increase in extracellular matrix proteins, including 

collagens I, III & IV. The increase in all three collagens was significantly reduced by 

the TG inhibitor. Inhibition of TG enzyme activity inhibits transamidation, directly 

reducing collagen deposition and indirectly unblocking fibrinolytic systems and 

inhibiting the activation of TGF-β / NF-κβ pathways (Huang et al., 2010; Lee et al., 

2004).  The lower level of TG activity results in less cross-linked collagen and 

therefore faster collagen clearance by endogenous proteolytic pathways. Collagen I 

& IV were reduced down to levels indistinguishable from those found in Nx control 

animals. Collagen III is the predominant immature form of collagen in incipient forms 

of fibrosis (Zager et al., 2009), such as 28-day RWI. It is possible that the deposition 

of all collagens occurred at the same rate, but due to the high bioavailability of 

collagen III substrate, the reduction in collagen III deposition was less evident. This 

data provides evidence of a causal link between interstitial TG enzyme activity and 

interstitial fibrosis. The concept of a causal link between renal TG enzyme activity and 

renal fibrosis is supported by two previous rat studies where fibrosis, induced 

following either SNx (Johnson et al., 2007) or the induction of diabetes (Huang et al., 

2009), was also reduced following TG inhibition. 

 

6.4.2. Glomerular Transglutaminase and fibrosis 

 

Previous TG inhibitor studies in experimental models of chronic renal disease 

have shown similar results for both tubulointerstitial and glomerular fibrosis, both 

being enhanced following either sub-total nephrectomy (Johnson et al., 2007) or the 

induction of diabetes, and reduced following TG inhibition (Huang et al., 2009). 

Following RWI however, both glomerular fibrosis and glomerular TG activity were 

markedly reduced, not increased, with no further reduction seen with the TG inhibitor. 

RWI (28day) in the rat could therefore be considered as a model of tubulointerstitial 

fibrosis, and therefore perhaps the most appropriate rat model to parallel changes in 

the CKD cat. The absence of glomerular involvement in this model is certainly 
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supported by the lack of proteinuria developing after 28 days. This evidence does not 

however cast doubt on the causal link between TG and fibrosis, in fact the opposite 

could be said to be true since in the glomerulus, TG and fibrosis were reduced in 

parallel. 

 

As far as we are aware this is the first time evidence of a decrease in TG 

following a renal insult has been demonstrated. This raises a number of important 

questions, for example:- 

 

1. How can the same RWI stimulus increase TG expression in the 

interstitium but reduce it within the glomerulus? 

  

2. If it is true however, could a decrease in TG actually provide a 

mechanism to protect the glomerulus against further injury and 

actually provide the mechanistic basis for RWI producing a model of 

interstitial fibrosis?  

 

The down regulation of the glomerular TG pathway in the RWI and RWI+TGI 

groups at day 28, suggests that hypoxia itself, independent of TG inhibition, could 

play a major role in such a phenomena. The following hypothesis may explain the 

results. 

 

The importance of the natural protection of glomeruli under hypoxic 

environments relies on the rationale that tubules have a high capacity to regenerate 

following RWI, whereas in glomeruli this mechanism is less active (Park et al., 2000), 

however still present (Little, 2006). If glomeruli subsist after renal injury, tubular and 

peritubular vascular networks are more likely to survive and re-establish a functional 

nephron. Therefore, the glomerulus is a vital structure that has to be protected to 

ensure a functional renal mass. It has been recognized that hypoxia causes a far 

milder damage in the glomerular capillaries compared to the tubulointerstitial space 

(Wang et al., 2015). RWI produces hypoxia and inflammation causing oxidative 

cellular stress increasing the expression of HIF-1α via podocytes, acting as an 

immediate mesangial protective mechanism (Wang et al., 2015). HIF system aids the 

adaptation of cellular homeostasis under hypoxic conditions by regulating a variety of 

genes to enable angiogenesis through VEGF, energy conservation, metabolic 

adaptation and cell survival (Gunaratnam et al., 2009). In the kidney, HIF is active 
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during glomerulogenesis and after that is just active under hypoxic environments 

(Bernhardt et al., 2006). 

 

Following RWI, HIF-1α in the glomeruli might be more expressed than in the 

tubulointerstitial space, as a salvage mechanism to protect the glomeruli. In the 

present study, it is possible that the up-regulation of HIF in the glomeruli caused an 

indirect down regulation of the TG pathway by promoting mesangial normoxia with 

the following lower oxidative stress response. The link between TG2 and HIF under 

hypoxia has been previously study in rat neurons showing that TG2 can promote 

direct down-regulation of the HIF system (Filiano et al., 2008). However, down 

regulation of TG2 by from the HIF has never been described. Although unlikely, the 

possibility of a direct down-regulation of TG2 by the HIF system cannot be totally 

discarded.  

 

The effect of HIF on glomeruli may be different in the acute and chronic 

healing stages following RWI.  In chronic renal damage, according to long term rat 

models of RWI (Torras et al., 1999), the HIF protective glomerular mechanism 

perhaps is overcome when tubulointerstitial fibrosis reaches certain level, allowing 

the development of glomerulosclerosis. At this stage, if the TG pathway is up-

regulated, TG inhibitors may play an important role to slow the progression of 

glomerulosclerosis by reducing mesangial matrix accumulation/ deposition, as seen 

in the studies of Johnson et al (2007) and Huang et al (2009). 

 

In acute renal damage, HIF expression may prevent the up-regulation of TG2. 

The natural down-regulation of the glomerular TG pathway following RWI, reduces 

the possibility of further activation of NF-κβ attenuating both local inflammation and 

crosslinking of the accumulated matrix. HIF glomerular system is therefore an 

endogenous protective glomerular system to reduce acute glomerular damage with 

the subsequent protective effect to attenuate the development of glomerulosclerosis. 

Even though the TG pathway seems not to be involved in early RWI, it may provide 

indirect protection to the glomeruli, since attenuation of glomerulosclerosis can be 

achieved by reducing inflammation and fibrosis in the tubulointerstitial space, as 

tubulointerstitial injury precedes glomerular damage (Rodriguez-Iturbe et al., 2010). 

 

There is one piece of information from the shorter 8-day study which may be 

of some help. In the early days following an ischaemic insult there is an increase in 

kidney weight, attributed to inflammation and oedema rather than hypertrophy. Yu et 
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al (1998) for example showed a marked increase in kidney tissue malondialdehyde, 

a peroxidation product and elevated serum eicosanoids (Yu et al., 1998).  In the 8-

day study presented in this chapter, an increase in kidney wet weight of over 50% 

was detected, an effect abolished by the TG inhibitor. However, while an increase in 

tubulointerstitial ECM protein was also apparent, at 8 day, it remained unaffected by 

TG inhibition presumably since matrix cross-linking had not as yet been established. 

The early anti-inflammatory effect of TG inhibition could then be a consequence of 

reduced TGF-β. As a major fibrogenic growth factor, TGF-β is thought to stimulate 

fibroblast differentiation through inducing a pro-oxidant shift in intracellular redox 

status mediated via reactive oxygen species, particularly hydrogen peroxide 

(Sampson et al., 2014), which has shown to play an important role in renal damage 

in either glomeruli and tubulointerstitium (Shah, 1995). Also, reduction of 

inflammation via NF-κβ and AKT attenuation due to TG inhibition could also have 

contributed, as these pathways have been shown to be activated by TG2, in the liver 

(Mirza et al., 1997) and breast cancer cells (Agnihotri et al., 2013), respectively.  

 

6.4.3. Renal Function  

 

A significant reduction in the GFR assessed by serum creatinine showed renal 

function impairment after 8 and 28 days following RWI. The RWI+TGI group, on the 

other hand, showed a marked reduction in serum creatinine when compared to the 

RWI group at day 8 and day 28, providing evidence that TGI is able to exert a positive 

effect on renal function after RWI, presumably as a result of the attenuation in 

inflammation (Lee et al., 2004). The TG inhibitor protected renal function at different 

time points, however, the mechanism of action may be different according to the time 

of disease progression. For example, when measuring serum creatinine at day 8, TG 

inhibition possibly attenuated the inflammatory response to ischaemia reperfusion 

injury, reducing acute tubular necrosis, thus increasing nephron survival. At day 28, 

the reduction of serum creatinine was secondary to both the reduction in the acute 

inflammatory response to RWI and the reduction of matrix deposition in the 

tubulointerstitial space.  

 

On the other hand, creatinine clearance did not show any significant difference 

between groups in the present study, a finding secondary to the low sensitivity of the 

technique, as tubules in rats are able to secrete creatinine in normal conditions 

(Darling et al., 1991). Regarding albuminuria, no difference between groups was 

observed, since this model does not able to generate important glomerular damage 
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before 4 months of disease progression (Torras et al., 1999), also see chapter 5, 140-

day RWI study. 

 

Currently, it is well recognised that the decrease of renal inflammation and renal 

fibrosis have beneficial effects on the conservation of renal function (Eddy, 2000). 

Interventional studies using transglutaminase inhibitors in rat models of diabetic 

nephropathy (Huang et al., 2009) and subtotal nephrectomy (Johnson et al., 2007) 

have shown positive outcomes regarding renal function protection. Therefore, the 

employment of TG inhibitors in acute and chronic kidney disease is a potential 

therapeutic approach to prevent renal failure. 

 

6.4.4. Whole Kidney TG Analysis 

 

When kidney homogenates were assessed for total TG activity, the RWI+TGI 

group showed a lower reduction of activity compared to the RWI group; this provided 

further evidence for the effectiveness of TGI on transglutaminase inhibition. On the 

other hand, total TG2 protein did not show any significant difference amongst groups. 

The lack of correlation between extracellular TG2 protein in cryostat sections and total 

TG2 in homogenates was due to the difference in concentration of TG2 between the 

mesangial and tubulointerstitial compartments. When pooling both structures in tissue 

homogenates, the high expression of tubulointerstitial TG2 was overshadowed by the 

down-regulation of glomerular TG2, as a result, similar levels were observed between 

groups. Moreover, it is important to consider that tissue homogenates, apart from 

cortex, also included medullar tissue. Renal medulla is not importantly affected by 

inflammation and fibrosis following RWI (Nangaku et al., 2007b), therefore an 

increase of the TG pathway in medulla was not expected. The inclusion of medula in 

tissue homogenates may have also contributed to the lack of change in total TG2 

between groups. Consistent with our study, Scarpellini et al (2013) showed no 

differences in total protein concentrations between experimental groups in the mouse 

models of unilateral ureteral obstruction and aristolochic acid nephropathy, however, 

a high increase in the extracellular TG2 was observed when compared to the control 

groups (Scarpellini et al., 2013). 

 

Regarding the upper band (84 kDa) detected when immunoprobing with TG2 

rpAb, corresponds to factor XIIIa according to its molecular weight (protein ID 

ENSRNOP00000021568) (Flicek et al., 2014). A similar result was obtained in the cat 

study (Chapter 4). It is important to mention that no significant differences were 
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detected amongst groups for this band, suggesting that Factor XIIIa does not change 

when renal disease is present following 28 days of RWI. As explained in Chapter 4, 

the assessment of TG2 in cryostat sections by immunofluorescence using the TG2 

rpAb does not alter the measurement of TG2, as the technique for 

immunofluorescence washes away plasmatic material from tissue sections removing 

factor XIIIa. 

 

6.4.5. Conclusion 

 

TG inhibition showed a positive effect in renal function and tubulointerstitial 

fibrosis, therefore TG2 is a causal link for the development of renal tubulointerstitial 

fibrosis under RWI. TGI effects on tubulointerstitial fibrosis and renal function are 

secondary to a direct inhibition of TG2 and possibly via indirect reduction of TGF-β1 

and NF-κβ. Further studies should be performed to assess the role of TG2 in acute 

inflammation following RWI. The HIF system is expressed in the glomeruli providing 

local protection to low tensions of oxygen, as mechanism to glomerular inflammation 

and subsequently sclerosis. The study of the TG2 down regulatory mechanism in the 

glomeruli may be an important pathway to understand and generate new glomerular 

protective therapeutic approaches. 
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A method using Aortic and Cava 
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7A.1. Introduction 

 

Chronic allograph nephropathy (CAN) is a renal disease developed in up to 40 

% of people following kidney transplantation. It represents the main cause of renal 

allograft failure. This phenomena often occurs from 1 year to 10 years after operation 

(Grinyo et al., 2011). CAN has been also described in the cat (De Cock et al., 2004), 

sharing both functional and histopathological features (tubulointerstitial fibrosis and 

tubular atrophy) with man (Haas, 2014). CAN has been associated with both 

alloantigen-dependent and independent factors. Amongst those factors, ischaemia 

reperfusion injury has been shown to play a major role in the development of post-

transplant renal fibrosis (Fellstrom, 2003). 

 

 Previous pilot studies undertaken at the Academic Nephrology Unit in the 

University of Sheffield showed the association between renal fibrosis and 

transglutaminase 2 in a Fisher to Lewis rodent model of chronic allograft nephropathy 

(Shrestha et al., 2014); therefore, as a next step, an interventional study on the 

inhibition of TG2 in this model was proposed.  The kidney transplantation technique 

was first established in a systematic and detailed manner to reduce surgeon and 

technique-related variables. Eventually, TG2 activity inhibition studies employing a 

TG2 neutralising antibody (BB7) were intended to occur in this model. However, BB7 

antibody was ultimately not available for this project. This chapter describes, at great 

detail, the kidney transplantation technique (donor and recipient operation) in 

Sprague Dawley rats.  

 

 

7A.2. Donor Technique 

 

All the equipment (table, mat, microscope, pen for data recording and 

anaesthesia machine, including vaporiser and tubes) was disinfected prior to 

anaesthesia induction. In the theatre, a mask, cap, surgical scrubs and trousers were 

worn to reduce the risk of infection. All donor data (timings, measures and 

complications) was recorded during surgery using a donor kidney evaluation form.  
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7A.2.1. Anaesthesia and Jugular Cannulation 

 

For anaesthesia induction, the rat is placed in an anaesthetic chamber with 

isoflurane at 5% for 2-5 minutes. After that, a strip of eye ointment (0.25 cm) is applied 

in both eyes and the rat is placed on the surgical mat in dorsal recumbence position. 

Anaesthesia was maintained with isoflurane 2-3% delivered through an anaesthetic 

tube placed over the rat’s muzzle, covering nose and mouth. Analgesia is achieved 

by administering buprenorphine 50μg/kg intramuscularly into the left hind limb. A 

lubricated rectal probe was introduced gently into the rectum, with prior manual 

removal of stools to prevent rectum or colon damage and to promote better probe 

contact with the colon endothelium. A tape was placed around the tail, to fix the probe 

in position.  

 

A thermostatically controlled heating blanket was employed to maintain body 

temperature (34.5- 36.5 oC). The ventral abdominal and the left jugular area, 6 x 12 

cm and 2 x 2 cm, respectively, were clipped and aseptically cleaned three times using 

chlorhexidine 2%. The palmar and plantar surfaces of limbs were meticulously 

cleaned with chlorhexidine 2% in order to reduce bacterial contamination. The left 

internal jugular vein was exposed after performing a 2 cm skin incision parallel to the 

cervical trachea from the left clavicle to the end of the pulsatile area, which runs 

parallel to the neck. The vein was isolated using blunt dissection. Two loops of ligature 

were placed around the vein. The cranial end of the vein was tied and the caudal end 

left untied. After a transversal venotomy using microvascular scissors (1/3 of the 

jugular vein diameter) caudal to the cranial knot, the cannula (0.58 mm–bore-

polyethylene tubing) was introduced no more than 2 cm into the jugular lumen from 

cranial to caudal. The untied caudal loop was then tied up to hold the intra-jugular 

portion of the cannula. The cranial loop’s free ends were tied around the tube to avoid 

the tube getting out of the jugular (Figure 7.1; panel A). The cannula tube was 

attached to the anaesthesia tube with a piece of tape. A continuous infusion of 0.9% 

NaCl at 6 ml per hour was delivered using a continuous infusion pump.  

 

7A.2.2. Preparation of surgical field and exposure of vascular conduits 

 

An autoclaved surgical kit was employed containing:-  10 cotton buds, 3 swabs 

(10 x10 cm), 1 square (5 x 5 cm) of autoclave sterilizer paper and 2 sheets of blue 

paper towel roll (28 x 60 cm) with a 5 x 11 cm medial opening as surgical drapes. The 

sterile towel paper was placed over the ventral abdominal area covering vertically 
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from the neck to the half portion of the tail and horizontally covering the entire rat, 

including the surgical mat. The surgical opening of the double sheets was placed 

vertically in the centre of the abdominal surgical area. Manipulation of sterile surgical 

material and instruments was performed using sterile gloves. Prior to the abdominal 

midline incision, new sterile gloves were worn. 

 

The peritoneal cavity is entered through a midline incision of 10 cm from the 

xiphoid process to the neck of the bladder. At this stage, anaesthesia was adjusted 

to 1.5% isoflurane delivered at 1 litre per minute oxygen. The autoclaved paper towel 

was placed along the right side of the surgical incision. Subsequently, the paper towel 

was moisten with 0.9% NaCl solution. Autoclave paper was used to prevent 

desiccation of the abdominal gastrointestinal tract. The caecum was flipped over the 

right side on the autoclave paper, with the apex ceci pointing to the left (Figure 7.1 

C/D).  

 

The small bowel, the ascending colon and the first half of the transverse colon 

(mobile colon) were exteriorized over the caecum and covered by a sterile swab 

soaked in saline solution. The cranial delimitation of the intra-abdominal surgical area 

was achieved using a rectangular folded, saline-soaked swab next to the cranial pole 

of the kidney. The swab allowed the mesenteric fat to be moved toward the spleen 

and liver, providing protection to these organs. The lateral delimitation was achieved 

by placing a rectangular saline soaked swab along the left side of the descending 

colon. The swab protected both the colon epithelium and mesenteric roots. To 

maximize the visibility of the great vessels and left kidney, a West’s retractor is used. 

One of the jaws of the retractor was placed on the left side of the wound (skin and 

muscular layers) and the other on the descending colon protective swab (Figure 7.1; 

panel B). 
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Figure 7.1: Jugular cannulation and surgical delimitation 

Panel A. Jugular cannulation. Black arrow showing cannula in the jugular vein. Panel B. Delimitation of 

the surgical area. Panel C. The drawing shows the normal position of the caecum, viscera and the 

manoeuvre to exteriorize the caecum on the autoclave paper. Panel D. The drawing shows the position 

of the caecum after exteriorization and the display of bowels on it. 1, liver median lobe; 2, liver right 

lateral lobe; 3, liver left lateral lobe; 4, stomach; 5, spleen; 6, left kidney; 7, right kidney; 8, caecum apex 

ceci; 9, body of caecum; 10, bladder; 11, autoclave paper; 12, small bowel; 13, vascular mesenteric root; 

14, descending colon; 15, great vessels, from right to left, cava and aorta, respectively; 16, left seminal 

vesicle. 

 



211 

 

7A.2.3. Infra-renal Aorta and Cava Dissection 

 

Dissection of the infra-renal aorta and cava was performed by separating the 

connective tissue around the conduits. This procedure was achieved by performing 

horizontal tearing dissection with two curved forceps. The mesenteric, adrenal, left 

and right gonadal artery and vein were ligated and transected close to the main 

conduits using a triple knot (three simple throws); each throw was formed by wrapping 

the two strands with each other (Figure 7.2, panel A and Figure 7.3). The left para-

lumbar vein and retro-cava venous tributaries branches were ligated, underneath the 

suprarenal cava. A similar procedure was applied to the retro-arterial branches 

underneath the suprarenal aorta. The vessels were divided once the rat died due to 

the limited space of manoeuvre to place the inferior ligatures. The fat tissue over infra-

renal cava was removed without damage to the vessel epithelium, using blunt 

dissection with curved microvascular forceps (dorsal-ventral rubbing) whilst retracting 

dorsally. Failure to remove peripheral fat tissue interfered with the conduit 

anastomosis. The supra-renal cava and aorta were marked with a stitch (10-0 suture) 

in the anterior right side of each conduit in order to aid in the graft orientation and 

avoid conduits torsion after anastomosis (Figure 7.4, panel A, black arrow). 

 

7A.2.4. Bladder Dissection 

 

 The ureter was identified and followed up to the neck of the bladder. The left 

seminal vesicle was turned to the right side to clear the vesical-ureteral area. The 

caudal end of the left gonadal vein was ligated and divided approximately 5 mm far 

away from the ureter. The major vas deferens vein was separated by retraction and 

dorsal/ventral blunt dissection from the left side of the ureter to the right side of the 

vas deferens conduit. The vas deferens conduct was ligated and divided to expose 

the ureter. The caudal ureter was easily dissected using blunt dissection with curved 

forceps parallel and 5 mm away (right and left side) from the conduit. The small 

vessels along the ureter (peri-ureteric tributaries vessels and superior vesical artery) 

were ligated using a double knot with two simple throws. The left gonadal vein, ligated 

and divided close to the renal vein, was ligated and divided one more time close to 

the vesical area on the left side of the ureter. The bladder was dissected away from 

the prostatic lobes and the seminal vesicles. The right ureter was ligated and divided 

close to the bladder. A loose loop of ligature, constructed by a double-wrap throw, 

was placed around the neck of the bladder and around infra/supra renal aorta and 

cava.  
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Figure 7.2: Ligation of major and accessory conduits for renal perfusion 

Panel A. Supra and infra-renal vessels dissections. 1, suprarenal cava; 2, suprarenal aorta; 3, renal vein; 

4, infrarenal cava; 5, infrarenal aorta; 6, right iliac vein; 7, left iliac vein; 8, normal kidney and 9, perfused 

kidney. Panel B. Perfused kidney. Upper left black arrow pointing suprarenal cava ligature after 

perfusion. Lower left black arrow pointing infrarenal cava ligature. Upper right black arrow pointing 

suprarenal aorta ligature. Lower right black arrow pointing the cannula’s hole in the infrarenal aorta 

after perfusion with UW solution. In the same conduit, 1mm caudal to the needle hole, an infrarenal aorta 

ligature is observed. Black suture ligatures are used to transect main or accessory arteries and veins 
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7A.2.5. Renal Perfusion 

 

Heparin (300 IU) was administered with a 29G insulin syringe into the supra-

renal cava. The loose loop constructed with a double throw in the infra-renal aorta 

was tied and completed with second double throw forming a double-double surgeon 

knot. The left para-lumbar vein coming from the infra-renal cava and crossing 

transversally underneath the aorta is a reference to place the tie.  In a similar manner, 

the infra-renal cava was ligated as caudal as possible. A 26G butterfly cannula was 

attached to a 20ml syringe of cold UW solution. The catheter tube of the butterfly 

needle is filled up with UW solution to avoid air emboli. The needle’s shaft and bevel 

(0.5cm) is bent upwards 30◦ to enhance cannula stability when the cannula is inside 

the aorta and to avoid puncture of the posterior endothelial layer. The cannula was 

introduced cranial to the caudal aortic knot using dorsal retraction of the knot’s free 

strands, see Figure 7.2, panel B, right lower arrow and Figure 7.3. The blood pressure 

of the aorta avoids the collapsing of aortic walls facilitating the introduction of the 

needle. The cannula was locked with a microclamp. Due to aortic blood pressure, the 

plastic catheter of the butterfly needle can quickly fill with blood, avoided by pre-

clamping the plastic tube with a pair of Rochester forceps. Supra-renal aorta was tied 

with a double-double knot.  

 

The knots in the suprarenal aorta, infrarenal aorta and cava allow the perfusion 

solution to drain into the circulatory system through the suprarenal cava, Figure 7.2, 

panel B, black arrows and Figure 7.3, right drawing. To facilitate the systemic 

administration of the UW solution, the jugular cannula was removed. Cold perfusion 

was achieved by administering UW solution with a rate of 4ml/min to avoid tissue 

damage due to high intra-glomerular pressure. After 10ml of UW solution, cardiac-

arrest occurs due to the high levels of potassium and hypothermia.  

 

Once the kidney has been perfused with 20ml UW solution, the supra-renal 

cava was tied as far as possible to the renal vein with a double-double surgeon knot 

(Figure 7.2, panel B, upper left black arrow). Eventually, the supra-renal cava was cut 

transversally, cranial to the infra-renal aortic ligature. The kidney was perfused with 

the remaining 5ml UW solution to clear any traces of venous blood. By the end of the 

perfusion, the surface colour of the kidney had changed from reddish to grey/green 

(Figure 7.2 in panel A-B). The perinephric and ureteral fat was preserved as much as 

possible. The graft was harvested, cutting the retro-cava and aortic tributaries small 
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conduits. The double throw of suture placed around the neck of the bladder was tied 

and completed to get a double-double surgeon knot.  

 

7A.2.6. Kidney, ureter and bladder harvesting 

 

The bladder was removed leaving the knot in the graft. The bladder cuff was 

transected releasing the urine. The graft was placed in and universal container with 

iced cold UW solution. The universal container on the other hand was placed onto a 

metallic container filled up with flaked ice. During the surgical procedure the rat cannot 

urinate by itself. The accumulation of urine produces bladder over distension affecting 

the bladder graft. The urine can be collected from the bladder by introducing a needle 

attached to a 1ml syringe into cranial apex of the bladder (cystocentesis) and 

aspirating the fluid. Punctured apex is removed at the end of procedure, hence 

cystocentesis can be performed several times. 

  

7A.3. Recipient Technique 

 

 The anaesthesia induction / maintenance, analgesia, surgical aseptic 

technique and jugular cannulation were performed as described for the donor. 

Amoxicillin / clavulanic acid was administered subcutaneously at a dose of 21mg/kg.  

  

7A.3.1. Pre-anastomosis preparation of aorta and cava recipient conduits  

 

The suprarenal aorta and cava are dissected in order to prepare the area for 

anastomosis. The reference of dissection for the anastomosis area is cranially 

delimited by the convergence of the renal vein and artery with the infra-renal cava 

and aorta, respectively. Caudally, the left para-lumbar vein coming from the infra-

renal cava and crossing transversally underneath the aorta was a reference to 

delimitate the dissection. The left kidney was removed by tying a double-double 

surgeon knot 5 mm away from the kidney. See section 2.3.1.2 for right kidney 

nephrectomy, which also applies to left kidney nephrectomy. A pair of Rochester 

forceps was placed close to the kidney to avoid spillage of blood when the renal vein 

and artery were divided between the forceps and the ligature. This technique allows 

conservation of the adrenal irrigation and the left gonadal vein. 
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Figure 7.3: Renal perfusion through infrarenal aorta 

Cannula insertion into the infrarenal aorta. Doble-doble surgeon knots around the supra and infra renal 

aorta and cava. 1, liver median lobe; 2, liver left lateral lobe; 3, liver right lateral lobe; 4, stomach; 5, 

spleen; 6, pancreas; 7, right kidney; 8, left kidney; 9, adrenal gland; 10, ureter; 11, right gonadal vein; 

12, left gonadal artery; 13, left caudal gonadal vein; 14, bladder; 15, right seminal vesicle; 16, infrarenal 

aorta; 17 left drawing, descending colon; 17 right drawing, suprarenal aorta; 18, infrarenal cava; 19, 

suprarenal cava; 20, renal artery; 21, renal vein; 22, infrarenal aortic knot; 23, infrarenal cava knot; 24, 

suprarenal aortic knot; 25, butterfly needle; X, vascular ligatures; arrows, UW solution flow. 
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7A.3.2. Aorta and vena cava end-to-side anastomosis 

 

The first conduit anastomosis was performed on the infra-renal aorta. 

Occasionally it was necessary to snuggle a lumbar artery or/and the right gonadal 

artery to avoid bleeding during the arteriotomy. The knots of the snuggled vessels 

were preferably on the right hand side as the left side would be occupied by the 

anastomosed vessel.  A cranial vascular clamp was placed first (high blood pressure) 

followed by caudal clamp (low blood pressure) according to the delimitation areas 

previously described (Figure 7.4, panel A and B) and the arteriotomy performed using 

a 26G needle. The orifice produced by the needle on the artery was used as a guide 

to introduce the tip of the microsurgical scissors. The arteriotomy was developed 

along the conduit (from caudal to cranial) according to the transverse diameter of the 

donor end-side aorta (2 to 2.5 mm). The arteriotomy had to be performed slightly to 

the left of the conduit to facilitate blood flow, as the donor vessels adopt a horizontal 

position once the gastrointestinal tract is placed back into the abdomen (Figure 7.4, 

panel A). The kidney was taken out from the cold iced UW solution and placed over 

a gauze (square shaped) pre-soaked in UW solution and pre-cut with a rhomboidal 

orifice large enough to exteriorize the conduits.  

 

7A.3.3. Vascular Anastomosis 

 

Once the stitch markers on the conduits are identified, the kidney is oriented 

transversally on the abdominal cavity with the renal hilar pointing cranial and the 

cranial pole of the kidney pointing the left side of the cavity. The aorta donor end side 

is faced with the recipient aorta lateral side.  The arterial anastomosis is performed 

using a non-absorbable 10-0 monofilament with a curved non-spatulated needle 

following the next steps:- 
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Figure 7.4: Sequence of the recipient technique for kidney transplantation 

Panel A. Left side aortic anastomosis. Black arrow indicates the reference stitch for graft orientation on 
the recipient. Panel B. Completed aortic anastomosis. Panel C. Left side cava anastomosis. Panel D. 
Patent cava and aorta after anastomosis, left and right conduit, respectively. Panel E. Transplanted non-
reperfused kidney. Panel F. Reperfusion of transplanted kidney. Black arrows pointing down are 

showing, from left to right, suprarenal cava and aorta conduits stump after ligature and transection and 
bleeding of donor bladder capillaries suggesting vascular patency. Number 1 and 2 shows recipient and 
donor aorta, respectively; 3 and 4, recipient and donor cava, respectively; 5, renal vein from donor 
kidney; 6, ureteral graft cover by peripheral ureteral fat tissue. 
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A) The needle was passed from the cranial apex of the outer part (the 

recipient aorta) to the inside part (Figure 7.5; panel A). 

 

B) The needle was passed then on the cranial edge of the donor aorta, inside 

the apex (lumen), to the outside of the aorta (Figure 7.5; panel B).  

 

C) The first lock stitch was made with a double-double surgeon knot leaving 

an end strand long enough to knot it with the caudal to cranial strand from 

the right hand side of the anastomosis (Figure 7.5; panel C). 

 

D) The needle was passed on the inside part of the donor aorta to the outside 

and on the outside part of the recipient aorta to the inside. The same 

pattern, in a single movement, was advanced along the perimeter of the 

recipient aorta until the caudal apex. The stitches were tightened and 

placed very close to each other (Figure 7.5; panel D). 

 

E) In the caudal extreme of the anastomosis the last stitch that comes out 

inside the recipient artery (left wall) was passed on the recipient inside part 

of the right wall to the outside. This was in order to change the suture 

orientation and develop the other side of the anastomosis (Figure 7.5; 

panel E).   

 

F) The needle is passed on the outer part of the recipient aorta to the inside. 

The continue pattern is performed in the same fashion until arriving to the 

cranial apex of the anastomosis (Figure 7.5; panel F). 

 

G) The free strand was knotted to the free strand of the locking knot  

(Figure 7.5; panel G). 
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Figure 7.5: Vascular anastomosis technique 

Drawing A, The needle is passed from the cranial apex of the outer part (the recipient aorta) to the inside 

part. B, the needle passes in the cranial edge of the donor aorta, inside the apex (lumen), to the outside 

of the aorta. C, the free strands are knotted. D, the needle is passed on the inside part of the donor aorta 

to the outside and on the outside part of the recipient aorta to the inside. E, The last stitch in the caudal 

extreme of the anastomosis comes out inside the recipient artery (left wall); the needle is passed on the 

recipient inside part of the right wall to the outside. F, to close the other side of the conduit, the needle 

passes on the outer part of the recipient aorta to the inside and then from the inside of the recipient 

conduit to the outside. G, the free strand is knotted to the free strand of the locking knot. 
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Once the anastomosis was completed, a triple square layer of swab was placed 

below the donor kidney and another one on the right side of the anastomosis. Close 

to the anastomosis, mini-clamps were placed on the donor aorta to avoid blood flow 

into the kidney after removing the clamps. To decrease bleeding when releasing the 

clamps, an oxidized regenerated, cellulose haemostat was placed in both sides of the 

anastomosis. Firstly, the caudal clamp was released (low blood pressure). If a 

haemorrhage appeared, it was controlled by exerting gentle pressure with a swab on 

the anastomosis. If the haemorrhage was profuse, the caudal clamp is re-located and 

extra-stitches had to be place. If there was no haemorrhage after releasing the caudal 

clamp, it was necessary to wait some minutes to promote clotting prior to cranial 

clamp removal. It is possible to have bleeding after the last step; however, this could 

be controlled as explained previously. The snuggled aortic peripheral vessels were 

released as soon as possible to avoid vascular maceration. 

 

           The steps for the end-to-side cava anastomosis were the same as for end-to-

side aorta anastomosis. Vascular anastomosis for aorta and cava conduits is 

represented in Figure 7.4; panels A-B and C-D, respectively. However, in order to 

avoid stenosis of the cava anastomosis, the stitches were more separated and the 

thread not tightened as in the end-to-side aortic anastomosis technique. The cranial 

venous clamp were first released (low blood pressure) and assessed for 

haemorrhage. The second clamp to retrieve was the caudal clamp (high pressure) 

followed by the arterial micro-clamp. The kidney changes immediately from 

grey/green colour to reddish indicating a proper reperfusion (Figure 7.4; panels E-F). 

The colour of a reperfused kidney after transplantation must be similar to the colour 

before perfusion of the donor kidney with UW solution, see Figure 7.2, panel A  

Ureteral peristalsis, layer bleeding of the vesical capillaries or even urine in the 

bladder cuff were desirable signs to observe after reperfusion (Figure 7.4, panel F) 

for bladder bleeding post kidney reperfusion.  The exteriorized small intestine, the 

caecum and the mobile part of the colon were placed back into the abdominal cavity. 

Two stitches were placed through the abdominal muscular and skin layer so that the 

abdomen remained open just on the caudal side of the surgical wound.  

 

7A.3.4. Bladder cystoplasty and abdominal closure 

 

Bladder cystoplasty was performed using a one layer full thickness simple 

continuous suture pattern as explained for the arterial anastomosis with 6-0 
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polygalactin 910. The donor bladder was developed as the recipient aorta and the 

recipient bladder as the donor aorta. The initial suture patter runs from left to right, 

Figure 7.6, panel A. The bladder healing process was quick, allowing an almost 

imperceptible scarring line after 8 days of cystoplasty, (Figure 7.6, panel B). 

 

 

Figure 7.6: Bladder anastomosis 

Panel A. The needle is first passed from the left apex of the outer part (the donor bladder) to the inside 

part; then the needle is passed on the left edge of the recipient bladder, inside the apex (lumen), to the 

outside. 1, Donor bladder; 2, recipient bladder; 3, micro-clamp and 4, donor ureter. Panel B. Filled 

bladder with urine after 8 days of cystoplasty; 5, donor b ladder; 6, recipient bladder and 7, scarring line 

post anastomosis  

 

The abdominal muscular layer and eventually the skin were closed using a 

simple continuous pattern with 4-0 braided polygalactin 910 or not braided absorbable 

suture (polyglecaprone 25). Both surgical layers were knot-locked in three different 

areas along the surgical wound.  Anaesthesia was stopped and the rat placed in the 

incubator (30oC). The rat was provided with water once it has recovered from 

anaesthesia. Eventually, the rat was placed in its respective box with a sheet of fabric 

covering the floor instead of sawdust. This action maintained the surgical wound clean 

and avoided the eating of sawdust, a frequent behaviour after kidney transplantation.  

 



222 

 

 

 

 

CHAPTER 7B 

Experiments to establish  a 

model of Kidney Transplantation 

in the Rat 

 

 

 

 

 

 

 

 

 

 

 

 

 



223 

 

7B.1. Introduction  

 

The two major surgical methods of kidney transplantation in the rat involve either:- 

 

(A) end-to-end anastomosis of the renal artery and renal vein or 

(B) end-to-side anastomosis of aortic/vena caval conduits. 

 

Previous studies have shown that the end-to-end anastomosis of renal vessels 

requires the use of a high-power surgical microscope. To combat the narrow depth of 

focus when anastomosing small vessels, foot-powered control of microscope focus 

is essential. Since this facility was unavailable for this project, the end-to-side 

anastomosis technique was investigated. This is a technique which had been 

successfully used in previous studies from this unit concerned with the development 

of CAN in the rat (Shrestha et al 2014). However a model of such surgical complexity 

as the end-to-side anastomosis of major conduit vessels requires both practise and 

evaluation to reduce the variables dependent on surgical skills before undertaking 

interventional studies.  

 

A methodology was devised to evaluate the success, both qualitatively and 

quantitatively of the surgical techniques involved for:- 

 

(A) donor kidney harvesting,  

(B) renal reperfusion in the recipient following conduit anastomosis, 

 

Two series of experiments were undertaken, firstly to develop a technique of 

donor kidney removal and secondly, to transplant donor kidneys into recipient rats.  

Transplants were considered successful if recipient rats produced 24h urine samples 

following a right nephrectomy, 8-9 days after transplantation. Pilot experiments were 

then undertaken in non-operated Fisher and Lewis rat strains to establish any 

differences in the TG pathway prior to undertaking the Lewis-to-Lewis isografts.  Once 

a successful method of kidney transplantation had been achieved, the aim was to test 

the effectiveness of a selective TG2 inhibitory antibody, possibly a TG2 selective 

inhibitory antibody, on their ability to slow the progression of fibrosis in the Fisher-to-

Lewis rat model of CAN. However, the TG2 inhibitory antibody lacked of specificity to 

the rat TG2, therefore antibody inhibition of the TG pathway in this model was not 

available anymore. The intrarenal delivery of TGI in this model was thought to cause 

excessive parenchymal injury for a transplanted kidney.  
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7B.2. Material and Methods 

 

Male Sprague-Dawley rats (Harlan, UK) were used during the first study (kidney 

transplantation). The second phase study (measuring levels of renal TG2) included 

male Fisher (n=5) and Lewis rats (n=5) (Harlan, UK). All rats were approximated, 8-

10 weeks, with an initial weight of 250-300 grams were maintained at 20◦C, 45% 

humidity and with a light cycle of 12 hours.  Rats were terminated by placing them in 

the anaesthetic chamber (isoflurane) followed by cardiac exsanguination. Kidney was 

placed in liquid nitrogen and storage as described in section 2.2.10. All the animal 

procedures were carried out under the Animal Scientific Procedures Act 1986, Home 

Office United Kingdom. The vascular and bladder-patch anastomosis were performed 

as described in Chapter 7A based on the methods of Karatzas et al (2007) and 

Salaman et al (1969), respectively (Karatzas et al., 2007; Salaman, 1969). 

  

7B.2.1. Donor Kidney 

 

The technique of donor kidney surgery, without transplantation, was evaluated 

in an initial group of 23 animals (rat nos 1-23). The quality of the donor kidney was 

evaluated intra-operatively according to the renal surface visual evaluation of blood 

clearance after perfusion, total time of procedure, estimated blood loss during 

procedure and graft structure integrity (Table 7.1). 

 

7B.2.1.1. Blood clearance and superficial tissue damage 

 

The visual evaluation of blood clearance was assessed under surgical 

microscope straight away after perfusion of 20 ml of UW solution. A proper perfusion 

was considered as the total renal surface change in colour from bright reddish to 

green-grey. Visual evaluation of blood clearance was subdivided using uppercase 

letters. A: Total blood clearance; B: Total blood clearance with superficial laceration 

(scratch, puncture or partial decapsulation); C: Blood clearance with haematomas 

covering less than 5% of the renal surface; D: Blood clearance with haematomas 

covering from 5% to 10% of the renal surface; E: No blood clearance. The marking 

A, B, C and D were given 15, 10, 5 and 0 points, respectively.  
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7B.2.1.2. Time of total procedure 

 

The time of total procedure was counted from the time the rat was placed on 

the surgical mat to the time the kidney was perfused with the UW solution. The 

evaluation of the time of surgical procedure was subdivided using numbers. 1: less 

than 2 hours 30 minutes; 2: more than 2 hours 30 minus but less than 3 hours 30 

minutes; 3: more than 3 hours 30 minutes but less than 4 hours 30 minutes; 4: more 

than 4 hours 30 minutes. The marking 1, 2, 3 and 4 were given 15, 10, 5 and 0 points, 

respectively.  

 

7B.2.1.3. Blood loss 

 

The evaluation of haemorrhage during operation was estimated by weighing 

the gauzes with the absorbed blood. The estimation of haemorrhage during operation 

was easily achieved by placing the bloody gauzes in a plastic beaker covered by a 

latex layer made from a sterile surgical latex glove. The latex layer was perforated in 

the centre to allow the entrance of the gauzes (1 cm diameter) by pushing them 

through the latex layer with the gloved surgeon’s finger to avoid contamination and 

evaporation of blood. The weight of one of the gauzes (all gauzes same weight) and 

the beaker was noted before surgery. After finishing the surgery, the beaker with the 

used gauzes was weighted. The weight subtraction of the used gauzes and beaker 

with the weight of the clean gauzes and beaker corresponds to the estimated amount 

of haemorrhage in millilitres (w/v). The evaluation of haemorrhage during operation 

was subdivided using lower case letters. a: No relevant haemorrhage, estimated in 

less than 1.5ml; b: Low haemorrhage, estimated in more than 1.5ml but less than 

2.5ml; c: Considerable haemorrhage estimated in more than 2.5ml but less than 

3.5ml; d: High haemorrhage complication, estimated in more than 3.5ml. The marking 

a, b, c and d were given 15, 10, 5 and 0 points, respectively.  

 

7B.2.1.4. Donor kidney structure integrity 

 

The evaluation of the graft structure integrity was visually performed during and 

after kidney harvesting aided with a surgical microscope. The evaluation of the 

structural integrity was subdivided using colours. Green: no structural damage; 

yellow: Minimal ureteral torn (less than 1mm), minimal damage of ureteral irrigation 

(partial removal of peri-ureteral fat), sporadic scattered haematomas in bladder and 

torn (less than 1mm) or perforation of major vessels; red: Considerable structural 
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damage by ureteral torn, ureteral stricture, cut or avulsion from bladder, major vessels 

torn in more than 1mm and renal, ureteral or bladder necrosis. The marking green, 

yellow and red were given 15, 10 and 0 points, respectively. 

 

Collected donor kidneys were marked as excellent, very good, satisfactory and 

reserved according to the scoring obtained in each subject. A, 1, a / green was 

identified as excellent graft. A, 2, a or b / green was defined as very good graft. B-C, 

2, b / green was identified as satisfactory graft. C-D, 3, c / green or yellow was 

identified as reserved graft. Donor kidneys were considered unsuitable for transplant 

if E, 4, d or red marking were involved in any of the sub-scores. The minimal 

requirement of grafts for kidney transplantation ranged from excellent to satisfactory 

quality. See Table 7.2.  

 

7B.2.2. Kidney transplant into Recipient Rat  

 

18 kidney transplants were undertaken using donor rats (nos 24-41), 

transplanted into recipient rats (nos 42-59). The intra-operative viability of the graft 

was evaluated according to the speediness in renal reperfusion, renal surface 

alteration, renal hypertrophy, and second warm ischaemia time (Table 7.3).  

.  

7B.2.2.1. Time of total Reperfusion 

 

Reperfusion time was define as the time between removal of clamps to the time 

the renal surface is homogeneously reddish (qualitative visual assessment) due to 

entrance of oxygenated blood to the renal tissue. The speediness in reperfusion was 

subdivided using uppercase letters. A: Rapid reperfusion in less than 10 seconds 

after releasing vascular clamps; B: Hypotensive delayed reperfusion in more than 10 

seconds due to hypothermia or hypovolemia; C: Delayed reperfusion due to 

adhesion of vascular walls or vascular stenosis due to anastomosis technique; and 

D: No reperfusion. The marking A, C, D and E were given 15, 10, 5 and 0 points, 

respectively. 
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1.- Renal surface blood clearance 

A = 15 points 100% blood clearance 

B = 10 points 100% blood clearance + superficial laceration (scratch, 

puncture or partial decapsulation) 

C =   5 points Blood clearance with minimal haematomas ˂  5% renal surface 

D =   1 points Blood clearance with haematomas > 5 % ˂   10% renal surface 

E =    0 points No blood clearance 

2.-Time of procedure 

1 = 15 points ˂ 2 hours 30 minutes 

2 = 10 points > 2 hours 30 minutes,  ˂  3 hours 30 minutes 

3 =   5 points > 3 hours 30 minutes , ˂  4 hours 30 minutes  

4 =   0 points > 4 hours 30minutes 

3.- Surgical haemorrhage 

a = 15 points  No relevant haemorrhage during procedure (blood loss ˂ 

1.5ml) 

b = 10 points Low haemorrhage complications (blood loss 1.5 - 2.5ml) 

c =   5 points  Considerable haemorrhage complication (blood loss 2.5 - 

3.5ml) 

d =   0 points  High haemorrhage complication with more than > 3.5ml 

4.-Donor kidney structural integrity 

 
15 points 

 
No ureteral, bladder or major vessels (cava/aorta) damage 

 
 
 

10 points 

 
Low ureteral, bladder  or vascular damage 
 
-Ureteral tare (˂1 mm), Minimal damage to ureteral irrigation  
-Petechiaes or  ecchymosis in bladder 
-Minimal tare (˂1 mm) or perforation of major vessels. 
 

 
 
 

0 points 

 
 Considerable ureteral, bladder or vascular damage 
 
 - Ureteral stricture, torn, cut or avulsion 
 - Renal, ureteral or bladder necrosis 
 - Torn (>1mm) or perforation of major vessels        
 

 
Table 7.1: Scoring System A - Donor Kidney evaluation 
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Marking Points Sub-score 

1 

Sub-score 

2 

Sub-score 

3 

Sub-score 

4 

Excellent 60 A 1 a  

Very good 50-55 A 2 a-b  

Satisfactory 45-50 B-C 2 b  

Reserved 45-26 C-D 3 c   

Not suitable  If any 
score 

E 4 d  

 
Table 7.2: Scoring system A - Overall marking 

 

7B.2.2.2. Renal surface alteration post reperfusion 

 

 Renal surface alteration was assessed after 10 minutes of reperfusion by 

immediate visual assessment and by picturing the kidney surface from both sides with 

a Samsung PL50, 8 megapixels camera. Evaluation of renal surface alteration was 

subdivided using numbers. 1: Normal colour surface; 2: Superficial damage such as 

scratches with less than 5mm length, kidney puncture or partial decapsulation. 3: 

Haematomas or ischaemic patches in less than 5% of the renal surface, scratches 

with more than 5mm length, total renal decapsulation. 4: Haematomas or ischaemic 

patches in more than 5% the renal surface but less than 10%. 5: Renal congestion 

and ischaemia/necrosis. The marking 1, 2, 3, 4 and 5 were given 15, 10, 5 and 1 and 

0 points, respectively.  

 

7B.2.2.3. Renal hypertrophy post reperfusion 

 

Renal hypertrophy was measured by using a digital Vernier calliper after 10 

minutes of reperfusion. The length of the kidney was measured placing the calliper’s 

jaws dorsal on the convex side of the kidney just touching cranial and caudal edge of 

each renal pole.  The measurement of the renal width was achieved placing the 

instrument’s jaws in the middle of the kidney transverse to the poles. The 

measurements were compared with the kidney measurements obtained before 

perfusion with UW solution in the donor procedure. Evaluation of renal hypertrophy 

was subdivided using lowercase letter. A: Native size; B: Renal mass increased in 

10%; C: Renal mass increased in more than 10% but less than 20%; D: Renal mass 

increased in more than 20%. The marking a, c, d and e were given 15, 10, 5 and 0 

points, respectively. 
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           1.- Speediness in reperfusion 

A = 15 points Rapid reperfusion after releasing vascular clams before 10 

seconds 

B = 10 points Hypotensive delayed reperfusion in  > than 10 seconds 

C =   5 points Delayed reperfusion due to vascular damage 

(adhesion of vascular walls or vascular stenosis) 

D =   0 points No reperfusion 

2.-Renal surface alteration 

1 = 15 points Normal colour surface 

2 = 10 points Superficial  scratches (˂5mm length), puncture or partial 

decapsulation 

3 =   5 points Minimal haematomas, ischaemic patches (˂5%), scratches with 

more than 5mm length, total decapsulation. 

4 =   1 point Extended hematomas or ischaemic patches (>5%, ˂10% ) 

5 =   0 points Renal congestion or Ischaemia/necrosis. 

3.-Renal hypertrophy 

a = 15 points Native size  

b = 10 points Minimal (increase ˂ 10%) 

c =   5 points Moderate (increase >10%,  ˂ 20%   

d =   0 points Severe (increase >20%)   

4.- Second warm ischaemia 

15 points ˂  than 1 hour 30 minutes 

10 points >  1 hour 30 minutes , ˂  2 hours 30 minutes 

0 points  >  than 2 hours 30 minutes 

     
Table 7.3: Scoring System B - Graft evaluation after reperfusion 
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7B.2.2.4. Second warm ischaemic time 

 

Second warm ischaemia time was count from the time the donor kidney is 

placed in the abdomen to the time the kidney is anastomosed and reperfused; the 

timing was assessed using a professional chronometer. After clicking the previously 

disinfected chronometer’s button a change of gloves was performed. The evaluation 

of the second warm ischaemia was subdivided using colours. Green: Procedure less 

than 1 hour 30 minutes; yellow: More than 1 hour 30 minutes but less than 2 hours 

30 minutes; red: More than 2 hours 30 minutes. The marking green, yellow and red 

were given 15, 10 and 0 points, respectively. 

 

7B.2.3. TG2 by immunofluorescence   

 

8μm thick cryostat sections on adherent slides, previously stored at -80◦C. The 

slides were blocked and washed. The tissue was then probed with a primary antibody 

(TG2) overnight at 4◦C followed by fixation and serial washings. The slides were 

immunoprobed with a secondary antibody and left at room temperature for 2 hours. 

Finally, a drop of mounting medium with DAPI was added. No less than 10 glomeruli 

(x 400) and (x 200) of cortex tubules were acquired. The immunofluorescent fibrosis 

index was determined calculating the intense Alexa red (TG2) / DAPI (nuclei) of the 

total field.  Quantification was performed by image analysis (section 2.6.1).  

 

 

7B.3. Results 

 

7B.3.1. Donor Evaluation 

 

The evaluation of donor surgery for 23 individual rats (nos1-23) where no 

transplant was performed is shown in Table 7.4 and for 18 rats (nos 24-42) 

transplanted into a recipient in Table 7.5. 

 

7B.3.1.1. Blood Clearance 

 

In set A, marking A, B, D and E of blood clearance was shown in 78.26% (18 / 

23), 4.3% (1/23), 8.69% (2/23) and 8.86% (2/23) of the rats. Marking C was not 

reported in this set. In set B, marking A of blood clearance was shown in 100% 
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(18/18) of the rats. The overall score (set A and B) for marking A, B, D and E was 

90.2 % (37/41), 2.3% (1/41), 4.9% (2/41) and 4.9% (2/41), respectively. 

 

7B.3.1.2. Time of procedure 

 

In set A, marking 1, 2, 3 and 4 of time of total procedure was shown in 8.69% 

(2/23), 39.1% (9/23), 30.4% (7/23) and 21.7% (5/23) of the rats, respectively. In set 

B, marking 1, 2 and 3 of time of total procedure was shown in 5.5% (1/18), 66.7% 

(12/18) and 27.8% (5/18) of the rats, respectively. None of the rats were reported with 

a score of 4.The overall score (set A and B) for marking 1, 2, 3 and 4 was 7.3% (3/41), 

48.8% (20/41), 29.3% (12/41) and 12.2% (5/41), respectively. 

 

7B.3.1.3. Surgical haemorrhage  

 

In set A, marking a, b, c and d of surgical haemorrhage was shown in 7% 

(16/23), 17.4 % (4/23), 8.7 (2/23) and 4.3% (1/23) of the rats, respectively. In set B, 

marking a and c of surgical haemorrhage was shown in 94.4% (17/18) and 5.6% 

(1/18) or the rats, respectively. The overall score (set A and B) for marking a, b, c and 

d was 7.3% (3/41), 48.8% (20/41), 29.3% (12/41) and 12.2% (5/41), respectively. 

 

7B.3.1.4. Structural integrity of donor kidney 

 

 In set A, marking green, yellow and red of graft structural integrity was shown 

in 78.3% (18/23), 17.4% (4/23) and 2.3% (1/23) of the rats, respectively. In set B, 

green marking was shown in 100% (18/18) of the rats were scored green. The overall 

score (set A and B) for marking green, yellow and red was 87.8% (36/41), 9.8% (4/41) 

and 2.4% (1/41), respectively 

 

7B.3.2. Score system B- Immediate graft evaluation and urine production 

 

Eighteen donor kidneys with satisfactory to excellent scores were 

transplanted. 16.7% (3/18) of the rats subjected to the procedure did not survive the 

surgery; therefore, 83.3% (15/18) of the grafts were evaluated with the scoring system 

B. See Table 7.6. 
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Table 7.4: Set A - Establishing the donor technique 

 

 

Rat 

No 

Time Complications Score 

A 

1 5:33 Mesenteric artery bleed. Petechiaes/ecchymosis after 

perfusion 

D4d 

2 5:12 Hypothermia. Death before perfusion E4a 

3 4:38 Haemorrhage from jugular/cava tear. Cortex scratched 

(forceps) 

E4c 

4 4:30 Ureteral bleeding. A4b 

5 5:00 Caudal pole scratch B3a 

6 4:12 The ureter 0.2mm tearing A3a 

7 3:29 Aorta bleeding during cannulation due to fail of ligature A2c 

8 3:25 Bleeding from adrenal vessel A2b 

9 4:00 Haemorrhage  from heparin in IVC A3b 

10 4:30 Fat left in IVC. Ruffling of bladder neck knot. A4a 

11 3:52 No relevant complications A3a 

12 4:06 Aorta perforation during cannulation A3a 

13 3:20 No relevant complications A2a 

14 3:01 No relevant complications A2a 

15 3:06 Total  transversal ureteral cut A2a 

16 3:30 Renal focal ischaemia (cranial pole) D2b 

17 3:20 Aorta tearing due to butterfly needle. A2a 

18/19 3.55 Delay in vessels isolation  and dissection A3a 

20/21 3:20 No relevant complications A2a 

22/23 2:30 No relevant complications A1a 
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Rat No Score system A 

29 A1a 

22,25,26,28,30,31,32,34,35,
37,38,41 

A2a 

27 A3c 

33,36,39,40 A3a 

 
Table 7.5: Set B - Scoring system A 

 

 

7B.3.2.1. Speediness in reperfusion  

 

Marking A, C and D for speediness in reperfusion was shown in 86.7% (13/15), 

6.7% (1/15), 6.7% (1/15) and 20% (3/15) of the transplanted kidneys, respectively. 

There were not grafts in classification B. 

 

7B.3.2.2. Renal surface alteration 

 

Marking 1, 2, 3, 4 and 5 for renal surface alteration was shown in 46.7% 

(7/15), 0% (0/15), 26.7% (4/15), 6.7% (1/15), 20% (3/15) of the transplanted 

kidneys, respectively. 

 

7B.3.2.3. Renal hypertrophy 

 

Marking a, b, c and d for renal hypertrophy was shown in 33.3% (5/15), 33.3% 

(5/15), 26.7% (4/15) and 6.7% (1/15) of the transplanted kidneys, respectively.  

 

7B.3.2.4. Second warm ischaemia  

 

Marking green and yellow for second warm ischaemia time was shown in 6.7% 

(1/15) and 93.3% (14/15) of the transplanted kidneys, respectively. 

 

7B.3.2.5. Urine production at day 8 

 

Kidneys able to produce urine after 8 days of kidney transplantation and 24hrs 

after contralateral nephrectomy were considered successful kidney transplants. 
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See Table 7.6 for transplant procedure evaluation by graft scoring B. A 

summary of successful transplanted kidneys with score A and B is shown in Table 

7.7. A representative image of a kidney after 5 minutes and 8 days post 

transplantation is displayed in Figure 7.7. Some surgical problems encountered after 

kidneys transplantations are shown in Figure 7.8. 

 

 

 

 

Table 7.6: Transplant procedure evaluation by graft scoring system B 

AA, aortic anastomosis; CA, cava anastomosis; BA, bladder anastomosis; h, time in hours; mm, time 

in minutes; SWI, second warm ischaemia. Rows in blue show the recovered rat until the end of study. 

 

 

 

 

 

 

 

 

 

 

 

 

Rat 

No 

AA 

minutes 

CA 

minutes 

BA 

minutes 

SWI 

h:m 

Score 

 B 

Recovered Urine 

production 

at day 8 

42 52 20 15 1:12 Died No NA 

43 50 50 20 1:40 C5c No NA 

44 47 41 13 1:28 D5a No NA 

45 37 22 22 0:59 A1b Yes 15 ml 

46 38 50 20 1:28 A1b Yes, for 1h NA 

47 44 40 30 1:24 A1b Yes 15 ml 

48 44 35 15 1:19 A1c Yes, for 48h NA 

49 40 45 25 1:25 A1b Yes,  for 24h NA 

50 61 55 24 1:56 A1a Yes 16 ml 

51 42 60 19 1:42 Died No NA 

52 45 60 25 1:45 A5d No NA 

53 60 44 20 1:45 A3a Yes, for 48h NA 

54 53 80 25 2:23 A3b Yes       28 ml 

55 40 45 10 1:25 A3c Yes 18 ml 

56 65 45 22 1:45 A3c No NA 

57 42 32 22 1:04 A1a Yes 10 ml 

58 78 76 20 2:34 Died No NA 

59 50 93 19 2:38 A4a Yes 17 ml 
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Rat No Scoring 
A 

Rat No Scoring 
B 

27 A3c 45 A1b 

29 A1a 47 A1b 

32 A2a 50 A1b 

36 A3a 54 A1b 

37 A2a 55 A3c 

39 A3a 57 A1a 

41 A2a 59 A4a 

 

Table 7.7: Summary of scores and points 

 

 

 

 

 

Figure 7.7: Renal isograft after 5 minutes (A) and 8 days of transplantation (B) 

Panel A. Reperfused kidney after 5 minutes of vascular conduits anastomosis. Black arrow show, from 

top to bottom, a portion of the ligated donor aorta, renal vein-cava conduit and perfused bladder. Panel 

B. Transversal kidney section of the kidney in picture A after 8 days of transplantation. 
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Figure 7.8: Kidney and bladder complications after kidney and bladder 
transplantation 

Panel A-B. Representative images of renal ischaemia/ necrosis after 2 days of transplantation. Panel B, 

shows the affected kidney transversally cut. Panel C-D. Representative images of a kidney suspected 

of pyelonephritis. Panel F, kidney with focal ischaemia. Panel G. Bladder leakage post bladder cuff 

anastomosis; notice the air bubbles in the body of the bladder after injecting air into it.  
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7B.3.3. Evaluation TG2 levels in the Lewis and Fisher rats 

 

Measurements of the IGMA (400x) and tubulointerstitial area (200x) in the 

Lewis group were associated with a non-significant FITC/DAPI ratio when compared 

to the Fisher group. IGMA, Lewis, 1.8 ± 0.1; Fisher, 1.9 ± 0.20 FITC/DAPI ratio, NS. 

Tubulointerstitial, Lewis, 2.5 ± 0.3; Fisher, 2.6 ± 0.2 FITC/DAPI ratio, NS. Figure 7.9, 

left and right panel for IGMA and tubulointerstitial area, respectively. 

 

 

                

 

Figure 7.9. TG2 levels in the Lewis and Fisher rats 

Left and right histograms represent the levels of TG2 by immunofluorescent expressed as FITC/DAPI 

ratio in the IGMA and tubulointerstitial space. Lewis (n=5) and Fisher (n=5). Vertical bars indicate +/-

SEM. 

 

 

7B.4. Discussion  

 

7B.4.1. CAN, interventional model of renal fibrosis  

 

In man, currently there is no effective treatment to prevent the irreversible 

features of CAN. Current research on this subject has focused on four main areas; 

development of new immunosuppressive drugs, surgical technical improvements, 

avoidance of ischaemia reperfusion injury by using normothermic organ perfusion 

machines during/after kidney harvesting (Brasile et al., 1997a; Brasile et al., 1997b; 



238 

 

Stubenitsky et al., 2000) and blocking of inflammatory and fibrogenic pathways to 

target both deposition  and accumulation of ECM (Shrestha et al., 2014b).  

 

The role for TG2 has been proposed since both CAN and CKD share three 

major factors interconnected with the transglutaminase pathway, inflammation, 

fibrosis and hypoxia. Hypoxia can be considered an important factor involved in the 

activation and perpetuation of TG2 activity in the kidney, whereas fibrosis is the end 

result factor of both diseases which is major substrate source for TG2. Studying KT 

in the rat allows the assessment of renal fibrosis which represents a major 

histopathological feature after renal transplantation as well as in CKD. Also, this 

model facilitates the testing of biological drugs such as TG2 inhibitory monoclonal 

antibodies.  

 

The practise and evaluation of an appropriate technique for kidney 

transplantation in the rat was initiated early in the work present for this thesis in 

parallel with the analysis of CKD in the cat in Chapters 3 & 4. The intention at that 

time was to undertake interventional studies in a rat model of CAN using a newly 

developed TG2 selective inhibitory antibody effective in the cat kidney in vitro 

(Chapter 4). Transplantation project was intended to use Fisher to Lewis rats’ 

allografts to generate a highly renal fibrogenic model. Results in this chapter indicates 

both Fisher to Lewis rats have similar levels of extracellular TG2 in either the 

tubulointerstitial or the IGM areas; therefore, excluding the variable of differences in 

TG2 levels secondary to rat strains. However, initial studies showed the human TG2 

neutralising antibody (BB7), while effective in the cat kidney, to be ineffective against 

the TG2 enzyme in rodents. The epitope binding site of the BB7 antibody did not 

matched 100% the aminoacid segment in the rat TG2, see Figure. 4.10. This required 

a change of emphasis to undertake interventional studies in a much simpler 

experimental model, ischaemia reperfusion injury, where the kidney would be able to 

withstand the trauma of tissue infusion procedures, required to deliver the pan TG 

inhibitor (D003), Chapter 6. 

 

The results presented in this chapter would indicate considerably greater 

experience is required to achieve normal function in the Sprague-Dawley isograft 

using the technique of end-to-side anastomosis of aortic and caval conduits. The 

choice of transplant technique was limited by the lack of a suitable high-powered 

microscope with a foot-controlled focus essential for the anastomosis of small vessels 

such as the renal vein and artery. The following discussion attempts to identify the 
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technical issues which, if resolved, might allow a successful end-to-side approach to 

be employed. 

 

7B.4.2. Kidney Donor 

 

Blood Clearance. Currently, a wide variety of solutions are available to preserve 

solid organs. The University of Wisconsin solution is used worldwide used due to its 

effectiveness in organs exposed to hypothermic preservation conditions (Bonventre 

et al., 1992; Ploeg et al., 1992; Southard et al., 1995). An adequate perfusion with at 

least 20 ml should be enough to flush away the intravascular native cellularity 

(erythrocytes, lymphocytes and leucocytes). An appropriate balance between 

perfusion and pressure must be exerted; low pressure must be applied whilst renal 

perfusion to avoid intraglomerular damage. High hydraulic intraglomerular pressure 

could disrupt the glomerular filtration barrier allowing temporary proteinuria and 

subsequently tubular damage from protein overloading in the transplanted kidney 

(Gorriz et al., 2012). In an ex vivo model of rat has been shown that increasing of 

intraglomerular pressure and mesangial stretching may be a trigger factor for matrix  

formation (Riser et al., 1992). The extravasation of fluid into the extracellular matrix 

could seed erythrocytes and leucocytes preloading an inflammatory reaction on top 

of the reaction caused by reperfusion itself. Fail in flushing away the blood cells may 

result in thrombosis or acute rejection, probably even with previous treatment with 

immunosuppressive drugs.  Red blood cell aggregates and glomerular disruption 

could be seen as haematomas after renal perfusion. On the other hand, puncture or 

superficial cortex scratches and capsular striping might be enough to seed bacteria 

and inflammation promoting infection after kidney transplantation. Renal 

decapsulation has been implicated in the impairment of renal interstitial hydrostatic 

pressure by decreasing the response of pressure natriuresis (Khraibi et al., 1989). 

The renal surface visual evaluation allows the assessment of renal perfusion. Though 

this technique is subjective, and just evaluates some micrometres in thickness, it may 

be relevant to forecast donor kidney quality and survival once implanted in the 

recipient. Blood clearance was achieved in the majority of kidneys suggesting this is 

a basic parameter to achieve; therefore, failure in blood clearance is a strong 

exclusion criteria for the donor kidney. 

 

Surgical Timing. In the present study, an appropriate total surgical time for this 

technique was less than 2 hours 30 minutes; however, according to some of our 

kidney transplants, times between 3 hours 30 minutes and 4 hours 30 minutes were 
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not associated with fail in urine production after contra-lateral nephrectomy. Long 

intra-operative time and hypotension is a common event during kidney transplantation 

(Hirata et al., 2009) and it has been associated with delayed graft function in 

transplant recipients (Sandid et al., 2006). A quick and efficient surgical technique for 

the donor procedure may prevent infection and hypotension (Sandid et al., 2006). 

Intra-operative hypotension has been associated to renal infarcts, probably due to 

low organ perfusion (Goldman et al., 1975). Hypotension during surgery can decrease 

renal perfusion producing hypoxygenation which may cause cellular endothelial and 

epithelial damage (Patschan et al., 2012). On the other hand, a long donor technique 

procedure may sensitize the kidney to infection during the transplantation procedure 

by tissue environmental contamination.  Hypothermia during and post-anaesthetic 

procedures can cause peripheral vasoconstriction (Ozaki et al., 1995; Sessler et al., 

1991) and impaired function of phagocytic leucocytes by reducing reactive oxygen 

species utilization against bacteria (Wenisch et al., 1996).  Kidney injury secondary 

to hypotension and sepsis during donor kidney harvesting may alert the adaptive 

immune system by dendritic cells activation before renal implantation (Jantsch et al., 

2008; Kerschen et al., 2010). 

 

The last phase of the donor technique is called first warm ischaemia (FWI) 

which begins when the donor kidney blood flow is totally or partially blocked to the 

time the kidney is perfused with a cold preservation solution. In the rat, cellular 

changes compatible with cell survival were identified after 15, 30, 60 and 120 minutes 

of ischaemia. Nevertheless, partial or total necrosis of proximal tubular cells (P3 

segment) was identified after reperfusion followed 3, 6, 12 and 24 hrs of recovery. 

These findings may suggest that the rat kidney is relatively resistant to first warm 

ischaemia; however, not resistant to the harm originated after reperfusion. Even 

though FWI in the rat is not the most relevant issue for tissue integrity and function 

due to its short time (approximately 5 minutes), long surgical procedures should be 

avoided as much as possible to decrease the kidney susceptibility to bacterial 

contamination, innate immune system disabling, and hypotension. Approximately 50 

% of the donor procedures in this study were achieved in less than 3 hours and 30 

minutes and just 8 % in less than 2 hours 30 minutes. Further training should improve 

the timing of surgery. 

 

Haemorrhage. Donor or recipient severe haemorrhage can occur during 

cannulation of infrarenal aorta for perfusion or after anastomosis of great vessels. 

Low degree haemorrhage can result with a non-adequate ligation technique of small 
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peripheral vessels. Thrombotic complications (Odland, 1998) and stenosis of the 

renal artery (Wong et al., 1996) have been described as significant harmful elements 

for graft survival. Moreover, haemorrhage has also been also associated with acute 

tubular necrosis, which is an important cellular damage closely related to delayed 

graft function (Osman et al., 2003). Rats are considered to have around 55-70 ml of 

blood per kg of bodyweight (Parasuraman et al., 2010). Taking 55ml as reference, a 

rat weighing 250g would therefore have a total blood volume (TBV) of approximately 

14 ml.  Haemorrhage of 1.4 ml would be the equivalent of 10% of the total blood 

volume. The suggested limit for blood sampling is less than 10% (Parasuraman et al., 

2010). A surgical procedure with less than 1.5ml in this study was consider as 

haemorrhage without complications, taking into account the rats were supported with 

fluid therapy (NaCl 0.9%). In the rat, mean arterial blood pressure of 40mmHg is 

maintained when the TBV is reduced up to 40%, at this percentage, renal 

hepatocellular damage (Wang et al., 1990) and circulatory dysfunction even with 

crystalloids or colloids resuscitation is imminent (Wang et al., 1994). It has been 

hypothesized that liver dysfunction might bring postoperative multiple organ 

dysfunction in patients with intraoperative haemorrhage (Ozawa et al., 1983). The 

importance of a surgical procedure with low haemorrhage during the donor and 

transplant technique could be translated in better tissue integrity, low incidence of 

delayed graft function and infection. In the present study 50% and 30% of the 

subjected rats had less than 2.5 ml and 3.5ml of haemorrhage, respectively, 

suggesting that haemorrhage of less than 2.5 ml is an achievable and realistic goal 

to increase in 80% with further training.   

 

Donor kidney integrity. In humans, Wigmore et at (1999) published a large study 

using data from the National Transplant database (1992-1996) (Wigmore et al., 

1999); 1% (98 / 9014) of the cadaveric donor kidneys in that study was not 

transplanted because of donor kidney damage during surgical harvesting, whereas 

19% (1726/9014) of the injured donor kidneys were transplanted and did not show a 

significant difference 5 years post-transplant when compared to non-damage organs. 

The damage was mainly associated to capsular tearing and small haematomas, 

inadvertently short ureters, cut of renal veins, polar renal arteries and the presence 

of aortic patch. In a recent retrospective study (2000-2010), Ausiana et al (2012) 

showed that 11.4% (96 / 841) of the recovered kidneys from cadaveric donors were 

damaged during retrieval procedure. The main damage was associated with ureters 

and polar artery injury (Ausania et al., 2012). In the present study the kidney damage 

during kidney retrieval was associated to haematomas, capsular tearing, partial 
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decapsulation from one of the poles, puncture, ureteral torn, total cut, structure, 

perforation or torn of major vessels and the main findings were haematomas. 

However, in overall, almost 90% of the subjected kidneys were scored with a green 

label. The present study, the results obtained in the first set of donor kidneys suggests 

that the surgical inexperience is the main factor for graft injury. However, the healing 

process of transplanted kidneys is able overpass the moderate organ damage (yellow 

label marking) that may be caused during surgery. 

 

7B.4.3. Kidney Transplant 

 

 Reperfusion. Renal reperfusion injury has been described as one of the most 

important alloantigen independent events for the development of acute inflammation 

(Patschan et al., 2012) and renal fibrosis (Torras et al., 1999). However, this damage 

can be exacerbated by extrinsic renal causes such as recipient systemic hypotension, 

vascular stenosis due to anastomosis and adhesion of vascular walls due to micro-

claps pressure. Hypotension during kidney transplantation can be associated with 

myocardial depression and vasodilatation produced by anaesthesia. This phenomena 

can be directly reflected in delayed graft function (Sandid et al., 2006) and in the 

development of thrombosis due to activation of pro-coagulant pathways (Yan et al., 

1999), apart from the other mechanisms previously reviewed in hypotension during 

donor kidney retrieval. An important issue in this section is the lack of perfusion due 

to vascular disruption such as vascular perforation or vascular clamp injury. Vascular 

damage has been also associated with the development of thrombus. The activation 

of the pro-coagulant cascade is triggered by vascular endothelial disruption or conduit 

narrowing (Bakir et al., 1996; Khouri et al., 1990; Slayback et al., 1976). Vascular 

clamp injury in the aorta has been also associated with vascular hyporeactivity in the 

rabbit (Barone et al., 1989). Failure in reperfusion can occur as a result of a variety of 

aetiologies, special attention has to be focus on surgical timing and vascular integrity 

during anastomosis, including proper anastomosis and quick timing of vascular 

anastomosis to avoid damage by compression with vascular clamps. Almost 90% of 

all the transplanted kidneys in the present study and 100% (7/7) of the recovered 

group had a total reperfusion time of less than 10 seconds suggesting that 

hypotension or major vascular damage secondary to microclamps did not  impaired 

the renal graft blood inflow or outflow. However, it is important to bear in mind that 

the first seconds of reperfusion could have higher pressure than the blood pressure 

after one minute of renal graft reperfusion, hence, proper perfusion within 10 seconds 

does not rule out either vascular damage, which eventually can be evident with lower 
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pressures, or systemic hypotension. This is just an evaluation of major blockage due 

to important vascular maceration or thrombosis.  

 

Renal surface and hypertrophy post-reperfusion. The implications of superficial 

lacerations, decapsulation and haematomas during kidney transplantation (recipient 

technique) are similar to that previously explained for the donor technique. However, 

renal congestion and ischaemia/necrosis are important phenomena to be addressed. 

During the end-to-side technique, the graft, suprarenal aorta and suprarenal cava are 

clamped leading to potential damage in other organs. The low blood flow, crushing of 

vessels by vascular clamps, excessive conduit manipulation, vascular stenosis during 

anastomosis technique and low dose of heparin are potential factors for early 

formation of thrombotic emboli (Pahlavan et al., 2005; Schumacher et al., 2003). 

Thrombotic emboli represented as focal ischaemic areas may occur just after 

releasing the clamps with the subsequent renal congestion and low (Salaman, 1969). 

Renal congestion can be associated with cava anastomosis secondary to surgical 

anastomosis or vascular clamping as this conduit is susceptible to damage due to its 

structure. A proper blood flow coming from renal arteries can be slowed down in the 

blood outlet by cava stenosis. This phenomenon can produce thrombus and renal 

hypertrophy. High intra-glomerular pressure due to stricture of the venous outflow 

may intensified nephron loss by ischaemia reperfusion injury affecting the graft 

acutely and generating chronic damage (Mackenzie et al., 1995; Mackenzie et al., 

1996). Sprague Dawley rats were used to generate renal isografts. This is an 

outbreed strain which means that rats are maintained as closed colonies of 

genetically variable composition, hence, graft haematomas, renal hypertrophy and 

necrosis could have been the results of acute rejection or perhaps this could have 

contributed to further the cava stenosis (previously damage by clamps) due to an 

inflammatory reaction. In the present study, less than 10% and 20% of renal 

hypertrophy were seen in 33 and 26% of the grafts, respectively, suggesting there 

was a certain degree of venous blockage that could have been caused secondary to 

cava endothelial damage and this might have been potentiated by certain degree of 

histological antigenicity, maybe not just in the cava conduit, also in the intrarenal 

vascular system. However, 86% (1/7) in the recovered group showed adequate renal 

surface colour and no hypertrophy. The graft from the recovered group showed more 

than 10% but less than 20% hypertrophy and it did not correlate with urine production, 

which might suggest that the immune response or the vascular damage was mild and 

could be overcome over time, nevertheless the number of samples was low and no 
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histological assessment was generated due to lack of time, hence no strong 

conclusions can be reached from this study.  

 

Second warm ischaemia. SWI is the time the surgeon spends during the graft 

anastomosis to the time it is properly reperfused.  Vasospasm, hypotension, artery 

stenosis, renal artery embolism, renal or vein misangulation and misalignment are 

reasons that can lead to a long second warm ischaemia (Qiu et al., 2012). A rat model 

of ischaemia reperfusion injury by bilateral clamping or renal vein and artery suggests 

that 30 minutes of SWI allows the kidney to recover from renal damage with minimal 

complications after kidney transplantation (Weight et al., 1998). In the rat, this timing 

has been corroborated as a suitable time in kidney transplantation to generate 

adequate long term graft outcomes (Patschan et al., 2012; Schumacher et al., 2003). 

Karatzas et al (2007) reported a mean vascular anastomotic time of  15.5 ± 1.5 min 

with a 15 day survival rate of 87% (Karatzas et al., 2007). In the current study around 

90% (14/15) of all transplants were performed in not less than 1 hour 30 minutes. 

However, a better timing can be achieved with further training. In theory a lack in 

oxygen increases the production of xanthine oxidase, which in turn generates reactive 

oxygen species when perfusion occurs affecting renal structures acutely. The 

generation of ROS is proportional to the ischaemic time. However, probably the 

University of Wisconsin is able to interrupt effectively the ROS formation as UW has 

allopurinol as an important compound. Interestingly, even though xanthine oxidase is 

a key enzyme in the development of ROS, its inhibition through allopurinol in acute 

renal ischaemia and kidney transplantation has not always been translated to renal 

integrity improvements in long term (Paller et al., 1984). This shows that ROS is the 

result of just a part of the injury cascade triggered by a hypoxaemic status; and 

therefore, other cellular inflammatory mechanisms have to be approached at the 

same time to promote functional and structural renal integrity following acute renal 

injury. 

 

In this study, the aortic plus cava anastomotic times represents more a 

measurement of SWI than the anastomotic times their selves. The start count was 

performed from the time the clamps were placed in the recipient’s vascular conduits 

to the time the vessels were anastomosed. This action could have added some 

minutes (10 ± 5 minutes) to the total count as further careful dissection was performed 

for some of procedures to relocate the vascular clamps or to ligate any missed 

accessory paralumbar veins and missed venous tributaries branches before the 

anastomosis started. Even though long SWI did not affected the production of urine 
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the kidney managed to get classified as acceptable, anastomosis should be achieved 

in less time with further training.  

 

7B.4.4. Conclusion 

 

Special attention should be addressed to the surgical timings and vascular 

anastomosis. The surgical technique end-to-side anastomosis using vena cava and 

aortic conduits provides a good technical option when a high powered microscope is 

not available, prevents vascular strictures, which may decrease the incidence of 

thrombosis and long term graft quality. The bladder patch offers a reliable technique 

to maintain a patent urine outflow during a chronic study. Surgical training should start 

by performing the donor technique using the scoring system A. Once an adequate 

donor technique skill and anastomosis surgical pattern has been dominated the next 

step is developing the transplant technique. The handling of vessels and organs is 

performed as in the donor technique. In my opinion, the recipient technique is easier 

to perform than the donor technique, however it requires of more attention and 

surgical detail. A high quality technique could be achieved if the donor and recipient 

surgical technique are performed by different surgeons, this can be translated in 

better timings and less surgical mistakes. Both the vascular and bladder anastomosis 

are techniques that can be performed under conventional microsurgical microscope. 

The learning curve for this technique can be achievable by novice surgeons during a 

PhD programme, along with other major research duties. Setting the surgical 

technique during PhD studies allows the student to establish stronger postdoctoral 

projects and pursue a solid career in this subject. 
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8.1. Introduction 

 

The prevalence of CKD in aged cats is over 50% (Marino et al., 2013a) and 

considered a major cause of death together with cancer, osteoarthritis and cardiac 

dysfunction secondary to endocrine abnormalities (Gowan et al., 2012). CKD in the 

human is a major health problem worldwide and is considered the 12th and 17th cause 

of death and disability, respectively, with many major economic, social and 

epidemiological implications (Schieppati et al., 2005). Understanding CKD in the 

human requires the use of experimental animal models under controlled conditions 

with a shorter period of disease progression to produce reliable findings. Although 

CKD in the domestic cat is multifactorial, the kidney develops histopathological 

features similar to that in human CKD, which may be influenced by a wide range of 

environmental factors which cannot be replicated in the laboratory setting, either in 

vivo or in vitro.  

 

In this thesis, a naturally occurring model of CKD in the cat was used to 

investigate the possibility of an association between the TG2 enzyme and the 

development of renal fibrosis, as shown in humans with CKD (Johnson et al., 2003). 

Both an inhibitory antibody against human TG2 and a small molecule pan TG inhibitor 

were examined in feline tissue in vitro, showing that the TG2 enzyme could be 

inhibited in the cat. This finding suggested that renal fibrosis could be inhibited by a 

small molecule drug or an inhibitory antibody to human TG2 if administered to cats in 

vivo. Studies on TG2 inhibition in human renal tissue with CKD have yet to be 

published, showing the potential for a study of naturally occurring animal disease. The 

results presented in this thesis on CKD studies in the domestic cat may therefore 

support further investigations into human CKD.  

 

Renal fibrosis however, is not a feature exclusive to CKD (Nangaku, 2006) and 

is also found in a condition described as chronic allograft nephropathy (CAN) 

(Rosenberger et al., 2007), a fibrogenic disease generated after renal transplantation. 

CAN could be considered as a post-transplant form of CKD, as both diseases have 

histopathological and disease progression similarities. A rat model of renal warm 

ischaemia (RWI) was employed to mimic the development of renal fibrosis by CKD 

and CAN, but secondary to ischaemia reperfusion injury. The association between 

TG2 and the development of fibrosis was successfully demonstrated in this RWI 

model and a causal link established through chemical inhibition of the enzyme in vivo 

with a positive reduction in tubulointerstitial fibrosis.  
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Further studies were initiated to examine a possible causal link between TG2 

and renal fibrosis following kidney transplantation. Previous work performed in 

collaboration with Mr Shrestha in the Academic Nephrology Unit had already shown 

an association between CAN and TG2. A methodology of kidney transplantation was 

established using aortic and vena caval conduits using the Sprague-Dawley rat. 

However, this approach was unable to be completed for two major reasons:- 

 

(a) The work-up time taken to establish this complex surgical 

technique which itself involved the use of some 60 animals, 

 

(b) A  lack of sensitivity to rodent TG2 of an antibody inhibitor of the 

human TG2 enzyme developed in Sheffield by Drs Mamrabouka 

and Watson since an interventional study was required to establish 

a causal link between the development of CAN and the TG2 

enzyme. 

 

 

8.2. CKD and the TG pathway in the Rat 

 

A rodent model of RWI was examined with a disease duration of 8, 28 and 140 

days providing evidence of a positive association between the development of 

tubulointerstitial fibrosis and the TG2 enzyme. This model at 28 days did not 

developed glomerulosclerosis but early tubulointerstitial fibrosis together with renal 

failure and the up-regulation of the transglutaminase pathway. Hence, the RWI model 

was considered to be histopathologically similar to feline CKD and suitable for 

interventional studies. According to the degree of functional decline, tubulointerstitial 

TG2 and histological damage, a disease progression of 28 days was long enough to 

provide evidence of a causal link between TG2 and the development of renal fibrosis 

following RWI. The inhibition of the TG pathway was achieved using a small molecule 

pan TG inhibitor delivered intrarenally by a perforated cannula positioned within the 

kidney attached to a subcutaneous osmotic minipump containing the drug. 

 

Drug Delivery System. TGI was delivered to the kidney by tissue infusion using 

an intrarenal cannula attached to a subcutaneous osmotic minipump. This 

experimental method of drug delivery, although somewhat crude, has been used 

successfully within other experimental rat models of CKD published from the 

Academic Nephrology Unit at the University of Sheffield including both subtotal 
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nephrectomy (Johnson et al., 2007; Oldroyd et al., 1999) and diabetic nephropathy 

(Huang et al., 2009). The delivery system using intrarenal cannulation was initially 

employed by Oldroyd et al (1999), where interferon-Υ was shown to reduce fibrosis 

in the rat following subtotal nephrectomy and subsequently by Johnson et al (2007) 

to evaluate the effectiveness of TG inhibitors. Further evidence for the effectiveness 

of this approach was provided by Huang et al (2009) in a rat model of diabetic 

nephropathy where a TG inhibitor was labelled with dansyl-FITC to evaluate the 

distribution of the compound within kidney tissue. The results showed both a 

homogenous distribution of drug and also a very minimal degree of fibrosis from any 

damage resulting from cannula placement within the kidney. 

 

Osmotic minipumps provide a reliable, versatile and robust method of 

continuous drug infusion as suggested by their use in some 17,500 articles published 

over a period of 35-40 years from 1976 onwards. The main advantage of the osmotic 

pump is the ability to deliver a continuous drug infusion, for experiments within this 

thesis of a period of up to 28 days (Theeuwes et al., 1976), with the possibility of 

extending up to 33 days, depending on the batch. Benefits include a reduction in the 

fluctuation of drug concentrations within the body, a reduction in the time and 

manpower required for drug administration and indirectly, reducing animal stress. The 

low antigenicity of the pump also prevents stimulation of the immune system and 

inflammation following its implantation.  

 

TG2 upregulation in inflammation and fibrosis. The inhibition of TG2 is able to 

attenuate both inflammatory and fibrogenic processes following RWI, since TG2 plays 

an important role in the upregulation of core cytokines involved in early and late 

healing processes. 

 

TG2 and NF-κβ interaction. The inhibition of TG2 has been proposed to have 

an anti-inflammatory effect, as transglutaminase 2 can activate the NF-κβ pathway 

(Kim, 2006). In a TG2 knock out mouse model of ischaemia reperfusion injury (30 

minutes renal hilar clamping), intravenous TNF-α was shown to keep NF-κβ and 

COX-2 expression to basal levels in contrast to the upregulation of NF-κβ and COX-

2 in the wild type. As a result, renal neutrophilic infiltration, function (urea and 

creatinine) and structure (glomerular and tubulointerstitial) were significantly 

preserved in the TG2 knockout mouse group at day 3 (Kim et al., 2010). 
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NF-κβ activation via TG2 has been shown to be associated with I-κβ kinase 

dependent and independent pathways, upstream paths for NF-κβ signal transduction 

in the inflammatory cascade. TG2 polymerizes the inhibitory subunit alpha of NF-κβ 

via cytosolic transamidation, which in turn, produces a dissociation from the NF-κβ 

inhibitor with its subsequent translocation to the nucleus where it activates 

transcription (Lee et al., 2004). The activation of NF-κβ via TG2 has been supported 

by other research groups in the oncology field (Cao et al., 2008; Jang et al., 2010; 

Kim et al., 2006). Furthermore, NF-κβ has been shown to induce TG2 transcription in 

liver cells; this event has been proposed to be associated with the NF-κβ binding to 

the TG2 promoter (Mirza et al., 1997).  

 

Phospholipase A2 activation via TG2. Another implication of TG2 in 

inflammation is via activation of the secretory form of phospholipase A2 (Miele, 2003), 

a pathway with special relevance in the reduction and control of inflammation via 

corticosteroids. This finding was first assessed in a model of conjuctivitis in the guinea 

pig, where TG2 was proposed to contribute to the activation of phospholipase A2 

(Sohn et al., 2003). The role of phospholipase A2 in the kidney has been indirectly 

tested by determining the induction of inflammation via COX-2 through NF-κβ 

activation (Kim et al., 2010). 

 

TGF-β1 activation via TG2. TG2 has also been shown to upregulate (Huang et 

al., 2010; Khalil, 1999) and to be upregulated by TGF-β1. TGF-β1 is secreted 

inactively as latent form of TGF-β (L-TGF-β1) and later this is catalysed by TG2. TG2 

also recruits the non-active form of TGF-β1 into the extracellular matrix where it gets 

cytokine-activated. In vivo, by using a rat model of diabetic nephropathy + TG 

inhibitor, it was shown that TGF-β1 transcription and protein was significantly reduced 

in contrast to the diabetic nephropathy group following 8 months of disease 

progression. Furthermore, in transfected opossum kidney proximal tubular epithelial 

cells, the higher the TG2 overexpression the higher TGF-β1 transcription was noted 

(Huang et al., 2010). Conversely, TGF-β1 has been shown to promote TG2 

transcription in dermal fibroblasts treated with inflammatory cytokines. Interestingly, 

TGF-β1 also upregulates fibronectin, a vital component in the ECM during early 

inflammatory processes (Quan et al., 2005), and important TG2 substrate. 

 

TGF-β1 and NF-κβ interaction. Concerning TGF-β1 and NF-κβ cross-talk, TGF-

β1 is able to induce NF-κβ activation to promote osteoclast survival; a similar 

phenomenon has been seen in squamous cell carcinoma (Freudlsperger et al., 2013; 
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Gingery et al., 2008). NF-κβ is able to attenuate TGF-β1 transcription via regulation 

of SMAD7 promoter, a TGF-β1 receptor antagonist. Interestingly TGF-β1 can 

antagonize transcription of NF-κβ. Also, NF-κβ can block TGF-β1-induced apoptosis 

in hepatocytes (Nagarajan et al., 2000). The cross talk between these two proteins 

might be dependent on the cellular context and the causal agent that triggers the gene 

expression. This protein interaction may be relevant as a regulatory “valve” between 

renal inflammation and fibrogenesis. A diagram with main TG2 upregulation pathways 

is displayed in Figure 8.1.  

 

TG2, inflammation and fibrosis following Renal Warm Ischaemia. The rat 

experiments in this project have shown that renal warm ischaemia is able to cause 

acute, sub-acute and chronic long term effects in the rat kidney, following 8, 28 and 

140 days following RWI, respectively. RWI is able to induce hypoxia and 

inflammation. Hypoxia and inflammation may interact to each other, however during 

disease progression both events may run parallel at different rates and may support 

each other to perpetuate disease. In chronic stages, hypoxia overtakes inflammation 

in the disease progression placing the inflammatory event as a second actor. Both 

events promote an increase in NF-κβ and TGF-β1 in the rat and mouse following early 

RWI (Basile et al., 1996; Supavekin et al., 2003). Basile et al (1996) showed that 

TGF-β1 gene expression remains up regulated from 12 hours to 14 days following 

RWI in the outer medulla and tubules, and after that just in regenerating tubules. NF-

κβ and TGF-β1 then promote TG2 transcription. The activation of TGF-β1 via TG2 

feeds the extracellular matrix with collagen protein, which subsequently gets cross-

linked by TG2 in the tubulointerstitial space. A diagram for the up-regulation of the 

TG pathway in the tubulointerstitial area following RWI is shown in Figure 8.2. 

 

Correlations between tubulointerstitial fibrosis and the TG pathway. Taking into 

account that TG2 is a major causal link for the development of renal matrix deposition 

a high correlation between fibrosis and TG pathway was expected. However, in all 

RWI experiments, low but still significant correlations were found between 

extracellular TG2 protein/activity and tubulointerstitial fibrosis as assessed by MTS or 

collagen immunofluorescence. One important factor to consider may be the half-life 

of TG2. Intracellular TG2 half-life has been assessed in monocytes lysates showing 

that in 2-day and 10 day old cells can reach up to 11h and 7h, respectively of TG2 

half-life (Murtaugh et al., 1984). This is evidence that senescence may condition TG2 

activity and this might be probably associated with the number of times each enzyme 

is involved in a transamination reaction. Perhaps, ECM turn over and the location of  
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Figure 8.1: Upstream TG2 upregulation 

 
Blue arrows represents the interaction of NF-κβ and TGF-β on TG2 upregulation. Red arrow represents 

the interaction of TG2 on NF-κβ and TGF-β upregulation. Grey double way arrow represents NF-κβ and 

TGF-β cross-talk, which involves inhibitory and transcriptional processes. 

 

 
 

Figure 8.2: Effect of RWI on the tubulointerstitial and IGM areas. 
 

Renal warm ischaemia initiates an inflammatory and hypoxaemic events together with the generation of 

NF-κβ and TGF-β1 cytokines. Tubulointerstitial space generates an increase in TG2 followed by 

increase in TG activity, renal fibrosis deposition (fed by TGF- β1 interaction with TG2) and finally 

reduction in GFR. IGMA is less affected by RWI due to a possible over expression of glomerular HIF-1α 

(green arrow).  A low expression of IGM TG2 together with glomerular conservation is achieved as a 

result.  
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the enzymes (intracellular or extracellular space) may contribute to a modification in 

TG2 activity or TG2 protein degradation. Therefore, measuring of the ε (ɣ-glutamyl)-

lysine, the TG2 non-degradable cross-linking product, remains the best method to 

evaluate the contribution of the TG2 pathway in collagen deposition. Previous 

publications have shown the value of assessing of ε(ɣ-glutamyl)-lysine in cryostat 

sections to investigate the previous impact and implication of TG2 in the generation 

of tubulointerstitial fibrosis (Huang et al., 2009; Johnson et al., 2003; Johnson et al., 

2007; Johnson et al., 1997). However, due to the lack of specificity in the used 

commercial antibodies against the TG2 cross link product, accurate measurement of 

cross-link in situ in the rat was not possible (Johnson et al., 2004a).   

 

Glomerular Resistance to Fibrosis. In marked contrast to the tubulointerstitium, 

renal fibrosis in the rat following RWI at 28 and 140-day did not generate 

glomerulosclerosis. This finding was consistent with lack of IGM TG2 protein and 

activity. Interestingly, in the 28-day study even a significant reduction in glomerular 

fibrosis (Collagen I and IV) was achieved together with a significant reduction in TG2 

protein and activity when the RWI and RWI+TGI groups were compared to 

nephrectomised control rats. The association (Johnson et al., 2003; Johnson et al., 

1997; Liu et al., 2006) and causal link (Fisher et al., 2009; Johnson et al., 2007; Kim 

et al., 2010) between TG2 and glomerulosclerosis have been shown in a number of 

studies. Is it possible that hypoxia enables the IGMA with a protective system to 

down-regulate the TG pathway and therefore preventing the glomeruli from 

inflammation and sclerosis? Is this the result of a glomerular repairing process or the 

result of the blocking of renal injury? 

 

Renal regeneration has been widely described during embryogenesis 

(Quaggin et al., 2008). Post-embryonal nephron-neogenesis is well known to occur 

in some species such as the adult fish (Watanabe et al., 2009). Some adult 

amphibians (frog, axolotl) and reptiles (green iguana, turtle and lizard) have shown 

both glomerular and tubular regeneration (Beuchat et al., 1988; Izaguirre et al., 2008; 

Solomon, 1985). In mammalians, nephron survival after renal injury is limited to 

reparation. Nephron reparation is exerted through, proliferation and dedifferentiation 

of surviving and resident cells which have been shown to play a vital role (Gobe et 

al., 2007; Lin et al., 2010).  However, multipotent progenitor cells and extra-renal cell 

migration may also contribute to renal repair and may provide some limited 

regenerative capacity (Benigni et al., 2010). Tubular reparation is highly active 

process following renal injury when compared to glomeruli, which assumes that the 
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glomeruli should be enabled with a protective mechanism to perpetuate nephron 

function. However, recent studies suggest that reparation in glomeruli may not be as 

passive as previously thought, as renal progenitor cells lining the Bowman capsule in 

humans and rats have been shown to contribute to important podocyte turnover 

(Gagliardini et al., 2014). 

 

Glomerular protection may play a role in the prevention of glomerular damage 

following renal injury. Protective glomerular systems in the domestic feline and the rat 

model of RWI could be subdivided into:-  

 

Hypoxia sensitive system promoting oxygen homeostasis via:- 

a) Up-regulation of oxygen carrier proteins. 

b) Up-regulation of pathways involved in vascular regeneration and reparation. 

c) Attenuation of cellular oxygen requirements.  

d) Maximisation of the available cellular oxygen. 

 

System promoting reduction in inflammation via:- 

a) Up-regulation of anti-inflammatory proteins in the mesangial area.  

b) Down-regulation of inflammatory proteins in the mesangial area. 

c) Reduction of pro-inflammatory cell infiltration in the mesangial area.  

d) Increase in the degradation rate of pro-inflammatory mesangial proteins. 

e) Up-regulation of pathways involved in glomerular reparation and regeneration. 

 

System promoting reduction in fibrosis via:- 

a) Down-regulation of proteins involved in collagen accumulation. 

b) Up-regulation of pathways involved in collagen degradation. 

c) Attenuation of collagen deposition by down regulation of crosslinking proteins  

    expression and/or activity. 

d) Increase in the degradation rate of pro-inflammatory mesangial proteins. 

e) Reduction of pro-fibrotic cell infiltration in the mesangial area. 

  

The hypoxia-inducible factor (HIF) could be important part of potential 

glomerular protective system. Murine glomerular endothelial cells (GECs) under 

hypoxic conditions have shown to be protected by podocytes rather than mesangial 

cells (Wang et al., 2015). This protective mechanism is enabled via SUMO-specific 

protease 1 (SENP-1). Wang et al (2015) showed that by knocking down SENP-1 in 

GECs the HIF-1α system was abolished together with the GECs protection. The 
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activation of HIF-1α upregulates genes related to erythropoiesis (e.g. erythropoietin) 

angiogenesis (e.g. VEGF), vascular tone (e.g. nitric oxide synthase), matrix 

metabolism (MMP’s) and glucose metabolism (e.g. glucose transporters 1 and 3), to 

mention some (Ke et al., 2006). HIF system regulation may reduce oxidative stress 

and therefore less initial inflammation. The reduction of inflammation and regulation 

matrix deposition via HIF may be more regulated in the glomeruli when compared to 

the tubulointerstitial space. If this is true, the high expression of HIF-1α may have 

been responsible for reduction of the TG pathway in the IGMA following 28-day of 

RWI. Perhaps, also other proteins such as mesangial haemoglobin may also 

contribute tin the modulation of hypoxia after RWI (Nishi et al., 2008). Mesangial 

haemoglobin could enable the glomerulus to resist ischaemic events by providing 

more oxygen resources, which in turn may block the generation of nitric oxide and 

hydroxyl radicals, increased following renal reperfusion (Chatterjee et al., 2002; 

Murad et al., 1978; Yokozawa et al., 1999). A diagram for the down-regulation of the 

TG pathway in the IGMA following RWI is shown in Figure 8.2. 

 

Another potential mediator for glomerular protection could be osteogenic protein I 

(OP-1) also known as bone morphogenetic protein 7 (BMP-7), a protein involved in 

embryonic nephrogenesis. Luo et al (1995) showed, the OP-1 knockout mouse was 

not able to survive more than one day due to congenital acute renal failure. 

Interestingly, the high mRNA expression of OP-1 is not restricted to embryonic states, 

it is also highly elevated after birth (Ozkaynak et al., 1991). In the ischaemia 

reperfusion model of rat, OP-1 has been identified highly expressed in the parietal 

and visceral epithelium of the glomerulus as well as tubuloepithelial cells (Vukicevic 

et al., 1998). Furthermore, in vitro research has shown that OP-1 inhibits TGF-β 

fibrinogenesis activity in mesangial cells (Wang et al., 2003) suggesting that apart 

from having a role in acute protection, it is implicated in chronic stages of renal 

disease and potentially highly active in the mesangium.  

 

Problems associated with TG inhibition. TG2 knockout mice can live without 

developing major systemic dysfunctions (De Laurenzi et al., 2001). In contrast, TGF-

β1 knockout mice were associated with prenatal death due to alterations in 

haematopoiesis and vasculogenesis (Dickson et al., 1995). Although there are a 

number of studies showing that the inhibition of TG2 can be beneficial reducing 

fibrosis in different organs, TG2 knockout mice, have also shown to reduce clearance 

of apoptotic cells and phagocytosis by macrophages in the liver together with 

splenomegaly and immunocomplex glomerulonephritis (Szondy et al., 2003). In 
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another model of induced liver disease in the TG2 knockout mouse, defective 

apoptotic cell clearance contributed to the release of pro-inflammatory cytokines (IL-

12, sTNF-RI) increasing susceptibility to inflammatory disease (Falasca et al., 2005). 

 

Important TG2 functions have been identified in intracellular structures. In the 

nucleus, TG2 has been implicated in phosphorylation of histones in vitro, hence, 

implicated in chromatin function and structure stability (Kim et al., 2001; Mishra et al., 

2006). TG knockout mice also show alterations in mitochondrial physiology with 

defective ATP production in the heart (Szondy et al., 2006) and in glucose intolerance 

(Bernassola et al., 2002). The intracellular inhibition of any TG2 function may alter a 

wide range of cellular signalling important to maintain normal physiology and 

inflammatory responses in different organ systems.  

 

Extracellular TG2 transamination to promote renal fibrosis represents a small 

proportion of the full potential of this complex enzyme. The intracellular TG2 

implications should never be underestimated when considering TG2 inhibition as 

potential pharmaceutical approach against fibrosis and inflammation. Temporary 

inhibition or long-term attenuation of extracellular TG2 and not permanent enzyme 

disarming should be pursued as an approach to tackle CKD. 

 

 

8.3. CKD and the TG pathway in the Cat 

 

The data obtained from the Royal Veterinary College for the cat study included 

plasma and urine analysis. This allowed the generation of two groups, azotaemic and 

non-azotaemic kidney tissue. However, the clinical history and some parameters of 

renal function (urinary specific gravity and urea) of the non-azotaemic kidney tissue, 

did not rule out the possibility of having included early non-azotaemic CKD tissue 

samples. Although a study limitation, the animals selected were considered to be 

derived from a realistic sample pool found in a regular clinical setting, where the only 

tools employed to routinely diagnose CKD are plasma analysis, UPC and urinary 

specific gravity. The measurements of renal function correlated with tubulointerstitial 

fibrosis markers in this study. However, more importantly, an association between 

TG2 and tubulointerstitial fibrosis was found. This is the first time the link TG2-renal 

fibrosis has been shown in domestic animals, opening a new pathway in the 

understanding of this condition, supporting the importance of the TG pathway in 

human CKD and generating a new pharmaceutical approach to tackle the disease. 
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Interestingly, TG2 and inflammation parameters did not correlate to each other. 

However, a positive correlation between inflammation and renal fibrosis, by either 

PASH or MTS was observed, although no difference in interstitial inflammation 

between cat groups was achieved.  

 

Triad renal hypoxia, inflammation and fibrosis. It has been proposed that 

tubulointerstitial hypoxia may help to perpetuate the progressive accumulation and 

deposition of ECM proteins in CKD by affecting peritubular integrity and cellular 

epithelial death (Basile et al., 2003). Hypoxia may be generated by itself or be also a 

consequence of inflammation; however, it does not necessarily cause inflammation, 

in fact hypoxia may even attenuate inflammation via upregulation of HIF and 

suppression of IL-Iβ-induced NF-Kβ activity, as shown by Scholz et al (2013) in HeLa 

cells under hydroxylase inhibition (Scholz et al., 2013). In chronic stages of renal 

disease, hypoxia generates a continuous fibrogenic stimuli (Fine et al., 2008), without 

the presence of high levels of inflammation, as hypoxia is being perpetuated not via 

inflammation but by the lack of vascular network and substitution of functional 

parenchyma by collagen fibrils.  

 

Perhaps, in glomeruli, the attenuation of inflammation via upregulation of the 

HIF system may be more evident in the glomeruli, explaining the lack of glomerular 

damage in the cat. Moreover, it has been shown that HIF-1α may contribute to 

glomerular protection, as seen in murine glomerular endothelial cells via podocytes 

(Wang et al., 2015). Hence, if the HIF system is more active in the feline glomeruli 

than the interstitial space, the possibility of the HIF system involvement in feline 

glomerular protection under hypoxaemic environments could be feasible. This may 

explain the lack of sclerosis and TG2 expression in the intraglomerular mesangial 

area when compared to the interstitial space, as hypothesised in the rat. 

 

In the tubulointerstitial area, hypoxia could precede inflammation acutely but in 

sub-acute and chronic stages of injury, hypoxia and inflammation may develop in 

parallel to each other albeit at different rates, according to the level of hypoxia. 

Inflammation by itself may not contribute importantly to the progression of CKD as 

much as hypoxia does. If this is correct, the longer the chronic kidney disease 

progression, the greater the tissue hypoxia, and therefore, the lower the level of 

inflammation. An Australian study in cats with CKD and degenerative joint disease on 

long-term meloxicam, showed that chronic treatment did not alter the life-span of the 

studied cats when compared to CKD cats without treatment (Gowan et al., 2011), 
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perhaps suggesting that hypoxia is a more important actor than inflammation in late 

stages of renal disease and therefore anti-inflammatory treatment in stable CKD may 

be unable to provide any substantial benefit. 

 

Inhibition of interstitial inflammation may be beneficial during acute kidney injury 

or at the very beginning of CKD. If inflammation is a prominent feature of acute renal 

disease then, reduction of inflammation may be beneficial in cats and humans with 

early renal injury to avoid the transition from AKI to CKD, or at least to reduce the 

fibrogenic consequences of AKI in the future development of renal fibrosis. This could 

be achieved via inhibition of direct NF-κβ pathway or time dependent inhibition of 

cyclooxygenase 2. It is well established that reduction of inflammation via inhibition 

of the COX pathway should be avoided in patients with kidney disease, due to the 

interaction with renal prostaglandins and the reduction of renal perfusion.  Although 

this is a real concern in unstable hypotensive patients with AKI, the use of weak renal 

cyclooxygenase 2 (COX-2) inhibitors such as meloxicam (Engelhardt, 1996) might be 

beneficial in stabilised cases of acute renal injury. The modest anti-inflammatory 

effect of meloxicam on the kidney might be enough to provide an adequate balance 

between prostaglandin inhibition and the reduction of tubulointerstitial inflammation in 

stable-late AKI or soon after AKI resolution. However, extensive research in this area 

should be performed before attempting such approach 

 

Inflammation and hypoxia phases in renal disease may indicate that the staging 

systems for CKD could include an estimated time for CKD maturation, considering 

AKI signs or at least the first identified signs of CKD as starting point. This may be 

highly relevant in the classification and treatment of cats with CKD. In naturally 

occurring feline CKD a close monitoring to detect asymptomatic AKI and early CKD 

could only be achieved if urinalysis, haematology and biochemistry analysis were 

evaluated on a regular basis (every 6 months) in feline patients before 13 years of 

age. Plasma and urine samples would have to be stored properly (liquid nitrogen or -

80°C) for longitudinal retrospective studies at protein and RNA levels. Similar storage 

systems are required for terminal kidney tissue. Such a research biorepository could 

be funded by the pharmaceutical industry, government, veterinary insurance 

companies and small animal teaching hospitals, not necessarily in the UK. 

 

Rabbit PolyclonalTG2 Antibody. The western blot analysis of cat kidney tissue, 

using a rabbit polyclonal TG2 antibody (rpTG2), detected an additional band at 83 

kDa. However, the presence of an 83kDa protein firstly is not consistent with the 
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molecular weight of feline TG2 and secondly showed no increase in volume density 

for cats with azotemia. The visualisation of this band is mostly likely explained by 

cross-reactivity of the rabbit polyclonal antibody with cat factor XIIIa which has a 

molecular weight of 83-84 kDa (ENSFCAP00000014378) (Flicek et al., 2014). 

 

 An alternative explanation could be differences in the glycosylation of the TG2 

enzyme itself which cannot be discounted entirely although, no published information 

is available on either the carbohydrate content or potential glycosylation sites for cat 

TG2. The possibility that transglutaminase may be a glycoprotein has been raised by 

the sequence studies of Ikura et al (1988), using TG derived from guinea-pig liver, 

where the presence of 6 potential Asn-glycosylation sites was deduced from its DNA 

sequence (Ikura et al., 1988). Earlier studies by Folk and Chung (1973) however, 

using guinea-pig TG, were unable to detect any carbohydrate content present in this 

protein (Folk et al., 1973). At present therefore, there is little evidence to support the 

concept of TG from any species being a glycoprotein. So, the most plausible 

explanation for the presence of an 83kDa band on the cat kidney western blot would 

be cross reactivity of the polyclonal rabbit antibody to factor XIIIa present in residual 

blood stored within kidney tissue obtained at post-mortem.  

 

Although the same rabbit polyclonal antibody was used to assess extracellular 

TG2 in cryostat sections in situ, there was no possibility of assessing both TG2 and 

factor XIIIa. Factor XIIIa is localized in blood plasma and the immunostaining 

technique (washing/fixation) removed blood plasma from tissue leaving just the TG2 

attached to collagen proteins and other minor TG2 substrates. The quantification of 

TG2 in cryostat sections by immunofluorescence was therefore proposed to 

specifically target transglutaminase 2. 

 

TG2 Degradation. One important issue and potential limitation of the cat kidney 

data presented in this thesis was the possibility of proteolytic degradation while the 

kidney remained within the deceased animal during the period between euthanasia 

and tissue harvesting post-mortem (potentially a period of up to 6 hours). Rapid cold 

preservation of tissue after euthanasia would be necessary to avoid potential 

degradation by natural proteases. Matrix metalloproteinases, for example, are 

enzymes responsible for extracellular matrix degradation (Birkedal-Hansen et al., 

1993). Membrane type-1 matrix metalloproteinase (MT1-MMP), a membrane 

activator of MMP-2 secretion, is involved in the proteolysis of TG2 at 3 different 

cleavage sites, reducing the activity of the TG2 enzyme (Belkin et al., 2004). Some 

http://www.ensembl.org/Felis_catus/Transcript/ProteinSummary?db=core;g=ENSFCAG00000015505;r=B2:22137472-22297478;t=ENSFCAT00000015509
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degree of tissue degradation might be responsible for the lower correlation between 

renal function with TG activity than with TG2 protein in cat kidney tissue homogenates 

as evidenced by the detection of a 66 kDa band, compatible with an inactive fragment 

of TG2 (Belkin et al 2004),  when western blots were performed using a TG2 selective 

antibody (BB7). 

 

Non-Azotaemic Kidney Tissue. Both the early development of CKD and the 

presence of concomitant diseases remain a possibility for the non-azotaemic cat 

group. Their old age (11 to 23.7 years), low urine specific gravity (particularly in cats 

No 2 and No 5) together with other health issues might have affected renal structure 

and/or function either directly or indirectly. Cat No 2, more importantly, showed 

evidence of tissue damage supported by the presence of tubulointerstitial fibrosis and 

inflammation. The presence of a renal lymphoma was diagnosed in cat No 11, being 

detected in over 70% of the total kidney section. Interestingly, this sample also 

showed the lowest level of TG activity and protein for both total and extracellular 

transglutaminases. However, fibrosis in this sample was high, consistent with the low 

level of renal function (CKD stage 3). The low expression of TG activity in this kidney 

could have been due to non-adequate tissue preservation or low innate TG2 

activity/expression secondary to renal lymphoma. 

 

The association of cancer and transglutaminase 2 upregulation has previously 

been established in human glioblastoma, melanoma, pancreatic, ovarian, lung and 

mammary carcinoma (Mehta et al., 2010). A link between renal cell carcinoma and 

high expression of TG2 has also been investigated in a xenograft model of rat (Ku et 

al., 2014). The only evidence concerning the TG2 and cancer in the cat has been in 

mammary carcinoma where TG2 was also shown to be upregulated (Wakshlag et al., 

2006).  For other renal cancers and TG2, no information in domestic felines is as yet 

available. Further assessment of feline renal tissue with CKD and renal lymphoma 

could be tested to evaluate if lymphoma itself, in contrast to other renal neoplasia, is 

able to maintain low TG2 expression whilst spreading throughout the kidney. Renal 

transglutaminase protein and enzyme activity were assumed to remain unaffected by 

the presence of non-renal metastasis. Cats No. 3, 5, 6, 8 and 11 were diagnosed with 

non-renal tumours in the stomach, liver, lung, bladder and intestine respectively.  
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8.4. Renal fibrosis (CKD / CAN) and the TG pathway in the man 

 

In the human, antecedents associated with the increased risk to develop CKD 

are easy tracked when taking the clinical history of the patient. If a patient has a high 

level of CKD risk of factors, reduction of them may help in the reversal of the process 

in very early CKD. If factors are associated with evidence of renal damage (blood and 

urine analysis), then CKD can be staged followed by the treatment of comorbidity to 

slow the progression of the disease. Assessment of the reduction of glomerular 

filtration rate estimates the progression of the disease and it is important to re-

evaluate patient and treat complications (Levey et al., 2012). When kidney failure 

occurs, the patient will die if dialysis or kidney transplantation are not available. 

Kidney transplantation is the best long term therapeutic alternative. However, chronic 

allograft nephropathy, a version of CKD post-transplant, may occur. Consequences 

at any stages of CAN and CKD can cause complications and patients’ death. The 

cardinal histopathological process in either CKD or CAN is renal fibrosis, which 

reduces GFR. This is represented as tubulointerstitial fibrosis and glomerulosclerosis. 

See Figure 8.3 for progression of renal fibrosis via CKD or CAN. 

 

Transglutaminase 2 has been identify in the man in both diseases, in either the 

glomeruli or the tubulointerstitial space (Johnson et al., 2004b; Johnson et al., 2003). 

Different animal models in the rat have also shown the association and causality of 

TG2 on CKD (Huang et al., 2009; Johnson et al., 2007; Shweke et al., 2008). 

However, CAN has been limited to just one animal association study (Shrestha et al., 

2014a). Therefore, in order to understand CAN in the man an interventional study 

using a Fisher to Lewis model of CAN was intended to be part of the current research 

project. However, due to unavailability of a TG2 inhibitory antibody, specific to the rat, 

just the establishment of the kidney transplant technique and the TG2 quantification 

was achieved. The technique description and the data generated regarding TG2 

quantification in both rat strains are important foundation for the development of future 

CAN projects. 
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Figure 8.3: Development, progression and therapeutic options for renal fibrosis 

Blue represents adequate renal function; pink, the risks to develop renal fibrosis; yellow, represents 

triggering, establishment and progression of renal fibrosis via CKD or CAN. Dark pink, brown and dark 

brown, different stages of CKD. Black, last resource treatment for CKD or CAN. 
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8.5. Comparative medicine between human and feline renal fibrosis 

 

Even though human and non-human animal diseases overlaps tremendously, 

a communication between physicians and veterinarians is uncommon when 

approaching illnesses. Understanding a diseases according to each other’s expertise 

allows a wider criteria for the development of research projects. Comparative 

medicine bridges both disciplines enhancing the understanding of diseases through 

the study of the similarities and differences in physiopathology amongst animals. 

Veterinary and medical science, together with molecular biology, is able to generate 

new treatments and diagnostic methods for the benefit of both animals and humans. 

 

The study of CKD in the domestic cat is emerging. The International Renal 

Interest Society has boosted research to study feline acute and chronic kidney. As a 

result, a staging system similar to the one in humans has been developed. This 

staging system is expected to be further refined when the inclusion of more accurate 

GFR measurements occurs. The development of CKD staging system was a vital first 

step for the generation of evidence based veterinary medicine in this field; this is 

intended to facilitate the setting up of comparative research in renal fibrosis, which is 

not just limited to CKD, since CAN has been already identify in transplanted cats (De 

Cock et al., 2004). Likewise, acute kidney disease and dialysis in cats could be very 

useful research platform for comparative medicine. Furthermore, the genome in the 

cat has been fully mapped and currently it is in process of refinement, opening the 

door to comparative genetics (Montague et al., 2014).  

 

 

8.6. Future Work.   

 

The feline data presented in this thesis could have shown a higher statistical 

significance if a more rigid system of inclusion criteria had been used; for example, to 

differentiate non-azotaemic CKD from non-azotaemic tissue samples without CKD, 

and to rule out tissue samples suspicious of renal tumours.  

 

In a future research project, it would be important to assess the TG pathway 

and fibrosis in all stages of CKD, separating groups based on differences in either 

histology or renal function rather than just the presence/absence of azotaemia. If 

results are obtained as in the present study, then further investigation should be 

performed to establish if hypoxia is a potential triggering factor in the cat for the TG 
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pathway up-regulation. To achieve this, analysis of HIF-1α and TG2 protein in renal 

tissue and urine could be studied. In tissue, glomerular HIF-1α and TG2 could be 

compared to tubulointerstitial HIF-1α in both cryostat sections and in tissue 

homogenates. This can be achieved by using micro-dissection, intraglomerular 

magnetic beads or tissue micro sieves. If HIF-1α is expressed in either 

tubulointerstitial and glomeruli in the cat kidney with CKD and this expression 

increase gradually along the progression of the disease, then it could be assumed 

that hypoxia is an important factor for the development of CKD in the cat. If the HIF-

1α system on the other hand, is overexpressed in the glomeruli when compared to 

the tubulointerstitial area, together with a low expression in the glomerular TG 

pathway, it could be assumed that indeed HIF-1α is a protective glomerular 

mechanism under low oxygen tension environment. Furthermore, intra/extracellular 

HIF-1α / TG2 analysis in the rat model of RWI could be carried out to compare results. 

If results in the cat are similar to the results obtained in this model then, the RWI in 

the rat would be a more reliable model to undertake interventional studies for feline 

CKD.  

 

Moreover, if the triad of hypoxia, inflammation and fibrosis are important to 

determine the maturation of CKD then the simultaneous evaluation of urinary markers 

such as TG2 (Da Silva et al., 2013), KIM-1 and HIF-1α could be important to establish 

CKD maturation and even to develop or modify the current acute and chronic kidney 

disease staging system in cats. 

 

 

8.7. Conclusion 

 

CKD in the human and cat share many histological and physiopathological 

similarities. The study of differences however, such as glomerular resistance to the 

development of  fibrosis in the cat may provide valuable evidence to understand 

glomerular disease in the human such as in diabetic glomerulosclerosis, considered 

at present a worldwide epidemic (Rossing, 2006). The study of naturally occurring 

CKD in the cat could lead to a reduction in the use of experimental laboratory animals, 

increase safety in the use of drugs during clinical trials, allow a wider variety of 

analysis due to availability of diseased kidney tissue and allow confirmation of findings 

from in vitro and vivo models. Veterinary medicine, on the other hand, would benefit 

from a stronger evidence based approach, strengthening veterinary basic science, 

which might accelerate the development of new treatments for domestic animals. 
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Evidence presented in this thesis showed that inhibition of the transglutaminase 

pathway may represent an important new target site to reduce both inflammation and 

accumulation of interstitial fibrosis. Reduction in renal fibrosis could be achieved by 

TG2 inhibition in the early stages of CKD, however a delay in the progression of CKD 

may be possible with TG2 inhibition in more mature forms of CKD. 

 

“A finding in Veterinary Research is remarkable if it improves animal health. 

However, if that finding brings a substantial benefit to public health, it becomes 

outstanding” ACSL. 
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